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Preface

The second edition of Numerical Linear Algebra and Applications not only has a different
publisher but also is practicaliy a different book in s style of presentation and coverage
of wopics. However, the key features of the first edition have been fully preservn.ci and
oeeasionally further improved in this edition,.

0.1

Special Features

« Discussions of the Computational Difficalties Using Theoretical Linear Algebra Tools

It is very important for students o clearly understand Lthal some of the tools they have
learned in a theoretical linear algebra course may nol work in a computational selting.
Some examples, such as solving Hinear systems using Cramer's rule or marix inver-
sion, finding the eigenvalues by computing the zeros of the characteristic polynomial,
and computing singular values from the eigenvalues of the associated matrix product,
will suffice. They will then start appreciating the beaoty of numerical lincar algebra
garly on and develop an interest in the study of numerical Hinear algebra. T have done
this in Chapter |, which serves as a motivating chapier for the entire book.

» Applications ro Science and Engineering

Une of the major strengihs of the first edition was thaf it contained a wide variety
of motivating real-lile examples drawn from numerous disciplines, including heat
transfer, fluid dynarnics, signal processing, biomedical engineering, statistics, busi-
ness, control, and vibration engineering. In addition to all the applications contained
in the first edition. several more, including some new SYD applications 1o image
processing, have been added to the second edition. This feature distinguishes this
book from most of the existing numerical linear algebra bopks,

» A Brief Review of Theoretical Linear Algebra

A brief review of the basic concepts and results of theoretical linear algebra required
to study the rest of the book, with & special emphasis on vector and mairix norms,
has been given in Chapter 2. The importance of norm properties of orihogonal
malrices, which make these matrices valuable wols for numerically reliable marrix
computatfonal algorithms, hus been emphasized. In most theoretical introductory
linear algebra courses, norms and norm properties are not adequalely covered.

xvii



XViii Preface

» Early Introduction of the Bastc Cancepts

Students should be introduced early in the course (o the fusdamemal congepts of
round-aff errors, elficiency, conditioning, and stability. Some basic [acts should be
made clear from the beginning. For example:

- anefficient algorithm may not necessarily be a “*good algorithm™ (e.g., Gaussian
elimination without pivoling);

- stahility is a property of the algorithm and conditioning is a property of the
problem, but both have effects on the accuracy of the solution;

~ the stability of 3 numerical scheme depends upon the problem that i1s being solved
using the scheme {e.g., the modified Gram--Schmidt process is stable for least-
squargs solution, but can perform poorly when applied to QR lactorization).

From my experience, [ have seen studerits Who, even after 1aking one or-two majer -
courses in munerical analysis and numerical linear algebra, do not have clear idens
about these facts, With this in mind, I have introduced these concepts early in Chap-
ters 3 and 4 and returned 10 discussions of these concepls whenever g computational
problem and the associated algorithim(s) have been described.

= Presentation af Algorithms

Presentation of algorithms to students in the classroom is a challenging job for most
insiructors. Before an algorithm is presented in algorithmic form, the students should
have a clear idea about the purpose of the algorithm, the tools available, and how to
make good use of these tools 1o develop the algorithm in a stepwise fashion, This
approach of algorithm presentation stimulates the creativity of the students and helps
increase their interest in algorithm development and the study of numerical lincar
algebra. [ have followed this practice throughout the whole book. Each algorithun
has also been illustrated with simple examples, followed by brief discussions on
ctficiency, stability, accuracy, and computer implementatons.

* Discussions on (eneralized Eigenvalue Problems

Several practical applications, especially those arising in vibration and structural
engineering, give rise to generalized eigenvelue problems. A thorough treatment
on theory, applications, and numerical algorithms of this problem has been given in
Chapter 11, The applications include vibrations of structures, model reduction, and
the effects of an carthquake on a building.

o MATCOM Tooibox

A MATLAR-based tootkit, MATCOM, associated with this book contains MATLAR
implementations of almost all major algorithms presented in the book. Several al-
gorithms for the same problem have been implemented which will help students
compare efficiency, stability, und accuracy of different algorithms for the same prob-
lem. Plenty of MATLAB and MATCOM exercises have been given in cach chapier,
Many of these problems are designed 1o undersiand why certain algorithms are hetter
thar others for the same problem.
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« Summary af the End of Eacli Chapter

Imporiant definitions, concepts, and results have been summarized a1 the ead of each
chapter. This will help students review the material of the chapter quickly,

Suggestions for Furdher Readings

While it is impossible to cope with the dynamic developments of current research in
numerical linear algebra, some of the tatest developments as well as relerences o the
fundamental work on topices discussed in each chapter have been included at the end
of each chapter for the benefit of advanced readers. The books by Golub and Van
Loan (1996), Higham {2002), Stewart {1998h, 2001a}, and Bjdrck (1996} are rich
sources of references on numerical Hinear algebra und matrix compulations.

Solutions and Answers to Selected Probilems

Especially for the benefit of undergraduate stidents, partial solutions and answers to
important prablems, emphasizing those in need of proofs: have heen inchuded in an
online appendix. See the book's webpage at wwinsine org/books/or! 16,

v List of Key Terns

The most common terms in numerical linear algebra have been defined and listed for
a quick reference.

0.2 Additional Features and Topics for Second Edition

* New Numbering Scheme

A new numbering scheme different {from what was used in the first edition has been
adopted in this cditioa. Definitions, theorems, corollaries, and examples have heen
consecutively numbered in each chapter, the first number of each item being the
chapter number. Algorithims are numbered in order of thelr appearances in a chapter.
Thus, Algorithm 5.1 indicates that it s the first algorithim in Chapter 5. 1 believe this
scheme is most commonly used and will facilitate readings.

Mare Picrures and Figures

“A picture is worth a thousand words.” Keeping this proverb inmind, Thave included
as many pictures and figures as possible in this edition.

Orgunization of Material

The material in this edition hes been organized slightly differently fram the first edi-
tion. Thus, the fundamental tools of numerical linear algebra, such as elementary
Householder and Givens transformations, ele., have been introduced right before or
along with their first application to solve a linear algebra problem. For example, ele-
mentary transformation has been introduced in the conext of LU factorization using
the Gaussian climination scheme in Chapter 5, Houscholder and Givens ransforma-
tions have been introduced in Chapter 7 right before Chapter 8, where least-squares
solutions o lincar systems bave been discussed; reduction to Hessenberg form has
been described in Chapter 9, where eigenvalue problem has been discussed, ete. Tn
the first edition these tools were developed in an earlier chapter {Chapter 5 and their



X%

Preface

-

applications (o selulions of linear sysiems, least squares, and cigenvalue probiems
were discussed in ler chapters,

A Separate Chapter on ferative Methods

Recognizing the importance of iterative methods in solutions of large-scale problems,
a separale chapler (Chapter 12) with emphasis on development of major Krylov-
subspace methods for linear systems solutions, have been included in this edition.
A brief discussion on computing partiat spectrum and the associnted eigenveciors of
large and sparse matrices, including techoiques for generalized and quadratic sigen-
value problems, have also been included in this chapler

Discussions on Onadrasic Eigenvalue Problem

Quadratic eigenvalue problems arise in a wide vanety of practical applications, in-

cluding vibration analysis of structures, finite element model updating In structural dy-
“hidmics; heatiransfer, signal and acoustio studies, ete. An active research on gquadratic

-

0.3

The book has been writien primarnily for a lirst course in numerical linear algebra in math-
ematics, computer science, and engineering, at the undergraduate and beginning graduate
levels. See our Guidelines for using the book later. Also, the book is ideal for self-study
and will serve as o reference book for scientists and engineers.

and goadratic inverse cigenvalue problems is currently underway. Some discussions
on theory, applications and computational methods of of guadratic eigenvalue prob-
lems, incloding the Jacobi-Davidson method, have been presented in Chapters 11 and
12 of this new cdition.

Early introduction of Singular Value Decomposition

SVD has become an indispensalile tool in the treatment ol major applications problems
in science and engingering, It is now generally agreed that the students should be
exposed 10 this imporiant topic as early as possible in the cowrse, Keeping this in mind,
the: SV hag already been defined in Chapter 2 of the book and a full treatment of its
theory and applications have been iacluded in Chapter 7, even before our discussions
ont cigenvalue problems in Chapter 8. Computational metheds on SV appear in
Chapter 10 along with the reatment of the symmetric gigenvalue problem,

Biographical Anecdotes

Biographical anecdotes of several outstanding aumerical linear algebraists whose no-
ble contributions have eariched the field, and but only of those who are now deceased,
have been included in the present edition.

Intended Audience

0.4 Some Guidelines for Using this Book

Far more material than can be covered in one semester course has been included. so that
professors can tailor material w particular classes and easily develop syllabi. Here are some
guidelines for using the book in the clussroorm.
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(.4.1 A First Course in Numerical Linear Algebra {Advanced
Undergraduate/One Semester)

= Linear Algebra Problems and Compuotational Difficoliies Using Theoretical Tools:
Chapier §.

» Special Mairices, Vector and Matrix Norms, and SVD: Chapter 2, Seciions 2.4-2.6.

» Floaling Point Numbers and Ecrors: Chapler 3, Sections 3.1-3.3; brief discussions
from Sections 3.4-3.7; and Sectioa 3.8,

« Srability, Conditioning, and Accuracy: Chaplerd, Sections 4.1-4.5, and Sections 4.0. 1,
4.7, and 4.8,

» (aussian Elimination and LU Factorization: Chapter 5 (except possibly Section 5.2.3
on compleie pivoling).

+ Numerical Solutions of Linear Systems: Chapter 6, Section 6.2; some selected appli-
cations from Section 6.3; Sections 6.4, 6.5.6.7.1, 67.3, 6.7.4, 0.8, 6.9 (opuonal), and
6,11, selected applications (giving rise to special lingar systems) from Section 6.12;
and Sections 6.12.3, 6,12.5, and 6.12.6,

» (R Factorization, SVD, and Projections; Chapter 7, Sections 7.2,7.5,7.6, 7.7, 7 8.1,
7.82, 7.8.4, 785, 785, 787, 7.8.9, and 7.8.10; and selecied applications from
Section 7.9,

» Least-Squares Solutions: Chapier B, Sections 8.2-8.5; some basic seasitivity results
from Section 8.6; and Section 8.7.

* Numerical Matrix Eigenvalue Problem: Chapter 9, selecied applications from Sec-
tion 9.2; and Sections 8.3, 9.4, 9.5, 9.6.1, 9.8.1,9.8.2, 983, and 9.9.1.

Note: Some adjustments need to be made for a one-quarter course.

0.4.2 A Second Course in Numerical Linear Algebra (Beginning
Graduate Course)

(Fr is assumed that the students have had a first course in numerical lingor algebra. If that
is not the case, a review of matertal of the first course should be done as necessary)

« Numerical Solutions of Linear Systems: Chapters 6 and 12; a detailed perturbation
analysis {(Sections 4.6 and 6.10); LU factorization with complete pivoting {Section
5.2.5); Sherman~Morrison formuta for matrix inverse (Section 6.7.2); condition num-
ber estimation {Section 6.9); special systems {Section 6.12); and ierative methods
{Sections 12.2-12.5).

« R Factorization: Chapter 7; areview of Householder QR factorization (Section 7,21
and Giveas QR factorization and uniqueness of QR Tactorization (Section 7.43,

* Least-Squares Solution: Chapter B; pertucbation analysis {Section 8.6} a review of
computational methods for overdetermined systems (Section 8.7); and underdeter-
mined systems {Section 8.8); iterabive refinoment {(Section 8.9),
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» Mumerical Mairix Eigenvalue Problem: Chapters 9, 10, and [1; sensitivity of indi-
vidual eigenvalues and cigenveclors (Sections 9.6 and 8.7}; double shift implicit QR
itcration algorithm (Sections 9.8.4-9.8.0); ordering cigenvalues in real-Schur form
{Section 9.8.7); symmetric eigenvalue problem (Section 10.2); and generalized and
quadratic eigenvalue problems (selected sections from Chapters 11 and 12},

+ SVD. Rank-Deficiency, Numerical Rank, and Possibly Some Discussions on Gener-
alized SVD: Chaplers 7 and 10, Sections 7.8.8, 7.10, 10.3, and 14.4.

« Special Topics: Chapter 14 (available onling at wwesiwm.org/books/or 116%; QR fac-
torizalion with pivoring, updating and downdating of QR factorization, and error
analyses for back substitutioa, forward elimination, LU factorization, and Linear
Systems.

- 0:4:3--A-One-Semester Course in Numerical Linear Algebra for
Engineers

Required Theoretical Linear Algebra Backeround (selected sections from Chapter 2),

*

Floating Point Numbers and Errorg: Sections 3.1-3.3 and Section 3.8,

Stability, Conditioning and Accuracy: Sections 4.1-4.5, 4.6.1, and 4.7

-

Gaussian Elimination and Lincar Systems: Chapters 3 and &, Sections 3.1, 5.2.1-
5.2.4, 3.3, and 6.2; selected applications from Sections 6.3 and 6.12; and Sections
6.4,67.1,67.3,674, and 6.11.

* QR Factorization, SV, and Least-Squares Solutions: Chapters 7 and 8, Sections 7.2,
7.5,7.7, 7.8 (except 7.8.8), 8.2, 8.3, 84, 8.5, and 8.7,

+ Numerical Eigenvalue Problems: Chapters 9, 1), 11, and 12,

Standard Eigeavalue Problem: Sclected applications from Section 9.2, and Sections
94,95 961, 981, and 3.8.2; and some selected methods from Section 10.2 (3ym-
metric eigenvaiue problem).

Generalized Eigenvglue Problem; Chapter 11, Sections 11,2 and 11.3; some dis-
cussions of Q£ algorithm from Section 1.4, Sections 11.5 and 11.6; and seiected
applications from Sections 11,7 and [1.8.

(Quadratic Eigenvajue Problem: Section 11.9

» lierntive Methods: Selected methods from Chapter 12 as npeded,
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Chapter 1

Linear Algebra Problems,
Their Importance, and
Computational Difficulties

1.1 Introduction

The main objectives of this chapier are to state the fundamental linear algebra problems
at the outsel, make a brief mention of their importance, and point out the difficuldes that
one faces in computational settings when trying to sobve these problems using obvious
approaches.

1.2 Fundamental Linear Algebra Problems
and Their Importance

The following are the fundamental linear algebra problems.

A, The Linear System Probiem. Given an n x # nonsingufar mairix A and an
p-veclor b, the problem is o ind an g-vector x such that Ax = b,

A practical variation of the problem requires solutions of several linear systems with
the sume malrix A on the lefi-hand side. That is, the problem there {5 o find a matrix
X =1{x;, %2, ..., X&) such that

AX = B,

where 8 = [by, b1, ..., by is an 5 x m matrix.

Associated with linear system problems are problems of finding the inverse ofa matrix,
fincting the rank, the determinant, the leading principal minors, an orthonormal basis for the
range aad the null space of A, and various projection matrices associated with A. Solutions
of some of these later problems require matrix factorizations, and the problem of matrix
factorizations and Hnear system problems are intimately related.

1t is perhaps not an exaggeration o say that the linear system problem ariscs in almost
all branches of science and engineering: applied mathersatics, biology, chemisiry, physics,
electrical, mechanieal, civil, and vibration engineering, eie,

1
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The most common source is the numerical solution of differential equaiions. Many
mathematical models of physical and engineering syslems are systems of differential
gquations: ordinary and partial. A system of differential egoations is normally solved nu-
merically by discretizing the system by means of finite differences or finite element methods.
The process of discretization, in general, leads to a linear system, the solution of which is
an approximate solution to the differential equations {sze Chupter 6 for more details),

B. The Least-Squares Prollem. Given anm < 1 matrix A and an m-vector b, the
least-squares problem is o find an s-vector ¥ such that the norm of the residual
vector, Ay — blia, is as small as possible.

Least-squarcs problems arise in statistical and geomctric applications that require fit-
ting a polynomial or curve to experimental data, as well as in engineering applications such

assigoal and image processing. See Chapter 8 for some specific applications of least-squares

problems. It is worth mentioning here that methods [of numeérically solving leastcsyuares
problems invariably lead to selutions of linear sysiems problems {see again Chapier 8 fur
detailz),

C. The Eigenvalue Problem, Given an n x n matrix A, the problem s to find »
numbers A; and #-voclors x; such that

Axy = hx, = 1,...,n

The eigenvaiue problem typically arises in the explicit solution and stability analysis
ol a homogeneous system of first-order differential equations, The stability analysis requires
only implicit knowledge of eigenvalugs, whereas the explicit sobution requires cigenvalues
and efgenvectors explicitly,

Applications such as buckling problems, stock markel analysis, and study of behavior
of dynamical systems reguire computations of only a few eigenvalues and gigenvectors,
usually the few largest or smallest ones (see Chapler 9.

In many practical instances, the matrix A is symmetric, and thus the gigenvalue prob-
iem becomes a symmuetric eigeavalue problem (Chapler 10). A great number of eigenvalue
problems arising in engineering applications are, however, generalized eigenvalue prob-
lems, as stated below,

D. The Generalized and Quadratic Eigenvalue Problems.  Given the n x n
matrices A, B, and €, the problem is 1o find A; and x; such that

GIAGNCH B =0, i=1,..,2n

This is known as the quadratic eigenvalue problem. In the special cuse when Cisa
zero matrix, the problem reduces to a generalized eigenvalue problem. That is, if we are
given s x # matricss A and B, we must find 1t and x such that

Ax = uBx.

The leading equations of vibration engineering {a branch of engineering dealing with vi-
braticas of structures, ete.} are systems of homogencous or nonhomogensous second-order



1.3. Computational Difficulties Using Theoretical Linear Algebra Technigues 3

differential equations. A homogeneous second-order system has the [orm
AT+ Cz+ Bz =0,
the solution and stability analysis of which lead to a quadratic cigenvalue problem,
Vibration problems are vsually solved by setting C = 0. Moreover, in many practical
instances, the matrices A and B are symmetric and & s positive definite, This leads to a
symmetric definite generalized cigenvalue problem.
See Chapter 11 for details of seme sperific applications of these problems.

B, Sngular Value Decomposition Preblem, Given an s xoa marrix A, the problem
is o find unitary matrices [/ and V and a “dingonal” matrix £ such that

A= )V

The above decompositien is known as the singalar value decomposition of A. The
eatries-of X-are singular values. The column veclors of £and V oare called the singular
vECLONE,

Many areas of engineering such ag control and systems theory, hiomedical engineer-
ing, signal and image processing, and statistical applications give rise o the singular value
decomposition problem. These applications typically require the runk of A, an orthonormal
basis, projections, the distance of a matrix {rom another matrix of lower rank, etc., in the
presence of certain impurities (known as noise) in the data. The singular values and singu-
lar vectors are the most numerically reliable 10ols 1o find these entities. The singular value
decomposition is also the most numerically effective approach [or solving the least-squares
problem, especially in the rank-deficient case (see Chapiers B and 10).

1.3 Computational Difficulties Using Theoretical Linear
Algebra Techniques

In this section we would like to point out a few of the compulational difficalties one might
fsce while attemipting 1o s0lve some of the above-mentioned linear algebra problems using
commaon theoretical linear algebra methods.

+ Splving a linear system by Cramer’s Rule. Cramer’s Rule, as taught at an under-
graduate lincar algebra course, is of sigaificant theoretical and historical importance
{for a stalement of this rule, see Chapter 6). Unfortunately, it cannot be recommended
as a praclical computational procedure.

Solving a 20x 20 linear system, even on a [ast modern-day compuier, might take more
than o million yvears 1o compute the solution witl: this rule, using the usual definition
of the determinant of a matrix.

« Computing the unique solution of a linear system by matrix inversion. The unigue
solution of a nonsingular linear system can be writien explicitly as x = A~7h.
Unfortsnately, computing a solution 1o a linear system hy explicitly computing the
matrix inverse s not practical,

The computation of the matrix inverse 15 abeut two-and-a-half times as expensive
as solving the linear system problem iiself using a standard glimination procedure
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{see Chapter 68), and ofien leads 1o more inaccuracies. Consider s trivial example:
Solve 3x = 27. An eliminaton procedore will give x = 9 and require only one
division. On the other hand, solving the equalion using matrix inversion will be cast
as x = (1/3)- 27, giving x = 0.3333 . 27 = B.999 (in four-digit arithmetic}, and will
require ene division and one multiplication,

Nole that compuler time consumed by an algorithim is theoretically measuored by the
number of arithmetic operations peeded 1 execute the algorithm.

Selving a least-squares problem by normal equations. 17 the s x # matrix A has
{uil rank, snd m is greater than or equal to », then the least-squares problem has a
unique salution, and this solution is theoretically given by the sohution x o the Hnear
system
ATax = ATh.

The above equalions are known as the normal equations. Unfortunately, this pro-
“cedure has some-severe-numerical-limitations. - Pirst, in finite-precision arithmetic,
during an explicit formation of A” A, some vital information might be lost. Second,
the normal cguations are more seasilive to perturbations than the ordinary lingar sys-
termn Ax == b, and this sensitivily, in certain instances, corrupis the accuracy of the
compuied least-squares selulion io an extent not warranted by the data, (See Chapter 8
for more details.))

Computing the eigenvalues of a matrix by finding the zeros of its characteris-
tic pelynemial. The eigenvalues of a mairix A are the zeros of its characteristic
polynemial.

Thus an “obvious” procedure for finding the eigenvaiues would be to compute the
characteristic polynomial of A and then find its zeros by a standurd well-established
rool-finding procedure, Unfortunately, this is not a numerically viable apprasch. The
round-off errors produced during a process for compating the characteristic polyno-
mial will very likely produce some small perturbations in the compuied coefficients,
These small errors in the coefficients can alfect the computed zeros very drastically in
certain cases, The zeros of certain polynomials are known to be extremely sensitive
w small perfurbations in the coeflicients. A clussic example of this is the Wilkinson
polynomial (sec Chapter 43, Wilkinson took a polynomial of degree 20 with the dis-
tinct roots T through 20 and perturbed the coefficient of x1? by a significantly small
amount. The zeros of this slightly perturbed polynomial were then computed by a
welth-cstablished root-finding procedure, anly to find that some zeros became totally
different, Some even became complex.

Solving the generalized eigenvalue problem and the quadratic eigenvalve prob-
lems by matrix inversion. The generalized eigenvalue problem in the case where B
is nonsingular,
Ax = uBx,
is theoretically equivalent to the ordinary eigeavalue problem
B 'Ax = px.

However, if the nonsingular matrix B is sensitive {0 perturbations, then forming the
matrix on the lefi-hand side by explicitly computing the inverse o' £ will lead 1o inac-
cyracigs thas in turn will lead to computations of inaccurate generalized eigenvalues.
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Similar remarks hold for the quadratic eigenvalue problem. Tn major engineering
applications, such as in vibration engineering, the matrix A is symmetric positive
definite, and is thus nonsingular. Tn that case the quadratic eigenvalue problem is
equivalent o the eigenvalue problem

Eu = hu, where

0 !
£= (MA“‘B —;;“if:)'

But numericaily it is not advisable to salve the quadratic eigenvalue problem by
actually computing the matrix £ explicitly. 1f A is sensitive to small perturbations,
the matrix £ cannotl be formed accurately, and the computed eigenvalues will then
he Inaccurate.

Finding the singular values by compnuting the eigenvalues of A” A, Theoreli-

_cally, the singulur values of A are the nonaegative square roots of the vigenvalues of

AT A, However, finding the singular values this way is not advisable. Again, explicit
formation of the matrix product A7 A might lead 10 the loss of significant relevant
information. Consider a rather trivial example:

1
Ale OF,
4 0

where ¢ is such that in finite-precision computation | +&® = |, Then compulationatly
we have ATA = { ! ]). The eigenvalues now are 2 and 0. So the computed singular
values will now be given hy V2 and 9. The exact singular values, however, are /2
and €/+/2. (See Chaprer 10 for details.)

Concluding Remarks

Above we have merely pointed oul how certain obvious theoretical approaches o linear
algebra problems might lead o computational difficultics and inscouracies in computed
resulls, Numerical linear algebra deals with in-depth analysis of such difficulties, investi-
gatiems of how these difficulties can be evercome in certain instances, and formulation and
implementationy of viable numerical algorithms for sclentific and engineering use.



Chapter 2

A Review of Some
Required Concepts from
Core Linear Algebra

2.1 Introduction

Although a first course in Hinear algebra is a prerequisite Jor this book, for the sake of com-
pleteness we estabiish in this chapter some notadon and quickly review the basic definitions
and concepts on matrices and vectors and then discuss in somewhat greater detail the con-
cepts and fundamental results on veetor and matrix norms and their applications. These
resulis will be used frequently in later chapiers.

2.2 Vectors

An ordered set of numbers is calied a vector; the numbers themselves are called the com-
ponents of the vector, A lowercase ialic letter is usually used 1o denote a vector. A vecter
v having n components has the form

Uy

ta

vil
A vector in this form s relerred to as a column vector and its transpuse 18 4 row vector,
The set of all r-vectors (that is, each vector having n components) will be denoted by B!
or simply B%. The set of all scalars will be denoted by B. The transpose of a vectar v will
be denoted by v’ . Unless otherwise staled, a column vecior will simply be called a vector,
Definition 2.1, If u and v are two row vectors in B", then their sam u + v is defined by

(v Gy Uy, U0 U, L HYy v,,’)?.

Definition 2.2. [f ¢ is a scalar, ther cu = {0y, ¢, . )T
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The inner product of fwve vectors u aned v is thre sealar given by

wp’ = ity Uy b My

The length of a vector v, denoted by Jul, is + v7 v; that s, the length of v {or Buclidean
{2
length of v} is Juf + v + -+ 02

A set ol vectors {my, ..., m} in B is said 10 be linearly dependent if there exist
scalars ¢y, ..., cz, not all zero. such that

cyy oo oppip =0 {zero vextior).

Otherwise, the sel is called linearly independent.

g =(0,0.....61.0....07, = S
T

ith component

are hnearty independens,

2.2.1  Orthogonality, Subspace, and Basis

Orthogonality of two vectors, The angle 9 between two vectors  and v is given by

r
cos{d) = 4

el

Twao vectors o and v are orthogonal if § = 907, thatis, n” v = 0. The symbol L is ssed to
denote orthogonality.

Lot § be aset of vectors in B®, Then § is called o subspace of B if 5, 52 & § implies
15 + caer € 8§, where ¢ and ¢y are any scalars. That is, 5 is a subspace if any linear
combination of two vectors in 8 is also in §. Note that the space B" fiself is o subspace
of B*. For every subspace there is a unigue smalfest positive integer v such that every
vector it the subspace can be expressed ns o tinear combination of al most r vectors in the
subspace; r is called the dimension of the subspace and is denoted by dim{5]. Any set of
r linearly independent vectors from § of dim[S] = r forms a basis of the subspace. A set
of vectors (i, .. ., iy} is orthonormal il cach vector has unit length and they are pairwise
orthogonal; that is, u/ 1, = 0,1 # j,anduu; = L

Orthogonality of two subspaces.  Two subspaces §; sud 55 of R" are said to be orthog-
onat if 5;53 = { for every 5 & §) and every 52 € 5: . Two orthogonal subspaces 5y and 5
wili be denoted by S; L S,
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2.3 Matrices

A collection of 7 vectors in B* arranged in a rectangulur array of m rows and # columns is
called a matrix, A matrix 4, thercfore, has the form

tyy biz b?n

an bpo o by,
A =

) tj}m.’f o bmrz

It is denated by A = (@i hmun. of simply by A = {a;;), where it is pnderstood that | =
foooo,mund J =, ..., 1. Alssald o be of order m x . The set of all m x » real matrices
is densted by B"~",

The set of all complex m = » matrices is denoted by €77* . The complex conjugate of
acomplex matrix A, denoted by A, is the matrix whose gvery entry is the complex conjugate
of the corresponding entry of A.

The transpose of the complex conjugate of A is denoled by A% that is,

A= (A

Unless otherwise specified, all matrices in this book are real marrices.

A matrix A having the same number of rows and columns is called a square matrix.
The square mawix having ones along the main diagonal and zeros everywhere else is called
the identity matrix and is denoted by 1.

The sum of two matrices A = {g;;} and B = (b;;) in E"*" is a matrix of the same
order as 4 and & and is given by

A+EB= (ti,i_i + b;j')x
If ¢ is o scalar, then £ A is a matrix given by
cA = {ca;; )

Let Abem x nand B ben x p. Then their product AB is anm X p malrix given by
- P=1,...,m,
AR m= Zﬁ;mgiﬁs\«;), Fel..p

Note that if & is a column vecior, then Ak is a column vector. On the other hand, if g
is a columan vector and 57 is a row vector, then ¢/ is a malrix, known as the outer product
of the twoa vectors ¢ and 5. Thus

aj ayhe oo by,
£

. 2 taby e b
ab! = - (5}; l }J,.,,) T , "

-

el
E

i, azhy - dyby
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Example 2.3,

2 3 4
Outer produci ab” = {4 6 8 | (a matrix),
6 9 12
2
fnner pl’GdHCf{ZT[J‘ = (1 2 3_) 31 =20 scalar). N
4

The transpose of a matrix A of order m = 5, denoted by AT, is o matrix of order
i x gt with rows and columas interchanged:

T . E"——-’“.I,,...,fl,

AT = (an). f=1,..., m

Note: The matrix product s not commutative; that s, in general
Af £ BA,

Also, note that {A R = BT AT,

An alternative way of wriling the matrix product.  Writing B = (by, ..., by}, where
by ts the th column of B, the matrix product AB can be written as

AB = {AB, ..., Ab,).
Similarly, if g, is the ith row of A, then

a B
GQB
AB =

a.’" B
Block Matrices

If two matrices A and B can be partitioned as

_fAn Ap _ {8y Bi?)
A—(A.?l Azz)' B“—(le By’

then considering cach block as an clement of the mateix, we can perform addition, scalar
multiptication, and maerix multiplication in the usual way. Thus,

A+ 8y Ap+ 521)

A+B= (Az; + B2y Ap -+ Bn
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and

AB = ApBy+ A8y AnBip+ Apdn
T VAN By AnBy AnBpy 4+ AnBu)’

assuming that the partitioning has been done coaformabiy so that the corresponding mairix
multiplications and additions are possible,
If A = (A;;) and B == (By)) are two block matrices, then C = AB is a block matrix

given by
C={Cy) = (Z e‘géa’&j> )

ke
where cach Az, By, and Cj; is a block matrix. assuming that each A, is compatible with
By; Tor matrix multiplication.

The Determinant of a Matrix

For every square matrix A, lhere is @ anique number associated with the matrix cailed the
determinant of A, which is denoted by det{d). For a 2 x 2 matriz A, det(4) = a022 ~
aqaaq; for a3 x I matrix A = (g;;), det{ A) = gy det{A () —apz-det{Apkdan det{dga),
where Ay 18 a 2 x 2 submatrix obtained by climinating the first row and the {th column.
This can be opsily seneralized. For an s x n malrix & = {g;;) we have

det(A) = (— 1) dettAn) + (1) e det{A)
Ao (=1, det (AL,

where Aj; is the submatrix of A of order (2 — 1) obtained by eliminating the {th row and
Jih column.

Example 2.4.
P 2 3
A=td 5 B
7 8 4

Sati = 1. Then

i

5 6 4 8y, 4 5
dei{ A} i~(§e[(8 {J)—?“{iet (? 9)T3~ési(.; 8)

= H{-N=-2-60+3-D=0 N

Theorem 2.5 {some determinant properties). Ler A € B and B € B,

1. dei(A) = det{A7).

3

det{n A) = o” det(A), where o is a scalor

w

det{AB}Y = det{A)  det(B)

. M two rows pr fwo colwnns of A are identical, then det{A) = 0.

w3

AP C s o matrix olrained from A by Interchanging nwo rows or e colnims, then
det{C} = —det(A).
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The determinant of a block matrix. Let

_fAu An
(1),

where Ay and Az are square mateives. Then det{A) = det(A ;) - det{dz).

The characteristic pulynomial, the eigenvalues, and eigenvectors of a matrix. LetA
be an v x # matriz, Then the polynomial p, (L} = det{i! — A} i3 calied the characteristic
polynomial. The zeros of the characteristic polynomial are called the eigenvalues of A.
Note that this is equivalent to the following: 2 is an eigenvalue of A il and only if there
exists a nonzero vector x such that Ax = ix. The vector x is called a right eigenvector
{or just an eigenvector), and the vecior ¥ satisfying ¥* A = Ay” is called a left eigenvector
asgociated with .

“Definition 2.6, Lee-Fylrbo=-bo oy bethe-vigenvalnes of ann.x.n.matrix. Then the

quantity pA) = max |a;}is called the spectral radius of A,

Theorem 2.7 (some basic eigenvalue-eigenvector properties).
1. A and AT have the same eigenvalues.
2. A matrix A is nonsingudar If and orly if al Its eigenvalues are nonzere,

3. The eigenveciors corresponding to the distinet eigenvalues are linearly dependent.

2.3.1  Range and Null Spaces

For every m » »n matrix A, therg are two important assecialed subspaces: the range of A,
dencted by R{A}, and the pull space of A, denoted by N{A). They are defined as

RiAy=lbeR™ | b= Axforsomex ¢ R"),
N(A) = {xr e B | Ax = 0}
Let § be a subspace of B™. Then the subspace S* defined by
St=fyeR" | vy =0forally e §)
is called the orthogonal complement of S. Tt can be shown (Exercise 2.4) that
(i} N(4) = R(ATY,
(i) R{AY- = N(AT).

Definition 2.8, The dimension of N{A} is called the nudlity of A and is denoted by nulH{ A).

2.3.2 Rank of a Matrix

Let A be an m % 7 matrix. Then the subspace spanped by the row veetors of A is called the
row space of A. The subspace spanned by the columns of A ts called the colin space of A.
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The rank of a matrix A is the dimension of the column space of A. Tt is denoted by
rank{A}. A squwue matrix A € E*" is called nonsingular if rank(A} = n. Otherwise it is
singiar.

An g x nomatrix A € B*™® is saéd to have full colunm rank if its colwnns are finearly
independent. The full row rank s similarly defined. A matrix A i3 said 1o have full rank if it
has either full row rank or full column rank. IF A does not have full rank, it is rank-deficient.

Example 2.9,

Pz
A=13 4
56

has full rank; rank{A) = 2 (it has full column rank); null{A} =0. N
Example 2.10.

A

had et
fon B SN

is rank-deficient; rank(A) = Lnul{A1 = 1. N

Theorem 2.11 {same rank properties). Ler A be an m » n matrix. Then the follmwving
hold.

i. rank(A) = rank{4”}.
2, rank{4} 4+ null{A) = n,
3. rank{A By > rank(A) + rank{B] —#n, where B is n x p.

4. rank{BA} = rank(A) = rank{AC}, where B and O are nonsingular murices of
appropriate orders.

5, rank(AB) < min{rank{A}. rank{B}}.

6. rankiA -+ B) < rank{A) + rank{A),

2.3.3 The Inverse of a Malrix
Let A be an n x n matrix. Then the matrix B such that
AB = BA = 1,
where 7 s the 2 » # identity matnx, is called the inverse of A, The inverse of A is denoted

by A™1. The inverse is unique.

Definition 2.12. A € B has an inverse, it Iy called nonsingrdan, Otherwise, it is
siaguiar. A nonsingular matrix is alse catled invertible.
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Theorem 2.13 (some properties of an invertible matrix). For a nossingular 1 = n
matrix A, the following properties hold.

(A )T = A

(i) (AT (AT
iy {ed) ! = ‘L':A's, where ¢ is a nouzera constant,
(ivy (ABY) = B 1A

Theorem 2.14 {characterization of nonsingularity}. Forann x n matrix A, the following
are eguivalent,

S A W11 0.8 et N

(1) A has lingarly independent rows and colunms.
(i) N(A) = [0}

(iv) The eigenvalues of A are ail nonzero.

(v) rank{A} = rank(AT) = .

2.3.4 Similar Matrices

Two matrices & and B are called similar if there exists a nonsingular matrix 7' such that
T™'AT = B.

An important praperty of similar mafrices, 7Two similar matrices have the same eigen-
veriees.
However, the converse Is not true.

2.4 Some Special Matrices

2.4.1  Diagonal and Triangular Matrices

Anm x n matrix A = {g;;) is & diagonal matrix if q;; = O for{ # j. We write
A diag{ay, ... G )
For examiple. the matrices

10 P aon
(égg}, g 41,10 2 8
- g 0 0o 3

are all diagonal mairices.
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A bhlock diagonal matrix is u dingonal matrix where cach diagonal element is u square
matrix. A block diagonal matrix 15 written in the form

A= éiag(Ails coes Aund,
where Ay are square matrices.
Anom X # matrix A = (a;;) 18 an upper triangular marik Fa; = 0 lori > j

The transpose of an upper triangular matrix is lower triapnguiar; that is, A = {a;;) is
lower triangular i a;; = O for i < j.

= 0 0 0 Kk k%
* # {1 0 0 % * =%
# & & () g 0 = =
® % ok % g 6 0 =«
Lower Triangular Upper Triangular

Theorem 2,15 (some useflul properties of (riangular matrices),

Lo Fhe product of two upper (lower) triangutar matrives is an upper (Iower ) triangalar
marrix. The diagonal entries of the product matrix ave just the praducts sf the diagonal
entries of the individual matrices.

I~

. The iaverse of a nonsingular wpper (lower) trigngulor matrix is an upper {{ower)
trigngufar matrix.  The diagenal entries of the inverse are the reciprocals of the
diagonal entries of the original marrix.

3. The eigenvalues of o trinngrdar matrly are its dingonal entries,

4. The determinant of g triangalar matrix is the product of its diagonal entries. Thus, a
triangular matrix is nonsingudar if and only if all of irs diagonal entries are nonzero.

2.4.2  Unitary and Orthogonal Matrices
A square complex matrix I/ is unitary if
MU e UUY =1,

where U* = {U)7; T is the complex conjugate of L.
ML/ is real, then U is orthogonal if

Ul =i = |

Orthogonal matrices play a very imporint role in numerical matrix computations.
Two very uselul properties of orthogonal matrices are given by the following theorem,

Theorem 2.16.
(i) The inverse of an orthogonal matrix Q is just its transpese: 0~ = 07,

{ii} The product of hwo orthegonal matrices is an orthogonal marrix,
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2.4.3 Symmeltric and Hermitian Matrices

A square complex matrix A is Hermitian T A* = A, A square matrix A 15 symmetric if
AT = A,

A s redl, then A is regl synunetric. In this book, real symunetric matrices will be
referred 1o as symmetric matrices.

Thearem 2,17 (eigenvalue decomposiiion of a symmetric matrix), Let A be a real
symmetric mairix. Then there exists an orthogonal mairix O such that

OTA0 =D,
where D = diag(hy, ..., &), The numbers 3y, ..., k. are the cigsenvalues of A, The

coltmns af O are the cigenveciors of A,
An imporiant consequence aof this thearvem is the following.

“Corollary 208 The eigervalues of a-symmetiio marviy ave real and.the.gigenvectors.can ..

be chosen 10 be orthogonal.
Detinition 2.19, The above decomposition is called the spectral decompnsition of A,
Theorem 2,17 and Corollary 2.18 alse hold for a complex Hermitian matrix.

Thesrem 2.20 {eigenvalue decomposition of a Hermitian matrix).

(i3 Let A be a complex Hermitian matriz. Then there exists a wiitary matrix U such
thar U"AL = diag(hy, ..., ) where Xy s, ... L, are the gigenvaines of A
and are real.

ity The eigenvectors of a complex Hermitian mateix can be closen to be wiitary.

2.4.4 Hessenberg Matrices (Almost Triangular)

A square matrix A is upper Hessenbergifa;; = 0fori » j 4 1. The transpose of an upper
Hessenberg matrix is a lower Hessenberg matrix; that is, a square matrix A = {a;;) is a
lower Hessenberg matrix if a; = Ofor j > 1 + 1. Asquare matrix A that is both upper and
lower Hessenberg is tridiagonal,

®oox 0 W XX * o 0
x ® X v x
x x TR ot o,
2R e X 4] X = o % x
Lower Hessenberg Upper Hessenberg Tricdiagonal

Arn upper Hessenberg matrix A = {«;;} is uareduced if
B 0 fori=23 . . n
Similarly, a lower Hessenberg matrix A = {ay;) is unreduced if
dige =0 fori=1,2, .., 01,
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Example 2.21.
[ 2 4
A= 12 3 4] isananreduced lower Hessenberg matrix,
Folod
i
A=[1 1 1|} isanunreduced upper Hessenberg matrix.  H
0 2 3

2.5 Vector and Matrix Norms

2.5.1 Vector Norms

- Axvector.norm on B is a function || - i; B" — B that satisfies the following conditions:

Eoflxd] = 0 for every nonzero &, §ulf = 0 il and oaly i x is the zero vector,

o3

- leex] = je)lixl forall x & B" and for all sealars o.
3 b+ vl < bl 4 vl for all x amd y & B,

The last property is known as the triangle inequality.
Note:

=l = jxll,
Rl =iyl = e -

Ii is simple to verify that the following are vector norms.

Soeme Easily Computed Vector Norms. Let x = (3, xa, ..., %, . Then
Al dxlly = o il 4 o Ly (sum norm or aae gorm).
I .
B. xf = \/.L’i" o );»_% + - x2 (Euclidean norm or nwe rorun).

C. Nxllae = max; kx| {(dnfinity norm or masisnms norm).

1n general, if pis a real number greater than or equal to 1, ther the p-norm or Hilder
norm is defined hy

Bxlly = (Gl A+ b7,
Exampte 2,22, Let x == (1, 1, =2}, Then

57 . 1% & a0 i
el =4, fxla = VI 4 174+ (=2 = V6, fxll =2 1

An important property of the Holder norm is the Hilder inegnality

%A’T}"E “ lx ",'.' g_:"B@*
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where

1o
— b — = L
Pooq

A special case of the Hilder inequality is the Concliy-Sclwarz incquality
7yt s by
that is,

JR—
ton n

-“j}’;{ < I PRE RIS

PR RN e NN ey

Equivalent Property of the Vector Norms

- All vector norms are equivalent inthesense that there exist positive-constants e and- g such — ...

that
afxl, = fxl, < Shxdl,

for ail x.
For the 2-, I, or sc-norms, we can compute 2 and A easily:
iz = kol < Vool

hxltoo < Bxliz S VAl oo
brie = flxll: < wllxle.

2.3.2 Matrix Norms

bet A be an m x # mawix, Then, analogous w the vector norm, we define a matrix norm
AL} with the following properties:

I AR = G 4l = 0 il and only il A is the zero matrix.
2. fx Al = el A] for any scalar .

3A - BE < JAT+ 18]

Subordinate Matrix Norms

Given a matrix A and & veclor norm || - I, & nonnegative number defived by

Y
Al = max M
! sl ;%;llp
salisfies all the properties of a matrix norm. This norm is called the matrix norm subordinate
to the vector norm or just suboerdinate matrix norm.
A very usefol and frequentdy used property of a snbordinate matrix norm {we shall
sometimes call it the g-rorm of 2 marrix A} s

EAIH;! = ﬂ A H pgtﬂ RE
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This property easily follows from the definition of p-norms. Note that
faxh,
bl

for any particular nonzero vector x. Muliplying both sides by {x{|, gives the original
inequality.

NAl, 2 —

The two easily computable p-norms are
#i
= Ima,x Z i g {maximum column-sum norm),
=r<n
A oo == ]max Z fetij] {maximuin row-5um norm).
..................... . B SfEm Tl . s
Example 2.23.

1 -2
A 3 4
-3 0

Then [All; = 12and Al =11, K
Another usefu] p-norm is the spectral norm, denoted by A2

A
1A = max =

It can be shown that

lA]y = Jmaximﬂm cigenvalue of AT A.

{Note that the cigenvalues of AT A are real and nonnegative.)

Example 2.24. Let A = (7). Then the eigenvalues of AT 4 are 0.0257 and 38.9743, and
[Afy = 389743 = 6.2429. 1

The Frobenius Norm

An Itportant matrix norm compatible with the vector norm {lx])2 s the Frobenius porm:

s

I}i;{z{f},
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A matrix sorm -, and a vector norm ||, arc compatible if
fAxH, = UAllLy xl,
Example 2.25. Let A = (}}). Then |Alir = v30. &
Two important properties of the Frobenius norm.
1. For the identity matrix [, | /{lp = /1. whereas {7, == [[{[|2 = [ lao = 1.
2. JAIR = ace(A” A), where trace{ A} is defined as the sum of the diagonal entries

of A thatis, H A = {a;} then race(A) == ay + a2 + -+ G-

~Consistent norm.._. A norm i - || is consistent i ivsatisfies | A B[l < AN} B whenever the
oroduct A B is defimed. 2§ Waenever o
The Frobenius norm and all subordinate niatrix norms are consistent. The mox norm
(Al = max; ; |ai;| is #ot consistent.

Equivalence Property of Matrix Norms

As in the case of vector norms, the matris norms are also related. There exist scalars o and
B such that

elidl, = fAlL < BRAlL.

o particulur, the following inequalilies relating various matrix norms are true and are used
very frequently in praciice,

Theorem 2.26, Let A be mt x n.
(h :;%Hf““oﬁ = Al £ VAl
(2) BAllz = BAlF = VA1ALL.
3) o=lAlh s Al < VAL

(@) Al = VTANTA N

We prove here inegualities {1y and {2) and leave the others as exercises {Exercise 2.32).

Praof. Proof of (1). By definition
Ay
Al = max Lot
A0 [l
Again, from the gquivalence property of the vector norms, we have

Bl = FAxlz and x4 = V0llxla.
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From the second inequalily we gel w—— IHIE < I—— . It therefore follows that
Ax ﬁh fAY b

flAx]e < v&!{ i

il el
or

fAx o lAxXH2 -
X = WJamax ~ == a/nflA
T e R AR,

i.€e.,

H .
=l Al = (Al

N

The firsl part is proved. To prove the second part, we again use the defiaition of [|A ]l
and the appropriate equivalence property of the vector norms.

Ax
Al = g L s < VA, Bri < ol
K EE I 3

Thus,
fAx il,. Iifh
; - Vf'— :3(;

So max 0 B < \/m MIX, g lﬂﬁgg!ww or Al < Vil Allee.

The proof of {1) is now complete. {

Proof of {2). We prove {2} using a difforent technique. Recail that
NAIE == wuce(A” A).
Since AT A is symmetric, by Theorem 2.17 there exists an orthogonal matrix O such that
OT(ATAYO = D = dingldy, ..., du).

Now, the trace is invariant under similarity tansformation (Exercise 2.38 {d)). We
then have

trace{A” A) = vace(D) = s .
Let dy == max;{d;). Then, since d, . .., d, are also the cigenvalues of AT A, we have
AL = dy.
Thus,
BAG = tucelAT Ay = dy 4 -+ dy = o = || Al
To prove the other part, we note that
JA: =di+ - +dy < di+di + -+ dp = ndy.
Thatis. §AlT < ndy = u|| A3 So, |Als = VrllAks. O
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2.5.3 Norms and Inverses

The following result plays an important role in matrix perturbation analysis {see Theo-
rem 4,25},
I the following, |1 is a matrix noewn for which [T = L

Theorem 2.27. Let JE|| « 1. Then (I — E) is nonsingnlar and
(7 - By~ = (1 = JE#Y.

Proaf. Let by, ..., &, be the cigenvalues of E. It 1s easy 1o see that the eigenvalues of
f—-Earel— A, b =D, .., T =&,

Since JEY < 1, 1A:] < | {or each { {see Exercise 2.10). Thus, noue of the quantities
T~y T —as, ..., 1 — 24, iszero. This proves that 7 — E iz nonsingular. (Note that o
matric-A-fs nonsingulavif and onfy if all ity eigenvalues are nonzero}

To prove the second part, we wrile

J-BEy ' =1+E+ B+,
Since [El < 1,
Limit £4 = 0, because | E5| < £},

k—v 05
"Thus, the serics on the right side is convergent. Taking the norm on both sides, we have
1= Y7 < M)+ UE N+ E™ - = — | EI™ (since §1] = 1.
{Note that the infinkie series | 4+ x 4+ x4+ .. converges o T—L-"? ifandonly ifjx] < 1. O

Using Theorem 2,27, the following theorem can be proved (Exercise 2.37).

Theorem 2.28, [F{E] < 1, rhen

‘ - HE
J — EV — Y <
107~ B)" =1l s T

tmplication of the result.  1f the matrix £ is very small, then ! — [ E)} is ciose Lo unity.
Thus the above result implies that il we invert a slightly perturbed identity matrix, then the
error in the inverse of the perturbed matrix does not exceed the order of the perturbation.

2.5.4 Norm Invariant Properties of Orthogonal and Unitary Matrices

We conclude the chapeer by listing some very uscful norm properties of orthoegonal amd
umstury matrices that are ofien used in practice,

Theorem 2.29. Ler G be an orthogonal matriy. Then the following hold.

i 1ol =1
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(i1} FAO [y = Al

Proaf. Proof of (1). Since A is orthogonal, by the property of the spectral norm, we have
that |0l = p(O7 0y = /pll) = 1.
Proof of (i), A0 = Vp(OTATAO) = Jp(ATA) = Al (Nore that the

spectral radius remaing invarfant under similarity transformation (Section 2.3.4).)

Proofof (ili). 1A% = race{ 0T ATAQ) = wace(AT A) = AL O

Notes: (1} Theorem 2.29 is also valid for unitary matrices. Fhat is, if £ is an unitary
matrix, then (i} §&/4z = 1, (i) AUz = [A ], and (i) JAU {7 = [|A]lF.

(i) As we will see in this book that nerm invariant properties of orthogonal and
wnitary matrices make these matrices attractive tools for matrix computations.
For example, if A is contaminaled by an error matrix £ and U is unitary, then

A+ E)/ =AU+ F,
where
[ Flly == BUETU )2 = | £

{iti) An immediate consequence of Theorem 2.29 and its unitary counterpart is that
the vector fengrh is preserved by an orthogonal or aritary marrix multiplicasion,

2.6 Singular Value Decomposition

Let A4 & B"*%, Then there exist orthogonal matrices U € B and V & B"™* such that
A= UEVT,

where ¥ = diag (e, ..., 0, € R™, p=min{m, n},and oy 2 oa 2 --- 2o, = 0

This decoraposition is called simgalar value decomposition (SVD).

The diagonal eniries of ¥, are called singular values and the columns of I and V
are, respectively, the left and right singular veetors. The largest and smaliest singular
values are denoled, respectively, by g 80d o SVD is an important tocd in natrix
computations. Detailed discussions appear in Chapter 7 (Section 7.8) and Chapter 10,

Nates: (i)rank (A) = number of nonzero singular values.
(i} Al = 1 = O

(i) A s = ;;lw if A is # x # and nonsingular.
td

;
(IvAlF = {U; +G§ +oFol iAW m xn, mEa
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2.7 Review and Summary

The very basic concepts thut will be required for smooth reading of the rest of the book have
been briefly summarized ia this chapler. The most important ones are as follows,

2.7.1 Special Matrices
Diagonal, tiangular, orthogonal, Hesseaberg, symmetric, and Hermitian matrices have been
defined and some usefud properties ol these malrices have been stated (Seciion 2.4).

2.7.2 Rank, Determinant, Inverse, and Eigenvalues

These importunt concepts have been defined and some useful properties bave been stated
(Section 2.3},

2.7.3 Vector and Makrix Norms

Some important mateix norms are row-sum norm, coluni-swn sorm, Frobenins aorpr, and
spectral norm,

A result on Lthe relationship between different matrix porms is stated and proved in
Theorem 2.26.

(f special importance is the norm property of orthogonal mairices. Three simple but
important results have been stated and proved in Theorem 2.29. These results are (1) the
spectral worer af an orthogonat marrix is 1, and () the specrral and the Frobenins norms
remain irvariant under orthogonal marrix multiplications.

Two inigresting properties relating norms and the inverse of 5 malrix are given in
Theorems 2.27 and 2,28, These properties are useful in perturhation analysis of linear
sysiems, as deseribed in Chapter 4.

2.8 Suggestions for Further Reading

The material covered in this chapler can be found in any standard book on linear algebra
and matrix theory. These include Bhatia (1996}, Franklin {1968}, Leon (2003}, Lay {2003},
Strang (2003, 20006}, Hom and Johnson (1985), Lancaster and Tismenetsky (1985), Lan-
caster {1869), Meyer (2000), Noble and Daniel {1988), Ortega (1987a), Hill (1921, and
Schneider and Barker (1989). There now exists a Handbook on Linear Algebrea edited by
L.. Hogben {2007} that contains a wealth of information on both theoretical and numerical
aspecls of linear algebra,

Rich theory of linear algebea and numerically effective tools from numerical linear
aigebra are nowadays widely used in numercus practical applications, We will see many
such applications (o engineering s this book. Por application to statistics, see, for example,
Rao and Rao {1998}, Graybill (1983}, Gentle (1998}, and Thisicd (1988); for applications
o control theory, see Datta (2003), Anloulas (20035), Petkov et gl (1991}, Patel et al,
{1994}, Brualdi ot al. (1985) and Data et af. {1988); for applcations to signal processing,
see Andrews and Hunt (1988), JTain {1989), Bojanczyk (1993), and Hansen et al. {2006),
For application (o optimization. see Griva et gl (2002} and Nocedal and Wright (2006). For
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applications to vibration engineering, see Inman (2006, 2007); for applications of nonnegs-
tive matrices, see Berman und Plemmons {1994 5; for applications o search engine, see Berry
and Browne (2003). Most linear uigebra books alse nowadays contain some applications,

Exercises on Chapter 2
EXERCISES ON SECTIONS 2.2 AND 2.3

2.0 Answer “True” or “False™ to the followinz. Give reasons 1or your answers,

{a) The cigenvalues of an gpper triangular matrix T are i diagonal eniries.

{b) The eigenvalues of a real symmetric malrix are real.

(c) A matrix is nonsingular iF and only if ail its eigenvalues are nonzero,
--{l}-The eigenvalues-ef an orthogoenal matrix are all egoalto-h:

{e) An orthogonal matrix is not necessarily invertible.

{f} A real symmetric or a complex Hermitian matrix can be always transformed
into a diagonal matrix by similarity trangformation,

{2} Two similar matrices have the same eigenvalues,
(h} If two matrices have the same ergenvalues, they must be similar.

(i} The product of two upper {lower} triangular matrices does not need 1o be sa
upper {lower) triangular matrix.

{iy 171k = 1 for any norm.
{k} The length of a vectar is preserved by an orthogonal mulliphication.
{3y If §4) < I, then { — A is ponsingular.
{m) I{f fAfz = 1, then A must be orthogonal.
(n) The product of two orthogenal (unitary) matrices is an orthogonal (uniary)}
matrix.

2.1 Prove that

{a} asetof n linearly independent vectors 1n B is a basis for B,

b theset{e), es,...,¢,] is a basis ol B";

{c) asetof i vectors in B, where m > n, is linearly dependent;

(d) any two bases tn a vector space 'V have the same number of vectors;
{c) dim(®E*) = n;

{fy spanfuy, ..., v;}is a subspace ol ¥, where spanfy, ..., v} I8 the set of linear
combinations of the # vectors v, ..., v, from a vector space V;

{g) span{m, ..., v, is the smaliest subspace of ¥ containing vy, ..., 1,

2.2 Provethatil § = [5, ..., 5:} iz an orthogonal set of nonzero vectors, then S is linearly
independent.
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2.3 Lot § be an m-dimensional subspace of B*. Then prove that § has an orthonormal
basis.

Consiruct an orthonormal basis of B

2.4 Prove that (1) N{AY = R(ADYL, (i) R{AYE = N(AT), and (i) null (A) = Q if and
only il A has lincarly independent columns.

2.8 Prove the cigenvalue-eigenvector properties stated in Theorem 2.7,
2.6 Using the Gram~Schmidt process construct an orthonormal basis of B

2.7 Construct an orthonormal basis of B{4}, where

1 2
A=1]2 3
4 5

-2 8- Lel Sy-and.Sa.be.two_subspuces. of B2, Then prove that
dHm(8 + §) = dim{S5;} + dim(S:) — d;m(&’l {“\ .37

2.9 Prove Thearer 2.5 on the properties of the determinant of a matrix.

2.1 Prove that for a subordinate matrix norm i - §, |&] < §A]| for every eigenvalue of A
of A,

211 Let A bem =z, Then A has rank | if and only il A can be writtien as A = ab”, where
a and & are columa veclors.

2.12 Suppose a matrix A can be written as A = LU, where L is a lower irianguiar matrix
with 1’s along the diagonal and U = (u;;) Is an upper riangular matrix. Prove that
det A = H?%] Hig.

213 LetA = () o m) where A, and A; are square, Prove that det(A) == det{A;) det(A3),

EXERCISES ON SECTION 2.4
2.14 Prove the properties of a trizngular matrix siated in Theorem 2,15,

2.15 Prove that the product of an upper Hessenberg matrix and an upper triangular matrix
is an upper Hessenberg matrix.

2,16 Prove that 2 symmetric Hessenberg matrix is symmetric tridiagonal.

217 Asquare matrix A = (a;;) is a band matrix of bandwidih 2& + 1 il |{ — f| > k implies
ihat o; == 0. What are the bandwidths of tridiagonal and pentadiagonal matrices? Is

the praduct of two banded matrices having the same bandwidth a bunded matrix of
the same bandwidih? Give reasons for your answer.

2.18 Prove Thearem 2,16
2.19 Let A and B be two symmetric matrices.

{a) Prove that (A -+ B} is svymmetric.

{b} Prove that AR is not necessarily symmetric, Derive a condition under which
AB is symmetric.
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EXERCISES ON SECTION 2.5 AND 2.6
2.20 Show that [ix#ly, llelle. Fxlls (a8 defined in Section 2.5) are vector norms.

2.21 Show that if x and ¥ are two vectors, then

el =yl = oy — vl = flef -+ il

2.22 H oy oand v are two r-vectars, then prove that

(2} 1x7 vl < x| iyl (Couchy-Schwarz inequality):

(b) LxyT iz < Hxlz fyllz (Schwarz inequality).
2.23 Letx and y be two orthogonal vectors, Then prove that

x5 = il + vl
2.24 Prove that for any vector x, we have
lxlloe = dta < Halle

2.25 Prove that J A, 1A, 1Al are matrix norms,

2.26 Let A = {g;;) be mr x n. Define A; = max;; lg;;]. 1s A a consistent matrix norm?
{iive reasons {or your answer,

227 (2) Prove that the veetor length is preserved by orthogonal matrix multiplication,
That is, if x € B” and Q@ € B"™" be orthogonal, then | Oxllz = {xis {isometry
jcmmal.

{b} Is the statement in part (a) tene i |- ||y and § - || are used? Give reasons. What
if the Frobenius aorm is used?

228 Prove thatd) 1z = Land G} $1 Y F = S
2.29 Prove that if @ and F are orthogonal matrices, then
a) (AP = Al
() [Q@APNs = {AR:.
2,30 Prove that the spectral norm of a symmetric matrix is the same as iis spectral radius.

231 Let A e B " and et x, v, and 2 be w-vectors such that Ax = band Ay = 6+ 2.
Then prove that
fzl2

Al

(assuming that A~ exists),

< v = v = 1A alz

2.32 Prove propertics (3) and {4) of Theorem 2,76,

2.33 Prove that (i} A7 |z = |41z, and (i) 1AT Al = fAl3.
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234 Let A = {m, ..., ), where g; is the fth column of A. Then prove that

&

Ak =3 taidi.

=1
L35 Prove that if 4 and B are two matrices compatible for matrix multiplication, then

{a} |ABlLir = IAlFEBYF:

(b JABl e < [AR LBl F.
2.36 (Banach lenmay Prove that il A and 4 -+ E arc both nonsingolar, then

A+ Ey = A7 R s IEVIA A + EY7'.
What is the implication of this resuli?

AT Prove Theorem -2 B oo

138 Prove the following.

{a) wrace{AR) = frace(BAY
(hy wracefAA*) = 370 3 lay|?, where A = {ag;) s m % 1.
{c) trace(A -+ B) = trace{A) -+ trace(B).
(d) trace{TAT 1y = trace(4).
239 {a) Using the Jordan canonical theorem (see Theorem 9.28), prove that the matrix
sequence {A*) — Oifand only il 14;] = 1 for each eigenvalue &; of 4.

{b) Using part {a), prove that {A*} — 0 Al = 1, where [} - || is a subordinate
matrix norm.

{c} Construct a 2 x 2 example to show that condition {b} is sufficient but not nec-
LESArY,

2.40 Using SVD prove the norm properties fn BEgercises 2.29, 2.33, and 2.35.



Chapter 3

Floating Point Numbers and
Errors in Computations

Background Material Needed
» Special matrices (Section 2.4)

« Mairix and vector norms {Section 2.5)

3.1 Floating Point Number Systems

Most scientific and engincering computations on a computer are performed using floating
point arithmetic. Computers may have diflerent bases, though base 2 is most common.
The other commonly used hases are [} and 16, Most hand calculators use base 1, while
IBM mainframes use base 16,

A £-digit floating point number in base 8 has the form
X o= o - B,

where m is a z-digit [raction, calied the mantissa, and ¢ is called the exponent. If the
first digit of the mantissa is different from zero, then the Goating point number is called
normalized. Thus 0.3457 x 1{F is a d-digit normalized decimal foating number, whereas
{(.03457 x 10° is a five-digil unnormalized decimal foating point mumber,

The number of digits in the mantissa is called the precisien, On many computers, it
is possible (o mapipulate floating point numbers so that a number can be represented with
about twice the usual precision. Such # precision is called double precision.

Most computers nowadays conform to the IEEE floating point standard (ANSVIEEE
standard 754-1983}. For single precision, IEEE standard recommends about 24 binary
digis, and for double precision about 53 binary digis.
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IEEE Floating Point Standard

Single Precision Double Precision
1 23 B 1 52 il
Sign | Mantssa | Exponent Sign | Mantissa § Exponent

Thus, IEEE standard for single precision provides approximately seven decimal digits of
accuracy, since 275 o 1.7 x 1077, and double precision provides approximately sixteen
decimal digits of accuracy, since 2772 5= 2.2 x 1070,

Note: Although compurations with double precision increaye accuracy, they require
more compuier time and storage.

On each computer, there is an allowable range of the exponent e; L, the misimum
and L7, the maximem, L and U vary from computer to compier.

If, da;z“ing computations, the computer produces a number whose exponent is {oo
large {too small}, that is, %t, is mjtsida the pefmissib!e range, then we say thal an overfiow

f?wtﬂmt is a4 serious pmbfem fm HOSt SYstems, rhe refmt! c;f an ﬁve:ﬁow iy e,
Underllow is usually considered less serfous. O most compulers, when an underflow
oceurs, the computed value is set to zero, and then computations proceed. Unless otherwise
stated, we will use only dectinal arithunetic,

Example 3.1. Examples of overflow and underflow,
LietB =10, t =3, L=-3 U=3
g=0111 x 1¥, b= 0120 x 103,
c=axb=0.133x10°
will result in an overflow, because the exponent 5 s too large,
2Tletf=10, t =3, L=-2,U=3.
a=0.1x 10",
b=02x 10"
c=ab=2x 10"

will resultin an underflow, K

Simple mathematical computations guch as finding a sguare root, or exponent of a
aumber or computing facierials can give overflow. For example, consider computing
f—
¢ om a4 B
I a or b is very targe, then we will get an overllow while computing a? 4+ 57,
The IEEE standard also sets forth the results of operations with infinities and NaNs. All
operations with infinities correspend o the Hmiting case in real analysis. Those ambiguous

sttuations, such as O - oo, result in NaNs, and all binary operations with one or teo NaNs
resull in g NahN.

Avoiding Overflow: An Example

Overflow and underflow can sometimes be avoided just by organizing the computations
differently. Consider, for exaraple, the task of computing the length of an s-vectlor x with
companents, denoted by x|

)3 = a7 4 6f o X
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iIf some x; 15 oo big or too small, then we can get overflow or underflow with the
usual way of computing fxfiz. Howsver, if we normalize cach component of the veclor by
dividing it by m = max({ix||,. .., Jx]) and then Torm the squares and the sum, then overflow
problem can be avoided. Thus, a better way to compate |x{|3 would be the following:

Lom = max{{xl .. [xad)
Lyi=xjm I=1,..,,n
3 {Ix s m;;;%f{}sg“;_ [ENN

3.2 Rounding Errors

I & compuied resulf of a given real number is not machine representable, then there are two
ways il can be represented in the machine. Consider

:i“ iy - dd,,i

Thf‘iﬁ ihe ﬁrsl mﬁﬁu}d cimp;}mg, is the method in wi‘}sch the diglib §mm ey onogre 51m§3§
chopped off. The second method s rounding, in which the digits ;. through the rest are
not only chopped off, but the digit o, is also rounded up or down depending on whether
a1 = B/l ardiy < B2,

Let fl{x} denote the floating point representation of a real number x.

Example 3.2, Rounding, Consider base 10. Let x = 3.141596,

=72, filyy=731,
t=73, fl{x}=314,
=4, Ax)s=3142. B

We now give an expression (o measure Lthe error made in representing a real number
x on the computer, and then show how this measure can be used to give bounds for errors
in other floating point computations.

Definition 3.3, Ler I denote an approximarion of x. Then there are rwo ways we can
measure the error;

Absotute Error = | — xi,

) X —x
Relative Ervor = | | ] &0

x|

The relative error makes more sease than the absolute error. The following simple
example shows this

Example 3.4. Relative error versus absolute error. Consider
xp o= 131 & = 130
and 33 =012, £ =011
The absolute errors in both cases are the samt |£y — 31| = |8z = 23] = 0.01. On the other

hand, the relative error in the first case is ;"‘:" == (.0076335 and the relative ervor 4 the
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second case is L‘wl{f-;f-—; = {1.0833333. Thus, the relative errors show that # s closer to xy

than %2 1% tor 19, whereas the absolute ervors give no indication of thisatall, B

The relative error also gives an indication of the number of significam digits in an
approximale answer, ¥ the selative error iy abaut W07, then x and X ogree o about s
significant digits, We state thig more specifically in the following definttion.

Definition 3.5, & is soid to approximate & to s significant digits if 5 is the largest non-
negative integer for which the relative error B3 o 501070 that is, s is given bys =

X jxl
[-1og (52H) + 4]

Thus, in the above examples, & and x; agree lo fwo significam digits, while £ and
X1 agres to ghaut only ane significant digit.

Round-Oif Error in Representation of a Real Number

We now give an expression for the relative error in representing a real number 1 by its
flossting point representation 0{x}.

Theorem 3.6. Les 1) dentsste the floaring point representation of a real number x. Then

[
~ AV for roundin
= 25 fi g ) 3.1

A" for chopping

ey~ x| <
x|
Proof. We establish the bound for rounding and leave the other part for Exercise 3.1,
Tetx be written as
x=(ddydidyg ) x B

where dy s Oand 0 < J; < B, When we round off ¥ we obtain one of the following floating
point pumnhers:

J;; = (-d;{fﬁ" d;) X ﬁa.
= ((didy - d) BT X BR

Chwiousty we have 3 € {1, x7). Assume, without any loss of generality, that x is
closer o X', We then have

oo | b
g x'f = 5!,&" - = 5,6‘ '

Thus, the relative error

- (j_ B
et T A 2Lyl -d -

i

: Vo
< 5 —(since i« ) == 5;‘3 ) W

]
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Example 3.7, Consider the three-digit representation of the decimal number v = 0.2346
(8 = 10, 1 = 3). Then, if rounding is used, we have

A{x) = 0.235,
I 3
Relative Brror = 0.001705 < 5 107

Similarly, il chopping is used, we have
A = 0,234,
Relative Error = 0.0025575 < 107°. 11

Definition 3.8, The number w in (313 is called the mackine precision or wnit round-off
ervor i1 i5 the smaltest positive floating point number such that

A0 + ) > 1.

The machine precision, ., is usually between 10719 and 1077 (on most machines) for
double and single precision, respectively. For the IBM 360 and 370, B == 16, 7 = 6, p =
477 % 1077,

The machine precision is very important in scientific computations, If the particulars
f. t, L,and {/ for a compulter are not known, the following simple Foriran program can
be run to estimate g for that computer {Forsythe, Maleclm, and Moeler (1977, p. 1430

KEAL MEU, MEU 1
MEU =
10 HEU
MEU
iF (&

.0
5o MEU

MEU + 1.8

BT 1.67T.1.0) GOT0 10

1
]

T i

The above Fortran program computes an approximation of jo which differs from u hy at
most a factor of 2. This approximation is quite pcceptable, since an exact value of 2 is not
that imporlant and is seldom needed.

The book by Forsythe, Malcolm, and Moler {1977} also contuins an extensive lst of
L and U for varicus computers.

3.3 Laws of Floating Point Arithmetic

The formula
liix) — x| B!~ for chopping,

<< ] i
ix] =# g«ﬁz“‘ for rounding

can be writien as

f{x} == x(l 4 83, (3.2
where |4 < . T

Assuming that the IEEE standard holds, we can easily derive the following simple laws of
floating point arithmetic.
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Theorem 3.9, Let x and y be rnwo floating point numbers, and fer 0(x + v), {x — ),
Hxy), and fi{x/y) denote the computed sum, difference, product, and guotient. Then

bolix £ 9) = o £ 931 +8), where 18] < 15
2. flxy) = Loyl - &), where 18] <
30y 0 then Blofv) == (x/yM1 4+ 8), where 181 < 1,

On computers that da not use the FEEE stundard, the following floating poinr law of addition
nright hnld:

4+ vy = {14 8)) A+ (1 + 82, where |5 < pand 8] = u.

Example 3.10. Simple floating point sperations with rounding. Let
in items | through 3 below.
ox= 0999 x 10°, 3 = 0,111 x 10"

X+ y = 100.0110 = 0100011 x 107,
Aix 4+ y) = 0.100 x 10°,
Thus, 8x + 3} = {x + ¥i{1 + §), where

§ = —1.0990 % 1074, 18 « %cm’"z}.

Zox = 0999 x 107, y=0.111 x 105,
xy = [1.0889,
fitryy = 0111 = 10%
Thus, fi{xv} = xy{l + &), where

}
&= 1.00100 = 107%, 8 < 3{§0§w3).

30x = 0.999 x 107, v 0,111 5 109

L 00
‘}5
X 3
(=) =0.900x 107,
5 =0

4. Let
8 =10, P =4,
== 01112, y = 0.2245 x 10°,
xy = 0.24964 % 1Y,
A(ry) == 0.2496 x 10°,
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Thus, {H{xy) ~ xy] = 044 and

1
= 17625 x 1077 < 5 % 1wt 1

Computing without a Guard Digit

Theorem 3.9 and the examples following this theorem show that the relative errors in
computing the sum, difference, product, and quoticat in floating pomnt arithmetic are small,
However, there are computers without guard digits is which additions and seblractions may
not be accurate.

A guard digitis an extra digii on the lower end of the arithraetic register whose purpose
i1 to caich the low-order digit which woudd otherwise be pushed out of existence when the
decimal points are aligned.

.. For computers with a guard digit,

ek y) = (0 -+ 2T+ 8 18] = n.
However, for those withowt a goard digit,
fliix £ yy = x(1 4+ 8)) £ y(1+54],
8¢] = o, 82] = .
Remark, Throughout this book, we will assume that the computations have been performed

with a guard digit, as they are on almost all available machines.

‘We shall call resulis 1 through 3 of Thewrem 3.9 along with (3.2} the fundamental
laws of Hoating point arithmetic. These fundamental laws form the basis for establishing
bounds for relative errors in other floating poinl computations.

Example 3.11. Censider the floating point computation of x(y + 21
Alx(y+2)) =[x By + 2} + 6)

=x{y+ o)l A &1 + 6}

e X{)’ -+ Z}{; -+ 5;53 - 5; e 52}

w=ox{y o+ &),
where &y == 8; -+ da; since &y and &1 are small, their product is neglected.

We can now eastly establish the bound of §1. Suppose 8 = 10, and that rounding is
used. Then
{8al = {§) + &zl < 8]+ 14a]

1
2

a 1

1A

% 1T —5—% x 1ot

Fhus, tie relative error due 10 round-off in computing A{x{y + 23} is abour 108 ju tire
waorst cnse, 1
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3.4 Addition of n Floating Point Numbers

Consider adding » floating point numbers xy, 12, ..., v, with rounding. Define 5, =
Bxy + x2). This gives

§7 o= oy +xg) = (o +x2){1 + 82, (3.3)
where {821 < p, Thatis, £ — (X .00 = &0x; + x2). Dellne 53, 5y, .. .. 5, recursively by
Sioy = fils 4 xpaay, =230~ 1 (3.4}

Then $3 = #{5: 4+ x3) = {52+ x4 + 813 = 511 4 5001 + 535} + x2(f + 82}
{1+ 83 + x3(1 4 &), Then

O & Yook 3 o = 5D Il E 4 ol 0 L S T o
2 (xy  x)ds 4 g + X

81 + xady

(3.5}

{neglecting Lthe lerm &84, which is small, and so on). Thus. by induction we can show that

Syo= lryp b xs F a) ® (b aa)bs (g X b xadds

36
R S CTIE S  RR S . GO

{again neplecting the terms §38;, which are small},
Eguatica {3.0) can be written as

R AT N R S e T O o T I SR o )
Fald e F &) FnG -+ 8 @D
F e Kb,

where each |8;| < A" = p. Defining §; = 0, we can wrile the {oliowing theorem,

Theorem 3,12 {rounding errvor in floating point addition). Larxy, xs, ..., t, ben floating
point numbers. Then

oy +o+ o +x)— (o432 + - +3,)
:‘@x!(g% e 52 "‘i‘ T +5:z} *%—.\‘g(rg:ﬁ_ + e +§s§} AR ”“}‘-“'ﬂ'sn» {38)

wihtere each |8, < p,i=1,2,....1

Remark. From the above formula we see that we should expect a smaller error in gencral
when adding # floating point numbers in increasing order of magnitede:

| Zinlsnl < 2inl

I the numbers are arranged in increasing order of magnitude, then the larger errors will
be assaciated with the smalfer nmumbers {Exercise 3.6).
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Theorem M 13, Define the numbers np by
Ldge = (180301 + 823 -« {1+ 8,),
F+m = {1+ &)1 +85) - (1 + ),
Vb= {48 () +4,),

P+ ey W (I '}"531_%}{; +5;;)1
by = {1+8,).

Also define ¢’ = é—‘;} and assumme that npe < 0.1, Thes

ﬂ{xi R S
=+ )+ )+ e (3 e A (] 4 ), 3.9

where |l < (n — 1yl and |l s n—i 4+ 13, Em 2,00, 0,

Proof. Sec Stewart (1998b, pp. 130-132). [0

3.5 Multiplication of n Floating Point Numbers

Procecding as in the case of addition of # Acating point numbers in the last section, we can
show the following.

Theorem 3,14,

#
Ay x 03 =-ccx,) = {1 -‘{ws}nxb
frd
where e = (1 + 8183} - (1 +&)— Heand W= p, i =12,... .1
A bound for ¢; Assuming that {n — 1) « 3.1, iLcan be shown that
g = 1.06(n — 13p. (3.1

{This assumption is quite realisiic; on most machines this assumption will hold {or fairly
large values of 7.}

Indeed, since |&;} = g und (n — 1) < 0.1, we have

} - 3.03

Thus, combining Theorem 3.14 and (3,10}, we can write the following.

0.05
e (b )™ =1 < in— I};;[E + m...__} < 106 — i, (3.113

Theorem 3.15 {rounding error in floating point multiplicatien}. The relative error in
compliting the product of n floating point sambers is ar most 1 068{n — |, assuming that
{0 — Lipe < (0.1,
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3.6 Inner Product Computation

A frequently arising computational task in sumerical linear algebra is the computation of
the inner product of two »#-vectors ¥ and v

7

Ay =yt ey b X, {(3.12)

where yyand v, 1 = |, ..., n., are the components of x and y.

Define
8) = Aixyy), (3.13)
§2 = 0(Sy + Alxaya)), {3.14)
Sp o= (S -+ Alxeyd)s {(3.15)
S [T k s 3, 4‘. ...... - pyo— e
We then have, asing Theorem 3.14,

S) = x;y{t + 4}, (3.16)
S1 =18+ oyl + 80100 4+ ) EAN)]
Sy = [Suy F X3 {1 8 + 1)y {3.18}

whore each 8| < g, and 1 < . Substituting the values of §¢ through §,-; in 3, and
making some rearrangements, we can wrile

rn

Sy = ZI;’)’:‘EE +€), (3.19)

imnd

where

b me (144300 4 p 0 el (U 1y
e I T o /TR T SR o/ (s = 0) (3.20)

{ignoring the products &;1; and n;1:, which are small).
For exumple, when 2 = 2, it is easy 1o check that

S = ol + )+ xayafl + el 3.2
where |+ ¢) = [ 48+, |+ e = | 4 8 + nz {neglecting the products of 72 and

8212, which are smalh).
From (3.19) and {3.20), we can write the following.

Theorem 3.16.
Myt xay+ o+ xmi=xnil+ed+rmnll el 4o xad(d + e,

where 5; are given by {3.20),
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From Theorem 3,16 we have

#
ATy - v 3 vl 3.22)
fax]
A bound for e} in terms of p. Under the assumption that sz < 0.1, a bound for €, in terms
of 1t can be established.

Using this bound, we can wrile the following.

Theorem 3.17 {rounding error in funer product computation;.
T v) — a7l = glanpedatTIvl,
where |xi stands for the vector with conponents (x| and ¢ (n) is g small fimetion of n,
Remarks. (i} Note that high relative accuracy cannot be gusranteed if iv7 v} < 1517 |»L
-~ (i) The bound-given in Theorerr 3:17 can be Improved by osing extended precision

or some particular implementations (see Higham (2002, pp. 63-64} lor details). Typically,
error becomes essentially independent of &,

3.7 Error Bounds for Floating Point Matrix Operations

Theorem 318, Let {M| = (bmy;|). Let A and B be two floating point matrices and et ¢ be
a fleating point mgmber. Then

L 8leAy=cA+ E, [El = pulcAl;
2 MA+B)=(A+B)+ £, |E1Z piA+ BL
If A and B are two matrices compatible for matric maltiplication, then

3. Q(AB) = AB + E, |E} < np|Al |B} + O(u2).

Proof. Sce Wilkinson (1965, p. 115). [

Meaning of O(s?)

Remark. In the above expression, the notation O(j¢*) stands for a complicated expression
thal is bounded by cu”, where ¢ is a constani, depending upon the prohlem, The expression
O (%) will be used frequently in this book.

Remark. The last result shows that the mairix multiplication in floating point arithmetic
can be very inaccurale, since | A1 | 8] may be mueh larger thun 14 8] itseli (Exercise 3.9},
Error Bounds in Terms of Norms

Traditionally, for matrix computations the bounds [or error matrices are given in terms of
the norms ol the matrices, rather than in terms of absolute values of the matrices as givea
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ahove. Here we rewrite the hound for error matrices for matrix multiplications using norms,
for easy reference later 1n the book, We st note, however, that entryswise error bounds
are mare meaningfiud than normmvise errors (see remarks in Section 4.3),

In terms of a norm, we can wrile

fI{AB) = AR+ E,

where
%lﬁgl,@ﬁ JJﬂHA‘éEE}ﬂB”p'%'Q(ﬂ«u)p 7= [ oc, P

In particular, in terms of the § |} norm, we have the following.

Theorem 3.19. §A(AR) — ABY; < nuliAll || Bl + O,

Two Important Special Cases

AL Matrk-véror waliiplication, 1M is avecior, then from-ahove-we have oo
IR(AD) — Al = npl AlSE.

B. Matrix multiplication by an arthogonal marrix.  Recall that a real matrix € is called an
orthogonal matrivif 070 = 007 = 1.

Corollary 3.20. Ler A & BR™™ and Q € R"™" orthogonal. Then
INCQAY - QAlE = nplAlg.

implication of the above result.  The resolt of Coroltary 3.20 says that although matrix
multiptication can be inaccuraie in general, il one of the matrices is orthogonal, thes the
floating point mairix multiplication gives only a smali and acceptable error, As we will see
in later chapters, this resull forms the basts of mansy numertcally viable algorithms discussed
in this book.

3.8 Round-Off Errors Due to Cancellation and Recursive
Computations
Tntuitively, it is clear that if a Targe number of floating point computations is done, then the

accumulaied error can be guite large. However, round-aff ervors can be disastrous even ar
a single step of computation. For example, consider the sublraction of two numbers:

x = 0.34617 and ¥ = 0.54601

The exact value is
d = x o~y = 000G

Suppose now we use four-digit arithmetic with rounding. Ther we have

I = 0.5462 {correct to four significant digits),
¥ == 0.5460 {correct o four significant digits),
do=F — 3= 00002,

IE
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How good is the approximation of d to d7 The relative error is
ld — d|
[/

What happened above is the following. Tn four-digit arithmetic, the numbers 0.5462

and 0.53460 are of almost the same size. 8o, when the first ene was subtracted from the

second, the most significant digits got canceled and the very least significant digit was left

in the answer. This phenomenon, known as catastrophic cancellation, occurs when iwo
numbers of approximately the same size are subtracted.

= (.25 (quite large!).

Remark. It is to be noted that in many cases, sebtraction is performed rather accurately.
11 is not a cause of the errop—rather it reveals the errors made in earlier computations or
even those in the data asseciated with the subtraction, Indeed, cancellation highlights the
garlier errors.

Avoiding Cancellation ...

Fortunately. in many cases catastrophic cancellation can be avoided. Por example, consider
the case of solving the quadeatic equation:
ax’ Fbx o= 0, 2 #40,
The usual way the two rootis xy and x; are computed is
—bi 2B — dac

Xy o
Za
gt —
—f — 04— dac
X 5T s |
- 2a

it is clear from the above that ila, b, and ¢ are numbers such that —#& s about the same
size as /57 — dac (with respeet 1o the arithmetic used), then a catastrophic cancellation with
occur in computing x7. and as a result the compuoted value of x5 can be completely erroneous,

Example 3.21. Cancellation in root-finding of the quadratic. Consider solving ax® +
by ¢ = 0, witha = |, b = —1P, ¢ = | (Forsythe, Malcolm, and Moler (1977,
pp. 20-22)), Then psing £ = 10, 1 = 8, L = -1/ = —50, we see that

10° + /101 — 4 5

K 3 e Y (true answer},
107 — 103

¥y = e = {} (completely wrong).

The true xy = 0.00001300000000t {correctly rounded to 11 significant digits). The catas-
rrophic cancellation took place in computing X7, since —b and (/5 — dac) are of the same
order. Note that in eight-digit arithmetic, v/ 1000 —4 = 10°. R

How Can Cancellation be Avoided in Finding Roots of the Quadratic?

Cancellwtion can be aveided i an equivalent patr of formulas is used:
B+ signib)vH — dac

2u

Xy o
C

e

+
ax)
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where sign{b) is the sign of &, Using these formulas, we easily see that

¥ = 106000.00,

10000000
K1 = e (.00DD 10000,
"= Thaton.00 — o000ionn

Remark. Cancellation may still take place during the subtraction 5% — dac, and significant
digits will be lost il #? = 4ac. In that case, extended precision should be used in computing

B dge,
Example 3,22, For yet another example consider the problem of evaluating
Flxy =" —x — | at x = 0.01.

Using five-digi arithmelic, the correct answer is 0.000050167. If F(x) is evaluaied dircctly
from the expression, we have

e FOB1 = L0101 — (001 ~ 1 = s (3.23)
0.0001 — 0.000050167

slative - 3.2

Relative Error G O00501E ) (3.24)

x= 0.99 % 107, (3.25)

indicating that we cannot trust even the first sigoificant digit.
Fortusately, cancellation can agoin be aveided using the convergent series for e

PSP
R A ST :
In this case we have
3 3
R x
ﬁwxm¥w0+x+m%~w+m)wxwi (3.26)
7 T3l
z 3 4
A X X
S A 3.2
CRRETIRT (327

For x = .01, this [ormula gives
0.01? 0.0 n.on?
(0.01) + (0.0t (0.00) .
2 3 41
= £.00003 + 0.00006G 166666 + 0.00000000004166 + . - -
= 0.000050167  (correct up to five significant digits). W

Remark. Nole that i x were negative, then use of the convergent serics for e¥ would not
have helped. For example, (o compute % for a nepative value ol x, cancellation can be
avoided by using

) I

g o

X R S :
€ §+.’L+Ig“‘.~§g“r‘“

Recursive Computations

Recursive compulations are those which are performed recursively so that the computation
of one step depends upon the results of the previous steps. In such cases, even if the error
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made in the first siep is negligible, due to the accumulation and magnilication of error at
every step, the final error can be quite large, giving s completely erroneous answer,

Cortain recursions propagate errors in very unheallhy fashions. Consider the [ollow-
ing example involving recursive computations, again from Forsythe, Malcolm, and Moler
(1977, pp. 16-17).

Example 3.23. Suppose we need to compute the integral

i
E, = f ety
o

for different values of n. Integrating by parts gives

! !
Zy = f ety = (el —[ nx" ety
o o

F 3 1 TSP .
E.=1l—-nE,_,, n=223....

Thus, if £ ts known, then for different values of 7, £; can be computed, using the abave
recursive formula,
Indeed, with £ = 10 and # = 6, and sturting with £ = 0.367879 as a six-digit

approximation to £y = [/e, we have from above

Ey = 0.367879,

E; = 0.264242,

Eq = 0.207274,

£y = 0.1705904,

i

Ey = ~0.068480 (wrong).

Althongh the integrand is positive thronghout the Imterval [0, 1}, the computed valie of Es
is negarive. This phenomeneon can be explained as follows.

The error in computing Ey was ~2 {imes the error 1o computing E;, and the error in
computing £+ was —3 numes the error in £ (thereiore, the error at this siep was exactly six
limes the error i £, ). Thus, the ereor in computing Es was (~2H—3H{—4} - (-9} = 9]
times the error in E;. The error in £) was due o the rounding of 1 /e using six significant
digits, which is about 4.412 x {077, However, this small error multiplied by 9! gave
9 x 4,412 % 1077 = 0.1601, which is quite Jarge, R

Rearranging the Recurrence

Apgain, for this example, it turaed out that we could get a much betler result by simply
rearratging the recursion so that the error at every step, instead of being magnified, is
reduced. Indeed, if we rewrite the recursion as

i~ E,

E”_;m B ﬁm...,?l.
Hi

o
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then the error ol cach step will be reduced by a factor of [/n. Thus, starting with a large
valoe of # {say, # = 20} and working backward, we will see that Eg will be accurate to Mull
six-digit precision.

To obtain a starting value, we nole that

i i 1
E, = f X" gy f;f dy = ——r,
o fil 4+ ;.

Witha = 28], Eqy =< 5‘; Let's take Eap = 0. Then, starting with Eyy = 0, it can he shown
(Forsythe, Maicolm, and Moler {1977, p. 17)) that £y = 0.0916123, which is correct to full
six-digit precision,

The reason for obtaining this accuracy was that the error in £y was al most ﬁ%: this
error was multiplied by & in computing £, giving an error of at most 5 - & = 0.0024 in
the compuiation of Eyg, and so on.

3.9 Review and Summary

The concepis of floating point numbers und rounding errors have been introduced and
discussed in this chapter.

V. Floating point meabers, A normalized Qoating point number has the Torm

X = krft,

where ¢ is called exponent, 7 is the significant, and £ is the base of the number
system. The Roating point number system is characterized by four parameters: 8, the
base; ¢, the precision; and L. U, the lower and npper limits of the exponent.

b3

Errors, The error(s) in 2 computation i measured either by absolute error or relavive
grrnt,

Relarive errors make more yense than absolute errors.

The refative error gives an indication of the aumber of significant digits in sn approx-
imate answer.

The retative error In representing a real number 1 by its Hozating point representation
f1{x) is bounded by a aumber g, called the machine precision {Theorem 3.6).
3. Laws of floating point arithmetic.
Mx O y) = (2 O 1+ 8},
where © indicates any of the four basic arithmetic operations 4, —, x, or -+, and

31 < .

4. Addition, nndtiplivarion, and inner praduct compuiations. The results of addition and
myltiplication of # floating point numbers and inner product computation are given
in Theorems 3,12, 3,15, and 3.17, respectively.

« While adding n floating point aumbers, it is advisable that they be added in
increasing order of magnitude.
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5. Floating peint matrix mulriplicarions. The entrywise and normatized ervor bounds
for matrix multiplication of two ficating point matrices are given in Theorems 3,18
and 3.19, respectively.

e Matrix multiplication in floating point arithmetic can be very inaccurale, uniess
one of the matrices is orthogonal (or unitary, i complex),

* The high accuracy in a mairix product compuiation involving an orthogonal
malrix {Corcllary 3.20) makes the use of orthogonal matrices in matnix compa-
tations very attractive,

6. Round-off errors due 1o cancellation and recursive computarion. Sublractive can-
cellation or catastrophic cancellation (as it is commenly called) is a phenomenon in
which a aumber of sigaificant dighs in a computation gets cancelled due to subtenc-
tion of iwo almost equal numbers. In most cases, however, subtractions are done
cxaclly, Catastrophiic cancellation signals some errors made n previpus steps. In

-------------------- e faety it-brings-this error in prominence. Recursive computations are those which are
performed recorsively so that the computation of one step depends upon the results
of the previous steps.

These have been discussed in some detuli in Section 3.8.

Examples have been given to show how these errors come up in many basic com-
putations. An encouraging message here (s that in several listances, compnrations
can be rearganized so that canceliorion can be avolded, and the error in recursive
computations can be diminished at each step of computasion.

3.10 Suggestions for Further Reading

For details of 1EEE standard, see the manograph An American Natiowa! Standard: IEEE
Standard for Binary Floating-Polnt Arithmetic (TEEE, 1985, IEEE, Standurd for Radix-
Independent Floating-Point Arithmeric QEEE, 1987), and Numerical Compuiing with IEEE
Flogting Point Arithmetic (Overton, 2001},

For resulis on error hounds for basic floating point matrix operations, the classic books
by James H. Wilkinzon (1963, 1995) are extremely useful and valuable resources. The most
recent suthoritative book on error analysis is the one by Higham (2002}, Every researcher
of numerical analysis must have a copy of this book.

Diseussion on basic floating point operations and rounding errors due o cancellations
and recursive computations are given nowadays in many numencal analysis textbooks.

Exercises on Chapter 3
3.1 ({a) Provc the expression
1o )
fix) — x| < ;};ﬁ? * for rounding,
jxl gt For chopping.

(b} Show that (a) can be written in the form
Qlvy = {1+ 8), 18] < u.
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3.2 Let x he a floating point number and let & be a positive integer. Then prove that
x* af
i (z;) = }c-i*(l +egd,

ferl = 2k p o+ O,

where

3.3 Construct examples to show that the distibutive Taw for floating peint addition and
multiplicanon does nol hold. What can you say aboul the commutativity and asso-
ciativity for these operations? Give reasons for your answers,

34 Lel xq, x2,....3, be the n floating point numbers, Define

Sy o= Blxy A x1), s = Sy b)), A= 3,0, 8,

= fay Ther frome Theorem-3: 12 show thateoe

Mo+ + 4 xd=xll+n)+x0b+mi+ -+ xdl + ).
(b Giveabound foreachn, i = 1,2,.... 1.
35 (@) Give aproof of Theorem 3.4,
() Prove Theorem 3,15 by first establishing the result (3.11)

36 {(a) Constructan example to show that, when adding a list of floating point numbers,
the rounding error will gencrally be less if the numbers are added in order of
increasing magnitude.

{b) Find anether example (o show that Lthis is not always necessarily frue.
3.7 Using Theorem 3,17, show that high refative accuracy is obtained in computing x7 x.
3.8 Show that
(a) f{cAY=cA+ E, |E] < ulcdl;
(b) (A + B) = (A + ) + E, |E{ < (A +{Bl);
(€} (ABY = AB + E, |E] < nut| Al |B] + O(u’).
{Consult Wilkinson (1963, p. 115)).

3.2 Construct a simple gxample to show that the matrix multiplication in floating point
arithmelic need not be accurate,

310 Prove that if ¢ is orthogonal, then
MQA) = QA+ E), where [ Efy < nullAll: + 00,
311 Let vy, ..., ¥, be s column vectors defined recursively:
Vg =AY, = i,3, ... 08— 1

Let ¥y = fl{y;}. Find abound for the relative error incomputingeach v, § = 1, ..., &,
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312 Lot A== 10, 5 =4, Compuie
Arat 4y,
where
i i
A=1 10" 0
a 10—+

Repeat your compuotation with 1 = 9. Compare the results.

3,13 Show how to arrange computation in each of the following, so that the loss of signif-
icant digits can be avoided. Do one numerical example in each case to support your
answer.

{a) ¢* — x — 1 ior negative values ol x.

(k)

x% -+ 1 — v° Tor large values of x.

1 i
ey — — for large values of x.

L x4+
{d) x —sin x for values of x mear zero.
{¢) 1 —¢os x for valves of ¥ agar zero.

gt - 1

(D for |x] <« L.

X

{z) El"—ffs—g {or small x

3.4 What are the relative and absolute errors in approximating

>

272
i hy =7
(a) w by 5

1
{b} = by 0.3337

{c} é by 0.1667

(FE]

How many significant digits are there in each computation?
315 Lel B = 18, ¢ = 4. Consider computing
a= (—é - é‘iﬁﬁﬁ) /0. 1666.
How many correct digits of the exact answer will you get?

3.18 Consider gvaluating

€=+ b

How can the computation be organized so that overflow in computing @ + &% Tor
targe values of a or b can be avoided?
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3.17 What answers will vou get if you compule the following numbers on your calcalator
or computer?
(@) +/10% -1,
{h) V104 — |,
{c) 10" —50.
Compute the sbsolute and relative errors in sach case.
318 What problem do you foresee in solving the quadratic equations
{a) %~ 10Px 4 1 = 0,
(b) 107152 — 100y + 1010 =0
....using the well-known formula
) i m} e
= P ?
What remedy do you sugpest? Now solve the equations using your suggested remedy,
with 7 == 4,
3.19 Show that the integral

i i
Yo / g dx
n AN 3

can he computed by using the recursion formula:
1
vo= = =3y
f

Compute ys, ¥z, ..., ¥ using this formula, taking
wo= (s + 51y =n6—1a5 = In{i.2).
What abnormalities do you observe in this computations? Explain what happoned.

Now rearrange the recursion so that the values of y; can be computed more accurately,



Chapter 4

Stability of Algorithms and
Conditioning of Problems

Background Material Needed

« Yector and matnix norms (Section 2.5)

4.1 Introduction

1n this chapter, we introduce the basic concepts of adgorithin, 1wo of its important properties,
efficiency and stability, and an important property of the problem, ealied conditioning.

We begin with u definition of algorithm and state some basic algorithms for matrix
computations in this section itsell.

Definition 4.1. An elgorithm is ai ordered set of operarions. logival and arithmeric. wiich
when applied to o compurational problem defined by « given set of data, called the nput
daia, produces o sohition o the problem. A solution comprises a set of data called the
pripur data.

In this book, for the sake ol convenience and simplicity, we will very often describe
algorithms by means of pseudocodes which can be translaed inio computer codes easily.
Describing ulgarithms by psendocodes has been made popular by Stewart (19733, Here are
some cxamples,

4.1.1  Computing the Norm of a Vector

Given x = (xq,..., 1.}, compute |x|.

4.1.2 Computing the Inner Product of Two Vectors

Given two n-vectors x and y, 1 = (¥, x3. ..., %) and ¥ = (¥, ¥, ..., y)' . compute
the tnner product 3:’?"}, =X ¥R Xy b b L.

43



50 Chapter 4. Stability of Algorithms and Conditioning of Problems

ALGORITHM 4.1, Computing the Norm of a Vector.

Input; #, v\, ..., x,.
OQutput: s =[xl

Step L. Compule r = max{jx . ... Ix]).

Step 2. Compute y; = /e, i =1, ..., n

Step 3. Compule s = [jxfly = v /(v7 -+ + ¥y

Pseudocodes

roemax{lal )
Fori = 1itlondo

Yo= /0 =54
5 = ()}’
End

An Algerithmic Note

In order lo avoid overflow, cach entry of x was normalized before using the norm
formuls

—_—
Ixily = fxf +-- + 2.

ArcoritaM 4.2, Computing the Inner Product of Two Vectors.

Input: A positive integer ¢ and two scts of aumbers {x; 1, and {17,
Output: Sum = Inner product x7 ¥

Step 1. Compute the partial products: 5; = xyy, i = 1,..., 51

&
Step 2. Add the partial products: Sum = Zs‘;.

i=F

Pseudocodes
Sum =
Fori=1,...,ndo

Sum = Sum + x; ¥
End
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4.1.3 Solution of an Upper Triangular System

Consider the system

Ty =1,
where T = (4;} 18 a nonsingular vpper triangular matrix and ¥ = (¥, 32, R L
Specifically,
My F iy fay, = By
bayr o b Yy = B,
LT R S o CHR VLl o
B ’.'l.:.i“,.é“f.;.i}"(!—-§ +”Ir:'n:l.;n}’n m.?}}z;—l +
fag ¥ = [}!sx

whereeach #; #0fori = (,2, ..., 4.

The last equation is solved first to obtain v,; thea this value is inseried into the next
10 last equation to ohlain y.., and so on. This process i know as back substitution. The
glgorithm can easily be writlen down.

ALGORITHM 4.3, Back Substitution Method for Upper Triangular System.

Luput: An X n upper Wiangular matrix 7 = () and an n-vector b,
Ountput: The vector vy = {3, ..., ¥:) . suchthat Ty = b,

b
Step 1. Compute v, = —.

L]}
Step 2. Compuie v, through yy successively:

Forfwmn—1,...,2 1do

i #
Rl L 2 i
]

t it

End

4.1.4 Solution of a Lower Triangular System

A lower friangular system can be solved in an analogous manner, The process is known as
the forward elimination method, Let Z = {§;;) and b = (5, b, Y L
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ALGORITHM 4.4. The Forward Elimination Method for Lower Triangular
System.

Input: An x n lower triangular matrix L = {4;;) and an g-vecior b,
Output: An s-vector v = (3, ¥2, ..., ¥4}’ such that Ly = &.

b
Step 1. Compute v, = 1—~l-
1"

Step2. Fori =2,3,....ado

i)
yo= b > by
“ SJust

End

MATCOM Notes: Algorithms 4.3 and 4.4 have been implemented in MATCOM programs,
BACKSUB and FORELIM, respectively.

4.2 Efficiency of an Algorithm

Two most desirable properties of an algorithm are effficiency and srability,

The efficiency of an algorithm is measured by the amount of compuder time consumed
inits implementation. A theoretical and crude measure of efficiency is the number of floating
point operations (flops) needed to impiement the algorithm,

Definition 4.2. A flop is a basic floating point operation; +, —, %, or f.

Flop-count for Algorithm 4.3 and Algorithm 4.4 substitution. Each of these algo-
rithms requires #° Aops.

The hig O notation. An algorithm will be called an O (1”} algorithm if the dominant
term in the operations count of the algorithm is a moltiple of #?. Thus, the solution of a
triangular system is an {1’} algorithm,

Notation for overwriting and interchange. We will use the notation
a=b

to denote that “b overwrites a.” Similarly, if two computed quantitics a and b are inter-
changed, they will be writlen symbuolically

a < b,

4.3 Definition and Concept of Stability

The exampies on catustrophic cancellations and recursive computations in the last chapter
(Section 3.8) had cae thing in common: the ingccuracy of the computed vesult in each
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Flx)

Backward error = {y — x| Forward error = | f(x) — f(x)]

Figure 4.1. Backward error vs, forward error,

case was entirely due to the algoritim ased, because as soon as the algorithm was chunged
satisfactory.  Thus, we are talking about two different types of algorithms for a given
problem. The algarithms of the first type are examples of unstable afgoritiuns, while the
ones of the second Lype—gliving satislaclory resulis—are stable algorithms.

There are two types of siable algorithms: backvard stable and forward stable.

In this contexy, we lirst define forward error and backward error, Let f {x) be the
computed approximate value of F{x) with an input data x. Then we have (he following.

s Forward error = | f{x) - f'(x}i‘

On the other hand, baskward errors relate the errors to the data of the prablem rather
thun to the problem’s solution,

* Backward error, Here we ask for whal value of the input data y does f{y} = f'(;t)?
Backward error = |y — x|.

See Figure 4.1,

Example 4.3. Baclkoward vs. forward errors. Suppose we would like toestimate f(x) =¢'
ai x = 1. Constder the truncated series

o 3

- & A
f(}f)x I “}“,\‘.’“*""-2—-5-‘:3—!-
Then
FiN=27183,  ftl) =2.6667

Forward error = 27183 ~ 2.6667 = (.0316.

To find backward error we must find ysuchthat f{y) = f{l}v Fore', y= log{f{x}},
Atx = we have y = log{ {1} = 0.9808.

Backward Error: |v — x] = 0.0192,

Verifv: ef = ¢®959 = 2 6667 = f{1) =2.6667. B

Example 4.4. Forward error bound for the inner product. Let xand v be twa n-vectors.
Then the error bound in Theorem 3,17, 187 vy - 27y < dGpixe|"|y|, is the forward
grror bound for the inner product of ¥ and 3.
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Figure 4.2, Bockward stable algorithm,

This resulr shows rthat high accuracy in inner product computation cannot be grar-
anteed unless |xTy| <« x|T|y): on the other hand, {f ¥ = x, then the result will be
HCEH e !_.. e e e it e A e e e s et

Example 4.5. Forward error bound for matrix multiplication. The error bound in The-
orem 3,19, I{AB) = AB + E, where | £, < null Al BE: & O04), pives the forward
error bound for matrix multiplication,

Backward and Forward Stability

Definition 4.6. An algerithm is called backward stable if for any x it produces a value
Fx) with a small backward error. In other waords, an algorithm is backward-stable if it
produces an exacr solution (o a nearby problem. That is, an algorithm is backward stable
if f {x) = f{¥) for some y close to x.

Remark, The forward stability of the algorithm is defined in a similar way, In this book,
by “stability” we will imply backward stabitire, Thus, an algorithm will be called stable i
it 1s backward stable.

Nole that an algorithm can be forwuard stable without being backward stuble; that is,
a small error in f (x) may or may net correspond to a small perturbation of the data

The process of analyzing the backward errors in a numerical computation is called
the bachkward error analysis. Backward error analysis, introduced in the fiterature by
I H. Wilkinson,' is nowadays widely used in matrix compuiations; using this analysis,
the stability (or instability} of many algorithms in numerical lirear algebra has been estab-
lished in recent years,

Example 4.7, Backward stability of arithmetic operations of twe floating point numng-
bers. Consider camputing the sum of two floating point numbers x and y. We have seen

!Tames H. Wilkinson, o British mathematicizn, is wel kaown for his pioneesing work on backwaad error
aaplysis for matrix compuiatons. He was affilinted with the National Physienl Loboratory in Britain, und
held visiting appoiniments @ Argonne Mations) Laboratory, Stanford University, cle. Wilkioson died an
untimely death in 1986, Aflellowship in his namg has since been esisblished at Argonne Natioaal Laboratory,
Wilkinson's book The Algebraic Figenvalse Probless is an extremnely important and very usefu! book for any
nureevienl analyst,
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betore [Theorem 3.9) that

Ay + )= (o byl 4+ 5
z (] A8yl +8) = x4 ¥

Thus, the compuied sum of two floating point numbers x and ¥ is the exact surm of unother
two floating poiat numbers 37" and ¥, Stoce [8) < p, both " and ¥ are ¢lose o x and y,
respectively, Thus we conclude that the operarion of adding owo flparing point numbers is
backward stable, Similar simements, of course, hald for other arithmetic operations of two
floating point numbers, W

Example 4.8. Backward stability of addition of #. Recall from Chapter 3 {Theorem 3.13)
that fl{x) 4+ xp << x) = 20U A gy b X1 4 52) + - - 201 + 1), where cach i, is
small. Thus, the computed swm of n floating point eumbers iy the exact sum of n perturbed
numbers with small perturbations. Ml

Example 4.9. Backward stability and instability of the inner and outer products, The
inner product of rtwo vectors X and v s backward stmbie. Theorem 3.16 shows that the
computed inner product is the exact inner product of a periurbed set of datar vy, 19, ..., 5,
and v (1 4 €), ...y} 4 &,}, where each perturhation is small.

The owrer product of the vectors x and y s, hawever, not backward stable (Exer-

cise 410y, N

Examples of Backward Stability and Instability of Linear Systems Solvers

Definition 4.10. An algorithm for solving Ax = b will be called baciward stable if the
computed solution ¥ is such that

(A+EVe=b+8b
with £ and 8b small,

How Do We Measure Smallness?

The "smaliness”™ of a matrix or a veclor is measurad gither by feoking into its entries or by
computing its norm.

Normywise vs. Entrywise Errors

While measuring errors in computations using norms is (raditional in matrix com-
putalions, compoueniwise measure of errors is becoming increasingly important.
It really does make more sense.

An i x s mairix A has #7 entries, but the norm of 4 is a single number. Thus
the smallness or largeness ol the norm of an cror matrix £ does not tuly re-
flect the smallness or largencss of the individual entries of E. For example, i
E = (10,0.00001, 17, then | E} = 10.0499. Thus the small entry 0.00001 was
not reflecied in the norm measure.
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Example 4.11. A stable algorithm: Solution of an upper triangular system hy back
substitution. Consider Algorithm 4.3 (the back substitution method}. It can be shown {see
Chapter 14, available online al www sianorg/books/od 16 that the computed solution 1,
cbiained by this algorithm, satisfies

{(TH+Ex=bh,

where the entries of the error matrix E are quite small, In facl il £ = (g;) and T = {15},
then

3
fegpl < nplt] 4 Olps),
showing that the error can be evin smaller than the error made in rounding the entries of 7,

Thus, the back substitution pracess for salving an upper triangular system is stoble. B

Example 4.12. A&n unstable algorithm: Gaussian elimination without pivoting. Con-

“sider-salving-the-2-»-2-system-using -the standard. elimination method, called Gaussian

elimination: Ay = b, where A = (”};m 1Y, b= (1) Thatis,

1(}”!03‘1 oo 1,
X A 2ry =3
Eliminating xy from the second equation, we oblain

10" Moy 4 10 = 1,
(2 - 100)x, =3 — 100,

in compuler arithmetic, we will have

10710 b3 = 1,
w107 Wy = 1010,

giving 1o = 1, xy = 0, whereas the exact solulion s x) = 33 = 1.

Thus, the above process is clearly unstable. The readers are asked to verify for
themselves that the eomputed solution £ = (1,07 is the exact solution of the system
{4+ E)i =b, where Eistarge. B

H an algorithm is stable for a given matrix A, then one would like to sce that the
algorithin is stable for gvery matrix A in a given class. Thus, we may give a formal
definition of stability as follows.

Definition 4.13. An algorithm is stable for a class of matrices C if for every matrix A in C,
the computed solution by the algorithm iy the exact solution of a nearby problem.

Thus, for the lincar systert problem
Ar=bh,

an algorithm is stable for a class of matrices C if forevery A € C and foreach b, it produces
a computed saluiion © that satisfics

{(A+ER=8=b+é8b

for some E and 8f, where (A 4 E) is close to A and & - 85 is close to b.
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4.4 Conditioning of the Problem and
Perturbation Analysis

From the precediny discussion we should not form the opinion that il a stable algorithm
is used 10 solve a problem, then the computed solution will be accurate. A property of
the problem, called conditioning. also contributes to the accuracy or inaccuracy of the
computed result,

The conditioning of & problem is a property of the problem itseff. 1tis concerngd with
how the solution of the problem will change if the input data conlains some impurities, This
concern artses from the fact that in practical applications very often the data come from
some experimental nbservations where the measurgments can be subjected to diswrbances
{or “noise™) in the dala. There are other sources of error alse, for example, round-off errors
and discretization errors. Thuy, when a numerical analbyst has a problem in hand to solve,
he or she st frequently solve the problers not with the original duta, but with data that has
been perturbed. The guestion naturally arises; Whear effects dathese pervsrbations have an
the solupion?

A theoretical study done by numerical analysts to investigate these eflects, which is
independent of the particular algorithm used to solve the problem, 1s called perturbation
analysis. Thisstudy heips one detect whether a given problem is “bad™ or “good” in the sense
of whether small perturbations in the data will create a large or small change in the solution,

When the result of a perturbation analysis is combined with thar of backward error
analysis of u particalar algorithm, on error bonnd in the compured solution by the algoritim
cait be oblained.

Definition 4.34. A problem {with respect fo a given set of data) iy calted an ifl-conditioned
or badly condirioned problem if o small relative perturbation in dara con cause a large
relative evvor in the computed solution, regardless of the wmethod of solution. Otherwise, it
is called well-conditioned; that is, a problem is well-conditioned if all small permvrbations
in data produce only smalf relative evrors in the solution,

Let xand y denote the origingl and the slightly perturbed data, and let F{xYand F{3)
be the respective solutions. Then we have the following.

Well-conditiosed problens. IF v s close o x, then F(¥) s close o fix).
Iii-conditioned problem. Evenif yisclosetox, then £ candepartfrom f{x) drastically,

Numerical analysts atternpt to assign a number to each problem, calied the condition
merber, 1o determine i the problem i ill-conditioned or well-conditioned. Formally, the
relative conditien number or simply the condition number can be defined as follows.

Graphically, these concepts are ihustrated in Figure 4.3,

Definition 4.15. The condition number of the problem f with respect to the data x is
defined as

3 e -\‘,

Retative arvor in the solution 1 Flx)~ fiv / (4.1

Relative perturbation in the data | F{xd
If F B — R™ and x and y & R", then the condition number is formally defined as

. = AN /(= |,
gi‘ffip{( 7000 )/( T ) I “‘M@}‘

X
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Figure 4.3. Well-conditioned {left) and ill-conditioned {right) problems.

A problem is ifl-conditioned if the condition number is 3 1 (3 stands for much

........ e et

Example 4.16. Condition number of a Fanction. If f{x) is a differentiable function of
one variable, then it is easy to see (Exercise 4. 10} that for small perturbations, the condition
number of f(x), denoted by elx}, is given by

EEIFREES]
Clx) m e 4.2
IFixH
As an example, et f{x) = e*. Then ¢{x} = |x|, which is large for large values

of x. That means a smadl relative ervar in x can produce a large relative evrorin &%, so this
prabien is ill-conditioned when x is large.

I f or x s a vector, then the condition number can be defined in the same way using
norms Instead of the absoluie values,

Thus, the condition number of a function of several variables {or a vector) can be
defined by replacing f'{x} by its gradient. In this case c(x} = W where 7 f is the
gradient.

For example, if ¥ = (xy,x2}7 is a vector and the problem is to obtain the scalar
flxy=2x) = xr, then p f = {1, =1}, and the condition number o{x) of f {with respect tn
the infinile norm) is given by

el v fllae - 2maxiixd, beald
I F{xifioo vy —xal

which shows that the problerm is ill-conditioned if xy =2 x5, B

£{x) = (4.2}

Example 4.17. Condition number of the matrix-vector product. Suppose 4 € B and

X is an n-vector. Then i can be shown (Exercise 4,12) that the condision number & of Ax

{with respect to perturbations of x) is given by

121

Axy

where the matrix norm is the subordinate matrix norm.
if A is square and nonsingular, then

o= hANATE W 4.3}

o= A

{4.4)
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Example 4,18. Condition number of the polynomial roets. The problem of finding reots
of 1 pulynomial can be highly ill-conditioned. We first illustraie this with a simple quadratic
polynomial. Cansider solving the quadratic equation

fy=x'—2r+1=0.
The roots are x = 1, 1. Now periurb the coellicient 2 by 0.00001. The computed roots
of the perturbed polynomial f(x) = x° — 2.00001x + [ are x; = 1.0032 and xy = 0.9968.
The relative errors in ) and xy are 0.0032; on the other hand, the relative error in the data
is 3 x W% Thus, a sialt perturbarion in the data changed the roots substentiallv.

The Wilkinson Polynomial

The zbove example nvolved multiple roots. Multiple roms or reots close o each other
invariably make the roci-finding problem ili-conditioned; however, the problem con be
Hi-conditioned even when the raots are very well separated. Consider the foliowmg weil-
kimown-example by Wilkinson: e BN o
pley = {x — My —2)- - {x ~ 2{h
w2t

The roots of p(x) are 1,2, ..., 20. Now perturh the coefficient of x'? from —210 to
—~210 - 2" leaving other coelficients unchanged. This change amounts to approximately
[.12 x 1077, which is small. Several roots of the perturbed polynomial, carefully computed
by Wilkinson, were found (o be very different from the original roots, For example, the
roots ¥ = 10 and x = |7 became approximately equal to 16.73 &= 2.81i. This change can
be easily explained by computing the condition numbers of the individual roots. It can be
shown {Exercise 4.23(a)) that the condition nurnber of the root x = x; with respect to the
perturbation of the single coefficient a; s
T UENIN

Uising this definition it is easy to verify that conde and condyy are both of order
O(10'), which are quile large,

Note: The definition of conditioning is data-dependent. Thus, a problern which is
il-conditioned for one set of data could be well-conditioned for anather set,

Jet; 2
cond; =

Root-finding and eigenvalue computation. The above examples teach us a very useful
lessan; i is not g good idea to compute rthe eigenvalnes of a marrix by explicisly finding the
coefficients of the characterisiic polynoniial, since the round-off errors in computations will
invariably putl some simall perturbations in the computed coefficients of the characteristic
polynomial, and these small perturbations in the coefficients may cause larpe changes in the
zeros. The eigenvalues will then be computed inaccurately.

4.5 Conditioning of the Problem, Stability of the
Algorithm, and Accuracy of the Solution

As stated in the previous section, the conditioning of x problem s a property of the problem
itself and has nothing to do with the algorithm used to seive the problem. To a user, of course,
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the accuracy of the computed solution is of primary importance. However, the accuracy
of a compuizl sclution by & given algorithm is directly connected with both the stability
of the algorithm and the conditiening of the problem. If the problem is ill-conditioned,
ne marter o stable the algorithm is, the accuracy of the computed solution cannot be
guaranieed.

In general, iT a hackward stable algorithm is applied to a problem with the condition
number «, then the accuracy of the solution depends upon «. [f i is small, the results will
be accurate; but if #t is large, the accuracy cannot be guaranteed, the accardey will depend
pon the condition number.

Also, it is to be kept in mind that a method may ke stable lor ane problem but unstable
for another. For example, the modified Gram-Schmidi (MGS) method is stable for least-
squares problem (see Chapler 83, but can be unstable for finding an orthonormal hasis of a
matrix {Chapter 7).

Conditioning, Stability, and Accuracy

Naote thal the definition of backward swbility does not say that the computed
solution © by a backward stable algorithm wilt be close to the exact solution of
the original problem. However, when a stable algorithm is applied o g well-
conditioned problem, the computed sclution should be near the exact solution.
Also, if a “siable™ algorithm is applied o an ili-conditioned problem, it should
not infroduce more error than what the data warranis,

Stable Algorithm -+ Well-Conditioned Problem
= Accurale Solution {the computed solution is near
the exact solution),

Stable Algorithm + H-Conditicned Problem = Aceurucy not guaranteed,

An Hliustrarion: Suppose that an algorithm to solve the computational problem £
defined by the input x preduces the function f as an approximation of f. Let ¥ be close
to x. Then the behavior of a stable algorithm in two cases—when the problem s well-
conditioned and ill-conditionedis illusirated in Figure 4.4 {Stewart (1998b, p. 133)3.

\- £ /‘\ /\ Fi)
¥ i !
TR N}"”

Figure 4.4. Performance of a backward stable algorithm witk wefl-conditioned
probifem {left) and Hi-condirioned probles: (right}.
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Why is the answer inaccurate? Based on our discussions here, we con state some of
the fellowing reasons why the answer might be inaccurale (see Higham (2002, p. 31) for
details),

» The problem might be ili-conditiored.
» The algorithm might be unstable.
+ The test examples may be oo special.

» The algorithm, though successful, might have failed in the particular cireumstances.

4.6 Perturbation Analysis of the Linear System Problem
Consider the following linear svstem:
Xp 4 2y = 3,
2xy + 3,999 = 5999,
The exact solution is Now make a small pertorbation on the right-hand side,
abtaining the system
x; + 2%y = 3,

2y + 39900 = 6.

The sotution of the perturbed system, oblained by Gaussian elimination with partial pivoling

{considered 1o be a stable methoed in practice), is l =3, xy= (L
Thus, a very small cliange on the rigin-hand side changed the solution altogether:

In this section we study the effect of small perturbations of the inpul duta A and & on
the computed solution x of the system Ax = b; that is, sensitfvizy of lincar system solutions.

Since in the linear system problem Ay = £ the input data are A and &, there could be
impurities either in & or in A orin both, We will therelore consider the elfeet of perturbations
on the solution x in each of these cases separately. We will see thal in all of these cases, a
number called the condition sumber of the matrix 4 plays an important rofe.

4.6.1 Effect of Perturbation on the Right-Hand Side Vector b

We agsume here that there are impurities in & but that matrix A is exact.

A— A {unchanged)
b~ b&k (b = perturbation ic the vector )
X~ X+ 8% (dr = change in the seiution x}
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Theorem 4.19 (right perturbation theorem}. If 86 and dx are, respectively, the perturba-
tions of band v in the linear system Ax = b, A is nonsingular, and 5 5 0, then

Hapg _ ldxd < agpa—p ool 550

HARYA 'Ii A W foll

Proof. Since
Ax =205
and
Alx+8xy=b + &b,
we have
Afx = 8b.
. That 15*m .

Taking a subordinate matrix-vecior norm wa get

szl < 1A 1861,

Again, taking the same pnorm on both sides of Ax = &, we get [Axl =

IO = [Ax] = HA] xil.
Combining {4.6) and (4.7}, we have

;;5r i fl3b]
< A ——
o < fAJ AT il
On ke other hand, Adx = 6&? pives
. Heal
faxf =
= YAy
Also, from Ax = &, we have
I

LIRS S
el = BA-HB]
Combining (4.9} and (4.10), we have
vl 8ol
el = HANBA-iEs

The other part can be similarly proved, [

{4.6)
i) or
(4.7)

(4.8)

(4.9}

£4.10)

Definition 4.20. The number [A| | A7 is colled the condition number of A and is denoted

by Cond{A),

Interpretation of Theorem 4.19

Theorem4.19 says that a relative change in the solution can be as large as Cond (A} multiplied
by the relative change in the vector b. Thus, if the condition number is not too targe, then o
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smafl perturbation in the vecior b will have very Hitle effect on the solution. On the other
hand, if the condition munber is large, then even a small perturbation n b might change
the setution drastically,

Remark. In view ol Theorem 4.19, what happened with the above example can be easily
eaplained. Note that [or this example Cond(A) = O(107).

Example 4.21. An ill-conditioned linear system problem.

| 2 i 4
A=12 440001 20021, &= | 8.0021
1 2002 2.004 5.006
The exact solution is
............... .{m
Chapge b to b’ =
4
8.0020
5.0061

Relative perturbation:

o' - bl ||&bE s
ez e = LTS x 10T (smalf).
&l (1

If we solve the system Ax’ = ¥, we get

1.0850
& =y 4By = | —0.0436
1.0022
{x' is completely different from x).
Relative error in the solution: S5l = 1.3461. 1t is casily verified that the inequality in
Theorem 4.19 is satisficd: Cond(4) - B = 4.4418 > 13461 = £

The predicted change was, iowever, overly estimated. R

Example 4.22. A well-conditioned problem.

=09 )

The exact solution is v = {1}, Letd = b+ 58 = {3200},

The relotive change in b is ""1;;?’“ = | 873 x 1077 (small). Nete that Cond(4) =
149330 {small). Thus a drastic change i the solution x is not expected. In fact 7 satisfying
Ax' =01y

AL A S L2
= (i,{}{}{}l) Y= (]) . Nore: -Im— = 107" small). B
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4.6.2 Ffiect of Perturbation in the Matrix A

Here we gssume that there ave impurities only in A, and as a resull we have A -+ A4 in
hand, but b is exact,

Ar A4 AA {AA = periurbation in the matrix A)
b b {unchanged)
X = xbfx {dx = change in the solution 1)

Theorern 4.23 (left perturbation theerem). Assume A is nonsingularand b # 0. Suppose
that & A and 8x are, respectively, the penturbations of z% and .x in the linear system Ax = b,

Furthermore, assume that AA is such that fAAL « —~v-~ . Then

AT
Ty = Cominigl f (1 comacm 53R
Proof. We have
(A+ AAx + ) =0
or
(A+AA)s 4 (A4 AA)x = b, 4.11)
Since Ax = &, we have from 4.1
(A+ AAY = —AAx (412
879
8y = ~A" AA(x + 8x). (4.13)
Taking the norm on both sides, we have
I3<h < fATT I RAAR - (=l + Jax i) (4.14)
1) L st + o

that is,

—i i 3 oAl
(1 llapial IiﬁAH)%le,ﬁ HARTAT N AA] . @.15)

1Al 1Al

Since JATTH JAAY < 1, the expression in parentheses on the feft-hand side is positive. We
can thus divide both sides of the ineguality by this number without changing the ineguality.
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After this, il we also divide by x|, we abtain

L AAY
gafa- g inst
flaxt 1AL &!éﬂli/( §Mu>
= Cond{A — Cond{ A } e
Ik 5( R |§M§z) ontA T Y
AT
{4.16)

which proves the theorem. [0

Remarks. Because of the assumption that |AA] < W {which s quite reasonable o

assume}, the denominator on the right-hand side of the inequality in Theorern 4.23 is less

than one. Thus even if & ?A‘:‘f is small, then there conld be a drastic change in the solution if

Cond{A) is {arge.

Example 4.24, C{}ﬁ%zdu Examplﬁ 4 21 once maore. Change a3z = 2.002102.0021; keep b
esd This

09 0
AAwm ~107 [0 4 0.1008] (small)
060 ¢

Now solve the system (A + Adlx' = &

3.0852 20852
=1 -0.0437 Sy =x" —x= | ~1.0437 |,
1.001 0.0021

féx]

li-o

Relative error = = 1.3463  {quile large).

Note that Cond{4) = 0(10°). 1

4,6.3 Effect of Perturbations in both matrix A and vector b

Finally, we assume now thal both the iaput data A and b have impuritics. As a resolt we
have the system with 4 + A4 as the matrix and & + 88 as the right-hand-side vector.

A— A+ AA {AA = perturhation in A)
b— b4 3b {8F = perturbation in the vector )
X - X 8K {8x = change in the solution)

Theorem 4.25 (gerleral perturbation theorem). Assume that A is nonsingndar b # §,

and AR = et Then

3x] - Cond{4)

(%sMIE , §I§blﬁ)
FAAT | \TTan 7 12l

R R
‘I Cond{Aj A
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Proof. Subtracling

Ax == b

from

A+ A+ 85y =b+8b
we have

(A4 A4 x4+ dx) ~ Ax = 88
or
(A AAMr +8x) - (A+ DA+ (A+ DA — Ax = db

or

(A + AAYMEX) + AAY = 6b
- - e e -

Al — A~ AA)Ex = 8b — Adu. (4.17)
Let A~1{~AA4) = F. Then
FFi =A™ (—aA) = JAT L AAL < | (by assumption).
Since §Fj = 1, T — F s invertibie (see Thearem 2,273, and then from (4.17) we have
Sx = (I — Fy'a™ @b — Adx).

Again, using Theorem 2.27, we can write

] ,
W= P St @.18)
Thus,
1A~ .
I8xl = e (1860 + 1A AT )
or
faxl 1A (Rébﬁ | )
— . + 1AA 4.19
i S a—En ey T AaAl (4.19)
1A= (%!527%1 14l | ) I Al
LYAARL T, Nofe: e s
STogEn \aep o HARAL). Nt o <O
That is,
Wi A~ AY (nsbﬁ ‘ umu)
. 426
b S = nED VTl Al (4.20)
Again

ATHnar L,
IFh = AT (~aA s A7 EAAl = W -IAAL .21
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Since [ F = 1, we can write from (4,211 and (4.21)

sl 1A~ 1Al (iiﬁbll N iiAAll)

el PACTH A Bl kA
bl (sw(““, i li),EM” B Al
1A (4.22)
_ Cond(A) (Hébﬂ li,}uﬁ‘iﬁ) n
. Cond{A) ) &l 141 /7
I - e A AR
( Al
Remarks. We again see from (4.22) that even if the relative perfurhations B0 gpng LAAR apg

e fag
simall, there might be g drastic change in the solution if Cond{A) is large. Thus, Cond{A}
plays a crucial rele in the sensitivity of the sulution,

Notation for Condition Numbers

Unless otherwise stated, when we write Cond{4}, we mean Conda{A), that is,
the condition number with respect 1o the 2-norm. The condition namber of a
matrix A with respect to a subordinate p norm {p = 1, 2, oo) will be denoted by
Cond ,(A). Cond #{A) will stand for condition number with respect to Frobenius
RO,

4.7 Some Properties of the Condition Number of a Matrix

The foilowing are some important (but easy to prove) properties of the condition number
of a matrix {Exergises 4,16, 4.17, and 4.2,

{1} Cond,(A) = 1 forany p-norm.
{II} Cond{eA) = Cond{A)}, where o is a nonzero scalar, for any given norm,

(1T} Conda(A) = | il and only if A is a nonzero scalar mukliiple of an orthogonal matrix,
ie, ATA = of where o 5 0.

(Nate thet this property of nr erthogonal moatrix A miakes the matrix very aftractive
Jor its use i numerical computations),

{IV) Condz(A7 A) = (Caond(A))".
(V1 Conda{A) = Cond2{ATY: Cond{{A) = Cond(AT),

(Vi) Forany given norm, Cond{A B} < Cond(A) Cond{B) if A and 7 are compatible for
matrix muitiplication.

(VID Condz{A) = 2=, where oy, and o, are, respectively, the largest and smallest
. i
singular values of &.
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We now formally define the ili-conditioning and weli-condilioning in terms of the
condition number.

Definition 4.26. The system Ax = b is Hi-conditioned if Cond(A) is large {e.g., 107, 108,
109, e1c. ). Gtherwise, it is well-conditioned.

A convention. Unless otherwise stased, by Cond{A} we will mean Condz(A).

Remarks. Though the condition number, as defined above, is norm-dependent, the condi-
tion numbers with respect to two different noris are related {see Golub and Van Loan (1996,
. 26)). (For example, it can be shown that il A is an 7 x 1 matrix, then i: < g{:’u";i"&]) << 1)
In general, if o matrix is well-conditioned or ifl-conditioned with respect to ong norm, it is
also ill-conditioned or well-conditioned with respect 1o some other norms.

Example 4.27, (a) Consider

/ot 09999y o
A= (0_9999 ; )3 then A7 = 10 (

50003 —4.99997
—4.9997  5.0003

{, The condition numbers with respect (o the oo-norm and the T-porm are
Ao = [AL = 19999, A7 o = JAT" I}y = 107,
Conde(A) = Cond({4) = 1.9999 x 107,

2. The condition number with respect to the 2-norm is

42 = p(A) = 19999, A7z = Vp(A~1) = 10%,

Condz(A) = 1.899% x 10%.
3 Condp(d)= 19999 x 100, ¥

Remark, For the above example, it turned out that the condition number with respect to
any norm is the same. This 1s, however, nol always the case, but in general they are glosely
related. (See below for the condition number of the Hithert matrix with respect to different
nOrms.)

4.7.1  Some Well-Known Ill-Conditioned Matrices

1. The Hitbert marrix.

1 1 i
I 2 3 it
1 i e
1 1 4 a4l
A ==
| R
B R -1

Fors == [0, Condaf A} = 16025 x 101%; Condo(AY = 3.5353 % 10" Cond;{4) =
3.5353 x 1019,
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2. The Pel marrix. A = (o) with g = e, 0 = | fori # 7. The mawix becomes
iconditioned when o is close o 1 or # — 1, for example, when & = $.9999 and
no== 3, Cond(A) == 5 x 1,

3. Vandermonde matrix, A = {ay;), where g;; = t}“ BF y; == {th component of an »u-
vector v, Forn = 3, v = (1.2,3,4,5)7, Cond(4) = 2.6170 x 10%. This matrix
arises in several practical applications, including polynomial interpolation.

4.7.2 How Large Must the Condition Number Be for Ill-Conditioning?

A [requentdy asked question is, how large must Cond{A) be before the system Ax = b s
considered ill-conditioned? We will use Theorem 4.235 to answer the question.
Suppose for simplicity ths

LT —
Al fib}
Then, from Theorem 4,25, it follows that %ﬂ is approxinately less thun or equal to 2 x
Cond{A) x 107,

This says that if the data have a relative error of 1077 and il the relative error in the
solution has Lo be guaranieed to be less than or equal (o 1077, then Cond{ A} has (o b fess
than or equal to & x 10977, Thus, whether a svstem iy ill-conditioned or well-conditioned
depends on (1) the accuracy of the data, and (i) how much error in the solution can be
tolerated.

Forexample, suppose that the dala have a relative error of shout 107 and an accuracy
of about 1072 is sought. Then Cond(A) < %ﬁ x 107 = 50. On the other hand, if an accuracy
of about 107 is sought, then Cond{A) = § x 10° = 500. Thus, in the first case the system
will be well-conditioned il Cond{A} is less than or equal to 50, while in the second case the
systern will be well-conditioned it Cond{A} i less than or equal 1o 300,

Estimating Accuracy from the Condition Number

In general, if the data are approximately accurate and if Cond{A} = 10, then
there will be only about ¢ — 5 significant digit accuracy in the compuied solution
when the solution is computed in f-digit arithmetic.

For better undersianding of conditioning, stability, and accuraey, we reler the readers
te the paper of Bunch (1987). For discussions on “strong and weak stabilire” (not discussed
in this book), sce Bunch {1987y and Bunch et al. {1989},

4.7.3 The Condition Number and Nearness to Singularity

The condition number also gives an indication when a matrix A is compulationally clese to
a singular matrix; i Cond{4) is large, A is close 1o singular.
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This measure of nearness to singularity (s a mere accurate measure than the determi-
nant of A, For example, consider the weli-known n x & upper eriangular matrix A = {q;;)
with 2y = 1, and @;; = ~1if j > i. The matrix has the determinant equal (o 1; however,
it is nearly singular for large n, Note that Condeo(A} = 12!, Similacly, the smaliness
of the determinant of o matrix does nat necessarily mieao that A is close to a singular ma-
trix, For example, consider A = diag(0.1, 0.1, ..., 0.1} of order 1000, det{A) = 1{71000,
which is a small number. However, 4 is considered to be perfectly nonsingular, because
Condz{A) = 1.

4.7.4 Examples of [ll-Conditioned Eigenvalue Problems

Perturbation analysis of the eigenvalue problesn will be discussed in Chapter 9. The condi-
tipning of ihe eigeavalues and sigenvectors will be introduced there. Here we just present

“afew-examples-olthe well-known ill-conditioned eigenvalue problems.

Example 4.28. Consider the 10 x 10 mairix

The eigenvalues of 4 are all 1. Now perturh the (10,1} coefficient of A by a small quantity
€ = [07'%, Then the eigenvalues of the perturbed mairix compuled using the MATLAB
function eig {that uses a numerically effective eigenvalue-computation alzorithm) were
feund o be
0

10184 - 0.0980i,

(.950G6 + 0.08747,

L0764 4+ 0.06321,

09051 + 0.03504,

1.0889 + 0.004,

1.0764 — 00632,

0.9051 — 0.03504,

1.0184 — 0.09801,

0.8506 — 008764,

(Note the change in the eigenvalues.) M
Exampie 4.29. The Wilkinsen-Bidiagonal matrix. Again, it should not be thought that

an cigenvaloe problem can be ill-conditioned only when the eigenvalues are multiple or are
close to each other. An eigenvalue problem with well-separated eigenvalues can be very
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v pathuhed
+  original

E o0+ + + + + + & 4 4 F ¥ + + + 4 4+ 4+ 4+ 4 =

] :

-6

2

Figure 4.5, The eigenvalues of a slightly perturbed Wilkinson matrix.

it-conditioned wo. Consider the 20 x 20 glangular mairix nown as the Wilkingon-
bidiagonal mairixk
20 20

19 20 O

0 L0
i
The eigenvalues of A are 1,2, .., 20. Now perturb the (20,1) entry of A by ¢ = 1070 IT
the eigenvalues of this slightly perturbed matrix are computed using MATLAB function eig,
it will be seen thal some of them will change drasticelly; they will even become complex,
as shown in Figure 4.5, Agaia, this can be explained by using the definition of condition
number of an individual cigenvalue given in Chapter 9. R

Example 4.30 {Wilkinson (1963, p. 92}).

{ n n—1fy -2y . 3 21
=1 (=1 -2y --- 3 21
iy (-2 (n—2}
4= . .
2
2 2 1
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As n increases, the smallest efigenvalues becoms progressively ill-conditioned. For
example, when s = 12, the condition numbers of the first few eigenvaloes are of order
unity, while those of the Tast three are of order 107, B

4.8 Some Guidelines for Designing Stable Algorithms
Follewing Higham (2002, pp. 26-27}, und based on our discussions in this chapter, we state
a {ew helpful guidelines lor designing a stable algorithms, However, note, that “there is no
simple recipe for designing stable clgorithms” (Higham (2002}, pp. 26-27).

» Avoid catasirophic cancellations if possible.

* Avoid unnecessary overflow and underflow.

e Iy iransforming the-problem to.another mathematically equivalent problem, use only

well-conditioned transformation, such as orthogonal matrix multiphicability.

+ Il a numerical scheme appears to be unstabie, look for different formulations which
are mathematically, but not numericatly, equivaient {(see the use of modified Gram~
Schmidt processes versus classical Gram-Schmidt processes in solving least-squares
probiems in Chapter 8).

* Arrange your computational scheme (if possiblej in such a way that the inlermediate
quantilies are much smailer than the final answer.

» Update the solution by using only & smail correction; that is, update as new sofution =
old solution -+ small correction if the corsecrion can be compured with sufficient
figures.

4.9 Review and Summary

In this chapier we have introduced two of the most importamt concepts in numerical linear
algebra, namely, the conditioning of the problem and stabiliry of the algorithm, and have
discussed how they affect the accuracy of the solution.

4.9.1 Conditioning of the Problem

The conditioning of the problem is a property of the problem. A problem is said to be #£
canditioned it a small change in the data can cause u large change i the solution; otherwise
it is well-vonditioned,

Examples of ill-conditioned problems:

» Wilkinson's polynomial of degree 20 for the root-finding problem
» Wilkinson's bidiagonal matrix for the eigenvalue problem

» The Hilbert matrix for the algebraic linear system problem
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The conditioning of a problems is data-dependent. A probler can be iib-conditioned
with respect 10 one set of data, while it may be quite well-conditioned with respect 1o
another set,

fi-conditioning or well-conditioning of a matrix problem is gencrally measured by
roeans of o number called the condition number.

In the lincer system problem Ax = &, the input data are A and b, There may exist
impurities either in A or in b, or in both.

We have presented periurbation analyses in all three cases. The results are contained
in Theorems 4.19, .23, and 4.25. Theorem 4.25 is the most general theorem,

{5 ait three cases, it wras out that

Cond(A)} = Al l4™Y]

is the deciding factor. If this number is large, then a small perrarbation in the input data
can cause a large relative error in the computed solution, In this case, the system is called
an-fH-canditioned svstem, otherwise it is well-conditioned. "The matrix A having a large
condition number is called an i-conditioned matrix.

Some important properties ol the condition npmber of a matrix have been listed
{Section 4.7}

The condition number, of course, has a noticeable effect on the accuracy of the solution,

A frequently asked question is, How large does Cond{A) fiave to be before the system
Ax = b is considered to be il-conditioned?

The answer depends upon the accoracy of the input data and the level of tolerunce of
the error in the solution,

in general, if the data are approximarely acenrate and if Cond{A) = 107, then there
are about (1 — 5} significant digits of accuracy & the solution {f it is computed in 1-digit
arithunetic.

4.9.2 Stability of an Algorithm

An algorithm is 33d 1o be a backward stable algorithm if it computes the exact solution
of a nearby problem. Some examples of stable alzorithms (as we will see later in the
book) are

» Backward substitution and forward elimination for triangular systems

» (Gaussian climination with complete pivoling for linear systems

* (R factorization using Householder and Givens (ransformations

s 3R iteration algorithm for eigenvalue computations, ete,

The Ganssian elimination algorithr without vow changes is unstable for arbitrary

matrices, It is stable for special matrices such as strictly diagonally dominant, Hessenberg,

and symmetric positive definite.  Gaussian elinination with partial pivoting is stable in
practice,
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4.9.3 Effects of Conditioning and Stahility on the Accuracy
of the Solution

The conditioning of the problem and the stability of the algorithm both have effecis on
accuracy of the solution computed by the algorithm.

+ Stable Algorithm + Well-Conditioned Problem == Accurate Solution

« Stable Algorithm + Hi-Conditioned Problem = Accuracy not gearanieed

4.10 Suggestions for Further Reading

The basic concepts and resuls of stability and conditioning can be found in most numerical
linear algebra books {e.g., Geolub and Vin Loan {1896), Stewarl {1973}, Trefethen amd
_Bau (1997)). The two most authoritative books on these topics are the classical book by

Wilkinson (1965) and the most recent one by Higham (2002)7 Stdwart§ Teceii books (TO0RE,
2001a) aiso give a good amount of coverage of these topics. A book devoted entirely o
the perturhation analysis is by Slewart and Sun (1990}, An advanced book containing a
fair amount of matrix pertarbation results is by Bhatia (1996). See also Bhatia (2007). For
o condensed review of material of this chapter, see the article of Byers and Datta (2007}
Some classical well-known papers an conditioning and stability include Delong (1977) and
Rice {1966). Some earlier papers of Stewart (1977a, 1977b, 1978, 1979, 1991, 19934)
contain a wealth of information on perturbation aralysis of various numerical linear algebra
problems, For concepts and results on weak and strong stability, see Bunch (1987) and
Bunch et al. {1989),

Exercises on Chapter 4
4.8 Answer “True” or “False” 10 the following. Give reasons for your answers.
(2) 1 a backward stable algorithm is applied to o computational problem, the selu-
tion will be accurule.

(b) A backward stable algorithm produces a good approximation to an exact solu-
tfon.

{¢) Well-conditioning is 2 good property of an algorithm.

{d} Cancellation is always bad.

(e) If the zeros of a polynomial are all distinct, then they must be well-conditioned,
(f} An efficient algorithm is necessarily a stable algorithm.

{g) Backward errors relute the errors 1o the data of the problem.

(h} A backward stable algorithm applied 10 a weli~conditioned problem produces
an aceurate solution.

(i} Stability analysis ofan algorithm is performed by means of perturbation unalysis.
{(j} A symmetric matrix must be well-conditioned.

(k) If the determinant of a mawix A is small, then it must be close 0 a singular
ALK,
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(1) One must perform a large amount of computations to obtain « large round.off
EITOR.

{m) If a matrix A is ill-conditioned, then its smallest singular value is very small.
4.1  {a) Show that the flcating point computations of the sum, product, and division of
two mpnbers are backward stable.
(h) Show that the floating computation of the inner product of two vectors is back-
ward stable and that, on the other hand, the ouler product is nol,

4.2 Are the following foating point computations backward stable? Give reasons for
your answer in cach case.
(a) fli(x + 1)
{(b) fl{x(y + 23
ey By x4,
{d) A{vses- oz,

fe) BixT v/, where v and v are vectors and ¢ is a scalar,

0 A5+ 5+ +a2).

4.3 Show that the roots of the following polynomials are ill-conditioned ard give reasons
for your answers.
(@) x* =37+ 3x 4+ 1
(b} (x =~ 1) (x — 2.
(c} (x— PHa — 0993 (x —2).

4.4 Work out the flop-counts for the following simple mairix operations.

{1} Multiplication of matrices A and 8 of orders n x mr and m » p, respectively,
(it} Multiplication of a mutrix A of order m x n by a vector b.
(iii) Multiplication of a column vector & by a row vector v,
(iv) Computation of Julla.
{v} Multiplicarion of row veclor ¥ by a column veclor v,
{vi) Computation of the matrix A = ::—'r;,» where # and v are i epluma vectors,
{vil} Compuiation of the matrix £ = A —uv”, where A and B are two n x 5 malrices
and ¢ and v are two column veclors.

4.5 Develop an algorithm to compule the following malrix products. Your algorithm
should take advamage of the special structure of the matrices in each case. Give
flop-couat and shaw storage requirement in cach case.

{a) A and B are both lower trigngular mutrices,
(b} A s arbirary and 8 is fower triangular,
{c} A aad B are boih tridiagonal.
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{(cdy A is arbitrary and B is upper Hessenberg.
{€y {7+ xyT)A, whesre ¥ and v are vectors.
{6 A is upper Hessenberg and B is upper triangular,
4.6 A square matrix A = {&;;) is said to be a band matrix of bandwidth 2k + 11if
a; =0 whenever [i — jl > k.
Develep an algorithm 1o compulte the product € = AR, where 4 is arbitrary and
B is a band matrix of bandwidth 2, taking advantage of the struciure of the mateix B,
Overwrile A with AH and give flop-count.

4.7 Let A and B be two symmietric matrices of the same order. Develop an algorithm to
compute € = A + B, taking advamage of symmetry for sach malrix, Your algorithm
should overwrite B with €. What is the flop-count?

""""""" 4.8-Leta,and-by-denote respectively, the.sth columns ol the matrices A and B, Then
develop an aigorithm to compute the product 4 # from the formula
b
AB =" ab].
i1
Ciive flop-count and storage requirement of the algorithm.
4.9 Consider the mairix
1211 10 .. 32 1y
om0 3 201
o 10 10
A
2
: 2020
\g N ]/
Find the eigenvahies of this matrix using MATLAB command eig. Now perturb the
{1,12) element to 107% and compute the eigenvalues of this perturbed matrix, What
conciusion do you make about the conditioning of the eigenvalues?
4,10 1f F(x) is a real-valued differentiable function of & real variable x, then prove that
%ﬁ is the condition number of f{x)atx.
411  {a} Show that il f{x} = log x, then the condition number, ¢(x) = 5},—{ .
(b} Using the above result {or otherwise), show that log v is ill-conditionaed near
x =],
4,12 Show that the condition nomber « for the product Ax (with respect to the perturbation
of xiise = ﬁA”}%&i‘
4.13 Show, by computing the condition rumber, that the problem of computing /¥ for

x = { is a well-conditfoned problem.
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4.14 Work out a bound for the relative grror when a backward stable algorithm is applied
0 a problem with the condition number «.

4.15 Let A be noasingular and A A be such that 'Tf*-?? < Cond(A). Thenprovethat A+ AA
is nonsingular,

4.16 (a) How are Condz(A) and Coadz{A ™) related?
(b) Show that
() Cond{A) > I foranorm || - § such that |7 = 1,
(i) Conda(AT A) = (Conda(AN%
{11} Cond{cA) == Cond{ A} for any given norm,

4.17 {a) Let A be un ortheogonal matrix, Then show that Conda(A) = 1.
{b) Show that Conda(A) = 1 i and only il A is a scalar multiple of an orthogoenal
matfix,

max |
Conde (/) 3 —tis,
min g
Hence construct a simple example ol an ill-conditioned nondingonal symmetric pos-
itive definite matrix.

4.19 Let A = LDL7 be a symmetric positive definite matrix, Let D = diag{d;;). Then

show
max(dy;)

E’Hil’%(d,‘;) )
Hence consiruct an example for an ill-conditioned nondiagonal symmetric positive
definite matrix.

4.20 Prove that for a given norm, Cond(AB) < Cond{A) - Cond({8).

Cond,{A} >

4.21  (u) Find for what values of @ the mawix A = {} 4} is ill-conditioned?
{b) What is the candition number of A7

4.22 Givean example to show that a stable afgorithm applied o an ill-conditioned problem
can produce an ingccurate solution.

4.23  (a) Letg; be the ith coefficient of a polynomial p{x) and lel §g; and i, denote
smafl perturbations of o; and the jth root x;. Then show that the condition
number ol Tool x; with respect (o perturbations of the single coefficient & i3

Sl f18a] e
bt/ el Pl
(hy Using MATLAB functions poly and pelyder, compute the cendition numbers of
theroots x =4, £ =1,2,..., 20, of the Wilkinson polynomial
Py = (& — 13y = 2) ... (x = 200 = ™0 21005

with respect (o perturbation of the coefficient x'% from ~210 10 210 + 2%,
Present your resulits in fabular form and write your conclusion on the ik
conditioning of the roots of the Wilkinson polyromial. Explain why certain
roots are more ill-conditioned than others,
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MATLAB and MATCOM Programs and Problems on Chapter 4

MATLAR RESOURCES

» Free on-ling MATLAB Tutorial is available from the website: wuww.marh,
wfl eduhelpfmatiab-tutorial.

» Appendix B of this book, available online at wiwww.siam. org. bocks/ori 16,
also shows how o use basic MATLAB commands and write simple MAT-
L.AB programs,

+ See also MATLAB guide books by Higham and Higham (2003}, Davis and
Sigmon (2005}, and Chaproan (2009),

s A Pracrical Intreduction to MATLAB by Mark S, Gockenbach is available

M4.1 Usipg the MATLAB function rand, create a5 x 3 random matrix and then print oud
the following outpuis:
A2 AL AGS),
ACL 1205, AL STL A4 -1: 1,5 -1: 1)

Md.2 Using the Tfunction for, write a MATLAB program to find the inner producs and outer
product of lwo #-vectors ¢ and v,

i3] = inpro{u,v)
[A] = cutpro(u,v}

Test your program by creating 1wo different vectors 1 and v using rand (4,1},

M4.3 Learn how to use the fellowing MATLAB commands to create special matrices:

compan Companicn malnix

diag Diagonal matrices or the diagonals of a matrix
ones Matrix with all entries equal 1o one

zeros Zero matrix

rand Random matrix

wilkinson Wilkinson's eigenvalue test matrix

haniel Hanket matrix

toeplitz Toeplilz matrix

hilb Hilbert matrix

triu Extract the upper triangular part of a matrix
tril Fixtract the lower iangular part of a matrix
vander Vandermonde matrix

rand(n} Matrix with random entries, chosen from a normal distribution with

mean zero, variance ene, and standard deviation one,
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Md.4 Learn how o use the following MATLAR functions lor basic marriy computations
{you will tearn about the algorithms of these funciions Jater in this book)

a\b Linear aquation solution of Ax =&,
inv Matrix inverse
det Determinant
cond Condilion number
eig Eigenvalues and eigenveciors
a0 Various matrix and vector norms
poly Characteristic polynomial
polyval  The valie of 4 polynomial at & given number
plot Platting various functions
rank Rank of a matrix
u 1.U Factorization
qr QR factorization
- N Singuiar value decomposition ...

M5 Write MATLAB programs fo create the [ollowing well-known matrices:

{a) |Al = wilk{n} to create the Wilkinson bidiagonal matrix A = (a;;} of order a:
ayp=a—i-1, =12 ...,20
iy =a, =23, ...,
a;;p o= G, otherwise
(h) [A] = Pei{n, 2} 10 create the Pel matrix A == () of order n:
o= e
a;; e [ ori &£
(¢} Print the condition numbers of the Wilkinson matrix with & = 14, 24, 50, and
100, using the MATLLAB fusction cond.
{d)y Fix » = 20, and then perfomm an experiment to demonsirate the fact that the Pet
matrix becomes more ill-conditioned as @ — |,

M4.6 Using “heip” commands for clock and etime, learn how 1o measure tming [or an
algorithm,

M4,7 Using MATLAB Tunciions for, size, zero, wrile s MATLAB program io find the
product of two upper triangular matrices A and B of order m x n and n = p, respec-
tively, Test your program using

== riufrand (4,3)),
B = triu{rand (3,3}).

M4.8 The purpose of Hhis exercise is to test that the Hilbert matrix is ill-conditioned with
respect o solving the linear svstem problem.

(i} Create A = hilb(10}, Perturh the (10,1} entry of A by 1075, Call the perturbed
matrix B, Let b = mand{10, I}, Compwe x = A\b, y = B\b, Compute
flx — ¥f and 'E‘"”‘ . What conclusion can you draw from this?
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(i) Compute the condition numbers o both A and B: Cond(4), Cond(B}.

(i} Compute the condition number of A using the MATLAB command Cond{4)
and then ase it to compute the theoretical upper bouwmnd given in Theorem 4,23,
Compare this bound with the actual relative error,

M4.9 Perform the respective experiments stated in Section 4.7 on Examples 4.28-4.30 ©
show thai the eigenvaloe problems for these matrices are ill-conditioned.

M40 (1) Write a MATLAR program to construct the # x n lower riangular matrix A =
{air} as follows:
ajj =1 it =},
i == -1 i i J
== G if = j.
{b} Perform an experiment o show that the solution of Ax = b with A as above
—--and-the-vegtor b cremted such that b= Ax, wherg x = (1, 1, . §}; hecomes
more antd more inaccurate as 7 increases due to the m{:rcasmg ii% cunditmmné
of 4. Let ¥ denoie the computed solution.
Present your resalts in the following form:

n | Cond{A) | ¥ = A\b Relative error Residual norm
fx— 3] U — Axfh
fita &
13
20
K
40
3

M4.11 Using MATLAB function vander{v), where v = rand (20, 1}, create a 20 x 20
Vandermonde mairix A, Now take x = ones (20,1} and b = 4 % x. Now compute
¥ = A\bL, Compare y with ¥ by computing ¥ — x and ||y — x§l. What conclusions
can you draw?

Md4.12 (Higham's Galtery of Tesr Matrices.)

Learn how 10 use Higham's Gallery of Test Mairices in MATLAB (type help gaflery
for a complete Tist).

MA1D (Computing the sample varianee (Higham (2002, pp. 11-120.)

Consider computing sample varianee of # mumibers ;. ..., 3, defined by

i oy
=7 Z(Jf - X)),
{amt
! £
where £ = X .
"2

Deseribe varous mathematically equivalenl ways of compuling this quantity and
discuss their different numerical stability properties.



Chapter 5

Gaussian Elimination and
LU Factorization

Background Material Needed

+ Vector and matrix norms and their properiics {Section 2.5)
* Special matrices (Section 2.4)

» Concepts of errors, Hoating point operations, and stability (Sections 3.2, 4.2, and 4.3}

5.1 A Computational Template in Numerical Linear
Algebra

Moest computational algorithms to be presented in this book have u common basic siructure
that can be described in the following three sleps:

Step 1. The problem is first translormed into an “easier-to-solve” problem by transforming
the associated matrices w “condensed” forms with special structures.

Step 2. The transformed problem is then solved by exploiling the special structures of these
condensed forms,

Step 3. Finally, the solution of the original problem is recovered from the solution of the
ransformed mroblem. Sometimes the solution of the (ransformed problem is the solution
of the uriginal problem.

Some typical condensed [orms used in the following computations are shown in
Figures 5.2-5.5:

= The system of linear equation Ax = b is solved by iransforming A into an upper
riangular matrix (Gaussian climination), followed by solving two triangular syslems:
upper and lower (Chapter 6).

+ The eigenvalues of u matrix A are computed by transforming A first to an upper Hes-

senberg matrix H, followed by reducing M further to 2 real Schur matrix ieratively
{Chapter 9}.

&1
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* 0

Triangular:

0 %

Upper Lower

Figure 5.1. Upper and lower triangular matrices.

Hessenberg:

*

Upper Lower

Figure 5.2, Upper and lower Hessenberg matrices.

* The singular values of A are computed by transforming A first into a bidiagonal
matrix followed by further reduction of the bidiagonal matrix to a diagonal matrix
{Chapters 7 and 10).

5.2 LU Factorization Using Gaussian Elimination

The tools of Gaussian elimination are elementary matrices.

Definition 5.1, An elementary lower triangular matrix of order n of type k is a matrix of
the form

1 0 - .. 0 o 0
o1 o0 -- - 0 0
c o 1 0 0
My = 0 ) (5.1)
0 Mg & 0
0 0 5 oD
oo o - myy - 0 1
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Tridiagonal:

0

Fipgure 5.3, Tridingonni matrix.,

Bidiagonai:

Upper Lower

Figure 34. Upper and lower bidiegonol matrices,

Thus, it (s an idenrity matrix except possibly for a few rouzero elemenis below the dingonal
of the kit colummn. The matrix My can be written ia the form {Exercise 5.1(a})
Mi= I 4 mwf,

where [ is the idenlity matrix of order n, #rg = (0,0, .., O, mpag g, ..., 00 and e 38
the kih unil vector, that is, e{ ={0,0,..., 0, 1,G,....0}, where " ig ai the £th eniry.

5.2.1 Creating Zeros in a Vector or Matrix Using Elementary Matrix

Lemma 5.2, Lot

dy
a2
q =
Oy
Then the elementary matrix
{1 4 0 0y
—itg)
] 0 it
gy
e I D TR
M = iy {5.2)
=y
— 0 0 |
l% 43§ )



84 Chapter 5. Gaussian Elimination and LU Factorization

*
Real Schur:
0 *
Upper Lower
] — A possible 2 x 2 block.
Figure 5.5, Real Schur matris,
is sueh that
iy
- -
!w;fii == g
0
We leave the proof to the reader {see Exercise 5.1{c)).
The elements vy = wf‘;’fy,f = 2, ..., n,are celied muoltipliers.
Example 53, Lot
2
=
a=1
2
Then
i 0 a0
~3 1 00
M, = ;
-5 0 1 0
-1 0 0 I
is such that
2
Ma= S |
0

5.2.2 Triangularization Using Gaussian Elimination

0

The elementary matrices can be conveniently used in triangularizing a matrix. The process
is called Craunssinn elimination, after the famons German mathemarician and astronomer,

Karl Friedrich Gouss.*

“Harf Friedrich Gauss (177718553 was noted for the development of many classical mathemarienl the-
ories, aud for His calenlation of the orhig of the asteroids Ceses and Palias, Gauss Is s8] regarded as one of

the greatest mathematicians the world has ever produced,
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The iden is to wiangularize the matrix A 1o an upper riangular matrix £ by
successively premultiplying A with a series of clementary matrices {which are
unit lower triangular).

Thus, given an # x n matrix 4, Gaussian elimination process consists of finding the
elementary matrices A, ..., M, such that

v AtH

M\ A has zeros in the first column below the (1,1} entry;
+ AP Mo AT has zeros in the scoond column below (2,2) entry;

AT g AW hag zeros in the (4 — D3R column below the (8 — {0~ 1)
entry.

The final matrix A¥™V {5 upper triangudar. The key observation is that each of the
matrices A® {5 the resulr of the premultiplication of A=Y by an elementary matrix.
Figure 5.6 is an illustrative diagram showing case n = 4,

dn dip ai iy
(1 il 3
at, 0 apy ay ay
Stepl. A4— MA= ; | = Al
(3] {1y (1)
0 a3 a3y 4
[43] i1y iis
O ay g dy
{ G dn a3 sy
HE 2} 113
M- 0 gy fim a?,«iJ 5
Step 2. A(” — Mﬁg’%{l; = o ,i‘fmle
) 0 o &2 &
33 14
(23 {4
\ {} g {143 134_;'
((1“ [135] iy ady
N
e A 0 (132 fn ﬁ%s‘)
Step 3. AP A M AT = = AWM,
2 n
0 0 &y dy
0 0 o a )

Figore 5.6. Hlusiration of Ganssian elimination,
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Notes: (i) The matrix A™ in Step 1 can be formed as

2y [gH

x - @17 O

* Find the elemeniary matrix M, such that M, s = 0
13

@4 g

» Update: AV = M, A,

(i1} The matrix A® in Step 2 can be formed in two sowaller steps as follows:
P P

aty
= 2
) X f37
+ Find the elementary matrix My such that 4 3;? = 0
0
(a
A
1 0
B L O B ——w—— .
0 M

» Update: AP = 4,40,

And so on.
(111} Tn practice, neither the matrices My, nor the products M A" need 1o be explic-
itly formed, as shown below with a 4 x 4 munerical example.

Example 5.4. Consider

23

6 7
A= i3
|

e
kOO e

Step 1 (efiminate the entries of the first colismn of A below the diagonal). Multiply the first
row by —5, —1, —2, and add, respectively, o the second through fourth rows, At the end
of this step, we have

12 3 4

0 -4 -8 —12

g -t 0 -1

g -3 w5 7

Note that in terms of the matrix multiplication, we have

j«i{” .

108 0 I 203 4
w | -s1o00){se7 8} .
AT=1 101 0 11 o3 3 | =HMA
200 | 201 1 1
M

Step 2 (eliminate the entries of the second column of A'Y below the diagonal). Multiply
the second row of A" by ~4 and —2 and add, respectively. to the third and fourth rows.
Atthe end of this step, we have

1 2 3 4
6 —4 -8 -1
oo 2 2
g 0 1 2

ACE} - 2
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Again, in terms of matrix muitiplication, we bave

6 00 T S

I 00 0 -4 —8 —12
1o o -t o -
o ] g -3 -5 =7

= M. AT

]
0

{3
AT =1 g
0

L L R

Step 3 (eliminate the entries of the third colums of A below the diagonal), Muliiply the
third row of A® by ——% and add i1 to the third, giving

12 3 4
AP g "{"}4 —28 m:; 2= Upper triangular,
o 0 g 1
Again,....
Lo o0 0 12 3 4
S EE IR B I R B
00 -1 1 0 0 1 2

Remark. Note that to form A% from AN L = 1,2, 3, neither the matrices M, nor the
products My A% need to be performed explicilly.

The general process is now quite clear,

Starting with A, the process conslructs successively the matrices A7, A A= D
such that AU has zeros on the first column below the diagonal, A™ has zeros on the second
column below its dingonal, and so on. The final matrix A¥~'" is an upper triangular matrix.
The key observation is that each of these matrices is & resudt of premultiplication of the
previons one by an elemeniary lower friaeagalar matrix,

General process, There are (n — 1) steps. Let A% = (a,.(f’), E> i
Step 1 {gliminate the entries of the first colimn of A below the diagoraly. Multiply the
entries of the first row of A by the nurnbers

a:

My = —— =20,

Gy
and add them, respectively, w0 those of the second through ath rows. We have a new
matrix AT,

(£ SV IRE /% N / N
(1 i1}
0 HZ'Z Trromre ﬂ:,_”
A(H - 0
0 all ... ... aV

12 w1



88 Chapter 5. Gaussian Elimination and LU Factorization

which can be written as

/N § S ¢ O ¢ a1y ... i,
may 4] vl 0 (25T S £

A = . . . = M A.
mey 0L 001 a1 v Han

Step 2 (eliminate the entries of the second colunm of AV below the diagonal). Mulliply
the entries of second raw of A% by the numbers
)
e S T =3 ..., 4,
I3z
and add them, respectively, to those of third through nth rows.
We now have a new mairix A%,

ayp 12 8133 ... g
[ TR (NUPRSGRTYSRE 3 & IURERUPY o | ISR £ 3 W S
O ay dy U8,
7 Q2 (3}
AN = 0 G ey ... ag, .
] L)
0 0 Iy Aw
which can be writlen as
1 [453] ij2 Gn
0 1 G 0 & ... &Y
e { i1}
AP =10 an 0 ay ... al | =aaAl
, (s i
0 mpe ... .01 0 gy ... gjm>

The process is fairly general, The general kih step can now easily be written down,

Step k {k > 1) teliminate the entries below the diagonal of the kil colwmn of A%,
Multiply the £th row of A" by the numbers

(k)
M = W“*—"“W*“J;_ﬁ‘ i=kt+1....,8,

l.
tigg
and add, respectively, o the {& 4 1)th through sth rows. This will yield a matrix A™
given by
Aﬁ;i - A‘f&ﬁ{'{'ml).
where My is defined by (5.1}

Step 7 — 1. At the end of the (# — 1)th step, the matrix AY} is upper triangular:

dyy ol e e SF
i1 !
o oy oot a'(éfz}
(2} )
A1 0 0 a3 B3
o . .
\ 0 0 a 0 gir=n

Hn
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Similar to the other steps, we have (i ferms of marrix muliiplicarions)
‘_:&lr:—"l) - M .ﬁin--z}
= M,.. .

The LU Factorization of a Matrix from Gaussian Elimination

The process we just described yields a factorizalion of the mawix: A = LU, where L is uniz
fower tricmgular and U is upper (riangudar, as shown below, This factorization is known
as LU factorization of A. LU facrorizotion of a matriv is an imporfant matrix fuctorization
usefid for solving a linear systew and computing the dererminant and the inverse of o matrix
(yer Chaprer 6} Figure 5.7 llustrates LY Tuctorization.

A L i
Figore 8.7, LU factorization of a matrix obraiuing L and U.

First, ohserve that the final matrix A¥~" is un upper trianzular matrix. So, we con
toke this matrix as our I/ matrix,
Thos U = AW = M, A™2 Again, A0 = M, A%,
So, U = My M, AT, Continuing this way, we can write
U= z‘r‘a’gmgﬁ‘fﬂ-g Fg. A”f}:ﬁtf;.‘jﬁ.

Nowset L) = M, (M. MM Then il = A,

Since each of the elementary lower triangular martrices 15 a unit lower triangalar matrix
{a lower triangutar mareix with U's along the dingonal), it follows thal L, is invertible and
£.7! is also unit lower triangular. (Note that the product of unit lower triangular matrices
is a unit lower iriangular matrix, and so by the inverse). Now set L = L;"; .Then A == LU.

LU Factorization of a Matrix from Gaussian Elimination
A= LU
o L= {M,_1M._5... MM (Unit Lower Triangular),

s U= A" (Upper Triangular).

o = . n o .
Definition 5.5. The entries an, oy . . .., a5~ are called pivots, and the above process of
vhraining LU factorization is known as Gaussion elimination without row literchanges. s
commonty known as Gaussion elimination withowt pivoting. The numbers iy, are called

multipiers.
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Obtaining I without Matrix Inversion

e will naw show that the matrix L can be formed without explicitly computing any matriz
We will how thar o trix L be formed without expiicith (ting aRY marrix
product and withiout any matrix inversion,
e 7o age] pl ]
L= L7 =M M7 M7,

First, we gbserve {(Exarcise 5.1¢b}) that
M7 el —mel . =12 a1,

where o= (0,0, ..., O, migri.. . M) and g is the ith unit vector,
This simply means that the M f"' i3 just the matrix M; except that the entries on the
it colunn below the diagonal are fust the negatives of the corresponding entries of M.
Thus, M, M{j, is a unit lower triangular matrix with the nonzero entries below the
diagonal only oo the columns { and (7 < 13, which are the negatives of the corresponding
entries of A, and A, For example,

e G O ______ 0 e e e o o o+ e
— Mg I o 0
M;EME"% = -M1:  —HE3
: : 0
R TR . S
This implies that
1 4 vee s [}\
< f1la] i 1]
| | o —Hl3] Rk i ) 4]
L=M"My ..M, = :
: : . 0
\—m,,; —Migy  coc —Hlypet i}

Thus 1o form L do the following:
« Save the multipliers al each step.

= Insert the negative of the multipliers of Step 1 in the first column of the identity
matrix below the diagonal, the negatives of the multipliers of Step 2 in the second
column below the diagonal, and so on.

Example 5.5.
22 3
A=14 5 6
i 2 4

Step 1 (eliminare the entries on the first colinn of A below the dingonal}, Multiply the first
row of A by —2 snd —% and adld, respectively, to the second and third rows,

22 3
A= { 0 1

l
T T
o1 2

[T ]
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Step 2 (eliminate the entries o the second column of AV below the diagonai). Multiply
the second row of A" by —1 and add it to the third row.

2 2 13
AR =110 1 0 |; M= — |,
00 3
So,
20z 3
7o A = o 1 ¢ t,
0 ¢ 2
1 0 0 1 00
L:L;‘: — M1z 1 0l=412 | O
—ntsy -z | L

{Naote that neither Ly nor its inverse needs to be computed explicitfy.) 1

Existence and Uniqueness of LU Factorization

Mote that for an LU factorization to exist, the pivots must be different [rom zero. Thus, LU
factorization may not exist even for a very simple matrix, Take A = (Y1), The pivot {zﬁ”
is zero. S0, the Tanssian eliminaiion scheme cannet be carvied out.

The following theorem gives conditions on the existence and uniqueness of LU fac-
torization,

Definition 5.7. The kil leading principal minor of a matrix, A, denoted by Ag, Is defined
to be the k x k leading principal submatrix consisiing af the first & rows and the firsi k
cofumns.

Theorem 5.8 (existence and unigqueness of LU factorization).
{i} Ana x nmairix A has an LU foctorization if Ag, k= 1, ... 1 — 1, are nonsingulur.

(ity If the LU factorization exists and A Is nonsingular, then this fuctorization is unigue.

Prgef, Existence: From the derivation of Gaussian elimination scheme, it follews that the
process can break down only if any of the pivots ayy, 2, ..., a? " is zero. Again, it can
be shown (Exercise 5.3} that

del{Ay) == a;.aé? ...;e;i.'”, k= 1,..., 50| (note that del{A ) = ay).
This means that if the first {7 - 1} leading principal minors are nonsingular, then Gausstan
elimination scheme does not fail, and we always have an LU factorization of 4 in this case,
as shown by the above discussion.
Uniqueness: The uniqueness will be proved by conrradiction, Suppose there are two
different LU factorizations of A: A = L1, = LoUs. Then, we must show that L) = L
and ) = Us.
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Because 4 is nonsingular, the matrices L;, Lo, Uy, and I/ are all nonsingular. Thus
it follows from the above two factorizations of A that Ly 'Ly = Ut %

Now L. L ;‘ i a unit lower trinngular matrix and U;if,”‘ is an upper triangular matrix,
and the only way they can be equal is that both of these are the identity. Thus L = L, and
=10 O

Remark. Note that in the above theorem, if the diagonal entries of L are not specified, then
the factorization is not unigue. (o an example o verify this)

A Storage Scheme for a Practical LU Factorization

Example 5.6 shows that for a practical Gaussian elimination scheme, the kth step consists of
the following,

[T 4
s Farming the multipliers gy = ﬂVmiii“;;;';"f' EI S o SRy, AR
T

= Updating the entries of the submatrix: A(&-F1 2 n, k-1 1) {the submatrix consisting
of the rows {£ 4 1} through »# and columas (X + 1) through n).

The following storage scheme thus can be used:

* The multipliers are stored below the main diagonal of A. These multipliers then can
be used o form L.

* The entrics of the upper triangular matrix & are stored in the upper half of A including
the dizgonal.

ALGORITHM 5.1. LU Factorization using Gaussian Elimination without
Pivoting (GEWP).

Input: Anw x » matrix A,

Outputs: (i) An upper irianguolar matkrix {7, and (ii) the maltipliers m;; needed to
form the unit lower triangular matrix L such that A = LU,

Storage: The upper triangular part of £ 15 stored over the upper trigngular part
of 4 including the dingonal, The multipliers needed to compute L are stared in
the lower triangular part of A below the diagoaal.

Forke=12, ..., do

V. (Foror the sudtipliersy

iy Eﬂf‘"&m*—:i(f =k E+2, ... 0
Kk

2. (Update the eatries of Atk + 1 :n b+ 1:m)k
i e ay Fmpga(i = A4+ Lo j ek 1n).

End
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With this storage scheme, the upper triangular matrix A%~ arthe end ol the (1~ 134
step will look like this:

g1y Gy Aix
i 1
my why e e as)!
A = A(!lﬁl} _
LT L T ﬁi?— t

Remark. The slgorithm does not give the matrix L explicily; however, # can be formed
vut of the multipliers saved at each: step, as shown earlier (see the expression for L.

Example 8.9, Consider Example 5.0 again,

k=1 Multiplices; o = ~2, My = mé,
22 3\
Updated A: A= 0 1 0O
01 3
k=2 Maltiplier: iy = —1,
22 3
Updated A: A== 0
o} [o] 3
P 0 g 2 2 3
Form I, and {1 L oz 10 i o g 1 E} R n
-;; [ 00 3

Note: In practical computation, the boxes of the output matrix A will hold the
muliipliers,

Flop-count.  Algorithm 5.1 requires roughly 2 ﬂ‘opa This can be seen as follows:

Step 1. We compute (# — 1) multipliers and update (# — 1) entries of A. Each mulii-
plier requires one Rop and updating each entry requires two flops. Thus, Step | requires
201~ 1)+ {n — 1) flops.

Step 2. Computing (n —2) muliiphiers and updaling (1 —2)2 entries require 2(n -2} + (7 2}
flops.
In general, Slep & requires 2(n — 4 n—F) flops. Since there are {n — 1) steps,
we hiave
n—1 n--1
Total Hops = Z It - kY + Z(n — k)
EXE] hzel

— (3 — - ~
zzz{zz l)@(-n 1 + }?{éi? 1) o [:_f...;.g{g }}
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Recall that

- §2+23‘§'“"+f‘3$ r[r+l}é2t-§-j)'

I

Gaussian Elimination for a Rectangular Matrix

The above-deseribed Gaussian elimination process for an »# x # matrix A can be easily
exiended te an m % » matrix to compute its LU factorization, when it exists. The process
is identical. However, the number of required steps in this case is &k = min{m — [, n}. We
illustrate this with an example,

LUGSEL.

Example 5,30, Let

iz
A=413 4], m=3 n=2
5 8

ko= min(2,2) = 2.

k = 1. (Eliminate the entries in the first colunm of A below the diagonal) The multipliers
are may = —3, My o= ~5,

Update: ay = aéff = a1+ M = —2,
{
ay = 0y = ay + nypagy = —4,
1 2
A @ Aél) =100 -2
0 -4

k = 2. (Eliminate the entries in the second column of AY) below the diagonal} The mul-
lipher is myy = =2, ap = égi w0,

1 Z
Update: Asm AP =10 -2
4 0

P2

S8, U=1{0 -2

4 0

Note thas IV in this case is a 3 x 2 upper triangular matrix.
Form

I O G 1 O

L= | —miy 1 O =13 1

-ty —Myz 5 2

R
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Verify that

L g 0 b2 P2
LU=[|3 | 0[]0 =2}=]3 41=A B
5 2 1 o 0 58

Flop-count. For an m x » matrix, the Gaussian elimination process requires mn® — 4
flops (Exercise 5.16(a}},

Difficulties of Gaussian Elimination without Pivoting

As we have seen before, Gaussian elimination withoul pivating fails if any of the pivots is
zero, However, 1t is worse yet i any pivot becomes close to zeror in this case the method
can be carried to completion, but the abtained results may be fotally wrong.
-~ Consider-the following celebrated example fram Forsythe and Moler (1967, p. 34
Let Gaussian elimination without piveting be anplied 1o

00001 1
A. - ( 1 l) J

and ase three-dight arithmetic, There & only one step. We have just one multiptier: my =

.0001 { .00014 ! 1 0
o AL = -
v=a "( g ]w]O“‘)_{ 4 m-l()“)' aﬁéf‘“(m‘* l)'

The product of the computed L and U7 §s L&/ = (@000 13 which is different from A,
Wi is to blame?

Note that the pivotal}’ = 0.0001 is very close ta zero {in three-digit arithmetic), This
small pivot gave a large multiplier; The large muliiplier, when used o update the eniries,
eliminated the smaller entries {e.g., {1 — 10%) became - 1§}

Fortunately, we can avpld this smalf pivet jnst by row fsterchanges, Consider the
matrix with the first and second rows interchanged, giving

L1
A”(ﬁ.@ﬂm ;)‘

Gaussian elimination applied to A’ now gives

o 10
e ALE) _—
LA W(i} 1)-‘ L““(omm ;)’

Note that the pivot in Lhis case is a”" = 1. The product

. i l i ’
L = (a.oom 1,(}{)8%) = A

Remark. it is true that with the interchange above, we now obtained an LU Factorization of
the matrix A’, a permuted version of the matrix A, and not of the original matrix. However,
as we will see in Chapter 6, this will suffice our purpose for selving a linear system of
equations.
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5.2.3 Permutation Matrices and Their Properties

A nonzero square mairix £ s called a permuotation matrix if there is exactly one nonzero
entry in each row and column which is one and the rest are all zero. Thus, if {oy, ..., a,)
is a permutation of {1, 2, ..., #), then the associated permutation matrix P is given by

T
B{!g

where ef is the ith row of the v x # identity matrix . Similarly,
P = {{.’m, [~ PIN eﬂn)!

where ¢; 1s the /th columan of 1, is 2 permutagion matrix,

- Bxample 5,11,

e S e
=100 1}, PB={0 1 0|, =10 0 1
IR 60 1 D10

are all permutation matrices. i

Effects of Premultiplication and Postmultiplication by a Permutation Matrix,

1)
€T
P o= : \
Eal
then
wthrowol 4

cexth row of A
p[,fjt e

ayth row of A

Similarly, if Py = {¢a, ey, - &, ), wWhere g, is the fth column of A, then AP = (o th
calumn of A, apth column of A, .., o th column of 4),

Thus, the effect af premudtiplication of A by a permmitation mateis is o pernmtation of
the associated rows of A, and that of postmudtiplication is the permutation of the associated
columns.,

Example 5.12,

I
a1y i iy g 1 0 £
I A=lan an anf, = G 0 1]= e;ﬂ .
fy3 Gy a3 L oG el
4y an  6n Zadrow ol A
PilA=lay ay anl]={3drowolA

dy yn g istrow of A
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g 1 10
2P =10 0 |} e==({e e, e
1 0 @
ayy an gz
AP = a2 a2 = {3rd column of A, Ist column of A, 2ad column
dyy dy daz
ofa), B

An important property of g permutation matrix 7 is that /r is orthogonal, that is,
PPT = 1. As aconsequence of this, we have the following.

« The inverse of a permuiation mutrix £ i its ranspose. and it s also a permutation
matrix.

R ThE prodiict of two permitation matrices 18 a permutation matrix, and therefore 15
orthozonal.

5.2.4 Gaussian Elimination with Partial Pivoting (GEPP)

As the above example suggests, disaster 1 Gaussian elimination without piveiing can per-
haps be avoided by wentifying a “good pivat”™ (g pivor as large as possible in magnitude)
at euch step, before the process of elimination is applied. The good pivol may be located
among the entries in a columnt or among all the entries in a submatrix of the current matrix.
In the former case, since the search is only partiai, the method is called partial pivoting;
in the latter case, the method is called complete piveting. ft is important to note that the
purpose of piveting s to prevent large growth in the reduced matrices, which can wipe
ot arrigingl date. One way 1o do this is 10 keep mulupliers less than or equal io one in
magnitade, and this is exactly what iy accomplished by pivoting. However, large multipli-
ery de nnt necessarily mean instabilivy (see our discussion of Gaussian elimination without
pivoting for symmetric positive definite matrices in Chapter 6}, We first describe Gaussian
glimination with partial pivoling (CEPP).

The process consists of (n — 1) steps.

The process is just a slight modification of Gaussian slimination in the following
Jense;

At each step do the following:

* Identify the pivot as the largest entry (in magnitude) among all the eniries in the pivot
calumn,

= Interchange the appropriate rows 1o bring the pivol entry to the diagonal position of
the current mairix,

» Perform Gaussian climination to the row-permuted matrix,

The process 1s illustrated with a 4 x 4 example in the following, Far this example,
we assame that rows 3, 4, and 4 are pivot rows in Steps 1, 2, and 3, respectively,
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Step 1. A Permuted A
ay) diz iz ay asr  dizy  azg
€3y far  diy 4y ar dy  dny Ay
— — = - = -
ap ap Ay an 4o din o du
[1£]] {47 gz day agy gy dgz  dag
Pivat Identification Row Interchange (1st and 3rd}
A(H

an o a3 adu

1 i 1
0 aéz) ”éa) “54)

—
(n (n [0
0 ay a3 ay
M _m{
0 ay ay ay
Gaussian Elimination
Step 2. At Permuted A
aszi a3 fy asg ai; M i1 O
(f) n (1
Oy Oy g 0 a_i'z’ af,g) agi’
( ay | = |
a a [} i 4% (h
12 13 14 0 a5 ay ap
i o (i
0 lap | a4 Qg 0 a4y an
Pivar Identification Row [nterchange
(2nd and 4th)
A(l)
day dyn di dm
N (N (L
_ 0 ayn ay ay
) 2
0 0y ay
() (2}
0 0 ai ay
Gaussian Elimination
Step 3. A Permuted A"
dai dm dmo dw a3y anm  an o an
1
0 &b L g Mo M
¥ :‘;’) :j] . 0 ap ay ay
= = 3 2
0 ¢ iy dy 0 0 aégl aé“,)
2 2 2 2
0 0 aé; agj 0 0 a:3 af_,)
Pivot Identification Row Interchange
(3rd and 4th)
AG
a3y das; g3z Gy
() (1} {1
0 ayy a7 gy
—

0 0 ag) aéi)

0o 0 0 af

Cuaussian Elimination
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General process.  kth Step: Set A" = 4. Then to obtain the matrix A% = (ag")} from
A% at the previous step, do the following:

[, Kentify the turgest element in magnitude among all the elements of column & below

row {(k — 1) of the matrix A% Letit be ai‘i”:”

2. Interchange the rows rp and & o bring ai’,f,;.” to the diagonal position.

3. Apply Gausssan efintination without row interchanges with afff ! a5 the pival 1o the

submatrix consisting of rows £ through » and columns £ through o,

GEPP in Terms of Matrix Multiplications

- {)bserve that

» row inlerchange is equivalent o premultiplying the matrix by a suitable permutation
matrix;

« Garussian climination is equivalent w premuitiplying the matrix by an clementary
matrix.

So, we can wriie

A m= M P A AN = My Py AT

’ 7 -
.4(" L) I M::wlﬁx~%fq(f§ -l'

Forn == 4, the complete process 1s

X x 4 >
x x - >
X e x s
Stepl. A S Pat pmopa= g ;‘ : : = AT
Boxw x x
x * # X
Step 2. A0 2 pya® % 4 Al = s Pt PA = | N X =aw
0 0 x x
*, x x *
Step 3. A L poA® B a0 piAT = 0 PO PAM, PA = g D n e =am
0 0 0 x
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LU Factorization from GEPP
We will now show that Gaussian climination with partial pivoling vields a factorization of
A in the form

PA = LU,

where P is a permutasion matrix, L Is a unir lower trigngalar matrix, and U s an upper
tricergudar matrix, This will be shown in two steps.

1. First, it will be shows thal Gaussian eliminations wilh partial piveting directly vields
the factorization M A = [/, were M is a permuied elementary matrix and I is an upper
triangular matrix.

n=4: Since A® is upper iriangular, we set U = A%, Then from Slep 3, we have

G =Am e M‘3 P3M:!‘3M;P|Am T )

where

M = My P\Ma Py M By,
Foran n ¥ r matrix:

M= My Paci Mz Poca Mo PAM PR U = AV,

2. Second, it will be shows how o extract the meatrices £ and L from M 4 = U factorization,
so that we have PA = [[J.

o= A
U = MaPaMaPaMy Py A
= My PyMa PPy P M Pa PSP PL A (Rotethal Py o= P e= 1)
w .MéMéM:PA‘
where
M; = M1, Mé = PiMa1 Py, ﬁv‘fz = PP M P Py
and

P = Ppp.
So, setsing L = (M7 (MOT (M we have LU = P A,
Foran r x n matrix: The marices P and L are given by

Pﬂ?ﬂwﬁpnvlﬂnPépJ\

L (M7
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Constructing the Matrix £
The matrix L i unil fower triangular and easily compuiable, Observe that

» gach M is the same as M, except that the mollipliers are now permauted {this is an
effect of muloplication hy permutation malrices):

» (M]y~! i3 the sume as M except that the multipliers are now negated.

Thus, ar in the case of Gaussian elimination without piveting, we see that the mairix
L is a2 unir lower rriangular matrix,

Example 5,13, Consider Example 5.6 again, this tine with partial pivoting.

4 5 6 g 1 0 2.2 3
StepL Permuted A= {2 2 3)=[|1 0 0Q]{4 § 6}=PA

Gaussian Eliminatios: Multiply first row of the permited A by -% and -—% and add
it i the second and third rows, respectively, 1o ohilain A1,

4 5} & i 00 45 6
FUIDNE Rt S =5 1 Ofl{2 2 3} =mPa
¢ 3 ~bog oAb s
4 ? ? 1 oo 4 5% &
Step 2. Permuted A" = |6 3 31 ={0 0 1}]|0 -3 0} =pa®,
0 -t 0 018/ 3 3

Gaussian elimination: Multiply second row of fhe pernurted A by 2 and add it 1o
the third row Lo obtain A%,

4 5 § 1 o oy f4 5 6
At =10 % % = {0 I O 0 f:” % = MaPsAY = MaPIM PA,
T
0o i O3 Vo -4 oo

* Factorization MA = U/,

Gaussian elimination: Muléply second row of the perptuted A" by 2 and add it to
the third row Lo oblain A,

g 1 0 4 5 46
M=MpMP =0 =3 1], v={0 1 i]=a®
-5 3 00 i
» Factorization PA = L7,
o1 0
PZFgPI — 0 {} l
100
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0

| C s
{, = (M;)'? (Mé)-—? = "1.{ i o A{?} =10 % :;: ' B
A
5 -d ] 0o i

Storage Scheme for LU Factorization by GEPP

* The muhiplicrs can be stored in the appropriate places of the lower triangular part of
A (below the diagonal) as they are computed.

» A can be averwrilten with each A™ as saon as the latter is formed, and thus the final
upper triangular matrix 7 = A"~ will be stored in the upper trisngular part of A
{including the diagonal).
""""""""" TTETThE périaton indices vy haveto-be stored-in-a-separate-single subscripted integer
areay.

In view of ocur above discussion, we can now formulate the following practical algo-
rithm for LU factorization with partial pivoting.

ALGORITHM 5.2. LU Factorization Using GEPP. .

Input: An n x5 matrix 4.

Outputs: (1) An upper triangadar matrix £/, (1) the permuiation indices ry, needed
i form the permutation matrix P, and (iii} the multipliers m;; needed 1o form the
unit fower trianguiar matrix L. The resultis P4 = LI/,

Storage: The storage wrangements for IJ and the muliipliers are the same as
those of Algerithm 5.1, The permutation indices are stored in a separate array.

Fork =12 ....n~1 do

. {Find the piver row.} Find ry so that g, ] = Em,ax el Save . If
L=y

iy, & = 0, then stop. Otherwise, continue,

2. (Interchange the rows ry and k) ayy <v dn (= k, k41,00, 50
3. (Form the multipliers.y oy = nyy = ««z—z (i=k-+1,..., 1)
4. {Update the enrries.) oy = aj +mpay; = ay +apay;, (= k +
Lo J=i40, L, 0.
Ead

Flop-counl. Algorithm 5.2 requires about Ef-f»; flops and O(n*) comparisons. (Note that
the scarch for the pivot at step & requires (7 — &) comparisons,)
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Note: Algariting 3.2 does not give the mofrices L and P explicitly,. However, these
can be constructed easily, as explained above, from the multipliers and the permnutation
indices, respectively.

Example 5.14. Lat

P2 o4
A=14 5 ¢
789
ko= 1
1. The pivatentry i57: ry = 3,
2. Iterchange rows dand 1:
7 8 9
Ami4 5 06
........ - e B L % 2 4
3. Form the multipliers:
4 i
Hiz = -—_m?f; Higy = “““_;;.
4, Lindate:
7 48 9
ioq
A=10 1 3
19
o 2] ©
k=2
i, The pivot entry is % D= 3

2. Iuterchange rows 2 and 3:

7 8 9
a=fo§ 2
16
b5 3
3. Form the mudtiplier:
1
!ii‘g:m**E
4, Update:
7 8 9
r (}
Am i =}|0 g '%-
o0 w%
Form L and P _
a0 1 1 g 0 b oo
f’:iDU,L:wz}zg]EOm»‘?i@ ]
g 1 0 —ia) =Py | 41

MATCOM and MATLAB Notes: MATCOM program PARPEY computes M and U such
that M A = U, MATLAB commend lu in the form [L, U. P] = {u{A) computes L, I/, and
P suchthat PA = LI,
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5.2.5 Gaussian Elimination with Complete Pivoting (GECP)

In Craussian elimination with complete pivoting, at the th step, the search for the plvot is
made among all the enirics of the submatrix below the first (& — 1) rows. Set A = A,
Thus, to obtain 4% fram A%V, &£ =1, .., u, do the following:

« Identify the largest clement in magnitude emaong all the elements of the submairix
obtained by deleting the first {& — 1} rows and (£ — 1) columns, Let it be a,{ﬁ“”.

+ Interchange rows k and r followed by the interchange of columns & and s,

« Apply Gaussian elimination scheme without row interchange with a7 as the pivot
to the submatrix consisting of rows 4 through » and columns & through 4,

e Jnterms-of-matrisomultiplications, this thenmeans
AN = M ANV,

where M, is an elementary matrix and P is the permutation matrix obtained by interchanging
rows & and r of the identily matrix. Simitarly for the matrix ;. The matrix A%’ has zeros
on the kth column below the (&, &} entry. The matrix M can of course be compuied in two
smaller steps as hefore,

At the end of the {n — 1)th step, the matrix A"~ is an upper triangular matrix.

Obtaining factorization: PAQ = LU, Set

AP ==, (5.4)
Define
=0 Gan, £ =Foy Pz .. P, (3.5)
and
L= P{Mey Posy ... MUPY (5.6}
Then it can be shown (see Golub aud Van Loan (1996)) that
PAQ = LU,

where P and @ are both permutarion matrices and L is unir triongafor and U is upper
trigngular.

A Practical Scheme for GECP

Remarks similar to those in the case of partial pivoting hold. Storage space does not have
to be wasted by explicitly forming matrices Py, Qr PeA™ 10k, My, and M PLA¥ 110,
It is enough 1o save the indices and the multipliers.

Here is a practical scheme for complete pivoting, which does not show the explicil
formaiion of the mutrices Py, O, M1, MiA, and PLA Q). Note that partial pivoting is just
a special case of camplere pivating.
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ALGORITHM 5.3, LU Factorization Using GECP.

Input: Aan X n matrix 4,
Qutputs: (i) An upper triangular matrix U, (i) permulation indices rg and s
{from which permutation matrices F and @ can be formed, and (iii} the multipliers

m;e [rom which the lower iriangular matrix L can be consiructed. The result is
BAQ = LU.

Storage: The storage schemes for &/ and the mubtipliers are the same as GEPR
The indices r; and vy are saved in separate arvays.

Fork=12.....n—1do

L. Find the pivor indices ry and s¢ such that la,, | = max {la;;| 1§, j = &},
and save r, and 5.

., =0 heo stop. Otherwise, continue,

2. (nterchange the rows rp and k. a > a, ; (J=Ek+1, ... 0}

3. Unrerchange the colwmns sy and k) age < a5, (Fe= 1,2, 000,00
e .
4, (Form the multipfiers) agp mmy = —— (U =k + 1, ..., 0).
By

5. (Updare the entries of A) oy = o Fmgan; = a4 oy (=5 4
L..o.m j=k+1,...,n}

Eod

Note: Algorithn 3.3 does not explicitly pive the matrices L, P, and Q. they have 1o
be farmed, respectively, from the multipfiers nyy and the permutation indices ry, and sz,

Example 5,15, Triangularize

— -

— R .
-]~

using complete voting.
k=1
. The pivoteniry is 3: r== 2,5 == 3.
2. and 3. Interchange rows 1 and 2 followed by interchange of columns | and 3

(31 2

A= [ ¢
[ S
4. and 5. Perform Gaussian eliminziion taking the entry 3 as pivot,
307 0
] i 1
A= Am e 4] T T3 : a1y = m:in, g o= —
s : &
o & 3]
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oo 20

1. The pivet eniry is % re=3,5 =3
2. und 3. Interehange rows 2 and 3 followed by interchange of columns 2 and 3

I
A= o !
0 3 4
4, and 3. Perform Gaussian elimination taking the entry % as pivot.
302
A=AP =10 % % =7 Z??},g:‘:%.
g 0 4

..Readers are inviled o compute the unit lower triangalar matrix L and 2&& perrﬂismtmrz

matrices P and ¢ such that PAQ = LU/, using (5.5 and 5.6). W~

Flop-count,  Algorithm 5.3 requires 2 ’3" flops and O (n) comparisens,

MATCOM Note: MATCOM program COMPIV computes MAQ = U,

5.2.6 Summary of Gaussian Elimination and LU Factorizations

Gaussian climination schemes without pivoting, with partial pivoting, and with complete
pivoiing, when carried out to completion, yield, respectively,

« A = LU (Gaussian elimination withowt pivoling},
« PA = LU (GEPPY,
s PAQ = LU (GECP).

Here L is wnit lower trianguiar, U is upper tripngular, and P and § are permutation
mialrices.

5.3 Stability of Gaussian Elimination

‘We have seen before that the computed matrices L and {7 obiained by Gaussian elimination
withoul pivoting can be such thal the product L7 can be completely different from A, In

facr, BV cap be arbitrarily large. {Exercise 5.15b] Specifically, the lollowing result

14l
can be proved (See Higham (2002, pp. 164-165), Demmel {1997, pp. 47-49)).

Theorem 5.16 (round-off error bound for Gaussian elimination). The computed matrices
L and UV obtained by Gaussian elimination withouwt pivoring satisfy
A+ E=LU,
where
HEY = apRILITNIYR
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Since IF = AV the swbility of Gaussian elimination is betier uadersiood by
measuring the grawth of the elements in the reduced matrices A™, {Note that although
pivoting keeps the mullipliers bounded by gnity, the elements in the reduced matrices still
can grow arbitrarily.)

Definition 5.17. The growth factor p is the rativ of the forgest element {in mugnitude) of
A, AN AYTY o the lurgest efement (in magnitude) of A:

max{ce, oy, @2, .. Hyp)

.

o
i)

where o = muax; ; e | and ap = max, ; la; |-

Now, if partial pivoring is used, then

« jli;i = Lloralli = j, since these {;; are the multipliers:

s gl < pmaxg el

We then have the following error bound (Exercise 5.17) with partial pivoting (for
details, see Chapter 14, available online at wwwsiam.org/books/atl16), noting thut the
infinity norm does not depead on the sign of the matrix entries.

Theorem 5.18 (round-off error property for GEPP). The marrices L and 17 compured by
Gaussian elimination with partial pivating satisfy

Lif = A4 4 K,

where

1o = ' 1ol Ao

The question, therefore, arises, How large o can be? To answer the question, we start

with an example.
0.0001 1
A= 1)

!, Gaussian elimination without pivoting gives

N 0.0001 ]
B _ s
A =y m( 0 __‘(}4)1

Example 5.19.

max {cz;‘;#é = 10", maxia;| = 1,
£ = the growth factor = 107,

2. Gaussian elimination with partial pivoling vields

oy
) e
A “"Q*({; §)f

ity
i |
o = the growth faclor = | |

max Ja;; | = 1, max lag!=1,
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The guestion next is, How large the growth facror p in each case can be for an
arbitrary matrix? We answer this question in the foliowing.

Growth Factor for GEPP
For Gaussian elimination with partial pivoting, p < 2%~ (Exercise 5.15{a)k

p can be as big as 2¢7,

Unfortunstely, ore can construct matrices for which this bound is attained. Consider
the foliowing example;

{1 ¢ n 0 i\
—} 1 0 o 1
A =
L B | .
that is,
1 for f=1in,
;f}ij s e} gﬂl—j -2 i‘, {5.?}

G uiherwise,

Wilkinson (1965, p. 212} has shown that the growth factor p for this matrix with partial
pivoting is 2777, To see this, take the special case with 1 = 4.

S S B ) B
-t e
A=1_1 1 1
R T R S
P00 1 Lo o 1 I o0t
m_jo 1 o 2 m_ o o2 am_ 101 0 2
AV=0g 2y 0 2 =0 oy 4l A Tle oot s
0 =1 =1 2 o0 0 —1 4 D00 8
Thus the growth factor is
g
= - =2 = L
P=

Remarks., Note that this is not the only matrix for which g = 271, Higham and Higham
{1989) have identified & se1 of matrices Tor which p = 2!, The matrix

07248 07510 05241 (7510

87317 G888 00227 07510

07208 -0.3756 01150 07511
-{1,6093 -0.7444 0.6647 —0.7500

B= (3.8)
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is such a matrix. Wright £1993) has identified a matrix arising in solutions of u class of
two-point boundary value problems which have exporential growih with partial pivoling,
Also, Foster (1994) has discovered a class of linear systems arising in solutions of integral
pquations which huve farge growth factors with partial pivoting.

Examples of the above type are rate in praclice. indeed, in many practical examples,
the elements of the matrices A% very ofien continue 1o decrease in size. Thus, though
GEPP is not wnconditionolly stable in theory, In practice it is considered 1o be a stable
afgorithn in general,

Growth Factor for GECP
For Gaussian climination with complete pivating,
po<in-2t A4 gl

e Fhis 8 aslowly growing funciien of £, Furthermore,. in practice this bound 18 never
attgined. Indeed, there was an unproven conjecture by Wilkinson (1963, p. 213) thar the
prowth factor for compleie pivoting was bounded by n for real v % » matrices. Later
Crver {1968) conjectured that g == 5 with equality holding if and only if A is & Hadamand
matrix. An n x n matix is a Hadamard matrix if iis elements are 41 and HHT = nJ.
Unfortunately, Wilkinson's conjecture has recently been settled by Gould {1991} negatively
for an arbitrary matriz A. Gould exhibited a 13 x 13 matrix for which GECP gave the growth
factor p = 130205, Edelman {1992} also gave a counterexample to this conjecture by
discovering a mairix of order 25 [or which p = 32.986341. In spite of these recent results,
GECP iy a stable algorithm,

The conjecture regarding the growth factor g with complete pivoling for Hadamard
matrices has been further investigated recently by several mathematicians. What seems to
be mmportant in settling this conjecture for Hadumard matrices is 10 delermine the pivet
struciures and values of the minors of Hadamard matrces. Several results have been ob-
tained in this direction. See the papers of Day and Peterson {1988}, Koukouvinos, Mirouli,
and Seberry (2000, 2001), Koukouvinos et al. (2007), and Edelman and Friedman {1998},
Inn a recent interesting paper, Kravvaritis and Mitroali (2009) have shown that *“The growth
factor of a Hadamard matrix of order 1615 16.7

Growth factor of Gaussian elimination without piveting, For Gaussian elimination
without piveting, p can be arbitrarily large, cxcept for a few special cases, as we shall see
later, such as sypmerric positive definite and diagonally dominant matrices. Thus Gaussian
eliminarion without pivoting is, in general, a completely unstable algorithn,

Posteriori stability test.  In order to assess the stability of a computed LU factorization,
one can cither compute the growth factor or the backward ervor {4 ~ LT/} itself. Both will
require O (") fops. However, using a norm estimator algorithm (sce Chapter 6), one can
estigate [[A ~ LU, in 06D flops (see Higham (2002, pp. 181-182)).

5.4 Summary and Table of Comparisons

For easy reference we now review the most important aspects of this chapler.



-or-Gaussion-eliminatipnwithout pivoting. (Algnmhrﬂ 5.

110 Chapter 5. Gaussian Elimination and LU Factorization

5.4.1 Elementary Lower Triangular Matrix

Annxa matrix M ol'the form M == T+me]  wherem, = (0,0, ..., 0 mgar g, oo mu )7,
is catled an elementary lower triangular matrix of type £.

If' M is as given above, then Ml =] z;:kef.

5.4.2 LU Factorization

A factorization of A in the form A = LU, where L is unit lower triangular and U is upper
triangutar, is valled an LU facrorizarion of A. An LU f{actorization of matrix A does not
always exist. If the leading principal minors of A are all different from zero, then the LU
factorization of A exisis and is unigue (Theorem 5.8}

The LU laclorization of a matrix A, when it exists, is achieved using elementary lower
triangular matrices. The process is called Gaussian eliminotion without row interchanges

The process is efficient, requiring only 25 z. flops, but &y un. s*fﬁf)fe famrfr:?mm mfzfrzce&
Ity use is not recommended in practice wnless A is symmetric positive definite or columm
dingonally dominamt because, in these cases, the growth factors are | and less than or
equal to 2, respectively; see Chapler 6. For decomposition of 4 into L in a siable way,
row interchanges { Gaussion eliminarion with partial pivoring) (Algorithm 5.2) or both row
and column interchanges (Gaussian elimination with complete piveting) (Algorithm 3.3} w0
identify an appropriate pivot at each step will be needed. Gaussian climination with partial
and complete pivoting yield factorizations PA == LU and PAQ = LU, respectively, where
P and @ are pormutation matrices,

5.4.3 Stability of Gaussian Elimination

Aspects of stabslity, instability, snd practical stability in terms of the growth factors of the
Caussian elimination scheme and the associated round-oft resulis are given in Section 5.3,

5.4.4 Table of Comparisons

We now summarize in Table 5.1 the efficiency and stability properties of these compuiations,
We assume that Aisn x 1.

Concluding remarks. Gaussian elimination withont pivoting Is unstable in general;
Gaussion elimination with partiol piveting is stable in practice; Ganssian efimination with
complere pivoting {s stable.

5.5 Suggestions for Further Reading

The topics covered in this chapter are standard and can be found in any numericat linear
algebra book. The books by Golub and Vaa Loan (1986), Stewart (1973, 1998b), and
Higham (2002} are rich sources of further knowledge in this area, A fair teatment of
these topics also appears in some nomerical analysis books, such as Atkinson (1989), Heath
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Table 5.1. Table of comporisons of LU faciorization methads.

Problem Method Flop-count Stability
{Approghmate)
Factorization: Gaussian e Unstable
A= LU elimination e in general
without i
pivoting
Factorization: Gaussian 2542 Stable
PA=LU glimination 3 in practice
with partial (0% N
prvoting comparisons)
.Fagtorization: . | Gaussian ... R - Stable
PAQ =U elimination N
with complele (O0h i
prvoling COMpPArisons}

{2002), Kincaid and Cheney (2002), Forsythe, Maleolm, and Moler (1977}, Forsythe and
Moler (1967), Kahaner, Moler, and Nash (1588}, Moler (2004}, Conte and de Boor (1980},
Burden and Faires (2004), and Van Loan (2000). An interesting earfier paper on the stabilicy
of Gaussian elirnination is Trefethen and Schreiber (19500,

Exercises on Chapter 5
{Use MATLAB, whenever appropriate and necessary.)

3.1 {a) Show thai an clementary lower iangular matrix of type & defined by (5.1) has
the form

My =1 +me],
where m = (0,0, ..., 0 Mgy .oy g )
{b) Show that the inverse of My in (a) is given by
M7 = T el
{¢) Show thal the elementary matrix M defined by (5.2) is such that Ma, where
g ={day.aa,.... 8,1} , is a multiple of ¢,.

((lﬂé’)@@i )
@ = i .

Using three-digit arithmetie, find an elementary matrix M such thal Ma is a
muitiple of e;.

5.2 (a) Given
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(b Using your computations in {a), find the LU factorization of

0.00001 1
am P00 1)

() Let £ and {7 be the computed L and U in part {b). Find

o NA— LU AP
Yoy Y T

5.3 Show that the pivots a), a%{ ool are nonzero il and ealy il the first (n — 1)
leading principal minors of A are nonsingular,
Hint: Let A, denote the rth leading principal minor of A. Then show that
det{A,) = a;,ai}..x af iy

T

5.4 Assuming Lhat LU factorization of A €Xists, prove thag ™ =~ = e

{a) (LDU factorization.) A can be writlen in the form
A= LDU,,

where [ is dizgonal and L and £/} are unit lower and upper triangular matrices,
respectively.

{6y (LDLY factorization.) If A is symmetric, then
A=LDLT.
(¢} Using (b}, prove that il A is symmetric and positive definite, then
A=HHT,
where M is g lower triangular matrix with positive diagonal entries. (This is
known as the Chalesky decompaosition.)
8.5 Assuming that LU factorization of A exists, develop an algorithm to compute U by
rows and £ by columns directly fram the equation 4 = LI/,
This is known as Doplitile reduction.
5,6 Develop an algorithm 1o compute the factorization 4 == LI, where IV is unit upper

rtanguiar and L is jower tiangular. This is known as Crour reduction,
Hint: Derive the algorithr from the equation 4 = LU

3,7 Compare the Dooliitle and Crout reductions with Gaussian elimination withou! piv.
oting with respect to flop-count and storage requircments.

5.8 A matrix G of the form
G=1—ge

is called a Gauss—lordgn matrix. Show that. given a vector x with the property that
el x 3 0. there exists a Gavss-Jordan matrix G such that

G 1s a mulliple of e,
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59

510

51

513

Bevelop an algorithm to construct Gavss—Jordan matrices Gy, Ga, ..., G succes-
stvely such that (GoGpor, ..., G2G}A is a diagonal matrix. This is known as
Ganss-Jordan reducrion.

Derive conditions under which Gauss—Jordan reduction can be carried 1o completion.

Cive a flop-count for the algorithm and comparg it with those of Gaussian elimination,
Crout reduction, and Dooliule redoction.

Civen
1 2 3
A=1|2 5 41},
3 4 3

find LU factorization of A using Gausstan elimiaation, Doolittde reduction, and Crout

Apply the Gauss—Jordan reductlion w A of Exercise 5.9,
Prove that the matrix L in each of the factorizations PA = LU and PAQ = LU, ab-
tained by using Gaussian glimination with puctial and complete pivoting, respectively,

is unit lower triangular.

Gilven

25 o [ e I
Lad £ LD e
B R
LA e O3

find a permatiation matrix P, a unit kower triangular matrix L, and an upper tangular
matrix £/ suchthat PA = LU/,

(@) Find permutastion matrices £ and Q and a unit lower triangular matrix £ and
an upper wiangular matrix U such that PA = LU and PAQ = LU for each of
the following matrices.

Loy 00 99 98
a=4i 1 & ipA=|98 55 1
oyl N
3 4 A
P 000003 1566 1.234
GipA={-1 1 1], Givya={ 15660 2000 1018 |,
-1 =1 1 12340 1018 —3.000

(v) A of the form (3.7 with » = 5.
{h} Foreach of the matrices in (&}, iind M and {7 such that MA = U,

{¢) Compute the growth laclor in each case and verify the results on upper bounds
of the growth factor in cach case given in Section 5.3,

{d) Esttmate the backward error for each of the faciorizations.
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514  (a) Consider the 5 x 5 matrix

1 o o 0 o1
it 1 0 ¢ 0l
A e g 0 i 4 G
0 0o Q [

a1 01 01 af 6l
Find the 1.1 factorizations using both Gaussian ehimination and GEPP. How
many flops are needed? How many flops will be needed if A s an n x 2 row
mairix?
(b} Repeat (aj with the permuted matrix
(RS S0 B R R O

01 1 0o 0 0

A=]101 0 1 0 ¢

010 o0 10
T NG

and compare your answers with those obtained in (a).

813 (a) Prove that the growth factor p < 2%~ for GEPP applied io an n x # matrix,
{h} Construct a small example o show that for GE without pivoting the ratio W
can be arbitrarily large.
5.6 (a) Formulale algorithms for LU fuclorization of an m x »n matrix using Gaussian
elimination without and with partial pivoting.
Show that each algorithm requires about mn® — -"—;- fops.
{bY Apply your algorithms to
g.0o001 1
(i) A = 1 i 1}, (i)A = rand (5,2},
I 11

5.17 Using the fellowing result on inner praduct computation of the form

F ok k
f (Zx,»yr) = 3wyl 8 &1 < kpe,
x|

£
showthat A+ £ = LU, where |El < npl L. Hence prove Theorem 5,18 (consult
Demme (£1997) or Higham (2002), if necessary).

MATLAB and MATCOM Programs and Problems on Chapter 5

Note ou MATCOM

MATCOM is o MATLAB-based interactive software package containing imple-
mentation of all major algorithms of Chapiers 4 throogh 12,

For each problem, there is more than one algorithm so that students can compare
different algorithms for the same problem with respect to accuracy, speed, ete. A
chupterwise listing of MATCOM programs is given in Appendix C. MATCOM
is available from the book's webpage at wwwi.siam, org/booksioti16.
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M5.1 Buased onAlgorithm 5.1, write a MATLAB program, called lugewp, tocompute L and
&/ such that 4 = LI/ and the associated growth factor gf; [L, U, gf] = lugewp (A},

Test data:
. 107 . i 1
{M“( | E)‘ (“)A“(gﬁfmei 1)’
11
(iiyA =14 F 10 1 . {ivithe matiix A in (5. 7y withn = {0,
I ¢

(v A = 20 x 20 Hilbert matrix,  (vi) the matrix A4 in (5.8}

Print in each case

LU E LA - LUr o A = LUjy
T W O A

and (iv) the growih factor.

Wrile your cbservations.

MS3.2 Based on Algorithm 3.2, write 8 MATLAB program, called logepp, 1o compuie
(i) P, L and IJ such that PA = LU/, using partial pivoting, and (if} the associusted
growth factor g

[L.,U. P, gf]= hgepp(4}).

Print !‘L!Ef;ﬁg”” \ “P"ﬁ;;‘f “£ _and the growth facior for each of the matrices A of Problem

M3.1. bBaplain why these resulis are different,

M35.3 Based on Algorithim 5.3, write a MATLAB program, called lugecp, to compute
PO, L, and U such that PAQ = LU, and the associaled growth factor g
(LU, P, Q,gf] = lngecp(A).
Print 2'}‘5’;’;;555‘"‘ L P’il%?i’f'é £ and the growth Tactor for each of the matrices of Problem
M>5.1. Expiain why these results are different.

M54 Write a MATLAR program, called GSJOR, o implement Gauss—Jordan scheme
outlined in Exercise 3.8 and apply your program to the matrices of Problem M3, 1.

ME.S (Experiment on the growtl foctor for GEPP.) Flot the growth factors for GEPP of 300
randomly generated matrices of varying dimension. Write dowa your observatons.

MS.6 Ruudom triangulor matrices usnally become more and more ill-conditioned as the
dimensions increase, However, the lower triangalar matrices L from LU factorization
of a mawix 4 using GEPP are believed to have low condition numbers. Perform an
experiment o verify this statement, as follows: Take a random matrix of order 125
and compute its LU factorization using lagepp and plot the enwries of the inverse
of L. Then change the signs of Lhe subdiagonal entries of L randomly to create
another lower triangular mairix L and plot the eatries of the inverse of Z. Compute
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Xy [L::‘} and max, {I:;;Z‘ |, Repeat the above experiment with random matrices
with entries uniformly distributed in [—1, 1]

MS5.7 Using MATCOM program parpiv on each of the matrices of Exercise M3.1, print
fMIe U ke, IMA = Ullg, and Ef} » and write your observations.

M5.8 Repeai Problem MS.7 wuh MATCOM program compiv and print A7, {

Ullr.
IMAQ — Ulip, and ; '




Chapter 6

Numerical Solutions of Linear
Systems

Background Material Needed

= Vector and malrix norms (Sections 2.5.1 and 2.5.2)

+ Special matrices (Section 2.4)

+ Condition aumbers and properties {(Sections 4.5-4.7)

= Solutions of triangular systems (Sections 4,13 and 4.1 4)

« LU facierizations and stability properties (Sections 5.2 and 5.3)

6.1 Introduction
In this chapter we will discuss methads for numerically solving the linear system
Ax = b,

where A is un 7 x # matrix and r and b are n-vectors. A and b are given and v is
unknown. The problem arises in a very wide variely of applications. As a matrer of fact,
it might be said thet numerical solutions of almost all practical engineering and applied
science problems routinely require solution of u linear system probles. (See Sections 6.3
and 6,123

We shall discuss methods for nonsingulor linear svstems onfy in this chaprer. The
case where the matrix A is not square or the system has more than one sclution is treated
in Chapter 8,

Amethod called Cramer’s Rule, taught in an elementary undergraduate linear algebra
course, is of high significance from a theoretical point of view.

Cramer s Rude is, honvever, not at all practicad from a comparional viewpoint, For
example, solving a linear system with 20 equations and 20 unknowng by Cramer's Rule,
using the usual definition of determinant, would reguire more than g million years even on
a fast computer (Forsythe. Malcolm, and Moler (1977, p. 3031 Foran s x # systen, it wil}
require abouwl O{ni} flops.

117
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Two types of methods are normally used for numerical computations:
{1} direet methods.
{2} iterative methods.

The direct methods consist of a finite number of steps, and one needs to perform all
of the steps in a given methed before the solution is obtained. On the other hand, irerative
methods are based on computing a sequence of approximations to the solution ¥ and a user
can stop whenever g certain desired accuracy is oblained or a certain number of iterations
are compleled. The iterative methods are used primarily for large and sparse systens, We
will consider iterative methods in Chapter 12,

The organization of this chapter is as follows:

In Section 6.2 we state the basic theoreiical resulis (without procofs} on the existence
and uniqueness of solutions for linear sysiems.

problems mostly without any special struciures,

In Section 6.4 we discuss LU factorization methods for solving arbitrary linear sys-
fems.

In Section 6.3 we consider the effects of scaling on solutions of linear systems.

Seciion 6.6 summarizes the discussions of Sections 6.4 and 0.5,

Computations of Lhe inverse and the determinant are discussed in Section 6.7,

Section 6.8 discusses the effects of the condition number on the accuracy of the
sotution.

In Section 5.9 we discuss compuiing and estimating the condition number of & matrix.

Results of componentwise perturbations are given in Section 6.10,

Tterative refinement is discussed in Section 6,11,

Section 6.12 is devoted to the study of numerical solutions of special linear systems:
positive definite, Hessenberg. diagonally dominant, tridiagonal, and block rridiagonal.
Some practical applications giving rise 1o these systems are also discussed hese,

6.2 Basic Results on Existence and Uniqueness

Consider the systern of m equations in g unknowns:
Xy b ¥z ety = by,

ynX| + GnXy ok, = b,

a1 Xy FdapaXs+ - b Bupdy = By

In matrix form, the system is written as

Ay =0,
where
an iz Hin X b
gy A3z - B X2 )
A= % X = . b=

Ay Bwz v g T by
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Given an m x 7 mutrix A and an m-vector b, if there exists 2 vector x satistying Ax = b,
ithen we say that the sysiem is consistent. Otherwise, it is inconsistent. 1t is nutural to ask
when a given sysiem Ax = b kv consisient and, if it is consistent, how many sohgions there
are, and when the solution is unigue. To this end, we staie the following theorem. Proof
can be found in any linear slgebra textbook.

Theorem 6.3 {existence and uniqueness theorem for a2 nonhomogeneons system).

1. The system Ax = b is consistent ifand only if b & R(A): in other words, rank(4) =
rank{A, i)

[

If tie system is consistest and the columns of A are Enearly independers, then the
sofution is urigue.

3. ¥ the svstem s consistent and the coflunms of A are Ineorly dependens, then the
systent has an infinite muher of solutions, o

6.3 Some Applications Giving Rise to Linear Systems
Problems

Tt is probably not an overstatement that linear systems problems grise in almost all practical
applications. We will give examples here from electrical, mechanieal, chemical, and civil
engincering. We start with a simple problem-—an electric circuit,

6.3.1 An Electric Circuit Problem

Consider the diagram of an electrical circuit shown in Figure 6.1, We would like to deter-
mine the amount of current between the nodes Ay, A, Ax, Ay, 43, and A4, The famous

A Az As
f;fgg = 152 e Rg} = 282 o
b I
c
V) = 100 = @
H i
J " 5
5 = O & g
Ii & 8
13 iz ' 1"“
Rﬁﬁ = 582 = 345 = 4£2
Ag AS Ai

Figure 6.1. An electric cirouin,
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KirehhofT's current law ells us that the afpebraic swm of aff currents entering a node mnst
be zere. Applying this law st node Aa, As, Ay, and Ag, respectively, we have

hhom B Iy =0, B.1)
O LR PR A N (6.2)
hh— L =0, @
L b =0 (6.4}

Now consider the voltage drop around each clesed loop of the circuit, A;A145
AsAsAsd;, A1A1A5484, ArAA A5 AL Kirchholl's X’Ui{&gﬁ law teils us that the net
vedtage drop around each clpsed loop is zero. Thus at the loop A1 AsAs Ay AsAg A, substi-
tuting the values of resistances and voliages, we have

i+ 85+ 5h =100, {6.5)
Similarly-at—ArArAsdgAs - and - Az A3 As AsAa we have, respectively,
Ly = 100+ 54 = 100, {6.6)
96 4 104y = 0. (6.7}
Note that {6.6) + {6.73 = (6.5}, Thus we have four equations in four unknowns:
L+ k=0 (6.8}
= ly=0, {6.9)
Iy — Wy + 55 = 100, (6.1
9 4 104y = 0. {6.11)

Equations (0.8)-46.11) can be written us

=1 0 1\ /A 0
0 1 -1 ik 0
Lo s )6l Lol
o 9 o 10/ \n 0

the solution of which yietds the current between the nodes.

6.3.2 Analysis of a Processing Plant Consisting of Interconnected
Reactors

Many mathematical maodels are based on conservation laws such as conservation of mass,
conservation of momenium, and conservation ol energy, In mathematical terms, these
conservation laws lead to conservation or batanee or continuity equations, which relale the
behavior of a system or response ol the quantity being modeled (o the properties of the
system and the external forcing functions or stimuli acting on the system,

As an example, consider a chemical processing plant consisting of six intercannected
chemical reaciors (Figure 6.2}, with different mass flow rates of 2 component of a mixiure
into and out of the reactors. We are inlerested in knowing the concentration of the mixture
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; {55 =1
an - - C5 -
s =2
)
Qs = |
¥
Qo =6 O = 11
-l { w N
Co = 12 Qu=1 =1
A )
Qg = Qaam= 8
k
T Owe =2
Qo =8 — 1 et O
- (Fas = 10

Coz = 20

Figure 6.2. Processing plons with istercannected reactors.

m, 21,6

iy, Gy, Ca Cs

m3, O3, Cs

Figure 6.3, Sketcl of @ reactor with two incoming and one ontgoing flows.

at different reactors. The example here is similar e that given in Chapra and Canale {2002,
pp. 307-308). Appliculion of conservation of mass 1o all these reaciors results in g linear
system of equations as shown below, consisting of six equations in six unksowns. The
sohution of the system will tell us the concentralion of the mixiure at each of these reactors,

Steady state, completely mixed reactor. Consider first a reactor with twoe flows com-
ing in and one flow going out, as shown in Figure 6.3, Application of the steady state
conservation of mass (o the above reactor gives us

By - Aty == N, {6.12)

Nating that
mi = Qi - C;

where
m; = mass Jow rate of the mixture at the inlet and outlet sections §,{ = 1,2, 3,
O = volumetric flow rate at the section /,7 = 1,2, 3,
C; = density or concentration at the section i, i = 1,2, 3,
we get from (6.12)
O1C; + a0y = @1Cs. (6.13)
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For given inlet flow rates and concentrations, the outlet concentration 3 can be found from
(6.13). Under steady stale operation, this outlet concentration also represents the spatially
uniform or homogeneous concentration inside the reactor. Such information is necessary
lor designing the reactor 1o yield mixtures of a specified concentsation, For details, see
Chapra ond Canale (2002).

Referring now 1o Figure 6.2, where we consider the plant consisting of six reactors,
we have the following equations (derived similarly to that of (6.13)). The derivarion of each
of these equations is based on the fact that the net mass Mow rate inlo the reacior ts equal o
the net mass flow out of the reacior.

For reactor 1,

60 — Oy =72, {6.14}%

{Note that for this reactor, flow at the inlet is 72 + Cy and flow at the cutlet is 6C:.)
e Strnilarty,-forreactor 2,3, 4,5 and 6, we have, respectively,

3¢ -~ 3C; =0, (6,15}
—C + 110y = 160, (6.16)

Cy = 11Cs + 2Cs + 8Cs = 0, (6.17)
AC) + C; — 4Cs =0, (6.18)
10Cs — 10Cs = 0. (6,19}

Bouations {6.143-(6.19) can be rewritten in matrix form as

6 0 —f 0 0 0y /C 72
1.3 0 6 0 ollc 0
0 -1 11 o o 0 tlesl feo
g1 0 -1 2 8 |lcli®to (6.20)
11 0 0 -4 0 lle 0
oo 10 0 o0 -0/ \C o

Qr
AC = D

The ith coordinate of the unknown vector O represents the mixture conceniration C; at
reagtor [ of the plant. The solution of the system gives the required concentrations.

6.3.3 Linear Systems Arising from Ordinary Differential Equations:
A Case Study on a Spring-Mass Problem

Consider a system of three masses suspended vertically by a series of springs, as shown
below, where ky, &9, and &4 are the spring constants, and x7, x», and 13 are the displacements
of cach spring from its equilibrium position,
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Xy

X3

Referring to the above diagram, the eguations of motion, by Newton's second law,
which states that the force acting on a mass w Is equal o m lmes aceeleration, are
]

6".{;

n i = gy fys X)) g g - K&y,
d*x

Hia ,2 =y (g = K3} < e~ Ka(xa = Xy},
dzxg

1“3";}}“2““” wh g — !{3(.?63 - Xzl

Suppoese we are interested in knowing the displacements of these springs when the
systermn eventually returns to the steady state, that is, when the system comes to rest. Then,
by setting the second-order derivatives o zero, we obtain the following system ol three
aquations in three unknowns, x;, xs, and xs, in maix fom;:

k] + kg —;(3 { X LB
e fn ka4 &y iy yo | owm | ming
0 *““k‘} k3 A g
ar
Kx=uw.

The matrix K 1s called the stffness matrix. As in this case, very often in practice this matrix
is symuenetric teidingonal,

6.3.4 Linear Systems Arising from Partial Differential Equations:
A Case Study on Temperature Distribution

Many eagineering problems are modeled by purual differential equations. Namerical ap-
proaches to those equations typicatly require discretization by means of dilteresce eguations;
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ihat is, partial derivatives in the equations are replaced by approximate differences. This
process of discretization in wrn gives rise (o lnear systems, We shall illustrate this with a
problem in heat transfer theory. Sec the receat book by Majumdar {2003) for details,

A mujor objective in a heat rransfer problem is 1o determine the temperature distribu-
tivn T{x, v, ¢, 1) in a medium resuliing front imposed boundary coaditions on the surface of
the medim. Once this iemperature disteibetion is known, the heat transfer rate at uny poist
in the medium or on its surface may be computed from Fourder’s law, which is expressed ag

a7 ¢t ar

,ﬂux‘“"‘“"_ SR s S d“:W'K—.—
o= =Ko gy ﬁ’a:‘, and g; 5

ar
where g, is the heat trapsfer rate in the x direction, rv is the temperatuare pradient

in the 1 direction, and the positive constant K {5 called the thermal conductivity of the
material. Similaddy for the ¥ and : directions.

—Consider-a-homegeneous medivm-inowhich temperature gradiens exist and the tem-

perature distribution T'{x, y, z, 1) is expressed in Cartesian coordinates. The heat diffusion
eguation which governs this temperaivre distribution is obtained by applying conzerva-
tion of energy over an infinitesimally small differential element, from which we obtain the

relation
& aF o a1 3] ar . ar
dx dx dy ay dz #z it

where p is the density, C, is the specific heat, and ¢ is the emergy generated per unit
volume,
This equation, usually known as the Aear equation, provides the basic tool for solving
hest conduction problems.
It is oflen possible to work with a simplilied form of (6.21). For example, if the
thermal conduction is a constant, the heat equation is
Fr gr ¥t 4 187
1+.ﬂ+.‘3+f§":mm’ (622)
dy* o dye dz= K« a4t
where o = K/{(pC,) is a thermophysical properly known as the thermal diffusivity,
Under steady state conditions, there can be no changes of energy siorage, ie., the
unsteady statc term £ ‘j T canbedropped, and (6.22) reduces Lo the three-dimensional Peisson’s
eguation:
T T T g
bt ot
gy gy azt K
If the heat transfer is two-dimensional {e.g., in the x and vy directions} and there is no
energy generation, then the heat equation reduces 1o the famous Laplace’s equation:
grr | a'r
am—— "1;" o~ (]' 5.24
gx? 8yt (629
1 the heat transfer is unsteady and one-dimensional withoutl energy generation, then the
heat eguation reduces o

= {6.23}

T 107

e T e e 623
dx= @ ot ( )
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Finite Difference Scheme

A well-known scheme for numerically solving a partisl differential equation is to use finite
differences. The idea is to discretize the partind differential equation by replacing the partial
derivatives with their approximations, i.e., finite differences. We will illustrate the scheme
with Laplace’s equation in the foliowing.

Let us divide 2 two-dimensional region into small regions with increments in the ¥
and y directions given as Av and Ay, as shown in the igure below,

Nodal Points

Each aodal point is designaled by 2 numbering scheme § and f, where [ indicates the x
increment and 7 indicates the y increment:

(i, j+1)

(i—1.4) {i-+1.0
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The temperature distribution in the medium is assumed 1o be represented by the nodal
points emperature. The wemperatwre 7 ; = 7 (x;, v;} at each nodal point (x;, y;) (which is
symbolically denoted by (1, 73 as in the diagram above) ik the average temperature of the
surrounding hatched region. As the rumber of nodal points increases, greater aecuracy in
representation of the temperature distribution is obrained.

A finite difference equation suitable for the interior nodes of a sweady two-dimensional
system can be obtained by considering Laplace’s equation al the nodal point i, f ag

a7

8T 32T]
dx?

niooy?

=0. (6.26)

i

The second derivatives at the nodal point (1, 7) can be expressed as

ar
A s 82T . s Ej? _.__é'j —;—‘ . R s
fd = - . 6.2?
a,t! i Ax ( }
gf &7 !
T By lijeg By bijet
FTy o Ovligey By G-d 6.28
ayvd g Ax ( )

As shown in the figure, the temperatore gradients can be approximated (as derived
from the Taylor series) as a linear function of the nodal tempermures as

a7 L= T
= my ol B 6.29
dx tivd g Ax { )
ar 1; i~ Tit J
. TR S—. L 6.30
ax i Ax (630}
= T
L Tum o Ty (6.31)
8)? l..j.“i‘% Aj?
ar T Ti s
2 Ry e 6.32
Ay lij-1 Ay ) { )
where, T ; = T (¥, v;). Substituting (6.29)-(6.32) Into (6.27)-(6.28}, we get
821‘"{ Fony =20+ Ty
— - : - 6.33
Ax iy {Axy? (6.33)
a'r e Tigrs = 25+ T (6.34)

Ayl {Ay)?
Equation (6.26) then gives

Ty =204+ Ty T =20+ T 5
(azy {AyF
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Assume Ax = Ay. Then the finite difference approximation of Laplace’s equation for
interior regions can be expressed as

T+ T+ Ty + Ty — 4T = 0, (6.35)

Higher-order approximations for interior nodes and boundary nodes are also obtained in a
similar manner.

Example 6.2. An example on heat distribution in a medinum. A two-dimensional reet-
angular plate (0 < x < 1, 0 < y < [) is subjected to the uniform temperature boundary
cenditions (with top surface maintained at 100°C and all other surfaces at 6°C) shown in
the figure below, that is, T(0, y) = 0, T(1,¥) = 0, T{(x,0) = 0, and T(x, 1) = 100° C.
Suppose we are interested only in the values ol the lemperature at the nine interior nodal
points (x;, y;}, where x; =iAxand y; = jAy, i, j = 1,2,3, with Ax = Ay =

i
T

0,0 {t,0) (2,0) (3,00 (4,0)
. b (1. 1) (2. 1) (3. 1 (4.1
(0,2) (.2) (2.2 (3.2 (4.2)
o°C 0°C
(0, 3) (1,3 (2.3) 3.3 (4. 3)
(0, 4) {1.4) {2.4) (3.4) (4. 4)

However, we assume symmetry for simplifying the problem. That is, we assume that
T3 = T3y Ta2 = T2, and Ty = Typ. We thus have only six unknowns: (T, Tj2, Ti3)
and (75, Tza, Tay) satislying the following six equations:

AN, —0-100-T3, -T2 =0,
4L, -, — 100 -1 | — T2 =0,
ANa—0-T 1 —Tz—Ta=0,
Aha—Tia—T) - T2-T3=0,
4T3 -0-T 2 - T3 =0,
Ah,—T3—Th:—T3—-0=0.

(6.36)
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Adfter suitable rearrangement, these squations can be written as follows:

4 =1 =1 0 0 0Y [T 100\
-2 4 0 -1 0 ol|mn;, 100
b0 4 -1 =1 o ||7a 0
{6.37)
0 -1 -2 4 0 ~1]|]"a 0
0 0 —t 0 4 ~1[]"as 0
0 0 0 -1 =2 4] \Iy \ 0

The solution of this system will give us emperatures at the nodal poinis. B

6.3.5 Approximation of a Function by a Polynomial: Hilbert System

In Chapter 4 {Sgction 4.6) we ciled an ill-conditioned linear system with the Hilbert matrix.
In this section we show how such a sysierm arises. The discussion here has been taken from
{Forsytive and Moler {1967, pp. 80-81)).

Suppose a continuous function f{x) defined on the interval 0 < x < 1 is to be
approximated by a polynomial 3 ., pix' ™! of degree # — 1, such that the error

1 H3 E
E= fﬂ [g pis’! - f(x)} dx

is minimized. The coefficients p; of the polynomial are easily determined by setting

aE
— =, Fam b, M.
ip;

(Noie that the error is a differentiable function of the unknowns p; and that 5 minimam
occurs when all the partial derivatives are zero.) Thus we have

dE

i n
~—-—*w—2/ pixi e fley T dx =0, i=1,...,n
ap; O R

ar

n e "
Z (f xiHi=2 u’x) 7 =j Fivx T dy, i=1,....n
o Mo 0

{To abtain the latter form we have inferchanged the summation and integration.)

Lelling
[ ” 1
Fr s m] XTIy e
0 H 4”} -1
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and

i
b;:/ Fox™ldx =121,

i
we have

L3
Zh”p}.mg};‘ i= ..., 0
fanl

That is, we obtain the Hnear system Hp = b, where H == (h;),
by

by

b=| |

brz

Thuenralrix H i easily identified as (the Hilbert matrix)

6.4 LU Factorization Methods

Any factorization of the matrix A immediately suggests a methad for solving Ax = b or
Ax = B {mudriple right-hand sides},

In this section, we discuss LU {actorization methods, The methods based on QR
factorization and singular value decomposition (SVD} will be discussed in Chapter 7,

6.4.1 Solution of the System Ax = b Using LU Factorization
We have seen in Chapter 5 that Gaussian elimination leads to the following factorizations:
o A= LU (Gaussian gliminauon without pivoting) (6,38
« PA=LL (Gaussian elimination with partial pivoting (GEPP)) {639
s PAQ = LU {Gaussian elimination with complete pivoting (GECP)).  (6.40)
These fuctorizations can then immediaiely be vsed to solve Ax = b,

Thus, if A = LU, then solving Ax = b is equivalenl to solving two iriangular
systems:

Lyv=§ (lowertriangalar), )
{ {7x =y {uppeririangular). (6.41)
[ PA = LU, then the system Av = b becomes
r o = ! JE i A
L}‘ Pb =¥t {lower tr%angular}, (64T
Ux=y {upper uiangular).

IfPAQ = LI, then Ax = & is eguivalent to

Lz w Pb =B (lower tianguiar),
Uy =g fupper triangular), {6,
x = Qgy.

hin
QiR ]
Dy
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Sinee GEPP is stable in practice and widely used, we will only state this method for
lincar systems hore,

ALGORITHM 6.1. Solving Ax = b Using GEPP.

Inputs: Ag ﬁ%fix131 ;} = ;?anxi’
Output: x € B**! such that Ax = b,

Step 1. Find the factorization 4 = LU by the riangularization algorithm using
partial pivoting (Algorithm 3.2},

Step 2. Obtain the solution x 10 Ax = b us follows:

2.1, Solve the lower triangular system: Ly = Ph = §'.

2.2. Solve the upper triangular system: EFx ==y,

Computing &1 To compute ¥/, all that is needed is to permute the entries of b according to
the permutation indices of the matrix F,
For example, i

a 0 | b
P=} 0 1 0 andb=1| b |.
I 00 by
then
by
b!mf}{?m :{32
b

is obtained just by permuting the fiest and third components of b,

Flop-count.

» Triangularization process: =n

i

= Solutions of two triangular systems: 2n* (each system requires #* fAops).

* Forming the vector 5 no flops. (Noke that &' is oliained from & just by re-shuffling
the entries of b.}

+ Total Flops: %:13 + 207

+ Furthermaore, O{»°) comparisons will be reguired (o identify the pivols,
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Exampie 6.3. Solve Ax = & using partial pivoling:

4 7
6 |, b= 15
9

{
A == 4
7 24

G L b2

Step 1. Factorizafion PA = LU. Using the results of Example 3.14, we have

O 0

! 78 9 00 I
L= 7 1 0 a0 & 2 | pP={1 00
4L 00 -k 010
T2 -
Step 2,
24
2.1 Seltionof Ly = 8 = p.= | 35 .
~{3.5
]
22 Solutionofix=y=x=1 1 ]. N

Numerical Stability of the Partial Pivoting Scheme for Ax = b

We first siate an approximaie error bound in terms of the norms of L and U/, and then in
terms of the growth factor. (See the solution of Exercise 6.40 in Appendix D, as well as
Chapter 14, both available online at wwwsian.org/beeks/GT'110.)

Theorem 6.4 (round-off property). The computed solution ¥ of the linear system Ax = b
using LU fuctorization, oliained by GEPE sarisfies

(A 4+ EVE = b,
witers |E1 < 3nplL il |

Round-off Property in Terms of the Growth Factor

In Chapter 5. we discussed stability of Gaussian elimination in terms ol the growth factor
Levs therefore interpret the above resulein wems of the growth factor for the partial pivating.
For this pivoting scheme, we have |I;] < Tand {ri;] < pmax |ay], where g is the growth
facior. Then from the above theorem, we obtain

LIE e < 30 1) Ao

Remark, The guantity 3pn® verv ofien grossly overestimates the frue ervor |Ed,. The
gxperiments have shown that || Bl is usually O(p) | Afiee. So, GEPP {or linear sysiems is
backward stable in practice.
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Furthermore, since the quantity g is never too large in practice, we conclude that
GEPP for Ax = b is backward stable for all practical purposes.

6.4.2 Solution of Ax = b Using Factorization: MA= U

In Chapter 5, we have seen that us a first step of achieving the factorization A = LI/, one
olnains the factorization A = U,

This factorization then can directy be used to solve Ax = &,

Thus, i MA == U, then Ax = b becames MAx = Mbor Ux = Mb = ¥, where
M= M\ Py MPy

Thus, we have the following process for solving Ax = b:

Solving Ax = b Using Foctorizaton: M4 = U/

“Step T OBtE (e Tactorization M A s
Step 2. Implicidy compuie &' = Mb.

Step 3. Solve the upper uiangular system Ux = b

Remarks. (i} Mathematically and computationally, Algorithm 6.1 and the sbove process
are equivalent.
{31} One can casily obtain a similar algorithm with complete pivoting.

6.4.3 Solution of Ax = b without Explicit Factorization

It is possible that two sieps of solving Ax = & via LU factorization of A can be com-
bined o that only one triangular (upper) system needs to be solved. This can be done by
riangularizing the augmented matrix {4, &} rather than the mairix 4, as shown below,

ALGORITHM 6.2. Solution of Ax = b Using Partial Pivoting without Explicit
Factorization,

A, Triangularization of {4, b).

Inputs: An o x 0 matcix A and an p-vector b,

Gutpat: (i} The transformed upper riangular matrix stored in the upper iriangular
part of 4, (i1} the vansformed vector stored in b, and (i) the multipliers stored
in the lower-hall part of A.

Fork=1,2,....,n—1do
1. Choose the largest element in magnitude in the column k below the (8. &)

eutry: call it a,,
2y, = max flagl o = k],

Ha,, =0 5op.
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]

. Interchange the rows k and ry of A and the kth and rith entries of b:
For j="%k k41, .. ,ndao
Gy, 4> Gi;
f?,—i R d Z?g_-.
End

3. Form the nudtipliers:

Fori=%k-+1,....n
ik
ik

L = Mgy s e

End

e

. Update the enrries of A in the rows and colmny (& -+ 13 through n:
Fori=4%&+4 I, ...,ndo
For j=k4l...ondo . e
;= dy b By
End

End

L

. Update the entries of I

Fori=hk+1,. ., 0do
b = by A oy
End

End

B. Solution of the upper triangular system. Solve the upper triangolar system with
the upper triangular malrix and the transformed vector obtained from part A using the back
substitution algorithm.

MATCOM Note: Algorithm 6.2 has been implemented in the MATCOM program
LINSYSWY.
Example 6.5,
o 1 1 2
A=1{|2 2 3}. o | O
4 1t 3
A, Triangiarization of (A, by using GEPP.
£ =1 Thepivotentryisay =4, ry =3
Interchange rows 3 and 1 of A and the third and frst entrics of b
4 1 1 3

i
aA=l2 2 3 b=6]. =l
g1 1 2 an 2

, b=bl =

i

i

-

!
Pt Jo [ L) Ao
st 8 3L

Chdans L
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k = 2. The pivot entry iS az = 3; ma = =258 =
4 1 i 3
A=AM=10 % %& . bw b = %
0o 0 -3 -1

B. Solution of the wpper triangular svstem. The buck substitution process applied
to the triangular system A%y = b9 vields 5y = 3, v = 4. x = &, giving

i e
v (L4

6.4.4 Solving a Linear System with Multiple Right-Hand Sides

Consider the problem

where 8 = (5, ..., b, s ann > momatrix ¢m < nyand X = {x;. x4, ..., X, Here b
and Xy, == 1, ..., #,are 2-voCtors.

Problems of this wype arise in many practical applications. For some applications In
conirol, see Arnold (19923, Datta {2003}, and Datta and Saad {19913,

The idea will be to factorize A just once and then use tis factorization to solve all
the subsequent friangutar systems. Thus if PA = LU, then AX = B is equivalent to two
triangular systems each having s equations:

LZ=PE=8 wnd UX=2
SetZ=1(cr,...,zp)and B = (8,8, ..., b5

P

ALGORITHM 6.3, Solving AX = B (Linear System with Multiple Right-Hand
Sides) Using GEPP,

InpufS; A B"E gned B = B,
Output: X < B such that AX = £,

Step 1. Faclorize A using Gaussian elimination with partial pivoling: PA =
LY.

Step 2. Solve the m lower wiangular systems: Lz = Phy = B, | = 1,2,
Lon

Step 3. Solve the m upper triangobar systems: Uxy =z, fa 1o, m,
Step 4. Form X = (x;, X ... Xy )

N . . 3 5
Flop-count.  Algorithm 6.3 requires approximately 2(% + ma”) flops.
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Example 6.6. Solve AX = B, where

I 2 4 1oz
A= 4 5 6}, B=13 4
789 5 6
Step 1. Using the results of Example 5.14,
7 8 9 I o 0 g0 1
{;202%’1,:%1{},1’%?@0
00 -t S 010
Step 2. Solve the nwo lower triangular systems
3 6
iy =b=5=]% (i Ly =hy =z = | §
e R [ S o
Step 3. Sofve the two upper trignguiar systems
i 2
5 13
Uyy =2y = x = -.!,; ; Hon=gpgp=xn= %
0 0
Step 4. Form
LI
—f1 4
X=13 3
o 8
Note: The vectors &, ..., &, are obtained just by reshuffling the columns of matrix

B according to the permutation indices of F. No mauix multiplication is necessary. Ml

6.5 Scaling

If the entries of matrix A vary widely, thea there is a possibility that a very small number
needs iobe added toa very large nurnber during the process ol elimination. This can influence
the accuracy greatly, because, "the hig one can kill the small one.” To cireumvent this
difficulty, often it is suggested that the rows of A be properly scaled before the climination
progcess beging, The following simple example iHustrates this.

Consider the system
100108 [y f1®
| i x2f N2}

Now apply GEPP. Since 10 is the largest entry in the first column, no interchange is seeded.
We have, afier the first step of eliminalion,

10 108 Y fxy _ [ 10°
0 ~10°)\a/ A2 107 )0
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which gives 1o = 1, x; = 0. The exact solution, however, is = (}}. This happened
because 107 was indeed a “lalse pivot.” Note that if the first equation was multiplied by
109, then the matrix of the system would be

1078 g
IS

Therefore, even choosing the false pivot 10 did not help us. However, if the scaled sys-
tern is now solved (after modifying the first entry of b appropriately} using panial pivoting,
we will then have the accurate solution, as we have seen before,

Scaling of the rows of matriz A is equivalent wo finding an invertible diaganal matrix
D so that the largest elemenr {in mognitude) in each row of D!”l A is phoat the same size,
Once such D, is lound, the solution of the systetn Ax = b is lound by solving the scaled
system Ax = b, where ) .

A=DA, b Db

--The-processcan beeasily extended to scale boththerows and columns.of A. Mathematieally,

this is equivalent to finding diagonal matrices £y and Dy such that the largest (in magnitude)
element in each row and column of l},"! A D Hes between two fixed numbers, say, ?':j and 1,
where 8 ts the base of the number system. Once such Dy and D; are found, the solution
of the system Ax = b is oblained by solving the eguivalenl system Ay == b, and then
computing x = Doy, where A = DI'"'ADg, b= Dl"'b. The sbhove pracess is known as
equilibration {Forsythe and Moler (1967}

Note that the purpose of scaling is i make the condirion number of the scaled metrix
le“‘ A D, considerably smaller than that of A. Indoing so, we might expect a more accurate
solution. See more on this in Section 6.8.2,

Thus, sealing or eguilibration (s recommended in general, when the entries of the
miatrix vary widely, “The round-off error analysis for Gaussian elimination pives the most
effective resulis when a matrix is equilibrated.” (Forsythe and Moler {1967))

6.6 Concluding Remarks on the Use of Gaussian
Elimination for Linear Systems
« Gaussion efimination, with partiaf pivoting is 2 computationally effective practical

scheme for selving modest-size arbitrary lincar systems problems. it is stable in
praciice and efficient.

= Gaussian elimination withoul piveting should not be used unless matrix A is sym-
metric positive definite or strictly diagorally dominant {see Section 6.12),

+ Scaling is recommended prior to the use of Gaussian elimination if the enirfes of
matrix A vary widely.

6.7 Inverses and Determinant

Associated with the problem of solving the lincar system Ax = & are the problems of
finding \he determinane and the inverse of the matrix AL In this section we will see how the
determinant and the inverse can be computed using LU factorization.
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6.7.1  Avoiding Explicit Computation of the Inverses

Thie inverse of a matvix A very seldom needs to be computed explicitly. Most computational
problems involving inverses can be reformulated in terms of solution of lirear sysiems. For
example, computing

o A7'h (inverse times a vecior) is equivalent (0 solving the system Ax = &

+ A7'B (inverse imes a matrix) is equivalent 1o solving the systems A¢y = by, | =
Lo it B=_{b b, .. by

o BT A™'e (vector times inverse limes a veclor) is equivalenl to solving the system
Ax = ¢ followed by computing b7 x,

As we will see later in this section, computing A~ is much more expensive than solving the
fingar system Ax = b. Thus, all such problems mentioned above can be solved much more
_efficiently by formulating them in terms of linear systems rather than naively solving them
using the matrix inversion,

The explicit computation of the inverse should be avoided whenever possible, A
tinear system should never be solved by explicit computation of the inverse of the
System merix.

Some Easily Computed Inverses

Before we discuss the computation of A~ for ar arbitrary matrix A, we note that the inverses
ol some special matrices can be easily computed. Here are some examples:
* The inverse of the elementary lower tnangular matix M = 7 —m rz}f is given by
M7 =T 4 me]

» The inverse ol an orthogonal matrix Q is its transpose g7,

= The inverse of a nonsingular lower {upper) triangular matrix 7 I8 again a jower
{upper) triangular matrix and the diagonal entries of the tnverse are the reciprocals of
the diagonal entries of the maurix 1.

6.7.2 The Sherman-Morrison Formula for Matrix Inverse

in many applications once the inverse of a matrix A 1S computed, 1t is necessary i find the
inverse of another matrix B which differs from A only by a rank-one perturbation. The
question naturally arises, Can the inverse of B be computed withow starting ofl over again ¥
That is, the question is whether the inverse of B can be found using the inverse of A which
has already bees computed. The Sherman-Morrison {ormula shows us how te do this,

Theorem 6.7 (the Sherman~Morrison formula}. [fu and v are nve s-vecrorsand A isa
nonsinguiar marrix, then

(A — i{iﬁ}r}ml = AT +a(A“'gﬂ;A”),
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where
]

m {}[ B?‘A“lii ;é: 1.

Y =

MATCOM Nete: The Sherman~Marrison formula has been implemented in the MATCOM
program SHERMOR.

Example 6.8. Given

| O O | . T | i
A=12 4 5 and A =1 14 2 -3

6 7 8 -1 -1 2

find {4 — uu" )y, where o = v = (1,0, 07
b
I e P
Thus,

S

3 3 3

A—p T = A7 +aa A7 = i -3 i [ |
- 2 i
3 7 3

6.7.3 Computing the Inverse of an Arbitrary Nonsingular Matrix

If A isan  x n nonsingular matrix, then finding A~ is equivalent to computing X such that
AX = [ where Iisann xrmorriy. Thusif X = (5, 12, ..., 3 vojand 7 = (er. e, ..., 83,
then AX = [ is equivalent to solving  lincar systems: Ax; =&, 1 = 1, ..., 1.

il partial pivoting is used (o solve these n systems, then we have the following algo-
rithm Lo compute 471,

ALGORITHM 6.4. Computing A~! by GEPP.

Input: 4 = R""",

Quiput: A~

Sten L. Using Algorithm 8.3, solve # linear systems: Ax; =¢;, i =1,..., .

Step 2. From A~ = X = (xy, X1, ..., X0

Equivalently, one can compute A~ directly from LU factorization of A. Thus if GEPP is
used, then
PA=LU, s0d ' =U" L P.

MATCOM Note: MATCOM programs INLU, INPARPIY, and INCOMPIV compute the
inverse using, respectively, LU {actorization with no, partial, and complete pivating.
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3 . -
Flep-count. Abou BL. flops wre needed to compute A~' using Algorithm 6.4,

Exa:ggle 6.9. Consider A of Example 6.6. Using muirices L, U, and P from there, we
obais Lz = Pey = (0,1,007 = z; = @, 1, -0.50007,

Liz = Pep = (0,0, )7 = z = (0,0, 1),

Lay = Pey = (10,007 = z3 = (1, ~0.1429, -0.50000)",

Uxymezy = xyo= (1L =2, B,

Uxs = 25 = 1 = (—4.6670, 6.3333, —-2.000007

Tivy =2y 5 vy = {2.6667, —3.3333, 1.000037.
Thos . . . e
| —4.6670  2.6667
fi-l m X me {-‘51,3'23 ,ﬁ:’}} == -3 £.3333%  —3.35332 . ‘
1 -2 LO00D

6.7.4 Computing the Determinant of a Matrix

The determinant of a matriv A iy seldom needed in practice. However, il it has to be
computed, LU Fuctarization of A again can be used. Thus, if GEPP is used giving PA =
LU, thendet{A) = det( P} det{L) - det(/). Now, det(P} = {~1)", where r is the number
of row interchanges, det(L) = I, and det(l/) = ayaly .. a1, Thus,

M Hn
( g {afea 3
det{A) = (=) analy ---at~ ",

where » 15 the number of interchanges.

Example 6.10.
g 1 1
A=1J)1 2 31}.
I 1 1
GEPP gives

|- s

[ 2
=101 .
g 0 ]

There was only one interchange; therefore r == 1. det{d) = (~1)det{l/) = (—1}{—1}

=t 1

6.8 Effect of the Condition Number on Accuracy of the
Computed Solution

In Chapter 4, we klentified the condition number of the system Ax = b by means of
parivrbation analysis {Theorems 4.19-4.23}).  Here we discuss the role of the conditon
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number in the accurpey of the solution. Once a solution # of the system Ax = b has besn
computed, it is natural to fest how accurate the computed solution 8 is. I the exact solution
x is known, then one could, of course, compute the selative emor % 10 test the aceuracy
of &, However, in most practical situations, the exact solution is not knowa. In such cases,
the most obvigus thlrz% 1o do is o compute the residual ¥ = & — Ax and sec how smail
the refative residual !E“ is. Futerestingly, we should note thar the solusion obiained by the
Clanssian elimination process in general produces o small residaal, (Why?) Unfortunately,
a smalfl relative residual does not guarantee the accuracy af the sefution. The following
example iflustrates this fact.

Example 6.11. Let
1.0001 1 2.0001

..._____L"“i"wfm} Thenr =b— A = (M0},

NatE ity icsmutl - However-the vector X-is-nowhere close-to-the-exact-solution

s=(1). W

The above phepomenon can be explained mathematically from the following theorem.
The proof can be easily worked out. Theorem 4,12 below gives a posterior error bound
for the comauted solution,

Theorem 6.12 (residugl theorem).

£ — i) il
20« Cond(Ay
(3 { }ilb!!

Interpretation of Theorem 6,12,  Theoremn 6,12 tells us that the relative error in x depends
not only on the relative residusl but slso on the condition number of matrix A as well, The
computed solution can be guaranteed to be accurate only when the product of both Cond{A)
and the relative residuad is small.

Note that in the above example, Cond(A} == 4.0002 = 10° arge!). Thus, though the
relative residual was small, the compured solution ¥ was inaccurate, because Cond(A) is
refarively farge.

6.8.1 Conditioning and Pivoting

It is natural to wonder if ill-conditioning can be detected during the m::ngaiarizatim process
using GEPP. By a normaliced smatvix here we mean that {Aflz = 1. Suppose that A and b
frave been sormalized. Then there are certain symploms for 1ll«cond11ia;}iag, These include
the following.

Symptoms for lll-Conditioning
* A small pivot,

* Alarge compused solution,

v A large residual vector,
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justification. Suppose there is a small pivet. Then this will make A~ farge. (Note that
if pariial pivoting is used, then A~ = U~ L7 P} Similarly, if the computed solution I
is large, then from A% = b, we have | = [|A~'BE < JA™"|| b, showing that [|A~']
is possibly large. Large |A~"E, of course, means ill-conditioning, because Cond(4) ==
Al FA™H] will then be large.

Remark. There are matrices which do nol have any of these symptoms bul are siill ill-
conditioned (see Wilkinson {1963, pp. 254-253}).

Example £.13. Consider the linear system Ax = b with

1 G 0 0.1
A |0 00000 0 . b= 01
i 0 £.00001 .1
Then
=10 1 . which is guite large.
|
000001 G O
A =108 O 1 0], which is large,
0 0 1

Thus, for this example (i} the computed solution Is large, and (1) z}“‘ is farge. A 15,
therefore, likely to be ill-conditioned. 1 is indeed rue: Cond{A} = 10°. N

6.8.2 Conditioning and Scaling

In Section 6.3 we dispussed scaling, and the message there was that sealing is in general
recommended if the entries of the marrix & vary widefy. Scaling followed by a strategy of
pivoting is helpful. We noted there that scafing fas an effect on the condition rumber of the
matrix, For example, consider
6
A (;Io " ) . Cond{A) = 10°.

However, if the first row of A is scaled to obtain A = {62011}, then Cond({4) = 2.

The guestton wawrally arises, Given a marrix A, hiow can ane choose the dingonal
matriees Dy and Bz such that C{}m:l(}f},“; ADR) will be gs ymall as possibile?

This is a complex problem. Some of the historical and well-known papers on this
topic include Baoer {1963, 1963), Businger (1968), Skeel (1879, 1981}, and van der Shuis
{1969}, Chapter 7 of Higham {2002} gives a thorough treatmeni.

6.9 Computing and Estimating the Condition Number
The obvious way o compute the condition nomber will be 1o compute 1t from us definition:

l. Compute A7
2. Compute Al and A~ and multiply them.
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. . k] .
We have seen that computing the inverse of & reguires about 513'— flops. Thus, finding

the condition number by explicitly finding A~ is much more expensive than finding the
sotution of Ax = b itself. On the other hand, to compute Cond{ A}, we only need to know
HA“], not the inverse iisell, Furthermore, the exact valye of Cond(A) itself is seldom
rieeded; an estimate s sufficient. The guestion, therefore, arfses whether we can get a
reasonable estimate of |41 without computing the inverse of A explicitly. We present an
aptimization-based algorithm below,

An Optimization Technique for Estimating A~

Hager (1984} has proposed a method for estimating | A" based on an optimization tech-
nigue. This techinique seems to be quite suitable for randomly generated mairices. Let
.‘ﬁwl e B = {b;j}

e Define afupction fix o

n

Flx) = 18x = Z Z !')gj.i‘j .

=3y i

Then
BBY = JA™ ] = max{f(x) : x]); = 1}

Thus, the problem is to find maximum of the convex function f over the convex set

S={reR":jxlh =1}

ALGORITHM 6.5, Hager’s Norm-1 Condition Number Estimater,

Inputs: An s x g mairix 4 and an n-veclor b,
Output: An approximation of JA™ .

, F
Step 0. Sclp = JA™ |, =0b= (L L. 3.
Step 1. Solve Ax = b

Step 2. Testif fxfl < p. I 50, go 1o Step 6. Otherwise set p == Uxlj; and go to
Step 3.

Step 3, Solve A7z = y, where
w=1 x>0, yo= -1ifx < G
Step4. Set j = wrgmaxliz]. i =1,....8}

Step 5. If |z;} = 7 b, updale & = e;, where ¢; s the jth unit vector and return
1o Step 1. Else go o Step 6.

Step 6. Set A7 == p, Then compute Cond {A4) = pll4l),.
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It b5 well known that the maximom of a convex funciion is obtaised at an extreme point
Hager’s method consists in finding this maximum systematically. Hoger (1984) remarks
that te algorithm usually stops after two iterations.  An excellent survey of different
condition number estimators, incleding Hager's, and their performance has been given by
Higham (2062, Chapter 13), See alse carlier papers of Higham (1987, 1990) and O'Leary
{1980}

MATCOM, MATLAR, and LAPACK Notfes: Algorithm 6.5 has been implemented I the
MATCOM program HAGCONDI. A block [-norm estimator due to Higham and Tisseur
(20003 is availuble in MATLAB function normestl. MATLAB lunction condest compules
a lower bound ¢ for the 1-norm condition number of a sguare matrix. rcond is a LAPACK
reciprocal condition estimator. condest invokes normest].

Example 6.14, Lat

oo 123 . e e —— .
A= 13 4 51, Condi{4) == 29575 = 107, RCOND = 3.4649447 x |0~ 1¥
5§ 7 8 {A is close fo a singular matrix),

111y
b ob=|~ - =} .
Step (3,3.3)

Iteration1. x = (1.0895, —~2.5123, 1.4228)7;
p=5.0245, y={1,~1, 1), z= 10%2.0271, ~3.3783, 1.3514)7,
J =2 ich = 10'%3.3785) > 27b = ~1.3340.

Iteration 2. ¢ = 10'7(—1.3564, 2.7128, —1.3564)7 | x|l; = 5.4255 x 10'7.
Renmark.  Since x|y = p, we take JA7T i, = 5.4255 x 107,
This is an excellent estimate of A~ 1.
Note that Cond {4} = p x [|Af; = 8.65808 x 10'%, JA~"4; = 1.8014 x
1'%, and condest (A) = 2.8823 x 107, M

6.10 Componentwise Perturbations and the Errors

[f the componentwise bounds of the perturbations are known, then the following perturbation
result obtained by Skeel (1979} holds. [n the followiag, | - || stunds for infinity norm.

Theorem 6.15. Let Ax = b and (A + AA)(x + Ax) = b+ 8b. Let |DA] < €l4] and
[&ht = ¢lbi. Then

lid.x | {:Eiiié'%ii;‘iﬂxl+Iﬂ”'iii’iﬂ

fxll 77 (= ellAT AN
Definition 6.16. The munber Cond(A, X} = %‘mﬁ will be catted Skeel’s candition
number and Cond (A) = FAT AL the upper bowsd of Skeels condition runiber.

An important property of Cond{A, x}: Skeel's conditicn number is invariant ender
row-sealing. It can, therefore, be much smatler than the asual condition number Cond{A}.
Cond{A. x) is useful when the column norms of A~ vary widely.
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6.11 lerative Refinement

Suppase a computed solution I of the system Ax = b is not acceptable. It is then natural
to wonder 1  can be refined cheaply by making use of the iriangularization of the matris
A already available.

The following process, known as iterative refinement, can be used to refine £ itero-
tively up to some desirable accuracy.

Iterative Refinement Algorithm

The process is based on the following simple idea:
Let X bu a computed solution of the system Ax == b, If ¥ were an exact soluiion,

then r = & — AY would be zero. But in practice we cannot expeet that. Let us now by to

solve the systern again with the computed residaal # (55 0); that is, let ¢ sausly

Ac =
Then, y = ¥ -0 ¢ is the esact sofution of Ax = &, provided that ¢ is the exact solution of
At = r, because
Ay = AR+ o) e AN+ Ae=b—r+r=bh
It is true that ¢ ngain will not be an exact solution of Ac = r in practice; however, the above

discussion suggesls that y might be a betler approximation than 3. 17 so, we can continue
the process until a desired accuracy Is achieved.

ALGORITHM 6.6. Lterative Refinement.

Inputs; A € B"* b ¢ R"™', and tolerance €.
Quiput: A refined solution.

Set ' =
Fork =0,1,2,...da

I. Compute the residuai vectar r'*': 1 = b — Ay¥h,

B

Calculate the correction vector ¢*' by solving the system Ac'™ = #%3,
using the same triangularization of A that was used 1o obtain x'@.

3. Update the solution: x5+ o x®) g o8,

”x(k-{-l) - A.(k)%l

2
&, 7est for the convergence: If — o < &, SIOp.
RN

End

Remark, 1f the system is nol woo ifl-conditioned and double precision is used in computing
the residuals, then the iterative refisement using Gaussian elimination with pivating will
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ultimmiely produce a very uccurate solution. The rate of convergence depends upon the
condition number {see Higham (2002, Chapter 12)}

MATCOM and LAPACK Notes: Algorithm 4.6 has been implemented in the MATCOM
program ITERREFE

Example 6.17.
P10 0.0001
A=1310 2 |}, b= 1 0,000
0 o 3 —1.666
The exact selution is
—{3. 2777
x =} G278 | fcorrect up o four fgures),
—-0.5555
1
PAGIE
i
~1.959G
r? = p - Ax® = | —2.9999
-4 GOAG
The solution ol At = 101,
— 12T
¢ | 07222,
—1.5553
—-0 2777
= W S BT8R
—,5553

Note that Cond(A) = 3.8078. A is well-conditioned. R

Accuracy Obtained by lerative Refinement

Suppose that the fleration converges. Then the error at {4 -+ [th step will be less than the
grror at the kth siep.
Let

[ O
(T

Then if ¢ = 107, there will be g gain of approximately s figures per iteration.

Flop-count. The procedure is guite cheap. Since A has already been triangularized to
solve the original system Ax = &, each ileration requires only G{°) flops.
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Remarks, lierative refinement is a very usefu! technigue. GEPF followed by iterative
refinement is the most practical spproach for soiving a linear system accurately, Skeel
{19807 has shown thal in most cases cven one step of fterative refinement is sufficient. Sce
also Higham {20023 and Jankowski and Wozniakowski (19771,

Estimating the condition number from iterative refinement. A very crude estimate of

the condition number of matrix A is 1D/ -1} {Rice (1981)), where £ is the number of digits
and & 1s the number of fterations performed for the procedure to converge.

Example 6.13 {(Stewart {1973, pp. 205)). Consider solving the ill-conditioned sysicm wilh

7 6950 34.97
Am(d, 4 ) 5"(20.{}(})
* (the system s ill-conditioned becaiise Cond3(4) = 3.2465 %10,

The exact solution is x = {3 ).

Letx® = {19687,

k=0

-1
O e A (0333; o )

The solution of Act® = 710

‘ —0.3330/°

: 2

i

6.12  Special Systems: Positive Definite, Diagonally
Dominant, Hessenberg, and Tridiagonal

In this subsection we will study numerical solutions of the Ipliowing special systemy:
« Symmetric positive definite system.
» Hessenberg system.
« Diagonally dominant systent.,
« Tridiagonal and block 1eidingonad systen.

Indeed, it is very often said by praciicing engineers that there are hardby any systems
in practival applications which are not one of the above types. These systems therefore
deserve a special reatment. We first give some examples 1o show how these systems arise
in practical applications.
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6.12.1 Special Linear Systems Arising from Finite Difference Methods

We have seen in the last section how finite difference schemes for solving partial differential
equations lead to linear systems problems. Many times such systems have special properties
and structures: some well-known structured matrices arising widely tn applications include
tridiagonal, diagonally dominant, positive definite, and block tridiagonal. We first
discuss a situation which gives rise to a tridiagonal system,

A. Tridiagonal Systems

Consider the one-dimensional steady conduction of heal such as heat conduction through a
wire. 1n such a case, the temperature remains constant with respect to time. The equation

here is %?t = {}). The difference analogue of this equation is

Tux+A)-2Tx)+T{(x—AXY=0,
where Ax is the increment in x, as shown below.
ey — x| = Ax, §=0,1,23.
Using a similar numbering scheme as in Section 6.3.4, the temperature T; at any point x; is
given by
L —2T+T, =0

that is, the temperature at any point is just the average of the temperatures of the two nearest
neighboring points.

Suppose the domain of the problem is ) < x < 1. Divide now the domain into four

segments of equal length. Thus Ax = 0.25. Suppose that we know the temperature al the
end points xg = O and 1y = 1, that is,

T(]=a| and T_;’“—“{Eg.

These are then the boundary conditions of the problem.
From the above equations, the temperature at each node xg = 0, ¥y = Ax, 1 =
2Ax, x3 =3Ax, x4y = 1 is calculated as follows:

Al xg =0, T = o {given),
At x) = Ax, Th—-2T +T: =0,
Alxa=2Ax, 1T -2 +T =0,
Alxs=3Ax, Th—-2T:+T, =0,
Atxy = |, Ty = (given).

In matrix form these equations can be writien as

0 0 0 © 1y o
1 -2 1 0 0O T 0
0 1 =2 1 0 HLhi{=10]. (6.44})
0 0 1 =2 1{|mn 0
0 0 0 0 | T4 (45)

This a tridiagonal system. The solution of this system will give temperatures at the nodes
Xy, X2, and x3.
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B. Symmetric Tridiagonal and Diagonally Dominant Systems

In order 1o see how such sysiems arise, consider now the unsteady conduction of heat,
This condition impiies that the temperature T varies with the time ¢, The heat equation in
this case is

Far o a°r

o ¢ &t“

where o is thernal diffusiviey as defined in Section 6.3.4. Let ys divide the grid in the {x, 1)
phune with spacing Ax in the x direction and Af in the ¢ direction,

frat ~ 1 = At Xiga = X = Ax

H

o ) X2 X3 Xq 1

Let the temperalure at the nodal point x; = {Ax and I = fAf, as befors, be denoted by

7;;. Approximating - "? and % ‘* T by the finite differences
5?‘ !
}-} el T T:'. iis
31 {: H ;)
- R | e { 2T + T; 3
ax {& } RN Fojrbed IES =S

we obtain the following difference analogue of the heat cquation:
{1 +2¢}?}€g‘§-1 = CTwjer + ) =T i=L2,00000

where = o 2 mr}

These equations enable us to determine the temperature at tme step J = &+ 1,
knowing the wemperature at the previous lime step J == k. Varying { from | o n, these
equations become

fori=1. j=k: (1207 141 = CThpgy = Clogar + Tig,
fori=2, j=k (04+20 T — Cliipr — Clyzes = Tay,

fori==n, jemki (1 +20 T 0 ~ CTyaer = Tip 4+ Clicrpsr
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RBuppose now that the temperatures af the two vertical sides are known, that is,

Ti.%.! = Tm, and Tr!-&»l,f = Tu;;~

Then the above cquations can be writien in mairix nofation as

{1420 - o - e 0 B Ty +CT,
- {t+2Cy -C 0 .- a T IEX
: .. ; e : !
0 e e - {! + ;?.C) ?‘&,Q»M ka 4 C?;i!g

The matrix of the above system is elearly symetric, tridiagonal, and diagonally dominant
{note that £ = 0).
e FOT EXAMPIE, when T == 1, and we have - T RE S e

o~ 0 ... 0 Tigst g+ Ty,
=13 =t e O Toy
: . - ‘ . (6.45)
: . A | : !
g v 0 =1 3 Dok Tk 4 Ty

which is of the form
Ax = b,

where A is symmetrie, ridiagonal, and diagonally dominant.

Block Tridiagonal Systems

To see how block tridiagonal systems anse in applications, consider the two-dimenstonal
Poisson’s equation:

PT AT
— + = flx,¥) O<x=1, 0=y<i (6.46)
dx* dy=

A discrete anulogee 1o this cguation, similar to Laplace’s equation derived earlier, s

Tror s 4 Trerj o Tijur + Tigor — 41 = (Ax) fiss

i=42,... .4, PR i

(6.47}

This will give rise to a lincar sysiem of (# + 2)° variables.
Assuime now that the values of T at the four sides ol the unit square are known and
we are interested in the values of T al the interior grid poinls, that is, given

Toso Towry and Tigy Toaey, J=01,.. 00+, i=01 ... 041 (648
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weneed to find Ty, ... Taes Tioeoooo Thae Toae oo D Then we have an (0 x n%)
system with 7 upknowns which can be written after suitable rearrangement as

An =L \ f’;.n\ Tov+ Tho — (AxY fi
?i Ty — (AX) foy
_']u . -
I:nl
T = L . {6.49)
: Toerp (Al‘)"fz:»}!.l
T"? Tostt + Too =~ (AN fus
i ?w Tor — (AxY f12
AT /
an. Mwhe{a o e 5 8 AL SUAL S 5881 £ ¢ eesesarneen 5 1 5mm s ir wirabn s mnnnnes UL S —— D P S —— s i
4 -] 0
A= | (6.50)
N ' - . — l
0 - 4

The system matrix above is block tridiagonal and each block diagonal matrix 4, is sy
mtetric, tridiagonal, and positive definite,  For details, see Ortega and Poole {198,
pp. 268-2723.

6.12.2 Special Linear Systems Arising from Finite Element Methods

We have seen in the last few sections how discretization of differential equations using
finite differences gives rise to various types of linear systems problems. The finite element
technigue is another popular way w discretize differential equations, and this results also in
iinear systems problems, Justio give ataste to the readers, we illustrate this below by means
of a simple differential equation. Intercsted readers are roferred 10 some weli-known books
on the subject: Strang and Fix (1973), Becker, Carey, and Oden {1981}, Reddy (1993}, and
Fish and Belywchko (2007).

Variational Formulation of a Two-Point Boundary Value Problem

Let us consider the two-point boundary value problem
" = f{x), 0<x < 1, {8.51)
p =y = {6.52)
where &' = ‘f and f is a continuous function on [0,1]. We further assume that £ is such
that the probiem defined by (6.531)~(6.32) has a unique solution,
We introduce the space
Vo= fu: v is a continuous function on [8, 1], v’ is piecewise contlinuous and
bounded on [0, 1], and ¢{}) = v(1} = 0].
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Now, if we multiply the equation —u” + u = f{x) by an arbitrary functionv € V (v
is called a test function), integrate by parts the left-hand side, and use the above boundary
conditions, we get

| i
[ (—u"{(x) + ulx)v(x)dx =f Fx)u(x)dx,
0 {4

that is.
1 1
f (v 4+ uv)dy = f Fiovindx. {6.53)
0 0
Equation (6.53) can be written as
a(u,v) = (f,v) foreveryu € V,
where ;
aln, v) = / (vl 4 nwndx
0
and

i
(f U)=[ Flou(x)dx.
J0

(Notice that the form a(-, -) is symmetric (i.e., a (i, v} = a(v, «}) and bilinear.) These two
properties will be used later. It can be shown that « is a solution of (6.53) if and oaly if # is
a solution to (6.51)~(6.52).

The Discrete Problem

We now discretize problem (6.53). We start by constructing a finite-dimensional subspace
Vy of the space V.

Here, we will consider only the simple case where V, consists ol continuous piecewise
lingar functions. For this purpose, we let 0 = xg < x) < X2++- < x; < %54 = | bea
partition of the interval [0,1] into subintervals /; = [x;-, x;lollengthfi; = x;~x;y, j =
1.2, ..., n - 1. With this partition, we associate the set V, of all functions v(x) that are
continuous on the interval [0,1], linear in each subinterval I;, j = 1,...,n -1, and satisfy
the boundary conditions v(0) = v(1) = Q.

We now introduce the basis functions [¢, ¢, ..., @) of V.

We define ¢;(x) by
. T
O bt =1 ¢ lizh

(ii} ¢;{x) is a continuous piecewise lincar function.

¢h;(x) can be computed explicitly 1o yield

X — X
——= wheny;_ <x =¥,
gy =] M
P Xjpr — X hen v, < v X
h— when vy < ¥ < X,
1
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Pilx)

Sinee ¢y, ... g, are the basts functions, any function v € ¥, can be writlen uniguely as

Ui} e Zﬁ;qﬁ; (x), where vy = v{x).

faxi
We casily see that V, < V.
—e-Fhediscrete-anatogue-of problem {6.53) then reads: Find u,,.€.¥, such that

aluy,, v) = {f, v} Yo eV, {6,543

Now, if we let i, = ), ci(x) and notice that {6.54) is particularly true for every
funetion ¢h;{x}, = 1,....n, we get n equations, namely,

ﬂ(ZE;d)ﬁé;):(ﬂtﬁ;) Yi=1,2,..., 0.
Now using the linearity of a{-, ¢;) leads to n Bnear equations in # unknowns:

Zﬁiﬁifﬁs-%):fﬁ%) Vi=12,....n

i1
which can be writlen in the matrix form as
Ac s (fak, {6.55)
where (f,3 = {f, ¢) and A = {&;;) Is a symmetric matrix given by
gy =a;=alpn¢;}  and  c=(0,0,...,0).

The entries of the matrix A can be computed explicitly: We irst notice that

i = ay = aigy. dy) =10 - ji=2.
{This is due to the local support of the function ¢;:(x).) A direct computation now leads to

2
Gl (r—xp)? /Xf“* i (Xje1 — X)
N B = SRS At LA . = dx
2 = @9;. 6)) ./_;m Lz": * i :i o X Iy - 1t} :

i i i i+ j+i

! ! i
= ] e e —— —thy g,
i:?.‘.j —?;i“jn;g}*. 3[!J f).%}

i i Xy X} (X -y -1 A
a;_;m;mf [Wm% (xy =2} {x ~ Xy 1]§xw_%_!i’
Xjmi

» fr; i frj

o 4 b ir — b
Setg; m;%ﬂj{;‘;“&“g{ﬁ;*{*h‘w;]anéf}jwm":;f‘r“ﬂ*.
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Then the system (6.55) can be written as

- al by “ [ i {fr;}l
g}] s 0 [ 4] {fﬂ):‘.
| = . |. (656
. By : :
L 0 By oy -4 € 2 {j;z:}u "

In the special case of uniform grid f; = Jt = ~= matrix A thea takes the form

2 - o
4 0
-1 2
! /
SRR R LR - 65T
h ’ ‘ 6 U
oo =t 0 1 4
i 0 -1 2 |

Note that A has a very special siruclure: it is tridiagonal and symmelric positive
definite.

6.12.3 Symmetric Positive Definite Systems
Definition 6.19 (positive definite matrix). A xwmigiric marriy A is positive definire
if, for every nonzero vector x, x' Ax > 0. Lerx = (%, %1,.... 5.} . Then 3T Ax =
s et ik is called the quadratic form associated with A.

A positive semidefinite matrix is similarly defined. A symmaetric matrix A is positive
semidefinite if 7 Ax = O for all vectors x.

A conmmonly used novation for a sysunetric positive definite {positive sentidefinite
matrixiis A = 0 (= 0).

Some Characterizations and Properties of Positive Definite Matrices
I, Asymmelric matrix A is positive defintte il and only if all s eigenvalues are positive.

2. Asymmetric matrix A is positive definite i and only il all s leading principai minors
are positive.

3. If A = {a;,} is symmetric posilive definite, then ay > 0 forafl .

4. W A = (a;) is symmetric posilive definite, then the largest element {in magnitude)
of the whole matrix must He on the diagonal,

3. The sum of two symmeiric positive definite maltrices is symmetric positive definite,
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Remarks, Nole that properties 3 and 4 give only necessary conditions for a symmetric
matrix to be positive definite. They can serve only as inilial tests for positive definiteness,
For example, the matrices

NS 012 725
A = S B=1}12 15 2
112 3 -
12 3 4 ?

cannot be positive definite, since in matrix A there is a zero entry on the diagonal, and in B
the largest entry 25 is net on the diagoenal.

The Cholesky Factorization

e ALTHOTE ﬁgmmcniiy effective way to check the positive definiteness of a mmmetrig matrix

than those given by characterizations 1 and 2 is via Cholesky factarization of A:
Given a symmetric positive definite matrix A, there exists a lower triangular matrix
H with positive diagonal entries such that

A=HHT.

This lactorization is called the Cholesky factorization, after the French engineer
Andre-Louis Cholesky,” who discovered this faciorization, # is called the Cholesky factor.

The existence of the Cholesky factorization for a symmetrie positive delinite matrix
A can be secn either via LU factorization of A (Exercize 6.30) or by computing matrix #
directly from the above relation.

We will not discuss the technigue of finding Cholesky factorization via LU decomposi-
tion here. However, we note that Gaussian elimination, even without pivoting, 1s remarkeably
stable for positive definite matrices.

in this case, it can be shown that the growth factor is exactly equaf to 1. Eves [ there
is @ small pivat, the elimination schenie does not give rise to the growth In the entries of the
subsequent matrices A%, For example, consider applying Gaussian elimination without
pivoting fo the following 2 x 2 example:

A= 0.00003  0.60500
0.00500  1.8000

There is only one step. The pivol entry is 0.00003. 1t is small. As a result of this the
multiplier u1q; is relatively large:

aa) 0.00500 500
Hi3 == e X  —

an Toomoos - 3
However, the entries of AV did not grow:

A o 000003 0.00500
. 0 0.16667

*Andre-Louis Cholesky { 1875-1918) served as an officer in the French mititary. His work there involved
seodesy and surveying.
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In fuct, max{_a;j” ) = 0066667 < max(e;) = 1. Thus the growth factor pis | This
interesting phenomenon of Gaussian elimination without pivolng caa be explained through
the following result. Sce Wilkinson {1965).

Theorem 6.20. Let Gaussian elimination withent pivoring be applivd to a svmmmetsic positive
definite matrix A, Write A™Y, the matrix shwined after the kil step, as

: U | Ut
ARy &k bk
A —-( 5 )

&V,;_.,;—(,,_g;
{1y Then W, _g -1 15 Symmetric and positive definize.

GiY #Flag| < 1, then fafj'| = 1.

The Cholesky Algorithm

We now show how the Cholesky faclorization can be computed directly from A = HHT,
when st = 3. The general case iy analogous.

fu dyz dpg iy O 0 ha  ha by

gy Gz dn | = | by kn 0O 0 Ax ks

gy a3z a1 hyy hax hm G 6 hu
A H HT

1. Compute the first column of H. Compare the corresponding eniries of the first column

of both sides:
ay = hi, = g o= Jag,

a3y
ay = hylty = Dy o= e,
Iy
a3
a3 = yhsy = = —.
]ig[

2. Compute the second colupar of H. Compare the second and third eniries of the second
column of both sides:

th1 = flgl 3 ;4%3 = iy e S — ;I%l*

iz — hnhyy
faz w Bk + halfin = o s -——;—-—-wwm
121

3. Compute tive third columsn of H. Compare the third entry of (he third column of both

sides:
] 3 2 = 1
fl33 == gy =k A3y b gy = haz = o - Ny — g,

» Ingeneral, compute recursively the first through sih columns ol H by comparing
the entries of the respective colummn of both sides o A = HH ',
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ALGORITHM 6.7. The Cholesky Algorithm.’

Input: An n = a symmetric positive definite matrix,
Output: The Cholesky [actor H, stored over the upper triangular part of A,
inchuding the diagenal,

Fork=1,2,....ndo

=TT
gy = figp = y Ok = Zi:i s
Fori Wf\"‘l‘ .i?»--f”
g = iy = - (Ge.% - Zj;l hff"f*kf)
End
End

This leads Lo the following algorithm, known as the Cholesky algorithm,

Remarks.

1. The matrix H above is computed columa by columan.

at

. In the above pseudocode, 3 5., () = 0.

L)

. The positive definileness of A will make the quantities under the square-root signs
positive.

Round-off property.  Let the computed Cholesky factor be denoted by H. Then it can be
shown (Demmel {1389 that

A+ E=HAY,
where £ = {g;;}, and Jg;;] < Eg—ﬂiji)!’;}: {aza;;)'"?, Thus, the Cholesky factorization algo-
rithm {Algorithm 6.7} is stable. Sce also Higham (2002, p. 1971

MATCOM and MATLAR Notes: Algorithm 6.7 has been implemented in the MATCOM
program CHOLES. Noie that the MATLAB program chel { A) computes the Cholesky factor
R suchthat A = RT R, where R is upper triangular,

Solution of Ax = b Using the Cholesky Factorization

Having the Cholesky factorization A = HH7 at hand, the positive definite linear system
Ax = b can now be solved by solving the lower rtangular system Hy = b first, followed
by the upper triangular system H'x = v,

+This algorithm in some fields (such as in statisties) 15 known as the square-ron? algorithm, A square-
root-{ree algorithm, bowever, can be developed.
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ALGoRITEM 6.8. The Cholesky Algorithm for the Positive Definite System
Ar=h.

Inputs: A symmetric positive definite matrix A & B b2 B,
Output: v & B” such that Ax = b,

Step 1. Find the Cholesky factorization of A = HH T {use Algorithm 6.7).
Step 2. Solve the lower {riangular system for 2 Hy = b,
Step 3. Solve the upper triangular system for x: H v = y.

Example 6.21. Let

1 1 i 3
A=11 § 57, b= {11
1 5§ 14 20
A. The Chelesky factorization,
Ist column (k& = I}
Ay =1,
am @y
hay o =1, Doy me -2 o — o |
= f!]] ) &l f!“ 1

{Since the diagonal entries of # have w b positive, we take the < sign for iy

2nd column {k = 2):

| —_
fag = Vjﬂgg — s’z%} w2 1y == w = 2
- fiaz
Ird eolumn (& = 3):
R —
flaa = \f;ﬁ:&,g - ;’z%; - !1%2 =14
1 0 G
Thus, H=11 2 0
i 23
B. Sclution of the linear system Ax == 5.
(1) Solutionof Hv = b = v = (3.4, 3)7.
(2) Solutionof HTx =y =x=(1,1,1)". 1
Flop-count. (i) The Cholesky algorithm requires ’—*; flops to compute H (Aalf of the

mumber of flops required to do the same job using LU factorization) and 1 square roots.
(i) "The solution of each triangular system Hy = b and H'x = y requires »* flops. Thus
the solution of the positive definite system Ax = b using the Cholesky algorithm requires
%i + 2 flops and # square roots.
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Round-off property. If & is the computed sobuiion of the system Ax == /& using the
Cholesky algorithm, then # can be shown that ¥ satisfies

{(A+ E} =5

where | Ell; < cpfAllz, and ¢ is a small constant depending upon #. Thues the Chalesky
algarithm for solving o symmetric positive definite system is stable. See Higham {2002,
p. 19E).

Relative Error in the Solution by the Cholesky Algorithm

Let £ be the computed solution of the symmetric positive definite system of Ax = b, using
the Cholesky algorithm followed by triangular systems solurions as described above. Then
it can be shown that % L
m < g Cond{A}.

S R
Remark. Demmel (]98%} has shown that 1h4: dbove bmmd can he. z*ap acmd by O(p:} Cond (A},
where A = DTAD™Y D = diag(,/dry, ..., . The latter may be much better than
ithe previous one, since C{)n{i(A) may be much smalier than Cond(A),

6.12.4 Hessenberg System

Consider the lincar sysiem
Ax = b,

where A is an upper Hessenberg matrix of order #. Solution of a Hessenberg system arises
in several practical applications, including the efgenvector computation of a matrix (see
Algorithm 9.8}, Solving a Hessenberg system requires much less computational effects than
solving ar arbitrary systene. This is because, at each step of eliminalion, only one entry
needs to be updated, due 1o the special structure of a Hessenberg mairix. Furthermore, if
Gaussian elimination with partial pivoting is used to winngularize A, and i ja;;] = 1, then
§a§;‘§i < k-+ 1 (Wilkinson (1965, p. 2183 Thus, the growh factor p in this case is less than
or equal to # (Higham (2002, p. 172))

Growth factor and stability of Gaussian elimination for a Hessenberg system. The
growth facior for a Hessenberg matris using GEPP is bounded by n. Thus a Hessenberg
system can be safely solved using portinl pivoring,

Flop-count. K requires only 3n° flops (o solve a Hessenberg sysiem, significantly less
Hian 2931 flops required {o solve an # » # system with an arbitrary matrix. This can be seen
as follows:

Trinngularization: #° flops,

Solution of the lower triangular system: n? flops.

Solution of the upper triangular system: »° flops,

Total: 3n? flops.

Thus o Hessenberg system can be solved with only 3n? flops in a stable way using
GEPP
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Example 6.22. Solve the Hessenberg system Ax = b with

I 2 3
A= 34),  h=6911)7"
0 5 6

using partial pivoting and compule the growih factor,

Step 1. The pivot on the first column is identified as the {2,1) entry, Interchange row 2 with
row | and overwrite it with A.

ik

2
A=A=11
]

AN S )
RN =

* Now, migltiply the first row by —1 and ddd it to the séeond row.

2 3 4

A=] 0 % 1

0 [s] 6
Multiplier a2 = —4. Permutation row index ry = 2,

Step 2. The pivol on the second column is identilied as the {3, 2) entry of the current
MAarx A.
Interchange the second and third rows 1o obtain

2 3 4
A=A=[|0 5 6
0 3 1

Mulitiply the second row by mwl% and add it 1o the third row to ebtain

2 3 4

A=A=10 5 6

00 2

Multiplier sty = ~ . Permutation row index r; = 3.

Sa,
23 4 I 4 6 0 1 0
=10 5 6}, =10 | O}, andP=10 0O 1
2 Lo

00 32 P P00

Computation of the growth factor: p = ‘—’3’%@3’3 e f,
Solurion of the system: Solve Ly = b = Pb = » = (9,11, %})’wﬁ Solve Vx =y =
r={1,1 0% 1
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6.12.5 Diagonally Dominant Systems
A matrix A = (g is column diagonally dominant if

ol = ol + oy + - - 3 laal,

faaal = Jaga! + bzl A - A agal,
(6.58)

Wyt 2 @] + lag] 4 A @l

If the striet inegoalities hold, thes A is called a strictly colomn diagonally dominant
matrix, A row diagonally dominant matrix can be similarly defined.

A cotnmn dingonally dominant matric possesses the attractive properiy thof ne row
interchanges are pecessary at any step duving the tripagularization procedure using GEPP
The pivot element is already there {n the right place.

We show this by iakmg Ausa ’i %3 mamx ?ﬁr a pmof n Lhe gencral case, see the
solution 1o Exercise 6.35(a). B '

Let
a4y diyy an
A= | gy ay daxn
a3 s dn

be ¢olumn diagenally dominant. Then gy can be taken as the pivol at the first step, and no
interchange of rows is necessary. At the end of Step 1, we bave

H#yy Hya Eyy

AV =1 0 alf o
a3 (0
O ayp oy

We will now show that

H
;ﬁégfl el 03".‘ i

so that agj will be the pivot at the next step. Observe that

3]
{Zgi mofEan v gy X e, (659}
“ay

By column diagonal dominance, we have

| = a4+ |au]. (6.60)
Using (6.60} in (6,393, we have
a
'] < Lol + | =2 Gaul = tan )
ay
[er,7 ]
= am| -+ Jayg] - [”“}*"2“? fa1]
jdyy
< lant - = [eiay |
a2y

{since by the column dominance of the second column of A, jaxn! = Imal + lan|L
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The general case can be proved using a similar srgument.
Furthermore, it can be shown {Higham (2002, pp. 170-172)) that in this case, the
growth factor is less than or equal 1o 2.

Growth Factor and Stability of Gaussian Elimination for Diagonally Dominant
Systems

» For g column diagonally dominant matrix, GEPP is identical to Gaussian elimination
without pivoting.

5, 0 22
Thus, for column diagonally dominanr systems, Gaussion eliminarion withont pivor-

ing is perfectly stable.

+ For row diagenally dominant matrices, the muliipliers can be large; however, p < 2
and thus Ciaussian elimination without pivating is still stable.

Example 6.23. Let A = [ 75}, Then AV = {; E&a}

maxt 18,3 &

The growth factor p = —5— = & = 1.16. N
6.12.6 Tridiagonal Systems
The LU factorization of a tridiagonal matrix 7', when it exists, may yield L and U having

very speciual simple struciures: both bidiagonal, L having 1's along the main dizgonal and
the superdiagonal entries of £7 the same as those of T, Specifically, write

y 5?; i 0 i 0 iy b; O
("} .-| )‘~ E l,j'? ()‘ "o ,'v
F oo - o - = LI,
. a{}u~—§ e f)u«-i
g .. Ca 2y O £y 1 0 iy
(6.61)

By equating the corresponding elements of the matrices on both sides, the entries {€;}
and ;) can be computed from

oy = ey oy o Eithge, =2, .8 ap = ;- Lk, f==20 00,8
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ALGORITHM 6.9. Computing LU Factorization of a Tridiagonal Matrix.

Input: The tridiagonal matriz T as given above.
COutputs: The unit lower bidiagonal matrix L and the upper bidingonal matrix
£} as given sbove.

Sefu; =,
Fori=12,...,ndo
E[ = %Ci

Hijy
i =gy~ b
End

Solving a Tridiagonal System

Cnce we have the above simpie factorization of T, the solution of the ridiagonal system
#x = b can be found by solving the following two special bidiagonal syslems in the order
{iYLy=5h. (i) Ur =y

Flop-count. A rridiagonal system can be solved by the above procedure in only O3}
flops, a very cheap procedure indeed.

Stability of the process.  Unfortunately, the above factorization procedure breaks down if
any iy is zero, Even if all v, are theoretically nonzero, the siability of the process in general
cannot be guarantesd. However, as we have seen belore in many pracucal situations, such as
i discretizing Poisson's equation, the iridiagonal matrices are symmeiric positive definite,
in which cases the above procedure is quite stable (see Higham (2002, pp. 173-176)).

In fact, for a symmetric positive definite tridiagonal system case, this procedure should
be preferred over the Chelesky factorization lechnique, as it does not involve computations
of any square roots. It1s true that the Cholesky factorization of a symmetric positive definiie
tridiagomal matrix can also be computed in O{n} Hops; however, an additional 2t square roots
have 1o be compuied (see Golub and Van Loan (1996, p. 156)).

I the peneral case, fo mointain stabitity, GEPF shonld be nsed.

Furthermore, if the entries of 7 are so scaled that i1, 1), lev] < 1, then it can be
shown {Wilkinson (1965, p. 219} that the entries of A 5t each step of GEPP will be
bounded by 2, showing that the growth factor in this case is bounded by 2. For a proof, see
Higham (2002, pp. 173}

Growth factor and stability of Gaussian efimination for a tridiagonal system, The
growth factor for GEPP of a tridirgonal matrix is bounded by 20 p 5 2.
Thus, GEPP for a tridiagenal system is stable.

H 7 s symmetric, one naturally wants to take advaniage of the symmetry; however,
{EPF does nor preserve symmetry, Bunch (1971) and Bunch and Kaulman (19777 pro-
posed symmaetry-preserving algonthms. These algorithims can be arranged to have Bop-count
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comparable to that of GEPP and require less srorage than the lauer, For details see the papers
by Bunch {1971) and Bunch and Kaufman (1977). See also Bunch and Parlet {1971) and
Bunch, Kaufman and Parlent (1976},

g8 0.1 0
A= |08 035 QI
0 81 45

using {0} the formula A = LI/, and {ii) Gaussian elimination.
{HFrom A= LU

Example 6.24. Triangularize

by o= L9,
- i %mg = {1L.BEBY e Ay = b w05 ~ 2 x 0.1 = 041110
i =3:
O3 ad =
fy m — = e = (,2432; 1=z~ fabs = 0.5~ 0.24 x 0.1 = 0.4757.
iy 841
Thus.

1 0 0 0.e  0ld 0
L = | (G.8889 i 03, U= 0 04111 0.1
g $.2432 0.1 G { 0.4757
{it} Using GEPP

Step 1. Multiplier my = —23 = ~(.89;

08 01 a
AV L0 041l 0174,

0 01 05
Step 2. Multiplier my = ~ b = 0243,
0.9 ol 0
AT =1 0 o411 01 | =u,
0 0 04757
1 0 @ 1 0 0
L=1{—mn I 01 = ]0.888Y ] ojp. N
0 —miya | & 0.2432 §_

Block Tridiagonal Systems

In this section we consider solving the block tridiagonal system Tx == b, where T is & block
ridinganal matrix and & = (&, ba, ..., 5,17 s a block veclor. The number of compenents
of the block vector b; is the same as the dimension of the ith diagonal block matrix in 7.



164 Chapter 6. Numersical Solutions of Linear Systems

A. Block LU Factorization

The factorization procedure given in the beginning af this section may be easily extended
io the case of the block ridiagonal Mairix, Let

fAr B

Ca . 0

\ Cy  Ap
{6.62)

s

U, B e e 0

O i By

l\ Ly 1 4 T Ly

Then the matrices L;, i = 2, .., N, and U, 7 = 1, ..., N, can be computed as in the case,
of a scalar tridiagonal matrix, as shown in Algorithm 6.10

ALGORITHM 6.10. Block L1 Faciorization of a8 Block Tridiagonal Matrix.

Input: The block tridiagonal matrix T as given above.
Output: The block unif lower bidiagonal matrix £ and the block upper bidiagenal
triangular matrix £/ as given above.
Step L. Set U/, = A,
Step2. Fori=2,...,Ndo
2.1, Selvefor Ly LU = (.

2.2, Compute U Uy == Ay — LBy
End

Numerical stability of block LU factorization of a block tridiagonal matrix, Tt is
clear from the statement of Algorithm 6,10 that block LU fuctorization does not always
exist. BEven if it does, it may not be siable. However, it can be shown to be stahle if T is
o sympmetric positive definite matrix that is well-conditioned. The scheme is afso stable if
7 is a block column diagonally dominant matrix with respect to a subordinate matrix norm
(Higham (2002, pp. 251-256)). Nole that the block tridiagonal matrix in (6.49)-(6.50)
appearing in the selution of Poisson's equation {6.40) is such a matrix. 4 € B"* with
parlitioning A == (4;;) is block diagonally dominant by columa for a given norm and for
all jif

BATH = Bl Ayl = vy 2 0. (6.63)
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8. Solutien of Block Systems

Onece we have the above factorization, we can find the solution x ol the block tridiagonal
system
Tuvelh

by solving Ly = b and Ux = y successively. The solution of Ly = & can be achioved
by block forward eliminarion, and the solution of Uy = y can be computed by block buck
sithstitution,

ALGoritaM 6.11. Block Forward Elimination.

Inputs: A block unit lower wiangolar matrix L = (L} as in {6.62), and a block
vector b,
Output: The block solution vector.p.such that Ly = b,

Set Lyyg = 0.
Fori=1 ..., ndo

Yp=b = Ly
End

ALGORITHM 6.12. Block Back Substitution.

Inputs: A block upper triangular matrix £/ as in {6.62), and the block vector y,
output {rom Algorithm .11,
Output: The block vector ¥ such that Ux = ¥,

Set B};.YN+| == £,
Fori=N,..., ldo

Solve Ui = Vi o Bixial
End

Example 6.25. Consider the system T = b with

4 -1 10 4
-l 4 0 ] 4
=1y o 2 -] *71z
0 1 -1 2 7

Then
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Block LU factorization:
Set

f o 2

L€ o R -1 {L266T 00667
{h SaEvchrLg_,L|L2—13—<G l):;»Lz_.{fl —'<{).66? 0‘2667)‘

{2) Compute Iy from s = An — oy = Us = ( 1.7333 _]‘Dﬁé?) .

-1.0667 17333

Block forward elimingtion:

w=bh—-Livomin= @) . M2

tH

by — Loy = (D.é&é?)'

0.66467

. Block back substitution:.

Note that

Ug,\": == Yy — Boxy m ( (note that Baxy = 3,

().
oen=n= ()= )
()

LU Factorization of a Banded Matrix. We have just seen thut LU factorization of a
btock tridiagonal matrix gives L and {7 both block bidisgonal. For 1 general banded matrix,
the following result holds (see Gojub and Van Loan {1996, p, 152)).

0.6667
0.6667

Theorem 6.26. If A & B"*" is g banded marrix with upper bandwidth p and lower
bandwidth g, and if A = LU/, then U has upper bandwidth p and L has lower bandwidih g,

The growth fuctor for a bunded marrix, 1T A & B**" has upper and lower bandwidths p,
then the growth factor is p < 2270 — (p — 12772,

Proof. See Bohte {1975). O
A comparison of Rop-count, growth factor, and stability of the special linear system solvers

is given in Table 6.1,

Block Cyclic Reduction

Freguently in practice, the block teidiagonal matrix of a system may possess some special
properties that can be exploited to reduce the system to a single lower-order system hy using
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Table 6.1. Comparison of different methods for linear system problem with special

natrices

Matrix Flop-couni Orowth

Tvpe Method {Approx.) Factor | Stability
3
f

Symmeiric GEWP Zi%m p=1 Sable

Pomuyg ”:;

Definite Cholesky T (a1 None Stable

SQuUare Tools}

3

Diagonally | GEWP 25;— s<2 | Sble
Strictly -

Dominant
"Hessenberg GEPP | 3w° R (7 R Stable”
Tridiagonal GEPP O(n} p=2 Stable

a technigue called blogk eyclic reduction. For details see the book by Colub and Van Loan
{1996, pp. 176~180) and the references therein,

6.13 Review and Summary

For an easy reference, we now state the most important results discussed in this chapter.

6.13.1 Numerical Methods for Arbitrary Linear System Problems

Two types of methods—direct and ierative——are used [or solving linear systems. liera-
tive methods are especially helpful for large and sparse syslems., We have discussed here
only direct methods using Ciaussian elimination. [rerative methods will be diycassed in
Chapter 12.

Gaussian elimination (Section 6.4}
« Gaussian elimination withowt row inierchanges, when it exists, gives a factorization
of A A= LU

The system Ax = £ is then solved first by solving the lower triangular sysiem Ly = &
followed by solving the opper tnangular system Ux = 3,

253

The method requires = Bops. [t is unstable for arbitrary matrices, and is not
recommended for practical use unless matriv 4 is symumetric positive definite. The
growth factor can be arbitrarily large for an arbitrary matrix.

« Cwssian elimipation with partial pivoting (GEPP) gives the factorization PA = LU,
Once having this factorization, Ax = b can be solved by solving successively the
two trangular systems (U Ly = Ph=F . (i Uxr =y
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. 3 .
The process requires 2% flops and 0 (%) comparisons, In theory, there are some
risks involved, but in practice, this is a stable algotithm. It is the most widely used
practical elgorithm for solving o dense linear system,

Gaussian elimination with complete pivoting (GECP) gives PAQ = LU, Unice
having this factorization, Ax = b can be solved by solving two mriangular systems:

Li=Ph=H Uy=g,

and then recovering x {rom v = Q y. The process requires Zm flops and G{n)
comparisoas, Thus it is more expensive than GEPP, but it is more stabic (the growih
faclor p in this case {s bounded by aslowly growing function of 7, whereas the growth
factor p with GEPP can be as big as 2~ 1),

6.13.2 Special Systems

Symmetrm pasttm, ‘definite, “diagonally dominant, Hessénberg, and tridiagonal systems
have been discussed in Seclion 6.12

{a) Symmetric positive definite syseem, The Cholesky fuctorization algorithm (Algo-
rithin £.7) compuies Lthe factorization of a symmetric positive definite matrix A in the formn
A = HH?, where H is lower trianguiar with positive diagonal entries. Onee having this
factorization, the svsiem Ax = b is solved by first solving the lower triangular system
Hy = b, followed by solving the upper triangular system H7x = v. The method requires
ﬂ;- Rops and n square ropts evaluations. It is stable.

(&) Dingonally dominant system. Gaussian elimination does nol require any pivoting,
Ttis stable {p < 2} {Section 6.12.5).

(c} Hessenbery system. GEPP requires only ¢{#%) flops to solve an n x n Hessenberg
system. It is stnble (# < n) {Section 6.12.4).

(d) Tridiagonal system. GEFP requires only G{n) flops. It is stable {p = 2} (Sec-
liog 6,12.6).

(e} Block tridiagonal system. Block LU fectorization is stable in two important cases:
when A is (1) block column dingonally dostinant, and (W) well-conditioned synunetric pos-
itive definite matrix (Section 6.12.6).

6.13.3  Inverse and Determinant

The inverse and the determinant of 2 matrix A can be readily compuied once a factorization
of A is available. In practice, only the factorization 24 = LU, obtained by GEPE will
be used. The inverse can alse be compuied by solving the system of equations AX = 1
{Algorithm 6.3).

Note: The most problems Involving inverses can be recast so that the inverse does
nof have (o be computed explicitiy.

» There are matrices (e.g., as trigngadar, orthogonal, cle} whose inverses are rivially
compuied.

= The inverse of 2 matrix & which differs from n matrix A by a rank-one perturbation
only can be readily computed, once the inverse of A has heen found, by using the
Sherman-Morrison formula: Let B = A—ne? . Then B™! = A~ +a{a v’ 471,
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where @ == m There 18 a generalization of this formula, known as the

Woodbury formla (see Hager (1988, p. 114,

6.13.4 The Condition Number and Accuracy of Solution

« Computing the condition number from the definition is clearly expensive; it involves
finding the norm of the inverse of A, and finding the inverse of A s about four times
the expense of solving the linear system itsell

« Condition numberestimator: The optimization-based Hager s norm- 1 condition nn-
ber estimaror {Algorithm 6.5). has been staled.

« There are symptomy exhibited doring Gaussian elimination with pivoling such as a
small pivor, a large computed solution:, a large residual, etc., that merely indicate if
a system is ill-conditioned, bui these are not sure tests (Section 6.8.1).

« When componentwise perturbations are known, Skeels condition nwmber can be
useful, especially when the norms of the columas of the Inverse maurix vary widely
{Theorem 6.13),

6.13.5 lterative Refinement

Once a selution has been computed, an inexpensive way (o refine the solution iteratively,
known as the ilerative refinement procedure {Algorithm 6.6), has beco described in Sec-
tion 6.11. The iterative refinement technique is a very useful technique.

6.14 Suggestions for Further Reading

The books on numerical methods in engineering literature routinely discuss how various
enginecring applications give rise (o tinear systems problems. We have wsed Chapra and
Canale (2002), O'Neil {19913, and James et ab. (1989) in pur discussions and found them
useful. A recent book of interest is by Majumdar (2005). Direct methods {(such as Gaussian
elimination, QR factorization, etc.) [or linear systems and related problems, discussions on
perturbation analysés and conditioning of the linear systems problems, iterative refinement,
etc., can be found in any standard matrix computations texis: Golub and Yan Loan (1996),
Demmel (1997}, Trefethen and Bae (1997), Watkins (2002}, Hager (1988), and Stewart
{1998b), Stewart’s classie book (Y973) is stilf a vich sowrce of knowledge. Most numerical
analysis lexts contain some discussions oa these topics. In particular, the books by Conte
and de Boor (1980), Heath (2002), Van Loan {2000}, Kincaid and Cheney (2002], Moler
{2004}, and Ortega (1980) and Stewart’s numerical apalysis book (Stewart (1998a)) provide
a fair amount of numerical linear algebra treatment. See also Rice (1981). For discussion on
solutions of linear systems with special matrices such as diagenally dominant, Hessenberg,
positive definite, elc., see Wilkinson {1963, pp. 218-224) and Higham (20023,

Two authoritative books on error analysis and perturbation analysis are Wilkinsen's
classic € 19635) and the recent book by Higham (2002), These two books are must-reads for the
inrerested readers on these ropics. Abook devoted entirely to perturbation annlysis is Stewart
and Sup {1990). Some ineresling earlier pagers on perturbation analysis and conditioning
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inctude Stewart (1993a), Demmel (198703, Edelman (1988, 190243, Sun (19913, Zha (19973),
McCarthy and Swang (1973), O Leary (1980}, Bischof (199G}, Higham {(1987), and Pierce
and Plemmony (1992},

Exercises on Chapter 6
{Use MATLAB, wherever appropriate and necessary.}

EXERCISES ON SECTIONS 6.3 AND 6,12.1-6.12.6

6.1 An cagineer requires 3000, 53300, and 6000 vd* of sand, cement, and gravel fora
building project. He buys his material from three stores. A distribution of cach
material in these stores is given as follows:

Store | Sand | Cement | Gravel
&% % T
{ 60 20 20
2 40 40 20
3 20 aG 50

How many cubic yards of each material must the eagineer take from each store o
meel his needs?

6.2 It the input 1o reactor 1 in the “reactor” problem of Section 6.3.2 is degreased 10%,
what is the percent change in the concentration of the other reactors?

6.3 Coasider the following circuit diagram:

100 , 500
W W—0 v, =200v
- - -~

SR b
A —— W0 v=sv
1502 200

Sel up a linear system to determing the current batween nodes.

6.4 Using the difference equation (6,47, set up @ livear system for heat distribution at
the following interior points of 2 heated plate whose boundary temperatures are held
constant;



Exercises on Chapter & 171

6.5

6.6

6.7

50°C
[ ] L] [ ]
(1) 2.1y 3.0
) o L ] ® [ ] .
100°C (1.2) (2.2) (3.2) 75°C
[ ] [ ] [ ]
(1,3 (2.3) (3.3)
0°C

Derive the linear system for the finite difference approximation of the eliiptic equation

alr 9T
+ w5 = f(x! .)I)

axt o gy’

The domain is in the unit square, Ax = Ay = 0.01, and the boundary conditions are
given by

Tx,0)=1—-x, T, )=y, TO =1 T 1)=1

For Exercise 6.5, il

flx,y)= —:rrzsin(:rrx)sin(fry),
then the analytic solution to the elliptic equation

T 9T
+

gx? - ay?

= flx.¥),

with the same boundary conditions as in Exercise 6.3, is given by
Tx,y)=1—x+xy+ (%) sin(wx) sin(my)

(Celia and Gray (1992, pp. 105-106)).

{n) Use the finite difference scheme of Section 6.3.4 to approximate the values of
T at the interior points with Ax = Ay = 1, n = 4,8, 16.

{b) Compare the values obtained in (a) with the exact solution.
Write down the linear system arising {rom the finite element method of the solution

of the two-point boundary value problem, —20” + 3¢ = x%, 0 < x < I, «(0) =
u(l) = 0, using a uniform grid and the same basic functions ¢p; (v} as in Section 6.12.2.
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EXERCISES ON SECTIONS 6.4-6.11.

6.8 (a) Solve the lincar systems Ay = f with each matrix A of Exercises 5.13 and
3.14 of Chapler 5, aking & = (1. 1..... 17 and using the factorizations
A= LU {MA=Uand PA = LU,

(b) Compuie the determinant, the inverse (when if exisis), and the growth factor of
the above matrices using the lactorizations in {a}.

6.9 Compute the residual norms {or each of the systems of Exercise 6.8 {(with zll three
factorizations) and plot these residuals using separate graphs.

610 Solve

o000t 1 X 2.0001
3 1 1 Az = 3
T2 3 \n 3

using Gaussian elimination without and with partial pivoting and compare the an-

SWETS.

6.11 Consider i linear sysiems

Axy = b, T 12, 0

(a) Develop an algonthm o solve the above systems tased on GECP (Gaussian
elimination with complete pivoling). Your aigorithm should take advaniase ol
the fact that all s systems have the same system matrix A,

() Compuie the flop-count of this algorithm,

() Apply your algorithm ta compute A~ and work cut a flop-count for this com-
putiation.

(d) Appiy the aigorithm in (¢} to compute the inverse of a 5 x 5 Hitherl matrix.

6.12 Consider the system Ax = b, where both A and b are complex. Show how the sysiem
can be soived using real arithmetic only, Compare the Aop-count in this case with
that needed to solve the system with Gaussian elimination using complex arithmetic,

6.13 {Gaussian efimination with column pivoting.) Develop an algorithm for LU facior-
ization of a matrix A based on colunn pivoting insicad of row pivoling. Does this
factorization always exist? Give reasons lor your answer, Show that when it exists,
it leads to a factorization, AP = LU, where P is a permutation matrix. Apply this
factorization (o solve each of the systems of Exercise 6.8.

6,14 {(a) (Computing the inverse af a block matrix.) Let A = { |\ 12},

Assume that Ag and Ax are square and that Ay and Ay — AQIAI_%IAQ are
nonsingular,

Let B = {g“ ‘;‘w) be the inverse of 4. Then show that

By w= (An ~ An Al Ayl Bu= ~ALAnBan,
Bay = —BunAydn, and By = A} — Badun Ay
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{8} How many Dops are reeded to compute A™1 using the results of (a) i A,y and
Ay are, respectively, mox moand p x p?

{¢} Use your result of {a} to compute A~', where
4 0 -1 -1
g 4 -1 -1
-5 =1 4 {
R ¢ 4

A=

6.15 Let

l 2 1 0 2 1
A=12 400001 2.0002 and B=1[2 400001 20002
I 20002 20004 To2.0002  2.0004

Write B in the form B = A =~ v’ , then compute B~ using the Sherman-Morrison

farmula (Theorem 6.7}, knowing

(41m10 _2.0006  0.0003
A7 =10t

-2.00060  1.0004  -0.0002
0.0003 00002 (.0001

6.16 Suppose you have solved a lincar systerm with A as the systermn matrix. Then show
how one can solve the augmented system

(2 0()=0).

where A is ponsingular and n x nand @, &, and ¢ are veciors, using the solution you
have already obtained. Apply your result to solve

23
0 =6 15 3y
0 1

TN i
Fud bt e

6.17 Consider the symmetric system Ax = b, where

0.4445 O.dd44 02222 ( 0.6667
B o

A=1 04444 04445 02222 8.6667
—0,2222 -(.2222  0.1132 —{.3332

The exact solution of the system is

(u) Make a small perwrbation é4 in &, keeping A unchanged. Solve the system
Ax' = b+ §b, Compare ¥’ with ¥, Compute Cond{A} and verify the resalt of
Theorem 4,19
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(b) Make a small perturbation AA in A such that fAA] « ?%“;'—E Solve the system
(A~ Aadx’ = b Compare 1’ with v and verify the result of Theorem 4.23,
(Hine: JA™ = 107,

{c} Compute the residual in gach case and verify the result of Theorem 6.12 (residual
theorem}.

6.18 Prove ol 1AAL
X j i
e < CORG{ A ),
lix +dxf Al
where Ax = band (A 4+ AAMx +80) =D,

Verily the above inequality for the system

1 1
boros) ! 0 0 0.00003
Gedo s m] =11, withad={0 0 0
i1 1 X2 i 878 Ow .............
i 3 3

6.19 (a} Construct your own example (o show that a smail residual does not necessarily
guarantee that the solution is accurate.

{by Give a proof of Theorem 6.12.

628 (a) Compute the condition aumbers of the following matrices before and after row-
scaling and compare the results.

7 —i I

&

(i)A:(]lD *? ) Gyl =1 =10 =10
|10 ppei

{h} Solve Ax == b with each of the matrices in (a) before and after scaling (choose
b so that exact solution ia each case has all entries equal o 1),

6.21 Construct an example to illusteate the phenomenon of the artificial iil-conditioning,
that is, ili-conditioning due to improper scaling.

1 0
3 P
6.22 Lel A = ( 0 LQ_S )
{2) Calculate A~1 and Congy{A).
(b} Find b and & such that Ay = b,

{c) Find &b and 8x such that A(x -+ 8x) = b 4 &b and
large, Whas is your conclasion?

3‘;?&': is small, but 85k i

ol

() Now multiply your second equation by 107, What is the condition number of
this new matrix? What is vour conclusion?

6.23 Apply Hager’s algorithm {(Algorithm 6.5) to the Hilbert mairix of order 3 and then
compare the result with those obtained by MATLAB funclion condest and the actual
F-narm condition number.
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6.24 Construct anexampleto verify the staternent Lhat Skeel’s condition number Cond (A, 1)
can he much smaller than Cond(A).

6.25 Constroct an examyple of ap ill-conditioned sysiem that exhibits the symptoms of
ill-conditioning staled in Section 6.8.1.

6,20 Apply iterauve refinement (Aigorithm 6.6} 1o the system of Exercise 6.10, using

Estimate Cond{A} from x*) angd x**! and compare it with the actual condition number.
EXERCISES ON SECTION 6.12.3-6.12.6

6.27 {a) Compuie the Cholesky factorization of

T
A=11 1001 1.000
L 2

using (i} Gaussian elimination without pivoting, and {ii) the Cholesky algorithm.
{b) For part {1} verify

MmaEx {aﬁf}{ <maxlal V), k=12

i
What 15 the growth factor?
() Solve the sysiem Ay = A, where

3
b=130020],
40010

in each case.

6.28 (1) Show that

4 -4 —1 8

-1 4 0 -1

e - |

0 -t -1 4

is o positive definite matrix ssing both Gaussian efimination and the Cholesky
algorithm {Algorithm 6.7).

{5) Compute Cond{A} from its Cholesky [nctorization.

6.29 Using the Hilbert matrix of order 10, show that the solution obtained by the Cholesky
alzorithm may he inaccurate if the positive definite matrix is highly ill-conditioned.

6.30 Prove the existence of the Cholesky factorization of & symmeiric posilive definite
matrix A via LU faciorization.

631 Let H = {h;;) be the Chelesky factorization of a symmetric positive definite matrix
A = (ay;). Then prove that i}, < ¥, by = au.
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6.32 Let A be symmetric positive definite. Develop and state an algerithm for camputing
an upper triangular matrix K such that A = R7 R, Apply this algorithm to the matrix
A of Exercise 6.27.

633 Prove that the growth factor p of a symmetric positive definite malrix with Gaussian
elimination without pivoting is equal 1o 1.
6.34 (1) Develop an algorithm to solve a tridiagonal system using GEPR,

{h) Show that the growth factor in this case is bounded by 2. (Hinf: max 36; l"[ =
2max lagld

{c) Apply vour aigorithm to find the solution o the widiagonal system (6.44), with
Ty =FFand 7 = 100°PE

6.35 {&) Prove that GEPP applied to a column diagonally dominant matrix is wdentical

T Ganssianelimination without pivetinge— -~

{b) Show that the growth factor using GEPP for such a matrix is bounded by 2.
{Hin: maxy max; ; jg; " )i < 2maxg; [ayl.)

(c) Verify the siatement of (a) with the matrix of Exercise 6.14.

{(d) Consuuct a2 » 2 column diagonally dominan matrix whose growth factor for
(Gaussian elimination without pivoting is larger than | huiless than or equal 1o 2.

{e} Repeat {a)-{d) for a strictly row diagonally dominant matrix.
{1 Construct an example to show that for a strictly row diagonally dominant matrix,
the multiplier can be large but the growth factor is still bounded by 2.

6.36  (a) Develop analgorithm for solving a symmetric positive definite tridizgonal linear
system usiag the ZDL7 decomposition. Show that this algorithm takes only
{{n} flops,

{by Apply vour algorithm to solve the symmetric positive definite system with the
matrix A given by (6.50) for # = 3, choosing & = (1,0, 0)".
6.37 Solve the stricily diagonally dominant system

5 5 5 X 13
5 10 i 2 Ay
-1 0 10 2z X3
-1 -4 300 A4 7

using Gaussian elimination without pivoiing. Compute the growth facior,

6.38 {a) Develop an algorithm for trisngularizing an upper Hessenberg matrix using
GEPP by taking advaniage of the Hessenberg structure of the matrix. Give
flop-count,

{b) Let A be an # = o7 upper Hessenberg matrix. Then GEPP gives
la Tl < k41 if fayl <

Hence deduce that the growth fackor in this case is bounded by n.
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{c} Apply your algorithm developeé i1 {4} to sobve the following syslems:

(’ 1 2 2 X 4}
o (oo 4 s wn) |7
' 0 0.0 p ] TR
it 4] 0.001 Xy 9
]

—

0 0 ) 1.0001
0
0
i
I

an |oooor 2 o 2.0001 |.
0 00000 3 3.0000
000 0 1y /y
{100 2] el
Wlg v oo 3flel™
00 1 4/ \x

{d] Cwmpa&i{, Lha crrcswth factor in ;;i{:h case.

{e} Suppose the dafa in the abuve pro‘z)!cms are dccurate 1o four dlm[s dﬂd you
seek an accuracy of three digits In your solution, Identify which of the above
problems are ill-conditioned. (Use the result of Section 4.7.2.)

6,39 (Solution of two-dimensional Poisson s equation.y Using Algorithms 6,10, 6.11, and
6.12, solve the system (6.49)-{6.50) appearing 1n the solulion of Poissen’s equation
{6.46), with » = 3, and choosing the entries of the right-hand side appropriately.
Show thal this system is block diagonally dominant and verify inequality (6.063) for
this system.

6,40 Using the result of Exercise 3.17, establish the ervor bound of Theorem 6.4 and also
prove the result | il = 3 pp2 Al

MATLAB and MATCOM Programs and Problems on Chapter 6

M6l (a) Wrile MATLAB programs calied linsyswp, linsyspp. and linsyscp io solve
Ax = band to compute the growth tactor {gf) using Gasssian elimination with
no, partial, and complete pivolings, respectively, as follows:

{X, 2f) = Insyswp{a, I,
(%, g/ = linsyspp(4. b},
(%, 2f) = linsyscpl A, b).
{b) Using the computed solutions and the growth factors obtained in (a) make the

following table for each of the given data set. The function insyswl is availabla
in MATCOM.

Test data for Problem MO.1: Bach of the following matrices of order 20: Hilbert, Pel,
Hankel, Vandernionde, a randomly generated matrix, and a triangular matrix with
small diagonal entries, For the Pet matrix, take « close o L.
Create the vector b in each case such that the solugon vector 1 15 a vector with all
eomponents egual to 1. Present your results using Table 6.2,
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Table 6.2. Comparison of different methods for the linear svstems problems.

Method Normofthe | Relative Residual Posterior Growth
Computed | Error it ALY> | Error Bound | Factor
Solution fx — Xl Cond{4)
2o Fxlla I —Axlz

itbla

linsyswp

linsyspp

linsysep

tinsyswf

Ap

M6.2 {(Backward error in GEPP) Plot the error bounds (1) 3n ppe | A Yoo (D) MW

for selving Ax == b with partial pivoling for five random matrices of dimensions vary-
ing from 18 to 1000, by generating & also randomly. Write down your ohservations.

M6.3 Repeat Problem M6.2 using GECP

M6.4 Perform an experiment, for both GEPP and GECP, using five random matrices of or-
ders varying from 10 to 100, 1o verify that the error bound 357 (L)) Ao, is pessimistic
compared to the frue error. Presenl your results with graphs.

M6.5 Using the MATCOM prograim cheles or the MATLAB program chol, write a MAT-
LAB program, linsyschol, 1o implement Aigorithm 6.8 in the following format:

[x] = linsyschol (4, 5).

Dara: Create a 200 x 200 lower triangular matrix L with positive disgonal eniries
taking some of the diagoenal entries small encugh to be very close 10 zero, multiply it
by L7, and take A = LL” as your test matrix A. Create the vector & such that v has
all its entries equai 1o 1.

Ma.6  (a) Write a MATLAB program lutedg to implement Algorithm 8.9, then use it to
wrile a program, linsystrdg, 1o solve a tridiagonal system,

(b} (Solwtion of one-dimensional hear equation.y Apply linsystrdg o soive the
tridiagonal systerm of the form (6.44) of order 200, choesing Ty = O and Tgg =
100,

MO.7 (The purpose of this exercise i 1o verify that solving a symmetric positive definite
system vequires no pivoting to ensure stabificy in Gaussian elimination.) Run the
program bynsyswp o the symmetrie positive definite matrix of Problem ME&.5 and
compule the solution and the growth factor.
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M6.8 Using the MATCOM program hageondl, estimate the condition number of each of
the following matrices A of order 20: Hilbert, Pei (with & close to 1}, randomiy
generated, Vandernionde, and Hankel, and then compare your results with the actual
condition number obtained by the MATLAB program cond (4, 1), Present your
results in the form of a table.

M6.9 (a) Runthe program linsyswp with the diagonally dominant, symmetric tridiagonal
matrix A in (6.50) of order 200 by choosing the right-hand side vector b so that
the solution vector x is known a priori. Compare the exact solution x with the
computed solution .

(b) (Implementation of nvo-dimensional heat eguation.) Using the program
linsyswp, solve the system (6.43) with n = 200, and choosing & = 0,
To=01i=1...,nad T, = 0and T,; = 100 (Note that system
(6.45) is also synmetric positive definite and tridiagonal.)

M6 Write a MATLAB program;“calleéd lynstedgpp, to soive a wridiagénal system with
partial pivoting. Apply the algorithm to the data of Problem M6.6.

M6.11 (a) Run the iterative refinement program iterref from MATCOM on each of the
50 x 50 systems: Hilbert, Pei, Vandermonde, randomly generated, and Hankel,
using the solution obtained from the program linsyspp as the initial approxima-
tion v'?. For the Pei matrix, tuke o close to [,

(b) Estimate the condition number of each of the above matrices obtained from
the iterative refinement procedure and compare them with the actual condition
numbers.

M6.12  (a) Write MATLAB programs bklutrdg, bkforelm, bkbacksub to implement
Algorithm 6.10-6.12, respectively.

{b) (Selution of Poisson’s equation.) Using the programs in Problem M6.12(a),
write a MATLAB program, bltrdgls, Lo solve the block tridiagonal linear system
Tx = b. Run your program with the linear system (6.49)-(6.50) by choosing
the right-hand side appropriately, with n = 15.



Chapter 7

QR Factorization, Singular
Value Decomposition, and
Projections

Background Material Needed

« Concepts of rank, basis, range, and null space (Sections 2.2.1, 2.3.1, and 2,3.2)
» Special matrices (Section 2.4}
« Veotor and matrix norms {(Section 2.5}

« Condition number {Sections 4.6 and 4.7}

7.1 Introduction

In Chagter 3, we described LU factorization of a matrix, and in Chapter 6 we showed how
this factorization is used 10 solve Ax = b. In this chapler, we describe two other important
matrix factorizations: GR and singular value decomposition {SVD). These nwo factoriza-
tions ploy fmportant roles in feast-sguares solutions (Chapter 8) and in many other impor-
tant natrix and applied compurations such as image restoration and image construction,
biomedical engineering, etc.

Recall that a square matrix ( is said w be an orthogenal matrixif 007 = 070 = 1,
Given an m = » matrix A there exists un m X m orthogenal matrix @ and an # % n
upper triangular mafrix R such that A = QR. Buch a factorization of A is called the OR
Sfactorization .

We shall prove the exisience of QR factorization by actually constructing the matri-
ces O and & in several diflforent wayssothat A = OR.

If m = n, and if the matrix @ s partitioned as @ = (@4, (1), where @ is the matrix
ol the first # columns of @, and if Ry is defined by R = [ '), where Ry isn % i upper
triangular, then 4 = O Ry,

Thus, il m > n, A can be factorized inlo A = @, Ry, where () is m x n orthenormal
and Ry s 1 # upper triangular, s showe in Figure 7.1,

This QR fuctorization is called the “cconomy size,” the “thin.” or the reduced QR
factorization of A,

181
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Ry

X

X w HL X H
Figure 7.1, Reduced QR fuctorization.

To distinguish between these two types of QR factorization, the factorization 4 =
(IR is sometimes called full QR factorization. By acwial constructions, we will show the
following:

Every matrix A € B"**(m = n) has a full QR fociorizations {and hence also a

reduced OR factorization). Mareover, if A has full-rank, then i1 tas a unique reduced QR

* factorization” ATETQT Ry with posttive dingonal entries of Ry (Theorem 714 ilm.< n, .

then the faclorization can he written as A = Q{R,, B3}, where R is upper triangular and
£ is rectangular.

Computing QR Factorization

We will describe the following here:

+ Houssholder's method {Algorithm 7.2}
« Givens' method {Algorithm 7.53).

» ‘The classical (CGS) and modified Gram-Schmidt (MGS) metheds (Adgorithms 7.7
and 7.8),

The Householder and Givens methods compute the full OR factorization (and there-
fore the reduced QR factorization), while the CGS and MG methods compute the rediced
OR fuctorization, These methods are described in Sections 7.2, 7.4, and 7.5, respectively.

The singular value decomposition (SVD) of a matrix A ¢ B™*" is a factorization of
A in the form

A EyT,

where U & B™** and ¥ < B" are orthogonal and £ e B™** js disgonal. The 8VD
has become a computationally viable tool [or solving a wide variely of problems arising
in many practical applications, including sigral ond image processing, biomedical engi-
neering, control engineering, and others, In Section 7.8, we introduce SVD and discuss 1ts
hasic properties and applications. The SVD will be revisited in Chapter 10, Ax o preparation
for discussing least-squares solutions technigues, which will be deseribed in Chapter 8, we
introduce the concept of erthogonal projection and its computation using QR factorization
and SVD in Seciions 7.7 and 7.8.10, respectively. Complex R factorizarion and complex
SVD are briefly introduced in Sections 7.3 and 7.8.3, respectively.
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7.2 Householder’s Matrices and QR Factorization

7.2.1 Definition and Basic Properties

Definition 7.1 (Householder watrix and Heuseholder vector), A matrix of the form

Zuu’

i’
where # is a nonzero vector in B, {5 called o Householder muatrix after the celebrated
numerical anulvst Alston Householder® The vector u determining the Householder matrix

H is called the Houselolder vector.

H=1- (7.0

A Householder matrix is also known as an elementary reflector or o Householder
rransformation. We now give a geometric interpretation of a Housebolder transformation,
For the sake of convenignce, in the geometric interpretation {see Figure 7.2), we assume

" that vectoF u is such that a” i = 1, ' o .

ululx)

=2t x)

PO Hx = (I —2um)x
= x—2ulu’x)

Figure 7.2, Geometric buterpretation of Householder transformation.

With this geomotric interpretation the folliowing resulis hecome clear:

» JHxha = |lells Tor every x & B, A rgflection doey not change the length of the
VECIOT

FAlsion Househalder {1904-1993), an American mathermatician, was born in Rockiond, Hinois. He
wag the former Director of the Mathematics asd Computer Scignce Division of the Ouk Ridee Mational
Labaratary ot Oak Ridge, Tennessce, und a former Professor of Mathematics at the University of Tennessee,
Knoxville, A rescorch conferenze on linear and sumerical lincar algebea didicmed 1o Dr, Householder, ealled
the Hogscholder Symposism, s hek! every (hree vears sround the workd, See his ohituary in STAM News,
Oerober 1993,
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» H is an orthogonal matrix. [H x| = {xka for every vector x implies that H ix

orthogonal,
« 1 =] Hx reflects x to the other side af P, but Hiv e HiHx) reflects it back
fo oy,

» Hy =y forevery y lor which v"u = 0. Vectors in P cannot be reflected away.

Below we summarize some of the above interesting properties of a Householder mutrix
and give analytical proofs of some of them.

Theorem 7.2 {(properties of a Householder matrix), ler H = [ — 7;}';:'5% be o Householder

matrix with u € B". Then

(i} H is svmmetric;

(iiiy H*=1;
{iv) My = —u;
vy He=wifvlu =0

(vi) If 1t is chosen to be a vector parallel to x — v, where y # x but fyllz = l|x|ia, then

Hy=y

Proaf. The proofs are done by direct verification. Let f = —-.
Proofof (Y. HT = (I — But” )7 = — Buu’ = H. Thus, H is symmetric,
Proaf of (ii}.

H'H = (1 = Bua™)(I — Buu’)
=1 —28un’ + B¥a T wun’  (note that 7w is a scalar)

2
= f - Qﬁmar -+ ;52 . EMT {note that w7 i == %}

=1 =28un’ +28un” =L

Thus, H 18 orthogonal.

Proof of (iii). Since H = H7 wehave H> = H-H = H'H = I, by pars (i}
and (ii}.

The proofs of (iv) and (v} are left as Exercise 7.1,

Praof of (vi). Choose # == x ~ y. Now write

X =

(x+ 3+ %(I - ¥k

Bt e

Then | | ,
, _
[t s F Y e e Y e s 3 £ wiyp — X ‘2
Huy szixﬂwzﬂu ﬁ}mzﬂ(réﬁwzi} x) {7.2)

{by properly (iv)h
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Again, since

(+ - =x e —xly+ v e —y7y

=[x}~ Uyi3 =0 tsince sl = Iy,
by property (v}, we have
Alx+yl=ux+7y.

Thus, from (7.2), we have

o 1 0
Hy = 5{" +yi+ -2-(} - X} =¥,

Forming matrix-vector and matrix-matrix products with a Householder matrix. A
remarkable computational advantage involving Houscholder matrices is that seither o
matriv-vector product with @ Householder mateic H nor the marriy product H A {or AH)
“npeds o BEexplicitty formed. This Can be seéd from the [ollowing computations.
LetA e R and x € BF, and let H be an »# x 7 Householder matrix. Let 8 = ;;72*;;
Then
b Hx e ([ - ’?i’-‘;‘i)x =x - Buin’x).

“utu

3]

CHA=( = BunT)A = A~ BunT A= A~ fue? where v = ATy,
3 AH = A(] — Bau”) = A — fuwu’, where w = Au.

Flop-count for matrix-matrix and matrix-vector products with Householder matri-
ces. From the above statements, it is straightforward to verify the fop-counts for the
[ollowing computations with Householder matrices (Exercise 7.3%

» Mairix-vector product Az 3n fops,

» Matrix product HA or AH: “mn Hops {using statement 2 or 3 above),

« Explicit compuation of the product of Houscholder matrices: Let H i =1, ..., 1,
& r Houscholder matrices each of order n. Then computing & = M. ..., H,
requires 4(s”r — nr? + %) flops.

* Mairix product 7 C: Let € ¢ B**7 and let () be as above. Then the product 9 C
requires

2pr(2n — ry {Q given in factored form as above),

2 pa? {Q explicitly represented),
We emphasize here that in practice ¢ matrix-matrix or matrix-vector product with a

Haousehaolder matrix should be compuied as shown abaove, withowt explicitly forming the
Howsehalder matriz H.

Numerical stability. The following round-aff properties show that computations with
Householder matrices are very stable (Wilkinson (1965, pp. 152-1623). Let H denote the
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computed Householder mairix, Then the following is oblained:

s |H ~ HY = O(u).
« MHA) = H(A+ E); |Ef> = O(u}Al).
s MAH) = (A+ EYH, [E|, = Ol Al).

Creating Zeros in a vector with a Householder Matrix

A very useful property of Householder matrices 1s that, given a nonzero vector x, a House-
holder matrix H can ahways be found such that certain specified entries of & can be made
zeros. The following result shows how 1o find the Hooseholder vecior 1 such that Hx isa
multiple of ¢;,.

H___Tlleorem 7. 3. Given a nonzeroe vector x ¥ ¢y, the Houseﬁ;{}fder matriv H dﬁﬁ!!é’d !35' the
vector 4 = X & X 28 1 such thar H¥ &y ey : o

FProof. The proof follows immediately from part {vi} of Theorem 7.2 by choosing ¥ ==
dixfize,. NWole that with this choice, ¥ # x and [[yll» = {lxll. Thus, by part {vi) of
Theorem 7.2, we have
Hy =y ==2lxle. O
An ihustration:

X x
X i}

xwm| X e my=| 0 | = dlxilze.
X 0

Choosing the sign: While forming & = x & {|x]#, it is adgvisable to choose sign
{x1) in place of = to aveid catastrophic cancellation in computing the first component of «.
Thus the vector i should be formed as follows:

o= x b signde dleilzer.

¥ xy is zero, just choose sign (1) = 4

Nete: The vector # above differs from x only in the first component—the other
components are the same.

Scaling the vecror x; Any possibility of overflow or underflow in the computation of
§x |2 can be avoided by scaling the vector x. For example, the vector u conld be determined

5 . .
Jrom the vector R} ratiter than from the vector x itself.

Example 7.4. Let
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ALGORITHM 7.1, Creating Zeros in a Vector with a Househelder Matrix,

Input. A nonzero r-vector x.
Output. A vector 2 such that

D" )
(i— 2 )s:w{x‘D...D)”.

e

Step 1. Find the scaling factor m == max(x;. ..., x.).
Step 2. Scale the vector x as follows:

Fori=1,...,ndo
Xy

Xy R e

in
End
Step 3. Compuite the Householder vector & = {uy, ... u) s
= x)  |[x]|z sign (x))
Forf{=12,. .., ndo

Hy owe Xy

End

Step 1. w1 == 4.
Step 2, vy =0, vo |, x4y o= 025

Step 3. =gy + flallz = 04+ 1O30B = L0308, 1z = xp = LLuy = 13 = 0250 =
frey, q, 1033 = (10308, 1, 02537,

eI

ul

Yerify: (f -

)s; = {-4.1231, 0, 0", W

Flop-count and round-off property.  Creating zeros in a vector by a Householder matrix
is a cheap and numerically stable procedure.

It takes only 3n flops (o create zeros in the positions 2 through n in a vector hy
using Algorithm 7.1, and it can be shown {Wilkinson (1963, pp. 132-162)) that if # s the
computed Householder matrix, then

LH ~ HY < 104.
Moreover,
A(Hx) = H{x +ei et < enulix)a,
¢ is a constant of order unity, and j¢ is the machine precision.

MATCOM Note: The MATCOM prograrm HOUSZERO itmplements Algorithm 7.1,
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7.2.2 Householder’s Method for QR Faclorization

We will now show how the idea of introducing zeros in a vector using a Householder mairix
can be extended 10 compute a full QR factorization of an a x » matrix (m = a), The
process will yield a fuctorization

A= R,

where (2 ism w m and prihogenal and R s m % 5 upper trigngular, us shown in Figare 7.3,

{Recall that an #1 x »n upper wiangular mairix is the matrix whose entries below the main
diagonal are zero)

R
A = Q -
S | g
Hl X it
m X i moXH

Figure 7.3, Householder QR factorization,

The process was introduced by Houscholder in 1958, Tn contrast with the Gaussian
elimination scheme, the Householder process can always be carried out to completion.

The iden is to reduce the matriz A to an upper triangular mairix R by successively
premultiplying A with a series of Householder matrices {which are orthogenal).

For anm x n matriy, the process will veguire s = min{m — 1, 1) steps.
Let A ¢ B" and 1 2 0. Then s = n. Generate suceessively Householder matrices
H}‘ Hy, ..., H,such that
Hof . . HHA = R,

where R is upper triengular.
There are »2 sleps.

®oO% #
i 0 = X
Stepl. A — HA=] . | | = A
: : X
0 = x
® X Y
0 x 0 v ¥
Sﬁép 2, AW ....{ii., f?’za‘%(” = Ho A= . g X v *® = A{:"}.
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x X x
éfsvl) {n—1} § 0 et 3]
Stepr. A Hy A =H, My .. FoH A = = A% = R,
4 0 ... =
Forming ¢ Set Q0 = HHy... H,. Then from above
Qradi -
Since cach Householder matrix 7./ = 1, ..., a1, is an orthogonal matrix, so is the matrix

(O (note that the product of orthogenal matrices is an srihogonal matrix).

So, premultiplying QT A = R by 0. we have A = QR.

The construction of Householder mutrices 1s illusirated with m = 4 and # == 3 in the
following.

_ Constraction of Householder Matrices (m =4, a=3)

Step 1. Construction of Hp: Construct 2 4 = £ Householder matrix M| such that

(290 X
1y . {
ﬁl thyy - ¢
253 &
Form implicitly
X X X
P IR S T
HiA = D % x = A",
0 = x
Step 2. Constroction of Hy: Construct o 3 x 3 Householder matrix f*}g such that
. * x
HZ EY = G
% g
Form implicitly
X X %
P 0 x x -
., G — ail
H.A 00 ® AL
0o 0 &

Step 3. Construction of Hy: Construct a 2 x 2 Householder matrix Hy such that

Form implicitly

I 00
Hia® =] 0 1 0 A =

0

=AY = R

O X
oo X X
oI O A 4

The process is fairly general, Set A™ =
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Siep &,

« Construet a Houscholder matrix Hy of order m — & + | to annihilate the entries
{k + 1, k) through {m, k) of the matsix A%~ at the previous step.

» Form H;. ARD = A papticily, where Hy = diag{f_;, Hy). (Note that when
k= = A

Example 7.5,

1 1
A=} 040001 O
0 {3.0001

Step 1. Compute H): Hy = 7 — 2ugn! /il u,

,,,,, SR JF W Y {1 2
iy = | 00001 + 1+ (0.0001)¢ 0 =1 dooor
g g 0

Compule implicitly

r -1 -1
Afl]:ﬁ“,jlm(‘rmm)é: 0 -0.0001 |.
1ty iy 0 0.0001

Step 2. Compute Fa: Ha = 7 — 2usud fuluy:

. { ~0.0001 / 5 s (1N s [ 2414
fiy = ( 0.0001 )wg(wonom}x} + (0.0001) ( 0 ) =10 ( | 0000 )

T al - 1 0 0
He = (é ?) 252 (0?3-,0171 3;3;; ).Hz= 0 —07071 0707 |,
HER . . 0 07071 001

Compuie implicitly

-1 =1
A = H A = HhH A = ( 0 00001 | =R
0 0

Fornt Qand R:

0 070714 0.7071

Note: fn pracrice, the matrix © should be formed by miplicit matriv multiplicarion,
as shown before.

B B | s hy=1 7T
R={ 0 oo |- ( 0 ) where &, *—( 0 0.0001 )

-1 6.0001 | —-0.0001
@ =HHy= | -00001 07071 G.7071 = {, ).
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The full QR Factorization of A A = QR

I 1 -1 0,000t —-0.000] -1 -1
0.001 i = | —-00001 07671 0.7071 0 00001
g 3.0001 3 0.7071 07071 ¥ g

A £ R

The reduced QR Factorization of A:

-1 -1
A=OR =] -00001 ~07071 ) n
0 07071 0 0.0001

2 R

-} 0.0003 (

ALGORITHM 7.2, Householder QR Factorization,

Input: An s x 2 matrix A{m > 0.

Qutputs: {1} The Houscholder vectors a4, ..., u, needed to form ¢, (i} An
upper triangular matrix B, Theresultis A = gR.

Siorage: (1) K is stored over A in the upper triangalar part, (i) The components
Hye1p through a,: of each i are stored in the respective positions of 4, and the
first component 1y is stored in a separale one-dimensional array,

Fork=1,2,....,ndp

1. Findthe vectoruy = (g, .. .. i)’ defining the Householder
malrix M, of erder m — & 4+ 1 such that

ris
A & é;’

Hy : E .
Ok {}

I~a

. Store Fpy OVEr Gpo. dgy = I

fad

. Store the vector iy as fallows:
fpp =g, f=k-+1,...,m,

Ve = k.

4, Compule f = ——.
ITHE P
5. Update the entries of the submatrix of 4 containing rows &

through i and columns & throagh », denoted by Ak - & 0on),




192 Chapter 7. QR Factorization, SVD, and Projections

and store these entries over the corresponding entries of A

T
Ak tm kin) = (1,,1_;;.;1 — EH;”“ ) Atk o, k-n)
Hy My

m ALk kY e ﬁiig-f{;{A(k kol

End

Note: The algorithm does not produce the matrix @ explicitly. If needed, it has to be
formed oul of the saved Householder vectors wy,

T
Example 7.6. Let

o1 1
A=11 2 3].
1 I l e 1 PR <m0 12 o0 5
L H 0 *
k = 1: Construct the Houscholder vector uy such that (1‘3 o -—T—§> = | O
I i 0
4] 1 2
w= 1l +v2lo) =11
1 0 I
Update:
7 ~1.414 —2.1213 —2.8284
A=At = HA = G [-02071 0.2929
¢ —12071 1707
2;;—,;,;2") (-[}.2{}?{)
k= 2: Construct the Houscholder vector #, such that { /3 ~ ——= e
€ B © 2 ( 2T T, ~1.2078
* -
ol

02071 , 1.4318
Hy = (m1.2ﬁ71) - ]'33“‘?( ) ( 30‘?;)

Updare: Update the submatrix inthe box, A(2: 3,2 :3) = {/, — ’{8::—;1{ A2 ;
3,23

3
A{z;z,zza)s( L2247 1.6330 )

3] ~0.5774
~1.4142 —2.1213 —2.8284
FormR A=AV HhHA=R= 0 12247  1.6330
0 0 {5774
Note:

In practical computations vsing the above storage arrangements, the entries
a1, a3, and ap of the above matrix (which are zeros now) will be flled in with sz = 1,

iy = Loand ug = —1.2071, while the entries ay; = v2 and 42y = —1.4318 wi%ibf: stored
in a vector v defined by v = (V2, —~1.4318)7
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Form @ = HH, by performing the matrix muluplicatinn impficitly:

i} 08165 05374
Q= |-07071 04082 -05774]. W
~0.707F —0.4082  0.5774

Flop-count.  When m = n, Algorithm 7.2 requires approximately 32° flops just to com-
pute the riangular matrix &. This can be seen as follows.

For each &
» About 4(n — &) Rops to construct f}*
» Aboul 4{u — &)* Rops for updating.

1

Torétf isinber of flops = '4""2{(” P E T =)
Kozl

=4 - P 4 o= e 1
a4l -+ a -+ + 1)

433(11 —@e -1 on{n—1)
] ’ 2

4n? . .
sy =y {neglecting O{n") terms).
Nate: The abave count does not inchede the explicit constraction of ). The maix
0 is available only in lactored forim, 1t should be noted thal in a majority of practical
applications, it i sufficient to have ¢ in this ?aclomd f&rm and in many applications, @ (8
not needed at all, Jf Q is seeded explicitly, another ,;1 ¥ flops will be required.

The approximate flop-count in the case mr # n:

bo2a? (m — w) flops i m = #n (Exercise 7.6(a)).

b

2w (n ~ ) Nops if m < .

fubd

. dnetn - mn® 4 0% /3) Rops to compute Q@ explicitly (Fxercise 7.6{a)).

Round-off property and stability. In the presence of ronnd-off errors the algorithm
computes QR decomposition of a stightly pertnrbed matrix. Specifically, it can be shown
(Wilkinson (1963, p. 236)) that if R denotes the compuied R, then there exists an orthogonal
Q such that o

A+ E= QR
The error matrix £ satisfies

HE|p = @lmuehalls,
where ¢{n} is a slowly growing function of # and u is the maching precision,



194 Chapter 7. QR Factorization, SVD, and Prejections

MATCOM Note: The MATCOM program HOUSQRN computes (R faclorization of an
m x 7 malrix 4. The MATCOM program HOUSQR computes the QR factorization of an
B X N mwirix,

7.3 Complex QR Factorization

Fx e Candy; = re, then it is easy to see that the Householder malrix
H=7-fBve. wherev=x ke xseandf = ?g_ is such that

syt

Hr=xve | x [ e (7.3)

Using the above formula, the Householder QR factorizaiion method for areal matrix A,
deseribed in the last section, can be easily adapted 10 @ complex matrix. In this case, O is
~-unitary and R is. complex upper triangufar, The details arc left to the readers. See Golub
and Van Loan (1996, p. 233} T

The process of complex QR factorization of an m x n matrix, m > n, using House-
holder's method requires 8n2(m — 4 real flops.

MATLAB Note: Given a complex m x & matrix A, a MATLAB program in the form
(¢, R] = gr{A) computes an m = » complex upper tiangular matrix R and ap # x m
unitary matrix  sothat A = QR If Aisrenl, § and R are also real and @ is orthogonal.
igd, R| = qr{A, ) produces the reduced QR factorization.

7.4 Givens Matrices and QR Factorization

7.4.1 Definition and Basic Properties

Definition 7.7. A matrix of the form

fth  jth colwmns
ol

f 1 00 v e e el @

O 1 0 -vr vere cve e D

000 - ¢ 5 -0 ,
Je,jeos) = Do : o TOWs

00 0 «+« =5 ¢ - 0| =Jjh

\() o0 - e 0 1

where ¢* + 8% = |, is called g Givens matrix, afier the nnmerical analyst Wallace Givens.®

“wailace Givens wus an American mathematician, His ploncering work done in 1930 on computing the
eigenvabies of o symmeiric mairis by reducing it t0 a symmetrie tridingonal form in o numerically stable way
forms the basis of many nomerically backward steble algorthms developed later, Givens held appointments
AL MmNy prestigious institates and research institetions, He died oo March 5, 1993, at the age of 82 (sce
obituary in SIAM News, July 1993}
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Since one can choose ¢ == cos & and £ = sin# for some #, a Givens malrix as above
can be conveniently denoted by Fti, 7, ). Geometrically, the matrix J {4, . #) rotaies a pair
of coordinate axes {fth unit vector as its v-axis and the Jth unit vector as its y-axis) through
the given angle & in the (7, ) plane. That is why the Givens matrix J (4, j, #) is commonly
koown as a Givens rotation or plane rotation in the (i, /) plane. This is illustrated in the

fotlowing figure.
A2 o feoslo+8)\  feosw —sinw) fcosd
Y= sinte + #y )] haine cosa sin#

it o= cosd
" isind

o
,,,,,,,,,,,,, g
-

Thus, when an n-vector

X

L

X =
Xp

is premuftiplied by the Givens rotation J{i, j, €}, only the jth and jth components of x are
affected; the other components remain unchanged.
Note that since ¢ 4+ 5% = 1, J{. j,0) - JU., j.6F = I, the rotation J(i. },0) is
orthogonal,
If x = ({1} is a 2-vector, then it is 3 matter of simple verilication that, with
X X3

§ o= e

v X7+ y X7 X3

the Givens rotation J(1,2,6) = (_‘} f'} is such that J(F, 2,8)x = (3]
The above formula for computing ¢ and & might cause some waderflow or overflow.
However, the following simple rearrangement of the formuls might prevent that possibility.

£ ==

Computing the Givens Parameters

RS 1
If k] = fxy], compute 7 = —, 5 = — ¢ = 51,
X2 AN P
, X3
Otherwise, | m s, 0 & ———el o2 0f,

X 1412

(Note that congputations of s and t do aot involve 8.3

Example 7.8.

)
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di

L
PSR ARV
e A | Y
‘ifbi‘iff}‘.‘ ( C‘ ;;) = ( 3 ":5> (]) = (T) . ’
e & e . - 3 {)
W5 S -

Implicit Construction of Matrix Product with a Givens Matrix

1 3o
3, 0= e == o] § u=

Since |x:) = lxaf, we take t

Because of the special structure of the Givens malrix J{i, 7, §), which differs frum the
identity matrix oniy in four places (i, i}, {, f), ¢j. i}, and {4, f, matrix multiplication by a
Civens matrix does not fave to be performed explicitly. It can be done implicidly, as shown
in the following algorithn.

ALGORITHM 7.3. Implicit Construction of JA.

Input: (i) Aﬁmxnmamxé{m z;z) (i) The numbers ¢ and s of the Givens ™
matrix F{i, J. ¢, 8}
Ouwtput: The implicit product J A stored aver 4,

Fork=1..... #do
0= i,
b= ag,
a; = ac + b,
€y T s + b,
End

MATCOM Note: Algoritun 7.3 has been lmplementad in the MATCOM program
PGIVMUL.

Zeroing Specified Entries in a Vector

Ciivens rotations are especially useful in creating zeros in a specified position in a vector,

Thus, if ¥ = (¥, %2, ..., %, ... %), and if we desire to zera & only, we can construct
the rotation J(7, &, 8) ({ < &) sach that J{, &, #3x will have zerp in the &th position,
X f} * \I
x
X3
X o : U . Jry = 0
XL
P
Xy l\ ” )

To construct J{, &, #), Brst construct a 2 = 2 Givens rofation {_‘{ :) such that

(5 96 =6)
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and then form the matrix J(i, k, #) by inserting c into the positions (i, /) and (k, k), and
s and —s into the positions {J, k) and (&, {), respectively, and filling the rest of the matrix
with entries of the identity matrix.

Example 7.9. Supposc we want (o create a zero in the third position of v, that is, & == 3.

|
Yo | —1
3
Choose { = 2.

1. Form a 2 x 2 Givens rotations ¢ and 5 such that

GG =7 -7

2. Then
o 1.0 .0 | -
-1 3
J230xc=|% 7% Fml{-1]=[V10 |
0 <& =L 3 0
VT

Creating Zeros in a Vector Except Possibly in the First Place

Given an n-vector x, if we desire to zero all the entries of x except possibly the first one, we
canconstruct J(1,2,6), xV =J(1,2,68)x, xP = J(1,3,0)xYV, ¥ = s(1,4,0)x?,
etc., so that with

P=J(l,n8)--J(1,3,8)J(,2,8),

we will have Px a multiple of e|. Since each rotation is orthogonal, 5o is P,

b4 X
n=3:  r=| x |22 su2e5=] 0 | =20,
x x
® J(E3.0 x
W= o |29 503,00 = 0 J=a@
X 0
Example 7.10. Let
!
X = t
2

= 1,20 =

L4
!

S-S

é]%('_] © ol © "’mlu &l._.
=
hc L = o o
3
[}

P =7q,3,0:" =
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Flop-count and round-off property. Creating zeros in a vector using Givens rofations
is about (wice as expensive as using Householder matrices. To be precise, the process
requires only 1L times as many flops as Householder's, but it requires O{fé,i) SQUArE IO,
whereas the Householder method requires ({#) square roots. The process is as stable as
the Householder method,

Creating Zeros in Specified Positions of a Matrix

The idea of creating zeros in specified positions of a vector can be wrivially extended to
create zeros in specilied positions of a matrix as well. Thus, if we wish to create a zero in
the (f, H[(j = i}] position of a matrix A, one way o do this is 1o construct the rotation
J{i, j. 8} affecting the ith and jth rows only, such that J{, j, #)A will have a zero in the

(7. ¢} position. The procedure then is as follows.

ALGORITHM 7.4, Creating Zeros in a Specified Position of a Matrix Using
Givens Rotations.

Inpuf: Ann x # matrix.
Ouipet: The matrix J(i, j, 634 with zere in the {j, f} position. The matrix
J{, J, 814 is stored over A.

1. Find the Givens parameters ¢ == cos# and § = sin# such that

(% 9()=6)

2. Form J (4, §, 83 A buplicitly and store this over A, (Use Algorithm 7.3.)

Remark. Note that there are other ways 1o do this as well. For example, we can form
F(k, j,8)affecting the kth and jth rows, such that J(k, 7, )4 will have a zeroin the {f, 1)
position,

Example 7.11. Let

P2 3
A=12 3 4
4 5 6

Create 2 zero in the (3,1) position using JF(2,3,8).

1. Find cand s such that { S0} {3) = () e = =, 5 = k=

Vi NEY
2. Form
10 0Ny 4 s o2 3
av=yaama=|0 T {2 3 4]=|YO FH E| »
VA AN
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MATCOM Note: Algorithm 7.4 has been implemented in the MATCOM program
GIVSZERO.

Since Givens matrices can be conveniently used 1o create zeros in a vector, it is natural
10 think that these matrices can also be used to find the QR factorization of a matrix. The
idea is just like Householder's. The only difference is that (usually) more than one Givens
matrix will be needed to create zeros in desired positions in a column of A, One way to do
this is as follows.

7.4.2 Givens Method for QR Factorization

Let A € R"*". There are s = min(m — 1, n) steps.
Step 1. Form an orthogonal matrix @, = J(1, m,8)J(1, m—1,8)...J(1, 2, 8) such that
~ A= 0\ Ahas zeros below the (1 1)-eniry-in the first column, :

Step 2. Form an orthogonal matrix Q> = J(2,m,0)J (2, m — 1,8} ... J(2, 3, 8) such that
A® = 05AM has zeros below the (2, 2) entry in the second column.

Step k. Form an orthogonal matrix @y = J(k,m,8)...J{k, k 4+ 1,0) such that A% =
0 A% has zeros below the (&, k) entry in the kth column,
The final matrix A" is upper triangular.

Obtaining Q and R

Set R=AY (upper triangular).

Set @=070]...0f {orthogonal),
where Q; = J(i,m,0)J(i,m—1,8)...J(i,i-+1,8)  (orthogonal).

Then Q'A = Q,Q,-1... C201A=R

An tllustration: Letm =4,n =2,

X x x X x X
21,20 0 x 11,38 0 =x J(1.4.0) 0 x )
A — — =4
x X 0 x 0 = '
X X X X 0 =
J{1,2, A JL3,8Y(1,2.0A J(1,4,8))(1,3.6)J(1,2,8HA
> X X X
A3 0 x J(2.4.8) 0 x| _ o
AT 1o o] T o o] A=K
0 x 0 0
J(2,3,8)A" J(2,4,8)J(2,3,6)A10

R=A" g=070) =0"(1,2,6)77(1,3,77(1,4,0)J7@2,3.6)J7(2.4,0).
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ALGORITEM 7.5, Givens QR Facterization.

Ieput: Anom x 0 matrix 4.
Output: An s x i upper iriapngular matrix & such that A = @R, The matrix R
is stored over A, @ is formed out of Givens parameters.

Fork =1,2,..., min{m — |, #} do
For!{=&~+1,....mdo

1. Find a 2 x 2 Givens rotation acting on oy and gy such that

TG am-0)

2. Save the indices k and € and the numbers c and 5.

3. Form the m % mt Givens folaiion 708 1,9y and apdate A=
Fik, 1 BYA (by implicitly constructing the product using Algo-
rithm 1.3,

End
End

Remarks. {1) The slgorithm does not explicitly produce the matrix ©. 1F necded, it has

12 be formed from Givens rotations out of the Givens parameters ¢ and 5 and the indices &
and [,

{it} The Givens and Househelder QR factorizations are Intimalely related. See Exer-
cise 7.5 and Example 7,12,

Flop-count. The algorithm requires 3#% {m — 2} flops. This count, of course, does not

include computation of Q. Thus, this algorithm is about 14 times as expensive as the
Householder algorithm for QR factorization (Algorithm 7.2},

Round-off property. The algorithm is stable. 1t can be shown (Witkinsan (19653, p. 240%)
that the computed § and & satisly

R=0"(a+E).
where

NEUe < clAls, ©is acoastant of order unity.

Example 7.12. Find the QR factorization of A from Example 7.6 using Givens rolations
and determine its relationship with that obiaired by Houscholder's method,

k= 1. Create Givens rotattons J([, 2,8) and J{1, 3,83 such that J(1, 2, 83(1, 3, 8)A
has zeros in the {1, 2} and (1, 3) positions:

1. Find c and s such that

(5 006 e o
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0 1 oy O 1 | 1 2 3
Az (1,2 8A=1~-]1 0 { I 2 31 =10 -1 1
g 0 1 I T 1 I

2. Find ¢ and 5 such that
5 X 1 1
— N = 2, & v”._"-lq

!2 0 “"'EF to2 3 Vioao e

Awm J(1,3,004 = { O ¢ -1 ~l}j=128 - | o |

i 1 by )

~ 0 % b i ] ey V2

ko= 2, Create a Givensrotation J{2, 3, @y such that J (2, 3, #34 has zerosin {3, 2) position:

s THY 2 () __:’E -l
= et )T o) CETA YT TR
/1 {i_ {}l 3 23
J2,304=1% ~F ~@ —1 -1
i JE IR T
\f} A Wﬁ G \/i
14142 21213 2.8284
= 0 12247 16331 =k 1
0 G .5774

Relationship with Householder (3R factorization. Note that the R matrix in the above
example obtained by Givens’ method is essentially the same as that of the Householder
method (see Example 7.6) in the following sense: Rgivens = D Ryousetioider. Where D =
diag (=1, £1,...}

MATCOM Note: Algorithm 7.5 has been implemented in the MATCOM program GIVQR.

7.4.3 QR Faclorization of a Hessenberg Matrix Using Givens Matrices

In several applicalions, one needs to find the QR lactorization of a Hessenberg matrix. For

example, the R iteration algorithm (1o be deseribed later) lor eigenvaliue computarion
requires QR factorization of a Hessenkerg matrix at every Heration (Section 9.8},

Stnce an upper Hessenberg matrix has st most {(# ~ 1) nonzero subdiagonal entries,

e can triangularize A by using only {n — 1} Givens rotations. This is illustrated with # = 4,
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ALGORITHM 7.6. Givens—Hessenberg QR Factorization.

Input: Ann x n upper Hessenberg matrix.
Outputs: An upper trisngular matrix R stored over A, and the Givens parameters
needed 10 form 2. The resultis A = R,

Step 1, Fork=1,2,...0~ 1 do
1.1 Find ¢ == ¢os # and 5 = sin 6 such thal

(= 0)(=)-(5)

1.2 Save the index & and the numbers ¢ and 5,
13Update A A= Flk b+ 1,5)A.
End

S‘ep_.z‘mSeLR_, E I O

Flop-count. Algorithm 7.6 requires about 3n? flops, compared to 2n° Aops required for
an arbitrary matrix,

7.5 Classical and Modified Gram-Schmidt Algorithms for
QR Factorizations

The classical Gram-Schmidt’ process (CGS) 1zught in basic linear algebra courses finds,
slarting from a set of » linearly independent vectors {ag ), a set of & srthonormal veciors
{g.} such that

span{gy. gz, ... ) =spanf{ag, aa, ey, fe= 120000
The vectors gy, ..., g, are determined as follows.
Step 1.

a 4

gy = {7.4}

faiis — ry’
Step 2. Find a vector g3 in such a way that g2 is of unit length and orthogonal to g5 that 15,
ool = 1 and g7 g7 = 0. It is casily seen that this will happen if we first define the auxiliary
vector

_ . o T
gy =iy~ Fgys P =gy

7 jorgen Pedersen Giram {1850-1916) was bora in Denmark, Despitc his carcer with an insurance company,
he pursued mathematical research in several arees of pure and agplisd matheswatics, including probability
theory, numerical analysis, and number theory, and managed o influence the Danish Mathematical Society
in o posttive way. He is best known for his work on the orthogonalization process.

Erhard Schmidt (18761939} was o Germaa rmuthematicizn, He obtained his dogtorate from the Univer-
sity of Gottingen under the supervision of Hitbert and then joined the University of Berlin as a mathematics
professor. Later e was appointed as the dean and then vice-chancellor of that university, He abso founded
the Institute of Applied Mathematics al the Usdversity of Berdine His miain research interesis were integral
equutions and Hilbert space. In 1907, in one of his ousianding papers on integral equations, he established
what is now called the Gram-Schmidt erthagonalization process.
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and then normalize this vector (o obtain

g = o = £ 7.5)

g2l

Step 3. Find a vecior gy such that 1t is of unit length and orthogenal to both ¢, and ¢5.
Again, it is easy (o see that this will again happen if we define

@3 == 1y~ F13gy - .

where riz == 301 and roa = goal | and then take

g= b B (1.6)
Tl ra

The process is fairly general and can be continued until all the vectors up to ¢, are computed.
© Step k. Find §; = ay — 3+ ruq:, and then normalize 1o obtain

Gr = G f i (7.7)

(R Factorization from the Classical Gram-Schmidt Process

The CGS process just described gives a reduced QR factorization of a matrix A whose
colimns are ay, 0z, ...,y that 8, A = {gy, a7, ..., &) € B7*7,

To see this, note that {7.44{7.7) can be rewritten as

a = gy,

Qg == g1y + Faros.

fe33 _—.qig"u“{“qy’gk”*“‘”'i‘q&rkkn k=314e”’*32‘

In matrix form, we can then wrlle

ES S k1 Fin
0 =
{a33333~~'|an}ﬂ{gh‘?ﬁn**‘1{hl) 4 .
0 4 Fun
or A = R, where Oy = (¢1. ¢, ..., ¢, ), and Ry s the malrix in the parentheses on the

right.
Note thay Ry is ¢ x i apper trigngutar and Oy s m x n orthonormal.
An dfustration: m =4, # = 2. Reduced QR factorization by CUS follows.

X X XX
¥ X X X ¥ X
A= = O/
® X ® X G x j, .,
R 9t
®ox HOX
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ALcoryrim 7.7, Classical Gram—Schmidt (CGS) Method for QR Factoriza-
tion.

Inpot: A = (¢).a2,... .4, € R, rank{A) = n.
Output: Redaved OR factorization: A = GR, @ € B™"" and R € B*™7,

Fork=1,2,....ndo
Foris L,2,....&—1do

P ql-Ta;_.
Eng
k1
Gi =0 — Zf‘g&m
faml
Frp = gﬁ& fia
[
RS SR ! £ 3 Mt S
o R .
End

Numerical stability. The algorithm, as outlined above, is known 1o have serious numer-
ical difficultics. During the computations of the g %, cancellation can take place and, as o
resull, the compnted g, s can be far from orthagonal. {See hater in this section for details.)

The slgorithm, however, can be madified to have betier numerical properties. The
following algorithm, known as the modified Gram—Schmidt (MGS) algorithm, computes
the QR factorization of A in which, ot the kih step. the kth column of (2, and the kth row
of R are computed {note that the Gram-Schmidt algorithin computes the kih columns of @
and R at the kih step),

ALGORITHM 7.8. Modified Gram-Schmidt (MGS) for QR Factorization.

Inpui: A = {u), az,....4,) € BE" rank (A) = n.
Output: Reduced QR factorizationolf A 1 A = QR, g e B"™", Re RV, ¢
is arthorornd and R s upper trinngudar,

Sﬂii}k =y, f g 1,2,...,”.
Fork==1,2, ..., 08do
e = Yol

Gt
g B e
rep
For j=k+ 1. ado
g %f?;ff}j
Q‘; Ef{j‘“i“qu;;.
End

End

The sbove is the rew-oriented modified Gram-Schmidt method, The column-
oriented version can similarly be developed (Excrcise 7.9). The two versions are numerically
equivalent,
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Flop-count. The fop-count for the MGS algorithm is 2ma?, compared to 2(mn? — ‘fT")
necded for the Houscholder method. (Note that MGS works with the full-length column vec-
tor at each step, whereas the Householder method deals with successively shorter columns.)

Numerical stability. Although the MGS process is more efficient than Householder’s, it
is not as numerically satisfactory as the Householder or Givens method for computing the
OR factorization of A. 1t can be shown (Bjorck (1996)) that if the computed ¢ is denoted
by O. then the following comparisons hold:

« Orthogonality with MGS: Q7 Q = I + E; [[E| = ;. Cond(A).
« Orthogonality with Householder: Q7Q =1+ E: | E| = .

(For more details, see discussions in the next section.)

* Reorthogonalization: Orthogonality of the vectors in the matrix @ can be improved
by reorthogonalization, and in general one reorthogonalization is sufficient, Indeed,
William Kahan, Prolessor of Mathematics and Computer Science at the University
of California at Berkeley, has remarked on this matter that “twice is enough.” For
more on this, see Bjirck (1996, pp. 67-69). Unfortunately, however, the reorthogo-
nalization makes the process more expensive—almost double.

MATCOM Notes: Algorithms 7.7 and 7.8 have been implemented in the MATCOM pro-
grams CLGRSCH and MDGRSCH, respectively.

Example 7.13. Find QR factorizations of A of Example 7.5 using both CGS and MGS.
Altheugh in this case the CGS and MGS algorithms produce the same results, we use this
example 1o illustrate here how the computational arrangements differ with the same matrix.
All computations are performed with four-digil arithmelic,

*« CGS Method

k=1:
1
g =a; = {0.0001 y, m=lql =1,
0
g |
q = -+ = | 0.0001
Lt 0
k=2:
0 by
rp =1, qr=a1—rpg = | —07071 |,  ¢lga=—7.0711 x 1075,
0.7071
Form Q and R:
l v r r i I
Q1 = (g1, q2) = | 0.0001 —-07071}; R = ( ! ,'2) = ( »

).
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+ MGS
i =, Gy == .
k=1
1
i = flgills = 1, g = { 0.0001 },
0
0
2= 44 i, gy = g2 — righ = | ~0.0001
0.0001
ko= 2
g2 0
_______________ ey = i e LAM2 2 107 g s = | 07071
2 07071
Form 3y and Ry:
! i
o, = [ooo01 07071}, & (1 ! ) n
} = N Y5 s 1= A% -4 3
0 0.7071 | 0 14142 % 10

Modified Gram-Schmidt versus Classical Gram-Schmidt Algorithms

Mathematically, the CGS and MGS aigorithms are equivalent. However, as remarked
garlier, their numerical properties arve different. For example, consider the compuotation of
g3 by the TGS method, given g with fg;fi; = 1. We have

{a == ay — 3Gy, Where ryy = t}ff‘ﬂg.
Then it can be shown (Bidrck {1996)) that
[fi(gz) — gzl < (108} (2m + 3y fjazlls
Since ¢ gz = 0. it follows tha
g7 figa)| = (LOGY2m -+ 3 s, .

This shows that in CGS two conputed vectors, ¢y and g2, can he far from orthogonal.
On the other hand, it can be shown (Bidrck (1996)) that in MGS the toss of orthogonality
depends upen the condition number of the matrix A, Specifically, it has been shown thm
the compuied 0. denoled by Q satisfies

i! ;- Qréﬂ < ey Conda(A) “
i 27 1 — cyp Conda{A)
assuming that coe Condy(A) < 1, where ¢; and ¢; are small constants,

Since in MGS the loss of orthogonality depends upon the condition sumber, one could
use column pivoting (o mainiain orthogonality as much as possible. Thus, as far as finding
the QR factorization of 4 is concerned, neither algorithm can be recommended over the
Housgholder or the Givens method. With CGS the orthogonality of (4 can be completely
fost; with MGS the arthogonality of {3 may not be acceptable when A is ill-conditioned,
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Nete that in Example 7.13. the computed £ {in four-digit arithmetic) is such that

crs (1 —0000t
o= (-0.0001 t )

On the other hand, for the same problem using the Householder method, QTQ = 7 (in
four-digit arithmetic}.

The loliowing table shows the departure of orthogonality of the @ matrix for the QR
factorization of a § x 5 Hilbert natrix (extended precision) using three different methods
{Houschalder, CGS, and MGS)

Table 7.1. Comparison of OR factorization af a 5 » 5 Hithert matrix with CGS aad MGS.

Method = Q7 Qi
CGS o107y
R T
Householder a0ty

Remark. Table 7.1 clearly shows the superiority of the Householder method over both the
CGS and MGS methods; of the larer nve mathods, MGS is clearly preferred over CGS, We
now summarize in Table 7.2 the flop-count and stability properties of the four methads for
(R factorization of a matrix A,

Table 7.2. Comparison of efficiency and siabitity of QR factorization methods,

Methed Flop«.count Stability

Householder | 207 (m - %) Stable

' 1
Givens In° (m - '§> Stable
CGs 2mn* Unsiable (possible severe losy of orthogonality).
MGS 2nn® Better stability property than TGS, but not as stsble as

Householder’s or Givens’ method.

Full QR versus Reduced QR Factorizations and Unitqueness

The CGS and MGS methods give a reduced QR [actorization. The guestions thus arise:
{13 How does one abtain a full QR factorication from a reduced one? (1) When (s ¢ reduced
QR fuctorization unigue’
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To obtain a full QR factorization from a reduced one, A = G Ry, just append an
additional (wr - n) orthorarmal colwmns 1o € so that it becomes an m % m orthogonal
mairix {J and olso append a rows of zeros to Ry so that it becomes an m X # triangular
matrix R.

To answer the question of uniqueness, we turn to the CGS process,

Note that theoretically this process does not break down unless gy is identically zero;
it this will not happen if A is assumed to have full rank {why?), The choices of ry; =
19:1z » O were muade deliberately to normalize the veclors g; so that they have unit lengths,
But once this choice is made, then all the computations are upiguely determined.

Thus. we can state the following result. Another proof of this result can be obtained
via Cholesky decomposition; sce Exercise 7.7.

Theorem 7.14 (unigneness in reduced QR factorization). Let A € B % (m > n) have
full rank. Then it has « wnigue reduced QR factorication: & = QR with the disgonal
.......... emfpivs.of B\ positive..

7.6 Solution of Ax = b Using QR Factorization

The QR factorization
A= (gR
imimediately leads to the following algorithm lor solving Ax == b,

Solving Ax = b Using QR.

Step 1. Find the QR factorization of 42 0TA = R,
Step 2. From b’ = Q7 b,
Step 3. Solve Ry = ¥

Note: If Houscholder's method for QR factorization is used, then the vector b can be
computed implicitly from the factored of Q7 = Hi Hy ... Hyoy, a5 b = H Ha ... Heoob.

Example 7.15. Consider matrix 4 from Example 7.6 and b = (2, 6, 3}7,

Step 1. The Householder matrices are given by

0 -~{1.7071 —0.707| ] it 0
Hy=1{ 07071 05000 ~05000 |, Hh=1{ O ~0.i68] -0985
~0.7071 —0.3000  D.5000 0 -—09856 0.1691
Step 2. Comprre b':
2 —~6.3640 —£,3640
vi=b=§6]; a=Hy =] 0088 }: b =y == Fhyy == | 2.8577
3 —2.49142 —{.5773
{Nate that &’ above has been computed without expliciily forming the matrix €.}
1

Step 3. Solve: Rx = # = x = | 1 | (using R from Exumple 7.6). 1
I
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Flop-count, If the Houscholder method is used to factor A inte @R, then the solution
of Ax = b requires 307 + O(a”) flops. Thus, solving Ax = b using Househelder R
factorization requires roughly fwice the number of operations as with Gaussian eliminaiion
with pivoting, This explains why the QR approaeh for safving Ax = b is not used in practice
over GEPE

Round-off properfy. Tt can be shown (Lawson and Hanson {19951) that the computed
solution £ is the exacl solution of (A + E)E = b4-8b, where | EYr < (307 +31mpll Al +
0422}, and 188K < On® 4 40m) [bi] + O (™).

Thus the QR method for solving Ax = & 1s stable and does aet involve any growth factor

_7.7 Projections Using QR Factorization

Definition 7.16. The s xnmatrix Py having the following properties is called the orthogenal
projection onto a subspace § of B,

() R{#¢) = 5 (therange of Pyis §).
{il} P}P = Py { Py 18 symmetric).

(iiiy P§ = Ps (Psis idempotent).

A relationship between Pg and P, I Py ix the orthogonal projection onto 5, then
! Py, denoted by Pg:, where 1 is the idemity matrix of the yame order as Ps, Is the
erthogoral projeciion arte S~ {Exercise 7.35),

7.7.1  Orthogenal Projections and Orthonormal Bases

Let § € B” be a subspace. Let {wy, ..., ve] be an onthonormal basis for the subspace S.
Form V = {v), 1, .... ) Then
Pg = VYT

is the orthogonal projection onto §.
Note that ¥ is not unique, but Py is.

The urthogonal projections onfo R(A) and A (A7), When the subspace S is R(A) or
N{AT) associated with the matrix A, we will denote the unigue orthogona! projections onto
R{A)and N{AT} by P, and Py, respectively, If A is m » a{m > n) and has fuif rank, their
exphicit expressions are given by (Exercise 7.36)

() Pyo= ACATAYTAT, D) Py =1 — A(ATAY AT,

Remark. It is not advisable to compuie profections using the above expressions, because
the matrix A7 A can be computationally singular.
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7.7.2 Projection of a Vector onto the Range and the Null Space
of a Matrix

Any vector & can be written us
b= bg -+ b_g‘_l.,

where g =) Sand bgr & §*. i 5 is the rank #{A} of a matrix A, then &g € B(A) and
by € N(AT). We will therefore denote bg by bg and bg. by by, meaning that b is in
the range of A and by is in the nuil space of A7, The vectors by and By, in fact, can be
expressed in terms of the orthogonal projections onte R{AY and N (A7 }, respectively. ltean
be shown {Exercise 7.36) that

b;{ = Pd,f} and bN = Pﬁrb.
The vectors g and by are called the arthogonal projection of b onte R(A) andthe grthogonal
projection of b onto N (A7), respectively.
e Brom above, we easily see thutblby =0.

7.7.3 Orthonormal Bases and Orthogonal Projections onto the Range
and Null Space using QR Factorization

Computing orthogonal projections using the explicit formulas above require the matrix |

tnversion (A7 A)™!, and therefore can be numericaliy unstable. A stable way of computing

the projections is either via {1} OR factorization or () SVD.

For discussions on {inding vrthonormal bases and orthogonal projections using the
SV, see Section 7.8.10.

Theorem 7,17, Let A = QR be the QR factorization of a full-rank m x 1 matriv A(m > n).
Let Q= (Q). Qa), where (; is the matrix of first n colunms, Then

(i} the colunms of O and Q- form orthonormal bases of R(AY and N{AT), respectively;

(i1} the orthogonal projections. P, and Py, onte R{AY and N{ATY are, respectively,
0,1Q7 and 0,07,

Proof. Assertions (13 follow from the fact already established:
span {g.....q;} = span{ay, ..., q;), i=1....

Assertions (i) follow from (i) and the definition of the projection. [

Example 7.18. Consider Bxample 7.5 again.

H i
A = [ 0.0001 0
B 0.0001
Using the results of Example 7.5 we have the following:
-1 0.6001

* An orthonormal basis of B{A): 0.0001  --0.707%
0] (0.707
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—{1.0001
« An orthonormal basis of N{AT): 0.7071
0.7071

The orthogonal projection onto R{AY

LoD 00000 60000
Pi=07 = |0.0000 05000 -0.5000
G.0000 —0.5000  0.5000

v The orihogonal projection onto N{AT):

0.00080  —~0.0000 048000
~5.0000 05000 05006
~30000 05000  0.3006

Py = 008 =

v Orthogonal Projections of b Letbh = (1.1, 17 and A as above. Then

1.0001 110001
bg = £,b = | 00001 and by = FPyb = 09999 1. R
0.0001 {1.59499

QR Factorization with Column Pivoting.

If A is rank-deficient, then QR Tactorization cannat be used to find a basis for B(A).
Tor ses this, consider the following 2 x 2 example:

=(00)=(5 T)(5 t)=er

Rank (A) = 1 < 2. So. the columns of § do not ferm an orthosormal basis of R{A}
nor of ity complement.

in this case, one needs to use a modification of the QR factorization process, called
QR factorization with column pivoring.

The process finds g permutation matrix £ and the matrices (J and K such that AP =
O R. The details are given in Chapler 14, available online at wwwsiagm.org/books/ot! 6.
See also Golub and Van Loan (1996, pp. 248-250),

MATLAB command [, R, P] = qr{4)con be used to compute the QR factorization
with column pivoting.

Also @, R, E] = qr{A4, 0} produces zn economy-sized QR factorization in which £
is g permutation vector sothat @« R = AL, £},

7.8 Singular Value Decomposition and Its Properties

We have so far seen two mairix {aclorizations: LU and QR. In this section, we introduce
another very importaat fuctarization, called siagelar value decomposition (SVD). A proof
of the SV {Theorem 7.19) will be deferred eniz] Chapter 10,
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7.8.1  Singular Values and Singular Vectors

Theorem .19 (SVD theorem). Let A € WP, Then there exist orthogonal matrices
e B¥" and V € B such that

a=Uzvl, (7.8

where L = diag(ay, ..., g,) € B®, p=minlm, n), andoy 2032 -+ 2 a, 2 0,

Definition 7.20. The decompesition A = UL VT is called the singular value decompasis
tion of A.

« U g BP*" (orthogonal).
« ¥ g B** (orthogonal).

e TR {dtngonal). .

Note: Notice that when ms > », T has the form

o'y
o=
g!l
{}lmm—n};nrs
An llustration: m =4, n = 2. The following is an SVD af 5 4 »x 2 matrix:

KX X oM X X x 0
X X _ X X X X 0 = P4
x = 17 X ® X 0 ¢ x x ;°
X X X K X X 0 G

A i b vT

Definition 7.21.  The diagonal entries o, 02, ..., 0, are called the singular values of A.

Definition 7.22. The columns of U are called the left singular vectars, and those of V are
called the right singular vectors.

A Convention

For the remainder of this chapter we will assume, witheout any loss of generality,
thatm = »n, because i m < 1, we cossic?er the S¥Dof AT, and ifthe VD of AT
s ULV, thenthe SVD of A is VET LT, Also the following convention will be
used:

* Oy == o == lhe largest singular value.
* Omig = 0, = the smallest singular value,
* g; == the ith singular value.

'01::{}722”‘201;2{3-
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MNuotes:

1. When m > 1, we have n singular values. It ean be shown that these are the square
roots af the n eigenvalues of the symmetric marrix A7 A,

2. The singular volues of A are wiguely determined while the mairices U and V oare
not unigque in general, (Why?)

3. The SVD inunediatety reveals several matrix properties, inclading rank, norms, con-
dition number, and tmportany infornation on the structure of o matrix, such as or-
thonormal bases of R{A) and N (A} and orthogonal projections onie R{AY and N(A).
{See Becrions 78,77 and 7.8.10.)

7.8.2 Computation of the SVD (MATLAB Command)

The computation of the SVD is more expensive than computing the QR factorizalion either
by Householder's or Givens’ method. A widely used method, called the Golub-Kahan—
Reinsch algorithm, comes in iwo phases. Tn Phase I, the matrix A (& reduced 1o a bidiagonal
marrix B by erthogonal equivalence, and then o Phase 1L, the matrix 8 is further reduced
to a diggonal marrix of singuigr valzes. We shall describe this SVD method in detail
in Chapter 10. The method is numericaily stable. For the time being, 10 use SVD as a
computational ool, one can use the MATLATR program svd,

[, 5, V] = svd(A),
which gives the complete SV If only the singular values of A are required, usc svd (A}

Example 7.23. Let

1 2
A=1{2 3
34
Then [{/, 5, V] = svd{4) gives
6.5468 4] $.3381 08480 04082
= 0 (L3742 . U= 05306 01735 —D.8165 ,

0 ] 07632 05009 04082

Ax2

y (05696 —0.8219
=lose 05696 /o

There are two singuolar values: 6,3458, 0.3742, |

7.8.3 The SVD of a Complex Matrix

Let A € C7* Then there exist unitary matrices I € T and V € C"% such that
Aw ULV,

where T = ding (o7, ..., 0,) € B, p=min{m, nl,witho, 20 > 20,20

MATLAB Note: The Tunction svd can be used o produce the SVI of a comples matrix
as well, In this case U and V are complex unitary muirices,
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7.8.4 Geometric Interpretation of the Singular Values and Singular
Vectors

Let S be the onit sphere in B”. Then the image of 5 under A is a fiyperellipsoid E defined
by £ = {dx ¢ flx]z == 1],

+ The singular values are the lengths of the semi-axes of £,
» The left singular veclors are the unit veclors in the direction of the semi-axes of E.

* The right singular vectors are the onit vectors in § that are the preimages of the
semi-axes of £,

Thizs, the paitary mep V* presevves the sphere, the dingonal matrix T stretches the sphere
into a hvperellipsoid, and the unitary map U votates or reflects the hyperellipsoid, keeping
_its shape, For more details see Trefethen and Bau (1997).

See Figure 7.4 for an illustration of a unit ball under the § Vé 0;" A -
Let A = UZVT, & = diag (3, 0.5).

1 |

Rotate by #7

s et e W0

Stretch along axis

Rotate by U/

Figure 7.4. Inage of a unit ball under the SVD of a mentrix,

7.8.5 Reduced SVD

FA=UEVT isthe SVD of A & B"**(n 2 r). then, as in the case of QR [actorization,
we can write
A= v,
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where
Uom(up,na, . 8y € BV = fyy, ve,. .0, 0,0 8 B977,

and
EI g {filiig (B‘I, a3, ..., ‘Uu) & wrsa

The above lorm of SV is called the reduced or the thin SVD of A,

Reduced SVD

Any matrix A & B¥"* (i = a} can be written in the form
A=U,T v,
where U} s an 1 x » erthonormal marrix, Ty is an # x »n diggonal mateix, and

V is an » = # orthogonal matrix.
I many applicarions, this reduced form of VD is sufficient,

b} vT

X R X i

X H HE X 11

Figure 7.5. Reduced SVD {m > n).

MATLAB Note: [¥/, 5, V1 == svd{4, 0) can be used to produce the reduced SVD of 4,

7.8.6 Sensitivity of the Singular Values

One reason for the wide applicability of singular values in practical applications is that the
singular vatues are well-conditioned, We siate a result here in this context. The prool will
be delerred until Chapter 10,

Theorem 7.24 {(perturbation theorem for singular values). Let A and 8 = A+ E be rwa
neoxormatrices (m > n) Letoy, { =1, 00 a8, and 0y, § = 1, .0 i, be, respectively, the
singufar values of A and A + E in decreasing order, Then |5; — oy < §Ef» foreach |,

Example 7.25.
1 2 3 00 0
A=13 4 5, E=|0 0 g
6 7 8 0 0 D002

The singufar values of A g = 14,3576, oy = 1.0372, o3 = 0.0000,
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The singulae values of A + E: & = 145577, 02 = 1.0372, and &1 = (.0000,
Absolute error: 16 ~ o] = 11373 x 107 g2 — o] = 0, and |3 ~ a3f = 0.
Since [[Efz = 0.002, the statement of Theorem 7.24 is easily verified. W

Next, we present a result (without proofy on the perturbation of singuiar values that
uses the Frobenius norm instead of the 2-norm.

Theorem 7.26. fer A, £, oy, and 3;, 1 =}, ..., n be the seme gs in Theorem 724, Then

I

DGR 73
\l fun

_7.8.7_ Norms, Condition Number, and Rank via the SVD

Theorem 7.27. Let oy = o9 = -« > o, be the u singudar values of an m % n matrix
Alm = n). Then

LA = 0y = Gage

2. JAlig = (of +of +-- 007

3 A i = 2 when A s 0 x n and nonsingular.
4. Canda{A) == AU A Iy = g-t £ ;»J,—;n& if A is nonsingular
3. rank (A) = aumber of norzero singuiar valuas,

Progf.

LAl = WWEV |y = [E ]2 = max;(o;) = oy,

2 fAly = WEVTr = |85 = (0F + ol 4+ a)b

{Note thot the 2-norm and Frobenius norm are invariant under orthopenal matrix
products).

3. To prove 3 we note that the largest singular value of A~ is é {Note that when A is
invertible, a, % 0.} Then the resull follows from 1.

4. Ttem 4 follows from the definition of Conda (A} and the results of | and 3.

5. Since the rank of a matrix 1§ invariant under orthogonal matrix multiplication,
rank{A) = rank (Z/LV7) = rank {¥). The matrix T being a diagonal matrix, i1s
rank is gqual 1o the number of nonzero diagonal entrics. [

Remarks on the SVD condition number.

1. 1f A is a rectangular matrix having fulf rank, then Condz(A) = Zme

s

2. When A is rank-deficient, 0mpn = 0, and we say that Conda{A) s infinite.




i)
-
et |

7.8. Singular Value Decomposition and Its Properties

3. When A is nearly rank-deficient, Condy{A} 15 larze,
4. Conds{AY measures hiow far the fyperellipsoid {Ax © |jx]2 = 1} Is elongaicd.

5. Dietermining rank in presence of round-off errors and noisy daia is a nonirivial sk,
What is more important in practice is 1o talk about samerical rank rasher than just
ihe rank of a matrix (sec Section 7.8.9) See also discussions on rank-deficiency in

Theorem 7.29 in this context,
Example 7.28.
Singular vaiues of A arc oy = 65468, oy = 03742
,fow% + o = 6.5574; C{;nda(A) =% = 174975, &

7.8.8 The Distance to Singularity, Rank-»!)aficiency, and Numerical
Rank via the SVD.

A=

[FCIE N v
g e

fAl = o = 6.5468: [Allr =

We have just scen that the number of nonzeeo singular values of amatrix ts its rank. The rank
ol a matrix can also be determined using (i) Gaussian elimination, and (i) OR factorization
with column pivoring, Both are less expensive than compuling the singular values, but
are not as sumerically reliable as determining it by the VD, especially if it is desired 1o
determine the closeness of 2 full-rank matrix to a nearby rank-deficient one. As an example,
consider the celebrated Kahan matrix (which is upper triangular):

' —¢ . er

R= ding (1,5,....5%") 1 . (7.9

withe* + 5% =1; ¢,8 > 0.

Forn = 100, ¢ =02, re = 5" = 0,133, which is not smal}; on the other hand,
R has a singular value of order 1078, indicating that it is nearly singutar.

Since the number ol nonzers singular values determines the runk of a matrix, we can
say that a mairix A is arbitrarily near u matrix of full ranks jusr clange each zero singular
value by a sotall manber ¢, It is, therefore, more meaningful to know if a matrix is pear o
mgtrix of a certain rank, rather than knowing whar the rank is. The SVD exacily answers
this guestion.

Suppose that A has rank r, thatis, oy = oz 2 -z o, > Dand ey = - - =g, =40,
Then the question is how far is A from a matrix of rank & < r. The following theorem
(Theorem 7.29) can be used to answer the question. This thearem s generally known as
the Eckart-Young theorem (see Eckart andd Young (1935955

Theorem 7.29 (SVD and nearness to rank-deficiency), Ler A = URV7 be the SVD of A,
Ler ko < r = rank{A). Define Ay = U V7, where Ty = diag (1. .. T LU 3 T
wherg ) a2 o0 2o > (4
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Thes
{a) A has rank k.
(b} The distance of Ay from A (in the 2-norm) is fA — Aglh = orqe

(c} Qut of all the matrices of rank k, Ay is the closest to A; that is,

i A~ Bilz =14 — Agla.
Proof. Proof of (z). vank (Ag) = rank(U V7Y = rank (5¢) = & (note that oy > 0y =
<oy > L
Proof of (b). Because A — A; = U(T — £,)V7, we have A — Ayllz = |U(E —
LV 2 = (X~ Els = oy Thus, the distance between A and Ay 5 o4y,
Proof of (¢). To prove {c), we show that if B & B*** i5 any other matrix of rank £,
then §A. -~ Bz 2= gepy; that is, Ay is closest to A among all other matrices of rank k.

Since B has rank £, the noll space of B, N{#}, has dimension n — &,

Consider now the space § = span (v, ..., vy ) where vy throngh v, are the right
singilar vectors of A. Since N{8) and 5 are both subspoces of B” and the sum of their
dimensions is greater than #, their intersection must be nonempty. Let £ be a unit vector
tying in this intersection. Then since 2 & span {vg. ..., Ut ], there exist scalars {not ol
zero) such that 2 = o vy + cavz b -~ - + o Vg,

Furthermore, becadse vi, ..., Ve are orthonermal, we must have |o)7 + (e +
<o Jegag 1 = 10 Because 7 also belongs to N(B), we have Bz = 0. So

k41 £l
(A— Biz = Az = Zc,—;%v{ = ch;m (note that Ay; = g
T

S

Begnuse uy, ... 44 are also orthonormal,
k4l £
3 1. 0 . 3
la=Buri=3 locl zal, Y il = odyy.
Faed fuz i

Thus, A4 — By = #2285k = o) (hecause fzlly = 1), O

[F12

Corollary 7.30. Let A be an m s 0 wmateix of full rank and let v = min{m, 1), Ler
o = oy 2 oo 2o, > 0 be the singnlar values of A, If C is anathier m = 0 matrix such
that §C — Allz < a,, then C hay also full rank,

Caorollary 7.31 {distance to singularity). The relative distance of a nonsingular matrix A

. T . . | . .
o the rearest singular marrix C s EomTA) thes ix,

C - All: J
lAl. ~ Cond2(A)

Example 7.32. Consider Example 7.23 again.
gy o= 63468, oy =03742, k= 1.
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Then
1.2608 1.8193
A =Uz, vl = 2.0534 2.9630
2.8460 4.1067

Out of all the matrices of rank 1, A is the closest to A. (Verify this by constructing any
other arbitrary rank-one matrix of order 3 x 2 and then computing its 2-norm distance
fromA.y W

Distance of a Matrix from the Nearest Matrix of Lower Rank

The above result states that the smallest nonzero singular value gives the distance from A
1o the nearest matrix of lower rank. In particular, for a nonsingular n x 1 matrix A, the
smallest singular value o, gives the measures of the distance of A 1o the nearest singular
matrix.

Thus, in order to know if' a matrix. A of rank r is close enough to a matrix of lower
rank, look into the smallest nonzero singular value o, If this is very small, then the matrix
is very close to a matrix of rank r — 1, because there exists a perturbation of size as small
as |o,| which will produce a matrix of rank » — 1. In fact, one such perturbation is u,.o,v] .

Example 7.33.

I 0 0]
A=10 2 0 ; rank(A) = 3, a1 = 0.0000004.
0 O 0.0000004
0 1 01 0
U={tI 0 0), Vv=]|1 0 0
0 0 1 0 0 1

T’

!
A=A~ uempl = (0 ; rank(A’) = 2.
0

eI AV ]
s s e ]

The required perturbation u3o3v] to make A singular is very small;

0 0 0 .
10°%{0 0 0 R |
0 0 0.4000

Note: The following is a Frobenius-norm analogue of Theorem 7.29

Theorem 7.34 (low-rank approximation in Frobenius norm). Ler B be any matrix of the
same order as A and let Ay be the same as in Theoren 7.29. Then

1B~ Al% = Il Ax — Al

7.8.9 Numerical Rank

In practical applications that need singular values we have to know when to accept a com-
puted singular value tobe “'zero.” Of course, if itis of an order of “round-ofl zeros”™ {machine
epsilon), we can declare it 1o be zero.
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However, if the data share a large relative error, 1 should also be taken isto consider-
atiop. A practical eriterion would be the following:

Accept a computed singolar value to be zero if it is Icss than or equal to
L0771 All oo, where the entries of A are correct to ¢ digits.

Having defined 4 telerance § = 1077 [ Al for a zero singular value, we can
have the following convention for the numerical rank of a matrix (see Golub
ared Van Loan (1996, p. 261)):

A JZHS “zzumerical ran%;”r if{hﬂ L0 iﬂed Sin"ﬁlﬂr VHIUQS F 5’"?, PR # §
= H - fid
Sa?%sfy

[a 3]

By 202> 2 > 82 Gy 2 B, (7.18)

Thus, roughly, to determine numerical rank of & matrix A, count the “largc”m
singular volues cnly. I this number is #, then A has numerical rank r,

Remark. Note that finding the numerical rank of 3 matrix will be tricky if there is no
sultable pap between a set of singular values.
7.8.10 Orthonormal Bases and Projections from the 5VD

Theorem 7.35. Let A = US V7T be the SVD of A € BY™® (i = n) and let r be the rank of
A. Partition

U=AU,U00 and V ={V. V),

witere U7y and Vy consist of the firsi r cofumas of U and V, respectively. Then

(a) the colimns of Uy form an orthanormal basis of R{AY;

(b)Y the columns of Vs form an orthonorniad basis of N{A);

{c} orthegonal projection pnto R(A}Y = ] U;‘P N

(d) orthogonal projection onto N{ATY = UUT;

(&) orthogonal projection anto N{A) = V, Ie"f;

(D) orthogonal projection onte R(ATY = ¥\ V],
Proaf. The proolsof (a) and (b} follow, respectively, fromthe fact that R{Z) = {ey, ..., ¢} €
B and N(T) = {e,uy, ..., e, & B

The proof of {c} follows from {a) and the definition of the projection. The prools of
{0 are similar. O
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rank

, U )2 \Al

Figure 7.6. Representation of range and null space of a marrix by SVD.

Figure 7.6 shows a representation of the range and null space of a matrix by SVD.

Example 7.36. Let A be the same as in Example 7.18. From the SVD of 4, we have

i 0 . —0.000l
y_ | —00000 —o7078 . 07071 g orer e O
=| -oo000 07071 . 0707 | V={ 00700
v, vy
U, Uy

* An orthonormal basis of R(A) = the columns of U/,
|

= 1+ —0.0000 -0 707]
—0.0000 0.7071
.. —0.7071
« An orthonormal basis of N(A) = the column of V3 = [ 0.7071 }

* Py = orthogonal projection onto R(A} = U, U]
1.0000 0.0000 0.0000
=t 0.0000 0.5000 —0.5000
0.0000 —0.50000 0.50000

» Py = orthogonal projection onto N(AT) = UQU;
(.0000 —-0.0000 -0.0000
= —0.0000 05000 050000 |. M
—0.0000  0.5000  0.50000

MATCOM Note: MATCOM program ORTHOPROJ computes the projections using SVD.

7.9 Some Practical Applications of the SVD

Part (c) of Theorem 7.29 has some important consequences in practical applications. Matrix
Ag. the best rank-k approximation of 4, is given by A = U, V7T, which can be written as
Ak = U|It|Uir A4 -3-0',&-!.(;;1){.
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The storage of matrix A requires my locations, whereas matrix A; can be stored using
only (# + 1)k locations, thus resulting in a considerable savings when & is small. This fact
can be conveniently exploited in image processing and other applications, As illustrated
below, even such low-rank approximations of A4 are useful ip practical applications,

Image compression.  Animage can be represented by an mr x 2 matrix A whose (i, j)th
entry corresponds o the brightness of the pixel (4, /). The idea of image compression s to
compress the tmage represented by & very large matrix to the one which corresponds (© a
tower-order approximation of A but whose guality is still acceptable to a user.

As an example, we present in Figures 7.7 and 7.8 the different low-rank approxima-
tiens of the portrait of a child. The matrig A here is of dimension 250 x 312

Image restoration.  The idea of image restoration is Lo restore the original image from
e conlaminated by “noises.” 1t can be shown that the “noises™ correspend
1o the small singular values, This elifiiation of these smalt-singular-values will resule. .
in rank-k approximations Ay correspording to the noise-free images. The necessity of
image restoration arises in clinical diagnosis and other practical applications. In Figure 7.9
{(supplied by fames Nagy) we iilustrate the idea with an example of g planet. Matrix A here
is of dimension 256 x 2536, The singular vatues less than 0.0055 are discarded.

A Biomedical Application (Extracting Fetal ECG from Maternal ECG)

Here we show how the same type of idea as above can be used in a biomedical application
of extraciing fetal ECG from the maternal ECG. It can be assumed (sce Vandewalle and De
Moor (1988} that this refationship is linear, and, indeed, each measurement signal m;{f)
can be written as a Hnear combination of r scuree signals 5;{r) and additive noise signal
iy (1) This leads o the following equations:

m ey = i S b fasa () b oo ok 18 {8) b (e,
ity am s (0 b s (0) -+ Fop 8 {2 4 a2{1),

(7.11)
uz};{t} w5 ) T Lpsa (F) + - - 18 10 F A F)
or
miry = Fe(t)y 4 nin, {7.12)
where
T e (1) and mity ={m (). m200), ... iirff))T. {(7.13)

Matrix 7' 15 called the transfer mateix and depends upon the geomeiry of the body, the
positions of the clecirodes and sources, and the conductivities of the body tissues,

The problent now is to get an estimate of the source signals s(2) knowing only mit},
and from that estinate separate oul the estimate of fetal source signals.,

Let each measurement consist of ¢ samples. Then the measurements can be stored in
a matrix M of order p x g.

We now show that the SVD of M can be ased to get estimates of the source signals.
Lot

M=UZV (7.14)

he the SVD of M.
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¢a) Original inage. {h} Compressed tmage with & = 2,

et i

(2} Compressed image with & = 8,

Figure 7.7, Original and compressed images,

Then the p » g malrix 5 defined by
S=vu"M (7.15)

will contain p estimates of the source signals. Next, we peed to extract the esimaies of the
fetal source signals from 3 let this be called Sg,
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{a) k= 10. {by k== 200

Figure 7.8. Compressed image with {a) k = 10, (b)Y k =20, and (¢} & = 5300

Partition the matrix of singular values L of M as follows:

e U g
s=[0 %, 0], (7.06)
0 0 %,
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e cETurad by T4 TR VY

]

Figure 7.9. (a) Blurred image, {B) image with complete SVD, and (c) image with
truacated SVD,

where E,y comiains r, Iarge singular values, associated with the maternal heart; Lg contding
rp singular values, those smaller ones associated with the fetal heart; and Zp contains the
remaining singular values associated with noise, ete.

Let &7 = (Uy, Up, U} be a conlormable partitioning of &7, Then, ebviously, we
have

A v
S=UM={Ul|M
vl
‘ . (747
Ua’{; M S,}.;
= | UM =1|5].
Ui o

Thus S5 = ULM.
Onee 8)p s determined, we can also construct a matrix £ containing only the contri-
butions of fetus in each meusured signal, as follows:
Fen ¥y
T 7
FoaUpSg = Z /T TTEMN
[ECT A S
where #; aad vy are the ith column of U and V', and o; s the {th singular value of M. The
signals in 57 are culled the priscipal fewal signals.
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The above method has been automated and an online adaptive algorithm (0 compute
the {7 malrix has been designed. For the details of the method and test results, see the paper
hy Callaeris, DeMoor, Vandewalle, and Sansen {1900},

Note that i#f the SYD of A is given by

(B oY
%:UE’ZVT:(U,,(Q}(& Ez) (V%)

then § can be estimated by § = U7 M.

7.10  Geometric Mean and Generalized Triangular
Decompositions

In this section, we briefly state two other decompositions related o SV and QR factor-
~izatton-Motivated-by-their applications to-control theory, signal processing, and numerical

solutions to important optimization problems, these decompositions were recently discov-
ered by Williarm Hager and his colleagues.

CGeometric mean decomposition (GMD).  (See Jiang, Hager, and Li (2005).) Given
A € U of rank &, there exist two orthonormal matrices, P and Q. and a real upper
triangular matrix of order & such that

A= QRP*,

where the diagonal emries of R are all equal to the geometric mean of the positive singular

values of A: |

¥
=T s nGj ch=d <k

Here the {o;) are the singular values of A, and & is the geometric mean of the positive
singolar values,

The above decomposition is called geometric mean decamposition, or GMD, the
term coined by Willian Hager and his colieagues. These authors have also developed two
compttationat algorithms for GMD: one is SVDbased, and the other is a direct algotithm
eombining the Lanczos method with the Householder QR factorization,

Generalized triangular decomposition (GTD).  {Sce Jiang, Hager, and Li (2008).) The
GTI is an extension of the GMD. It can be shown that the diagonal entries of R in GMD
satisfy Weyl's multiplicative majorization conditions:

r r £ &
[Trt<]len t=rzk []ini=]]o
fal il feal Pz
whaere #; is the largest {in magnitude) diagonal entry of R.
There exist an SYD-based algorishm and MATLAB codes for GTD. For detsils, she
readers are referred to the above papers. For other relevant papers on this topic, the website
of William Hager {www.math.ufl.eduw/"hager) can be consulied,
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7.11. Review and Summary

7.11 Review and Summary

Three major topics have beea discussed in this chapter:

+ R Factorization
« singuiar value decomposition {SVD}

« orthogonal projections

7.11.1 QR Factorization

Anm x nomalrix A can always be factored imo 4 = @R, where & is m x nt orthogonal
and £ is # x n upper triangular

War = n,and Q = (), O, where 3y is the matrig of the frst 7 columns of @
and R {8 ) where Ry is 0 x 1 upper triangilar, ihéd A = @y Ry This tactorization is
known as a reduced QR factorization, The following methods for QR factorization have
been described:

» Houscholder's method {Algorithm 7.2}

* Givens method {Algarithm 7.5}

* Classical ({CGS) und modified Gram-Schmidl (MGS) pracesses {Algorithms 7.7 and
7.83

The Houscholder and Givens methods yield o full QR factorization of 4 1 A =
QR, O B" " R e B!, from which areduced QR factorization can be easily obtained.

The CGS and MGS produce a reduced QR fuctorization.

The Householder and Givens metheds have excellent numerical properties: Both are
stable. However, Givens QR methad is slightly more expensive than the Householder QR
methodd,

In the CUS process, orthogonality of the vectors of the Q matrix might complesely be
fast, The MGS process has beller numerical property than the UGS process; however, it is
net as stable as the Householder or Givens method, (See Tuble 7.2.3

7.11.2 The SVD, GMD, and GTD

Let A4 & R"*". Then the decomposition
A=UEVT

where 17 £ E™"™ and V & B are orthogonal amnd T = diag (5y. 02, ....0.) p =
min(m, s} and oy = oz > -+« > g, = 0, 15 called the SVD of A, The numbers oy, ... . o)
are called the singuiar valires, The columas of &7 are the feff singuior vectors and the columns
of ¥V are the right singudar vectors, The singutar values and singular vectors are exiremely
usefil in determining many important properties of a matrix: rank, norms, condition number,
ete, {Theorem 7.27), The SVD, in particular, is the most reffable technigue for determining
the rank-deficiency and neariess ro singulariry (Theorems 7,29 and 7.34),
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Many pructical compulations arising in applications such as signal and bmage pro-
cessing and staiistics, and others can be made highly storage efficient and simplified greatly
using the SVD (see Seetion 7.9).

Twa other decomnpositions, related o SVD and QR, called GMED and GTD, have
been briefly introduced in Section 7.10. They have applications in control theory, signal
processing, and numerical optimization,

7.11.3 Projections

Orthogonal projections unte B{A} and N (A7) are frequently needed compulational tasks
arising in feasr-sguares solutions and other practical apphcations, These projections can be
computed using both QR factorization {Thearem 7.1 7} and the SVD {Theorem 735}, Again,
the SVD technigues are most numerically refinble, especiatly if A is nearly rank-deficient,

S, (ﬁfojcctii}nsviQQR faciorizationy Ler A&~ B2 (m-pn) and- A= R, where _

0 = (Q. ¢1). Then Py = G107, Pv = 020}

= {Projections via SYD) Let A = ULV, where U = (0, Uy and ¥V = (¥, V5.
Then Py = U]Uf. Py = UQU:;:T,

7.12  Suggestions for Further Reading

The topics treated in this chapter are [airly standard and have been discussed in all major
texthooks on these subjects: Demmel (1997), Trefethen and Bou (19897), Watkins (2002).
and Hager (1988). For advanced treatment of these topics, see Golub and Van Loan (1996),
Higham (2002}, Stewart (1998b), Lawson and Hanson {1995), and Bidrek (1996). Stewart
{1973) is a4l a rich source of knowledge on the basic topics of numerical linear algebra,
For details of QR factorization with column pivoling, see Golub and Van Loan (1996). For
an associated topic on rnk-revealing QR factorizations (o be discussed in Chapter 13}, sec
Gotub and Van Loan (1996}, Chan (1987), and Hong and Pan (1992). For the use of SVD
in bioclecuric bmaging of the brain, see Major and Sidman (1991). For applications of QR
factorization to statistics, see Hammarling (1985) and Thisted {1988). For applications of
QR decomposition and SVD 1o search engines, see the bock by Berry and Browne (2005}
For maurix methods in data mining and pattern recognition, sce Eldén (2007). For resulis on
perturbation analysis of QR factorization, seg Stewart {1977b) and Zha {1993). For details
of deblurring images using SVD and other matrix techniques, see the books by Hunsen,
Nagy, and O'Leary (2006} and O’ Leary (20095 Some earlicr books on image processing
include Andrews and Hunt {1988) and Jain (1989). See also Bojanczyk (19%5). For the
computation of the SV of a complex matrix, see Businger and Golub {1969},

Exercises on Chapter 7
EXERCISES ON SECTIONS 7.2-7.6

7.1 Let H = 7 — 3 pe 3 Householder matrix. Then prove that (i) Ha = —u, and {ii)

i n
He=pifuTu=20
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7.2

7.3

7.5

7.6

Let x be an n-vector. Develop an algorithm o compute o Householder matrix # =
1 = 28% such that Hx has zeros in the positions {r -+ 1) through #: 7 < #.
How many flops will be reguired to implement this algorithm?

Given x = (1,2,3)7, apply vour algorithm 1o construct # such that Hx has a zero
i the third position,

{a) Developalgorithms forimplicitiveomputing Q) HA (DA H Gy H\ Hy .. H.C,
and explicitly computing (iv) Q = HiH2... H,, where the matrices A and
Hi ot = 1, ..., r, arg Houscholder matrices of order 7, and A and € are arbi-
trary rectangular matrices of appropriate sizes.

{b) Compute flop-counts for each of the above computations and verily the counts
given in Section 7.2.

{c) Develop an algorithm for implictilly computing A J, where J is a Givens matrix,
_ What is the flop-count?

{a) Criven the Householder vector ¢ = (1, 1}? and

12
A=1{3 4},
s 6

compute H A and AH using the algorithms deve]@gecj in Exercise 7.3(a),

{b) Given the Householder vectors uy = {11, 137, ug = (1.2, 3), 02 = {1, 0,0,
and

compuie both implicitly and explicitly Hy H: #:C and compare the compuia-
tional efforts. (Here #;, ¢ = 1,2, 3, are Householder vectors associated with
the Householder matrices &y, #5, and Ha, respectively.}

(a) Let A = QR beaOQR factorization of a nonsingular matrix A. Define a diagonal
matrix I = dlag (y. . dm} suchthaldy = 1if 7/ > Oand dy = —1 1l
rri < {}. Define now Q QD“ and B = DR. Then show that 4 = R,
What 15 the significance of this resuft?

{by Find QR faclorizations of

001 1
2 10 1 1
A=11 7 10 1
I 1 1 10

using {i) the Householder method, and (i) the Givens method. Establish a
relationship belween these two factorization using the resalis of {a).

(2) Show that it requires 2n°{m ~ £3 ﬁops to compule R in the QR factorization
of an m = # matrix A (m = ;;} using Houﬁﬁ.haiduf s method, and that if @ 1s

needed, then the count is 4(min — mn” 3 } flops.
{by Show that the flop-counts {or both CG8 and MGS are 2mn{m > n).
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1.7

7.8

7.9

710

711

712

7.13

7.14

118

Using the Cholesky decomposition of AT A, where A is m x n(m > ») and has
full rank, prove that A has a anigue reduced QR faciorization with positive diagonat
entries of . What are the computational drawbacks of this approach for finding a
reduced QR factorization numericalty? Hlustrate the difficuliies with an example,

Given v = (1,2, 37, find a Givens matrix /{1, 3, #) such that the third component
ol J{1,3, #)v is zero. Repeat the process by creating the Givens matrix J(2, 3, 8),

Develop a column-oriented version of MGS for QR factorization. Show that the row
version (Algorithm 7.8} and the column-oriented version are numerically equivalent.

Show that the fop-count to compute R in the QR lactorization of an m x # matrix A
{m = n) using Givens rotations is about 3n2(m - 243,
Let A bem % #. Lot s = min(m, #). Show that the orthogonal matrix

where each ; is the product of (m — ) Givens rotations, can be computed with
dnfm? — %) flops.

Let
0 0 0
A= 0.0a061 G &
- G 0.0001 ]
0] 0 0.0601

(a) Find the reduced QR factorizations of 4 using (i) the Householder method,
(i) the Givens method, and (iii) CGS and MGS muathods. Compare the results,

(b} From the reduced QR factorization ohiained from MGS and CGS methods, find
a full QR factorization.

Based on the statement of Section 7.3, develop an algorithm for complex QR [actor-
ization. Use your algorithm o find QR factorizations of

(e o T
{%}Aﬂ('i —,),fii)flﬂ 144 | i
Ao bo1—i 0

Print{|A — @R, Q7 Q. 1004 in esch case,

Find QR (actorization of the Hessenberg matrix A obtained by the MATLAB com-
mand hess, H = hess (rand{10)}, using both Householder's and Givens™ methods,
and compare the results, Write down your observation on the uniqueness ol this
decomposition.

Suppose vau have computed the QE lactorization of an n X e matrix 4. Develop now
an efficient algorithm for computing the QR lactorization of § = A 4+ uv’, where #
and v are two n-vectors, by making use of the QR faciorization of A at hangd, How
many flops are needed? How does this lop-count compare with those for finding the
(R faclorizalion of B without knowing a priori the QR lactorization of 47
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EXERCISES ON SECTION 7.8

706 {a) Let A bem x o, and let & and V be orthogonal. Then, using the definition of
singular values, prove thal the singular values of A4 and V7 AV are the same,
What about the singular vectors?

(b) How are the singular vectors of A related with those of U7 AV?

{z} How are the singular valuoes of a svmmetric matrix related (o its eigenvalues?

7.17 Let o be a singular value of A with multiplicity £ thalis, oy = 610 = - - = Gy
Let VT VT he the SVD of A. Then construct &7 and V such that L’X(V}T is also an
SV,

7.18  {2) Using the MATLAB command svd, find the SVD of the following matrices:

12
S A=13 4 A.m(] 2 3),
5 6
H
A= | 1], A = diag(1.0,2,0,-5),
1
1 i
A=le 0], ¢ = 1075,
\{E €

{b) Using the resuits ulf{a), find (i) rank, (i) § - |2 and § - § #, (011} orthonormal bases
for B(AY and N{A”), (iv) Py and Py, (viand b and by by chousing a vector
& approprintely lor each A.

7.19 Foranm x n matrix A, prove the followings resulis using the SVD of A:
() rank (AT 4 = rank (4AAT) = mnk (4) = rank (A7),
(i} AT A and AA7 have the same nonzero cigenvalues.

(i) 17 the eigenvectors iy and 12 of AT A are orthogonal, then Au; and Ax, arc
arthogonat,

7.20 Let A be an inveriible matrix. Then show that §A]]s = Tifand only if A is a muliiple
of ae orthogonal matrix.

7.21 Let I have orthonormal columns, Then using SV, prove thal
(3} JAU {2 = [Afa,

i) JAUY, = Al

(i) BAXY /vl s maximized if ¥ = v amd minimized if 3 = v, where vy and o,
are the singular veetors associated with the largest and smallest singolar values
of A, respectively.

7.22 Let UEVT be the SVD of A. Then prove that [T AVE = 377, o, where oy are
the singular values of A.
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7.23 Let 4 be anom = 7 matrix.

{a) Using the SVD of A, prove that
M 1ATAllz = 1Al
(i1} Conda{AT A} = (Conda{ AN,
£iii) Cond={A) = Cond={L/7 AV, where If and V are orthogonal,

(b} Let rank{A, ..} = #, and let B,,... be a malrix obtained by deleting (n — )
columns from A. Then prove that Conda {81 = Conda{A).

7.24 Prove that if A is an m x »# matrix with rank », and i B s another i x » mairix
satisfying YA — Bz < o, then B has at least rank 7.

7.25 Consider the matris A in Example 7.5.

{a) Finding the singular values of A, show that this matrix has rank 2, bat is Close
1o a matrix of rank 1.

(b} Find s mamis A; of rank 1 such that out of all the matrices of rank 1, A, is the
closest {o A,

{¢) Find |4 — A ], and verify Theorem 7.29.
{d) Find #4 — A {p and verity Theorem 7,34 by taking B as a random motrix of
orger 3 x 2,

7.26 Let A and B be # % n real matrices. Let @ be an orthogonal matrix such that

HAMBQ‘EF < [[A— BX{|» for any orthogonal matrix X. Thenprovethat @ = VU7,
where ATB = /T V7.

T.27 Given
1 23
A=12 3 4},
5 6 7

use the result of Exercise 7.26 to show that the orthogonal matrix

~02310 —03905 0.8912
0= {-04824 08414 02436
0.8449 03736 0.3827

is such that 14 — Q|7 = UA - Xz, where X = | The set of all 3 x 3 orthogonal
matrices},

7.28 (a) Let

Express A in terms of its singular values and singular vectors,
(b) Compute (A7 A} using the SVD of A




Exercises on Chapter 7 233

7.29

7.30

7.31

7.32

7.33

7.34

{ay Generute randomiy a malbrix A of order 16 x4 by using the MATLAB command
rand {16,4), Then verily using the MATLAB command rank that rank (4) = 4.
Now run the following MATLAB command: [/, 5, V] = svd {4} Set
4. 4y = Qs compute B = U5V, What is rank {(B)}!

{b) Construct a matrix ¢ of order 16 x 4 of rank 3. Verify that (i) |C ~ Allz =
B — A%, (i) |€ — AliZ = 1B ~ All3 using the MATLAB command norm.

{c} What is the distance of 8 from A7

{d} Find a matrix D ol rank 2 that is closest 1o 4.

Lat
1 1 i 1
4 4 0.000 1 1
B ] 0.00M 1
8] G 0 1

will make A singular. Compare the size of this perturbation with |oy].

Let A = UEVT be the SVD of a randomly generated 15 x 10 matrix A = rand
(15,100, obtained by using the MATLAB command [£/, S, V| = svd(A}.
Set S{8,8) = 8§(8,9) = 510, I0) = 0. Compute B = L/ x § % V",

Fird the best approximation of the matrix & in the form 8 = 377 x»] sueh that
N8 — 30 xv] iz = minimum, where x; and y; are vectors, and r is the rank of B,

For malrices A and # fn Exercise 7.31, find an orthogonal matrix ¢ such that {4 —
BQlUs is minimized. {Hini: § = vUT, where ATH = UT VY, Use the MATLAB
command svd (o solve this preblem.)

(a) Develop an algorithm for solviag Ax = 5 using the SVD of A. Compare
the efficiency of this algorithm with those of Gaussian elimination and QR
factorization processes for solving Axv = b,

(b Prove that a small singolar value of A signals the sensitivity of the solution of
Ax = b. Construcl an example to demonstrate this,

Prove that the singular values of a symmetric posilive definite matedx A are the same
as s singulur values. What are the relationships between the cigenvectors and right
and left singular vectors?

EXERCISES ON SECTIONS 7.7 AND 7.8.10 (PROJECTION PROBLEMS)

7.35

7.36

1.37

Prove that if £ is the orthogonal projection onta S, then 7 — £, is the orthogonal
projection onio 5+,

Prove that (i} Py = A(ATAYTAT (it) Py = 1 — A(AT A)"1 A7 assuming that A has
full rank, and (i} bg = Pa4b, By = Pyb. What are the compulational drawbacks
of computing P4 using these expressions? [ustrate the difficulties with @ numerical
example.

Write a detailed prool of Theorem 7.17.
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7.38 Por matrix A in Exercise 7.4(2), and with & = 1,2, 37, using both QR and SV,
compute {i} Ps and Py, (i} bp and by.

7.38% Given

A =

| FER N G-,
LN e fad

and choosing B randomly of appropriate order, compute By and By,

MATLAB and MATCOM Programs on Chapter 7
Datya set for Problems M7.1, M7.2, and M7.3;

{1} A = 20 = 15 random matrix,

(ii} ;f‘—tmnea(lﬁ,}) A et
(i) iy =y =y =(1,2,3,4,...15)7,
M7.1 Write a MATLAR program hmat in the following format to compidte implicitly House-

holder matrix multiplications AH and HAT;
[C] =hmat {A, 1)

v A —an m % o malknx {ingut),
* 1 ~ the Householder vector defining the Householder matrix H {input).
» ' — the output matrix
M72 Wiie a MATLAB progran hhmat in the following format to implicitly implement
the prodoct Hy Hs H3 AT
{C1 = hlimat (A, 1y, 43, Us}

* A~ anm » »n matrix {input),

* 1y, 1o, i3 — the Houscholder vectors defining Hy, Ha, and H, respectively
(input).

«  — the output mairix,

M7.3 Use the program hlimat to compute H, Hy Hy.

M7.4 (The purpose of this exercise is to compare the accnracy and efficiency of different
methods for QR factorization of a matrix.)

(a} Compuie the QR factorization for each matrix A of the following data sct as
Foliows:
() [¢. B] = qr{A) from MATLAB or [Q, R] = housqr {A) or housgrn
{(MATCOM implementations of Householder™s method).
{1) {3, B] = givgr (A) (Givens QR implementation from MATCOM).
(i) {0, Rl= clgrseh(A) {classical Grass-Schimidt implementation from MAT-
COM;.
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fiv) [Q, R] = mdgrsehiA) {rom MATCOM (modified Gram~-Schmidt imple-
mentation from MATCOM),
(by Lising the results of {a), complete Table 7.3 for cach matrix 4, é and R stand
for the computed @ and R,
Draka sel:
(i} A = rand (25},
{i1} A iz a Hibert matrix of order 25,

T

. e e o

G d=1 o5 o= o |
0 o o

{ivy a Vardermonde matrix of order 25,

Table 7.3. Comparison of different QR factorization methods,

. A— OR|r
Method e ¢ —Ilr EW"’TQ“—”L
fAlx
housgr
givgr
clgrsch
mdgrsch

M7.5 Using givgr from MATCOM, which uses Givens' method, and qr from MATLAB,
which uses Houscholder's method, {ind the QR factorization of each of these matrices
below and verify the staterment of Exercise 7.5(a} which shows how {J and R matrices
of each method are related.

Test data:

(i}
i i 1
A% B I
O 09y |
o 0 £ 099

(1) A = The Wilkinson bidiagonal matriv of order 20.

0D -

M7.6  ¢u) Wrile MATLAB programs orthqr, orthgrp, and orthsvd o compute the or-
thonormal basis for the range of a matrix 4 using (i) QR factorization, {ii) QR
factorization with partial piveting, and (i1} the VD, respectively.

{by Repeat Exercise M.7.0(a) lo compute the orhenormal basis for the aull space
of A, that is, write the programs nullqr, nullqrp, and pullsvd.
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M7.7

M7.8

M7.9

{¢) Compare the results of sach of the three programs in both cascs For the test data
given below.

Tost dota:

(1)

(i1} A = a randomly generated matrix of order 20,

Compuie the rank of esch of the following matrices using {i) the MATLAB com-
mand rank (which uses the singular values of A) and (ii) the MATLAB commands

1@, R, E] = qr(A}, which compuies the QR factorization of A using columa pivot-

ing, and (7i1) (he MATLAB command [Q, R}=grid)— v
Test duta:

(i) The Kahos mateix (7.8}, with i == 100, and ¢ = 0.2,
(i) A 15 x 10 mawrix A crented as follaws: A = xy7, where
xo==round (10 rand(13, 1)), v roond {10« rand{10, 1))
Write @ MATLAB program, covsvd, 1o compute (A7 A3} using the SVD and test

it with the 20 x 20 Hilbert matrix. Compare your results with those obtained by
linsyswi varcovar from MATCOM, which is based on QR faciorization.

Let A be a 20 x 20 Hilbert matrix and et & be a vector generated such thal all entries
of the vecior x of Ax = barg equal 1o 1.

Solve Ax = b using (i} QR lactorization and (ii} SVD, Compare ithe accuracy and
flop-count with those obtained by linsyswf from MATCOM or using MATLAB com-
mand A\,



Chapter 8

Least-Squares Solutions to
Linear Systems

Background Material Needed

+ Cholesky factorization algorithm (Algorithm 6.7)

» Householder's QR factlorization algorithm {Algorithm 7.2)

» Onthonnrmal basis and projections (Section 7.7

» Tteralive refinement algorithm for linear systems (Algorithm 6.6)

+ Perwurbation analysis for linear systems and condition number (Sections 4.6 and 4.7)

8.1  Introduction

In Chapter 6 we discussed methods for solving the linear system
Ax = b,

where A was assumed to be square and nonsingular, However, in several practical situations,
such s in statistical applications, geometric modeling, and signal processing, one needs Lo
spive 4 system where matrix A is either a nonsquare matrix or is a sguare matrix but singular.
In such cases, solutions may not exist at all; o cases where there are solutions, there muy
be infinitely many. For example, when A is m x n and m = n, we have un overdetermined
system {that is, the number of equations is greater than the number of unkaowns}, and an
gverdetermined system typically has no soluton, In contrast, an enderderenmined system
{m <« n) typically has an infinite nember of solutions,

Inthese cuses, the best one can hope for is wo find a vector ¥ which will make Axasclose
as possible to the vecior A, In other words, we seek a vector v such that r{x) = |Ax — b
is minimized, When the Buclidean norm | - |- is used, this solution is referred o os &
leas-squares selution 10 the system Ax = b. The term “least-squares solwion” is justified
because it {5 a solutien that mininizes the Euclidearr norm of the residual vector and, by
definition, the square of the Euclidean norm of a vector is just the sum of squares of the
components of the vector. The problem of finding feast-squares solutions to the linear
systern Ax = b is known as the linear least-squares problem, The lineur least-squares
problem is formally defined as follows.

It
Lo
4
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Statement of the Linear Lenst-Squares Problem

Given a real m x # matrix A of rank & < min(er, 1) and a real vegtar b, find a
real n-veclor x such that the function r{x) = {Ax — &+ is minimized,

H the least-squarss problem has more than one solution, the one having the minimum
Euclidean norm is called the minimum-length solution or the minimom-norm solution,

This chapter is devoted to the study of such problems. The organizadon of the chapler
is as follows.

In Section 8.2 we give a geometric interpretation of the least-sguares problem.

in Section 8.3 we prove a theorem on the existence and unigueness of the selition of
an overdetermined least-sguares problem. Some applications leading to the least-squares
problem are discussed in Section 8.4

In Section 8.5, we define the psendoinverse of a full-rank matrix A und give the

T eRfirestiong for the condition nember-of arectangular- matris.in ferms of the pseudoinverse

and for the naigue least-sguares sofntion in terms of the pseudoinverse.

in Section 8.6 we analyze the sensitiviry of the least-sguares problems due (o perlur-
bations in data. We prove only a simple result (Theorem 8,10} there and state other resulis
without prools {Theorems B.13 and 8.16).

Section 8.7 deals with compurational methads for both full-rank and rank-deficient
averdetermined problems,

Underdetermined least-squares problems are considered in Section 8.8,

InSection 8.9 aniterative improvement procedure forrefining an approximate solution
o o least-squares problem is presented,

8.2 Geometric Interpretation of the Least-Squares
Problem

Let A be an m x # matrix with m > 2. Then A s a linear mapping of B* — E™. R{A)
is a subspace of B, Every vector u € K(A) can be writlen as & = Ax for some x & E".
Let b & B™, Because ¥ - {2 is a Buclidean norm, {l& — Axly is the distance between the
end points of & and Ax. It is ¢lear that this distance is minimal il and onby iIf b — Ax is
perpendicular to R(A) {see Figure 8.1), In that case, b — Axls is the distonce from the
gad point of & to the “plane” R{A).

From this interpretation, it is easy to understand that a solurion of the least-squares
problem to the linear system Ax = b always exists. This is because one can project b onto
the “plane” R{A) o oblain a vector e € R{A}, and there is x £ B such thal v = Ax, This
¥ is a solution.

Because b — Ax is perpendicular to R{A) and every vector in (A} is a linear com-
bination of column vectors of A, the vector & — Ax is orthogonal to every column of A,
That is,

AT — Axy =D
o

ATAv = ATp.
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b Ax

Figure 8.1. Geometric interpretation of the least-squares sohyion.

Definition 8.1, Ler A ¢ B, The sysrem of i egnationy
ATAx = ATp

is called the normal equations.

8.3 Existence and Uniqueness

From the geometric configuration above, we have just seen that g leasr-squares solution
abways exists und sarisfies the normal equations. We shall now give an analytical proof of
the existence and unigueness resull and derive some equivalent expressions for least-sguares
sotutions. We assume that the system Ax = b is overdetermined, thatis, A is of order m = n,
where m = n. Least-squares solutions to un witderdetermined system will be discussed in
Secrion 8.8, An overdetermined system Ax = b can be represented graphically as shown
in Figure 8.2,

i > H
il

A b

Figure 8.2. 4 overdetermined system.



240 Chapter 8. Least-Sgjuares Solutions to Linear Systems

8.3.1 Existence and Uniqueness Theorem

Theorem 8.2, (i) Given A € B™*" {m = m)and b € B", avectorx € B" isaleast-squares
solution to Ax = b if and only if x satisfies the normal equarions

ATAx = A7 b, (8.1
(i1} The least-sqnares solution, when it exists, iy wlgue if and only if & has fidl rank,

Proaf, Proof of (i} We denote the residual # == § — Ax by r{x) to emphasize that given A
and b, risa function of 5. Let v he an nwvector. Thenr{y) = b— Ay = r{x)+ Av— Ay =
r{x} -+ Alx — ¥y} 8o,

i*r(v %5 ézrm; + 20y — ¥ AT P 4 A — 9

First assume Efleu X salssﬁ&,s
ATdy = 47p,
that is, A7 r(x) = 0. Then from the above, we have

fr(aid = Jreol3 -+ [ A{ — )03 = lirtoi,

implying that x is a least-squares selution,
 Next assume that v does not satisfy the normal eguations; that is, ATrix) # 0. Set
Afrx) = z # 0. Define now a vector ¥ such that

Yo X ook fEI.
Then

r{y) = r{x}+ Alx — ¥) = r{x) — Az,
Ir (i3 = Brixol; + @l Azl3 ~ 2uAT r(ne”
= (s + pllAzld - 2ulizil < el

§f~§|v

forany £ > 01l Az = 0, and for 0 « g < Tas

least-sguares sofution.

i Az #£ 0. This implies that x is nota

Proof of (ii) To prove uniqueness, ail we need to show then is that matrix AT A is
nensingular when A has full rank, and vice versa {note that the matrix ATA s square and,
therefore, the system (8,17 has a unigue solution if and only if A7 A is nonsingular).

We prove this by contradiction. First, suppose that A has fuli rank, but A 4 is singular.
Then AT Ax = 0 for some nonzera vector 1, meaning that 7 A7 Ax = 0. That s, Ax =0,
implying that A is rank-deficient, which is a contradiction.

Conversely, suppose that A is rank-deficient but AT A i nonsingular. Since 4 is
cank-deficient, there exists a nonzero ¥ such that Ax = 0, showing thal A” Ay = 0. This
implies that A7 A is singular, which is again ¢ conradicton, U
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8.3.2 Normal Equations, Projections, and Least-Squares Solutions

Theorem 8.3 {least-squares and orthogonal projection}. Ler A € BY™, m = n, and
b e BY. Let A have full rank, ond let x be a least-squares solution to Ax = b, Then x
satisfies

Ax = Pub,
where Py ix the orthogonal projection of A onie R{A},
Proof. Since x is a least-squares solution, it must satisfy the following: A7 Ax = ATH
{part (i} of Theorem 8.2). Also, ATa is' .nons%ngular, because A has full rank {prool of
part (ii) of Theerem 8.2), Thatis, x = (A7 A)7'A7h. Se,
Ar = AATAY ' ATh = Pib.
(Note that P, = A(A7 )47y 0

Remark. The converse of Theorem 8.3 is also true, and is left as an exercise (Exercise 8.3}

Theorem 8.4 {least-squares residual equation). Ler v = b — Ax, Then ATr =0 if and
only if x is a least-sguures solution.

Proaf. The proof follows immediately [rom the normal equations. £

Summmarizing the above results, we have the following.

Equivalent Expressions for Least-Squares Solutions

The vector x is a keast-squares solution to Ax = b, where A &€ B"*", wm = », il
and only if any of the [ollowing equivalent conditions hold:

() AT Ax = ATH (normal equations). The solutios v is gnique il and only if
A has fulf rank,

(1) Ax = Pub, where By is the orthogona! projection onto B{A}

(i) ATr = @, where r = & — Ax.

Example 8.5, Le:

1 2 3
A=12 3], b=15
4 3 e

ro {20 2B\ g (49 i
AA_(% %) A=le) =01}
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2. Using orthegonad projection: Ax == Pab.

Py =

0.7143 04286
0.4286 03571

~0.1429 (2143

-~} 1428
0.2143
(1.9286

¥

Y= Pub =

~-8:4:1-- Polynomial-Fitting to Experimental Data ____

8.4 Some Applications of the Least-Squares Problem

In this section, we describe two well-kanown real-tife problems that give rise 1o the least-
suares problem,

A well-known exampie of how normal equations arise in practical applications is the filting
of & polynomial Lo a set of experimental daia.

Engineers and scientists gather data row experiments. A meaningful representation
of the collected data s needed to make meaningfol decisions for the future.

Let (x), v, {xn, v oo, (X, vy) be 2 set of patred observations. Suppose that the
mith {m < #) degree polynomial

}'(X) =dg+ X + (523:1 44 &’mxm (8.2}

is the “best A" for this set of data. One strategy for this “best it {5 to minimize the sum of
the sguares of the residuals

[£3
F = Z(}xi -y e HJ] X - ﬁzxf — e e G,,;x{f"}z_ .
g}
We must then have
dE )
S =0 i=l.m
i
Now,
aE n
i 35 “""'2 Z()’j Bl s Bl / S ey ﬁz.\f} o b s — 3;;;.‘.'?#}‘
8&0 pr
] B
oE
5o = 2 ZIJ{}?;’ g — G G2AE = e @),
) - {B.4)
Ak A
e T "Z—Y;”I(}*;‘ -y — (35X o — a;;,l’fﬁ),
Fiiepm -
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Setting these equations to zero, we have

agig+§12xi+agz.&:§-§—‘ +amz Z""
CIUZ.T,: -+ Z.\.’?'*‘""i‘amzx;““ mz.‘ig}‘;.

y (8.5)

ap Zx;n + a Z I;n+l bt Z_tilm - Z‘!“;ﬂ}}
{where ¥ denotes the summation from { == | o n).
Setting Z\f = 8, k= 0,1,..., 2m, and denoting the eatries of the right-hand

side, respectively, by Iy, by, .. .. &, the system of eguations (B.5) can be wrillen a8
B R ay i
5, S TEe o) By
. . =100 (8.6}
S Sm+¥ e S gy e,

{Note that 8y = n.)
This is a systern of (w3 1} equations in (m + 1) unknowns dgg, a4, ..., Ga-
This is really a systern of normal equarions. To see this, defiae

Tox - af ¥
U ox a ¥
Ve, . - y== 1 1. (8.7)
boxg x Vi
Then system {8.6) becomes equal to
Viva e Viyab, {8.8)

where ¢ == {ag. 81, ..., 07 and b= (bg, by, ..., B, Y.

IT the x;7s are all distinct, then matrix ¥ has full rank,

The matrix V is known as the YVandermonde mafrix. From our discussion in the
previous section, we see that # s the least-sqoares solution to the system Va = b, If the
x;'s are alf distinct, then x s unigue.

Example 8.6. Suppuose that an elecurical engineer has gathered the following experimental
data consisting of the measurement of the curreal in an electric wire for various voliages:

0 | ;5 7191 13 |24
RRIES

X = vplage 2
06, ’?938.5}12}215

¥ o= et

We would like to derive the normal equations for the above data corresponding to the best
fit of the data 10 {&} a straight line {b) a quadratic, and wonld like 1o see a comparison of the
predicted results with the actusl result when x = 5.



244 Chapter 8. Least-Squares Sclutions to Linear Systems

Case |, Straight-line fir m = 1.

I 0 0
12 6
| 5 7.9

vaell 7], y=|8S
19 120
K 205
1 24 30

The normal equations VI Vg = V7 y = b arc

7 60 1 { 0.0906
(6[} 9(:4) a =1t (1,3385) '

The solution of these equations is
b et AT TR
The value of ag + ey v at ¥ = 515 0.6837 4 1.4345 x 5 = 7,8596.

Case 2. Quadratic fin m = 2.

i 08
P2 4
b5 25
V=11 7 48
19 81
1 13 169
1 24 576

The normal equations are

ViVa=viy=b

&1
7 60 004 0.009%
60 804 17226 | o= 10" [ 0.1338
G4 17226 369940 2.5404

The solution of these normal equations is

ag 0.8977
p=la | =113695
az 0.0027

The value ol gg + a8 + e’ alx = 515 7.8127.

Note: The use of a higher-degree polvitomial may net necessarily give the best resuit.
The matrdx of the normal eguations in this case may be very itl-condilioned: Indeed, it
is weil known that the Vandermonde matrices become progressively ill-conditioned as the
order of matrices increases. Note that in Case 2, Cond(VT V) = 2.3260 x 105, whereas in
Case |, Cond(VT VY = 3022195, B
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8.5. Pseudoinverse and the Least-Squares Problem

8.4.2 Predicting Future Sales

Suppose that the number of units &; of a product sold by a company in the district ¢ of
a town depends upon the population a4 (in thousands) of the district and the per capita
income g {in thousands of dollars), The table below faken from Neter, Wasserman, and
Kutner (1983)), compiled by the company, shows the szles in five districts, as well as the
correspanding population and per capits income,

Disteict Sales  Popuelation Per Capita Incomse
i bi i a2
1 162 274 2450
2 120 {80 3254
3 223 375 3802
4 131 203 2838
5 67 86 2347

Suppose the company wants to use the above table to predict future sales and believes (from
past experience ) that the following relanonship between by, gy, and a;2 is appropriate:
By = 1) 3 aas + aps

If the data in the table have satisfied the above relation, we have

162 = xy + 274x0 + 245053,

120 = x4 18057 -+ 3254x3,

223 ==y A 37507 4+ 38020,

131 == x; + 205x; + 283813,

67 = x; 4 8Oxz + 2347 x4,

or
Ax = b,
where
1 274 2450 62
I 180 3254 120 x)
A==t 375 38027, b=12231. x=|xn
205 2838 131 X3
1 86 2347 o7

The above is an overdetermined system of five equitions in three unknowns.
The least-squares solution of the problen will give us predictions of sales (see Exam-
phe B.20).

8.5 Pseudoinverse and the Least-Squares Problem

Assume that A is m x # (m = n) and has full rank. So, A A is invertible.
Denote (AT AY"1A7T = 47,

Definition 8.7, The mairix '
A= (AT ATAT
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is colled the pseudoinverse ar the Moore-Penrose generalized inverse of A, X therefore
Jollows from Theorem 8.2 that

the unique least-squares solution v = A'h.

Clearly, the above definttion of the psewdoinverse generalizes the ordinary definition
of the inverse of a square matrix A, Note that when 4 15 square and invertible,

An excellent reference on the subject is the classic book by Rao and Mitra (1971). Some
other books of interests on generalized inverses include Guorong, Yimin, and Sanzheng
{2004) and Camphbell and Meyer (1974),

Having defined the generalized inverse of a reclangular mairix, we now define the
T fandifon miher-of such a matrix-as Cond(AY = AL AT

Definition 8.8, {f an m x nomatrix A has full rank, then Cond{A) = Al AL
Note: If notexplicitly staled, all the norms used in the rest of this chapter are 2-norms,

and Cond{A) is the condition sumber with respect to the 2-norm. That is, Cond{A) =
Az A .

Example 8.9,
[ 3
A=12 3 = |5
4 5 9

Thus, A has full rank; rank (4) = 2.
$ AT -l g7 _ {12857 —05714 Q8571
A ={47A4)7A0 = ( | 0.5000 05000} °

Conda(A) = {4l Hﬁ%ﬁ;: = 76656 x 20487 = 15,7047 |

The unique least-squares sohutionx = A’ = {1}, B

8.6 Sensitivity of the Least-Squares Problem

in this section we study the sensitivity of a least-squares solation to perturbations in data;
that is, we fuvestigate how a least-squares Solution changes with respect to small changes
is the data. 'This study is important in understanding the different behaviors of different
methads for selving the Teast-squares problem that will be discussed in the next section. We
consider ¢wo cases: perturbation in vector b and perturbation in matrix A, The resulis in
this seclion are normwise perfurbation results. For componentwise perturbation results, see
Biéirck {1896).
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Case 1; Perturbation in vector &

Here we assume that vector & has been perturhed to b = b + 85, but A has remained
unchanged.

Theorem 8.10 (least-squares right perturbation theerem). Ler x and X, respectively,
be the unique least-squares solitions to the origingl and the pertarbed problems. Then If
el # 0,

I3 - x]

Relative change = LS < Cond(A) ”iﬁbr?li'
flx l6gl

Here P
Cond{A) = A1 AT,

and bg amd §by are, respectively, the projections of vectors b and §b ento R(A),

-~ Progf-Since x and % arc the unigee least-squares selutions 1o the original and the perturbed
problems, we have

x=Ab, = A%(h+ b

Thus, . _ .
F—x=Ab+ ATSb— ATh = A'S), (8.9)

Let §by denote the projection of 84 onto the orthogonal complement of R{A). That is,
8 = 8hg + 8by.

Since by lies in the orthogonal complement of R{A) = N(AT), we have AT (§by) = 0.
So

Ry = ATSh = ATy + 8by)
= AT(8hp) + AT(Bby) = A'Sby + (AT A)7 AT 8By = ATSDa.
Again, since v is the unique least-squares solution, we have
Ax = by,
from which (again taking norms on both sides) we get
G B _
fxfh = 3;:&‘. (8.10)
Combining (8.9) and (8.10), we have the heorem. [

Interpretation of Theorem 8.10.  Theorem 8,10 1elis us that if enly vectar b is perturbed,
then, as in the case of linear systems, Cond(A) = [A]] | AT serves as the condition munber
in the sensitiviry analysis of the anigue least-squares sefution, 11 this nwmber is large,
then even with a small relative error in the projection of & onto K{A), we can have a
drastic change in the least-squares sodution. On the other hand, if this number is smali
and the relative error in the projection of b onto R(A) is also small, then the least-squares
solution will not change much, Note that i is the smullness of the relative errov in the
projection of b onio R{A), nansely, ﬂ%’ﬁﬂ that plavs the role here, not merely the smallness
of 18bg .
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Example 8.11. An insensitive least-squares problem.

1 2 i 1
A=10 11, b=11], sh=10"4] 11,
1 0 1 1

0.8333  0.3333  0.1667 | 1.3333
br=Pyb=103333 03333 —03333) {1} =[023333],
01667 —0.3333  0.8333 ] 0.6667
.13333
Sbp = Pudb = 1077 | 0.03333
0.06667

Thus, according to Theorem 8,10, an upper bound for the relative errar is

|
i3bz }J....'..‘C!Jﬂﬂ{.a‘;)..ﬂf—" 107 x 24495,
o Sk LR

8o, we expect thar the least-squares salurion will not be perturbed much. The following
compulations show that this is indeed the case:

ety [ 06667 o ot _ {0.6667
xm= A= (03333) ., Xx=ATb+ 80 = ({}.3334) .

Sa, the relative error

%Ii&wixu =10t
i

Example 8.12. A sensitive least-squares problem.

I i 2 :
A=1107 0 1, b=1]107Y], xm(]).
{ =+ 10-+
Sugpaose that
i
yn-3 s L5003
A = 10 (D{;}l) . Then ¥ = ( 05005 |}

The product Conda (A} - i}l‘%—!ﬂ = 7,088, Since an npper bound for the relative error
is 7.0888, therz might be a substantial clange in the solurion. Indeed, this is the case.
The relative error in the solution is 0.53000; on the other hand the relative error in & is
50249 = 1074, 1

Case 2. Perturbation in matrix A

The analysis here is much more complicaled than in the previous case. We will state the
resull here {without proof) and the major consequences of the result, Let the perturbation
E of the matrix be small encugh so that

rank{A} = rank{4 4 E}.
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Let x and £ denote the unique least-squares solulions, respectively, to the original and the
perturbed problem. Let E£4 and £y denvie the projections of £ onte R{A) and onto the
orthogonal complement of £{A), respectively. Then if by 5 0, we have the following
theorem {see Slewart (1973, p. 2237},

Theorem 8.13 (least-squares left perturbation theorem). Let x and U be the unigue
least-sauares solufions to Ax = b and (A + EYE = b, and let rank{a + E) be the same as
rank{Al. FThen

ll xll HE s NEMIET. o(sw.vz;)’.

2 Cond(A .
< 2 Cond(A) T 4 iAl Thal T

Interpretation of Theorem 8.13.  Theorem 8.13 tells us that in the cave where pnlyv ma-
irix A s perturbed, the sensitivity of the unigue least-squares solution, in general, depends
upon squares of the condition number of A. However, if | Exll ar byl iy zero or small,
then the sensitivity will depend only on Cond{ A). Note that the residual r = b - Ax 15 zero
by =0

Two Examples with Different Sensitivities

We now present two examples with the same matrix A, but with different b, w ifiustraw the
different sensitivides of the least-squares problem in difforend cases. In the first exanple,
(Cond{A}Y serves as the condition number of the problem; in the second exarmple, Cond{A)
serves as the condition number,

Example 8.14. Sensitivity depending upon the square of the condition number. Lot A
be the same as in Example 7.18 and let

EN A

Then, using the results of Example 7.18, we have
[REES {106

;
by = Pob = 00001 |, by =1{ 00909 |, MoE )
0.0001 0.9999 16wl
Let
0 —0.0001
E=10716 09099
0 0.9999
Then

| i 0 107t
A+ F= {00001 G000}, Ex =10710 099991,
0 0.0002 0 0.9999
IEvE _ HET

=0.999 » | 4140 » 1075,
VY]
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The product of 5-5& and “‘i’::é is rather small: however, (Cond{A})® = 2 x 108 is larpe.
Thus, there ;:::gm fm a drastic departure of the solution of the pertwrbed proplem from the
solution of the eriginal preblem. This is indeed true, as the following computations show:

s o [ —4.999 {05
‘r—li}( s ), ,1-(&5}‘

Relative error: 2[5!%‘;_!{ = 9.999 x 10° {large!).
Note that

£
IZIQ}H i; :; (Conda (A" = 9999 x 14140 x 1079 x 2 x 108 = 28277 x 10°. W
H ®

___Exarﬁple 8.15. Sensitivity depending upon ihe candmgn number. Let A and E be the
" same as in the previots example,but .

2
b= 10.000]
4.0001

In this case,

i 194 10
bg= Psb=110"* 05000 -~0.5000|6=5.
1074 ~0.5000  3.5000

Thus, by = 0.
So, accerding to Theoremn 8.13, the sguare of Cond(A} does not have any effect; the
feast-squares solution is affected only by Cond{A). We venfy thiz as follows;

i . oty 14999
R () = )

The refative error L2k = 0.5000. Note that Condz(4) = 1.4142 x 10%, and 452 = 107

thus, the predicted upper bound of the relative error is about 14142, B

Residual sensitivity.  We have just seen that the sensilivities of the least-squares solutions
due o perturbations in the matrix A are different for differeat right-hand side vectors by
however, the following theorem shows that the residual sensitivity always depends upon
the condition number of matrix A. Wo stale the resalt in a8 somewhat simplified and crude
form. See Golub and Van Loan (1996, pp. 242-244) for 2 precise stalement and a proof.

Theorern 8,16 {least-squares residual sensitivity theorem).  Lef r and 7 denote the
residuals, respectively, for the original and the perturbed least-squares problems; that is,

remh— Ax, F=bh—{A EYI)
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Then .
il EEsD IE,

| vl 1Ew] )
2Cond{A) 0
W S ap TECeA T (llAii

Interpretation of Theorem B.16. The above result reils us thar the sensitiviry of the
residunl depends aof most on the condition number of A. One the other hand, as we have
seen befare, for the nonzero residual problem, it is the square of the condition number that
nigasures the sensitiviry.

Example 8,17, Let 4, &, and £ be the same as i Example 8,14, Then

05N, {—4.0999
x_(&s), ¥ =10 ( 5 )
—0.0001 -£3.0001
cpm b e Ay Po08999 1 b (A )T = | 0.9099
£.9999 0

Thus, the relative residual ﬁﬁ}»i = 05773, Note that Cond(A) - i—%}« = 14142, I

Sensitivity of the pseudoinverse.  The following result, due to Wedin (1973), shows that
it is Cond{A) again thar playy a role i the sensitivity analysis of the pseudoinverses of o
B Tix.

Thnt;rem 8.18 {pseudoinverse sensitivity theorem). Ler A be m x i, where m = p. Let
A and A be, respectively, the pseudoinverse of A and af A = A+ E. Then, provided that
rank{4) = ranki{ A}, we hove

jA -] IEY
e \/——COE‘Id( A Y e
At 144
| i
Example 8,19,
1 2 4.0010  0.0020
Am |2 3], E=10"%4=100020 0.0030
4 5 0.0040  0.0050
4i (12857 05714 0857
= 1 0.5000  —0.5000

A+E=A=|72002 31003

4.004 5.6065

1001 2.002
A =1{ o000 0499995 —0.4995

=5 (—1.2844 - (L3709 0‘8563)

¥ oav
1=« e

T
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MNote that
Condra) = 157047, N

8.7 Computational Methods for Overdetermined
Problems: Normal Equations, QR, and SVD Methods

The following least-squares solution methods are deseribed in this secrion:
» The normal equations method (Algorithm 8.1,

* The QR factorization methods using Householder and modified Gram-Schmidt (MGS)
processes. {Alsorithms 8.2 and 8.3).

« The SVD methad (Algorithm 8.4%

8.7.1 The Normal Equations Method

We have already seen in Section 8.3.2 that when A ism = o (m = n) and bas fuil rank,
the unique least-square solution x satisfies the normal equation: A” Ax = AT&. Indeed,
this approach of solving a least-squares problem had been a popular method for many.
vears among staiisticlans. We now show how to implement this approach numerically,
Since A has full rank, A7 A is symmetric and positive definite, and it admits the Cholesky
decomposition: ATA = HHT. Therefore, the normal equations approach for solving the
least-squares problem can be stated as follows,

ALGORITHM 8.1. Least-Squares Solution Using Normal Equations,
Inputs: (yAnm x » (m > 1) matix & of fiull rank, and (1) an m-vector b,
Output: A unique least-squares solution x.

Step L. Formc = AT h.

Step 2. Find the Cholesky factorization of ATA = HHT.

Step 3. Solve the triangular systems in the sequence Hy =¢, H' 1= y.

Flop-count. The above method for solving the full-rank least-squares problem requires
about ma® + % fops. This can be seen as follows: mu® fops for computing A7 A and

+ k] N N N Y
A7 b, % flops for computing the Cholesky factorization of A” A, and 2n° flops to solve two
triangular systems.

Example 8.20, Normal equatisn sohition of the problem on predicting Future sales
{Section 8.4.2).
O3
Step 1. Forme = ATh = { 182230
2164253
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5 1120 14691
Step 2. Form A" A = | 1120 297522 3466402
14691 3466402 44608873

0.0022 0 0
Ho= WP 1035009 02160 0
65700 O.BI32 0.8846

Step 3. Sclve the two rangular systems:

3143912 7.0325
y= 1 1i4,68376 |, x = | (L5044 |
6,1934 g.0070

The following table compares the prediction of sales in each districi, olbtained by the
least-squares solution, with the acrual vaine. The predicton lor district i is compuled as
al.’.r, where “;’1 isthefthrowof &, i = 1,2, 3. 4.

District | Prediction of Sales | Actual Sale
1 162.4043 162
2 120.6153 120
3 2228193 223
4 130.3146 131
5 66.8471 67

Suppose that the company would like to predict, using the above results, the sales
in a district with the population 220,000 and per capita income of $2.500. Then the best
prediction using the given moedel is

7.0325
{i 220 2500){0.5044 | = 135.5005.
0.0070

Numerical Difficulties with the Normal Equations Method

The normal equations method, though casy o undersiand and implement, may give rise 1o
nurerical difficulties in certain cases.

First, we might lose some significant digits during the explicit formation of AT A, and
the computed matrix AT A mav be far from positive definite; compurationally, it may eves
be singutar, Indeed, it has beea shiown by Stewart {1973, pp. 325-226) that unless Cond (4 )
is less than 10%, where it is assumed that 47 A has been computed exactly and then rounded
1o 1 significant digits, the matrix AT A may fuil (o be positive definite or even may not be
nonsingular. The following simple example ilustrates this fact. (Nowe thatr < 16 fora
32-bit machine,)
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Example 8.21. Consider the matrix A from Example 8.12. Lett = 8, The columns of A
are finearly independent. Tn exact arithmetic, we have

. {11078 1
“"A“( I RRT

ra 11
7a=(i 1)

which is singidar. Notwe that Cond{(4) = 14142 x 10% = 107 =10, #

Since t = 8, we will get

Second, the normal equations approach may, in certain cases, introduce more errors
than those which are inherent in the problem. This is seen as follows.
- Fromthe Peridibatiom anal ysis donein Chapter 6-we-easily see that i is the solution
obtained by the normai equations method, then (Exercise 8.17)

1 -
bl

Thus, the accuracy af the least-squares solution using normal equations will depend upon the
squtare of the condition number of matriv A. However, we have just seen in the last section
that the sensitivity of the least-squares problem in certain cases, such as when the residual
is zero, depends only on the condition number of A (see Theorems 8.10 and 8,13), Thus,
in these cases, the normal equations merhod will introdicce more errors in the solution than
what iy warranted by the data, Having said this, we note that there exist some modifications
of normal eguations method which are numerically stable, See Foster (1891},

2y Cond(AT A) == g (Cond{A)}*

MATCOM Note: Algorithm 8.1 has been fmplemented in the MATCOM program
LSFRNME,

8.7.2 QR Facforization Method

i this section, we will show how the faciorizalion A = QR can be used w solve e
least-sguares problem. Let A & B™*" (m > a) have {ull rank.

Idea: Reduce the least-squares problem for a full matrix 4 to an upper triangular
linear system problem using QR lactorization of 4.

From Theorem 8.3, we know that the unigue least-sguares solution v satisfies Ay =
Pah.

Let @4 R; = A be the reduced QF fuctorization ol A, Then Py = ) Q

8o, Ax = P,tiz = (07 b, Muliiplying both sides by O], we have Q! ﬂsr = Q7h,
or Rix = g7 b = ¢, Thus, _{i:sa‘mg the least-squares solution x 1o Ax = b reffm,e‘s to solving
the upper irigngular system Bix = .
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Least-Sguares Selution Using Reduced QR Factorization
{. Find the reduced QR {actorization of A: A = 4 Ry.
2, Compute ¢ = QTh,

3, Solve the uppor trinngular system £ = ¢,

An Alternative Derivation of the Least-Squares Solution and Expression for the
Residual

Lot A = QR be the /il QR factorization of A, That is,

- RN e e e A
Q?‘A:( ) ind th( ) :
{} H -2 d HE—it

Then | Ax — B2 = {QT Ax ~ Q7BI3 = [Ryx - ol? 4 d . (Nore that the 2-norm is

preserved By orthogonal marrlx muliiplication.j Thus, x is the least-squares salution if x

gatisfies By = ¢, Also, note that if @ = (), 1), then matrix & and vectlor ¢ are given by
Ri=0lA wnd c=0]h

To obtain an expression for the residual, we note that when x is the Jeast-squares solution,
[Ax ~ blz = [d]l;. Again. & = Q;b. Thus we have the following.

The Least-Squares Residual Norm Using QR Factorization

Let A = QR = (@, Q1) R. Then the least-squares residual is given by
Jrily = I Ax — bliz = | Q3 bl

Example 8.22,
I | 2
A=|10"% 0 1, b= 110"
0 1 10

Step 1. A = QR (sce Example 7.5).

~1 40001 - 00001
0= (0.0 = | -0.0001 ~07071 - 07071 |,
0 07071 . 0.7G7)
-1 =1
R,
0 0 gk
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Step 2.

. -2
c=0)b= (m}@@;) :

Step 3. Solution of the sysiem: Ryx = ¢ is.x = (1, 1)7. The unique least-squares solution
is (1).

Step 4. The residual norm = frllz = §dl = 1256 =0. K

Use of Householder Malrices

If Houscholder’s method is used Lo factorize 4 into QR, then the vector (§) = @7 b can be
compuled implicitly as

For &=1,2,...,ndo
L

where Hy, &k = 1, ..., n, are the Householder matrices such that Q7 = H, H,_ - -+ Ha H,.
Thus, the marrix Q does not have 1o be formed explicitly. The idea was due to Goluh {1965).3

ALGORITHM 8.2, The Bouseholder-Golub Method for the Full-Rank Least-
Squares Problem.

Inputs: GYAnm x n {m > m) marix A of fdl rosk (rank {A) = n). {ii) An
Hi-VECIOT b

Onitputs: (3) The ynigue least-squares solurion x to Ax = b, (i) The residual
nor.

Step 1. Apply the Householder QR factorization method {Algorithm 7.2} o A.
Obtain Ry and the Householder mairices Hy, #,, ..., H,.

Step 2, Form H, - - -~ HyH b = (], where ¢ is an a-vector, by compiting
the praduct implicitly.

Step 3. Solve Bix =

Step 4. Form the residual normu 4.

Example 8.23. Consider Example 8.22 again.

1
Step L. Ri“(e {}.{10(}1)‘

*Gene H. Colub (1932.2007) was Fiztcher-Jones Professor of Computer Scignce at Stanford University.
{iolub made everlasting contributions in many areas of numerical Hnear sigebra reluted to S VI, least-squares,
angd refated topics. He was & cosuthor of the celebrated numerical linear algebra beok Murrix Comprintions.
Golub was a2 member of both the National Acadenyy of Sciences and the Nationai Academy of Engineering.
Several conferencges sround the world were beld 1o remember Gene Golub on Febuary 29, 2008, the date
that would have bean his 76ih birthday. For more details on the life of Gene Golab, see the obituary of Gene
Ciolub by Trelethen (0073, an injerview with Geoe Golub by Highem (2088), and a New Yord Tines article
published December 10, 2007,
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Step 2. Fufib = 0.(}801 L Then ¢ = (O.GG]}‘

Step 3. Solve v = ¢ = 1 = (})

Step 4. Residual nenmn == 0.

Flop-count. Since the cost of Algorithm 8.2 is dominated by the cost of the QR factoviza-
tion of 4, the overall flop-count for the full-rank least-sguares solution using Houscholder's
QR method is {Exercise 8.13) 217 (m — 7). Thus, Uw method is abour \wice as expensive
as the normal eguations methad. Note that the normal eguations method requires about

(lm 4 '_;i) Aop.

" Round-off error and stability.  The method is stable. Tt has been shown in Lawson and
Hanson (1995, p. 90) that the computed solution £ is such that it minimizes

JcA+ E)E = b+ by,
where £ and 85 are small. Specifically,
HEN, < cpn ARy 4 O, 18bl < cucBlly + O,

where ¢ = (6m — 31 4+ 4 1) and p is the machine precision. That is, the computed safution
is the exact least-squares solution of a nearby problem,

MATCOM Note: Algorithun 8.2 has been implemented in the MATCOM program
LSFRGRH.

Use of Givens Rotalions

We can, of course, use the Givens mtations o decompose A into QR and then use this
decomposition to solve the lkast-squares problem. Howcever, as we have seen belore, the
use of Givens rotations will be more expensive than the use of Householder matrices. Recail
that computations of Givens rofations require evaluations of square roots; however, there are
“square-root-free” Givens rotations, introduced by Geatieman (1973}, which can be used
to solve the least-squares problem. The square-root-free Givens relations are also known
as fust Givens rolations. For details, see Golub and Van Loan (1996, pp. 218-220).

Use of the MGCS Method in the Least-Squares Solution

We have seen in Chapter 7 that, in general, MGS is not fully satisfactory for QR factorization
of A; however, it has turned out to be numerically effective for the least-squares solution
if the vector ¢ = Q7b is computed by finding the QR factorization of the augmented
matrix {A, &) rather than of A itself. The feasi-squares selution with the natrix ¢ obtained
directly from the OR factorization of A may not be acenrate, due 1o the possible departure
from orthegonality of the computed Q. Thus if

m,mzwhgm)(%‘ 2)

-,
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then

Ax —b= (A B (f,) ={, Guai} (fé‘ ;) (xf) = Gi{f1x — 2}~ PGzt

If gu+1 is orthogonal to @4, then [Ax — &l will be a2 minimuem whea Ry x = z. Thus, the
least-squares solution can be obtained by solving Ry = z. The residual r will be given
by r == pg,.qy. Details can be found in Bjorek {1998). The above discussion leads to the
foltowing feast-squares algorithm.

ALGORITHM 8.3. Least-Squares Solution by MGS.

Inputs: A &€ 8" (n = n), rank (A) =y h & B,
Output: A wrigue least-squares solution £,

e Apply-MGS-(Algorithm-7.8) to-A-to obtain- Q.= (30 gurand By 1
2. Fork=1,....0ndo
3& = (hfrb
beb— &gy
End

3, Solve Ry = .. ... 807,

Example 8.24. Consider solving the least-squares problem using the MGS with the data
of Example 8.22. The exact solution is x = {] }. The QR factorization of A using MGS is
given by

{1 0.7071

If we now form ¢ = O7h and solve Ryx = ¢, we obtain x = (). On the other hand,
if we obtain x using Algorithm 8.3, we get (&), &) == (2. 0.0001}, and the solution of
E[.{m{{ga,gg)r 13,1’%(;}. |

1 0 1 |
Q= {00001 -0.7071 |, R%=({} Qﬁom)‘

Round-off property and flop-count, 1t has been shown by Bjorck and Paige (1992) that
the MGS process for the least-squares problem is numerically equivalent to the Houscholder
method applied o { § 8); that is,

HaHyey -~ (2 g):(fg o)

From this equivalence, it follows that the MGS method is backward stable for the least-
sguares problem, The method is slightly more expensive than the Householder method.

. T 3
requires abowt Zmn® flops, compared to the 2mn® — 2% flops needed by the Householder
method,

MATCOM Note: Algorithm 8.3 has been implemented in the MATCOM program
LSFRMGS.
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8.7.3 The SVD Method

In Chapter 7, we have seen that the SVD of A can be used 10 compute the orthogonal
projection omo R(A}. So it is nawrul 1o think of using the SVD to compute the least-
sqquares solution,

Idea: Reduce the least-squares problem af a full matrix A 1o & diagonal problem
using the SVD of 4.

Consider the reduced SVD of A2 A = U, V7. Then the orthogonal projection
of A onto R{AY 18 Py = U] Uﬁ Since the lease-squares solulion v satisfies Ax = Pub
{Theorem 8.3), we have

Ax = Py = U U] b
Multipiying both sides by &/, we obtain
" - Ulas=00b (note that UTU, = 1,0,
That is, D
Uravvic=uUlb (noetba vyl =1,.,)
or By = b, where y = Vixand &' = U] b,

Thus, using the reduced VD of A, selving the least-squares problem is reduced o
the solution of the divgonal system By = #.

This observation feads us 1o the Tollowing,

ALGORITHM 8.4, Least-Sguares Solution via Reduced SVD.

Inputs: A &€ B (m = n), b e B, A s of fidf rank,
Output: The unigue least-squares solution x,

Step 1. Find the reduced SVD of A: 4 = I/, L, VT,
Step 2. Compute & = U['b.

Step 3. Solve the disgonal system £y = &,

Step 4. Obtain the least-squares solution x == V.

Example 8.25. A, & are the same as tn Example 8.22.
Step 1. The reduced SVDof A =145, V7

] 0
14142 0 —0.7071  ~0.7071
Uy=1 0 —07071 ,2;( )wfx( )
o 07071 0 0.000f ~0.7071 07071

0

- 3
Step 3. v a= ( 1’314" )

-2
Step 2, b = U] b = ( . )

Stepfl.xzv’y:( i ) |
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Rank-Deficient Least-Squares Solutions using 5VD.

IFA e B m > i, and rank{A)} = k < n, then there are infinitely many least-sguares
solutions. The QR facterization with colenn pivoting (see Chapter 14, availuble online at
wiwvw.sian.erg/books/at116) cun be used to solve the problerm (Exercise B.16}. However, the
hest nmerically reliable way to sobve a rank-deficient least-squares problen is via SVD,
Gf importance in practical applications is to compute the one with siaimuwm-norm. We now
describe how to do this. To show that in the rank-deficient case there are infinilely many
solutions, we wikl use the full VD,
Let A = UEVT be the full SVD of A. Then we have

i

BAx — bl = HUTV x - biks
UEViy —U B
[y = b,

li

Ty T U

where Vg
Again,

&
Uy —blla =3 oy = b4 ) bl
==}

where & is the rank of A. Thus the vector

¥y
b
¥ o=
Yn
that minimizes Xy — i}zﬁg is given by
b; .
Y o= — P=1,...,k
Uy
5 we arbitrary, i=k1, ..., 0

(Notethat whenk < n, yp.q through ¥, do notappear in the above expression and therelore
do noi have any effect on the residual.) Of course, once ¥ 1% compuled, the solution te the
original problem can be recovered from x = Vy,

Remark. Sioce finding rank is a wicky matier in practical computations, we will use
mmerical rank 7, as defined in Sectdon 7.8.9.

Since corresponding to each {computationally) “zero” singuiar value a;, ¥ can be
set arhitrarily, in the rank-deficient case, we will have hifinitely many salutions ta the least-
zguares prablem. There are instances where this rank-deficiency is actualiy desirable be-
cause it provides a rich family of solutions which might be used for optimizing some other
aspects of the original problem.

Thus, an algorithm lor finding infipitely many least-squares solutions in the rank-
deficient case, using SYD, can be stated as follows,
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ALGORITHM 8.5, Rank-Deficient Least-Squares Solutions Using SVD,

fnputs: A ¢ B, b ¢ B™, A is o numerically rank-deficient matix with
tolerance &,
Output: A faanily of least-squares sebuiions [x).

Step 1. Find the SYD of A:
A= ULV

Step 2. Form b = UTh =

b

. Step 3. Determine the numetical rank 7. of A using.the tolerunce & {see Sec-
tion 7.8.9).
¥
Step 4. Compute y = | 1 | choosing
Fn
b .
- — P=12,..F
Yi = oy
arbitrary, i=F+4L,..., 0
Step 5. Compute the family of least-squares solutions [x} as

rom Yy,

Remark. Algorithm 8.5 can be used to compuie the leasi-squares soluttons in both the
Sull-rank and the rank-deficient caser. Note that in the full-rank case, the family has just
ane number.

Example 8.26.
Lo 7
A=1o 1971, b= |0
VIR L 0
Step L. A = UL V7, where
1 . G [.4142 @
v={o -0 -o70m), £={ 0 o}, vzﬁiﬁ iﬁgJ.
0 07071 09071 0 0 ' ’

¥

Step 2, b= UTh= |0
o
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Step 3. 7 =1,

R 2 1.4142
Step 4. y = (}fg) - (arbétmry) '

The family of least-squares solutions is given by x = Vy. By choosing different
values of v;, we will oblain different solutions. For example, when v; = 0. we have

s={i). W

Flop-count. Using the Golub-Kahan—Reinsch methed to compute the SVD of A, to be
described later in Chapter 10, it takes about 4mn” + 8n® Hops to solve the least-squares
problem, when A ism x noand m 2 0. (e deriving this flop-couns, it is noted that the
complere vector b does not need 1o be computed: onky the columnas of &7 that correspond to
the nonzero singular values are needed in computation.)

MATCOM Note: Algorithm 8.5 has been implemented in the MATCOM program
LSSYD,

An Expression for the Minimum-Norm Least-Squares Solution

IUis clear from Step 4 of Algorithm 8.5 above that in the rank-deficient case, the minimum
2-norm least-sguares solution s the one that is obtained by setting y; = { wheneverg; = C
(rumerically}. Thus, from above, we have the foilowing expression for the minimum
2-sorm solition,

Minimum-Norm Least-Squares Solution of 2
Rank-Deficient Least-Squares Problem Using S5VD

o ulh
X = —— (R
o1 i
where 7 = numerical rank{A).
Example 8,27,
i 2 3 6
A=12 3 4 F=19
i 2 3 G

1. The singular values are o = 73338, a2 = 0.4597, and o7 = (. A is rank-deficient,
F=2,

2. The singular vectors corresponding to the nonzerc singular values are
1y = {04956, (17133, 0.4936)7, uy = (0.5044, —0.7008, 0.5044)7;

vy == (03208, 0.5470,0.7732)7,  wp = (~0.8546, ~0.1847, (.4853)7.

. L I Th
The mirimum 2-norm least-squares soiutionis x = “Zu + 22 = (1, 1. 07, K
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MATCOM Note: The MATCOM program MINNMSVD computes the minimum- norrm
solution asing the VD,

8.7.4 Solving the Linear System Using the SVD

Mote that the idea of using the SVD in the solution of the least-squares prohlem can be
pasily appiicable for determining whether a linear system Ax = b has a solution and, if 50,
How to compute it.
Thus if
A=UZVT,

then Ax = b is equivalent to Xy = &, where y = Vixand & = U7b.
Thus, 1o solve Ax = b using SVD, do the {ollowing steps:

~Step 1. Compute the SVD ol A: A = vevl,

Step 2. Compute the vecior 8’ = [/ T!:

Step 3. Solve the dingonal system Ly = b

Step 4. Obtain the solation v = ¥y,

However, this approach is much more expensive than the Gauvssian elimination and
QR mothods, That is why, in practice, the SVD is not generolly used 1o solve a linear system.,

8.8 Underdetermined Linear Systems

Lel A bem x nand s < i, Then the system
Av=h

has more equations than unknowns, Such a system is called an underdetermined system.
An underdetermined systemt can be illustrated graphically, as shown in Figure 8.3,
Underdetermined systems, though arising in o variety of practical spplications, are
unfortunately not widely discussed in the litevature. An excellent source is the survey paper
by Cline and Plemmons (1976). As underdetermined system has either no solution or an

Ft o« H =

X

Figure 8.3. Underdetermined systen,
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infinite number of sofutions. 1o case A hus full rank. solutions do exist and the genaral
solution can be written as Tollows:

x = AT(AATY " + (7 - AT(AATY Y A)y, where vy is arbitrary.
By setting v = 0, we obmin the ninimunm-norm solution:
x = AT(AATY"1p,

which is the minintmm-narm wonmal equations sofution to the full-rank underdetermined
problem.

The normal equetions approach (o the adnimum-rorm selution to the anderdetermined
Julb-rank least-sqrares problem as obtained above will have the same disadvaniages as in
the vase of full-rank overdetermined problem.

MATCOM Note: The MATCOM program MNUDNME implements the above saotution
method,

8.8.1 The QR Approach for the Minimum-Norm Solution

Decomposing A7, instead of A, into R,

rar (R
the system Ax = b becomes

(R'll!{}?ﬁ}Q?( Yr ) - ;}Y “}h&r& Yy o Q}'ﬁ}: — ( ¥r ).

Yu Yy
The unique minimum-norm least-squares solution is obtained by setting
yu =0

The sbove discussion leads o the fallowing algorithm.,

ALcowrrraM 8.6, Minimom-Norm Selution to the Full-Rank Underdetes
mined Problem Using QR Factorization.

Inputs: A € E™"(m < n) with full-rank s b e B,
Qutput: The minimal Z-nor solutivn 1o Ax = b,

Step 1. Find the QR factorization of A”:

QTﬂ?’ - (féi) ) R] < s
Step 2. Partition @ = (@, ) O, & B,
Step 3. Solve for yg: R yg = b.

Step 4, Form the minimpm-norm solution x = Qyyg.
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A pote on mplementation: 1f we use the Househelder method (o compute the QR
factorization of A, the product @y yg should be computed from the factored form of @ as
the product of Householder mairices.

Flop-count.  Using Householder orthagonalization, Zm?n — 2”—; finps will be required w
implement Algorithm B.6 (Exercise 8.15).

Round-off property. It has beer shown (Lawson and Hanson (1983 p. 93)) that the

compirted vector X is close to the exact minimuen-fength least-sguares solution of o perturbed

problem. That is, there exist a mawix E and a vector ¥ such that ¥ is the minimum-length

solution of

' (A+ E)E ~oh,

where
iiE%ﬁ; < {60 — 3w +4mp [ A r+ O{,[ﬁ}-, S

MATCOM Note: Algorithm 8.6 has been implemented in the MATCOM program
MNUDBQRH.

Exampie 8.28. Consider the underdetermined system with A and b as follows:
P23 )
S G A ]

Step 1. Find QR factorization of AT using [Q, R] = gr(A7).
Step 2.

O =|-0535 02182 |, R =

-3.2673  0.8729
~{(3018 ~{0.4364 (

-37417 33452
0 0.6547 }°

_1.6036
Step 3. yx = ( 0.6547 ) '

Step 4. The minimum-norm selutionis v = Qyve = [ L}, N

8.8.2 The SVD Approach for the Minimum-Norm Solution

Let A = 3 . ojuw] be the SVD of A, where 7 is the numerical rank of A, Then, as
in case of the rank-deficient overdetermined systen, the minimum-norn solution x 1o the
underdetermined sysiem is givea by

frl

Remark. The SV approach is recommended if A is nearly rank-deficient.
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Example 8.29. Consider Example B.28 again. From the 8VD of A, we get
1. o) = 65468, 0y = 03742, m =10
2, 1y = {~0.5696, —0.8219)7, 1y = (~0.8219, 0.5696)7;
3. vy = (—0.3381, —0.5506, —0.7632)%, 12 = (0.8480,0.1735, —0.5009)7;

- H
.. . 1;?1) ulh _

4, the minimum-norm solution x = -y + —=—ps = 1]. W
(g Fn 1

A comparison of different leasi-squares methods i piver in Table 8.1,

Table 8.1, Comparisen of different leasi-squares methods.

|- Probleme e Maethed ] Flop-count MNumarical Properties
Qverdetermiped MNormal s 4+ ﬂ {1y Difficeldes with i
Fpil-Bank Eguations 3 formation of A7 A
{2) Produces more errors
i the solution than what is
warrasted by da, in
certain cases
Orverdeterminesd Householder-{IR Apen? - ,,ﬁ Stable: The compuied
Fult-Rank B sodution is the exact
sodation of 6 neprby
problom
Overdoiermingd MOS-0R 2o Abmngt as stable os
Fall-Rank Householder-QR
Overdetermined HyusehoiderR Taer — F ot o Mildly stable: The
Rank-Defictent with Colsmnp + Eﬁi cosmpated minimum
Pivoting . «ner solution is close to
where 7 = rank(A) the misimem-nomm
solution of 8 perterbed
proflem
Underdetermined Normal e T jﬁi Same difficeities as in the
Full-Rank Eguations k wase of the overdetermingl
problem
Undetermined Hpuszholder-(QR o 2 .;”*3 Same as the renk-deficient
y 2 = 2o X
Fustl-Rank 3 overdetermined problem
Overdetermined 5VD S e 8a? Stable
Full-Rank

8.9 Least-Squares lterative Refinement

It is nutural 1o wonder if a computed least-squares solution 1 can be improved cheaply inan
ilerative managr, as was done in the case of a linearsystem, A natural analogue of the Herative
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refinement procedure for the linear system problem described in a section of Chapter 6 can
be easily worked owl, This is feft as an exercise for the readers (Exercise 8.22),

An analysis by Golub and Wilkinson (1966) reveals that the method is satisfactory
only when the restdual vector r = b — Ax is sufficiently small. A successful procedure used
widely 1n practice now follows. The methed is based upon an interesting observation made
by Golub that the least-squares soluiton 3 and the corresponding residual vector r satisfy

the linear system
i;?; A F - - b RIF ] i
(A"' {})(x)“(())‘ AR be R

ALGoriTHM 8.7, Herative Refinement for Least-Sqoares Solutions,

Inputs: Anm x »# matrix A of full rank, and an n-vector b.
Qutput: Arelined least-squares solwtion and residual.

Step 1. Set @ =0, £ = 0.
Step 2. Fork = 1,2, ... do

%1 i3
r & I Ay [
2.1, Compuie (ri“) = ({}) - (AT 0) (xg"})'

1Ay fely  r®
2.2, Solve the syste o )= o )
DIVE 1 Bystem (AT {}) {{:g;}) (r_?‘;)

2.3. Update the sodution and the residual:

pl+H _ e + c‘:"’
el [ = i a‘ii) .

Implementation of Step 2. Since the matrix { /- 7) is of order ¢ + n, the above scheme
would be guite cxpensive when m is large. However, using QR decomposition 7 A =

(%}, the system
f” A &y fh
A‘! 4] (i3 - n
can be ransformed into

0%+ (*’f;) c2=0"r. RT.OQTc =1

This shows thut the above avgmented system can be sobved by selving two triangular systems
and two mairix-vector multiplications as follows:

I
. Form @7'r; = (r;)
s

Bt

e

. Selve forcl: R ch =r.

Solve for ez Ryes = ri = 5.

)

[ m:&“’-
-

4, Formie) = Q(

;“
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Flop-count. With the above formuiation each ileration wilt require only 8mu — 2n* flops,
assuriing that the Houscholder method has been used and that @ has not been formed
explicitly, Note that Tor the matrix-vecior multiplications tn steps 1 and 4, § dogs nof need
to be formed explicitly: these products can be obtained if @ is known only in impligit form,
for example, as the product of Househelder matrices,

Round-ofi error. it can be shown (Bjtirck (1996} that, using extended precision in com-
puting step 2.1 of Algorithm 8.7, the initial rate of improvement of the solution is linear
with rate

J+¢ —x H:

ii-’:(s-” - l]z

and ¢ is an error constant, depending upon a1t and #.

< gu Cond{A), s=2,3 ...,

An interpretataon of. ihe !ESH!t and r&marks The above result tells us that fim frerative

probfsms with Imge residuals. Note thai for Lhesc problems, (Lond(A}}““ serves 88 the
condition number. However, the above result shows that the error at an iterative refinement
step depends upon the condition number of A. The procedure “may give solutions 1o ful
single precision accuracy even when the initial solution may have no correct significant
figures™ {Bjorck {1996, p. 123)). For a well-conditioned mauriz, the convergence may
accur even in one Heration. Bjrck and Golub (1967) have shown that with an B x & ill-
conditioned Hilbert matrix, three digits of accuracy per step both for the solution and the
restdual can be oblained,

Example 8.30.
12 3
34 9
R 2™ k=0
Siep 1.

3
(2)-()-|:
rgm 0 q

i
I A f,‘:m r?}
AT o if}} = f‘»i{}} '

Step 2. Solve the sysiem

(.3333

0 ~0.6667
( ém) = | 0333
€2/ 3.3333

-£.3333
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Step 3. Update the solution and the residuai:

0.3333
f‘( 1} «"((}} {a) Wﬁ,ééﬁ?
(gm) = (,{m}) + ( ma) = | 03333
’ : 3.3333
—{.3333
The compatations of c‘{““ and r:{m are shown below
L0 PO g
JE = 3, (0)
; — 106904 B
"N LooThe | 02182 | Thus, = (080N L osies).
v 08165 i 0.2182 :
¢ = (g) L ( iﬁi:f;) and 9 = [ ~G.6667
e §.3333

Note that £V = { %38, is the same least-squares solution as ohiained by the QR
and normal egeation methods.

MATCOM Mote: Algorithm 8.7 has been implernented in the MATCOM program LSITRNZ,
The linear system aralogue least-squires iwerative refinement process has been implemented
in the MATCOM program LSITRNI,

8.10 Review and Summary

8.10.1 Existence and Uniqueness

The least-squares solution x w the problem Ax = b always exists. fn the overdeterniined
case, it is unigue if A has full rank (Theorem 8.2).

8.10.2 Overdetermined Problems

For furli-rank problems, we have discussed the ipHowing methods:
* The normal equations (Algorithm 2.1}
+ The QR method (Algorithms 8.2 and 8.3}
» The SVD method (Algorithm B.4)

The normal equations method is easy 10 implement but has some numerical difficulties.

The QR approach can be implemented using Horseholder, Givens, and the modified
Gram-Schnidt metheds. The Houscholder QR method is the most efficient among all the
QR methods, and if the marric A Is well-canditioned, the method is recommended as a
general-purpose least-sguares solver. For nearly rank-deficient marrices, the QR method
with columa pivoting should be nsed.



270 Chapter 8. Least-Squares Solutions to Linear Systems

For rank-deficient problems, there are basically two choices:
» The QR method with pivoling {(Exercise 8.16)
* The 3VD methed {Algorithm 8.5).

The SVD method, although more expensive than all other mefhads, is most reliable 1o
deal with rank-deficiency or near rank-deficiency.

8.10.3 The Underdetermined Problem

The underdetermined lease-squares probleim is discussed in Section 8.8, We have deseribed
two methods for the mtnimum-norm solution 1o an wunderdetermined problem: the QR
algorithm {Algorithm 8.6) and the SVD method {Section 8.8.2).

. 8_”19:4 B Pertiﬂnbatiﬂn Ana!}gsés SO —
The results of perturbation analyses vary for different cases ol the perturbations in the data,

* If only & is perfurbed, then Cond{A) = [ A] 147 serves as the condition nomber
for the unigue Jeast-squares solution {Theorem 8,10). '

» Il'only A is perturbed, then the sensitivity of the unique least-squares solution, in
geneeal, depends upon the square of the condition number (Theorem 8,13}, In cedain
cases, such as when the residual is zero, the sensitivity depends ondy on the condition
aumber of A,

8.10.5 Herative Refinement

As in the case of the linear system prablem, it is possible to improve the accuracy of a
computed least-squarcs solution in an Herative fashion. An algorithm which is a natural
analogue 1o the one for the linear system {Section 6.9) is satisfactory only when the residual
vector 7 == & — Ax is sufficiently small. A widely used algorithm due to Bjdrek is presented
in Section 8.9, This algarithn requires the solution of an augmented system of order m +n
{where A is m = 1). It is shown how to solve the system in a rather inexpensive way using
QR faclorization of A,
The solution obtained by this iterative refinement algorithm is quite satisfactory.

8.10.6 Comparison of Least-Squares Methods

We summarize the speed, stability, and accuracy of the least-squares methods as follows:

« The normal equations methed: Fastest but in cerlain cases might have sumerical
difficulties.

» The OR approach: More expensive than the normal equations method, but is stable
and can be vsed as a general-purpose least-squares problem solver.

» The SVD approach: Most expensive but most relinble, especially while dealing with
rank-deficient, acarly rank-deficient, and underdetermined problems.
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Exercises on Chapter 8

8.11 Suggestions for Further Reading

Techniques of leasi-squares solutions are covered in any numerical linear algebra and some
numerical analysis texts. The emphasis in most books Is on the overdetermiined problems.
Fuor a thorough treatment ol the subjeet we refer the readers to Golub and Van Loan (1996)
and Stewart {1973, 1998b). The book by Gill, Murray, and Wright (1991} alse contains
detailed discussions on perturbation analyses of the least-squares problems,

Two authorittive books completely devoted to the subject are Lawson and Hanson
{1995) and Biorek (1996}, These rwe books are must-reads for anyone interested in further
study on the subject. The book by Lawson and Hanson, in particular, gives the proafs of the
round-off erroe analyses of the various algorithms described in the present book. See also
Higham (2002) in this context.

Any book on regression analysis in slatistics contains applicatiens of least-squares
problem in statistics. We have, 1n particular, used the book by Neter, Wasserman, and Kut-
ner (1983). A classical survey paper of Golub (1969) contains an excellent exposition of
~ nurrideical linear dlgebra technigiies for least-squares problems and singular value decom-
position problems arising in statistics and elsewhere. A paper by Stewart (1987} is also
interesting 1o read.

These papers, along with other papers in the arca by Golub, Bidrek, Siewart, etc.,
representing the most fundamental contributions in this arca, are highly recommended, For
details, see the list of references in Bjdrek (1986} and Lawson and Hanson {1995} as well
as the bibliography of this book. For more on underdetermined probloms, see the papers by
Cline and Plemmons (1976} and Arioli and Laraua (1985}, For more on least-sguares by
MGS, see Plemmons {19743,

Exercises on Chapter 8
EXERCISES ON SECTIONS 8.2-8.6

8.1 ({a} Provethast AT A is symmetric and posilive definite if and only il 4 has full rank.
{b) Show that the residual veclor r = & — Ax is orthogonal tw all vectors in B{A}.
8.2 Prove that x is 4 least-squares solution o Ax = & if and only if
Av=beg  and b Ax = by,

where by und by are, respectively, the range-space and columa-space components of
the vector b.

8.3 Leta vector x satisfy Ax = Pub, where A ism x 7 (m 2 #) and has full rank, Then
prove that x is a unique jeast-sguares solution 1o Ax = b,

8.4 Using least-squares, fit a straight line and a quadratic to the data

£l 0 1 305 789 iz
y 10 12 18 15 20 25 36

Compare your resulls,

Compule the condition nember ol the associated Vandermonde matrix in cach case.
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8.5 Find the condition number of each of the Following matrices using both generalized
inverse and singular values and compare your results:

. |
Az({}'O?m :) A= o001 o

g 0.0001
1203

A—G 6?3), A=13 4 s).
0 7 %

{Compute the generalized inverse from its definition given in Section 8.5.)

8.6 Let A and A have full rank. Let x and T be, respectively, the unigue least-squares
solutions to the problems Ax = & and AZ = b, where 4 = A -+ E. Then prove that

e e \H _ 1E] ( ,[bg) LIENL ( !§f3ﬁ)
Cond{A)— [ 1+ —= | F{Cond(A) P —— [T =]

el Al ixl Al RAL

{Hine: Apply the perturbation analysis of the Yinear systems with normal eguations.)

i

8.7 Verify the inequality of Exercize 8.6 with the following data:

P2 kl
A=13 47, k=171, E =104,
5 6 11

8.8 Verify the inequality of Theorem 8.16 in each of the [ollowing cases.

1 2 1 1
{a} A= (3 4) E= 1A By A= 107YO ) CE == 1074,
5 6 B

I (e
11

ey A=10 1] ,E =104,
o ¢

8.9 Work out a prool of Theorem 8.1 3 {least-squares left perturbation theorem).
8.10 Lot

11 0
A=132 3], b=135].
0 1 H

{a) Find the unigue least-squares solution v using
() v = A'h,
{1i) the normal equations method,
(i1} the Householder and the Civens QR faclorization methods,
(iv} the CGS and MGS methods,
(1 Find Cond{A).

{c) Show that for this problem the sensitivity of the least-squares problem, when
only A is perturbed, depends apon Cond(A).
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) Let Ad = A = 10 A and let ¥ = A*h, where A = A + E. Find £ and
verify the inequality of Theorem 8.13 for this problem,
{e) Find r and 7 and verify the inequality of Theorem 8.16.

8.11 (ay If A s of order m % 2 and has foll rank, then, using the pseudoinverse, prove
that Conda(AT A) = Cond3{4).

(b} Constrict your own example where the sensitivity of the least-squares problem
wil depend upon the sauare of the condition aumber of the mawix. (Show all
your work.}

EXERCISES ON SECTION 8.7

8.12 Consider the following well-known ill-conditioned marrix (Bjdrck (1996)):

A = , el <« L

moG =

dRTN
¢ 0
0 ¢
0 0
{a} Choose an ¢ small, so that rank{A} = 3. Then compuie Cond;{4) 1o check

that A is Hl-conditioned.
{b} Find the least-squares solution to

Lk

M

using
(i) the normal equations method,
{1t} the Houscholder, CGS, and MGS QR factorization methods.
{¢} Change b 1o

# o=} 0
0

Keep A unchanged. Find an upper bound for the relative change in the least-
sguares solution.

{d) Change A to A" = A + AA. where AA = 1073 A. Keep b unchanged. Find an
upper bound for the relative change in the least-squares solution.

{e} Find the maximum departure from orthogonality of the computed cotlumns of
the @ matrix using the CGS and MGS methods,

() Compute the least-squares solution of the problem in (b) using the SVD,

8.13 (Sguare-root-free Chelesky.) Given a symmetric positive definite matrix A, develop
ar algorithm For fiading the Cholesky decompositon ol A without any sguare roots:

A LDLT,
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where L is a unit lower trigagular matrix and D is a diagonal matrix with positive
diagonal entries.

Apply your algorithm to solve the full-rank least-squares problem based on solving
normal equations

814  (a) Construct an example to show that the MGS will not vield an accurate result if
the matrix & obtained from the algenthm is explicitly used to solve a full-rank
overdelermined least-squares problem.

(4 Do the example pow with Algorithm 8.3 and compare the results,

8.15 Show that the flop-count for solving the least-squares problem for an m x 2 overde-
. \ . ]
termined system using the Householder QR method requires about 2n%m — 2% flops,
and the corresponding count for the underdetermined system is 2m7n — 25*-:';.

8.16  (a) (Leasr-squares solwtion using QR with column pivoting.)  Consiger the QR
factorization with column pivoting af A € B™™ = n, withrank 7 < n:
p g

0 g 0 o—r.
ron-—r
Develop an expression for least-sqoares solutions 0 Ax = b based on this
factorization, Give a Hop-count for this computation,
{b} Show thatiatherank-deficient case, a least-sauares solution canpotbe a minimum-
sortn solution unless )2 is zero.
{c} Using the MATLAB function [ @, R, P] = QR(A) for QR faclorization with
column pivoting, find the minimum-norm solution to Ax == b, whee

AP = OR. WhereRm(Rli R;z) r

b0 1
A=10 0f,pr=10
0 0 0

{d) Work out the above example using the VD of A.

8.17 Prove that the relative error oblained by the normal equations method is proportional
to the square of the condition number of the marrix.

8.18 Consider the complete orthogonal decompositionof A 1 A = O { g g) VT,

{
{b) Obiain an expression for the minimum-norm solution to Ax = b,

w1
{(a) Showihat A" = V (R g) Q.

{¢) Find the minimum-norm solulion 1o the least-squares problem with

[ 3
A=11 1 1}, h=13
[ 3

using the resulis of (a).
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g
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EXERCISES ON SECTIONS 8.8 AND 8.9

8.19

8.20

8.21

Develop an algorithm based on QR factonization with MGS o compute the minimum-
norm solution io the underdetermined system Ax = b, where A s = #, m < n.
Give a flopcount for the algorithm, Apply your algorithm to

12 2 TY  se
4 5 a1 =his)e
3

Develop an algorithm based on QR factorization with columa pivoting o find a
solution to the underdetermined problem.

Prove that the mintmum-norm solistion (o an underdetermined system can be obtained
byy pmia,{,ting any sclu{ion to the aysicr{z onto R(A™). E‘hai is. ii‘ P,; is the on?t(}g;ﬂnal

where y is any &alm;an Uamg the a%}eve formula, anpuie the minimum-norm
solution 1o the system

1ot 0 0 '? 1

10 10 'j =11

10 g ot 1
X

Consider the aagturaf algorithm [or eraive refinement (o improve a computed least-
squares solution with v = (0, ..., 0.

Step 1. 7' = b — Ax'®,
Step 2. Solve the least-squares problem: Find ¢ such that A — r®, s
minimum.,
Step 3. Correct the solution
RO N

End
{a} Apply three tterations of this algorithm to each of the following preblems:
1 3
i A=12]. b= |5
3 9
! 1 2
i) A=|10" o |, #=]10"
o g
1 ! I
giiy A={107 0 1, b= |1
o o 1

(b} What is the relationship of this slgorithm witl the lterative algorithm using the
augmented system {(Algorithm 8.737
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8.23 Apply Algorithm 8.7 to cach of the problems of Exercise 8.22 and compare the results.

8.24 Apply Algorithm 8.7 to the least-squares problem with the 7 x 7 Hilbert matrix and

T
b={13 55 059)

Tell how many digiis of nccuracy per iteration step were obiained in both the solution
and the residual.

8.25 In many applications, only the diagonal entries of the varlance-covariance matrix
X = {AT Ay are needed. Show how these dingonal emtries can be compuied from
A = QR using only sn* flops. Iustrate the computation of X with & numerical
example of order 5 % 2.

%.26 Develop Algorithm 8.7 in detail by incorporating the implemeniation of Step 2 as

~~shown-in-thetexL- Apply.this algorithm now o cach of the problems of Exs;;:;:_isc 822,

MATLAB Programs and Problems on Chapter 8

MB.1 Consider the following set of data points:

x 1 9] 1 2 3 4 3 6 7 B ]
¥y 1289 68 121203 | 300 1429 ] 555173 ) 805

Using the MATLAB command vander and the operation “\" compute the least-
squares fit of the data to polynomials of degrees 1 through 4.

Plot the original data point and the least-squares fits using the MATLAB commands
plot and polyval and compare the results.

MB.2 (Siudy of sensitivities of the least-squures problem.} Let

1 1 {
100 !
A=19 107 =]
a { 1
0 —0.0001 {1.0001
_ooa]0 00000 . | 00001
4 C.onoL 0.0001

Using ithe MATLAB commands piny, cond, norm, orth, null, ete., verify the inegual-
ities of Theorerns 8.10, 8,13, 8.16, and 8.18 on different sensitivities of feast-sguares
probiems.

Test Data for Problems MB8.3, MB8.4, and M8.5:

1. Arandomly generated matrix of order 100,
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2, Hilbert matrix of erder 2{),

vl

€ 0 01 . 3N
3. 0 € O selssuchthat Bl +e7 ) = 1,

0 0 «

For cach of these maltrices, generate I so Hat the least-squares solution x in
each case has all entries equal to 1.

M8.3 (implementation of the least-squares QR elgorithm using Givens rotetions.) Using
givgr and beksub, rom MATCOM, write a MATLAR program (o implement the
(R algorithm using Givens rotations for the {ull-rank overdetermined least-squares
problem [£] = Isfrgrg (Ah).

M8 (fmplementution of the SVD algorithm for full-rank overderermined least-squares
problems.) Write a MATLAR program, ealled lsfravd, 10 implement Algorithm 8.4
using reduced SVD as follows:

[£] = Isfrsvd {A, b
MRB.5 (The purpose of this exercise is to compare the accuracy and residuals of different
least-sguares methods for full-rank overdetermined problemsy

{a) Compute the least-squares solution £ for each data set using the lollowmg:

{1) [£]=Isfrmgs (A1) (feast-squares using MGS).
(i) [¥] = Isfrgrh (Ab} {Jeast-squares using Householder QR
(i) [X] = Isfrgrg (A.b) {least-squares using Givens QR
(iv) [#] = Isframe (A b} (leasi-squares using normal equations).
(v) [¥] = pinv (A) * b (least-squares osing generafized inverse),
{vi} 1£) = Isfrsvd {A) (least-squares using SVD).
Note: Isfrmgs, Isivgrh, and Isfrome are gl available in MATCOM, pinvisa
MATLAB command for computing the generalized inverse of 8 mairix.

{b) Using the resulls of (a), make one table for each data set in the following format
shown in Table 8.2, Note alse that the vector v has #ll entries equal to . Write your
ohservations.

MB.6 Using housqr from MATCOM or [@, B] = gr{A) from MATLAB, and backsub
from MATCOM, write a MATLAR program, called Isrdgeh{A.b), to compute the
minimun-norm least-squares solution X 1o the rank-deficienr overdetermined problem
Ax = b, and the corresponding residual 7, using Householder R factorization of A:

ix.Ft = lsrdgrh (A, b},

Test dara: A 20 x 2 matrix with all entries equal 1o 1, and b 2 vector with all entries
equal 1o 2.
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Table 8.2. Comparison af differens methiods for the full-rank overdetermined legst-
squares probier.

Methad fr =2/l [Ax —bil2

Isfrmps

Isfrgrh

Isfrgrg

Isfrome

generalized-
inverse
Isfrsvd

MB.7 Using the MATLAB function [U,5,V] = svd {A) write 8 MATLAB program, called
Isrdsvd, o compute the minimuvn-norm least-squares selwiion £ 1o the rank-deficient
overdetermined system Ax = B

[%7 = lsrdsvd (A, b},

Use the same test data as in Problem MB.6 and compare the results with those of
Isrdgrh.

MEB.8 Run the programs mnudnme (least-sguares selution for the underdetermined full-
rank problem using normal equations) and maudqgrh (leasi-squares solution for the
underderermined full-rank problem nsing Householder QR fuctorization} from MAT-
COM on the fellowing setg of dua to compule the minimum-norm solution ¥ 1o the
full-rank underdetermined problem Ax = b, and compare the results.

123456 I S R T R
A‘”‘( )*’5‘“(81234567)*
1010 10 10 10 1010

A=[0 t+ 0 0 & 0 O
g 1 ¢ o 0 ¢ 0

Constroet & for each A so that the minimum-nporm solution x has ail its entres equal
to 1.

MB.9 Run the programs Isiten2 (based on Algorithm 8.7} from MATCOM on the 20 x 20
Hilbert matrix A and construct b randomly. How do these resulis compare with those
obtained by the algorithm developed in Exercise 8.227

MS8.18 (0 Compuie (AY A" for each of the following matrices A:

(i) Compute explicitly (A7 4)~! using MATLAB command inv.
{1} Run the program vareovar from MATCOM.
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{b} Compare the results of (i) and (i .
Test data:
» A = The 20 = 20 Hilbert matrix.
[ { |
o0 &
0 103 9
{ i} o3

s A=

* A= A 30 x 3 randomly generated matrix.



Chapter 9

Numerical Matrix Eigenvalue
Problems

Background Material Needed

+ Norm properties of matrices (Section 2.3)

+ The QR factarization of an arbitrary and a Hessenberg mairix using Householder and
Givens transformations (Algorithms 7.2 and 7.6

« Linpar system solutions with arbitrary, Hessenberg, and triangular matrices {Sec-
tions 6,4 and 812}

» The condition number and its properiies {Sections 4.5 and 4.7)

9.1 Introduction

This chapter is devoted to the study of the numerical matrix eigenvalue problem. The
problem is a very important practical problem and arises in a vanety of applicaiion areas,
including engincering, physics, clemistry, statisties, and economics.

Since the eigenvalues of a matrix A are the zeros of the characteristic polynomial
det(A — A7), one would naively think of compuling the eigenvalues of A by finding its
characieristic polyoomial and then computing its zeros by a standard rool-finding method.
Unfortunately, eigenvalue computation via the characteristic polynomial is not u practical
approach.

A standard practical aelgoritfun for finding the eigenvafues of a matrix is the QR
iteration method with « single or double shift. Several applications do aot need Knowledge
of the whole spectrum. A few selected cigenvalues, usually a few largest or smallest ones,
suffice. A classical method, based on implicit powering of A, known as the power method
is useful for this purpose.

The organizaticn ol this chapter is as follows,

Section 8.2 is devoted 1o the discussions of how the ¢igenvalue problem arises in
some practical applications such as stabifity analyses of a system of differential and differ-
ence equations, vibration analysis, transteni behavior of an elecirical cirenlr, the buckiing
problem, and principal component analysis in statstics.

281
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In Seciion 9.3 some classical resolts on eigenvalues focations such as GerSgorin's disk
theorem are stated and proved.

Section 9.4 describes the power method, the inverse power method, the Rayleigh
Quotient ileration, ete., for finding a selected number of eigenvalues and the corresponding
gigenvectiors,

In Section 9.5, we describe two powerful methods, the Bouscholder and Givens meth-
ods, for translorming an arhitrary matrix 1o a Hesseaberg matrix by orthegonal similarity,
Numerical difficulties with diagonal similarity transformation and the difffeultios of compnr-
ing the elgenvalues of o matrix via the characreristic polyiomial and the Jordan canonical
fornr are highlighted,

Eigenvalue and eigenveclor sensitivily are discussed in Sections 9.6 and 9.7, The
most important resolt in this section is the Bauer-Fike theorem {Theorem 9,37}

Section 9.8 is the most importart section of this chapter. The QR iteration method
with and withoul shifts and their implementations are described in this section.

_.. The Hessenberg-inverse iteration is described in Section 9.5.

9.2 Eigenvalue Problems Arising in Practical Applications

The problern of finding eigenvalues and eigenvectors arises in a wide variety of practical
applications in science and engineering. The words “eigenvalue™ and “eigenvector™ are
derived from the German word “eigeswerte” As we have seen before, the matheratical
models of many engineering problems are systems of differential and difference equations,
and the solutions of these equations are ollen expressed in terms of the eigenvalues and
eigenvectors of the matrices of these systems. Furthermore, many important characteristics
of physical and engineering systems, such us stabifity, often can be determined only by
knowing the nature and location of the eigeavalues, We will give a few representative
examples in this seclion.

9.2.1 Stability Problems for Differential and Difference Equations

A homogeneous linear system of differential equations with constant coefficients of the form
ey = AxD, x0) = g, 9.1}
where
xit)
A= (e and I{) = 5 : '
X (1)

arises in g wide variety of physical and engineering systems. As can be seen from the proof
of Theorem 9.2 below, the solution of this system is iatimately related to the elgenvalue
problem for matrix A, Maay intercstng und desivable propertics of physical and engineering
systems can be studied just by knowing the location or the nature of the eigenvalues of
matrix A, Stability is one such property.

Definition 9.1, An eguitibriven solution of (3.1} is the vecror x, such that Ax, = 0 An
equetlibrium solution x. is asymptoticatly stable if there exists o § > 0 such thai |lx{r) —
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X e Qast - o0, whenever [xg — X || < 8. Sysrem (915 iy asymprotically stable if the
equilibrinm solution x, = O is asymptotically stable. A svstem that is not asymptotically
stable will be called unstable,

Asympiotic stabilily guaranwes that if the system is perturbed from the position of
gquilibrivim a Butle bit, then it will eventually return 1o that position after making small
oscillations.

Mathematical Criteria for Asymptotic Stability

Theorem 9.2 {stability theorem for a homogeneous system of differentisl equations).
A mecessary and sufficient condition for sysienm {9.1) 10 be asymptoricallv stable is that the
eigenvaiues of matrix A aff have negative real parts. It is anstable If at least one E:gem ralie
. has.a positive veal part. -

Proof. We will sketch the proof in the case when A is dingonalizable, that is, in the case
where there exists a nonsingular matrix X such that X TAX = D = diag (&5,..., &,). In
this case, e = Xe™ X~ = X diag {e*', ..., )X~

Again il A; = a; +if;, = 1,2, n, then ™’ = e'e#’ and ™' — 0, when
t — oo, ifand only if oy < L

Remark, The proof of Theorem 9.2 in the general cose is obtained by using the Jordan
canenical form of A (Theorem 2.28).

Stability of a Nonhomogeneous Systerm

Many practicat situations give rise o mathematical models of the form
(1) = Axfiy 4+ b, {923

where & 15 a conslant vector. The stability of such a system is also governed by the eigen-
values of A. This ¢an be seen as follows.
Let ¥{1) be an equilibrivn: solution of (9.2}, Define z{f) = x{¢} — {{r}. Then
Ay = H{) — (BN = AU+ b — AR() — b= AL{) ~ B(0)) = Azit),
Thus, x{(t} — I(#}if and only if 2{r) — 0. The following thcorem therefore follows from
Theorem 9.7,

Theorem 9.3 (stability theorem for a nonhomaogeneous system of differential equa-
tions). (i) Au equilibrinm solution of (9.2) iy asymptotically stable if and only if all the
gigenvalues of A have negative real parts. GiYAn equilibrive solution is wistable if af least
mme eigenvalue has a positive real part.

Stability of a System of Difference Equations

Like the system of differential equations (9.2}, there ure practical systems which are modeled
by systems of difference equations of the form xq = Ax + 5.
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A well-known mathematical criterion for the asymptotic stabiiity of such a system is
given in the following theorem. We leave the proof o the reader.

Theorem 9.4 (stability theorem for a nonhomoegenesus system of difference eguations),
The systent

Spar = Axp + b

is asymptotically stable if and only if all the eigenvalues of A are insidde the wnit circle, I
is unstable if at least one eigenvalue has a magnitude greater than 1.

Summarizing, te determine the stability and asymplotic stability of a system modeled
by a system of first order ordinary differential or difference equations, all we aeed to know
is tf the cagenvitlues of A are in the left half plane or inside the unit circle, respectively, The
explicit knowledge of the eigenvalues is no! needed.

~ Example 9.5, A European arms race. “Cofisider the urims race of~1909=1914 between
two European alliances.

Alliance 17 France and Russia. Alliance 2: Germany and Austria~Hongary,

The two aifiances went to war against each piher Let's try (0 explain this historical
fuct through the notion of stability,

First consider the following crude (but simple} mathematical mode! of war between
two countries:

o _ + e, +
— = X — X . el g RaX| — X .
gy el 1¥ + g8t ar 2X] X2+ gz

xi{#y = war potential of the counry §, i = 1, 2
£{1) = the grievances thal country § has against the other, { = 1, 2.

The guantities g7, o, and k;, § = 1,2, are all positive constants, o, x; denotes the cost of
armaments of the country i, This mathematical model is due to L. F. Richardson and is
known as the Richardson model.

Note that this simple maodel is realistic in the sense that the rate of change of the war
potential of one couniry depends upon the war potential of the other country, the grievances
that one couniry has agains? its enemy country, and the cost of the armaments the country
can afford. While the first two factors cause the rate to increase, the fast factor certainly has
a slowing effect {that is why we have a negative sign associated with that term).

In matrix form, this model can be written as ${f) = Ax(/} -+ g, where

e K o) i
A”( k3 —ﬂfz)’ "\{{)w(—’f:(f))* g_<82)'

The eigenvalues of A are

e o) E Ve —a) 4k
- > .

.

Thus the equilibrium solution x (7} s asymplotically stable if @y o — &5 > 0, and unstable
if o oy ~ kyka = (1 This is because, whes wya; ~ kijky > 0, both the eigenvalues will have
negative real paris; if it is negative, then one eigenvalue will have positive real part.
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For the above Evropean arms race, the estimases of oy, ay and &y k2 wore made
under some realistic assumptions: ¢ = g1 = (.2; §; = ky = 0.9, {For details of how
these estimates were oblained, see Braun (1978).) The main assumptions are that both the
allinnces hove roughly the same strength, and vy and o are the same as Grest Britain,
which is usaally taken to be the reciprocai of the lifetime of the British Parltiament (five
yearsl

With these values of oy, o2 and &, k2, we have

wyey — kiky = o) ~ kf = =0.7700.

Thus the equilibriam is anstable. In fact, the two eigenvalues are 1.4000 and ~2.2000. 1

For a general mode! of Richardson’s theory of arms races and the role of eigenvalues
there, see Luenberger {1979, pp. 209-214).

.”9.2.2 ?Iﬁenorﬁ.enon of Resonance

Vibratirsg structures such as buildings, bridges, and highways, sometimes experience a dan-
gerous oscillation, called resonance, causing partial or complete destruction of the struc-
tures, Some classical and recent events that passibly might have been caused by resonances
include”

« the fall of the Tacoma Narrows Bridge in the state of Washington in the United Siates;
= the fall of the Broughton Suspension Bridge in England;
« ihe wobbling of the Millenniem Bridge over the River Thames in Loadon.

A general model of vibrating structures is a system of second-arder differential equa-
tons:
M)+ DI+ Kx{f) =10, (9.3

where M, X, and I} are, respectively, known ag the mass, stiffness, and damping matrices.
Substituiing x{f) = ue™ leads o the “quadratic eigenvalue problem”

(M 44D+ K@) =00t PLOu() =0, where P(A) =AM+ 1D+ K.

In many practical inslances, matrices M, K, and 3 are symmelsic, and furthermore
M=M" > 0and K = K¥ > 0. Assuming M is nonsingular, the above quadratic
eigenvalue problem reduces 1o the standard sigenvalue problem:

(o oo ) () =2(5)

or Az = Az, where = ().

9The commonly accepted explunation for the callapse of Lhe Tacoma Narrows Bridge has been recently
challenged by sclentists who believed that there may be semething rrore 1o it See the pupers by Lazer and
MeEenng (1990). For & complete story of the coltapse of the Tacoma Bridge, see Braun (1978, pp. 167167
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Thus, if each of the matrices M, K. and D is of order n, then there are Zn eigenvaiues
af A, and these 2n eigenvalues are the same a3 thase of P()) (see Section 11.8). These
eigenvalues are related w the narural frequencies of the struciure {see Section 1R for
gpeeifies).

The resonance pocars when a frequency of the external foree becomes egual or very
close to a natural frequency, as explained below {see alve section 11.7.2).

As in the case of (8.1), the system of equations {9.3) can also be solved by knowledgs
of the cigenvalues and eigenvectors of the pencil 2{3). Specifically, if the eigenvalues A4
are all distinet and z; are the corresponding eigenvectors, thes we can write

i}
x{n = Z{z;;z;.&*)’”,
ke=1

where ¢ arp scalars.

fiy = fue™, with the frequency w. Then a particular solution in this case is given by

In

e ¥
xp{e) = ' Z Atte_,

. ks
i —— .
oiiw Aj

where v, are the left eigeavectors of P{L}, This shows that ox i w approaches a particuior
eigenvalue A, the respoise of the system becomes unbounded and the system approaches
a resonance conditipn {(see more pr this in Chapter 11).

In each of the above cases, a periedic foree of very large amplitude was generated,
and the frequency of this force became equal or close o one of the patural frequencies. In
the case of the Broughton Bridge, the large response was set up by soldiers marching in
cadence over the bridge, In the cage of the Tacoma Bridpe, it was wind (see Figure 9.1),
Because of what happened with the Bronghton Bridge, soldiers are no longer permitted to
march in cadence over g bridge. In the case of the Millennium Bridge, it was again the
pedestrian-induced movements (see Figure 9.2). This bridge was closed only two days after
its apening, becanse on its opening day in Jure 2000 the bridge started to wobble due to
the weipitt of severed thousand people who came to see the bridge, For more on this event,
visit www arup, com/MillennivmBridge/Challenge/.

9.2.3 Buckling Problem (a Boundary Value Problem)

Consider a thin, uniform beam of leagth {. An woal load P is applied to the beam at one of
the ends {sec Figure 9.3).

We are interested in knowing how and when the beam buckles.

Lat v denote the vertical displacement of a point of the beam which is at a distance x
from the {deflection} left support. Suppose that both ends of the beam are simply supporied,
., y(0) = y(1) = 0. “

Using the relationship between the curvatire g~}~ and the internal moment M, we
obtain the bending moment equation E z—;‘— = Py, where £ is the modulus of elasticity
and 7 s the areq wmoment of inertia of column cross scetion.
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Figure 0.1, Fall of the Tacoma Bridge.

Figure 9.2, Millzmium Bridge,

Let the interval {0, /] be partitioned inte # subistervals of equal length /1, with xy,

Xy, ..., X, asthe points of division. Thatis. 0 =ap < x4y <31 < - <5y < o0 = Koy =
Xy o=
Lut

e et~ 23 vie 3
‘; S '1’ T Fiwl . where f = —. (9.4)
detl o = #
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zaig accaunt the glven bann::ianf condztmﬁs we f}btam the f&ié{}wmg symmetric irldlagtmal"'
matrix cigenvalue problem:

2 -1t O {1 ¥ ¥
L a ¥ ¥
Pt e =2t ). (9.5
: =1 : :
H} £ § -} 2 Y ¥n
wherg & = —?;’»‘;«1
LEL

Each value of & determines a load P = #30 which is called a eritical load. These
eritical loads are the ones which are of practical inicrest, because they determineg the possible
onset of the buckling of the beam,

in particuiay, the smallest value of P is of primary importance, since the bending
associated with farger values of P may not be obtained without failure cecurving under the
action of the lowest critical valne of P.

9.2.4 Simulating Transient Current for an Electric Circuit

{See Chapra and Cangle (2002).) Given an clectric circuit consisting of four loops (see

Figure 9.4}, suppose we are interested in the transient behavior of the electric circuit. In

particular, we want to know the oscillation of each loop with respect o the other
Kirekthoff's voltage law applied 10 each loop gives the {ollowing.

Loop b

?Zfij [
Ly T I (iy — in)dt = (9.6
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Figure 9.4, Transient current for electric current.

Loap 2:
tia Py 1§
RUY J e jn o P — |~ b¥de =00 .. (89
I py C'g.mm“” i3)deH c, Lm(rl inydr (9.7}
Loop 3:
dlj
——Lr— - {sn - fa)dt + — (n — 43t = O (9.8)
Loop 4:
»:1’:4 I ! . ! /"‘ .
— PV — T £ A A— [y dr =11, 9.8
Ly el Ldr+ rat (ix —~ ig)dt 9.9}

The system of ordinury differential equations given above can be differeatiated and
rearranged o give

LTI
[ e o {fy = ) = 10
I+ i) g, (9.10)
dgfg | . [ .
Ly “?*a(zz —»‘»3}"”(::“:(1; ~i3) =0, {9.113
o2 1 [
Lin - iz gﬁj iy} - E;ﬁz e fq) == 0), {912
41 1
Ll i e iy~ i) =0 (9.13)

der E:f: Oy
Assume
fpe= Apsin(et}, j=1,2,3,4. {0,143
From (2.10), we have
i i
L A o sin et + C—A] SHT @ — gézsinmf == {3

i 1
or

1 2 1
e A1l ¥ T TR i g.i5
(Cz ]w> e 913)
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Similarly, from (9.11), (2. 14), we oblain, respectiveiy, the following equations:

l i
Ay “"’"““L’) Ay — A= 0y o1
CgA]“f‘( +C“} &}) 2 & k! ( 6}

3

-

1 1 1 I
e A5 —d e — [ Ag - =y =0, 9.1
P -4 ( + 3 ) 3 G 4 9.1

[SCTE 66

| ! !
R T T Ay =0, g9.18
ra 3 ( +{:'4 .f.{i)) 3 { }

E

The above is an eigenvalue problem. To see it more clearky, consider the special case
ClmC=0=0=0 ad Li=Li=I[li=Li=1L

Assuming 4 = LCw?, and n{}&mﬂthdiri = A;sinwl, ; = 1, ..., 4, we obtain the following

1 -1 0 © i
-t 2 -1 0 i
o —1 2 -t i i
6 0 -1 2 s s

L

(=)
s
)

(9.19)

The solution of this eigenvelue probleny will give us the natural frequencies (m? = A FLCY.
Meoreover the knowledge of the eigenvectors can be used to study the circait’s plysical
hehavior such as the natural modes of oscillation,

These eigenvalues and the corresponding normalized sigenvectors (in four-digit arith-
metic) are Ay = (,1206, Ax = 1, Az = 23473, Ay = 33321,

0.6665 0.5774 —D.4285 ~(1.2280
0.5774 - (3.0000 0.3774 0.5774
.4285 1~ ~0.5774 | (02288 |~ ~{L.6365
0.2280 -0.3774 —0.6565 D.4283

Fram the directions of the elgenvectors we conclude that for k., all the loops oscillate in the
same divection. For Az the second and third leops ascillate in the opposite directions from
the first and fowrth, and so on, This ix shown jn Figure 9.5.

9.2.5 An Example of the Eigenvalue Problem Arising in Statistics:
Principal Component Analysis

Many practical-life applications involving statistical analysis {e.g., stock market or weather
prediction) involve a huge amount of data, The volume and complexitics of the data in these
cases can make the computations required for analysis practically infeasible. In order to
handle and analyze such a voluminous amount of data in practice, it is therefore necessary
1o reduce the data. The basic idea then will be 1o choose judiciously “&” components from
a data set consisting of # measurements on 2 {p > £} original variables, in such a way
that much of the information (f not most} in the original p variables is contained in the
k chosen components. Such & components are called the Arst £ principal components in
statistics.
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Ay =0.1208

Jy = 35321

S L D et 1wt T A et I
O -

71
h:
I
\

A
M
4

Figure 9.5, Oscillations of loops from cigenvectors.

The knowledge of eigeavalues and eigenvectors of the covariance matrix is needed
1o find these principal components.

Specifically, if T is the covariance muatrix corresponding Lo the random vector X =
(X1, Xz, ... Xp) 2y 2 Ay 2 o= = Ay = Qare the eigenvalues, and x; through v, are the
comeqpanding eigenvectors of the matrix X, then the ith principal component is given by
Vo=xlX i=1,2...,p

lehurmon. the proportion of total p{:spizisxtton mmme due to the ith principal com-
ponent is given by the ratio f=1,..., p

A —_
LR S I?ﬁﬁ&{i;’
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Note: The covariance matrix is symmetric positive semidefinite, and therefore ity
efgenvalues are ull nonnegative.

I the first & ratios constitute the most of the total population variance, thes the first &
principal componeats can be used in siatistical analysis,

Note that in computing the kih ratio, we reed to know only the kil eigenvalue of the
covariance matrix; the entire spectrum does not need to be computed,

To end this scctton, we remark that many real-life practices, such as computing the
index of the Dow Jones Indusirial Average, can now be better understood and explained
through principal component analysis. This is shown in the example below.

A Stock Market Example (Johnson and Wichern (1992))

Suppose that the covariance matrix for the weckly rates of return for stocks of five major
companics {Allied Chemical, DuPont, Union Carbide, Exxon, and Texaca) in a given period

1.000 8577 0309 0387 0.462
(.377 1.000 0.53%% 0389 0322
R=0509 0599 1000 0436 0426
0.387 0383 0436 1.00C 0523
0,462 0322 0426 0523 1.000

The first two eigenvalues of R are ) = 2.857, A» = 0.809. The proportion of wlal

population variance due wibe first component is approximately z—iﬂ = 37%. The proportion
of total population variance due to the second component is ;;1_.;:‘%__(12 = approximately 16%,

Thus the first lwo principal components account for 73% of the total population variance,
The eigenvertors corresponding to these principal components are

xf = (0464, 0.457,0.470,0.421, 0421},
&7 = (0.240, 0.509, 0.260, ~0.526, ~0.582),

These eigenveciors have interesting interpretations, From the expression of xy we
see that the first compoenent is a (roughly) equally weighted sam of the five stocks, This
component is generally calied the market component. However, the expression for xa tells
us that the secoad component represents » contrast between the chemical stocks and the
il industry stocks. This component will be generally called an industry component. Thus,
we conclude that about 57% of total variations in these stock returns is due to the market
activity and 16% is due to industry activity.

The eigenvalue problem also arises in many other important statistical analysis, for
example, in computing the canonical correlarions. Inlerested readers are referred to the
book by Johason and Wichern (19923 for turther reading.

A fined comment: Mosi cigenvalue problems arising in statistics, such as in principal
component analysis and canonical correlations, are sctually VD problems and should be
handied compuiationally using sfngalar value decomposition (see Chapters 7 and 103,

(9.2

9.3 localization of Eigenvalues

As we have just seen, in several praciical applications explicit knowledge of eigenvalues is
not reguired: all that is required is a knowledge of distribution of the eigenvalues i some
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given regions of the complex plane or estimates of some specific eigenvatues., There are
ways such information may be acquired witheat actually computing the cigenvialues of the
matrix. We start with a well-known result ol Gersgerin'® (1931),

9.3.1 The Gerigorin Disk Theorems

Theorem 9.6 (GerSgorin’s first theorem). Let A = (a;;),.00. Define

#H
rgmg lagh, f=1,...,5

j=1

i#]
Then each eigenvalue & of A satisfies af {east one of the folliving inegualities:
_ o 4[3&—-@,-]55Q;,‘.;....%.;T--I‘Z,_;,,.,n. .
In other words, afl the eigenvalves of A can be found in the wnion of disks {2 g — au| <

ri.d=1,..., 8]

Proof. Let A be an eigenvalue of A and x be an eigenvector associated with 2. Then from
Ax = Ax, we have

7
{}»Mﬁ;g}»\ff :*-'-‘Zag;.rj-, i=1,....1,
=l
i
where x; is the ith component of the vector x. Lot 1 be the largest componcent of x (in
absolute value). Then, since x;|/lx:] < 1 for j # k, we have from above

" #
131
o= awl <Y g E‘ijg <3 gl
i=t e =
J#k JER

Thus A is contained in the disk {4 1 Ja —age] < ). O

Definition 9.7, The disks R; = {z g — oyl < ) i = L, ... 0 are called Gerfgorin
disks in the complex plane,

Example 9.8,
1 2 3
A=l3 4 9
1 i

WSemyon Aranovich Gergorin (19011933} was born in Belorus and edocated ot St Petersburg Techno-
topieal Instingte, He was a professor ot St Petersbury Maochine-Construction fastisate from 1930-1933. His
seminal conmributions isclude the results of the convergence of fintie difference spproximation to the solution
of Laplace-type equations and his original results on estimating the eigenvaiue of 1 complex 1 = » ot
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{The eigenvatues of 4 are 7.3067, —0.6533 £ 0.34731 )
ryom S, rqo= |2, rym= 2
The Gersgorin disks (shown in Figure 9.6) are
Roclzilz— <35 Ryifzolz—4t<12), Rycfziflz—-l<=21 1

* Imag

\\

i,
—_—

//

Figure 9.6. Gersgorin disks of Example 9.8,

While the above theorem only tells us (hat the eigenvalues of 4 He in the union of »
Gersgorin disks, the lollowing thearem gives somie more specific information, We state the
theorem withowl proof. Several other generalizations exist. See Horn and Johnson {1985)
Brualdi and Mellendorf {1994), and the recent hook by Varga (2004).

Theorem 9.9 {Gergorin’s second theorem). Suppose that r GerSgorin disks are disjoint
from the rest. Then exactly r eigenvaines of A lie in the unfon of the r disks.

Proof. See Horn and Johpson {1985, pp. 344-345). [

Example 9.10.
I 01 oz
A=102 4 03},
04 05 8
The Gersgorin disks are
Ryt {zile=-1] <03}, R:fz:iz~4=205, Rs:{e:|z—B[ =08}

All three disks are disjoint [rom each other. Therefure, by Theorem 9.9, each disk must
contain exactly ane eigenvalue of A, This is indecd wue. Note that the eigenvalues A are
0.9834, 3.967], and 8.0465. W
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9.3.2 Eigenvalue Bounds and Matrix Norms

Simple matrix norms can sometimes be used 1o obtain useful bounds for the eigenvalues.
Here are two examples.

Theorem 9.11. Let A be an eigenvalue of A. Then, for any cansistent pair of matrix-vector
norms,

A= 1Al
In particular, p(A), the spectral radius of A (largest eigenvalue in magnirude), is bounded
by [All: p{4) = AL

Proof. From Ax = Jx, we have
iAxl = [ Ax] < IAN lix]

. 0r . . . .
ALl < AN el)s thatis, [A] < [A]. O

Theorem 9.12.
n n
p(A) < min mf_axz faiil, m?xz [ez;; ]

i=1 i=1

Praaf. The proof follows immediately from Theorem 9.11.  []

9.4 Computing Selected Eigenvalues and Eigenvectors

We have just seen thal in several applications all one needs to compute is a few largest or
smallest eigenvalues and the corresponding eigenvectors. Examples of such applications
include the following.

* The buckling problem. It is the smallesi eigenvalue that is the most important one
here.

* Vibration analysis of structures. A conumon engineering practice in vibration en-
gineering is to compute just the first few smallest eigenvalues (frequencies) and the
corresponding eigenvectors (modes), because it has been seen in practice that the
larger eigenvalues and eigenvectors contribute very little to the total response of
the system. The same remarks also hold in the case of control problems modeled by a
system of second-order differential equations arising in the finite-element-generated
reduced-order model of large fexible space structures (see Inman (2006)).

+ Statistical applications. In stalistical applications, such as those arising in principal
component analysis, only the first [ew largest eigenvalues need 1o be computed. There
are other applications where only the dominant and the subdeminant eigenvalues and
the corresponding eigenvectors play an important role (see Luenberger (1979)).
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9.4.1 The Power Method, the Inverse Iteration, and the Rayleigh
Quotient Heration

In this section we will briefly describe two well-known classical methods for finding the
deminant eigenvalues and the corresponding cigenvectors of a matrix, The merthods are
particularly suitable for sparse malrices, because they rely on matrix-vector mmmltiplications
only (and, therefore, the zero entries in a sparse matrix do not get fitled in during the process).
Perhaps one of the most famous applications af the power methad is its use in com-
puting the PageRank of the Google matrix. The PageRank s an eigenvector of the Google
matrix and measuses the relative importance of each element of a hyperlinked set of doc-
uments, such as the World Wide Web, within the set. Thus, PageRank is Google’s way
of deciding a page’s importance. The concept of PageRank was developed by Larry Page
{hence the name PageRank} and Sergey Brin while they were graduate sindents at Stanford
University.
The Gaogle matrix tsell is not sparse, but it is a rank-one modification of very sparse

matrix. The matrix size can be as large us few billion. Though not practically feasible; the
power methad can, in principle, be used {o compuie the etgenvector of such a large matrix.
But il is still a viable method for computing the PageRank of a modest-sized Google matrix.
Many articles computing the PageRank and its relation o the power method (with its several
variations} can be found from the Internet.

The Power Method

The pawer method is frequently used to find the deminant eigenvalue and the correspond-
mg eigenvecior of 8 matrix. It is so named because it is based on implicis construction of
the powers of A,

Let the gigenvalues A, A3, ..., A, of A be such that

TN ES o VS LR L

that is, Ay Is the dominant eigenvelue of A, Let v be the corresponding esigenvectorn. Let
max{g) denote the element of maximuam modulus of the vector g.

ALGORITEM 9.1, Power Method.

Inpui: Ann x n matrix A,
Outputs: Approximate dominant eigenvalue and the corresponding gigenvecior,

Step 1. Chouse xg, an initial approximation to the eigenvector.

Step2. Fuork=1,2,3,... do
21 Compute By = Axey.
2.2 Normalize xyp = F/ max (¥,
End

Theorem 933 max(%) — Ay, end (%) — wy, g muliiple of 1y, as & - o0,
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Proof. From Step 2 of Algorithm 9.1, we have

_ Akl‘[)

T max(Afxg)
Assume that eigenvectors vy, ..., v, associated with A, ..., A, are linearly independent.
We can then write xp = ;v + &2z -+ -+ - + . @) 7 0. So,

Ak.{'g = Ak(ﬂ] vy +avz + - o, y) = CE]A-?U[ + [.‘fg).gl.'z +--+ Cl:’”lﬁv,[

=t act ' A k
— A apu o Py v oy, Y Up |-
1 |

Since Ay is the dominant eigenvalue, (j‘—l)"' — 0 as k—= 00, I =2,3,...,n. Thus,

Ak x, N
Y = WA\{E.&.) —cvy and  [max{f)} — A, O
Example 9.14,
P 2 3 -
A=12 3 4|, x=0.1,0".
3 4 5

The cigenvalues of A are 0, —0.6235, and 9.6235. The normalized eigenvector correspond-
ing o the largest eigenvalue 9.6233 is (0.3851, 0.5595, 0.7339)7 .

k=1:
6 2 0.50
H=Ayp=[9]:; max(@)=12, x =— L~ {075
12 max(x) i
k=2
5.00 . 0.5263
fy=Ax = |725]; max(¥) =950, x=——=|[ 07632
9.50 max(¥z) 1.0000
k=3:
5.0526 3 0.5246
I3 = Axy; = | 73421 |1 max(iy) = 9.6316, x3 = ——— = |07623
9.6316 max () 1.000

Thus the sequence {max (%)} is converging towards the largest eigenvalue 9.6235, and
{xt) is converging towards the direction of the eigenvector associated with this eigenvalue.
(Note that the normalized dominant eigenvector

0.3851
0.5595
(.7339

is a scalar multiple of x3.} W
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Remarks. We have derived the power method under two canstraints: (i} o # G, and (i) )4
is the onfy dominam eigenvalue. The first constraint (@) & 0) is not really a serious practical
consiraint, because after ¢ Few iterations, rovnd-off errors will almost always make it happen.
As far as the second constraint is concerned, we note thar the method stll copverges
when matrix 4 has more than one dominant eigenvalue. For example, let 4y = Ay =
= Ay and A ] > [Ael > o0 = [Ay ], and assume that the eigenvectors associated with
Ap are independent. Than we have

u}_ k" (Ea v+ Z o (hi Ay ) v) = A% va;

i=i fmpid

{since (&, /3" is small for large values of &Y. This shows that in this cuse the power method
converges to some vecior i the subspace spansed by vy, ., vy,

MATCOM "ilﬂte. Aigomhm 9 1 hasbeen implcmuntcd inthe MATCOM pmﬁmm POWER-
ITERATION

Convergence of the Power Method

The rate of convergence of the power method is determined by the ratio ] j This is seen
as follows, Consider

a\t Al
ey — e vl = oo (—w) Uy A o ay (w) T
Ay A
I,

A k
= lﬂf;{! ] | ,.%% o Iarzl i ;t Uy "
fArl S
Al

= “5:]' (|&2§§U’ln“§" R o lﬁ'ﬁ% i[vn H)

(since I—[ < §~fﬁ Jiz= 3,4, i) Thus we have
&
log — ety | <o N =123
Ly

where

w = {Jeg] Huah b oo ok o] Huslid
This shows that the rate at which s approaches o) vy depends upen how fast l%l‘“ goes o
zero. The absolute value of the error at each step decreases by the ratio ( %); thatis, ff &2 iy

close to &y, then the convergence will be very slow; If this ratio is small, the converpence
will be fasz.

The Power Method with a Shift

in some cases, convergence can he significantly improved by using a suitable shift. Thus,
if o s 2 suilable shift so that 4y — o is the dominant eigenvalue of A ~ o/ and if the
power method is applied to the shifted matrix A — g I, then the rate of convergence will be
determined by the ratio jdaze %1, rather than {21 (Note that by shifting the marrix A by o,
the eigenvalues get ?i;zf{erf bx o, but the szgem eciors remain unaltered,)
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By choosing o appropriately, in some cases, the ratio If—_:{—g—l can be made significantly

smaller than |i—1 I, thus yielding the faster convergence. (Do an example to convince yourself
and see also Exercise 9.10.)

The Inverse Power Method/Inverse lteration

The following iterative method, known as the inverse iteration, is an effective method
for computing an eigenvector when a reasonably good approximation to an eigenvalue is
known.

ALGORITHM 9.2. Inverse Iteration.

Inputs: (i) An approximation o to a real eigenvalue A such that |A; — ] &
Ay —cl, § # 1. (ii) Error olerance e; maximum number of iterations N. {iii) An
initial approximation xp of the cigenvector.

Output: An approximation x; to the eigenvector corresponding o o.

Step 1. Choose xg,

Step2. Fork=1,2,3,...,do
2.1 Solve (A ~o1)f; = xp_.
2.2 Compute vy == % /| £, 5.
23 Stopif |Axy —oxpff <eorifk = N.
End

Theorem 9.15. The sequence {x;} converges to the direction of the eigenvector correspond-
ingto .

Proof. The eigenvalues of (A4 ~ 1) are (&) — o)~ !, (Ao —)"', ..., (A, — o)" and
the eigenvectors are the same as those of A. Thus, as in the case of the power methad, we

can write
- 8] + (5] + + Cy
X = v 0 - e
T T e O —a )t "

| l|"’“0’ g )\.[—U k
=m civp e o [E R R ol o - Up

Since A is closer to o than any other eigenvalue, the first term on the right-hand side is the
dominating one, and therefore x* converges to the direction of v;. It is the direction of v,

which we are trying to compute.  [J

Remark. Note that inverse iteration is simply the power method applied to (A — a7)~",
That is why it is also known as the inverse power nethod.

An illustration: Let us illustrate the above with & = 1. Suppose thal x5 = cjv +
caUg A+ -+ -+ ¢yt Then

H=A—-oD " =0~y qu +Ga—0o) leava+ o+ (A — o) e,
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Since Ay 1s closer w o than any other eigenvalue, the coefficient of the frst term in the
expansion, namely, 7oz; » is the dominant one (it is the largest). Thus, & is roughly a
multiple of »y, which is what we desire.

Numerical Stability of the Inverse iteration

Al first sight the inverse iteration procedure seems dangerous, because if o is near A,
then the mairix (A ~ o) is obviously ill-conditioned, Consequently, this ill-conditioning
might affect the computed approximations of the eigenvector. Fortunately, in practice the
ill-conditioning of the matrix (A — o I) is exactly what we want. The error at each iteration
grows towards the direction of the eigenveclor, and it is the dircction of the eigenvector that
we are interested in.

Wilkinson {1965, pp. 620-62 1) hus remarked that in practice %y is remarkably close to
the sodution of {A — o T+ Flyg = v, where F is small, For details see Wilkinson (1983,
Tppr620-621) " Theiterated veclors de-indeed converge eventualiy to.the efgenvectors of
A4 FT

Example 9.16. Consider mairix A of Example 9.14. Choose
xg = (4 1, DY, o= 8

k=1:

=, 1507,

X = 8 /1% 12 = (0.3714,0.5571,0.7428)",
ka2t

£y = (0.619,0.8975, 1.1761)7,

X1 = $2 /1% = (0.3860,0.5597, 0.7334)7.
E=3:

F3 == (0.6176,0.8974, 1.1772)7,

vy = $3/1 %]l = (0.3850, 0.5595, 0.7340).
k=4d:

2y = (0.6176,0.8974, 1.1772)7,

xg = /08 = (0.3850,0.5595, 0.7340)"
k=3

5 = (0.6177,0.8974, 117727,
xg = B5/i(F5)02 = (0.2851, 0.5505,0.7339). W

Remark. Now that scaling is imnmaterial since we are working lowards the direction of the
efgenvector,

Choosing the initial vector xo.  To choose the initial vector xp we can run a few iterations
of the power method and then switch to the inverse iteration, with the fast vector generated
by the power method as the initial vector xg in the inverse iteration.
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MATCOM Note: Algorithm 9.2 has been implemented in the MATCOM program
INVITR.

The Rayleigh Quotient

Theorem 9.17. Ler A be a symmetric matrix and let x be a reasonably good approximation
to an eigenvector. Then the quotient

is o good approximation to the eigenvalue X for wiich x is the corresponding eigenvector.

Proof. Since A is symmetric there exists a set of orthogonal eigenvectors vy, v1, ..., Uy.
Therefore we can writex = ¢ v+ - -+cpvy. Assumethat vy, { = I, ..., »#, are normalized,
that is, v} v; = 1. Then, since Av; = A;vy, { = 1,..., n, and noting that v/ v; =0, i # J,
we have

-"TA-Y _ (C]U[ +---+ Crrvn)TA(CiUl e+ Cuvn)

—\:T-‘; - (Cl vi +-- 1+ Cy UII)T(Civl e Cp Un)

(cyvy 4 -+ +C11UM)T(C1A]U! + ot Cpdy ) - A|C%+AIC% A +A'.tlclzl
iy -+t PR

) E) ()
]+(gf.)'+...+ (;‘_f;)‘

Because of our assumption that x is a good approximation to vy, ¢, is larger than other ¢;,
i = 2,...,n. Thus, the expression within brackets is close to 1, which means that o is
closeto A, 0O

Definition 9.18. The quotient R, = 5;—,5‘11 is called the Rayleigh quotient.'!

() (1)

Then the Rayleigh quotient
xTAx

o == = —0.2
xTx

Example 9.19. Let

LSS

is a good approximation to the eigenvalue —0.2361. 1

"' John William Strutt (1842-1919), the third Baron Rayleigh, was born in England and studied at Trinity
College, Cambridge, and eventually became the chancellor of Cambridge Universily. His research was
mainly mathematical, concerning aptics and vibrating systems. He won the Nabel Prize in Physics in [904.
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Note: Iican be shown (Exercise 9.14) that for 2 symmetric mawix A, &, < K, < iy,
whert &, and A are the smallest and the largest eigenvalue of 4, respectively.

Rayleigh Quotient Iteration

The above idea of approximating an eigenvalue ol a symmetric matrix can be combined with
the inverse iteration procedure {Algorithm 9.2) to compute successive approximations of an
eigenvalue and the corresponding eigeavector m an iterative fashion, known as Rayleigh
quaetient iteration, described as follows (see Figure 9.7).

Starting Vector - Ruyleigh
Quotient

Approximate Ergenvalue

¥

Inverse
Tieraiion

Approximate Eigenvector

Y

Figure 9.7. Rayleiph quotient iteration.

ALGORITHM 9.3. Rayleigh Quotient Iteration.
Inputs: (i} Asymmetric matrix A, {i1} Maximum number of Hlerations N, {ii}

An inidial approximation xp of the cigenvector
Output: An approximate eigenpair.

Fork=10,1,2,....dc

I. Compute oy = xf/ﬂixk / 1{ x; (Rayleigh quotient}.

2

Solve for T (A — o3 TiEsy = 3 {Inverse ileration).

L

Normalize xypq = fp./ max{Eeh

*

Stop if the pair (o4, 1) is an acceptable cigenvalue-gigenvector
pairorifk = N,

End
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Convergence. It can he shown (Wilkinson (1965, p. 630)) that the rate of convergence
of Algorithm 9.3 15 cubic.

Choice of xp.  As for choosing an initial veetor xg, perhaps the best thing to do is to use
the power method dsell a few times and then use the last approximation as .

Remark. Rayleigh quotient iteration can also be defined in the nonsymmetric case, wherg
one fmds both left and right eigenveciors at each step. We omit the discussion of the
nonsymmetric case here and refer the render to Wilkinson (1963, p, 636). See also Parlett
(1974).

Example 2.20. Consider

I 2 3 1.5246
Awm 2.3 41, withyg= {07622
3 4 3 1.000

This initial vecior xp was obtained after 3 erations of the power method.

ko= 0
(.5247
o = x] Avefin] xg) = 9.6235, = | 67623
1.060
Fowe B
’ 1.6GO
o =xl Avi /el 2y = 96235, xp = | 14529
1.9059
The normalized eigenvector associnted with 9.6253 1s
0.3851
(0L.5595
(L.7339

Note thot 0.3851 times x» is this eigenvector to three digis. Thus two ilerations were
sufficient. W

MATCOM Note: Algorithm 9.3 fas been implemented in the MATCOM program
RAYQOT.

Computing the Smallest Eigenvalues

It is easy to see that the power method applied (0 A~ gives us the smallest cigenvalue in
magitude (the least dominant one) of A,
Let A be nonsinguiur and let the eigenvalues of A be ordered such that

[ = 12zl = fhal = o Al = §A] = O
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Then the cigenvalues of A™! (which are the reciprocals of the eigenvalues of A) are ar-
ranged as
1

P

I

}’-nmi

{

lrsmz

> oz — 4

T T

-
“

That is, i is the dominant eigenvalue of A~ This suggests that the reciprocal of the
smallest eigenvaine can be computed by applyving the power method 1o A™),

ALGORITHM 9.4, Computing the Smallest Eigenvalue in Magnitude,

Step 1. Apply the power method {Algorithm 9.1} to A~ to compute the dJominant
sigenvalue of 4~

Note: Since the power method is implemenied by matrix-vector multiplication oniy,
the inverse of 4 does not have 1o be computed explicitly. This is because computing
vz Ay where 1 is a vector, is equivalent 1o solving the lnear system Ay = x,

Example 9.21.

s A=

| RS-

A=

i
— L tn

The power method (without shift) applied v A~! with the starting vector xp = (1, =1, )Y

gives the dominant eigenvalue of A~ as ;'; z o om 35145, Thus the smallest eigenvalue of

Als f—f = 0.1031. (Note that the eigenvalues of A are 6.3830, —1.4901, and 00051y W

9.5 Similarity Transformations and Eigenvalue
Computations
A busic idea to rumerically compute the eigenvalues of v natriv is to transform the matrix

to n Ysimpler” form by using o similarity transformation, from which the eigenvalues can
be more easily computed,

Theorem 9.22. Two similar mairices have the same eigenvalues.

Proaf, Let A and B be two similar matrices; that is, there exists a nonsingular matrix X
such that

X'AX = B.
Then
det(B — ATy = det{ X" AX — AT} = det(X" (A —~ A1) X)
= det{X ) det(X3det{A — A4} = det(A — A1),




9.5. Similarity Transformations and Eigenvalue Computations 305

Thus, A and B have the same characteristic polynomial, and therefore the eigenvalues
are same, [

Note: The converse is not true. Two matrices having the same set of eigenvalues are
not necessarily similar. Here is a simple example:

=(51) 0(32)

A and B have the same eigenvalues, but they cannot be similar,
Some of the "simpler” forms associated with eigenvalue computation that can be
obtained via similarity transformations include

» diagonal and block diagonal forms (Jordan canonical form},
» Hessenberg form,

+ Companion form,

» Triangular form.

The Hessenberg and triangular forms can be achieved via orthoganal transformations
and shonld be used for eigenvalue computation. On the other hand, reduction to the diagonal,
block diagonal, and companion forms, in general, require nonorthogonal transformations.
The transforming matrices for these forms can be highly ill-conditioned, and therefore these
Sforms should be avoided in eigenvalue computarions, as the following discussions show.

9.5.1 Diagonalization of a Matrix

Definition 9.23. A marrix A is called diagonalizable if X' AX is a diagonal matrix D.
This decomposition is referred 1o as the eigenvalue decomposition.

We now give a characterization of diagonalizability.
Definition 9.24. The algebraic multiplicity of an eigenvalue A of A is the number of times
it appears as a root of the characteristic equation. An eigenvalue & is a simple eigenvalue
if its algebraic muitiplicity is 1. The geometric multiplicity of A is the dimension of the
nutlspace of A — Al
Example 9.25.

1
A= 0
0

O e O

0
0], B=
l

oo -

0
I
1

D = =

The algebraic multiplicity of the eigenvalue 1 of both matrices is 3; however, the geometric
multiplicity of 1 of matrix A is 3 and that of matrix Bis 1. 1

Definition 9.26. An eigenvalue is called a defective eigenvalue if its geometric multiplicity
is less than its algebraic mudtiplicity. A matrix is a defective matrix if it has o defective
eigenvalue. Otherwise, it is nondefective.
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Theorem $.27. An n x n mairix is dingonalizable if and only if it is nondefective.

Proof. First, suppose that A is diagonalizable. Thatis, X’ AX = £, a diagonal matrix, A
diagonal mairix is clearly nondefective, Thus [ is nondefective and so is A, Next, suppose
that A is nondefective, Since the geomeiric multiphicity of each eigenvalue is the same as ity
algebraic multiplicity, matriz A must have # lnearly independent cigenveciors, Call them
E1v., % Then X = (xy, .., &) is nonsingular and we have X 'AX = D, (I

Note: If X' AX = D =diag(h, ..., &) then X is the eigenvector matrix.

The above theorem tells us that a matrix is always not diagonalizable. However, the
following theotem shows that it is always possible to block diagonafize matrix A, A block
diagonal matrix A is written as

A = diag(A), Az, ..., Ay,
where A;, 1 = 1,..., k, arc matrices. A well-known eXample of a Block dingoial matrix i
the Jordan canonical form.’?

Theorem 9.28 (Jordan canonical theovem), If A is n x n, then there exists a nonsingular
matriv X such that X7VAX = diagtd,, ..., i), wherz

A1 o .- 0
-

‘fim “‘ { N fﬁl,z,.u,&.
[
Ay

If 7 iy of order p;, then py - p2 + -+ py = n. The matrices J; are called the Jordan
block matrices or simply the Jordas matrices. The nuwmber 3y is an eigenvalue of & with
mudtipliciry p;.

Note: [ each p; == 1, then the Jordan matrix Jf; is a diagonal matriz.

9.5.2 MNumerical Instability of Nonorthogonal Diagonalization

Extreme caution should be taken in using diagonalization or block dingonalization to com-
pute the eigenvaives of » matrix. The following theorem shows that the conditioning of the
rransforming matris X has a significant upact on eigenvalue compuration, A proof of the
theorem can be found in Golub and Van Loan (1995, p. 3171,

Theorem 9.29,
X TAX) = X TAX + E,

Marie Ersemond Camile Jordan ( 1538-1912) was & French mathemalician knowst for his many funda-
menial contributioas to muhematics, including complex analysis, Hnear algebra, malhematical analysis, and
group theory. Besides the Jordan cononica! form, other weil-known mathemotical terms and results ramed
after him include the Jordan cusve theorem, the Jordas measure, and the Jordan-Hilder thearens,
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where
1Ei: 2 | X [1X s

Implication of Theorem 9,29, Thus, if X isill-conditioned, the computed matrix X P AX +
£ will be different from A and the computed eigenvalues will have errors,

Because of this, it is not advisable 1o compute the eigenvalues of a marix 4 via
Jordan canonical form, Whenever A iy close to a defective matvix, the transforn-
ing X will be highly ill-corditioned,

9.5.3 Reduction to Hessenberg Form via Orthogonal Similarity

Theorem 9.30 (Hessenberg reduction theovem). An arbitrary i = s matrix can abvays be
transformed into an upper Hessenberg"? matrix H, by orthogonal similarity; that is, there
axists an orthogonal matric P such thar

PAPT = H,.

As we will see a little later, the importance of Hessenberg trassformation lies in the
fact that the reduction to a Hessenberg form must be performed before applving the QR
ireration algorithm fo A to compute the eigenvalnes.

Househalder’s Method

The process of QR factorization using Houscholder matrices deseribed in Chapter 7 can be
easily extended to obiain P and H,.

The idea is to reduce the matrix A 10 an upper Hessenberg matrix H, by suc-
cessively premultiplying A with a series of Householder matrices followed by
postmultiplication with their transposes.

The matrix P in this case is constructed as the product of {7 - 2} Householder matrices
Py through P..a.

* P is constructed o creale zeros in the first column of A below the entry (2, 1),
resulting in the matrix A AP = AUL

« Py is determined to create zeros below the entry (3, 2) of the second column of the
matrix A", resulting in the matrix £2A"Y P = A®. The process can be cantinued.

BKart Hessenberg (1904-1959) was 8 Cerman eagineer whose dissentation Aufidsung Linearer Eigenwer-
taafpaben mit Hilfe der Hamifron-Cavlevscher Glzichung (Technische Hochsehule, Darmstads, Gernsny,
1941 investisaled computation of the eigenvalue and eigenvectors of linear opersors, The Hessenberg
form of & matrix, named after hin, appeared luter in a paper related 1o his dissertation. For details visi
hipifwww. Hessenberg.defkari L bimi.



308 Chapter 9. Numerical Matrix Eigenvalue Problems

The process consists of (n — 2 steps. (Mote that an »# x n Hessenberg matrix contains
at least YoHETD perag )
A ihestration: Letn = 4. There are only 2 steps.

X X X X ® X % X % X X
. X OX X X S ¥ X % X rl ¥ X X X
Step 1. el s
X x ¥ X 0 = =x x 0 x =x =
X X ® X 0 = x x 0 = x =
A P A AV = pAPT
xoox X X x00x KX X X xR
Step 2 X X ® X P X X %X X Y X x X %
B2 0 x % x 0 = x = 0D = x =
[ B S, 1 0.0 % =/ 0B x x
AU A H, = A% = Pgﬁif”}?f

Notes: (i} Each of the matrices & and F; is computed in rwo substeps as shown
below.

(i1} The zeros created by premultiplication of A by Py do not get destroyed by post-
multiplication with 27, Similarly for the other steps.

‘The general case now can be easily written down. fr the following, in arderto simplify
notation and save computer storage, each of the matrices A will be siored in place of A.

Step 1. Find 2 Householder matrix ?; of order n ~ 1 such that

[453] X
- oy (
1 =1 . }.
Gyt U
Define
P o= (‘; g) and implicitly compute A1 = PLAPT,
1
Then
xR e X
X X sse X
A= A(lil = 0 ap - X

4] fpr < x

Step 2. Find a Houscholder matrix 53 of order {r# — 2) such that

X
0
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Diefine
Py = (g’ g) and impticitly compute AP = PgA”}P;.
Then

X X X »%
X % ®
" 0 = x ™
A=AY=10 0 «x X
0 0 x *

The general Step & can now easily be wiitten down,
At the end of (1 — 23 steps, the matrix A% is an upper Hessenberg mairix #,.

Obtaining the Orthogonal Transforming Matrix P

Set
P= Py afua.. PPy, @2h

Then P is grthogonal {since it s the product of {(n — 2) Houoseholder matrices), and # is
casy io see that

PAPT = H,. (9.22)
n=4: P=ppP, PAP = PPIARI P = PA P = AW = 1,
Example 9.31, Let
g1 2
A=]1 2 3
11

Since n = 3, we hwve just one step to perform.

?,xr;u;r

sForm Py =56 — = such that

uy = G) + Ve = G) 3 ({1}} _ (1 471&'":3““)‘
So,

T .
s w10 58284 24142\ [~07071 ~G7071
P“""’»’“z;}j}'*( )'0292%&4;@ v )= —erom o707 J-

o
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e Form Py outof }7; as follows:

I 0 Q 1 0 0
Pi={0 N =10 -=0.7071 ~0.707]
0 P o 07071 0.7071
» Form the Hessepberg matrix #, and store it over A:
g —2.1213 070N
A= AY = pap] = -14142 35000 -05000) =H, B
0 13000 —0.5000

ALGORITHM 9.5. Householder Hessenberg Reduction.

Input: An# x 7 matrix A.
Quitputs: An s x 1 upper Hessenbery matrix stored over A,

CRGEE YT Y o

1. Determine the vectar ip = (Mesi g, ...  Hqy ) defining the Householder
4
Mgy

matrix i?’;; mr fy 2;;;: of order {n — £} and a scalar o such that

ralk el
. 0O
A == .
]
4533
2. Store o over gioi g
fpp h = O,

3, Compute py, = ZTTE"Q?: and save ny and By

4, Update the entries of 4 inrows k4 [ through r and colurns &+ 1 through »
by premuldtiplication, and then in columns &+ 1 through nand rows 1 ton by
postrnutijplication by pecforming the following mudtiplications implicitly.,
Store them in respective positions of A:

Ak+1link:my=Alk+ 1V k1)~ ﬁuz;;z;éz%{fc-% fon,kony,
All i b+ 1y Al s b+ 1oy - A Al in k4] :11}:4;3{_

End

Note: The algorithn does not explicitly compute the transforming matrix £, How-
ever, the hater can be computed out of the Householder vectors 1y through e, 7. Note that
P= P aPy. . PP where Poo= diag (I ] — Bungl LE=1,2,....0—2,

Example 9.32,

2

i
R
(BN
A
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Just one stepy k = 1.
Loy == {2.2019, 0.6667)7, ¢ = --3.6056 (using Algorithm 7.1).
2 = o = 3,505,
3 f= “1““ = 03779,

4, {f;)ﬁ’fﬁfﬁ/’i ayz = —4 4370, ayy = 3.05309; g = —3.0056, g7 = 12,2308, qn =
~2.8462: ayp = 11338, g o= 22308,

‘ 1 —4.4376  3.0509
So,A=H, =P AP =] -36056 122308 -28462 |. W
0 11538 —2.2308

Flop-count. Algerithm 6.5 requires * -,~;n 3 ftops tocompute H,,. This count does nat inclide
" the expf;;::;; awnpuraz{wn of P. P can be stored in factored form. If P is compueed explicitly,
another TH° * flops will be required. However, when n is large, the storage required to form
Pis pmﬁ%t}éiive.

Round-off property. The aigorithey is stable, 1t can be shown (Wilkinson (1965, p. 351))
that the compited H, is orthogonally similar fo a nearby matriv A -+ E. Specifically, there
exists an orthogonal matrix O such that @7(A + E)Q = H,, with

.
NWENr < cnulAlle,

where ¢ is a small constant.

MATCOM Note: Algorithin 9.3 has been implemented in the MATCOM program
HOUSHESS,

Tridiagonal Reduction of a Symmetric Matrix

If the matrix A is symmetric, then from
PAPT = H,

it follows immediately that the upper Hessenberg matrix H, is also symmetric and, therefore,
is tridiagonad, Thus, if the algorithm is applicd o a symmetric matrix A, the resulting maerix
H, will beasymumetric tridiagonal matrix 7. Furthermore, one obviogsly cantake advantage
of the symmetry of 4 to modily the algorithm. For example, ¢ significant savings can be
obtained in slorage by taking advantage of the symmeiry of each A%,

The synunetric algorithm requires only 327 flops to compute T, compared 1o 5n’ flops
nieeded to compute H,. The round-off property is essentially the same as the nonsymmetric
algorithm. The algorithm is stabie.

Givens Rotations and Reduction to Hessenberg Form

As in the case of QR fuctorization, the Givens matrices can also be employed to transform
an arbitrary 1 x # matrix A o an upper Hessenberg matrix 7, by orthogonal similarity:
PAPT = H.. However, 1o do this, Givens rotations must be consiruceed in a cerfain special
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manner. Forexample, inthe firststep, Givensrotations J (2, 3, 83, J{Z.4.8), ... . J(2, 1,8}
are successively computed so that with £y = J(2, 0, 8) -+ J(2,4,8)J(Z, 3, 7}, the updated
matrix A" = Py A P] has zeros on the first column below the (2, 1) entry. The other steps
are similar. ‘We leave the derivation a8 an exercise (Exercise 9.16). This reduction will re-
quire about ?zf" flops to campute H,, almast twice as miany as reguived iy the Honseholder
reduction,

Round-off property. The round-off property is essentially the same as the Householder
method, The method is numerically stable.

Example 9.33. Consider matiz A of Example 9.31 again.

Step 1. Find ¢ and 5 such that

Step 2.
10 0
pr=J30 =10 & 1
0 - X

) 0 21213 0717
A=P AP = [ 14142 35000 05000 |. N
0 —L3000 -0.5000

Observation.  Note that the upper Hessenberz matrix obtained here is essentinily tie same
as that obtained by Houscholder’s method (Example 9.31). (Thev differ only by the signs
of the subdiagonal entries. )

MATCOM Note: The Givens method for Hessenberz reduction has been implemented in
the MATCOM program GIVHESS.

9.5.4 Uniqueness of Hessenberg Reduction

The above example and the observation made therein brings up the question of uniqueness
in Hessenberg reduction. To this end, we state a simplified version of what is known as the
implicit Q theorem. For a complete statement and proof, see Golub and Van Loan (1996,
pp. 346-347).

Theorem 9.34 {implicit Q theorem). Ler P and Q be orthoponal matrices such that
PYAP = Hand QT AQ = Hy are two unreduced upper Hessenberg matrices. Suppose
that P and Q have the same first colwmns. Then Hy arnd Hsy are essentially the same in the
sense that Hy = I3V H D, where

I3 = dimglxl, ... k1)




9.5, Similarity Transformations and Eigenvalue Computations 313

Example 935, Denoie the Hessenberg matrices in Examples 8.31 and 9.33 obiained by
the Householder and Givens methods, respectively, by Hy and Ha.
Using 1he notation of Theorem 9.34 we have

P =P, gl = 1¢2,3,0).

Both P and @ have the same first columns, namely, the first column of the identity maurix.
We verify that Hy = D™V H D, where D = diag{1, -1, 1). §

9.5.5 Eigenvalue Computations Using the Characteristic Polynomial

Why should eigenvalues not be computed via the characteristic polvaonial?

Since the eigenvalues of a matrix arc the zeros of the characterisiic polynomial, itis
natural to think of computing the eigenvalues of A by finding the zeros of #ts characteristic
polyrominl. However, tlis approach (s not numerically effective.

Difficulties with Eigenvalue Computations
Using the Characteristic Palynomial

Fiest, the process of explicitly computing the coefficienis of the characteristic
polynomial may be numerically unstable.

Second, the zeres of the characteristic polynomial may be very sensitive to periur-
hations of the coefficients of the charanteristic polynomial. Thus if the coefficients
of the characteristic polynomial are not compuled accurately, there will be errors
in the computed eigenvaloes.

In Chapter 4 we iliustrated the sensitivity of the root-linding problem by means of the
Wilkinson polyvnomial and other examples. We will now discuss the difficully of computing
the characteristic polynomial in some detai! here.

Computing the characteristic polynomial of a matrix explicitly amounts 1o transtform-
g the matrix to a block-companion {or Frobenius) form. Every matrix A cun be reduced
by similarity to € = diag(C), ..., Ct), where gach C; is o comparndon matrix. The matrix
¢ is said o he in Frobensius form. [T & = [, the matrix 4 is nonderngatory.

Assume that A is nonderogatory and let’s see how A can be reduced (0 a companion
matrix by similarity. This can be achieved in two stages,

Reduction of a Matrix to a Companien Matrix

Stage 1@ The matrix A istransformed 1o an upper Hesseaberg matrix A by orthog-
onal similarity using the Houscholder {Algorithm 9.5) or Givens method.

Stage 2: The wansformed unreduced Hessenberg mateix A is further reduced 1o
a companion mairix £ by similarity {assuming that & is unreduced),

We have already scen that Stage § can be performed in a sumerically siable way.
Consider now Stage 2, that is, the transformation of the nareduced Hessenberg matrix & to
a companion matrix C,
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Let X be the nonsingolar trapsforming matrix such that X = X, where

00 . - 0
P o . - 0 <2
c=l0 10 - 0 a
6o . - 1 o

I xy, X3, ..., X, are the # suceessive columns of X, then from H X = X, itis easy 1o see
that knowing Xy, one can compute Xa, ..., X, recursively as

ﬁ.‘\“gm.‘(;._;.l, i:l‘,,,,n-].

Furthermore, if x; = {1, 0,..., M7, then it is easy to see that matrix X is a lower triangular
mairix with 1, sy, .0, Fashse o Ry 38 the diagona! entries. Thus, X is nonsingular,
since ey # 0 o= 12, ... .0 — L However, if one or more of these subdiagonal
_entries.is small, then clegrly X is ill-conditioned.

Thus, the first stage, in which A {s transformed to o Hesseaberg matrix H using
the Householder or the Givens method is numerically stable, while the second
stage, in which A is further reduced to a companion mateix €, might be highly

unstable.
Example 9.36.
I 2 03
Hoe 00001 1 1),
0 23
y=(L0,007, x=Hx ={1,0000107,
X3y = H g = (1.0002, 0.0002, 0.0002)7,
1 1 1.0002 0 0 1
X=10 00001 00002}, X '"HX=C=|] 0 —-49998],
0 0 00002 ool 5

Cond, (X} = 3.1326 = 10%.

{Note that the existence of a small subdiogonal entry of H, namely, hay, made the trans-
Forming matrix X ill-conditioned) M

Other methods for reduction to companion form. There are also other equivalent
methods for reducing H to O, For example, Wilkinson (1963, p. 401 describes a pivoting
methixd for transforming an unreduced Hessenberg matrix H teacompanion matrix £ using
Gaussian elimination, which also shows that small subdiagonal entries of H can make the
wmethod highly unstable. The subdiagonal eotries are used as plvots, and we bave seen before
that small pivots can be dangerous.

The well-known LeVerrier's method (Wilkinson (19635, pp. 434-435)) computes the
coelTicients of the characteristic polynomial using the traces of the various powers of A.




9.6, Eigenvalue Sensitivity 315

Here, Wilkinson has shown that in LeVerrier s method, severe cancellation can tuke ploce
witile compuiing the coefficients from the traces asing Newion's sums,

Having emphasized the danger of using the Frobenius form in the eigenvalue com-
pulations of a matrix, let's point out some remarks of Wilkinson about Frobenius forms of
matrices arfsing in certain applications such as mechunical and electrical systems.

Although we fave made it clear that we regard the wse of the Frobenins form as doun-
gerous, in that it mayv well be caiastrophticatly worse-conditioned than the original
mgiris, we have found thie program based on iy use surprisingly satisfactory in general
Jor warrices arising from damped mechanical or electrical systems. It is vonmen for
the vorresponding eharacteristic polynomial to be well-conditioned. When this is true
meshods based on the use of the explicit charaeteristic polynonial are both fust and
accurate. |Wilkinson {1963, p. 482)]

Remarks. The ghove remarks of Witkinson clearly support a long tradition by eagineers
of computing-the gigenvalues by finding thoe zeros of the sssociated companion marix
However, in generad, it is nor a good ideq.

9.6 Eigenvalue Sensitivity

In the previous two sections we have cautioned the readers about the danger of computing
the eigenvalue via Jordan canonical form or the Frobenius form of a mutrix. The danger
was mainly the possibilicy of the transforming matrix X being il-conditioned.

In this section we will see now what specific role the condition number of the trans-
forming matrix X, Cond{X) = X1 - 1X "], plays in eigenvalue sensitivity.

We start with o well-known theorem by Friedrich L. Bauer and C, T, Fike.

9.6.1 The Bauer—Fike Theorem

Theorem 9.37 {Baver and Fike (1960}). Ler A be diapondalizable; that is, there exists o
nonsingular matris X such that X 'AX = D = diag(O, ..., &) Then for an eigenvalie
Aoaf A B we have

min i3~ Al < IXD XY EEN

where || § is a subordinate matrix norm and hy, hz, ..., &y are the elgenvalies of A.

Progf. Consider two cases.

Case 1 A = A; for some {. The theorem is trivially true.

Case 2: & 5 X; for any . Thes the diagosal eniries of the diagonal mattix A — D
are different from zero. Since the determinant of a matrix s equal to the product of its
gigenvalues, the matrix (A4 - D) is nonssingular. Now from {A -+ E)xy = Ax we have

Ex s (O o Ay = (A = XDX Ny = X0 — D)X 7 'x. {9.23)
Set X~'x = y. Then from (9.23) we have, by multiplying the equation by X~ (o the left,

(Al — Dy = X"Ex
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N y=(M =Dy X EXy (nowethalx = Xy).
Taking a subordinale norm on both sides, we have
¥l = ad = DY XV EX Y = O~ DYTEXTER 1R el (9.24)
Dividing both sides by || vli, we get
12 1O = DY X REED X, (9.25)
MNow for a subordinate norm,
- i }
It = Dy = rma (a - ;ﬁ.) - min( — A’

So, {9.25) becomes

|

X' XL EL

or
min{A — &) = EXxp gy O

Implications of the Theorem

The above theorem tells us that if the p-norm condition number of the eigenveciors
matrix X, namely,

Cond,(X) = 1X07" (X',
is large, then an sigenvalue & of the perturbed mairix 4 4 £ can be significantly

different from an eigenvaiue 3; of A, In general. the more ili-conditioned the
eipenvector mairix X is, the more Hi-conditioned the eigenproblem for A will be,

Remark. In A is not diagonalizable, a similar result aiso holds. (For details, see Golub
and Van Loan (1596, p. 3211)

Example 9.38. Consider the following upper oiasgufar matrix with eigenvalues 1, 2,
and 0999

1 2 3
A= 10 09990 11,
0 & 2
1 -1 0.9623
X=|0 00005 0.1923): X 'AX = diag(1, 0.9990, 2).
] } 0.1928
4 0 ¢
Let E= 10710 O 0]. Theeigenvalues of A 4 E are 0.99935 4 0.00447, 2,
1 00

Note that these changes in the eigenvalues are due to the relatively large condition
atimber of X, as the following computations show:

Conda{X) == 68708 x 107  and  Condy(X) - [ El2 = 0.0687. N
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Thus a change of 1073 in (3, 1)th entry of A completely changed the first nwo eigen-
values. The question that arises, however, is why did the first two eigenvalues of A change
and not the third one? The question will be answered in the following section.

9.6.2 Sensitivity of the Individual Eigenvalues

The condition number || X || | X ~'|| gives an overall assessment of the changes in cigenvalues
with respect to changes in the coefficients of the matrix. However, as we have seen from
the examples in Chapter 4, some eigenvalues of A may be more sensitive than aothers. In
lact, some may be very well-conditioned while others are ill-conditioned. Similarly, some
eigenvectors may be well-conditioned while others are not.

It is therefore more appropriate to talk about conditioning of the individual eigenval-
unes, rather than conditioning of the eigenvalue problem. Recall that in Chapter 4 an analysis
of the ill-conditioning of the individual eigenvalues ol the slightly perturbed Wilkinson ma-
trix was given in terms of the condition numbers of the individual eigenvalues of this matrix.
In general, this can be done for any diagonalizable matrix.

Let X~'AX = diag(hy,..., ;). Then the normalized right and left eigenvectors
corresponding to an eigenvalue A; are given by

Xeg (X~ )e

X = , Y= - .
T Xelat T X el

Definition 9.39. The number ‘l where 5; is defined by
5 = lyl.‘r_r,-|,
is called the condition number of the eigenvalue ;.

MATCOM and MATLAB Notes: Individual sensitivities of the eigenvalues can be com-
puted using the MATCOM program SENSEIG. Sec also the MATLAB command condeig.
A Relationship between s; and Cond(X)

It is easy to see that the condition numbers 5; and Cond;(X) are related. This relationship
is derived in the following:

. - [\’-T.Pl _ ie,-TX_]Xe,-l _ |
T T X el (XNl T X e (X el
Now
1 Xeifl = X allells = X2
and
1) el = 1Y kel = 1X™H 1 = 1X o
So,

1
== I1X[2l X ™" [l2 = Conda(X).
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Example 9.40. Consider Example 938 again:

i 2 3
A= |0 0999 1],
0 0 2
1 & 3 i : 3 1
e = 28305 = 107, — =28270x 10, — =351940,
¥y Ryl 51

Cond;{X) = 6.8708 x 10°.
Thus,
H
— < Conda (X)), i=1,23 §

AR

- Remark. Note that the condition numbers of the sigenvalues 1 and 0.9999 are large. That ©
it why they are sensitive to small perturbations. ST

The Condition Numbers and Linear Dependence of Figenvectors

Since for a disgonalizable matrix the columns of the matrix X are the eigenvectors of 4,
Cond:{ X gives us an indication of how linearly independent the eigenvectors are: '

If Cond+{X) is large, it means thar the eigenveciors are nearly dependent,
Note the almaost linear dependence of the first two eigenvectors af the matrix A of
Example 9.38, This is because
Conds(X) = 6.8708 x 107

The Eigenvalue Sensitivity of a Normal Matrix

A matrix 4 is called normal if AA® = A*4, where A% = (A)7. A Hermitian matriy is
normal. Normal marrices are diagonalizable. A remarkable property of o normal matrix
A is that if X is the trensforming matrix that transforms A Lo a dingonal matrix. then
Cond:{X} = |.

Thus the following is an immediate consequence of the Baver-Fike theorem.

Corollary to the Baner—Fike theorem. Let A be g normaf matriv, and let 2y, ..., A, be
the elgenvalues of A, Thes for an eigenvalue i of A 4+ E we have

min j&; — & < §Ei.

In other words, the eigenvalues of 9 normal matrix are perfectly well-conditioned.

Remark (the eigenvalue sensitivity of a symmetric mairix}). The normal matrices most
commonly found in practical applicalions are symmuetric {or Hermitian, If complex) matrei-
ces. Thus, by the coroliary above, the elgenvalues of o symmetric (or Hermitign} mairix
are well-conditioned.
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9.7 Eigenvector Sensitivity

We shall not go into any detail in our discussion on the sensitivity of eigenvectors, but
rather just state a theorem (in somewhat crude form) that will highlight the main differences
between eigenvalue and eigenvector sensitivitics. For an exact statement and proof, see
Watkins (2002, pp. 468-472).

Theorem 9.41. Let AA be a very small perturbation of A and ler the eigenvalue by of A
be perturbed by 8Ai; that is, Ay + 8h; is an efgenvalue of A +- AA. Ler x; + dxy be the
eigenvector corresponding to ke + 6h. Then, assuming thar the eigenvalues of A are all
distince, we have

X+ 6xp = xp + Z
po

o

ik 1 *
x;+ O(AANT),  whereaj = ¥ (AA)x;.
(s — A)s; ' :

Implications of the theorem. The above theorem tells us that if A is perturbed by a small
amount, then the amount of perturbation an eigenvector x;, experiences Is determined by

I. the condition numbers of all the eigenvalues other than A, and
2. the distance of A; from the other eigenvalues.

An immediate consequence of this theorem is that if there iy a nuliiple eigenvalue or
an eigenvalue near another eigenvalue, then there are some i{l-conditioned eigenvectors.
This is significant especially for a Hermitian or a symmetric matrix, because we know
that the eigenvalues of such a matrix are all well-conditioned, but the eigenvectors could
be ill-conditioned. 1f the eigenvalues are well-separated and well-conditioned, then the
eigenvectors are well-conditioned.

Example 9.42. Consider the [ollowing diagonal matrix:

] 0 0
A=10 099 0
0o o0 2z
Let
] 0.0001 0
A= A4+ AA= 100001 099 0
0 0 2

Theeigenvaluesof A+AAare 1,099, 2. (Nochange; since A is symmetric the eigenvalues
are well-conditioned. ) However, the eigenvectors of A" are

—1 0.01 ¢]
—0.01 1, —1 ], and |0},
0 0 [
while those of A are
1 0 0
0], 1], and | O
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Note that the eigenvector corresponding to Ay = 2 has not changed, while the other two

eigenvectors have changed, this is due 1o the proximily of the associated eigenvalues, |
and 0.95. 1

9.8 The Real Schur Form and QR Hterations

In the preceding discussions we have seen thal computing eigenvalues of A via reduction
of A to the companion or the Jordan canonical form is not numerically effective. If the
transforming matrix is ill-conditioned, then there may be large errars in the compuied
canonical form, and this in turn will introduce large errors in the eigenvalues.

Therelure, the lesson is that we should avoid nonorthogonal transformations in eigen-
value or eigenvector computations and use only orthogonal or unitary transformations,
which are perfectly conditioned.

Indeed, if' a matrix A is transformed (o a matrix B using unitary similarity transfor-
mation;-then-a-perturbation in -4 -will result-in-a-perturbation-in-B-ef the same magnitude.
That is, if

B=UAU and U*(A+AAU =8+ AR,

then
lABl: = [AA]L.
Example 9.43.
1 23 —0.57714 -0.5774 ~0.5774
A=1\3 4 53|, U=1]-05774 0.7887 ~0.21131],
6 7 8 —-0.5774 —-0.2113  0.7887
13 —0.6340 —2.3660
B=UAU = | —0.9019 0 0
—6.0981 0 0
Let i
AA =107 x I3,
Then
1.00001 2 3
A=A+ AA = 3 4.00001 5
6 7 8.00001
and
13.00001 -0.633974 —2.3660
By =U*(A+ AAU = | —0.9019 0.00001 0

- 6,0981 0 0.00001
S0, AB =B, — B =107 x l,;and |AAl2 = ||[AB], =107, N

A perfect canonical form displaying the eigenvalues is a triangular form (the diagonal
entries are the eigenvalues). In this context we now recall a classical result due to Schur.™

Hiseai Schur (£B75-1941), a Lithuanian-German-Israeli mathematician, is well known for his funda-
mental work on the representation theory of groups, but also worked in aumber theory, analysis, and linear
algebra.
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Theorem 9.44 {Schur triangularization theorem). If A iv an 1 = n matrix, then there
exists @ unitary matrix U such that

UAD = T,

where T 15 a trigngular matrix with the eigenvalues iy, 3, ..., &, as the diagonal entries.

Froof. We will prove the theorem usiag inducdon on i,

il s == [, the theorem is trivially true. Next assume the theorem s true forn = & — L
Then we will show that it is also true forn = £,

Let & be g normalized cigenvector of A associated with an eigenvalue ;. Define
£y == (u, V), where Vis k x (& = 1) and is unitary, Then Uy is unitary and Ay = Uf AU, =
ding(d, A), where A 15 (k — 1) x (k — 1) By our hypothesis there oxists 4 unitary matrix
V1 of order (k — 1} such that 7= V,"(fi}V; is trigngular. Then, defising {4 = diag(1, Vi),
we see that Lfy is unitary (because so is V) and

Us AUs = USUTAU U, = UM AU,

and furthermore, {7* AL/ = diag V{“ﬁ’n’; = T, Because T is trianguiar, so is U AU, Since
the ecigenvalues of a triangular matrix appear on the diagonal, we are done. [

Since & real matrix can have complex eigenvalues (occurring in complex canjugate
pairs), even for a real matrix A, & and 7 in the Schur theorem above can be complex,
However, we cart choose U/ to be real orthogonal if T is replaced by u quasi-iriangular
matrix R, known as the real Schur form of A.

Theorem 945 (real Schur triangslarization theorem). Let A be an i x 0 rend matriv,
Then there exizis an n x n orthogoenal matrix [ such that

Ry Hpp - Ry
G R -+ Ry

3 . . 1

PTAQ =R =

0 1] e RBig

where each Ry s either a sealar or a 2 x 2 matrix. The sealar diagenal entries correspond
to real eigenvalues and 2 = 2 marrices on the diagonal corvespond te complex conjugare
eigenvalues.

Proof. The proof is similar to that of Theorem 944, [I

Defiedtion 9.48, The matrix B in Theorem 945 is known as the real Schur form of A,

Notest
» The 2 x 2 matrices on the diagenal are usually refersed o as “bumps.”

« The columns of ¢ are called Schur vectors, For each k(1 = & < n), rhe first k
colmny of Q form an arthorormal basis for the tnvariant subspace corresponding
fo the first k eigenvalues,
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Remark. Since the proofs of both the theoremss are based on the knowledge of eigenvalues
and cigenvectors of mairix A, they cannot be considered o be constructive. They do agt
help us in computing the eigenvalues and eigenveciors.

We present below a method, kaown as the QR iteration method, for computing the -
real Schor form of 4. A properly implemented QR method is widely used nowadays for
computing the eigenvalues of an arbifrary matrix. As the name suggests, the method is based
on the QR factorization and is iterative in nature. The QR iteration method was proposed in
atgorithmic form by Francis {1981), though its roots can be traced 1o a work of Rutishauser
{1938). The method was also independenidy discovered by the Russian mnthemaizczan
Kublanovskaya (1961).

Note: Since the cigenvalues of & mairix 4 are the s zeros of its charscteristic poly-
nomital, and it is weli known (proved by Galois more than & century ago} that the roots of a
polvnomial equation of degree higher than four cannot be found in a finite number of steps,
dE‘i}’ numencal eag@nva&uu method for an drhilrary matrix has to be iferative in nature.

9.8.1 The Basic QR lteration

The idea belind the QR itergtion method s to iteratively constrict a sequence of matrices
{Ar}. starting from Ag = A, such that each A;q is orthogonally similar to A;, with
an expectation dt the sequence will converge to a real Schur matriy from which the
eigenvalaes of A can be eastly extracted, Bach matrix in the sequence is constructed by
taking QR factorization of the previous matrix and then multiplying the matrices @ and R
in reverse order. Specifically, the basic QR fteration method is as follows.

ALGORITHM 9.6, Basic QR lieration Algorithm.

Input: Ann x 7 matrix A,

Qutput: A sequence of matrices {Ag] containing the eigenvalues of A,
Step 1. Set Ag = A.

Step 2. Compute now a sequence ol matrices {A) defined as follows:
Fork=1,2...do

2.1, Find the QR lactorization of Ay Agy = Qe Ry
{OR factorization).

2.2, Compute Ay = Ry Oy (reverse multiplication),
End

Eigenvalue property of {4;].  The matrices in the sequence [A;] have a very interesting
property. Each mairix in the sequence is orthogonally similur to the previous one and s
therefore orthoganaily sinilar to the original marrix. it is easy to see this. For example,
Ay = Rofo = Qf AsQo  (since O An = Ro),
Arv=RiQy = Q1 AQ1
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Thus A, is orthogonally similar to A, and A, is orthogonally similar to A|. Therefore, A,
is orthogonally similar to A, as the following computation shows:

Ar= 074101 = Q1(Q1A0Q0) Q1 = (Qo Q1) Ao(QoQ1) = (Qo @) AQo Q1.
Since cach matrix is orthogonally similar to the original matrix A, it has the same eigenvalues
as A. Thus, il the sequence {A;] converges to a triangular or quasi-triangular matrix, we
will be done. The following result shows that under certain conditions, this indeed happens
{see Wilkinson (1965, pp. 518-319)).

A Condition for Convergence

Theorem 9.47 (convergence theorem for basic QR iteration). Ler the eigenvalues
Aoy hy be such that |AM] > [Jal > - > |A|, and let the eigenvector marrix X of
the left eigenvectors (that is, the right eigenvectors of X ') be such that its leading princi-
pal- minors are nonzero. Then [ Ay} converges to an upper rriangular matrix or to the real
Schur form.

In fact, it can be shown that under the above conditions, the first column of A
approaches a multiple of e;. Thus, for sufficiently large & we get

AloH
Ay = _
0 A

We can apply the QR ileration again to A; and the process can be continued 1o show that
the sequence converges to an upper riangular matrix.

Example 9.48.
1 2
A= (3 4) .

The eigenvalues of A are 3.3723 and —0.3723.)4;| > |A3].

k=0: Ao‘—“A:QDRU,

_ (03162 —0.9487\ . _ (-31623 —44272
Qo=1_goag7 03162 ) Fo=\ "o _oe3s)-

5.2 1.6
k=1: Al:RUQOz(.6 _.E)ZQIR]a

_ (09934 01146\ o (~52345 —1.5665
Qr={_o1146 -o09934) B =1 o _g3s)-

5379 —0.9562
k=2 A=RO= (0.0438 -—0.3796) = Qeka.

(Note that we have already made some progress towards obtaining the
cigenvalues.)

_( -l -00082\ . _ (-53797 09593
Q=1 _y o081 ) R=E0 0 Zosnis)
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53718 LDO3D
(.0030 w—O,}?IS) = 1Ry,

0, = | ~0.0006Y , _ (-53718 —1.0028
P 00006 1 ¢ 3= a -0.3723 )

' 53723 —0.9998
k=4 Ag = B33 = (0,90{32 u-{}.f%??.ﬁ) ‘

I H Agmgzggm(

MATCOM Note: Algorithm 9.6 has been implemented in the MATCOM program QRITRB,

9.8.2 The Hessenberg QR Iferation

UTREQR TiERE 0N ethod as preseated-above s notefficient if the matris Ads full and dense.
We have seen in Chapter 7 that the QR [actorization of such a matrix A requires O(n)
flaps, and thus » QR ierations will require O{n*} Mlops, making the method impractical,

Fortunately, something simple can be done: Reduce the marrix A to a Hessenberg
ematrix by orthogonal simitarity before starting the QR iterations.

The question now is, Will the Hessenberg siructure be preserved ar each iteration
step? The answer t5 ves and provided by the following theorem. Note (hat the Hessenberg
imalrix at each iteration has (o be wnreduced. This is not a restriction, becauvse the cigenvalug
problem for areduced Hessenberg mairix can be split into cigenvalue problems of unredoced
Hessenberg matrices (Exercise 9.21{c)).

Theorem 9.49. Let Ay be an unreduced npper Hessenberg mareix and ler Ay = QR be
the QR foctorization of Ay, Then Ag = R Qy s alsa upper Hessenberg,

Proof. Suppose Givens rotadions are used 1o fuctorize A into Q¢ Re. Then
Go=J2, 1,8 3,2, Jln,n—1,8)

is also upper Hessenberz,
Again, since R is upper miangular and Oy is upper Hessenberg, Apcy = R, O 18
also upper Hessenberg. O

An implication.  Since the QR factorization of & Hessenberg matrix requires only O (n”}
fops, the QR ireration method with the initial reduction of A to o Hessenberg matrix will
be an 0(n°) method.

Example 9.50. Hlustration of invariance of Hessenberg form in Hessenberg QR iter-
ation.

0.2190 -0.356581 —0.6418

A=Ay = 06805 01226  0.4398 {Hessenberg).
—~{0000 N8BT 0.8466




9.8, The Real Schur Form and QR lterations 325

—0.3063 04676 (.8291
k=1: 1L (o= |[ 09519 {1505 {.2668
0.0000 08710 04913

~0. 7149 02898 0.0152
Ry = 1 DONG 1018 03704
-~{3.0000 0 0.0011

04949 08265 02132
3 A = RgQp = {08657 06928 (.74%0 {Hessenbergh.
0,0000 00010  0.0006

k=21 L Q) =[08907 04546 0001
0.0000 ~-0.0023  1.0000

4

0,4546 —0.8907 WO.OOZ'I)

1.0S86  0.9928 0.5702
R = | 00000 04213 05303
0.0000 —0.0000 0.0018

13792 —0.5197 0.5690
2. Ay= RO = | —03752 —0.1927 0.5299 (Hessenberg). W
—0.0000 —0.0000 0.0018

MATCOM Note: The Hessenberg QR iteration algorithm has been implemented in the
MATCOM program QRITRH.

9,8.3 Convergence of the QR Iterations and the Shift of Origin

Although an initia] reduction 1o a Hessenberg matrix makes the QR iteration algorithm
an 031 method, the rate of cotvergence, that is, the rate ai which a subdiagonal entry
approaches zero, can still be very slow [fan eigenvalue & (s close to the pravious one, 4.y
This is because the rate is determined by the ratio

&

Fortunately, the rate can be improved substantially by using a shift A;, close to the
eigenvalue A;, as lustrated by the following example (Ortega and Poole (1981, p. 2271
Suppose A; = 0.99, A, = |.Land}, = L. Then ;fm::»-;i =101, while |;>=| = 0.9.

b

This ebservation tells us that if we apply the QR iteration 10 the shifred matrix H =
H — M. where b is a suirable shift, rather than to the origingl matriz H, then the rate of
convergence will be faster. Of course, once an eigenvalue of # is found, the corresponding
eigenvalue vf H can be compuied just by adding the shift back (Exercise 9.93. At each
freration, the (n, 1)th element of the current matrix can be feken as the shift,

The above procedure is known as single-shift Hessenberg QR iteration method,
The details of the procedwre are lelt as an exercise for the readers (Exercise 9.30). The
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process is meaningful i an approximation to a real eigenvalue is desired. In the case of
approximaling a complex conjugaie pair of eigenvalues, the loliowing modified procedure,
known as the double-shift QR iteration, is to be used by faking the eigenvalues of the 2 x 2
trailing principad sabmatrix on the botiom right-haad corner as the shift parameters.

9.8.4 The Double-Shift QR lteration

I the following we describe one iteration step of the double-shift Hessenberg QR iterations,

One lteration Step of the Double-Shift QR (Complex)

Léet the pair of complex conjugate cigenvalues of the 2 x 2 bottom right-hand corner of
the starling Hessenberg muatrix Ho be &y and &y = &), Then the first ireration step of the

. double-shift QR ieration is given by

H{} - -"L'tf = Q{]R(Je | H) : R§QQ+£§}‘
Hi—&l =R, MH:=R +hkl

Avpiding Complex Arithmetic in Double-Shift QR Iteration

Since ky and &7 are complex, the above double-shift QR iteration step will require complex
arithmetic for implementation, even though the starting matrix Hy is real. However, with a
little manipulution complex arithmetic can be avoided, We will discuss this aspect now,

We will show thar matrix Hy is orthogonally similar to Hy via a real trangforming
matriy, and can be formed divectly from Hy without computing H.

Step 1. {8 is orthogonally siwilar to Hy)
Hy= RyQy + kol = Q{1 — kD30 + bad = Q1 (Re Qo+ (ky — k)N + kal
= QAN Hy ~ 5 D00+ {hy — kDO +Jal = 0707060
Fhus, Hy = (Qg Y Hy Qull), proving that Hy and Hy are orthogonally similar

Step 2. (The matrix Qo Qy front Step 1 is a real matriv.) To show this, we define the matrix
N = (Hg = kP Hy - ki 1),

Then we show that (1) & is a resl matrix, and (i1} the matrix 8g (@} 1s the @ matrix of the
(R factorization of &,

hd (Mﬁ?fﬂ‘.‘{‘ N is f‘ﬁﬂf.) N = {H[) - &g{)(ff(} o fa;[} = HQZ e {ﬁ'; mp kg}ff() -+ klkgg =
H§ e P Hy A, where £ o= &y b ks oand f = Ejka. Thus matriv N iy real (since
ko = k).

= (D@1 is the @ marriy of the QR factorization of NY N = (Hy— ki Hy — k1) =
(Hy =~ k28 Y00 Ry = QpQp(Hy ~ kaf1Go Ry = Op(Hy = k2 )Ry = Qo) Ri Ry,
Sa, the matrix Q0@ B Ko is the OR factorization of N, and the matrix Qo is the
O matrix. Since N is real, so s Gg Q. Combining the result of the above two steps,
we see that Hy ix similar (o Ha via a real orthogenal similarity rransformation,
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This allows us 1o write the one-srep of double-shift QR Heration in real arithaeric as follows.

One Step of Explicit Double-8hift QR Fteration {Real Arithmetic)
+ Form the real mairix N = fa‘{f w tHy v dl.
+ Find the QR [actorization of N: N = QK.
« Form H. = Q7 Hp .

We will eall the above compuration explicit double-shift QR ieration for reasons to
he stated in the next section.

Example Y.51.
P2 3
H=Hy=11 0 ! p=2, d=132
SRR T4 B A
3 8 5
N=H—tH+di=}~1 2 3
-2 0 0

The @ malrix of the QR faciorization of A

08018 05470 —0.2408
0= 02673 00322 —0.9631
0.5345  —0.8365  0.1204

) ~0.8571 11007 2.5740
o= QUHyQ = | —1.1867 3.0455 —-0.8280). M
0.0000  1.8437 0.8116

T

MATCOM Note: The explicit single-shift and double-shift QR Herations have been im-
plemented in the MATCOM programs QRITRSSE and QRITRDSE, respectively,

9.8.5 Implicit QR lteration

After all this, we note, with uuer disappointment, that the above double-shift {explicit) OR
iteration is not practical, The reason for this is that forming the matrix N itself in Step
2 requires O(”) Sops. Fortunately, a little trick again allows us to implement the step in
o0y fops.

One [teration of the Implicit Double-Shift QR
1. Compate the first column a; of the matrix A,
2. Find a Householder matrix Fy such that Pyry 1s a multiple of ey,

. Form Hj = Pl HoPy.

Ll

4. Compute Householder matrices £y through £, _s such that ifZ = PaPy ... P,y then
Hi = Z" H,Z is upper Hessenberg and the first column of @ and Z are the same.
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By using the implieit  theorent (Theorem 9.34) we can then show that matrices Hy
of the explicit QR method and Hy of the implicis QR method are both unreduced upper
Hessenberg and are esventially the same matrix,

The above {our steps constituie one iteration of the double-shift implicie GR,

It now remains to show that (i) the above fmplicit computation reguires only O{n®)
Fflops (instead of Q™)) and (i1} Z and @ have the same first columa,

A Close Look at 8(n”) computation of the Donble-shift Implicit QR Iteration Step
« The entries of vector iy, the first column of N, can be explicitly written down:

ny = (B 4 hyghay — thy +d, iy (hyy i — 8), o, 0, ., 007

» Because ny has almost three nonzero entries, Fg has the form Py = diag ( Py, fao3)
where £ is 8 3 x 3 Householder matrix, Thus the computation af P requires anly
G (1} flops.

« Because of the above structure £ and the matrix Hy being Hessenberg, the wiatriz ~
Fg o Py is not o Tull matrix. Bt is a Hessenberg mareix with a bnlge,

For example, when n = 6, we have
X X ¥ X

Hy= Pg‘;"-{npn = {The entries indicated by +

form a bulge.)

oSl o I S
oo " ox
oo X X X
SN X %X
K OX X X X M
P

Bulge-chasing phenomenon, A bulge will be created at each siep of the reduction of
Hy to Hessenberg form, and the constructions of Householder matrices #; through P,.»
amoust to chasing these bulges systematically, as shown helow with the previous 6 x 6
case, The entries (3, 1), (4, 1), and {4, 2) form a bulge in #,

i, Ca"&‘ﬂfé‘ ip[.'

P?Héi}{ =

o e T oMoX
S X X X
=4 X X X X
fra i A A A S 4
X X XX X
oK oW MK X

The eatries (3,1} and {4, 1) of 7 are annihilated and the 2 x 2 bulge has been chased
one column down.

2, Create Pa:

plepl H PPy =

OO DX ®
oD X XX
e A
we WK W KM
K X X X X X
¥ ox ¥ X ox X
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The entries (4, 2) and (3, 2) of the maltrix PITH(;P] have been annihilated and the
2 x 2 bulge has been chased further down one column.

3. Create Py:

Pl P H P PPy =

oo o X X
O O X X X
CoO X X X X
4o X X %X X
»oX X K XX
® X X X X X

The entries (5, 3) and (6, 3) of the matrix 2 P[ H) P\ P> have been annihilated and
the 2 x 2 bulge has been chased to a I x 1 bulge still [urther one column down.

4, Create Py

PP PI P H P PP Py = ZVH)Z = Hy =

OO O K X
OO O X X X
DO X X X X
X X X X X
X X X X X X
X X K X X X

The last bulge has now been eliminated and the matrix f; is Hessenberg again, this
time without any bulge and possibly some smaller subdiagonal entries.

In the general case, (# — 2) Houscholder matrices Py, ..., P,_2 have to be created
and each P, k= 1,2, ..., 1 — 3, has the form

I 0
0 Iy

where By is a 3 x 3 Householder matrix. The last Householder matrix P, _» has the form

1::—-2 g

Taking into consideration the above structures of computations, we see that one step of the
double-shift implicit QR ireration requires only O (n*) flops.

For details of this O(n?} computations of one iteraiion of the double-shift implicit
QR, see the book by Stewart (1972, pp. 375-378).

To see that the matrices @ and Z have the same first column, observe that (i) Prey =
er fork = 1,...,n — 2, and (ii) Py and @ have the same first column. Thus Ze; =
PPy ... Py_ae| = Pyey = Qe
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ALGORITHM 9.7, One Iteration Step of the Donble-Shift Immplicit QR.

Input: An unreduced upper Hessenberg matrix H. i

Output: An unreduced upper Hessenberg matrix Q7 HQ, where 0 =
PoPy ... P._sis a product of Householder matrices, The matrix 7 M 0 is stored
over M.

Step 1. Compute the aumbers 7 and 4 as follows:

= huw%.szni = h!zfza d = h.‘{”],ﬂ—i’igizﬁ - h!i.u—ihrr-l‘n'
Step 2. Compute the frst three nonzere entries of the first column of N =
HY - tH 4 di
YsEay o= hjg; — s b d 4 Nading,
“oysm gy = g (b Ay by

== iy == hng}gg.

Step 3. Compute the Houscholder matrices Pg Py ... P2 such that the final
matrix ie upper Hessenberg;

{a) Fork=0,1.2,.,.,n—3do

(i} Find a 3 x 3 Householder matrix P such that

LS *
P;; ¥y = O
z 0

Implivitly form Pfg Py, where P, = diag{/,, fsg;, Fypoad, and stors
itovet H: H = PTH P,

(i) Updale x, v, and 2
Y=l e, Y= fgapnand (P2 < =307 = figigpag.

End

(b) Find a Householder matrix P,z of order 2 such that

- (5) =)

Implicitly form P:_i H Pz, where P, s = diag{f, .2, é;“g), and store i over
H:H=Pl AP

Flop-count.  One iteration of 1he implicit double-shift QR method takes about 10n* flops.
If the transforming matrix @ s needed and accumulated, then another 1017 flops will be
needed (see Golub and Van Loan (1996, p. 358),
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Example 9.52. Consider the same matrix & as in Example 9.51.

Stepl. t =2, d =2,

1 2 3
H=11 0 1
o -2 2
Step2.x =5, =3, y=uny =-1, z=n3 =-2,
Step 3. k=0
YundT 6.7417
Py=1— e, whereuy=|-1.000],
[ ) ’
~-2.000

~{}.8018  0.2673 0.5345
Fp=| 0.2673 0.9604 —0.0793 1},
0.5345 00793 0.8414

—0.8571 —2.6248 —0.9733
H=pPlHPy=| 00581 08666 19505

~0.7221  2.9906

Update x and y:

X o l'lzl = (581 y = ]13[ = 1.1852.
Find P,:
5o (00490 09988 5 (x) _ (—1.1866
T= L —09988 00490 /' "'\y] ™ 0 :
i 0 0 —0.8571 1.1007 2.5740
Pr=0 00490 -09988)|; H=PTHP =|—1.1867 3.0455 -0.8289
0 —0.9988 0.0490 0 1.8437  0.8116

Note: The matrix H obtained by the implicit QR is the same as H» obtained earlier
in Example 9.51 using the explicit QR. 1

MATCOM Note:  Algorithm 9.7 has been implemented in the MATCOM program
QRITRDSIL.

9.8.6 Obtaining the Real Schur Form A

Putting together the results of the preceeding section, we can now formulate the procedure
ol obtaining the real Schur form as follows:

Step 1. Transform the matrix A to Hessenberg form H.

Step 2. Perform the QR iteration method on the Hessenberg matrix / using implicit double-
shifi.
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Typically, after two to three sieps of the doubly-shift implicit QR iteration, onc ar
two {and sometime more) subdiagonal eatries from the battom of the Hessenberg matrix
converge 1o zero.

This then will give us a real or a pair of complex conjugate eigenvalues. Onge a resl
or a pair of complex conjugate cigenvalues is computed, the last row and the last column
in the first case, or the last two rows and the iast wo columns ia the secoad case, can be
deleted, and computation of the othar eigenvalees can be continued with the submmnx‘
This process is known as deflation.

Note that the eigenvaltues of the deflated submarrix are aiso rhe eigenvalues of the
eriginal marrix. For, suppose immediately before deflation, the matrix has the form

A
Hﬁ‘“’.”—"({} g.‘)f

of £ H;\ is -
det{dJ — F) = det(A7 — ANy det(a] — B).

Thus, the cigenvalues of H are the eigenvalues of A’ topether with those of B'. Since H,
is orthogenaily similar (o Lthe original matrix A and therefore has the same eigenvalues as
A, the cigenvalues of B’ are also the eigenvalues of A,

When to Accept a Subdiagonal Entry as Zero

A maior decision that we have to make during the iteration procedure is when to accept a
subdiagonal entry as zero so that the maltrix can be defllated

Accepl a subdiagonal eniry A; . to be zero if
fiiei] = w0l Qo]+ By imr D

where ol is n tolerunce greater than the unit round-ofT {Gotub and Van Loan (1996,
B, 3591,

Example 9.53. Consider

i 23

H=11 01

0 -2 2

Heration | fiay

i w1, 1867

2 0.3543

3 0.0129

4 0.0000
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The real Schur [orm is

—1.1663 —1.3326 -—2.053I
0 1.2384 1.6659 .
0 —1.9409 29279

The eigenvalues of the 2 x 2 right-hand lower corner submatrix are 2.0832 £ 1.5874{, M

Thus the eigenvalues of A are —1.1663, 2.0832 £ 1.5874

Example 9.54. Consider
0.2190 00756  (.6787 —-0.6391
e -0.9615 0.9032 -0.4571 0.8804
- 0 —0.3822  0.4526 —0.0641
¢ 0 —-{0.1069 —0.0252
Iteration Ity I3 a3
1 0.3860 | —0.5084 | —0.0064
2 —0.0672 | —0.3773 | 0.0001
3 0.0089 | —-0.3673 0
4 —~{.0011 | —{(.3590 i}
3 0.0001 | —0.3905 i}
The real Schur form is
1.4095  0.7632 —0.1996  (0.8394
H = 0.0001 [ 0.1922 0.5792 (0.0494
- 0 —(.3905 0.0243 | —0.4089
0 0 0 -0.0763

The eigenvalues of { %953 23752} are 0.1082 = 0.4681.
Thus, the eigenvalues ol H are 1.4095, 0.1082 4+ 0.4681f, and —0.0763. 1

Flop-count. Since the QR iteration method is an iterative method, it is hard to give an
exact flop-count for this method. However, empirical observations have established that
it takes about two QR iterations per eigenvalue. Thus, it will require about 1007 flops to
compute all the eigenvalues {(Golub and Van Loan (1996, p. 359)). [f the transforming
matrix Q and the final real Schur matrix T are also needed, then the cast will be about 251°

flops.

Round-off property. The OR iteration method is stable.  An analysis of the round-off
property of ihe algorithm shows that the computed real Schur form T is orthogonally similar
to a nearby matrix A + £. Specifically,

QTA+E)Q =T,

where Q7 Q = I and |[El|f < ¢(n)e|| Al r. Here ¢(n) is a slowly growing function of n.
The computed orthogonal matrix @ is also almost orthogonal.
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Balancing. Asin the process of solving a linear system problem, it is advisable to balance
the entries of the original mairix A, if they vary widely, before starting the QR ierations,

The balancing is equivalent to transforming the matrix A to D7PAD, where the
diagonal matrix 22 is chosen so that a norm of each row is approximarely equal to the norn
of the correspending cotunin,

In general, preprocessing the matrix by balancing improves the accaracy of the QR
iteration merhod, Note that no round-off error is involved in this compuiation and it takes
only O4n%) flops. The MATLAR command balance finds balancing of a matrix. For more
on this topic, see Parlett and Reinsch {1564),

9.8.7 The Real Schur Form and Invariant Subspaces

Definition 9,55, Let § be a subspace of the complex plane C*. Then § is be called an
IVEFRERE sEBspace {witlrrespedt to propudtiplication by A) ifx-e.§ implies thal Ax € 8.

Thus, since Ax = Ax forcach eigenvalue A, each eigenvecror is an invariant subspace
of dimension | associated with the carresponding eigenvalue.

The real Schur form of A displays information on the invariant subspaces as stated
beiow.

Basis of an Invariant Subspace from the Real Schur Form

Lot

Tam_ o { Bt Ko
Qr’iQ—R—(g Ray )

and let us assume that Ry and Ray do not have gigenvalues in common, Then the
first p eotumns of (), where p is the order of Ry, form a basis for the invarianz
subspace associoted with the eigenvalues of Ryy.

Ordering the eigenvalues. In muny upplications, such as in the sclution of algebraic
Rigeat equations {see Datta {20033, Patel, Laub, and Van Dooren (1994), Petkov et al,
(19917, and Van Dooren (19814, 1981h, 1991)), one needs to compute the orthonormal bases
of an invariant subspace associated with a selected number of eigenvalues. Unfortunately,
the real Schur form obrained by QR iteration may not give the eigenvalues in same desired
order. Thus, i the eigenvalues are aol in 2 desired oeder, one wonders if some extra work
can be done o brigg them into that order. That this can indeed be done is seen from the
following simiple discussion, Let 4 be 2 x 2.

Let
A‘ o
Q?"wi---(o‘ “L‘f); M

If Ay and A5 arc not in the right order, all we aeed o do 1o reverse the erder is to form a
Givens rolation J{1, 2, &) such tha

J(1,2,8) (MT%) = (5) ‘

A,

e
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Then @ = @, J(1,2,8)7 is such that
Tae (A2 T2
z AQ_(O PLI)'

Example 9.56.

—0.5257 0.8507 0.0000 4.2361

0 —1 4722
J(L2,9):(_1 0)' 1(1-2’9)(4.3722):(443 )

| ~0.5257 —0.8507 42361 0.001
= 9 T frassy T = -
0=2a:1/(1.2.6) (wo.ssm 0.5257 ) @ AQ (0.001 ~0.236l)' "

0.8507 0.5257 ~{.2361 0.0000
o= ). etaoi= )

The above simple process can be easily extended to achieve any desired ordering of
the eigenvalues in the real Schur form.

The process is quite inexpensive. It requires only k(§2#) flops, where & is the number
of interchanges required to achieve the desired order, For more on eigenvalue ordering or
ordering in real Schur form, see Bai and Demmel (1993h) and Bai and Stewart (1998). The
latter prevides a Fortran subroutine.

MATLAB Note: The MATLAB commands ordschur and ordeig are important in the
context of ordering the eigenvalue in several specilied regions or in some order.

(S, TS| = ordschur (I/, T, keyword),

where [/ and T are the matrices produced by the schur command and “keyword™ specifies
one of the following regions:

thp — left half plane

rhip —right half plane

udi —interior of the unit disk
udeo — exterior of the unit disk

9.9 Computing the Eigenvectors

9.9.1 The Hessenberg-Inverse lteration

As scon as an eigenvalue A is computed by QR iteration, we can invoke inverse iteration
{Algorithm 9.2} 1o compute the carresponding eigenvector. However, since A is initially
reduced to a Hessenberg matrix A for the QR iteration, it is natural to take advantage of
the structure of the Hessenberg matrix A in the solutions of the linear system that need
to be solved in the process of inverse iteration. Once an approximate eigenvector of the
Hessenberg matrix A s found, the corresponding eigenvector o A can be recovered by an
orthogonal matrix mutltiplication, as follows:

Let v be an cigenvector of H,andlet PP AP = H. Then Hy = Ay or PTAPy = Ay,
that is, APy = APy, showing that x = Py is an eigenvector of A.

Thus the Hessenberg-Inverse iteration can be stated as follows.
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ALGORITHM 9.8, The Hessenberg-Inverse [teration.

Inputs: (i) An » x » malrix A, (i} an ineger NV, maximum number of itera-
tions, (i) £, a tolerance, and {iv) an inilial approximate eigenvector ¥ of the
transformed Hessenberg matrix H.

Outpat: An approximate sigenvector x of A,

Step 1. Reduce the matrix A to an upper Hessenberg matrix H: PTAP = H.

Step 2. Compute an eigenvalue i, whose eigenvector x is sought, using the
imipiicit QR iteration.
Step 3. Apply the inverse iteration
York =1,2,...do
3 1. Solve the Hessenberg system (H — Af ):{"f e p-D),
3. 2~Normalize %1 —*.4“/ max(z¥y.
3.3, Swopif §§§h"“ —w¥ < ear ik > N.
End

Step 4. Recover the eigenvecior x:

x = Py

9.10 Review and Summary

This chapter has been devoted to the study of the cigenvalue problem, the problem of
computing the eigenvalues and eigenvectors of 2 matrix Ay = Ax.
Here are the highlights of the ehapter.

9.10.1 Applications of the Eigenvalues and Eigenvectors

The eigenvalue problem arises in a wide variety of practical applications. Mathematical
muodels of many of the problerms arising in engineeting applications are systems of differ-
ential and diffcrence equations, and the sigenvalue problem arises mainly in solutions and
analysis of stability of these equations. Maintaining the stability of asystem is a real concern
for engineers. For example, in the study of vibrations of structures, the sigenvalues and
eigenvectors are related 1o the natural frequencies and amplitude of the masses, and if any
of the natural frequencics becomes equal or close 1o a frequency of the imiposed periodic
force on the structure, resonance occurs. An engineer would like te avoid this situation. In
this chapter we have included examples on the European arms race, buckling of ¢ beam,
simufating transient current of an electric circuit, vibration of o buitding, and principal
component anafysis 1 statistics with a reference to a stock market analvsis. We have at-
tempted just 10 show how important the gigenvalue problem is in practical applications.
These examples are given in Section 9.2,

9.10.2 Localization of Eigenvalues

In seversl applications, explicit knowledge of the gigenvalues is not required; all that is
needed s a knowledge of the distribution of the eigenvalues in a region of the complex
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plane or estimates of some specific eigenvalues.

» The Gersgorin disk theorems (Theorems 9.6 and 9.9) can be used o obtain a region
of the complex plane containing all the eigenvalues or, in some cases, a number of
the eigenvalues in a region. The estimates are, however, very crude.

* Also, |A] < A|l (Theorem 9.11). This result says that the upper bound of any
eigenvaine of A can be found by computing its norn.

This result plays an important role in convergence analysis of iterative methods for
linear systems (Chapter 12).

9.10.3 The Power Method and the Inverse Iteration

There are applications such as analysis of dynamical systems, vibration analysis of struc-
tures, buckling of a beam, and principal component analysis in statistics, where only the
largest or the smallest (in magnitude) eigenvalue or only the first or last few eigenvalues
and their corresponding eigenvectors are needed.

The power method (Algorithm 9.1) and the inverse power method (Algorithm 9.2)
based on implicit construction of powers o A can be used to compute these eigenvalues
and the eigenvectors. The power method is extremely simple to implement and is suitable
for large and sparse matrices, but there are certain numerical limitations.

In practice, the power method should be used with a suitable shift. The inverse power
method is simply the power method applied to (A — o F)~', where o is a suitable shift,

It is widely used 10 compute an eigenvector when a reasonably good approximation
to an eigenvalue is known.

9.10.4 The Rayleigh Quotient lteration

The quotient
xTAx
xTx’

known as the Rayleigh quotient, gives an estimate of the eigenvalue X of a symmetric matrix
A for which x is the corresponding eigenvector.

This idea, when combined with the inverse iteration method (Algorithm 9.2), can be
used to compule an approximation to an eigenvalue and the corresponding eigenvector. The
process is known as the Rayleigh quotient iteration (Algorithm 9.3).

Rq =

9.10.5 Sensitivity of Eigenvalues and Eigenvectors

» The Bauer—Fike theorem (Theorem 9.37) tells us that if A is a diagonalizable matrix,
then the condition number of the transforming matrix X, Cond(X) = | X X"},
plays the role of the condition number of the eigenvalue problem. If this number is
large, then a small change in A can cause significant changes in the eigenvalues.
Since a symmetric matrix A can be ransformed inlo & diagonal matrix by orthogonal
similarity and the condition number of an orthogonal matrix {(with respect to the
2-norm}is 1, itimmediately follows from the Bauer—Fike theorem that the eigenvalies
of a synunetric matrix are insensitive to small perturbations.
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» Ifaneigenvaiue problem is ill-conditioned, then it might happen that some eigenvalues
are more sensitive thas others. T is thus tmportant 1o kapw the sensitivity of the
individual eigenvalues. Unforiunately, to measure the sensitivity of an individual
eigenvalue, one needs the knowledge of both [eftand right eigenvectors corresponding
tothat eigenvalue (Section 9.6.2). The condition number of the simple eigenvalue 4; is
the reciprocal of the number |y x|, where x; and y; are, respectively, the normalized
right and lefi gigenvectors comesponding to ;.

The sensitivity of an ¢igenvector x; corresponding to an eigenvaiue A, depends upon
{i) the condition number of all the eigenvalues other than Ay, and {i1) the distance of
Ag from the other etgenvalues (Theorem 9.41).

Thus, i the eigenvatues are well-separated and well-conditioned, then the eigen-
vectors are well-conditioned. On the other band, if there is a multiple eigenvalue or
there is an eigenvalue close to anpther cigenvalue, then there are some li-conditioned

“gigenvectors: - This-is-especially-significant -for a-symmetric matrix. The _gigenval.
tes of g swametric matrix are well-conditioned, but the eigenvectors can be quite
ifl-conditioned.

9.10.6 Eigenvalue Computation via the Characteristic Polynomial and
the Jordan Canonical Form

A similarity trunsformation preserves the eigenvaloes, and it is well known that a matrix A
can be transformed by similarity {Theorem 9.28) to the Jordan canonical form and to the
Frobenius form (or a companion form if A is nonderogatory). The cigenvalues of these
condensed forms are rather casily computed. The Jordan canonical form displays the eigen-
valoes explicitly, and with the companion or Frobenius form, the characteristic polynomial
of 4 is rivially computed and then a root-finding method can be applied to the characteristic
polynomial to obtain the eigenvalues, which are the zeros of the characteristic polynomial.

Heowever, compuration of eigenvalues via the characteristic polyromial or the Jordan
canonical form is not recopnnended in pracrice, Obtaining these forms may require a very
l-conditioned transfarming matrix, and the sensitivity of the eigenvalue problem depends
upon the condition number of this transforming matrix (Sections 9.5.2 and 9.6.1}.

In general, ili-conditioned similarity transformation should be avoided in eigenvalue
camputation. The use of well-vonditioned iransforming matrices, such as orthogonal ma-
trices, is necessary.

9.10.7 Hessenberg Transformation

An wrbitrary matrix A can always be wansformed to o Hessenberg matrdx by orthogonal
similarity transformation. Two numerically stable methods, Householder’s {Algorithm 9.3)
and Givens” moethods, are deseribed in Section 953,

9.10.8 The QR lteration Algorithm

The mogt widely used algorithm for finding the eigenvalues of a mairix is the QR iteration
atgorithm,
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For a real matrix A, the algorithm iteratively constructs the real Schur form of A
by orthagonal similarity. Since the algorithm is based on repeated QR faclorizations and
each QR factorization of an # X » full mateix requires O¢x*) flops, the » sleps of the QR
fteration algorithm, if implemented naively (which we call the basic QR frerarton), will
require O(n') flops. making the algorithm impractical,

« Mafrix A is, therefore, initally reduced to a Hessenbery matrix # by orthogonal
similarity belore the start of the QR iteration. The key ubservations here are (i} the
reduction of A to H has to be made once for all, and (ii) the Hessenberg form is
preserved at each iteration (Theorem 9.49),

+ The convergence ol the Hessepberg QR iteration algorithm, however, can be guite
slow in the presence of o near-muitiple or 2 muluple eigenvaloe. The convergence
can be accelersied by using suitable shifis,

In practice, double shifts are used. At each ileration, the shifts are the eigenvalues
of the 2 x 2 submatrix at the bottom right-hand corner. Since the eigenvalues of
a roal malrix can be complex, complex arithmetic is usually required. However,
computmions can be arranged so that complex arithmetic can be avoided. Also, the
gigenvalues of the 2 x 2 bottom right-hand corper matrix at each ireration do not
need ta be computed explicitly. The process is known as the double-shift implicit QR
iteration {Algorithm 9.7).

With double shifis, the eigenvalves are computed two ata time. Qacetwo cigenvalues
are eomnputed, the matrix is deflated. and the process is applied 1o the deflated matrix,

Fhe double-shift implicis QR ferarion is the most practical algorition for computing
the eigenvalues of a nonsvmmetric dense matriy of modest size.

9.10.9 Ordering the Eigenvalues

The eigeavatues appearing in real Schur form obtained by the QR iteration algorithm do not
appear in the desired order, although there are some applications which need this. However,
with a little extra work, the eigenvalues can be put in the desired order (Section 9.8.7).

9.10.10 Computing the Eigenvectors

Once an approximation to an eigenvalue is obtained for the QR Heration, inverse iteration
zan be nvoked W compute the comresponding eigenvector

Since the matrix 4 is inftiably reduced 1o a Hessenberg marrix for practical implemen-
tation of the QR iteration algorithm, advantage can be laken ol the structure of o Hessenberg
matrix i computing an eigenvector using inverse iteration {Algorithm 9.8},

9.11 Suggestions for Further Reading

Most books on vibration discuss eigenvalue problems arising in vibration of structures.
However, almost all eizenvalue problems here are generalized eigenvalue problems; as a
matter of fact, they sre symmetric definite problems (see Chapter 11).
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For references of well-known books on vibration, see Chapter 11, Those by Inman
{2006, 2007} and Thomson {1992) are, in pardcular, very uselul and important books in thiy
area.

For learning more about how the eigenvalue problem arises in other areas of engi-
neering, see the books on rumerical methods in engineering by Chapra and Canale (2002)
and (°Neil (1991}, referenced in Chapler 6. There are other engineering books (oo nu-
merous 1o st here), especially in the areas of electrical, mechanical, civil, and chemical
engingering, contzining discussions on eigenvalue problems in engineering. The real Schur
form of a matrix is an imporiant tool in namerically eflective solutions of many important
control problems, such as solutons of the Lyaponov, Sylvesier, and algebraic Riccats matrix
equations (sec Datta (2003},

For some generalizations of the GerSgorin disk theorems, see the paper by Brualdiand
Mellendor{ (19943, This papercontains results giving a rogion of the complex place for each
eigenvalue; fora fall deseription of the Gersgorindisk theorems and applications, see the book
.. by.Horn and Johnson (1983). The recent book by Varga (2004} has been devoted exclusively
1o the mbjacl For the Gar;uorm theorem For partitioned matrices, see Johnston (1971).

A nice description of stability theory in dynamic systems Is given in the classic book
by Luenberger (1979).

For more results on eigenvalue bounds and eigenvalue sensitivity, see Bhatia (2007},
Yaralh (19685, and Davis and Moler (1978).

For computation of the Jordan canonical form, see the papers by Golub and Wilkinson
(1976}, Kagstriim and Ruhe (1980a, 1980b), Demmel (1983}, and the recent work of Zeng
and Li (2008).

For computation of condition numbers and estimalors for etgenvalue problems, see
Bai et al, (1993} and Van Loan {1987).

Deseriptions of the standard echnigues for eigenvalue and ecigenvector computations,
including the power method, the mverse power mothod, the Rayleigh quotient ieration
method, and the QR iteration method, can be Found in all numerical linear algebra books:
iolub and Van Loan (1996}, Trefethen and Bao (19973, Demmel (1997}, Stewart 200113},
Watkins (2002), and Hager (1988). Sce also the papers by Dongarra et al, (1983, 1992) and
Parletl (1965, 1966, 1968).

The papers by Varah (19682, 1970) and Peters and Wilkinson (1979} are imporiant in
the conext of eigenvalue computation asd inverse ileration. See also an interesting paper
by Dhilon {1998) in this context.

Eigenvalue problems studied in this chapter concern computing the cigenvalues of
a matrix. On the other hand, inverse eigenvolue problems concern construeiing a matvix
from the knowledge of a parlial or complele set of eigenvalues and eigenvectors. Active
rescarch on this topic is currently being carried out. An authoritative account on inverse
cigenvalue problems can be found in the recent book by Chu and Golub (2005). Another
tmporiant book on this topic is Gladwell {2004). For an account of a special type of
inverse eigenvalue problem arising in control theory, usually known as pole-placement or
the eigenvalue assignment problem, see the book by Datta (2003, Chapters 1€ and 11}, See
also the thesis by Arneld £1992),

Hessenberg and real Schur matrices arise in a wide variety of applications.  For
their zpplications in conirol theory, sce the books by Danta (2003), Patel, Laub, and Van
Dooren (1994), and Petkov, Christov, and Konstantinov (19915, The book by Bhaya snd
Kaszkurewicz (2006} gives an account of control perspectives of numerical algorithms and
matrix problems,




Exercises on Chapter 9 341

Exercises on Chapter 9

(Use MATLAB, whenever needed and appropriate.)

EXERCISES ON SECTION 9.2

9.1 Consider the following model for the vertical vibration of a motor car:

(a)

(b

car body mass

ks I d- (tire) Y

Road

Show that the equation of motion of the car, neglecting the damping constants
d| of the shock absorber and d» of the tire, is given by

M3+ Ky=0

where M = diag(m,, m1), K = (_"r.ji ,\;’fi ). and y = (31}). Determine the

stability of motion when m = m, = 1200kg, k| = k2 = 3004
Show that the equation of motion when just the damping ¢ of the tire is neglected
can be written as

My+Dy+ Ky=0,

dy =iy
)y )

Investigate the stability of motion in this case when d) = 4500%.

where M and K are the same as in part (a), and D = (

Hints: Show that the system
My+Dy+Ky=10

is equivalent to the first-order sysiem x(t) = Ax(r), where

_ 0 I P a4 (3
A_(“‘“MVIK WM“ID)! Wllhl(r}w(y(f)).
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9.2 Write the sclution of the equation M¥ + Ky = 0 with the numerical values of M
and X as given in Exercise 9.1{a), using initial conditions »{0) = 0 and (0} =
1 P P L

2.3 Develop an sigenvalue problem for an LC network similar to the case study given in

Section 9.2.4, but with ealy three loops. Compute the natural {frequencies. Find the
mudes and illustrate how the currents oscillate in these modes,

EXERCISES ON SECTION 9.3

9.4 Apply the GerSporin disk theorems to obtain bounds for the eigenvalues of the fol-
lowing matrices:

w1 1 ¢ o
2002 10 16
2 -1 0 0 i -1 0 D
-1 2 =1 0 -1 2 -1 0
@1y S0 Wlo —1 2 -
c 0 -1 2 0 0 -1 2

{e} Arandomly generated matnix of order 4.

1= 0 i
{0 1 1 i
0 Pk 1 d

9.5 Using a Ger¥gorin disk theorem, prove that a siricly diagonally dominant matrix is
nonsingular.

9.6 Let x be an eigenvector corresponding o a distinct eigenvalue A in the Gerfgorin disk
Ry. Prove that |xe] > Ja| for i £k, where v = (X, £2...., X007 .

9.7 Let A = {g;;) be an » x » symimetric matrix. Then using a Gergorin disk theorem
s ¥ o =]
prove that each eigenvalue of A will lie in one of the intervals: [ay; — 7, a;; + 14

Find an interval where all the eigenvalues of A must lie,

EXERCISES ON SECTION 9.4

9.8 Applying the power method znd inverse power method, find the dominant eigenvalue
and the corresponding eigenvector for each of the matrices in Exercise 9.4,

9.9 Prove thal if Ay, ..., A, are the cigenvalues of 4 and v, ..., v, e the correspond-
ing cigenvectors, then Ay — e, ..., i, — @ are the cigenvalues of A — o/, and the
corresponding eigenvectors are g, ..., Uy
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.10

9.11

9.12

9.13

BExplain the slow rate of conversence of the power method with the following matrices:
3 0z 3 I 0 ¢

@y A=4310 29 1}, b} A=1}1 10 0O
g 0 1 It 4B

Choose a suitable shill o and then apply the shifled power method to each of the
matrices and observe the improvement of the rales of convergence.

{Orthogonat freration.) The following iterative procedure generslizes the power
method and 1s known as the orthogonal ireration process. The process can be used
wcompe z (p > 1) largest ergenvalues (in magnitede) and the corresponding
gigenveciors,

Let ¢y bean # x p orthonormal matrik:
Then

Fork=2,3,...do

{1) Compute By == AQ;.1.

{2) Factorize B into QR By = G Ry,
End

Apply the above method to compute the first two dominant cigenvalues and eigen-
vectors for each of the matrices in Exercise 9.4,

{Inverse arthogonal iteration.) The following teration, called the inverse arthogonal
freration, geaeratizes the inverse power method and can be used 1w compute the p
smallest eigenvalues (in magnitude),

Let £ be an #t x p orthonormal matrix.

Fork =2.3,,.. do
{1)Solve for By AB: = Qi
{23 Factorize inte QR B = 4Ry,
Hnd

Apply the inverse orthogonal iteration 1w compate the 2 smallest {least dominant)
elgenvalues of each of the matnces in Exercise 9.4,

Let T be a symumetric tricdiagonal matrix. Let the Rayleigh gquotient Heration be
applied to 7" with xg = #,, then prove that x; = g, where ¢, s the last column of @
n{T —agl) = OR.

Prove that for a symmeiric matrix A, the Rayleigh quotient ligs between the smallest
and the largest eigenvalues.

Compute the smallest eigenvalue of each of the matrices A in Exercizge 8.4 by applying
the power method 10 A™!, without explicitly computing A~
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EXERCISES ON SECTIONS 9.5

9.16 Develop an algorithm, based on the use of Givens rofations, to ransform a matrix 4
to an upper Hessenberg matnix.

9.17 Apply both the Householder and the Givens methods of reduction to the matrix

R R VI
0 1 00
A=10 0¢ 0 1 0O
00 0 a1
12 3 4 5

to reduce it to a Hessenberg matrix by similarity. Compare the resulis in the confext
of the implicit Q theorem (Theorem 9.34),

9.18 (a} Dev»lz}p an aim::-rfmm 0 1rdn§i'mra a a,} mmet{ ic marrix A ine a symmetnc

of thc symimetry of’ A

(b} Given the pair (A, &), develop an algonithm to compute an orthogonal matrix 2
such that P AP is an upper Hessenberg matrix # and £5 is a multiple of ¢,
What conditions guarantee that H is urreduced and b is a nonzero multiple of
¢y Construct an example to illustrate the algorithm with a matrix of order 4.

9.1%  (a) Show that it requires 3 D Nlops to compute the upper Hessenberg matrix #, us-
ing the Householder method of reduetion. (Hint: Y077 d(n—k)? +L""’ dnfr—
£) 2 40t 4 2t = 1)
(b} Show that if the ransforming matnix P is required explicitly, another %;53 fiaps
will be necded.
{c} Work out the corresponding flop-count for reduction (o Hessenberg form using
Givens rolations.
{d} If A is symmaetric, then show that the corresponding count in {a) is w.

9,20 (ay Given an uareduced upper Hessenberg matrix M, show that matrix X defined
by X = {g), Hey, ..., H' e is nonsingular and is such that X 'HXisa
companion matrix in opper Hessenbery form.

(b} What are the possible nunerical difficulties with the above computations?
{c) Cive an example ilustrating the numerfcal difficoltes.

9.21 (&) Provethat if R is upper triangular and @ is upper Hessenberg, then RO is upper
Hessenberg.
{b) Given an eigenpair (A, x) of an upper Hessenberg matrix #, develop an algo-
rithm using Givens rotalions (o compute an orthogonal matrix P such that

AoOox
r
P HP = ((}H)

where H is (n — 1) x {1 — 1} upper Hessenberg, How are Lhe cigenvalues of
H and # relaed? Consiruct a4 x 4 example to illusirate the algorithm,

{c} Prove that the eigenvalue problem of a reduced Hessenberg matrix ean be split
inig eigenvalue prablems of unreduced Hessenberg matrices.
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EXERCISES ON SECTIONS 9.6 and 9.7

9.22

9.23

9.24

9.25

9.26

9.27
9.28

Construct a simple example to show that an arbitrary similarity transformation can
worsen the conditioning of the eigenvalues ol the transformed matrix.

If B = U*AU, where U is unitary and U*(A + AA)U = B + AB, then show that
ABz = |AA|-z.

(1) Prove that A is normal if there exists an unitary matrix I/ such that U*AU = D,
where D is diagonal,

{b) Prove thal a mairix A has a set of # orthonormal eigenvectors if and only if A
is normal.

{c) Prove that a normal matrix A is unitary if and only if its eigenvalues are on the
unit circle; that is, for each eigenvalue 2 of A, we have |A] = 1.

(d} How does the real Schur form of a normal matrix look?

(e} Using the eigenvector-sensitivity theorem (Theorem 9.41), show that if A is
normal, then the eigenvector x; corresponding to the eigenvalue Xy is well-
conditioned if &; is well-separated from the other eigenvalues.

Explain both theoretically and experimentally that two of the eigenvectors of the
matrix

A =diag(l +€,1—¢€,2),
where € is a very small positive number, are ill-conditioned. However, the eigenvalues
are well-caonditioned.

Show that the unitary similarity transformation preserves the condition number of an
cigenvalue.

Prove the Bauer-Fike theorem using Ger8gorin’s firsi theorem,

(a) Given
1 1
A= (O 1+ E) !

find the eigenvector matrix X such that X' AX is diagonal; hence show that
the eigenvalues of A are ill-conditioned.

Verify the ill-conditioning of the eigenvalues of A computationally by con-
structing a small perturbation to A and finding the eigenvalues of the perturbed
malrix,

{b) Consider

12 11 10 2 1
11 10 21
0 10 2 !
A= L 2 I

0 0 0] 0 11 1
Show that the largest eigenvajues of A are well-conditioned while the smallest
ones are very ill-conditioned by computing the eigenvalues using MATLAB.
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EXERCISES ON SECTION 9.8

9.2% Apply 3 iterations of the single-shift QR #eration to each of the following matrices
and observe the convergence or noaconvergence of the subdiagonal entries:

1 20 4 5 6
(i) A={2 3 44. {iiy A=|)! 0 1
0 4 9 a -2 2
9.30 (Implicir single-shift QR.) Consider one step of the single-shift Hessenberg QR iter-
ation:
Hy k%1 = Oy Re, Hiwy = ReQp + 081
or {simply}

H—A=0QR H=RQ+rI, &isreal
gy Proverthar the first columa-of-@-is-a multiple of the first column of # — A7, and
therefore coniains only two nonzero entries.

{b) Denote the first column of & — 2 by iy = (hy — &, B2, 0,..., 00 . Finda
CGiivens rotaiion P such that Pyly s a multiple of e, Show that the first eoluma
ol Py is the same as the firsst column of @, except possibly for signs.

{c) Form H’ = P{;fH}’g. Find Givens rotations Jyo, faa, ..., Jea-1 such that
H = Ui oo Ty H Una ooy dret)
is upper Hessenberg, Show that the matrix
Q = PDJE?.' ey jn,nm!

has the same first colinmn as £y and hence the same frst column as Q. Conclude
finally from the implicit ( theorem {Theorem 9.34) that the Hessenberg matrix
H{ is essentiaffy the same as H.

Steps {2} o {c} constitte one step of the implicit single-shift Hessenberg QR Heration.
Apply one step of the Implicit single-shift QR iteration to the symmetric tridiagonal
matrix
2 =1 - 0
—~1 e ...
: - -1
0 ..o =1 2
9.31 Construct one step of the explicit double-shift QR iteration (real arithmetic) and one
step of the implieit double-shift QR iteration for the matrix

1 2 4 4
34 5 6
A=1o 1 o 1
00 -2 2

and show that the obtained Hessenberg matrices in both cases are (essemially) the
Same.
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9.32

9.33

9.34

9.35

9.36

(LR iteration.) In analogy with the QR iteration algorithm, develop an LR ileration
algorithm, based on LU decomposition ol 4, making the necessary assumplions.

(1) Set A=A,
(2) Compute Ay = Ly Ry, Agqq = ReLy, k=1,2, ...,

Why is this algorithm not to be preferred over the QR iteration algorithm?
Considering the structures of the matrices £, i = 0, 1....,n — 2. in the implicit

double-shift QR iteration step; show that it requires about 10n? flops to implement
this step.

Show that the matrices Fp and H, in the double-shift QR iteration have the same
eigenvalues.

Prove the following:
Let H = Hp be an upper Hessenberg matrix. Generate the sequence {H}:
Hy —ppkd = Qu Ry Hi = R Gy + i
Then
T (H =Dy = (1, ..., Qu)(Ru, ..., R

(Deflation using invariant subspace.) Suppose that we have an 1 x m matrix X with
independent columns and an nr x m matrix M such that

AX = XM.
Consider the QR factorization of X: Q7 X = (£). Then show that

. Al Al
T _ L 1.
(ﬂ) QAQ - ( 0 Aﬂ) 1
(b) the eigenvalues of A are those of A| and Aj;

{c) the eigenvalues of A, are those of M.

MATLAB and MATCOM Programs and Problems on Chapter 9

In Problems M9.1-MD9.3(a) (i) x, stands for the initial vector, (it) epsilon is the tolerance
for convergence, and (iii} nn is the order of matrix A.

M3.1 Write a MATLAB program to compute the dominant eigenvalue of a matrix using

the power method as follows:
[lambdal] = power(A, x0, epsilon, n).
(a) Modily the program power to incorporate a shill sigma:
[lambdal] = powershift(A, x0, sigma, epsilon, n}).

(b) Apply power and powershift to the following matrices and compare the speed
of convergence:
(i} A = arandomly generaled matrix of order 15,
{il} A = the Wilkinson bidiagonal matrix ol order 20,
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MO.2 Using givhs(A) from MATCOM and the MATLAD funciion hess(A) on each of the
two matrices from Problem M9.1, verily the implicit @ theorem {Theorem 9.34).

M9.3  {a) Write a MATLAB program called invitr (o implement the inverse ileration
algorithm {Algorithm 9.2} as [ollows:
x = mvitr( A x0,sigma.epsifon,n).
(b} Write a MATLAB program called powersmall to compute lambdan, the small-
est eigenvalue {in magnitude) of a matrix A;

lamixdan = powersmall{ A x{,epsilon,n).
Test data and experiment:

{2) Consider the symmetric tridiagonal matrix given in {9.5) of order 200 appearing
inthe buckling problem of Section 9.2.3. Apply power o compute the dominamt
-—-gigenvalue-lambdai by choosing xg arbiirarily. .

{h) Now compute the smallest eigenvalue in magm%&de Imnbdnn bv using
{iy powershift with sigma = lambdal;
(i) powersmall with the same xp as used (o implement power,
{¢} Corpare the Rop-count of (1) and {11} in {b).
()} Find the smallest critical load that will buckle the beam.

(e) Taking sigma = lambdan, find the eigenvector corresponding (o the smallest
eigenvalue A, using invitr,

MO.4 (The purpose of this exercise is to study how the eigenvalues of a mateix A are qffected
by canditioning af the transforming matriv.)

{a} For each of the following matrices, construct a matrix X of appropriaie order
which is upper triangular with ail the entries equal 1o | except Tor a few very
small diagonal entries. Then compute the eigenvalues of A and those of X1 AX
using MATLARB commands eig and inv:

{ty A = an upper triangular matrix of order 200 with soveral eigenvalues
clustered around 1.
(ii} A = the Wilkinsoa bidiagonal matnx of arder 20,

(b} Repoeat part (a) by taking X as 2 Householder matrix of appropriate order {nore.
this X Is orthoganal),

{c) Compare the results of {3} and {b),

M9.5 (2} Compute the eigenvaloes of the matrices in Exercise MY.4 using
{1y MATLAR commands poly and roots;
{it) MATLAB command eig.
(b} Compare your results of (1) and (il) for each marix,

MY.G (The purpose of this exercise is to study the sensizivities of the gigenvalues of some
well-xnown miatrices with ill-conditioned eigenvaiues.)
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Perform the lollowing on each of the matrices in the test data:

(a) Using the MATLAB command [V, D] = eig(A), find the eigenvalues and the
matrix of right eigenvectors. Then find the matrix of left eigenvectors W as
follows W = (inv(V))' /norm(inv{V)’).

(b} Compute s; = w]v;, i = 1,...,n, where w; and v; are the ith columns of W
and V.
{c} Compute c; =the condition number of the ith eigenvalue=1/5;,i = 1,2, ..., n.

(d) Perturb the (n, 1)th entry of A by € = 107'%, Then compute the eigenvalues
Aiy 0= 1,...,n, ol the perturbed matrix using the MATLAB command eig,
{e) Make the following table for each matrix.

A i IA; — A;] | Cond (V) c;

(F) Write your conclusions.

Test dara:

(1) A = the Wilkinson bidiagonal matrix of order 20.

(2) A = the transpose of the Wilkinson bidiagonal matrix of order 20.

3
12 1110 32
TR T 32 1
U R .
R
o0 0 - - - 11

M9.7 Study the sensitivities of the cigenvectors of the following matrices by actually com-
puting the the eigenvectors of the original and perturbed matrices using the MATLAB
command [V, D} = eig(A), [V, D] = eig(A), where A is the matrix obtained from
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A by perturbing the (s, D)th entry by ¢ = 10~%, 1077, and 107%:

Iy
I 0 0§ o
PR RO
o 0 0 2
o 0 0 00005

{2) A = diag(1, 0,999, 1, 0.9099, 1),
{3} Randomly generated matrices of order 23, 30, 40, and 30,

M9.8 Write a MATLAB program called qritrb to implement the basic (R iteration,

{a) {A} = qritrb{A, num). where num is the maximum number of iterations.

(b} BMadify the program now to implement the Hessenberg QR iteration [A] =
qritrh( A, num, where aum is the number of llerations

(6] Compare the iop-cotint in (&) aid By "
Use random matrices of order 50, 60, and 100,

MY.9 (The purpose of this exercise is 1o verify that explicic and implicit double-shift OR
fterations prodhice essentially the same Hessenberg matrix.)

{a) Write a MATLAR program to compute one step of the explicit double-shift QR
fteration: [A] = qritrdse{A}.

(b) Write a MATLAB program to compute one siep of the implicit QR iteration

with double shift: {A] = qritrdsi{A}.

(o) Compare vour results of (a] and (b) and conclude thai they are essentially the

same, using random matrices of order 10, 15, 20, and 5.

M9.18 Write a MATLAR program to deflate the last & rows and & columns of a Hessenborg
matrix in the following form: hprime = defiat(H, £).

Test your pragram with a randorly generated matrix with different values of £. Note
that for £ = 1, hprime will be of order 5 = |, for k = 2, hprime will be of order 2 — 2,
and so on.

M%.11 Using gritrdsi and deflat, write a MATLAB program to determine the real Schur
form of a Hessenberg matrix A 1n the following form:

[A] = vsf{}, eps),
where eps is the tolerance.

Test: Generale randomly 8 20 » 20 Hessenberg matrix and make the following table
using rsf.

Beration | hoy { B3z { B [ hsg 0 oo | o0t hn

Note: Some of the above programs arg available in MiATCGM.




Chapter 10

Numerical Symmetric
Eigenvalue Problem and
Singular Value Decomposition

Background Material Needed

= Basic properties of eigenvalues and eigenveciors {Theorem 2.7}
» Yeetor and mamrtx norms {Section 2.5)

« Singular value decomposition and its properties {Section 7.8}

10.1  Introduction

In this chapter, we mainly describe computational algorithms for two intimately relaled
problems: the svwenetric elgenvalue problem and singular value decompuosition (SVD),

The symmetric eigenvalue problem enjoys certain remarkable special properties,
and to exploit these properties, specialized methods have been developed. These in-
clude the tridiagonal QR iteration, bisection, divide-and-conguer, and Incobi methods {Sec-
tion 1,2.2-10.2.5). A brief description of these methods will be given here. In addition, a
briel review of the special propertics ol the symmetric cigenvalue problem will be presented
{Section 10.2.1).

The concept ol the SYD has been introduced in Chapter 7 and some properties have
been described there.

The SVIJ has a tong and fascinating history. The aames of at least five classical and
celebrated mathematicians—E. Beltrami (1835-1899), C. Jordan (1838-1922), T, Sylvester
{{B14~1897), E. Schmidt {1876~1959), and H. Wey] (1885~1955)—can be associated with
the development of the theory of the SVD. Some details of the contributions of these
mathematicians o the SVD cor be found in an interesting paper by Stewart {1993h). Also
the book by Horn and Johnson (1991) contains 2 nice history of the 8VD,

As we have already seen in Chapter 7, in recent years the SV has become a come
putationally viable ool for solving o wide variety of problems arising in many practical
applications,

In this chapter, we will give a formal proof of the SVD theorem (Theorem 10.8).
There are several proofs of the SVD theorem available in the literature: see Golub and Van
Loan €1996, p. 70) and Horn and Johnson (1991}, Sce also Pan and Sigmon {1994}, We
will, however, give a more traditional and constructive proof that exdhiibits the relationship

EEY
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between the singular vahies and singutar vectors of A with the eigenvalues and eigenveciors -
af AT A,

We will ulso discuss the sensilivity of the singular values (Section 10.3.2). The
singular values are insensitive to perfurbations, and this is remarkable, '

Finally, we describe the popular Golub-Kahan—Reinsch algorithm (Section 10.3.6) ¢
and one of its variants, called the Chan—Lawsen—Hansan algorithm (Section 10.3.7) for |
computing the 8VD.

10.2 Computational Methods for the Symmetric
Eigenvalue Problem

In this section, we will first describe some special properties of the symmetric cigenvalue
problem which have been exploited in development of several special algorithms for the

» 'The bisection method (Algorithm 10.1},

» The symmetric QR tteration algorithm (Algorithm (0.2}
= The divide-and-conguer method (Algorithm 10.3).

* The Jacoht method (Section 10.2.5)

Except for the facobd methad, all the other ones compute the eigenvalues by first transform-
intg the symmetric matrix & into the symmetric tridiagonal form.

I the eigenvectors are desired, the inverse iteration method (Algorithm 9.8} has to
be inveked by replucing the Hessenberg moatrix with the symmetric tridiagonal matrix 7.

10.2.1 Some Special Properties of the Symmetric Eigenvalue Problem

A. The renl Schur form of a real sypimerric matrix is a diagonal marriy, That Is, there
exists an orthogonal matrix ¢ such that

OTAQ = D = diag(hy, ... he)s
where &, 0 = 1, ..., 5, are the eigenvalues of A,

B. The eigenvalues of a symmetric matriv are real and the eigenveciors can be chosen
to be prthogonal.

C. Minimax characterization {Cowrant' —=Fischer minimax theorem), Lot &) = ko =
- > A, be the eigenvalues of a symmetric matrix A, Then

. TAx
A T min max et
5 efxed Xl Y

{101

Pichard Courant (18881972 was born in Lublinitz, Cermany {aow Lubliniec, Polasd). He studied un-
der such celebrated mathematicians as Hilhert and Minkowski and obtained his doctorate from {ttingen, Ger-
maty. in 1910 under Hilbert's supervision. One of the most [amous mathematical contributions of Courant is
the finie elemens mathod, He served as Prefessor of Mathemstics al Now York University from 1936 o 1972,
The present Courant Insiitute of Mathematicad Selences st New York Univorsity wis named after him in 1984,
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where Lhe minimum is taken aver all subspaces of dimension {n — 7 + 1) and the
maximum is taken over all nonzero vectors in the subspace 5. In particular,
xTAx . CxTAx
and A, = Amgs = mi0
w20 xTy

Ap = Ay == X
£

10.2
#{) .I'TI {0 )

Proof. See Goluh and Van Loan (1996, p. 394). [

D, General perturbation property. Let A be an » s n real symmetric mairix, Let
A = A+ E. where E is a real symmetric perturbation of the matrix 4, and let

Moz Ay ooom Acand A 2 A 2 .. 3 A7 be the eigenvalues of 4 and A’
respectively. Then it follows from the Baver—Fike theorem {Theorem 9.37) that
b BEl s A =k + [E, =120 (10.3)

“This result is remarkable. I says that the eigenvalnes of a real symmerric marrix are

well-conditioned, that is, small changes in the elements of A can cause only small
changes in the eigenvalues of A. Specifically, 1t says that the eigenvalues of the
pertirbed matrix A’ cannot differ from the eigenvaiues of the origingd matriv A by
more than the largest eigenvalne of the perturbed matrix E. (Sce also the corollary
of the Bauer~Fike theorem given in Section 9.7.2.)

Example HL1.

3
41, E =107 % [,
6

The eigenvalues ol A are —0.4203, 0.2336, and 10.1867, The eigenvalugs of A + £
are --0,4203, 0.2337, and 10,1868, Note that || Ell» = 1074 R

A=

ol
A b N3

3

E. Rank-one perturbation praperty. In this section we slate a theorem that shows how
the eigenvalues are shifted if £ is a rank-one perturbation mairix. The result plays an
importani role in the divide-and-conguer algorither (Dongarrs and Sorensen (1987))
for the symmetric cigenvalue problem, to be discussed in Section 10.2.4.

Eigenvalues of a Rank-One Perturbed Matrix

Theorem 10.2. Suppose B = A-+abb? | where A isan n xon svmmetric matris, a is a scalar,
and b is an n-vector, Let hy = by = - = A, be the eigenvalues of Aand 2\ = - = &)
be the eigenvalues of . Then

Ae Akl =208 Ha=

4

AoE e Ml E=1.000 -1, i#f o<

H

{14.4)

Proaf. See Wilkirsan (1963, pp. 97-98). [
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Example 1.3,

1 2 3
A=12 4 5}, a=-1, b=(L2.3.
3 5 &
The gigenvalues of B are A = —3 3028, Ajwi} A} = 03028, The eigenvaloes of

Aare Ay = —0.5137, Ay = 0. 3?09 Ay == 11,3448, 1t is easily verified that Ay < Ko<y
andiy < Ay < iz, W

10.2.2 The Bisection Method for the Symmetric Tridiagonal Matrix

In this section we describe a method for finding the eigenvalues of a symmetric mateix,
The method is particularly useful if eigenvalues are required in an interval. o principle,
hewever, il can be used to find all ugem’alaﬁ%

First, the symmetric matrix A is itansformed 1618 4 qymmatz‘zc 1diggonal -matrix-T
using Householder’s method described in Chapter ¥, that is, an orihogonal malrix £ is

constructed such that

(&'1 B \
B o B O

PAPT =T = R . (10.5)

O ,811%3 -l ﬁf%mi
lﬂ!t--] oy )

A three-term recursion. Let p;(&) dencte the characteristic polynomial of the { x {
principal submatrix of T'. Then these polynomials satisfy a three-term recursion:

pilhy = (o = R pioi () = B pra(d), i=23, .. n, {i0.6)
with
pa(d) =1 and py(R) = o — A,
Without loss of generality, we may assume that £ 20, /=1,2,....n — ]. Rucall

that mawix T with this property is called vareduced. If o subdiagonal enry of T is zero,
then T becomes a block disgoral matrix and s eigenproblem can thus be reduced to that
of its submatrices. The eigenvalues af an unreduced symmetric tridiagonal mairix T are aff
real and distinct. Since the characteristic polynomial P, (1) of T can be easily computed, an
irnmediale idea that comes in one’s mind is o apply the well-known bisection. method for
root-finding to P, (1) o locate an eigenvalue. This will be in contradiction-{o the warning
that we zave in Section 9.5.5 that the eigenvalues should not be computed by finding the
zeros of the characteristic polynomial. The difference here, however, is that the coefficients
of the characterisiic polveomial do nor have ro be explicitly computed; all that is nesded
is fo deterinine the signs of pi(X), i = 1,..., #, for a given nymber . This 1s possible
by exploiting some additional remarkable spectral properties of the symmetric tridiagonal
matrix 7. 45 given in the following theorem.
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Theorem 10.4 {interlacing property). Ler T be an nareduced svometric widiagonal
matriv. Ler the eigenvalues of the kth leading principal minor T of T be denored by
A« )f;j e }.ﬁf'). Then

AT Y p=2 - i=n2 k-1 (10D

As illustrarion: Suppose T s a4 x 4 gonreduced symmetric tridingonal matrix. Then
T has just one eigenvaiue, 217 7 has two, 137, 25" T has three, 217, 257, and 257
and T = 7 has four, /1(:], A':;}, }Lé’é}, ,l.ﬁ:n_ Figure 10.]1 shows how the interlacing of these
cigenvalues will then look ke

FALHPA o Real Line
A
{ B 4@ ;

T 4 A ¢ Real Line

h! (2 )

1 z

» {33 -
73 30 A A % 3¢ s Real Line
’ » 43 PRsH 5 (3)
Ay Ag Ay
T AW A G x. X s RealLine
4 f { i
A ) A3 A

Figure 1.1, The inrerlacing property,

The above resuits lead 1o the following remarkable property of the polynomials g (A).
Theorem 10.5. The namber of sign agreements hetween the consecwive terms of the
sequence of polynonidais  po{p ). oy (1) .. palped) equals the nmber of eigenvalnes of T,
which are strictly greater than [,

Proof. See Wilkinson (1965, pp. 3006-301). O

Note: The sequence {p; (1} might contain zeros. Tn this case the convention is that
P {p) has the opposite sign of e (o) 3 )y =0

Example 10.6. Let

i
)
!

T =

o — b
| S IR

The characteristic polynominls {p; (1)} are

Py =1 p(AM =2 pa(d) = {22 —1;
paii) s (2= A pald) — prlig = (2 2) — 22— A
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Let g = 0. Then the sequence {po. gy (), palee), paadas (1, 2, 3, 41, There are -
threc agreements Io sign. Thas all the eigenvalues of T are greater than or equal o zern, In
fact, since py{0} = 4 £ G, it follows that all the eigenvalues of T are positive.

Let i = 2. Then the sequence {palied, p(pd, padued, pa(ud is (1,0, -1, 0}, The
signs here are 4+~ — <. There is only one agreement in sigo confirming that T has one
gigenvalue greater than 2.

Verife: The eigenvalues of T are (2,2 4+ 2,2~ 2}, K

Bisection idea. Theoretn [0.9 makes it possible to use the well-known bisection algo-
rithm 10 locate a zerp of the characteristic polynomial p.(4) or, 11 other words, a specific
eigenvalue of A,

ALGORITHM 10.1. The Bisection Algorithm for the Symmetric Eigenvalue
P Prob!em,.._m.,m. S e e PR -

Inputs: Ann x » symmetric tridiagonal matrix T, an integer mr < a1, and
Output: ﬁé;; {gi}prsximatiun o the eigenvalue A, _ 41, assuming that 4, <«
Ay e« g
Step 1. Find aninterval {#(, 571 containing Aye1. Since 4, < || 77, initially,
wecantake sy = — | Tha, 52 = 1T oo
8+ 5
2
Step 3. Compuie N{s51) = the number of agreernents in sign in the sequence
{1, pitsa), palsa), .o pasad b
H AN (51} < m, set 5y = 5y, otherwise, set 5 = 53.

Step 2. Compule 53 =

545

= p% an appros-

Step 4. Test whether 15y — 511 = €. 150, aceepl 5y =
imate value of A, .01 Dtherwise zo to Step 2,

51)

Note: After k steps, the desired zero is locared in an interval of width £

Example 10,7, Consider the matrix 7 in Example 10.6, Suppose we wanl o approximate
A= 2 — /2 Thenw = 3.

Tteration &. Initially, sy = —4, 53 =4, 53 =0 Niss) = N = 3. Set 5 = 5.
Heratien 1. 51 =0, 524, 5y = %w =2, Nis) = N(2) =2 = 3. Set 57 w33
Tteration 2. 5, = 0, 5, =2, 53 = 2 = |, N{5; =2 < 3. Set 57 = 51.

Meration 3 5, = 0, & = 1, & xO.S; Niss) = 3 Bet s = 51,

The eigenvalue & is clearly in the interval [0.5, 1}, which is, in facl, the case. We can
continue our iterations until the fength of the interval |53 — 5] <e. A
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Flop-count and stability. Once A is transformed into T, it requires about &) flops for
evaluation of the sequence {p; (1)}, Thus to find k eigenvalues, only O(kn) flops will be
needed. A remarkable fact is that absolute errors in the computed eigenvalues are small;
but the relative errors in the small eigenvalues may be large. 1f eigenvectors are desired,
inverse iteration can be invoked. Computing one eigenvector then requires only O(n)
Aops, since an n % n tridiagonal system can be solved using O(n) flops (Chapter 6). Thus
in principle, all the eigenvalues and eigenvectors can be computed in O (n?) flops by this
method, once the symmetric matrix A has been transformed to the synimetric tridiagonal
matrix T. However, the method is best used to find a selected number of eigenvalues, the
eigenvalues in an interval or a prescribed number of eigenvalues 1o rhe left or right of a
given eigenvalue.

10.2.3 The Symmetric QR lteration Method

To apply the QR iteration methed of Chapter 9 to a symmetric tridiagonal matrix, we note
that if the starting matrix is a symunetric tridiagonal matrix T, then so is each matrix Ty in
the sequence

Te = pud = Ok Ry,

and, furthermore, we need only O (1) flops (o generale each T, (note that the QR lactorization
of a symmetric tridiagonal matrix requires only O (n) flops). Thus, the tridiagonal symmetric
QR iteration is an O (n?) algorithm.

Also, since the eigenvalues of a symmeltric matrix are all real and the real Schur
form of a symmetric matrix is a diagonal rather than a triangular matrix, the double-shift
strategy discussed for the general eigenvalue problem in Chapter 9 is not needed in this
case. However, in this case a popular shift, known as the Wilkinson shift, defined below, is
normally used.

Instead of taking the (2, n)th entry al every ileration as the shift, the eigenvalue of the
trailing 2 = 2 matrix that is closer 10 the (1, n)th entry is usually chosen as the shift. This
is known as the Wilkinson shift. Thus i a trailing 2 x 2 submatrix of 7} is given by

IU\') (3]
r:rl).n—l n.nk—l
- k) !
rM.nwl I‘Jm
then the Wilkinson shifi is
k (k) !
o=t +r —sign(r),/rt + (IMWI) , (10.8)
where
[£3)] k)
- Un-—],n—uqi — ) (10.9)

Remark. It is possible to compute T;4) from 7, without explicitly forming the maltrix
T, — ppf. This is known as the implicit symmetric QR algorithm. For details, see Golub
and Van Loan (1996, pp. 420-421). See also Exercise 9.30 in Chapter 9.
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ALGORITHM 14,2, Symmetric R Tteration with the Wilkinson Shift.
Input: A symmetric matrix A,
Output: The approximale eigenvalues of 4,

Phase L Transform A into a symmetric tridisgonal matrix 7 using orthogonal
similarily transformations:
PAPT =T.

Phase 1L Apply single-shift OR iteration wo T with the Wilkinson shiff

Set ' =T
Fork = 1,2, ... dountil convergence

Find a real shift u
ke o=l = Ok Ry (shiifted OR factorization). 0
2. Tioy = Ry @ =+ ud (reverse multiplication with shifi added ).
End

Convergence of the Symmetric QR lteration with the Wilkinson Shift

The QR algorithm with the Wilkinson shifl always converges. The rate of convergence is

cubic for most matrices; in the worst case it is at least quadratic.

Flap-count.

* Transformation to T: 3n°,

» Eigenvalue computations: O(n®). {Note that the QR factorization of a ridiagonal

matrix requires only G(i) flops (Chapter 63).

+ All the cigenvectors of 7 alittle over 617 on average.

Round-off error property.  As in the general nonsymmetric case, the symntetric QR with
implicit shift is stable. It can be shown that, given a symmelric matrix A, the symmetric
(2R algorithm with implicit shift generates an orthogonal matrix @ and a diagonal matrix 2

such that
QTAQ =D+ E,
where
FENF = i @plm)iAllr.

@(n} is a siowly growing function of .
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Accuracy of the computed eigenvalues. Each computed cigenvalue A; satisfies Lhe
inequality

i — dil < @Ol Alla.

Thus, the absolute error in each computed eigenvalue is small.

10.2.4 The Divide-and-Conquer Method

As the title suggests, this method is based on the divide-and-conquer principle. The al-
gorithm first divides a given syminetric tridiagonal eigenvalue problent into two smaller
subproblems, and then combines the solutions of the subproblems to recover (conquer) the
solution of the original problem. The method was originally suggested by Cuppen (1981).

The method can be used 1o compute all the eigenvalues and the corresponding eigen-
vectors of a symmetric matrix, and it is faster than the symmetric QR iteration method just
described. We present here a very brief sketch ol the methed.

Suppose that the symmetric matrix A has been transformed (o a symmetric ridiagonal
matrix T by an orthogonal similarity. Let

4] b] D
r=| & , (10.10)
bu—l
0 bnml y
Define
[45] b] 0
=5 " , (10.11)
. €y By
0 bk_[ iayr — bk
gt — by by G
n=| & R . (10.12)
bn—l
0 b.u——l dy
Then
T = ( 13 791 )-}-bkuur,
where
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Sigge 7y and 75 are symmetric tridiagonal, we can find orthogonal matrices £ and
{J4 such that

T = g5 Q'{ and  Th o= Qzﬁggg, where [ and D are disgonal matrices.

, i
= (8 a8 o) e ](T r)

Then

whaore

Therefore, the migenvalues of 7 are the same as those of

D= Db =D ¥ pun’, oy

(/D D
(% )

and p = by We thereforg concentrate now on how 1o obtain the eigenvalues and eigenvec-
tors of the rank-one perturbed diagonal matrix D= D4 puu’,

Assume withouws any loss of generality that il = | and p = by #£ 0. Let D =
diag (d). dy, ..., dy). Assume that ) < dy < dy = --- = d, and none of the components
of the vector u is zero.

In fact, a zero component of u is a blessing in disgnize. We can show (Exercise 16.7)
that, in this case, we get an eigenvalue and eigenvector pair free. Also, i £ eigenvalues
of D are equal, then the problem can be deflated by deleting (& ~ 1) rows and columns
{Bxercise 0.8

Let (A, g) be an eigenpair of D, Then we show that

where I is given by

{1} A s aroot of the cquation

L pu (D = A =0 {01

and

(i) )
g=(D—ay"u S {ID.15)

is an eigenvector of (£ + puu’ ) corresponding (o A.

To show (3}, we note that since {4, g} is an eigenpair of B we must have

(D 4+ pun’yqg = g lorsome g 5 0,
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that is, -
(D —dlyg = —p(’ gdu.

Now our ussumptions that p # 0, that dy < ds < d5 < .- = &, and that none of
the compenents of # is zero imply that (a) (D — A7) is noasingular, and {b) f{’v:}' is nonzerc
{Exercise 10.10L

Multiplying by (8 — 21" we have

g=—ple @)D - rPy . (116}

Multiptying both sides of (10,16) by &7 and dividing by the nonzero scalar u” g, we
have ,

Pk pa’ (D = 27 = 0. (10.17}

To show (i), we note that

(D e prt YD = A == (D A+ AL+ pund WD = 2D
=4 MD = A g upuT (D - 207
= a4 MDD =M+ u{~1) (using 10.14)
mu A AD =AY = o= D~

Locating the roots of (10.14). Note that
l+ou’ (D=2 u=0
can be written in terms of the components #; of u as follows:

- LIS
Ay =1 DAy = e = . 10,18
Fy =1 pr’( ) u ~§*9§dj__k (10.18}

This equation is usually known as the secular eqaation.

Again, because ;s are o} distinet and none of the components of 1 is zero, we can
show {Exercises 10.11) that F{3) = 0 has preciscly # roots, one in each of the intervals
{didpit, i =1,2,..., 0~ 1, and one o the right of 4, if p > Uorone to the teft of o if
n < -

Forexample ifp = (0.7,08,09. )7, o = %, and D = diag(], 2, 3, 4), the graph of
the secular equation will look like the graph in Figure 10.2,

s
o
&y

Figure 10.2. An iHustrarive graph of the secular equation.
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Obtaining the eigenvalues and eigenvectors. Koowing that the roots of f(3) = 0
are focated in such specified intervals, we can then apply the bisection method or Newion's
mcthod to find these roots in each of these intervals. Onee d root is found, the corresponding
eigenvector can be obtained from ¢10.15),

How exf er, a more stable way of computing an eigenvector ¢ is as follows {(see Demmel
{1997, pp. 224-2253)

letd, €« iy <o «::d,-M < Ay dy < Ay,

« Compute the {th component «; as
!

Mg —d 2
|a,-|m{mu w1 “d'}} X (10.19)

i= l;*&r

...+ Compute the eigenvectars of £ + wa’ _using {10L15)

ALgorrmaM 10.3. Divide-and-Conquer Method,

Input: A symmetric widiagonal matrix T as given in (10.10).
Qutput: Approximate eigenvalues and eigenvectors of T

7 E( :gl },{i )*’:‘ l'),v;UUT;

where T, and 75 are as given by (10 and (10,12}

Step 2. Find orthogonal maerices J; and 1 such thai Q‘r?"; ¢y = Dy and
Qz 7307 = D;, where Dy and D; are diagonal matrices,

Step 3. Form D = diag(D,, ) = diag(d, .. .d,) and & = diag(Q7, 07 )v.

Step 1. Form

Step 4. Find the eigeavalues of 7 by scﬁviﬂg the secular equation {10.18},
ul

Flry = ’““’Z;}TI“G’

and obtain the eigenveciors of [ + pm;»'r from (10,13) with v computed by
{10194

Step 5. Recover the sigenvectors of T B @' is the eigenvector matrix of 7 +
pun’ | then the cigenvector matrix of 7 is given by

(5 a)e

Flop-count. Assuming that one Newton iieration step costs about O(n} flops, the algo-
rithar witl require only O3 flops for all the n eigenvalues. The cost of compuling each
gigenvector from a computed sigenvalue is also O(n) Bops,
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Remarks. {i} Bunch, Nielsen, and Sorensen {1978) proposed a method forsolving f(i} =0
using rational function approximations. Their methed converges quadratically. For more
on this method and implementational details, see Bunch, Nielsen, and Sorensen (1978),
Dongarra and Sorensen (1987), and Sorensen and Tang {1991},

(11} The divide-and-conguer method is naturally parallel,

Note that, because Ty and T3 are both symmelric tridiagonal, the gigenvalue problem
{or each ol these matrices can further be decomposed into two subproblems, resulting in four
subprobtems, These four subproblems again canbe decomposed into eight smsller problems
and the process can be continued for as long as desired {possibly until the problem sizes
become 1% 1 or 2 x 2). Since each of these subproblems is independent, the original
problem can be divided into many independent subproblems. See Dongarra and Sorensen
{1987 for parallel implementational aspects of this methed, In fact, the divide-and-conguer
algorithm was originally targeted as g paraliel scheme, but i tarns out 1o be faster than the
symmatric QR algornithm if properly Implemenied (see Gu and Eisensiat (1993a3),

10.2.5 The Jacobi Method

Oae of the classical methods for computing the eigenvalues of & symmetric matrix 1s the
method intreduced by €], Jacobi'® in 1846. Since asymmelric matrix 4 canbe diaponalized
by orthogonal similarity, the idea is to create onthogonal matrices Jo. J\, .. ., Jp.g such that
the sequence {Ag} defined by Ap = A,

Aps=d Ac 0T k=12, ..,

approaches o dhagonal mairix for large &,

I Jacobi’s method, the orthogonal mratrices are nothing but Givens rotations: but they
were originally invested by Jacobi, These matrices are created successively 1o make one
pair of off-diagonal enirdes zeros, one pair 2l a time. Recall from Chapter 7 that cach of
these rotations s uniquely determined by two numbers, ¢ and 5. Formulas for ¢ = cos8
and ¥ == sin & used for QR foctorization in Chapter 7 have 1o be modified here,

It can be easily verified that {4, Jland {J, D entriesof the malrix 4,4 = }fﬁr J, can
be made zeros simutaneously ia the Jacobi method: iF A, = (zzg} 3. then this will huppen
H 4, f o, 8) s constructed with ¢ and v defined by

i
o — § =i,
V141
where
. (r) )
- sign(t) S mag;
]+ +/1-7%) 20!

if
Unformnately, the ceros created at air earlier step get destroyed by subsequent sieps.

However, as In the QR fteration algorithm for eigenvalue compurations. the nonzero eniries
decreases steadily as the iteration proceeds.

*Car! Jakob Jacobi (18041851 was & German mathematician. He wrote the classic treatise on effiptic
Jarctions, studied Jacold theis fnctions, proved Fermats polygonal manber twprem, put the determinan
in its modern form, found the Jocodd inregral, and did much to develop the Hamilton-Jncobi theory



364 Chapter 10, Symmetric Eigenvalue Problem and SVD

Choosing the off-diagonal entries for zeroing. [n the classical Jacobi scheme, the
indices { and j are chosen so that the entry a5 is the largest off-diagonal entry in magnitude
at each step.

lican be shown (Exercise 10.12) that the sum of the squares of the ofl-dingonal eniries,
denoted by oif 3 (A),

4 H

off {(AY = Y Y af.
TG

decreases at least by the factor | — al each step; that is,

zz{zz Ly
off2(A) = ) <€ e off *(A}
Tt -1 ’

Thus the classical Jacobi scheme converges at least linearly; in practice the conver-
gence is aornally quadratic. Note that !mpéemmiazmn of the scheme involves an O{n")
“search for the lurgesteniry at each step. E - .

In practice, a scheme called the evelic Jacobi sa.hemf: is usad in whlsh t§3c oi [ld:ag{mal
entries ure annihilated in the rowwise order {1, 2}, (1,3, ..., (3,a); (2,3), (2.4, ...,
{2, 1}; and so0 on.

This scheme is faster since it does not require off-diagonal search, and is more accurate,
The rate of convergence is alse wltimatety quadratic {Wilkinson {1963, p. 270)). The details
can be found in Demmel (1997), Golub and Van Loan (1996), and Parlett (1998},

10.2.6 Comparison of the Symmetric Eigenvalue Methods

« Tridiagonal QR iteration. The QR iteration algorithm applied to an 2 x 2 symmetric
tridiagonal matrix requires only O (n”) flops to compute all the eigenvalues. However,
finding all the eigenvectors requires another 6n° fops approximately.

* Divide-ond-conquer method. Like the QR iteration algorithen, the divide-and-
conguer algorithm also requires about @(n?) Rops o compute all the eigenvalues
of & symmaetric tridisgonal matrix.

Hopwever, if all the eigenvectors are also desired, this algorithm is more efficient than
the QR lteration because il can be shows that the flop-count for all cigenveciors is
about = 4" . compared to 61" needed by the QR iteration algorithm. There are several
other &i&&,r implemeniations of this popular algorithm (see Demmel (1997) and Gu
and Eisenstal (19954} for details).

+ Bisection method. This method needs only OQ(rk&) flops if k number of eigenvalues
are required. 1l the eigenvalues are well-separated, the cost of computing the gigen-
vectors via inverse ieration is also O (&), Thus, in principic it takes only O (% flops
to compute all the eigenvalues and eigenveciors of a symmetric tridiagonal matrix,
making the method much faster than both the QR and divide-and-conquer methods,
In the worst case, when several eigenvalues are clustered togethes, the cost becomes
0(n*) for inverse iteration, and, furthermore, the accuracy of the computed eigen-
vectors is not puaranieed. However, there has been some progress in obtaining the
eigenvectors mare accurately with not much more than O () Oops per eigenvector
{Demmel (19973,
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The method is best if only a few eigenvalues or those in an interval are desired.

+ The Jacebi method. The method also requires G {a) Hops to compute all the eigen-
values and eigeavectors of a symmefric matrix A {(note that the method does not
require indiagonalizationy. However, & is i1 geseral much slower tion the other
methods. The method sometimes, however, computes the gigenvalues with a relative
High accuracy.

Conclusion:

* The divide-and-conquer method is the fastest algorithm for symmetric matrices if all
the eigenvalues and eigenvectors are desired.

« The symmetric QR algorithm with the Wilkinson shift is the Tastest practical algorithm
for finding all the eigenvalues of small-order symmaetric matrices,

= The bisection methed may be used 1o compute a small number of eigenvaloes of @
symmelric matrix or 2 number of eigenvalues in # specified interval.

10.3 The Singular Value Decomposition and Its
Computation

We remind the reader of the statement of the SVD Ltheorem from Chapier 7.

Theorem 10.8 (SVD theorem).  Let A € B™*". Then there exist orthogonal matrices
U e B and V e B such that

A=UsvT, (10.2(0

where X iy an m % n Vdingonal” marrix, The diagonal entries of T are all nonnegarive
and can be arranged in nonincreasing order,

Proof. Denote the eigenvalues of the symmetric positive semidefinite matrix A7 A, which
are nonnegative, by Ay = crf_. Aq mm 0’22, .oy Aq = o and the corresponding eigenvectors
byiy,....ve. Letoy 2m 2 2o »0andoy =0, =0 8el V) ={v, 1, ..., 1}
V== {peey ...y ), and Vo= (¥, Vo) Then V is an n x 1 orthogonal matreix. Also, since
[vi, vz, ..., v} forms an orthonormal set of eigenvectors ol A7 A, we have

v/ ATAY =0 and ol ATAv, =0, i#] {10213

Define now a set of vectors {ir;] by

i
M= — Ay, Psm b, {1022
i
The t;’s. [ =1, .. ..r. then form an orthonormal set, because

‘ i 1 ] - NEg § A 7
afuy = — (A" —(Avg) = ——] AT A = O wheni#Jj, (10.23)
f J {

o0 1 wheni = j.

Set Uy = {ay, ..., 1.}, and choose U = (1,4, ..., 1) such that :rfﬁ =1{, j=

robo 1o my Thes the set fuy, .., 8, 8,0ty )} forms an orthonormal basis of the
m-space O
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Now set U = (L5, Uy). Then I7 and V are orthonormal, and using {10.223, we obtain

2.7 ar
nr{t}l"l‘i

i i

- :
A= LTAT A ) (10.24)

o
~
%
e
]
!

fi

n

(10.25)
5o 0 0 0 0
Rt e o -
=l 6 . Lt g .. pf=T (sinz(to2). D
G 0 o
1] 0

10.3.1 The Relationship between the Singular Values and the
Eigenvalues

The abave prool of the SVD theorem reveals the foliowing interesting relationship between
the singular values and singular vectors of A with the sigenvalues and eigenvectors of A7 A:

* The singular values of 4 are nonnegative square roots of the eipenvalues of AT 4,
» The right singular vectors are the eigenvectors of A7 A,

* Furthermore, the SVD of A is related 1o the eigendecomposition of AT A4 ag
VIATAV = 273,

Theorem W9, The nonzero singutar values of at m > n {(m = n) matrix A are positive

eigenvalues of the matrix
Pl mem A o
*’%T Oll HE

A= USV? bethe SVD of A.

1= Ui U?—, o E:l{n:»:n]
mxn mx{m—my}’ [

Proaf. Let

Partition
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Define _ _
wn f F Y
Foa ({{l .{.)2 tz ) .
v v Ou w{ gy
where | ;
f}lﬁ-"-:{f; and Vo e ¥
V2 V2
Then it is easy (o verify that
b o 0
Plcp=|0 -3, 0],
0 4 ¢
which shows that the nonzero eigenvalues of C are oy, ..., 0, —01, ..., —T, Where o)

through o, arc the nonzero singular vatues of 4, [

10.3.2 Sensitivity of the Singula% Values

We states a remarkable property of the singoiar values in Chaptler 7; the singuiar values of
o miatrx aee well-conditioned. We now give a prool of this result.

Theorem 10.10 {perturbation theorem for s’:ingular values), Let Aand B = A+ E be
fwom X0 matrices im = n), Leta, (= 1, .o o and 6, i =1, ... 6, be, respecf%aeh,
the singutar valnes of A and A+ E, appe*a:mg in decreasing am‘w }"Ssen [ —oif = 1 El
Joreach i,

Pragf. Define

- 0 A
i (52,
By Theorem 10.9, we have that the aonzerc eigenvalues of A are o, .. 0,
~01, ..., —0;, where oy through oy are the nonzero smgalar values of A ”I‘ht, remain-
ing az%nmluu of A are, of course, zero. Define now 8 = (5 8), £ = (& £). Then

B—-A=E.

The eigenvalues ol B and £ are related, respectively, to the singular vatues of B and
E in the same way the eigenvalues of A are related to the singular values of A, The result
now follows immediately by applying the Bauer-Fike theorem (Theorem 9.37) to 8, 4,
and £. U

10.3.3 Computing the Variance-Covariance Matrix with SVD

In Chapter 7 we described a method 1o compute the variance-covariance matrix (AT A)~!
using the (R faciorization of A. We note here that this matrix can also be computed
immediately once the singular values and the left singular vectors of A have been computed.

Computing (ATA)~! using the SVD. Lot
A=uEv’
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be the SVD {)f‘z%. Then the entries of the matrix € = (ATAY' = {1} are given by
DN i«j«;:«e‘-- where # = rank{4). (Note that € = (ATA)" = VE-IVT)

Example 10,11,

12
A=12 3
3 4
i vl
vy Uy Piith Bt
o= i 2 4RI e S g 2T o 33333,
O'j' Uz’ (x“"{“ {}“j“
1 2
|72 [ 22%
ey =~ 4 =32 223333, W
U’{' (JC_;"

MATCOM Note: ‘The MATCOM program COVEVD compautes the variance-covariance

~matrix-using the. SVD of A,

10.3.4 Computing the Pseudoinverse with SVD

In Chapter 8 we have seen that when 4 is an m % n {m > a) matrix haviag full rank, the
pseudoinverse of A is givenby 47 = (A7 A)"P A7, A formal definition of the pseudoinverse
of any matrix A (whether it has full rank or not) can be giver as follows: The pseudoinverse
is also known as the Meoore~Penrose inverse,

Four properties of the pseudoinverse. The pseudoinverse of an s X n matrix A is an
# x m matrix X satisfying the following proparties:

1. AXA= A
2. XAX = X.
3. {AX)Y = AX.

4. (XA)T = XA.

The pseudoinverse of g matrix abeays exists and is anigwe. "We now show that the
SVD provides o aice expression for the pseudoinverse.
Let A = UE VT be the SV of A; then itis casy to verily that the matrix
. {
AT =vEWT, whereL' = diag (—w)
| o (10.26)
(Efﬁj =0, a8¢ — = {}) , e
7y e
satishes all the four properties above and therefore is the pseudoinverse of A. Note that this
expression for the pseudoinverse coincides with A~' when A is nonsinguiar, because
At = ATATTAT = vsTUTusV Y lyeTyT (10.27)
=vEHSTYyWWTVvET YT = veTlUT.
{Note that in thiscase &7 = 7))
The process lor computing the pseudoinverse A7 of A using the SVD of A can be
summarized as follows.
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ALGORITHM 10.4. Computing the Pseudoinverse Using the SVD.
Input: Anm x 1 matrix A.

Quiput: AT, the pseudoinverse of A.
Step 1. Find the SVD of A: ’
A=Uzv’
Step 2. Compute
1
ar
i
Efzdiag o |-
s
010
where oy, ..., o, are the r nonzero singular values of A.
Step 3. Compute A* = VETUT,
Example 10.12. Find the pseudoinverse of
L8 6
0 0 -1 a0 9 9
A=[-1 0 0 02 0]l-%2 ; -&
0 -1 0 0 0 ¢ 6 & 1
5 7w 3
A=vzv’,  Al=vziUT,
I 0 0 0 -1 0
gi=(0 1 o}, vT={0 0 -1],v"=
g 0 -1 0 0
Thus
! 6 6 | 1
i "5 sy /1 00\ /g —1 o 0 -3 3
t_ 6 | 6 1 R . 2 1
Al=t-3 3 —3t|0 3 010 O ~I]=]0 35 -—¢ |
6 _6 1 0 0 O -1 0 0 o 2 1
] B3 3 3

10.3.5 Computing the SVD

Since the singular values of a matrix A are just the nonnegative square roots of the eigen-
values of the symmetric matrix A7 A, it is natura] to think of computing the singular values
ol A by finding the eigenvalues ol the symmetric matrix AT A. However, this is not a
numerically effective process because, as we have seen in Chapier 7, some vital information
may be lost due to round-off error in the process of computing A7 A.

The following simple example illustrates the phenomenon.
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Example 10,13,

1.000G  1.0001
The singular values of A are 2.0010 and 0.0001.

Now
ATA = 20002 2.0002
TR2.0002 2.0002

A (;.0001 i,{}ﬁaﬂ) . (10.2%)

{to four significant digits). The eigenvalues of A7 A are § and 4.0004. Thus the singular :
values of A will be computed as 0, 2.0001 (in4-digit arithmetic}, whereas the actunl singafar
values are 0.0001 and 2.0010. W

10.3.6 The Golub-Kahan-Reinsch Algorithm

JFor more than three decades. the following algorithm, called the Golub—iﬁ_ahanaéﬁsinsch

algorithm (Colub and Kahan (1965), Golub and Reinsch (1970)), has been a standard al-
gorithm for SYD computation.  There have been some recent developmenis and recent
aigorithms sueh as the zero-shift QR algorithm, the differential QD aigorithm, and the
divide-and-conquer algorithm (see later in this section (or further remarks on these aigo-
rithms}. We describe here the Golub--Kahan-Reinsch algorithm. The algorithm comes into
two phases, as illusirated in Figure 18.3.

A o a“%\\\a

0
Bidiagonal

B—%Ez({;\\g).

Diagonal

Phase 1 (dircct).

Phase 2 fiterative).

Phase | (bidiagonalization). The m x n matrix A(m = n) is wansformed into an
upper bidiagonal mairix by orthogonal equivalence; that is, the matrices Uy € B"*" and
Vs € B"*" are created such that

UlA Vy = (g) . {1029
where B is an n % » bidiagonal matrix given by
b bz 0
o . .
Bt

0 0 0 by
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Phaise 2 {reducrion to diagonal forns). The bidiagonal matrix A 15 further reduced by
orihogonal equivaleace to 2 disgonal matrix ¥ that is, the orthogonal matrices U and ¥
are created such that

UlBV = % =diag(oy, ... 6). (10.30)
LA S
X x =
x X X *
Fhuise | ® = Phase I %
* X X X e e
X x
e 4 X x
£ X
x = X >
A B =] AV, =08y

Figure 10.3. HHustration of the twa-phase procedure.

Obtaining the SVD of A from Phases 1 and 2
» T — the mairix of the singular values,
 The singular vector matrices & and V oare given by U = Uglly, V = 5V

Remark. In the numericzl linear algebra lerature, Phase | s known as the Golub—-Kshan
bidiagonal proceduore, and Phase 2 is known as the Golub—Reinseh algorithm. We will call
the combined two-stage procedure the Golub--Kahan-KReinsch method,

High relative accuracy of the singular values of bidiagonal matrices. The following
result due w0 Demmel and Kahan (1990) shaws thar the singulor valnes of a bidiagonal
matrix can be computed with very kigh accuracy.

Theorem 18.14, Ler B = (by) be an n % n bidiagonal mateix. Let AB = {8by) also be
bidiagonal, Suppose that by + 6by = ayoy by and 8By oy + b sy = oy sy, oy # 06
Eot # = I'I;?“i?' max(je; | Qfxg“ll). Let gy = -« > o, be the singitar values of B and
let a) = - = o, be the singular values of B + AB. Then
&

— < o] <oy, 1 DT (1030
&

Phase 1, Reduction to Bidiagonal Form, The matrices Uy and Vg in Phase | are
constructed #s the product of Householder mateices as follows;

Ug = Upilpa -+ - Uy {10.32)
and
Vo = VoV Vo (1033
Let's illustrate the bidiagonalization process with s = 5 and 1 = 4.3
to be zeroed.

indicates the entry
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Step 1. Apply a Householder matrix Uy; to the left of A to create zeros in positions (2, 1)
through (5, 1), then apply another Householder matrix Vg, to the right Lo create zeros in
(1, 3) and (1, 4) positions of A.

X X X X X X % % x x 0 0
¥ X x X " 0 x x x " 0 x x x
¥ X X X 0 x x x 0 x x x|=A"
* X X X 0 x x x 0 x x x
* X X X 0 x x x 0 x x x
A Up A Up AVy

Step 2. Apply a Houscholder matrix Up; (o the left of A™" and apply another Householder
matrix Vpz o the right to create zeros in the places indicated by “*".

{ x x 00 [UTSTRR VI § SIS » RN SUSHSRVI ) SO o RS
Ox x x 0 x x =% . 0 x x 0
0]+ x x Yo 0 0 x x J——> 0 0 x x|[|=A9
ols x x 0 0 x x 0 0 x x
0 0 x x 0 0 x x
O0l* x x
AD UgpAtY U A" Vi

Step 3. Apply a Householder matrix Up; to the left of A? to create zeros in the position
indicated by “*7,

x x 0 0
x x 0 0
0 x x 0 0 x x 0
0 0|lx x Yz 0 0 x x|=A™
0 0 0 x
0 0
o 0 0 0 x
0 0+ x
A(l) UmA(?_)

Step 4. Apply the Householder matrix Ly, to the left of A** (o create zeros in the positions
indicated by "*".

x x 0 0 x x 0 0
0 x x 0 v 0 x x 0 B
0 0 x x|— 0 0 x x|= AW =( O) (hidiagonal).
0 0 0 x 0 0 0O x
g 0 0 =% 0 0 0 0
A€3) U[HAB)

General step for an n x n matrix. In general, at the kth step, Ug is constructed to
creale zeros in the kth column, while Vi introduces zero in the kth row in appropriate
places.
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Computational Notes,
* In Step 2, one can work with the 4 x 3 submarrix of A" indicated by the box. Call
it 4. Thus, orthogonal matrices U and Vo may be constructed such that

0
Doz Ve =

K K K X

oo o X

o
4
>

Then {/gz and Vi are constructed from Lg and Vs in the usual way by embedding
them inlo the identity matrices of appropriate orders.

» This holds similarly for the other steps.

« Construction of a Househalder matrix 'V Jor zeroing entries in a row vector Alevery
step, V matrices are created (o zeros Ina row vector. We now show how to do this. Let
7 = (x, xm, ..., 1) be arow vecton Suppose we wanl Lo construcl a Householder

matrix Vsuchthatx? Vo= (¢, 0. ..., 0. Todo this, just construct V such Lhat

X
. G
Vipg= .
1]
Thenx’ V = (x,0,..., 0
Flop-count. The above process will require approximately dma” — li%w fops. If the matrices
Up and Vg wre also explicitly needed, then their accumulations will require dmrs — % and
%’i flops, respectively.
Example 10.15,
I 33
A=13 4 5
6 7 8
Step 1.
~( 1474 —-(.442%  —0.8847 ~67823  —8.2367 897312
gy = | (04423 0.8295 034108, U4 = 4] .0461 00023 |,
~{}L8847 03410 $.3180 0 (9077 -1 k154
I G G —6, 7823 127620 g
Vo = {0 06470 07625 |, UnAVe = 0 —10002 00245 | =A™V,

g 07625 0.6470 0 19716 04824
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Btep 2.
] 0 ¢
Uiz = |0 —0.0508 0.9987 |,
0 09987  0.0508
~6.7823 12,7620 0
B = Up A = Uplly AV = Y 1.9741  ~04830 | = A9,
0 0 0

Note that from the above expression of B, it immedistely follows that zero is a singuiar
valueof A, W

MATCOM Note: The above bidiagonalization process has been implemented in the MAT:
COM program BITHAG.

—e———Phage-2 - Finding the SVD-of the Bidiagonal Matrix.--The process-is-a-variant-
of the QR iteration. Starting from the n x n bidiagonal mairix B obtained in Phase I,
it successively constructs a sequence of hidiagonal matrices {B;] such that each £; has
possibly smaller ofl-diagonal entries than the previous one. Tite ith iteration is equivalent
to applying the implicit sysametric QR algorithm, described in Chapter S, with the Wilkinson
shift to the symmelric tridiagonal matrix B} By without, of course, forming the product Bf B
explicitly, The effective tridiagonal matrices are assumed o be nnreduced (nole that the
implicit symmetric QR works with unreduced mafrices); otherwise we would work with
decoupled SVD problems. For example, if £ 3. = 0, then B can be writien as the direct
sum of two bidiagonal matrices By and Bz and o (B) = s (B Ua (B).

The process has guaranieed convergence, and the raie of convergence s quite fast,
The details of the process can be foond in Golub and Van Loan (1996, pp. 432-456). We
outine the process briefly in the following.

In the following just one iteration step of the wmethod is described. To simplify the
notation, let's write

B - ) (10.34)
’ ﬁfi

{I!:

Wilkinson shift o = the eigenvahue A of the 2 x 2 right-hand cormer submatrix of BT B,

2 2
O +16;;-l Sy fy
( ﬁriﬂ‘n*i Cz’g e ﬁ,:lj' ! (1{}35}

b 3 2
which is closer to o + g7,

Step 1. Formthe Givens rolation J,, such that Ji (o] —o, @ B2, 0, ... 0) = (x,0,.... 00, :
This 1s done in two steps as foliows,

2
. - 2 - x
1.1. Compute a Givens rotation J| such that J; (C{C‘! ﬂf) = ( ) .
/3

&
i
1.2 Forim Jy = (J{:% 10 ) .
=2
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Step 2. Apply J, to the vight of B and overwrite BJ) with 8.

X =
,+“
B=BJ = S ! (1036

x
x

where -+ indicates a 8H-in. (The fill-in iy af the (2, 1) position.)

The idea is now to chase the nongero entry ™ + 7 dovwn the subdiagonal to the end of the matrix
by applying the Givens rotations in an appropriate order, as indicated by the following.
Step 3. Form the Givens rotation Js such that the Gil-in at the (2, 1) position s ehiminated,

x
B= LB =

(The fitl-in is a2 the (1, 3) position.}

Step 4. Form the Givens rotation Jy to eliminate the fill-in of the (1, 3} position.

% X
X
B o BJ} = 4

o

x

{The fill-in is ar (3, 2) position.)

Step 5. Form Jy o eliminate the fill-in of the {3, 2} position,

X =
x X 4
w
E

{Fhe fill-in is af (2, 4) position.}

The process is continued, The general process is now clear. Theentries (2, 1), (3, 2), (4, 3),
ete,, are annihilated by a premultiplication, whereas the entries (1, 33, {2, 4}, (3, ), ele., are
annihilzed by a postmultiplication.
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At the end of one iteration we will have a new bidiagonal matrix B orthogonally
cquivalent to the original bidiagonal matrix B:

B = (Jya- - Jo )BTy -+ - Jansa).
Example 106.16.

o]

il
oo —
[au R S S0
—_——o

Step 1. The Wilkinson shift ¢ = 15.0828:

—0.9901 0.1406 O
Jy =] -0.1406 —-005901 O
0 0 l

Step2:

B=BJ,=|-02812 -—-1.5801 3
0 0 1

—1.2713 —1.8395 0)
{The fill-in is ar the (2, 1} position.)
Step 3. Form

0.2160 -09764 0O},

-~0.9764 02160 O
Jy =
0 0 |

13029 22238 —0.6480
B=U5hLBl)= 0 1.3361 —2.9292
0 0 |
(The fill-in is at the (1, 3) position.)
Step 4. Form
1 0 0

=10 09601 02797],
0 -02797 0.9601

1.3029 2.3163 0
B= LB J; = 0 22942 —2.3827
0 —0.2797  0.9601
(The fill-in is at the (3, 2) position.)
Step 5. Form
i 0 0

Jy=10 059926 -0.1210],
0 01210 0.9926

1.3020 2.3163 0
B=LLBJJ= 0 23112 -24812). 1
0 0 0.6646
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Stopping criterion. The algorithm typically requires a few Herations before the off-
diagonal entry B, becomes negligible. A criterion for off-diagonal negligibitity follows,

Criterion for neplecting an off-diagonal entry (Golub and Van Laan (1996,
p- 485)). Accept an oft-diagonal 5; 1o be zero il

18] = ellog] 4 loioi ).
Accept a diagonal entry a; to be zero if
jo i < €[ B,

where £ is a small multiple of the machine precision g,

Flop-count.  The costof the two-phase. SVI) method is determined by the cost of Phase 1.
Phase 2 is iterative and is quiie cheap. The estimared flop-count is 4mn + Bmn® +
On*lm = ny. This count includes the cost of U, %, ond V. There are applications (e.g.,
least squares) where all three matrices are not explicitly required. A nice tuble of different
flop-counts of the Golub-Kahan—Reinsch SVD and the triangular SVD {to be described in
the next section} for different requirements of U7, £, and V appears in Golub and Van Loan
{1996, p. 254),

Computing of 5. alone will cost abour dmn® — i‘—;— Sfops by the Golub-Kahan-Reinsch
algorithm, '

Round-off property. 1L can be shown that the computed SVD, U Z(V}", produced by
the Gelub—Xahan-Reinsch algorithm, is nearly the exact SVD ol A + £, that is,

A+ E = (0 + 5308V + V),
where & -+ 80 and V + 8V are orthogonal. Specifically,
(HEM ALY < pOn, mip, 1800 < plm, mip,
WSV < plo. s,

and pim, #} is a slowly growing function of m and ».

Entrywise errors of the singular values. Furthermore, let &; be a computed singular
value. Then

for — i = up(nHAlz = pplaoms,

where pian) 15 a slowly growing function of n.

The result says that the compured singuiar values cannot differ from the true singular
values by an amount larger than § = yp(n)oma.

Thus, the singular values which are mot much smaller than g, will be computed by
the algorithm quite securately,
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10.3.7 The Chan SVD Algorithm

The Golub—Kahan-Reinsch procedure can be made faster sometimes if matrix A is trian-
gularized first by QR factorization and then the procedure is applied to the upper triangular
matrix R. The idea was mentioned in Lawson and Hanson in their celebrated 1974 book
Solving Least-Squares Problems and later fully analyzed by Chan (1982a). The triangular
SVD, to be called the Chan SVD, can be described as follows.

Step 1. Find the QR factorization of A:

0TA = (g) : (10.37)

Step 2. Find the SVD of R using the Golub—Kahan—Reinsch algorithm:
R=Xzy", - (10.38)

Step 3. Compute the singular values and singular vectors of A.
The singular values of A are just the singular values of R. The singular
vector matrices U and V are given by

U= Qdiag (X, lw), V=Y. (10.39)

Flop-count. The triangular SVD (the Chan SVD) requires about 4m?n + 225" flops to

compute X, I/, and V, compared to the 4m>n + 8mn*® + 9n Nops required by the Golub—

Kahan-Reinsch SVD algorithm. Clearly, there will be savings with the triangular-SVD
3n

when m = 3. Note that in this case one needs to bidiagonalize an upper triangular matrix

rather than a full matrix.

Example 10.17.

I 2
A=12 3
45
Step 1. The OR factorization of A:
-0.2182 -0.8165 —0.5345
Q= {-04364 -04082 08018 |, R= (_4'8826 :g';%g]s).
—-0.8729  0.4082 —0.2673

Step 2. The SVD of R:

RoXTYT  Xo (—0.9963 0.0856 )

—0.0856 —0.9963

v = 0.5956 —0.8033 5 - 7.6656 0
T \0.8033  0.5956 - 0 0.4881 )"
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The singular value decomposition of A = UZVT.  The singular values of A are 7.6636,

.4831.
0.2873 07948 --0.5345

(/= 104698 03654 OBIIE |, V=Y W
08347 04814 ~0.2673

Flop-count for the least-squares problem using the SVD and other methods, In
view of twa SVD slgorithms just described, let’s have another elose look at the Sop-count
ol different appronches for feast-sguares solutions of Ax = b, where A is s x 2 {m = n).

» Using the Golub-Khan—Reinsch SVD:  dmn? 4 &%,
+ Using the Chan SVD: Zmn® + 1ind.

. . ,ooat
-Using normal equations:  mn® -&—...-?5.—,.

.
» Using Houscholder QR: 2mn~ ~ .

« Using modified Gram-Schmidt (MG8):  2ma®.

{See Golub and Van Loan {1996, p. 263) {or a comprebensive list.)

Recent developments. The other notable works an SVD computation include:

= Zero-shift QR iteration {Demmel and Kahan {1990y, Bemmel and Kaban show
that, using zere-shift, the tiny singular values and the singular vectors can be found
{almost) as securaely as the data permits,

» Differential QD algorithm for large matrices (Fernando and Parlett {1994, This
is a variation of the QR teration algorithm for finding a#f the singular values with
high relative accuracy, It is the fastest algorithm now for computing all the singular
values of a bidiagonal matrix.

» Divide-and-conquer algorithm {lessup and Sorensen {1994), Gu and Eisenstat
{1993}, ewe. ), A fast aigorithm, but does roi guarantee that the riny singular vafues
will be computed with fiigh relarive nocurney

o Jacobi method, For some clagses of matrices the Joucobi method congnaes the
singular vaiues and singular vectors o high relative accuracy hy implicilly lorming
the matrix 887 or 8T B. This method is not discussed here: see Demmel {19971,
See also the recent papers of Drmad and Veseli¢ (2008a, 2008b).

10.4 Generalized SVD

The SV theorem (Theorem 10.8) can be gencralized for o pair of malrices 4 and B, and
this generalized SV is uselul in certain applicalions such as epmstrained least squares
problems (Golub and Van Loan (1996, pp. 5386-387)).
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The generalization was first obtained by Van Loan (1978). We state only the theoram
here without proof. For a proof, see Golub and Vaa Loan (1996, p. 466).

Theorem 11,18 (generalized SVD theorem). Ler A and B be, respectively, real matrices
of order o » nand p x 5 {m = n) Then there exist orthogonal matrices U € B""" and
YV e BP0 and an v x n noasingular mareix Wosuch that

UTAW =C =diagle), ..., ¢0), & =0,
eendd
VIBW = D =diagld,.....d,), 4 =0,
where g = min{p, ny and dy > - = dy > dpyy = - = dy =0, r = rank(H).

The elements ( £~:~ Ho &y are called the generalized singular values of A and B,
; ¥

10.5 Review and Summary

The two closely related topics, the sysuuetric eigenvalue problem and the SV, are diseussed
in this chapter. Emphasis here is on computations of the eigenvalues and singular values.

10.5.1 The Symmetric Eigenvalue Computation

Here woe have described
* the hisecticn method (Algorithm 10.1);
v the QR iteration method with Wilkingon shift (Algorithm 10.2);
» ihe divide-and-congquer method {Algorithm H0.3);

= The Jacobi method (Section 10.2.5}.

10.5.2 The 5VD

+ Existence and uniqueness of the SVD, The 8VD of a matrix A always exists (The-
arem (0.8). o

A= TV,

The singular vatues (the diagonal entries of ) are unique, but the singular vectors
are not.,

» Relationship of the singular values and singular vectors with the eigenvalues,
The singular values of A are the nonnegative sguare roots of the eigenvalues of A7 A,
See Theorem 10.9 for asother interesting relationship.

« Sensitivity of the singolar values. The singular values are insensitive 1o small
perturbations (Theorem 10.10),
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+ Campulting the SVD. The most widely used approach {or computing the SVD ol 4
is the Golub-Kahan-Reinsch algorithm (Section 10.3.6). This algorithm works in
two phases. In Phase 1, the mawrix A is reduced to a bidiagonal magrix by orthogonal
equivalence, and in Phase 2, the bidiagonal matrix is further reduced to & diagonal
mairix by orthogonal similurily using implicit QR ileration with Wilkinson shift.
Unloranately, very tiny singular values may not be computed with very high relative
accuracy by this method, A modification of this method, known as the cero-shift QR
frerarion or the QR lteration winlt g zero shift hos been propesed by Demmel and
Keahan in 1990, The Demmel-Kahan method computes all the singular values and
singular vectors with high relative accuracy for smail-order {about 253} matrices, The
dads algorithm ol Fernando and Parlett (195943, however, eompuites all the singular
values most accurately.

10.6  Suggestions for Further Reading

A book specialized to the symmetric eigenvalue problem is Parletr (1998); a fair amount
of discussion on this problem alse appears in most contemporary numerical Hngur alpebra
books, including Demmel (1997}, Golub and Van Lean {1996), Trefethen and Bau (1997),
and Watkins (2002). For more on the imerlacing property, see Hill and Parlen {1992), A
hook devoted 1o perturbation analysis, including that of the symmetric cigenvalee problerm,
is by Stewart and San {1990). Many important resulis, including some classical ones, can be
found in this book, See atso Horn and Johnsoa (1985) and Stewart (1891} for perturbation
analysis of the SVD. For some other imporiant papers on 8VD and symmetnc eigenvalue
compuiations, see Demmel and Kahan {1990), Gu and Eisenstat (1995h), Fernandp and
Parlent {1994), Parletr (19931, Demmel et al, {18999}, Demmel and Veseli¢ (1992), Drma#
and Vesehid {2008y, 2008b), Bai (198E), Charlieretal, {1988), and Bai and Bresnmel {1993a),

For more on the generalized SVD and its vanations, see Van Loan (1976), Paige and
Saunders (1981}, Kagsuwdm (1983}, De Mooy and Van Dooren (1992), De Moor and Zha
(19971}, Stewart {1983}, Paige (1986}, De Moor (1991, 19923, De Moeor and Colub {19913,
and Paige and Van Dooren (1986). For perturbation analysis of the generalized SV, see
Sun {i%83) and Stewart {19%1).

Exercises on Chapter 10
EXERCISES ON SECTION 10.2

10.1  (u) Develop the symmetric tridiagonal QR iteration algorithm in detafl using the
implicit symmetric QR step with Wilkinson shift.
{b) Apply yeur algorithm wo compute all the gigenvalues of a symmetric matrix of
order 20 generated randomly: A = rand (20), A= 4 + A7,

1 -1 0 0
-1 2 =1 8
0 -1 2 -1
6 o6 -1 2z

1.2 (o) Let A=

Without computing the eigenvalues show that 12} < 4 for each eigenvalue A of
A. Show thut there are exactly two gigenvalues greater than 2 and vwo less than 2,
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Anply the bisection algorithm (Algorithm 10.1} to compute the eigenvalue close
ol

{b) Apply the inverse Hessenberg iteration algorithm 1o A to compute the eigen-
veolor associated with the eigenvaiue close to 2.

{c} Compute the eigenvalues of A by applying the symmetric QR iieration with
Wilkinson shift (Algorithm 10.2}.
10.3  {a} Prove that the eigenvalues of an unreduced real symemetric tridiagonal matrix
are real and distinet,
{b} Prove that if A is an eigenvalue of multiplicity & of an unreduced symmetric
iricdingonal matrix 7. then at least (& — 1) subdiagonal entries of 7 must be zero,
10.4 () Develop a QR-type algorithm to compule the cigenvalues of 4 symmetric post-
tive dei’mm, mairix A, based up{m the Cholesky dﬁcomgasmuﬁ (Smtmn 6. E2 ‘%}
{h‘: Test your dlgﬂmhm with matrix 4 of Exercise 102,

= 7)
Prove that the cigenvalue § of A closest to y is given by
sign(#)/°

where r = (o ~ ¥)/2. Explain why this formula is better than the one given by
(10.8)-(10.9}.

18.5 Let

W=y —

10.6 Let A = Ay -+ A; be g Hermitian matrix. Then prove that
Ay —As
b= (f’iz A )
is symmeiric. How are the eigenvalucs and cigenvectors of A related to those of B?
10.7 Prove that if the ith component u; of & in (10.13) is zero, then
{2} the ith column of D in (10.13) s de;;
{b) the ith row of D is die]

{c) d; is an eigenvalue of D with the associated eigenvecior ¢;.

10.8 Prove thatif & eigenvalives of D are equal, then the eigenvalue problem of Hin(10.13)
can be deflated by deleting (& ~ 1) rows and columns,

1.9 Assume that
{a}) p O

{by) the egigenvalues of D are arranged in the order dy) < dy < -+ < dy; and

{c} none of the components of & i zero.
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Then prove that cach interval (d;. di4) contains exactly one eigenvalue of D =
D+ punT,

10.10 Prove that if the assumptions of Exercise 10.9 hold, then D — A7 is nonsingular and
T
w'g #0.

10.11 By drawing the graphs of the secutar equation or otherwise, prove that

(A d <l <dv<wha<-<hy<di+pifp=0;
b d+p<i<dy<chi<-r<d,y <), <d, il p<0

10.12 Show that in the classical Jacobi scheme, the sum of the squares of the off-diagonal

entries decreases by at least the factor of 1 — ”{f_” al each step.

EXERCISES ON SECTION 10.3

10,13 (a) Derive Thearem 10,10 without using Theorem 10.9.
(b) Given

A=

Ln L —
o =~ b3

find the singular values ¢, and o2 of A by computing the eigenvalues of AT A.
Then find the orthogonal matrix P such that

PTsSp = diag(e,, o3, —eay, —o, 0),

{033 A
where § = (AT 02.(2) .

10.14 Using the constructive proof of Theorem 10.8, find the SVD of the following matrices:

(i) A=

) e
(=2 S S

(i) A= (1 2 3),

1
(i A=1(1],
|

|
(iv) A =diag(1,0,2,0,-5),4 = O}, wheree = 1077,
€

om —

10.15 Prove that the singular values ol a symmetric positive definite matrix are the same as
its eigenvalues. How are the singular vectors and eigenvectors related?
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10.16 Let
(43 )
— U"“ y £
D= 0 . g >0, fwl, ...,
3} ¢
Then show that
L 0
L}

N A
D= m

10.17 Verify that the matrix A’ = VETU7  where 8% = diag{%} {with the convention that
o =0, we use -{-}-« = (1}, 18 the pseodoinverse of A. (Cheek all four conditions for
the definition of the pseudoinverse.)

10.18 For any nonzero matrix A, show that

{a} A47v = v for any vector vin R(A);
by Ax =0forany x in N(A" ),

(c) (ATY = (A%

(@) (A" = A

10.19 Let A be an m » n matrix. Show the following:

{a) II' A has full column rank, then
AT = AT AyTAT
(b If A bas full row runk, then
Al = AT(aaT)y™
10.20 From the SVD of A, compute the SVDs of the projection matrices Py = A4, Py =

I~A"A, Py= AAT and Py = [ — AA". Also verify that each of these is a projection
maltrix.

19.21  (a) Let B be an upper bidiagenal matrix having a muliiple singular value. Then
prove that 8 must have & zero either on its diagonal or superdiagonal,

(b) Prove that if the eniries of both diagonals of a bidiagonal matrix are all nonzero,
then s singular valoes are distinet.
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10.22 Consider the family of bidiagonal matrices

b—n All+mn)

B(n) = ;

B+ n)
I -7
B > 1. Itcan be shown (Demmel and Kahan (1990)) that the smallest singular value
of B(n) ts approximately B1=7(1 — (2n — D).
Taking # = 10°, and using n = 0, verily the above result,

10.23 Develop a procedure to upper bidiagonalize an 1 x n tridiagonal matrix using Givens
rotations.

10.24 Based on discussions in Section 10.3.6, develop an algorithmic procedure ta imple-
ment Phases | and 2 of the SVD computation.

10.25 Develop the Yacobi algorithm for computing the SVD,

10.26 Prove that flop-count {or an overdetermine least-squares problem using the Chan SVD
scheme is about 2mn® + 203,

MATLAB Programs and Problems on Chapter 10

M10.1 (a) Writc a MATLAB program called polysymtri to compute the characteristic
polynomial p, (A} of an unreduced symmetric tridiagonal matrix 7', based on

[valpoly] = polysymtri(7, lambda).

{b) Using polysymtri, write a MATLAB program called signagree that finds the
number of eigenvalues of T greater than a given real number p, hased on
Theorem 10.5:

[number] = signagree(T, meu),

{c) Using polysmtri and signagree, implement the bisection algorithm (Algo-
rithm 10.1):
[lambda} = bisection(T, m, #n).

Compute X, 4 form =1, 2,3, ..., using bisection, and then compare your
results with those obtained by using eig(T).
Test data:

A = the symmetric tridiagonal matrix arising in the buckling problem in Section
8.3.2, with n = 200.

M10.2 (The purpose of this exercise is to study the sensitivities (insensitivities) of the singular
values of a matrix,)
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Using the MATLAB commands svd and norm, verify the inequalities in Thearam
10.10.

Fest datar

()
T TS B
Ao 0o 1o
“lo o o099 |
0C 0 099

{i} A = the Wilkinson bidiagonal matrix of order 20,
Ineoch case, construct a suitable £ so that (A + E) differs from A inthe (r, 1)h
element only by an e = 1077
(Note thar the eigenvalues f)f&offz matrices are il-conditioned.)

'M10.3 Let A = rand (10,3), and X = pinv(A). Verify that X satisfics all four condi-

tions of the pseudoinverse using MATLAB: AXA = X, XAX = X, (4X)7 =
AX, (XA = XA

M1t4 Write a MATLAB program called chansvd to implement the Chan SV algorithm
described in Section 18.3.7, using the MATLAB commands qr and svd:
[€7, 8. V] == chansvd (A},
Run your program with u randomly generated 500 x 40 matrix A = rand (50, 40}
and compare the flop-count and elapsed time with thase obtained by using svd{A}.

M1G.5 Write a MATLAB program called bidiag io bidiagonalize 2 matrix A using the sketch
of the procedure give in (Section 10.3.6).

{a) [Bl= hidiag{4, wl},
where F is a bidiagonal matrix and tol is the tolerance.
Test your program using A = rand{i5, 10).
(b} Use bidiag to write 4 MATLAR program 1o compute the singular values of the
biclagonal matrix B.
Test your program by using a randomly zenerated matrix of order 130 x 10,

MIb6 Write MATLAB programs to compute the singular values of a matrix A in the fol-
lowing two ways: {a} by calling the standard SVD routine from MATLAB, and (b)
by explicitly forming AT A and then computing its eigenvalues .

Test matriv: an upper trisngular maizix of order 100 with 8.0001 on the main diagonal
and 1 everywhere above the main diagonal,

Plot your results.



Chapter 11

Generalized and Quadratic
Eigenvalue Problems

Background Material Needed

* The Householder and Givens methods to create zeros in a vector and the corresponding
QR factorization algorithms (Algorithms 7.1, 7.2, 7.4, and 7.3)

The Cholesky factorization algorithm (Algorithm 6.8)

The methods {or symmetric eigenvalue problem (Algorithms 10.1, [0.2, and 10.3)
* The inverse iteration algorithm (Algorithm 9.2)

+ The Rayleigh quotient algorithm (Algorithm 9.3)

11.1 Introduction

In this chapter we consider the generalized eigenvalue problem for a matrix pair (A, B)
defined as follows.

Statement of the Generalized Eigenvalue Problem

Given n x n matrices A and B, find n scalars A and nonzero vectors x such that
Ax = ABx.

Note that the standard eigenvalue problem for matrix A considered in Chapter 9 is a
special case of this problem (lake B = 1).

Definition 11.1. The matrix A — AB is called a matrix pencil. This pencil is conveniently
denoted by (A, B). It is very aften referred to as the pair (A, B).

The pencil A — LB is singular if for all A, det(A — AB) = 0. Otherwise, the pencil
is regular. We will assume throughout the whole chapter that the pencil is regular.

Example 11.2. The pencil (A, B) defined by A = (}§), B = {J}) is a singular pencil,
since det{A — A8) =0foralia. N

387
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Definition 11.3. The scalars & € U such thar det{A — AR} = O are called the eigenvalues
of the pencil (A, B). A nenzero vector x is a right eigenvector of the pencil (A, BY if

Ax = A Bx.
The vector ¥ # 0 is a left eigenvector if
¥ A = Ay B.

The polynomiol det{A ~ A B} is called the characteristic pelynomial of the pencil
{4, B). The cigenvalues of the pencil (A, B} are the zeros of the characteristic polynomigl,

The finite and infinite eigenvalues of a regular pencil. 1f B is nonsingular, then a
regular pencil A — 4.8 of order n has # eigenvalues. An eigenvalue 2 of the pair (A, #) s
also an eigenvalue of B~' A, If B is singular, then the characteristic polynomial will have
degree less tHien n, In this case, there will be Jess than n iinite eigenvalues and the missing

_eigenvalues will be set to 0o. Thus, if the degree of det{A — LB) is r(< nj, ffren n‘zere wdl

be r finite and 1 — r infinite eigenvalues.

- (58) w20

The degree of the characteristic polynomial is 1. The eigenvalues of this regular pencil
A—iBareCandoo. W

Example 114,

A note on the use of the word “pencil.”  “The rather strange use of the word *pencil’
comes from optics and geometry. An aggregate of (light) rays converging w a point does
suggest the sharp end of a pencil and, by a naturzl exiension, the term came Lo be used
for arey one parameter family of curves, spaces, mairices, or other mathematical objects.”
{Parlett (1998, p, 339)).

I A and B are resl symmetric matrices and, furthermore, i B is positive definite,
then the generalized eigenvalue problem Ay = ABx is called the symmetric definite
generalized eigenvalue preblem,

This chapter is devoted 0 the study of the genpcralized eigenvalue problem with
particular attention to the symmetric definite problem. The chapler is organized in the
following manner. :

In Section 11.3 we present a result that shows how the generalized eigenvalues and
etgenveciors can be cxtracted once the matrices A and B are reduced to generalized Schur
or generalized real Schur forms,

In Section 1.4 we describe the Q2 algorithm (Algorithm [1.2) lor the generalized
eigenvalue problem. ft is ¢ natural generalization of the QR iteration algorithm described
in Chaprer 8,

In Section 11.5 we show how to compuie a generalized cigenvector when an ap-
proximation of a generalized eigenvalue is known using the inverse iteration (Algorithm
113,

Sections 11.6-11.8 are devoted to the study of the symmetric definite peneralized
cigenvalue problems. Several case smdies on the problems arising in vibration of struc-
tures are presented. A popular algorithm widely used in engineering practice—namely, the
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simultaneous diagonalization algorithm (Algorithm 11.5), is described and several engi-
neering applications of this technique are discussed. The generalized Rayleigh quortient
iteration for a symmetric definite pencil is presented in Algorithm 11.6.

Finally, in Section 11.9, we include a brief discussion of the guadrartic eigenvalue
problem.

11.2 Eigenvalue-Eigenvector Properties of Equivalent
Pencils

Definition 11.5. If X and ¥ are nensingular matrices, then the pencil (A, B) and (Y*AX,
Y*BX} is called equivalent to (A, B).

The following are easily proven properties of two equivalent pencils (Exercise 11.3):
* The eigenvalues of two equivalent pencils A—A B and Y*AX — AY* B X are the same.
» If x is a right eigenvector ol A — AB, then X ~'x is a right eigenvector of ¥*AX —
AY*BX.
* Ifyisalefteigenvectorof A— LB, then ¥ ~'yisalefteigenvector ol Y*AX —AY*BX.

Thus, in order to compute the eigenvalues of A— LB, we will seek orthogonal matrices
to transform the pair (A, B) into an equivalent pair from which the eigenvalues can
be more easily computed. Also, once the eigenvectors of the transformed pencil are
computed, the eigenvectors of the original pencil can be recovered from those of the
rransformed pencil by appropriare matrix multiplications as shown above.

11.3 Generalized Schur and Real Schur Decompositions

Fortunately, analogous o the Schur decomposition of matrix A, there exists the generalized
Schur decomposition ol the pair (A, B) of the matrix pencil A — X5,

* Schur decompaosition of A. There exists a unttary matrix U such that U*AU = T,
an upper trianguiar matrix.

» (Generalized Schur decompeosition of (A, B). There exist unitary matrices {/; and
U2 such that U AUz and U5 B, are upper triangular:

P

Ut AU = T) == 9 h . (11.1)
M

UrBU =Ty = | D _* . (11.2)

i




390 Chapter 11. Generalized and Quadratic Eigenvalue Problems

The finite eigenvalues &;,{ = 1, ..., n, of the regular pencil (A — AB) are then given
by &; = 1;/tl,, 1, # 0. By convention, the eigenvalues corresponding 1o the zero

diagonal entries of T; are oo.

 Generalized real Schur decomposition. Analogous {o the real Schur decomposition
of a single matrix A, there also exists the generalized real Schur decomposition of
(A, B). In the case where both A and B are real, the matrices {/; and U; can be
chosen to be orthogenal. That is, when A and B are both real, there exist orthogonal
matrices ¢ and Z such that
QTAZ =R, an upper real Schur matrix, (11.3)
Q'BZ =T, an upper triangular matrix.
The pair (R, T} is said to be the generalized real Schur form of (A, B)..

The eigenvalues of (A, B) can then be extracted from R and T as follows:

(i) The i x 1 d;agona] blocks of.'“(R, T) contain the real eige;\.f.z;[ues ofm(f.i. B)

(i) The 2 x 2 diagonal blocks of (R, T) contain the pairs of complex conjugate
gigenvalues.
For example, if

0 11 2 100 0
10 11 013 3
R=1 09 032 ™M T=|4gq92 2 |
0 00 3 00 0 -1

then the real eigenvalues are 2 and ——%, and the two pairs of complex conjugate
eigenvalues arc the eigenvalues of the pair ({ % 1) . (('J ?)) , which are { and ~i.

11.4 The QZ Algorithm

A standard algorithm for finding the generalized real Schur form of the pair (A, B} is the
QZ iteration algorithm, developed by Moler and Stewart (1973). [t is a natural analogue
of the QR iteration for computing the eigenvalues of A.

Like the QR iteration algorithm, the QZ aigorithm also comes in two slages:

QR Iteration for the matrix A:
Stage [ A Loprar = H, upper Hessenberg
Stage IL. H e, OTHQ = T, real Schur
QZ Iteration for the pair (4,B):
Stage L A gz Q'TAZ' = A’, upper Hessenberg
B L% (QYT BZ' = B', upper triangular
Stage I1. A’ 22 @7 A'Z = R, upper real Schur
B %5 Q" B'Z = T, upper triangular

4
y

5,

Stage 1is direct and Stage Il is irerarive. The Stage I is achieved by applying implicit
OR iteration algorithm to \he matrix B~' A withour explicitly forming the matrix.



11.4. The QZ Algorithm 391

A Note of Caution. Tf B is ill-conditioned, and € == B~ A is explicitly compuied,
thes € will not be computed aceurately and thus the computed cigenvalogs of the pencil A —
A B will be inaccorate. This ix true even If the eigenvalues themselves are well-conditioned.

11.4.1 Stage I: Reduction to Hessenberg Triangular Form
Let A and B be two # x »# matrices. Then:

Step 1. Triangularize the matrix & by QR factorization. Thatis, find an orthogonal maurix &/
such that

B = UT B is an upper iangalar matrix.
Form
A= UTA {ingeneral, A will be full).
Step 2. Now reduce A obtained in Step 1 to upper Hessenberg formt while preserving the
irtangular structure of B,
This step is achieved us follows for the caze # = 4 {*-+" indicates a fill-in).

2.1 Apply a Givens vansformation Gy = J(3,4, 8) in the {3, 4) plane 10 the left of 4
10 make the entry (4, 1) of A zero and then update &,

x ® X x X X X X X X m %
X X ¥ X O x O x OX X O 0 x =% =
A - ; BT
X X X X ¥ X X% X 0 G = =
X ®x x X 0 x x = o0 + =
A O5A 8= (B

2.2, Apply the Givens rotation Zs4 to the right of B to make the {4, 3) entry of B zero and
then update A.

X % X X € o® X X X ®OX X
B= 0 x = x 3 0 x x x|}, A Zas X X X X
TH0 Db o= ox 0 0 = x| X ® X X
0 0 4 = G0 0 8 x 0 = = x
B=EZly A s Ay
{no fill-in}
2.3, Apply the Givens rotation @3 1o the left of A 1o make the {3, 1) emry 7ere and then
update 8.
* X ® X ¥ Ox X X X X X %
woX %K X N X ® X x [ g x x x
A= e T e
WX X ox® 0 x x = 0D 4+ = x
0 x x = 0 x = = 0 0 0 x
A = Qz}A E= Qg}g

(All-in af the
(3, 2) entry}
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24. Apply the Givens rotation Ziz to the right of B to make the {3, 2} entry zero and then

update A.
X % X X X X X X X x ® X
B = 4 x x ®} 2z 0 = x x]. Pz X x x X
o+ ox o= 0 0 x x| & x x x
0 0 0 = 4 0 0 x 0 x x x
5w BZx AZn
{no fill-in}

Noter At this point, B is upper triangular apd A is Hessenborg in ity fisst column,

. Apply the Givens rotation {» 1o the left of 4 10 make the entry (4, 2) zero and then

update £
- x” xx R S
| X X ox Xy @n x® x %X =} iz += ¥ X X
A = 0 x x x - 0 = x x| 8 0 0 = x
0 x = x 0 0 x = 6 0 0 x
A= OpnA B= (b

(fitl-in at the
12, 1) entry}

2.6, Apply the Givens rotation Z,7 1o the right of B 1o make the (2, 1) eniry zero and then

update A,
X ®x X % X ox X X X X x X
B = + X %X Zi 0 = x x|, 4 Zy X %X X X
TH8 0 x % g 0 = =1 0 x x x
8 0 0 x 0 0 0 = g 0 x x
B = BZys {triangular) Am AZ;
{upper Hessenberg}

General case. The process is similar. For each a;; (0 be zeroed, two Givens rotations are

used:

one, applied 1o the left of A for zeroing an entry of A, and the other, apgakef.f 1o the

right of & to recover the B's triangularity,

Flop-count. The process requires about 84% flaps. If 0" and Z' are accumulated and are
explicitly required. then it will additionally require abeat 4% and 3 flops, respectively.

Example 11.6.

1 2 3 1 1
A=|1 3 4}, B=10 1
i 31 3 0o

B P o—

Since 8 is already an upper iriangular matrix, Srep 1 is skipped. W
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Step 2. Reduce A to upper Hessenberg while retaining upper triangular structure of B,

Step 2.1. Form Qa3 to make a3, zero and update B:

I 0 0
Ow=| 0 07071 —0.7071 |,
0 07071  0.7071

| 2 3
A=AD = QnA=| 14142 42426 49497 |,
0 0 —0.7071
1 | |
B=BV=@QunB=] 0 07071 2.8284 (fill-in at the (3, 2) entry).

0 -0.7071 0

Step 2.2. Form Zay to make by zero and update A:

10 0
Zu=100 -1 |,
01 0

| 1 -1
B=B"Zpn=0nBZn=| 0 28284 -0.7071 |,
0 0 0.7071

1 3 -2
A= AVZy0 = 003AZyn = | 14142 49497  —4.2426
0 —0.7071 0

A is in upper Hessenberg and 8 is in upper triangular form.

MATCOM Note: The algorithmic process of reduction of (A, B) to a Hessenberg iriangular
pair has been implemented in the MATCOM function HESSTRI.

11.4.2 Stage II: Reduction to the Generalized Real Schur Form

From Stage 1, we have

A= Q7TAZ = upper Hessenberg
(assume it is unreduced )

B = Q'TBZ = upper triangular

The basic idea now is to apply an implicit OR step to AB™" without ever completely forming
this matrix explicitly.

One lteration of the QZ Algorithm

Step 1. Compute the first column of N = (C = @ I){(C -~ a21), where C = AB~!, and a;
and @ are suitably chosen shifts,



394 Chapter 11. Generalized and Quadratic Eigenvalue Problems

Step 2. Find a Householder matrix {1, such that {; Ne; is a multiple of e;.
Step 3. Form QA and Q| B.

Step 4. Transform simultaneously @) A to an upper Hessenberg matrix A, and QB toan

upper triangular matrix B;; that is, find orthogonal matrices Q and Z suchthat Q(Q,4)Z = -

Ay (upper Hessenberg), Q(Q,B)Z = B, {upper triangular).

Using the implicit O theorem (Theorem 9.34), we can then show that the matrix
A Bl Uiy essentially the same as what we would have obtained by applying an implicit QR
iteration step directly to AB™Y.

Application of a few QZ steps sequentially will then yield a real Schur matrix R =
@7 AZ and an upper triangular T = @7 BZ. The generalized eigenvalues now can be
computed from the real Schur triangular pair (R, T'), as shown in Section 11.3.

The real bottleneck in implementing the whole algorithm is in computing the first column
of (C — o, 1(C — aal) without forming € = AB~! explicitly. Fortunately, this can be
done. First, note that because A is upper Hessenberg and B is upper triangular, this first
column of N contains at most three nonzero entries in the first three places:

n =Ne ={(C—aIHC —a2l)e = (I,)’,Z,O,...,O)T.

To compute x, v, and z all we need to know is the first two columns of C, which can be
obtained just by inverting the 2 x 2 leading principal submatrix of B~'; the whole B~
does not need to be computed. Thus, if ¢; and ¢z are the first two columns of C = AB™Y,

then
-l
_ by b2
(mm:)—(m,az)(o bn) ,

where q;, { = 1, 2, are the first two columns of A. Note that ¢; has at most two nonzero
entries and c» hias af most three.
Letec) = (e, 2,0, ..., 0)7 and c; = (¢j2, €22, ¢32, 0, .. ., O)T.

Then il is casy Lo see that

x (en —ay)eny = az2) +epaey
v} =1culcy —a}+elcn ~a)
Z 21032
Example 11.7. Let
I 1 1 1 1 2 3 4
21 4 1 g 1 1 1
A=1g 1 11 B=lo o 1 2
0 0 1 1 00 0 3
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The 2 x 2 leading principal submatrix of B = (| )

e = (1,2.0,07, e (-1, =3, —1, 07,

Choosecy =1, ez = Litheny = -2, vy =8, z=2. §

Implemeniation of Step 2. Since the Arstcolumn g of N = (C — oy IO ~n f ) has at
most three nonzero entries, the Householder matrix ¢ that transforms #¢ into a muliiple

of e; has the form
_{0 0
Q§ i ( G [”m}‘_;) 3
whire Ql 15 a 3 x 3 Householder mairix.

Implementation of Step 4: Computation of A; and By. The matrices QT A and Q7 8.
now have the following structores, as itlustrated with # = &, (In the following “+" denotes
a possible fill-in.}

,BEng““.—”

L IS A
OO N Ko
L8 X X X X
DX ¥ ¥ X ¥
XX A K K M
K OK M M KX
0D 4 o
e s i~ g D 1
DD O oW W
DO K X X X
DX OX X XX
o oM oK XX

That is, both the Hessenberg form of A and the triangulac Torm of B are now lost in that
there is now fill-in at the (3, 1) posivon of A and the {2, 1}, (3, 1), and (3, 2} positions of B,
The job uosw ar hand is to cleverly chase away these unwanted nonzero entries (o restore the
original Hessenberg form af A and the wriongular forni of B. Thit is done #eratively ag
shown below,

» Apply a Householder matrix Z, to the right of B to eliminate the {3, 1} and (3, 2}
entries, followed by another Housgholder mairix Za o the right o climinate the (2. 1} entry.

X ¥ X x % X
4+ w oX X X% X
g=|1t *+ x x = X 4
IO 00 x o ox o ox
0 0 0 0 x =
¢ ¢ ¢ 0 0 =x
X X X X r X X o®x X xR OxXR X
+ ® X x x x 0 = x % = x
0 0 x x = x Z; 0 0 = = x x
0 0 0 x = x 00 0 = x =
g 0 0 0 = = O 0 0 0 x x
g 0 0 0 4 x 0 o 0 0 0 x
BZ BZ:2Z-
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Update A:
X X X H x X X X X X X X
X X X ¥ % X % %X X X x N
\ = 4 M X X 0¥ X 2:7z + X x X K x
70 0 o x x ox % 4+ + X X X x
0 6 0 x x x 0 0 0 x x x
0 0 0 0 = x Do o 0 x =
A = AZIZz

{Updating A created vwo additional fill-ins. We now have unwanted zeros in the (3, 13,
{4, 13, and (4, 2} positions of A.)

e e Aty 3-Householder matrix- Qs to - the-left- of-A-to-eliminate-the (3;-1)-and {4, 1}
artries.

xxxxxx\
X X X ¥ % X
® % X o® ox X
¥ X X X X X
4= dox X o® OX X 0 0x x x = x
- + 4 X X x X 014+ x x = =x
R
V010 0 0 x =i
Awm (A
Lipdate B:
f % x x x x %y
¥oOoX oW X X = ]
1% = = x x
6 x % x x =
0 0 % x X = s G+ x x x x|,
8: e S i
0 0 0 = x x Ol + = x x|
0 0 0 0 x =x L
6 0 0 0 0 x 01o 6 0 x x
\ 0|0 0 0 0 xj
B&“‘-&Q;B

At this point, the submatrices of the current A and B enclosed by the boxes have the same
structure as that of the vriginal matrices 4 and Q8. The probiem is now deflated.
So, we can now work with these submatrices and the process can be continued until the
Hessenberg triangular structure ol the pair (A, B) is restored.

In view of the above discussios, let’s now summarize one Heration step of the QZ
algorithm.



11.4. The QZ Algorithm 397

ALGORITHM 11.1. One Iteration Step of the QZ Algorithm.

Inputs: (i) A € B"*", an unreduced upper Hessenberg matrix. (ii) B € R**" an
upper triangular matrix

Output: The orthogonal matrices @ and Z such that A, = Q7 AZ is upper
Hessenberg and B| = Q7 BZ is upper triangular,

1. Choose the shifts o) and o,

2, Compute the first column of N = (C — o IHC —a2T), where C = AB™!,
without explicitly forming B~': Lel (¢, £2) be the first two columns of C.

Sy . . .
Then (¢, c2) = (a;, a3) (I’[']’ ﬁ:’) . The three nonzero entries of the first

column of NV are given by

X ={cy —ai)ey —az)+cppezy
y=calcn —ax) + calepe —ar),
T = 2033,

The frstcolumn of N =n; = (¢, v,2,0,...,0)7.

3, Find a Householder matrix @, such that

*
0
Oiny =

4. Form @A and O B.

5. Transform the matrices @ A and Q) B, respeclively, into an upper Hessen-
berg matrix A, and an upper triangular matrix 8, by orthogonal equivalence
in the way shown previously, crealing orthogonal matrices Q- through @,
and Z, through Z,,_,.

Obtaining the transforming matrices. The transforming matrices Q and Z are oblained
as follows.
The matrix Q:
Q=00 0y
The matrix Z:
Z=21Z1- 2y
Note that Q has the same first row as Q) .

Flop-count. One QZ ileration step requires about 22x#° flops. If Q and Z are to be
accumulated, then-an additional 8»27 and 1317 fops, respectively, will be required.

Choosing the shifts. The double shills @) and o at a QZ step can be taken as the eigen-
values of the lower 2 x 2 submatrix of C = AB™'. The 2 x 2 lower submatrix of C can be
computed without explicitly forming B~ (Exercise 11.5),
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ALGORITEM 11.2. The Complete QZ Algorithm.

Inputs: (i) A € B"*% (i) B € R"70,
Outputs: (i) R, real Schur form of A. (ii} 7. an upper triangular mairix, The
puir {&, 7'} contains the cigenvalues of (A, B}

Step 1. Transform {A, B) inio a Hessenberg triangular pair by orthogonal
cquivalence (asswme that A is unreduced):

A= QTAZ, upper Hessenherg,
B = (QTBZ, upperirangular.

Step 2. herate with Algorithm 11.1 1o produce (A} and { B, ), choosing the
shifis for each ileration as described above.

Step 3. Maonitor the convergence of the sequences {Ag} and in]I__

{A:} = R, real Schur,
[By) = T, upper triangular.

Remark. In a computational setting, it will be necessary to monitor the subdiagonal entries
of A and the diagonal entries of # in each ileration step to see if a decoupling is possible,
The same criterion for deflation as ssed for the QR iteration aigorithm in Chapeer 9 can be
used. For details, see Golub and Van Loan {1996).

Flop-count. Algorithm 11.2 requires about 30r° flops. The formation of 0 and Z, if
required, needs, respectively, another 161" and 2007 Rops (from experience it is known that
about two QZ steps per eigenvalne are needed).

Round-off properties, The QZ iteration algorithm is us stable as the QR iteration algo-
rithmn, It can be shown that the computed £ and § satisfy
ONA+E)Zo=R and QL(B+ F)Zy =S,
where Op and Zy are orthogonal and
J&| = piall and [FE= ullBY,
where p is the machine precision.

MATLAB Nete: The MATLAB program qz finds the QZ factonization for generalized
elgenvalues. [R, T, @, Z, V] = qz{4, B) produces complex upper triangular matrices
Roand T suchibal QAZ = Rand JBZ = T, and the matrix ¥V contains the genernlized
eigenvectors. The MATLAB program ordez reorders the eigenvalues in QZ factorization.
Several options of reordering are available.

11.5 Computations of Generalized Eigenvectors

Once an approximate generalized eigenvalue . is computed, the corresponding generalized
gigenvector v can be computed using the inverse iteration as before,
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ALGORITHM 11.3. Computation of a Generalized Eigenvector.

Input: A = B*** B € B"™ and approximate cigenvalue X of the pencil A= 3 B,
Qutput: An approximate eigenvector corresponding to A.

Step 1. Choosg an initial eigenvector vy,
Step 2, Fork == 1,2, .. do

2.1, Selve (A — LB = Bug..
220 wo= v/l

Ered

A Remark on Solving (4 — AB)v, = Bug_y. Insolving (A —iB8)u; = By, substan-
tiel savings can be made by exploiting the Hessenberg triongular strocture to which the
pair (A, B Is reduced ar Stage T of the QF algorithei, Netwe that for a given 4, the mauix
A — B is a Hessenberg matrix. Thus, at each iterarion only a Hessenberg system needs
to be salved, Note that when B is nonsingularn this is equivalent to solving the system with
B VA and Algorithm 11.3 becomes identical ro Algoritim 9.2

Exampie 1L.8.

3 - 1.5 0 0 8
A=1001-15 3  -15], B=|0 3 0
0 —~15 1.5 00 4

A1 = a generalized eigenvalue of (A — 2 B) = 19508, vg = (1, 1, 1)7.
ko= 1. Solve for vy: (A — A8, = B
vy = 0y /A0 e = (08507, 05114, 0012177, W

MATCOM Note: Algorithm 11.3 has becn implemented in the MATCOM function
INVITRGN,

11.6 The Symmetric Positive Definite Generalized
Eigenvalue Problem

In this section, we study the symmetric definite generalized vigenvalue problem Ax = A Bx.
The problem rowtinely arises in vibration analysis of structures {Inman (20067}

11.6.1 FEigenvalues and Eigenvectors of Symmetric Definite Pencil
We start with an important {but nat surprising) property of the symmetric definite pencil,

Theorem 11.9, The symmetric definite pencil (A — LB} has real eigenvalues and tinearly
independent eigerveciors,
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Proof. Since 8 is symmetric positive definite, it admits the Cholesky decomposition B =
LL". So, from Ax = ABx we have Ax = ALL"x. Se,

LA™Yy 'Ly = LTy,
or
Cy = iy, where y = L7 x.

The matrix C = L™'A(LT)™' is symmetric; therefore A is real. The assertion about
the eigenvectors is obvious, since a symmeltric matrix has a set of # independent eigen-
vectors. [

An interval containing the eigenvalues of a symmetric definite pencil The eigen-
values of the symmetric definite pencil A — AB lie in the interval [~ B~TAY, 1B~ 4.
(EXerciss 114,

11.6.2 Conditioning of the Eigenvalues of the Symmetric Definite
Pencil

If x is an eigenvector of the symmetric definite pencil {A, B) corresponding to the eigen-
value A, then the number
_ fxlla
V(T AX)? + (x*Bx)?
is a condition mumber for the eigenvalue A (Stewart and Sun (1990)). (Compare this with
the definition of the condition number of a simple eigenvalue of a matrix given in Chaprer 9.)

Two important consequences

= In contrast with the eigenvalues of a symmelric matrix, the eigenvalues of a definite
pair {A, B) are not necessarily well-conditioned.

For example, the eigenvalue 1 of the pair ((§ 35 ). (§omer)) is well-conditioned
(with a perturbation of order 10™%) but the eigenvalue 2 is ill-conditioned.

» Even though the eigenvalues of a definite pair may be ill-conditioned, the degree of
ill-conditioning can be bounded.

For further discussions on conditioning of the generalized eigenvalue problem, see
Stewart and Sun {1990) and Golub and Van Loan (1996, p.378). See also Tisseur (2000),
Higham and Higham (1998}, and Tisseur and Meerbergen (2001).

11.6.3 The QZ Method for the Symmetric Definite Pencil

The QZ algorithm described in the previous section for the regular pencil A — A8 can, of
course, be applied to a symmetric definite pencil. However, tiie drawback here is that both
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the symmnetry and definiteness of the prablenr will be losr in general. We describe now a
specialized algorithm for the symmetric definite pencil based on Theorem 119,

11.6.4 The Cholesky QR Algorithm for the Symmetric Definite Pencil

ALGORITHM 11.4. The Cholesky QR Algorithm for the Symmetric Definite
Pencil.

Input: () A ¢ B symmetric, and (i) B & B** symmeuric positive definite.
Output: The cigenvalues and eigenvectors of the definite pencil A — LB,

Step 1. Find the Cholesky factorization of B: 8 = LL7.

Step 2. Form € = L~ A{LT)™! by wking advantace of the symmetry of 4.
Step 3. Compuie the eigenvaluesd X and the cigenvectors 3, { = |, ..., 1, of

the symmetric matrix C using the QR iteration with single shift, speciaiized for

symmetric matrices. {The eigenvalues of the pencil A — A8 = the eigenvolues
af £}

Step d. Compute the generalized eigenvectors x; ol the pencil A — A B by solving
Elxj=oy i=1,...,n

Stability of the Cholesky QR Algorithm

When B is well-conditioned, there 1s nothing objectionable about the algorithm, However,
if B is ill-conditioned or nearly singulan, then so is L™}, and then matrix © cannot be
compured accurately. Therefore, in this case, the eigenvalues and the cigenvectors will be
inaceurate,

. Specifically, it can be shown (Golub and Van Loan {1996)) that a computed eigenvalue
A obtained by the algorithm is the exact eigenvalue of the matrix

(LAY + By, where |Ellz = plalal 87 .

Thus, ill-conditioning af B will severely affect the computed eigenvalues, even if they are
themsetves well-conditioned.

Another disadvantage of this algorithm is the loss of the sparsity—mnigrriv C iy in gen-
eral full, even though A and B may be sparse. Since many problems in practical application
are Jarge and sparse, the algorithm will not be able to wake advamuge of the sparsity ol the
probiem in 4 computational setting. Foran analysis of this method with iterative refinement,
see Davies, Higham, and Tisseur (2001). The best known algorithm ia the 1990s for the
sparse symmetric definite generalized eigenvalue problem, which has been incorporated
in some well-known structural engineering soltwore packages, is by Grimes, Lews, and
Simon (1994), which is based on the block Lanczos method.

MATLAB and MATCOM Note: The MATLAB function eig (A, 8, ‘chol’) has imple-
mented Algorithm 11.4, The algorithm has also been implemented in the MATCOM funciion
CHOLQR.
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As we will see in the next section, in muny practical applications only a few of the
smallest generalized eigenvalues are of interest. These smaliest eigenvalues somelimes can
be computed reasonably accurately, even when B is ill-conditioned, by using the vrdered
RSF of # in which the eigenvatucs are ordered fram the smallest 1o the largest. We leave
this an exercise lor readers (Bxereise 11,110,

11.6.5 Diagonalization of the Symmetric Definite Pencil:
Simultaneous Diagonalization of A and B

The Cholesky QR iteration algorithm { Algorithm 1.4} of the symmetric definse peocil gives
us a method for Bnding a nonsingular malrix P that ransforms A and B simultancously to
dingonal forms by congruence. This can be seen as follows:

Let £ be an orthogonal matrix such that

,,,,,,,,,, o OTCB =gl o e
Set M= (L™ '} ¢, Then

PIAP=Q L TALL™Y 0 = QTCO = diagles, ca, .., 6)
and

PIBp =0 LB 0=0" 7 LLT (Y 0 =1 (notethat B=LLT).

ALGORITHM 11.5. Simultancous Diagonalization of a Symmetric Definite
Pencil.

Input: A symmetric definite pair (4, B); A = A7, B = 87 > 0.

Output: A nonsingular matrix P suchthat P7BP =T and PTAP s dlagcnal
mairix.

Step 1. Compute the Cholesky factorizatton of B: B = LLT,

Step 2. Form € = L7V A(L7)~! by taking advaniage of the symmetry of A (C s
SYnURBLFC).

Step 3. Applying the symmetric QR iteration algerithm w0 C, find an orthogonal
matrix @ such that @7 C @ s a diagonal matrix.

Step 4. Form P = (L") .

Flop-count. Algorithm 11.5 requires ahout 14n? flops.

Example 11.10. Consider

I 2 3 01 1
A=12 3 4 B I 10 |1
3 4 3 ] 1 10

A i symmetric and B is symmelric positive definite.
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Step 1. The Cholesky decomposition of B = LLT;

3.1623 0 0
L=]03162 3.1464 0
0.3162 0.2860 3.1334

Step 2. Form C = L~'A(L~")":

0.1000 0.1910 0.2752
C=1}]0.1910 02636 03320
0.2752 0.3320 0.3864

Step 3. Find an orthogonal Q such that QT CQ = diag(cy, ..., ¢):

0.4220 —0.8197 -0.3873
0= |05684 —00936 08174
0.7063 05651 -0.4262

Step 4. Form
0.09409 —-0.2726 -0.1361

P=(L""0=101601 00462 02722
0.2254  0.1803 —0.1361

Step 5. Verify
PTAP = diag(0.8179, —-0.0679.0) and PTBP =diag(l,1,1). N

MATCOM Note: Algoritinn 11.5 has been implemented in the MATCOM function
SIMDIAG.

Frequencies, Modes, and Modal Matrix

As we will see a litile later, in vibration engineering, a frequently arising eigen-
value problem is the symmetric definite generalized eigenvalue problem of the
form

Kx=AiMx.

The matrices M and X are called, respectively, mass and stiffiress matrices. The
eigenvalues of this problem are related 1o the natural frequencies, and “the size
and sign of each element of an eigenvector determines the shape of the vibration at
any instant of time.” The eigenvectors are, therefore, referred 1o as mode shapes
or simply as modes.

“The language of modes, mode shapes, and natural frequencies form the basis lor
discussing vibration phenomena ol complex systems. Anentire industry has been
formed around the concept of modes” (Inman (2006)).

The diagonal matrix P that simultanecusly diagonalize M and K (see Algorithm
11.5) is called the modal matrix, and the columns of matrix P are called normal
modes.
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Orthogonality of the eigenvectors. Note that P = (py, p2. ..., pp) is an eigenvector
matrix and it is casy to see that

P;Bps"“‘l! i==1,.... 0 b BP:“"Q 3%.‘"
and

;}fﬁ%;;; =¢;, I=1,...,% P;?AP," =}, )

11.6.6 Generalized Rayleigh Quotient

The Rayleigh quotient iteration defined for a symmetric mairix A in Chapter 9 can easily
be generalized 1o the symmetric deflinite pair (A, 83,

“Definition 111 Fhe number

A

is called the generalized Rayleigh guotient.

Significance of the generalized Rayleigh quotient.  Itcan be shown that the generalized
Rayleigh quotient as defined above has the following property: e gerwraii ed Ravieigh
gutotient A minimizes :

FO) = fAx — Bxa,

7Btz (BExercise 11.15).

where § - {5 is defined by |z)l} = z

It can be used 10 compute approximations to generalized eigenvalues i, and sigen.
vectors x; for the syminetric definite generalized eigenvalue problem, as shown in the
following algorithim, which is a natural generalization of Algonthm 9.3,

ALGORITHM 116, Generslized Rayleigh Quotient Tteration,

Input: A symmetric definite pair (4, B); A= A", B = 8" > 0.
Output: An approximate eigenpaic of (A, B).
Step 0. Choose xg such that Jlxgl = 1.
Step 1. Fork = 0, 1, ... do until convergence
il
1.1. Compute ig = ‘?r'-g—“' (generalized Rayleigh quotient).
Xy Xi -

1.2, Solve for Xpup (A — I&;;B}:ik+| = Bx; (generalized elgenvector].
1.3, Normalize iy 1 Xke = - (normalized generalized eigen-

Tl
vectorsh
End
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MATCOM Note: Algorithm 11.6 has been implemented in the MATCOM function
GENRAYQT.

11.7 Symmetric Definite Generalized Eigenvalue
Problems Arising in Vibrations of Structures

In this section, we present some case studies on the symmetric definite generalized eigen-
value problem arising in vibration analysis of buildings, airplanes, and others.

11.7.1 Vibration of a Building: A Case Study

Consider a lour-story reinforced concrete building as shown in Figure 11.1. The floors and
roofs, which are lairly rigid, are represented by lumped masses mzy 1o my having a horizontal
motion caused by shear deformation of columns, and & to k4 are equivalent spring conslants
of columns that act as springs in parallel.

e
—_—
ky
g
e )-3
k3 "
¥z
ka m,
H
b3
ki

Figure 11.1. Schematic of four-story building.
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We would like to sindy the configuration when the building is vibrating in its first ewo
mudes (corresponding to iwo smallest cigenvalues).

Formulation of the generalized eigenvalue problem. To find these modes, first we
formulate the problem as 1 symmetric definite generalized eigenvalue probiem in termg
of mass and stiffness matrices. Kx = AMyx as follows: The equations of motion of the
sysiem are MY+ Ky = 0, where y = (y, y2. ¥, va) . M = diagim,, ma, m3, ma), and

Ky -+ &2 —ky a i
K - "‘kz kg -+ )r{?. ‘—;(3 0
- 0 —ky  hyehky -k
0 0 iy k4
Assuming harmonic motion, we can write yp = 1™, & = 1,2,3,4, where x; is

the amplitude of the mass my and w denotes the natural frequency. Now, substitul-

"sng iligse CXpIESSions “faEFT vy, ., and ¥ inle the equations”of motion;and  noting-that

o= —wlree™ ) ko= 1, 2,3, 4, we obiain the generalized eigenvalue ;:srabiamK X = AMx,
Since M and & are both symmelric and M is positive definite, this is a symmetric
positive definite generalized eigenvalue problem.
Take my = 5 % 107, ms = 4 x 107, my = 3% 107, my = 2 x 107, and &y =
10 % 108, By = 8 % 10" &y = 6 x 10", &y = 4 x 10", We then have

i3 -8 0 0O
-8 4 -6 0
g -6 10 -4
0 0 -4 4

K = 10" and M = 107 x ding(5.4,3,2).

Solution of the eigenvalue problem Kx = 1M x using the Cholesky QR algorithm
{Algorithm 11.4). The eigenvalues are 107{6.1432, 1.R516, 0.3435, 4.0950}. The eigen-
veclors corresponding to the two smallest cigenvalues 17 {0.3435) and 107¢1.8516) are

0.0370 — {1783
S e I s
01318 0.1403

The first two modes of vibration corresponding to these two smallest eigenvalues are
shown in Figures 11.2 and 11.3, respectively.

11.7.2 Forced Harmonic Vibration: Phenomenon of Resonance

In the previous example, we considered vibration of & system without any external force.
Consider now a system with two degrees of freedom with different masses, but having the
same stiffness coefficients, excited by a harmonic force Fy sin ewt, as shown in Figure {1.4.
This example will explain how resonance can ocour in structure.

Then the equations of motion of the sysiem are

!?%;j;i = "”*3‘.{}‘1 - _\-’3) b iﬁi}’; e Fl sin 31

ma¥ = k{y) — y1) — kya. (11.4)
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Figure 11.2. First mode of vibration Figure 11.3. Second mode of vibra-
of four-story building. ' " tion of four-story building. '
K I F| sin wt
¥

1)

J
k

s

2 v2
k

Figure 11.4. Forced vibration of a hwo-degrees-of-freedom system.

Assuming the solution (3} ) = () sin wr, and substituting this into the equation (11.4),
we get
(2 —myw™)x| —ky, = Fy,

—kx) 4+ (2k — maw?)xs = O (11.5)
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The sohuion of (11,5} can b written as

! (2k — niwey By

= miiw — 0 Med - 0?)
kF,

2= (et - i aws - w?)’ (7

. (11.6)

where w and w0 gre the modal freguencies. For the special case when #ty = mz = m, oy

i 3
and 2y are given by wy = \/;f; and o = \/3&

B {2k — me) I
T o - @) (wh - )

R
R

T e — whied — w?)

Xy

a1y

From above, it follows immediately that whenever w is egual to or close to o or ey,

the amplitude becamnes arbitrarvily large, signaling the eccurrence of resonance. Now that -

in this case, the denominator is zero or close to i

In ather wards, when the frequency of the imposed periodic force becomes equal to
or nearly egual to one of the natural freqguencies of a system, resonance resully, a situation
which iy quite alarming for some applications.

Figure 11.5, Airplane landing on a runway.

Example 11.12. Hiustration of resonance. Consider the landing of an airplane on a rough
runway, The fuselage and engine are sssumed to have a combined mass #7;. The wings are
modeled by lumped masses s+ and sy, and stitfness & and &4 &) represents the combined
stiffness of the landing gear and tres, The mass of the wheels and landing gear is assumed
negligible compared to that of the fuselage and the wings.

The runway is modeled by asinusaidal curve as shown in Figure 11.5, Let the contour
be described by ¥ = vy sin i, and let the airplane be subjected 1o a forcing toput of £ sinaf,
where f) == & 3. Letl ¥, y2, and yy represent motion refative to the ground.
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AJ|

k ks [ o
m ’ @ \\i'ii;

Figure 11.6. Mode! of the airplane.

So, the equations of motion for the three-degrees-of-freedom system so described are
given by

ny 0 0 ¥ ki +ki+ky —ky ~ks ¥ fisinwt
0 11%) 0 :\;2 + —k'_) k'g 0 ¥z = 0
0 0 Hia j;3 '—kj 0 k3 ¥ 0

The airplanc is shown schematically in Figure 11.6.
Let
ky = 1.7 x 10O N/m: k3 = ka = 6 x 10° N/m,
ny = 1300kg; a2 = my = 300kg.

The natural frequencies oblained by solving the generalized eigenvalue problem Kx =
AMx = w*Mx are given by

w, = 9.39rad/sec, w2 = 44.72rad/sec, w3 = 54.46 rad/sec.

The forcing frequency e is related 1o the landing velocity v by v = wé/2m. Soifw = wy,
then

¢ 939x2
po @b 339 X 30mise g emisee = 10Tkm/hr.
27 2

Thus, if the landing velocity is 107 km/lir, or close 1o it, then there is danger of excitation
at or near the resonance. 1

11.8 Applications of Symmetric Positive Definite
Generalized Eigenvalue Problem to Decoupling
and Model Reduction

In this section we will mention a few more engineering applications of the generalized

eigenvalue problem. These include (i) decoupling of a second-order system of differential
equations, and (11) model reduction.
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11.8.1 Decoupling of a Second-Order System
Case 1. The Undamped System

As we have seen before, vibeation sroblems in strectural analysis may be modeled by a
homogeneos system of second-order differential equations of the form

M%?%vﬁ(ymﬂ, {11.%
where ¥ = (¥, ¥av.voa 3 ) and § == —;,?—

The matrices M and & we, 35 usual, the mass and sriffness marrices, Assuming
that these matrices are symmetric and M is positive definite, we will now show how the
simuliancous disgonalization technique described earlier (Algorithm 11.3) can be gmplmyed
i solve this system of second-order differential equations,

The idea is to decouple the systen: into n uncoupled equations so that each of these

uncoupled eqna;mm can éjg m!ved u wzg & s*fw:darzf !fchmque Lm P he the modal ma{nx
TURUCH AL

PTMP=L PTEKP = A =dinglw], ..., o) (11.10)
Let v = Pz, so the homuogeneous syslem M ¥ + Ky = O becomes
MPi+ KPz=
Next premultiplying the above equation by A7, we have
PTMP:+ P KP:=0
or
4+ Az =0, {1111y
Denoting 7 = (2j, 22, ... 2<}° we see that {11.11} is a set of n uncoupled equations:
§§+fﬂ?2;:0. {=1,2,...,n,

The solution of the original system (11.6) now can be oblained by solving these # uncoupled
eguations using standard techniques and then recovering the original solution y from

¥y = Pz.
Thus, if the soluions of the decoupled system ¢11.11) are given by
== Ajeosenf 4 Bisinayr, i=1,2,-- .1,

then the solutions of the original system {11.9} are

» A¢ cosan? + By sin ;!
¥i Ajcosani -+ By sinans

=P, . (1112
Y Ay COS w,f + By sin oyt

The constants 4; and B; are 1o be determined from the inttial conditions. For example,

B

Yilr=o = displacement at time f = 0, ¥7|1.q = initial velocity.

Example 11,13, We will iHlustrate the decoupling technique with the following mass-spring
exarnple (see Figure 11.7).
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P my A 2 NaVaV AN VAV "3

/ L~> » L~> ¥ b 313

Figure 11.7. Three-degrees-of-freedom spring-mass system: Decoupling.

The equations ol motion are M § - ky = 0, where y = y|, », _\’3)T, M = diag(m,,
ma, ma) and

k\+k: —kn 0

K = —ky ks 4+ ks —ks
0 —ky ky
Take m, = 2 x 10%g, mq = 3 x 10%g, my =4 x 10%g, and k) = ks = ky =
10° x 1.5N /M. Then the natural frequencies {w), w1, w3} = 10°(4.4168, 2.8951, 0.9273).
Suppose that the system, when released from rest at + = 0, is subjected to a

displacement,
We would like to find the undamped time response of the system. The initial condi-
tions are

ye= oL ) =123 and §=(0,0,0)7
Since the initial velocitics are zeros, we obtain
Yi=PBuw =0 =123

These equations give By = By = By = 0.
Again, at t = 0, we have from (11.12)

» A ]
nml=PlA]|=|2
¥3 Az 3

The modal matrix P (obtained by using Algorithm 11.5) corresponding to the natural [re-
quencies is given by

0.0056 —0.0040 00017
P = | —0.0034 -0.0035 0.0031
0.0008 0.0028 0.0040

The solution of the linear system

A
PlA | =
Az

LS S

A =6.1816, A, =50.6264, A; = 70526350
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Substituting these values of Ay, Az, A3 and the values of w, w2, and wy obtained
earfier, we gel

¥ 21 Ajcosawyt
| =P|z2) =P\ Arcoswat
¥ 23 Az cos wst

The values of y\, y2, and yy give the undamped time response of the systems subject to the
given initial conditions. B

Case 2. The Damped Systems

Some damping, such as that due to air resisiance, fluid and solid friction, ete., is present in
all structures. et us now consider damped homogeneous systems.

Let D be the damping matrix. Then the equations of motion of the damped sys{(.m
8 1 & 1 e

M3 + Dy + Ky = 0. (11.13)

Assume that D is a linear combination of M and K; that is,
D =aM + fK, (11.14)

where o and 8 are constanls, Damping of this type is called proportional or Rayleigh
damping. Let P be the modal matrix. Then we have

PTDP=aPTMP+BPTKP =al + fA.
Let z = P7y, Then the above homogencous damped equations are transformed to n
uncoupled equalions:
L4+ (o4 fali +win =0, i=1,2,...,n (11.15)

In engineering practice it is customary to assume modal damping, that is, « and 8 are
chosen so that

o+ ,Bﬂ)? = 2&'(1),‘.

The number ¢; is called the modal damping ratio of the ith mode. The quantity &; is usually
taken as a small number between 0 and 1. The most common values are 0 < ¢ < 0.05. (See
Inman (2007).) However, in some applications, such as in the design of flexible structures,
{£;} are taken 1o be as low as 0.005. On the other hand, for an automobile shock absorber,
a value as high as ¢ = (.5 is possible.

Assuming modal damping, the decoupled equations (11.15) become

L4 2wt +ein =0 i=1,2,...,n

The solutions of these equations are given by

7, = g ht (A; Ccosw;y/ 1~ ;fr + Bisintwi/ 1 — i;fr) , 1=1,2,...,n,

where the constants A; and B; are to be determined from the given initial equations.
The original system can now be solved by solving these n uncoupled equations sepa-
rately and then recovering the original solution y from y = Pz.
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Figure 11.8. Two-degrees-of-freedom spring-mnass system: Nonproportional damping.

Remark. We have just seen that if damping is proportional, then the system can be decou-
pled. Unfortunately, however, the concepr of proportional damping is more of theoretical
interest rather than practical. Systems can always be constructed whose damping cannot
be proportional, We cite a simple example below.

Example 11.14. Nonproportional damping. Coensider the following system with two
degrees of freedom (as shown in Figure 11.8):

The equations of motion of the system are developed by considering a free body
diagram for each mass.

For mass m:

di i

k,",l .+—

s da(¥2 - 31)

Mo k(ya =)

= —f— 1Y

Thus, the equation of motion for the mass m is
—diyy +da(yz — 1) = kv +k{y: — ) = m¥.
Similarly, the equation of motion for the mass 2m is
=da2(y2 — 31} — day2 — K{y2 — 31) — 2kyz = 2m§.

Thus, for the whole system we have
m 0 ¥ + d| + da —ds V| n 2k —k iy _ 0
0 2m ¥ —ds dr + dy i -k 3k Sy ARUA
Nowlet'stake k =2, m =5,d, = 2,dh = 4,d; = |.

Ifthe relation D = e M + 8 K were satisfied, then there would exist & and g satisfying
the equations

6 = Sa - 48, (11.16)
—4 = —28, (11.17)
5= 10a + 68. (11.18)

However, the above equations cannot all be satisfied with any set of values of o and f£.
This is a case of ronproportional damping. Proportional damping is not possible in this
case. N
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Damped Systems under Force Excitation

When & damped system 15 subject to an external foree F, the equations of motion are
given by

Fin
1)
M+ Dy +Ky=Fay=| . 1. (11.19)

£}

Assuming that M is symmetric positive definite & is symmetrie, and that damping is pro-
porticnal, it i easy to see from our previous discussion that the above equations can, be
deconpled using simultancous disgonalization.

Let P = (p;;) be the modal matrix, Then the uncoupled eguations will be given by

B BB Ey A Pz =y Fpob PRy b P B
of
Fi+ 2wk b afn = B, {11.20)

where Ei(t) = 3 puFp i =1,2,....n
The function E; (1) is called the exciting or forcing function of the {th mode, [T each
force F: is written as

Fi = fis(),

then

Eiity =50}y pufy.

i=i

Definition 1115, The expression
"
Z Pl
j:]

is called the mode participation fuctor for the [th mode.
Once the uncoupled cquations (11,207 are solved for g, the solutions of the original
equations are given by
y =Pz

Remark, The solutions of the oncoupled equations
ZF 2o + win = B

depend upon the nature of the force F{r). For example, when the force is ashock-type force,
sueh as an earthquake, one s normally intercsted i maximum responses, The maximum
values of 2,22, . ... 2, can be obtained from the responses of a single equation of one
degree of fresdom.
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11.8.2 The Reduction of a Large Model
Many applications give rise to a very large system of second-order differential equations:
M¥ + Dy + Ky = F(t). (11.21)

For example, the large space structure is a distributed parameter system. It is therefore
infinite-dimensional in theory. A finite element generated model can have many degrees
of freedom (e.g., several million). Naturally, the solution of a large system will lead to a
solution of a very large generalized eigenvalue problem. Unfortunately, effective numerical
rechniques for compuring generalized eigenvalues and eigenveciors of a large generalized
eigenvalue problem are not very well developed. Stale-ol-the-art computational techniques
can compute only a few extremal cigenvalues of a lurge pair (A, B) (sce Bai et al. (2000)).
It is, therefore, ratural W think of solving a vibration problem by constructing a reduced-
order model with the help of a few eigenvalues and ecigenvectors which are feasible to
compute. Such a thought is based on an assumption that, in many instances, the response
of the structure depends mainly on-the first few eigenvalues (lower frequencies). Usually
the higher modes do not get excited.

We will now show how the computations can be simplified by using only the knowledge
of a few eigenvalues and eigenvectors.

Suppose that, under the usual assumplion that M and K are symmetric and of order
n and that M is positive definite, we were able to compute only the first few normal modes,
perhaps #1 of them where m < n. Let the matrix of these normal modes be P, ... Then
{rom Algorithm 1.5, we have

PTMP = Ly

PTREP = Ay = diag(o, ..., wp).
Setting y = Pz and assuming that the damping is proportional to mass or stiffiiess, the
system of a differential equations (11.21) then reduces 1o m equations:

E,'-i-zf,'w,:éi“i'w,?'z,‘ =Ei(t), i=1,2,...,m,
where E; is the ith coordinate of the vector P7 F. Once this small number of equations is
solved, the displacement of any masses under the exlernal lorce can be computed from
vi = Pz, i=1,...,m.

Sometimes only the maximunt value of the displacement is of interest.

Several vibration groups in industry and the military use the following approximation
to obtain the maximum value of y; (see Thomson (1992)):

m

. 3
Z [P man)]™

j=2

[¥ifmas = 1PsZooman | +

where p; is the ith column of P evaluated at z;.

11.8.3 A Case Study on the Potential Damage of a Building Due
to an Earthquake

Suppose we are interested in finding the absolute maximum responses of the four-story
building considered in the example of Section 11.7.1, when the building is subjected o a
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strong carthquake {see Figure 11.93, using some known responses of the building due to a
previous carthquake, We will use only the first two modes (the modes corresponding to the
twa lowest frequencies) in onr calculotions.

ky

13}

¥

Figure 119, Building subject 1o an carthguake.

Let yp denote the displacement of the moving support. The uncouplied normal mode
equations in modal form in this case can be writicn as

=4 . 3 [T .
L4 20 fwin = —Ei¥y, i=1,2,
wherg
¥ = absolute acceleration of the moving support,
4
Ei = Z prent; = mode participation factor of the chosen mode p;
Joo!
due to support existence.

Here pj; are the coordinates of the panticipating mode P, that is,

iy M
P P
P= . }m s s
{P1, pa P o
Py B

where g and po are the two chosen participating modes.
Let By and R denote the maximum relative responses oF Ziimasy 800 Zagnayy Obtained
from u previous experience. Then we can take

Tl = E Ry, L3imax} = EaRs.
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This observation immediately gives

¥ P P2
)2 = EIR, Py EqRy | P2
¥3 P31 P32
'}‘4 mas p'” p42

Using now the data of the example in Section 11.7.1 (vibration of the four-story building),
we have

E; =mpy +mapay + napy +mypy = 10772 % 0%,

Ex=mp1a -k mapn +mypy -+ mspay = —4.2417 x 10°,
Assume that R = 1.5 inches, R2 = 0.25 inches. We then obtain

» 0.0370
-:? = 1077 x 10* (1.0772)(1.5) g‘%g? + 107 x 10%(—4.2417)(0.25)
F3 :
Y4 A 0.1318
—0.0785 0.5979 0.0833 0.6812in.
00858 | | 12169 00910 | _ [ 1.3079in.
0.0104 | ~ | 1.7636 —0.0110| T | 1.75261n.
0.1403 2.1293 —0.1488 1.9805 in.

Thus, the absolute maximum displacenent {relative to the moving support) of the first
floor is 0.6812 in., that of the second floor is 1.3079 in., etc. (see Figure 11.10).

Figure 11.10. Absolute maxinmum displacement.

Note: The contribuiion to the second participating mode to responses is small in
comparison with the contribution of the first mode.
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The absalute maxinmm relative displacements are obtained by adding the terms using
their absolute valoes:

¥ 0.6812in.
¥z {1 L3079
¥3 T} 1.7747in.
¥4/ (abs. max.) 2.2781in.

Average maximum relative displacement of the masses.  The absolute maximum rel-
ative displacement of the massey provides ns with an upper bound for the largest relative
displacemen:s the masses can have, and thus help us to choose design parameters, Another
practice for such a measure 10 engineering Bleraiure has been 1o use the roof sum sguare
of the same terms, giving the “average” maximum relative displacement values:

(¥ duserage mx. = v/ (E1 R pi ) + (EaRapind® + oo+ (B Repi 12,

For the above example, £ = 2 and the average maximum relative digplacemenis are
given hy

{31 Javerage max. = VIE; Ripu ) + (ExRypia)? = 09975 inches,

(¥2daversge max. = v’f{gi Ry po)? + (ExRypazd® = 15610 inches,

and so on.

11.9 The Quadratic Eigenvalue Problem

In this section, we discuss a more general sigenvalue problem, called the guadratic eigen-
value problem (QEP):

(M 0D+ K =0, (1.2

where M, D, and & are n = » mairices. The scalars A are the eigenvaines, and the vectors
x are the right eipenverctors,
The feft cigenvectors y are given by

YAIM 4 AD 4 Ky =0, (11233

The matrix Ba(i) = M + A0+ K is called the guadratic matrix pencil,

The pencil is called regolar if det{ (1)) iz not identically zero for ait values of 4;
otherwise it is called singular, Unfess otherwise stated, we will assumiz that the pencil is
regniar.

« When M is nonsingular, the pencil is regular and has 2# finire cigenvalues, In fact,
it is easy (o see these are the 2n eigenvalues of the 2r % Zn matix

- 0 i .
A= ( ~MTK -MT'D ) (11.24)

where 7 is an 2 x » identity matriz. An eigenvector g of A corresponding o the
eigenvalue X is of the form g = (). Thus an eigenvecior x of Po(L} is just the
veetor of the first n components af i,
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» When M is singular, the degree of det( P (X))} is r < 2n. In this case (1) has r
finite eigenvaines and the remaining (2 — r) eigenvalues are infinite eigenvalues.
Consider the pencil Py(A) with M = diag(1,0), K = (%, ¢*),and D = (! ). Then

det(Pa(r)) = A* 4+ 6A% 4+ 144 + 20 is a polynomial of degree 3. Therelore, P3(A) has
three finite eigenvalues and one infinite. Readers are invited 1o verily this using MATLAB
command polyeig,

» The algebraic multiplicity of an eigenvalue A is the order ¢ of the corresponding
zero in detPa(r). The geometric multiplicity of A is the dimension of Ker{F2(})).
An eigenvalue is semisimple if its algebraic multiplicity is the same as the geometric
multiplicity. A defective eigenvalue is an eigenvalue that is not semisimple. An
eigenvalue of multiplicity k > n is necessarily defective.

11.9.1 Orthogonality Relations of the Eigenvectors of Quadratic
Matrix Pencil

= Recall that the eigenvectors of a symmetric matrix can be chosen to be orthogonal.

= The eigenvector matrix @ of the symmetric positive definite generalized eigenvalue
problem K — AM can be chosen such that ST M D = T (Section 11.6.5).

[tis natural to wonder if such relations hold for a symmetric positive definite quadratic
pencil as well. To this end, the following result on the orthogonality of the eigenvectors of
a symmetric positive definite quadratic pencil has been proved by Datta, Elhay, and Ram
(1997).

Theorem 11.16 (orthogonality of the eigenvectors of quadratic pencil). Ler P(X) =
MMAADAK, where M = M7 > 0,D = DT and K = K7, Asswme that the eigenvalues

Aiy..., hy are all distinct and different fron zero. Let A = diag (A, ..., Ay, be the
eigenvalue matrix and let X = (x1, ..., x,) be the corresponding marrix of eigenvectors.

Then there exist diagonal matrices D\, D, and D such that
AXTMXA - XTKX =D, (11.25)
AX"DXA+AX"KX +XTKXA = Ds, (11.26)
AXTMX+X"TMXA+X"DX = D;. (11.27)

Furthermore

Dy = DA, Di=—-D/A, Dy=-D;A% (11.28)

Proof. By definition, the pair (X, A) must satisfy the # x 2n system of equations (catled
the eigendecomposition of the pencil P(r) = A*M -+ 2D + K):

MXAY+DXA+KX =0 (11.29)
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Isolating the term in 23, we have {rom above
~DXA=MXA +KX.

Multiplyiag this on the lefi by AX7 gives

~AXTDXA = AXTMXAT+ AXTKX.
Taking the transpose gives

—AXTDXA = ATXTMXA+XTKXA.
Now, subtracting the latter from the former gives, upon rearrangement,

AXTMXA - XTKXA = N*XTMXA - AXTRX ;

or
(AXTMXA = XTRXOA = AMAXTMXA ~ XTKX). (11.30)

. Thus,the matrix-A XL MX A — X7 K X, which-we denote by-{2; -must be-diagonal since it
commutes with a diagonal matrix, the diagonal entries of which are distinct, We thus have
the first orthogonality relation:

AXTMXA - XTKX =Dy
Similarly, isolating the term in 37 of the cigendecomposition eguation (11,29} we obtain
~MXAT= DXA+ KX,
and multiplying this on the left by AX7 gives
~ATXTMXAY = AXTDXA+ AP XTKX.
Taking the transpose, we have
~AXTMEA = AXTDXAT +XTRXAS

Subtracting the last equation from the previous one and adding AX7 KX A to both sides
gives, after some rearrangement,

AAXTDXA+AXTEX + XTKXA) = (AXTDXA + AXTKX + XTKXMA.
Again, this commuiativity property implies, since A has distinet diagooal entries, that
AXTDXA+AXTRX +XTKXA = Dy

is a diagona) matrix. This is the second orthagonality relation.
The first and second orthogonality relations wgether easily imply the thind orthogo-
nolity relation:
AXTMX +X"MXA+ X"DX =Ds.

To prove (11.28), we muliply the last equation on the right by A, giving
AXTMIA+X"TMXAT + XTDXA = DA,
which, using the ecigendecomposition equation { 11,29} of the quadratic pencil, becomes
AXTMXA+ X" (—KX) = DiA.
8o, frem the first orthogonality relation we see that
Dy o= DA {1131
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Next, using again the eigendecomposition eguation {11.29), we rewrite the second
orthogonality refation as

D: = AXT(DXA+KX)+XTKXA
= AXT(—MXAT+XTEXA = (—AXTMXATXTEXOA.

By the first orthogonality relation we then have [y = — DAL

Finally, from D = D3 A and D4 &= — Dy A we have Dy = — 1A%

We remind the reader that matrix and vector transposition here does not mean con-
Jugarion for complex quantities. A real-valued represectution of the relations in Theorem
11,16 have been recently obtained in Datta et al. (2009) in the conext of finile element
model updation {(FEMUP). For more on FEMUP, see the authoritative book by Friswell and
Mattershead {1995).  [J

11.9.2  Applications of the Quadratic Eigenvalue Problem
The QEP arises in a wide variety of uppiications, which include

* vibration of structures

* vibro-acoustic systems

= Huid dynamics

* glectric circuit simulation

+ signal processing

« microelectronic mechanical systems

A brief aceount of how a QEP arises in these applications can be lound i the recent
survey by Tisseur and Meerbergen (2001}, The end-users of these applications frequently
do not see the QEP as such; these problems are routinely formulated in terms of the standard
or generalized eigenvalue problems, because, as we will see here, that is how ihese problems
are usually solved.

Vibration Analysis and the Quadratic Eigenvalue Problem

We have seen in Section 11.7 that vibrating structures are modeled by a sysiem of matrix
second-arder differential equations of the form

M)+ DEly + K¢} = F(r). {11.32)

By using separation of variables,
X)) = ue™,

where 1 a coastant vector, we obfain the guadratic eigenvulue problem
Py =0, k=1,...,2n,
where Pa(h) = 3*M 4 4D+ K.
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Proportional damping.  Under the assumption that (VM = M7 > 0, K = K7 > 0,and
{i1) proportionnt damping, we showed in Section [LE.1 that {11.13} can be decoupled
into independent equations which can be solved separately. This decoupling was possible,
because under those sssumptions, M and K {and therefore D) were stmultaneously diago-
nalized and the modal matrix P was obtained from the solution of the symmetric positive
definite generalized wigenvalue problem: Kx = AMx. Thus, the QEP did not explicitly .
appear there. 5

Nonproportional damping.  We have also seen in Example 1114 that there are systems
for which proportional damping is impossible or does not make much sense. The gyroscapic -
systems corresposding fo spinning structure are other examples of such nonproportional
damped svstems, Mathematical models of gyroscopic svsterns are of the form

MEGY (D4 G+ Kx(t)y = Fin,

e here M 0, and-K_mre the same as before and Gis.a skew-symmetric- matrie. Go= G100
Decoupling of such systems would be possible if the coefficient matrices were simul-
tancously dingonalized. However, this is, unfortunately, vor possible in general, Indeed, it
has been shown in Williams and Laub (1992) that wnder general damiping, these mairices
cannet even be simudraneousty triangutfarized. It can be shown (see Inman (2006)) that the
most general condition {or simulianeous disgonalization of the mass, stiffness, and damping
matrices is
DMK =KM'D.

The details are left as an exercise (Exercise 11.27). (Nore that Rayleigh damping is a
special case of this property. )

Computing Frequencies and Damping Ratios

Let by == oy -+ {8, be an eigenvalue of the quadratic eigenvalue problemy that is,
@y and f are, respectively, the real and imaginary parts of the complex eigenvalug
4z, Then the patural frequency oy corresponding (o this cigenvalue is given by

we = Jof + B k=12 .n @ (11.33)
Note that the eigenvalues A occur in complex conjugate pairs.

The modal damping ratio is given by
—a;

G (1134)

Voi + B

11.9.3 Numerical Methods for the Quadratic Eigenvalue Problem

A natural way (o sobve the QEP: (WM + 3D + K)x = 0 is w transform the problem into a
generalized eigenvaloe problem {GEF} of the form

Az = iBz,


ct219862
Sticky Note
vezi de asemenea [Dat2010, pp.~91]
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where A and B are 2n x 2n matrices (see below lor the general forms of A and 8). This is
known as linearization of the QEP.

Finding the Eigenvalues and Eigenvectors of the QEP from GEP
* The eigenvalues of the regular QEP are the same as those of an associated GER.

« The right eigenvectors v of the QEP and the right eigenvectors z of the associated
GEP are related by z = (55 ).

Thus, an eigenvector x of the QEP consists of the first n components of the corresponding
eigenvector z of the transformed GEP (nole that £ has 2n components).

The transformation of the QEP into the GEP is not unique. Here are some of the commonly
used forms of A and B,

First Companion Form:

0 W W 0
A_(_K —D)‘ B:(O M)' (11.35)
Second Companion Fornt
—-K 0 D M
Az( 0 W)‘ :(W O)’ (11.36)
where W is an arbitrary nonsingular matrix botl in {11.35) and (11.36),

Note that
det (A — AB) = det (W) - det (A*M + 1D + K).

Thus, the eigenvalues of A2 M -1 D+ K are the same as those of A~ A B, and the eigenvectors
are related, as shown above.

Special cases of the first companion form.

0 1 I 0
Lg.A.—_(_K _D), B:(O M), (11.37)

« Assume that M = M", K = K" » 0, D = D7, and W = —K. Then we have the
symmetric linearization

0 -K -K 0
LQ.A=(_K _D), B:( 0 M). (11.38)

Computing the eigenvalues and eigenvectors of the QEP from GEP. Once the QEP
is transformed into a linearized GEP, the QZ iteration now can be applied to compute the
eigenvalues of the transformed linearized GEP Az = A Bz to obtain the eigenvalues of the
QEP. The eigenvectors of A — AB are computed by using the generalized inverse ileration
and the eigenvectors of the quadratic pencil then can be extracted from the eigenvectors
of A — LB as shown above. See Section 12.9 for more on computing the eigenvalues and
eigenvectors of the QEP.

» W =1, Then
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Accuracy and stability.  The accuracy of u computed eigenvaliee depends upon the choive
of linearization. For details, see Tisseur and Meerbergen (20017 and Tissewr {2000}, Fur
thermore, althangh the OZ algorithm is stable for the GEP, if is not stable for the QEP in
the sense that it cannol exploil the special structure of the problem.

Linearization of the symmetric positive-definite QEP. In case the QEP is symmetric

positive definite, the natural choice berween L, and Li is probably L, which preserves 70

the symmetry. Unfortunately, It camnor preserve definiteness. Even though & and B are
symmelric, they may be indetinite. Other symmetric choices are also possible. See Parlent
and Chen {1990} in this context,

MATCOM Note: The syrometric Hncarization Lo of the QEP has been implemented if‘i; the
MATCOM function QUADEIG2.

~MATELAB Note:rThe-MATLAB function-polyeig (K. D,-M} solves-the-QEP. (A2M- 4 .

A0+ Kjx =0, L uses a companion realization and the Q7 algorithm.

11.10 Review and Summary

This chapter has been devoted io the siudy of the most commonly arising eigenvalue problem
in engineering, namely, the generalized eigenvalue problem Invelving two matrices: Ax =
Afx. We now review and summarize the most important results.

11.10.1  FExistence Resuits

There exist Schur and real Schur analogues (Section 11,3} of the ordinary eigenvalue problem
for the generalized eigenvaloe problem as well. Once the pair (4, B) is transformed Into
the generalized real Schur form, the sigenvalues can be easily extracted.

11.10.2 The QZ Algorithm

The most widely used algorithm for the generatized eigenvalue problem is the QZ algorithm
{Section 11.43, which constructs the generalized real Schur form of (A, B), The algorithm
comes in two siages. In Stage 1, the pair (A, 8) is reduced to a Hessenberg triangular
pair. Tn Stage 11, the Hessenberg triangular pair is further reduced to the generalized real
Schur form by applying the implicit QR iteration to 4 B~ The mairix B~ is never formed
explicitly.

11.10.3 The Generalized Symmetric Eigenvalue Problem

i we neglect the damping forces, then all eigenvalue problems arising in structural and
vibration engineering can be cast in the form Kx = A My, where M is symmetric positive
definite, and K is symmetric positive semidefinite. This is called the symmetric definite
generalized eigemalue problem. Because of the importance of this problem, it has been
studied in some depth here,
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Several case swudies from vibration eagineering have been presented in Section 117
to show how this problem arises in important practical applications. These include

(i} vibration of a free spring-masy sysient,
(i} vibration of a building,
(i) forced harmenic vibration of a spring-mass svsten,

The natural frequencies and amplitudes ol a vibrating system are related, respectively, 1o
the generalized eigenvalues and eigenvectors. If the frequency of the imposed periodic force
becomes egqual or nearly equal to one of the natural frequencies of the system, then resonance
gecirs, and the situation is quite alarming.

The faill of the Tacoma Bridge in the state of Washingion and of Broughion Bridge in
England are possibly related 1o such a phenomenon. (See Chapter 9.)

Here are some of the methods and applications of the generalized gigenvaloe problem:

« The Q7 method can, of course, be used io solve a symmetric definite generalized
gigenvaloe problem. However, both sysuetry and definiteness witl be fost in general,

*

The Cholesky OF algarithm (Algorithm 1.4} computes the eigenvalaes of the sym-
meiric definite pencil A — A8 by ransforming the problent into a symemetric problem
using the Cholesky decomposition of B. The accuracy obtained by this algorithm can
be severcly impaired i the matrix B is ill-conditioned.

The accuracy can be sometimes improved by constracting an ordered real Schur form
of B rather than irs Cholesky factorization, in which the eigenvalues are computed
fronm the smallest to the largest (Exercise 11.11),

Simutrgneons diagonalization and applicarions {Sections 11.6-11.8) The Cholesky
(IR algorithm {Algorithm 11.4) for the symmerric definite problem Ax = A By basi-
cally construets a nonsingular matrix P that ransforms A and B simultaneously into
diagonal matrices by congruence: #7 AP = adiagonal matrix, and PTBP = /. This
is called simultonrous diagonatization of A and B. In vibration and other engineering
applications, this decomposition is called modal decomposirion and the matrix £ is
called a modal marrix. The weehnique of simultancous diagonafization is a very useful
technique in engineering practice (Algorithm 11.5}, Iis applications include

(1) deconpling of a second-arder system of differential equations
My+ Dy +Héy=10
to n independent equations
E;+{m+ﬁw?)é,—+wf:;w0, Fas 1,2,..., 0,
where D = oM + BK, and
{i1) reduction of a very large system of second-order systems o a reduced-order

model.

Decoupling and mode! reduction are certainly very aseful approaches for handling a
large second-order system of differeotial equations. Unformnurely, simultaneons di-
agonalization technigue is nof practical for large and sparse problems. Gn the other
hund, many practical problems, sach as the design of large space structures, power
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systems, efc., give rise to very large and sparse symmetric definite elgenvalue prak.
lems.  Furthermore, stmaitaneons diagonglization technigue destroys the sparsity,
bandedness, and other exploitable properties of the matrices M, D, and K. The most
practical large problems are sparse, and maintaiing sparsity is a sutfor concern for
algorithm developers in economizing computer storoge reguirements.

11,10.4 The Quadratic Eigenvalue Problem

The QEP arises in a wide variety of practical applications, including vibration analvsis and
design, vibroacoustic systems, fluid mechanics, processing, and coutrol theory. In most of
these applications, the end users, however, do nof see the associated eigenvalue problem as
the QEPR These prablems are routinely formulated as the standard or generalized eigenvalue
problem of the form Ax = 2 Bx, where A and B are 2r % 20 matrices, This is because that

is how 0 QEP is generally solved. There exisi, however, some projection methods that work

The Jacohi-Davidson method s an example of such a method, We will discuss it briefly in
Chapter 12,

11.11  Suggestions for Further Reading

Almast all books in vibration and structural engineering discuss implicitly or explicitly how
generalized eigenvalue problems arisc in these applications. Some well-known books in
the erature of vibration include Inmman (2006, 2007} and Thomson (1992),

The {JZ. iteration algorithm has been discussed in detsil in the books by Golub and
Van Loan {1994}, Siewart (1973}, and Demmel {1987} (The original paper of Moler
and Srewart (1973) is worth reading in this contesr.} For further reading on simultaneous
diagonalization techniques, see Golub and Van Loan (1998) and the references therein, See
Demmel and Kagstrim (1993} [or generalized Schur decomposition of a pencil,

For results on periurbation analysis and seasitivity of the generalized eigenvalue
oroblem, see, for instance, Stewart and Sun (1990), Boley (1990}, Stewart {1978, 1979),
and Tisseur (2000}, For Gersgorin theory of the generalized eigenvalue problem, see Stewart
{1975). See Ward {1981) for balancing of the generalized eigenvalue problem. _

For applications of the symmetric definite generalized eigenvalue problem to earth-
quake engineering, sce the book by Okamoto (1984},

A technique more efficient than the Cholesky QR iteration method for computing
the generalized eigenvalues of a symmetric definite pencil for banded matrices has been
proposed by Crawford (1973). See also the papers by Wang and Zhao (1991}, Kaufman
£1993), Davies, Migham, and Tisseur (2001), and Erxiong (1990,

Williams and Laub {1992) have considered the simulianeous triangularizations of
matrices M, O, and K of the second-order system ¥4+ D34 Ky = 0.

Chapter 15 of the book by Partett (1998} is a rich source of information on sym-
metric generalized eigenvalue problems, A dclightful survey on theory, methods, and
applications of the QEP has been given by Tisseor and Meerbergen {20013, This paper
also contains a bibliography rich on the subject. Sec also an earlier survey on the QEP by
Sleijpen. van der Vorst, and van Gijzen {1996). Several papers on conditioning, backward
errors, scaling, and other aspects of solving quadratic and other polynomial eigenprob-
lems have been written by N. Higham, Tisseur, and their collaborators in recent years,
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These include Tisseur (2000), Higham, Li, and Tisseur (2007), Higham, Mackey, and
Tisseur (2006, 2009), Higham et al. (2008), and Higham and Tisseur (2003). Visit the
home pages of N. Higham (http://www.maths.manchester.ac.uk/~higham) and F. Tisscur
{http:/fwww.maths.manchester.ac.uk/~ftisseur) [or more recent papers. See also an earlier
paper by Langer et al. (1992) for perturbation analysis.

Other recent papers of interests on computational nonlinear eigenvalue problems
include Mackey el al. (2006), Mehrmann and Voss (2004}, and Hwang et al. (2003). For
a collection of nonlinear cigenvalue problems, see Beicke et al. (2008). For the results on
orthogonality of the eigenvectors of the symmelric definite quadratic pencil and their uses
in partial guadratic eigenvalue and eigenstructure assignments, see Datta and Sarkissian
(2001), Datta, Elhay, and Ram (1997, 2000), Datta, Ram, and Sarkissian (2002}, Brahma
and Datta (2009), and Bai, Datta, and Wong (2009). A classical book on the QEP is Lancaster
(1966). The book by Gohberg, Lancaster, and Rodman (1982) is a rich source of knowledge
in theoretical aspects of polynomial eigenvalue problems.

Several variations of the quadratic orthogonality relations in Theorem 11.16 appear
in the dissertations of I. Carvalho and D. R, Sarkissian (available from the author’s website,
www,ntath,nin.edi/~dartab) and in Datta and Sarkissian (2001).

Exercises on Chapter 11
EXERCISES ON SECTION 11.2 and 11.3

11.1 Compute the eigenvalues and eigenvectors of the following pairs (A, B) by finding
the zeros of det(A — AB):

. 21 Lo ., (11 /1 0Y.
mA:(o 1)'3:(0 0)’ (”)A—(o I)*B_(O 0)'
I 2 0 1
(111)A=(04),B=(00

11.2 Show that when A and B have a common null vector, the generalized characteristic
polynomial is identically zero.

11.3 Let A and B be # x n matrices. Then prove that (i) det{A — A8) is a polynomial
of degree at most 21, (ii) the degree ol det{A — X B) is equal to » if and only if B is
nonsingular, and (iii) the eigenvalues of two orthogonally equivalent pencils are the
same. How are the cigenveclors related?

EXERCISES ON SECTIONS 11.4-11.6

11.4 Show that the matrix @; in the initial QZ step can be computed just by inverting the
2 x 2 leading principal submatrix of the triangular matrix B,

11.5 Show that the shifts o) and o in a QZ step, which are the eigenvalues of the lower
2 x 2 principal submatrix of C = AB™!, can be computed without forming the
complete B!, (Hinr: Compurtation depends only on the lower right 3 x 3 submatrix
of B~1.)

11.6 Using the implicit @ theorem, prove that matrix Q in the QZ step has the same first
row as ;.
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1.7 Work out the flop-count for
(1) Hessenberg \riangular reduction with and without accumulations of the trans-
forming matrices;
by one siep of the Q2 iteration,
{2) reduction of (4, &) (o the generalized Schur form.
11.8 Consider the Hessenberg triangular reduciion of (A, A) with & singular, Show that

in this case, if the dimension of the null space A B is &, then the Hessenberg triangular
structure takes the form

_fAn An {0 By
“i‘“((} Au)' 8““(0 Eu)'

where Ap is a & x b upper triangular matrix, A»s is upper Hessenberg, and Basy is
{n— &3 x (n—k)upper triangular and nonsingular. How does this help in the reduction
process of the generalized Schur form?

1LY Veri Fy the statement on the conditioning of the Eigénvaiﬁé'é'iif the matrix pair

(o ot ) (o 001 ))

given in Section 11.6.2,

11.18 Work out the flop-count for the Cholesky QR algorithm {Algorithm 11.4) of the
symmetric definite peacil.

1L.11 Develop an algerithm for computing the smallest eigenvalues of the symmetric defi-
nite peacil A — A8 by using an ordered real Schur form of 8 and then construct an
example to show that this algorithm vields better accuracy than Algorithm 11 .4,

1112 (Generalized orthogonat iteration.) Consider the following iterative algorithm known
as the generalized orthogonal fteration:

Step 1. Choose an s x i orthenormal matrix Qg such that Qg O = Fysm.
Slep 2. Fork=1.2,...do

2.1 Solvefor 2y 1 BZy = AQq_,.

2.2 Find QR factorization of Z; 1 Zi = O R
Apply the above plgorithm o the pair (A, B) given by

11 1 1 w11
2 3 4 1 10 1 1
A=l 3 5 st 8= | o
I 4 5 6 1 1 1 10
11.13 Given
111 0w 10
A=11 1 4|, B=11 10 1}:
11 g 110
1 LG
g 1 2 i
A=11 16 1}, B={} L 1
I .
53
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Find the cigenvalues and eigenvectors [or cach of the above pairs using

(a) the QZ algorithm followed by inverse iteration {Algorithms 11.2 and 11.3);
{b) the generalized Rayleigh quotient iteration algorithm {Algorithm 11.6);

(c) techniques of simultaneous diagonalization (Algorithm 11.5).

11.14 Prove that the eigenvalues of a symmetric definite pencil (A, B) lies in the interval
[—IIB~ Al | B~ Alll.

11.15 Show that the generalized Rayleigh quotient A minimizes f(4) = ||Ax — ABx|| 5.

PROBLEMS ON SECTIONS 11.7 AND 11.8

11.16 Suppose thal a bridge trestle has a natural frequency of 3 Hz (known from an earlier
test). Suppose that it deflects about 2Zmm at midspan under a vehicle of 90000 kg.
What are the natural frequencies of the bridge and the vehicle?

11.17 For the equation ol motion m¥ + ky = Fje'“", find the amplitude and determine the
situation which can give rise to resonance,

11.18 Consider the spring-mass problem shown in Figure 11.11.

(a) Determine the equations of motion,

{b) Set up the generalized eigenvalue problem in the form Kx = AMx, and then
determine the natural frequencies and modes of vibration.

N Y2 ¥3
i — e
3k k k 3k
) A iz NN ma

/

Figure 11.11. A three-degrees-of-freedmn spring-mass system: Generalized eigen-
value problem.

11.19 Consider the four story building as depicted by Figure 11.1.

Given
my = 1.0 x 10°kg, m>=08x 10%g, my=105x10kg, my; =0.6x 10°kg,
ki =15 x IO®N/m, k= 12 x 108N/m,  ky = 15 x 108N/m, &y = 10 x 10®N/m,

find the maximum amplitude of each floor tor a horizontal displacement of 3mm with
a period of 0.253 seconds, assuming zero initial conditions.
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car bady

.\’iff}" N (1}

. ) j‘
£ é Ll,{} d by
(\r:{f,?& l !

seshos 1, axde & wheel

‘{':: é tire

-
! psiile wa
[MJ peide way

e Figure IL12. Awtomobile suspenyion with vibration absorber.

suspensing

11,20 Consider the diagram of an automobile suspension with vibration absorber shown
in Figureil 12 (laker from the book Linegr Vibrations by B. C. Muller and W. O,
Schiehlen (1985, p. 226}

Given
my o= 1200ke, o= BOkg, g == 20k,
ky = 300 Nfem, &y = 3200 Nfem, &3 = 600 N/cm,

find the responses with different damping values of the absorber dy = {0, 300, 600,
and 1000 Ne/m {the response of a system is measured by the amplitude ratios),

assuming that ) = 0 and that the road profile is described by a sine wave (similar 1o
Example 11,12),

PROBLEMS ON SECTION 11.9

11.21 Find the eigenvalues and eigenveotors of each of the quadratic pencils with the ma-
trices

2 -1 0 I
(i) Mo fypy, K= | -1 2 14|, D=} 1 1]:
D

wi 2 1
1 6 1
(i M= 1 I I | K=1 1 o 1 LD =20 43K
I 1 1 10
Porod
i M=ha K=]1 1 1| | } D=k,
i1
12 3 ! i
(ivi M=) 4 53 6 | K=} | . D=0
T 8B 9 L i
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(V) Mﬁf;;,;j,, K = l 1 i . D=0

11.22 Show that the first and second companion forms (11.35) and (11.36) are linearizations
of the quadratic mawrix polynomial Pa(4).

11,23 Let (A, x) be an eigenpair of (A*M + AD + K)x = 0. Let A = o + ifi. Then prove
the following (Datta and Rincon (1993)):

(a) o = -ﬁ%\w, where D, M., and K, stand forthe exprcssionsxT Dx, x"Mx,

and x7 K x, respectively.

{b) Using (a), prove that (i) il M, K, and D are positive definite, then Re(k) < 0,
(ii)if M = 0, K > 0, and D == 0, then the etgenvalues are purely imaginary;
and Gi)if M > 0and D <0, K <0, then Re(A) = 0.

11.24 (a) Construct an example to show that if a regular quadratic pencil P2 (X) has 2n
distinct eigenvalues, then there exists a set of linearly independent cigenveeltors.

(b)Y Show that an infinite eigenvalue of a quadratic matrix pencil P»()) corresponds
o a zero eigenvalue of the reverse polynomial

MNP0y =K+ 2D+ M.
Construct an example to iflustrate this.
11.25 In finding frequency responses of a vibraling system, one has 1o solve the linear
systems ol the form
(@'M +wD + K)x = bw

for many different values of w. Develop an clficient computational method to solve
such systems based on a linearization A — wB of the quadratic matrix polynomial
Py(w) = w* M +wD+ K, and using the Schur decomposition of the 211 x 21 linearized
form.

11.26 Develop a procedure to solve the damped second-order system

ME() 4 Dx() + Kx(t) = f(1)

when damping is nonproportional, based on a first-order lincarization and assuming
that the eigenvalues are all distinct.

11.27 Prove that a necessary and sufficient condition for simultaneous diagonalization of
the mass, stiffness, and damping matrices is that the following commutativity relation
is satisfied: DM 'K = KM~'D.

MATLAB Programs and Problems on Chapter 9

M11.1 Write a MATLAB program, called hesstri, 1o reduce a pair of matrices (A, B) toa
Hessenberg triangular pair:

|H, T] = hesstri(A, B).

Test your program by randomly generating A and B, each of order up to 100
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Mil.2 () Write a MATLAB program, called gzifri. to implement one iteration step of the
(Y2 fteration algorithm (Algorithm 11.1)

[Al, BI] = gzitri (A, B),

where (A, B) iz a Hessenberyg triangular pair.
{b) Now apply one step of qritrdsi (double-shilt implicit QR iteration from Chapler
N =B A:
[C] = gritrdsi {C}.

{c) Compute [} = Al = BI~}, where (AL, BI) is the Hessenberg triangular pair
obtained in step {a).

()} Compare C ang D to verify that they are essentially the samg,

A = 50 > 50rapdomly generated unreduced upper Hessenberg matrix.
B = 30 x 30 upper triangular matnx with all entries equal to 1, except five
diagonal entries cach equal o 1077,

M11.3 Write s MATLAB program, called invitrgn, to implement Algorithm 1.3 by reducing
the pair (4, B) first to a Hessenberg triangular pair:

{u] = invitrgn(A, B, A, V).

Test your program using randomly generated matrices A and 8, each of order 50,
and then compare the result with that obtained by ruaning the MATLAB command
U, D} = eig(A, B).

M11.4 (The purpose of this exercise is to compare the accuracy of different ways of finding
the generalized eigenvalues and eipenvectors of the symmetric definite pencil K —
M)

{a} Usethe MATCOM program CHOLQR and the MATLARB command eig( X, M)
to compuie the cigenpairs (Vy, Dy} and (Vy, Do), respectively, of a symmetric
positive definite pencil A — A 8.

(b) Run eiglinv{M) + K) from MATLAB 1o compute {V3, D3} : [V3, D3] =
eig {inv(M) = K},

(c) Compare the resulis obtained in two different ways above.
Test data:

M o= diag{m, m, ... #)x0.2000 1 = 100L

Eo—k 0 0 - 0
7 SR Rt BUU |
K=1{: : T
—k
a 0 -k 2
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M11.5 Using ehol, inv, eig from MATLAB, write a MATLLAB program, called simdiag, 1o
simullaneousty diagonalize a pair of matrices (M, K'), where M is symmetric positive
definite and X is symmetric (Algorithm 11.5): [, D] = simdiag (M, K).

Test date: Use M and K from the case study on the vibration of a building in Sec-
tion 11.7.1.

M11.6 (The purpose of this exercise is to compare different approaches for solving the
symmetric positive definite quadratic eipenvalue problem (WM + 3D + K)x =0.)
(i) Form the matrix A = (_MU_IK _M’.ID) by using the MATLAB commands inv,
eig, and zeros. Then compute the eigenvalues and cigenvectors of A using the
MATLAB command V), D] = eig (A},
(i1) Use the program cholqr to compute the eigenvalues
[V2, D2] = cholgr (A, B),
where A = (% %), B=(F D).
(iii) Use the MATLLAB command [V3, D3] = eig (A, B), where matrices A and B
are given as in part (ii).
(iv} Use the MATLAB command |V, Dy] = polyeig(M, K, D).
Compare the results of the above lour approaches with respect 1o accuracy and
IV D24 D, Vi By K Vil
(R
Test data: Use the same M and K as in Problem M11.4 and with D = {077« M.

top-count. Use as a measure ol accuracy.

MI11.7 Find the natural frequencies and modal damping ratios ol a quadratic pencil with the
matrices M, K, and D as given by the test data of Problem M.11.6 (equations (11.33)
and (11.34)),

M11.8 Perform an experiment to compare the relative errors of the largest and the small-
est eigenvalues (in magnitude) ol the QEP with different linearizations, as stated in
Section 11.9.3, using the test data of Problem M11.6.



Chapter 12

Iterative Methods for Large
and Sparse Problems:
An Overview

12.1 Introduction

The direct methods hased on triangularization of matrix A becomes prohibitive in terms
of computer time and storage if matrix A is quile large. On the other hand, there are
practical situations, such as the discretization of partial differential equations, where the
matrix size can be as large as several hundred thousand or even more. For such problems,
direct methods for linear systems such as the Gaussian elimination and QR [lactorization
metheds become impractical. Furthermore, most large problems are sparse. A sparse matrix
is rougily defined as a matrix with a few nonzero entries and a large number of zero eniries.
Unfortunately, the sparsity gets lost to a considerable extent during the triangularization
procedure, so that at the end we have to deal with a very large matrix with too many nonzero
entries, and storage becomes a crucial issue. For such problems, it is advisable to use a
class of methods called irerative methods that never alter matrix A and require the storage
of only a few veclors ol length #r at a time. These methods, unlike the direct methods,
do not produce an exact solution, but rather aim at iteratively improving solutions at each
iteration. These methods then allow a user to stop as socn as a certain stopping criterion is
satisfied.

In this chapter, we will first study the classical iterative methods for linear systems,
such as the Jacobi, Gauss—Seidel, and successive overrelaxation (SOR) methods, and then
discuss Krylov subspace methods, both for large and sparse linear systems and eigenvalue
problems.

Much research has been done in recent years on Krylov subspace methods and the
research on this topic is still at developing stage. We only give a very brief overview of
these methods and refer the reader to the specialized books and papers in this area.

Our discussions on Krylov subspace methods include (i) the conjugate gradient
{CG) method for symmetric positive definile systems, (ii) the generalized minimal residual
{GMRES) method, (iii) the bi-conjugate gradient (Bi-CG) method, and {iv) the quasi-
minimal residual (QMR) methods for nonsymmetric systems. A brief discussion on precon-
ditioning techniques is also included. We also include a brief discussion an Krylov subspace
methods to compute extreme eigenvalues of large and sparse matrices.

435
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12.2 The Jacobi, Gauss-Seidel, and SOR Methods

The basic idea behind these metheds is o first write the sysicm Ax = & in an egquivalent
form,

x = Bx+d, (12.13

and then, starting with an initial approximation v*7 of the solution vector x, to generate a
sequence of approximations {x%), iteratively defined by

D =B g k=12, (12.2)

with & hope that under certain mild conditions the sequence {x™'} converges 1o the solution
as k — no, i

To solve the linear system Ax = b iteratively using this idea, we therefore nea{i 55
know

_{a} how to write the system Ax = b in ﬁhe form (I2.1), and

(b} how x should be chosen so that the iteration {12.2) converges (o the Timil or under
what sort of assumptions the iteration converges to the Himit with any arbitrary choice
of ¥t

There are three well-known classical iterative methods: Jacobi, Ganss-Seide!, and
successive overrelaxation {SOR). These three methods differ in way matrix B and vector
are computed.

Computations of x**V from x*! by each of these methods in {12.2} are shown helow,
Lot ot o (.rf‘z, LU LN

‘il

Jacobi iteration.

4
REZS3! ! § Z £3) .
X5 = — b,‘-—‘ R N Imi,g,.... (32.3}
i ‘ J
i

Matrix forst of the Jacobi fteratipa. Write A = D 4+ L 4+ U, where D = diag{a,,
L ) (diaponal of A),

g 0 AU ¢
amn 0 . &
L= . . ! . [lower triangular with zeros on the (12.4}
- R dingonal)
Gyt P 4 T 0
and
i £ 1% ] Tin
0 0 apn - &
U=1 1 o " . 5 {upper trigngnlor with zeros on the (12.5)
diagonal),
anwl.n
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Define B; = —D™L+U),d; = D7'b. Then the Jacobi iterations (12.3) can be written as

.\'(k+” = BJX(M 4 d_f

Gauss—Seidel iteration.

"

il
(k1) ] k1) (k) -
= — bi— Y ayx{ = 3 g™ i=12,. (12.6)
i i=l j=1+1

The idea is to use each new component, as soon as it is available, in the computation of the
next component. This is not done in the Jacobi method.

Marrix form of Gauss-Seidel iteration. Define Bgy = —(D + LY~ 'U, dgs =
(D + L)~'h. Then

IM+” = BGS_’C(H + d(;s.
SOR iteration.

i—1 "
' w - : . .
xf_”‘*’” =— | b - E ajj_\'(.I‘J“]) - E aij.t(."} +(l—w)xf, i=1,2
i i i
i =1

j=i+l

—
2
~J

'

Matrix form of SOR. Define Bsgr = (D + wl) 'l -~ e D — wl)] and dspg
w(D 4+ wL)~'h. Then the above iteration can be written as

] ik
Y = Bsorx™ +dsog.

Notes: (i) 1l w = 1, then the SOR method becomes identical to the Gauss—Seidel
method.

(i) If w > 1, then in computing the (k 4 [)th iteration, more weight is placed on the
most current value than when w < 1, with the hope that convergence will be faster. The
number e is called the relaxation factor.

Example 12.1. We apply the Jacobi, Gauss--Seidel, and SOR methods to

5 1 I X 7
15 1 v |=17
i 1 5 X3 7

with U = (0, 0, 0}". Note that the exact solutionisx = ([, 1, ;7. N
The results are displayed in Table 12.1.

Comment: The matrix A above is strictly row diagonally dominant and positive definite.
The Jacobi and Gauss—Seidel methods converge for stricrly row diagonally dominant matri-
ces with an arbitrary initial approximation, and the SOR converges for a symmetric positive
definite matrix if 0 < w < 2. See discussions in the next section.

Stopping criteria for iteration (12.2). Tt is natural to wonder when iteration (12.2) can
be terminated. Let ¢ > O be the tolerance. Let || - | be a subordinate norm.
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Table Y1, A fow iterations of the Jacobl, Gauss—Seidel, and SOR methods for
Exaniple 12.1.

Melhod i 3 i Pt x® Pl (8
Tacobn 1.4 0.84 LOG40 | 09744 ¢+ 10102 | 09959 | 10016
14 0.84 11,0640 | 0.9749 | L0102 | 09959 | 1.0016
1.4 0.84 10640 1 0.9744 | 1.0102 | 09939 | 1.0016
Gauss—Seidel | 1400 | 0.9968 | 09964 | 0.9996 | 1.0000
L1260 ¢ 10214 1 10014 | 10000 | 1.0000
0.8960 | 0.9964 | 1.0014 | 1.0010 | 1.0000
S0R 1.6800 | 0.8047 7 1.0266 | 1.0022 | 6.5979 | 0.9979 | 1.0000
{w= 1.2} 1.2768 | 09086 | 09811} 1.062 | 0.9991 | 0.9991 | {.0001
09704 1 1.0531 | 0.89875 | 1.0C06 | 1.0070 | 10807 | 1.000]

There are several cmies;a that éun b:,used {seeﬂ:gham(zﬂ{}l pp335—’-5’%7)) The
one that is the most convenient and widely used In existing code is
b — Ax™
e <
ol

See alse Arolt, Dufl, and Ruiz {1592) and Barrett et al. {1994, pp. S’?-ﬁ?r).‘ A user
might want to stop i the number of Lierations exceeds the maximum aumber of iterations
permitted 1o perform.

Relative residual norm:

12.2.1 Convergence of the Jacobi, Gauss-Seidel, and SOR Methods

It is often hard to make a good guess as to the initial approximation x'. Thus, it will be nice
to have conditions that will guarantee the convergence of iteration {12.2) for any arbitrary
choice of £,

In the fellowing we devive such a condition.

Theorem 12.2 (iteration convergence theorem). The freration
O
converges 1o a limit with an arbitrary choice of the initial approximation x\V if and only if

matriv B* — Qas k — oo, that is, B is a convergent mairix,

Froaf. From
x=Bx-+d

and
c Y gy g

we have
x = x¥F e pry Ry, (12.8)

Since this is true for any value of &, we can write

x = x% = Ble - x¥, (129
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Substituting (12.9} in (12.8), we have
x = x®FD = B Dy (12.10)
Continuing this process & times we can write
vy ®FD = ghiy iy,

This shows that {x'*'} converges 1o the solution x for any arbitrary choice of x!? if and only
if B% —» Qask - oo, [

Convergence in terms of spectral radius and matrix norm.  Using the Jordan canonical
theorem (Theorem 9.28) it can be shown that B is a convergent matrix if and only if
the spectral radius of B, p(B), is less than 1. Now p(B) = max{|x;|, i = |,..., n},
where A, through A, are the eigenvalues of B. Since |A;] < §B| for each i (see Theorem
9.11); in particular, p(B) < [|B]|l. Thus, if |B] < I, then the convergence is guaranteed.
Computationally, it is lot easier to check than finding the spectral radius. Unfortunately, the
converse of this fact is not rrue.

In the iollowing theorem, we combine the result of Theorem 12.2 with the observation
just made.

Theorem 12.3 (conditions for convergence of iteration (12.2)), A necessary and sufficient
condition for the convergence of iteration (12.2), for any arbitrary choice of x'V, is that
p{BY < 1. A sufficient condition is that ||BY < | for a subordinare matrix norni,

We now apply the above result to identify classes of matrices for which the Jacobi
andfor Gauss—Seidel methods converge for any choice of the initial approximation x’.,

The Jacobi and Gauss—Seidel Methods for Diagonally Dominant Matrices

Corollary 12.4. If A is strictly row diagonally dominant, then the Jacobi method converges
for any arbitrary choice of the initial approximation x(,

Proof. Since A = (ay;) is strictly row diagonally dominant, we have by definition

1
lai > Y lagl, i=1,2...,n (12.11)
j=I
i#]
The Jacobi iteration matrix By can be written as
iz [
0 = .. . -
[#5e3] an a3 g_&l
= 0 = =
3k a amn
By =
_ i
a a Dyl =1
nl aon-|
LY . - — 0
afl" al’l”

From (12.11) we therefore have that the absolute row sum of By (that is, the row sum taking
absolute values) of each row is less than 1, which means | B, |lc < [. Thus by Theorem
12.3, we have Corollary 12.4. O
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Corollary 12,5, If A is g strictly row diagonally dominant matrix, then the Gauss-Seidet
method converges for any arbitrary choice of x"\.

Proof. Lot & be an eigenvalue and et s == (i), .. ., 1,)7 be the corresponding eigenvecior
of the Gauss-Seide! ileration matrix B, Then we will show that p(8qs) < 1 From the
expression of Bgs given in Section 12.2, we have
~0u = {D -+ Liu
or
# i1
- Z ag it w},Za.-ju_,-, fz=1,2,..., 8,
F=itd =i
which can be rowritten as

Jl

o
..................... ALl —A § Qi — E gt p, i L2
Jul

Jmil
Let #; be the largest component {having magnitude 1) of the vector 1. Then [rom the above
equatinn, we have

£l #

Mlagd S MY layl+ 3 tagl (12.12)
Ju=d Frkded
Z?:we lex; §

(e — 3570 tag D)

Since A is strictly row diagonally dominant, fag] - 352 lax;| > ¥ Gers Joxgi Thus

from (12.13), we then conclude that 1A} = 1, that is, p{Bgg) = 1.
From Theorem 12.3, we now have Corollary 125, [

or

[A] = (213

Remark. It is usually true that the greater the diagonal dominance of A, the faster the
convergence of the Jacobi method, However, there are simple counterexamples that show
that this does not always happen.

The following simple 2 x 2 example in support of this statement appears in Golub
and Van Loan {1996). The example was provided by Richard 5. Varga.

1T - 1 -3
o=y ) w7

It is casy to verify that p{8;) of A is greater than p(B,) of Ay Readers are invited to try
the Jacobi method with &1 and A to verify the statement.

rat—

The Gauss-Seidel Method for a Symmetric Positive Definite Matrix

We show that the Gauss—Seide] method converges, with an arbitrary choice of xV, for a
symmetric positive definite matrix.

Theorem 12.6. Let A be o symmetric positive definite matrix. Then the Ganss~Seidel
method converges for any arbitrary clivice of the initial approximation x').
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Proof. Because A is symmetric, we have A = L+ D+ L7, where L is as defined in (12.4)
and D = diag (a)). ..., du)-

Thus Bgs = —{0 + L)' LT. We will now show that p(Bgs) < [.

Let —A be an eigenvalue of Bgg and 1 be the corresponding eigenvector. Then

(D+L)"'"LTu = in.
Multiplying the last equation to the left of both sides first by (D + L) and then by u*, we

et

w*LTw = A" (D + L

> wrAu — ut (L + D)u = (L + D) (sinceA=L+D+LT)
or
AR = (1 + A" (L + Du. (12.14)
Taking the conjugate transpose on hoth sides, we have
u*Au = (I 4+ (LY + D . (12.15)

Adding (12.14) and (12.15), we obtain

1 1 -
+ — JurAu = w* (L4 D 4 w* (LT + DT
((IH) (1+A))1 e D :

=L+ D+LT D" =0 (A+ DNy =u*(A+ Du > u*Au.

(Note that since A is positive definite, so is D and, therefore, 1* Du > (.)
Dividing both sides of the last equation by #*Au(> 0) we have

l 1
((1+)~)+ (i+i)) ~ !
(2+A+i)_ .
(I+2){(1+2)
Lelh =w-if. Then A = @ — iB. From (12.16) we then have
21 + )
(O +a)+ 42
from which it follows that a? + 82 < 1. Thatis, p(Hgs) < 1, since [A]| = \/m. O

or

(12.16)

> 1,

Rates of Convergence and a Comparison between
the Gauss—Seidel and Jacobi Methods

We have just seen that for strict row diagonally dominant matrices both the Jacobi and the
Gauss—Seidel methods converge for an arbitrary x{"?. The question as to whether this is
true for some other matrices as well naturally arises. Also, when both methods converge,
another question arises: Which one converges faster?

From our discussion in the last section we know that it is the iteration matrix 8 that
plays a crucial role in the convergence of an iterative method. More specifically, recall
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from the proof of Theorem 12.2 that e, = ervor at the (X -+ Dth step = x - x**1 am
e = initial error = x — x'7 are related by

Heverdl < B Mledl,  k=1,2,3,....

Thus, | 85§ gives us an upper bound of the ratio of the error between the (& + 13th step and
the initial ervor.
Definition 12.7. I | BYY| < 1, then the guanrity
In 8%

k
is called the avernge rate of convergence for k iterations, and the quantity

—Inp(B}

is called the asymptotic rate of convergence,

the ather and both merhods are known to converge, then the one with the larger asymptotic
rate of convergence converges asymptotically faster than the other

The following resudis on the rate of convergence of the Jacobi and Gouss—-Seidel
methods {Varga (200()) can be proved.

» If0 « p(B} < |, then the asymptotic rate of convergence of the Gauss-Seidel
methed is larger than that of the Jacobi method.

+ If malrix A has all its diagonal entries positive and off-diagoual eniries nonnegative,
then

{1) the Jacobi and the Gauss—Seidel methods either both converge or both diverge;

(i) when hoth methods converge, the Gauss—Seidel method converges fasler than
the Jacobi method.

Remarks. Note that in (i) above we are watking about the asymiptoric rate of convergence,
not the average rate of convergence.

Unfortunaizly, in the general case no such staiements shout the convergence and the
asymptotic ratwes of convergence of two iterative methods can be made. In fact, there arc
examples where one methed converges but the other diverges. However when both the
Gatiss--Seidel and the Jacobi methods converge, berause of the lower storage requirement
and the faster rates of convergence, the Gauss-Seidel method should be preferred over the
Jacobi method.

Convergence of the SOR Method: Choice of w in the SOR Heration

It is natural 1o wonder what is the range of o for which the SOR iteration converges and
what is the optimal choice of w. To this end, we first prove the following important result
due o Kahan (1958).

Theorem 12.8 (Kahan), For the SOR ieration 1o converge for every initial approximation
X% v must He in the interval (0, 2).
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Proaof. Recall thai SOR iteration matrix Bggp is given by
Bsor = (D + L)™' [(1 —w)D — wl],
where A=L+ D+ U.

The matrix (£ -+ wl)™' is a lower triangular matrix with —~, i = 1,...,n, as the
diagonal entries, and the matrix (1 —w) D —wU is an upper ernuuldr matrix w1Lh {1 —cw)aji,
i = 1I,...,n,as the diagonal entries. So, det(Bgor) = (1 — w)*.

Since the determinant of a matrix is equal to the product of its eigenvalues, we con-
clude that

p(Bsor) = |1 — wl,
where p{Bsog) is the spectral radius of the matrix Bgog.

Since by Theorem 12.3, p{Bsor) has to be less than f, we conclude that e must lic
in the interval (0,2). 0O

The nexl theorem, known as the Ostrowski—Reich theorem, shows that the above
condition is also sufficient in case matrix A is synmmetric and positive definite.

The theorem was proved by Reich for the Gauss—Seidel iteration (w = 1) in 1949
and subsequently extended by Ostrowski'” in 1954 for the SOR method.

Theorem 12.9 (Ostrowski). Let A be a symmetric positive definite matrix and let 0 <
w < 2. Then the SOR method will converge for any arbitrary choice of x\.

There are certain classes ol matrices, such as consistently ordered and 2-eyclic ma-
trices with nonzero diagonal entrics (sec Young (1971, 1972}, and Varga (2000)), for which
there exists an optimal choice of w. The block diagonal matrices with nonsingular diagonal
blocks are such marrices. Note that the block tridiagonal matrix A arising in the discreliza-
tion ol Poisson’s equation, encountered in Chapter 6, belongs to this class. In this case, the
optimal choice lor e, denoted by wy, can be shown to be

5

P

1++1—p(B8,)
and p(Bsor) = wop — 1.

Furthermore, for consistently ordered 2-cyclic matrices, if the Jacobi method con-
verges, so does the Gauss—Seidel method, and the Gauss—-Seidel method converges twice as
fast as the Jacobi method.

Example 12.10.

Wopt =

4 -1 0 -1 0 0
-1 4 -1 O -1 0
o -1 4 0] 0 -1
-1 0 0 4 -1 0|
o -1 0 -1 4 -1
0 0O -1 0 -1 4

A=

oo O~

Y Alexander Ostrowski (1893-1986) was born in Kiev, Ukraine, and lived in several countries, including
the United States, the United Kingdom, Germany, and Switzerland. He studied under such celebrated
mathematicians as Hilbert, Klein, and Landau and solved the famous Hilbert’s Eighteenth Probiem. He
made profound coatributions in severa! areas of mathematics, including determinants, matrix theory, algebraic
equations, differential equations, number theory, geometry, topology, and numerical analysis. Some delails
of his contributions can be found in hirpe/www-historv.mcs. si-andrews. ac.nk/References/Ostrowski. i,
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The cigenvalues of B, are 0.1036, 0.2500, —~0.1036, —0.2500, 0.6036, —0.6036.
p(B,;) = 06036,  p(Bgs) = 0.3643,

Wopy = — =1.1128.
1 — (0.6036)2
11 ook five iterations for the SOR method with ey 1o converge to the exact solution
{up to four significant figures), starting with .té'(;R =(0,0,...,0)7, and

x{, = (0.2948,0.0932, 0,0282, 0.0861, 0.0497, 0.0195)7 .

With the same starting vector ‘", the Gauss—Seidel method required nine iterations.
(Try it!} Also eighteen iterations is required by the Jacobi method. N

MATCOM Note: The Jacobi, Gauss-Seidel, and SOR methods have been implemented,
respectively, in the MATCOM programs jacobi, gaused, and sucov.

Table 12.2 summarizes properties of the three methods discussed above.

Symmetric Successive Overrelaxation (SSOR) Method

There exists a symmetric version of the SOR method which is derived by combining the
SOR scheme with the hackward SOR scheme. The SSOR matrix and the corresponding
vector can be written as

Bssor = (D + wU) N (—wL + (| — w)D)(D + wl) ' (—wl + (1 — w) D),
dysor = w(D + Uy ' (I +[—wl + (1 —e)D(D +wL) 5.

The reader is invited to develop the complete algorithm (Exercise 12.12).

Table 12.2. Comparison aof some classical iterative methods.

Method Properties

Jacobi Easy to use. Convergence with an arbi-
trary initial guess is guaranteed if A is
strictly row diagonally dominant.
Gauss—Seidel Typically converges {aster than the Jacobi
method. Convergence with an arbitrary
inilial guess is guaranteed for the strictly
row diagonally dominant and symunetric
positive definite matrices.

Successive overrelaxation (SOR) | When « = 1, convergence is typically
faster than Gauss-Seidel. The speed of
convergence depends upon w. Guaran-
teed convergence for a symmetric posi-
tive definite matrix. Optimal w is avail-
able for certain classes of matrices, such
as the block symmetric positive definite
matrices arising in Poisson’s equation.




12.3. Krylov Subspace Methods for Linear Systems 445

12.3 Krylov Subspace Methods for Linear Systems:
Lanczos, Arnoldi, GMRES, Conjugate Gradient,
and QMR

Given an n x n matrix A and an n-vector x, the sequence {x, Ax, ..., A""'x]is the called a
Krylov sequence and the matrix {x, Ax, ... A" vy is called the Krylov matrix, denoted
by K.(A, x), after AN. Krylov.'#

The subspace K, (A, x) = span{x, Ax, ..., A" 'x} is called the Krylov subspace
of dimension m, assuming that the vectors are independent. Two basic Krylov subspace
methods are the Lanczos and Arnoldi methods. Historically, the Lanczos method, devel-
oped by C. Lanczos (Lanczos (1930)), was the first of its type. When A is symmetric, both
methods become identical if the starting vectors are the same.,

The Arnoldi and Lanczos methods are used as projection methods in numerical linear
algebra to solve large-scale matrix compultational preblems which are typically sparse (see
Bai et al. (2000), Saad (1992, 2003), and Stewart (2001a)).

A large problem is typically projected onto a Krylov subspace of dimension
m (m & n). Then the projected problem is solved using a standard technique, and fi-
nally an approximate solution of the original problent is retrieved from the solution of the
smaller projected problem.

We will describe the basic Arnoldi (Algorithm §2.1) and Lanczos (Algorithms 12.4
and 12.6) methods first and then discuss some of their well-known applications to linear
system and eigensolutions of large and sparse matrices. Our discussions will include the
following:

» Arnoldi-based full orthogonalization (Algorithm 12.2) and GMRES {Algorithm 12.3)
methods for nonsymmetric linear systems

« Nonsymmetric Lanczos-hased bi-conjugate gradient (Algorithm 12.7) (Bi-CG) and
QMR methods for nonsymmetric linear systems {Section 12.3,11).

« Symmetric Lanczos-based conjugate gradient (CG) (Algorithm 12.5) and precondi-
tioned conjugate gradient (Algorithm 12.9) methods for symmetric positive definite
systems.

* The Lanczos method for the symmetric eigenvalue problem {Section 12.6.3).

An explicitly restarted Arnoldi algorithm (Algorithm 12.10) for the nonsymmetric
cigenvalue problem.

» The implicit Arnoldi method for the nonsymmetric eigenvalue problem (Algorithm
12,11).

There are some drawbacks to these methads. Baoth the Arnoldi and Lanczos methods might
encounter “breakdowns™ or “near breakdowns™ during the process of orthogonalization. In

¥ Alexei Nikolaevich Krylov (1863-1945) was a Russian maritime engineer. His celebrated paper “On the
numcrical selution of the equatien by which the technical questions {requencies of small oscillations of ma-
terial systems are determined”™ [[zvestijo Akad, Nauk S5SR, Ordel. Mat. i Estest. Nank, 7(4) (1931}, 491-539
(ist Russian)] forms the basis of the so-called Krylov subspace methods. (Consult hetp:ihewse navy.nidhistory/
b-krylovhum (in Russian).)
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case of the Arnoldi and symmetric Lanczos methods, such a “breakdown” is considered 1o
be “happy breakdown” for the eigenvalue problem because in such a case one obtains an
exacteigenvalue. With the nonsymmetric Lanczos method, however, this is not always true,

12.3.1 The Basic Arnoldi Method

{See Arnoldi {1951).) Given A € B**%, a nonzero vector v, and an integer m < #, the
iden is 1o create the set of (m -+ 1) ortfionormal vectors [vy, ..., S b andan (m -+ 1) xom

Hessenberg marrix Hy, such that iV, = (v, .., et and Vi = (U, 000, Uiy Vst b
then

AVy = Vi1 Hy {12.17H
or

h Ll e fi im
A(Bis Vi, cony um} = (Vf, P20 -« s Ve Ummlwl} +
hm—?hm

From above, it follows that il we set vp = o/[jv]ls, then we can compute, at step &, the

vector vy and the &th column of H, by comparing the entries of the &th column of both
sides, as shown below,

Step 1. Compute v and the entries of the first column of Hyy. By comparing the entries
of the first column of both sides of the above equation, we have

Awy = hyu + By,
Multiplying by E}i‘r on both sides, we get

vl Avp =Ty, (sinee vl vy = Tand vl vy = 0).
MNexl set
P= Av; — Iy

and take fiay == [ifH]s. Then set

vy B by = 0180
The pther steps are analogous.

Step k. AL step &, the eatries of the kth column of the matrix H,, togother with vgy can be
generated from the (& + Ui-term recursive relation

Av = By + - F g+ R g P {12.18)

and making vse of the fact that [vy, v, ... . ] are orthooormal,

Algorithmieally, sy will not be compuled from the relation /iy = vg Ave (see
Algorithm 12.1}.

Fhus, the above process is simply the modified Gram-Schmidt process for generating
a set of orthonormal vecrors. We will now write the process algorithmically in the following.
There exisls a Householder version of the algorithm due to Walker {1988), which is more
numerically stable i more expensive as well,
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ALGORITHM 12.1. The Arnoldi Method (Modified Gram—Schmidt Version).

Inputs: (i) A, an #n x n mauix, (if) v, an n-vector, and (iii} m, a positive integer
less than or equal to .

Outputs: (i} A set of (m + 1) orthonormal vectors {vy, va, ..., Vgt b (11} A
{m + [} x m1 Hessenberg matrix H,, = (/ij;).

v

(N

Step 0.  Normalize the vector v to obtain vy ; v} =

Step 1. Fork=1,2,....,mdo
7= AUI;
Forj=1,2,..., kdo

hj,k = Uj;rll.‘?
U= U— I"l_',-'kvj
End
Meerx = |0f2 I g 1 = O, stop.
Ukl = Uf gsr
End

Some Important Relations obtained from Algorithm 12.1.

Here we summarize some important relations which can be easily derived from the Arnoldi'?
method.
Let
Vi =, 2o, Un),
Vst 2= (U1, tas ey Ut
H, =them x m Hessenberg malrix obtained by
deleting the (m + Dth row of the matrix H,,.

L. (Arnold: facrorization.) The relation (12.17) can be wrilten as

AVy = Vo Hy =y (0,0,...,0, 041 (12.19)

or
AV, = Vo Hy + Byt mUnsre] (12.20)

or
AV, = Vo Hy + finel where fo = M| Vst - (12.21)

The above factorization is called the Arnoldi factorization and can be represented
as shown in Figure 12.1.

“walter Edwin Arnoldi {1917-1993), an American engineer/scientist, was born in New York and educated
at Stevens Institute of Technology and Harvard University. He was employed as an analytic engineer by
Hamilton Standard Division of United Aircrafi Corporation from 1939 10 1977, His paper “The principle
of minimized iterations in the solution of the cigenvalue problem” {Arnoldi (1951)) is perhaps one of the
most cited papers in numerical linear algebra. An article about Arnoldi can be found in American Men &
Women of Science [§8th ed. Vol. 7, 1993]. See also NA Digest, Monday, March 4, 1996, Vol. 96, issue 09
(hup:/fwww.nedib.org/na-digest-html/36/v96n09.htmi).
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T
A Vit = Vi N + fmey,
nxm

Hﬂ'l

mxnm

nxn nxm nxm

Figure 12.1. Arnoldi factorization.

II. (QR factorization of the Arnoldi-Krylov matrix.) The matrix V,, is such that
K= VR, (12.22)
where K, is the Krylov matrix (b, Ab, ..., A"~ 'b). That is, V,, is the Q matrix of
the reduced OR factorization of the Krylov matrix K.
1L, From AV, = Vi1 Hy, it follows that } e
VIAV, = H,. (12.23)

"

IV. Finally, it can be established that each v; = p;—((A)vy, where g is a polynomial
of degree i — 1,

Breakdown of the Arnoldi method. The algorithm breaks down at step | if U at that step
is a zera vector, It can be shown that this will happen if and only if the degree of the minimal
polyromial of vy s exactly f; that is, it is a combination of j eigenvectors. As indicated
carlier, this is a happy breakdown for the eigenvalue problem. In this case, the subspace
K;(A, v)) is invariant and the approximate eigenvalues and eigenvectors are exacl.

Restarted Arnoldi methods. The storage and computational costs of the Arnoldi method
increase substantially as mt increases. Note that for m steps of the process, approximately
O(m>n) flops and (mn + @)n storage locations are required. To overcome this difficulty,
the Amoldi method is usually restarted with a different starting vector (keeping m fixed) or
by changing m dynamicaliy by introducing a fixed variable m, (a small integer) such that
the accuracy of the method is checked after every 1 iterations of the Arnoldi method. Such
variations of the Arnoldi method are usually called restarted Arnoldi methods and will
be described in what follows in the context of applications of Arnoldi methods for solving
linear systems. There are, however, other types of restarted Arnoldi methods (Saad (2003)).

12.3.2 Solving Ax = b Using the Arnoldi Method

The Arnoldi method, described in the previous section, can be conveniently used 1o solve
the large and sparse linear system Ax = b. We will describe two metheds: a Galerkin
method and a minimal residual method. The basic idea behind these methods is the same:
both are projection methods and work as follows,

* Guess an initial approximation xg and compute the residual: ry = b — Axg.

« Find a correction vecior z,; by solving an m-dimensional problem (m <« 1) such that
Alxg+ im) = Axy = b.
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How to Determine z,. To determine g, the i steps of the Arnoldi method, starting
with v, = rg/Elroih, can be run to generate the matrices H,,, V,,, and H,;, and then z,, is
sought in the form

m = Vi "
{or some y,, € B,

The two methods differ in the way the vector z,; is computed.
Let the Arneldi method be started with vy = rg/{|rolia, where g = b — Axg and g is
the initial solution. Then the following hold.

o Inthe Galerkin method, the residual vector r,, = b — Ax,, is required to be orthogonal
Wk, (A, ro). This is equivalent lo finding y,, by solving an m x m Hessenberg system.
Specifically, the following m x m Hessenberg system is solved (see the discussion
below):

Hy Yo = lirollzes. (12.24)

» Inthe generalized minimal residual (GMRES) method, it is required that r,, be min-
imized. This is equivalent to finding y,, by solving an m-dimensional least-squares
problem (see Theorem 12.12 below). Specifically, y,, minimizes

J(v) = lledlrolla — Huylla. (12.25)

The Galerkin Method

In the Galerkin (also know as the Ritz—Galerkin)} method, it is required that the residual
vectorry, = b—Ax,, beorthogonal to K, (A, ro). Sincer,, = b—A(xg-+2y) = ro=—A Ve Y,
this condition gives

Vn]z'-(rO - Avm ,Vm) =40
That is,
VIAVuym = V.

m m

Noting that vy = ro/|jrglt2, we can simplify the right-hand side as follows:

r r{rg
vl HFOH" %lr()”:“
vl —_ 0
VI = Sodr=| vlrlu | = : = |lrollze1.
r : 0
v o
" v/ rallav

(Note that u,.T v =0, i =2,...,m.) Thus the projected m x m system to be solved,
VI AV, ym = V.I'rg, reduces to

Hyym = [rollaer,
which is an m < m Hessenberg system with the above special right-hand side.

This projected problem is now solved 1o obtain v,,; then the correction vector z,, =
Vi v 18 computed, and finally an improved solution vector x,, = xp + 2, is obtained. The
method is also known as the full orthogonalization method (FOM).
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Restarting, 1f the corresponding residual vector ry, = b — Ak, is not small enough, then
the process is restarted, setiing ¥p = X, and rp = r,,. Other types of restarting methods,
such as restaning with an increased value of s, are also possible, However, we will consider
here restarting methods only of ihe first type.

Computing the residual.  Since theresidual r, atevery iteration (alter the fixed w1 steps of
the Arnoldi method) needs to be computed and checked for smaliness (o see if the method
aeeds to be restarted, it is desirable that this can be computed cheaply. I turns oot ts
indeed can be done with information available orly ot the end of m steps of the Arnoldi
method, and, in fact, this can be computed even before the next uptlating, as seen from the
following.

The residual vector v, and s norm are givea by the following theorem (Exercise
12.15).

corresponding residual. I7 the starting vector in the Arnoldi method is taken as v =
ra/ lrolls, then the residual vector vy, of the approximate solution x,, computed by the FOM
and ifs norm are, respectively, given by

y 7.
T = b~ A}vm = _i111r+§,is;€g;}‘ﬂi Virgabe t ”226)
and
T
”’“m ES = éeu-&-“& |em.\’m I G 227}

ALGORITHM 12.2. An Explicitly Restarted Arnoldi Algorithim (FOM) for
Ax = & {Galerkin type).

Inputs: i) A, an n x n matrix, (i} 1, a positive mieger fess than n, {ii1) «, the
tolerance {=0}, and {iv) &y, an initial approximation.

Output: An approximate solution &, such that the associated residual vector
fy = b~ Ax, is orthoganal to K, (A, rg).

Step .  Compute rg = & — Axy.

Step 1. Runm steps of the Arnoldi algorithm (Algonthm 12.1) to generate
the matrices V,,, H,., and Hy00 0 using vy = rg/lirala.

Step 2. Selvethe m x o system H, v, = lrolie;

Step 3. Compute the correction vector 2y Zm = Vi ¥a.

Stepd. Compute the rew solation vecion X, = xp + Zs.

Step 5. Compuoie the norm of the new residual vecton, firnflz =
st mlel vl Stop if {7yl < € and accept x, as the approx-
imate solution,

Step 6,  Compute ry; = ~fimiimt
Return to Step 1.

r Yo Uit a0t S0 20 = 3, and rp = 1y,

Lo By
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Numerical Experiment with Algorithm 12.2

Algorithm 12.2 was run with a sparse matrix of order 99 and fixed m = 4. Using MATLAB
notation, we write

A = diag((1 : 99)) + diag(1, 98) + diag(1, —98),
which is a sparse matrix with entries 1, ..., 99 on the diagonal and | on the top right and

bottom left corners, with a suitably chosen right-hand side vector b.

Choose the initial approximation vo = ( 0.1 0.1 ... ... ... 0.1 0. )T.

The norms of the residual vectors b — Ax;, { = 0,1, ..., 20, are shown in Table 12.3.
The table shows that the restarted Arnoldi algorithm for Ax = b converges as the number
of iterations i increases.

Table 12.3. Residual norms by FOM.

Elb—Axfh | @b —Axf || i1 fib— Axl:
0515875101 | 7 [ 0489985 {[ 14} 0.055578
[ | 17.950331 | 8| 0337757 | 15| 0.043757
2] 4739720 9| 0.263640 || 16 | 0.030658
3] 2455344 10| 0.183782 [ 17| 0.024151
4] 1380971 || 11| 0.144290 || 18 | 0.016929
5] 00971805 [ 12| 0.100907 || 19| 0.013341
6| 0641555 || 13| 0079375 [ 20 |  0.009355

12.3.3 The GMRES Method for Solving Ax = b

We now present the other method, the minimized residual method, called the generalized
minimal residual method (GMRES), developed by Saad and Schultz (1986).

Recall that [or this method one seeks an approximate solution x,,, ol the form xg+ Vi i
such that the norm of the residual vector r,, = b — Ax,, is minimized by choosing y,
appropriately, Letl e be the first wnit (m 4 I Mh vector: (1,0,..., o7,

Theorem 12.12. Minimization of the residual norm is equivalent to solving the m x m
least-squares prablem: Mininize J(y) = || lroll-e) — H, ylla, where ry = b— Axg and H,
is the (m + 1) x m Hessenberg matrix obtained by applying m steps of the Arnoldi methaod,
starting with vy = r/llrolla

Proqf.

'm =b— Axy = b — Afxg + Vm_'ym) .
=rg — AVU:)'HJ = i"()n__ Vm+l an)’m {note that AV, = Vm—H Hy)
= m-H(el ierHZ - Hm,"'m) (ﬂDtE that g = Ul/ilr[]lb = Vm-:—lel “rUIEI)-

Since V4 has orthonormal columns, we obtain

”Fm “?, = ” 3] li?‘oliz - Hm)’m fl2.
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Thus |lry Y will be minimized if y,; is chosen so that
J(.}’) = ” Hr[}illel - Hmylll
is minimized over all y e B, T

The above least-squares problem can be solved using the QR factorization method
described earlier (see Chapter 8). Once y,, is so obtained, the correction vector z,, = V,, v,
and the new improved solution vector x,, = X + 2,; can easily be obtained.

Restarting. If |r,[i2 is not small enough, the process can be restarted by sctting xp = x,,
and rp = r,y, the residual of the approximate selution x,,,. But for this restarting process to
be practical, the residual and its norm have to be computed cheaply. We now show how
this can be done,

Computing the Residual and Its Norm Cheaply from Least-5quares Solution

Let the least-squares problem, minimize " || ro "2‘"[ — ﬁ,,,y ||__,, be solved using QR factoriza-
tion method with Givens rotalions. Since this is a Hessenberg least-squares problem, the
Givens method is ideal and a natural choice.

Let Q. H, = R, (QR factorization of H,,), where @, = Jndu—1...J1; J; is the
Givens rotation in the ith and (i + 1)th planes. Define

4|
- ¥z
gm = Qullirgll2er) = : , (12.28)
V41
R, = the m x o matrix obtained from the (m+ 1) x m matrix (12.29)

R, by deleting the last column,

g = the m-dimensional vector obtained from the (m + 1)- (12.30)
dimensional vector g,, by deleting its last component.

Then the following can be shown (Saad (2003, p. 169)).
e The vector y,, that minimizes || liroll2e; — f;",,,y,,, || is given by
RuyYm = Bm. | (12.31)
e The residual vector r,, and its norm can be computed, respectively, as
P = b = At = Vot O (Vms1ms1) (12.32)
and

”rmlll - |Vlr:+| l (]233)
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Step 0.
Step L

Step 2.

Step 3.
Step 4.
Step 5.

Step 6.

ALGORITHM 12.3, An Explicitly Restarted GMRES Method for Ax = &,

Inputs: (i} A, an n = # matrix, (i} 22, a positive integer less than », (i} ¢, the
tolerance {> 0}, and {iv} xp, an initial approximation.
QOutput: An approximate solution ¥, such that the asscciated residual vector
Fm = b~

Axy, salisfies fry 2 < €.
Compute rg = & — Axg.
Run m steps of the Arnoldi method (Algorithm 12.1) to generate
the {m 1) m Hessenberg mairix A, and the orthonormal matrix
Vit Using vy = rpflirgils.
Find the vectar v, such that the {unclion

Fy) == [ frolae) ~ Havlz
is minimized over all veclor y € B ¢ = (1,0,...,0)7 € B+
by solving the mr x m upper triangular system

Rm}h.==§mv

where R, and g, are delined by (12.293-(12.30).
Compute Lhe correction vector £, = Vi ¥m.
Compute the new approximate solulion x,, = xp + Za.

Compute the new residual norm [r, 1 = [Jeer b where ppq 18
given by (1228}, If liryfla < £, then stop and aceept x,, as the
approximate solution.

Compute the new residual r,, = b — Az, = Viyo) QF (Vs 1811
Set xp = X, and £y = £y and return (o Swep 1.

Remark. Since the residual at any substep J can be computed without computing the update
Ay, une can stop carly as soon as the residual norm is small enough. The readers is invited
i develop this variation of the GMRES algorithm,

Breakdown of the GMRES method. Clearly, the GMRES method breaks down when
the Arnoldi algorithm (Algorithm 12.1) stops at step §. 16 this happens, then the residual
vector is zero; that s, the solution ohiained at this step by GMRES is exacr. The canverse
is also true, The {ollowing can be proved {(see Saad (2003, p. 171Dk

¢ If A is nonsingular, then the GMRES method breaks down aisiep J il and enly if the
approximate selulien x; is exact.

Convergence of the GMRES Method

The global converpence of the method has heen proved only in the case when A is posilive

definite; that is,

AxAl

« If A is positive definite, then the GMRES converges forany m = [,

« I A is not positive definite, then the GMRES may stagnate.

L2 iy symimetric positive definile. Two consequences of this rosull:
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There exist resulis on the ppper bound of the residual norm obtained after m steps of
the GMRES method in case the matrix 4 is dingonalizable. These results involve Cond s (X))
of the transforming matrix X that diagonalizes A and are thus uselul only when this quantity
is known in advance. For details, we reler the readers to Saad (2003, pp. 205-227), We
present one such result here without prool.

An Error Bound. Let X“'AX = diag(k;, ..., %,). Then il can be shown {Greenbaum
(1997, p. 54), Saad (2003, p. 206)) that

where the minimum is taken over all polynomisls p, (1) of degree less than orequal tom
with g {0 == L.

_ Remarks,

« 1f A is pormal, the above error bound is sharp. In this case. if the eigenvalues
are clustered around a single point away from the origin, then there will be rapid
convergence,

= Incase A is not pormal but has a reasonably well-conditioned X, the disiribution of
eigenvalues of A essentially determines the convergence bebavior of GMRES.

* In general, however, it is not true that the convergence can be determined from the
eigenvalue disieibution alone. For example, eigenvalues clustered around s not
necessarily a favorable distribution for convergeace in ease A is a nonaormal matrix.

Choosing m.  Unfortunately, there is no definite guideline for choosing m. If it is “too
smail,” then there could be very slow convergence or no convergence at all. If m is “oo
large,” then the storage and computational costs are prohibitive.

12.3.4 Solving Shifted Linear Systems Using the Arnoldi Method

An impaortant ohservation is that the Arnoldi basis {uy, . .., vy} is invariani ander a diagonal
shift o of Ar i we were to use A — o/ instead of A, we would obtain the same sequence
{v1, ..., vy ). Thisis because the Krylov subspace K, {4, ;) isthesameas K, {A—a/, ).
Note that from (12.20) we have

(A - U"I)Vm = Vm{Hm - U[) + hnH—Lm Uniniml‘fz:x ([234}

which means that if we run m sieps of the Arnoldi method with the matrix A — o7, we will
obtain the same matrix V,,, but matrix A, will have its diagonal shifted by o F,
A consequence of this is that for solving several linear systems of the form

fA— ;e =6, i=1,2,...,

we might use the same information V,, and H,,, generated only once. to solve these systems
approximately. See Daita and Saad (1991) and Saad {1987}
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12.3.5 The Symmetric Lanczos Algorithm

In case matrix A is symmetric, the Arnoldi algorithm (Algorithm 12.1) becormes what is
well known as the symmetric Lanczos algorithm, named after C. Lanczos (1952).20

Inthiscase, the Hessenberg matrix Hy, reduces to the symmetric tridiagonal matrix T,
writlen as

o) .BI P 0
T, = g o

: - ) Igm—[

0 ﬁm—l Uy

The (k4 1)th term recurrence (12.18) in the Arnoldi method now reduces to the well-known
three-term recurrence:

Avjzﬂ_’jl)d,'-i-ﬁjM;Ujm], +ﬁjuj+]' j:l,l...,m (1235)
(where we assume that pvg = 0).

ALGORITHM 12.4, The Symmetric Lanczos Algorithm,

Inputs: (i) A symmeiric A € R"*", (ii) a vector v, and (iii) a positive integer
m < n,
QOutputs: (i) A set of orthonormal vectors {vq, U1, ..., Uy |, and (ii) the entries
w; and B; of the symmetric tridiagonal matrix T,
Step1. Setyg=0, Bo=0, v; = v/ivla.
Step2. Forj=1,...,mdo

21 f?H.] m";"iljj - ﬂj-[vj_;.

2'2&'}' = Uj Vigl.

23 Uit .=_.Uj+; —Gi_jUj.

24 8; = Noj4iila. T By = 0, stop.

Uj'
2.5 Vig| = ""ﬁf’“l'
End

The relations (12.17), (12.22), and (12.23), stated for the Arnoldi method, specialize
to the case of the symmelric Lanczos method, respectively, as follows. Define V; =
(v, vz, ..., v

1. AV, = V,,,Hf',,, {svimmetric Lanczos factorization).
Il. Ky = VuR, (OR factorization of the symmetric Lanczos—-Krvlov matrix).

ML VTAVH: = Ay

m

*Cornetius Lanczos (1893-1974), a Hungarian physicist, afler receiving his doctorate degree from Bu-
dapest Technical University in 1921, moved to Germany, where he worked as an assistant to Albert Einsiein
during the years 1928-1929, He worked as a Professor of Physics at Purdue University, as a scientist at
Boeing and the National Bureau of Standards in the United States, and as Professor of Physics at the Dublin
Institute for Advanced Study in [reland. His paper “An iteration method for the solution of eigenvalue prob-
lems of linear differentiak and integral operations™ (Lanczos (1930)) Forms the basis of the much-studied
Lanczos methods.
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Loss of orthogonality, The Lanczos algorithm clearly breaks down when any of the
£; equal 0, which is a blessing in disguise for eigenvaluc problems. We immediately obtain
an invariant subspace, This, however, seldom happens in practice. In general, in the process
there is always some loss of orthogonality, which takes place as soon as one eigenvalue
COOVErges.

In such cases, procedures such as Lanegos with complete orthogonalization, which
produces the Lanczos vectors that are orthogonal 1o working precision, or Lanczes with
selective orthogonatization, which is used to enforce orthogonality only in selective vee-
1ors, are used when needed. For details, we refer the reader to the well-known hooks on
this subject by Parfett (1998} and Culthum and Willoughby (1985). Several papers of Paige
(1970, 1971, 1976, 1980}, whose pioneering work in the early 1970s rejuvenated the inter-
asts of the researchers in this area, are also very vseful references. Procedures for complele
and selective grthogonalization have been described in some detail in Golub and Van Loan
{1996} and Parlett and Scout {1979).

LANSYM.

Solving the Symmetric System Using the Lanczos Method

The symmetric Lanczos algorithm for solving the symmetric system Ax = & can be used
exactly in the same way as in the case of the Arnoldi method. In this case, the approximate
solutions will be given by

X = Xg b Vi Ve, where vy = 1.7 (§rollaer). {12.36)

12.3.6 The Conjugate Gradient Method

The method was originally devised by Hestenes and Sticfet (1952) and today is widely
used to solve large and sparse symmetric positive definite systems. It is direct in theory,
but irerative in practive, The method is a Krylov subspace methed. In fact, this method
can be derived from the svmmetric Lonczos method {Exercise 12,201, We will, however,
present this method as an optimization method ane then display its connection with o Kevloy
subspace method. Qur derivation is based on the following well-known result.

Theorem 12.13. Let A € R7*" be symumetric positive definite and let b € B**'. Define the
quadratic function

' ¢ T
)= - Az — .
#H{2) 5 ' b

Then the minimizer 7 of (z) is the solution of Ax = b,

Proof.

. 1
¢y = 7}“2?.42 v gd Ay o=

. 1 1.
Az -TAr+ ;,ﬁm — ;,rfm (12,37

Bud | s

3

k4

1 I
= —{z — ,%:}?fi(z sy EA‘TAX {notc that A = xrﬁz}.

Since —1xT Ay is a constant here, ${2) will be minimized il z = y. [
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There is a large number of Herative methods in the literature of optimizution for solving
this minimization problem (see Luenberger (1973 and Nocedal and Wright {2006}). Inthese
iterative methods the successive approximations x, are computed recursively:

Eppy = Xg - o [, {1238}

where the vectors {pg]) are called the direction vectors and the scalars oy are chosen fo
minimize ¢ (p) in the direction of py; that is, oy is chosen lo minimize the function ¢, (x, +
ape). Letrg = b Ay Tt will now be shown how oy and pg are chosen in the conjugate
eradient method.

The aleorithne will be developed using the following facis (Exercise 12.18):

{i} The residaal vectors [y are orthogonal: zfr =0{& >

(i1} The direction vectors are A-conjugate: pf Ap; =0k > ).

Determining ey, From (12.38}, 1 foliows that the residual vectors {ry | must satisTy the
FECUITENLE
Fiey = Fp — @ AP, {1239}
Sinee {ry) are orthogonal, we have rl rp == 0; that is,
e —acAp) =0,
which gives

T
I'k Fr

o) = .
."EA;};‘.

Again, the direction vectors { pg} are updated using the residuals as
Dot = e + By P, {12.40)
from which it follows that
r{ Api = (pg = Brovpen) Aps = pl Aps

{since Apg 1s orihogonal o g )
Thus, we have
2 L ad
rere llndy

plape plan

S (12.41)

Determining ;. Since pr4s is orthoganal to Apg, we obtain from (12.40)
By = —{(Ap) e

(Ap)T pr
Again, from (12.39), we have Apy = ““‘o‘l‘l";‘{r‘i"-.;_i — ).

Thus, substituting the value of ey from (12.41) and noting that r] reyy = 0, we get
U llrea = red rest)  7yis
By = — T =TT
&y, 75 Api Lo ;}{2 ‘:12‘42)
el

el

Bl i
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ALGORITHM 12.5. The Classical Conjupate Gradient Algorithm (CG Alpo-
rithm),

Inputs: A € B"*" symumetric positive definire; b € B,
Qutput: An approximate solutionx of Ax = 5

Step 1. Chouose an initial approximation xp and a tolerance €. Set pp = rp =
b - Axy.
Step2. Fori =0, 1,2,3,...do
21w = Ap;.
2.2 Compute the step length: o; = I3/ p] w.
2.3 Update the iterates: x50 = 4 + oy pi.
2.4 Update the residuals: iy = rp — o,
2.5 Test for convergence: If [irigq il% > £, continue,

26 Compute f; = o e T

flriliz

2.7 Update the direction vectors: proy = g + S

End
5
A=11
1

5
L0 .0, {})T- po==rg b A0 = (7) .
7

Example 12,14,

Lo o L
L) e
W’
o

i
T
] ] =3
i

i=1
49 : 2
we=Apg= |49 ], g = L?nz = (3.1429,
49 [)0 w
1.0003 -{1,0021
Xy @ Xg -+ o pg = 10803 7, ry=rmp—agw = § 000211,
1.0003 —.0a21
- {0021
Ay =9 x 1078, pr=r + flopo = | —0.0021 |
—1.0021
f=1:
—-0.0147 1,8000
w=Ap = | ~0.0147], o =0.1428, x=x+ap ={10000]. W
{1, 0147 71,0000

MATCOM Note: Algorithm 12.5 has been implemented it the MATCOM program
CONGRAD,
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Krylov subspace properties of the CG iteration. From the description of the CG algo-
rithm and the discussions preceding it, the following can be proved (Exercise [2.10):

» (Conjugate iterates span the Krylov subspace.)

Ky =span {xy, x2, ..., %)
= 5pan {P{]! [ P Pk-—l] = Span {".Oarlt ...,Fk_[] (12.43)
=span {b, Ab, ..., A¥ b

Convergence of the CG Method

In the absence of round-off errors the CG gradient method should converge in no more than
n iterations as the [ollowing theorem shows.

Theorem 12,15, The CG algorithm converges in no more than i steps.

Proof. We know that r, is orthogonal to ro, ry, ..., ry—. Again, from the above Krylov
subspace identities (12.43), we have that ro, ..., r,— form a basis of B*. Since r, is
orthogonal to this entire basis, we conclude that r, = 0, that is, e, = 0, which means that

m=x. 0O

Minimizing of the A-Norm Error

Minimizing ¢(2) is equivalent to minimizing the A-norm of the errer;, as shown below.
Define the function || - || 4 by

€l = VT Ax. (12.44)

Then it can be verified (Exercise 12.4) that this function is a norm on " and is called
the A-norm.
Define the error ¢ = z — x. Then from (12.37) we have

I S
¢(2) = Slielly — S lells.

Since L|x i|f‘ is constant, minimizing ¢{z) is equivalent to minimizing [eil 4.

Rate of Convergence of the CG Method

The rate of convergence of the CG method is determined by the distribution of the eigenval-
ues of A. The following is an important result in this context (for a prool, see Greenbaum
(1997, pp. 50--51}).

Theorem 12.16 {(error bound for CG). The error ey = x — xy at the kth iteration is related
fo the initial error eg = x — xg as

where Ay, ..., A, are the eigenvalues of A and the minimum is taken over all polynonials
pi(x) of degree less than or egual to k with p(0) = 1.
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As a corollary of Theorem 12,16, we also obtain the following,

Corollary 12,17, If A has k distinct eigenvalues, then the CO method converges in at most
k steps,

Proof, Lel ppix) = ﬂfm (% — g‘f) Then pp{s) =0atx =0 i=1,.... & [

The following well-known result shows how the rario of the largest eigenvalue to the
snutllest influences the rate of convergence when nothing is known about the clustering,
A prool of Theorem 12,18 can be found in Greenbaum (1997, pp. 31-52),

Theorem 12.18.
g — xlla = 208 ap — xila

—or

witere
@ = (VK = DAE+ D) and k= Conda(A) = JARIA™ 2 = Ao /2.

Here b, and 3 are the larpest and smallest eigenvalues of the svmmetric positive definire
matrix A {note thar the elgenvalues of A are all posirive),

Note: o = 0 when Cond{A) = |. Whena - 1, Cond{A) — co. Thus, the larger
Cond{ A} is, the slower the rate of convergence,

12.3.7 Solving Indefinite Symmetric Systems Using CG-type Methods:
MINRES and SYMMLQ.

The CG method was derived under the assumption that matrix A is symmetric and positive
definite. In fact, the positive definiteness of A ensares the minimization property of the
CG Incase A Is symmelric indefinite, the minimization property can oo leager be ensured.
In such a case, two well-known allernatives, due to Paige and Saunders (1975), are the
MINRES and SYMMULQ methods,

MINRES: MINRES (minimum residual method) aims at minimizing JAx; — b5 by
extracting information from the symmetric Lanczos algorithm, 1 can be shown that

JAx = bl = [ D T — frollaen flz,

where Ot = diag(lrolla, friliz. .., i), Toisthe (k+1) x k tridiagonal matrix
obtained after & steps of the symmetric Lanczos method, and . is the solution of the
projecied problem obtmined after & steps of the Lanczos method that is, y, satisfies

Ty = Yrolizes.

The above then is a minimum-norm least-squares problem and can be solved using Givens
retatians, as in the case of the GMRES method.
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Theorem 12.19 {error bound for MINRES).
Irull /ol < min max{ips(2).
where py and A are the same as in Theorem 12,16,

For a proof, see Greenbaum (1997, pp. 50-51),

Implications of Theorems 12.16 and 12.719 for the CG and MINRES methods. From
the above theorems it follows that a favorable distribution of eigenvalues is one in which
the polynomials py are small. This will happen, for example, if the eigenvalues are tightly
clusrered around a single point ¢ away from the origin. This is because in this case the kth
degree polynomial pi(z) = (1— f)"' at points close to ¢ is small in magnitude and p(0) = 1.
Similarly, an example of an unfavorable distribution is one in which the eigenvalues are
well separated, especially if they lie on both sides of the origin, because, in this case, it is
difficult to find a low-order polynomial with its value | at the origin and which is small at a
large number of points (see Greenbaum (1997)). See the results of numerical experiments
below for illustrations (Figures 12.2 and 12.3).

Comparison of CG and MINRES with two examples, one with favorable and another
with not-so-favorable eigenvalue distributions.

\ I | 49% cg metlhad

1 —&— minres method | |

logarithm of relative rasidual
=)

10 L ; | ; L .
0 2 4 & 8 10 12 14

iteration number

Figure 12.2. Comparison of CG and MINRES on a diagonal matrix of order
1000 = 1000 with eigenvalues distributed in [0.5, 1.5].
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% i ] method
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© .
0} \&‘&\% i
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210" q&a%
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1o , . . . , . %9
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iteration number

Figure 12.3, Comparison of CG and MINRES on a 1000 x 1000 diagonal matrix
with eigenvalues distribured in [-2.5, — 1.5} and [0.5, 1.5].

SYMMLQ: The SYMMLQ (symmetric L} method) is based upon solving the symmetric
tridiagonal system 7 by using an LQ decomposition. For details, see Paige and Saunders
(1975). '

12.3.8 The Nonsymmetric Lanczos Method

The nensymmetric Lanczos algorithm (also known as the fwo-sided Lanczos algorithm)
aims at transforming A into a nonsymmetric tridiagonal matrix T, rather than a Hessenberg
matrix, as is done by the Arnoldi method. However, having insisted on obtaining a tridiago-
nal matrix, we must give up the orthogonality of the vectors {1;}. Instead, one computes two
sets of biorthogonal vectors (v). ..., vy ), (W), ..., Wiy ) (thatis, v)w; =0, § # J,
and v,-T w; = 1} by using a three-term recurrence in piace ol {(k + 1)th-term recurrence, as
needed for the Arnoldi method. I the tridiagonal matrix T, is given by

[0 4] ,61 0
=% " (12.45)

. ﬁn’"

O 61" a”l

m-1

i=1 "

and é,,4, and B, are two scalars, then the tiiree-term recurrences for generating {v; }
[w; 17! (satisfying the biorthogonality relations) are

Avp = arvg + Brvper + Sk Vi1, (12.46)
AT wy = oy + Sewi—y + Brpts Weat B

The reader is invited to fill in the details,
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dgonal matrix as defined above,

mifﬁ] =LSetA=08=0vpg=u=0
Stept. Forj=1,2,...,mdo

L
S
oy w; Avg
Ujpr =AUy = v~ fivgl
Wi = AT — g~ Srwy g
e ~ . . gn o s
5;\5:; = V} |u.»'£-w§ﬁ§ﬁ;'~§«l I if ‘Sij == {}, Sop;
L S . .
frar= Wi Vet féie0
Wisp = Wi/ B
Vipr =0 /841,
BEnd

ALGORITHM 12.6, The Nonsymmetric {Two-Sided) Lanczos Algorithm,

Inputs: A € B, v e B, w e B""!, and m, a positive inleger Juss than #.

QOutputs: The set of vectors {vy, ..., vyy ) and Jwy, ... wyay) such that
w‘.T v; =0, i#F iz j]<m, af};r pp == b T,y 05 an o X nensymmetric (ridi-

Step 0. Seale the vectors v and w o get the vectors vy and w such that

The Nonsymmetric Lanczos Relations

« The vectors {v; ] and {uy } form biorthogonal bases for the subspaces K, (A, vy) and
Ko (AT ), respectively (provided that the algorithm does not break down belore

H1 SiEps).
» From the biorthogonality refations, it follows immediately that
Vg W = Wi Viy == 1,
where Vi, = (0, ... 8ndand Wy, = {wyp o wn, ..., ).
= Furthermore,

Vi-*:,"AV,,; = T (8 Housynmetric tridiagonal matrix}
and

AV, = V., Ta + Burl Vs Je;‘;, {nonsyametric Lancios
ATWy = W T.7 4 B Wi €] factorizations).

For proofs of the above relations, sec Saad (2003, pp. 218-224),

Breakdown of the Lanczos Method.

(1247

{12.48)

{12.49)

1t is clear that Algorithm 2.6 will break down if ‘I’:i-; U4 = D forsome j. Incan happes
either when (i) one of these veciors is zere or (1) they are both nonzero, but their inner
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product is zevo, In the first case, if D;4 == 0, then the approximate solution (o the system
Ax = b is exact. If l?f}:.;u; = {}, then we also have an invariant subspace with the vectors
{w ). and the approximate solution is exact for the dual system; however, nothing can be
said about the approximate soluton of Ax = b,

In the second case, we have a “serfous breakdown.™ A cure for this problem is to use
the laok-ahead Lanczos method. The idea behind this is to continne to the next step even
ifthere is a breakdown ar the current step.

We reler the reader to the papers of Parlett, Taylor, and Liu {1983), Freund, Gutkneehn,
and Nachugsal (1993), and Brezinski, Zagila, and Sadok (1997} lor theory and implementa-
tions of the look-ahead Lanczos method. The look-ahead Lanczos algonithm is implemented
in the software package QMRPACK (Lehouca, Surensen, and Yang (1998)).

12.3.9 Solving Linear System 4x = b Using the Lanczos Algorithm

can be used to solve Ax = b,

Step 1. Starting with xg. vy = ro/|lralfz. and an arbitrary vector w such that w']‘rl); = 1, un
ni steps of the Lanczos algorithim {Algorithm 12,6} to generate the Lanczos vectors
(810 e e U U | 10y, W, o0, W ), the indingonal matrix T, and 8,4

Step 2. Solve the tridiagonal system
Taym = ey, where 8 = [irglls (1250}
Step 3, Compute the new approximation ¥, = 54 Vuve, where Vi, = (v, v, .., ty).

Note that if one has to solve a dual system with AT as well, this algorithm is quite
suitable.

Restarting. As in the FOM case, the method can be restarted afler every i steps, and
the norm of the residual vector, needed for a convergence test, can be cheaply computed as
{Saad (2003, p. 222))

i8 — Axily = [8pee] ¥ vz {12.51)

12.3.10 The Bi-conjugate Gradient Algorithm

For nonsymmetric systems, the CO method is not sultable. However, a CG-ype method
called the bi-conjugate gradient method {Bi-CG} can be developed for such systems,
based on the nonsymmetric Lanczos algorithm by using the LU factorization of the widi-
agonal matrix T, (Exercise 12.20). The Bi-CG algorithm s a projection process anio the
Krylov subspace K, = span (v, Awy, A%y, ..., A" 1oy} orthogonal 10 K, (AT, wy) =
spanfary, ATwi, oo, (ATY )L taking wy = rofirolls and w) such that w! vy # 0. We
will, however, describe the algorithm herg in 2 manner analogous io the CG method, The
major difference butween the iwo methods is that in the Bi-CG method, unlike the CG
method, the two sets of residuals [r;] and {7} are produced which are biorthogonal. The
set 7] is obtained by using A7 rather than A. Similarly, the two sets of direction vectors
{p;} and { p; | are produced from the residuals, which are mutually A-conjugate.
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These two sets of the residuals and the directions are, respectively, given by

Feat 58 £y = G APy, Tray = e — o AT Py (12.52)
and

Prer = fier P, Pray = P+ B (12.53)
The choices

ap =Pl /Bl Aps Be=Fl e il (1234)

will yield the biorthogonality and conjugacy relations

Fri=pldp, =0, i#] (12.55)

ALGorITHM 12.7. The Bi-CG Algorithm for Ax == b,

Input: A e E"™* b e B"™ and xq, an initial approximate solution.
Cutput: Approximations {x,} of the solution x.

Stepfl. Compule rp = & — Axp.
Choose 7 such that 7 rg # 0.

Stﬁp 1. Set pg = ry, '5(} = x;:(].
Step2. Forj=01,..., dounil convergence

2.1, Compule the step length oy = 7 r /5T Ap,.

2.2. Update the iterates ¥4 = x; +o; 05

2.3, Update the residuals rjypy = r; a‘;fi;}}

2.4, Update the dual residuals 7,4 =7 ~ &, AT p;.

2.5. Compulz f; = rfwrw.i/r .

2,6. Update the direction veclors piy. = rjaa + fipg.

2.7. Update the dual direction vectors g, = Fip + 8, 5,
End

Orthogonal properties,  As noted before, the residual and direction VLL[D[‘S produced by
the Bi-CG alporithm have the following properties (Exercise 12.22): Flr, =01 # js
Bl Apy=0.1% ]

Notes: (i) (Relationship berween CG and Bi-CG methods.) The Bi-CG method
produces the same iterates as CG il applied to the symmetric positive definite matrices.

(it} { Variany of Bi-CG ) There now exist several variants of the Bi-CG method. These
include the Bi-CGSTAB (bi-conjugate stabilized) (van der Vorst {1992, 1996, 20031
and CGS (conjugate gradient squared) {Sonneveld (1989)) methods, These twe methods
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avoid computations with A7, as requived by the Bi-CG method. The CGS method ofien
converges much faster than the Bi-CG but might have irregular convergence patterns. The
Bi-CGSTAB method avoids this problem and at the same time maintains the same speed of
convergence. van der Vorst {1992} calls it “a more smoothly convergent variant of CG8.”
See Saad (2003} and van der Vorst (2003} and for details. Avoiding breakdown in the CGS
method has been discussed in Brezinski and Sadok {1991).

{iit} (GMRES versus Bi-CG) The GMRES method generates the smallest residual
aver the currenl search space, while the Bi-CG method does not minimize the residual in
any suitable norm. The GMRES method, however, does so at the cost of longer recurrences
than the Bi-CG method.

12.3.11 The QMR Algorithm

"Iy aaral to wonder Ifthere exists a GMRES analogue based o the nonsymmatric tridiage
onal Lunczos reduction, Indeed, the quasi-minimal residoal (QMR) is such a method. The
method was developed by Frennd and Nachtigal in an award-winning paper in 1991 (Freand
and Nachtigal {1991)). The idea here is to minimize the norm of the residual & — Axj;
using the Lanczos reduction. In this case, it can be shown (Exercise §2.17) that after m
steps of the nonsymmetric Lanczos method, the residual is given by

Py s b — Ak = Ve (€1 — Trdu). (12.36)
where
= 1,
Ta! = ( 3 _::g? ) and ﬁ = Hr{}§2~
H 23
Thus,

B~ Axpll = § Vg (Ber —~ Tru."'&.ﬂ)gz {12573

Since the columns of Va1 are not orthosormal in the Lanczos algorithm, we do not have
16 — Axllz = [[f2; — T, yll:. However, the QMR algorithm is obtatned by minimizing
|8e) — Taryllx over ¥ anyway, and then the new approximation s obtained as x,, = 3+
Vin ¥, where ¥, i the solution of the above least-squares praoblem, This 1s why the method
is referred to as the quasi-minimal residual method. The reader is invited to write the QMR
algorithm in wlporithmic form, as was done for GMRES (Exercise 12.21).

Remarks. (i) [n actoal implementatioas, the QMR method is fmplemented using the fogk-
ahead variant af the Lanczos method o deal with the breakdown. See Freund and Nachtigal
(1991 for details.

{ii) { Residuad norm,) The residual norm of (he approximate sohution v, satisfies

%*b - Al’m”?. = ” Vs § §§‘§n+l [

where ¥+, a5 in the case of GMRES, is the last component of the vector G, (8e); Q;‘; is
the @ matrix of the QR factorization of 7,,,.
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9 and rC be the residual

nr n

(iii) { Relationship between QMR and GMRES residuals. ) Letr
norms aller z1 steps of QMR and GMRES, respectively; then

17211 < Conda(Vius YIS |2

For prools, see Saad (2003, p. 226).

{iv) (Relationship berween QMR and Bi-CG methods.) The QMR method avoids the
breakdown of the Bi-CG method using the look-ahead Lanczos idea. Thus, when the Bi-CG
method temporarily stagnates, the QMR may still work (though slowly).

(v) A transpose-free QMR algorithm, called TFQMR, was developed by Freund
(1993) from the CGS algorithm. For details, see Freund (1993) and Saad (2003, pp. 234-239).

(vi) (Mixed Bi-CGSTAB-CGS method.) A new Krylov subspace method, called the
mixed the Bi-CGSTAB-CGS merhod, was developed by Chan and Ye (1997). The idea is
to combine these lwo methods by switching from one to the other at each iteration step so
that the stability of the CGS can be improved.

12.4 Preconditioners

For making the GMRES-type methods practically viable, it is almost mandatory to use a
preconditioner so that the precenditioned systermn has a better spectral property,
For the idea to be effective, the preconditioner M should be such that

« it is a reasonably good approximation to the original matrix,
* ils construction is not too expensive, and
« the precanditioned system is easier to solve than the original system.

If the preconditioner M is used to solve the preconditioned system
M ' Ax = Mp,

then M is called a left preconditioner.

The Krylov subspace method in this case will construct an orthonormal basis of
the Krylov subspace K(M~'A, rg) = spanirg, M~ Arg, ..., (M7 A)"'ry), where rg =
M~1(b — Axg) and vy = ro/llrol.

The computed residuals and their norms will be those of the preconditioned system
rather than those of the original system.

M is called a right preconditioner if A/ is such that it solves

AM™ 'z =b, 2= Mx.
A compromise between a left and right preconditioner is to have a preconditioner M
that can be factorized into M = M| M-, resulting in the Lwo successive systems:
MT'AMT 2= M7'h and  x =Mz
In this case the matrix A = M AM; " should be as close as possible to the identity matrix.
Such a precenditioner is called a two-sided preconditioner.

There is now a wide range ol preconditioners available in the literature. Some of the
most common ones are stated below.
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12.4.1  Classical lerative Methods as Preconditioners

Here the idea is o use the itcration matrices thal we encountered in developing Jacobi,
Gauss-Seidel, and SOR methods as preconditioners. Recall thal these methods are bused
on the iteration of the form x = Bx -+ d.

Suppose A has the following splitting: A4 = M + N, Then the left preconditioned
system M ' Ax = M5 con be written as

x=—Bx4d, whee B=-M'N=l-MTA d=Mh

lacobi and block Jacobi preconditioner.  Recall that

Byw D' (L+Uy=—-D""A~ D}
=f DV Alsince A = L+ D00,

© Thus, we can choose I as the preconditioner M, denoted by Mo
Miaeon = D = diaglay), a1, ... . 8w}, provided thata; = 0.

This 15 the simplest possible preconditioner and is known as the Jacobi preconditioner. If
A is a block matrix A = (A;)r.., where A;; are square, then the block matrix

Moe ding(Agy, An. oo Ag)

can be taken as a preconditioner, known as the block Jacobi preconditioner. The block
Jacobi preconditioners are suitable for structured linear systems arising from solurions of
partial differensiat equations on regular grids.

Mgis and SSOR preconditioner.  Since the splitting matrix M for SOR is not symmetric,
a better preconditioner can be derived Tor 2 symmetric matriv A from SS50R ileration as

| _ -

Msgor = e (D + a0 L3DHD + wlD),
{2~ w)

which is known as the S50R preconditioner The symmetric Gauss—Seidel precondi-

tioner is then obtained as (taking w = 1)

Myos = (D+ LYD" D+ L7

12.4.2 Polynomial Preconditioners

The idea here is 1o find a low-degree pofynomial matrix of order, say, p, p,(A) (with better
properiies}), so that the iterative method can be applied 1o p,(A)Ax = p (AM.

1t such o polynomial can be found, then the preconditioner M can be defined by
M= pL(A)

One way to find a polynomial preconditioner is to use the low-order terms of the
Neuman series of {F — B)~' il A is writien as A = [ — B, and when the series converges;
that ts, when (&), the spectrat radius of B, is less than 1,
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More general polysomial preconditioners, mvolving the shifted Chebyshey poly-
nomials, have been doveloped and are currently being used. For details, see Saad (2003,
Chapier 10,

12.4.3 Incomplete LU (ILU) Factorization as a Preconditioner

The basic idea here is to compure the LU factorizatien of a sparse matrix, allowing fill-in
only in certain positions, for example, computing the corresponding entries of the L and
[/ matrices only when a;; # 0 and leaving the zero entries of A in their places, We shall
discuss this type of preconditioner in cuse A Is symmelric positive definite in the context
of the CG Method., Details can be {ound in Saad {2003, pp. 2873200, The stability of
incomplete LU (ILU) factorization has been analyzed by Elman (1986). Bank and Wagner
{1999 have disenssed multilevel ILU decompositon,

12.4.4 Preconditioning with Incomplete Cholesky Factorization

Let A be symmetric positive definite; then a preconditioner M ol type M = (LETywillbea
suitable candidate for the CG method. A nateral cholce for such an L will be the incomplete
Cholesky factor {a special case of the [LU precmzéizac}ﬁgr discussed in 1he [ssi seciion).
Mathematically, this facrorization is equivalent 10 A = LLY + R, where R # 0.

To generate this L, we use the Cholesky factorization of A = LL", as lollows: If
a;; = 0, set {;; = O: otherwise calculate the appropriate I;;.

ALGORITHM 12.8. Incomplete Cholesky Factorization,

Input: A € R"7, lurge and sparse, and symmetric posilive definite.
Output: The incomplete Cholesky factor £ = (/) of A.

Set i = NIGE

Foréi=1,2,...,0do
For j=1,2,...,i~1do
Wy == ) then J; = Qelse
, 3 g g
bip = gtay = Yo Ll ji)
End
£ = \fi{ﬁr’i - Zi;ﬁ lfi)
End

Remark. Algorithim 12.8 requires computation of square roots. However, one can obtain a
no-fill incomplete L D LY factorization of A that avoids square root computations (Exercise
12,14

MATCOM Nofes: Algorithm 12.8 has been implemented in the MATCOM program 1C-
HOLES. The no-ill incomplete LDLY factorization algorithm has been implemented in
the MATCOM grogram NICHOL.
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ALGORITHM 12.9. The Preconditioned Conjugate Gradient Method.

Inputs: Same as in Algorithm 12,8,
Gutpuot: Same as in Algorithm 12.8.

Step 1. Find a preconditioner M.
Step 2. Choose xg and €.
Step 3. Setrg = b — Axg. pp = yp = ﬁff‘;?‘@.
Stepd. Fori=0,1,2,3....do
41. w=Ap;.
42, o =ylri/plw.
4.3 Xigg = Xy b O .
d4.  ruo= R
4.5.  Test for convergence: I {riq il%
46 Yo = M
R e é’“;;}';”}"fﬁ'il
4.8, pisr =y F Bipi

> g, continue.

End

Note: If M == I, then the preconditioned conjugate gradient method reduces fo the
basic conjugate gradient.

Remarks. At every Heration step in the preconditioned conjugate gradient method, one
symmetric positive definite system (Step 4.6) has to be solved. However, since matrix M
is the same at each iteration, the incomplete Cholesky facrorization or no-fill incomplete
LDL7 (Exercise (12.14)) has 1o be compided once for afl

12.4.5 Numerical Experiments on Performance Comparison

In this section, we prosent results on our numetical experiments with different solvars: CG,
MINRES, OMR, Bi-CG, and GMRES, on several matrices using different preconditioners,

Experiment 1. Here we compare CG and MINRES, and CG with incomplete Choelesky as
a preconditioner on g two-dimensional Poisson matrig of order 1024 (Figure 12.4).

Experiment 2. Here we compare GMRES, Bi-CG, and QMR on a nonsymmetric matrix of
order 1042 constructed from the MATLAR gallery matrix Wathen, with and without several
preconditioners. The precoaditioners used are Jacobi, Gauss—Seidel, and ILU (Figures 12,5~

12,73

12.5 Comparison of Krylov Subspace Methods
for Linear Systems

What micthed to pick? Tt is a difficult question to answer, The choice of a method iy often
problem-dependent. Here ane some rough guidelines (see Table 12,43




12.5. Comparison of Krylov Subspace Methods for Linear Systems 471

——cCG
- MINFIES
o CG+ICHOL

-1

residual

=3t

.5k

-5 . . ) . 1 1 1 X
a 10 20 30 40 50 60 70 80 90

number of ilerations

Figure 12.4. Comparison of CG MINRES, and CG with incomplete Cholesky
preconditioner on two-dimensional Poisson matrix of order 1024,
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Figure 12.5. Performance of GMRES with preconditioners.

» For symmetric definite systems: An obvious choice is the CG method.

» For symmetric indefinite systems: The choices are between MINRES and SYMLQ.
They suffer no breakdown. The MINRES method minimizes ihe residual and SYMLQ
solves a projected problem.
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Figure 12.6. Perfonmance of Bi-UG with preconditioners.
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Figure 12.7. Performance of OMR with preconditioners.

* For nonsymmetric systemns: The choices include GMRES, QMR, Bi-CG, TGS,
Bi-CGSTAR, and some others (not described i this book; see Saad (2003) for these

methods),
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Table 12.4. Comparison of some Krvlov subspace methods for Ax = b,

Method Properties Tmiplemeniation
Fuil- Work for aomsyminetric matrices, The | Keguire only
orthogonalization | GMRES method is guaranteed to give the | matrix-vector
and GMRES smallest residuat. Full-orthogonalization | products, but both the
solves a projected system. Both methods | storage requirement
require restarting in practice, and work grow with
m significantly.
CG Applicable only to the symmeiric posi- | Reguires only
tive definite systems.  A-norm error is | matsix-vecior
minimized at each Heration. The spead | producis with 4.
of convergence in general depends upen
the distribution of the eigenvalues.
Bi-CG Applicable to nonsymmetric matnces. | Requires
The convergence behavior might be quite | matrix-vecior
irregular in some cases, products with both A
and A7,
QMR Applicable 1¢ nonsymmetric matrices. | Hequires the
Avpids breskdown of Bi-CG May work | transpose
when Bi-CG fails. makrix-veetor
product,
CGS and COS sometimes works well, bui the | COS does not require
Bi-CGSTAB round-off error in the method is a ma- | computation with AT,

jor concern, Bi-CGSTAB is the stabi-
lized version of Bi-CG and convergence
ts often faster,

Bi-CGS requires two
matrix-vector products
and four inmer
producis,

Try GMRES {first. If the matrix-vector multiplication is not too expensive and storage
is an issue, then other methods can be tried. The QMR is generally recommended over
Bi-COL The ehoice between QMR, COS, and Bi-CGSTAB is problem-dependent.

Conclusion: There is no clear winner among the Krylov subspace methods. A comparative
study by Nachtigal, Reddy, and Trefethen {19923 shows that while one methad is the best
for one specific clasy of preblers, it may not work as well for other probless. For more
details, see also, for example, Saad (2803), Greenbaum {1997}, van der Yorst (2003}, und
Barrett et al, {1994, pp. 33-35).

12.6 Eigenvalue Approximation Using Krylov Subspace
Methods

Because of high storage and computational costs, i will be ynrealistically ambitious to think
of compuung the whole spectrum {and the associated eigenvectors) using a Krylov subspace
method. We will be lucky i approximations of only a few eigenvalues and gigenveciors
are obtained in this way.
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Here we will discuss
» cigenvalue approximations of a nonsymmetric matrix using the Arnoldi method;

- eigenvalue approximations of a symmetric matrix using the symmetric Lanczos
method;

» Krylov subspace methods for the generalized eigenvalue problem Ax = A Bx;

* Krylov subspace methods for the quadratic eigenvalue problem,

12.6.1 Eigenvalue Approximation Using the Arnoldi Method

H Algorithm 12,1 is run for m = n steps, then we will obtain the n x n Hessenberg H,, such
that

where V,, is orthogonal, Thus, in this case the eigenvalues of A and those of H,, are the same.
Thus, in theory if the Arnoldi methed is carried out for n steps, all the eigenvalues of A are
obtained by finding the eigenvalues of H,,. However, this is not practical for large n. The
question, therefore, arises: When m < n, how well do the eigenvalues of H,, approximate
those af A? To this end, note that the algorithm breaks down at step & when (|91 is zero.

It can be shown that this happens if and only if the starting vector vy is a combination
ol the eigenvectors. Then the subspace Xy is an invariant subspace of A and the breakdown
is a fiappy breakdown,

Definition 12.20. An eigenvalue M\ of H,, is called a Ritz value and the vector u!™ =
Viuyi™, where 3™, is the eigenvector associated with the eigenvalue A", is called the Ritz

eigenvector. The pair {A}"'), u,("')

) is called a Ritz pair.

A small number of Ritz values typically constitute good approximations to the corre-
sponding eigenvalues X; of A.

However, in practice, it is desirable to compute one eigenpair at a time and then use
deflarion 10 compute the other pairs, as required. To obtain a good approximation of one
pair, the Arnoldi method can be restarted explicitly with a fixed m as shown below.

Residual norm. Let (A}"' ) u}'”)) be a Ritz pair. Then

Iz = 1104 = & D™ N2 = hugrmlen, ™,

m-I
where e, is the mith unit vector,
Though this norn is not always a sure indicator of a good approximation, it can be
used as a stopping criterion.

From experience it has been seen that the outermost eigenvalues are approximated
first.

Choosing the starting vector. For eigenvalue computation, the starting vector for the
Arnoldi method ideally should be chosen as the dominant one in the direction of eigenvectors,
I such vectors are not known, a random vector is a reasonable choice,
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ALGORITHM 12,10, An Explicit Restarted Arnoldi Algorithm for Computing
an Eigenpairn

Step 1. Run s steps of Algorithm 12.1.

Step 2. Compute the righimost eigenvalue ?\.(m) and the corresponding Ritz el IET-
P 8 E 1 P g B
veelor ull’") = V), }’Em!.

- . . D)y - N
Step 3. H the residus] norm fiyay ple), .‘"1’”)1 is smail, stop. Otherwise, return o

Step | with v, =«

Computing several eigenpairs: Deflation. The above algorithm will approximate the
rightmost eigenpair {4, 4,3 of A, If several pairs are needed, then the obvious thing to do
is 10 use deflation. This deflation techmigue is as follows: 4

Suppose that an orthogonal basis [ay. .. ., #:-, } of the invariant subsprce correspond-
ing to the eigenvalues A;, ..., A4y has been computed. Set

Py =y gt b
Then to compute the eigenvalue A, form the matrix A=A-— Ui, STy where y =
diag {oe;, @2, . . ., @y} i the mairix of the shifls.
Then the eigenvalues of A are [A) — oy, Az — o, o0 Ay = @ JU A, ..o, Al

Choosing the shifts. The shifis can be chosen in the context of eigenvalues of interest.
If the eigenvalues with the largest renl parts are desired, then the shifts should be chosen so
that J; becomes the next eigenvalue with the largest real part of A, Other types of deflations
are also possible. See Bat et al. (20001

12.6.2 Implicitly Restarted Arnoldi Method for the Nonsymmetric
Figenvalue Problem

The implicity restarted Arnoldi method, developed in Lehouey and Sorensen {18996 (see
also {Lehouey 19933), Is a method for extracting esefu] information (such as the eigemvalues
with larpest (smallest) real parts or of largest (smallest) magnitudes) from an m-step Krylov
subspace by avoiding the storage and computiational costs, using the standard QR iteration
technique. For implementational aspects of the method, see the ARPACK Users” Guide by
Lehoucq, Sorensen and Yang (1998). For details of this method, see Bai et al. (2000, pp.
169-175). The description here has been taken from that book.

belm=k+ p Let Vi = (v, va, ..., i)

The step-by-step process fotlows:

» Do m steps of the Arnoldi method to obtain V,, and H,,., vielding ihe Arooldi factor-
izalion
A ,'*’}m = yﬂz oy + fzugr

m
» Compress this factorization to one of length & (containing the eigenformation of inter-
est) by applying the QR iteration algorithm with p shifis, say, i, .00 g2, resuliing in
2 4 gy T
‘{%’I”f;z - i/er H + ffﬁgm *

b1



476 Chapter 12. Iterative Methods: An Overview

where V,J = V,,Q, H} = Q*H,0,and 0 = 0,0,... 0,. Each Q; is the orthog-
onal matrix associated with the shift ¢ ; used in the shifted QR iteration algorithm.

* Equating the first & columns on both sides of the above equation, compute V; and
H} such that we have an updated k-step Arnaldi factorization

AV = VIHT + fiel.
* Using the above as a slarting point, now apply p additional steps of the Arnoldi
method to obtain the new m-step Arnoldi factorizalion

AVy = Vi Hyy + f;neT-

m

ALGORITHM 12.11. Implicitly Restarted Arnoldi Method for Nonsymmetric
Eigenvalue Problem.

Inputs: (i) A large and sparse matrix A, (ii) a starting vector v; of unit length,
and (iii) positive integers k, p, and m such that m = k 4 p.

QOutput: & approximate eigenvalues of A.

Step 1. Run m steps of the Arnoldi method (Algorithm 12.1) to obtain the Arnoldi
factorization (12.21): AV,, = V. H,, + fuel

m*

Step 2. Do uniil convergence:
2.1. Compute the spectrum of H,, and choose p shifis j15, ..., pp.
2.2, Initialize Q = 1,,.
23. Forj=1,2,...,pdo
OR factorized: Hy, — p;jl = Q;R;.

Update: H, = Q;ngj, Q= QQ}
End

2.4, Compute 8y = Hy,(k + 1, k); o = Q(m, k).
2.5, Compute fi = UjH-[ﬁk + f;na'k, where S = hm+|.me;{;'

2.6. Compute V, = V,, 00, | : kY and Hy = H, (1 : k. 1: k), where Q(:, 1 :
k) denote the first & columns of @ and H,,(1 : k, k : k) denotes the & x k
principal submatrix of H,,.

We have now the k-step Arnoldi factorization

AV = Vi H, + fie; .

2.7. Now beginning with the above k-step lactorization, apply p additional
steps ol the Arnoldi algorithm to obtain a new m-step factorization:
AV, = V., H, + f,,,ef,;. {Note that in this case the Arnoldi loop in

Step 1 of Algorithm 12.1 runs from the index (& + ) to m starting with

the previous starting vector or the previous residual.)
End
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Remarks.

L. (Choosing the shifts.} The shifis should be chosen in the context of the eigenvalues
of interest. If the eigenvalucs ol H,, are sorted into two groups, “wanted” and “un-
wanled,” then the latter can be chosen as the shifts oy, ..., u,. Witk this sirategy,
the matrix H," will have the & “wanted” eigenvalues as its spectrum.

Examples of the “wanted” set are (i) the & eigenvalues with largest real parts, (ii) the &
gigenvalues with smallest real parts, and (iii) the £ eigenvalues with largest (smallest)
absolute values.

[

Convergence. Accept a Ritz pair (8, u), where i = V,, v, as a convergent pair if the
residual norm ilﬁ\-ille,(.' v| is less than {| Hy ||€, where § is “wanted.”

Deflation. Upon convergence, this pair should be deflated. There are two types of deflation,
locking and purging, in the context of the implicitly restarted Arnoldi method, depending
on whether a member of the wanted set of eigenvalues has converged or not. See Bai et al.
{2000, pp. 176-177).

MATLAB Note: A slightly modified version of Algorithm 12.11 has been implemented in
the MATLAB lunction eigs.

12.6.3 Computing the Eigenvalues of a Symmetric Matrix Using the
Symmetric Lanczos Algorithm

In this section, we turn our atlention to computing approximale ecigenvalues of a symmetric
matrix 4 using the symmetric Lanczos method (Algorithm 12.4),

We have remarked that, when a £; is exactly equal to zero, we have an invariant
subspace. This is indeed good news. Unfortunately, this happens very rarely in practice.
In practice, for large enough values of j, the eigenvalnes of T; provide very good approxi-
mations to the extremal eigenvalues of A.

To answer the question ol how well a Ritz pair of T; approximates an eigenpair of A,
we stale the lollowing result.

Theorem 12.21. Ler (8;, v;} be a Ritz pair and let Ry = Ay; — v0;,i =1, ..., j. Thenin
each interval {8 — | R; |2, 6; + || R |a) there is an eigenvalue of A.

Thus, it follows from the above theorem that {| R; |- 15 a good measure of how accurate
the Ritz pair (6;, ¥;) is. L also turns out that | R; |2 can be computed cheaply from the Schur
decomposition of T;, as shown by the folloewing theorem.

Theorem 12.22 (residual theorem for symmetric Lanczos ritz pair). Let T; be the j x §
svmmetric tridiagonal matrix obtained after j steps of the symmetric Lanczos algorithn
Ler S| T;S; denote the real Schur form of T;:

STT;8; = diag(®;, ... 6));



478 Chapter 12. lterative Methods: An Overview

that is, 6y, ..., 8; are the eigenvalues of T;. Let
VJS_] = Yj = (_}’],}’2, PN ,_)’j) .
Then for each i from 1 to j, we have

Rl = Ay — Byl = 1B |55l

where
S o= e}s‘,-; 8 istheith column of §;.
Proof.
IRl = Ay — 36l = |1AV;5 — Vsl
= [(AV; — V;T)si {because T;5; = s;6)
= ||(,6juj+|e;r)sf It {(note that AV; — V;T; = ﬁjUHIEI)
............. g ]'le Hej‘si ” a |ﬁjl %Sjl'l . (nn[e {hat%l Uj+| "2 L l). D

A computable error bound. Combining Theorems 12.21 and 12.22, we obtain the fol-
lowing eigenvalue bounds for the eigenvalues A’s of A:

min g = AL = [Bellswl. f=12,....k

“Ghost” eigenvalues phenomenon. The loss of orthogonality of the Lanczos vectors

due to round-off errors can have a severe effect on the eigenvalue approximations obtained
by the Lanczos process. For example, the matrix T in exact arithmetic is an unreduced
symmetric tridiagonal matrix and therefore should have all cigenvalues real and distinct.
However, in practical computations, it might happen that the compuied matrix 7 has some
muliiple eigenvalues that correspond to simple eigenvalues of A. This is known as the
“Ghost” eigenvalue phenomenon. For details and some cures of this problem, sce Golub
and Van Loan (1996, pp. 484-487).

12.7 The Bisection Method for the Tridiagonal Symmetric
Positive Definite Generalized Eigenvalue Problem

As we have seen in several previous case studies, in many practical situations, matrices A
and B are structured: tridiagonal and banded cases are quite conmon. Unfortunately, the
Cholesky QR algorithm for the symmetric definite pencil A — B described in Chapter 11
(Algorithm 11.4), when applied to such structured problems, will very often destroy the
sparsity. Even though A and B are banded, the matrix C = L™ A(LT)™ will in general
be full. Thus, the Cholesky QR algorithm is not practical for large and sparse matrices. The
following 1s a straightforward generalization of the bisection method (Algorithm 10.1) for
the single symmetric matrix A to the symmetric positive definite generalized pair (A, B).
We assume that A and B arce both symmelric tridiagonal and that B is positive definile. The
method takes advantage of the tridiagonal lorms of A and B.
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12.7.1 The Bisection Method for Tridiagonal 4 and B
Let

o .Bl - { a; ﬁ; e )]
a0 A . (12.58)
- ﬁl{‘*‘l ﬂ:;.ml
L R < &y o - ‘B:tml a':!
Define the sequence of polynomials {p(A}} given by
po(A) =1, (12.59)
pi(A) = a) — Aa), (12.60)
pr(A) = (oee — he)py_i (A} — (Broy = ABL_ ) proafR), (12.61)
F=2,3...,n1.

Then it can be shown (Exercise 12.24) that these polynomials form a Sturm sequence.

The generalized eigenvalues of the pencil (A — AB) are then given by the zeros of
pa{i). The zeros can be found by bisection or any other suitable root-finding method for
polynomials. For a proof of the algorithm, see Wilkinson {1965, pp. 340-341).

Computing a Generalized Eigenvector

Once a generalized eigenvalue is computed, the corresponding eigenvector can be computed
using the inverse iteration by taking full advantage of the tridiagonal forms of A and B as
follows:
Let yp be the initial approximation of an eigenvector corresponding o a compuled
generalized eigenvalue A. Then this inverse iteration will be as follows:
Fori =0,1,2,..., do until convergence occurs
1. Solve for x4y ¢ (A—AB)xi+ = y; by taking advantage of the tridiagonal
structures of A and B.
2. Form Vil = B.\',‘.}.].
End

Remark. About Llwo iterations per gigenvector are usually adequate,

MATCOM Note: The above process has been implemented in the MATCOM program
GENSTURM.

12.8 Krylov Subspace Methods for Generalized
Eigenvalue Problems

The Arnoldi and Lanczos methods described in Section 12.6 {or the standard eigenvalue
problem can be applied Lo the generalized eigenvalue problem (GEP): Ax = A B once the
latter is reduced 1o a standard one. The {ollowings are some of the possible cases. For
details, see Bai et al. (2000).



480 Chapter 12, lterative Methods: An Overview

« {Inverr B.} If B is noansingolar, then the GEP is equivalent to the standard eigenvalue
problem

(B A)x = hx.

To apply the Arnoldi or Lanczos method to 87! A, one needs 1o evaluate the matrix-vector
product of the form » = (A1 A}y, which can be accomplished without inverting B as
follows:

{a} Form i == Ay.
(b} Solve Br =uforr.

One can toke advantage of the sparsity of A and B in the above computations.

o (Shift-and-invert.) A and B are both singular or B is ill-conditioned. Tn this case,
it is advisable to use the shift-and-invert techaique as deseribed below:

Let o be a user-supplied shift such that (A — o 8) is nonsingular. Then the GEPcan

ke transformed (o'the standard ¢igénvalue problem
Cx = px, where (12,62}
1
A—a’
To apply the Arnoldi or Lanczos method 1o C. the matrix-vector product of type
# = Cy can be computed as follows without explicily computing the inverse:

C=(A~cB) B and pu= (12.63)

{i} Find the sparsc LU factorization: A — o B = LU, (12.64}
(ii) Form o = By. (12.65)
{iil) Solve Lw = v for w. (12.66)
(v Solve Ur = wforr. {12.67)

o (Symmeiric positive definite gengralized eigenvolue problem.) Here A and B are
both symmetric and, furthermore, B is positive definite. Assume that B is weli-conditioned
{which happens in some applications). Let 8 = LLT be the Chalesky factorization. Then,
as we have seen before, the GEP: Ax = A8y is ransformed into the standard symmetric
eigenyalue problem

(LAY i =23, (12.68}

where ¥ = L7x. The symmetric Lanczos algorithm can now be applied to the symmetric
matrix L= A{L7y~". The matrix-vector product of the form

Fe LRy ly (12.69)

needed in this implementation of the symmetric Lanczos algorithm can be computed without
explicitly evaluating the matrix L™ A(L7 )1, as follows:

() Solve LTy = v for @, (12,73
Gi)y Form w = Au. (12.71)
(i) Solvelr = w for e (12.72)

o (Synunetric indefinite peneralized eigenvalue problem.y Here A and B are hoth
symmetric, but neither A nor 8 nor a linear combination of them is positive definite. This
is the cass arising mostly in strictural dynasics,
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IT B is nonsingular and one wants a {ew largest eigenvalues in magnitude, one may
solve the standard eigenvalue problem B~'Ax = Ax, which is symmetric with respect Lo
Aor B.

If one wants a few eigenvalues closest to a number o, the shift-and-invert technique
(A—aBY 'Biyr=( -o) lx (12.73)

can be used. Choose the shift o = 0 if the smallest eigenvalues in magnitude are desired.
For details of how o solve the above eigenvalue problem using the symmetric indefinite
Lanczos method, see Bai et al. (2000, pp. 253-256).

Concluding remarks. The shift-and-invert technique is a powerful tool for the largest and
smallest eigenvalues of the pencil A — LB, both in symmetric and general cases, provided
a suitable sparse factorization teclmique of (A — o B) is available. Otherwise, one can
use the generalized version of the Jacobi-Davidson method. See Bai et al. (2000) for
details,

12.9 Krylov Subspace Methods for the Quadratic
Eigenvalue Problem

The quadratic eigenvalue problem (QEP) [or large and sparse matrices M, D, and K can
be solved by using the methods for the GEP described in the last section once the QEP is
transformed into a linear problem as shown in Section 11.9.

Numerical methods discussed in Section 12.8 can be wvsed to solve these linear [or-
mulations of the QEP. For example, in the MSC/NASTRAN software puckage, the later
formulation is used and the “linear” problem is solved by using the block Lanczos method.
When implementing a symmetric linearization, the symmetric nature of A and B can be
exploited, thus reducing the cost 1o a significant amount. See Grimes, Lewis, and Simon
(1994).

Spectral Transformations for the QEP

An iterative solver, such as the one described in Section 12.8, is suitable for solving the
QEP via linearization to a GEP when only a few exterior eigenvalues and eigenvectors are
desired. However, if one wants to compute some of the smallest (in magnitude) eigenvalues
and eigenveclors, or the eigenvalues closest 1o a shift o, some spectral transformation will
be needed firsL.

e Computing the Smallest Eigenvalues and Eigenvectors
In this case, a natural transformation is @ = )i This transforms the QEP (A*M +
AD 4+ K)x = 0to the inverted QEP

(M + uD+ p?K)x =0, (12.74)

Assuming that A # 0, we will then have the GEP in terms of 4, rather then y, as

1
Az = — Bz, 12,75
T ( )
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where

-D -M K 0
A:( 7 0 ) B:(O 1), and (12.76)

e
= ( ax ) (12,7

For the case when M > 0,D = D7, and K > 0, we may formulate the GEP

Az:%Bz, with
D M ~K 0
A_(M O)' Bm( 0 M)' (12.78)

Note that A and B are both symmetric but indefinite.

s Computing the Eigenvalues Closest to a Shift
If one would like to approximate the eigenvalues of the QEP closest to the shift o,

m(,uz}\;[—é—,ub+1'€')x=0,whcre,u=# and M =M 40D+ K, D=D-+20M,

A—mr
and K = M. The exterior eigenvalues p approximate the eigenvalues A of the original
pencil closest to the shift o,
The corresponding GEP to be solved (in terms of A, rather than ) is

-b -k * _ 1 M 0 x
( i O ) ((}.—O’)_\‘)M:&—G ( 0 1) ((A—U)I)‘ (1279)

D K x 1 50 N ,
([’E O) ((;\‘—U).\')z}\_wa ( 0 Kn')((l'—o').\') “280)

if the symmetry is Lo be preserved.

or

Sensitivity of the linearization. Theaccuracy of acomputed eigenvalue A of the quadratic
pencil #(x) depends upon the type of linearization used. [t might happen that for the same
eigenvalues A the condition numbers are different for different linearizations, and thus the
accuracy will be different. See the results of a numerical experiment in support of this
statement by Tisseur and Meerbergen (2001). Tisseur (2000} has shown that by knowing
M, 1KY, and || DY, and the structures of the left and right eigenvectors of Pa(X), it is pos-
sible to identify which formulations are preferred for the large and the small eigenvalues.
For several recent results on these topics, see Higham, Mackey, and Tisseur (2006, 2009),
Higham et al. (2008), and Higharm, Li, and Tisseur (2007).

12.10 The Jacobi-Davidson Method for the Quadratic
Eigenvalue Problem

The Jacobi-Davidson method belongs to a lfamily of projection methods applied directly to
the QEP. These methods build an orthonormal basis V; for the subspace X and then solve
a projected smaller problem: V;*P;(A)V,z = 0. Here is the basic idea. For details see
Sleijpen, Booten, Fokkema, and van der Vorst (1996), Bai et al. (2000}, and Tisseur and
Meerbergen (2001).
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« Compute a Ritz pair (A, %) corresponding o apair (A, Xy of (PM 4+ 1D+ Kix =0
with 1*x == 1, by finding an orthonormal basis {v), ve, ..., 5} for K.

« Compule the correction puir (v, 1} by solving the linear sysiem

Pyl PR v\ _{ ~r
2x ] I i

where P5() = A°M + AD 4+ K. PJ(A) = 2AM + D, and r = Py (A} (residual).

= Oblain the new basis vector vy by orthonarmalizing v against the previous columns
of the orthonormal basis matris Vo= (v, v2, ..., b

= Repeat the process uniil ¢ is sufficiently small,

Notes: {1) The above linear system can be rewritten as

(; ) m) Pl (f _ ) R
PIAOE R

which can be solved using an ierative solver such as GMRES.

(i} The Jacobi-Davidson method targets one eigenvalue at a Ume, in contrast with the
Krylov subspace methods, whick can compute several eigenvalues simultaneously. This
feads 10 fast local convergence bui slow global convergence. See Sleijpen, vander Vorst, and
van Gijzen (1996) for details. For using the Jacobi-Davidson method for linear probiems,
see Sleijpen and van der Vorst (1996).

12.11 Review and Summary
12.11.1  The Classical lterative Methods

The Iacobi, Gauss—-Seidel, and SOR methods have been discussed,
A generie formulation of these Herative methods is

}:(M”;] . 3‘.{(6 Aod.

Different methods differ in the way B and  are chosen. Writing &4 = L+ D4 U, we have
the following:

« For the Incobt method,
B=B,=-D"(WL+U), d=b;=0D""
+ For the Gauss—Seidel method,
B=Bgs=—(D+LY W, d=hgs=(D+L)"'b
« For the SOR method,
B=1Byp =D+l ) —adD —wlUl, d=bip =wlD +wli b

{w Is the relaxation parameter},
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« The jteration
AR gt

converges for any arbitrary choice of the initial approximation x) if and only if the
spectral radius of B is less than | {Theerem 12.3),

A sufficient condition for convergence is | 8] < 1 (Theorem 12.3).
= Using this sufficient condition, it has been shown that both the Jacobi and Gauss-

Seidel methods converge when A s a strictly row diagonally deminant mairix
(Corpliaries 12,4 and 12.3),

» The Gauss-Seidel method also converges when A is symmetric positive definite
{Theorem 12.6)

-+ Forthe SORteralion to converge for any arbitrary cholee of therinitial approximation;
the relaxation parameter e has o lie i (0, 2} (Theorem 12.8).

» If the matrix A Is symmeiric positive definite, ten the SOR iteration is guaranteed
to converge for any arbitrary choice of w in the interval (0, 2) (Theorem 12.9%

= For a consistently ordered and 2-cyclic matrix 4 with sonzero diagonal entries, the
oplimal choice of o, denoted by ., is given by

2
P+ 1= p(BY

assuming that the eigenvalues of B, are real and p{B;) < 1, where p{A) stands
for the speciral radius of A. For definitions of these matrices, see Varga (2000) and
Young (19714

Wop —

12.11.2  Krylov Subspace Methods

A brief overview of Krylov subspace methods, both for linear systemns and eigenvalue
probiems, has been given, First, two basic methods, Armaldi (Algorithm 12.13 and Lancros
{Algorithms 12.4 and 12.6) (both symmetric and nonsymmetric) and their Krylov subspace
properties, have been described. Then it was shown how these methods could be applied o
solve Hinear systems and compute cigenvalues,

For linear sysiems, we described the following:

« Luncros-based Conjugate Gradient (TUG) method for symmetrie positive definite sys-
iems {Algorithm 12,5},

» Arnoldi-based full-orthogonalization (Algorithm 12.2), GMRES {Algorithm 12.3),
Bi-CG (Algorithm 2.7}, and QMR methods for nonsymmetric systems. {ther meth-
ods, such as MINRES, SYMMLQ for symmetric indefinite systems, and variants of
Bi-CG, incheding TGS and Bi-CGSTAB, have been mentioned with proper references,
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12.11.3 Llarge Eigenvalue Probiem
A brief discussion of the eigenvalue problem includes
» an explicitly restarted Arnoldi algorithm (Algorithm 12.10);

= an implicitly restarted Arnoldi method for an eigenpair nonsymmetric eigenvalue
problem (Algorithm 12.113;

+ a Lanczos algorithm for the symmetric eigenvalue problem (Section 12.6.3);

» the bisection method for the symmetric definite generalized eigenvalue problem (Sec-
tion 12.7);

« Krylov subspace methods {or GEPs (Section 12.8);
« Krylov subspace methods for the QEP (Section 12.9);
« the Jacobi—Davidson method [or the QEP (Section 12.10).

12.12 Suggestions for Further Reading

Some well-known books on the classical iterative methods include Varga (1992, 2000),
Young (1971), Hageman and Young (1981), Ortega (1990), and Axelsson (1994). In recent
years, several books on Krylov subspace methods have been published. These include
Greenbaum (1997), Saad (2003), and van der Vorst (2003). Some ol the seminal papers
on Krylov subspace methods that made a profound impact on research in this area, such
as Saad and Schultz {1986) on the GMRES method; Freund and Nachtigal (1991, 1994)
and Freund, Gutknecht, and Nachtigal (1993) on the QMR method; Paige (1970, 1971,
1976, 1980) on the Lanczos method; and Parlett, Taylor, and Liu (1985) on the look-ahead
Lanczos method are highly recommended for further readings on these methods. There
are several interesting survey papers which contain a wealth of information, including
Saad and van der Vorst (2000), van der Vorst and Chan (1997), Gutknecht (1992), Freund,
Golub, and Nachtigal (1992), and Saad (1981). Most of the modern textbooks on matrix
computations—Trefethen and Bau (1997), Demmel (1997), Golub and Van Loan (1996),
and Watkins {2002)—ulso contain a fair amount of discussion on Krylov subspace methods.
See also Hackbush (1994). A book devoted solely to the Lanczos method and its applications
in industry is Komzsik (2003). For more on the Lanczos method and its applications and
implementation see Parlett (1980, 1989, 1992) and Ye (1994, 1996).

The CG method was discovered independently by Lanczos (1952) and Hestenes and
Stiefel (1952). An excellent overview of this history of the method and its development can
be found in Golub and O'Leary (1989). See also Ashby, Manteuffel, and Saylor {1990),
Shewchuk (1994), Greenbaum and Strakos (1992), and Golub and Ye (1999). See Elman,
Saad, and Saylor (1986) for a hybrid Chebyshev-Krylov algorithm, and Ferng, Golub, and
Plemmons (1991} for an adaptive Lanczos algorithm for recursive condition estimation.
Some other earlier papers of interest related to the conjugate gradient method include Young
et al. (1980, 1988). Bischof (1890) and Bischof et al, (1990) have discussed incremental
condition estimation of sparse matrices.

A two-level preconditioned scheme for the CG method was developed by Pierce and
Plemmons (1988). See Brezinski and Sadok (1991), Brezinski, Zagila, and Sadok (1991,
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£992y, and Ye (1994) for discussions on detailed breakdown in Lanczos-type algorithms,
A coneise and useful account of the iterative methods is given in Barrelt et al. (1994}, See
Aricll, Derumel, and Duff (1989} for a discussion on solving sparse system with sparse
backward error. For more on convergence of GMRES, see van dor Vorst and Vuik (1993),
For a hybrid GMRES algorithm, see Nachtigal, Reichel, and Trefethen (19923

Saad’s book (2003) contains a complete chapter on preconditioning. A fair amount
of discussion on preconditioning also appears in Greenbaum {1997}, See some of Saad’s
papers also in this contexl {Saad (1984, 1988, 1993}) and Axelsson (1985). See Tong and
Ye (Z000) on the analysis of the Bi-CG algorithm, Chan amd Ye (1997) on the developmemt
of a hybrid Krylov subspace method combining CGS and Bi-CG, Golub and Ye (1999)
on the inexact preconditioned conjugate gradient method, Reichel and Ye (2003) on the
breakdown-free GMRES for singular systems, van de Vorst and Ye (2000} on residual
replacement strategies for Krylov subspace methods, Bai, Hu, and Reichel (19%4) lor a
Newten basis GMRES implementation, and Bank and Chan (1993} for analysis of the

composite Bi-CG methad. Saylor and Smolarki (1988) have described an optimal iterative

methd ToT solving afy linedr sysiem with 3 square mafrix.

Books exclusively devoted to large eigenvalue problems are Saad (1992), Bal et al,
{20003, van der Vorst (2002}, and Cullun and Willoughby (1995), Some interesting recent
papers on sparse eigenvalue problems include Calvetti e al. (1994, Golub and van der Vorst
{2000}, Golub and Ye (2000), 14 and Ye (2003}, Bai, Day, and Ye (1999}, Stewsrt (2001h),
and Jia and Stewart {2000). Some earlier papers on this topic include Parlett and Reid (1981),
Parlett, Simon, and Stringer {19823, Ericsson and Rubhe {19803, Jennings and Stewart {1973},
Paige, Parlett and van der Vorst (1995), Stewart (1976a), and Ruhe (1994). See Money and
Ye (2005} for a MATLAB program for the symmetric generalized eigenvalue problem.

For more recent developments on numerical methods for quadratiic and higher-order
eigenvalue problems, see Ye (2006}, Foffnug, Li, and Ye (2006), and several recent papers
by Higham, Tisseur, and others menuoned io Chapter 11, A brief account of the recent
developments on the guadratic inverse eigenvalue problem and its applications to Anite
element model updating can be found in the dissertation by Sokolov (2008),

For g collection of nonlinear eigenvalve problems, see Betke et al. (2008). Mehrmann
and Voss {2004) have discussed some challenges of splving nonlinear eigenvalue problems.

Multigrid methiods (not discussed in this book) are powerful tools for solving partial
differential equations arising from discretization. They have superior performance com-
pared to preconditioned Krylov subspace methods. See Briggs (1987), Demmel (1997),
and Saad (2003) for details. A classical book on direct methods for sparse SPD systems
{not discussed here) is by George and Liu (198 1), A recent book is by Davis (2008),

The research in this area is indeed very dynamic and new papers are coming up all
the time.

Exercises on Chapter 12

12.1 Construct an example to show that the convergence of the Jacobi method dees not
necessarily tmply that the Gauss-Seidel method will converge.

12.2 Let the 1 x n mairix 4 be partitioned into the form A = (A;;), where there are ¥
diagonal blocks and each diagonal block A;; 15 square and nonsingular.
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{ay Write down the block Jacobi, block Gauss-Seidel, and block SOR ierations
for the linear sysiem Ay = b {Hint Wik A = L+ D+ U, where D =
diag{A. ..., Ayn) and L and I/ are strictly block fower and upper triangular
mairices.)

(b} If A is symmelric positive definite, then show that I = L7 and D is posilive
definite. In this case, [rom the corresponding results in the scalar cases, prove
that, with an arhitrary choice of the initial approximation, block Gauss-Seidel
always converges and block SOR converges if and only if 0 < w0 « 2,

12.3 Show that the block Jacobi lleration for Poisson’s equation (6.48) is given by

k13 &y Yy :
4411-):1' - m-g‘;_i_}‘{b.{f_l“s‘bjf P= l«-.e.N.

Then write down the block Gauss—Seidel and block SOR iwrations also for this sysiem.
12.4 Show that the function [lx]la = &7 Ay is 2 norm in B,

125 (@) Prove that VA xllz < Jxlla < VAslxllp, where A is a symmetric positive

definite matrix with the eigenvalues 0 < Ay < An < - < 4.

(b3 Using the result in (a), prove the A-norm error bound (Theorem 12.18) for the
conjugaie gradient (CG) method.

12.6 Compuwie p(B;) and p{B8gs) for the block diagonal system By == d, where B =
ding{As, ..., As), and A5 hag the same form as the matrix of the Poisson equation
{6.46), and d ischosen so that x == {1, ..., 1)¥. Solve the system using 5 ilerations of
Gauss-Seidel and SOR with optimal value of @, Compare the rates of convergence,

12.7 Prove that g given by (12.41) minimizes the function g, (x; + o).
12.8 Show that the eipenvectors of A are the direction vectors of the CG methed.

12,9 ¢a) Apply the incomplets Chalesky factorization algorithm (Algorithm 12.8) to an
unreduced tridiagonal matrix T and show that the result is the usual Cholesky
factorization of T. Verify the above statement with a § x 5 matrix of the same
form as in Poissen’s equation,

(b} Apply the SOR iteration o the matrix 7' in {a) with & = 1.5 using x'¥ =
(0,0.0, 0, 077, and make a table of the results of the iterations.

1210 Let pg, pe. ... -y be the direction vectors generated by the classical CG algorithm,

Letrg s b= Axg, k=@, 1,.... 51— 1. Then prove thal

{a} re@span (po, ...l £=0, 12, ....0~ 13
(b) span (po, ..., ) ==span {rg, Arg, ..., Alrg), i =0, 1,..., 01— 1;
{cy rg. . ... rp—t are mutually orthogonal.
1211 (Mulrisplining.) Consider solving Ax = & by using the iteration x® 1 = By® 4 g,
where B and d are given by B = Yo DiB7Ciod = (L, 1B b, and A =
Bi—Ciim 1, kT D= (D 20

Develop the Jacobi, Gauss—5eidel, and SOR methads based on the multsplitting of
A {O'Leary and White (1983), Neumann and Plemmons (198733,
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12.12

Develop the symmetric successive overrelaxation (SSOR) method in detail and make
an illustrative example.

12.13 Apply the Jacobi, Gauss—Seidel, and SOR (with optimal relaxation factor) methods

12.14

12.15
12,16
12.17
12.18
12.19

12.20

12.26

12.27

to the system in Example 12.10 and verify the statement made there about the number
ol iterations for different methods.

(No fill-in incomplete Cholesky.) Develop the preconditioned conjugate gradient
algorithm with a square root—free incomplete Cholesky factor as a preconditioner of
the form LDLT.

Prove the residual expression (12.26) for the full-orthogonalization method method.
Prove lformulas (12.31)-{12.32) for the GMRES method.
Deduce the relation (12.56) for the QMR method.

Prove (a) the residuals {r;} in the CG method are orthogonal to K (A, rg), £ =
1,2,...:(b) llella = min{lix — x*[ia|x* € xo + Ki(A, ro)}.

Develop the CG and Bi-CG methods from the symmetric and nonsymmetric Lanczos
methods, respectively.

Bevelop the MINRES and QMR methods in detail.
Prove the biorthogonality and A-conjugacy relations for the Bi-CG method.

Develop the implicitly restarted Arnoldi algerithm for nonsymmetric eigenvalue prob-
lem (Algorithm [2.11) by incorporating the details of Step 2.7.

Prove that the polynomials (12.59)—(12.61) form a Sturm sequence.

(a) Develop a generalized Lanczos algorithm for the symmetric definite pencil A —

AB.
{b) Prove that the Lanczos veclors are B-orthogonal:
o Buy=1, v/ Bv;=0 i#]
{c) Find the generalized eigenvalues for the pair (A, B), where
I 10 10 1 0
A=[F 1 1], B=F1 10 1],
01 1 0 1 10

using this algorithm.

Develop an Arnoldi algorithm based on the shift-and-invert technigue for the gener-
alized eigenvalue problem Ax = ABx, using (12.62)-(12.67). Test your algorithm
with an illustrative example.

Develop an Arnoldi algorithm for computing the smallest and largest eigenvalues of
the symmetric indefinite generalized eigenvalue problem using the shift-and-invert
technique (12.73). Test your algorithm with a2 13 x 10 random example.
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12.28 Develop an afgorithm for computing the smallest eigenvalue of the quadratic pencil
P2 based on {12.74). Give an illusirative example.

12.29 Develop an algorithm for computing the eigenvalue closest to a shilt of the peneil
Py(2) based on (12.79)»-{12.80}.

12.30 Construct an example to show that the different linearizalions of the peocil £2{X) can
produce different sensitivities for the same eigenvalue ).

MATLAB Programs and Problems on Chapter 12

Notes: (i) The funciions gimres, gmr, bicg, peg, and minres are available in MATLAB.
{ii} The functions jacobi, gaused, sncoy, and nichel are available in MATCOM.

M12.1

Mi2.2

M12.3

Mi12.4

M12.5

MI2.6

Rum the programs jacobi, gaused, and sucov (choosing e as anoptional relaxation
parameler) from MATCOM on the 300 x 500 mawrix 4 of the same type as that
of Example 12.10 with the same slarting vector x'™ = (0,0, ..., 07, Find how
many iterations each method will take o converge.

{(Van der Yorst (2003)) Run gmres from MATLAE with the following data:
A =S85 "ol arder n = 200, where
i B 0 3 0
§ e : A and B =
. f2 -
0 i 0 A

Run the program nichol from MATCOM implementing the “ne-fill incomplete
Cholesky factorization™ on the nonsymmetric tridiagonal symmetric positive defi-
ahe matrix 7" of order 200 arising in discretization of Poisson’s equation. Compare
your result with that obtained by running chol{Tyon 7.

{a} Run MATLAB program gmres (¢ implement the GMRES algorithm without
a preconditioner {M = I) for solving Ax = &, with & taken us (i} an 500 x
300 diagonal matrix with eigeavalues clustered around §, (0} an 300 x 500
upper bidiagonal matrix with eigenvalues clustered around zero und 'z along
the suhdiagonal, {iii} the symmetric part of A in (8}, and (iv) wilkinson {300)
from MATLAR.

{b} Plotrelative residuals versus the number of iterations & {oreach of the systems
in (a}. Write down your conclusions.

Repeat Problem M12.4 with MATLAB function gmr and compare the resulis with
those of GMRES on the same data as in Problem M 124

{Comparison of GMRES, QMR, and Bi-CGy Run gmres, gmr, and bicg (without
preconditioners} on the same 500 x 500 sparse mairix created by MATLAB func-
tion spdiags and plot the logarithms of 1the norms of the residuals versus number
of iterations. Write your chservations.
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M12.7

(Study of convergence of the CG method with varying eigenvalue distributions.)

{2) Run MATLAB program pcg to implement the CG method without any pre-
conditioner (M = I} on the following systems: Ax = b, taking A as (i) the
symmetric positive definite matrix of the system (0.46) arising in solution of
Poisson’s equation of order 500; (ii} the 500 x 500 diagonal matrix with one
isolated eigenvalue 0.0001 and the other 499 eigenvalues distributed equally
over Hre interval [0.05, 1.5]; (iii) a 500 = 300 diagonal matrix with the first
255 eigenvalues set as 1,2, ...,255 and the rest distributed equally over
the interval {255, 500]; (iv) a 500 x 500 symnmetric tridiagonal matrix with
1,2, ..., 500 on the diagonal and 1’s along the sub- and superdiagonals; and
{v) a 500 x 500 symmerric tridingonal matrix with a parameter T such that as
T increases from zero, the matrix A becomes more and more ill-conditioned.

(b) In one single graph, plot ||r;|| versus number of iterations & for all the above
systems, Wrile your obsServations. .o

Mi12.8

M12.9

M12.10

M12.11

M12.12

M12.13

Foreach system in Problem M 12.7, present the following results in tabular form {in
one single table); (1) number of iterations Ny for convergence; {ii) bew, | ; (iit) the

lbealla
condition number «; (iv) 2( ﬁ:: ¥ and (v) actual residual norm [|A ~ bxy, |2

(Comparison of the CG method with different preconditioners.) Repeal Problem
M12.7 with (i) incomplete Cholesky preconditioner (wrile a scparate MATLAB
program and then use it to feed into the program peg), (i) Jacobi preconditioner,
and (iii) a diagonal preconditioner having a few distinct eigenvalues and the others
closely clustered. Plot relative residuals versus number of iterations & in a separate
graph for each of these preconditioners.

Repeal Problem M12.8 with each of the preconditioners used in Problem M12.9.
Make one separate table for each preconditioner.

(Study of convergence of the CG method with different matrices having the same
condition number) Run MATLAB program peg on five diagonal matrices with
positive diagonal entries, each of order 500, having the same condition number
{ratio of the largest to the smallest diagonal entries) and plot the relative residuals
versus the number of iterations in each case.

Run MATLAB program bicg on the matrices of Problem M12.11 with some di-
agonal entries negatives this time. Plot relative residuals versus the number of
iterations in each case.

{2) Run MATLAB program minres (without a preconditicner) on five different
diagonal matrices of order 500 with cigenvalues contained in the intervals
la, bl c,d), wherea < b <0 <c <dandb —a =d - c, by choosing
different values of a, b, ¢, and 4. Plot relative residuals versus the number
of iterations.

(b) Repeat part (a) in the special case when the two intervals are symmetrically
placed; that is,a = —d and & = —c.




Exercises on Chapter 12 491

Miz.i4

Mi2.15

M1216

MI2.17

M12.18

Mi2.19

M12.20

M12.21

Repeat Problem M12.13 with the following preconditioners: Jacobi, SSOR, and
LU,

Construct a parametric matrix A with a parameter t as follows: A = GDQ7,
where {7 1s orthogonal, and £ = diag(h, ..., 4, with &; = A, + ;Eij%{}.,, -
A"l = 2,0 .8 ~ 1. Run the unpreconditioned CG mothod on A with
n=>530uand r = 0.}, 0.5 0.6, 07, 0.8, 09, 1.0. Plot the A-norm error versus the
number of iterations in a single graph. Tabulate (i) the condition number © of 4,
and (i1} 2{%&% " for each value of the paramefer 7. Write vour observations.
Implement Algorithm 12,10 in MATLAB for finding the rightmost eigenvalue
of A.

Test data: (i) A random matrix 4 of order 1000; (1) 4 = numerid (R, n} with
R =C, D, and n = 500; (i) 4 = VT BV, where 8 is a diagonal matrix of order
500 with most eigenvalues chosen randomly from a normal Gaussian disteibution
and ¥ is a 500 x 500 orthogonal matrix. For each A, plot the results of residual
rorms versus the number of iterations. Take m = 20, 25,30, and 100, {Note:
numgrid is 8 MATLAB function.}

Find the 10 largest and smaltest eigenvalues for each of the matrices in Probiem
M 12,16 using MATLAB function eigs,

Construct a diagonal matrix A of order 500 with only a few distinct eigenvalues
and the rest clusiered around the center of the spectrum, and then run the symmeltric
Lanczos method on A fork = 3, 10, 15, 25, and 50.

{a} Plot eigenvalues of 7% for each & ond those of the original matriz 4. Write
your phservations,

it h)—2i{a}

{b} Plot the relative errory PRET ! for the first five and the last five eigen-

values.

Repeat Problem M12.18 with a dingonal matrix of 1000 with cigenvalues chosen
randomiy from a normal Gaossian distribution,

Elustrate by means of 2 plot the phesomenon of “ghost eigenvalues™ by laking 4
as a 300 = 300 diagonal matrix whose gigenvalues are elustered in {0, 1) and has
two eigenvalues 2 and 3 lying outside the interval.

Run cach of the programs written for problems (12.27)-(12.29) with an appropriate
problem of dimension 500,



Chapter 13

Some Key Terms in Numerical
Linear Algebra

algorithm: An ordered set of operations, logical and/or arithmetic, which when applied o
a computational problem defined by a given serof dava, called the input data, produces
a solution to the problem.

Arnoldi method: A Krylov subspace method that forms the basis of many modern large-
scale slgorithms for linear systems and eigenvalue computations.

back substitution: The process of solving an upper triangular system Ty == &, The entries
of the column vector & are obtained one by one, starling from the botem and working
up through the elemenis of the vector,

backward stability: An algorithm s backward stable if the computed solution obtained
by the algorithm is the exact selution of a nearby problem,

balancing: A process applied to A, before the start af the QR iterstion algorithm, so that
the entries of matrix A become somewhat uniform,

BLAS: Busic Linear Algebra Subroutines. There are three levels: Level | subrontines are
for vector-vector operations, Level 2 are for matrix-vector operations, and Level 3
are for matrix-matrix operations.

catastrophic cancellation: A phenomenon that occurs when two numbers that are nearly
equal are subrpcted. Many significant digits are lost. It often indicates that errors
were mude in previous computations,

characteristic polynomial: Foran n x a matrix A, the polvoomial p{i} = det(4 — A1)
of degree » in A

Cholesky factorization: The factorization of a4 symmelric positive definite matrix 4 into
HHT, where H is a lower mriangular matrix with positive dingonal entries.

companion matrix: An unreduced upper Hessenberg matrix with anes along the subdi-
agonal and possible nonzero entries on the last column and zeros everywhere else is
an upper companion matrix. The coeflicients of the characteristic polynomial of the
upper companicn rurix are given by the emtries of the last column. The transpose
of an upper companion matrix is a lower companion matrix.

443
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complete pivoting: The form of pivoting where the scarch for the pivot entry at step £ is
made among the entries of the submatrix below the row ( — 1) during the Gauessian
¢limnination process,

condition number; The number indicating the sensitivity of # problem. The condition
namber of the linear system problem Ax = fis Cond (A} = JA{1A™'}. Itis also
called the condition number of the matrix A.

condition number of eigenvalue: If A is an eigenvalue of a nondefective matrix, then the

number ——, where v; amd x; are the left and right unit length eigenveetors of the
oY . g

maliix, respectively, is the condition number of A

deflation: A technigue used in gigenvalue computations. Once an eigenvalue {or a pair
of gigenvalues) is compuled, an appropriate row and golumn (or pair of rows and
columns) are deleted and the computations proceed with the remaining submatrix for
the remaining gigenvalues,

dense matrixs A matrix in which most entries are-nonzere. The-zero entries are {oo- few
to devise any specialized algorithm.

direct method: A method that prodoces the solution of a problem in 2 finite number
of steps. The Gaussian elimination, QR faciorization, and Cholesky factorization
methoads are examples of direct methods for the linear system problem.

double-shift QR iteration: The shified QR ifteration where iwo single shifis are used
successively.

efficiency of an algorithm: An algorithm involving matrices of order # is efficient if it
does not require more than order #* floating point operations for implementation,

eigenvalue and eigenvector: A scalar X Is an cigenvaiue of A if there exists & nonzero
vector £ such that Ax == Ax, x is called the eigenvecior coiresponding to A

elementary lower triangnlar matrix: A mairix of the form 7 + ;zz;{e;f, where my =
O, O miggr g )t TUiS an identity matrix, except possibly for a few
nonzero entries below the dingons! of a single column,

Hoating point pumber: A floating point number x has the form x = &y A% where ¢ is
the exponent, ¥ Is the significant, and # is the base of the aumber system. A Hoating
point number x Is denoted by FH{x).

flop: Floating point operstion.
forward elimination: The process of solving a lower wiangular system Ly = b The

entries of the unknown vector x are obtained one by one, starting from the top and
working down through the vector's elements.

forward stability: An algorithm is forward stable if the computed solution & by the
algorithm is ¢lose to the exact solution x in some sense.

- 142 _—
Allp = [2_"5 Y e EZ} 2 where 4 = {ati;) 1s of order m x n.

Frobenius norm: | =t 2ot |

Gaussian elimination: An elimination process used to solve a linear system, It is named
after the celebrated mathematician Karl Friedrich Gauss,

(Gauss-Seidel method: An iterative method for solving Ax = b, named afier the noath-
ematicians Gauss and Seidel, The /th component of the (& 4 1)ih iteration vector

.rf’%“% is computed using a combination of information From the kth step and that
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which is available at the current (k -+ 1)th siep:

1 i—i ]

2 k1) i
b = — 1 - Zﬂ,jxj - Z @]

a;;
i Fusl il

generalized eigenvalue problem: The eigenvalue problem Ax = LBy involving lwo
mairices A and B,

Gergorin disks: The disks in the complex plave {z @ |~ 4] < #;], where r;
Dt sl ] associated with A = ;7). Bach eigenvalue of A Hes in al feast one o
the disks.

Givens matris: A matrix J{i, j, 8) is a Givens mdi{’%ﬁé if it is an ideniity matrix except for
the four entries J; = ¢, J; = —5, J;; = ¢, where ¢ = cos#. 5 = sinf, A Givens
malrix is orthogonal,

GMRES method: The Generalized Minimal Residual Method., A Kryloy 5{3%}5{?&%
method Tor solving larse and sparse Hnear systems.

of

Gram--Schmidt process: A process (o generate an orthonormal basis of a subspace,
starting from a given basis. If applied 1o the columns of a matrix A, it vields a QR
factorization of A,

growth facter: The ratio of the largest element {in magnitude) of the matrices A, A7 L,
A= (ohtained during the Gaussian elimination process) io the largest i.o]t,mem (:n
magnitude) of A, The growth factor is an indicator of stability or instability of the
Caussian elimination process.

guard digit: An exira digit in the lower end of the arithmetic register whose purpose is fo
catch the low-order digit that would otherwise be pushed out of existence when the
decimal points are aligned.

Hilbert matrix: The matrix # = (i;;), with &;; = 7y, named aller the celebrated
mathematician David Hilbert. The higher-order Hilbert matrices are extremely ill-
conditioned,

Householder matrix: A matrix of the form 2“" . where v is a veclor, A Houscholder
matrix is symmetric and orthogonal. It is also known as a profector.

Hl-conditioned preblem: A problem is ili-conditioned if a small change o the input data
can cause & significant change in the solation.

implict QR iterstion: A versioan ol the QR teration algorithm where one constructs the
QR iteration step A, = R, @, + ] implicitly without forming the matrix A, — p .

incomplete Cholesky factorization: The Cholesky factorization of a sparse symmetric
positive definite matrix where colculations are made only with the nonzero entries,
and the nonzero entries in the Cholesky factor are allowed oaly in those positions that
have a nonzero i A,

inverse iteration: An iterative process for finding an eigenvector given un approximation
1o the etpenvalue lor which the eigenvector 15 10 be computed.

inverse pawer method: The same as inverse feration,

iterative method; A method that produces the solution of o problem after 2 few aumber
of iterations, starting from an immial approximation of the solwtion.  Usoally, the
approsimations become closer and closer to the solution as the iteration proceeds.
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The Jacobi, Gauss—Seidel, and successive overrelaxation methods are examples of
iterative methods for sobving linear systems problems. The power method, the inverse
power method, and the QR method are examples of iterative methods for solving
eigenproblems.

iterative refinement: A procedure teriteratively improve a computed sclution of a problem.

Jacobi method: An iterative method for solving the system Ax = b; named after the
mathematician Karl Gustav Jacobi. The ith component of the (& < 1)th iteration

vector x}“” is computed using only information from &th ileration step:
1 H
.tf”” = — | b — Z a;,-x(-“
i i
" =i
Krylov subspace: The subspace spanned by the sequence of vectors {x, Ax, ..., A" 'x];

m is the dimension of the subspace. The sequence {Ax} is called the Krylov sequence.

Krylovsubspace method: A method based on generating an orthonormal basis of a Krylov
subspace. The Lanczos, conjugate gradient, GMRES, and the Arnoldi methods are
examples ol such methods.

LU factorization: A factorization of A into LU/, where L is lower triangular and 7 is
upper triangular. Elementary lower triangular matrices are used to achieve an LU
factorization.

LAPACK: A mathematical software package for linear algebra computations. The package
was developed mainly for portable high-performance computing.

least-squares solution: A solution x to the linear system Ax = b having the property that
[[Ax — b2 is minimized.

machine precision: The machine precision y is the smallest positive floating point number
in a computer such that (1 + @) > 1.

MATCOM: A MATL AB-based software package implementing all the major algorithms
ol this book.

MATLAB: MATLARB stand for MATrix LABoratory. Itis an interactive computing system
designed for easy computations of various matrix-based scientific and engineering
problems.

minimum-norm solution: Among all the least-squares solutions to the linear system
Ax = b, the one having the minimum norm is the minimum-norm solution.

norm of a matrix: Let A be an m x n matrix. Then the norm of A, || All, is a scalar such
that |A]] = 0, oAl = |ai|| A, and [|A + Bl < JJAl} + | B|l, where ¢ is a scalar.

norm of a vector: Let x be a vector. Then the norm of x, || x|, is a scalar associated with
x such that lx|| = 0, Jex|| = [afllx]}, and |x + v]| < {xli+ |ly]l, where @ is a scalar.

normal eguations: For the system Ax = b, the normal equations are the set of equations
ATAx = ATh,

orthogonal projection: P is the orthogonal prajection onto a subspace S of R if range
(P)=5,P' =P, and PT = P.

overdetermined system: A linear sysiem having more equations than unknowns,
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overflow: A situation that resuits when an exponent of a computed quantity becomes (0o
iarge w fit in 2 given compuler.

partial pivoting: The farm of pivoting where the search for the pivot entry af step &
is made in the kth column below the row (& — 1} during the Gaussian elimination
process.

perturbation analysis: Analysis pertaining to the effect on the solution of a problem by
she perturhation of the data of the problem.

power methed: An jterative method for computing the dominant eigenvalue and the
corresponding eigenvector of a matrix A, The method is so cathed because it is hased
on implicitly computing the powers of 4.

preconditioning: A process to improve the condition number of a matrix,

pseudoinverse: The matrix 4" defined by A" = VU7  where A = UEVT isthe SVD
of 4, &7 = éiﬁg(;’T, L. Ao L 0), and r s the rank of A.

cea

pseudocede: Form of codes for describing algorithms which can be translated easily into
computer codes.

QR iteration: An iterative process for finding the eigenvalues of g matrix A, based on
repeated QR fuctorizations of matrices orhogonally similar to A,

QR factorization: A lactorization of A imo (R, where € is orthogonal and R is upper
wriangular. Householder matrices, Givens matrices, and the Gram-Schmidt process
are used o achieve g QR fagtorjzation.

QR factorization with column pivoting: The lactorization of A in the form

Ry R

T . 0 11
whiere (0 is orthogonal, £ Is o permutation matrix, and Ry is upper riangular and
nonsingular

quadratic eigenvalue problem: The eigenvalue problem ol the form (A2 A+ A8+ Che =
4.

gquasi-minimal residual methed: A Krylov subspace method to solve a large and sparse
Hiacar system. 1t is popularly known as the QMR method.

QZ algorithm: An aigorithm for finding the eigenvalues of the pencil A ~ A8, The or-
thogonal mairices 0 and Z are constructed so that Q7 AZ is an upper quasi-irizngular
matrix T, and Q7 BZ = § is upper triangular. The cigenvalues are then extracted
from the eigenvalues of ¥ and 5.

rank-revealing QR: A QR factorization of the form

Tam. f R Kz
Q’“"(o a)

that reveals the rank of A in exoct arithmetic, Rank of A = rank{& ).

Rayleigh quotient: The quotient —-.i‘-L is called the Rayleigh guotient of the vector x. [f ¢
is an approximation of un ugenvecmr then the Rayleigh quotieat is an upgtax;mﬂum
of ihe gigenvalue corresponding to which the approximale eigenvector s x.
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real Schur forms A real quasi-irianguolar matrix whose diagonal entriesare 1 x lor 2 x 2
matrices. Every real matrix A can be transformed o real Schur form by orthogonal
similarity.

relative error: If £ is an approximation to x, then the relative error i8 W
rounding error: The error made in rounding a computed guantity.

scaling {(row): A process by which a diagonal matrix D is consiructed so that the rows of
D' A have more or less equal infinity norms,

single-shift QR iteration: The shifted QR iteration where a single shift is used but the
shifl varies from ileration 1o iteration,

singular value decomposition: A decomposition of matrix A in the form A = UTVT,
where If and ¥ are orthogenal and T is a “diagonsl” mairix.

sparse matrix: A maotrix with a large sumber of zero eniries. Sparsity is an asset with
a large problem, A sparse matrix may conveniently be stored in a computer and
 spsialized algovithins ean be dovised, s

special matrices: Ana x & matrix A = (g;;} is

diagonal il a;; = 0,7 # J;

upper triangular ifa;; = 0,7 = J;

fower triangular ifa;; = 0,7 < £,

upper Hessenberg ifay; = Ufori > j+ 1,

lower Hessenberg if ¢;; = Ofor j > i+ 13

tridiagonal if i is both lower aned upper Hessenberg;

a permutation mafrix if there is exactly one nonzero enlry in cach row and
column that is a 1 and the rest are zero;

unreduced npper Hessenberg if A is upper Hessenberz and ag;.q 3 0.0 =
2.1

unreduced lower Hessenberg if A is lower Hessenberg and a5y #% 0./ =
Le..,n—1t
{row) dingonally dominant i’ |g;{ = }:j;&}- b ;| forall i

syromeirie (Hermitian) if A7 = A(A™ = 4}

positive definite if A is symmetric (Hermitian) and x7 Ax > D{x*Ax > 0) for
EVEry NenzZere vector v,

a defective matrix if it has fewer than » eipenvectors;

a convergent matrix if A¥ — 0as k — oo,

speetral norm: §Als = /maximum eigenvalue of A7 A.

spectral radies: The specteal radivs s max |4, { = 1,..., 0, where Ay, ..., &, are the
eigenvalues of A.

spectrum: The set of all the eipenvalues of & matrix.
stopping criterion: A criterion that terminates an iterative method.
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successive overrelaxation method: A medified Gauss—Seidel method. The /th component
of the {k + 1)th approximation is given by

i1 n
Akl W k1) (k) (k3
X; =— by — Za,-j_\j - Z a,-j_lj. + (1l —w)x; .
H j=1 J=itl
w is called the relaxation factor.
symmetric definite generalized eigenvalue problem: The eigenvalue problem Ax =
ABux, where A and B are symmetric matrices and B is positive delinite.
underdetermined system: A linear system having more unknowns than equations.

underflow: A situation that results when the exponent of a computed quantity becomes
too small to fit in a given compuler.

well-conditioned problem: A problem whose solution is not sensitive 1 small perturba-
lions of the input data.

Wilkinson bidiagonal matrix: The bidiagonal matrix whose entries along the diagonal
are 1,2,..., 20, and those along the superdiagonal (subdiagonal) are 20, 19, ..., 1.
Certain eigenvalues of this malrix are extremely sensitive.

Wilkinsen shift: A special shift, named after James H. Witkinson, used in the symmetric
QR iteration algorithm. If ey, ..., e, and 8y, ..., B, are, respectively, the diagonal
and off-diagonal entries of a symmetric tridiagonal matrix, then the Wilkinson shift

. . . ) -
is given by g = @, +r — sign(r),/r? + B;_ |, where r = Z=t=5,
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