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Preface 

1bc second edition of Numerical Linear Algebra and Applications not only has a different 
publisher but also is practically a different book in its style of presentation and coverage 
of topics. However, the key features of the lirst edition have been fully preserved and 
occasionally further improved in this edition.-

0.1 Special Features 
Discussions of rite Computational Difficulties Using Theoretical LinearAtuebra Tools 

It is very important for students to clearly understand that some of the tools they have 
learned in a theoretical linear algebra course may nol work in a compUlational selling. 
Some examples, such as solving Iincar systems using Cramer's rule or matrix inver­
sion, finding Lhc eigenvalues by computing the zeros of the characteristic po1ynomia1, 
and computing singular values from the eigenvalues of the associated matrix product, 
will suffice. They will then start appreciating the beauty of numerical linear algebra 
early on and develop an interest in the study of numerical linear algebra. I have done 
this in Chapter I. which serve-s as a motivating chapter for the entire book 

• Applications to Science and Elrgineering 

One of lhe major slrcnglhs of the firsl edilion was that it contained a wide variety 
of motivating real~ life examples dra\vn from numerous disciplines, including heat 
transfer. fluid dynamics, signal processing, biomedical engineering, statistics, busi­
ness, control, and vibration engineering. In addition to all the applications contained 
in the first edition, several more, including some new SVD applications to image 
proces-sing, have been added to the second edition. This feature distinguishes !his 
book from most of the existing numerical linear algebra books. 

• A Brief Review of11!eoretical Linear Algebra 

A brief review of the basic concepts and results of theoretical linear algebra required 
to study the rest of the book, with a special emphasis on vector and matrix nonns1 

has been given in Chapter 2. The importance of norm properties of orthogonal 
matrices, which make these malrices valuable tools for numerically reliable matrix 
computational algorithms, has been emphaslzcd. In most theoretical inlroductory 
linear algebra courses, norm& and norm properties an.:: not adequately covered. 

xvii 
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• Early Introduction of tile Basic Concepts 

Students should be introduced early in the course to the fundamental concept' of 
round~off errors, efficiency, conditioning, and stability. Some basic facts should be 
made clear from the beginning. For example: 

an efficient algorithm may not necessarily be a "good algorithm" (e.g., Gaussian 
elimination without pivoting); 

stability is a property of the algorithm and conditioning is a property of the 
problem, but both have effects on the accuracy of the solution; 

- the stability of a numerical scheme depends upon Ute problem that is being solved 
using the scheme (e.g., the modified Gram-Schmidt process is stable for least­
squares solution, but can perform poorly when applied to QR factorization). 

Fro~-my cX:j)Ciiencc, I have ·se-en- Studerit:f \.\rf1o.-·ev·cn-aftt!r taking·onc or two-major 
courses in numerical analysis and numerical linear algebra, do not have clear Ideas 
about these facts. With this in mind, I have introduced these concepts early in Chap­
ters 3 and 4 and returned to discussions of these conccpLo; whenever a computational 
problem and the associated algorithm(s] have been described, 

• Presentation of Algorithms 

Presentation of algorithms to students in the classroom is a challenging job for most 
instructors. Before an algorithm is presented in algorithmic form, the studenls should 
have a clear idea about the purpose of the algorithm. the tools avai]ablc, and how to 
make good use of these tools to develop the algorithm in a stepwise fashion, This 
approach of algorithm presentation stimulates the creativity of the students and helps 
increase their interest in algorithm development and the sludy of numerical linear 
algebra, I have followed this practice throughout the whole book. Each algorithm 
has also been illustrated with simple examples, followed by brief discussions on 
etT~eiency, stability, accuracy, and computer implementations. 

Discussions on Generalized Eigenvalue Problems 

Several practical applications, especia11y those arising in vibration and structural 
engineering, give rise to generalized eigenvalue problems. A thorough treatment 
on theory, applications. and numerical algorithms of this problem has been given in 
Chapter ll, The applications include vibrations of structures, model reduction, and 
the effects of an earthquake on a building. 

MATCOM Toolbox 

A MATLAB-based toolkit, MATCOM, associated with this book contains MATLAB 
implementations of almost all major algorilhms presented in the book. Several ai­
gorithrns for the same problem have been implemented which wiH help students 
compare ellkiency, stability, and accuracy of different algorithms for the same prob­
lem. Plenty of MATLAB and MATCOM exercises have been given in each chapter. 
Many of these problems arc designed to understand why certain algorithms are better 
than others for the same problem. 
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Summary at the End af Each Chapter 

Important definitions, concepts, and results have been summarized at the end of each 
chapter. This will help students review the material of the chapter quickly. 

Suggestions fOr Further Readings 

While it is impossible to cope with the dynamic developments of current research in 
numerical linear algebra, some of the latest developments as well as references to the 
rundamcntal work on topics discussed in each chapter have been included at the end 
of each chapter for the benefit of advanced readers. The books by Golub and Van 
Loan (1996), Higham (2002), Stewart (l998h, 200lu), and Bj5rck (1996) are rich 
sources of references on numerical linear algebra und matrix computations. 

Solutions and Answers to Selected Problems 

Especially for the bene lit of undergraduate students, partial solutions and unswers to 
important problems. emphasizing those in need of proofs, have been included in an 
online appendix. See the book's webpage at Wwlv,s;am,orglbookslotl16, 

List of Key Tenns 

The most common terms in numerical linear algebra have been defined and listed for 
a quick reference. 

0.2 Additional Features and Topics for Second Edition 
• New Numbering Scheme 

A new numbering scheme different from what was used in the first edition has been 
adopted in this edition. Definitions, theorems, corollaries, and examples have been 
consecutively numbered in each chapter, the first number of each item being the 
chapter number. Algorithms are numbered in order of their appearances in a chapter. 
Thus, Algorithm 5. I indicates that it is the first algorithm in Chapter 5. I believe this 
scheme ls most commonly used and will facilitate readings. 

More Pictures and Figures 

'"A picture is worth a thousand words." Keeping this proverb in mind, 1 have included 
as many pictures and figures as possible in this edition. 

Organization of Material 

The material in this edition has been organized slightly differently from the first edi­
tion. Thus, the fundamental tools of numerical linear algebra, such us elementary 
Householder and Givens transformations, clc., have been introduced right before or 
along with their first application to solve a linear algebra problem. For example, ele­
mentary transformation has been introduced in the context of LU factorization using 
the Gaussian elimination scheme in Chapter 5; Householder and Givens transforma­
tions have been introduced in Chapter 7 right before Chapter 8. where least-squares 
solutions to linear systems have been discussed; reduction 10 Hessenberg form has 
been described in Chapter 9, where eigenvalue problem has been discussed, etc fn 
lhe Jirst edition these tools were developed in an earlier chapter (Chapter 5) and their 



XX Preface 

applications to solutions of linear systems, least squares, and eigenvalue problems 
were discussed in later chapters. 

• A Separate Chapter on Iterative Methods 

Recognizing the importance of iterative methods in solut1ons of large-scale problems. 
a separate chapter (Chapter 12) with emphasis on development of major Krylov­
subspacc methods for linear systems solutions. have been included in this edition. 
A brief discussion on computing purtiai spectrum and the associated eigenvectors of 
large and sparse motrices, including techniques for generalized and quadratic eigcn~ 
value problems, have also been included in this chapter. 

Discussions 011 Quadratic Eigem'alue Problem 

Quadratic eigenvalue problems arise in a wide variety of practical applications, in­
cluding vibration analysis of structures. finite element model updating in structural dy­
ll'lJ.'ffiics~-heat transfer.- signal and ncoustinstudies,-etc. An active research on_ quadratic 
and quadratic inverse eigenvalue problems is currently underway, Some discussions 
on theory, applications and computational methods of of quadratic eigenvalue prob­
lems, including the Jacobi-Davidson method, have been presented in Chapters !I and 
12 of this new edition. 

Early Introduction of Singular Value Decomposition 

SVD has become an indispensable tool in the trealment of major applications problems 
in science and engineering. It is now generally agreed Lhat the students should be 
exposed to this important topic as early as possible in the course, Keeping this in mind, 
the SVD has already been defined in Chapter 2 of the book and a full treatment of its 
theory and applications have been included in Chapter 7, even before our discussions 
on eigenvalue probh::ms in Chapter 9. Computational methods on SVD appear in 
Chapter 10 along with the treatment of the symmetric eigenvalue problem. 

Biographical Auecdores 

Btogruphical anecdotes of several outstanding numerical linear algebraists whose no­
ble contributions have enriched the field, and but only of those who are now deceased, 
have been included in the present edition. 

0.3 Intended Audience 
The book has been written primarily for a first course in numerical linear algebra in math­
ematics, computer science, and engineering, at the undergraduate and beginning graduate 
levels. See our Guidelines for using the book later. Also, rlw book is ideal for self-study 
and will serve as a reference book for scientists and engineers. 

0.4 Some Guidelines for Using this Book 
Far more material than can be covered in one semester course has been included. so thut 
professors can tailor material to particular classes and easily develop syllabi. Here are some 
guidelines for using the book in the classroom. 
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0.4.1 A First Course in Numerical Linear Algebra (Advanced 
Undergraduate/One Semester) 

Linear Algebra Problems and Computational Difficulties Using 111eoretical Tools: 
Chapter L 

Special Matrices, Vector and Matrix Norms, and SVD: Chapter 2, Sections 2.4-2.6. 

Floating Point Numbers and Errors: Chapter 3, Sections 3. 1-3.3; brief discussions 
from Sections 3.4-3.7: and Section 3.8. 

Stability, Conditioning. and Accuracy: Chapter4 1 Seclions4.l--4.5, and Sections4.6.l, 
4.7, and 4.8. 

Gaussian Elimination and LU Factorization: Chapter 5 (except possibly Section 5.2.5 
on complete pivoling). 

Numerical Solutions of Linear Systems: Chapter6. Section 6.2: some selected appli· 
cations from Section 6.3; Sections 6.4. 6.5, 6.7.1, 6.7,3, 6.7.4, 6.8, 6.9 (optional), and 
6, II; selected applications (giving rise to special linear systems) from Section 6.12: 
and Sections 6, 12.3, 6. 125, and 6.12.6, 

QR Factorization, SVD, and Projections: Chapter7, Sections 7.5, 7.6, 7.7, 7.8. I, 
7.8.2, 7.8.4, 7.8.5, 7.8.6, 7.8.7, 7.8.9, and 7.8.10: and selected applications fi'om 
Section 7.9. 

• Least-Squares Solutions: Chapter 8. Seclions 8.2-8.5; some basic sensitivity results 
from Section 8.6; and Section 8.7. 

Numerical Matrix Eigenvalue Problem: Chapter 9, selected applications from SeeM 
tion 9.2; and Sections 9.3, 9.4, 9.5, 9.6. l, 9.8. I, 9.8.2, 9.8.3, and 9.9.1. 

Note: Some adjustments need to be made for a one~quarter course. 

0.4.2 A Second Course in Numerical Linear Algebra (Beginning 
Graduate Course) 

( lr is assumed that the students /rave had a first course in numerical linear algebra. If that 
is not the case, a review of material of the first course should be done as necessary.) 

Numerical Solutions of Linear Systems: Chapters 6 and 12; a detailed perturbation 
analysis (Sections 4.6 and 6.1 0); LU factorization with complete pivoting (Section 
5.2.5); Sherman-Morrison formula for matrix inverse (Section 6.7.2); condition num­
ber estimation (Section 6.9); special systems {Section 6.12); and iterative methods 
(Sections 12.2-12.5). 

QR Factorization: Chapter 7; a review of Householder QR factoriz.ation {Section 7.2): 
and Givens QR factorization and uniqueness of QR factoriz.ation (Section 7.4), 

• Least-Squares Solution: Chapter 8; perturbation analysis (Section 8.6); a review of 
computational methods for overdetermined systems (Section 8.7); and underdeter­
mined systems (Section 8.8); iterative refinement (Section 8.9). 
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Numerical Matrix Eigenvalue Problem: Chapters 9, 10, and I l; sensitivity of indi· 
vidual eigenvalues and eigenvectors (Sections 9.6 and 9.7); double shift implicit QR 
iteration algorithm (Sections 9.8.4-9.8.6}; ordering eigenvalues in reai-Schur fonn 
(Section 9.8.7); symmetric eigenvalue problem (Section 10.2); and generalized and 
quadratic eigenvalue problems (selected sections from Chapters 11 and 12). 

SVD. Rank-Deficiency, Numerical Rank, and Possibly Some Discussions on Gener­
alized SVD: Chapters 7 and JO, Sections 7.8.8, 7.10, 10.3, and 10.4. 

Special Topics: Chapter 14 (available online at wwu:sianwrg/bookslut!/6): QR fac­
torization with pivoting, updating and downdating of QR factorization, and error 
analyses for back substitution, forward elimination, LU factorization, and Linear 
Systems. 

0.4,3 A-One-Semester Course in Numerical Linei\r Algebra for 
Engineers 

Required Theoretical Linear Algebra Background (selected sections from Chapter 2). 

• Floating Point Numbers and Errors: Sections 3,1-3.3 and Section 3.8. 

Stability, Conditioning and Accuracy: Sections 4.1-4.5, 4.6. I, and 4.7. 

Gaussian Elimination and Linear Systems: Chapters 5 and 6, Sections 5.1. 5.2.1-
5.2.4, 5.3, and 6.2; selected applications from Sections 6.3 and 6.12; and Sections 
6.4, 6.7.1 . 6.7.3, 6.7,4, and 6,1 I. 

QR Factorization, SVD, and Least-Squares Solutions: Chapters 7 and 8, Sections 7.2, 
7.5, 7.7, 7.8 (except7.8.8), 8.2, 8.3, 8.4, 8.5, and 8.7. 

Numerical Eigenvalue Problems: Chapters 9, 10, II, and 12. 

Standard Eigenvalue Problem: Selected applications from Section 9.2, and Sections 
9,4, 9.5, 9.6.1, 9.8. Land 9.8.2; and some selected methods from Section 10.2 (sym­
metric eigenvalue problem), 

Generalized Eigenvalue Problem; Chapter I I, Sections II ,2 and I 1.3; some dis­
cussions of QZ algorithm from Section I 1.4, Sections I I .5 and 11.6; and selected 
applications from Sections I L7 and 11.8. 

Quadratic Eigenvalue Problem: Section 11.9 

• Iterative Methods: Selected methods from Chapter 12 as needed. 
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Chapter 1 

Linear Algebra Problems, 

Their Importance, and 

Computational Difficulties 

1.1 Introduction 
The main objectives of this chapter are to state the fundamental linear algebra problems 
at the outset, make a brief mention of their importance, and point out the difficulties that 
one faces in computational settings when trying to solve these problems using obvious 
approaches. 

1.2 Fundamental linear Algebra Problems 
and Their Importance 

The following arc the fundamental linear algebra problems. 

A. The Linear System Problem. Given an 11 x !1 nonsingular matrix A and an 
11-vector b, the problem is to find ann-vector x such that Ax = b. 

A practical variation of the problem requires solutions of several linear systems with 
the same matrix A on the lcfl-hand side. That is, the problem there is to find a matrix 
X = lx1, ~t;,,,,, X111 ] such that 

AX= B, 

where 8 = [b1, b2, •• , 1 bm] is an 11 x m matrix. 
Associated with linear system problems arc problems of finding the inverse of a matrix, 

linding the rank, the determinant, the leading principal minors, an orthonormal basis for the 
range and the null space of A, and various projection matrices associated with A, Solutions 
of some of these later problems require m~trix factorizations, and the problem of matrix 
factorizations and linear system problems are intimately related. 

It is perhaps not an exaggeration to say that the linear system problem arises in almost 
alJ branches of science and engineering: applied mathematics, hiology, chemistry, physics, 
electrical, mechanical, civil, and vibration engineering, etc, 



2 Chapter 1. linear Algebra Problems and Their Importance 

The most common source is the numerical solution of differential equations, Many 
mathematical models of physical and engineering systems are systems of differential 
equations: ordinary and partial. A system of differential equations is normally solved nu­
merically by discrctizing the system by means of finite difrcrences or finite element methods. 
The process of discretization, in general, leads to a linear system, the solution of which is 
an approximate solution to the differential equations (see Chapter 6 for more details). 

B. The Least~Squares Problem, Given an m x 11 malrix A and an m-vector IJ, the 
least-squares problem is to find an 11-vector x such that the norm of the residual 
vector, HAx- 1Jij2, is as small as possible. 

Least-squares problems arise ln statistical and geomcU'ic applications that require fit­
ting a polynomial or curve to experimental data,_ as well as in engineering applications such 
assignal andimageprocessing, Sec Chapter 8 forsome specific applications oflcast-squares 
problems. Ii iS--w-Orth' inentiOning here thrihncthods for- numericallS'~sOiVing least-squares 
problems invariably lead to solutions of linear systems problems (see again Chapter 8 for 
details). 

C. The Eigenvalue Problem. Given ann x n matrix A, the problem is to find n 
numbers Ai antlu-vcclors x1 such that 

l •. " ' 11. 

The eigenvalue problem typically arises in the explicit solution and stability anulysis 
or a homogeneous system offirst-orderdifferentia! equations. The stability analysis requires 
only implicit knowledge of eigenvalues, whereas the explicit solution requires eigenvalues 
and eigenvectors explicitly. 

Applications such as buckling problems. stock market analysis, and study of behavior 
of dynamical syslcms require computations of only a few eigenvalues and eigenvectors, 
usually the few largest or smallest ones (see Chapter 9). 

In many practical instances, the matrix A is symmetric, and thus the eigenvalue prob­
lem becomes a symmetric eigenvalue problem (Chapter 10). A great number of eigenvalue 
problems arising in engineering applications arc. however, generalized eigenvalue prob­
lems, as stated below. 

D. The Generalized and Quadratic Eigenvalue Problems. Given the n x n 
matrices A, 8, and C. the problem is to find 1.1 andx1 such that 

().iA + k,C + B)x; = 0, i = 1. .... 2n. 

This is known as the quadratic eigenvalue problem. In the special case when C is a 
zero matrix, the problem reduces to a generalized eigenvalue problem. That is, if we arc 
given n x n matrices A and B, we must find fL and x such that 

t\x = 11Bx. 

The leading equalions of vibration engineering (a branch of engineering dealing with vi~ 
brat ions of structures. etc.) are systems of homogeneous or nonhomogeneous second-order 
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differential equations. A homogeneous second-order system has the fonn 

A':'+ Cz + Bz = 0, 

the solution and stability analysis of which lead to a quadratic eigenvalue problem. 
Vibration problems ore usually solved by setting C = 0. Moreover, in many practical 

instances, the matrices A and B arc symmetric and B is positive definite. This leads to a 
symmetric definite generalized eigenvalue problem. 

See Chapter 11 for details of some specific applications of these problems. 

E. Singular Value Decomposition Problem. Given un m x n matrix A, lhe problem 
is to find unitary matrices U and V and a "diagonal" matrix L such Lhat 

A=U(I:)V'. 

The above decomposition is known as lhc singular value decomposition of A. The 
entries--of I>are singular values. The column vectors of U and V' arc called the singular 
veclors. 

Many areas of engineering such as control and systems theory, biomedical engineer­
ing, signal and image processing, and statistical applications give rise lD the singular value 
decomposition problem. 1l1ese applications typically require the rank of A, an orthonomml 
basis, projections, the distance of a matrix from another matrix or lower rank, etc., in the 
presence of certain impurities {known as noise) in the data. The singular values and singu­
lar vectors are the most numerically reliable tools lO find these l.!ntities. The singular value 
decomposition is also the most numericalJy effective approach ror solving lhe least-squares 
problem, especially in the rank-deficient case (see Chapters 8 and I 0). 

1.3 Computational Difficulties Using Theoretical Linear 
Algebra Techniques 

In this section we would like to point out a few of the computational difficulties one might 
face while attempting to solve some of the above-mentioned linear algebra problems using 
common theoretical linear algebra methods. 

Solving a linear system by Cramer's Rule. Cramer's Rule, as taught at an under~ 
graduate linear algebra course, is of significant theoretical and historical importance 
{for astatt:rnenl of this rule, sec Chapter 6). Unfortunately, it cannot be recommended 
as a practical computational procedure. 

Solving a20 x 20 linear system, even on a rust modern-day computer, might take more 
than a million years to compute the solution with this rule, using the usual definition 
of the determinant of a rnauix. 

Computing the unique solution of a linear system by matrix inversion. The unique 
solution of a nonsingular linear system can be written explicitly as x = A ·~lb. 

Unfortunately, computing a solution to a linear system by explicitly computing the 
matrix inverse is not practical. 

The computation of the matrix inverse is about lwo-und-a-half times as expensive 
as solving the linear system problem itself using a standard elimination procedure 
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(see Chapter 6), and often leads to more inaccurucies. Consider a trivial example: 
Solve 3x = 27. An elimination procedure will give x = 9 and require only one 
division. On the other hand, solving the equation using matrix inversion will be cast 
asx = (l/3) · 27, giving x = 0.3333 · 27 = 8.999 (in four-digit arithmetic), and will 
require one division and one multiplication. 

Note that computer time consumed by an algorithm is theoretically measured by the 
number of arithmetic operations needed to execUI.e the algorithm. 

• Solving a lcast~squares problem by normal equations. If the m x n matrix A has 
full rank, and m is greater than or equal ton, then the least-squares problem has a 
unique solution, and this solution is lheorctically given by the solution _t to the linear 
system 

A7 Ax= A 7 b. 

The above equations are known as the normal equations. Unfortunately, this pro-
~ ~~tt:Jure--has· some severe--numerical limitations.-- First1 - in-finite-precision_ arithmetic, 

during an explicit formation of AT A, some vital information might be lost. Second, 
the normal cqualions arc more scnsilive to perturbations than the ordinary linear sys­
tem Ax b, and this sensitivity, in certain instances. corrupts the accuracy of the 
computed least-squares solution to an extent not warranted by the data. (Sec Chapter 8 
for more details.) 

Computing !he eigenvalues of a matrix by finding the zeros of its characteris­
tic polynomial. The eigenvalues of a matrix A arc the zeros of its characteristic 
polynomiaL 

Thus an "obvious" procedure fOr finding the eigenvalues would be to compute the 
characteristic polynomial of A and then find its zeros by a standard well-established 
root-finding procedure. Unfortunately, this is not a numerically viable approach. The 
round-off errors produced during a process for computing the- characteristic polyno­
mial will very likely produce some small perturbations in the computed coefficients. 
'These small errors in the coefficients can affect the computed zeros very drastically in 
certain cases. The zeros of certain polynomials are known to be extremely sensitive 
to small perturbations in the coefficients. A classic example of this is the Wilkinson 
polynomial (sec Chapter 4). Wilkinson took a polynomial of degree 20 with the dis· 
tinct roots 1 through 20 and perturbed Lhe coefficient of x i 9 by a significantly small 
amount. The zeros of this slightly perturbed polynomial were then computed by a 
well-established root-finding procedure. only to find that some zeros became totally 
different. Some even became complex. 

• Solving tbe generalized eigenvalue problem and the quadratic eigenvalue prob­
lems by matrix inversion. The generalized eigenvalue problem in the case where B 
is nonsingular, 

Ax= 11Bx, 

is theoretically equivalent to the ordinary eigenvalue problem 

8- 1.4x = /lX. 

However~ if the nonsingular matrix 8 is sensitive to perturbations, then fom1lng the 
matrix on the left-hand side by explicitly computing the inverse of B will lead to inac­
curacies that in turn will lead to cnmpututions of inaccurate generalized eigenvalues. 



13. Computational Difficulties Using Theoretical Linear Algebra Techniques 5 

Similar remarks hold for the quadratic eigenvalue problem. In major engineering 
applications, such as in vibration engineering. the matrix A is symmetric positive 
definite, and is thus nonsingular. In that case the quadratic eigenvalue problem is 
equivalent to the eigenvalue problem 

Eu =Au. where 

E = ( -.4~ 1 B -.4
1-rc). 

But numerically it is not advisable to solve the quadratic eigenvalue problem by 
actually computing the matrix E explicitly. If A is sensitive to small perturbations, 
the matrix E cannot be formed accurately. and the computed eigenvalues will then 
be inaccurate. 

Finding the singular values by computing the eigenvalues of .4 ·r A. Theoreti­
cally. the singular values of A arc the nonnegative square roots of the !:igenvalues of 
AT A. Hm.vevcr, finding the singular values this way is not advisable. Again, explicit 
formation of the matrix product AT A might lead to the loss of significant relevant 
information. Consider a rather trivial example: 

where E is such thal in finite-precision computation l +E2 = I. Then computationally 
we have A7 A = ( J i ). The eigenvalues now arc 2 and 0, So the computed singular 

values will now be given by .../2 and 0. The exact singular values, however. are J2 
and •/c/2. (See Chapter 10 for details.) 

Concluding Remarks 

Above we have merely pointed oul how certain obvious ihcoretical approaches to linear 
algebra problems might lead to computational difficulties and inaccuracies in computed 
resulls. Numerical linear algebra deals 1virh in~deptlt analysis of suclt d({ficulties, im•esti~ 
gat ions of hmv these difficulties can be overcome in certain instances, and formulation and 
implementations of viable numerical algoritlunsfor scientific and engineering use. 



Chapter 2 

A Review of Some 
Required Concepts from 
Core Linear Algebra 

2.1 Introduction 
Although a firsL course in linear algebra is a prerequisite for this book, for the sake of com­
pletl!ness we establish in this chapte-r some notation and quickly review the basic definitions 
and concepts on matrices and vectors and then discu:-:;s in somewhat greater detail the con­
cepts and fundamental results on vector and matrix norms and their applications. These 
rcsulLs will be used frequently in later chapters. 

2.2 Vectors 
An ordered set of numbers ls called a vector; the numbers themselves are called the com* 
ponents of the vector, A lowercase italic lcucr is usually used lo denote a vee lor. A vector 
v having Jt component.., has the form 

[
v,l V:! 

v = . . 

1!11 

A vector in this fonn is referred to as a column vector and its transpnsc is a row vector. 
The set of all n-vcctors (that is, each vector having n components) will he denoted by JR!'~"d 
or simply~~~. The set of all scalars will be denoted by It!!. TI1c transpose of a vector v will 
be denoted by v7 . Unless otherwise stated, a column vector will simply be called a vector. 

Definition 2.1. If u and v are nra rmv vectors in Rn, then t!teir sum u + v is defined by 

Definition 2.2. lfc is a scalw; then cu = (CilJ, cu:!, ... , cu")r, 

7 
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The inner product of two vectors u and v is the scalar given by 

The length of a vectoru. denoted by llviJ, is .;;:;r;;; that is. the length of v (or Euclidean 

len<1lh of v) ls .J u1
1 + v~ + ... -1- v2 

0 v ..!. 'II" 

A set or vectors {m 1 •• ,., mi;} in JRil ts said to be linearly dependent if there exist 
scalars c 1, , , • , CJ:.., not all zero. such that 

(zero vector). 

Otherwise, the set is called linearly independent. 
Note thaUhe unitxe.ctors le;} delined by 

e; = (0. 0 .... , 0, 1 , 0 ... , O)T, 

t 
i th component 

are linearly independent. 

2.2.1 Orthogonality, Subspace, and Basis 

i = I, ... , n, 

Orthogonality of two vectors. The angle 9 between two vectors 11 and v is given by 

uTv 
cos(G) = . 

liullll vII 

Two vectors 11 and v are orthogonal if fl = 90°, that is, 11 Tv = 0. The symbol .L is used to 
denolc orthogonality. 

LetS be a set of vectors in lR". Then Sis called a subspace oflR" if s1, s1 E S implies 
c 1s 1 + CJ)i1 E S, where c1 and c2 are any scalars. That is, Sis a subspace if any linear 
combination of two vectors in Sis also inS. Note lhlll the space R11 itself is a subspace 
of ~n. For every subspace there is a unique smallest positive illfeger r such tlwt every 
\'ector in the subspace can be expressed as a linear combination of at most r vectors in the 
subspace; r is called rite dimension of tire subspace and is denoted by dim[S]. Any set of 
r linearly independent vectors from S of dim[S] = r forms a basis of the subspace. A set 
of vectors !u 1, ••• , U 11 J is orthonormal if each vector has unit length and they are pairwise 
orthogonal; that is, urtlj = 0, it j, and urui = l. 

Orthogonality of two subspaces. Two subspuces S1 and S2 of'R" are suid to be orthog· 
onal if si S2 = 0 for every Sj E sl and every S] E s:!. Two orthogonal subspaces sl and s2 
will be denoted by S1 .L S2. 
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2.3 Matrices 
A collection of n vectors in !Pl11 arranged in a rectangular array of m rows and n columns is 
caiied a matrix. A matrix A, therefore, has the form 

("' 
br:. 

"'") G:!J bn bzn 
A 

a,;!l bm2 bmn 

lt is denoted by A = (aij)mxn• or simply by A = (aiJ). where it is understood that i = 
l, ... , m and j = 1. . . • 1t. A is said to be of order m x n. The set of all m x 11 real matrices 
is denoted by lRmxn. 

The set of all complex m X ll malrices is denoted by cmxiJ. The complex conjugate of 
a complex matrix A, denoted by .4, is the matrix whose every entry is the complex conjugate 
of the corresponding entry of A. 

The transpose or the complex conjugate of A is denoted by A': that is, 

Unless othenvise specified, all matrices in this book are real matrices. 
A matrix A having the same number of rows and columns is called a square matrix. 

The square matrix having ones nlong the main diagonal and zeros everywhere else is called 
the identity matrix and is denoted by I. 

The sum of two matrices A = (a,j) and B = (bij) in Rmxu is a matrix of the same 
order as A and Band is given hy 

A+ B = (aij + bij). 

If cis a scalar, then cA is a matrix given by 

Let A be m x 11 and B ben x p. Then their product AB is an m x p matrix given by 

AB (~·b .. ) i=l, ... ,m, 
La,k"' , , 1 J ' .... p. 
A=l , 

Note thnl if b is a column vector, then Ab is a column vector. On the other hand, if a 
is a column vector and bt is a row vector, then abr is a malrix, knmvn us Lhe outer product 
of the two vectors a and b. Thus 

a
1b.,l 

"';"" . 

a11 bf/J 
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Example 2.3. 

Outer product ab7 = 4 6 8 (a matrix). (
2 3 4) 
6 9 12 

bmerproducra 7 b= (1 2 3) (!) =20(ascalar). I 

The transpose of a matrix A of order m x n, denoted by AT. is a matrix of order 
11 x m with rows and columns interchanged: 

i = I, ... 'fl, 
j =I, ... • m. 

Note: The matrix product is not commutative; that is~ in general 

AB"' BA. 

Also, note that (AB)" = BT AT 

An alternative way of writing the matrix product. Writing B 
b1 is the ith column of B, the matrix product AB can be written as 

A B = (Ab, .. .. Abp). 

Similarly, if a1 is the ith row of A, then 

(

a
1Bl a,B 

AB = - . 

011~8 

Block Matrices 

If two matrices A and B can be partitioned as 

A= (An 
A21 

A12) 
An ' B = (B" Bzt 

then considering each block as an element of the matrix, we can perform addition, scalar 
multiplication, and matrix multiplication in the usual way. Thus, 

A+ B = (An+ 811 
A:H + B21 
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and 

assuming that the partitioning has been done conformably so thalthe corresponding matrix 
multiplications and additions are possible. 

If A (.41i) and B (Bij) are two block matrices, then C = AB is a block matrix 
given by 

C = (C,i) = (t A"B'i), 
k::::d 

where each Aih B;;i, and Cij is a block matrix. assuming that each Aik is compatible with 
Bkj for m!ltrix multiplication. 

The Determinant of a Matrix 

For every square matrix A, there is a unique number associated with the matrix called the 
determinant or A, which is denoted by det(A), For a 2 X 2 matrix A, det(A) =allan­
a 11a21 ; for a 3 x 3 matrix A = (aij ), det(il) =all ·dct{A ll) -a12 ·det(A 12J+an ·dct{An), 
where A1; is a 2 x 2 submatrix oblained by eliminating the first row and the ith column. 
This can be easily generalized. For ann x 11 matrix A= (au) we have 

det(.4) =(-!)'+'an det(Ail) + (-l)1+2ai2det(A!l) 

+ · · · + (-l)i+nain det(Ai 11 }. 

where Au is the submatrix of A of order (n - I) obtained by eliminating the ith row and 
jth column. 

Example 2.4. 

Set i = I. Then 

det(A) = l · det (~ ~)- 2 det (~ ~) + 3 · det (j n 
1(-3)- 2(-6)+ 3(-3) = o. I 

Theorem 2.5 (some determinant properties). Let A E ml11
""'

11 and B E ]Rtno:n. 

2. det(aA) =a" det(A). where a is a scalar. 

3. det(AB) = det(A) · dct{B). 

4. If two rows or tll'o columns of A are identical. then dct (A) 0. 

5. If C is a matrix obtained from A by interchanging two rows or tn·o colrwms, tlreu 
dct(C) - det(A). 
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The determinant of a block matrix. Let 

A= (A~, A") 
A22 ' 

where A" and A2z arc square matrices. Then dct(.4) = dct(All) ·del( A,). 

The characteristic polynomial, the eigenvalues, and eigenvectors of a matrix. Let A 
be ann x n matrix. Then 1he polynomial p,.(!..) = det(!..J- A) is called the characteristic 
polynomial. The zeros of the characteristic polynomial are called the eigenvalues of A. 
Note that this is equivalent to the following: !.. is an eigenvalue of A if and only if there 
exists a nonzero vector x such that Ax )_:c The vector x is called a right eigenvector 
(or just an eigenvector), and the vector y satisfying y• A = icy' is called a left eigenvector 
associated with j_, 

Definition-·2.6. Let {-Ai J. i = I, , .. , n-, be- the eigenvalues of an n K n .marri..r. Tlzen the 
qualllity p(A) =max 11.;1 is called rite spectral radius of A. 

Theorem 2.7 (some basic eigenvalue-eigenvector properties). 

l. A and AT ha1•e the same eigenvalues, 

2. A matrix A is nonsingular If and only if all its eigenvalues are nonzero. 

3. T!te eigenvectors corresponding to tire distinct eigenvalues are linearly dependent. 

2.3.1 Range and Null Spaces 

For every m x n matrix A, there are two important associated subspaces: the range of A, 
denoted by R(A). and the null space of A. denoted by N(A). They are defined as 

R(A) {b E IR"' i b = Ax for some x E IR"), 

N(A) = lx E JR" I Ax= 0). 

LetS be a subspace of ill:"'. Then the subspace S~ defined by 

s~ = !Y E iR"' I y7 x 0 for all X E S) 

is called the orthogonal complement of S. It can be shown (Exercise 2.4) that 

(i) N(A) R(A 7 ).L; 

(ii) R(A).c = N(A 7 ). 

Definition 2.8. The dimension ofN (A) is called the nullity of A and is denoted by null( A). 

2.3.2 Rank of a Matrix 

Let A be an m x n matrix. Then the subspace spanned by the row vectors of A is called the 
row space of A. The subspace spanned by the columns of A is called the column space of A. 
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The rank of a matrix A is the dimension of the column space of ;L It is denoted by 
rank( A). A square matrix A E lR'"" is called nonsingular if rank( A) = n. Otl>erwise it is 
singular. 

Ann x n matrix A E t-i" ~,r. is said to have full column rank 1j its columns are linearly 
independent. The fuJI row ra11k is similarly defined. A matrix A is said to have full rank if it 
has either full row rank or full column rank. If A does not have full rank, it is rank-dejicieHt. 

Example 2.9. 

A= o n 
has full rank; rank(A) 2 (it has full column rank); nuii(A) = 0. I 

Example 2.10. 

.4 = G ~) 
is rank-deficient; rank( A)= I; nuii(A) = I. I 

Theorem 2.11 (some rank properties). Let A be an 111 x n matrix. Then the following 
hold. 

I. rank(A) =rank( AT). 

2. rank( A)+ nuii(A) = n, 

3. rank( A B) 2: rank(AJ +rank( B) 11, where B is 11 x p. 

4. rank(BA) = rank(A) = rnnk(!IC), where Band Care nonsingular matrices of 
appropriate orders. 

5. rank{AB)::: minlrank(A). rank(Bl). 

6. rank(A +B)::: rank(A) +rank( B). 

2.3.3 The Inverse of a Matrix 

Let A be an 11 x 11 matrix. Then the matrix B such that 

AB BA =I, 

where I is then x 11 identity matrix. is culled the inverse of A. The inverse of A is denoted 
by A -I. The inverse is unique. 

Definition 2.12. If A E lR11
:-:

11 lias an ilwer.se. it is called 1wnsingufar. Otherwise, it is 
singular. A nonsingular marrix is also called invertihle. 
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Theorem 2.13 (some properties of an invertible matrix). For a nonsingular n x n 
matrix A, the follmving properties hold. 

(i) (A-1)-' =A. 

(ii) (Ar)-l (;\-l)T 

(iii) (cA)- 1 = tA- 1, where cis a nonzero constant. 

(iv) (AB)-1 = s-IA-'-

Theorem 2.14 {characterization of nonsingularity}. Foran 11 x n matrix A, the follmving 
are equivnlem. 

(i) det(A). .. yi. 0. 

(ii) A has linearly independent rows and columns. 

(iii) N(A) = [0}. 

(iv) The eigenvalues of A are all nonzero. 

(v) rank(A) rank(Ar) 11. 

2.3.4 Similar Matrices 

Two matrices A and B arc called similar if there exists a nonsinguiar matrix T such that 

T- 1AT =B. 

An important property of similar matrices. Two similar matrices It ave the same eigen­
values. 

Howevet; the conrerse is not true. 

2.4 Some Special Matrices 

2.4.1 Diagonal and Triangular Matrices 

An m x n matrix A = (aij) is a diagonal matrix if aij = 0 for i :J: j, We write 
A= diug{au .... , G1111 ). 

For example. the matrices 

are all diagonal matrices. 

0 0 
2 0 ),(b ~),(b ~g) 

0 0 0 0 3 
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A block diagonal matrix is a diagonal matrix \vhere each diagonal clement is a square 
matrix. A block diagonal matrix is written in the form 

A =diag{A 11 , ••• ,A1111 ), 

wht!re Aii are square matrices. 
An m x 11 matrix A = (aij) is an upper triangular matrix if au = 0 [or i > j, 
The transpose of an upper triangular matrix is lower triangular; that is, A = (n,j) is 

lower triangular if ai! = 0 fori < j. 

0 

* 
* 

0 
0 

* 

* 
* 
0 
0 

* 
* 
* 0 ~ ) 

* * Lowe-r Triangular Upper Triangular 

Theorem 2.15 (some useful properties of triangular matrices). 

1. The product of two upper (lower) triangular matrices is an upper (lmfer} triangular 
rnatrLr. The diagonal enrries of the product marrix are jHst the product!; r~fthe diagonal 
entries of the indil'idual mal rices. 

2. Tlte inverse of a nonsingu{ar upper (lower) triangular matrix is an upper (lower) 
triangular matrix. Tile diagonal entries of the inverse are the reciprocals of the 
diagonal entries £~{the original matrix. 

3. The eigenvalues of a triangular matrix are its diagonal entries, 

4. The determinant of a triangular matrix is the product of its diagonal entries. Thus, a 
triangular matrix is nonsingular if and only if all of its diagonal emries are nonzero. 

2.4.2 Unitary and Orthogonal Matrices 

A square complex matrix U is unitary if 

U'U UU' =I, 

where U* = (U)T; U is the complex conjugate of U. 
H U is real, then U is orthogonal if 

uTu = uur I. 

Orthogonal matrices play a very important role in numerical matrix computations. 
Two very useful properties of orthogonal matrices are given hy the following theorem. 

Theorem 2. 16. 

(i) The im·erse of an orthogonal matrix 0 is just its transpose: o-1 or. 

{ii) 1ite product of two orthogonal matrices is an orthogonal marrix. 
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2.4.3 Symmetric and Hermitian Matrices 

A square complex matrix A is Hermitian if A"' = A. A square matrix A is symmetric if 
AT A. 

If A is real, then A is real::;ymnu:tric. In this book, real symmetrlc matrices wi/{ be 
referred to as symmetric matrices. 

Theorem 2.17 (eigenvalue decomposition of a symmetric matrix). Lei A be a real 
symmetric matrix. Then there exists an orthogonal matrix 0 such that 

OTAO = D, 

where D = diag()..J, ...• A11 ). The munbers A1 •... , Ar. are the eigenvalues of A. The 
columns of 0 are the eigenvectors of A. 

An important consequence of this theorem is the jollmving. 

- Corollnry--2:18;--T/ur eigenvalues of a-symmetric matrix are-real and tlie eigenvectors can_ 
be chosen to be orthogonal. 

Definition 2. 19. The above decomposition is called tile spectral decomposition of A. 

Theorem 2. I 7 and Corollary 2.18 also hold for a complex Hcnnitian matrix. 

Theorem 2.20 (eigenvalue decomposition of a Hermitian matrix). 

(i) Let A be a complex Hermitian matrix. Then there exists a 11nitar)' matrix U sllcil 
tllw U"'AU diag(A1, •••• A11 ), tvhere ), 1,).;:, •. ,,1.11 are the eigenvalues of A 
and are real, 

(ii) The eigenvectors of a complex Hermitian matrix can be chosen to be unitary. 

2.4.4 Hessenberg Matrices (Almost Triangular) 

A square matrix A is upper Hessenberg if aij = 0 fori > j + I. The transpose of an upper 
Hcssenbcrg matrix is a lower Hessenberg matrix; that is, a square matrix A = (aiJ) is a 
lower Hcsscnberg matrix if a,; = 0 for j > i + I. A square matrix A that is both upper and 
lower Hcsscnberg is tridiagonal. 

(; : ;) (~ ~ ~) (: : J 
Lower Hcssenberg Upper Hessenberg Tridiagonal 

An upper Hcssenberg matrix A = (aiJ) is unreduced if 

au~ 1 # 0 fori 2, 3, ... , n. 

Similarly, a lower Hessenberg rnmrix A = (aij) is unreduced if 

a;,;+ 1 ;io 0 For i I, 2,. .. , n - I. 
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Example 2.21. 

A = ( ~ ~ ~) is an unreduced lower Hcsscnberg matrix. 

A :) is an unreduced upper Hessenbcrg matrix. 
3 

2.5 Vector and Matrix Norms 

2.5.1 Vector Norms 

17 

I 

A vector norm on lR'1 is a function !I · II: lR'1 -+ -R that sulisfies the follO\ving conditions: 

L llx II > 0 for every nonzero x, llxll = 0 If and only if x is the zero vector. 

2. ll"x II = I" lllx II for all x E lit" and for all scalars "· 

3. li-t+ Yll :" llxll + IIYII forallx andy E IR". 

The last properly is known as the triangle inequality, 
Note: 

11-xll = llxll, 
llx!l- IIYII :" ll(x- y)ll. 

It is simple to verify that the following are vector norms. 

Some Easily Computed Vector Norms. Let x = (x 1• x2,.,., x,/. Then 

A. llx lh = lxtl + 1x2l + · · · lx,. I (snm norm or one norm). 

B. llx 112 = yxf + x~ + · · · x; (Euclidean norm or two norm). 

C. llxiloo =maxi !xd (infinity norm or maximum norm). 

In genera!, iF p is a real number greater than or equal to 1, then the p-norm or HOlder 
norm is defined by 

Example 2.22. Letx (I, I, -2). Then 

~~---:-~ !lxll,=4, llxllo=vi'+I2+(-2) 2 =.J6.11xllno 2. I 

An important property of the Hmder norn1 is the HOlder inequality 

lx7 yl :" llxllp IIYIIq. 
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where 

1 l 
-+-=!. 
p q 

A special case of the Hiilder inequality is the Cauchy-Scftwarz inequality 

lxTyj :0: llxli211Yil2. 
that is, 

Equivalent Property of the Vector Norms 

A II ''iCdtir' i11JffriK are--equivalent-in the-sense thatthere-cxist positive·constants ~ and· f3 such 
that 

forallx. 
For the 2-, l~, or oo-norms, we can compute ct and fJ easily: 

!lxlh :0: jjxjj, :0: .j/ljjxjj,, 

llxlloo :5 llxlb :5 follxlloo, 
llxiloo :5 IJxllr :5 nllxlloc· 

2.5.2 Matrix Norms 

Let A he an m x n matrix. Then, analogous to the vector norm, we define a maLrix norm 
IIA II with the following properties: 

L liAII > 0: II All = 0 if and only if A is the zero matrix. 

2. 1\aA!I = jajjjAIJ for any scalar a. 

3. IIA + Bll :5 \I All+ liB II. 

Subordinate Matrix Norms 

Given a matrix A and a vector norm II ·II,. a nonnegative number defined by 

IIAII 
_ IIAxllp 

r;-max--
' ·'"" ll.r Ill' 

satisfies alllhc properlies of a matrix norm. This norm is called the matrix norm subordinate 
to the vector norm or jusl subordinate matrix norm. 

A very useful and frequently used property of a subordinate matrix norm (we shall 
sometimes call it the p-norm of a motrLr A} is 
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This property easily !allows from the definition of p-nom1s. Note that 

II All"?. IIAxllp 
llxllp 

19 

for any particular nonzero vector x. iv1ultiplying both sides by !lxil,, gives the original 
inequality. 

The l wo easily compurable p~norms are 

Example 2.23. 

IIAIIoo max ""la;il 
l<1<mL 
-- J=l 

A=( 

(maximum column~sum norm), 

(maximum row~sum norm). 

3 
-5 

Then IIAI!J = 12 and IIAII= =II. I 

Another useful p-norm is the spectral norm, denoted hy i1A11 2: 

It can be shown that 

II Axil, 
II Alb= max---. 

- x,oo llxlh 

II Alb. Jmaximum eigenvalue of A7 A. 

(Note that the eigenvalues of AT A are reaJ and nonnegative.) 

Example 2.24. Let A = (i l). Then the eigenvalues of A7 A arc 0.0257 and 38.9743, and 

IIA lb = ,)38.9743 = 6.2429. I 

The Frobenius Norm 

An imporlant matrix norm compatible with the vector norm UxU 2 is the Frobenius norm: 

IIAiiF = [ttlaii!2]! 
j=l j;"'! 
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A matrix norm I! ·liM and a vector norm 11·11, arc compatible if 

II Axil,~ IIAII.u !lxll, .. 

Example2.25. Let A= (j~). Then IIAIIF ,/30. I 

Two important properties of the Frobenius norm. 

I. For the identity matrix!, lllllr = Jli, whereas\11\1, =II lib= 11/1100 = l. 

2. IIA II~ = trace(A,. A), where trace( A) is de lined as the sum of the diagonal entries 
of A; that is, if A = (aiJ }, then trace(A) a11 +an+ ···+Gnu· 

Consistentnorm •. Anm:mll·ll isconsistenti.fjtsatisfies !IABII ~.JIAIIi!B\1 whenever the 
product A B is defined. . . .. . · . ·· · .. 

The Frobenius norm and all subordinate matrix norms are consistent. The max norm 
II All maxi,j laij I is not consistelil. 

Equivalence Property of Matrix Norms 

As in the case of vector norms. the matrix norms are also related. There exist scalars a and 
fl such that 

ln particulu.r, the following inequalilies relating various matrix norms are true nnd are used 
very frequently in practice. 

Theorem 2.26. Let A be m x 11. 

(3) }.;;!IAIIJ ~ IIAib :" JI!IIAII,. 

(4) lfAib ~ ../iiAiltiiAIIoo· 

We prove here inequalities (l) and (2) and leave the others as exercises (Exercise 2.32). 
Proof. Proof of (l ). By definition 

liAxlloo 
IIAIIoo =max-.--. 

xfO l!.t ll.>o 

Again, from the equivalence property of the vector nonns, we have 

I!Axlloo :5 IIAxlb and llx!il :" Jlillxl!oo· 
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From the second inequality we get ::::; !:~~. It therefore follows that 

IIAxliro ;::-IIAxll, 
--- <vn--
llxllx - lixlb 

or 

IIAxlloo r:: IIAxlb 
max--- < v 11 nmx --
x,oo llxlioo - ·'*'" llxib 

i.e., 

I 
r::IIAIIx ~ iiAib 

vii 

The first part is proved. To prove the second part, we again usc the definition of IIA lb 
and the appropriate equivalence property of the vector norms. 

II Alb 

11ws, 

ll.4xll, r;ciiAxliru 
--<vm---. 
!lxlb - llxllx 

S HAx:l• < ,- liAxll~ I'AII r:::IIAII o maxt;LO lixli:. _ 'V m maxx,po ll.til~ or l 2 :5 ym 00 • 

The proof of (I) is now complete. 0 

Proof of(2). We prove (2) using a different technique. Recall that 

IIAII} tracc(Ar A). 

Since A r A is symmetric, by Theorem 2. 17 there exists an orthogonal matrix 0 such that 

0 7 (Ar A)O = D = diag(d1, ..• , d,). 

Now, the trace is invariant under similarity transformation (Exercise 2.38 (d)). We 
then have 

trace( AT A)= trace( D)= dr + · · · + d,. 

Let dk = max1(d1). Then, since d1, ••• , dn arc also the eigenvalues of AT A, we have 

liAIIj = d,. 

Thus, 

II Ail} trace( A' A) d, + · · · + d,?:: d, =II All~· 

To prove the other part, we note that 

II All~= d, + .. · + d, ~ d, + d, + .. · + d, nd,. 

That is, II Ali} ~ IJ(i, = nil A II~. So, IIA IIF ~ ../iiiiAib. 0 
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2.5.3 Norms and Inverses 

The following result plays an important role in matrix perturbation analysis (sec Theo­
rem 4.25). 

In the following. 1111 is a mattix norm for which IIlii = 1. 

Theorem 2.27. Let II Ell< I. Then (1- E) is nonsingalarand 

II(J- E)- 1ll :0: (1-IIEiiJ- 1• 

Proof. Let /q,, .. , )...11 he the eigenvalues of E. Il is easy to see that the eigenvalues of 
l- E are I - J.. 1, I - ;c,, ... , I - J..,. 

Since II Eil < l, j).;l < l for each i (see Exercise 2.10). Thus, none of the quantities 
I - J.. 1, I - l.1 , ... , I - J.., is zero. This proves that I - E is nonsingular. (Note tltat a 
matrix· A--is twnsingular {f. and only if all its eigenvalues_anuwnzem.) 

To prove the second part, we write 

(1- EJ-' = /.J..E+ E'+ .... 

Since li£11 < I, 

Limit Ek = 0, because liE' II S liE II'. 
1.:-"'00 

Thus, the series on the light side is convergent Taking the norm on both sides, we have 

JI(I - EJ-'1! s IIIII + 11£11 + II E'll .. · = (I - II Elll-' (since IIlii = 1). 

(Note that the infinhe series I + x + x 1 +,, · converges to ifandonlyiflxl<1). 0 

Using Theorem 2.27, the following theorem can be proved (Exercise 2.37). 

Theorem 2.28, If II E II < I, then 

'I(!- E)~'- Ill< liE II . 1 -I IIEII 

Implication of the result. If the matrix E is very small, then 1 - II E II is close lo unily. 
Thus the above result implies lhat if we invert a slightly perturbed identity matrix, then the 
error in the inverse of the perturbed matrix does not exceed the order of the perturbation. 

2.5.4 Norm Invariant Properties of Orthogonal and Unitary Matrices 

We conclude the chapter by listing some very useful norm properties of orthogonal nnd 
unitary matrices that are often used in practice. 

Theorem 2.29. Let 0 be an ortltogonal matrix. Tit en rite foUolt'ing !told. 

(i)I!Oib=l. 
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(ii) IIAOI!, IIAII,. 

(iii) IIAOIIF = IIAIIr. 

Proof. Proof of(i). Since A is orthogonal, by the properly of the spectral norm, we have 

that 110111 = jp(OT 0) = JP(T) l. 
Proof of (ii). IIA 0112 = fp-,-(o=rA~'~'A~O,-) = /P('Ar A) = !IA11 1. (Note rilar rile 

spectral radius remains invariant under similarity tramformation (Section 2.3.4).) 

Proofof(iii). fiAO;I} = tracc(OrArAO) trace(A~'A) =!!All~·· 0 

Notes: (i) TI1eorcm 2.29 is also valid for unitary matrices. That is, if U is an unitary 
matrix, then (i) I!UIIz = l, (ii) II AU liz II AU,. and (iii) IIAUIIF = IIAIIr-

.. (Hj As we wni See- -In this book that norm invariant properties qf orthogonal and 
unitary matrices make tl1ese matrices auracrive tools for matrix campitlatinns. 

For example, if A is contaminated by an error matrix E and U is unitary, then 

U(A + E)U' U AU'+ F, 

where 

IIFib = !!UEU'!b = IIEI!z. 

(iii) An immedlale consequence of Theorem 2.29 and its unitary counterpart is lhat 
the vector length is preserved by an orthogonal or unitary matrix multiplication. 

2.6 Singular Value Decomposition 
LelA E IR111 

"
11

, Then there exist orthogonal matrices U E m;.mxm and V E JF!;,nxn sut:h that 

where E = diag (a1, ... , rrp) E l.Rmxn, p = rnin(m, n ), and u 1 2: cr;; 2: · · · 2: O'p 2: 0. 
This decomposition is called singular value decomposition (SVD). 
The diagonal entries of!: arc culled singular values and the columns of U and V 

arc, respectively. the left and right singular vectors. The largest and smallest singular 
values arc denoted, respectively, by ITmax and Omin· SVD is an importanl tool in matrix 
computations. Detailed discussions appear in Chapter 7 (Section 7.8) and Chapter 10. 

Notes: (i) rank {A} =number of nonzero singular values. 

(ii) l!AIIz = a1 = Umax· 

(iii) llrl- 1 111 = ;!;; if A is 11 x 11 and nonsingular. 

I 
(. ) IIA II ( ") ' ") ' J... "~J' ·r A. > IV, F ar<C7·£•···,a,;~l 1Smxn,m_n. 
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2.7 Review and Summary 
The very basic concepts thut will be required for smooth reading of the rest of the book have 
been briefly summarized in this chapter, The most important ones are u.s follows. 

2.7.1 Special Matrices 

Diagonal. triangular, orthogonal, Hesscnbcrg, symmetric, and Hcrmilian matrices have been 
defined and some useful properties of these mau·ices have been stated (Section 2.4 ). 

2.7.2 Rank, Determinant, Inverse, and Eigenvalues 

These important concepts have been defined and some useful properties have been stated 
(Section 2.3 ). 

2.7.3 Vector and Matrix Norms 

Some important matrix norms are rmv-sum norm, column-sum uorm, Fmbenius norm, and 
specrral nonn. 

A result on the relatio-nship between different matrix nonns is stated and proved in 
Theorem 2.26. 

Of special importance is tlte nmm property of orthogonal mauices. Three simple but 
importunt results huvc been stated and proved in Theorem 2.29. These results are (i) the 
spectral norm of an orthogonal matrix is 1, nnd (ii) the spectral and the Frobenius norms 
remain invariant under orthogonal matrix multiplications. 

Two interesting properties relating norms and the inverse of a matrix arc given in 
Theorems 2.27 and 2.28. These properties are useful in perturbation analysis of linear 
systems, as described in Chapter 4. 

2.8 Suggestions for Further Reading 
The material covered in this chapter can be found in any standard book on linear algebra 
and matrix theory. These include Bhatia ( 1996), Franklin ( 1968), Leon (2005), Lay (2003), 
Strang (2003, 2006), Hom and Johnson (1985), Lancaster and Tismcnetsky (1985), Lan­
caster (1969), Meyer (2000), Noble and Daniel (1988), Ortega (l987a), Hill (1991), and 
Schneider and Barker ( 1989). There now exists a Handbook 011 Linear Al.gebra edited by 
L. Hogbcn (2007) that contains a wealth of information on both theoretical and numerical 
aspects of linear .algebra. 

Rich theory of linear algebra and numerically effective tools from numerical linear 
algebra are nowadays widely used in numerous practical applicalions. We will sec many 
such applications to engineering in this book, For appiication to statistics, see, forexarnp1c, 
Rao and Rao (1998), Graybill (1983), Gentle (1998), and Thisted (1988); for applications 
to control theory, see Datta (2003), Antoulas (2005), Pctkov ct aL ( 1991 ), Patel et al. 
( 1994), Brualdi ct al. ( 1985) and Datta el al. ( 1988); for applications to signal processing, 
sec Andrews and Hunt (1988), fain (1989), Bojanczyk (1995), and Hansen et aL {2006). 
For application to optimization, see Griva el al. (2009) and Nocedal and Wright (2006). For 
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applications to vibration engineering, see Inman (200fi, 2007); for applications of nonnega­
tive matrices, see Bennan and Plemmons ( 1994); for applications to search engine, see Berry 
and Browne (2005). Most linear algebra books also nowadays contain some applications. 

Exercises on Chapter 2 

EXERCISES ON SECTIONS 2.2 AND 2.3 

2~0 Answer ''True'' or "False" to the following. Give reasons for your answers. 

(a) The eigenvalues of an upper triangular matrix T are its diagonal entries. 

(b) The eigenvalues of a real symmetric matrix are reaL 

(c) A matrix is nonsingular if and only if all its eigenvalues are nonzero. 

(d) The eigenvalues-of an orthogonal matrix are all equal to L 

(e) An orthogonal matrix is nol necessarily invertible. 

(t) A real symmetric or a complex Hermitian matrix can be always transformed 
into a diagonal matrix by similarity transformation. 

(g) Two similar matrices have the same eigcnvulues. 

(h) If two matrices have the same eigenvalues, they must be similar. 

(i) The product of two upper (lower) triangular matrices does not neeu to he an 
upper (lower) triangular matrix. 

Ol IIIII = I for any nonn. 

(k) "The length of a vector is preserved by an orthogonal mu!Liplication. 

(I) If II All < I, then I- A is nonsingular. 

(m) If II Alb= I, then A must be orthogonal. 

(n) The product of two orthogonal (unitary) matrices is an orthogonal (unitary) 
matrix. 

2.1 Prove lhat 

{a) a set of 11 linearly independent vectors in R11 is a basis for R."; 

(b) the set {e1 • e2 , ••• , e11 ) is a basis ofR11
; 

(c) a scl of m vectors in iR'1, where m > n, is linearly dependent; 

(d) any two bases in a vector space V have the same number of vectors; 

(e) dim(IR") = n; 

(f) span{v 1, •••• v,) is a subspace ofV, where span{v 1, .... v,} is the set of linear 
combinalions of then vectors Vt, ..• , Vn from a vector space V; 

(g) span{ v1,, •.• U11 j is the smallest subspace of V containing VJ, •• ,, Vn, 

2.2 Prove that if S {s, ... , SkI is an orthogonal set of nonzero vector&, then Sis linearly 
independent. 
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2.3 Let S be an m-dimensionai subspace of R'1 • Then prove thal S has an orthonormal 
basis. 

Construct an orthonormal basis of iF!?. 

2.4 Prove that (i) N(A) R(AT)i., (ii) R(A)'" N(AT), and (iii) null (A)= 0 if and 
only if A has linearly independent columns. 

2.5 Prove the cigenvalue~eigcnvcclOr properties stated in Theorem 2.7. 

2.6 Using the Gram-Schmidt process construct an orthonormal basis ofR3• 

2.7 Construct an orthonormal basis ofiR(A), where 

A=o n· 
~2.8--~Lct.SI- und.S:2--betwo .. subspaces of R~ .. Then_ pmvc Jha~ 

dim(S, + S,) = dim(S,) + dim(S,) dim(S, n S,). 

2.9 Prove Theorem 2.5 on the properties of the determinant of a matrix. 

2.10 Prove that for a subordinate matrix norm II · !I, j).j :<: IIA II lor every eigenvalue of A 
of A. 

2.11 Let A be 111 x 11. Then A hasrank I if and only if A can be written as A = abT, where 
a and b arc column vectors. 

2.12 Suppose a matrix A can be written as A. = LU. where !... is a tower triangular matrix 
with l 's along the diagonal 11nd U = (u 11 ) is an upper triangular matrix. Prove that 

dct A nf"""1 ll;i, 

2.13 LetA= (t XJ.whercA 1 andA 3 urcsquare. Provethatdct(r\) =dct(A 1)dct(A3). 

EXERCISES ON SECTION 2.4 

2.14 Prove the properties of n triangular matrix stated in Theorem 2.15. 

2.15 Prove that the product of an upP"r Hcssenbcrg matrix and an upper triangular matrix 
is an upper Hesscnberg matrix. 

2.16 Prove that a symmetric Hesscnbcrg matrix is symmetric tridiagonal. 

2.17 A square matrix A = (au) is a band matrix of bandwidth 2k + I if li- jj > k implies 
that aij = 0. What arc lhe bandwidths of tridiagonal and pentadiagonal matrices? Is 
the product of two banded matrices having the same bandwidth a banded matrix of 
the same bandwidth? Give reasons for your answer. 

2.18 Prove Theorem 2.16. 

2.19 Let A and B be lwo symmetric matrices. 

(a) Prove that (A + B) is symmetric. 

(b) Prove that AB is not necessarily symmetric. Derive a condition under which 
A 8 is symmetric. 
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EXERCISES ON SECTION 2.5 AND 2.6 

2.20 Show that llxil,. ll.t iloo. li.tll2 (as defined in Section 2.5) are vector nonns. 

2.21 Show that if x andy are two vectors, then 

lllxii-IIYIII :5 ]x- yll :". ll.r!l + llrll. 

2.22 lf x andy are two H-vcctors. then prove that 

(a) l.t,.yl :5 ilxllo IIYih (Cauchy-Schwarz inequality): 

(b) llxy7 1b :5 llxii2IIYIIo (Schwarz inequality). 

2.23 Let x and y be two orthogonal veclors. Then prove that 

llx + .vlll = llxll] + IIYII~. 

2.24 Prove that for any vector x. we have 

llxlloo :5 ilxlb :5 llxll,. 

2.25 Prove thatiiAH 1• IIAII 00 , IIAib arc matrix nonns. 

27 

2.26 Let .4. = (a1j) hem x n. Define At: = max1j laijl· ls Ar a consistent matrix norm? 
Give reasons for your answer. 

2.27 (a) Prove that the vector length is preserved by orthogonal matrix multiplication. 
That is, if x ERn and Q E R_n:.o:~J be orthogonal, then 11 Qx]b = llx!l:: {isometry 
lemma). 

(b) Is the statement in part (a) true if II · II 1 and II · lloo arc used? Give reasons. What 
if the Frobcnius nonn is used'! 

2.28 Prove that (i) II/ ilo = I, und (ii) IIlii F = ./ii. 
2.29 Prove thut if Q and P are orthogonal matrices, then 

(a) IIQAPIIF = IIAIIF; 
(b) 1!QAPII2 = IIAIIz. 

2.30 Prove that the spectral nonn of a symmetric matrix is the same as its spectral radius. 

2.31 Let A E IR.':;..n and let x, y, and z ben-vectors such that Ax= hand Ay = b + ::. 
Then prove that 

liz lio II 'I IIA ~'II I' II -- < X - V'., < ., ,;:: .., II Alb - . -- -, -

(assuming that;\ -J exists), 

2.32 Prove properties (3) and (4) of Theorem 2.26. 

2.33 Provcthat(i) IIArlb IIAib,and(ii) liAr Ah = IIAIIj. 



28 Chapter 2. A Review of Some Required Concepts 

2.34 Let A= (a 1, ... ,a,), where ai is the jth column of A. Then prove that 

' 
IIAII~· = E illldii-

i=l 

2.35 Prove that if A and B are two matrices compatible for matrix multiplication, then 

(a) IIABIIF ::' IIAIIFIIBilr: 
(b) IIABIIF S IIAibi!BIIr-

2.36 (Banach lemma.) Prove that if A and A+ E are both nonsingular, then 

II(A + E)- 1
- A _,II S IIEII!I.r' iiii(A + El-'il· 

What is the implication of this result'/ 

2.37 Prove Theorem 2,2,3, 

2.38 Prove the following. 

(a) tmce(.4B) = trace(BA). 

(b) tracc(AA') = L:1~, L:;~, laii12• where A= (a;j) ism x n. 

(c) trace( A+ B) =trace( A)+ trace( B). 

(d) trace(T Ar-1) =trace( A). 

2.39 (a) Using the Jordan canonical theorem (see Theorem 9.28), prove that the matrix 
sequence (A' I ""' 0 if and only if !A;I < I for each eigenvalue A1 or A. 

(b) Using part (a), prove that jA'I -. 0 if II All < I, where II· II is a subordinate 
matrix norm. 

(c) Construct a 2 x 2 example to show that condition (b) is sufficient but not nec­
essary, 

2.40 Using SVD prove the norm properties in Exercises 2.29, 2.33, and 2.35. 



Chapter 3 

Floating Point Numbers and 

Errors in Computations 

Background Material Needed 

Special matrices (Section 2.4) 

Mar.rix and vector nonns (Section 2,5) 

3.1 Floating Point Number Systems 
Most scientific and engineering computations on a computer are performed using floating 
point arithmetic. Computers may have different bases, though base 2 is mosl common. 
The other commonly used bases are lO and 16. Most hand calculators use base 10, while 
IBM mainframes usc base 16. 

A t·digitlloating point number in base f3 has the form 

where m is a t~digit fraction, called the mantissa, and e is culled the exponent. If Lhe 
first digit of the mantissa is different from zero, then the Ooating point number is called 
normalized. Thus 0.3457 x 105 is a 4-digit normalized decimal floating numher, whereas 
0.03457 x 106 is a live-digit unnormalized decimal floating point number. 

The number of digits in the mantissa is called the precision, On many computers, it 
is possible lo manipulate floating point numbers so that a number can be represented with 
about twice the usual precision. Such a precision is caHcd double precision. 

Most computers nowadays conform to the IEEE noating point standard (ANSI/TEEE 
standard 754-1985). For single precision, IEEE standard recommends about 24 binary 
digits, and for double precision about 53 binary digits. 

29 
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IEEE Floating Point Standard 

Single Precision Doub1e Precision 
1 I 23 I 8 1 I 52 I 11 

Sign I Mantissa I Exponent Sign I Malllissa I Exponent 

Thus~ IEEE standard for single precision provides appro.rimately seven decimal digits of 
accuracy, since 2-23 ::::: 1.2 x 10-7 • and double precision provides approximately sixteen 
decimal digits ofciccuracy. since 2-52 ~ 2.2 x I0-16. 

Note: Althouglt compillations ·with double precisian increase accuracy, they require 
more computer time and storage. 

On each computer, there is nn allowable range of the exponent e: L, the minimum 
and U, the maximum. Land U vary from computer to computer. 

If, during computations, the computer produces a number whose exponent is too 
large (too small). that is. it is outside the permissible range, then we say that an overflow 
(underflow)·has·occun·edc· 

Ovetjlow is a serious problem; for most systems, the result of an overflow is ±::x:;. 
UnderOow is usually considered less serious. On most cornpulcrs, when an underflow 
occurs. the computed value is set to zero, and then computations proceed. Unless ot!Jenvise 
stated, we will use only decimal aritlimetic. 

Example 3.1. Examples of overllow and underllow. 
L Let fl = 10, I = 3, [, = -3, U = 3. 

a= 0.111 x 10', b = 0.!20 X 10', 
C = G X b = 0.!33 X J05 

will result in an oveljfOlv, because Lhe exponent 5 is too large. 
2. Let fl = I 0, I = 3, L = U = 3, 

will result in an undeiflow. I 

a 0.1 X 10-l, 
b = 0.2 X JO-I, 

c = ab = 2 x 10-• 

Simple mathematical computations such as finding a square root, or exponent of a 
number or computing factoria1s can give overflow. For example. consider computing 

c=va2+b2. 

lf a orb is very large, then we will get an overOow while computing a1 + b2• 

ThdEEE standard also sets forth the results of operations with infinities and Nru'ls. All 
operations with infinities correspond to the Jimiting case in real analysis. Those ambiguous 
situations, such as 0 · oo, result in N&l\Ts, and aH binary operations with one or two NaNs 
result in a N01'l. 

Avoiding Overflow: An Example 

Overflow and underflow can sometimes be avoided just by organizing the computations 
differently. Consider, for example, the task of computing the length of an II·Vcclor x with 
components, denoted by llx 111: 

l!x ~~~ = xr + .t~ + ' .. + x;. 
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If some X; is too big or too small, then we can get overflow or underflow with the 
usual way of computing l!xl! 2 • However, if we normalize each component of the vector by 
dividing it by m = max(lx,J, .... lx,J) and then form the squares and the sum,then ovcrOow 
problem can be avoided. Thus, a better way to compute llx II~ would be the following: 

I. m = max(lxt I •... , lx, IJ. 
2. Yi =x;/m, i = l, ... ,n. 

3. llxll2 mJ(y/ + Yi + · · · + Y,7l-

3.2 Rounding Errors 
If a computed result of a given real number is not machine representable, lhen there arc two 
ways it can be represented in the machine. Consider 

±·J, ... J,d,+l"'. 

Then the first melhod, chopping, is !.he method in which the digits trom dt+l on are simply 
chopped of[ The second method is rounding, in which the digits dr+J through the rest are 
not only chopped off, but the digit d, is also rounded up or down depending on whether 
d,+l 2: fJ/2 or d,~ 1 < fJ/2. 

Let fl(x) denote the floating point representation of a real number x. 

Example3.2. Rounding. Consider base 10. Lctx = 3.141596. 

t = 2, 
t = 3, 
t = 4, 

ft(x)=3.1, 
ft(x) = 3.14, 
ft(x) = 3.142. I 

\Vc now give an expression to measure lhe error made in representing a real number 
x on the computer, and lhen show how this measure can be used to give bounds for errors 
in other floating point computations. 

Definition 3.3. Let "i denote an approximation of x. Then there are two ways ll'e can 
measure rhe error: 

Absolute Error 1.< xl, 

li- <I 
Relative Error = -·--·-, 

lxl 
X :;f 0. 

The relative error makes more sense than the absolute errar. The following simple 
example shows this. 

Example 3.4. Relative error versus absolute error. Consider 

x, = 1.31, .it= 1.30 

and x1 = 0.12, .t2 0.11. 

The absolute errors in both cases are the same: 
hand, the relative error in rhe firsl case is 

- xd = l.rz- x,l 0.01. On the other 
= 0.0076335 and the relative error in the 
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second case is !:!J_~·~~~ = 0.0833333. Thus, the relative errors show that .t1 is closer to Xt 

than i:2 is to x2, whereas the absolute errors give no indication of this at aiL I 

The relative error also gives an indication or the number of significant digits in an 
approximate answer. If the relative error is about io-s. then x and .i agree to about s 
significant digits. We stale this more specifically in the following definition. 

Definition 3.5. .r is said to approximate x to s significanr digits if s is rhe largest non~ 
negatil•e integer for which the relative error l.tl;lq < soo-s); tltar is, sis given by s = 

[-log (I·•-·'')-'- l] Lr! ' :! . 

Thust in the above examples, .t1 and x 1 agree to two significant digits, while i1 and 
x1 agree to about only one significant digit 

Round-Off Error in Representation of a Real Number 

\Vc now give an expression for the relative error in representing a real number x by its 
flouting point representation fi{x ). 

Theorem 3.6~ Let ll(x) denote the floating point representation of a real number x. Then 

ift(x)- xl { -2

1 
fJH 

'--,-:--c. :;; fl. = 
~I fJ'~ 

for rounding } 

for chopping 

Proof. We establish the bound for rounding and leave the other part for Exercise 3.1, 
Let x he written as 

X= Cdtd1'"d,d,+1 ... ) X fJ', 

(3. 1) 

where d, ;6 0 and 0 :0 d; < fJ. When we round off x we obtain one of the following flonliog 
point numbers: 

.<' = (·d 1d1 ... d,) x {J'. 

x" = [(·d1d, · · ·d,) + p-')J x {J'. 

Obviously we have x E (x'. x''). Assume. without any loss of generality, that x is 
closer to x'. We then huve 

Thus. the relative error 

lx -x'l 

I 'I 
1

1 ' "I x-x :::zx -x .l_{J''-1 
2 ' 

I {J"' I 
< --(since d· < {J) = -{J 1

-'. D 
- j I I 'J 

- F -
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Example 3.7. Consider the three-digit representation of the decimal number·' 
({3 = 10, 1 3). Then, if rounding is used, we have 

ft(x) = 0.235, 

I 
Relative Error= 0.001705 < 210-1 

Similarly, if chopping is used, we have 

il(x) = 0.234. 

Relative Error = 0.0025575 < I o-2 I 

33 

0.2346 

Definition 3.8. Tire I!Wilber J-i. in {3.1) is called tire machine precision or unit rmmdwo,f{ 
error. lr is t11e smallest positive floating point nwnber such thar 

il(l + !<) > I. 

The machine precision, I'· is usually between JQ- 16 and 10-7 (on most machines) tor 
double and single precision, respectively. For the IBM 360 and 370, f3 = 16, 1 = 6, /1 = 
4.77 X 10-7 

The machine precision is very importanl in scientific computations, If the particulars 
[3, t, L, and U for a computer are not known, the following simple Fortran program can 
be run to estimate fJ. for that computer (Forsythe, Malcolm, and Moler ( 1977, p. 14)). 

REAL MEU, HEU 1 
MEU 1. 0 

10 MEU ~ 0.5 * HEU 
MEU 1 ~ MEU + 1. 0 
IF (P!EU 1. GT. 1. 0) GOTO 10 

The above Fortran program computes an approximation of J.L which difrers from fL hy ut 
mosl a factor of 2. This approximation is quite acceptable, since an exact value of I" is not 
that important and is seldom needed. 

The book by Forsythe, Malcolm, and Moler (1977) also contains an extensive list of 
Land U for various computers. 

3.3 laws of Floating Point Arithmetic 
The forrnt1la 

can be written as 

.;_1 tl..:..( -'_,.l..,.-_-'...:'1 { 
:S/1= 

for chopping, 

for rounding 

ll(x) = x( I + 8). 

where I <I I :;:: I'· 
(3.2) 

Assll!ning that the IEEE standard holds, we can easily derive the following simple laws of 
Hoating point arithmetic. 
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Theorem 3.9. Let x andy be two floating point numbers, and let fi(x + y), il(x - y), 
fi(xy}, a11d ff(xjy} denote the computed sum, difference, product, and quotiell!. Then 

I. il(.r ± J') = (.t ± y)(l + 8), where 1<11 51<; 

2. il(xy) = (xy)(l + 8). where 181 5 t<: 

3. ify ;ioO.rhenft(xjy) = (xjy)(I +<I), wherel815iL 

On computers that do not 11se tire IEEE standard, rhefollowingjfoating point law of addition 
might hold: 

4. tl(x + y) = x( I + li1) + y( I + 8,), where l81 I :S 11 and l82l :S IL· 

Example 3.10. Simple floating point operations with rounding. Let 

f3 = 10, I 3 

in items I through 3 below. 

I. .t =0.999 X 102, )'=0.111 X 10° 

x+y= 100.0110:0.100011 x HJ', 

f1(.t + )') = 0.1QQ X 103 

Thus, ft(x + y) = (.t + y)(I + 8), where 

0 = -1.0999 X 10~4 , 

2. X= 0.999 X 102
, )' = 0.111 X 10°, 

xy = 11.0889, 

fl(xy) = 0.111 x 102• 

Thus, fi(.ty) = xy(l + li). where 

3 1'1::: -;;_
1 

(10 1
-

3
). !! = l.OOtoo x w~-. a .. , 

3. X= 0.999 X !02, )' Q.J!J X JOO . 

.t 

4. Let 

- = 900, 
y 

fl G)= 0.900 X 103
, 

8 =0. 

fJ = 10, f = 4, 

X= 0.!!12, )' = 0.2245 X !05
, 

.Y)' = 0.24964 X J04
, 

fl(X)') =0.2496 X 104. 
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TI1us. lll(xy)- xyl = 0.44 and 

l Ia! = !.7625 x w-• < 
2 

x w-'. I 

Computing without a Guard Digit 

Theorem 3.9 and the examples following this theorem show that the relative errors in 
computing the sum, difference, product, and quotient in floating point arithmetic are small. 
However, there arc computers without guard digits in which additions and subtractions may 
not be accurate. 

A guard digit is an extra digit on the lower end or the arithmetic register whose purpose 
is to catch the low-order digit which would otherwise be pushed out nf existence when the 
decimal points are aligned. 

For computers with a guard digit. 

fl(x ± y) (x + y)(l + o), 181 :" 11· 

However, for those without a guard digit, 

fl{x ± y) = x(l + o,) ± y{I + o,), 
loti 5 IL l82i 5 IL 

Remark. Throughout this book, we will assume that the computations have been performed 
with a guard digit, as they are on almost aH available machinDs. 

We shall call resuiLq I through 3 of Theorem 3.9 along with (3.2) the fundamental 
laws of floating point arithmetic. These fundamental laws form the basis for establishing 
bounds for relative errors in other floating point computations. 

Example 3.11. Consider the floating point computation of x(y + z): 

ft(x(y + Z)) = [x · ft(y + zlJ(I + ot) 

= x{y + z)( I + o,)(l + 8,) 

= x(y + z)(l + 81J2 + 81 + o1) 

"'x(y + z)(l + 81), 

where &3 01 + 82 ; since rS 1 and 82 are smaH, their product is neglected. 
We can now easily establish the bound of 63. Suppose f! = I 0, and that rounding is 

used. Then 

iii, I= [8, + J,j 5 i">l + 1821 

< 
1 

x Jo'-' _,_! x w'-·' 
- 2 ' 2 

= 10'-'. 

"nms, the relative error due ra round-offilt computing H(x(y +;:::))is abam 101-r in the 
worst case. I 
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3.4 Addition of n Floating Point Numbers 
Consider adding n floating point numbers x 1, x1 , ...• X11 with rounding. Define s2 = 
ft(x 1 + x2 ). This gives 

Si+l = fl(S; + Xi+d, i = 2, 3, ... , fl !. (3.4) 

TI1en s3 = fl(s2 + x3 ) = (s2 + x3)(1 + 82 ) = x1(1 + 82)(1 +OJ)+ .1'2{! + 82 ) 

(I+ •bl +x3 (1 +o3). Then 

n- (,r1 +x2 ± x3) (x1 + x2 )82 + (x1 + x 2)(1 + &2)oJ + x383 

"' (x, + xz)Oz + (x, + x, + x,)8; 
(3.5) 

(neglecting the term 81 ,'h, which is small, and so on). Thus, by induction we can show that 

S11 (x, +x1 + · · · +x11 ) ~ (XJ +x:!JIS2 +(Xi +x1 +x3)ti:; 

+ · · · + (x1 + x2 + ·. · + x,)o, 
(3.6) 

(again neglecting the terms o1oi, which arc small). 
Equation (3.6) can be wrillen as 

s, - (x1 + x2 + · · · + x,) "'x1 (52 + 83 + · · · + 8,) 

+ x2(82 + ... + 8,) +x3 (83 + · · · + 8,) (3.7) 

+···+Xr.811 , 

where each 18;1 :0: ~PI-I= fl. Defining 81 0. we can write the following theorem. 

Theorem 3.12 (rounding errorinlloatingpoint addition). Let x 1, x 2, ••• , x, be nfloaling 
paiJtt numbers. Then 

ft(Xt + X2 + · · · + Xn) (XJ + X2 + ·' · + Xn) 

,x,(81 +82 + .. ·+a,)+x,(o2 +···+o,)+···+x,8,. (3.8) 

where each 181 I ::: t<. i = I, 2, .. , • 11. 

Remark. From the above formula we see lhat we should expect a smaller error in general 
when adding n floating point numbers in increasing order of magnitude: 

If the numbers art: arranged in increasing order of magnitude, then the larger errors trill 
be associated tvith the smaller numbers (Exercise 3.6). 



3.5. Multiplication of n Floating Point Numbers 

Theorem 3.13. Define the mwrbers 11 11 by 

1 +~, (I +8,)(1 +8:J· .. (I""·o,J, 

1 +~: = o +<>:JCl +&3 1 .. ·(1 +o,J. 
I + ~1 = {I + 8,) .. · (l + 8., ), 

1 + ry,_, 11 +o,_,J(I + o,J, 

I+~,= (I +8,). 

Also define Jl- 1 = ~:9 and assume that ntl :S 0. L Tfwn 

fl(x, + x, + · · · + x.,) 
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=x1(1 +q,)+x,(l +ry,)+ .. ·+.t,_ 1(1 +q,_,)+x,(l +r],). (3.9) 

where l'ltl ::S (n - 1)11' and I tid ::S (n - i + I )IL', i = 2, ... , 11. 

Proof. See Stewart (1998b, pp. 130-132). D 

3.5 Multiplication of n Floating Point Numbers 
Proceeding us in the case of addition of n floating poinl numbers in the lust section, we can 
show the following. 

Theorem 3.14. 

" 
fl(.t! XX1 X··· XXn) ~ (1 +E)nX;, 

i""'l 

where E = I (I + 82)( I + 82) • · · (1 + 8,) - II and !od ::s 11. i = I. 2 ..... 11. 

A bormd for£: Assuming that (11 - IJII < 0. l, it can be shown that 

E < 1.06(11- [ )/1. (3.10) 

(This assumption is quite realistic; on most machines this assumption will hold for fairly 
large vulucs of n.) 

Indeed. since 18;1 ::S 11 and (11 1)!1 < 0.1, we have 

E ::S (I+ !1)"- 1
- 1 < (11- 1)1' [1 +I ~·~505 ] < 1.06(n -1)JL 

Thus, combining Theorem 3. 14 and (3. I 0), we can write the following. 

(3.11) 

Theorem 3.15 (rounding error in floating point multiplication). 
compttting the product ofnjloating poim numbers is at most l.06(n 
(u-1)/L <0.1. 

The relat£ve error in 
I )J1, assuming that 
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3.6 Inner Product Computation 
A frequently arising computational task in numerical linear algebra is the computation of 
the inner product of two 11-vectors x and y: 

where x; and Yi· i = l., ... n. are the components of x andy. 
Define 

S1 = fl(xr y,), 

S2 = fl(S1 + ft(x2y2)), 

S, fl(S,~r + fl(x,y,)), 

k = 3,4, ... ,IL -

We then have, using 1l1eorem 3.14. 

S1 XrYr(l+.lrl. 

S2 = [S, + Xz)'z(l + oz)J (I+ q,) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where each [81[ :<::;<,and I>Id :S /L Substituting the values of Sr through S,_, inS, and 
making some rearrangements, we can write 

" 
SIJ = LXiJ'i(1 +Et). (3.19) 

i:::d 

where 

1 + ,, o +o,)(I + ry;)(l + 'li+d .. · ti + ry,l 

"" I + 8; + 'li + 'li+I + · · · + q, (ry, = 0) (3.20) 

(ignoring the products 81ryj and qjl/b which are small). 
For exumple, when 11 = 2, il is easy to check that 

(3.21) 

where I + E 1 "' I + o1 + 1]2 , I + '' "" 1 + Oz + 112 (neglecting the products of or q, and 
Oz'l2• which are small). 

From (3, 19) and (3.20), we can write the following. 

Theorem 3.16. 

where Er are giwm by {3.20), 
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From Theorem 3.16 we ha vc 

" 
(3.22) 

A bound for 1<;1 in terms of JL Undcrthe assumption thntllJL < 0.1, a bound for<, in terms 
of I' can be established. 

Using thi;;. bound, we can write the following. 

Theorem 3.17 (rounding error in inner product computation). 

[ll(x7y)- X7 yj ::0: ¢(11)/1[tj 7 jyj, 

where lxl stands for the vector with components ix1 1 and <J;(n) is a smaUfrmction of u. 

Remarks. (i) Note that high relative accuracy cannot be guaranteed if ix 7 yi « !xi'IYI· 
(H)-The bound given in Theorem 3.17 can be improved by using extended precision 

or some particular implementations (see Higham (2002, pp. 63-64) for details). Typically, 
error becomes essentially independcm of n. 

3.7 Error Bounds for Floating Point Matrix Operations 

Theorem 3.18. Let!M! = (im 11 !J. Let A and B be two floating poilllmatrices and let c be 
a floating point number. Then 

I. ll(cA) = cA + E, II': I ::0: l"icAI; 

2. fi(A +B) (A+ B)+ E, IE!:;:: lilA+ Bl. 

If A and B are nro matrices compatible for marrLr multiplication, tlle11 

3. ft(AB) = AB + E, IE! :S Hf.'IAIIB! + O(tL2). 

Proof. Sec Wilkinson ( 1965, p. 115). D 

Meaning of 0(fL2
) 

Remark. In the above expression, lhe notation 0 (111) stands for a complicated expression 
that is bounded by Cf.i 2 , where cis a constant, depending upon the problem. The expression 
0(!'2) will be used frequently in this book. 

Remark~ The lnsl result shows thal the mutrix multiplication in floating point arithmetic 
can be very inaccurate, since IAIIBI may be much larger than lAB! itself(Exercise 3.9). 

Error Bounds in Terms of Norms 

Traditionally, lOr matrix computations the bounds for error matrices arc given in tenns of 
the nonns of lhc matrices, rather than in tenns of absolute values of the matrices as given 
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above. Here we rewrite the hound for error matrices for matrix multiplications using norms, 
for easy reference later in the book. We 1mtsf note, however; rhat entrywise error bounds 
are mare meaninglitl than normivise errors (see remarks in Section 4.3). 
In terms of a norm, we can write 

fi(AB) = AB +E. 

where 
IIEIIP ::5 >JILIIAii~'IIBIIp + O(!L

2
). p = L co. F. 

In particular, in terms of the II 11 1 norm, we have the following. 

Theorem 3.19. lift( A B)- ABII 1 ::5n!LiiAII 111BIIt + 0(1' 2
). 

Two Important Special Cases 

A.-li-faiiit~iie"clOTlifiWi[iliCi:ttioft. lfb is trvcctor. then- from-above we have 

ilfi(A/;J- AbiJ, ::5 ni'IIAIItlibllt-

B. Marrix multiplication by an orthogonal matrix. Recall that a real matrix 0 is called an 
ort/wgona/matriX if OT 0 = 007 [. 

Corollary 3.20. Let A E Rnx 11 and Q E R11 x 11 orthogonal. Then 

i!O(QA)- QAII,- :S "ILIIAI!r. 

Implication oi the above result. The result of Corollary 3.20 says that although matrix 
multiplication can be inaccurate in general, if one of the matrices is orthogonal, then the 
Hoaling point matrix multiplication gives only a small and acceptable error. As we will sec 
in later chapters, this result forms the basis of many numerically viable algorithms discussed 
in this book. 

3.8 Round-Off Errors Due to Cancellation and Recursive 
Computations 

Intuitively, it is clear that if a large number of floating point computations is done, lhen the 
accumulated error can be quite large. However, round-off errors can be disastrous even at 
a single step of computation. For example, consider the subtraction of two numbers: 

x = 0.54617 and y = 0.54601 

The exacl value is 
d =X-)'= 0.00016. 

Suppose now we use four-digit arithmetic with rounding. Then we have 

.i = 0.5462 (correct to four significant digits), 

y = 0.5460 (correct to four significant digits), 

J = .< - s, = o.ooo2. 
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How good is the approximation of J to d? The relative error is 

ld dl . 
-

1
d-

1
- = 0.25 (qUite large!). 

What happened above is the following. Tn four-digit arithmetic, the numbers 0.5462 
and 0.5460 arc of almost the same size. So, when the first one was suhtracted from the 
second, the most significant digits got canceled and the very least significant digit was left 
in the answer. This phenomenon, known as catastrophic cancellation, occurs when lwo 
numbers of approximately the same size arc subtracted. 

Remark. lt is lo be noted that in many cases, subtraction is performed ralher accurately. 
It is not a cause or the error-rather it reveals the errors made in earlier computcuions or 
even tlwse in the data associated witlr the subtraction. Indeed, cancellation highlighB the 
earlier errors. 

Avoiding Cancellation 

Fortunately. in many cases catastrophic cancellation can be avoided. For example, consider 
the case of solving the quadratic equation; 

ax1 + bx + c 0, a ::ft 0. 

The usual way the two roots x 1 and x1 are computed is 

-b + "'lb 2 - 4ac 

2a 
-b-..;&~- 4ac 

It is clear from the above that if a, b, and care numbers such that ~-b is about the same 
size as )b' - 4tlc (with respect to the arithmetic used), then a catastrophic cancellation will 
occur in computing x2• and as a result the compuled value of x2 can be completely erroneous. 

Example 3.21. Cancellation in root-finding of the quadratic. Consider solving ax' + 
bx + c 0, with a = I, b = -JD-', c = I (Forsythe, Malcolm. and Moler (1977, 
pp. 20-22)). Then using fJ 10, t = 8, L = -U =-50, we see that 

105 + ../!010 - 4 
Xt= 105 (true answer), 

lD-5 - 105 

x1 = 
2 

= 0 (completely wrong). 

The true x, = 0.000010000000001 (correctly rounded lO II significant digits). The catas­
trophic cancellation took place in computing x 2 , since-band ( Jb1 - 4ac) arc of the same 
order. Note that in eight·digit arithmetic, ../1010 -4- 105. I 

How Can Cancellation be Avoided in Finding Roots of the Quadratic? 

Cancellation can be avoided if an equivalent pair of fonnuJas is u~ed: 

b + sign(b) x, = - _c_=._;_;_ ___ _ 

c 
X")=-, 
- ax 1 

2ct 
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where sign(b) is the sign of b. Using these formulas, we easily see that 

x, = I 00000.00, 
1.0000000 

X1 = 100000.00 = O.OOO(HOOOO. 

Remark. Cancellation may still take p1ace during the subtraction h2
- 4ac, and significant 

digits will be lost if b2 ~ 4ac. In that case, extended precision should be used in computing 
b1 4ac. 

Example 3.22. For yet another example consider the problem of evaluating 

f(x)=e·'-x-1 atx=O.OI. 

Using fi ve·digil arithmetic, the correct answer is 0.000050167. Iff (x) is evaluated directly 
from the expression, we have 

j(Q,QJ) = l.OJO 1 - (0.01)~ l = 0.000 I, 

' 0.000 l - 0.000050167 
Relative Error= --::-::==:-c-:--

0.00005016 

=0.99 X 10°, 

indicating that we cannot trusL even the first significant digit. 

(3.23) 

(3.24) 

(3.25) 

Fortunately, cancellation crm again be avoided using the convergent series for ex: 

r2 \J 
e'=l+x+:_+:_+ .... 

2 3! 
In this case we have 

(3.26) 

(3.27) 

For x = 0.01. this formula gives 

fO.Ol) 2 (0.01)3 (0.01)4 

' +---+ +"' 
3! 

= 0.00005 + 0.000000166666 + 0.00000000004166 + ''' 
0.000050167 (correct up to five signilicant digits). I 

Remark. Note that if x were negative. then use of the convcrgeni series fore" would not 
have helped. For example, to compute ex for a negative value of x, cancellation can be 
avoided by using 

Recursive Computations 

Recursive computations are those which arc performed recursivciy so thut lhc computation 
of one step depends upon the results of the previous steps. In such cases, even if the error 
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made in the first step is negligible, due to the accumulation and magnification of error at 
every step, the final error can be quite large, giving a completely erroneous answer. 

Certain recursions propagate errors in very unhealthy fashions. Consider the follow­
ing example involving recursive computations, again from Forsythe, Iv1alculm, and Moler 
(1977, pp. 16-17). 

Example 3.23. Suppose we need to compute the integral 

E,
1 

= {
1 

x'~e·f·~ 1 dx 
lo 

for different values of n. Integrating by parts gives 

E.,= L' x"e'- 1 dx = (x"c·'-'J6- L'nx"-'ex-i dx 

or 

Thus, 1f E t is known, then for different values of n, E11 can be computed, using the above 
recursive formula. 

Indeed, with fJ = 10 and t = 6, and sturting with E 1 0.367879 as a six-digit 
approximation to Et = lje, we have from above 

E 1 = 0.367879, 

E, = 0.264242, 

E, 0.207274, 

E4 = 0.170904, 

E9 = -0.068480 (wrong). 

Although the integrand is positive throughout the ifltf!l1'al [0, l], the computed \'afue of £ 9 

is negative. This phenomenon can be explained us follows. 
The error in computing E2 was -2 limes the error in computing Eh and the error in 

computing E3 was -3 times the error in (therefore, the error at this step was exactly six 
times the error in E 1 ). Thus, the error in computing E9 was ( -2)( -3)( -4) · .. ( -9) 9! 
times the error in £ 1• The error in £ 1 was due to the rounding of Ije using six significant 
digits, which is about 4.412 x Jo-7• However, this small error mulliplied by 9! gave 
9! x 4.412 x 10-7 = 0.1601, which is quite large. I 

Rearranging the Recurrence 

Again, for this example, it turned out that we could get a much better result by simply 
rearranging the recursion so that the error at every step, instead of being magnified, is 
reduced. Indeed, if we rewrite the recursion as 

l- E, 
£11-1 = ---, 11 = ... ,3.2. 

11 
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then the error at each slcp will be reduced by a factor o[ l/ n, Thus, starting with a large 
value of 11 (say, n = 20) and working backward, we will see that E9 will be accurate to full 
six-diglt precision. 

To obtain a starting value, we note that 

E, = 1' x"e"-1dx :;" 1' x"dx = 
11 
~ 1. 

\Vith n = 20, Em :;:: IJ. Let's take £ 20 = 0. Then, starting with Ew = O~ it can be shown 
(Forsythe, Malcolm, and Moler (1977, p. 17)) that Eg = 0.0916123, which is correct to full 
six-digit precision. 

The reason for ohtaining this accuracy was thal the error in E10 was at most , this 

error was multiplied by ..Jo in computing £ 19, giving an error of at most~· ft = 0.0024 in 
the computation of £ 19, and so on. 

3.9 Review and Summary 
The concepts of floating point numbers and rounding errors have been introduced and 
discussed in this chapter. 

i. Floating point numbers. A normalized floating point number has lhe fonn 

x = ±r{J'', 

where e is called exponent, r is the significant, and fJ is the base of the number 
system. The Routing poim number system is characterized by four parameters: {J, the 
base; t, the precision: and L, U, the lower and upper limits of the exponent 

2. Errors. The en-or(s) in a computation is measured either by absolute error or relative 
error. 

Rela!ive errors make more sense rllan absolute errors, 

The relative error gives an indicalion of Lhe number of significant digits. in an approx­
imate answer. 

The n:::1mive error in representing a real number x by its floating point representation 
fl(x) is bounded by a number 11, called the machine precision (Theorem 3.6). 

3, Laws of jloarh1g point arithmetic. 

fl(x 0 y) = (x 0 y)( l + o), 

where 0 indicates any of the four basic arithmetic operations+, -, x, or+, and 
I~J ::" I" 

4. Addition, multiplicarion, and inner pmduct computations. The results of nddition and 
multiplication of n floating point numbers and inner product computation are given 
in Theorems 3. 12, 3. 15, and 3.!7, respectively. 

While adding 11 floating point numbers, it is advisable that they be added in 
increasing order of magnitude. 
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5. Floating point matrix mrdtiplicmions. The cntrywise and normalized error bounds 
for matrix multiplication of two floating point matrices are given in Theorems 3J8 
and 3.!9, respectively. 

' Matrix multiplication in floating point arithmetic can be very inaccumtc, unless 
one of the matrices is orthogonal (or unitary. if complex), 

• The high accuracy in a matrix product computation involving an orthogonal 
matrix (Corollary 3.20) makes the use of orthogonal matrices in matrix compu­
tations very attractive. 

6. Round-off errors due to cancellation and recursive camplllation. Subtracti vc can­
cellation or catastrophic cancellation (as it is commonly called) is a phenomenon in 
which a number of significant digiL'i in a computation gets cancelled due to sublrac­
tion of lwo almost equal numbers. In most cases, however, subtractions arc done 
exactly. Catastrophic cancellation s(r;nals sume errors made in previous steps. In 
fact, it·brings this error in prominence. Recursive computations are those which are 
performed recursively so that the computation of one step depends upon the results 
of the previous steps. 

These have been discussed in some detail in Section 3.8. 

Examples have been given to show how these errors come up in many basic com­
putations. An encouraging message here is that in several iustcmces, computations 
can be reorgani:::.ed so that cancellation can be avoided, and !he error in recursi11e 
computations can be diminished at each step of computation. 

3.10 Suggestions for Further Reading 
For details of IEEE standard. see the monograph .411 American National Standard: IEEE 
Standard for Binwy Floating·Poilll Arithmetic (IEEE, 1985), IEEE, Standard for Radix­
Independent Floating-Poilll Aritltmeric (IEEE, 1987), and Numerical Computing with IEEE 
Floating Point Arithmetic (Overton, 200!). 

For results on error bounds for basic floating point matrix operations, the classic hooks 
by James H. Wilkinson (!963, 1995) arc extremely useful and valuable resources. The most 
recent authoril<.lLivc book on error analysis is the one by Higham {2002). Every researcher 
of numerical analysis must haw: a copy ofrllis book. 

Discussion on basic floating point operations and rounding errors due to canceHutions 
and recursive computations are given nowadays in many numerical analysis textbooks, 

Exercises on Chapter 3 
3.1 (a) Prove the expression 

lfl(x) -xl 
51

,= { ~p>~t 
lxl p>~t 

for rounding. 

for chopping. 

(b) Show thm (a) can be written in the form 

fl(x) = x(l + 8), 181 :5 J.l.. 
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3.2 Let x be a floating point number and let k he a positive integer. Then prove that 

( x') x' ft .k! = .k! (! + ek), 

where 

3.3 Construct examples to show that the distributive law for floating point addition and 
rnultiplicmion does not hold. What can you say about the commutativity and asso­
ciativity for these operations? Give reasons for your answers. 

3.4 Let Xt, x2 , ••• , Xn be the 11 floating point numbers. Define 

s, = fi(xr + x,). s, = fl(sk~r + xk), k = 3 .... , 11. 

····· ·· (a) Then from Theorem3.12 show that 

fl(x1 +x, + · .. +x,) = x,(l + 17 1) +x,(l + 172) + · · · + x,(l + 17,). 

(b) Giveaboundforeachry;,i = 1,2, ... ,11. 

3.5 (a) Give a proof of Theorem 3.14, 

(b) Prove Theorem 3.15 by lirst establishing the result (3.11). 

3.6 (a) Construct an example to show that, when adding a list of floating point numbers, 
the rounding error will generally be less if the numbers are added in order of 
increasing magnilude. 

(b) Find another example to show that this is nut always necessarily true. 

3.7 Using Theorem 3.17, show that high relative accuracy is obtained in computing x 7 J:. 

3.8 Show that 

(a) fi(cA) = cA + E, lEI :5 I' leA!; 

(b) fi(A +B)= (A+ B)+ E, JEJ s /L(!AI + JBI); 

(c) fl(AB) = AB + E, lEis llJLIAIJBI + O(JL2
). 

(Consult Wilkinson (1965, p. I 15)), 

3.9 Construct a simple example to show that the matrix multiplication in floating point 
arithmetic need not be accurate. 

3.10 Prove that if Q is orthogonal, then 

fl(QA) = Q(A +E), where IJEJ!J :5 ll 1 !'1JAIJ, + 0{tt1
), 

3.11 Let Yt, ...• Yn ben column vectors defined recursively: 

Yt+l = Ay~> i = l,2, ... ,n-1. 

Letj·1 = fl(yj}. Find a bound forthe relative error in computing each y;, i = I, ... , 11, 
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3.12 Let fi 10, r = 4. Compute 
fi(A"A). 

where 

( I I ) A= JQ-4 0 . 
0 10-' 

Repeat your computation with r 9. Compare the results. 

3.13 Show how to arrange computation in each of the following. so that the Joss of signif­
icant digits can be avoided. Do one numerical example in each case to support your 
answer. 

] for negative values of x. 

~_x1 for large values of x. 

I I 
(c) -- -- for lame values of.t. 

X X+ I -

(d) x -sin x for values of x near zero. 

(c) i -cos x for values of x ncar zero. 

e·t- l 
(f) for !xl « L 

X 

(1-cosx) 
(g) for smull x 

x2 

3.14 What are the relative and absolute errors in approximating 

22 
(a) rrhy-? 

7 
I , 

(b) 3 by 0.333? 

I 
(c) ;; by 0.166? 

How many significant digits are there in each computation'? 

3.15 Let fi = 10, 1 = 4. Consider computing 

a= 0-0.1666) /0.1666. 

How many correct digits of the exact answer will you get? 

3.16 Consider evaluating 

e=Ja2+b2. 

How can the computation be organized so lhat overflow in compuling a:.: + b:.: for 
large values of a orb can be avoided? 
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3.17 What answers will you get if you com pule the following numbers on your calculator 
or computer? 

(a) ./IO'- I. 

(b) ./10 20 I. 

(c) 10 16 50. 

Compute the absolute and relative errors in each case. 

3.18 \Vhal problem do you foresee in solving the quadratic equations 

(a) x 2
- J06x + 1 = 0, 

(b) lo- 10x 1 - I0 10x + !010 = 0 

usi_~g the well~known formula 

X 
-11 ±Jb1 ~ 4ac ---::----'' 2a · 

What remedy do you suggest? NO\\' solve the equations using your suggested remcdy1 

with t = 4. 

3,19 Show that the integral 

l. J <' 
Y1 = -·.-dx 

0 x-r-5 

can be computed by using the recursion formula: 

1 
Yi = T -5)'i-l· 

Compute)'!, y2 , .•. , y10 using this formula, taking 

Yo ln(x +5JJ!=o = ln6 -InS= ln(L2). 

What abnormalities do you observe in this computations? Explain what happened. 

Now rearrange the recurslon so that the values of y1 can be computed more accurately, 



Chapter 4 

Stability of Algorithms and 
Conditioning of Problems 

Background Material Needed 

• Vector and mutrix nonns (Section 2.5} 

4.1 Introduction 
In this chapter, we introduce the basic concepts of algorithm, two of its important properties, 
efficiency and stability. and an important property of the problem, called conditioning. 

We begin with a definition of algorithm and state some basic algorithms for matrix 
computations in this section itself. 

Definition 4.1. An algorithm is an ordered seT of operations. logical and arithmetic, which 
when applied to a computational problem defined by a given set of data, called the input 
data, produces a solution to tlte pmlJlem. A solution comprises a set of dara called the 
output data. 

In this book, for the sake of convenience and s.implicity, we will very often describe 
algorithms by means of pseudocodes which can be translated into computer codes easily. 
Describing algorithms by pscudocodes has been made popular by Stewart ( 1973). Here are 
some examples. 

4.1.1 Computing the Norm of a Vector 

Given x = (x 1, ••• , x,)r, compute llxlb. 

4.1.2 Computing the Inner Product of Two Vectors 

Given two n-vectors x and y, x = (.tJ, X;t, •• , , Xn) r and y = Cn, J'z, ... , y/1) T, compute 
lhe inner product xT y = X!)'J + X2Y2 + · · · +X llYn· 

49 
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~ ALGORJTHM 4.1. Computing the Norm of a Vector. 

I Input: lf,X!,.,.,.x11 , 

I Output: s = llx 111. 

Step I. Computer= max(lx,j, ... , lx,j). 

Step 2. Compute y1 = x,jr, i =I, ... , n 

Step 3. Computes= llxll 2 = rJ(y/ + .. · + )',;). 

Pseudocodes 

r = mux(lx,j ..... jx,j) 
s=O 
For i = i to n do 

Yr =xi ;r; s = s + Yl 
s = r(s)'i2 
End 

An Algorithmic Note 

In order to avoid overOow, each entry of x wa.'> normalized before using the norm 
formula 

llxlh = ,jx~ + · · · + xJ. 

ALGORinL~I 4.2. Computing the Inner Product of Two Vectors. 

Input: A positive integer 11 and two sets of numbers {xi l£1= 1 and IYi 1?=1• 

Output: Sum = Inner product x T y 

Step I. Compute the partial products: s1 = x,y1• i =I, ... , 11. 

" 
Step 2. Add the partial products: Sum= I:s;. 

i=l 

Pseudocodes 

Sum 0 
Fori = l, .... n do 

Sum Sum +X; Yi 
Eod 
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4.1.3 Solution of an Upper Triangular System 

Consider the system 

Ty=b. 

where T = (!1j) is a nonsingular upper triangular matrix and y = (y 1, y2 , ••• , Yr:}T. 
Specifically, 

t11 )'J + l~::J'z + · · · + fJnJ'n = b:, 

l22Y1 + '' · + f11!)'n = h2. 

f33Y3 + · · · + f:.~nYn b3. 

f11~Ln-tYn_.:! +-tn-l,nY11 = bn-J, 

fnnYn = bn, 

where each tii =/: 0 for i I, 2, ... , n, 
The last equation is solved first to ohtuin )'11 ; then this value is inserted into the next 

to last equation [O obtain Yn-!, and so on. This process is known as back substitution. The 
algorithm can easily be written down. 

ALGOIUTHM 4.3. Back Substitution Method for Upper Triangular System. 

Input: Ann x 11 upper triangular matrix T = (tu) and ann-vector b. 
Output: The vector y = (y1• , , , , y,) r, such that T y = b. 

b, 
Step 1, Compute y, = 

t/1/J 

Step 2. Compute Yn-l through Yt successively: 

For i 11 - L ... , 2, l do 

Y1 = f (b, - t t,i Yi) · 
II j""'i+l 

End 

4.1.4 Solution of a lower Triangular System 

A lower triangular system can be solved in an analogous manner, The process is known as 
the forward elimination method. Let L = (I, 1) and b = (h1, h2 . , ., b,) r, 
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ALGORITHM 4.4. The Forward Elimination Method for Lower Triangular 
System .. 

Input: An x n lower triangular matrix L = (Iii) and an n-vec!or b. 
Output: An 11-vcctor y = (y1, y2 , ••• , y,}r such that Ly =b. 

b, 
Step 1. Compute y1 = -. 

'" Step 2. 
Fori = 2. ~· .( .. , n di~l ) 

]•=-. b-"lv· 1 j. I '-' lj.} 
II j:::d 

. .. .. .. . ..... - . : .. . ... . . .. 

MATCOM Noles: Algorithms 4.3 and 4.4 have been implemented in MATCOM programs, 
BACKSUB and PORELJM. respectively. 

4.2 Efficiency of an Algorithm 
Two most desirable properties of rrn algorithm arc efficiency and stability, 

The efficiency of an algorithm is measured by the amount of computer time consumed 
in its implementation. A theoretical and crude measure of efficiency is the number of floating 
point operations (Hops) needed to implement the algorithm. 

Definition 4.2. A flop is" b£1sicjloati11g point opermion: +. -.*·or f. 

Flop-count for Algorithm 4.3 and Algorithm 4.4 substitution. Each of these algo­
rithms requires n2 nops. 

The big 0 notation. An algorithm will be called an 0(11l') algorithm if the dominant 
term in the operations count of the algorithm is a multiple of nP. Thus, the solution of a 
triangular system is an 0(n 2) algorithm. 

Notation for overwriting and interchange. We will use the notation 

asb 

to denote that '~h overwrites a," Similarly, if two computed quantities a and bare inter~ 
changed, they will be written symbolically 

a +-> b. 

4.3 Definition and Concept of Stability 
The examples on catastrophic cancellations and recursive computations in the last chapter 
(Section 3.8) had one thing in common: the inaccuracy of tire computed result in each 



4.3. Definition and Concept of Stability 53 

Backward error = IY - xI Forward error= l.ftx)- j(x)j 

Figure 4.1. BacJ...>J'm¥1 error vs. font•ard erra1: 

case was entirely due to the algorithm used, because as soon as the algorithm was changed 
or rearranged and applied'lo the problem with the-same data, the-computed result became 
satisfactory. Thus, we are talking about two different types of algorithms for a given 
problem. The algorithms of the fir.sl Lype are examples of unsrable algorithms, while the 
ones of the second lype-giving satisfactory results-arc stable algorithms. 

There are two types of stable algorithms: bacA."lvard srable and forward stable. 
In this context, we lirst define forward error and backward error. Let j (.t) be the 

computed approximate value of f(x) with an input data x. Then we have the following. 

Fonvard error= 1/(.r)- J\x)j. 

On the other hand, backward errors relate the errors to the data of the problem rather 
than to the problem's solution. 

Backward error, Here we ask for what value of the input data y does f(y) = /(x)? 
Backward error = l_v - x 1. 

Sec Figure 4. t. 

Example 4.3. Backward vs. forward errors. Suppose we would like to estimate J(x) = e' 
at x = J. Consider the truncated series 

j(x) 

Then 

x2 x3 

l+x+-+-. 
2 3! 

.f(l) = 2.7183, j(l) 2.6667 

Forward error= 2.7183-2.6667 = 0.0516. 
Tolindbackwarderrorwemustlindysuchthatf(y) = j(l). Fore'. y = log(j(x)). 

Atx = l we have y = log(j(l)) = 0.9808. 
Backward Error: IY- xl = 0.0192. 
Verify: er = e0·9809 = 2.6667 = j(l) = 2.6667. I 

Example 4.4. Forward error bound for the inner product. Let x andy be two n-vectors. 
Then the error bound in Theorem 3.17, lfl(xT y) .<T Jl s q)(ll)fllxiTIJ'I. is the forward 
error bound for the inner product of x and y. 
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f(y) 

Figure 4.2. Baclnvard stable algorithm. 

This result shows that high accuracy in inner product computation cannot be guarw 
allfeed unless lx7 yl « \xlriyi: on the other hand. If)' = x. then the res11/t will be 
··tu:curate. I·--

Example 4.5. Forward error bound for matrix multiplication. The error bound in The· 
orem 3.19, fl(AB) = AB +E. where II Ell,::: 11/liiA!IdiBIIt + 0(tt1 ), gives the forward 
error bound for matrix multiplication. I 

Backward and Forward Stability 

Definition 4.6. An algorithm is called backward stable if for any x it produces a val11e 
j(x) with a small backward error. In other words, all algorithm is bac!...>vard~stable if it 
produces an exact solution to a nearby problem, That is, an algorithm is backward stable 
If j{x) = f (y ).jorsome y close to x. 

Remark. The forward stability of the algorithm is defined in a similar way. In this book, 
by "sta/Jility" we will imply bachvard stability. Thus, an algorithm will be ealled stable if 
it is backward stable. 

Note that an algorithm can be forward stable without being backward stable; that is. 
a small error in J (x) may or may not correspond to a small perturbation of the data. 

The process of analyzing the. backward errors in a numericnt computation is called 
the backward error analysis. Backward error analysis, introduced ln the literature by 
J. H. \Vilkinson, 1 is nowadays widely used in matrix computations; using this analysis, 
the slability (or instability) of many algorithms in numerical linear algebra has been estab­
lished in recent years. 

Example 4.7. Backward stability of arithmetic operations of two Hoating point num· 
hers. Consider computing the sum of two floating point numbers x andy. We have seen 

H. Wilkinson, n British mathematician, is well known for his pioneering work on backward error 
analysis for matrix computations. He was affiliated v:ith lhc :"lational Physicul Labormory in Britain, and 
held visiting appoinlrnents at Argonne National Laboratory, Stanford University, etc. Wilkinson died an 
untimely death in 1986. A fellowship in his name has since been established a! Argonne Nationnl Lllhoratory, 
Wilkinson·s book 11te Algebraic Eigenmlue Pmh{em is an extremely importnnt and very useful book for any 
numerical analyst. 
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befme (Theorem 3.9) that 

~(x + y) = (x + y)(l + &) 

x(l +8)+y(l +J) =x'+y'. 

Thus, the computed sum oft wo Ooating point numbers x and y is the exact sum of another 
two floating point numbers x' andy'. Since jO) :::; ll, both X

1 andy' are close to x andy. 
respectively. Thus we conclude that the operation of adding two floating point numbers is 
backii'ard stable. Similar statements, of course, hold for other arithmetic operation:;; of two 
floating poim numbers. I 

Example 4.8. Backward stability of addition of 11. Recall from Chapter 3 (Theorem 3.13) 
thatft(x1 +x,+ .. ·+x,) =x1(1 +ry!l+x,(l +ry2)+ .. ·+x,(l +q,),wherccachq1 is 
small. Thus, the computed sum of n floating poi11f1wmbers is the exact sum of n per!!trbed 
numbers with small perturbations. I 

Example 4.9. Backward stability and instability of the inner and outer products. The 
inner product of two vectors x andy is backward stable. Theorem 3.16 shows that the 
computed inner product is the exact inner product of a perturbed set of data: x 1• x2 , ••• , x11 

and y1 (I+ EJ), ... y,.(l +En), where each perturbation is smalL 
71te outer product of the vectors x and y is, lwwevet; not bachvard stable (Exer­

cise 4.l(b)). I 

Examples of Backward Stability and Instability of Linear Systems Solvers 

Definition 4.10. A11 algorithm for so/ring Ax = b will be called backward stable if rhe 
compwed solution .t is such that 

(A+EJ.r=h+ob 

with E and ob small. 

How Do We Measure Smallness! 

The "smallness" of a matrix or a vector is measured either by looking into its entries or by 
computing its norm. 

Normwise vs. Entrywise Errors 

While measuring errors in computations using norms is Lruditional in maLrix com­
putations, component wise measure of errors is becoming increasingly important. 
It really does make more sense. 
Ann x n matrix A has n2 entries. but the norm of A is a single number. Thus 
the smallness or largeness of the norm of an error matrix E docs not truly rc­
llect the smallness or largeness of the individual entries of E. For example, ir 
E = ([0, 0.00001, 1) 7 , then II Eli= 10.0499. T11us the small entry 0.00001 was 
not reflected in lhe norm mca.o.;ure. 
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Example 4.11. A stable algorithm: Solution of an upper triangular system by back 
substitution. Consider Algorithm 4.3 (the back subStitution method). It can be shown (see 
Chapter 14, available online atwwa:siam.org/bookslotlf6) that the computed solution .i, 
obtained by this algorithm, satisfies 

(T + E).i = b, 

where the entries of the error matrix E arc quite small. In fact. if E = (e1j) and T = (Iii), 
then 

leifl :" ntJ.Itiil + O(Jt2
), 

showing that the error can be even smaller than the error made in rounding the entries ofT. 
Thus, the back substillltion process for solving an upper triangular system is stable. I 

Example 4.12. An unstable algorithm: Gaussian elimination without pivoting. Con­
sider solving-thc"2- x- -2· system using the standard elimination method, called Gaussian 
elimination: Ax= b, where A= { Jo;w ~), b (~)"That is, 

10~ 10x,+xo 1, 
x1 + 2x2 = 3, 

Eliminating xz from the second equation, we obtain 

10'10r1 +.to= l, 
(2- l010 )x, = 3- 1010• 

In compuler arithmetic, we wiH have 

JO~Iox, + x, = l' 
-I o~ 10x, = -1010, 

giving X2 ::::: I •. r 1 = 0, whereas the exact solulion is x 1 = x2 = 1. 
Thus, the above process is clearly unstable. The readers are asked to verify for 

themselves that the computed solution .f (l, Oj'f is the exact solution of the system 
(.4 + E).r = b, where E is large. I 

If an algorithm is stable for a given matrix A, then one would like to see that the 
algorithm is stable for every matrix A in a given class. Thus, we may give a formal 
definition of stability as follows. 

Definition 4.13. An algorithm is stable .for a class o.f matrices C iffor every matrix A in C, 
the computed solurion by rite algorithm is 1/ze exact solution of a nearby t'roblem, 

Thus, ror the linear system problem 

Ax= b, 

an algorithm is stuble for a class of matrices C if for every A E C and for each b. it prmiuces 
a computed solution .t thal satisfies 

(A+ E).f =8 = b+ob 

for some E and 8b, where (:1 + E) is close to A and b + iJb is close to b, 
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4.4 Conditioning of the Problem and 
Perturbation Analysis 

57 

From the preceding discussion \Ve should not form the opinion that if a stable algorithm 
is used to solve a problem, then the computed solution will be accurate. A property of 
the problem, called conditioning, also contributes to the accuracy or inaccuracy of the 
computed result 

Tile conditioning ofa problem is a property of the problem inelf. It is concerned with 
how lhc solution of the problem will change if the Input data contains some impurities. This 
concern arises from the fact that in practical applications very often the data come from 
some experimental observations where the measurements can be subjected to disturbances 
(or ,;noise") in the data. There are oLhcr sources of error also. ror example, round-off errors 
and discretization errors, Thus. when a numerical analyst has u problem in hand to solve. 
he or she must frequently solve the problem not with the original data, hut with dato that has 
been peJturhed. _The questionnaturnlly arises:_ Whar effects do these perturbations have on 
the solution? 

A theoretical study done by numerical analysts to investigate these effects, which is 
independent of the particular algorithm used to solve the problem, is called perturbation 
analysis. This study helps one detect whether a given problem is "bad" or "good" in the sense 
of whether small perturbations in the data will create a large or small change in the solution, 

\-Vhen the result of a pertflrbation analysis is combined with that of backnYlrd error 
analysis of n particular algorithm, an error bound in rile compmed soiurinn by the algorithm 
can be obtained. 

Definition 4.14. A problem (with respect 10 a given set of data) is called an ilf.canditioned 
or bad(v condiTioned problem if a small relative perturbation in data can cause a large 
relative error in the computed solution, regardless oftlu: method of solution, Otherwise, it 
is colted wel!-conditio11ed; thar is, a problem is -..veil-conditioned if all smaJI perturbations 
in data prod~tce only small relative errors in the solution. 

Letx andy denote the original and the slightly perturbed data, and let f(x) and f(y) 
be the respective solutions. Then we have the following. 

Well-conditioned problem. If y is close to x, then f(y) is close to f(x). 
Ill-conditioned problem. Even if y is close tox, then f(y) can depart from f(x) drastically. 

Numerical analysts attempt to assign a number to each problem, called the cuudition 
1111111ber, to determine if the problem is ill-conditioned or wcll·conditioned. Formally, the 
relative condition number or simply the condition number can be defined as follows. 

Graphically, these concepts are illustrated in Figure 4.3. 

Definition 4.15. The cmulition number of tire problem f witll respect to the data x is 
defined as 

Relatil'e error in tile solution = jf(x) - f(y)i I IX ..... y I (
4

.1) 

Relative perturbmion in the data lf(x)i x · 

Iff : IR11 ~ Rm and x andy E Rn, then the condition nwnber is formally deJined as 

lim sup {(llf(.~·)- f(x)ll) I (llxl- Yll) lux- Yli ::" •}. 
,_o IJ(x)ll Lxll 
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Well-Conditioned 
Problem 

Ill-Conditioned 

Problem 

Figure 4.3. Well-conditioned (left) and ill-conditioned (right) problems. 

A problem is ill-conditioned if the condition number is » I (» stands for much 
greater~!han-),- fnr: example, . .I QIO, 10~-~_,_etc. 

Example 4.16. Condition number of a function. If f(x) is a differentiable function of 
one variable, then it is easy to see (Exercise 4.10) that for small perturbations, the condition 
number off (x ), denoted by c(x ), is given by 

lxllf'(x)l 
c(x) = lf(x)l · (4.2) 

As an example, let f(x) = e·'. Then c(x) = lxl, which is large for large values 
of x. That means a small relative error in x can produce a large relative error in et, so this 
problem is ill~conditioned when x is large. 

Iff or xis a vectorj then the condition number can be defined in the same way using 
nonns instead of the absolute values. 

Thus. the condition number of a function of several variables (or a vector) can be 
delined by replacing f'(x) by ils gradient. ln this case c(x) = 11~j;;',j1 1i. where v f is the 
gradient. 

For example. if x = (x 1,x2)T is a vector and the problem is to oblain the scalar 
f(x) = x1 - x2• then v f = (I, -I), and the condition number c(x) off (with respect to 
the infinite norm} is given by 

l!xlloollv flloo 2maxllxd.lx21l 
c(x) = = , 

11/(x)lloo lx, - X2l 
(4.3) 

which shows that the problem is ill-conditioned if-<1 :c x2. I 

Example 4.17. Condition nnmber of the matrix-vector product. Suppose A E 1R und 
x is ann-vector. Then it can be shown (Exercise 4. i2) that the condition number K of Ax 
(with respecl to perturbutions of x) is given by 

K = IIAIIJ!::!L' II Axil 

where the matrix norm is the subordinate matrix nonn. 
If A is square and nonsingular, then 

K :s IIAIIIIA-'IJ. I 

(4.4) 

(4.5) 
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Example 4.18. Condition number of the polynomial roots. The problem or finding roots 
of a polynomial can be highly ill-conditioned. We first illustrate this with a simple quadratic 
polynomial. Consider solving the quadratic equation 

f(x) = x 2
- 2x +I = 0. 

The roots arc x = I, I. Now perturb the cocflicient 2 by 0.00001. The computed roots 
of the perturbed polynomial jcx) = x 2 - 2.0000lx + 1 are x, = 1.0032 and x, = 0.9968. 
The relative errors in x 1 ancl x::: are 0.0032; on the other hand. the relative error in the data 
is 5 x 10-6 . Thus, a small perturbmion in the data changed the mots substa11tiaily. I 

The Wilkinson Polynomial 

The above example involved multiple roots. ~1ulliplc roots or roots clo~c to each other 
invariably make the root-finding problem ill-conditioned; however, {he problem can be 
ill~conditioned even when the roots are ve')' well sepnrated. Consider lhe following well­
known example by Wilkinson: 

p(x) = (x- l)(x- 2) ···(X- 20) 

x20 - 210x 19 + .... 
The roots of p(x) are l. 2 ....• 20. Now perturb the cocflieicnt ofx 19 from -210 to 

-210-2-23 , leaving other coeftkicnts unchanged. This change amounts to approximately 
I. 12 x 10-7

• which issrnaiL Several roots of the perturbed polynomial. carefully computed 
by Wilkinson, were found to he very different from the original routs. For example, the 
roots x = 16 and x 17 became approximately equal to 16.73 ± 2.81i. This change can 
be easily explained by computing the condition numbers of the individual roots. It can be 
shown (Exercise 4.23(a)) that the condition number of the root x = Xj with respect to the 
perturbation of lhe single coefficient ai is 

I HI aixj 
cond· = , 

J lp'(t)l 

Using this definition it is easy to verify that cond 16 and cnnd 17 are both of order 
O(IOro), which are quite large. 

Note: The definition of conditioning is data-dependent. Thus, a problem which is 
ill-conditioned for one set of data could be well-conditioned for anotlrer set. 

Root-finding and eigenvalue computation. l11e above examples teach os a very useful 
lesson: iris not a goad idea to compute the eigenvalues of a matrix by ex[Jlicitlyjinding the 
coefficiems oftlu: clraracteristic polynomial. since the round-off errors in computations will 
invariably put some srnaH perturbations in the computed coefficients of the characteristic 
po1ynomial, and these small perturbations in the coefficients may cause large changes in the 
zcms. The eigenvalues will then be computed inaccurately. 

4.5 Conditioning of the Problem, Stability of the 
Algorithm, and Accuracy of the Solution 

As stated in the previous section, the conditioning of u problem is a property of the problem 
itself and has nothing to do with the algorithm used to solve the problem. To a user, of course, 
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the accuracy of the computed solution is or primary importance. However, the accuracy 
of a computed solution by a given algorithm is directly connected with both the stability 
of the algorithm and the conditioning of the problem. If the problem is ill-conditioned, 
no marter how stable the algorithm is, the accurac.v of the computed solution cannot be 
guaranteed. 

In general, if a backward stable algorithm is applied to a problem with the condition 
number K, then the accuracy of the solution depends upon K. If ir is small, rile results will 
be accurate; but if it is large, the accuracy cannot be guaranteed, the accuracy will depend 
upon the condition number. 

Also, it is to be kept in mind that u method may be stable for one problem but unstable 
for another, For example, the modified Gram-Schmidt (MGS) method is stable for least­
squares problem (see Chapter R), but can be unstable for finding an orthonormal basis of a 
matrix (Chapter 7). 

Conditioning, Stability, and Accuracy 

Note that the definition of backward stability does not say that the computed 
solution .i' by a backward stable algorithm will be close to the exact solution of 
the original problem. However, when a stable algorithm is applied to a well­
conditioned problem, the computed solution should be near the exact solution. 
Also, if a "stable" algorithm is applied to an ill-conditioned problem, it should 
not introduce more error than what the data warrants. 

Stable Algorithm + Well-Conditioned Problem 
;;;=Accurate Solution (the computed solution is near 

the exact solution). 

Stable Algorithm +Ill-Conditioned Problem =Accuracy not guaranteed. 

An illustration: Suppose that un algorithm to solve the computational problem f 
defined by the input x produces the function j as an approximation of f. Let y be close 
to x. Then the behavior of a stable algorithm in two cases-when the problem is well­
conditioned and ill-conditioned-is illustrated in Figure 4.4 (Stewart (1998b, p. 133)), 

X 
·~ 

\ 

I v y 

f(y) 

Figure 4.4. Peiformance of a bachvard stable algorithm with weJ/~conditioned 
pro/Jiem (left) and ill-conditioned problem (right). 
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Why is the answer inaccurate? Based on our discussions here, we can state some of 
the following reasons why the answer might be inaccurule (see Higham (2002, p. 31) for 
details). 

• The problem might be HI-conditioned. 

• The algorithm might be unstable. 

• The test examples may be too speciaL 

• The algorithm, though successful, might have failed in the particular circumstances. 

4.6 Perturbation Analysis of the linear System Problem 
Consider the following linear system: 

X1 + 2_\'2 3, 

2r1 + 3.999x, 5.999. 
r-----, 

The exact solution is I XJ = X1 = I, I Now make a small perturbation on the right-hand side, 
obtaining the system 

x1 + 2x2 = 3, 

2x1 + 3.999x2 6. 

TI1c solution o-f the perturbed system. obtained by Gaussian eliminalion with partial pivoting 

(considered to be a stable method in practice), is 1 "' = 3, "' = o.j 
Titus, a very small change on the right~Iumd side changed the solution altogethe1: 

In this section we study the effect of small perturbations of the input data A and bon 
lhc computed solution x of the syslem Ax = b~ that is, sensitit•ity of linear system solutions. 

Since in the linear system problem Ax = b the input data are .4 and b, there could be 
impurities either in b or in A or in both. We will therefore consider the elTcct of perturbations 
on the solution x in each of these cases separately, We •.vill sec lhal in all of lhese cases, a 
number called the condition number of the matrix A plays an important role. 

4.6.1 Effect of Perturbation on the Right-Hand Side Vector b 

We assume here thal there are impurities in b but that matrix A is exact. 

A-+A 
b-+ b + .lb 
X-+ X+ 0.\" 

(unchanged) 
(<lb =perturbation in the vector b) 
(8x =change in the solution x) 
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Theorem 4.19 (right perturbation theorem). If ob and i5x are. respectively, the perturba­
tions of b and x in the linear system Ax = h, A is nonsingular, and b ? 0, then 

ilohll < usxu < ,
111111

, 4_,
11

11Bhll 
IIAIIIIA-'11 - llxll - 1 

· '' ' llbll · 

Proof. Since 
Ax= b 

and 
A(x+ox) = b +&b, 

we have 

ilox = 8b. 

That 

Taking a subordinate matrix-vector norm we get 

lli5xtl :" IIA -'llllohtl. 
Again, taking the same norm on both sides of Ax = b, we get II Axil = lib II or 

llbll = IIAxll ::0 IIAIIIIxll. 

Combining (4.6) and (4.7), we have 

lloxll < IIAIIIIA_, 11 118hll. 
llxll - llbll 

On the other hand. Aox = &b gives 

1 8 , > !lobll 
I xi,- II All. 

Also, from Ax = b, we have 
I I 

- > --,---cc=c:-
llxll - liA 1llllhi!' 

Combining (4.9) and (4. 10), we have 

l!oxll llobll 
-->-::-:-:c:''-:---7-:c""" llxll - IIAJIIIA-'IIIlbll. 

The other part can be similarly proved. 0 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Definition 4.20. T!te I!UIIIber II Alii! A -tu is called the condition 1111mber of A and is denoted 
by Cond(A). 

Interpretation of Theorem 4.19 

Theorem 4. 19 says that a relative change in the solution can be as large as Cond {A) multiplied 
by the relative change in the vector b. Tiius, If the crmditirm number is not too large, then a 
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small perturbatin11 in the vector b will have vel)1 lirrle effect an tire solurian, On the orlrer 
hand, if tlw condition number is large, then even a small perturbation iu b might change 
the solution drastically. 

Remark. In view ofTI1eorem 4.19, what happened with the above example can be easily 
explained. Note that forthis example Cond(A) = 0( 104 ). 

Example 4.21. An ill-conditioned linear system problem. 

A= G 2 
4.0001 
2J}Q2 

2.~02). 
2.004 

b = (s.ob21). 
5.006 

The exact solution is 

X=(:). 
Change b to b' = 

(s.ob2o) . 
5.0061 

Relative perturbation: 

w -bll ll8bll 
I = --· = 1.3795 x I 0~5 (small). 

llbll llbll . 

If we solve the system A.e = b'. \Ve get 

( 

3.0850) 
x' = x + 8x = -0.0436 

1.0022 

(x' is completely different from x). 

Relative error in rile solution: !:1~~~: 1 = L346l. his easily verified that the inequality in 

Theorem 4.19 is satisfied: Cond(A) · T,!i~ 4.4418 > 1.3461 

The predicted change was, lwwever. overly estimated. I 

Example 4.22. A well-conditioned problem. 

The exact solution is x = (: ). Let b1 = b + Ob = ( ~:~l ). 
The relative change in b is = 1.875 X w-' (small). Note that Cond(A) = 

14.9330 (small). Thus a drastic change in the solution x is not expected. In fact x,' satisfying 
Ax' b' is 

' (0,9999) (') x = 1.0001 cex = I · Note: IIJxli = IW5 (small). 
lixll 

I 
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4.6.2 Effect of Perturbation in the Matrix A 

Here we assume that there arc impurities only in A, and as a result we have A + .6-A in 
hand, but b is exact. 

A -+ A + l>A 
b->b 
x ~ x+.Sx 

(l:.A =perturbation in the matrix A) 
(unchanged) 
(ox= change in the solution x) 

Theorem 4.23 (left perturbation theorem). Assume A is nonsingular and b # 0. Suppose 
that l:.A and ax are, respectively, the perturbations of A and x in the linear system Ax =b. 

Furthermore, assume.thatil.A is s.uci1tha.t \IL>.i\.11 < I! A I'll' Then 

118xll < Cond. A) IIL>A II I (I -Cond(A)~AII), 
llxll - 1 IIAil IIAII 

Proof We have 

(A+ Ll.A)(x + 8x) = b 

or 

(A+ Ll.A)x +(A+ L>A)8x b. 

Since Ax= b, we have from (4.11) 

(A+ L>A)ox = -Ll.Ax 

or 

ax= -A-1 L>A(x + 8x). 

Taking the norm on both sides, we have 

lhat is, 

ll8xll :o IIA-1 IIII6AII · Cllxll + 118xlll 

- IIA-1IIIIAIIIIL>AII(II·I· + 118 ·Ill 
- IIAI\ x 1 x ' 

(4.11) 

(4. 12) 

(4.13) 

(4.14) 

(
I IIAII-' IIA llli6.AII) !lax!'< II All IIA -

1 
IIII6A llll.vll. (4. 15) 

IIAII 1 
- IIAII 

Since i1A-'IIII6AII < t, thecxpressioninparenthesesonthcleft-handsideispositive. We 
can thus divide both sides of the inequality by this number withom changing the inequality. 
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After this, if we also divide by llx II, we obtain 

II AI' II A -'IIIIL).A 
118xll 

1 
'I All . IIL).AII I ( ill). A II) -- < 1 = Cond(A)-- I -CandiA)-- , 

llxli - (l-IIAIIIIA , 11 11L).AII) IIAII . JIAii 
II All 

{4.16) 
which proves the theorem. D 

Remarks. Because of the assumption that Ill). A II < (which is quite reasonable to 

ussume), the denominalor on the right-hand side of the int:quality in Theorem 4.23 is less 
than one. Thus e\'f!ll is small, then there could be a drastic c!tange in the solution if 
Cond(A) is large. 

Example 4.24. Consider Example 4.21 once more. Change a23 = 2.002to 2.0021; keep h 
fixed. Thus 

0.1~) (small). 
0 

Now solve the system (A + l'iA)x' = b; 

( 

3.0852 ) ( 2.0852 ) 
x' = -0.0437 . 8x = x' - x = -1.0437 , 

1.0011 0.0021 

. !18xll 
Relattve error= -- 1.3463 (quite large). 

llxll 

Note thutCond(A) = 0(1()-'). I 

4.6.3 Effect of Perturbations in both matrix A and vector b 

Finally, we assume now that both the input data A und b have impurities. As a result we 
have the system with A+ D. A as the matrix and b + !Jb as the right~hand-side vector. 

A-+ A+ L).A 

"-.. b + ob 
X~ X +Ox 

{.c). A= perturbation in A) 
{Jb = perturbation in the vector b) 
(Ox = change in the solution) 

Theorem 4~25 (general perturbation theorem). Assnme rllar A is nonsinguhu; h :fo 0, 
and II8AII < IIA',,1. Then 

ll8xll :5 ( Cond(AJ . , l (II Mil+ 118/JII). 
IJxll l-Cond(A' _IIM1I . IIAII llbll 

. ! !!All 
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Proof. Subtracting 

Ax= b 

from 

(A+ bA)(x +ox)= b + ob 

we have 

(A+ t;A)(x +ox)- Ax= ob 

or 

(A+ t;A)(x + 8x)- (A+ t;A)x +(A+ t;A)x- Ax 8b 

or 

(A+ t;A)(8x) +~Ax= 8/J 

or 

A(l- A- 1(-t;A)).lx = ob- t;Ax. (4.!7) 

Let A- 1(-·bA) =F. Then 

\IFII = IIA- 1(-6A)Ii ::0 liA-'1! lJE;Aii <I (by assumption). 

Since II Fll < I, l - F is invertible (sec Theorem 2.27), and then from (4.17) we have 

ox= (1 - F)- 1 A_, (ob- 6Ax). 

Again. using Theorem 2.27 ~ we can wrlte 

llU F ., I< I 
) 1._ 1-l!Fil 

Thus, 

or 

ll&xll IIA-'11 (llobll , ) 
W s (1-IIFIIl. W +tiM II 

That is, 

Again 

< IIA-'11 (JiobiiiiAII , lfC;Afl). 
- (I -II Fill libll T' 

l IIA\1 
Note:-<-. 

llxll- llbll 

lloxil < IW'iiiiAII (ll&bll . IIL>A\1). 
l!xll - (I -IIFIIJ llbll -r IIAII 

(4, 18) 

(4.19) 

(4.20) 
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Since IIFII ~I, we can write from (4.20)and(4.21) 

!l&.t II 
--< 
!lxll -

(4.22) 

D 

Remarks. We again see from {4.22) that even if the relative perturbations l[~;1 l 1 and 11 1~;;:~ arc 
small, there might he a drastic change in the solution if Cond(A) is large. Thus, Cond(A) 
plays a crucial role in the sensitivity of the solution . 

.. . .. 

Notation for Condition Numbers 

Unless otherwise stated, when we write Cond(A), we mean Cond2(A), that is, 
the condition number with respect lO lhe 2-norm. The condition number of a 
matrix A with respect to a subordinate p norm (p = I, 2, oo) will he denoted by 
Cond 1,(A). Cond p(A) will stand for condition number witl1 respect to Frohenius 
norm. 

4.7 Some Properties of the Condition Number of a Matrix 
The following are some important (but easy to prove) properties of the condition number 
of a matrix (Exercises 4.16, 4.17, and 4.20). 

(!) Condp(A) ?: I for any p-norm. 

(II) Cond(aA) = Cond(A), where a is a non1.em scalar, ltlf any given norm. 

(lll) Cond2(r1) I if and only if A is a nonzero scalar multiple of an orthogonal matrix, 
i.e., AT A= a!, where a ;6 0. 

(Note rlwr this property of an orthogmwf matrix A makes the matn~r vet)1 attractive 
for its use in numerical computations), 

(IV) Cond,(A 7 A) (Condz(A))2 

(V) Cond2 (A) Cond2 (Ar): Cond,(A) =Cond=(Ar). 

(VI) For any given norm, Cond(A B) ~ Cond(A) Cond(B) if A and Bare compatible for 
matrix multiplication. 

(VII) Cond 2{A) = rr where am;J:\ and Umln are, respectively, th~ largest and smallest . ~, 

smgular vaJues 01 ;L 
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We now formally define the ill~conditioning and well-conditioning in terms of the 
condition number. 

Definition 4.26. The system Ax= b is ill-conditioned if Cond(A) is large (e.g .. lfr'. 108 • 

1010, etc.). Otherwise, it is well-conditioned. 

A convention. Unless otherwise stated, by Cond(i\) we will mean Condo(A). 

Remarks~ Though the condition number., as defined above, is norm-dependent, lhe condi­
tion numbers with respect to two different nonns are related (see Golub and Van Loan ( 1996, 
p. 26)). (For example, it can be shown that if A is ann x n matrix, then ~ ::;: ~~~:~\~\ :::; n.) 
In general. if a matrix is well-conditioned or ill-conditioned 1vith respect to one norm, it is 
also ill-collditioned or tvell-conditioned with respect to some other norms. 

!'Xl1111Ple4.27 •. (a) Consider 

( 
I 0.9999) 

A= 0.9999 I ; h A -1 _!OJ ( 5.0003 
t en - -4.9997 

-4.99997) 
5.0003 . 

I, The condition numbers with respect to lhe oo-nonn and the 1-nonn are 

IIAIIoo = IIAII1 = 1.9999, !IA-111, = IIA-'Ih to4
, 

Cond,(A) = Cond 1 (A) 1.9999 x to4
• 

2. The condition number with respect to the 2-norm is 

II Alb= J p(A) = 1.9999, iiA-1111 Jp(A -I)= 104, 

Cond2(AJ = 1.9999 x 104 

3. CondF(AJ = 1.9999 x 104
• I 

Remark. For the above example, it turned ow that lhe condition number with respect to 
any norm is the same. This is. however, not always the case, but in general they are closely 
rclaicd. (See below for the condition number of lhc Hilbert matrix with respect to different 
norms.) 

4.7.1 Some Well-Known Ill-Conditioned Matrices 

I. The Hilbert matrix. 
I 
2 

I I 
2 3 

A 

l I 

" ii+T 

I 
3 

I 
4 

l 
" 

_1_ 
n+l 

I 
211-1 

Forn = 10, Cond2(A) 1.6025 x !0 10'; Cond00 (A) = 3.5353 x 10"; Cond 1(A) = 
3.5353 X 1013, 
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2. Tile Pei matrix. A = (a if) with au =a, Gij = I for i f. j. The matrix becomes 
ill-conditioned when a is close to I or n - I. for example, when a = 0.9999 and 
n 5. Cond(A) = 5 x 104 • 

3. H:mdermontle matrix, A = (aiJ). wherc,a1,; = u;1
-i; vi = ith component of ann­

vector v. For n = 5, v = (I. 2, 3, 4, 5) 7 , Cond{A) = 2.6170 x 104• This matrix 
arises in several practical applications, including polynomial interpolation. 

4.7 .2 How large Must the Condition Number Be for Ill-Conditioning? 

A frequently asked question is, how large must Cond(A.) be before the system Ax = b is 
considered ill-conditioned? We will use Theorem 4.25 to ans\ver the question. 

Suppose for simplicity that 

Then, from Theorem 4.25. H follov.'s that il~~~? is approximately less than or equal to 2 x 

Cond(A) X w-d. 
This says lhal if the data have a relative error of lO~d and ii' the relative error in the 

solution has lobe guaranteed to be less than or equal to 10-r. then Cond{A) has to be less 
than or equal to ~ x loJ-1

• Thus, whether a system is itl~conditioned or well~condifioned 
depends on (i) die accuracy of the da!a, and {ii} how lllllCit error in the solution can be 
tolerated. 

For example, suppose that the data have a relative enor of about lo-s and an accuracy 
of about 10-3 issought. Then Cond(A) :S ~ x 102 =50. On the other hand, if an accuracy 

of about w-2 is sought, then Cond(A) :s r X 103 = 500. Thus, in the first case the system 
will be well-conditioned if Cond (A) is less than or equal to 50. while in the second case the 
system will be well-conditioned if Cond(A) is less than or equal to 500. 

Estimating Accuracy from the Condition Numhcr 

In general, if the data are approximately accurate and if Cond(A) = 10'. then 
there wHI be only about t - s significant digit accuracy in the computed solution 
when the solution is computed in !-digit arithmetic. 

For better understanding of conditioning, stability, and accuracy, we refer the readers 
to the paper of Bunch (1987). For discussions on "strong and weakstability" (not discussed 
in this book). sec Bunch (1987) and Bunch et al. (1989). 

4.7.3 The Condition Number and Nearness to Singularity 

Titc condition number also gives an indication when a matrix A is compulalionaHy close to 
a singular matrix: ifCond(A) is large, A is close to singular. 
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Tltis measure of nearness to singularity is a more accurate measure than the determi~ 
nant of A. For example, consider the well-known 11 x n upper triangular matrix A = (a1i) 
wilh au = I. and aii = - l if j > i. The matrix has the determinant equal to I: however, 
it is nearly singular for large n. Note that Cond00 (A} = 11211

-
1• Similarly. the smallness 

of tlte determinam of a matri.r does not necessarily mean that A is close to a singular ma~ 
rrix. For example, consider A = diag(O. 1, 0.1, ... , 0.1) of order 1000. det(A) = 10-1000, 

which is a small number. However, A is considered to be perfectly nonsingular, because 
Cond2(A) = 1. 

4,7.4 Examples of Ill-Conditioned Eigenvalue Problems 

Perturbation analysis of the eigenvalue problem will be discussed in Chapter 9. The condi­
tioning of the eigenvalues and eigenvectors wilt be introduced there. Here we just present 
a few-examples oCthe well-known HI-conditioned cige_nyqlu~_p_robh:~ms. 

Example 4.28. Consider the 10 x I 0 matrix 

0 
A 

0 

The eigenvalues of A are all I. Now perturb the ( 10, 1) coefficient of A by a small quantity 
E = 10-10• Then the eigenvalues of the perturbed matrix computed using the MATLAB 
function eig (that uses a numerically effective eigenvalue-computation algorithm) were 
found to be 

0 

I .0184 + 0.0980i, 

0.9506 + 0.0876i, 

1.0764 + 0.0632i, 

0.9051 + 0.0350i' 

I .0999 + O.OOi, 

1.0764 0.0632i' 

0.9051- 0.0350i, 

1.0184 - 0.0980i' 

0.9506- 0.0876i. 

(Note the change in the eigenvalues.) I 

Example 4.29. The Wilkinson-Bidiagonal matrix. Again, it should not be d10ught that 
an eigenvalue problem can be ill-condidoned only when the eigenvalues are multiple or ure 
close to each other. An eigenvalue problem with well-separated eigenvalues can be very 
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g 0 + + + + ~ + • + + + + + + + + • + + + i • 

_, 

~~ 
_,,':-1 -----;;-----;:'-----;:----;:;:----;; 

o ro 11 w a 

Figure 4.5. The eigenvalues of a slightly perturbed Wilkinson matdr.. 

ill-conditioned too. Consider the 20 x 20 uiangular matrix (known as the Wilkinson­
bidiagonal matrix): 

20 20 
19 20 0 

A= 

0 20 
I 

The eigenvalues of A are L 2, ... , 20. Now perturb the (20,1) entry of A byE= 10-IH If 
the eigenvalues of this slightly perturbed matrix are computed using MA TLAB function eig, 
il will be seen that some of them will change drastically; they will even become complex, 
as shown in Figure 4.5. Again, this can be explained by using the definhion of condition 
number of an individual eigenvalue given in Chapter 9. I 

Example 4.30 (Wilkinson (1965, p. 92)). 

II (n - I) (II 2) 3 2 
(11 - I) (n - I) (II 2) 3 2 

0 (11 - 2) (1! - 2) 

A= 

2 

2 2 
0 0 
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As n im:reCJses, the smallest eigenvalues become progressively ill-conditioned. For 
example. when n = 12, the condition numbers of the firsl few eigenvalues are of order 
unity. while those of the lust three ore of order I 07 I 

4.8 Some Guidelines for Designing Stable Algorithms 
Following Higham (2002, pp. 26-27), and based on our discussions in this chapter, we stale 
a few helpful guidelines for designing a stable algorilhms. However, note, that "there is no 
simple recipe for designing stable algorithms" (Higham (2002), pp. 26-27). 

• Avoid catastrophic cancellations if possible. 

• Avoid unnecessary overflow and underflow. 

"· •- In-transfomling--the--problem to. another mathematically ~quiy_i1l~nt pr()ble_m,_ use only 
wel1-conditloned transformation, such as orthogonal matrix multiplicability. 

If a numerical scheme appears to be unstable. look fur different fonnulations which 
arc mathematically, but not numerically, equivalent (see the use of modified Gram­
Schmidt processes versus classical Gram-Schmidt processes in solving least-squares 
problems in Chapter 8). 

• Arrange your computational scheme (if possible) in such a way that the intermediate 
quantities arc much smaller than the final answer. 

Update the solution by using only a small cotTcclion; that is, update as new solution= 
old solution + small correction i r the correction can be computed v.'ith sufficient 
figures. 

4.9 Review and Summary 
In this chapter we have introduced two of the mosl important concepts in numerical linear 
algebra, namely. the conditioning of the probiem and stability or the algorithm, and have 
discussed how lhey affect the accuracy of the solution. 

4.9.1 Conditioning of the Problem 

The conditioning of the problem is a property ol' the problem. A problem is said to be ill­
conditioned if a small change in the dala can cause n large change in the solution; otherwise 
it is tvell-conditioned, 

Examples of ill-conditioned problems: 

Wilkinson's polynomial of degree 20 for the root-finding problem 

Wllkinson's bidiagonal matrix for the eigenvalue problem 

The Hilbert matrix for the algebraic linear system problem 
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The conditioning of a problems is datu-dependent. A problem can he ill-conditioned 
with respect to one set of data, while it may be quite well-conditioned with respect to 
another set, 

Ill-conditioning or well-conditioning of a matrix problem is generally measured by 
menns of a number called the condition number. 

In the linear system problem Ax = /;, the input data are A and b. There may exist 
impurities either in A or in b, or in both. 

\Ve have presented perturbation analyses in all three cases. The results are contained 
in Theorems 4.19, 4.23, and 4.25. Theorem 4.25 is the most general theorem. 

In all three cases, it turns om lhat 

is the deciding factor. If this number is Iarge, then a small perturbation in the input data 
can cause u large relative error in the computed solution. In this case. the system is called 
an ill-conditioned SJ1Stem, otherwise it is -well-conditioned. The matrix A having a !urge 
condition number is called an ill-conditioned matrix. 

Some important properties of the condition number of a matrix have been listed 
(Section 4.7). 

Titc condition number, of course, has a noticeable effect on the accuracy of the solution. 
A frequently asked question is. How large does Cond(A) have to be before the system 

Ax = b is considered to be ill-conditioned? 
The answer depends upon the accuracy of the input data and the level of tolerance of 

the error in the solution. 
/n general, ift!Je data are approximately accurate and ifCond(A) 10', t!Jen there 

are about (t - s_) significant digits of accuracy in the solution if it is computed in t-digit 
aritlunetic. 

4.9.2 Stability of an Algorithm 

An algorithm is said to be a backward stable nlgoritllm if it computes the exact solution 
of a nearby problem. Some examples or Stiible algorithms (as we will sec later in the 
book) arc 

Backward substitution and fonvard elimination for triangular systems 

Gaussian elimination with complete pivoting for linear systems 

QR factorization using Householder and Givens transiOnnations 

QR iteration algorithm for eigenvalue computations, etc, 

The Gaussian elimination algorithm without toH' changes is unstable for arbitrary 
matrices. It is stable for special matrices such as strictly diagonally dominant, Hessenherg, 
and symmetric positive definite. Gaussian elimination with partial pit•uting Is stable in 
practice. 
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4.9.3 Effects of Conditioning and Stability on the Accuracy 
of the Solution 

The conditioning of the problem and the stability of the algorithm both have effects on 
accuracy of the solution computed by the algorithm. 

• Stable Algorithm+ Well-Conditioned Problem Accurate Solution 

• Stable Algorithm+ Ill-Conditioned Problem =Accuracy not guaranteed 

4.10 Suggestions for Further Reading 

The basic concepts and results or stability and conditioning can be found in most numerical 
linear algebra books (e.g .• Golub and Van Loan (1996), Stewart (1973). Trefethen and 
Bau (1997)). The two most authoritative books on these topics are the classical book by 
wiiki~soncT965Yand ihe most recent one by Higham (2002). Stewart's recent books ( 1 99Sb; 
2001a) also give a good amount of coverage of these topics. A book devoted entirely to 
the perturbation analysis is by Stewart and Sun (1990). An advanced book containing a 
fair amount of matrix perturbation results is by Bhatia (1996). See also Bhatia (2007). For 
a condensed review of material of this chapter, see the article of Byers and Datta (2007). 
Some classical well-known papers on conditioning and stability include DeJong ( 1977) and 
Rice (1966). Some earlier papers of Stewart (J977a, 1977b, 1978, 1979, 1991. J993a) 
contain a wealth of information on perturbation analysis of various numerical linear algebra 
problems. For concepts and results on weak and strong stability, see Bunch ( 1987) and 
Bunch ct al. (1989). 

Exercises on Chapter 4 

4.0 Answer .. True" or "False" to the following, Give reasons for your answers. 

(a) If a backward stable algorithm is applied to a computational problem. the solu­
tion will be accunue. 

(b) A backward stable algorithm produces a good approximation to an exact solu-
tion, 

(c) Well-conditioning is a good property of an algorithm. 

(d) Cancellation is always had. 

(e) If the zeros of a polynomial are all distinct, then they must be well-conditioned, 

(I) An eiTicient algorithm is necessarily a stable algorithm. 

(g) Backward errors relate the errors to the data of the problem. 

(h) A backward Stahle algorithm applied to a well-conditioned problem produces 
an accurate solution. 

(i) Stability analysis of an algorithm is performed by means of perturbation analysis. 

Ul A symmetric matrix must be well-conditioned. 

(k) If the determinant of a matrix A is small, then it must be close to a singular 
matrix. 
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(I) One must perform a large amount of computations to obtain a large round-off 
error. 

(m) If a matrix A is ill-conditioned, then its smallest singular value is very small. 

4.1 (a) Show that the flouting point computations of the sum. product, and division of 
two numbers are backward stable. 

(b) Show that the flouting computation of the inner product of two vectors is back­
ward stable and that, on the other hand. the outer product is not. 

4.2 Are the following ftoatlng point computations backward stable? Give reasons for 
your answer in each case. 

(a) tl(.t + l). 

(b) fl(.t()' + Z)). 

(c) fi{xr + X2 + · · · + x,). 

(d) fi(.t,.t2 ... _r,). 

(e) fl(.t 7 y 1 c), where x and y are vectors and c is a scalar. 

(0 n(Jx/+xi+ .. +x.;) 
4.3 Show that the roots of lhc following polynomials are ill-conditioned and give reasons 

for your answers. 

(a) .t 3 - 3x2 + 3x + I. 
(b) (x 1)3(.t- 2). 

(e) (x- l)(x- 0.99)(x- 2). 

4.4 Work out the fiop-counts for the following simple matrix operations. 

(i) Multiplication of matrices A and B of orders 11 x m and m x p, respectively. 

(ii) fvtultiplication of a matrix A of order m x n by a vector b. 

(iii) Multiplication of a column vector u by a row vector v. 

(iv) Computation of llrd!,. 
(v) 1<.1ultiplicntion of rmv vector u by a column vee lor v. 

(vi) Computation of the matrix A=::~·~,. where u and u arc m column vectors. 

(vii) Computation of the matrix B = A -uv7 , where A and Bare two 11 x n matrices 
and u and u arc two column vectors. 

4.5 Develop an algorithm to compulc tht! following malrix products. Your algorithm 
shouJd take advantage of the special struclurc of the matrices in each case. Give 
flop-count and show storage requirement in each case. 

(a) A and B are both lower triangular matrices. 

(b) A is arbitrary and B is lower triangular. 

(c) A and B are both tridiagonal. 
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(d) A is arbitrary and B is upper Hessenberg. 

(e) {I+ xyT)A, where x andy are vectors. 

(f) A is upper Hessenbcrg and B is upper triangular. 

4.6 A square matrix A = (ll;j) is said to be a band matrix of bandwidth 2k + l if 

aij 0 whenever li- jj > k. 

Develop an algorithm to compute the product C = A B, where A is arbitrary and 
B is a band matrix of bandwidth 2, taking advantage of the struclure of the matrix 8. 
Overwrite A with AB and give ftop-count. 

4.7 Let A and B be two symmetric matrices of the same order. Develop an algorithm to 
compute C = A+ B, taking advantage of symmetry for each matrix. Your algorithm 
should overwrite B with C. What is the flop-count? 

4.8 Let a, and b1-denote. respectively, therth columns.oLthe matrices A and B . . 'Then 
develop an algorithm to compute the product A B from the formula 

rt 

'>' T AB = L., a;b; , 

Give llnp-counl and storage requirement of the algorithm. 

4.9 Consider the matrix 

A= 

12 ]] 
II II 

10 
10 

0 JO 10 

0 

3 2 
3 2 

2 

2 2 
0 

Find the eigenvalues of this matrix using MATLAB command eig. Now perturb the 
(1,12) element to Jo-• and compute the eigenvalues of this perturbed matrix. What 
conclusion do you make about the conditioning of the eigenvalues? 

4.10 If j(x) is a real-valued differentiable function of a real variable x, then prove that 

t~};.:lJ1( 1 is the condition number off (x) at x. 

4.11 (a) Show that if j(x) = logx, then the condition number, c(x) = llo~x 1-

(b) Using the above result (or otherwise), show that logx is ill-conditioned near 
x=L 

4.12 Show that the condition number K for the product Ax (with respect to the perturbation 
of r) is ". = II A II Jl!JL " !IA~:I!· 

4.13 Show, by computing the condition number, tl1at the problem of computing JX fm 
x > 0 is a well-conditioned problem. 
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4.14 Work out a bound for the relative error when a backward stable algorithm is applied 
to a prohiem with the condition number K. 

4.15 Let A be nonsingular and t:.A be such that 1 1~~1 11 < Cond(A). Then prove that A+ t:.A 

is nonsingular. 

4.16 (a) How arc Cond2(A) and Cond2(A -I) related? 

(b) Show that 

(i) Cond(A) ::': l for a nonn II · il such that II I II ::': l; 
(ii) Cond2 (AT A)= (Cond2 (A)) 2 ; 

(iii) Cond(cA) Cond(A) for any given norm. 

4.17 (a) Let A be an orthogonal matrix. Tircn show that Cond,(A) I. 
(b) Show that Cond2 (A) = I if and only if A is a scalar multiple of an orthogonal 

matrix. 

4.18 Let U = (H;j) be a nonsingular upper triangular matrix. Then show that 

max lu· I 
Condoc(U) 2: . ' " . 

mm!uii! 
Hence construct a simple example of un ill-conditioned nondiagona1 symmetric pos­
itive definite mmrix. 

4.19 Let A 
show 

LDLT be a symmetric positive definite matrix. Let D = diag(d;1). Then 

mux(d;;) 
Cond,(A) > . 

- - min(d;;) 
Hence construct an example for an ill~conditioncd nondiagonal symmetric positive 
definite matrix. 

4.20 Prove that for a given norm. Cond(AB) :0 Cond(A) · Cond(B). 

4.21 (a) Find for what values of a the matrix A = (; '!} is ill-conditioned? 

(b) What is the condition number of A? 

4.22 Give an example to show that a stable algorithm applied to an ill-conditioned problem 
can produce an inuccurare solution. 

4.23 (a) Let a1 be the ith coefficient of a polynomial p(x) and let lia1 and lix1 denote 
small perturbations of a, and the jth root x1• Then show that the condition 
number of root x 1 with respect w perturbations of the single coefficient ar is 

llixil/llla11 ia;xj-'1 
ix;l 'j;;J = lp'(x;)l · 

(h) Using MATLAB fimctions poly and polyder. compute the condition numbers of 
the roots x = i, i = l, 2, ... , 20, of the Wilkinson polynomial 

p(x) = (x- l)(x- 2) ... (x- 20) x 10
- 2l0x'9 + ... 

with respectlO perturbation of the coefficient x 19 from -210 to -210 + 2 -:n. 
Present your results in tabular form and write your conclusion on the ill­
conditioning of the roots of the Wilkinson polynomiaL Explain why certain 
roots are more ill-conditioned than others. 
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MATLAB and MATCOM Programs and Problems on Chapter 4 

MATLAB RESOURCES 

• Free on-line I\1ATLAB Tutorial is available from the website: www.math. 
ujl. edu!h elp/m at I ab-trrl o ria/. 

• Appendix B of this book. available online at www.siam.org.bookslotll6, 
also shows how to use basic MATLAB commands and write simple MAT­
LAB programs. 

See also MATLAB guide books by Higham and Higham (2005), Davis and 
Sigmon (2005). and Chapman (2009). 

• A Practical Introduction to MATLAB by MarkS. Gockenbach is available 
from hrtp:llwww.math_rllf~~·-i?t:!~l/::·"'_~,,sg/Jcke_!!_·, , 

M4.1 Using the MATLAB function rand, create a 5 x 5 random matrix and then print out 
the following omputs: 
A(2,:), A(:, 1), A (:,5), 
A(!, 1:2: 5),A(jl,5]),A(4: -1:1,5:-1: 1). 

l\14.2 Using the function for, write a MATLAB program to find the inner product and outer 
product of two n-vcctors u and v. 

[s] = inpro(u,v) 
[A]= outpro(u,v) 

Test your program by creating two different vectors u and v using rand (4.1 ). 

l\14.3 Learn how to use the following MATLAB commands to create special matrices: 

compan 
dlag 
ones 
zeros 
rand 
wilkinson 
hankel 
toeplitz 
hilh 
triu 
tril 
vander 
rand(n) 

Companion matrix 
Diagonal matrices or the diagonals of a matrix 
Matrix with aJl entries equal to one 
Zero matrix 
Random matrix 
\Vilkinson's eigenvalue test matrix 
Hankei matrix 
Toeplitz mauix 
Hilbert matrix 
Extract the upper triangular part of a mauix 
Extract the lower triangular part of a matrix 
Vandcm1onde matrix 
Matrix with random entries, chosen from a normal distribution with 
mean zero. variance one. and standard deviation one. 
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~14.4 Learn how to use the following MATLAB functions for basic marrix comp11tatians 
(you will learn about the algorithms of these functions Iuter in this book): 

a\h Linear equation solution of Ax =b. 
inv Matrix inverse 
det Determinant 
cond 
eig 
norm 
poly 
polyval 
plot 
rank 
lu 
qr 
svd 

Condition number 
Eigenvalues and eigenvectors 
Various matrix and vector norms 
Characteristic polynomial 
The value of a polynomial at a given number 
Plotting various func[ions 
Runk of a matrix 
LU factorization 
QR factorization 
Singular value decomposition 

"14.5 Write MATLAB programs to create the following well-known matrices: 

(a) [A]= wilk{n) to create the Wilkinson bidiagonal matrix A {aij) of order n: 

afi = 11 i + 1, i = 1. 2, ... , 20, 

2, 3, ... 'J1' 

au 0, otherwise . 

(b) [A]= Pei(n, a) to create the Pci matrix A (a11 ) of order n: 

a,, = a ;:: 0, 

aij I fori f=.j. 

(c) Print the condition numbers of the Wilkinson matrix with n = 10, 20, 50. and 
l 00, using the MATLA B function cond. 

(d) Fix n = 20, and then perform an experiment to demonstrate the fact that the Pei 
matrix becomes more i11-conditioncd as a -~ l. 

!VI4.6 Using "help" commands for clock and etime, learn how to measure timing for an 
algorithm, 

M4.7 Using MATLAB functions for, size, zero, write a MATLAB program to lind the 
product of two upper triangular matrices A and B of order m x n and n x p, respec­
tively. Test your program using 

A = triu(rand (4,3)), 
B = triu(rund (3,3 )). 

1\:14.8 The purpose of this exercise is to test that the Hilbert matrLr: is ill-conclitiolted wit!t 
respect to solving tl1e linear system problem. 

(i) Create A = hilb(IO). Perturb the ( 10, li entry of A by w-5. Call the perturbed 
matrix B. Let b = rund(JO. 1). Compute x = A \b. y = B\b. Compute 
l!x - yll and JL~ 1~t 11 , What conclusion can you draw from this'? 
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(ii) Compute the condition numbers of both A and B: Cond(A), Cond(B), 

(iii) Compute the condition number of A using the MATLAB command Cond(A) 
and then use it to compute the theoretical upper bound given in Theorem 4.23. 
Compare this bound with the actual relative error. 

M4.9 Perform the respective experiments stated in Section 4.7 on Examples 4.28-4.30 to 
show that the eigenvalue problems for these matrices are ill~conditioncd. 

M4.l0 (a) Write a MATLAB program to construct the 11 x n lower triangular matrix A = 
(a1j) as follows; 

ail = I if i = j, 
au = -I if i > j. 
lljj = 0 if i < j. 

(b) Perform an experiment to show that the solution of Ax = b with A as above 
and the vector b created such thatb ·"'·Ax, whc~J;x =eLl ,J. .•.. · ,I}',becomes 
more and more inaccurate as n increases due to the increasing ill-conditioning 
of A. Let .i denote the computed solution. 
Present your results in the following fonn: 

I " 
Cond(A) .i- A\b ! Relative error Residual norm 

I 1\x -.illz !lb- A.ilb 

llxlb II bib 
10 
20 

' 30 
40 
50 

M4.ll Using MATLAB function vnnder(v), where v "' rand (20, 1), create a 20 x 20 
Vandermonde matrix A. Now take x = ones (20, I) and b = A * x. Now compute 
y = A \b. Compare y with x by computing J'- x and IIY xll, What conclusions 
can you draw? 

M4,12 (Higham's Gallery of'Test Matrices.) 

Learn how to use Higham's Gallery of Test Matrices in MATLAB (type help gallery 
for a complete list). 

M4.l3 (Computing the sample varia11ce (Higham (2002, pp. 11-12)).) 

Consider computing sample variance of 11 numbers x 1 •• ,., );n defined by 

I " s; =--"'(xi- .tf2 , 
11-IL.-

1=1 

I " 
where .t =- Lxi. 

11 
i=l 

Describe various mathematically equivalent ways of computing lhis quantity and 
discuss their different numerical stability properties. 



Chapter 5 

Gaussian Elimination and 

LU Factorization 

Background Material Needed 

• Vector and matrix nonns and their properties (Section 2.5) 

Special matrices (Section 2.4) 

Concepts of errors, floating point operations, and stability (Sections 3.2, 42, and 4.3) 

5.1 A ComputationaiTemplate in Numerical Linear 
Algebra 

Most computational algorithms to be presented in this book have u common basic struclUre 
that can be described in the following three steps: 

Step 1. The problem is first transfonncd into an "easicr-w~solvcH problem by transforming 
the associated matrices to "condensed'' forms \Vith special structures. 

Step 2. The transformed problem is then solved by exploiting the special structures of these 
condensed forms. 

Step 3. Finally, the solution of the original problem is recovered from the solution of the 
transformed problem. Sometimes the solution of the transformed problem is the solution 
of the original problem. 

Some typical condensed fonns used in tile following computations are shown in 
Figures 5.2-5.5: 

• The system of linear equation Ax b is solved by Lransforrning A into an upper 
triangular matrix (Gaussian elimination), followed by solving Lwo triangular systems: 
upper and lower (Chapter 6). 

• The eigenvalues of u matrix A are com puled by transforming A first to an upper Hes­
senberg matrix H, followed by reducing H further to a real Schur matrix iteratively 
(Chapter 9). 

81 
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* 0 
Triangular: 

0 * 
Upper Lower 

Figure 5.1. Upper and lower triangular matrices. 

Hessenberg: 

Upper Lower 

Figure 5.2. Upper and lower Hessenberg matrices. 

The singular values of A are computed by transforming A first into a bidiagonal 
matrix followed by further reduction of the bidiagonal matrix to a diagonal matrix 
(Chapters 7 and I 0). 

5.2 LU Factorization Using Gaussian Elimination 

The tools of Gaussian elimination arc elementary matrices. 

Definition 5.1. An elemellfary lower triangular matrix of order 11 of type k is a matrix of 
the form 

0 0 0 0 
0 I 0 0 0 
0 0 I 0 0 

M,= 0 
(5.1) 

0 111k+l.k 0 

0 0 0 
0 0 0 11ln,k 0 
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Tridiagonal: 

Figure 5.3. Tridiagonal matrix, 

Bidiagonal: 

Upper Lower 

Figure 5.4. Upper and lower bidiagonal matrices. 

Thus. it is an idellfity matrix except possibly for a feu' nonzero elements he low the diagonal 
of the kth colum11. The matrix M, can he written in the form (Exercise 5.i(a)) 

A'h.· = I + mke.[, 

\Vherc I is the identity matrix of order n, mk = tO. 0,.,,, 0. mk4-l.k•, .• , mn.k ) 7 , uml ek is 
the kth unit vector, that is. e[ = (0, 0, ... , 0, I, 0, ... , 0), where "I" is at the kth entry. 

5.2.1 Creating Zeros in a Vector or Matrix Using Elementary Matrix 

Lemma 5.2. Let 

( 
au 

) a1! 
at= 

an! 

Then the elementW)' matrix 

0 0 0 
-l12J 

0 0 
a11 

-031 
0 0 0 

Mt= all (5.2) 

Q ... 0 0 
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[ * r 
Real Schur: l * 

Upper Lower 

D -+ A possible 2 x 2 block. 

Figure 5.5. Real Schur matrix. 

is s~tcli that 

( 
a" 

) 
0 

A11a1 = 0 (5.3) 

0 

We leave the proof to the reader (see Exercise 5.1(c)). 
The elements mil = -~, i = 2, ... , n, are called multipliers. 

Example 5.3. Let 

(/= ( n 
Then 

·( 
0 0 0 

) -~ 0 0 
M, 

! 0 0 -~ I 
-i 0 0 I 

is such that 

Mta= ( n I 
5.2.2 Triangularization Using Gaussian Elimination 

The elementary matrices can be conveniently used in lriangularlzing a matrix. The process 
is called Gaussian elimination, after the famous German mathematician and astronomer. 
Karl Friedrich Gaus.s. 2 

;;Karl Friedrich Gauss (1777~1855} was noted for the development of many dasslcal mathematical the~ 
aries. and for his calculation of the orhits of the asleroids Ceres and Pallas, Gauss ls still regarded as one of 
the greatest mathematicians the world has ever produced. 



5.2. LU factorization Using Gaussian Elimination 

The idea is to triangularize the matrix A to an upper triangular matrix U by 
successively prcmultiplying A with a series of clcmemary matrices (which are 
unillower triangular). 

85 

Thus, given ann x n matrix A, Gaussian eliminution process consists of finding the 
elementary matrices M 1, • , , , lv/11 _ 1 such that 

" A f!J = i\.11 A has zeros in the first column he low the (l,l) entry; 

• A (Zl ~ M2 A m has zeros in the second column below (2,2) entry; 

A \n-n = A1
1
:-l A \IJ-lJ has zeroS in-·lhe -(n 

entry. 
l)th column below the (n - 1, n -- I) 

The final matrix Aln-!t is upper triangular: The key obserl'ation is that each of the 
matrices A \k) is the result of tlre premrtltiplication of A \k- 1) by an elemer1f!lf)' matrix. 

Figure 5,6 is an illustrative diagram shmving case n = 4. 

an 0[2 an fl:4 

0 ll) <I) "' az1 Cl23 a24, 

Step L 
AI; = Al'l. A----. M,A = 

0 n~~J a(l! a<ll _,_ 33 34 

0 a~il (!) ail) 
a43 .w 

an al2 a 13 a,4 

0 {l!!l ll) \[) 

A<ll~ 
22 ll'2:3 a24 

Step 2. M,A01 = =Am. 
0 0 a<2t a<2> 

33 34 

0 0 {21 
0 43. a£' 

tl! i an G!J a14 

0 agl {I) (I) 
aD ll14 

Step 3. Am ..':.":, M 3 A w = = Anl, 
0 0 (/ {:Z) t2) 

33 a34 

0 0 0 IJI 
Q+l 

Figure 5.6. 1/lusrration of Gaussian elimination. 
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Notes: (i)Thc matrix Alii in Step 1 can be formed as 

Find the elementary matnx M, such that M, ( ~:~ ) = ( 1 ) · 
• Update: A'"= M 1 A. 

(ii) The matrix A 121 in S<ep 2 can be formed in two smaller steps as follows: 

eo'" •• '''"' ~" ""'"' M "'"" "" M, ( 

• Fom1 Mz= ( 
1 0 

) 
0 ,(1, . 

Update: A !21 = M2 A ({). 

And so on. 
(iii) Tn practicef neither tlte matrices M;..; nor the products A411 A {k-Ji need to be explic­

itly formed 1 as shown below with a 4 x 4 numerical example. 

Example 5.4. Consider 

2 3 4) 6 7 8 
I 3 3 . 
I I I 

Step I (eliminate tile entries of tile first column of A below the diagonal). Multiply the first 
row by -5. I, -2, and add, respectively. to the second through fourth rows. At the end 
of this step, we have 

Ao' 
( 

I 2 
0 -4 
0 -I 
0 -3 

3 
-8 
0 

-5 

4 
-!2 
-I 
-7 

Note that in tenns or the matrix muitiplication, we have 

) 

A ttl= ( ~~ ! ~ ~ ) ( ~ ~ ~ il ) = M,A. 

-2 0 0 I 2 I I 
M, A 

Step 2 (eliminate tile emries of tire second column of Altl below tire diagonal). Multiply 
the second row of A Ill by-* and-~ and add, respectively. to the third and fourth rows. 
At the end of this step, we have 

2 
-4 
0 
0 

3 
-8 
2 

4 
-12 

2 
2 
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Again, in tenns of matrix muhiplication, we have 

( ~ ~ gg)(~ 
0 1 0 0 

0 -~ 0 I 0 

A{2l = 

2 3 

-~2 ) = ,\Hol. -4 -8 
I 0 -1 -

-3 -5 -7 

Step 3 (elimilwte the entries of the third column of A 12l below the diagonal). Multiply the 
third ro\v of A (Zl by -! and add il to the third, giving 

u 2 3 4 

) = Upper triangular. A(3J -4 -8 12 
0 2 2 
0 0 1 

Again, 

u 0 0 

!JU 
2 3 

-~2 ) = 11 Am .A.t:.) = I 0 -4 -8 I 0 0 2 2 J 3 • 

0 ( 0 2 -2 

Remark. Note that to form A 111 from A lk-n, k = I, 2, 3, neither the matrices M, nor the 
products M,.4.<k-n need to be performed explicitly. 

The general process is now quite clear. 
Starting with A, the process constructs successively the matrices A \li, A(!} .... , A in~l l 

such that A (ll has z.cros on the first column below the diagonal, A (:!l has zeros on the second 
column bdow its diagonal, and so on. The final maLrix A \n~n is an upper Irian gular matrix. 
The key observation is that each of these matrices is a result of premultiplication of the 
previous one by an elememary lower triangular matrix. 

General process. There are (11 - l} steps. Let Alkl =(a;';'). k 2:: I. 
Step 1 (eliminate the entries of the first column of A be/of\' tlte diagonal). Multiply the 
entries of the lirst row of A by the numbers 

mil 
. 0 
I = .... , ... , 11, 

"" 
and add them, respectively. to those of the second through nth rows. We have a new 
muuix A 11 ), 

OJI tl11 

0 agl 
All\ 0 

0 (IJ 
an:. 
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which can be written as 

A''l= ( 
11

/
21 ~ ~ ~ l ( ~:: ~~; l =M,A. 

mnl 0 0 G1J1 Gnn 

Step 2 (eliminate the entries of the second column of A Ill below the diagonal). Multiply 
the entries of second row of A 0 l by the numbers 

a~~ J 
mr:::=--TIJ. i=3, .. ,.n. 

az::: 
and add them, respectively. to those of third through nth rows. 

We now have a new matrix A \2), 

au Cl]2 an Cl]n 

0 
... (I J 

G22 
(I) 

a::::; 
(I) 

a2n 

A'"= 0 0 a(l/ (0) 
32 0 3n 

0 0 {21 ai2) 
an3 IW 

which can be writlen as 

I all a12 

0 0 0 ag} 
A'"= 0 111)2 0 

{I) 
an 

a1n 

a(!) 
2o 
(I/ 

aJ.u 

0 m112 0 a,;~~ . . . a1~!/ 

:: M2Am. 

The process is fairly generaL The general kth step can now easily be written down. 

Step k (k > 1) (eliminate the entries below the diagonal of the kth column of A1"- 1'). 

Multiply the kth row of A 11 - > > by the numbers 
0;-J) 

aik mo.= -(k:"j}· i =k+ l, ... ,n, 
au 

and add. respectively, to the (k + l)th through nth rows. This will yield a matrix Alkl 
given by 

where lvl( is defined by (5.1 ). 

Step n - 1. At the end of the (11 - l)th step, the matrix A 1"- 1 l is upper triangular: 

lljJ ar:1: 

0 a(ll 
22 

0 0 
(2) 

A(IJ~!) = a33 

0 

0 0 0 0 
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Similar to Lhc other steps, we have (in terms of matrix nwltiplications) 

The LU Factorization of a Matrix from Gaussian Elimination 

The process we just described yields a factorization of the matrix: A = LU, where Lis WJit 

lower triangular and U is upper triangular, as shown below. This factorization is known 
as LU factori'::.ation of A. LV factorization of a matrix is WI important matrix factorization 
useful for solving a linear system and computing the determinam and the inverse of a matrix 
(see Chapter 6j. Figure 5.7 illustrates LU factorization. 

' 0 * 
= 

* 
0 

A L u 

Figure 5.7. LV factori:atiou of a matrix a/Jtaining Land U. 

First, observe that the Hnal matrix A(n-l! is an upper triangular matrix. So, we can 
take this matrix as our U matrix. 

Thus U = A(n-·ll = M11_ 1 Atn~:n, Again, A111 ~::n = Mn_2A\1•-31 , 
So, U = J\1,._ 1 M11 _ 1A(r.-3l. Continuing this way, we can write 

u = tYIII-lMII-2.'. M2MJA. 

Now set L, = M,_,Mn-2.,, M,M,. Then U = L,A. 
Since each of the elementary lower triangular matrices is a unit lower triangular matrix 

(a lower tn'angular matrix \l'ith l 's along tile diagonal), it follow~ that L 1 is invertible and 
L j 1 is also unit lower triangular. (Note that the product of unit lmver triangular matrices 

is a unit lmver triangular matrix, and so is the inverse). Now scl L = LJ 1
. Then A= LU. 

LU Factorization of a Matrix from Gaussian Elimination 

A=LU 

L = (M,_, M,~z,., M2Mt)- 1 (Unit Lower Triangular), 

• U = A"-1 (Upper Triangular). 

Definition 5.5. The elltries a 11 , ai~) •... , a,1/:,-J l are called pivots, and the above process of 
obtaining LU factorization is known as Gaussian elimination witlwut row interchanges. It is 
commonly known as Gaussian elimination without pivoting. Tlte numbers m;k are called 
multipliers. 
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Obtaining L without Matrix Inversion 

We will now show that the matrix L can be fanned udtlwut expUcirl_v computing any matrix 
product and witlwlll any matrix inversion. 

L L~l u-IM~I u~l = I =tv'l 2 , .. !¥Jn-1· 

First, we observe (Exercise 5.1(b)) that 

M~l l 7 . I 2 I 
1 = - ure1 , r = , , .. , , 11 - , 

where m = (0, 0,, .. , 0, mi+Li ... , mn,i )T and e; is the ith unit vector. 
This simply means that the M1-

1 is just the matrix Mf except tlrat the entries on the 
i th column below rhe diagonal are just the negatives of tlte corresponding entries of ll1i. 

Thus, A</1-
1 Mi~1 1 is a unit lowl!r triangular matrix with the nonzero entries below the 

diagonal only on the columns i and (i + 1), which are the negatives of the corresponding 
entries of Mi and /vlr+l· For example, 

0 

Titis implies that 

L '1-IM~I M-1 = H L 1 '· · n-l = 

Thus to fonn L do the following: 

• Save the multipliers at each step. 

0 
I 

0 

0 

-mn 

0 

0 
0 

0 
0 

0 

Insert the negative of the multipliers of Step I in the first column of the identity 
matrix below the diagonal, the negatives of the multipliers of Step 2 in the second 
column below the diagonal, and so on. 

Example 5.6. 

2 3) 5 6 . 
2 4 

Step 1 (eliminate the el!/ries on rhe firsr columJI of A below the diagonal). Multiply the first 
row of A by -2 and ~and add, respectively, to the second and third rows. 

( 

2 2 3 ) 
Ai 11 = 0 I 0 ; 

0 2 

' 
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Step 2 (eliminate the entries 011 the second column of A(l) belon' the diagonal). Multiply 
tl1e second mw of A 1" by -land add it to the third row. 

A''l= 0 2 
3 ) l 0 ; m:r2=-l. 

0 ' 2 

So. 

u 2 3 )· U=Am= l 0 
0 ' 2 

L = Li' = ( _,:," 
0 

~) = 0 0 

n l l 
-m31 -m32 l 

(Note tlrat neither L1 nor its inverse needs to be computed explicitly.) I 

Existence and Uniqueness of LU Factorization 

Note Lhal for an LU factorization to exist, the pivots must be different from zero. Thus. LU 
factorization may not exist even for a very simple matrix, lhke A = (? 6). The pivot aj~) 
is zero. So, the Gaussian elimination scheme cannot be carried out. 

The following theorem gives conditions on the exislcnce and uniqueness of LU fac­
torization. 

Definition 5.7. Tile kt/1 leading principal minor of a matrL•. A, denoted by Ab is defined 
to be the k x k {eadillg principal submatri.t consisting of the first k row.~ and rhe first k 
columns. 

Theorem 5.8 (existence and uniqueness of LU factorization). 

(i) Ann x n matrix A has an LU factori::,ation ~f rl,t;, k = I,,,,, 11- l, are nonsingttlar. 

(ii) lf the LU factorization exists and A is nonsinguiar, rhen til is factorization is 1mique. 

Proof. Existence: From the derivation of Gaussian elimination scheme, it follows that the 
process can break down only if any of the pivots all, aib1, ••• , a;~~~!J is zero. Again, it can 
be shown (Exercise 5.3) that 

k I, ... ,II- I (note thatdct(Atl = a 11 ). 

This means that if Lhc first (n- l) leading principal minors are nonsingular, then Gaussian 
elimination scheme docs not fail, and \Ve always have an LU factorization of A in this case, 
as shown by lhe above discussion. 

Uniqueness: The uniqueness will be proved by contradiction. Suppose there arc two 
different LU factorizations of A: A = L1 U1 L2U,. Then, we must show that L, = L2 
and U1 = U2. 
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Because A is nonsingular, the matrices L 1, L2, U1, and U1 are all nonsingular. Thus 
it follows from the above two factorizations of A that L;1 L 1 Chl.I1-

1
• 

Now L 2Lj1 is a unit lower triangular matrix and U2u1-
1 is an upper triangular matrix, 

and the only way they can be equal is that both of these are the identity. Thus L 1 = L2 and 
u, = U2• D 

Remark. Note that in the above theorem, if the diagonal entries of L are not specified, then 
the factorization is not unique. (Do an example to verify this,) 

A Storage Scheme for a Practical LU Factorization 

Example 5.6 shows that for a practical Gaussian elimination scheme, the kth step consists of 
the following. 

Updating the entries of the submatrix: A(k+ 1 : "· k+ I : n)(the submatrix consisting 
of the rows (k + l) through 11 and columns (k + l) through 11). 

The following storage scheme thus can be: used: 

• The multipliers arc stored below the main diagonal of A. These multipliers then can 
be used to form L. 

• 111e entries of the uppertriangular matrix U are stored in the upper half of A including 
the diagonaL 

ALGORITHM 5.1. LU Factorization using Gaussian Elimination without 
Pivoting (GEWP). 

Input; An n x n matrix A. 
Outputs: (i) An upper triangular matrix U, and (ii) the multipliers m;j needed to 
form the unit lower triangular matrix L such that A LV. 
Storage: The upper triangular part of U is stored over the upper triangular part 
of A including the diagonaL The multipliers needed to compute L are stored in 
the lower triangular part of A below the diagonaL 

For k = l, 2 •.•.• (n - I) do 

1. (Form tlte multipliers}: 

Gik , 
a;; =m1, = -- (t =k+ l.k+2, ... ,n). 

ak.k 

2. (Update the enrries of A(k +I : n, k +I : n)): 

Gij <= aij + IH;kGij(i = k + i, ... , n: j = k + 1,1!). 
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With !.his storage scheme, the uppcrtriangular matrix A <n~ ll at the end ofthc (n- l)t!J 
step will look like this: 

a11 Ot? 

m21 
(I' 

a1'2.1 

A A(n-1) = 

m111 mn,n-1 

Remark. The algorithm does not give the matrix L explicitly; however, it can be fonncd 
out of lhc multipliers saved at each step, as shown earlier (sec the exprCI-ision for L). 

Example 5.9. Consider Example 5.6 again. 

k = 1: Multipliers: lfl?.l = -2, 11lJ] = -::;· 

0 2 3r Updated A: A 0 ' 
5 
2 

k- ,. Multiplier: mn=-l, 

( 2 
2 

3 ) Updated A: A=U= ~ I 0 . 
@] 5 

2 

Form L and U: L=U 
0 

n- 0 2 
3 ) I U= I 0 ' I 

I 0 5 

' 
Note: In practical computation, the boxes of the output matrix A will hold the 

multipliers. 

Flop-count, Algorithm 5. I requires roughly '~'flops. This can be seen as follows: 

Step L We compute (11 I) multipliers and update (n- IP entries or A. Each multi­
plier requires one llop and updating each entry requires two flops. Thus. Step I requires 
2(n I J' + (n- I) flops. 

Step 2. Computing (11- 2) multipliers and updating (11-2)2 entries require 2(11-2) 2-Hn-2) 
llops. 

In general, Step k requires 2(n- k) 2 + (11- k) flops. Since there are (11- I) steps, 
we have 

1!·-1 n-1 

Total flops = I.: 2(11 k)2 +L<n k) 
k=l k::ttl 

2 /l (II 1)(2n- I) n(n- I) [2"3 , ] + ? ::e - + O(w) . 
6 - 3 

= 
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Recall that 

• l + 2 + ... + r = rtri I). 

Gaussian Elimination for a Rectangular Matrix 

The above-described Gaussian ellmination process for an n x 11 matrix A can he easily 
extended to an m x n matrix to compute its LU factorization, when it exists. The process 
is identical. However, the number of required steps in this case is k = minfm - 1, H j. \Ve 
iHusLrate this with an example. 

MATCOM Note: Algorithm 5. I has been implemented in the MATCOM program 
LUGSEL. 

Example 5.10. Let 

A G :) , m = 3, 11 = 2, 

k = min(2, 2) = 2. 

k "' 1. (Eliminate the entries in the first column of A below the diagonal.) The multipliers 
are m11 -3. 11131 = -5. 

U d - (lj- + - " p ate: a22 = a 22 - a22 111:.:tGI2 - - .... , 

11) 4 
GJ2 = l1j2 = a3:: + m31a12 = -'. 

A Allt = (~ ~2), 
0 -4 

k = 2. (Eliminate the entries in the second column of A111 below the diagonal.) The mul­
, 1· . ? m 0 tlp ter IS I71J2 = --, a32 = a17 = . 

Update: A= Am= (~ ~2). 

So. U=G ~2). 
Note that U in this case is a 3 x 2 upper triangular matrix. 
Fom1 

L = (_,;," 
-11lJJ 

() 

1 
0 0) 
I 0 . 
2 I 
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Verify that 

Flop-count. For an m x n matrix, the Gaussian elimination process requires nm1 

flops (Exercise 5.16(a)). 

Difficulties of Gaussian Elimination without Pivoting 

95 

As we have seen before, Gaussian elimination wilhout pivoting faits if any of the pivots is 
zero. However, it is worse yet if any pivot hecomes close to zcru: i11 this case the method 
can be carried to completion, but the obtained results may be totally wrong. 

Considerthc following celebrated example from Forsythe and Moler (1967. p. 34): 
Let Gaussian elimination without pivoting be applied to 

A= (o·o;m' ;) . 
and use three-digit arithmetic. There is only one step. We have just one mullipHer: m21 
-1 104 "j(f'S = - ' 

U _ A"l _ (0.0001 
-· - 0 

I ) ~ (0.000 I I ) ( 1 0) 
1-104 - 0 -104 'andL= 104 I · 

1l1e product of the computed Land U is LU = ( 0·"F' 6). whicl1 isdijfemufrom A. 
Who is to blame? 

Note that the pivot a::l = 0.0001 is very close to zero (irllhree·digit arithmetic). This 
small pivot gave ti large multiplie1: The large multiplier, when used to update the entries, 
eliminated the smaller entries (e.g., (l - 104) became -104 ). 

Fortunalcly, we can avoid this small pil'ot just by row interchanges, Consider the 
matrix with the first und second rows interchanged, giving 

A'= (oo~OI i). 
Gaussian elimination applied to A1 now gives 

U=At'l=(~ :). L (o.O~Ol n. 
Note that the pivot in this case is a:: l = J, The product 

w = (o.o~o1 1~01) =A'. 

Remark. It is true that wilh the interchange above, we now obtained an LU factorization of 
the malrix A', a pennuted version of lhe matrix A, and not of the original matrix. However, 
as we will see in Chapter 6, this will suffice our purpose for solving a linear system of 
equations. 
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5.2.3 Permutation Matrices and Their Properties 

A nonzero square matrix P is caHed a permutation matrix if there: is exactly one nonzero 
entry in each row and column which is one and the rest are all zero. Thus, if (a 1, ••• , a,1 ) 

is a permutation of (I, 2, ... , tt), then the associated permutation matrix P is given by 

P=G)· 
where eJ is the ith row of then x n identity matrix I. Simtiarly, 

P = (ea 1 , ea;• ... , ea~), 

where ei is the ilh column of I, is a permutation matrix. 

Example S.!l. 

P, = G g !) ' P, G ! ~). PJ = G g !) 
arc all permutation matrices. I 

Effects of Premultiplication and Postmultiplication by a Permutation Matrix, 

H 

then 

( 

<> 1lh row of A 
a2th row of A 

P,A = . 

a 11 th ~ow of A 
) 

Similarly, if P2 = (ea,ea, · · · eaJ, where e0 , is d1e ith column of A, then APz = (<>,lh 
column of A, a 2th column of A, ... , a,th column of A). 

Thus, the eff'ecr ofprenwltiplicatiun of A by a permutation matrix is a permutation of 
tlze associated rows of A, and that of postmultiplication is the permutation of the associated 
columns. 

Example 5.12, 

an an) (0 I 0) (ef) a22 a23 • P, = 0 0 I = ef ; 
a ... 1 a3~ 1 0 0 "T 

~ • .- '"I 

(

2nd row of A) 
3rd row of A . 
1st row of A 
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I 0) 
0 I =(e,,e,,e1); 
0 0 

(3rd column of A, 1st column of A, 2nd column 

of A). 

An important property of a pennutalion matrix P is that it is orthogonal~ that is, 
P pT = 1. As a consequence of this, we have the following. 

The inverse of a permutation matrix P is its transpose. and it is also n permutation 
matrix. 

• Tl:1C '[lfOdUct ·of two permUtatio-n matriCes is a pefm-mation matrix. and therefore is 
orthogonal. 

5.2.4 Gaussian Elimination with Partial Pivoting (GEPP) 

As Lhc above example suggcsLs, disaster in Gaussian elimlnation without pivoting can per~ 
haps be avoided by identifying a •·good pivot" (a pivot ns large as possible in magnitude) 
at each step, before the process of elimination is applied. The good pivot may be located 
among the entries in a column or among all the entries in a suhmatrix of the current matrix. 
In the former case, since the search is only partial, the method is called partial pivoting; 
in lhe latter case, the method is called complete pivoting. It is important to note that the 
pfl.rpose of pivoting is to prevel!t large growth i11 the reduced matrices, which can wipe 
out original data. One way to do this is lo keep multipliers less than or equal to one in 
magnitude, and this is exactl}' what is accomplished by pivoting. However, large multipli­
ers do not necessarily mean instability (see our discussion of Gaussian elimination without 
pivoting for symmetric positive dc!lnile matrices in Chapter 6}. We llrst describe Gaussian 
elimination with partial pivoting (GEPP). 

The process consists of (11 - I) steps. 
Tile process is just a slight modification of Gaussian elimination in tlw following 

sense: 

At each step do the following: 

Identify the pivot as the largest entry (in magnitude) among all the entries in the pivot 
column. 

Interchange the appropriate rows to bring the pivot entry to the diagonal position of 
Lhc current matrix. 

Perform Gaussian elimination to the row-permuted matrix, 

The process is illustrated with a 4 x 4 example in the following. Far this example, 
we assmne that rows 3, 4, and 4 are pi1rot rows in Steps 1, 2, and 3, respectively, 
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Step 1. A Permll!ed A 

~( "" CIJ2 an "" ) ( 
~ CIJ:! CIJJ Cl]-1 

) fi}J a:n CIJ.3 Cl24 a21 an Cl].J 02-1 

~ 
--> 

Cl:t2 a:n aJ.; 

"" ilt2 Cl!) "" 
"" a-12 cz.n a.,.\ Cl.tl a.n 04) a.,.; 

Pivot Identification Row Interchange (1st and 3rd) 
Anl 

-( 
Cl]] CIJ2 ClJJ CIJ.t 

} 0 Ill (() (() 
a22 a:n (12-1 

0 
(() (() (() 

a\2 a\3 a\4 

0 (() (() (() 
a-12 a-IJ "" 

Ga11ssian Elimination 

Step 2. A lll Permllted A 01 

( 
Cl]i CIJ2 a:u Cl].j 

l ( 
CIJJ CIJ2 CIJJ ClJ.I 

l 0 (() (I) (() 
a<l) a<ll a (I l a22 a2J a2-l 0 42 4J " 0 (I) (I) a(ll ~ 

a<ll a {!J an l al2 a\3 ].] 0 
" ]) 14 

0 8fJ an l (() 0 a<ll a <lJ a(l) 
4J "" 22 JJ 24 -

Pivot Identification Row Interchange 
(2nd and 4th) 

AC!l 

( "~ 
CIJ2 03] ClJ-1 

} aj~l (() (I) 
a-13 a-14 

--> (2) (2} 
0 a\J a, 

0 
(2) {2) 

a2J a24 

Gaussian Elimination 

Step 3. Am Permwed A 121 

( 
CIJJ C1J2 a:n CIJ.t 

l ( 
a:H Cl]J. a:n CIJ4 

l 0 a!~l alll a<l) 
0 (() (() (I) 

4J 44 0 42 a.o a-14 

0 0 (2) (2) - (2) (2} aD "" 0 0 0 2:1 a2,1 

0 0 Gill] ai!l 0 0 (2) am aD ].) . 

Pivot Identification Row Jmerchange 
(3rd and 4th) 

AOl 

-( 
CIJ! CIJ2 a:n CIJ-1 

} 0 (() (/(I) a(IJ a.n 4J ·14 

0 0 (2} ll(2} 
(123 2·1 

0 0 0 (3) 

"" 
Gaussian Elimination 
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General process. kth Step: Set A'"1 =A. Then to obtain the matrix A<'l = (a,~ 1 ) from 

A {k-0 at the previous step, do the following: 

1. Identify the iargest element in magnitude among all the elements of column k below 
row (k - I) of the matrix A ck- 11 • Let it be a;;~ 1 

l. 

2. Interchange the rows rk and k to bring a;~~ll to the diagonal position. 

3. Apply Gaussian elimination without row interchanges with a;~.:J) as the pivot to the 
sub matrix consisting of rows k through 11 and columns k lhrough 11, 

GEPP in Terms of Matrix Multiplications 

Observe that 

row interchange is equivalent to prcmuhiplying the matrix by a suitable permutation 
matrix: 

• Gaussian elimination is equivalent to premuitiplying the matrix by an elementary 
matrix. 

So, we can write 

= 

= 

For n = 4, the complete process is 

A=(~ 
X X 

D· 
X X 

X X 

X X 

(~ 
X X 

~) P: M1 X X = A(!J. Step 1. A-+ P1A-+ M 1P1A = 
X X 

.0 X X 

Step 2. A''' !J. P2A'" ~ M,P2A01 = M,P,:~f,P,A = (t X 

X 

0 
0 

(~ 

X 

X 

X 

X 

X 

X 

0 
0 

~) 
X 

X 

X 

0 

= A{2). 
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LU Factorization from GEPP 

We will now show that Gaussian elimination with partial pivoting yields a factorization of 
A in the form 

PA = LU, 

where P is a permutation matrix, L is a unit lower triangular matrix, and U is an upper 
triangular matrix. This will be shown in two steps. 

1. First, it will be shovm that Gaussian eliminations wilh partial pivoting directly yields 
the factorization M A = U, were lit/ is a pennutcd elementary matrix and U is an upper 
triangular matrix. 

11 = 4: Since A iJ) is upper triangular, we set U = A co, Then from Step 3. we have 

U=Al3t = M,P,M,P,M,P,A=MA~ 

where 

For an n x n matrix: 

2. Second, it wi 11 be shown how to extract the matrices P and L from M A = U factorization, 
so that we have PA = LU. 

n =4: 

where 

and 

U = M3 f'3,1v!2 P2M1 P1A 

= M 3(P3M1P3)(P3 P1 M 1 P1 P3 )(P,P1P1)A (note that P3
2 = P,' = l) 

= .Y~iVf~Mr PA, 

P = P,P,P1• 

So, setting L (i\1;)-1(M1)-'(M;)-1• we have LU = PA. 

For ann x n matrix: The matrices P nnd L arc given by 
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Constructing the Matrix L 

The matrix L is unit lower triangular and easily computahle, Observe that 

each Mf is the same as Mi except that the multipliers are now permuted (this. is an 
effect of multiplication by permutation matrices); 

(A'f/)- 1 is the same as M; except ttmt the multipliers arc now negated. 

Thus, as in the case of Gaussia11 elimination l;'ithout pivoting. we see that tlte matrix 
L is a unit lo\l'er triangular matrix. 

Example 5.13. Consider Example 5.6 uguin, this time with partial pivoti11g. 

(
4 5 6) 

Step_ 1. Permuted A = 2 2 3 l 0 0 4 5 6 (0 I 0) (" 2 3) = P,A. 
I 2 4 0 0 I I 2 4 

Gaussian Elimination: Multiply first row of the permuted A by 
it to the second and third rows, respectively, to obtain A 11 '. 

5 

3 
:; ~) 

and _l and add 
4 

Gaussian elimination: Multiply second row of the permuted A.! 11 by~ and add it to 
the third row to obtain A l2l. . 

(~ 
5 

D G 
0 

~) (~ 
s 

~) A\2}= ' I ' = M2P::A 01 4 :; M1P1M1P1r1. 
2 

0 ' 
Factorization M A = U. 

Gaussian elimination: Multlrly second row oflhepennuted A(lJ by i and add it to 
the third row w obtain A l2l. .. 

(~ D· U=G 
5 

~) M = M,P,M,P, = l =Am. + 
(] 5 

3 ' • Factorization P A= l~U. 

P = P1 P1 = G 0 !) . 0 
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0 

(6 ~ ~) 
0 0 ~ . 

U=A"'= I 

Storage Scheme for LU Factorization by GEPP 

• The multipliers can be stored in the appropriate places of the lower triangular part of 
A (below the diagonal) as they are computed. 

A can be overwritten with each A (k_l as soon as the IaUer is formed, and thus the final 
upper triangular matrix U = A (n-1) \Vilt be stored in the upper triangular part of A 
(including the diagonal), 

;;,- Thtqjt:rmtutalion--indices Tk have-to be-stored in a separate -single subscripted_integer 
array. 

In view of our above discussion, we can now formulate the following practical algo­
rithm for LU factorization with partial pivoting. 

ALGORITHM 5.2. LU Factorization Using GEPP .. 

Input: An n x n matrix A. 
Outputs: (i) An upper triangular matrix U. (ii) the permutation indices r, needed 
to form the permutation matrix P. and (iii) the multipliers mil needed to form the 
unit lower triangular matrix L. The result is P A = LU, 
Storage: The storage arrangements for U and the muhiplicrs arc the same as 
those of Algorilhrn 5. L 1be permutation indices are sto-red in a separate array. 

Fork= 1,2, .... n- 1 do 

I. (Find the pivot raw.) Find r, so that lo,,.d 
ar,,k = 0, then stop. Otherwise, continue. 

max \aikl· Save ~'k· Tf 
J.-~i::';IJ 

2. (lwerr:hauge tlte rows'"- and k .) Ot;:J ++- ar1 ,j (j = k, k + I, ... , n ). 

a·, 
3. (Form the multipliers.) a11; ;::s m1~; = --·-· (i = k + 1, .. ,, 11) 

akk 

4. (Update the entries.) aif = a;j + mikakJ = arj + an,akJ (i = k + 
1, ... , n; j = k + J •••• ,n). 

End 

Flop-count. Algorithm 5.2 requires about 2']' Oops and O(n 2) comparisons. (Note that 
the search for the pivot at step k requires (n- k) comparisons.) 
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Note: Algoritluu 5.2 does nor give the matrices L and P explicitly. However, these 
can be constructed easily, as explained above, from the mllitipliers and The permwation 
indices, respectively. 

Example 5.14. Let 

k = 1: 

L The pivot emry is 7: r 1 3. 

2. Interchange rows 3 and J: 

3. Form the multipliers: 

4. Update: 

k = 2: 

L The pivot entry is ~ : r1 = 3. 

2. Iwercltange rows 2 and 3: 

3. Form the multiplier: 

4. Update: 

Form Land P: 

p = G ~ ~). L 

(
7 8 9) 

A= ~ ~ ~ . 

8 
6 
7 
l 
7 

~) 7 • 
6 
7 

1111.., = --. .• 2 

0 

~) I 

MATCOM and MATLAB Notes: MATCOM program PARPIV computes M and U such 
that M A = U. MATLAB command lu in thefonn [L, U. P] = lu(A) computes L. U. and 
P such that PA = LU. 
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5.2.5 Gaussian Elimination with Complete Pivoting (GECP) 

In Gaussian elimination wit11 complete pivoting, at the kth step, the search for the pivot is 
made among all the entries of the submatrix below the first (k- 1) rows. Set A<0l =A. 
Thus, to obtain Alkl from Atk-ll, k = 1, ...• n, do the following: 

Identify the largest element in magnitude among all the elements of the submatrix 
obtained by deleting the first (k- I) rows and (k- I) columns. Let it be a;;-n. 
Interchange rows k and r followed by the inlerchange of columns k and s, 

Apply Gaussian elimination scheme without row interchange with a~.~-!J as the pivot 
to the submatrix consisting of rows k through n and columns k through n. 

In-tenns-of-matrix-multiplications, this lhen __ meags_ 

A'"= M,P,A"-0 Q" 

where lvh is an elementary matrix and P~;_ is the permutation matrix obtained by interchanging 
rows k and r of the identity matrix. Similarly ror the matrix Q~;. The matrix A \kJ has zeros 
on the kth column below the (k, k) entry. The matrix M, can of course be computed in two 
smaller steps as before. 

At the end of the (n - l)th step, the matrix A in-0 is an upper triangular matrix:. 

Obtaining factorization: PAQ =LV. Set 

A(n-1! = U. 

Define 

and 

L = P(M,_, P,,_, ... M, P,)-1, 

Then it can be shown (see Golub and Van Loan (1996)) that 

PAQ = LU, 

(5.4) 

(5.5) 

(5.6) 

where P and Q arc both permutation matrices and L is unit triangular and U is upper 
triangular, 

A Practical Scheme for GECP 

Remarks similar to those in the case of partial pivoting hold. Storage space does not have 
to be wasted by explicitly forming matrices P,. Q, P,Aik-<iQ,, i\h, and M,P,Aik-1\Q,. 
It is enough to save the indices and the multipliers. 

Here is a practical scheme for complete pivo-ting, which does not show the explicit 
formation of the matrices P,, Q" M;. M,A, and P,AQ;. Note that partial pivoting is just 
a special case of complete pivoting. 
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ALGDRITH"'I 5.3. LU Factorization Using GECP. 

Input: An 11 x 11 matrix A. 
Outputs: (i} An upper triangular matrix U. (ii) permutation indices Tk and St: 

from which permutation matrices P and Q can be formed. and (iii) the multipliers 
m;k rrorn which the lower triangular matrix L can be constructed. The result is 
PAQ =LV. 
Storage: The storage schemes for U and the muilipliers arc the same as GEPP. 
TI1c indices rk and s,_ arc saved in separate arrays. 

Fork = I, 2 ..... 11 - I do 

I. Find the pivor hrdices r~.- and Si such that lar, ,s,l max { !aij I : i, j :=: k} , 
and save 11 and S(, 
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rJ a,f .. l) = 0, then stop. Otherw.isc, continue. . 

2. (lmerchange the rows r, and k.) a,1 <+ a,,,1 (j = k, k + I, .... 11). 

3. (/llferchange the columns Sk and k.) au. +-? a1 .,,~ (i 1. 2, ... , n). 

ak 4. (Form the multipliers.) aik = lll;k = __ ,_· (I k +I ..... II). 
akk 

5. (Update rlre entries of A.) a;; -=ail+ m;kakj =a;;+ au:akj (i = k + 
1, ... ,11: j =k+ 1. .... 11). 

End 

Note: Algorithm 5.3 does not explicitly give the matrices L, P. and Q,· they hare to 

be formed, respectively. from the multipliers mu-. and the permutation indices rk and Sk, 

Example 5, 15. Triangularize 

using complete pivoting. 

k = 1: 

A= G 2 $) 
I. The pivot entry is 3: r = 2, s 3. 
2. and 3. Interchange rows 1 and 2 followed by inlerchange or columns I and 3: 

A=(~: n-
4. and 5. Perform Gaussian elimination taking the entry 3 as pivot. 

A = AOl = ( ~0· ~,\' -* l·, ' m11 = -:1. m, = -3. 
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k=2: 
1. The pivot entry is i: r = 3, s ::::: 3. 
2. and 3. Interchange rows 2 and 3 followed by interchange of columns 2 and 3: 

(
3 WI ~l A= o
0 

~ . 

' l l 
-3 J 

4. and 5. Perform Gaussian elimination taking the entry ~ as pivot. 

( 
3 ' ~ ) 
0

0 

'i ; = U; 

0 2 

A:;;;::; A(2l 

Readers ru:ejnyjtcd to compute the unit lower triangular matrix L and the permutation 
matrices P and Q such that P A Q = Lu, using (5.S)and (5.6). · I · 

Flop-count. Algorithm 5.3 requires 2~ flops and 0(n 3 ) comparisons. 

MATCOM Note: MATCOM program COMPIV computes MAQ = U. 

5.2.6 Summary of Gaussian Elimination and LU Factorizations 

Gaussian elimination schemes wilhout pivoting, with partial pivoting, and with complete 
pivoting, when carried out to completion, yield, respectively, 

A = LU (Gaussian elimination without pivoting); 

• P A = LU (GEPP); 

• PAQ = LU (GECP). 

Here L is unit lower triangular, U is upper triangular, and P and Q are permltfation 
matrices. 

5.3 Stability of Gaussian Elimination 
We have seen before that the computed matrices Land U obtained by Gaussian elimination 
without pivoting can be such that the product LU can be completely different from A. In 
fact, Ill~~~ IIi can be arbitrarily large. [Exercise S.l5b] Specifically, the following result 
can be proved (See Higham (2002, pp. 164-165), Demmel (1997, pp. 47-49)). 

Theorem 5.16 (round .. off error bound for Gaussian elimination}. The computed matrices 
L and U obtained by Gaussian elimination without pivoting sati3fY 

A+ E=LU, 

where 
liEU:" III'IIILIIIiiiUIII-
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Since U A{r.~n. the stability of Gaussian elimination is better understood by 
measuring lhe growth of rite elements in the reduced matrices A (kJ. (Note that although 
pivoting keeps the multipliers bounded by unity, the clements in the reduced matrices still 
can grow arbitrarily.) 

Definition 5.17. Tire growth factor pis r!re ratio of the largesr element (in magnitude) of 
A. A {!J t ••• , A tn-t) to tile largest elemem (in magnitude) of A: 

max{a, Ct'!, a2., ..• O'n-d P= 

Now. if partial pivoting is used, then 

111;! _::: l for all i::: j, since these lu are the multipliers; 

• jllJj[ 5 p rnaxl.i !aiil. 

We then have the following error bound (Exercise 5.17) with partial pivoting (for 
details, see Chapter 14, available online at www.siam.org/books/otll6), noting that the 
infinity nonn docs not depend on the sign of the matrix ent.rie.s. 

Theorem 5.18 (round-off error property for GEPP). The matrices Land U computed by 
Gaussian elimination with partial pivoting satisfy 

LU =A+ E, 

where 

The question, therefore, arises, How large p can be? To answer the question, we start 
with an example. 

Example 5.19. 

1. Gaussian elimination without pivoting gives 

A'>l = U = (0.0
0
001 I ) 

-104 • 

max lal)'l = 104
• max laul =I, 

p = the growth factor 1 04
• 

2. Gaussian elimination with partial pivoting yields 

A"'=U=G :). 
max la)}'l = l. max laij! = I, 

p the growth factor = I. I 
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The question next is, How large the growrh factor p in each case can be for an 
arbitrwy matri;r? We answer this question in the following. 

Growth Factor for GEPP 

For Gaussian elimination with partial pivoting. p ::;:: 2n-l (Exercise 5.15(a)): 

p Call be as big as 2n-l. 

Unfortunately, one can construct matrices for which this bound is attained. Consider 
the following example: 

1 0 0 0 
-1 0 0 

~ ~'A • 

A= 

-1 -I 

that is, 

aij = { 
forj=i,ll, 

-1 for j < i, (5.7) 
0 otherwise. 

Wilkinson (1965. p. 212) has shown that ll1e growth factor p for this matrix with partial 
pivoting is 211

-
1• To see this, take the special case with n = 4. 

c 
0 0 

1). 
-l 0 

A= -I -I I 
-I -·I I 

Am= (~ 
0 0 

;) Am- (~ 
0 0 

;) At3J ~ (~ 
0 0 

~). I 0 I 0 I 0 
-I I 2 ' - 0 0 I 4 • . 0 0 I 
-1 -1 2 0 0 -I 4 0 0 0 

Thus the growth factor is 

p = ~ = 2' = 24-l. 
1 

Remarks. Note that this is not the only matrix for which p = 2n~J. Higham and Higham 
{1989) have identified a sel of matrices for which p = 2"-'- The matrix 

B = 0.7317 0.1889 

( 

0.7248 0.75IO 

0.7298 -0.3756 
-0.6993 -0.7444 

0.5241 0.7510 ) 
0.0227 -0.751 0 
0.1150 0.7511 
0.6647 -0.7500 

(5.8) 
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is such a matrix. Wright {1993) has identified a matrix arising in solutions of' a class of 
two-point boundary value problems which have exponential growth with partiul pivoting. 
Also, Fosler (1994) has discovered a class of linear systems arising in solutions of integral 
equations which have large growth factors with partial pivoting. 

Examples or the above type arc rare in practice. Indeed, in many pmctical examples, 
the elements of !.he matrices A (ki very often continue lo decrease in size. Thus, though 
GEPP is not unconditionally stable in theory, in practice it is considered to be a stable 
algorithm in general. 

Growth Factor for GECP 

For Gaussian elimination with complete pivoting, 

p :5 {11 • 21 • 
1 _L 1/7 . 4' ... n "--1) -, 

. This is a slowly growing function of 11. Furthennore, in practice this bound is never 
attained. Indeed, there was an unproven conjecl/lre by Wi/kiuson ( 1965, p. 213) that the 
growth factor for complete pivoting was bounded by 11 for real n x n matrices. Later 
Cryer (1968) conjectured that p :5 n with equality holding if and only if A is a Hadamard 
matrix. An 11 x n matrix is a Hadamard matrix if lts elements are ± 1 and H HT =:: nl. 
Unfortunately, Wilkinson's conjecture has recently been settled by Gould ( 1991) negatively 
for an arbitrary matrix A. Gould exhibited a 13 x 13 matrix for which GECP gave the growth 
factor p 13.0205. Edelman (1992b) also gave a counterexample to this conjecture by 
discovering a matrix of order 25 for which p = 32.986341. In spite of these recent results, 
GECP is a stable algoritlnn. 

The conjecture regarding the growth factor p with complete pivoting for Hadamard 
matrices has been further investigated recently by several mathematicians. What seems to 
be imporlant in settling this conjecture for Hadamard matrices is to dclermine the pivot 
structures and vutues of the minors of Hadamard matrices. Several results have been ob­
tained in this direction, See the papers of Day and Peterson ( !988), Koukouvinos. Mitrouli, 
and Seberry (2000, 200 I), Koukouvinos et al. (2007), and Edelman and Friedman ( 1998). 
In a recent interesting paper, Kravvaritis and Mitrouli (2009) have shown that "The growth 
factor of a Hadamard matrix of order 16 is 16." 

Growth factor of Gaussian elimination without pivoting. For Gaussian elimination 
withoul pivoting. p cnn be arbitrarily large, except for a few special cases, as we shaH see 
later, such as symmetric positive definite ami diaganallydomimmt matrices. Thus Gaussian 
elimination without pivoting is, in general, a completely unstable algorithm, 

Posteriori stability lest. In order to assess the stability of a computed LU factorization, 
one can either compute the growth factor or the backward error (A LU) itself. Both will 
require O(n3) flops. However, using a nann estimawr algorithm (see Chapter 6), one can 
estimate IIA- LUIIt. in 0(n1 ) flops (see Higham (2002. pp. 181-182)). 

5.4 Summary and Table of Comparisons 
For easy reference we now review the most important aspects of this chapter. 
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5.4.1 Elementary Lower Triangular Matrix 

Ann xn matrix A1 of the fonn M = l +me[. wheremk = (0, 0 .. , .. 0, mk+Lk. ..• , m11 .dT. 
is called an elementary lower triangular matrix of type k. 

H M is as given above. then kf- 1 = I -mke[. 

5.4.2 LU Factorization 

A factorization of A in the form A = lJJ, where L is unit lower triangular and U is upper 
lriangular, is called an LU factorization of A. An LU factorization of matrix A. does not 
always exist. If the leading principal minors of A are all different from zero, then the LU 
factorization of A exists and is unique (Theorem 5.8). 

The LU factorization of a matrix A, when it exists. is achieved using elementary lower 
triangular matrices. 1l1e process is called Gaussian elimination t.vitlwut row interchanges 
or Gausslan-elimination-withmlt pivoting,( Algorithm.$. l). 

The process is efficient, requiring only 2¥ Oops, but is unstable for arbitrary matrices. 
Its use is not recommended in practice unless A is symmetric positive definite or column 
diagonally dominant because, in these cases, the growth factors are I and less than or 
equal to 2, respectively; see Chapter 6. For decomposition of A into LU in a stable way, 
row interchanges (Gaussian elimination with partial pivoting) (Algorithm 5.2) or both row 
and column interdmnges (Gaussian elimination with complete pivotillg) (Algorithm 5.3) to 
identify an appropriate pivot at each step will be needed. Gaussian elimination with partial 
and complete pivoting yield factorizations P A = L U and P A Q = L U, respectively, where 
P and Q are permutation matrices. 

5.4.3 Stability of Gaussian Elimination 

Aspects of stability, instability, and practical stability in terms of the growth factors of the 
Gaussian elimination scheme and the associated round-off results are given in Section 5,3. 

5.4.4 Table of Comparisons 

We now summarize in Table 5.1 the efficiency and stability properties of these eompuwtions. 
We assume that A is n x lL 

Concluding remarks~ Gaussian elimination ;t•ithout pivoting is unstable in general; 
Gm1ssian elimination with partial pivoting is stable in practice; Gaussian elimination with 
complete pivoting ls stable. 

5.5 Suggestions for Further Reading 
The topics covered io this chapter are standard and can be found in any numerical linear 
algebra book. The books by Golub and Van Loan (1996), Stewart (1973, 1998b), and 
Higham (2002) are rich sources of further knowledge in this aren. A fair treatment of 
these topics also appears in some numerical analysis books, such as Atkinson ( 1989). Heath 
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Table 5.1. Table of comparisons of LU factorization methods. 

Problem Method Flop-count Stability 
(Approximate) 

Factorization: Gaussian 2n 3 Unstable 
A LU elimination in general 

without 
pivoting ( 

Factorization: Gaussian 2n3 Stable 
PA = LU elimination -+ in practice ; 3 

with partial I (0(112) pivoting 
comparisons) 

Factorization: Gaussian I 2nJ Stable 
PAQ=U elimination -+ 

' 3 
with complete 

(0(1,3} 
pivoting 

comparisons) 

{2002), Kincaid and Cheney (2002), Forsythe, Malcolm, and Moler ( 1977), Forsythe and 
Moler (1967), Kahancr, Moler, and Nash ( 1988). Moler (2004 ), Conte and de Boor ( 1980), 
Burden and Faires (2004), und Van Loan (2000). An interesting earlier paper on the stability 
of Gaussian elimination is Trefethen and Schreiber (1990). 

Exercises on Chapter 5 
(Use MATLAB, whenever appropriate and necessary.) 

5.1 (a) Show that an elementary lower uiangular matrix of type k defined by (5.1) has 
the form 

T ;\th = I +me~; . 

where m = (0, 0, .... 0, mk+l.k. ... , mn,k )'1'. 

(b) Show that the inverse or lvh in (a) is given by 

A-1;;~ 1 = I -me[. 

(c) Show that the elementary matrix M defined by (5.2) is such thai Ma, where 
a= (all, a21, ... , a,11)7 , is a multiple of e1. 

5.2 (a) Given 

(
'0.00001) 

a= I . 

Using three-digit arithmetic. find an elementary matrix M such thal Ma is a 
multiple of e 1• 
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(b) Using your computations in (a), find lhe LU factorization of 

A= (00~01 ;) , 

(c) Let E and (; be the computed L and U in part (b), Find 

(i) 
IIA-WJir 

I!AIIr 
(ii) 

IILIIr\IUIIF 
IIAIIr 

5.3 Show that the pivots a 11, ai~1 , • , • , !1 1\1~-l l are nonzero if and only if the first (n - 1) 
leading principai minors of A arc nonslngular, 
Hint: Let A, denote the rlh leading principal minor of A. Then show that 

d • (A ) m <•-It et r :::::alla22 .•. ,a,, . 

5.4 Assu~i~!?,ihatL!Jractorization oftfexists;·pfovetliar·· 

(a) (LDU factorization.) A can be written in the form 

.4 = LDU,, 

where Dis diagonal and Land U1 arc unit lower and upper triangular matrices, 
respect! vel y. 

(b) (LDLT factorization.) If A is symmetric, then 

A= LDLT. 

(c) Using (b), prove that if A is symmetric and positive definite, then 

A= HHT, 

where H is a lower triangular matrix with positive diagonal entries. (This is 
knmvn as the Clwleslcy decomposition.) 

5.5 Assuming that LU factorization of A exists, develop an algorithm to compute U by 
rows and L by columns directly from the equation A =LV. 

lllis is known as Doolittle red11ction. 

5.6 Develop an algorithm to compute the factorization A = LU, where U is unit upper 
triangular and L is lower triangular. This is known as Crout reduction. 
Hint: Derive the algorithm from the equation A= LU. 

5.7 Compare the Doolittle and Crout reductions with Gaussian elimination without piv~ 
oting with respect to flop-count and storage requirements. 

5.8 A matrix G of the form 
G = 1- ge[ 

is called a Gauss-Jordan matrix. Show that. given a vector x with the property that 
eJx i= 0, there exists a Gauss-Jordan matrix G such lhat 

Gx is a multiple of e,. 
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Develop an algorithm to construct Gauss-Jordan matrices G 1• G2 , ••• , G 11 succes~ 

sivcly such thal (GnGn-! .... , G1G t)A is a diagonal matrix. This is known as 
Gauss-Jordan redu-ction. 

Derive conditions under which Gauss-Jordan reduction can he carried to completion. 

Give a Hop-count for the algorithm and com par~ it wilh those of Gaussian elimination. 
Crout reduction, and Doolittle reduction. 

5.9 Given 

(
I 2 3) 

A= 2 5 4 , 
3 4 5 

find LU factorization of A using Gaussian elimination, Doolittle reduction, and Crout 
reduction. 

5.10 Apply the Gauss-Jordan reduction to .4 of Exercise 5.9, 

5.11 Prove that the matrix L in each of the factorizations P A = LV and P A Q = L U. ob­
tained by using Gaussian elimination with partial and complete pivoting, respectively, 
is unit lower triangular. 

5.12 Given 

A=(~~!~)· 
2 3 4 5 

find a pemmtation matrix P, a unit lower triangular matrix L, and an upper triangular 
matrix U such that P A = L U, 

5.13 (a) Find permutation matrices P and Q and u unit lower lriangular matrix L and 
an uppertriangular matrix U such that P A = L U and P A Q L U for each of 
the following matrices. 

(i) A= G t 1). 
.) ::r 5 

(

!00 99 98) 
(ii) A = 98 55 II . 

0 l l 

(~I 
0 

1
1

1
). (iv)A = (0i05~6og 

-1 -1 1.2340 
(iii) A 

(v) A of the fonn (5.7) with n = 5. 

L566 
2.00\l 
LOIS 

1.234 ) 
l.Dl8 ' 

-3.000 

(b) For each of the matrices in (a), 11nd M and U such that M A = U. 

(c) Compute the growth factor in each case and verify the results on upper bounds 
of the growth factor in each case given in Section 5.3. 

(d) Estimate the backward error for each of the factorizations. 
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5.14 

5.15 

5.16 

Chapter 5. Gaussian Elimination and lU Factorization 

(a) Consider the 5 x 5 matrix 

'-( ~ 
0 0 0 "' l I 0 0 0.1 
0 l 0 0.1 . 
0 0 I 0.1 

0.1 0.1 0.1 0.1 0.1 

Find the LU factorizations using both Gaussian elimination and GEPP. How 
many flops arc needed'! How many flops will be needed if A is an n x n row 
matrix? 

(b) Repeat (n) with the permuted matrix 

( 

l 0.1 
0.1 I 

A.'= 0 .. 1. 0 
0.1 0 

. . OJ o 

0.1 0.1 
0 0 
l 0 
0 l 
0 ~ 0 

and compare your answers with those obtained ln (a). 

(a) Prove thnt the growth fnctor p S 2"- 1 for GEPP applied to an 11 x 11 matrix. 

(b) Construct a small example to show that forGE without pivoting the ratio "lt~\\; 111 

can be arbitrarily large. 

(a) Fonnulale a1gorithms for LU factorization of an m x n matrix using Gaussian 
elimination without and wi!h partiat pivoting. 

Show that each algorithm requires aboul mn2 - ~ flops. 

(b) Apply your algorithms to 

( 

0.00001 
(i) A= I 

I 
(ii) A= rand (5, 2). 

5.17 Using the following result on inner product computation of the form 

fi (tx;yr) = tx,y,(l + 8;), 18;1 S kl<, 

show that A+ E = LU, where I El S IIJLJLIIU 1- Hence prove Theorem 5.18 (consult 
Demme ( 1997) or Higham (2002), if necessary). 

MATLAB and MAlCOM Programs and Problems on Chapter 5 

Note on MATCOM 

MATCOM is a MATI.AB-based interactive software package containing imple­
mentation of all major algorithms of Chapters 4 through 12. 
For each problem, there is more than one algorithm so that students can compare 
different algorithms for the same problem with respect to accuracy, speed, etc. A 
chapterwisc listing of MATCOM programs is given in Appendix C. MATCOM 
is available from the book's webpagc at rrww.siam.org/books/ot/16. 
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MS. I BuscdonAigorhhm5.1, writcaMATLAB program, called lugewp, to compute Land 
U such that A L U and the associated growth factor gf; [ L, IJ, gf] = lugcwp (A). 

Test data: 

(i) A = ( ). (ii) A = ( O.O~OI 

(

10 

(iii) A = : 10 : ) . (iv) the matrix A in (5.7) with n = I 0, 
l 20 

(v) A = 20 x 20 Hilbert matrix, (vi) the matrix A in (5.8), 

Print in each case 

(iJ IIILIIUII!r. 
IJAIIF 

and (iv) the growth factor. 

\Vrilc your observations. 

( .. ,) IIA- LUI!r 
Ill , 

IIAilr 

M5.2 Based on Algorithm 5.2, write a MATLAB program, called lugepp, to compute 
(i) P, L and IJ such that PA = LU. using partial pivoting, and (ii) the associated 
growth factor gf: 

[L, U, P. gf) = lugepp(A). 

Prinl !.LIIri!UIIr IIPA-l.UilF and the orowlh facwr for each of the matrices A of Problem 
;lAIIt: ' !IAilr ' o · 

l\15.1. Explain why these results arc different. 

l\15.3 Based on Algorithm 5.3, write a MATLAB program, called lugecp, w compute 
P, Q, L, and U such that PAQ = LU, and the associated growth factor gf: 

[L, U, P, Q, gfl = lugecp(A). 

Print l!l.flr:IUiir lll'AQ-Wt , .. and the growth factor for each of the matrices of Problem 
IIAilr ' i'ii.!IF 

l\15. I, Explain why these results are different. 

M5.4 Write a MATLAB program, called GSJOR to implement Gauss-Jordan scheme 
outlined in Exercise 5.8 and apply your program to the matrices of Problem M5.1. 

MS.S (Experiment 011 the growtiJfactarforGEPP.) Plot the growth factors forGEPPof 500 
randomly generated matrices of varying dimension. Write down your observations. 

!H5.6 Random triangular matrices usually become more and more ill~condltioned as the 
dimensions increase. However, the lm.vcr triangular matrices L from LU factorization 
of a matrix A using GEPP are believed to have low condition numbers, Perform an 
experiment to verify this statement as follows: Take a random matrix of order 125 
and compule its LU factorization using lugepp and plot the entries of tht! inverse 
of L l11en change the signs of the subdingonal entries of L randomly to create 
another lower triangular matrix L and plot the entries of the inverse of i. Compute 
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HWXt.j \Li/ I and max1,j jL;J11, Repeat the above experiment with random matrices 
with entries uniformly distributed in [-I,!]. 

M5.7 Using MATCOM program parpiv on each of the matrices of Exercise M5.l. print 
liMIIF.liUIIF.IIM A- UIIF. and 11 l~~ii,• and write your observations. 

M5.8 Repeat Problem M5.7 with MATCOM program compiv and print 1\MiiF. IIUIIf, 
IIMAQ un,.. and ~~:~.~q,· 



Chapter 6 

Numerical Solutions of linear 
Systems 

Background Material Needed 

Vector and matrix norms (Sections 2.5.1 and 25.2) 

• Special matrices (Section 2.4) 

Condition numbers and properties (Sections 4.5-4.7) 

Solutions of triangular systems (Sections 4, 1.3 and 4. 1.4) 

LU factorizations and stability properties (Sections 5.2 and 5.3) 

6.1 Introduction 
In lhis chapter we will discuss methods for numerically solving the linear system 

Ax=/;, 

where A is un n x n matrix and x and b are n-vcctors. A and b are given and x is 
unknown. The problem arises Jn a very wide variety of applications. As a matter offact, 
it might be said tltat numerical solutions vf almost ail practical engineering and applied 
science problems rolltinely require solution of a linear system problem. (See Sections 6.3 
and 6.12.) 

We shall discuss methods for nonsingular linear systems only in this c!tapter. The 
case where the matrix A is not square or the system has more than one solution is treated 
in Chapter 8. 

A method called Cramer's Rule, taught in an elementary undergraduate linear algebra 
course. is of high signUkance from a theoretical point of view, 

Cramer S Rule is, howeve1; not at all practical from a computational viewpoim. For 
example, solving a linear system with 20 equations and 20 unknowns by Cramer's Rule, 
using the usual definition of determinant, would require more than a million years even on 
a fast computer (Forsythe, Malcolm, and Moler ( 1977, p. 30)). For an 11 x 11 system, it will 
require about 0(11!) flops. 

117 
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Two types of methods are normally used for numerical computations: 

(I) direct methods. 

(2) iterative methods. 

The direct methods consist of a finite number of slepS1 and one needs to pcrfonn all 
of the steps in a given method before the solution is obtained. On lhe other hand, iteratlve 
methods arc based on computing a sequence of approximations lO the solution x and a user 
can stop whenever a ccnain desired accuracy is obtained or a certain number of iterations 
are completed. The iterative methods are used primarily for large and sparse systems, We 
will consider iterative methods in Chapter 12. 

The organization or this chapter is as follows: 
In Section 6.2 we state the basic theoretical results (without proofs) on the exlstencc 

and uniqueness of solutions for linear systems. 
In Section 6,3-wedisc.uss several engineering applic_~1iort~ giving rise lO linear systems 

problems mostly without any special structures. 

tems. 
In Section 6.4 we discuss LU factorization methods for solving arbitrary linear sys-

In Section 6.5 we consider the effects of scaling on solutions of linear systems. 
Section 6,6 summarizes the discussions of Sections 6.4 and 6.5. 
Computalions of Lhe inverse and the determinant are discussed in Section 6.7. 
Section 6.8 discusses the effects of the condition number on the accuracy of the 

soiution. 
In Section 6.9 we discuss computing and estimating the condition number of a matrix. 
Results of componcntwise perturbations are given in Sectlon 6.10. 
Iterative refinement is discussed in Section 6. ll. 
Section 6.12 is devoted to the study of numerical solutions of special linear systems: 

positive definite, Hessenberg, diagonally dominant, tridiagonal. and block tridiagonal. 
Same pracrh:al applications giving rise ro these systems are also discussed here. 

6.2 Basic Results on Existence and Uniqueness 
Consider the system of m equations inn unknowns: 

CltJXt + a11x2 + · · · +a!11 Xn = b1, 

anXt + a21X2 + · · · + a2n.tn = b2, 

In mulrix form. the system is written as 

Ax =b, 

where 
0!1 

b, 

("' "'" l n n ll2t a~n a1r: xz 
A= 

a,,, • 
t- b = - . . - .L . 

a,~~~ am::. b~ll 
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Given an m x n matrix A and an m-vcctor b, if there exists a vector x satisfying Ax = b. 
then we say thnl the system is consistent. Otherwise, it is inconsistent. lt is natural to ask 
when a given system Ax = b is consistent and! if it is consistent, how many solutions there 
are, and when the solulion is unique. To this end, we state the following theorem. Proof 
can be found in any linear algebra textbook. 

Theorem 6.1 (existence and uniqueness theorem for a nonhomogeneous system). 

I. The system Ax b is consistent if and only if'!; E R(A ); in other words, rank( A) ~ 
rank( A. b). 

2. (f the system is consistenr and the columns of A are linearly independent, then the 
solution is unique. 

3. If the system is consistent and the columns of A are linearly dependent, then rite 
syftem has an infinite number of solutions. 

6.3 Some Applications Giving Rise to linear Systems 
Problems 

It is probably not an ovcr.slulcrnent that linear systems problems arise in almost all practical 
applications. We will give examples here from electrical, mechanical, chemical, and civil 
engineering. \Ve start with a simple problem-an clcclric circuit 

6.3.1 An Electric Circuit Problem 

Consider the diagram of an electrical circuit shown in Figure 6. L We would like lo deter­
mine the arnounl of cun-ent between the nodes A 1, A:h A3 , A.t. As. and A6. The famous 

A, 
IR,, ~ lrl 

A, 
R, ~ 2rl 1 

A; 

r . 
I, 1 -· I 

I, 

c: rc:'-v, = 100 0 

"'' II II 
v6 = o •n li no 

"' 
I4 I, 

I; I, 
:R4; = 4rl: IR;u 5rl 

A• As A., 

Figure 6.1. An electric circuit. 
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Kirchhoff's current law tells us that the algebraic sum of all carrenls entering a node must 
be zero. Applying this law at node A0, A5, A;, and A4 , respectively, we have 

I, -I,+ I, = 0, 

h.- I:. =0, 

/2 -!1 = 0. 

0, 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Now consider the voltage drop around each closed loop of the circuit, A1A1A3 

A,A5AuA 1, A 1 A2A5A6 A 1, A2A3A4A5A2• Kirchhoft"s voltage law tells us that the net 
voltage drop around each closed loop is zero. Thus at the loop A 1 A2A3A4A 5A6A 1, substi­
tuting the values of resistances and voltages, we have 

I, +91,+51) = 100. 

Similarly, at A,A~A;A0A, and A,A;A4A;A1 we have, respectively, 

11 - lOt,+ 51;= 100, 

91, + 101, = 0. 

Note that (6.6) + (6.7) = (6.5). Thus we have four equations in four unknowns: 

I, - J, + /4 = 0, 

h-I;- l, = 0, 

I, - !Of,+ 51; = 100, 

91, + 101, = 0. 

Equations (6.8)-(6.11) can be written as 

-1 0 

0 -1 -1 

0 5 -10 

0 9 0 10 

the solution of which yields the current between the nodes. 

0 

0 

100 

0 

6.3.2 Analysis of a Processing Plant Consisting of Interconnected 
Reactors 

(6.5) 

(6.6) 

(6.7) 

(6.8) 
(6.9) 

(6.10) 

(6.11) 

Many mathematical models are based on conservation laws such as conservation of mass, 
conservation of momentum, and conse-rvation of energy. In rnuthemutical terms. these 
conservation laws lead to conservation or balance or continuity equations, which relate the 
behavior of a system or response of the quantity being modeled to the properties of the 
system and the external forcing functions or stimuli acting on the system, 

As an example, consider a chemical processing plant consisting of six interconnected 
chemical reactors (Figure 6.2}, with different mass flow rates of a component of a mixture 
into and out of the reactors. We are interested in knowing the concentration of the mixture 
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Qo, = 6 

Co;= 12 

Qm = 8 

C03 = 20 

Ql5 = 3 

~1-. 
~3 

Q, =I 

Q;; = 2 

Q.g =II 

Figure 6.2. Processing plam witlr interconnected reactors. 

m 1,Q,,C1 

c, 

Figure 6.3. Sketch of a reactor wirlr two incoming and one outgoing flows. 
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at dHTerent reactors. The example here is similar to that given in Chapra and Canale (2002, 
pp. 307-308_). Application of conservation of mass to all these reuctors results in a linear 
system of equations us shown below, consisting of six equations in six unknowns. The 
solution of the system will tell us the concentration of the mixture at each of these reactors. 

Steady state, completely mixed reactor. Consider first a reactor with two tlows com­
ing in and one ftow going out, as shown in Figure 6.3. Application of the steady state 
conservation of mass to the above reactor gives us 

(6.12) 

Noting that 

where 
m; = mass ftow rate of the mixture at the inlet und outlet sections i, i = 1, 2. 3, 
Qr =volumetric flow rate at the section i, i = 1. 2, 3, 
Ci =density or concentration at lhc section i, i = 1, 2. 3, 
we get from (6.12) 

(6.13) 
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For given inlet flow rates and concentrations, the outlet concentration C 3 can be found from 
(6.13). Under steady state operation, this outlet concentration also represents the spatially 
uniform or homogeneous concentration inside the reactor. Such information is necessary 
for designing the reactor to yield mixtures of a specified concentration. For details, see 
Chapra and Canale (2002). 

Referring now to Figure 6.2, where we consider the plant consisting of six reactors, 
we have tl1e following equations (derived similarly to that of (6.13)). The derivation of each 
of these equations is based on the fact tha1the net mass flow rate into the reactor is equal ro 
the net mass ftow out of the reactor. 

For reactor l, 

6Cr -C, =72. 

(Note that for this reactor, flow at the inlet is 72 + c, and flow at the outlet is 6C1.) 

·Similarly~.for.reactor 2 •. 3,. 4.5 and 6 .. weJmve_; re,;;pe.cti_y~.JY~----

or 

3C1 - 3C2 =0, 

+IIC, 160, 

c2 - 11 c.+ 2c, + sc, = o, 
3C, + C2- 4Cs = 0, 

IOC 1 - IOC6 0. 

Equations (6.14)-(6.19) can be rewritten in matrix form as 

6 0 -I 0 0 0 c, 
3 -3 0 0 0 0 c2 
0 -I II 0 0 (] c, 
0 I 0 -II 2 8 c. = 

3 I 0 0 -4 0 Cs 
0 0 10 0 0 10 c6 

AC=D. 

72 
0 

160 
0 
0 
0 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

The i th coordinate of the unknown vector C represenl.S. the mixture concentration C1 at 
reactor i of the plant. The solution of the system gives the required concentrations. 

6.3.3 linear Systems Arising from Ordinary Differential Equations: 
A Case Study on a Spring-Mass Problem 

Consider a system of three masses suspended vertically by a series of springs, as shown 
below, whcrck 1, k1 , and k3 arc the spring constants, and x1, X!, and X3 arc the displacements 
of each spring from its equilibtium position. 
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m1 

k, 
x, 

mz 

k, 

!!13 

Referring to the above diagram, the equations of motion, by Newton's second law. 
which states that the force acting on a mass m is equal to m limes acceleration, are 

d2.tj 
Jlli-d., = k2(X2 Xj) + f11tg- k 1Xt. 

t· 

d2XJ 
m2 d(!.- = k3(X3- x::d + m;zg k1(x1 - xt). 

d1x:, 
1113 d(l nl3g- k 3(x3 - x1 ). 

Suppose we are interested in knowing the- displacements of these springs when the 
system eventually returns to the steady state, that is, when the system comes to rest. Then, 
by setting the second~ordcr derivatives lo zero, we obtain the following system of three 
equations in three unknowns, x 1• x2. and x3 , in matrix form: 

0 l (x') (m
1

gl -k3 X:! m2g 

k3 XJ m3g 

or 

Kx=w. 

The matrix K is called the stiffness matrix. As in this case, very often in practice this matrix 
is symmetric tridiagonal. 

6.3.4 linear Systems Arising from Partial Differential Equations: 
A Case Study on Temperature Distribution 

Many engineering problems are modeled by partial differential equations. Numerical ap­
proaches to these equations typically require discretization by means of difference equations; 
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that is, partial derivatives in the equations are replaced by approximate ditlCrences. This 
process of discretization in turn gives rise to linear systems. We shall illustrate this with a 
problem in heat transfer theory. Sec the recent book by Majumdar (2005) for details. 

A major objective in a heat transfer problem is to determine the temperature distribu­
tion T(x 1 y, z. 1) in a medium resulting from imposed boundary conditions on tire smface of 
the medium. Once. this temperuturc distribution is known, the heat transfer rate at uny point 
in the medium or on its surface may be computed from Fourier's law, which is expressed as 

ar 
q =-K-, ,\ ax 

ar 
qr = -K-,-, . ay 

ar 
and q- = -K-, 

... O.z: 

I . I h f ' h d. . D T ' h d' w 1cre qx ts t 1e eat trans er rate m t e x lfC:Ctton, - 1s t e temperature gra tent 
ilx 

in the x direction, and the positive constant K is called the thermal conductivity of the 
material. Similarly for they and z directions. 

-- .. -Consider-a- homogeneous medium-in which-lempcraturc_gradients e_:xjsJ and t~e tem­
perature distribution T (x, y. :. t) is expressed in Cartesian coordinates. The heat diffusion 
equation which governs this temperature distribution is obtained by applying conserva~ 
tion of energy over an infinitesimally small differential element, from which we obtain the 
relation 

.!!_(KilT)-'- _!I_ (KaT)_,_ _!I_ (KaT)+ q =PC ilT 
ax ax ' ay ily · Dz a;; 1' at • 

(6.21) 

where p is the density, Cp is the specific heat, and q is the energy generated per unit 
volume. 

This equation, usually known as the heat equation, provides the basic tool for solving 
heat conduction problems. 

!t is often possible to work with a simplified fonn of (6.21 ). For example. if the 
thermal conduclion is a constant, the heat equation is 

a'r a'r a'r iJ -+-+ _,__ 
ox1 By2 . K 

(6.22) 

where a = K f{pC rl is a thermophysical property known as the thermal diffusivity. 
Under steady state conditions, there can be no changes of energy lilorage, i.e., the 

unsteady state tenn ijJ~ can be dropped, and (6.22) reduces to the threc~dimensional Poisson's 
equation: 

a"r a2r a'r iJ 
--, + --, + --, + - = 0. 
ax- By- Bz- K 

{6.23) 

If tile heat transfer is two~dimensional (e.g., in the x andy directions) and rlzere is no 
energy generation, then the heat equation reduces to lhc famous Laplace's equation: 

a'r a'r --, + --, =0. 
ax- By-

(6.24) 

If the heat tmnsfer is unsteady and one-dimensional without energy generation. then the 
heat equation reduces to 

a'r 1 ar 
a ar 

{6.25) 
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Finite Difference Scheme 

A well-known scheme for numerically solving a partial differential equation is to use finite 
differences. The idea is. to dlscretize the partial differential equation by replacing the partial 
derivatives with their approximations, i.e., finite difTcrences. \Ve will illustrate the scheme 
with Laplace's equation in the following. 

Let us divide a two-dimensional region into small regions with increments in the x 
andy directions given as llx and~)'. as shown in the figure below. 

Nodnl Points 

' I 
I 

' L ·--...... 
i 

i 
fly 

• ' .. -----·-

Each nodal point is designated by a numbering scheme l and j, where i indicates the x 
increment and j indicalcs the y increment 

(i- I, j) (i 

(I, j + I) 

(
. . I ) 
I, .J- 1 

(i.j-1) 

I ') 1,) U+l.j) 
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The temperature distribution in the medium is assumed to be represenled by the nodal 
points temperature. 10e temperature Ti,J = T(x1, YJ) at euch nodal point (xi. YJ) (which is 
symbolically denoted by (i, j) as in the diagram above) is the average temperature of the 
surrounding hatched region. As the number of 11odal points increases, greater accuracy in 
representation of the temperature distribution is obtained. 

A finite difference equation suitahlc for the interior nodes of a steady two-dimensional 
system can be oblained by considering Laplace's equational the nodal poln! i, j as 

a'r a'r -1 +-1 =O. ax2 i.i ay2 i.J 
(6.26) 

The second derivatives at the nodal point (i. j) can be expressed as 

(6.27) 

(6.28) 

As shown in the figure, the temperature gradients can be approximated (as derived 
from the Taylor series} as a linear function of the nodal temperatures as 

ar I , r,+l.j- r,,j 
ax I+-} ,J Ax • 

(6.29) 

a~l. ~-~~.J-'Tt-!.i, 
O.t 1-J_.} ~X 

(6.30) 

DT< T '+1 -T -j ~ 1,] 1.) 

8y i,i+~ fly ' 
(6.31) 

- ~ I,J l,j 
ar \ r, . - r. ._, 
8y Li-! A.y ' 

(6.32) 

where, 7/.j = T(x;, yj). Substituting (6.29)-(6.32) into (6.27)-(6.28), we get 

a1r 1 "' r,+,,j- 2'l!.j + T;-l.j 
Dx' l;.j- (tlx)2 

(6.33) 

a2r I T -A.,- 27'·- J_ T,- -_, """ l,j ' l,j ' l,J 
-'J = 'J • By- l;,j (L\y)-

(6.34) 

Equation (6.26) then gives 

7f+LJ - 2Tu + ~--l,J + T;,J+! - 21f_J + T;,j-1 
__;_;_""--:-:-=c~;---'-''"- = 0. 

{ 6.< )- ( tly )1 
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Assume L\x = L\y. Then the finite difference approximation of Laplace S equation for 
interior regions can be expressed as 

Ti,J+I + 1i.J-I + 7i+I,J + Ti-l.J- 4Ti,J = 0. (6.35) 

Higher-order approximations for interior nodes and boundary nodes arc also obtained in a 
similar manner. 

Example 6.2. An example on heat distribution in a medium. A two-dimensional rect­
angular plate (0 .:::: x 5_ 1, 0 5_ y .::;: l) is subjected to the uniform temperature boundary 
conditions (with top surface maintained at IOO"C and all other surfaces at O"C) shown in 
the figure below, that is, T(O, y) = 0, T(l, y) = 0, T(x, 0) = 0, aod T(x, I) = 100' C. 
Suppose we arc interested only in the values of the temperature at the nine interior nodal 
points (xr, YJ ), where X; = i !:1x and Yi = j tly, i, j = I, 2, 3, with Llx = Lly = ±· 

(0, 0) 

, I) 4 I \ 
(0, 2) 4.2 

O'C O'C 

(0, 3) 4.3 ~ 
(0, 4) 4 4 

However, we assume symmetry for simplifying the problem. That is, we assume that 
T33 = T13, 732 = Tn, and T31 = T11· We thus have only six unknowns: (Trt. Trz, Tt3) 
and (T21 , T22 , T23 ) satisfying the following six equations: 

4Tl.l- 0- 100- T, 1 - Tu = 0, 

4r,,,- r~,~- 100- r~,~- r,,, = o, 
4Tu- 0- Tu - T2.2- Tu = 0, 

4 T2.2 - Tu - Tz, t - Tu - Tz,3 = 0, 

4Tl.3- o- Tu- T2.3 = o, 
4Tz.3 - Tu - Tz.z- Tu- 0 = 0. 

(6.36) 
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After suitable rcarrangemcnl, these equations can be written us follows: 

4 0 0 0 Tu IOO 

-2 4 0 -I 0 0 T1,1 100 

0 4 -I -] 0 T!.;. 0 
= (6.37) 

0 -I -2 4 0 -I T1,2 0 

0 0 -I 0 4 -I Tu 0 

0 0 0 -I -2 4 T23 0 

The solution of this system will give us temperatures at the nodal points. I 

6.3.5 Approximation of a Function by a Polynomial: Hilbert System 

In Chapter 4 (Section 4.6) we cited an ill-conditioned linear system with the Hilbert matrix. 
In this section we show how such a system arises. The discussion here has been taken from 
(Forsythe and Moler (1967, pp. 80-81)). 

Suppose a continuous function f(.t) defined on the interval 0 :SO x :SO I is to he 
approximated by a polynomial L~~=l Pi Xi-! of degree n- I. such lhat the error 

E = [ L p,x'- 1
- f(x) dx 1 [ " ]' 

.. o i=l 

is minimized. The coefficients p; of the polynomial are easily dctennined by setting 

BE 
-=0 ap, , i .. , .,n. 

(Note that the error is a differentiable function of the unknowns p; and that a minimum 
occurs when all the partial derivatives are zero,) Thus we have 

i = 1, ... ,1l, 

or 

i =I, .. .. n. 

(To obtain the latter form we have interchanged the summation and integration.) 
Lelting 
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and 

we have 

1
,, 

b, = f(x)x 1- 1 rlx 
.Q 

" 
L"'iPi =b,, 
_i=l 

(i !,2,. . .,11), 

i :.:;;; l, ... , II. 

That is, we obtain the linear system Hp = b, where H (h 11 ). 

(
btl b2 

b= . 

l;n 
Tire-nm.Lrix His easily idenlifhxl as lhc Hilbert matrix. 

6.4 LU Factorization Methods 
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Any factorization of the matrix A immediately suggests a method for solving A.t = b or 
Ax = B (mulriple rigiu-iwnrl sides). 

In this section, we discuss LU factorization methods. The methods based on QR 
factorization and singular value decomposition (SVD) will be discussed in Chapter 7. 

6.4. 1 Solution of the System Ax = b Using lU Factorization 

We have seen in Chapter 5 that Gaussian elimination leads to the following factorizmlons: 

• A = LU (Gaussian elimination without pivoting) (6.38) 

• PA = LU (Gaussian elimination with partial pivoting (GEPP)) (6.39) 

• P A Q = LU (Gaussian elimination with complete pivoting (GECP)). (6.40) 

These factorizations can then immediately be used to solve Ax b, 
Thus, if A LV, then solving Ax b is equivalent to solving two triangular 

systems: 

I Ly = b (lower triangular), 
Vx = y (upper triangular). 

If P A = LV, then the system Ax = b becomes 

I Ly = Pb = b' (lower triangular), 
Ux y {upper uiangular). 

If P A Q LU, then Ax = b is equivalent to 

{ 

k =Ph= 1/ 
Uy =;:: 

X= Qy. 

(lower triangular), 
(upper triangular). 

(6.4 I) 

(6.42) 

(6.43) 
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Since GEPP is stable in practice and widely used, we will only state this method for 
linear systems here. 

I 
I 

ALGORITHM 6.1. Solving Ax = bUsing GEPP. 

Inputs: A E l.Rn:-:'l,b E Rn:.:t. 

Output: x E lll."xt such that Ax= b. 

Step 1. Find the factorization P A = LU by the u·iangularization algorithm using 
partial pivoting (Algorithm 5.2). 

Step 2. Obtain the solution x to Ax = b as follows: 

2.1. Solve the lower triangular system: Ly = Pb = b'. 

2.2. Solve the upper triangular system: Ux y. 

Computing b': To compute N, all thut is needed is to permute the entries of b according to 
the permutation indices of the matrix P. 

For example, if 

0 I ) I 0 
0 0 

andb = u~). 
then 

is obtained just by permuting the first und third components of b. 

Flop-count. 

• Triangulurlzation process: ~n3 

Solutions of two triangular systems: 2n 2 (each system requires n2 flops). 

Forming the vector b': no flops. (Note thal b' is obtained from b just by re-shuffling 
the entries of b.) 

• Furthermore, O(n2 ) comparisons will be required to identify the pivots. 
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Example 6.3. Solve A.< =busing partial pivoting: 

Step 1. Factorization PA = LU. Using the results of Exomple 5.14, we have 

Step 2. 

8 
6 
7 
0 

2.1. Solution of Ly = b' => y ( ]0~5 ) . 

2.2. Solution of U x )' => x = ( ; ) . I 

Numerical Stability of the Partial Pivoting Scheme for Ax= b 
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We first state an approximate error bound in terms of the norms of L and U. and then in 
terms of the growth factor. (Sec the solution of Exercise 6.40 in Appendix D. as well as 
Chapter 14, both available online atwwu<Siam.orglboaks!OTII6.) 

Theorem 6.4 (round-off property). The computed solution.i of the linear system Ax = b 
using LU factorization, obtained by CEPP. smisfies 

(A+ E).i b, 

where lEI :s 311iJ.ILIIUI. 

Round-off Property in Terms of the Growth Factor 

In Chapter 5, we discussed stability of Gaussian elimination in terms of the growth factor. 
Let's therefore interpret the above result in terms of the growth factor for the partial pivoting. 
For this pivoting scheme. we have llol ::; l and lttu I :S p max laul, where p is the growth 
factor. Then from the above theorem, we oblain -

Remark. The quantity 3pn3 very often grossly O\'erestimates the true error ll£'1! 00• The 
experiments have shown thatiiEIIoo is usually O(tt)IIAiioc· So, GEPP for linear systems is 
hachmrd stable in practice. 
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Furthennore, since the quuntity p is never too large in practice, we conclude that 
GEPP for A.< = b is backward stable for all practical purposes. 

6.4.2 Solution of Ax= b Using Factorization: MA = U 

1n Chapter 5, we have seen that as a first step of achieving the factorization P A = LU. one 
obtains lhe factorization lvl A. ~ U, 

This factorization then can directly be used to solve Ax = b. 
Thus, if MA = U,then .4x = b becomes MAx= Mb or Ux = Mb = b', where 

M = Mu-1 Pr.~l,,. M1P1, 
Thus, we have the following process for solving Ax = b: 

Solving Ax '"' b Using Fuctorizaton: M A = U 

t· ·step 1: Obtain ihc fact<ltizationMA =·u: 

Step 2. Implicitly compute b' = Mb. 

Step 3. Solve the upper triangular system Ux b'. 

Remarks. (i) Mathematically and computationally, Algorithm 6.1 and the above process 
are equivalent. 

(ii) One can easily obtain a similar algorithm with complete pivoting. 

6.4.3 Solution of Ax = b without Explicit Factorization 

It is possible that two steps of solving Ax = b via LU factorization of A can be com­
bined so that only one triangular (upper) system needs to be solved. This can be done by 
triangularizing the augmented matrix (A, b) ruther than the mattix A. as shown below. 

ALGORlTIIM 6.2. Solution of ;lx = bUsing Partial Pivoting without Explicit 
Factorization. 

A. Triangularization of (A, b), 
Input.;;: An If x n matrix A and an n-veclnr b. 
Output: (i) The transl'onned upper triangular matrix stored in the upper triangular 
part of A, (ii) the transfonned vector stored in b, and (iii) the multipliers stored 
in the lower-half part of A. 

Fork= I, 2, ... ,II l do 

1, Choose the largest element in magnitude in the column k below tlw (k. k) 
emry: call it aru: 

lf a,., = 0. Stop. 
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2. Interchange tire rows k and n, of A and tl1e krh and rkrh entries of b: 

3. Form rile multipliers: 

For j = k, k + I, ... , n do 
a,.._, ~ GJ:..f 

hr1 ++ bk. 
End 

Fori =k+ l, .. .,n 
G;k 

End 

4, Update tlte entries of A in the rows and columns (k + I) through n: 

For i k + I, ... , n do 
ForJ=k+L .... ndo 

aii ::.=::: alj + mu;tlkJ 

End 
End 

5. Update the entries of b: 

End 

Fori k + I, .. ., 11 do 
b; = bi + lllikbk 

End 
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B. Solution of the upper triangular system. Solve the upper triangular system with 
the upper lriangular malrix and the transfonncd vector obtained from pan A using the back 
substitution algorithm, 

MATCOM Note: Algorithm 6.2 has been implemented in the MATCOM program 
LINSYSWF. 

Example 6.5. 

A=G ~ D· 
A. Triangulari;;atian of(A, b) using GEPP. 

k = 1. The pivot entry is a31 = 4, r1 = 3 

b G)· 

Interchange rows 3 and 1 of A and the third and J1rst entries of b: 

A 5 (i ~ 0 · b= G) · 1>111 = ::: = -l, 

<1 = A
01 

= G l D' b = b
1
'' = (i) 
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k 2Th . . ' "'" · = . e pivot cntrv JS a,"'="-" 11131 = _ _,_ = 
.J ~~ 2' ·- UJ: 

(4 I I) 
.... = ,t\2} - 0 l ~ 
.·t~f\ - 1 ") • 

0 6 _:~ 

B. So/mioo of tile upper triangular system. The buck substitution process applied 
to the triangular system Ai2lx = bC1l yields x3 = ~· x2 = ~· x 1 ~'giving 

X= (t. t. w. I 

6.4.4 Solving a linear System with Multiple Right-Hand Sides 

Consider the problem 

where B = (b1, ..• , b111 ) is an H x m matrix (m :S 11) and X= (Xt. x2, ... , Xm). Here bi 
andxr. i= l, ... ,m,aren-vcctors. 

Problems of this type arise in many practical applications. For some applications in 
control, sec Arnold ( 1 992), Datta (2003), and Datta and Saad ( 1991 ). 

The idea will be to factorize A just once and then use this .factorization to solve all 
the subsequent triangular systems. Thus if PA = LU, then AX = B is equivalent to two 
triangular syslcms each having m equations: 

LZ=PB=B' and UX=Z. 

ALGORITHM 6.3. Solving AX = B (Linear System with Multiple Right-Hand 
Sides) Using GEPP. 

Inputs; A E lR11 :.:n and B E R11 :·.m, 
Output: X E IR""" such that AX= B. 

Step 1. Factorize A using Gaussian elimination with partial pivoting: P A = 
LU. 

Step 2, Solve the m lower triangular systems: Lz, = Pb; = b;. ; = I. 2, 
... ,m. 

Step 3. Solve them upper triangular systems: Ux1 = ::;, i = 1. ...• m. 

Step4. Fonn X= (x!,X1····•·\'111 ). 

Flop-count. Algorithm 6.3 requires approximately 2(f + nw') flops. 
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Example 6.6. Solve AX= B. where 

(
I 2 4) 

A= 4 5 6 • 
7 8 9 (I 2) 

B = ~ : • 

Step 1. Using the results of Example 5.14. 

u = (~ ; 
0 0 

L 

Step 2. Soll'e the two lou:er triangular systems 

Step 3. Solve the t>J/O Iipper triangular systems 

Step 4. Farm 

Note: The vectors b~, ... , b~1 are obtained just by reshuflling the columns of matrix 
B according to the permutation indices of P. No mmrix multipHcalion is necessary. I 

6.5 Scaling 
lf the entries of matrix A vary widely, then there is a possibility that a very small number 
needs to be added to a very large number during the process of elimination. This can influence 
the accuracy greatly, because. "the hig one can kill the small one." To circumven1 this 
dil'liculty, often it is suggested that the rows or A be properly scaled before the elimination 
process begins, The following simple example ilfustrates this. 

Consider the system 

Now apply GEPP. Since 10 is the largest entry in the first column, no interchange is needed. 
We have, after the first step of elimination, 

C~ ~~~5) G:) = (/
0:o} 
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which gives x2 ::::: I, x1 = 0, The exact solution, however, is ~ ( ( ). This happened 
because "1 0'' was indeed a "false pivot." Note that if the first equation was multiplied by 
w-6 , then the matrix of the system would be 

c~-s :) " 
Therefore, even choosing the false pivot!O did not help us. However, if the scaled sys­

tem is now solved (after modifying the first entry of b appropriately) using partial pivoting, 
we will then have the accurate solution. as we have seen before. 

Scaling of the rows of matrix A is equivalent to finding an inverti!Jle diagonal matrix 
Dt so that the largest efemellf (in magnitude) in each rmv of DJ 1 A is about the same size, 
Once such Dr is found, the solution of the system Ax = b is found by solving the sealed 
system Ax = b, where . _, 

A= D1 A, b D~ 1 b. 

-The process can be easily extended to scale both therows andcalumns.of A. Mathematically, 
this is equivalent to findlng diagonal matrices D 1 und D2 such that the largest (in magnitude) 
element in each row and column of D~' AD2 lies between two fixed numbers, say,* and I, 
where fJ is the base of the number system. Once such D1 and D, are found, the solution 
of the system Ax = b is obtained by solving the equivalent system Ay = b, and then 
computing x = D2y. where A= Dj' 1 AD,, b = D~ 1 b. The above process is known as 
equilibration (Forsythe and Moler (1967)). 

Note that the purpose of scaling is to make the condition number of the scaled matrix 
D~' AD, considerably smaller than that of ti. In doing so, we might expect a more accurate 
solution. See more on this in Section 6.82. 

Thus, scaling or equilibration is recommended in general, when the entries of the 
matrix vary widely, "'The round-off error analysis for Gaussian elimination gives the most 
effective results when a matrix is equilibrated." (Forsythe and Moler (!967)) 

6.6 Concluding Remarks on the Use of Gaussian 
Elimination for linear Systems 

Gaussian elimination with partial pivoting is a computationally effective practical 
scheme for sotving modest-size arbitrary linear systems problems. It is stable in 
practice and efficient. 

Gaussian elimination without pivoting should not be used unless matrix A is sym­
metric positive definite or strictly diagonally dominant (see Section 6.12), 

• Scaling is recommended prior to the use of Gaussian elimination if the cnlries of 
matrix A vary widely. 

6.7 Inverses and Determinant 
Associated with the problem of solving the linear system Ax = b are the problems of 
finding the determinant and the inverse ofrhe marri.:r A. In this section we will see how the 
determinant and the inverse can be computed using LU factorization. 
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6.7 .1 Avoiding Explicit Computation of the Inverses 

T11e inverse of a matrix A vel)' seldom needs to be compftfed explicit(v. Most computational 
problems involving inverses can be reformulated ln terms of solution of linear systems. For 
example, computing 

A-lb (inverse times a vector) is equivalent to solving the system Ax = b; 

A- 1 B (inverse times a matrix) is equivalent to solving lhc systems Aci = b1, i = 
l, . , , , m. if B = (b,, b,, .... b, ); 

bT A-1c (vector times inverse times a vector) is equivalcnl to solving the system 
Ax= c followed by computing IJTx. 

As we will sec laler in this section, computing A -l is much more expensive than salving the 
linear system Ax = b. Thus, ail such problems mentioned above can be solved much more 
efficiently -~y_}~or~ulating them in terms _of.line~r_systems rather than naively solving them 
using the matrix inversion. 

The explicit computation of the i11verse should be avoided whenever possible. A 
linear system should never be solved by explicit computation of the inverse of the 
system matrix. 

Some Easily Computed Inverses 

Before we discuss the computation of A -l for an arbitrary matrix A1 we note that the inverses 
of some special matrices can be easily computed. Here are some examples: 

The inverse of the elementary lower triungular matrix M = I -me[ is given by 
t.r' = I+ me[. 

The inverse of an orthogonal matrix Q is its transpose Qr, 

The inverse of u nonsinguJar lower {upper) triangular matrix T is again a lower 
(upper) triangular matrix and the diagonal entries of the inverse arc the reciprocals of 
the diagonal entries of the rnaLrix T, 

6.7.2 The Sherman-Morrison Formula for Matrix Inverse 

In many applications once the inverse of a matrix A is computed, it is necessary to find !he 
inverse of another matrix B which differs from A only by a runk-one perturbation. The 
queslion naturally arises, Can the inverse of B be compwed with ow srarting ali ol'eragaifl? 
That is, the question is whether the inverse of B can be found using the inverse of A which 
has already been computed. The Sherman-Morrison formula shows us how to do this. 

Theorem 6.7 (the Sherman-Morrison formula). (/' u and v are two n-vecrors and A is a 
nonsingular matrix, rllen 

(A- uv7 )- 1 = A- 1 + u(A- 1uv7 A- 1), 
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tvhere 

MATCOM Note: The Sherman-Morrison formula has been implemented in the MATCOM 
program SHERMOR. 

Example 6.8. Given 

A= G ; i) and A-1 = ( ~i 2 -
2
\) 

-10 -1 

find (A- uvT)- 1, where u = v = (I, 0. O)T 

Thus, 

I -:; 

J) I 

6.7.3 Computing the Inverse of an Arbitrary Nonsingular Matrix 

If A is ann x 11 nonsingular matrix, then finding .4 ~l is et}rtivalent to computing X suclt rhat 
AX= /,where I is ann x f1 matrix. Thus if X= (XJ, x2, ...• X11 ) and 1 = (e1. e2, ... , e11 ), 

then AX = I is equivalenl to solving n linear systems: Ax1 = e1, i = I •... , n. 
lf partial pivoting is used to solve these n systems, then we have lhe following algo­

rithm to compute A-1• 

ALGORITHM 6.4. Computing A -I by GEPP. 

lnput: A E R11 ):n. 

Output: A-'. 

Step L Using Algorithm 6.3, solve n linear systems: Ax1 = e1• i = 1, ... , n. 

Step 2. From A- 1 =X= (x,,x,, ... ,Xn). 

Equivalently, one can compute A- 1 directly fmm LU factorization of A. Thus if GEPP is 
used, then 

PA = LU, soA- 1 = u~'L-'P. 
MATCOM Note: MATCOM programs INLU, INPARPIV, and INCOMPIV compute the 
inverse using, respectively, LU factorization with no, partial, and complete pivoting. 
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Flop-count. About llops are needed to compute A~ 1 using Algorithm 6.4. 

Example 6.9. Consider A of Example 6.6. Using mutrices L, U, and P from there, we 
obtain 

Thus 

(0, I, D)" => Zt = (0, I, -0.5000l, 

Lz2 Pe2 = (0, 0, l)r =? z2 = (0, 0, I)', 
[ 

Lz 1 = Pe 1 

Lz3 Pe3 = (1, 0, O)T => z1 = (1. -0.1429, -0.50000)r, 

[ 

U.1·, 

Uxz 

Ux1 

Zt => x1 = (1, -2, l)r. 

z2 => Xz = (-4.6670, 6.3333, -2.00QO)T, 

z3 => x1 = (2.6667, -3.3333, LOOOO)r. 

-4.6670 2.6667 ) 
6.3333 -3.3333 . 

-2 1.0000 

6.7.4 Computing the Determinant of a Matrix 

I 

The determinallt of a matrix A is seldom needed in practice. However, if il has to be 
computed, LU factorization of A again can be used. Thus, if GEPP is used giving PA = 
LU, then det(A) det(P) · det(L) · det(U ). Now. det(P) = (-I)', where r is the number 
of row interchanges, det(L} =I, and del(U) = a 11 a~~J ... a,~~~-0. Thus. 

d (A) ( 1)
, (I) ,,,_,; 

el = - a1ta22 · · ·a1ur • 

where r is the number of interchanges. 

Example 6. 10. 

GEPP gives 

2 D· 

U= G ~ lJ 
There was only one interchange; therefore r = I. dct(A) = (-·I) det(U) 
=1. I 

(-1)(-1) 

6.8 Effect of the Condition Number on Accuracy of the 
Computed Solution 

ln Chapter 4, we identified the condition number of the system Ax b by means of 
perturbation analysis (Theorems 4.19-4.25). Here we discuss the role of the condition 
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number in the accuracy of the solution. Once a solution wi of the system Ax = b has been 
computed, it is natural to test how accurate the computed solution.¥ is. If the exact solution 

x is known, then one could, of course, eompute the relative error u.~l;i~n to test the accuracy 
of .t. However, in most practical situations, the exact solution is nm known. In such cases, 
the most obvious thin~ to do is to compute the residual r = /J - A.i and sec how small 
the relative residual :;~ 1\ is. Interestingly, we should note that the solution obtained b.:r the 
Ga!lssian elimination process i11 general produces a small residual. (Why?) Unfortunately. 
a small relative residual does nat guarantee the accuracy of the solution. The following 
example illustrates this fact. 

Example 6.11. Let 

A ca?OI D· b=c·ogo~). 
LeU=(~). Then r = b- A.'C (O'Jl"l), 

, ., .. Note- 'tlfift7''l.J'~snrall ..... However, -'the -vector .i is nowhere-close-to· t!Je .. exact solution 
.t = (l). I 

The above phenomenon can he explained mathematically from the fallowing theorem. 
The proof can be easily worked out Theorem 6.l2 below gJves u posterior error bound 
for the computed solution. 

Theorem 6.12 (residual theorem). 

!l.i­
ll.tll 

< Cond(A)Ji.':JI.. 
- llbll 

Interpretation ofTheorem 6.12. Theorem 6.12tells us that the relative error in x depends 
not only on the relative residual but also on the condition number of matrix A as well. Tlte 
computed solution can be guaranteed to be accurate only tv hen tile product of both Cond{A) 
and the relative residual is small. 

Note that in the above example, Cond(A) = 4.0002 x 10" (large!). Thus, thougft tile 
relati\·e residual was small, the compwed solution wt was inaccurate, because Cond (A} is 
relatively large. 

6.8. 1 Conditioning and Pivoting 

ft is natural to wonder if 111-conditioning con be detecled during the Lriangularization process 
using GEPP. By a normalized matrix here we mean that l!Aib = L Suppose that A and b 
have been normalized. Then there are certain symptoms for ill-conditioning. These include 
the l'ollowing. 

Symptoms for Ill-Conditioning 

A small pit•ot, 

A large compwed solution, 

A large resi(/ual vector. 
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Justification. Suppose there is a small pivot. Then this will make A- 1 large. (Note that 
if panial pivoting is used, then A -I = u-' L-IP.) Similarly, if the computed solution .i' 
is large, then from A.t = b, we have 11.1'11 = IIA- 1hli :S IIA-'IIIlhll, showing thatiiA- 1 11 
is possibly large. Large II A-' 11. of course, means ill-conditioning, because Cond(A) = 
IIAIII!A- 1 !I will then be large. 

Remark. There are matrices which do nol have any of these symptoms bul arc: still ill­
conditioned (see Wilkinson (1965, pp. 254-:255)). 

Example 6.13. Consider the linear system Ax = b with 

A (~ 0.0~0! ~ ) . b = (~ :) . 
0 0 0.00001 0.1 

Then 

(

0.00001) 
x = 104 ! , which is quite large. 

(

0.00001 0 0) 
A- 1 = 10' 0 I 0 , which is large. 

0 0 I 

Thus, for this example (i} lhe computed solution is large, and (ii) A -I is large, A is, 
therefore, likely to be ill-conditioned. It is indeed trucl Cond(A) = 105 I 

6.8.2 Conditioning and Scaling 

In Section 6.5 we discussed scaling, and the message there was that scalillg is in general 
recommended iftlte entries of the matrix A vary widely. Scaling followed by a strategy of 
pivoting is helpfuL We noted there that scaling has an effect on rlw condition number of the 
matrix. For example, consider 

A= (\0 10
6

) I , Cond(A) = IO". 

However, if the first row of A is scaled to obtain A= ("·~JOI i ), then Cond(A) = 2. 
The question naturally arises, Given a matrix A, how can one clwose the diagonal 

matrices D1 and D2 such that Cond(Dj1 AD2 ) H"iit be as small as possible? 
This is a complex problem. Some or the historical and well-known papers on this 

topic include Bauer ( 1963, 1965), Businger ( 1968), Skeel ( 1979, 1981 ), and van der Sluis 
(1969). Chapter 7 of Higham (2002) gives a thorough treatment 

6.9 Computing and Estimating the Condition Number 
111e obvious way lo compute the condition number will be to compute it fmm ils definition: 

I. Compute A_,. 

2. Compute II All and [[A- 1 11 and multiply them. 
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We have seen that computing the inverse of A requires about 8~~ flops. Thus~ finding 
the condition number by explicitly finding A- 1 is much more expensive than finding the 
solution of Ax= b itself. On the other hand, to compute Cond(A), we only need to know 
IIA'- 111, not the inverse itself. Furthemwre, the exact value ofCond(A) itself is seldom 
needed; an estimate is sufficient. The question, therefore, arises whether we can get a 
reasonable estimate of UA -ll\ without computing the inverse of A explicitly. We present an 
optimization-based algorithm below. 

An Optimization Technique for Estimating IIA-'IIt 

Hager (1984) has proposed a method for estimating IIA _,II based on an optimization tech­
nique. This technique seems to be- quite suitable for randomly generated matrices, Let 
A-1 = 8 = (bij). 

Define afunction j(x): 

, ., I 
f(x) = IIBxilt = L L bijxi . 

!::::d J=l 1 

Then 

liBI!t =II A-' ill= rnax{f(x): l!xllt = 1). 

Thus, the problem is. to find maximum of the convex function f over the convex set 

S= {x E R" · llrllt :0: 1}. 

ALGORITHM 6,5. Hager's Norm-1 Condition Number Estimator. 

Inputs: Ann x n matrix A and ann-vector b. 
Output: An approximation of II A - 111 1• 

S 0 S ' - II '-I 'I - 0 b - (I l I )T tep . ct p- '' !I - , - ;(• n' · · · • ';( · 

Step l. Solve Ax = b. 

Step 2. Test if l!xll :0: p. If so, go to Step 6. Otherwise set p = !lxllt and go to 
Step 3. 

Step 3. Solve A r z = y, where 

Yi = 1 if XJ ::;: 0, Yi = - J if Xi < 0. 

Step 4. Set j = arg max[iz;l. i I, ... ,11}. 

Step 5. If lzil > z7b, update b = e1. where e1 is the jth unit vector and return 
to Step L Else go to Step 6. 

Step 6. Set IIA -'lit "' p. Then compute Cond 1 (A) = piJA lit. 
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Il is well known lhat the maximum of a convex funclion is obtained at an extreme point. 
Hager's method consists in finding this maximum systematically. Hager (l984) remarks 
that the a(r;orlthm usually stops after two iterations. An excellent survey of different 
condition number estimators, including Hager's, and their pcrfonnancc has been given by 
Higham (2002. Chapter 15). See also earlier papers of Higham (1987, I 990) and O'Leary 
(1980). 

MATCOM, MATLAB,and LAPACK Noles: Algorithm 6.5 has been implemented in the 
MATCOM program HAGCONDL A block 1-norm estimator due to Higham and Ttsseur 
(2000) is available in MATLAB function norrnestl. MATLAB function condest computes 
a lower bound c for the 1 Mnom1 condition number of a square matrix. rcood is a LA PACK 
reciprocal condition estimator. condest invokt.-!s normestl. 

Example 6.14. Let 

A= (-6~ ; ~), Cond 1(A) 2.9575 x !017 , RCOND = 3.469447 x JQ- 18 

7 8 (A is close to a singular matri.r). 

StepO. b= (~ ~ ~)T 
3' 3' 3 

Iteration I. x (1.0895. -2.5!23, 1.4228)7 : 

p = 5.0245, y = (1, -1, 1j'f, Z = 106 (2.0271, -3.3785, J.35J4)T, 
j = 2. izh = 10 16(3.3785) > zTb =- 1.3340. 

Iteration 2. x = 1017 (-1.3564, 2.7128, -U564)T, ll.tll 1 = 5.4255 x 1017 

Remark. Since ll.tllt > p, we take UA-'Iit = 5.4255 x 1017 

This is an excellent estimate of IIA -'llt-
NotelhatCond1(A) px IIAiit =8.680Rx 1018

, IIA-1 IIt = 1.8014x 
1016, and condest (A)= 2.8823 x 1017 I 

6.10 Componentwise Perturbations and the Errors 
If the component wise bounds of the perturbations arc known, then the following perturbation 
result obtained by Skeel (1979) holds. In the following, li ·II stands for infinity norm. 

Theorem 6.15. Let Ax =band (A+ l'.A)(x + l'.x) = b + 8b. Let 1"-AI :5 EIAI and 
liibj 5 Ejbj. Then 

llcl.tll lllr1IIAIIxl + IA- 1IIhlll 
ilxli 5 

E 0-<IIIA-'IIAIIIlllxll · 

Definition 6.16. The nwnber Cond(A, x) = tlw:,';:"' 11 will be called Skeelc< co11ditiou 

11umber and Cond., (A) = lilA -Ill Ail! the upper bound of Skeel's condition nwnbe~: 

An important properLy of Cond(A, x }: Skeel's condition number is invariant under 
row-scaling. It can, therefore, be much srnaHer than lhc usual condition numberCond(A}. 
Cond(A. x) is useful when the column norms of A_, vary widely. 
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6.11 Iterative Refinement 
Suppose u computed solution .i' of the system Ax = b is not acceptable. It is then natural 
to wonder if .i can be refined clwaply by making use of the triangularization of the matrix 
A already available. 

The following process, known as iterative refinement. can be used to refine X itera­
tively up to some desirable accuracy. 

Iterative Refinement Algorithm 

The process is based on the following simple idea: 
Let x be a computed solution of the system Ax b. If x were an exact solution, 

then r = b Ax would be zero. But in practice we cannot expect that. Let us now try to 
solve the system again with the computed residual r(;io 0): that is, let c satisfy 

Ac = r. 

Then, y = x + c is the exact solution of Ax = b, provided that c is the exact solution ol' 
Ac = r, because 

Ay = A(x +c) Ax+ Ac = b- r + r =b. 

It is true that c uguin wtll not be an exact soiulion of A c = r in practice; however. the above 
discussion suggests that y might be a better approximation than :X. If so. we can continue 
the process until a desired accuracy is achieved. 

ALGORITHM 6.6. Iterative Refinement. 

Inputs: A E Rn ;w, b E lR11
" 

1• and tolerance t:. 
Output: A refined solution. 

Set x' 01 = _;;, 

Fork = 0, I, 2, ... do 

I. Compute the residual vector ril\l: r(ki = b- Axlk}. 

2. Calculate the correction vector c(k! by solving the system Ac(kl r(k), 

using the same triangularizatlon of A that was used to obtain xiDl. 

3. Update the solution: x(k+IJ = x(kl + clkJ. 

llxt'+" xt'11h 
4. TesJ for the convergence: If , O:l - < E, stop. 

1lx · 112 

End 

Remark. If the system is noltoo ill-conditioned and double precislon Is used in compuling 
the residuals, then the iterative refinement using Gaussian e1imination with pivoting will 
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ultimately produce a very accurate solution. The rate or convergence depends upon the 
condition number (see Higham (2002, Chapter 12)). 

MATCOM and LAPACK Notes: Algorithm 6.6 has heen implemented in the MATCOM 
program ITERREF. 

Example 6.17. 

A= G ~ ~)' 0 3 
b 

(

0.0001) 
0.0001 . 
-1.666 

The exact solution is 

X = (~02~~~7) (correct Up tO four £igurcs). 
-0.5555 

xtUJ (:). 

k=O: 

The solution of Ac<O) = r<m : 

ct0l = -0.7222 , (
-1.2777) 
-1.5555 

Note that Cond(A) = 3.8078. A is well-conditioned. I 

Accuracy Obtained by Iterative Refinement 

Suppose that the iteration converges. Then the error at (k + l)th step will be less than the 
error at the kth step. 

Let 

TI1en if c ~ I o~s, there tv ill be a gain of approximately s figures per iteration. 

Flop-count. The procedure is quite cheap. Since A has already been triangu1arized ro 
solve the original system Ax = h, each iteration requires only 0(n2 ) flops. 
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Remarks. Iterative refinement is a very useful technique. GEPP followed by iterative 
refinement is the most practical approach for solving a linear system accurately. Skeel 
( 1980) has shown that in most cases even one step of iterative refinement is sufficient. See 
also Higham (2002) and Jankowski and Wozniakowski ( 1977). 

Estimating the condition number from iterative refinement. A very crude estimate of 

the condition number of matrix .4 is ]0'<1-/' (Rice (1981 )), where t is the number of digits 
and k is the number of iterations perfonned for the procedure to converge. 

Example 6.18 (Stewart (1973, pp. 205)). Consider solving lhe ill-conditioned system with 

A _ (7 6.990) b = (34.97) 
- 4 4 . 20.00 

(the system is ill-conditioned bei:auiicCoi\di(AJ = 3.2465 x 103). 

The exact solution is x = ( 5). 
I et ,.(0( - ( 1.667) .; .~ ~ ].333 ' 

k=O: 

A (0) _ (0.333 X 10-2
) 

X - 0 • 

The solution of Act0l = rt0l: 

c'o' = ( 0.3330 ) , 
-0.3330 

x(ll = x(O) + c(OJ (;) • I 

6.12 Special Systems: Positive Definite, Diagonally 
Dominant, Hessenberg, and Tridiagonal 

In this subsection we will study numerical solutions of the following special systems: 

Symmetric positive definite system. 

Hessenberg system. 

Diagonally dominant sysrem. 

Tridiagonal and block tridiagonal system. 

Indeed, it is very often said by practicing engineers that there are hardly any systems 
in practical applications rvhiclt are not one of the above types. These systems therefore 
deserve a special treatment. We first give some examples to shm.v how these systems arise 
in practical applications. 



6.12. Special Systems 147 

6.12.1 Special Linear Systems Arising from Finite Difference Methods 

We have seen in the last section how finite difference schemes for solving partial differential 
equations lead to linear systems problems. Many times such systems have special properties 
and structures: some well-known structured matrices arising widely in applications include 
tridiagonal, diagonally dominant, positive definite, and block tridiagonal. We first 
discuss a situation which gives rise to a tridiagonal system. 

A. Tridiagonal Systems 

Consider the one-dimensional steady conduction of heat such as heat conduclion through a 
wire. In such a case, the temperature remains constant with respect to time. The equation 

here is ~~~r~ = 0. The difference analogue of this equation is 

T (x +box)- 2 T (x) + T (x- box)= 0, 

where .6.x is the increment in x, as shown below. 

lxi+J- x;l =box, i = 0, I, 2, 3. 

Using a similar numbering scheme as in Section 6.3.4, the temperature ~ at any point x1 is 
given by 

~+I - 2 Ti +Ti-l = 0; 

that is, the temperature at any point is just the average of the temperafllres of the two nearest 
neighboring points. 

Suppose the domain of the problem is 0 ~ x ~ 1. Divide now the domain into four 
segments of equal length. Thus Llx = 0.25. Suppose that we know the temperature at the 
end points x0 = 0 and x4 = 1, that is, 

To= O'J and T" = a2. 

These are then the boundary conditions of the problem. 
From the above equations, the temperature at each node x0 = 0, x 1 

2Llx, x 3 = 3Llx, x4 = I is calculated as follows: 

At.to = 0, 
At.t 1 = box, 
At X2 = 2.6-.t, 
At x3 = 3box, 
Atx4 =I, 

To = a 1 (given), 
To - 2T, + T, = 0, 
r, - 2r, + r, = o, 
r,- 2r, + r. = o, 
T4 = a2 (given). 

In matrix form these equations can be wriucn as 

(j 
0 0 0 

!)(ij] m 
-2 I 0 
I -2 I 
0 I -2 
0 0 0 

(6.44) 

This a tridiagonal system. The solution of this system will give temperatures at the nodes 
XJ, .t2 , and X]. 



148 Chapter 6. Numerical Solutions of Linear Systems 

B. Symmetric Tridiagonal and Diagonally Dominant Systems 

In order to sec how such systems arise, consider now the unsteady conduction of heat. 
This condition implies that the temperature T varies with the time t. The heat equation in 
this ca~t: is 

1 ar a2r 
~at= Hx1 ' 

where a is thermal diffnsivity as defined in Section 6.3.4. Let us divide the grid in the (x, t) 
plane with spacing Ll.x in the x direction and Ll.t in the 1 direction. 

I 1 ! 
............ i ... ········ ..... . .... 

I 
l 

' ; 

t, 
! l 

r, 

I I 
0 Xz 

Let the temperature at the nodal point x1 = i ilx and lj jill, as before, be denoted by 

T;,,. Approximatino ~,71 and ;~"~ by the finite differences e t <tx· 

ar 1 "'- rr. ·~• r,,,J, at t:..t I.; • 

81 T I 
- "'--, (7;+1 j~l - 2T; j+l + Ii~J.j+l ), 
ih:2 (D.x)- · · · 

we obtain the following difference analogue of the heat equation: 

where C = a _ill_,. { d.x/-

1, 2, ... , n. 

These equations enable us to determine the temperature at time step j = k + I. 
knowing the temperature at the previous Lime step J = k. Varying i from I ton, these 
equations become 

fori = L j = k: (I + 2C)T,_H, CT2.k+, = C1o.k+l + r,,. 

fori = 2, j = k: (I+ 2C)h<+• - CT3,k+1 CT,,+, = T,,, 

fori= n, j = k: (I + 2C)Tn.k+l - CT,~>.k+l = T,,, + CT,,+Lk+>. 
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Suppose now that the temperatures at rhe two vertical side-S are known, that is. 

Then the above equations can be written in matrix notation as 

(I+ 2C) -C 0 0 ru+l Tt,k +C~IIt 
-C (I + 2C) -C 0 0 T1.1:+l 1'-;__k 

-C 
0 -C (I+ 2C) Tn,k+l TILk CTwz 

The matrix of the above system is clearly symmetric, tridiagonal, and diagonally dominant 
(note that C > 0). 

For example,. when C = l, and -we have 

3 -1 0 
-1 3 -1 

0 

which is of the fom1 

-I 

0 T,,k+l 
0 T1.k+l 

-I 
3 Tn,k+l 

Ax =b, 

= 

where A is symmetric, tridiagonal, and diagonally dominant. 

Block Tridiagonal Systems 

Tu + T.,,, 
T1);; 

(6.45) 

~~.t. + T"'"-

To see how block tridiagonal syslems arise in applications, consider the two-dimensional 
Poisson's equation: 

a'r a2T -+ =f(x,y): ax2 0 :.S )' :.S I. 

A discrete analogue to this equation, similar 10 Laplac-e's equation derived earlier, is 

i = 1,2 .... ,11, j I, 2 ..... n 

This will give rise to a linear system of (n + 2)2 variables. 

(6.46) 

(6.47) 

Assume now that the values ofT at the four sides of the unit square are known and 
we are interested in the values uf T at the interior grid poinls. that is, given 

'T{l,J: T,,+l.i and T..o; 11.,+1• j=O,I, .... n+l, i=O,l, .... n+l. (6.48) 
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weneedtofind T,,, ... ,Tn!· Tl'l·····Tn2· T, 11 , •••• ~111 • Thenwehavean(n 2 x n 2} 

system with n1 unknowns which can be written after suitable rearrangement as 

= 

To, + Tw- (C.x)1 !11 
T,o- (t.xf h1 

Tn-1.0- (C.x)1 
fn-l.l 

I;r+!,l + 1~r.O- (llx)2 fn.l 
To2 - ( C.x l' f12 

(6.49) 

(6.50) 

The system matrix above is block tridiagonal and each block diagonal matrix A 11 is sym­
metric, rridiagunal, and posirive definite. For details, see Ortega and Poole ( l98i, 
pp. 268-272). 

6.12.2 Special Linear Systems Arising from Finite Element Methods 

We have seen in the lust few sections how discretization of differential equations using 
finite differences gives rise to various types of linear systems problems. The finite element 
lcchnique is another popular way to discretize differential equations, and this results also in 
linear systems problems, Just to give a taste to the readers, we illustrate this below by means 
of a simple differential equation. lnten.!sted readers are referred lo some weH~known books 
on the subject: Strang and Fix (1973), Becker, Carey, and Oden (1981), Rcddy(l993), and 
Fish and Belytschko (2007). 

Variational Formulation of a Two-Point Boundary Value Problem 

Let us consider the two-point boundary value problem 

-u" + u = f(x). 0 <X< I, 

11(0) =II( I)= 0, 

(6.51) 

(6.52) 

where u' :::;;:;: tl,u and f is a continuous function on [ O.l]. We further assume that f is such 
" that the problem defined by (6.51 )-(6.52) has a unique solution. 

We introduce the space 

V { v : v is u continuous funclion on [0, 1], V
1 is piecewlse continuous and 

bounded on [0. 1], and v(O) = v(l) =OJ. 
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Now, if we multiply the equation -11" + 11 = f(x) by an arbitrary function v E V (v 
is called a test function), integrate by parts the left-hand side, and use the above boundary 
conditions, we get 

1' (-u"(x) + u(x))v(x)dx = 1' f(x)v(x)dx, 

that is, 

1' (u'v' + uv)dx = 1' f(x)v(x)dx. (6.53) 

Equation (6.53) can be written as 

a(u, v) = (f, v) for every ll E V, 

where 

a(u, v) = 1' (u'v' + tw)dx 

and 

(f, v) = r' f(x)v(x)dx . 
.fo 

(Notice that the form a(·,·) is symmetric (i.e., a(u, v) = a(v, u)) and bilinear.) These two 
properties will be used later. It can be shown that 11 is a solution of (6.53) if and only if 11 is 
a solution to (6.51 )-(6.52). 

The Discrete Problem 

We now discretize problem (6.53). We start by constructing a finite-dimensional subspace 
V11 of the space V. 

Here, we will consider only the simple case where V11 consists of continuous piecewise 
linear functions. For this purpose, we let 0 = Xo < XJ < x2 • · · < X 11 < Xn+l = I be a 
partitionoftheinterval[O,l]intosubintervals/j = [Xj-t.Xj]oflengthltj =Xj-Xj-t. j = 
1, 2, ... , 11 + I. With this partition, we associate the set V11 of all functions v(x) that are 
continuous on the intervallO,lj, linear in each subinterval/j, j = I, ... , 11 + 1, and satisfy 
the boundary conditions v(O) = v( I) = 0. 

We now introduce the basis functions I ¢1' ¢z' ... ' ¢n} or VI!. 
We define r/Jj(x) by 

. ( I (1) r/Jj(X;) = Q 
if i = j, 
ifif=j; 

(ii) ¢;(x) is a continuous piecewise linear function. 

r/Jj(X) can be computed explicitly to yield 

X- Xj-l 

hj 
Xj+l -X 

hj+l 
whcnxj ::=:x _:::xj+l· 
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0 

Since c/>1 ..... ciJn arc the basis functions, any function v E \111 can be \\'Titten uniquely as 

v(x) L V;</J;(x), where v; = v(x,). 
i:<O:! 

We easily see that V11 c V. 
The--discrete analogue of problem (6.53) then-reads: -Find Un ,E Vn such_ that 

a(H.,, v) = (f, v) (6.54) 

Now, if we let11" = 2:;'~ 1 c;¢1(x) and notice that (6.54) is particularly true for every 
function </l j (x ), j = l, ... , 11, we get 11 equations, namely, 

Yj = 1,2, ... ,11. 

Now using the linearity of a(·, !/lj) leads to 11 linear equations in 11 unknowns: 

" L c;a(¢1• !/lj) = (f, !/lj) Yj 1,2, .... n, 
r~1 

\Vhich can be written in the matrix form as 

Ac (j;,);, (6.55) 

where (f,,)1 =(f. ¢1) and A= (aij) is a symmetric matrix given by 

and 

The entries of the matrix A can be computed explicitly: We first notice that 

ifli- jl2: 2. 

(This is due to the local support of the function ¢1(x).) A direct computation now leads to 
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Then the system (6.55) can be written as 

C; (/,), 

0 c:; (M, 

= (6.56) 

b,j~J 

0 bn-l lln 
c11 (fn)u 

ln the special case of uniform grid h.t =It= matrlx A then takes the form 

2 -I 0 

-] 2 

f ] A +- (6.57) 

" 6 

-I 0 
0 -I 2 

Note that A has a very special structure: it is tridiagoual and symmetric positive 
definite. 

6.12.3 Symmetric Positive Definite Systems 

Definition 6.19 (positive definite matrix). A ~ymmetric matrix A is positire definite 
if. for evel}1 non::.ero vector x, x7 Ax > 0. Let x = (x 1, x:b ... , x,;)r. Then x TAx 
L;1

,j=l aijx1x j is called the quadratic farm associated with A. 

A positive semidefinite matrLt is simllarly deflned. A symmetric matrix A is pnslti\•e 
semidefinite if xTAx ~ 0 for all vectors x. 

A commonly used notation for a symmetric positi\•e definite (posith'e semidefinite 
matrix) is A > 0 (2: 0). 

Some Characterizations and Properties of Positive Definite Matrices 

I. A symmetric matrix A is positive definite if and only if all its eigenvalues are positive. 

2. A symmetric matrix A is positive definite if and only if all its leading principal minors 
arc positive. 

3. IrA = (Oij) is symmeu-ic positive definite, then aii > 0 for all i. 

4. II' A = (a;j) is symmetric positive definite, then the largest element {in magnitude) 
of the whole matrix must lie on the diagonaL 

5. The sum of two symmetric positive definite matrices is symmetric positive definite, 
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Remarks. Note that properties 3 and 4 give oniy necessary conditions for a symmetric 
matrix to be positive definite. They can serve only as initial tests for positive definitem:ss. 
For example, the matrices 

1 0 I 2 (
4 I I I) 

A=ll23' 

I 2 3 4 

cannot be positive delinite, since in matrix A there is a zero entry on the diagonal. and in B 
the largest entry 25 is not on the diagonal. 

The Cholesky Factorization 

Amore_numericallyJ.~iTecti_ye way __ lq ~Q_e_t};.Jl}~_pq~j~i>:~-~~finitencss af_a syfiln1etric matrix 
than those given by characterizations I and 2 is via Cbolcsky factorization of A: 

Given a symmetric positive definite matrix A, there exists a lower triangular matrix 
H with positive diagonal entries such that 

A= HHT 

This factorization is called the Cholesky factorization. after the French engineer 
Andre-Louis Cholcsky,3 who discovered this fac<orization. H is called the Cholesky factor. 

111c existence of the Cholcsky factorization for a symmetric positive definite matrix 
A can be seen either via LU factorization of A (Exercise 6.30) or by computing matrix li 
directly from the above relation. 

We will not discuss the technique of finding Cholesky factorization via LU decomposi­
tion here. However, we note that Gaussian elimination, even without pivoting, is remarkably 
stable for positive definite matrices. 

In this case, it can be sltown that tile grmvthfactor is exactly equal to l. Even if there 
is a small pivot, the elimi11ation scheme does not give rise to the growth in the entries of the 
sab.'iequem matrices A (kJ. For example, consider applying Gaussian elimination \Vithout 
pivoting to the following 2 x 2 example: 

A _ (0.00003 0.00500) 
- 0.00500 1.0000 . 

There is only one step. The pivot entry is 0.00003. It is small. As a result of this the 
multiplier m21 is relatively large: 

0.00500 
--= Ul2! 

a11 0.00003 
500 

3 

However, the entries of A W did not grow: 

0.00500) 
0.16667 . 

:;Andre-Louis Cholesky ( 1875-19 I 8) served as an officer in the French military. His work there involved 
geodesy and surveying. 
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In fact. max(ai} 1l = 0.166667 < max(ali) = I. Thus the growth factor pis I. This 
interesting phenomenon of Gaussian elimination without pivoting can be explained through 
the following result. Sec Wilkinson (1965). 

Theorem 6.20. Let Gaussian elimination without pit•oting be applied to a symmetric positive 
definite matri.:r A, Write A co, the matrfx obtained after tlw kth step, as 

A ''I = ( u~, I ,~'=;.~~' ) . 
(i} Then W11 -k,n-k is symmetric and positil·e definite. 

The Cholesky Algorithm 

We now show how the Cholesky factorization can be computed directly from A = JJ JJ 7, 
when 11 = 3. The general case is analogous. 

( a11 ilJ2 al3 ) ( hn 0 0 ) ( hu h;.! h)! )· a;n an a2:3 = h:l hn 0 0 II:.z 1132 

a;q a:n GJJ- ''" h3:. h33 0 0 h3'J-

A JJ JJT 

I. Compute the first column of H. Compare the corresponding entries of the first column 
of both sides: 

"" =Jail, 
t12t 

hlt, 

ll]l 
h-q = -. 

- h!l 

2. Compute the second column of H. Compare the second and third entries of the second 
column of both sides: 

!1:.2 Ja-n - h~t, 
a:n- h21h31 

/h.,:.:.:;:; ' 
··- 1!22 

3. Compute the third column of' JJ. Compare the third entry of the third column of both 
sides: 

In general, compute recursively the first through nth columns of H by comparing 
the entries of the respective column of both sides or A H HT' 
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ALGOIUTIIM 6.7. The Cholesky Algoritbm.4 

Input: Ann x n symmetric positive definite matrix. 
Output: The Cholesky factor H. stored over the upper triangular part of A, 
including the diagonal, 

This leads to the following algorithm, known as the Cholesky algorithm. 

Remarks. 

I. The matrix H ahnve is computed column by column. 

2. In the above pseudocode, 2:.:}~ 1 ( ) = 0. 

3. 1l1e positive definiteness or A will make lhe quanti lies under the square~rooi signs 
positive. 

Round-off property. Let the computed Cholesky factor be denoted by fi. Then it can be 
shown (Demmel (1989)) that 

• • T A+E=H(H), 

where E = (e··} and lc··l < 1'+111' (·a;·a ·) 112• Thus the Choleskv factorization aloo-
lJ ' I] - l (n+IJII .l ]J ' J e 

rithm (Algorithm 6.7) is stable. See also Higham (2002, p. 197). 

MATCOM and MATLAB Notes: Algorithm 6.7 has been implemented in the MATCOM 
program CHOLES.Notc that the MATLAB program chol(A) computes the Cholesky factor 
R such that A = RT R, where R is upper triangular. 

Solution of Ax= b Using the Cholesky Factorization 

Having the Cholesky factorization A = R H 7 at hand, the positive definite linear system 
Ax = b can now be solved by solving the lower trlangular system H y = b tirSL, followed 
by the upper triangular system H 7 x = y. 

4This algorithm in some fields (such as in slatistlcs) is known as the square-mot algorithm. A sqtmrc­
mot~free algorithm. however. can be developed. 
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ALGORITHM 6.8. The Cholesky Algorithm for the Positive Definite System 
Ax=b. 

Inputs: A symmetric posilive definite matrix A E 1F£nM!, bE ]Ril. 

Output: x E IR" such that Ax = b. 

Step 1. Find the Cholesky factorization of A = H Hr (use Algorithm 6.7). 

Step 2. Solve the lower triangular system for y: H y b. 

Step 3. Sol vc the upper triangular system for x: fl T x = y. 

Example 6.21. Let 

A. The Cholesky factorization. 

lst column (k = l): 

I 
5 
5 

~). 
14 

""=I, 
a,, 

,,, = . = 1. 
- hll 

a11 I 
"" = . = -1 = I. 

. "" 

157 

(Since the diagonul entries of H have lobe positive, we take the+ sign for lz 11 ). 

2nd column (k = 2): 

3rd column (k = 3): 

1133 = = 3. 

Thus, H (; ~ ~) 
B. Solution of the linear system Ax = b. 

(I) Solution of Hy IJ => y = (3. 4. 3)T 

(2) Solution of Hrx = y => x = (1, I. l)r. I 

Flop-count. (i) The Cholcsky algorithm requires ~ flops lo compute H (half of the 
Trwnber of flops required to do the same job using LU factorization) and n square rool">. 
(ii) The solution of each triangular system H y = band lJ rx = y requires n2 flops. Thus 
the solution of the positive dclinite system Ax b using the Cholesky algorithm requires 

~ + 2n 2 flops and n square roots. 
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Round-off property. If .i is the computed solution of the system Ax = b using the 
Cholesky algorithm. then it can be shown that£ satisfies 

(A+ E).r =b. 

where UEih s CllllA.II 2 • and cis a small constant depending upon n. Thm the C/wlesky 
algorithm for solving a symmetric positit·e definite system is srable. See Higham (2002. 
p. 198). 

Relative Error in the Solution by the Cholesky Algorithm 

Let .t be the computed solution of the symmetric positive definite system of Ax =b. using 
the Cholesky algorithm followed by triangular systems solutions as described above. Then 
it can be shown that 

Ux- .i'\l, s J1. Cond(A). 

Remark. Dcmmel ( 1989) has shown that the above bound can be replaced by 0(/1) Cond (A), 
where A D~' AD~t, D = diag(J'iil, ... , .,fa,,). The latter may be much better than 

the previous one. since Conrl(A) may be much smaller than Cond(.4). 

6.12.4 Hessenberg System 

Considt:r the linear system 

Ax =h, 

where A is an upper Hessenberg matrix of order 11. So1ution of a Hessenberg system arises 
in several practical applications, including the eigenvector computation of a matrix (see 
Algorithm 9.8). Solving a flessenberg system requires much less computational effects than 
solving an arbitrary system. This is because, at each step of elimination 1 only one entry 
needs lo be updalcd, clue to the special structure of a Hcssenberg malrix. Furthermore, if 
Gaussian elimination wilh partial rivoting is used to triangularizc A, and if !a1i l ~ 1, lhcn 

Ia if> I s k +I (Wilkinson ( 1965. p. 218)). Thus, the growth factor pin this case is less than 
or equal ton (Higham (2002, p. 172)). 

Growth factor and stability of Gaussian elimination for a Hessenberg system. The 
growth factor for a Hessenbcrg matrix using GEPP is bounded by n. Thus a Hessenberg 
system can be safely solved using partial pivorb1g. 

Flop-count. It ret]uires only 3n2 Hops to solve a Hessenberg system, significantly less 

than 2~ flops required to solve ann x n system with an arbitrary matrix, This can be seen 
as follows: 

Triangularization: n2 flops. 
Solution of the lower triangular system: n 2 flops, 
Solution of the upper triangular system: n1 flops. 
Total: 3n 1 Hops. 
Thus a Hessenberg system can be solved with only 3n2 flops in a stable way using 

GEPP. 
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Example 6.22. Solve the Hessenberg system Ax = b with 

A= ( 
1 2 3) 
~ ~ : . /; = (6. 9. Ill 

using partial pi Poling and compulc the grow!hfactor. 

Step I. The pivot on the first column is identified as the (2,1) entry. Interchange row 2 with 
row I and overwrite it with A. 

Now, multiply the first row by -t and add it to the second ro\v. 

Multiplier mr;: = -!, Permutation row index r 1 = 2. 

Step 2, The pivot on the second column is identiflcd as the (3, 2) entry of the current 
matrix A. 

Interchange the second and third rows to obtain 

(

2 3 

A=A= ~ ~ 

Multiply the second row by -t\i and add it to the third row to obtain 

A,;A (
2 3 4) 
0 5 6 . 

0 0 l 
5 

Multiplier 11121 = 
So, 

Pcrmurarion row index r2 3. 

(2 3 4) (1 
U= 0 5 6 , L= 0 

0 0 ; t 
' -

0 
I 
I 

Til 

I. 

0 ~). 
0 0 

Computation of the srowth factor: p = !lt.'lX\~.6·6 ) 

Sol11tion of the system: Solve Ly = b' = Pb => 
X=(l,l,l)'". I 

' r )' = (9,11. 51. Solve Ux = y => 
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6.12.5 Diagonally Dominant Systems 

A matrix A= (a11 ) is column diagonally dominant if 

la11l 2: la;d + la;d + · · · + Ia, d. 
lazol 2: lat21 + Ia;,[ + · · · + la,J, 

(6.58) 

If the strict inequalities hold, then A is called a strictly column diagonally dominant 
matrix. A row diagonally dominant matrix can be similarly defmed. 

A column diagonally dominant matrix possesses the attractive property tlwt no row 
interchanges are necessary at any step during the triangularization procedure using GEPP. 
The pi vat element is already there in the right place. 

We show this by taking A as a 3 x 3 matrix. For a proof in the general case, see the 
solutioiiio Exeicise-6.35(a). 

Let 

a12 on ) 022 a23 

a:n. a:n 

be column diagonally dominant. Then a 11 can be taken as the pivot at the first step, and no 
interchange of rows is necessary. At the end of Step I, we have 

( a~t 
llj2 an 

Ao'= am (l) ) 22 :~~) . a<n 
3'2 33 

We will now show that 

lag' I 2: lai;' I 

so that a~i' will be the pivot at the next step. Observe that 

OJ aJJ 
a3.., = a.u - a 12 x -. 
·- Gtt 

By column diagonal dominance, we have 

Using (6.60) in (659), we have 

la\;11 S Ia, I+ I::: I (Iaiii- !az,J) 

lap! 
=Jan I+ lad- . - .,la2d 

1 all 

lap! 
S la221 - , --~la2tl 

jill! 

(since by the column dominance of the second column of A, lanl 2: lad+ la321). 

(6.59) 

(6.60) 
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Thus. 

The general case can be proved using a similar argument. 
Furthennore, it can he shown (Higham (2002, pp. 170-172)) that in this case, tire 

grmvth factor is less titan or equal to 2. 

Growth Factor and Stability of Gaussian Elimination for Diagonally Dominant 
Systems 

• For a column diagonally dominant matrix, GEPP is identical to Gaussian elimination 
without pivoting. 

• The growth factor p for a column diagonally dominant matrix is bounded by 2, that 
is, p s 2. 

Thus, for column diagonally dominallf systems, Gaussian elimination tvithollt pivot~ 
ing is perfectly stable. 

For row diagonally dominant matrices, the multipliers can be large; however, p ::; 2 
and lhus Gaussian elimination wilhoul pivoting is stJll stable. 

Example6.23. Let A (; 1n Then Al'l = (~ -;,'), 
; 

fiL1.X(lO ~~ ;l.!i I 
The growth factor p = · 10 ' ' = ;\; I, 16. 

6.12.6 Tridiagonal Systems 

The LU factorization of a tridiagonal matrix T, when it exists, may yield Land U having 
very special simple structures: both bidiagonal, L having I 's along the main diagonal and 
the superdiagunal entries of U the same us those ofT. Specifically~ write 

By equating the corresponding elements of the matrices on both sides, the entries !£1} 

and (1!1) can be computed from 

i =2, ... ,n: 1=2, ... ,1!. 
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ALGORITHM 6.9. Computing LU Factorization of a Tridiagonal Matrix. 

input: The tridiagonal matrix T as given above. 
Outputs: The unit lower bidiagonal matrix L and the upper bidiagonal matrix 
U as given above. 

Sctu1 =at 
Fori=2, .... ndo 

End 

1 Cf 
1, =-­

ltj-! 

ui = a1 ~ e;hi-1 

Solving a Tridiagonal System 

Once we have the above simple factorization ofT, the solution of the Lridiagonal system 
Tx = b can be found by solving the following two special bidiagonal systems in the order 
(i) Ly =b. (ii) Ux = y. 

Flop-count. A rridiagona/ system can be solved !Jy rhe above procedure in only O(n) 
flops, a very cheap procedure indeed. 

Stability of the process. Unfortunately, the above factorization procedure breaks down if 
any u 1 is zero. Even if allui are theoretically nonzerot tlte stability of the process in general 
cannot be guanmteed. However, as \Ve have seen before in many practical situations, such as 
in discretizing Poisson's equation, the tridiagonal matrices are symmetric positive definite, 
in which cases the above procedure is quite stable (see Higham (2002. pp. 173-176)). 

In fueL for asymmeuic positive definite tridiagonal system case, this procedure should 
be preferred over the Cholesky faclorization technique, as it does not invo1vc computations 
of any square root.s. It is true that the Cholcsky factorization of a symmetric positive definite 
tridiagonal matrix can also be computed in 0 (n) Hops~ however, an additional n square roots 
have to be computed {see Golub and Van Loan (1996, p. 156)). 

in tire general case, to maintain stabllity, GEPP should be used. 
Furthermore, if the entries ofT arc so scaled that !a1 1. !b1 1. !c1 I :S I, then it can be 

shown (Wilkinson (1965, p. 219)) that the entries of Atkl at each step of OEPP will be 
bounded by 2, showing that the growrhfactor in this case is bounded by 2. For a proof, see 
Higham (2002, pp. 173). 

Growth factor and stability of Gaussian elimination for a tridiagonal system. TI1e 
growth factor for GEPP of a tridiagonal matrix is bounded by 2: p ::; 2. 

Thus. GEPP for a tridiagonal system is srable. 

If T is symmetric, one naturally wants to take advantage of the symmetry; however, 
GEPP does not preserve symmetry. Bunch (1971) and Bunch and Kaufman (1977) pro· 
posed symmetryKprcscrving algorithms. These algorithms can be arranged to have flop~count 
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comparable to that of GEPP and require less storage than the Iauer. For details sec the papers 
by Bunch (1971) and Bunch and Kaufman (1977). See also Bunch and Parlett (1971) and 
Bunch, Kaufman and Parlett (1976), 

Example 6.24. Triangularize 

(

0,9 0.1 0) 
A~ 0.8 0.5 0.1 

0 0.1 0.5 

using (i) the formula A= LU, and (ii) Gaussian elimination. 
(i) From A= LU 

"' ~ 0.9. 

i = 2: 
. c, e.,= -
- "' 

0
'
8 

= ~ = 0.8889· 
0.9 9 , 

8 
0.5- g X 0.1 = 0.4111. 

c, 0.1 e1 = - = -- = 0.2432; 
• 112 0.41 

u, = "' e,b2 = o.s- o.24 x o. 1 = 0.4757. 

Thus, 

(osgsg 0 
1 

0.2432 
~)-

0.1 (

0.9 

U= ~ 
0.1 

0.4111 
0 

(ii) Using GEPP 

Step 1. Multiplier m2 1 = - g:: = -0.89; 

(

0,9 
Alii= ~ 

Step 2. Multiplier m32 - g41
1 = -0.243; 

0.1 
0.4111 

0. I 

Am= (
0
o
9 o.~·t'u o

0
1 ) = u. 

0 0 0.4757 

L = (-,0;,, ~ ~) = (o.s~s9 
-m:t-2 1 0 

Block Tridiagonal Systems 

0 
I 

0.2432 

0 ) 0.1 ' 
0.4757 

I 

In this s.ecLion we consider solving the block tridiagonal system Tx = b, where Tis a block 
tridiagonal matrix and b = (b1, b2,. , , , b11 )T is a block vcclor. The number of components 
of the block vector h; is the same as the dimension of Lhe i lh diagonal block matrix in 'I'. 
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A. Block lU Factorization 

The factorization procedure given in the heginning of this section may be easily extended 
to the case of the block tridiagonal Matrix. Let 

A, B, 

c, 0 
T= 

0 BN-1 
eN A.v 

(6.62) 
I u, B, 0 

L, 0 
= =Lu:-

0 B.v-1 
LN J 0 UN 

Then the mauices L1, i 2, ... , N, and U1, i = l, ... , N, can be computed as in the ease 
of a scalar tridiagonal matrix, as shown in Algorithm 6.10 

ALGORITHM 6.10. Block LU Factorization of a Block Tridiagonal Matrix. 

Input: The block tridiagonal malrix T us given above. 
Output: The block unit lower bidiagonal matrix Land the block upper bidiagonal 
triangular matrix U as given above. 

Step 1. Set U1 = A 1• 

Step 2. Fori 2, ... , N do 
2.1. Solve for £ 1: L1U1_ 1 = C1• 

2.2. Compute Ui: Ui = A1- LiBi-1· 

Numerical stability of block LU factorization of a block tridiagonal matrix. It is 
clear from the statement of Algorithm 6.10 that block LU factorization docs not always 
exist. Even if it docs. it may not be stable. However, it can be shown to be stable if T is 
a symmetric posith•e definite matrLt that is well-conditioned. The scheme is ai.so stable if 
Tis a block column diagonally dominant matrix with respect to a subordinate matrix norm 
(Higham (2002, pp. 251-256)). Note that the block tridiagonal matrix in (6.4YH6.50) 
appearing in the solution of Poisson's equation (6.46) is such a matrix. A E JRtt:-:m with 
partitioning A = (AiJ) is block diagonally dominant by column for a git'en norm and far 
all j if 

(6.63) 
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B. Solution of Block Systems 

Once we have the above factorization. we can llnd the solution x of lhe hlock tridiagonal 
system 

T.t = b 

by solving Ly = b and Ux = y successively. The solution or Ly = b can be achieved 
by block forward elimination, and the solulion of Ux = y can be computed by block back 
substitution. 

ALGORITHM 6.11. Block Forward Elimination. 

Inputs: A block unit lower triangular matrix L = ( Lil as in (6.62), and a block 
veclOr b. 
Output: The block solution vector y such that Ly = b. 

Set L 1y0 = 0. 
Fori=l, ... ,ndo 

Yi = bi- LiYi·~l· 
End 

ALGORITHM 6.12. Block Back Substitution. 

Inputs: A block upper triangular matrix U as in (6.62), and the block vector y, 
output from Algorithm 6.11. 
Output: The block vector x such that Ux = y. 

Set BNxN+I = 0. 
Fori N, ... ,ldo 

Solve U,xi = Yi BtXi+l· 
End 

Example 6.25. Consider the system Tx = b with 

Then 

(~I T= I 

0 

( 4 A,= .-1 -·I) 
4 ' 

·-I 
4 
0 
I 

l 
0 
2 
-] 

A,= (!l 

b, = (!)· b1 

-I) 
2 ' 

(;). 
B, = (b n-
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Block LU factorization: 
Set -I) 4 . 

i = 2: 

( l) Solve for L2.: U1 L2 = I, = ( ~ n =; Lz = u,~r = (~2666~ g:~::~) . 
(2 C U r U \ L B U ( 

1.7333 -1.0667) 
) ompute 2 rom 2 1 2- 2 1 =:> 2 = -1.0667 1.7333 · 

Block fi:Jnrard elimination: 

Yr = br- LrYo = /J, = (1), 
Block-back substitution:_ 

Note that 

(
0.6667) 

y, = bz - L,y, = 0.6667 · 

,, . - . - - (0.6667) 
v :2·\:::!. - }2 B2XJ - 0.6667 (note that B2x3 = 0), 

x,=(:). 
U,x, = Yl- B,x, = (1)- (:)=G), 

x, = (:) I 

LU Factorization of a Banded Matrix. We have just seen thm LU factorization of a 
block tridiagonal matrix gives L and U both block bidiagonal. For a general banded matrix, 
the following result holds (see Golub and Van Lcmn (1996. p. 152)). 

Theorem 6.26. ~fA E ~~~ xn is a banded matrix: tvirh upper bandwidth p and lower 
bandwidth q, and if A = LU, then U has upper bandwidth p and L has lower bandwidth q, 

The growthfacror for a banded matrLt. lf A E ll!."x" has upper and lower bandwidths p, 
then the growth factor is p ~ 22P- 1 - (p - l )2P-2. 

Proof. Sec Bohle (1975). 0 

A comparison of flop-count, growth factor, and stability of the special linear system solvers 
is given in Tuble 6. I. 

Block Cyclic Reduction 

Frequently in practice, the block tridiagonal matrix of a system may possess some special 
properties that can be exploited to reduce the system to a single lower-order system by using 
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Table 6.1. Comparison of different methods for linear system problem with special 
matrices 

Matrix Flop-count Gnl\vth 
Type Method (Approx.) Factor p 1 Stability 

u' I Stable Symmctrlc GEWP 
,_ 

p=i 
Positive 

- 3 

n' Definite Cholesky 3 + (n None Stable 

square roots) 

' 
Diagonally GEWP 

W' 
2- p5;.2 Stable 

Strictly 3 

Dominant 
. 

HesSetlbe'rg GEPP 
. 

3n 2 p::::;n Stable 

Tridiagonal GEPP 0 (II) p~2 Stable 

a technique called block cyclic reduction. For details see the book by Golub and Van Loan 
(1996, pp. 176-180) and the references therein. 

6.13 Review and Summary 
For an easy reference, we now state the most important results discussed in this chapter. 

6.13.1 Numerical Methods for Arbitrary linear System Problems 

Two types of methods--direct and it!.!rative-are used for solving linear systems. Hera­
live methods are especially helpful for large and sparse systems. We have discussed here 
only direct methods using Gaussian elimination. lrerative merlwds will be discussed in 
Chapter 12. 

Gaussian elimination (Section 6.4) 

Gaussian elimination \Vithoutrow interchanges, when it exists, gives a factorization 
ofA:.4=LU. 

The system Ax = b is then solved first by solving lhc lower triangular system Ly = b 
followed by solving the upper triangular system Ux = y, 

The method requires 2;
3 

flops. It is unstable for arbitrary matrices, and is not 
recommended for practical use 1t11less matrLt A is symmetric positive definite. The 
grm~,y•thfactor can be arbitrarily farge for an arbitrary matrix. 

Gaussian elimination with partial pivoting (GEPP) gives the factorization P A = L U. 
Once having this factorization, Ax = b can he solved by solving successively the 
two triangular systems (i) Ly = Pb = b', (ii) Ux = y. 
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The process requires 2t flops and O(n2) comparisons. In theory, there are some 
risks involved, but in pracricD, this is a stable algorithm. It is rhe most widely used 
practical algorithm for solving a dense liltt.'ar system. 

Gaussian elimination with complete pivoting (GECP) gives P AQ = LU. Once 
having this factorization, Ax= b can be solved by solving two triangular systems: 

Lz Ph b',Uy=z. 

and then recovering x from x = Qy. The process requires 2f flops and 0(n 3) 

comparisons, Thus it is more expensive than GEPP, but it is more stable (the growlh 
factor pin this case is bounded by a slowly growing function of n. whereas the growth 
factor p with GEPP can be a,;; big as 2'1 -

1 }. 

6.13.2 Special Systems 

S ymmetrf~·--p~~~itf~C"--(fefiOiLe, -diagOmii IY ·- clO-rii'iriiint~· Hessenoerif;' iiiid"1fid if!gonal- syste-rns 
have been discussed in Section 6.12. 

(a) Symmetric positive definite system. The Cholesky factorization algorithm (Algo­
rithm 6.7) computes the factorization of a .symmetric positive definite matrix A in the form 
A = H HT. where H is lower triangular with positive diagonal entries. Once having this 
factorization, the system Ax = b is solved by first solving the lower triangular system 
Hy = b, followed by solving the upper triangular system HTx = y. The method requires 

!:f flops and n square roots evaluations. It is stable. 
(h) Diagouatly dominant system. Gaussian elimination does nOL require any pivoting. 

Tt is stable (p -s 2) (Section 6.12.5). 
(c) Hessenberg system. GEPP requires only 0(n 2) flops to solve an 11 x 11 Hessenberg 

system. ll is stnble (p 5 n) (Section 6.12.4). 
(d) Tridiagonal s)•stem. GEPP requires only O(n) flops. It is stable (p 5 2) (Sec­

lion 6.12.6). 
(e) Block tridiagonal system. Block LU factorization is stable in two importnnl cases: 

when A ls (i) block column diagonally dominant, and (ii) \Vell-conditioned symmetric pos­
itive definite matrix (Section 6.12.6). 

6.13.3 Inverse and Determinant 

The inverse and the detem1inanl of a matrix A can be readHy computed once a factorization 
of A is available. In practice, only the factorization PA = LU, obtained by GEPP, will 
be used. The inverse can also be computed by solving the system of equations AX = I 
(Algorithm 6.3). 

Note: The most problems involving inverses can be recast sa that the inverse does 
not have to be computed explicitly. 

There are matrices (e.g .. as triangular, orthogonal, etc.) whose inverses are trivially 
computed. 

'The inverse of a matrix B which differs from a matrix A by a rank-one pcrlurbution 
only can be readily computed, once the inverse or A has been found, by using the 
Sllerman~~Morrisonformula: LetB = A-m.iT. Then B-1 ::::: A- 1+a(A-1uuT A- 1) 1 
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where a {l )A 1111 • There is a generalization of this formula, known as the 
Woodbury formula (sec Hager ( 1988, p. I 14)). 

6.13.4 The Condition Number and Accuracy of Solution 

Computing the condition number from the definition is clearly expensive; it involves 
finding the nom1 of the inverse of A, and finding the inverse of A is about four times 
the expense of solving the linear system itself. 

Condition numberestimawr: The optimization~ based HagerS norm¥ l conditionnwn­
ber esrimator (Algorithm 6.5). has been slated. 

There are symptoms E.xhibited during Gaussian elimination with pivoling such as a 
small pivot, a large computed solution, a large residual, etc., that merely indicate if 
a ~)!Stem is ill-conditioned, but these are not sure tests (Section 6.8.1 ). 

\Vhen componemwisc perturbations are known. Skeel:'i condition number can be 
useful, especially when the nonns of the columns of the inverse matrix vary widely 
(Theorem 6.15). 

6. 13.5 Iterative Refinement 

Once a solution has been computed, an inexpensive way to refine the solution iteratively. 
known as the iterative refinement procedure (Algorithm 6.6), has been described in Sec­
tion 6.1 i. The iterative refinement technique is u very useful technique. 

6.14 Suggestions for Further Reading 
The books on numerical methods in engineering lileroture routinely discuss how various 
engineering applications give rise lo linear systems problems. We have used Chapra and 
Canale (2002), O'Neil ( 1991 ), and James ct al. (1989) in our discussions and found them 
usefuL A recent book of interest is by Majumdar (2005). Direct methmls (such as Gaussian 
elimination, QR factotizalion. etc.) for I incur systems and related problems, discussions on 
perturbation analysis and conditioning of the linear systems problems, iterative refinement, 
etc., can be found in any standard matrix computations texts: Golub and Van Loan ( 1996), 
Demmcl (1997). Trefethen and Bau (1997). Watkins (2002). Huger (1988), and Stewart 
(l998b). Srewarr's classic book (1973) is sri// a rich source of knowledge. Most numerical 
analysis texts contain some discussions on these topics. In particular, the books by Conte 
and de Boor (1980), Heath (2002), Van Loan (2000), Kincaid and Cheney (2002), Moler 
(2004), and Ortega ( 1990) and Stewart's numerical analysis book (Stewart ( 1998a)) provide 
a fair amount of numerical linear algebra treatment. See also Rice ( 1981 ). For discussion on 
solutions of linear systems with special matrices such as diagonally dominam, Hes:senberg, 
posirive definite. etc., see Wilkinson ( 1965. pp. 218-220) and Higham (2002). 

Two authoritative books on error analysis and pcrturbatinn analysis arc Wilkinson's 
classic ( 1965) and the recent book by Higham (2002). Tl1eserwohooks are must-readsforthe 
init.!fested readers011 these ropics. A book devoted entirely to perturbation analysis is Stewart 
and Sun (1990). Some imeresling earlier papers on perturbation analysis and conditioning 
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include Stewart( 1993a), Demmel ( 1987b), Edelman ( 1988. 1992a). Sun ( 1991), Zha (1993), 
McCarthy and Strang ( 1973), O'Leary ( 1980), Bischof ( 1990), Higham ( 1987), and Pierce 
and Plemmons ( 1992). 

Exercises on Chapter 6 
(Use MATLAB, wherever appropriate and necessary.) 

EXERCISES ON SECTIONS 6.3 AND 6.12.1-6.12.6 

6.1 An engineer requires 5000, 5500, and 6000 yd3 of sand, cement, and gravel for a 
building project He buys his material from three stores. A dislribution of each 
material in these stores is given as follows: 

Store Sand Cement I Gravel 
% % % 

I 60 20 20 
2 40 40 20 
3 20 30 50 

How many cubic yards of each material must the engineer take from each store to 
meet his needs? 

6.2 If the input to reactor 1 in the "reactor" problem of Section 6.3.2 is decreased 10%, 
what is the percent change in the concentration of the other reactors? 

6.3 Consider the following circuit diagram: 

3 
IOQ 

2 
5Q 

V 1 =200V 

t 
IOQ 

5 
!50 20Q 

Set up nlineur system to determine the current between nodes. 

6.4 Using the difference equation (6.47), set up a linear system for heal distribution at 
the following interior points of a heated plate whose boundary temperatures are held 
constant: 
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SO"C 

• • • 
(I, I) (2,I) (3, I) 

• • • lOO"C (I ,2) (2,2) (3,2) 75"C 

• • • 
( I,3) (2,3) (3,3) 

O"C 

6.5 Derive the I in ear system for the finite difference approximation of the elliptic equation 

a1 T a2T -. -, + -, -, = j(x, y). 
dx- dy-

The domain is in the unit square, .6..x = ~)' = 0.01, and the boundary conditions are 
given by 

T(x,O)=I-x, T(l,y)=y, T(O,y)=l, T(x,l)=l. 

6.6 For Exercise 6.5, if 

j(x, y) = -rr 2 sin(rrx) sin(rry), 

then the analytic solution to the elliptic equation 

a'r a'r 
-:;-. ' +-;;--,- = j(x, y), 
ux- oy-

with the same boundary conditions as in Exercise 6.5, is given by 

T(x, y) =I- x + xy + (~) sin(rrx) sin(rry) 

(Celia and Gray (1992, pp. 105-106)). 

(a) Use the flnite difference scheme of Section 6.3.4 to approximate the values of 
Tat the interior points with ~x = ~y = ~." = 4, 8, 16. 

(b) Compare the values obtained in (a) with the exact solution. 

6.7 Write down the linear system arising from the finite element method of the solution 
of the two-point boundary value problem, -2u 11 + 3u = x 2 , 0 ::5 x :::: l, u(O) = 
u( l) = 0, using a uniform grid and the same basic functions c/Jj(X) as in Section 6.12.2. 
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EXERCISES ON SECTIONS 6.4-6.11. 

6.8 (a) Solve the linear systems Ax = !J with each matrix A of Exercises 5.13 and 
5.14 of Chapter 5, taking b = (1. l. .... l)T and using the factorizations 
(i) A= LU, (ii) MA = U. and PA = LU. 

(b) Compute the dctcnninant, the inverse (when it exists), and the growth factor of 
the above matrices using the factorizations in (a). 

6.9 Compute the residual norms for each of the systems of Exercise 6.8 (with all three 
factorizations) and plot lhesc residuals using separate graphs. 

6.10 Solve 

(
0.00001 

3 
1 

I) (x.') (2.0001) 1 .\:2 :::;;: 3 
2 3 x, 3 

using Gaussian elimination withOU·r··~t.rid- with pafiiarpTVOiing and compare the an­
swers. 

6.11 Consider m linear systems 

A.\-, = b;, i = I, 2, . , . , m. 

(a) Develop an algorithm to solve the above systems based on GECP (Gaussian 
elimination with complete pivoting). Your algorithm should take advantage of 
the fact that ail m systems have the same system matrix A, 

(b) Compute the flop-count of this algorithm. 

(c) Apply your algorithm to compute A -I and work out a flop-count for this com­
putation. 

(d) Apply the algorithm in (c) to compute the inverse of a 5 x 5 Hilbert matrix. 

6.12 Consider the system Ax = b, where both A and bare complex. Show how the system 
can be solved using real arithmetic only. Compare the flop-count in this case with 
that needed to solve the system with Gaussian elimination using complex arithmetic. 

6~13 (Gaussian elimination with column pivoting.) Develop an algorithm for LU factor­
ization of a matrix A based on column pivoting inswad of row pivoting. Does this 
factmizatlon always exist? Give reasons for your answer. Show that when 1t exists, 
it leads to a factorization, A P = LU, where P is a permutation matrix. Apply this 
factorization to solve each of the systems of Exercise 6.8. 

6.14 {a) (Computing the inverse of a block matrix.) LelA= ( ~~; ~!~ ). 
Assume that A 11 and A12 are square and that A1 1 and - A2 1 A~1 1 At! arc 
nonsingular. 

Let B = ( ~~~ Z~~ } be the inverse of A. Then show lhat 

B;;;, (A22- A21 A{1
1 A~:~~)- 1 . 812 = -AJi1 

A t:2B11, 

821 -B12A2tA!i1, and B11 AJ/- B12A:uAj1
1. 
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(b) How many flops are needed to compute A- 1 using the results of(a) if An and 
A12 are .• respectively, m x m and p x p'l 

(c) Use your result of (a) to compute A_,, where 

A=U1 
() -1 -1) 4 -1 -1 
-I 4 () ' 

-1 1 0 4 

6.15 Let 

A= 0 2 20~02) c 
2 2,0~02)' 4,0001 and B = ~ 4,0001 

2,0002 2,0004 2,0002 2,0004 

\Yri~e.B in the fonn B.= A - uvT. then compute B~ 1 using the Sherman-Morrison 
formula (Theorem 6,7), knowing 

( 

4,0010 
A-1 = 104 -2,0006 

0,0003 

-2,0006 ll0003 ) 
L0004 -0,0002 . 

-0,0002 0.0001 

6.16 Suppose you have solved a linear system with A as the system matrix, Then show 
how one cun solve the augmented system 

where A is nonsingular and n x nand a, b, and c arc veclors, using the solution you 
have already obtained, Apply your result to solve 

(

I 2 3 
4 5 6 
1 I I l) y = (6 15 3 

0 0 I 2 

6.17 Consider the symmetric system Ax b, where 

( 

OA445 OA444 
A = OA444 OA445 

-0,2222 -0,2222 

-0,2222) 
-0,2222 0,1112 

The exact solution ofthe system is 

( 

0,6667) 
b = 0,6667 ' 

-03332 

(a) Make a small perturbation 8/J in IJ, keeping A unchanged, Solve the system 
Ax' = b + IJ/;. Compare x' with x, Compute Cond(A) and verify the result of 
Theorem 4, !9, 
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(b) Make a small perturbation C. A in A such that II AA II < il)'il' Solve the system 

(A+ C. A).<'= b. Compare x' with x and verify the result of Theorem 4.23. 
(film: IIA -'112 = 104

). 

(c) Compute the residual in each case and verify the result ofTheorem 6.12 (residual 
theorem). 

6.18 Prove 
118xll ilt.Ail 

llx + ~xll :S Cond(A)IiAit. 

where Ax= band (A+ 1\A)(x + ~x) =b. 

Verify the above inequality for the system 

(i : l) C:) (l) ' . _with __ <\ A= (~ 1 0.0~003) . 
6.19 (a) Construct your own example to show that a small residual does not necessarily 

guarantee lhat the solution is accurate. 

(b) Give a proof of Theorem 6.12. 

6.20 (a) Compute the condition numbers of the following matrices before and after row­
scaling and compare the results. 

(i) A - ( 10 - l 
10" ) 
l ' 

-1 
-10 
w-ro 

I ) -10 . 
J0-10 

(b) Solve Ax b with each of the matrices in (a) before and after scaling (choose 
b so that exact solulion in each case has aH entries equal to 1 ). 

6.21 Construct an example to illustrate the phenomenon of the artificial ill-conditioning, 
that is, ill-conditioning due to improper scaling. 

6.22 Let A = ( b ?o-s ). 
(a) Calculate A_, and Cond,(A). 

(b) Find b and x such that Ax = b. 

(c) Find ~band &x such that A(x + &x) b +lib and li;.~~~ is small, but li
1
;:,t" is 

large. \Vhm is your conclusion'? 

(d) Now multiply your second equation by 105. What is the condition number of 
this new matrix? \Vhal is your conclusion? 

6.23 Apply Hager's algorithm (Algorithm 6.5) to the Hilbert matrix of order 5 and tl1en 
compare the result with those obtained by MATLAB function condest and the actual 
1-norm condition number. 



Exercises on Chapter 6 175 

6.24 Construct an example to verify the statememlhat Skeel's condition numberCond( A, x) 
can be much smaller than Cond(A). 

6.25 Construct an example of an ill-conditi-oned system that exhibits the symptoms of 
ill-conditioning stated in Section 6.8.1. 

6.26 Apply iterative refinement (Algorithm 6.6) to the system of Exercise 6. 10. using 

Estimate Cond(A) from .r(IJ andxm and compare it wilh the actual condition number. 

EXERCISES ON SECTION 6.12.3-6.12.6 

6.27 (a) Compute the Cholesky factorization or 

A (l +I l.iOI) 
using (i) Gaussian elimination without pivoting. and (ii) the Cholesky algorithm. 

(b) For part (i) verify 

(kil I (k-Ill k max !au ::: max a,j • · = 1. 2. 

What is the growth factor? 

(c) Solve the system Ax = b, where 

in each case. 

6.28 (a) Show that 

b = (3.0~20) . 4,0010 

(

4 
-I 

A= ~I 

-1 -1 
4 0 
0 4 

-1 -1 

~~) 
-I 
4 

is u positive definite matrix using both Gaussian elimination and the Cholesky 
algorithm (Algorithm 6.7). 

(b) Compute Cond(A) from its Cholesky factorization. 

6.29 Using the Hilbert matrix of order 10. show lhatthe solution obtained by the Cholesky 
algorithm may be inaccurate if the positive definite matrix is highly ill~conditioned. 

6.30 Prove the existence of the Cholesky factorization of a symmetric positive definite 
matrix A via LU factorization. 

6.31 Let H = (ilij) be the Cholesky factorization or a symmetric positive definite matrix 

A = (aij ). Then prove that !tJ1 :::; I:~= I hh = aii. 
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6.32 Let A be symmetric positive definite. Develop and state an algorithm for computing 
an upper triangular matrix R such that A Rr R. Apply this algorithm to the matrix 
A of Exercise 6.27. 

6.33 Prove that the growth factor p of a symmetric positive definite matrix with Gaussian 
elimination without pivoting is equal to 1. 

6.34 (a) Develop an algorithm to solve a tridiagonal system using GEPP. 

(b) Show that the growth factor in this case is bounded by 2. (Hint: max Ia/)> I ::; 
2 max ia11 i.) 

(c) Apply your algorithm to find the solution to the tridiagonal system (6.44), with 
Io = lPF and T, = IOO"F. 

6.35 (a) Prove that GEPP applied to a column diagonally dominant matrix is identical 
lhGa-ussian elimination without, pivoting; 

(b) Show that the growth factor using GEPP for such a matrix is bounded by 2. 
H ' 1'

11 2 ( au: maxk maxu Jau 5 mnxl,J [aiJ ].) 

(c) Verify the statement of (a) with the matrix of Exercise 6. 14. 

(d} Construct a 2 x 2 column diagonally dominant matrix whose growth factor for 
Gaussian elimination without pivoting is larger than I but less than or equal to 2, 

(e) Repeal (a)-( d) for a strictly row diagonally dominant matrix. 

(f) Construct an example to show that for a strictly row diagonally dominant matrix, 
the multiplier can be large but the growth factor is still bounded by 2. 

6.36 (a) Develop an algorithm for solving a symmetric positive definite tridiagonal linear 
system using the LDlJ decomposition. Show that this algorithm lakes only 
O(n) !lops. 

(b) Apply your algorithm to solve the symmetric positive definite system with the 
matrix A given by (6.50) for n = 3, choosing b = (1. 0, O)r. 

6.37 Solve the strictly diagonally dominant system 

5 5 
10 l 
0 10 
-4 -3 

; ) (~') (!3) - .1 2 _ 13 
2 x, - 10 
10 x, 7 

using Gaussian elimination without pivoting. Compute the growth facwr. 

6.38 {a) Develop an algorithm for triangularizing an upper Hessenherg matrix using 
GEPP by taking advantage of the Hesscnberg structure of the matrix. Give 
!lop-count. 

(b) Let A be ann x 11 upper Hessenberg matrix. Then GEPP gives 

[ajJll S k + I, if la;j[ :S I. 

Hence deduce that the growth factor in this case is bounded by 11. 
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(c) Apply your algorithm developed in (a) to solve the following systems: 

(O.rl 
2 2 

3) (':') (~} (i) 
4 5 7 .\] 

0.001 2 3 X] 

0 0.001 I x" 

(oo~I 
0 

0) ('') COOOI) (ii) 2 0 xo 2.0001 . 
0.0001 3 .T3 3.0000 

(0 0 0 1) C) (!). (iii) l 0 0 2 x, = . 0]03 X3 

0 0 l 4 "'" 

(d) Compute the growth factor in each case. 

(c) Suppose the data in the above problems are accurate to four digits and you 
seek an accuracy of three digits in your solution. Identify which of the above 
problems are ill-conditioned. (Use the result of Section 4.7.2.) 

6.39 (Solution of IH'o-dimensianal Poisson's equation.) Using Algorithms 6.1 0. 6.11. and 
6.12, solve the system (6.49)-(6.50) appearing in the solution of Poisson's equation 
{6.46), with n = 3, and choosing the entries of the right-hand side appropriately. 
Show that this system is block diagonally dominant and verify inequality (6.63) for 
this sysLcm. 

6.40 Using the result of Exercise 5.17, establish the error bound of Theorem 6A and also 
prove the result II E iL" ::; 3n3 PIL !I A lloo· 

MATlAB and MATCOM Programs and Problems on Chapter 6 

M6.1 {a) Write MATLAB programs called linsyswp, linsyspp, and linsyscp to solve 
Ax = b anti to compute the growth factor {gf) using Gaussian elimination wilh 
no, partial~ and complete pivotings, respectively, as follows: 

(.t, gf) = lnsyswp(A, IJ), 

(r, 8fl = linsyspp(A, b), 

(.r, gfl = linsyscp{A. b). 

(b) Using the computed solutions and the growth factors obtained in (a) make the 
following table for each of the given data seL The function linsyswf is available 
inMATCOM. 

Test data for Problem M6.1: Each of the following matrices of order 20: Hilbert, Pei, 
Hanke{, \kmdermonde, a randomf.v generated matri:c, and a triangular matrix with 
small diagonal entries. For the Pei matrix, take a close to L 

Create the vector b in each case such that the solution vector x is a vector with all 
components equal to l. Present your results using Table 6.2. 
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Table 6.2. Comparison of different metlwds for the linear systems problems. 

Method Norm of the Relative ! Residual Posterior Growlh 
Computed Error I lib- A.r\12 Error Bound Factor 
Solution llx -.rib Cond2 (.4) x 
l!.tb 

I 
llxllz 

I 
lib- A-i'llz 

llblb 
linsyswp 

I 
I 

I 
linsyspp 

linsyscp . 
linsyswf 
.. . . 

.4-'b 

M6.2 (Backward error in GEPP.) Plot the error bounds (i) 3n3 Pi' IIA!Ioo. (ii) 1 "·'-';/'cli~A·':I" 
for solving Ax = b with partial pivoting for five random matrices of dimensions vary~ 
ing from 10 to 1000, by generating b also randomly. Write down your observations. 

M6.3 Repeat Problem M6.2 using GECP. 

M6.4 Perform an experiment, for both GEPP and GECP. using five random matrices of or­
ders varying from 10 to tOO, lO verify that the error bound 3pn3 11-ll A l!oo is pessimisric 
compared to the true error. Present your results with graphs. 

M6.5 Using the MATCOM program choles or the MATLAB program chol, write a MA1: 
LAB program, linsyschol, to implement Algorithm 6.8 in the following format: 

[x] ~ linsyschol (A, b). 

Data: Create a 200 x 200 lower triangular matrix L with positive diagonal entries 
taking some of the diagonal entries small enough to be very close to zero, multiply it 
by L 1 , and take A = LL 1' as your test matrix A. Create the vector b such that x has 
all its entries equal to 1. 

M6.6 (a) Write a MATLAB program lutrdg to implement Algorithm 6.9. then use it to 
write a program, linsystrdg, to solve a tridiagonal system. 

(b) (So/Htioa of oae-dimemiorwl heat equation.) Apply linsystrdg to solve the 
tridiagonal system of the form (6.44) of order 200, choosing To= 0 and T199 

100. 

M6.7 (The purpnse of this exercise is ro verify that solving a symmetric positive definite 
system requires no plvoting to ensure stability in Gaussian elimination.) Run the 
program lynsyswp to the symmetric positive definite matrix of Problem M6.5 and 
compute the solution and the growth factor. 
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M6.8 Using the MATCOM program hagcondl, estimate the condition number of each of 
the following matrices A a[ order 20: Hilbert, Pei (with a close to 1), randomly 
generated, Vandermonde, and Hankel, and then compare your results with the actual 
condition number obtained by the MATLAB program cond (A, I), Present your 
results in the form of a table. 

M6.9 (a) Run the program linsyswp with the diagonally dominant, symmetric tridiagonal 
matrix A in (6.50) of order 200 by choosing the right-hand side vector b so that 
the solution vector x is known a priori. Compare the exact solution x with the 
computed solution.¥. 

(b) (Implementation of two-dimensional heat equation.) Using the program 
linsyswp, solve the system (6.45) with 11 = 200, and choosing k = 0, 
T;.o = 0, i = l, ... , 11, and Twl = 0 and Tmz = 100. (Note that system 
(6.45) is also symmetric positive definite and tridiagonal.) 

M6.10 Write a MATLAB program, called lynstrdgpp, to solve a tridiagonal system with 
partial pivoting. Apply the algorithm to the data of Problem M6.6. 

M6.11 (a) Run the iterative refinement program iterref from MATCOM on each of the 
50 x 50 systems: Hilbert, Pei, Vandermonde, randomly generated, and Hankel, 
using the solution obtained from the program linsyspp as the initial approxima­
tion x(Ol. For the Pei matrix, take a close to I. 

(b) Estimate the condition number of each of the above matrices obtained from 
the iterative refinement procedure and compare them with the actual condition 
numbers. 

M6.12 (a) Write MATLAB programs bklutrdg, bkforelm, bkbacksub to implement 
Algorithm 6.1 0-6.12, respectively. 

(b) (Solutio11 of Poisson's equatio11.) Using the programs in Problem M6.12(a), 
write a MATLAB program, bltrdgls, to solve the block tridiagonal linear system 
Tx = b. Run your program with the linear system (6.49)-(6.50) by choosing 
the right-hand side appropriately, with 11 = 15. 



Chapter 7 

QR Factorization, Singular 

Value Decomposition, and 

Projections 

Background Material Needed 

Concepts of rank, basis, range, and null space (Sections 2.2.1, 2.3.1, and 2.3.2) 

• Special matrices (Section 2.4) 

Vector and matrix norms (Section 2.5) 

• Condition number (Sections 4.6 and 4.7) 

7.1 Introduction 
In Chapter 5, we described LU factorization of a matrix, and in Chapter 6 we showed how 
this facwrization is used to solve Ax = b. In this chapler, we describe t\vo olher important 
matrix factorizations: QR nnd singular value decomposition (SVD). These two factori:.a­
tions play important roles in {east-squares solutions (Chapter 8) and in many other impor­
tallt matri:t and applied computations such as image restoration a11d image construction, 
biomedical engineeri11g, etc. 

Recall that a square matrix 0 is said to be an orr1wgonal matri:dl' 0 0 T = 0 1 0 I, 
Given an m x n matrix A lhcrc exist-; an m x m ortiwgonal matrix Q and an m x n 
upper triangular matrL< R such that A = Q R. Such a factorization of A is called the QR 
jactori:.arion . 

We shall prove the existence of QR factorization by actually constructing Lhe matri-
ces Q and R in several different ways so that A QR. 

If m ?: 11, and if the matrix Q is partitioned as Q = ( Q 1, Q1), where Q 1 is the matrix 
or the first I! columns of Q, and if R, is defined by R = ( ~·),where R, is II X fl upper 
triangular, then A= Q 1 Rt. 

Thus. if m ~ n, A can be factorized into A = Q 1 R 1• where Q 1 is m x n orthonormal 
and R1 is 11 x n upper rricmglllar, as shown in Figure 7. 1, 

This QR factorization is called the "economy size," the "thin," or the reduced QR 
factorization of A. 

181 
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D 
m x n m X II 

Figure 7.1. Reduced QR factorization. 

To distinguish between these two types of QR factorization, the factorization A = 
QR is sometimes called jill/ QRfactorizarion. By actual constructions, we will show the 
following: 

Every matrix A E IR111 x 11 (m :;:: n) has a ftdl QR factorizations (mzd hence also a 
reduced QR factorization). Moreover, if A has full-rank, then it has a unique reduced QR 
fai:tori~aiioliA·=-QiR 1 With positive diagonal entries of R1 (Theorem 7.14). If 111 < n, 
then the factorization can be written as A= Q(R1, R2 ), where R 1 is upper triangular and 
R; is rectangular. 

Computing QR Factorization 

We will describe the following here: 

Householder's method (Algorithm 7.2). 

Givens' method (Algorithm 7.5). 

• The classical (CGS) and modified Gram-Schmidt (MGS) methods (Algorithms 7.7 
and 7.8). 

The House/wider and Givens methods compute the full QRfactorization (and there­
fore the reduced QR factorization), while the CGS and MGS methods compute the reduced 
QRfactorization. These methods are described in Sections 7.2. 7.4, and 7.5, respectively. 

The singular value decomposition (SVD) of a matrix A E IR"'"' is a factorization of 
A in the form 

A= UEV 7 , 

where U E .!Rmxm and V E Rnxn arc orthogonal and L E 1Rmxn is diagonal. The SVD 
has become a computationally viable tool for solving a wide variety of problems arising 
in many practical applications. induding signal and image processing, biomedical engi­
neering, control engineering, and others. In Section 7.8, we introduce SVD and discuss its 
basic properties and applications. 1l1e SVD will be revisited in Chapter 10. As a preparation 
for discussing least-squares solutions techniques. which will be described in Chapter 8, we 
introduce the concept of orthogonal projection and its computation using QR factorization 
and SVD in Sections 7.7 and 7.8. 10, respectively. Complex QRfactorization and complex 
SVD are briefly introduced in Sections 7.3 and 7.8.3, respectively. 
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7.2 Householder's Matrices and QR Factorization 

7.2.1 Definition and Basic Properties 

183 

Definition 7.1 (Householder matrix and Householder vector). A matrix C({ the form 

2rwr 
H =f--T-. 

H H 
(7.1) 

tviwre u is a rwn-;,ero vector in Rn, is called a Householder matrix after the celebrated 
mmlf!rical analyst Alston Houselrolder: 5 The vector n determining the House/wider matn'x 
H is called the flouselwfder o•ectar. 

A Householder matrix is also known as an elementary reflector or a Householder 
transformation. We now give a geometric interpretation of a Hous~:holder transformation. 
For the sake of convenience, in the geometric interprelalion (see Figure 7.2). \VC assume 
that vector u is sitch tfwt u 7 u = J, 

p 

............... ., ..................... . 
u(uTx) : x 

I 
I 

II 

·····---/--··--··· 

I 
', I 

',~~r:/ "'J -2u(ur,.) 

Hx (J-2uu) 7 x 
- x- 2u(uTx) 

Figure 7.2. Geometric interpretation of Householder transfonnation. 

With this geometric interpretution the following results become dear: 

• II H x lb = l!.r 112 for every x E IR". A reflection does not change the length of rite 
vectm: 

Householder (1904--1993). an American mathematician. was born in Rockford. Illinois, He 
\Vas the former Director of the Mathcmallcs and Computer Science Division of the Oak Ridge National 
Laboratory at Ol.lk Ridge, Tennessee, and a former Professor of Mathematics at the University of Tennessee, 
Knox ville. A reseurch conference on linear and numerical linear algcbra dedicated 10 Dr. Householder, called 
the Householder Symposium, is h:dd every three years around the world. See hls obituary in S'!AM News. 
October 1993. 
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His an orthogonal matrix. IIHx!!o = !!xlbfor every vector x implies that His 
orthogonal. 

• H 2 = 1, Hx reflects x to the other side of P. but H 2x 
to x. 

H(Hx) reflects it back 

• Hy = y for every y for which vTu = 0. Vectors in P cannot be reflected away. 

Below we summarize some of the above interesting properties of a Householder matrix 
and give analyticul proofs of some of them. 

Th<-'Orem 7.2 (properties of a Householder matrix). Let H = I - ;;"',~ be a Householder 
matrix with u E lR11

• Then 

(i) H is symmetric; 

'(ii) H isorrlwgonal; 

(iii) H 2 = l; 

(iv) Htt = -u; 

(v) Hv vifvTu =0; 

(vi) ifu is chosen to be a vector parallel to x- y, where y ~ x but IIY!h !lx!b. then 
Hx =y. 

Proof. The proofs arc done by direct verification. Let fJ = tf;;. 
Proofof(i). HT (l-{JuuT)T = 1-{Jrwr H. Thus, His symmetric. 
Proof of (ii). 

HT H = (l- {JuuT)(l- {JrwT) 

=I- 2{Jurir + {J 2(uTu)uuT (note that uru is a scalar) 
? 

I- 2{Jm/ + {J2 
• ~"''T (note that uru ~) 

= I 2{Jur? + 2{Jm? = I. 

Thus, H is ortilogollal. 
Proof of (iii). Since H = H'. we have H 2 = H · H = HrH =!,by parts (i) 

and (ii}. 
The proofs of(iv) and (v) are left as Exercise 7.1. 
Proof of (vi). Choose u = x y. Now write 

1 1 
x = -(x + v) + -(x- v). 2 . 2 . 

Then 
1 l l 1 

Hx = iH(x + y) + iH(x- y) = iH(x + y) + :i(y- x) (7.2) 

(by property (i v )). 
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Again, since 

(x+ y)r(x ··- y) =xTx -xry+ yTx- YTY 

= ll.tll~ -liYIIi 0 (since ll.tlb = IIYib). 

by property (v). we have 
H(x+y)=x+y. 

Thus, from (7.2), we have 

l 1 
Hx=-(x+v)+-(y x)=.v. D 2 • 2 . 

Forming matrix-vector and matrix-matrix products with a Householder matrix. A 
remarkable computational advantage involving Householder matrices is that neither a 
mat ric-vector product with a Householder mcarLr H nor the matrix producr li A (or AH) 
needs to bif explicitly formed, This cah be seen-rrorn the. following computations. 

Let A E R1
'
1 

:,.:
11 and_\ E IR11

• and let H be un n x n Householder matrix. Let fJ = 
Then 

L Hx 

2. H A= (I- f3uu,.)A =A- {JuuT A= A- f3uvr, where v A7u. 

3. AH =A (I- {JuuTJ A- {Jumr, where w =Au. 

Flop-count for matrix-matrix and matrix-vector products with Householder matri­
ces. From the above statements, it is straightforward to verify the flop-counts for the 
following computations with Householder matrices (Exercise 7.3): 

Matrix-vector product Hx: 3n flops. 

Malrix product H A or A H: 4mn flops (using statement 2 or 3 above). 

Explicit computation of the product of Householder matrices: Let H1, i = I, .... r. 
be r Householder maLriccs each of order 11. Then computing Q = H1 H2 • ••. , Hr 
requires 4(n2r- nf2 + flops. 

Matrix product Q7 C: Let C E IR'"" and let Q be as above. Then the product Q'~'C 
requires 

{ 

2pr(2n- r) (Q given in factored form"' above), 

2pn1 (Q explicitly represented), 

We emphasize here that in practice a nwtrix-uwrri_t or matrix~vector product with a 
Householder matrix should be compttted as shown above, 11/itlwut explicitly forming the 
House/wider matrix H. 

Numerical stability. The following round-ofT properties shm"l that computations \Vith 
Householder matrices are very stable (Wilkinson (1965, pp. 152-162)), Let if denote the 
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computed Householder matrix. Then the following is ohlained: 

• UH H\1 0(;1). 

fl(ll A)= fl(A +E); IIEib 0(/li\Ailz). 

fl(AffJ =(A+ E)fl; IJEI\z = 0(/li\AJJ,). 

Creating Zeros in a vector with a Householder Matrix 

A very useful property of Householder matrices is that, given a nonzero vector x, a House­
holder matrix H can always be found such that certain specified entries of x can be made 
zeros. The following result shows how to find the Householder vector 11 such that H x is a 
multiple of e1• 

Theorem 7.3. Given a nonzero vector x i= e1, the Householder matrix H defined by the 
vcctoru = .t±Hxl!2e1 issuch thatH.<= =t=llxilze,. 

Proof. The proof follows immediately from part (vi) of Theorem 7.2 by choosing y = 
±1Jxllze1• Note that with this choice, y ;6 x and Jiylb = llxlh. Thus, by part (vi) of 
Theorem 7 .2, we have 

fix y = ±l!xlbe,. D 
An illustration: 

Choosing tile sign: While forming 11 x ± l\xJize1, it is advisable to choose sign 
(.t1) in place of± to avoid catastrophic canceltmion in computing the first component of u. 
Thus the vector H should be formed as follows: 

11 x + sign(x1)1\x1J 2e1• 

If x1 is zero. just choose sign (x1) = +. 

Note: The vector 11 above differs from x only in the llrst component-the other 
components are the same. 

Scaling tire vector x: Any po~sibilily of overflow or underflow in the computation of 
UxU 2 can be avoided by scaling the vector x. For example, the vector u could be determined 
from the vector --'.-

1 
-

11 
rather than from the vector x itself 

Ol/),'¥;,1 t,' 

Example 7 .4. Let 
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ALGORITHM 7.1. Creating Zeros in a Vector with a Householder Matrix. 

Input. A nonzero n-vector x. 
Output. A vector u such that 

( 2uuT) T !--.,- x=(x,O ... O). 
ll II 

Step 1. Find the scaling faclOr m = max(x1, ... , Xn). 
Step 2, Scale the vector x as follows: 

Fori= I,"" n do 

End 

Step 3. Compute the Householder vector u = (n 1, .• ,, u,)r: 

nr = xr + !l.t!l2 sign (xr) 
For i = 2, . , , . 11 do 

tli =Xi 

End 

Step 1. m = 4. 

Step 2. x 1 "'0, x2 "" I, x3 "' 0.25. 
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Step 3. 11 1 = x 1 + llx!b = 0 + 1.0308 
(llr,ll2,liJ)T = (].0308, J,Q.25)T 

1.0308; 11 2 = x 2 = I, 11;1 = x3 = 0.25.u 

( 2unT) 
Verify: /- -.,.- x = (-4.1231, 0. 

11 ll 
I 

Flop-count and round-off property. Creating zeros in a vector by a Householder matrix 
is a cheap and numerically stable procedure. 

It takes only 3n flops to create z.eros in the positions 2 through n in a VC,£tor by 
using Algorithm 7.1, and it can be shown (Wilkinson (1965, pp. 152-162)) that if His the 
computed Householder matrix, then 

liH- H!l 5 IOJI. 

Moreover, 

O(Hx) = H(x +e); 

cis a constant of order unity, and 11 is the machine precision. 

MATCOM Note: Tile MATCOM program HOUSZERO implements Algorithm 7.1, 
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7.2.2 Householder's Method for QR Factorization 

\Vc will now show how the idea of introducing zeros in a vector using a Householder mauix 
cnn be extended to compute a full QR factorization of an m x 11 matrix (m 2': n ). The 
process will yield a factorization 

A= QR, 

where Q ism x m and orthogonal and R ism x n upper triangular~ us shown in Figure 7.3. 
(Recall that an m x n upper Lriangular matrix is the matrix whose entries below the main 
diagonal are zero.) 

R 
A = 

... 

mxm 
m x n m x 11 

Figure 7.3. Houseltolder QRfactorization. 

The process was introduced by Householder in I 958. Tn contrast with the Gaussian 
elimination schemer the Householder process cw1 always be carried out to completion. 

The idea is to reduce the matrix A to an upper triangular matrix R by successively 
premultiplying A with a series of Householder matrices (which are orthogonal). 

For an m x 11 matn~t, the process will requires = min(m - 1. n) steps. 
Let .4 E Rmxl! and m ::;: n. Then s n. Gcnemtc successively Householder matrices 

Hh H2, ... , H11 such that 

where R is upper triangular. 

fl 0 

There are 11 steps. (x 

Step l. A---'.. H,A = ~ 

Stcp2. A(" 

X 

X 

X 

X X 

0 X 

0 X 

0 0 

X 

X 

X 

X X 
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X :l = A'"1 = R. 

X 

(

X 

(n-lJ fl, {n-l) 0 
Step n. A __,. H,A = H,H,_ 1 ••• H2H1A = ~ 

0 
Forming Q: Set Q = H 1 H, ... H,. Then from above 

Qr A= R. 

Since each Householder matrix H1• j = 1, ... , n, is an orthogonal matrix, so is the matrix 
Q (note that rite product of orthogonal matrices is an orthogonal matrix). 

So, prcmultiplying QrA = R by Q, we have A= QR. 
The construction of Householder matrices is illustrated wilh m = 4 and n 3 in the 

following. 

Construction of Householder Matrices (m = 4, n = 3) 

Step 1. Construction of H 1: Construct a 4 x -+Householder malrix H 1 such that 

Form implicitly 

( ~ 
X 

* 
* 
* 

Step 2. Construction of H,: Construct a 3 x 3 Householder matrix if, such that 

Form implicitly 

: :)=Ae!J. 
0 ® 
0 ® 

Step 3. Construction of H,: Conslruct a 2 x 2 Householder matrix H3 such that 

Form implicitly 

!!,Am= ( ~ ~ ~3 ) Am= ( ~ 
The process is fairly generaL Set AiOJ =A. 

X 

X 

0 
Q 
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Step k. 

• Construct a Householder matrix if, of order m - k + I to annihilate the entries 
(k +I, k) through (m, k) of the matrix Alk-lt at the previous step. 

• Fonn H,A<k-i) = Alkl implicitly, where H, = diag(f,_ 1, ih). (Note that when 

k= l,H, = Fh.) 

Example 7 .5, 

A= ( ~.0001 ~ ) ' 
0.0001 

Step I. ComputeH,: H, = f-21quffufu,: 

"' U:ooOI) +JI +(0.0001)
2 0) = o.OOOI). 

Compule implicitly 

-1 ) -0.0001 . 
0.0001 

• ( -0.0001 
112 = 0.0001 ) -v'i-OOOOIJ'+tOOOOJJ'( ~) = w-•( -2.4141 ) 

1.0000 . 

fi, = ( , o) _ 2 ,;,,;r = ( -o.1011 
• o 1 nr ;,, o.707I 

" . 
0.7071 ) ( 

1 

0.7071 'H, = g 

0 
-0.7071 
0.7071 

0.0001 
-0.7071 
07071 

-1 ) g.oOOl = R. 

-0.0001 ) 
0.7071 = (Q,, Qz). 
0.7071 

g,7071 ) , 
0.7071 

Note: In practice. the matrix Q should be formed by implicit matrt~r multiplication. 
as shown before. 

(

' -1 

R = ~ 
-1 

0.0001 
0 

) = ( ~1 
) , where R, = ( ~I -1 ) 

0.0001 , 
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The full QR Factorization of A: A= QR: 

( o.iOI )=( 
-I 0.0001 -0.0001 ) ( I -I ). 1 -0.0001 -0.7071 0.7071 0 0.0001 

0.0001 0 0.7071 0.7071 0 0 

.4 Q R 

The reduced QR Factorization of A: 

A=Q,R,=( 

-I 0.0001 ) ( -I I ) -0.0001 -0.7071 I 
0 0.7071 

0 0.0001 

Q, R, 

ALGORITHM 7 .2. Householder QR Factorization. 

Input: An m x n malrix A(m ::: n). 
Outputs: (i) 1l1e Householder vectors u 1 •••• , u, needed to form Q. (ii) An 
upper triangular matrix R. The result is .4 = Q R. 
Storage: (i) R is stored over .4 in the upper triangular part. (ii) The components 
llk+l,k through llmk of each uk are stored in the respective posilions of A. and the 
first component ttu is stored in a separate one-dimensional array. 

Fork = I, 2 •... , 11 do 

L Find the vector uk = (ukk> .. .. ttmdT defining lhe Householder 

matrix Hk of order m k + I such that 

2. Slore rkk over aa. au ru. 

3. Store the vcclor Hk as fallows: 

f1ik = tlib i = k + 1 •... , m, 

Vk ;::::: fikk. 

2 
4. Compute fl = -,-. 

Itkflk 

5. Update the entries of the submatrix of A containing rmvs k 
lhrough m and columns k throughn, denoted by A(k : m, k : n ), 
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and store these entries over the corresponding entries of A: 

( llkfi]~) 
A(k: m. k: n) = Im-k+! 2~ A(k: m, k: n) 

Ilk Ilk 

= A(k : m, k : 11) fJu 1u[ A(k: 111. k: n). 

Note: The algorithm docs not produce the matrix Q explicitly. If needed, it has to be 
formed oul of the saved Householder vectors u 1, ••• , U11 • 

Example 7.6. Let 

A=(~ 
I 

2 ;) . 
+ 

k = l: ( 
2flt11") (

0
) Construct the Householder vector u 1 such that f:, - - 7-

1 l 
ul UJ I 

Update: 

(

-1.414 -2.1213 -2.8284 
A= Ant= HtA = 0 ~-0.2071 0.2929 

0 :-1.2071 -1.7071 

( 
2t~ouf) k = 2: Construct the Householder vector u1 such that h - ---j-"-
u2 Uz 

(
-0.2071) = 
-1.2071 

(
-0.2071) 

112 = -1.2071 1 , 47 (I) (- 1.4318) ·-~· 0 = -1.2071 . 

Update: Update the submatrix in the box, A(2: 3, 2: 3) = (h- 2,1lu,uf)A{2 : 
3, 2: 3): 

A(2: 3, 2: 3) = ( J.l~47 1.6330 ) 
-0.5774 . 

( 

-1.4142 -2.1213 
Form R: A= Am= H2 H1A = R = 0 1.2247 

0 0 

-2.8284 ) 
1.6330 . 

-0.5774 

Note: In practical computations using the above storage arrangements, the entries 
a21, a3 ~. and a 32 of the above matrix (which arc zeros now) will be filled in wilh u:u = 1, 
1131 I.anJ11 11 = 1.207l,whilethecnlriesu 11 v'2andu2, -1.431Bwillbestored 
in a vector v defined by v = (,/2, -1.431B)T 
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Form Q = fl 1 fl2 by performing the matrix multiplication implicitly: 

( 

0 0.8165 0.5774 ) 
Q = -0.7071 0.4082 -0.5774 . I 

-0.7071 -0.4082 0.5774 
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Flop-count. When m 11, Algorithm 7.2 requires approximately ~"J ftops just to com-
pute the triangular matrix R. This can be seen as follows. -

For each k: 

• About4(11- k) Hops to construct ih. 

• About4(n - k) 2 flops for updating. 

n~l 

Tmalllllmber of flops =' 4 Ll (11 •• k) 2 + (11 k)] 
k=l 

= 4[(11- I )2 + (11 2)2 + · · · + I 2J 

+ 4[(11 - 1) + (11 - 2) + ... + 1] 

= 
- 1)(211- I) -'-

4
. 11(11 I) 

6 . 

(neglecting O(n 2 ) terms). 

Note: The abm•e coum does not include rite explicit constructlmr of Q. The matrix 
Q is available only in factored form. It should be noted that in a majority of practical 
applications, it is sufficient to have Q in this facLOred fonn, and in many applications, Q is 
not needed at all. If Q is needed explicitly, another 1n' ;1ops will be required. 

The approximate flop-count in the case m ,;; n: 

I. 2n 2 (m- V Rops if m ?: n (Exercise 7.6(a)). 

2. 2m:! (n 1') flops if m < n, 

3. 4(m2n "- nw1 + n3 /3) flops to compute Q explicitly (Exercise 7.6(a)). 

Round-off property and stability. In the presettce of routtd-off errors the algorithm 
computes QR decomposition of a .sUghtlv perturbed matrix. Specifically, il can be shown 
(}'Vilkinson ( 1965, p. 236)) that if R denotes the computed R. then there exists an orthogonal 
Q such that 

A+ E = 'QJr 
The error matrix £ satisfies 

IIEIIr :::0 </>(n);LIIAIIF. 

where t/J(n) is a slowly growing funclion of nand f.1 is the machine precision. 
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11/IATCOM Note: The MATCOM program HOUSQRN computes QR facwrization ofan 
m x n matrix A. The MATCOM program HOUSQR computes the QR factorization of an 
n x n matrix. 

7.3 Complex QR Factorization 

If x E cr. and x 1 = re111 , then it is easy to see that the Househo1der malrix 

l
' H = l- {3vv', where v = x ± e111 II x ll2 e, and {3 = ,,;,.is such that 

Hx = :;::ve1
" II x 111 Ct. (7.3) 

Using the above formula, the Househo]dcrQR factorization method for areal matrix A, 
described in the last section, can be easily adapted to a complex matrix. In this case, Q is 

. unitary and.Ris.complex upper tt·il\ngulqr. Tbcdctails are left to the readers. See Golub 
and Van Loan ( 1996, p. 233). . ·····- · ·· ·· 

The process of complex QR factorization of an m x n matrix, m ~ n, using House­
holder's method requires 8n2(m- 'j) real flops. 

MATLAB Note: Given a complex m x n matrix A, a MATLAB program in the form 
[Q, R] = qr(A) computes an m x n complex upper triangular matrix Rand an m x m 
unitary matrix Q so that A = Q R. If A is real. Q and R are also real and Q is orthogonal. 
[Q, Rj = qr(A, 0) produces the reduced QR factorization. 

7.4 Givens Matrices and QR Factorization 

7 .4.1 Definition and Basic Properties 

Definition 7. 7. A matrix of rhe form 

ith jth columns 
~ ! 

I 0 0 0 
0 I 0 0 

0 0 0 c s 0 
J(i,j,c,s) = 

0 0 0 -s c 0 

0 0 0 0 

- ilh 
rows, 

- jlh 

where c2 + s2 = 1, is called a Givens matrix, after the numerical analyst Wallace Givens.6 

5Wallacc Givens was an American mathematician. His pioneering work done in 1950 on computing the 
eigcnv:~lucs of a symmetric matrix by reducing it to a symmetric lridiagonal form in a numerically stable way 
forms the basis of muny numerically backward stable algorithms developed later. Givens held appointments 
at many prestigious institutes and research institutions. He died on March 5, i993, at the age of 82 (see 
obituary in SIAM News, July 1993). 
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Since one can choose c =cos& and s =sinH for some 8, a Givens matrix as above 
can be conveniently denoted by 1 (i, j, 0 ). Geometrically, tile matrix J (i, j, e) rotates a pair 
of coordinate axes (ith unit vccwr as its x-axis and lhe jth unit vec-tor as its y-axis) through 
the given angle 0 in lhc (i, j) plane. That is why the Givens matrix J (i, j. H) is commonly 
known as a Givens rotation or plane rotation in the {i, j) plane. This is illustrated in the 
rollowing figure. 

Thus. when an n-vcctor 

X 

u _ (cos(a + 0)) 
- sin(a +I)) 

(x'l .to 

_L 

_(cosO) 11
- sine 

-sin") (cos e) 
cosa sinR_ 

is premultiplicd by the Givens rotation J(i, j. 0), only the ith and jth components ofx are 
affecled; the other components remain unchanged, 

Note that since c2 + s2 = l, J (i, j, 8) · J (i, j, (!)r = I, the rotation J (i, j, 8) is 
orthogonal. 

·u x = ( :~~) is a 2-vector, then it is a muller of simple vcrilkation that, with 

the Givens rotation J (I, 2, H) = ( _:,:.) is such that J (I, 2, B)x = ( 0), 
The above fonnula for computing c and s might cause some wulerfimv or overflow. 

However, the following simple rearrangement of the formula might prevem that possibility. 

Computing the Givens Parameters 

lf lx:J.i ?: \xtl, computer 
X] I 
-,s= ;c st, 
x, JJ + t 1 

X"l J 
Otherwise, 1 = ...;:, c = ~; s =ct. 

x, vi +t' 

(Note that computation!! ofs and t do not invoh·e 8.) 

Example 7.8. 

X G)· 
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Sincelx 1 1>1x2l,wetaket=~,c= b= s= 
- v l+;c 

Verify. ( ~s ~) x = ( -~ ~) G) = ( 1) · I 
.J5 .. :. 

Implicit Construction of Matrix Product with a Givens Matrix 

Because of the special structure of the Givens matrix J(i, j, B), which differs from the 
identity matrix only in four places {i, i), (i, j), (j, i ), and (j, j), matrix multiplication by a 
Givens nw.trix does not /rave to be peiformed e:xplicitl)~ It can be done implicitl.y, as shown 
in the following algorithm. 

ALGORITHM 7.3. Implicit Construction of }A. 

Input: (i) An Ill X II matrix Aim ": ;;): (ii) The numbers c arids ofthc Givens 
matrix J(i, j, c, s) 
Output: The implicit product J A stored over A. 

Fork = L .... 11 do 

End 

a =ark· 
b Gjko 

au, = ac + bs, 

ap, =-as+ be. 

MATCOM Note: Algorithm 7.3 has been implemented in the MATCOM program 
PGIVMUL. 

Zeroing Specified Entries in a Vector 

Givens rotations arc especially useful in creating zeros in a specified posilion Jn a vector. 
Thus. if x ::::::: (x1, x2 , , •• , Xk, ••• , x 11 )r, and if we desire to zero Xt.:. only, we can conslruct 
the rotation J(i, k, II) (i < k) such that J(i, k, il)x will have zero in the kth position. 

X 
X'J 

X 
X; 

J 
Jx 0 X ~ --·-+ = X.k 

X 

Xu 
X 

To construct 1 (i. k, 8), first construct a 2 x 2 Givens rotation ( .!:., ~) such that 

( c s) (x') (*) -s c Xk = 0 
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and then form the matrix 1(i, k, B) by inserting c into the positions (i, i) and (k, k), and 
s and -s into the positions {i, k) and (k, i), respectively, and filling the rest of the matrix 
with entries of the identity matrix. 

Example 7.9. Suppose we want to create a zero in the third position of x, that is, k = 3. 

X=(~} 
Choose i = 2. 

l. Form a 2 x 2 Givens rotations c and s such that 

2. Then 

1(2, 3, B)x = (~ 
0 
-I 

,fTij 

-3 
,fTij 

-I 
c = ,fiO' 

Creating Zeros in a Vector Except Possibly in the First Place 

3 
s = ,fiO' 

I 

Given ann-vector x, if we desire to zero all the entries ofx except possibly the first one, we 
canconstruct1(1,2,B), xOl = 1(1,2,B)x, xi1l = 1(1,3,B)xOl, x(ll = 1(1,4,B)xm, 
etc., so that with 

P = 1(1, 11, B)··· 1(1, 3, 8)1(1, 2, 8), 

we will have Px a multiple of e 1• Since each rotation is orthogonal, so is P. 

II = 3: 
1(1.:2.11) 

1(1,2,B)x = =xl", 
( 

X~ ) 

1(1,3,11) 
1(1, 3, B)xlll = = xl1i 

( 
X~ ) 

Example 7.10. Let 

Then 

(~ 
-I 

~) C~) 
,f'i 

(~· xl'l = 1(1, 2, B)x = I = ,f'i .J'i 
0 0 

(jl 0 

~lm (n x 111 = 1(1, 3, B)x 111 = ~2 I 

0 ,/6 
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Flop-count and round-off property. Creating zeros in a vector using Givens rotations 
is about twice as expensive as using Householder matrices, 10 be precise, the process 
requires only i ~ times as many flops as Householder's, but it requires 0{~} square mots, 
whereas the Ho-useholder method requires O(n) square roots. Tlte procesS is as stable as 
the Householder method. 

Creating Zeros in Specified Positions of a Matrix 

The idea of creating zeros in specified positions of a vector can be trivially extended to 
create zeros in specit1ed positions of a matrix as welL 111lls, if we wish to create a zero in 
the {j, i)f(j > i}] position of a rnatri:x A, one way to do this is to construct the rotation 
J(i, j,B) affecting the ith and jth rows only, such that J(i. j, O)A will hnve a zero in the 
(j. i) position. The procedure then is as follows. 

ALGORITHM 7 .4. Creating Zeros in a Specified Position of a ;\fatrix Using 
GiYens Rotations. 

Input: An n x n matrix. 
Output: The matrix J(i. j. O)A with zero in the (j. i) position. The matrix 
J (i, j. 8 )A is stored over A. 

1. Find the Givens parameters c =cos 8 and s =sin B such that 

c~s ;) (~~;) = (~)· 
2. Form J (i. j, II) A implicitly and store this over A. (Use Algorithm 7.3.) 

Remark. Note thut there are other ways to do this as well. For example, we can fonn 
J(k, j, II) affecting thekth and jth rows, such that J(k, j, O)A will have a zero in the (j, i) 
position, 

Example 7.11. Let 

A G ~ D· 
Create a zero in the (3,1) position using 1(2, 3, 8). 

1. Find c and s such thai ( _:;·s ~· ) ( l) = ( ~ ); c = Ao, s = }~. 

2. Fonn 

.4'" = J(2,3,11)A = (~ 
0 

+) (i 2 

D (~o 
2 

3 ) 2 26 32 
J2o 3 = Jio 72o ' 
--1 5 -2 _, 

720 ../20 .J2o Jio 

I 
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MATCOM Note: Algorithm 7.4 has been implemented 1n the MATCOM program 
GIVSZERO. 

Since Givens matrices can be conveniently used to create zeros in a vector, it is natural 
to think that these matrices can also be used to find the QR factorization of a matrix. The 
idea is just like Householder's. The only difference is that (usually) more than one Givens 
matrix will be needed to create zeros in desired positions in a column of A. One way to do 
this is as follows. 

7.4.2 Givens Method for QR Factorization 

Let A E n:tmxn. There ares= min(m- l, 11) steps. 

Step 1. Form an orthogonal matrix Q 1 = 1(1, m, 8)1(1, m- I, 8) ... 1(!, 2, 8) such that 
A til = Q 1 A has zeros below the (I, I) entry in the first column. 

Step 2. Form an orthogonal matrix Q 2 = 1 (2, m, 8)1 (2, m - I, 8) ... 1 (2, 3, 8) such that 
A(1) = Q1 A(ll has zeros below the (2, 2) entry in the second column. 

Step k. Form an orthogonal matrix Q, = 1(k, m, R) ... 1(k, k +I, 8) such that Atkl = 
Q,Atk-li has zeros below the (k, k) entry in the kth column. 

The final matrix A(s) is upper triangular. 

Obtaining Q and R 

Set R = A (s) (upper triangular). 

Set T T T Q = Q1 Q2 ••• Q,, (orthogonal), 

where Q; = 1(i,m,8)1(i,m- I,8) ... 1(i,i + 1,8) (orthogonal). 

Then Q'~'A = Q_,Q_,_, ... Q2 Q 1A = R 

An illustration: Let m = 4, 11 = 2. 

A J(I,2.0l J(I,3,H) J(),-l.,IJ) 

1(1, 2, 8)A 1(1,3,8)1(1, 2,8)A 1(1,4,8)1(1,3,8)1(1,2,8)A 

1{2,3,8)Alli 1(2,4,8)1{2,3,8)A111 

(7) T T T T T T T R =A-; Q = Q1 Q2 = 1 (1,2,8)1 (1,3,8)1 (1,4,8)1 (2,3.8)1 (2,4,8). 
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ALGORITHM 7.5. Givens QR Factorization. 

Input: An m x n matrix A. 
Output: An 11 x 11 upper triangular matrix R such that A = Q R. The matrix R 
is stored over A. Q is formed out of Givens parameters. 

Fork= 1.2, ... ,min{m -l,njdo 
For I = k + I. .... m do 

I. Find a 2 x 2 Givens rotation acting on a., and OkJ such that 
OkJ = 0: 

( c •) (a") = (*) . -s c au, 0 

2. Save the indices k and e and the numbers c and s. 

3. 'F'orn1il1e /1) X m Givens riJ[ation J(k;l,'ll)aiidUpdutc A= 
J (k,l, II)A (by implicitly constructing the pmduc/ using A/go­
rirluu 7.3). 

End 
End 

Remarks. (i) The algorithm does not explicitly produce the matrix Q. If needed, it has 
to be formed from Givens rotations out of the Givens parameters c and sand the indices k 
and I. 

(ii) The Givens and Householder QR factorizations are intimately related. Sec Exer­
cise 7.5 and Example 7.12. 

Flop-count. The a1gorithm requires 3n2 (m - 1) flops. This count, of course, does not 

include computation of Q. Thus, this algorithm is about 1 { times as expensive as the 
Householder algorithm for QR.facrori,ation (Algorithm 7.2). · 

Round-off proper!)'. Tt;:o algorithm is stable. It can be shown (Wilkinson (1965, p. 240)) 
that the computed Q and R satisfy 

- -r R = Q (A+ E), 

where 
II Ell F s ellA llr. cis a constant of order unity. 

Example 7.12. Find the QR factorization of A from Example 7.6 using Givens rotations 
and detennine its relationship with that obtained by Householder's method. 

k = 1. Create Givens rotations J ( l. 2, 0) and J (1, 3. 11) such that J (1, 2, 11)1 (1, 3, O)A 
has zeros in the (1. 2) and (I, 3) positions: 

1. Find c and s such that 

c = 0, s =I, 
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A~J(1,2,R)A=(~l g ~)(: ~ D=G !l ~} 
2. Find c and s such that 

A= 1(1,3,8)A = (_~ 
,(:i 

1 
c= J2' s 

~ ~) (b !r ~1) = (~ 
0 ...L I 1 I 0 

,.fi 

3 
~ 

o/:! 

-1 
2J2) 
-1 . 

-J2 
k = 2. Create a Givens rotation 1 (2, 3, 8) such that J (2, 3. R)A has zeros in (3, 2) position: 

(-=, ~) (--~) = (~): h 
c= s 

"'' "'= (: 
0 
,/2 

-~ 

1 
-..13 

"W 
3 

h 
-7; 0 -1 

-~ 0 J 
,/3 -./1 

2.1213 
1.2247 

0 

2.8284) 
1.6330 = R. 
0.5774 

-~· v3 

' ") -v-

-I 

-J2 
I 

Relationship with Householder QR factorization. Note that the R matrix in the above 
example obtained by Givens' method is essentially the same as that of the Householder 
mclhod (see Example 7 .6) in the following sense: Ratvcns = D RHouseholUcr• where D = 
diag (±I, ±I, ... ). 

MATCOM Note: Algorithm 7.5 has been implemented in theMATCOM program GIVQR. 

7.4.3 QR Factorization of a Hessenberg Matrix Using Givens Matrices 

In several applications, one needs to find the QR factnrization of a Hcssc:nhcrg matrix. For 
example, the QR iteration algorithm (to be described later) ror eigenvalue computation 
requires QR ji:lctori:;ation of a Hessenberg matri..,. at et·ery iteration (Section 9.8). 

Since an upper Hessenbcrg matrix has at most (n 1) nonzero subdiagonal entries, 
wt.: can triangularize A by using only (n- I) Givens rotations. This is illustrated with n = 4. 

( ~ 
X 

X 

X 

0 

A 

X 

X 

X 

X 

X 

X 

X 

0 

X 

X 

X 

X 

J(I,2.11)A 

JOA.IIJ _ ( ; 
- 0 

0 

~) Jf231J) ( [ 

X 

X 

0 
0 

X 

X 

X 

X 

J(l,2,11)J(2,3.tl)A =A0 l 

X 

X 

0 
0 

X 

X 

X 

0 
~) = R. 
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ALGORlTIL'I<f 7.6. Givens-Hcssenberg QR Factorization. 

Input; Ann x n upper HessenberJi matrix, 
Outputs: An upper triangular matrix R stored over A, and the Givens parameters 
needed to fonn Q. The result is A = Q R. 

Step 1. Fork = l, 2, ... 11 l do 
1.1 Find c = cos e and s = sine such that 

( ~s ~ ) ( a::~.k ) = ( n 
1.2 Save the index k and the numbers c and s. 
1.3 Update A: A"' J(k, k + l, O)A. 
End 

.. Step2. SetR =:A. 

Flop-count. Algorithm 7.6 requires about 311
1 flops, compared to 211 3 Rops required for 

an arbitrary matrix. 

7.5 Classical and Modified Gram-Schmidt Algorithms for 
QR Factorizations 

The classical Gram-Schmidt1 process (CGS) taught in basic llnear algebra courses finds. 
starting from a set of n linearly independent vectors fak }. a set of n orthonormal vectors 
{qd such that 

span{q 1.q2·····q;] =span{a 1,a2, ... ,a;}, i = 1,2, ... ,11. 

'The vectors C/1, .••• fJn are determined as follows. 

Step 1. a, 
q,=--

llat!h r, (7.4) 

Step 2. Find a vector q2 in such a way that q2 is of unit length and orthogonal to q 1; that is, 
l!q2 11 = 1 and qi q2 = 0. It is easily seen that this will happen if we first define the auxiliary 
vector 

7 Jorgen Pedersen Gram ( l850- I 916) was born in Denmark. Despite his career with un insurance company. 
he pursued mathematical research in severn! areas of pure and applied mathematics, including probability 
theory, numerical analysis, and number theory, und managed to influence the Danish Mathematical Society 
in a posltivc way, He is best known for his work on the nrthogonalizatlon proces!>. 

Erhard Schmidt ( 1876-1959) was a German mathematician. He obtained his doctorate from the Univer­
sity of GOttingcn under the supervision of Hiibcrt and then joined the University of Berlin as a mathematics 
professor. Later he was appointed as Lhe dean and then vice-clmncellnr of that university. He also foundl:!d 
the Institute of Applied Mathematics at the University of Berlin. His. main research interests were integral 
equations and Hilbert space. In 1907, in one of his outstanding papers on integral equations, he established 
whal is now culled the Gram-Schmidt ortlwgonali::ation pmce.u. 
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and then normalize this vector to obtain 

{j'l 
qry:::::: --= 
- llq:ll: ,.,, 

203 

(7.5) 

Step 3. Find a vector q3 such that it is of unit length and orthogonal to both q1 and q,. 
Again, it is easy to see that this will again happen if we define 

ih = a3 - rnq1 - rnq2, 

where r 13 q 1a{ and r23 = q1af, and then take 

(7.6) 

The process is fairly general and can be continued until alllhc vectors up to q11 are computed. 

S k F. d ' "k-i d h I' b . tep ~ tn qk a;,- L..i=t ruJli• an· t en norma 1ze too tatn 

q, = qkfru. (7.7) 

QR Factorization from the Classical Cram-Schmidt Process 

The CGS process just described gives a reduced QR factori:.ativn of a matrix A whose 
columns are a1, a2, ••. , a11 ; that is, A= (a 1,a2,, .• , a11 ) E Rm,·n. 

To sec Lhis, note that (7.4)-(7.7) can be rewritten us 

a1 Q!1"tt. 

a2 = q1r12 + qzr22. 

[n matrix form, we can then write 

( 

r, 

(a 1,a2 , ... ,a,,)=(q1,q1 , ... ,q,) ~ 
r,, l T'!_n 

rl:n 0 

or A = Q 1 R 1, where Q 1 (q1• q2 , ••. , q,), and R 1 is the matrix in the parentheses on the 
right. 

Note that R1 is n x n upper Triangular and Q 1 ism x 11 arr!tonnrmal. 
Au illustration: m = 4, 11 = 2. Reduced QR factorization by CGS follows. 
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ALGORITHM 7.7. Classical Gram-Schmidt (CGS) Method forQR Factoriza· 
tion. 

Input: A= (a,, a,, ... , an) E R""n. rank( A)= ll. 
Output: Reduced QRfactorization: A= QR; Q E Rm..:n andRE IRnxr:. 

Fork = I. 2, .... ll do 
For i = I, 2, .. ., k - I do 

ru: =. qr OJ; 

End ,_, 
qk;::;:;; a~;- Lr;~:;qr 

i=l 
Tkk = ilq;i[2 

q, 
q, ;;;: -::-=.· .. 

rkt 
End 

Numerical stability. The algorithm, as outlined above, is known to have serious numer· 
ical difficulties. During the computations of the Qk 's, cancellation can rake place and, as a 
result. the computed q, scan be for from orrlwgonol. (See later in this section for details.) 

The algorithm, however. can be modified to have better numerical properties. The 
following algorithm, known as the modified Gram-Schmidt (MGS) algorithm, computes 
the QR factorization of A in which, at the kth step. the kth column of Q, and the kth row 
of Rare computed (note that the Gram-Schmidt algorithm computes the kth columns of Q 
and Rat the kth step). 

ALGORITHM 7.8. Modi6ed Gram-Schmidt (MGS) for QR Factorization. 

Input: A = {tlj' a2,.' '. Cln) E Rmxn. rank (A) = /L 

Output: Reduced QR factorization of A : A = Q R, Q E !R"' "', R E III:""': Q 
is orthonormal and R is upper triangular. 

Set qk = aJ., k I, 2, . , . , 11. 

Fork = l, 2, ... , ll do 

End 

r,. = j[q,[h 
q, -

q, =-
rkk 

For j = k + I, ... , n do 
- T rkj=qt;q} 

'li = qi- ''N'· 
End 

The above is the row-oriented modified Gram-Schmidt method. The column· 
oriented version can similarly be developed (Exercise 7 .9}. The hvo versions are numerically 
equivalem. 
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Flop-count. The llop-count for the MGS algorithm is 2nw 2 , compared to 2(nuz 2 - ~) 
needed for the Householder method. (Note thatMGS works with the full-length column vec­
tor at each step, whereas the Householder method deals with successively shorter columns.) 

Numerical stability. Although the MGS process is more efficient than Householder~·. it 
is not as nwnerically satisfactory as the Householder or Givens method for computing the 
QRfactorization of A. It can be shown (Bjorck ( 1996)) that if the computed Q is denoted 
by Q, then the following comparisons hold: 

Orthogonality with MGS: QT Q =I+ E; liE II"< 11 Cond(A). 

Orthogonality with House/wider: QT Q = I+ E; II Ell "< IL. 

(For more details, see discussions in the next section.) 

Reortlwgonalization: Orthogonality of the vectors in the matrix Q can be improved 
by reorthogonalization, and in general one reorthogonalization is suflkienl. Indeed, 
William Kahan, Professor of Mathematics and Computer Science at the University 
of California at Berkeley, has remarked on this mauer that "twice is enough." For 
more on this, see Bjiirck (1996, pp. 67-69). Unfortunately, however, the reorthogo­
nalization makes the process more expensive-almost double. 

MATCOM Notes: Algorithms 7.7 and 7.8 have been implemented in the MATCOM pro­
grams CLGRSCH and MDGRSCH, respectively. 

Example 7.13. Find QR factorizations of A of Example 7.5 using both CGS and MGS. 
Although in this case the COS and MGS algorithms produce the same results, we usc this 
example to illustrate here how the computational arrangements differ with the same matrix. 
All computations are performed with four-digit arithmetic. 

CGS Method 

k = 1: 

q 1 =a, = ( o.ogo} r11 = llqtll, = I, 

q, = ;,', = ( o.ogoi) . 
k = 2: 

r12 = I, "' = "' - ri2'li = (-0.~071) ' 
0.7071 

T -5 'ft 'f2 = -7.07JJ X JQ ·. 

Form Q1 and R1: 

Q, = (q 1,q2J = (o.ogoi -0.~071); 
0.7071 

R - (r" ,_ 0 r") = (I 
r11 0 J.4J4 X 
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• MGS 
CJ1 =at, 

k = 1: 

rn = ilqdl, =I, 

k=2: 

r, = llq, 1i = 1.41.42 .x 10.-4, 

Form Q, and R,: 

Q 1 = (o.o~ol 
ll 

-0.~071) ; 
0.7071 

Modified Gram-Schmidt versus Classical Gram-Schmidt Algorithms 

I 

Mathematically, the COS and MGS algodthms arc equivalent. However, us remarked 
earlier, their numerical properties are different. For example, consider the computation of 
q, by the COS method, given q1 with llqt lb = L We have 

Then il can be shown (Bjorck (1996)) that 

lift(q,)- q,ll < (I .06)(2m + 3)1' II a, II,. 
Since q'{ q, = 0. it follows that 

lq'{ft(q,)l < (1.06)(2m + 3)1' lla,ll 2 • 

ThL;· shows that in CGS two compwed vectors, q1 and q2. can be far from orthogonal. 
On the other hand, it can be shown (Bjorck ( 1996)) that in MGS the loss of orthogonality 
depends upon lhe condition number of the matrix A. Specifically, it has been shown that 
the computed Q, denoted by Q, satisfies 

11 - r -~~ CtfL Cond,(A) 
li 1 - Q Q 2 S 1-Cz!J.Cond,(A)" 

assuming that t 1JJ.. Cond2(A) < I, where. c1 und c2 are small constants. 
Since in MGS the loss of orthogonality depends upon the condition number, one could 

use column pivoting to maintain orthogonality as much as possible. Thus. as fur as finding 
the QR factorization of A is concerned, nelthcr algorithm can be recommended over the 
Householder or the Givens method. With CGS the orthogonality of Q can be completely 
lost; with 1\t!GS the orthogonality of Q may nor be acceptable wlren A is ill-conditioned. 
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Note that in Example 7.13. the computed Q (in four-digit arithmetic) is such that 

QT Q ( 1 -0.0001) 
-0.0001 1 . 

On the other hand, for the same problem using tile Householder method, QT Q = 1 (in 
four-digit arithmetic), 

The following table shows the departure or orthogonality or the Q matrix for the QR 
factorization or a 5 X 5 Hilben matrix (extended precision) using three dilTerenl methods 
(Householder, CGS, and MGS). 

Table 7.1. Comparison ojQRfactoriwtion of a 5 x 5 Iii/bert matrix with CGS and MGS. 

' 
Method I li/- QTQli2 
CGS 0( llr7 ) 

MGS 0(10 12 ) 

Householder O(I0-16) 

Remark. Table 7.1 clearly shows the superiority of the Householder method over both the 
CGS and MGS methods; of the Iauer two methods, MGS is clearly preferred over CGS. We 
now summarize in Table 7.2 thejiop~cmwt and stability properties of the four methods for 
QR factorization of a matrix A. 

Table 7.2. Comparison of efficiency and srability of QRfactorication methods. 
" 

' I Stability Method Flop-count 

Householder 2n"" m- ~ "( ") 
3 

Stable 
-··~ 

Givens 3n- m--' ( II) 
3 

I 
Stable 

CGS 2nuT1 UnsUJblc (possible severe loss af arthogonolity ). 

MGS 

I 
2mn2 Beller stability property than CGS, but not as stable as 

Householder's or Givens' method. 

' 

Full QR versus Reduced QR Factorizations and Uniqueness 

1l1e CGS and MGS methods give a reduced QR factorization. The questions thus arise: 
(i) Hmv does one obtain a full QRfactori;;,atianfrom a reduced one! (ii} When is a reduced 
QR faccari::.ation unique? 
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To obtain a full QR factorization from a reduced one, A = Qr RJ, just append an 
additional (m- n) orthonormal columns to Q 1 so that it becomes an m x m orthogonal 
matrix Q and also append a rows of zeros to R 1 so that it becomes an m x n triangular 
matrix R. 

To answer the question of uniqueness, we turn to the COS process. 
Note that theoretically this process docs not break down unless Qk is identically zero; 

but this will not happen if A is assumed to have full rank (why?), The choices of ru 
IJqdlo > 0 were made deliberately to normalize the vectors lJk so that they have unit lengths. 
But once this choice is made, then all the computations are uniquely determined. 

Thus, we can state the following result. Another proof of this result can be obtained 
via Cholesky decomposition; ~ce Exercise 7. 7. 

Theorem 7.14 (uniqueness io reduced QR factorit.alion). Let A E Rmxn(m 2: 11) !tave 
full rank. Then it has a unique reduced QRfactori~ation: A= Q 1Rr with rile diagonal 
entries. of R, posirixe .. 

7.6 Solution of Ax= bUsing QR Factorization 
The QR faclorization 

A= QR 

immediately \cuds to the following algorithm for solving Ax b: 

Solving Ax = b Using QR. 

Step 1. Find the QR fuctorilation of A : Qr A = R. 
Step 2. From b' QTb. 
Step 3. Solve Rx = b'. 

Note: If Householder's method for QR factorization is used. then the vector b' can be 
computed implicitly from the factored of Qr H1 H2 ••• H,._ 1• ash' = H1 H2 ... Hn_ 1b. 

Example 7.15. Consider matrix A from Example 7.6 and b = (2, 6, 3)T. 

Step 1. The Householder matrices are given by 

( 

0 -0.7071 -0.7071 ) 
H, -0.7071 0.5000 -0.5000 . 

-0.707 I -0.5000 0.5000 

Step 2. Compute b': 

0 
-0.1691 
-0.9856 

-0.~856 ) . 
0.1691 

(
2) (-6.3640) (-6.3640) 

y, = b 6 ; y, = H1Yr = 0.0858 : b' = Y> = H,y, = 2.8577 . 3 -2.9142 -0.5773 
(Note that b' above has been computed without explicitly forming the matrix Q.) 

Step 3. Solve: Rx = b' => x = (l) (using R [rom Example 7.6). I 
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Flop-count. If the Householder method is used to factor A into Q R, then the solution 
of Ax = b requires jn' + O(n2 ) flops. Thus. solving Ax = busing Householder QR 
factorization requires roughly twice the number of operations as with Gaussian elimination 
with pivoting. This explains tvhy the QR approach for solving Ax = b is not used in practice 
over GEPP. 

Round-off property. It can be shown (Lawson and Hanson ( 1995)) that the computed 
solution.< is the exact solution of (A+ E).f = b +8b, where II Ell F :0 (3n 2 +41n)fl IIA IIF + 
O(ft1 ), and !lob II :0 (3n 2 + 40n)llllbil + 0(1t 2). 

Thus the QR method for .solving Ax = b is srable and does not involve any growtl!factm: 

7.7 Projections Using QR Factorization 

Definition 7.16. 71w 11 XII matrix Ps having tl!e following properties is et1/led the ortlwgol!al 
projection onto a subspace S ofF.n. 

(i) R(Ps) = S (the range of Psis S). 

(ii) PJ Ps (Ps issymmetric). 

(iii) P] = Ps (Psis idempotent). 

A relationship between P s and P S". If P,\' is the orthogonal projection onto S, then 
I - Ps, denoted by P5J, where I is the identity matrix of the same order ns Ps. is rhe 
orthogonal projection onto (Exercise 1.35), 

7.7.1 Orthogonal Projections and Orthonormal Bases 

LetS ::; IR" be a subspace. Let I v,, ... , v, I be an orthonormal basis for the subspace S. 
Form V = (VJ, v2, ... , vk). Then 

Ps = VVr 

is the orthogonal projection onto S. 
Nole that V is not unique, but Ps is. 

The orthogonal projections onto R(A) and N(A 1'). When the subspace Sis R(A) or 
N(AT) associated with Lhe matrix A, we will denote the unique orthogonal projections onto 
R(A) and N(AT) by PA and PN. respectively. If A is"' x 11(111 2: 11) and has full rank, their 
explicit expressions are given by (Exercise 7 .36) 

(i) PA A(A,.A)-tAT; (ii) PN 1-A(A,.A)-!AT 

Remark~ It is not ad\'isable to comptl!e projections using the above expressions, because 
th!! matrix AT A can be computationally singular. 
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7.7.2 Projection of a Vector onto the Range and the Null Space 
of a Matrix 

Any vector b can be written us 
b = bs +bs,, 

where bs E Sand bs, E S.L. II' s is the rank R(A) or a matrix A. then bs E R(A) and 
bs' E N(A'~'). We will therefore denote bs by bRand bs, by bN. meaning that /JR is in 
the range of A and bN is in the null space of AT The vectors bRand b.v. in fact, can be 
expressed in terms of the orthogonal projections onto R( A) and N (AT), respectively. It can 
be shown (Exercise 7.36) that 

bR = PAb and bN = PNb. 

The vectors b R andb N are called the onhogonal projection ofb ollfo R(A) and the orthogonal 
projection ofb onto N(A"), respectively . 

.... From.abovc. we. eqsily_sc;g:. that b~-~1'1 := 0. 

7.7 .3 Orthonormal Bases and Orthogonal Projections onto the Range 
and Null Space using QR Factorization 

Computing orthogonal projections using the explicit formulas above require the matrix 
inversion (A r A)- 1, and therefore can be numericu.Hy unstable. A stable way of computing 
the projections is either via (i) QRfactorization or (ii) SVD. 

For discussions on finding orthonormal bases and orthogonal projections using the 
SVD, sec Section 7.8.10. 

Theorem 7.17. Let A = QR be the QRfactarization ofafull-rankm x n matrix A(m 2: 11). 

Let Q = (Q 1• Q2), where Q1 is the matrix offirstn columns. Then 

(i) the columns ofQ 1 and Q1 form onhonormal bases of R(A) and N(Ar), respecrively; 

(ii) rite orrlwgonal projections. P, and PN, onto R(A) and N(Ar) are. respectively, 
Q1Qf andQ1 Qf, 

Proof. Assertions (i) follow from the fact already established: 

span (q 1, ... ,q,} =span (a,. ... ,a,}. i = 1, ... ,11. 

Assertions (ii) follow from (i) and the definition of the projection. D 

Example 7.18. Consider Example 7.5 again. 

0 . A= (o.ogoJ I ) 

0.0001 

Using the results of Example 7.5 we have the following: 

• An orthonormal basis of lil:(A): { 
l 

0.0001 
0 

0.0001 } 
-0.7071 . 
0.7071 
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{ 

-0.000 I } 
• An orthonormal basis of N(AT): 0.7071 . 

0. 7071 

Tlte ortlwgonal projection olllo R(A): 

( 

1.000 
PA = Qr Qf = 0.0000 

0.0000 

The orthogonal projection ol!lo N (AT): 

0.0000 
0.5000 

-0.5000 

0.0000) 
-0.5000 . 
0.5000 

T ( 0.0000 
P, = Q2 Q2 = -0.0000 

-0.0000 

-0.0000 -0.0000) 
0.5000 0.5000 . 
0.5000 0.5000 

Ortltogonal Projections of b: Let h = ( J • J, J) T and A as above. Then 

( 

1.0001 ) 
"" = PAb = 0.0001 

0.0001 
and b,v = P,vb = ( -~:~~~ ) . I 

0.9999 

QR Factorization with Column Pivoting. 

If A is rank-deficient, then QR factorization cannot be used to lind a hasis for R(A). 
To see this. consider the follo\ving 2 x 2 example: 

A= u n = c 7 ) ( ~ ~ ) QR. 
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Rank (A) = J < 2. So. the columns of Q do not form an orthonormal basis of R(tl) 
nor of its complement. 

ln this case, one needs to use a modification of the QR factorization process, called 
QRfactoriz.ation with column pivoting. 

The process Hnds a permutation matrix P and the matrices Q and R such Lhal A.P = 
QR. The details are given in Chapter 14, available online at www.siam.org/bookslotl/6. 
Sec also Golub and Van Loan ( J 996, pp. 248-250). 

MATLAB command [Q, R, P] = qr(A) can be used to compute the QR factorization 
with column pivoting. 

Also [ Q, R, E] = qr(A, 0) produces an economy-sized QR factorization in which E 
is a permutation vector so that Q * R = A(:, E). 

7.8 Singular Value Decomposition and Its Properties 
Vle have so far seen two matrix factorizations: LU and QR. ln this section, we introduce 
another very important factorization, called singular value decomposition (SVD). A proof 
of the SVD (Theorem 7 .19) will be deferred until Chapter I 0. 
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7 .8.1 Singular Values and Singular Vectors 

Theorem 7.19 {SVD theorem). Let A E :!Rm~:n. T!ten there exist orrhogonal marrices 
u E JRliiXm and v E lRnn; such that 

(7.8) 

where E = diag(rrt, ... , Gp) E JRnL<n, p = min(m, n), and <11 ;::: a2 :::_ • • · 2:. fYp:;: 0. 

Definition 7.20. Tlze decomposition A = U l: vr is called the singular value decomposi· 
lion of A. 

• lJ E Jftm:.: 1
'
1 (orthogonal). 

V E lR"x" (orthogonal). 

Note: Notice that when m ?:: n, E has the fonn 

An illustration: m = 4, 11 = 2. The following is an SVD of a 4 x 2 matrix: 

( ~ ~) = ( ~ ~ ~ ~) ( ~ ~) ( ~ : )· 
A u 

Definition 7.21. The diagonal elltries u 1 , a 2 , ••. , a, are called the singular ••alues of A. 

Definition 7.22. Tile columm of U are called the left singular vectors, and those of V are 
called the right singular vectors. 

A Convention 

For the remainder of this chapter we will assume, without any loss of generality, 
that m ?:: n, because if m < n. we consider the SVD of AT, and if the SVD of AT 
is u <:; vr, then !he SVD of A is VET uT Also the following convention will be 
used: 

• Umax = a1 =the largest singular value, 

O'mio = U 11 =the smallest singular value. 

• a1 = the ith singular value. 
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Notes: 

I, When m 2:: n, we have 11 singular values. It can be shau·n that these are the square 
mots of then eigeuvalues of the symmetric matrix AT A. 

2. The singular values of A are uniquely determined ·while the marrices U and V are 
1/0[ unique in general. nt'hy?) 

3, The SVD immediately reveals several matrix properTies, including rank, norms, con­
dition numberJ and important information on the strucrure of a matrix, such as or­
thonormal bases of R(A) and N(A) and orthogonal projections onw R(A) and N(A). 
(See Sectio!ls 7 .8. 7 a!ld 7 .8.10.) 

7.8.2 Computation of the SVD (MATLAB Command) 

The computation of the SVD is more cxpcnsive)h_an computing the QR factorization either 
by Householder's or Givens' method. A widely used method, called the Golub-Kahan­
Reinsch algorithm, comes in two phases. Tn Phase I. the matrix A is reduced to a bidiagonal 
matrix B by orthogonal equivalence, and then in Phase ll, rite matrix B is further reduced 
to a diago!lal matrix of si!lgular values. We shall describe this SVD method in detail 
in Chapler l 0. The metlwtl is numerically swb/e. For lhe time being, to use SVD as a 
computational tool, one can usc the MA1LAB program svd, 

[U, S, VI= svd(A), 

which gives the complete SVD.lf only the singular values of A are required, usc svd (A). 

Example 7 .23. Let 

Then [U, S, V] svd(A) gives 

E = 0 0.3742 
(

6.5468 0 ) 

0 Q Jx2 
(

0.3381 
u = 0.5506 

0.7632 

v- (0.5696 
- 0,8299 

-0.8219) 
0.5696 ,,, . 

There arc two singular values: 6.5458, 0.3742. I 

7.8.3 The SVD of a Complex Matrix 

0.8480 
0.1735 

-0.5009 

0.4082 ) 
-0.8165 

0.4082 '" 

Lcl A E cm:-: 11
• Then there exist unitary matrices u E cnn:m and v E cll>ll such that 

A=UEV', 

\vherc E 

MATLAB Note: The function svd can be used to produce the SVD of n complex matrix 
us: welL In [his case U and V are complex unitary matrices. 
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7.8.4 Geometric Interpretation of the Singular Values and Singular 
Vectors 

LetS be the unit sphere in Rn. Then the image of Sunder A is a llyperellipsoid E defined 
byE= {Ax: llxlb 1). 

• The singular values are the lengths of the semi-axes of E. 

• The left singular vectors are the unit vectors in the direction of the semi-axes of E. 

• The right singular vectors are the unit vectors in S that are the prcimages of the 
semi-axes of E, 

Tlws, I he unitary map V* preserves the sphere, the diagonal matrLx I: stretches rlw sphere 
into a hyperellipsoid, and the llnitary map U rotates or rejlec1s the hypere!lipsoid. keeping 
its shape. For rn~re.d.etails sec Trefethen and Bau ( !997). 

See Figure 7.4 for an illustration of a twit ball onder the SVD of A. 
Let A= UL:;V7 , '2:; = diag (3, 0.5). 

Rotate by vr 

Stretch along axis 

Rotate by U 

Figure 7.4. Image of a unit ball under tire SVD of a matrL>:. 

7 .8.5 Reduced SVD 

If A= UEVT is the SVD of A E IR"'"'(m 2: n), then, as in the case ofQR factorization, 
we can write 
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where 

and 
I:1 diag (ul, a2,.,,, rr11 ) E lR11 "":". 

The above form of SVD is called the reduced or the thin SVD of A. 

RcducedSVD 

Any matrix A E IRm~:n(m 2: n) can be wrincn in the form 

A= U,"E, VT. 

where U1 is an m x 11 orthonormal matrix, L1 is ann x n diagonal matri.r, and 
V is an n x n orflwgonalmarrix. 
In many applications, this reduced form of SVD is st~{ficient, 

A = 

n x 11 JtXll 

m xu m x n 

Figure 7.5. Reduced SVD (m > n). 
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MATLAB Note: [U.S. V] = svd(A, 0) can be used to produce lhe reduced SVD of A. 

7 .8.6 Sensitivity of the Singular Values 

One reason for the wide applicability of singular t'alues in practical applications is that the 
singular values are well~conditioned. 'J!le slate a result here in this context. The proof will 
be deferred until Chupter 10. 

Theorem 7.24 (perturbation theorem for singular values). Let A and B = A+ E be two 
m X ll matrices (m :::: n). Let Ctj' i = I' ... ' 11, Wld ai. i = I'.''' n, be, respectively, the 
singular values of A and A+ E in decreasing orde1: Thea lii1 - a,! :;5 IIEib j(Jr each i. 

Example 7.25. 

(
I 2 3) 

A= 3 4 5 • 
6 7 8 (

·a o o ) 
E= 0 0 0 . 

0 0 0,0002 

The singular values nf A: a 1 = 14.5576, a2 = 1.0372, a3 = 0.0000. 
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The singular values of A+ E: &1 14.5577, ii2 = 1.0372, and&, = 0.0000, 
Absolute error: lrr1 - ad= 1.1373 x 10-'. lii2 - a1 1 = 0, and !a3 - rr31 = 0. 
Since IIEih = 0.002, the statement of Theorem 7.24 is easily verified. I 

Next, we present u result (without proof) on the perturbation of singular values that 
uses the Fmbenius norm instead of the 2-norm. 

Theorem 7.26. Let A, E, cr1, and Ui, i = i, .. , , n, be the same as in Theorem 7.24. Then 

7.8.7 Norms, Condition Number, and Rank via the SVD 

Theorem 7.27. Let a 1 2: u2 ~ • • • ;:::: a,, be the n singular values of an m x n matrix 
A(m 2: u). Then 

2. l\AIIr =(a}+ ai + · · · + a,~)f. 

3. UA~! lb = "~ when A is n x 11 and nonsingular. 

5. rank (A) :::::: number of nonzero singular values. 

Proof. 

1. IIA\12 = IIUl:Vrih = IIEih = max;(crJ) = u,. 

2. iiAIIr = IIUEVrllr 

(Note that the 2-norm and Frobenius norm. are invariant under orthogonal matrix 
products). 

3. To prove 3 we nole that the largest singular value of A-" 1 is j_. (Note that when A is 
"" invertible, a, #- 0.) Then the result follows from I. 

4. Item 4 follows from the definition of Cond2 (A) and the results of I and 3. 

5. Since the rank of a matrix is invariant under orthogonal matrix multiplication, 
rank(A) =rank (UEVr) =rank (E). The matrix E being a diagonal matrix, its 
rank is equal to the number of nonzero diagonal entries. D 

Remarks on the SVD condition nunlber. 

I. If A is a rectangular mauix having full rank, then Cond2 (A) = ;;::;. 

2. When A is rank-deficient. crmm = 0, and we say that Cond,(A) is infinite. 
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3. When A is nearly rank-deficient, Cond2(A) is large. 

4. Cond2(r1) measures how far the hyperellipsoid lAx : [lxll 2 = I) is elongated. 

5. Determining rank in presence of round·oiT errors and noisy data is a nontrivial task. 
What is more important in practice is to talk about numerical rank rather than just 
the rank of a matrix (sec Section 7.8,9), See also discussions on rank-deficiency in 
The-orem 7.29 in this context. 

Example 7.28. 

A=(~~)-
3 4 

Singular values of A arc a, = 6.5468, rr2 0.3742. IIAib =a, 6.5468: IIA!IF = 

Jaf + ai_ = 6.5574; Cond,(A) = ;;;- = 17.4975. I 

7.8.8 The Distance to Singularity, Rank-Deficiency, and Numerical 
Rank via the SVD. 

\Ve have just seen that the number of nonzero singular values of a matrix is its rank. The rank 
of a matrix can also be determined using (i} Gaussian elimination, and (ii} QRfactorization 
with colum11 pivoting, Both are less expensive than computing the singular values, but 
are not as numerically reliable as determining it by the SVD, especially if it is desired to 
determine the closeness of a full~rank matrix to a nearby mnk~deficient one. As an example, 
consider the celebrated Kahan matrix (which is upper triang1tlar): 

t -c -c -c 
-c -c 

(7,9) 

with c2 + s2 = I; c. s > 0. 
For n = iOO, c = 0.2, r1111 = sn-l = 0.133, which is not small; on lhe other hand, 

R has a singular value of order I0-3 , indicating tfwt it is nearly singular. 
Since the number of nonzero singular values determines the runk of a matrix, we can 

say that a matrix A is arbitrarily near u matrix of full rank: just clrange each zero singular 
value hy a small 1wmber E. It is, therefore, more meaningful to kuow if a marrix is near a 
matrix of a certain rank, ratlter rhan knowing whar the rank is. The SVD exactly answers 
this question. 

Suppose that A has rank r, that is, a1 ~ a2 2:: · · · 2:: ar > 0 and crr+l = · · · = rr,1 = 0, 
Then the question is how far is A from a mauix of rank k < r. The follo\ving theorem 
(Theorem 7.29) can be used to answer the question. This theorem is generally known as 
the Eckart-Yaung theorem (see Eckart and Young (1939)), 

Theorem 7.29 (SVD and nearness to rank-deficiency). Let A = UEVT !Je tire SVD of A. 
Ler k :" r = rank( A). Defi!!e A, = U E, V'~', wlrere Ec = diag (a1, ••. , a,. 0., 0)""''' 
where a 1 ::.:: a2 ~ • • • ~ ITk > 0. 
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Then 

(a) A has rank k. 

(b) 1'11e distance of A, from A (in the 2-nonn) is IIA- A,lh =crt+ I· 

(c) Out ~fall tile matrices of rank k, A, is the closest to A; that is, 

min IIA- 8112 = IIA- Ak!b-
nmldBl=k 

Proof. Proof of(a). rank (Akl = rank(UE, VT) = rank ('Ed = k (note that rr1 ?: a2 ?: 
, ·,~a;.> 0). 

Proofof(b). Because A- A, U(E- Et)VT, we have IIA- Adb = !IU(E­
E,) VT !!2 = II{E - EtJ11 2 = ak+l· Thus, the distance between A and .4, is a,+l. 

Proof of(c). To prove (c), we show that if 8 E JR:"·'" is any other matrix of rank k, 
then II A. 811 2 =_<rk+J; that is, .4, is closest to A among all other matrices of rank k. 

Since 8 has rank k, the null space of 8, N(8), has dimension n- k. 
Consider now the space S = span { v1, ••. , vk+ 1}. where Vt through v_z+ 1 are the right 

singular vectors of A. Since N ( 8) and S are both subspaces of IR" and the sum of their 
dimensions is greater than n, their intersection must be nonempty. Let :: be a unit vector 
tying in this intersection. Then since.: E span {v1., •. , Vk+l J, there exist scalars (not aH 
zero) such that z = c1 v1 + q v2 + · · · + ck-+ 1 Vk+ I· 

Furthcnnorc! because Vt, , , , , vk.,..1 arc orthonormal. we must have lcd 2 + fczf + 
· · + lck+li' =I. Because z also belongs to N(8), we have Bz = 0. So 

k+l .i:+J 

(A- B)z::::: Az = Lc1Avr = Lrriciui (note that A vi= rrrui). 
f=l 1=1 

Because Lit, ••.• Uk+J arc also orthonormal. 

k+l k+1 

" "I , ' v. ")I ' II(A- 8)ZII2 = L.. a,c;!· ~a,+, L.,lc; = uk+l· 
i=l 

Thus, IIA- Bib?: iliA-Bltlb ?: "'+'(because llzlb = 1). D 
ll~!b 

Corollary 7.30. Let A be an m x 11 matrix of jill/ rank and let r = min(m, 11). Let 
a1 :::_ cr:: :::_ · · · :=:: a, > 0 be the singular values of A. If C is another m x n matrix such 
thatiiC- All2 <a,. rhen C has also full rank. 

Corollary 7.31 (distance to singularity). The relative disrance of a nonsingular matrix A 
10 the nearest singular matrix Cis Cor.J::(Al; that is, 

II C - A 112 = -:::--:-:--:c: 
I!Aib Cond2(A) 

Example 7.32. Consider Example 7.2?- again. 

a1 = 6.5468, a2 = 0.3742. k = I. 
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Then 

( 

1.2608 1.8193 ) 
A1 = UI; 1 VT = 2.0534 2.9630 . 

2.8460 4.1067 

Out of all the matrices of rank I, A 1 is the closest to A. (Verify this by constructing any 
other arbilrary rank-one matrix of order 3 x 2 and then computing its 2-norm distance 
from A.) I 

Distance of a Matrix from the Nearest Matrix of Lower Rank 

The above result states that the smallest nonzero singular value gives the distance from A 
to the nearest matrix of lower rank. In particular, for a nonsing11lar 11 x 11 matrix A, the 
smalLest singuLar value CT11 gives the measures of the distance of A to the nearest singular 
matrix. 

Thus, in order to know if a matrix A or rank r is close enough to a matrix or lower 
rank, look into the smallest nonzero singular value rrr. If this is very small, then the matrix 
is very close to a matrix of rank r - 1, because there exists a perturbation of size as small 
as larl which will produce a matrix of rank r- I. In fact, one such perturbation is ttrarv[. 

Example 7 .33. 

A= G 
0 
2 
0 

(! I 
0 
0 

U= 

0 . 0 ) 
0.0000004 , 

~). V= 

(

I 0 
0 2 
0 0 

(! 
rank(A) = 3, a3 = 0.0000004. 

I 

~) 0 
0 

rank( A') = 2. 

The required perturbation u3a3vf to make A singular is very small: 

(

0 0 0 ) to-' o o o . 
0 0 0.4000 

I 

Note: The following is a Frobenius-norm analogue of Theorem 7.29 

Theorem 7.34 (low~rank approximation in Frobenius norm). Let B be cmy matrix of the 
same order as A and let A~; be the same as in Theorem 7 .29. Then 

liB- All~':': II A,- All~·. 

7.8.9 Numerical Rank 

In practical applications that need singular values we have to know when to accept a com­
puted singular value to be "zero." Of course, if it is of an orderof"round-o!Tzcros" (machine 
epsilon), we can declare it to be zero. 



220 Chapter 7. QR Factorization, SVD, and Projections 

However, if the data share a large relative error, il should also be taken into consider­
ation. A practical criterion \vould be the following: 

Accept a computed singular value to be zero if it is Jess than or equal to 
w-r!\AII 00 , where the entries of A arc correct tot digits. 

Having defined a tolerance 0 = I0-'1\AIIoo for a zero singular value, we can 
have the following convention for the numerical rank of u matrix (see Golub 
and Van Loan ( 1996, p. 261 )): 

A has "numerical rank" r iflhecomputed singular values U1, 0'2 •...• U11 

satisfy 

(7. !0) 

, .. . . .. . . ;;, 
Thus, roughly, to determine numcncal rank of a matrix A, count the "large" 
singular values only. If this number is r, then A has numerical rank r. 

Remark. Note that finding the numerical rank of a matrix will be trick)" if lhere is no 
suitable gap between a set of singular values. 

7 .8.1 0 Orthonormal Bases and Projections from the SVO 

Theorem 7.35. Let A = U I: VT be the SVD of A E IR"' "' (m ?: 11) and let r be the rank of 
A. Pmtition 

U = (U,, lh) and V = (V1• V2 ), 

wlwre U1 and \11 consist of the first r columns of U and V, respectively. Then 

(a) the columns of U1 fonn an orthonormal basis of R(A); 

(b) the columns of V2 form an orthonormal basis of N(A); 

(c) orthogonal projection oma R(A) = U1 Vi; 

(d) ortlwgonal projection onto N {AT) = U,U[; 

(e) orthogonal projection onto N{A) = v, V[; 

(0 orthogonal projection onto R{A 1 ) = l',l'r 

Proof. The proofs of(a)and (b)fo!low, rcspectively,from the factthat R(I:) = {e1, ... , e, l E 
Rm and N(E) =fer+!, ... , enl € lRn. 

The proof of (c) follows from (a) and the definition of the projection. The proofs of 
(dHt) arc similar. 0 
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T 

u 
Figure 7.6. Representation of range and null space of a matrix by SVD. 

Figure 7.6 shows a representation of the range and null space of a matrix by SVD. 

Example 7.36. Let A be the same as in Example 7.18. From the SVD of A, we have 

( 

-1 0 -0.0001 ) 
u- -0.0000 -0.7071 0.7071 

- -0.0000 0.7071 0.7071 ' 
u, u, 

v = ( 

-0.7071 
-0.7071 

-0.7071 ) 
0.7071 . 

v, 

• An orthonormal basis of R(A) =the columns of U1 

= { -0~~00 -0.~071 } . 
-0.0000 0.7071 

• An orthonormal basis of N (A) = the column of V, = [ -0.7071 l 
0.7071 . 

PA =orthogonal projection onto R(A) = U1 ur 
( 

1.0000 0.0000 0.0000 ) 
0.0000 0.5000 -0.5000 . 
0.0000 -0.50000 0.50000 

PN =orthogonal projection onto N (AT) = U2 UJ 

( 

0.0000 -0.0000 -0.0000 ) 
= -0.0000 0.5000 0.50000 . 

-0.0000 0.5000 0.50000 
I 

MAT COM Note: MATCOM program ORTHOPROJ computes the projections using SVD. 

7.9 Some Practical Applications of the SVD 
Part (c) of Theorem 7.29 has some important consequences in practical applications. Matrix 
A~.:, the best rank-k approximation of A, is given by A= UL.~.: vr, which can be written as 

T T A~.:= a 1t1 1u1 + · ·· +a~.:.llkVk. 



222 Chapter 7. QR Factorization, SVD, and Projections 

The storage of matrix .4 requires nw locations~ whereas matrix Ak can be stored using 
only (m +n)k locations. thus resulting in a considerable savings when k is smalL This fact 
can be conveniently exploited in image processing and other applications. As illustrated 
below, even such low-rank approximations of A are useful in practical applications. 

Image compression. An image can be represented by an m x 11 matrix A whose (f, j)th 
entry corresponds lo the brightness of the pixel (i, j). The idea of image compression 1s to 
compress the image represented by a very large matrix to the one which corresponds to a 
lower-order approximation of A but whose quality is still acceptable to a user. 

As an example, we present in Figures 7.7 and 7.8 the different low-rank approxima­
tions of the portrait of a child. The matrix A here is of dimension 250 x 312. 

Image restoration. The idea of image restoration is to restore the original image from 
~1 RL~f.!:Y_)_!:'!_~ge contaminated by "noises." lt can he shown that the "noises" correspond 
to the small Slflii:l"iUr vUlues. Tht.is- difni"rtation --t)r-thesc small--singular- values wi11 result 
in runk-k approximations Ak corresponding to the noise-free images. The necessity of 
image reslaration arises in clinical diagnosis and other practical applications. In Figure 7.9 
{supplied hy James Nagy) we illustrate the idea with an example of a planet. Matrix A here 
is of dimension 256 x 256. The singular values less than 0.0055 are discarded. 

A Biomedical Application (Extracting Fetal ECG from Maternal ECG) 

Here we show how the same type of idea as above can be used in a biomedical application 
of extracting fetal ECG from the maternal ECG. It can be assumed (see Vandewalle and De 
Moor (1988)) that this relationship is linear, and, indeed, each measurement signal m1(t) 
can be written as a linear combination of r source signals si(r) and additive noise signal 
n; (f). This leads to the following equations: 

or 

where 

m 1 (I) = tn s, (I) + tn.\'2(1) + · · · + r,,s,(l) + n, (f), 
m2(1) = 121 s1 (I)+ t22s2(1) + · · · + t2,s,(t) + n2(t), 

m(t) = Ts(l) + n(t), 

and 11 (I) = (n, (I), n2(t) . ... , n,(t)) r. 

(7 .ll) 

(7.12) 

(7.13) 

Matrix T is called the transfer matrix and depends upon the geometry of the body, the 
positions of the clecu·odes and sources, and the conductivities of the body tissues. 

The problem now is to get an estimate of the source signals s{t} knowing only m(/) 1 

and from that estimate separate om the estimate of fetal source signals. 
Let each measurement consist of q samples. Then the measurements can he stored in 

a matrix M of order p x q. 
We now show that the SVD of ~H can be used to get estimates or the source signals. 

Let 
M UEVT (7.14) 

be the SVD of M. 
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{a) Original image. (b} Compressed image witb k ;;; 1. 

(c) Compressed image with k 5. 

Figure 7.7. Original and compressed images. 

Then the p x q matrix S deli ned by 

S=UTM 

223 

(7.15) 

will contain p estimates of the source signals. Next, we need to extract the cstimarcs of the 
fetal source signals from S: let this be culled SF. 
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(u) k = 10. (b)k=20. 

(c) k =50. 

Figure 7.8. Compressed image with (a) k = 10, (b) k = 20, and (c) k =50. 

Partition the matrix of singular values 'E of M as follows: 

(

>;,.. 
l:= 0 

0 
6). 
l:o 

(7.16) 
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(a) (b) 

(c) 

Figure 7.9. (a) Blurred image, (b) image with complete SVD, and (c) image wirh 
frlmcated SVD. 

where EM contains r 111 large singular values, associated with the maternal heart; L:F contains 
r 1 singular values, those smaller ones associah::d with the fetal heart; and Eo contains the 
remaining singular values associaled with noise, etc. 

Let U = (U.If, U F, Uo) be a conformable partitioning of U. Then, obviously, we 
have 

(7.17) 

Thus 'fh = UJM. 
Once S;: is determined, we can also construct a matrix F containing only the contri­

butions of fetus in each measured signal, as follows: 

where ui and v1 are the ith column of U und V, and Ui is the ith singular value of M. The 
signals in SF arc called the principal fetal signals. 
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The above method has been automated and an online adaptive algorithm to compute 
the U matrix has been designed. For the details of the method and test results, see the paper 
by Callacrts, DeMoor, Vandewalle, and Sansen ( 1990). 

Note that if the SVD of M is given by 

M = UEVr = (U,.IJ,) (~' 0) (V,') 
1:2 v[ · 

then S can be estimated by S = U { M. 

7.10 Geometric Mean and Generalized Triangular 
Decompositions 

In this section, we bricOy state two other decompositions related to SVD and QR factor­
izationc·Motivated by their applications to control theory, .signal .. proccssing, and numerical 
solutions 10 important optimization problems, these decompositions were recently discov­
ered by William Hager and his colleagues. 

Geometric mean decomposition (GMD). (See Jiang, Hager, and Li (2005).) Given 
A E cmxr: of rank k, there exist two orthonormal matrices, P and Q, and a real upper 
triangular matrix of order k such that 

A= QRP', 

where the diagonal entries of R arc all equal to the geometric mean of the positive singular 
values of A: 

ru =a 

Here the {rrj) are the singular values of A, and a is the geometric mean of the positive 
singular values. 

The above decomposition is called geometric mean decomposition. or GMD, the 
term coined by William Hager and his colleagues. These authors have also developed two 
computational algorithms for GMD: one is SVD-based, and the other is a direct algorithm 
combining the Lanczns method with the Householder QR factorization. 

Generalized triangular decomposition (GTD). (See Jiang, Hager, and Li (2008).) The 
GTD is an extension of the GMD. It can be shown that the diagonal entries of R in GMD 
satisfy Wey\'s multiplicative majorizalion conditions: 

• ; k 

f1 lr;l ::0 f1 a;, I ::0 r ::0 k: [1irti=[1a,, 
i=l i=l 

where r,; is the largest (in magnitude) diagonal entry of R. 
There exist an SVD-based algorithm and MATLAB codes for GTD. For details, the 

renders are referred to the above papers. For other relevant papers on this topic, the website 
of William Hager (www.math.uft.edu/-hager) can be consulted. 
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7.11 Review and Summary 
Three major topics have been discussed in this chapter: 

QR factorization 

singular value decomposition (SVD) 

orthogonal projections 

7.11.1 QR Factorization 

An m x n matrix A can always be factored into A = Q R, where Q is m x 111 orthogonal 
and R is li x 11 upper triangular. 

If m 2: 11, and Q = (Qr. Q2). where Q, is the matrix of the lirst 11 columns of Q 
and R = (~').where R1 is 11 x n upper triangular, then A = Q 1 R1• This factorization is 
known as a reduced QR factorization. The following methods for QR factorization have 
been described: 

• Householder's method (Algorithm 7.2) 

Givens method (Algorithm 7.5) 

• Classical (COS) and modified Gram-Schmidt (MGS) processes (Algorithms 7.7 and 
7.8) 

The Householder and Givens methods yield a full QR factorization of A : A = 
Q R, Q E R_m ... m, R E iR 11 

XII, from which a reduced QR factorization can be easily obtained. 
The COS and MGS produce a reduced QR factorization. 
The Householder and Givens methods have excellent numerical properties: Both are 

stable. However, Givens QR method is slightly more expensive than the Householder QR 
method, 

In the CGS process, orthogonality of tire vectors of the Q marrix might completely he 
lost. The MGS process has better numerical property than the COS process: however, it is 
not as stable as the Householder or Givens method. (Sec Table 7.2.) 

7 .11.2 The SVD, GMD, and GTD 

Let A E IR111 
:-.J!. Then the decomposition 

A= UEV'. 

where U E R"'xm and V E IR11 >u1 are orthogonal and L diag (v1, a1,, •• , v,,). p = 
min(m, n) and al ~ a2 '2: · · · :::_ uP ::: 0, is called the SVD of A. The numbers a 1, ... , a 11 
are called the singular values. The columns of U are the left singular vectors ami the columns 
of V are the right singular vectors. The singular values und singular vectors arc extremely 
useful in determining many important properties of a matrix: rank, norms, condition number, 
etc. (Theorem 7 .27). The SVD, in particular, is: the most reliable reclmiquefor determining 
the rank-deficiency and nearness to singularity (Theorems 7.29 and 7.34). 
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Many practical computations arising in applications such as signa{ and image pro­
cessing and statistics, and others can be made highly storage efficient and simplified greatly 
using the SVD (see Section 7.\l). 

Two other decompositions, related to SVD and QR, called GMD and GTD, have 
been briefly introduced in Section 7.10. They have applications in control theory, signal 
processing, and numerical o-ptimizalion. 

7.11.3 Projections 

Orthogonal projections onto IR(A) and N(AT) are frequently needed computational tasks 
arising in least-squares solutions and other practical appiications. These projections can be 
computed using both QR factorization (Theorem 7, 17) and the SVD (Theorem 7 .35). Again, 
the SVD techniques are most twmerically reliable, especially if A is nearly rank-deficient. 

• .(Pro)cc-tions. vioQR factorization:) Let A--E II<"'' (m ~ n)- and A =-Q R, where 
Q = (Q,, Qz). Then PA = Q, Qj. P.v = QzQf 

(Projections via SVD.) Let A= UEV 7 , where U = (U1, U1) and V = (V1, V1). 

Then PA = u,u,r, PN = u,u[. 

7.12 Suggestions for Further Reading 
The topics treated in this chapter are fairly standard and have been discussed in all major 
textbooks on these subjects: Demmel (1997), Trefethen and Ban (1997), Watkins (2002), 
and Hager (!988). For advanced treatment of these topics, sec Golub and Van Loan (1996), 
Higham (2002), Stewart ( l998b), Lawson and Hanson (1995), and Bjorck (1996). Stewart 
{l973) is still a rich source of knowledge on the basic topics of numerical linear algebra. 
For details of QR factorization with column pivoting, see Golub and Van Loan (1996). For 
an associated topic on rank-revealing QRfactorizations (to be discussed in Chapter 13), see 
Golub and Van Loan (1996), Chan ( 1987), and Hong and Pan (1992). For the use of SVD 
in bioelectric imaging of !he brain, sec Major and Sidman ( 1991 ). For applications of QR 
factorization to statistics, see Hnmmarling (1985) and Thisted ( 1988). For applications of 
QR decomposition and SVD to search engines. sec the book by Berry and Browne (2005). 
For matrix methods in data mining and pattern recognition, see Elden (2007). For results on 
perturbation analysis of QR factorization, see Stewart ( 1977b) and Zha ( 1993). For details 
of dcblurring images using SVD and other matrix techniques, see the books by Hansen, 
Nagy, and O'Leary (2006) and O'Leary (2009). Some earlier books on image processing 
include Andrews and Hunt (1988) and Jain (1989). See also Bojanczyk (1995). For the 
computation of the SVD of a complex matrix, see Basinger and Golub ( 1969). 

Exercises on Chapter 7 

EXERCISES ON SECTIONS 7.2-7.6 

7.1 Let H =I- ~:•1n1; be a Householder matrix. Then prove that (i) flu= -lt, and (ii) 
Hv = vifvTu =0. 
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7.2 Let x be an 11-vcctor. Develop an algorithm to compute a Householder matrix H 
I - " such that Hx has zeros in the positions (r + I) through n; r < 11. 

How many Oops will be required to implement this algorithm? 

Given x = (l, 2, 3/, apply your algorithm to construct H such that Hx has a zero 
in the third position. 

7.3 (a) Develop algorithms forimplicirlycomplllillg (i) H A, (ii) AH, (iii) H 1 H2 .. . H,C. 
and explicitly computi11g (iv) Q = H1 H, ... H, where the matrices H and 
Hi. i = 1, .... r, arc Householder matrices of order n, and A and C are arbi­
trary rectangular matrices of appropriate sizes. 

(b) Compute flop-counts for each of the ahove computations and verify the counts 
given in Section 7.2. 

(c) Develop an algorithm for implicitly computing AJ, where .I is a Givens matrix. 
What is the flop-count? 

7.4 (a) Given the Householder vector 11 = (I, I, 1),. and 

A=U D· 
compute H A and AH using the algorithms developed in Exercise 7.3(a). 

(b) Given the Householder vectors u 1 =(I, I, l)T, "' (1.2, 3),11J = (1,0,0), 
and 

compute both implicitly and explicitly H 1 H2 H3C and compare the computa­
tional effons. (Here Hi. i I, 2. 3, are Householder vectors associated with 
the Householder matrices H1, H2, and HJ, respectively.) 

7.5 (a) Let A= QR he aQR factorization of a nonsingularmatrix A. Dellne a diagonal 
matrix D = diag (dl L' ... 'dJw) such that du :;::;:; 1 if ru > 0 and du = -1 if 
r1, < 0. Define now Q = QD-1 and R = DR. Then show that A = QR. 
What is the significance of this result'! 

(b) Find QR factorizations of 

(

10 

A= : 
I 

10 
I 
I 

I 
I 
10 
I 

using (i) the Householder method, and (iil the Givens method. Establish a 
relationship between these two factorization using lhc. results of (a). 

7.6 (a) Show that it requires 2n 2(m - ~) ftops to compute R in the QR factorization 
of an m x 11 matrix A (m 2: nfusing Housc:holdcr 1s method, and that if Q is 

needed, then the count is 4(m 2n- mn 2 +~)flops. 

(b) Show that the Hop-counts for both CGS and MGS are 2nm2(m 2: n). 
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7.7 Using the Cholesky decomposition of AT A. where A is m x 11 (m 2: 11) and has 
full rank, prove that A has a unique reduced QR factorization with positive diagonal 
entries of R. What are the computational drawbacks of this approach for finding a 
reduced QR factorization numerically? liiustrate the difficulties with an example. 

7.8 Given v = (I. 2, 3)r, find a Givens matrix J 0, 3, 8) such that the third component 
of J (1, 3. &)vis zero. Repeat the process by creating the Givens matrix J (2, 3. II). 

7.9 Develop a column-oriented version of MGS for QR factorization. Show that the row 
version (Algorithm 7.8) and the column-oriented version are numerically equivalent. 

7.10 Show that the fiop-count to compute R in the QR factorization of an m x 11 matrix A 
(m :::: n) using Givens rotations is about 3n1(m-} ), 

7.ll Let A be m x n. Lets= min(m, n). Show that the orthogonal matrix 

Q"= Q.iQ.,:-1 ''' Q,Qj, 

where each Q1 is the product of (m - I) Givens rotations, can be computed with 
' ' 4n(m·- T) !lops. 

7.12 Let 

A= ( 

0 
0.0001 

0 
0 

0 
0 

0.0001 
0 

0 
0 
0 

0.0001 

(a) Find the reduced QR factorizations of A using (i) the Householder method, 
(ii) the Givens method, and (iii) COS and MGS methods. Compare the results. 

(b) From the reduced QR factorization obtained from MGS and COS methods, find 
a full QR factorization. 

7.13 Based on the stntement of Section 7.3, develop an algorithm for complex QR factor­
ization. Use your algorithm to find QR factorizations of 

(i) A= ( I+ i 
3 I ~ i ) , (ii) A = ( 

Print IIA- QRII, IIQT Qll. IIQ'QI! in each case. 

1 + i 
I I- i 

7.14 Find QR factorization of the Hessenberg matrix H obtained by the MATI..AB com­
mand hess, H = hess (rand( 10)), using bath Householder's and Givens' methods, 
and compare the results. Write down your observation on the uniqueness of lhis 
dccomposilion, 

7.15 Suppose you have computed the QR factorization of an 11 xu matrix ,4. Develop now 
an efficient algorithm for computing the QR factorization of B =A+ uv1', where ll 
and v are 1\VO n~vectors, by making use of the QR factorization of A at hand. How 
many flops are needed'! How does this flop-count compare with those for finding the 
QR factorization of B without knowing a priori the QR factorizatlon or A? 
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EXERCISES ON SECTION 7.8 

7.16 (a) Let Ahem x 11, and let U and V be orthogonal. Then, using the definition of 
singular values. prove that the singular va!ues of A and VTA_ V arc the same. 
What about the singular vectors'? 

(b) How are the singular vectors of A related with those of ur A V? 

(c) How arc the singular values or a ~ymmetric matrix related toils eigenvalues? 

7.17 Let a be a singular value of A with multiplicity t; thal is, O'J = O}+l = · · · ai+t'-1. 

Let U E V T be the SVD of A. Then constroct [) and V such that [)I: ( V) T is also an 
SVD. 

7.18 (a) Using the MATLAB command svd, find the SVD of the following matrices: 

A=O D· A=(l 2 3), 

.4=(:). 

A= G ~)' 

A= diag(l. 0. 2, 0, -5), 

(b) Using the results of (a), find (i) rank, (ii) !I · lb and II · II F, (iii) orthonormal bases 
for ill!.( A) and N(Ar), (iv) PA and PN, (v) and bRand bN by choosing a vector 
b appropriately for each A, 

7.19 For an m x n matrix A, prove the followings results using the SVD of A: 

(i) rank (AT A)= rank (AAT) = rank (A)= rank (AT), 

{ii) ;17 A and AA7 have the same nonzero eigenvalues. 

(iii) If the eig~nveclors u1 and u2 of AT A are orthogonal, then Au 1 and Au2 arc 
orthogonaL 

7.20 Let A be an invertible matrix. Then show that !1.411 1 = I if and only if A is a multiple 
of un orthogonal matrix. 

7.21 Let U have orthonormal columns. Then using SVD, prove that 

(i) liAU ilo = IIA !h. 
(ii) IIAUIIr- = IIAIIF, 

(iii) 1!.4xUz/llxi!J. is maximized if x = u1 and minimized if x u", where v1 and V11 

are the singular vectors associated with the largest and smallest singular values 
of A, respectively. 

7.22 Let UE V 7 be the SVD of A. Then prove thatiiUTA Vlll· = I:f~ 1 a,', where a1 arc 
the singular values nf A. 
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7.23 Lel A be an m x n matrix. 

(a) Using the SVD of A, prove that 

(i) IIA 7 Aib = IIAII~; 
(ii) Cond2(A7 A)= (Cond2(A))2; 

(iii) Cond2(.4) = Cond2(Ur A V), where U and V arc orthogonal. 

(b) Let rank(Am)'. 1J = n, und let Bmx.r be a mo.trix obtained by deleting (n - r) 
columns from A. Then prove that Cond2(B) :'E Cond2(A). 

7.24 Prove thal if A is an m x n matrix with rank r, and jf B is another m x n matrix 
satisfying l!A - B llz < Ur. then B has at least rank r. 

7.25 Consider the matrix A in Example 7.5. 

(a) Finding the singular values of A, show thm th·i~ matfix has rank 2, but is"close 
to a matrix of rank 1, 

{h) Find a matrix A 1 of rank I such that out of all the matrices of rank I, A, is the 
closest to A. 

(c) Find IIA- A 111 2 and verify Theorem 7.29. 

(d) Find IIA- .4 1 ilr and verify Theorem 7.34 by taking Bas a random matrix of 
order 3 x 2. 

7.26 Let A and 8 be n x n real matrices. Let Q be an orthogonal matrix such that 
I!A-BQI!r"' IIA-BXIIrforanyorthogonalmatrixX. ThenprovethatQ = vur, 
where A~'B = ur;vr 

7.27 Given 

(
I 2 3) 

A 2 3 4 , 
5 6 7 

use the result of Exercise 7.26 to show thal the orthogonal matrix 

(

-0.231 0 -0.3905 0.8912) 
Q = -0.4824 0.8414 0.2436 

0.8449 0.3736 0.3827 

is such that IIA- Qllr :'E IIA- Xllr. where X= {The set of all 3 x 3 orthogonal 
matrices]. 

7.28 (a) Let 

(I 2) 
A= I 3 . 

I 4 

Express A in tenns of ils singular values and singular vectors. 

(h) Compute (AT A)_, using the SVD of A. 
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7.29 (a) Generate randomly a matrix A of order 16 x 4 by using the MATLAB command 
rand( 16.4). Then verify using thcMATLAB command rank that rank (A) 4. 
Now run the following MATLAB command: [U, 5. V] = svd (A}. Set 
5(4, 4) = 0; compute B = u• 5'V'. What is rank (B)? 

(b) Construct a matrix C of order 16 x 4 of rank 3. Verify that (i) IIC -All} 2: 
II B - A II}, (ii) IIC - A Ill 2: liB - A Ill using the MATLAB command norm. 

(c) What is the distance of B from A" 

(d) Find a matrix D of rank 2 that is closest to A. 

7.30 Let 

( 

1 I 

A
- 0 0.0001 
- 0 0 

0 0 

I 
I 

0.0001 
0 

Find the distance of A from the nearest singular matrix. Find a perturbation which 
will make A singular. Compare the size of this perturbation with Ia• I· 

7.31 Let A = U2. vr be the SVD of a randomly generated 15 x 10 matrix A = rand 
(15,10), obtained by using the MATLAB command [U, 5, VI= svd(A). 
Set 5(8, 8) = 5(9. 9) = 5(10, 10) = 0. Compute B = U * 5 * V'. 

Find the best approximation of the matrix 8 in the form 8"' I:;=, x;y,' such that 
!I B - .ti}{ 11:: = minimum, where Xi and y1 are vectors, and r is the rank of B. 

7.32 For matrices A and B in Exercise 7.31, find an orthogonal matrix Q such that II A -
8Qib is minimized. (Him: Q = vur, where A~' B = U>.V~', Use the MATLAB 
command svd to solve this problem.) 

7.33 (a) Develop an algorithm for solving Ax = b using the SYD of A. Compare 
the efficiency of this algorithm wilh those of Gaussian elimination and QR 
factorization processes for solving Ax = b, 

(b) Prove that a small singular value of A signals the sensitivity of the so!Uiion or 
Ax = b. Construct an example to demonstrale !.his. 

7.34 Prove that the singular values of a symmetric positive definite matrix A are the same 
as its singular values. What are the relationships between the eigenvectors and right 
and left singular vectors? 

EXERCISES ON SECTIONS 7.7 AND 7.8.10 (PROJECTION PROBlEMS) 

7.35 Prove that if P, is the orthogonal projection onto S, then I - P, IS the onhogonal 
projection onto s..i' 

7.36 Prove that (i) PA = A (AT A)- 1 AT, (ii) PN = l- A(AT A)- 1;1 T, assuming thut A has 
full rank, and (iii) bR = PAb. bN = PNb. What arc the computational drawbacks 
or computing PA using these expressions? Illustrate the difficulrics with a numerical 
example. 

7.37 Write a detailed proof ol'll1eorem 7.17. 
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7.38 For matrix A in Exercise 7.4(a), and with b =(I. 2. 3)r, using both QR and SVD, 
compute (i) PA and PN. (ii) b, and bN. 

7.39 Given 

(
I 3) 

A= 2 4 
3 5 

and choosing B randomly of appropriate order, compute BR und BN. 

MATLAB and MATCOM Programs on Chapter 7 

Data set for Problems M7.1, M7.2, and M7.3: 

(i) A = 20 x 15 random matrix, 

(ii) 11 = ones ( 15, 1 ), 

(iii)"' =u1 = "' = (1,2,3,4, .. ., 15/. 

M7.1 Write a MATLAB program hmat in the following format to compute implicitly House­
holder matrix multiplications A H and HAT: 

[C] = hmat (A, u) 

A -an 111 x 11 ma!rix (input). 

11 - the Householder vector defining the Householder matrix li (input). 

C- the output matrix 

M7.2 Write a MATLAB program bhmat in the fol!owing format to implicitly implement 
the product li1 H1H3A r: 

[C)= hhmat (A,tq, 112, 113) 

A - an m x n matrix {input), 

• u 1, u2, 1(! the Householder vectors defining H1, H2, and Jf3, respectively 
(input). 

C - the output malrix. 

M7.3 Use the program hhmat to compute H1 H2 H,. 

M7.4 (The purpose of this exercise is to compare Jhe accuracy and efficiency of different 
metlwds for QRfactorization of a matrix.) 

(a) Compute the QR factorization for each matrix A of the following data set as 
Follows: 

(i) [Q, Rl = qr(A) from MATLAB or [Q, R] = housqr (A) or bousqrn 
(MATCOM implementations of Householder's method). 

(ii) [Q, Rl = givqr (A) (Givens QR implementation from MATCOM). 

(iii) [Q, R]= clgrsch(A) (classical Grass-Schmidt implementation from MAT­
COM). 
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(iv) [Q, R] = mdgrsch(A) from MATCOM (modified Gram-Schmidt imple­
mentation from MATCOM). 

(b) Using the results of (a), complete Table 7.3 for each matrix A. Q and R stand 
for the computed Q and R. 

Data set 

(i) A rand (25 ), 

(ii) A is a Hilbert matrix of order 25, 

-
( 

ld-4 ~ ~ ) (iii) A - O 
10

_. O , 

0 0 10-" 

(iv) a Vandermonde matrix of order 25, 

Table 7 .3. Comparison of d!.fferent QRfoctorization methods. 

i IJA- QRIIr 
Method ii(Q)T Q- lllr 

IIA!I,· 
-~ 

housqr 

givqr 

·-··~ 

clgrsch 

mdgrsch 

M7.5 Using givqr from MATCOM, which uses Givens' method, and qr from MATLAB, 
which uses Householder's method. find the QR factorization of each of these marrices 
he1ow and verify the statement of Exercise 7,5(a) which shows ho\v Q and R matrices 
of each method arc related. 

Test data: 

(i) 
I 

0.99 
0 
0 

0.99 
0 

I ) I 
I , 

0.99 

(ii) A = The Wilkimon bidiagonal matrix of order 20. 

M7.6 (a) Write MATLAB programs orthqr, orthqrp, and orthsvd to compute the or­
thonormal basis for Lhc range of a matrix A using (i) QR factorization. (ii) QR 
ractorizalion with partial pivoting, and (iii) the SVD, respectively, 

(b) Repeat Exercise M.7.6(a) to compute the orthonormal basis for the null space 
of A, that is, write the programs nullqr, nullqrp, and nullsvd. 
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(c) Compare the results of each of the three programs in both cases for the test data 
given below. 

Test data: 

(i) 

(ii) A = a mndomiy generated malrix of order 20, 

M7.7 Compute the rank of each of the following matrices using (i) the MATLAB com­
mand rank (which uses the singular values of A) and (ii) the MATLAB commands 
[Q, R, £] = qr(A.), which computes the QR factorization of .4 using column pivot­
[lig;liiiif(fii)thcMATLAB command w. R] = qr(Ak 

Test data: 

(i) The Kahan matrix (7.9), witJ1n = 100, and c = 0.2. 

(ii) A 15 x lO matrix A created as follows: A= xyT, where 

x =round (10 * rand(l5, 1)), y = round(IO * rand(IO, 1)). 

M7.8 Write a MATLAB program, covsvd, to compute (AT A)-' using the SVD and test 
it with the 20 x 20 Hilbert matrix. Compare your resuhs with those obtuined by 
liiLsyswf varcovar from MATCOM, which is based on QR factorization. 

M7.9 Let A be a 20 x 20 Hilbert matrix and let b be a vector generated such that all entries 
of the vector x of Ax = b arc equal to 1. 

Solve Ax = b using (i) QR factorization and (ii) SVD. Compare the accuracy and 
flop-count with those obtained by linsyswf from MATCOM or using MATLAB com· 
mand A\b. 



Chapter 8 

least-Squares Solutions to 
linear Systems 

Background Material Needed 

• Cholesky factorization algorithm (Algorithm 6.7) 

Householder's QR factorization algorithm {Algorithm 7.2) 

Orthonornm[ basis and projections {Section 7.7) 

Iterative refinement algorithm for linear systems (Algorithm 6.6) 

Perturbation analysis for linear systems and condition number (Sections 4.6 and 4.7) 

8.1 Introduction 
In Chapter 6 we discussed methods for solving the linear system 

Ax =b. 

where A was assumed to be square and nonsingular. However, in several practical situations, 
such as in statistical applications, geometric modeling1 and signal processing, one needs to 
solve a system where matrix A is either a ncmsquarc matrix or is a square matrix but singular. 
In such cases, solutions may not exist at all; in cases where there arc solutions, there may 
be infinitely many. For example. when A ism x nand m > n, we have an overdetermined 
system (that is, the number or equations is greater than the number of unknowns), and an 
overdetermined system typically has no solmion. ln contrast, an underderennined syslem 
(m < n) typicaily has an infinilc number of solutions, 

In these cases, the best one can hope for is to find a vector x which will make Ax as close 
as possible to the vector b. In other words, we seek a vector x such that r(x) II Ax- b!l 
is minimized, When the Euclidean norm II · lb is used, this solution is referred to us a 
least~squares solution to the system Ax b. The term "'least-squares solution" is justified 
because it is a solution that minimizes the Euclidean norm of the residual vector and, by 
definition, the squar.:: of the Euclidean nann of a vector is just the sum of squares of the 
components of the vector. The problem of finding least-squares solutions to the linear 
system Ax = b is known as the linear least .. squnres problem. The linear least-squares 
problem is formally defined os follows. 

237 
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Statement of the Linear Least-Squares Problem 

Given a rca) m x 11 matrix A of rank k .::; min(m, n) and a real vector b, find a 
reall!-vector x such that the function r(x) =II Ax- bib is minimized. 

If lhe least-squares problem has more than one solution, the one having the minimum 
Euclidean norm is called the minimum~lcngth solution or the minimumwnorm solution. 

This chapter is devoted to the study of such problems. The organization of the chapter 
is as follows. 

In Section 8.2 we give a geometric interpretation of lhe least-squares problem. 
In Section 8.3 we prove a theorem on Lhe existence and uniqueness oftlte solution of 

an overdetermined least-squares problem, Some applications leading to the leasl-squares 
problem arc discussed in Section 8.4. 

In Section 8.5, we define the pseadoinverse of a full-rank matrix A and give the 
--- e-XlkCs-s-kins--fonhe condition number of a-reclanguiar -matrix -in .terms oLlhc: pseudoinverse 

and for the llnique !east-squares solution in terms of the pseudoinversc. 
In Section 8.6 we analyze the sensitivity of the least~ squares problems due to pertur­

bations in data. We prove only a simple result (Theorem 8.1 0) there and slate other results 
without proofs (Theorems 8.13 and 8.16). 

Section 8.7 deals with computational methods for both full-rank and rank-deficient 
overdetcnnincd problems. 

Underdetennined least-squares problems are considered in Section 8.8. 
In Section 8.9 an iteratil'e improvement procedure forrefiningan approximate solution 

to a least-squares problem is presented. 

8.2 Geometric Interpretation of the least-Squares 
Problem 

Lcl A be an m x n matrix with m > n. Then A is a linear mapping ofR11 ~ Rm. R(A) 
is a subspace of R 111

• Every vector u E R(A) can be written as u :::::::: Ax for some x E IR.r.. 
Let b E Rm. Because il · !b is a Euclidean norm, !lb- Ax!b is the distance between the 
end points of /J and .4x. It is clear that this distance is minimal if and only if b- Ax is 
perpendicular to R(A) (sec Figure 8.1). In that case, lib- Ax\1 2 is the distance from the 
end point of b to the "plane'' R(A). 

From this interpretation, it is easy to understand that a solution of the least-squares 
problem ro the linear system A.x = b alwa.vs exists. This is because one can project b onto 
the "plane" R(A) to obtain a vector" E R(A ), and there is x E IR" such that" = Ax. This 
x is a solution, 

Because b- Ax is perpendicular to R(A) and every vector in R(A) is a linear com­
bination of column vectors of A, the vector b - Ax is orthogonal to every column of A. 
That is, 

.4 7 (b- Ax)= 0 

or 



8.3. Existence and Uniqueness 

Figure 8.1. Geometric interpretation oftlw leask;quares solution. 

Definition 8.1. Let A E Rmxn, Tile sysrem ofn equations 

AT Ax= A7b 

is called the 1tormal equations. 

8.3 Existence and Uniqueness 

239 

Fmm the geometric configuration above, we have just seen that a leasr~squares solution 
a/lvays exists and satisfies the normal equations, We shall now give an analytical proof of 
the existence and uniqueness result and delive some equivalent expressions for least-squares 
solutions. We assume that the system Ax his overdetermined; that is. A is of order m x n. 
H'here m > 11. Least~squares solutions to an wrderdetermined system ·will be discussed in 
Section 8.8. An overdetermined system Ax = b can be represented graphically as shown 
in Figure 8.2. 

" 
I 
i 

= 
111 > 11 

f/1 

X lJ 
A b 

Figure 8.2. An overdetermined system. 
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8.3.1 Existence and Uniqueness Theorem 

Theorem 8.2. (i} Given A E iR111 
"'

11 (m 2: n) and b E 1R'~~, a vector x E iR11 is a least-squares 
solution to Ax= b ij'a11d onf.v ifx satisfies the normal equations 

(8.1) 

(ii) The least-squares solution, when it exists, is unique if and only if A lias full rank. 

Proof. Proof of(i) We denote the residual r = b - Ax by r(x) to emphasize that given A 
and b, r is a function oLe Let y be an n-vcctor. Then r(y) =b-Ay= r(x) + ;\x- Ay = 
r(x) + A(x y). So, 

1\r(yJIIi = llr(xlll; + 2(x- y)1 A r r(x) +liM<- y)ll~ - - -

First a>;.sumc that x satisfies 

that is, A7 r(x) = 0. Then from the above, we have 

' ' ' I' llr(yJII; = !lr(xlll; + IIA(x- Ylll2 ": llr(x)!-. 

implying that x is a least-squares solution, 
Next assume thatx does not satisfy the nonnal equations; that is, A 7 r(x) of 0. Set 

Arr(x) = z # 0. Define now a vector y such that 

Then 

}' =X + {lZ,. 

r(y) = r(x) + A(.t- y) = r(x)- JLAz. 

llr(y)ll~ = llr(xJIIi + 1'2 11Azlll- 2J1Ar r(x)zT 

= !lr(x)l!] + IL2 !1Azlll- 21LIIzlll < !lr(xlll] 

211.:il; . for any J1 > 0 if Az = 0, and for 0 < J1 < 11 ,.,11, tf A: # 0. This implies that x is not a 

least~squures solution. 

Proof of (ii) To prove uniqueness, all we need to show then is that matrix A 7 A is 
nonsingular when A has full rank, and vice versa (note that the matrix AT A is square and, 
therefore, the system (8.1 J has a unique solution if and only if Ar A is nonsingular). 

We prove this by contradiction. First, suppose that A has full rank, but.4 r A is singular. 
Then A r Ax = 0 for some nonzero vector x, meaning that x 1' A r Ax = 0. That is, Ax = 0, 
implying that A ls rank-deficient, which is a contradiction. 

Conversely, suppose that A is rank-deficient hut A r A ls nonsingular. Since A is 
rank~dcficicnt, there exists a nonzero x such that Ax = 0, showing thal Ar Ax = 0. This 
implies that AT A is singular, which is again a comrndiction. 0 
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8.3.2 Normal Equations, Projections, and least-Squares Solutions 

Theorem 8.3 (least-squares and orthogonal projection). Let A E JR"'•·n, 
b E lR111 • Let A hm•e full rank, and let x be a least~squares solution to Ax 
satisfies 

m 2: H, and 
b. Then x 

where PA. is the orthogonal projection of A onto R(A). 

Proof. Since x is a least-squares wlution, it must satisfy the following: A7 Ax AT b 
(part (i) of Theorem 8.2). Also, AT A is nonsingular, because A has full rank (proof of 
part (ii) of Theorem 8.2). nul is, x = (A r A)~ 1 A7 b. So, 

Ax= A(A 7 A)~L;\Tb = P,~b. 

(Note that PA A(AT A)~L AT) 0 

Remark. The converse of Theorem 8.3 is also true, and is left as an exercise (Exercise 8.3). 

Theorem 8.4 (least-squares residual equation). Let r = b- ;\x. Then A 7 r = 0 if and 
only 1jx is a leasr~squares solution. 

Proof. The proof follows immediately from the normal equntions. 0 

Summarizing the above results, we have the following. 

Equivalent Expressions for Least-Squares Solutions 

The vector xis a le-ast-squares solution to Ax= b, where A E 1R''1 -":
11

, m ::: n, if 
and only if any of the following equivalem conditions hold: 

(i) Ar Ax= A7 b (nomral equations). The solution xis unique if and only if 
A has full rank, 

(ii) Ax= P,b, where P,1 is the orthogonal projection onto R(A). 

(iii) A 7 r 0, where r = b- Ax. 

Example 8.5. Let 

(I 2) (3) 
A= ; ~ , b= ~ . 

1. Using the normal equarions: A r Ax = AT b. 

T (21 28) 
A A= 28 38 ' 
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2. Usi11g arthogollal projection: Ax P.4b. 

( 

0.7143 0.4286 
p A = 0.4286 0.357] 

-0.1429 0.2143 

-0.1429) 
0.2143 ' 
0.9286 

8.4 Some Applications of the least-Squares Problem 

I 

In this section, we describe two well-known real-life problems lhat give rise to the least­
squares problem. 

8.4,1 Polynomial-Fitting to Experimental Data 

A well-known example of how normal equations arise in prncticalapplicalions is the fitting 
of a polynomial to a set of experimental data. 

Engineers and scientists gather data From experiments. A meaningful representation 
of the collected data is needed to make meaningful decisions for the future. 

Let (x1, yJ), (x1 , y2), ••• , (x,, y,) be a set of paired observations. Suppose that the 
mlh (m ::;:; 11) degree polynomial 

(8.2) 

is the "best fit" for this set of data. One strategy for this "best fit" is to minimize the sum of 
the squares or the residuals 

" 
E = L(Yi- au- a1xi- azx?- · · ·- awx:1

')
2. (8.3) 

i=l 

We must then have 

iJE 
=0, i=J, ... ,m. 

Oai 

Now, 

iJE n 
- = -2"'"" X;(\'i- ao a!Xi a2x,~- · · ·- a111 X,;11 ), a L- --

al 1=1 (8.4) 
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Setting these equations to zero, we have 

(8.5) 

a "\'en ' a "x~n+l + ... ..J..a v t;m =~en)'· 
OL_.,~l < IL·t , m~- 1 ~-~ f 

(where I: denotes the summation fmm i = I to 11 ). 

Setting L x,' = S,. k = 0, I, ... , 2m, and denoting the entries of the right-hand 

side, respectively, by b0 , b1 ••••• bn~> lhe system of equations (8.5) can be wriucn as 

(Note that So= n.) 

(

So 

1:. 

This is a system of {m + l) equations in {m + I) unknowns a0 , a 1, ••• , a111 • 

This is really a system of normal equations. To sec this. define 

'- (l 
Xt ,.l n 

. I 

X;; X~ ' Y1 
y 

Xn t/1! \' . " . " 
Then system (8.6) becomes equal to 

V 7 Va = V 7 y =b. 

where a (ao,a!, ... ,am)7 andb= {b0,b1, ... ,b,JT. 
If the x; 's are all distinct, then matrix V has full rank. 

(8.6) 

(8.7) 

(8.8) 

The matrix V is known as the Vandcrmonde matrix. From our discussion in the 
previous section, we see that a is the least*squares soiulion to the system V a = b. If the 
x/s are all distinct. then x is unique. 

Example 8.6. Suppose that an electrical engineer has galhered the following experimental 
data consisting of the measurement of the currcnl in an eleclric wire for various voltages: 

24 
35 

We would like to derive the normal equations for the above data corresponding to the best 
fit of the data to (a) a straight line (b) a quadratic, and would like to see a comparison of the 
predicted results with the actual result when x = 5. 
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Case I. Straighl·linejit: m = I. 

0 0 
2 6 
5 7.9 

V= 7 y= 8.5 
9 12.0 
l3 21.5 
24 35.0 

The normal equations V 7 Va = l'r y = b arc 

(2o 9~4) 0 = 
103 (~:~;~~) · 

The solution of these equations is 

ao = 0.6831, a,= 1.4353.-

The value of a0 + a1x at.t = 5 is 0.6831 + 1.4345 x 5 = 7.8596. 

or 

Case 2. Quadratic fit: m = 2. 

0 0 
2 4 
5 25 

v = 7 49 
9 81 
13 169 
24 576 

The normal equations are 

( 

7 
60 

904 

60 904 ) (0.0091) 
904 17226 a= !0' 0.\338 . 

17226 369940 2.5404 

The solulion of these normal equations is 

(
ao) (0.8977) 

a = a1 = 1.3695 . 
a2 0.0027 

The value of a0 +a1x +a2x1 atx 5 is 7.8127. 

Note: The use of a higher-degree polynomial may not necessarily give the best result. 
l11e matrix or lhe norma] equations in this case may be very ill~condilioned: Indeed, it 
is well known that the Vandennonde matrices become progressively ill-conditioned as the 
order of matrices increases. Note that in Case 2, Coml(V 7 V) = 2.3260 x lO\ whereas in 
Case J,Cond(V7 V) = 302.2199. I 
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8.4.2 Predicting Future Sales 

Suppose that the number of units b; of a product sold by a company in the district i of 
a town depends upon the population a11 (in thousands) of the district and the per capita 
income ai2 (in thousands of dollars). The table below (taken from Neter, Wasserman, and 
Kutner (1983)), compiled by the company, shows the sales in live districts, us well as the 
corresponding population and per capita income. 

District Sales Population Per Capita Income 
i b; Oil a e. 
I 162 274 2450 
2 120 180 3254 
3 223 375 3802 
4 131 205 2838 
5 67 86 2347 

Suppose the company wants to use the above table to predict future sales and believes (from 
pa.,t experience) thai the following relationship between bi, a11 , and a12 is appropriate: 

b1 =Xi + Q{!X1 + ai2X3. 

If lhe data in the table have satisfied the above relation, \Ve have 

162 = x 1 + 274x, + 2450x.l. 

120 = x 1 + 180x2 + 3254xJ, 

223 x 1 + 375x2 + 3802t3, 

131 = x 1 + 205x2 + 2838x3 , 

67 = x 1 + 86x2 + 2347x1, 

or 
Ax =b, 

where 
274 
180 3254 120 

'= (i ml ('@) ('') 375 3802 , 
b= ~; , X= :~~ . 

205 2838 
86 2347 

The above is an overdetermined system of five equations in three unknowns. 
The least-squares solution of the problem will give us predictions of sales (see Exam­

ple 8.20). 

8.5 Pseudoinverse and the Least-Squares Problem 

Assume that A is m x 11 (m ?.: 11) and has full rank. So. AT A is invertible. 
Denote (At Al~l A7 = At. 

Dcftnition 8.7~ The matri.x 
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is called the pseudoinvcrse or the Moore-Penrose generalized inverse of A. It therefore 
follows from Tlreorem 8.2 that 

the unique least-squares solution x = A. t b. 

Clearly. the above definition of the pseudoinverse generalizes the ordinary definition 
of t!te inverse of a square matrix A. Note that when A is square and invertible, 

An excellent reference on the subject is the classic book by Ran and Mitra (197!). Some 
other books of interests on generalized inverses include Guorong, Yimin, and Sanzheng 
(2004) and Campbell and Meyer ( 1979). 

Having defined the generalized inverse of a rectangular matrix, we now define the 
cmiiiiifiiiirirililber of such a matrix as Cond{.4) = IIA 1: II A' 11. 

Definition 8.8. If an Ill X II matrix A lws full rank, then Cond(A) = II A IIIlA' n. 

Note~ If not explicitly stated, all the norms used in the rest of this chapter are 2-nonns, 
and Cond(A) is the condition number with respect to the 2-nmm. That is, Cond(A) = 
II Alb IIA'Ib. 

Example 8.9. 

Thus. A has full rank; rank (A)= 2. 

A'= (Ar.4 )-l.4T = (-1.2
1
857 -0.5714 0.8571) 

0.5000 -0.5000 • 

Cond2(.4) = 11.4\b IIAII; = 7.6656 x 2.0487 = 15.7047 

1l1e unique least-squares solution},'= Atb:::::: (: ). I 

8.6 Sensitivity of the least-Squares Problem 
In this section we study the sensitivity or a least-squares solution to perturbations in data; 
that is. we investigate IJow a least~squares solution changes with respect to small changes 
in the data. This study is important in understanding the different behaviors of ditl'crent 
methods for solving the least-squares problem that will be discussed in lhe next section. We 
consider two cases: perturbation in i'ector band pe11urbation in matrix A. The rcsult'i in 
this section are norm wise perturbation resulls. For component wise pcrturbalion results, see 
Bjtirck ( 1996). 
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Case 1: Perturbation in vector b 

Here we assume that vector b has been perturbed to l; 
unchanged. 

b + ob, but A has remained 

Theorem 8.10 (least-squares right perturbation theorem). Ler x and .i'. respecril'ely, 
be the unique least~squares solllfions to the original and the perturbed pro!;! ems. Then if 
li/JRII -I 0, 

'-llx-;;·. --::-x.,.li < Cond ( +\) _IIIJ_b R_ll . Relative change = . , 
llxll - llhRII 

Here 
Cond(A) = i!A!IIIA 111. 

and bRand 8bn are, respecrively, rhe projections o{>•ectars band 8b oil/a R(A). 

Proof. Since x and-.~ arc the unique least-squares solutions to lhc original and the perturbed 
problems1 we have 

Thus, 
(8.9) 

Let 8bN denote the projection of lib onto the orthogonal complement of R(A). That is, 

!Jb =obR +lib,v. 

Since !JbN lies in the orthogonal complement of R(A) = N(A"J, we have Ar (8b.v) = 0. 
So 

.t -x = A'IJb = A*(libR +IJh,v) 

= A'(llbR) +At (J/>.v) =A' 8bR +(A 1' Ar 1 ATJb,y = A1libR. 

Again, since x is the unique least-squares solution, we have 

Ax= bR, 

from which (again taking nonns on both sides) we gel 

ilxl: > llbnll_ (8.10) 
' '- IIAII 

Combining (8.9) and (8.10), we have the theorem. 0 

Interpretation ofTheorem 8.1 0. Theorem 8.10 tells us that if only Pector b is perturbed, 
then, as in the case of linear sysrems, Cond( A) = IIA 1111 At il sen•es as the coudiriou n11mher 
in rhe sensWviry analy!l-is of the unique /east-.rquares soJurinn, If this number is large, 
then even with a small relative error in the projection of b onto R(A), we can have a 
drastic change in the least-squares solution. On the other hand, if this number is small 
and the relative error in the projection of b onto R(A) is also small. then the lcasl-squares 
solution will not change much, No~e that it is the smallness of the relative error in the 
projection of b onto R(A), namely. 1 ~tt;1: 1 , that plays the role here. not merely the smallness 
ofllobRil. 
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Example 8.11. An insensitive least-squares problem. 

A= G l). 
(

0.8333 
bR = Pc~b = 0.3333 

0.1667 

0.3333 0.1667) (l) 
0.3333 -0.3333 I 

-0.3333 0.8333 l 

(

0.13333) 
PA8b = 10-3 0.03333 . 

0.06667 

(

1.3333) 
0.3333 • 
0.6667 

Thus, according to Theorem 8.10~ an upper bound for the relative error is 

~~~::1:1 
·Cond@ = 10-4 

x 2.4495. 

So, we expect that the least-squares solution wW not be perturbed much. The following 
computations show that this is indeed the case: 

X 

So, the relative error 

' (0.6667) 
A b = 0.3333 ' 

At(b +llb) = (0.6667). 
0.3334 

JJ.i' - x II = w-4 I 
ilxli 

Example 8.12. A sensitive least-squares problem. 

Suppose that 

I ) 0 ' 
10-4 

b = (~~-4). 
JQ-4 

x=(i). 

( 
1.5005 ) 
0.5005 . 

The product Cond2(A) · ':ir~;1)' = 7.088. Since an upper bound for the relative error 
is 7.0888, there might be a substantial change in the solution. Indeed, this is the case. 
The relative error in the solution is 0.5000; on the other hand the relative error in b is 
5.0249 x 1o~•. 1 

Case 2. Perturbation in matrix A 

The analysis here is much more compllcrHcd than in the previous case. We will state the 
result here (without proof) and the major consequences of the result Let the perturbation 
E of the matrix be small enough so thal 

rank( A) = rank( A+ E). 
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Let x and .r denote the unique least-squures solutions, respectively. to the original and lhe 
perturbed problem. Let EA and EN denote the projections of E onto R(A) and onto the 
orthogonal complement of R(A). respectively. Then if bn fc 0, we have the following 
theorem (see Stewart (1973, p. 223)). 

Theorem 8.13 (least-squares left perturbation theorem). Let x and .t be the unique 
/east-squares solmions to Ax =band (A+ E).r = b, and /er rank(A +E) be the same as 
rank(A), Then 

II-< xll < 2CondfA)IiEAII.L 4 (Cond(Al)111ENIIIIhNII , 0 (IIE.vil)
1 

11-rll ' IIAII ' IIAil llbRII T IIAII 

Interpretation of Theorem 8.13. Theorem 8.13 tells us that in the ca." where only ma­
trix A is perturbed, the sensitiviry of the unique feast-squares solution, in general, depends 
upon squares ~f the condition nwnber of A. Howe\'er, if II E.v II or Jib N I! is zero or small, 
t!Jen the sensitivity will depend only on Cond( A). Note that the residual r = b - Ax is zero 
ifbN 0. 

Two Examples with Different Sensitivities 

We now present two examples with the same matrix A. but with different b, to illustrate the 
different sensitivities of lhc Icust-,squares problem in different cases. In the first example, 
(Cond(A})2 serves as theconditionmtmberofthe problem; in the second example, Cond(A) 
serves as the condition mtmber, 

Example 8.14. Sensitivity depending upon the square of the condition number. Let A 
be the same as in Example 7.18 and let 

b = (l). 
Then, using the results of Example 7. 18, we have 

Let 

Then 

(
LOOOI) (-0.0001) 

"" = PAb = 0.0001 ' bN = 0.9999 ' 
0.0001 0.9999 

-0.0001) 
0.9999 . 
0.9999 

( 
1 1 ) (o -l o-•) 

A+ E = 0.0001 0.0001 , EN = 10-4 0 0.9999 , 
0 0.0002 0 0.9999 

IIENil = IIEII =9.999 x 1.4140 x to-5. 
IIAII IIAil 
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The product of !E,Ii and '1"• 11 is ruther small· however (Cond(A))2 - 1 x 108 r's large IIA 11 l!f>nl! · ' • -- , • 
71ms, t!rere miglrt he a drastic deparrure Cl.f 1/re solution of tire perturbed problem from tire 
solution of the original problem. This is indeed true, as the following computations show: 

• - 10' (-4.999) 
X- 5 ' (

0.5) 
X= 0.5 . 

Relative error: ll~.:i;l! = 9.999 x 103 (large!). 
Note that 

_IIE_.v_U _llb_.v_ll. (Cond2 (A))2 = 9.999 x 1.4140 x 10·5 x 2 x 108 = 2.8277 x 104 

IJA!I llhRII 
I 

Example 8.15. Sensitivity depending upon the condition number. Let A and E be the 
---- S:iirie--as· iri -th-e··-pfC\•fOUs--example, ·but 

In this case, 

Thus, b.v = 0. 

b = (o.o~ot) . 
0.000! 

w·• 
0.5000 

-0.5000 

w·" ) 
-0.5000 b = b. 
0.5000 

So, according to Theorem 8.1 3, the square ofCond(A) does nat have any ~{feet: the 
/east-squares so/wion is affected only by Cond (A). We verify this as follows: 

, _(A+ E)'b _ (1.4999) 
X- - 0.5000 . 

The relative error :r;,;i~~ = 0.5000. Note that Cond,(A) = 1.4142 X 104
, and 1't<'n11 = 10'4 ; 

thus, the predicted upper bound of the relative error is about 1.4142. I 

Residual sensitivity. We have just seen that the sensitivities of the least-squares solutions 
due to perturbations in the matrix A are different for different right-hand side vectors b; 
however, the following theorem shows that the residual sensitivity always depends upon 
the condition number of matrix A. We state the result in a somewhat simplified and crude 
form. Sec Golub and Van Loan (1996, pp. 242-244) for a precise statement and a proof. 

Theorem 8.16 (least-squares residual sensitivity theorem). Let r and r denote the 
residuals, respectively, for the original and rhe perturbed least-squares problems; that is, 

r=h-Ax, r=h-(A+E)(i). 
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Then 

IIP·-rl! < IIENII+ZCond(i\.IIE,;II+O(IIE,vll)' 
llbll - 111111 J 111111 IIAII 

Interpretation of Theorem 8.1 6. The above result tells us til at the sensitivity af tire 
residual depends at mosr on the condition number of A. One tile other lumd, as we have 
seen before, for tlte nou.:.ero residual problem, it is the square of the condition number that 
measures the sensitivity. 

Example 8.17. Let A, b, and E be the same as in Example 8.14. Then 

_ (o.s) .< 10, (-4.9999) 
X- 0.5 ' 5 ' 

r b- Ax= (~09~~~1 ). r = b- (A+ E).\'= (~09~~~1 ). 
0.9999 0 

1l1us, the relative residual 11:,~~11 = 0.5773. Note that Cond(A.) · "1~1j11 = 1.4142. I 

Sensitivity of the pseudoinverse. The J'ollowing result, due to Wedin ( l97:l), shows that 
it is Cond (A) again that plays a ro{e fn the sensitivity analysis nf the pseudoinverses of a 
matrix:. 

Theorem 8.18 (pseudoinverse sensitivity theorem). Let A be m x n, where m 2: IL Let 
A. t and A' be, reseectively, rile pseudoinverse of A. and of A = A+ E. Tlren, provided !Ira! 
rank(A) =rank( A.), we have 

Example 8.19. 

So, 

A= 

(

1.001 
A+ E = A = 2.002 

4.004 

.J2cond(r1) I!I£U 
:Ail 

E JO-" A = 0.0020 0.0030 • 
(

0.0010 0.0020) 

0.0040 0.0050 

(
-1.2857 -0.5714 0.8571 ) 

l 0.5000 -0.5000 ' 

2.002) 
3.003 ' 
5.005 

llti' -A.' II 
II A' II 

(
-1.2844 -0.5709 

= 0.9990 0.499995 
0.8563 ) 

-0.4995 . 
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Note that 
Cond(A) = 15.7047. I 

8.7 Computational Methods for Overdetermined 
Problems: Normal Equations, QR, and SVD Methods 

The following least-squares solution methods arc described in this section: 

• The normal equations method (Algorithm 8.1). 

• The QR factorization methods using Householder and modified Gram-Schmidt (MGS) 
processes. (Algorithms 8.2 and 8.3). 

• The SVD method (Algorithm 8.4). 

8.7.1 The Normal Equations Method 

We have already seen in Section 8.3.2 that when A ism x 11 (m ?: 11) and has full rank, 
the unique-lcust-square solution x satisfies the normal equution: A TAx= Arb. Indeed, 
this approach of solving a least-squares problem had been a popular method for many 
years among statlsticians. We now show how to implement this approach numerically. 
Since A has full rank, AT A is symmetric and positive definite, and it admits the Clwlesky 
decomposition: A r A = H HT. Therefore, the nonnal equations approach for solving the 
least-squares problem can be slated as follows. 

ALGORITHM 8.1. Least-Squares Solution Using Normal Equations. 

Inputs: (i)An m x n (m > n) matrix A of full rank, and (ii) an m-vector b. 
Output: A unique least-squares solution x. 

Step 1. Form c =Arb. 

Step 2. Find the Cholesky factorization of A r A = H HT 

Step 3. Solve the triangular systems in the sequence Hy = c, H 7 x y. 

Flop-count. The above method for solving the full-rank least-squares problem requires 

abom nw 2 + ~ flops, This can be seen as follows: mn2 flops for computing AT A and 

A 7 b, "i flops for computing the Cholesky factorization of A 7 A, and 2n 2 flops to solve two 
triangUlar systems, 

Example 8.20. Normal equation solution of the problem on predicting future sales 
(Section 8.4.2). 

( 
703 ) Step 1. Form c =Arb 182230 , 

2164253 
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Step 2. Form A7 A= ( 11
5
20 

14691 

1120 14691 ) 
297522 3466402 : 
3466402 44608873 

(

0.0022 0 
H = 103 0.5009 0.2160 

6.5700 0. 8132 

Step 3. Solve the two triangular systems: 

(

314.3912) 
y 114.6376 ' 

6.!934 
X 

0 ) 0 . 
0.8846 

(

7.0325) 
0.5044 
0.0070 

253 

I 

The following table compares'!IJe prediction of sales in each district, obtained by tile 
least-squares solwion, lrith the acrual value. The prediction for district i is computed as 
a;rx, where a;r is the ith row of A. i = I, 2. 3. 4. 

District Prediction of Sales Actual Sale 
I 162.4043 162 
2 120.6153 120 
3 222.8193 223 
4 130.3140 131 
5 66.8471 67 

Suppose that the company would like to predict, using the above results, the sales 
in a district with the population 220,000 and per capita income of $2,500. Then the best 
prediction using the given model is 

(

7.0325) 
(I 220 2500) 0.5044 = 135.5005. 

0.0070 

Numerical Difficulties with the Normal Equations Method 

TIH:: nonnai equations method, though easy to understand and implement, may give rise to 
numerical difllculties in certain cases. 

First, we might lose some significant digits during the e.\plicit formation of AT A, and 
the computed matrix AT A may be far from positive definite; computationally, it may even 
be singulw: Indeed, it has been shown by Stewart ( 1973, pp. 225-226) that unless Cond(A) 
is less than 10~, where it is assumed that AT A has been com puled exactly and then rounded 
tot significanl digits, the matrix AT A may fail lo be positive definite or even may not be 
nonsingular. The following simple example illustrates this fact. (Note that r ::;: 16 for a 
32-bit machine.) 
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Example 8.21. Consider the matrix A from Example 8.12. Lett = 8. The columns of A 
are linearly independent. In exact arithmetic, we have 

ATA- (I+ w··B l ) 
- 1 1 + to-• · 

Since t = 8, we will gel 

which is singular. Note that Cond(A) = 1.4!42 x 104 > !Ol = 10'1. I 

Second, the nonnal equations approach may, in certain cases, introduce more errors 
than those wlric!1 are inlterellf in the problem, This is seen as follows. 

·· · Fromthe.J.ierturbalilYn analysis done in Chapter 6, we easily see that if.x is the solution 
obtained by the normal equations method, then (Exercise 8.17) 

llx xll "'11 Cond(A r A) = 11 (Cond(A))2 

jlxll 

Thus, the accuracy of tire least-squares solution. using normal equations will depend upon the 
square of t!te condition number of matri.r A. However, we have just seen in the last section 
that the sensitivity of the least-squares problem in certain cases, such ns when the residua) 
is zero, depends only on the condition number of A (see Theorems 8. I 0 and 8.13). Thus, 
in these cases, the normal equations method '>Vill introduce more errors in the solutiofl than 
tvhar is warranred by the data. Having said this, we note that there exist some modifications 
of normal equations method which are numerically stuble. See Foster {1991 ). 

MATCOM Note: Algorithm 8.1 has been implemented in the MATCOM program 
LSFRNME. 

8.7 .2 QR Factorization Method 

In this section, we wl\1 show how the factorizalion A = QR can be used to solve the 
least-squares problem. Let A E Rmx" (111 2:: n) have full rank. 

Idea: Reduce the least-squares problem for a full matrix A to an upper triangular 
iincar system problem using QR factorization of A. 

From Theorem 8.3, we know that the unique least-squares solution x satisfies Ax = 
P,~b. 

LetQ,R, =A bethereducedQRfactorizationoft\. Then PA = Q,Q[. 
So, Ax= Pc~b = Q 1 Qfb. Multiplying both sides by Qf, we have Qi Ax= Qfb, 

or R1x = Qj b = c. TinJs,finding rhe least~~YJUares solution x to A.x = /J reduces to solving 
the upper lrkmgu/ar .system R 1x =c. 
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Least-Squares Solution Using Reduced QR Factorization 

L Find the reducedQR factorization of A: A= Q,R,. 

2, Compute c = Q[ b. 

3. Solve the upper triangular system R1x =c. 

An Alternative Derivation of the least-Squares Solution and Expression for the 
Residual 

Let A = Q R be the fit// QR factorization of A. That is, 

Qr A_(. R, )" 
- 0 lll-11 

antl QT)> = ( ~ )" , 
m-u 

255 

Then liAr- bill= iiQT Ax Qrbill = IIR,x- ell'+ [ldll1
. (Note tltat rite 2-norm is 

preserved by orthogonal matrix multiplicmion.) Thus, x is !.he least~squams solution if x 
satisfies R1x = c. Also, note that if Q = (Q 1, Q2), then matrix R1 and vector care given by 

T r R1 = Q1 A and c = Q 1 b. 

To obtain an expression for the residual. we note that when x is the least~squarcs solution. 
II Ax - bllz = l!d liz. Again, d Q'; b. Thus we have the following. 

The Least-Squares Residual Norm Using QR Factorization 

Let A = Q R ( Q 1• Q1 ) R. Then the /east-squares reiidual is given by 

Urlll IIAx-bllz= IIQjbllz. 

Example 8.22. 

.4 = (~i~ I ) 0 . 
w~• 

Step l. A= QR (see Example 7.5). 

0.0001 
-0.7071 
0.7071 

-0.0001) 
0.7071 ' 
0.7071 
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Step 2. 

- ( _o ) 
c=Qib= 0.0001 · 

Step 3. Solution of the system: R1x = cis x = (I. !)'f. The unique least-squares solution 
is (i). 

Step 4. The residual norm= llrllz = \ld!lz = II QI bib= 0. I 

Use of Householder Matrices 

If Householder's method is used to factorize A into QR, then the vector(~) = Q7 b can be 
computed implicitly as 

For k = 1,2, .... rr do 
b = H,li, 

where H~;. k = l, .. ,, n, are the Householder matrices such lhat Q1 = H11 Hn-J · · · H2H1• 

Thus, rhe matrix Q does not have robe formed explicitly. The idea was due to Golub ( 1965)8 

ALGORITHM 8.2. The Householder-Golub Method for the Full-Rank Least­
Squares Problem. 

Inputs: (i) An m x 11 (m 2: n) matrix A offnll rank (rank (A)= n). (ii) An 
m-vcctor b. 
Outputs: (i) The urriqae /east-sqrrares salurion x to Ax = b. (ii) The residual 
norm. 

Step 1. Apply lhe Householder QR factorization method (Algorithm 7.2) to A. 
Obtain R1 and the Householder matrices 111, ll2 , •••• 11,.. 

Step 2. Form l111 Hn-l · ·· HzH1b = (J), where cis ann-vector, by computing 
the product tmplicitly. 

Step 3. Solve R1x =c. 
Step 4. Form the residual norm: lid !b. 

Example 8.23. Consider Example 8.22 again. 

(-] 
Step 1. R1 = O -1 ) 

0.0001 . 

~'Gene H. Oulub ( 1932~2007} was Flch;hcr·lancs Professor of Computer Science at Stanford University. 
Golub made ever lusting contributions in many areas of numerical linear algebra related to SVD, leasl~squares, 
and related topics. He was a coauthor of the celebrated numerical linear algebra book Matrix Comprflntions. 
Golub was a member of both the National Acudemy of Sciences and lhe National Academy of Engineering. 
Several conferences uround the world were held to remember Gene Golub on February 29. 2008. the date 
thnt would have been hl!i 76th birthdny. For more details on the life of Gene Golub, see the obituary of Gene 
Golub by Trefethen (2007), an interview with Gene Golub by Higham (2008), and u New York Times article 
published December 10.2007. 
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Step 2. H1 H1b = ( O.~fo} Then c ( O~~l). 

Step 3. Solve R1x = c => x = (:). 

Step 4. Residual norm = 0. I 

Flop-count. Since the cost of Algorithm 8.2 is dominated hy the cost of the QR factoriza­
tion of A, the overall flop-count for the full-rank least-squares solution using Householder's 
QR method is (Exercise 8.15) 2n2(m - j ). ll1us, lhe method is about twice: as expensive 
as the normal equatious method. Note that the normal equations method requires about 

(u2m + ~) flop. 

Round-ott error and stability. The method is stable. It has been shown in Lnwson and 
Hanson (1995, p. 90) that the computed solution .r is such that it minimizes 

II(A + E).t- (b Hblll,' 
where E and ~bare small. Specifically. 

!IEIIF :s ctwiiAIIF + O(tl1). Hob!!, :s cf1llblb + O(t,'J. 
where c ~ (6m 3n + 4l) and J1. is the machine precision. That is 1 the compmed solution 
is the exact teaskutuares solution of a nearby problem. 

MATCOM Note: Algorithm 8.2 has been implemented in the MATCOM program 
LSFRQRH. 

Use of Givens Rotations 

We can, of course, use the Givens rotations to decompose A into QR and then usc lhls 
decomposition to solve the lcasl-squares problem. However. as we have seen before. the 
use of Givens rotations wi11 be more expensive than the usc of Householder matrices. Recall 
that computations of Givens rotations require evaluations ur square roots; however, there arc 
"square-root-free" Givens rotations, introduced by Gentleman (1973), which can be used 
to solve the least-squares problem. The square~root-frcc Givens rolations are also known 
as fast Givens rotations. For details, sec Golub and Van Loan (1996, pp. 218-220). 

Use of the MGS Method in the Least-Squares Solution 

We have seen in Chapter7that, in general, MGS is not fully satisfactory forQR factorization 
of A; however, it has turned out to be numerically effective for the least-squares solutlon 
if the vector c = Q'~'b is computed by finding the QR factorization of the augmented 
matrix {A. b) rather than of A itself. The least-squares solmion with the matrix Q obtained 
directly from the QR factorization of A may not he accurate, due to the possible departure. 
from orthogonality of the computed Q. Thus if 

(
R, 

(A,b)=(Q,,q,+J) O ~)' 
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then 

Ax -/J = (A,b) ( _:"1) = (Q1,q,+1l (~1 ~) (.:"1) = Q1lR1x- c)- pq,+l· 

If q,+l is orthogonal to Q 1. then II Ax- bllz will be a minimum when R1x =c. Thus, the 
least-squares solution can be obtained by solving R1x = z. The residual r will be given 
by r = pq,+l· Details can be found in Bjorck (1996). The above discussion leads to the 
following least-squares algorithm. 

ALGORITHM 8.3. Least-Squares Solution by MGS. 

Inputs: A E ife"P<n(m :;::: n). rank (A) = n; 11 E Rm, 
Output: A unique least-squares solution x. 

I. Apply·MGS (Algorithm 7 .8) to A to obtain Q 1.= (q, ..... q,,) and R 1• 

2. Fork = I, ... , 11 do 
ilk =q{l> 
b = b - 13,q, 

End 

3. SolveR1x={il 1, •.• ,J,)7 • 

Example 8.24. Consider solving the least-squares problem using the MGS with the data 
of Example 8.22. The exact solution is x = ( l ). The QR factorization of A using MGS is 
given by 

-0.~071)' 
0.7071 

If we now form c Qf/J and solve R,x = c, we obtain x = (fi). On the other hand, 
if we obtain x using Algorithm 8.3, we get {8 1, <h) (2, 0.0001), and the solution of 
R,x = {o1, J2)r is x"' ( l). I 

Round-off property and flop-count. It has been shown by Bjorck and Paige ( 1992) that 
the MGS process for the least-squares problem is numerically equivalent to the Householder 
method applied to ( ~ g); that is, 

Hr.H,_I···H,H,(~ ~)=(~ ~;). 
From this equivalence, it follows that the MGS method is backward stable for the least­
squares problem. The method is slightly more expensive than the Householder method. It 
requires aboll! 2mn 2 flops. compared to the 2mn 2 2~ flops needed by the Householder 
method. ~ 

MATCOM Note: Algorithm 8.3 has been implemented in the MATCOM program 
LSFRMGS. 
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8.7.3 The SVD Method 

In Chapter 7. we have seen that the SVD of A can be used to compute the orthogonal 
projection onto R(A). So it is natural to think of using the SVD to compute the least­
squares solution. 

Idea: Reduce the least-squares problem of a full matrix A to a diagonal problem 
using U1e SVD of A. 

Consider the reduced SVD of A: A = U, I:, vr Then the orthogonal projection 
nf A onto R(A} Is PA = UJ ur Since the lease-squares solution X satisfies Ax ::.:;,: PAb 
(Theorem 8.3). we have 

Ax= PAb U1 U"(b. 

Multiplying both sides hy U"(. we obtain 

U,' Ax;, U{b (note that U"(U, = !,,.). 

That is. 
u{ AVVrt = U,'b (nme that vvr = !,.,,) 

or I: 1y = b', where" vrx and b' = U,' h. 
Thus, using the reduced SVD of A, so/Ping the least-squares problem is reduced ro 

the solution of the diagonal system !:1 y = ll. 
This observation leads us to the !'ollowing. 

ALGO!UTHM 8.4. Least-Squares Solution via Reduced SVD. 

Inputs: A E Rm:-: 11 (m;:::: n), bE !H.m; A is offrtl/ rank. 
Output: The unique least-squares solution x. 

Step I. Find the reduced SVD of A: A= U1 I: 1 VT. 
Step 2. Compute b' = U('b. 
Step 3. Solve the diagonal system 1: 1 y = b'. 
Step 4. Obtain the least-squares solution x = Vy. 

Example 8.25. A. h arc the same as in Example 8.22. 

Step 1. The reduced SVD of A = U1 2: 1 V 7 : 

( 
I O ) ( 1.4142 0 

U1 = 0 -0.7071 , I:: O O.OOOI 
0 0.7071 

step2.b'=ur&= ( ~2 )· 

S 3 ( 
1.4142 ) 

tep.y= 0 .· 

Step 4. x = Vy = ( : ) . I 

) . v = ( 
-0.7071 
-0.7071 

-0.7071 ) 
0.7071 . 
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Rank-Deficient Least-Squares Solutions using SVD. 

lf A E ocmxn. m ~ n, and rank(A) = k < n, lhen lhere are infinitely many least-squares 
solutions. The QR factorization with column pivoting (see Chapter 14, available online at 
H'Ww.siam.orglhookslotl 16) can be used to solve the problem (Exercise 8. I 6). However, the 
best numericalt_v reliable way to solve a rank-deficient least-squares problem is via SVD, 
Of importance in practical applicalions ls to compute the one with minimrmHwrm. We now 
describe how to do this. To show that in the rank-deficient case there are infinitely many 
solutions, we will use the full SVD. 

Let A = UEV 7 be the full SVD of A. Then we have 

I! Ax- bib= ii(U"LVTx- blll2 
iiU(I:I'rx urblih 

= liLy- bib, 

where VTt y and jji·[, =b. 
Again, 

' m 

!IEy-bllz = L 
i=l 

where k is the rank of A, Thus the vector 

y = r~:l 
Yn 

that minimizes II E y - 1;, 112 is given by 

b; 
\'j = -. 
" Ui 

i=l, .... k, 

Yi = arbitrary, f=k+i, ... ,H. 

(Note that when k < 11, Yk+t through Ym do not appear in lhe above expression and therefore 
do nol have any effect on the residual.) Of course, once y is computed, the solution to the 
original problem can be recovered from x = V y, 

Remark. Since finding rank is a tricky matter in practical computations, we wiH usc 
numerical rank r. as defined in Section 7.8.9. 

Since corresponding to each {compulatlonally) "zero" singular value cr;. y1 can be 
set arbilrarily, in the rank-deficiem case, we will have iufinitely many solutions to the least­
squares problem. There arc instances where this rank-deficiency is actually desirable be­
cause it provides a rich family of solutions which mlght be used for optimizing some other 
aspects of the origina1 problem. 

Thus, an algorithm for finding infinitely many least-squares solutions in the rank­
deficient case, using SVD, can be stated as follows, 
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ALGORITHM 8.5. Rank-Deficient Least-Squares Solutions Using SVD. 

Inputs: A E lR111 xtr, b E lR. 111
; A is u lfumerically rcmk~deficiem malrix with 

tolerance~. 

Output: A .family of least-squares solutions (x). 

Step 1. Find the SVD of t1: 
A= U'LVT 

,. ,;, 

(
b,l 

Step 2. Form b = urb = :· . 

bm 

Step_ 3. Determine thi! numerical rank-? of A using the tolerance 8 (see Sec­
tion 7.8.9). 

Step 4. Compute y = (v') choosing 

)u 

V·- { b;' i = l, 2, ... ' P, 
,., - rr; 

arbitrary, i = P + l, ... , n. 

Step 5. Compute the family ofleast-squares solutions (xI as 

X= Vy. 
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Remark. Algorithm 8,5 can be used to compute the least-squares solutions in both the 
.full-nmk and the rank-deficient cases. Note that in the full-rank case, the family has just 
one number. 

Example 8.26. 

A= G 
Step I. A= UE vr, where 

(

I 0 
u = 0 -0.7071 

0 -0.7071 
-0.~071) ' 
0.7071 

Step2, b = U
7

b m-

(

1.4142 0) 
E = 0 0 , 

0 0 
v- (0.7071 

- 0.707! 
0.7071 ) 

-0.7071 . 
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Step 3. r = I. 

St 4 '- ()'') - ( 1.4142) e . \- - . . P · Yz arbitrary 

The family of least-squares solutions is given by x = Vy. By choosing different 
values of Y2· we will oblain different solutions. For example, when Yz = 0. we have 
x=(l). I 

Flop-count. Using the Golub-Kahan-Reinsch method to compute the SVD of A, to be 
described later in Chapter 10, it takes ahout 4mn2 + 8n3 flops to solve the least-squares 
problem, when A ism x n and m ;::: n. (In deriving this jfop~cmmt, it is noted that the 
complete vector b does not need to be computed: only the columns. of U that correspond to 
the nonzero singular values are needed in computation.) 

MATCOM Note: Algorithm 8.5 has been implemented in the MATCOM program 
LSSVD. 

An Expression for the Minimum-Norm least-Squares Solution 

It is clear from Step 4 of Algorithm 8.5 above that in the rank-deficient case, the minimum 
2-norm least-squares solution is the one that is obtained by setting Yi = 0 whenever a; = 0 
(numerically). Thus, from above, we have the following expression for the minimum 
2-norm solution. 

Minimum~Norm Least*Sqnares Solution of a 
Rank-Deficient Least-Squares Problem Using SVD 

r u!'b 
... - "'\"' I I' 
·"- '--' -- 'i' 

i=l rrr 

where F =numerical rank( A). 

Example 8.27. 

(
I 2 3) 

A= 2 3 4 . 
I 2 3 

(8.11) 

I. The singular values are rr1 = 7.5358, a1 = 0.4597, and a 3 = 0. A is rank-deficient, 
r =2. 

2. The singular vectors corresponding to the nonzero singular values are 

u 1 = (0.4956. 0.7133, 0.4956)r, u 2 = (0.5044. -0.7008, 0.5044)r; 

v1 = (0.3208, 0.5470. 0.7732/. v1 = ( -0.8546. -0.1847, 0.4853)r. 

r1 r1 
The minimum 2-norm least~squares solution ls x = ~~, 1 

VJ + ~~z 1 
tJ2 = (1, l. I) r. I 
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MATCOM Note: The MATCOM program MINNMSVD computes the minimum- nonn 
solution using the SVD. 

8.7.4 Solving the Linear System Using the SVD 

Note that the idea of using the SVD in the solution of the least-squares problem can be 
easily applicable for determining whether a linear system Ax = b has a solution and, if so, 
how to compute it. 

Thus if 
A= U'LVr, 

then Ax= ll is equivalent to Ly = b', where y = VTx and b' = urb. 
Thus, to solve Ax b using SVD, do iJ1c lbllowing steps: 

Step 1. Compute the SVD of A: A= U'LVr. 

Step 2. Compute the vector b' = u T b. 

Step 3. Solve the diagonal system l:y = b'. 

Step 4. Obtain the solution x = Vy. 

However, this approach is much more expensive than the Gaussian elimination and 
QR methods. That is wh)1, in practice, tlte SVD is nat generaUy used to solve a linear !!ystem. 

8.8 Underdetermined linear Systems 
Let A be m x n and m < n. Then the system 

Ax =b 

has more equations lhan unknowns, Such a system is called an underdetermined system. 
An underdetermincd system can be illustrated graphically1 as shown in Figure 8.3. 

Undcrdetcrmined systems, though arising in a variety of practkal applications, are 
unfortunately not widely discussed in the literature. An excellent source is the survey paper 
by Cline and Plemmons (1976). An underdetermined system has either no solution or an 

m <n = 0 
A b 

X 

Figure 8.3. Underdetermined system. 
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infinite number of solutions. In case tl has full rank. solutions do exist and the general 
solution can be written as follows: 

x = ;\ 7 (;l;\ 7 )~ 1 b +(I- A 7 (AAT)- 1 A)y, where y is arbitrary. 

By setting y = 0, we obtain the minimum-nann solwion: 

x = A 7 (AAT)- 1b, 

which is the minimum-norm normal equations so!ntion to the full-rank undcrdctennined 
problem. 

The normal equations approach to the minimtlm~norm solution ro the underdetermined 
fuJI~ rank least-squares problem as obtained above will have the same dlsad~·wuages as in 
the case of full-rank overdetermined problem. 

MATCOM Note: The MATCOM program MNUDNME implements the above solution 
method. 

8.8.1 The QR Approach for the Minimum-Norm Solution 

Decomposing Ar, instead of A, into QR, 

the system Ax = b becomes 

(Rr, OT)QT ( 

QTAT=(~), 

YR ) T ( = b, where y = Q x = 
YN 

YR ) . 
YN 

The unique minimum-norm least-squares solution is obtained by sening 

YN =0. 

Tite above discussion leads to the following algorithm. 

ALGORITHM 8.6. Minimum-Norm Solution to the Full-Rank llnderdeter· 
mined Problem Using QR Factorization. 

Inputs: .4 E.!Rmx 11 (m < n) withfitll~rank m: bE iR'1 • 

Output: The minimal 2-nomr solution to Ax = b. 

Step 1. Find the QR factorization of AT: 

QT AT=(~'), R, E 1!!."'"". 

Step 2. Partition Q = ( Q,. Q1). Q, E 1!!." '"'. 

Step 3. Solve for }'R: Rf )'R b. 

Step 4. Form !he minimum-nann solution x = Q1 YR· 
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A note on implementation: If we use the Householder method to compute the QR 
factorization of A, the product Ql)'R should be computed from the factored form of Q as 
the product of Householder matrices. 

Flop-count. Using Householder orthogonalization, 2m 1n- 2 11~:. !lops will be required to 
implement Algorithm 8.6 (Exercise 8.15 ). · 

Round-off property. It has been shown (Lawson and Hanson (1995 p. 93)) that the 
compHted vector w~ is close to the exact minimum-length least-squares solution of a pertltrbed 
problem. That Is. there exist a mau·ix E and a vector .\' such that .i is the minimum-length 
solution of 

(A+ E).t ~ b, 

where 
IIEIIF :S (611 --3m +41JnwliAI!r + 0(1<2

). 

MATCOM Note: Algorithm 8.6 has been implemented in the MATCOM program 
MNUDQRH. 

Example 8.28. Consider the underdetermined system with A and b as follows: 

A= G ~ ~). b= m 
Step l. Find QR factorization or AT using [Q, Rl = qr(Ar). 

Step 2. 

(

-0.2673 
-·0.5345 
-0.8018 

S 3 (
-1.6036) 

tep • YR = 0.6547 . 

0.8729) 
0.2182 ' 

-0.4364 

R _ (-3.7417 --5.3452) 
I - 0 0.6547 . 

Step 4. The minimum-norm solution is x Q,yR = (1} I 

8.8.2 The SVD Approach for the Minimum-Norm Solution 

Let A = I:f~ 1 cr1u1v[ be the SVD Gf A. where f is the numerical rank of A. Then, ns 
in case of the rank-deficient overdetermined system, the minimum-nann solution x to the 
underdetennined system is given by 

~ nJ'b 
x=L..,;-_ v;. 

i=l u, 

Remark~ The SVD approach is recommended if A is nearly rank~deficient. 
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Example 8.29. Consider Example 8.28 again. From the SVD of A, we get 

l. a, = 6.5468, a, = 0.3742, tl'J = 0; 

2. "' = (-0.5696, -0.8219f, u2 = (-0.8219,0.5696) 7
; 

3. u1 = (-0.3381, -0.5506, -0.7632) 7 , v2 = (0.8480, 0.1735, -0.5009)'~'; 

I 

A comparison of different least-squares methods is given in Table 8.1. 

Table 8.1. Comparison of different least-squares methods • 

. ·l'rubtcrn - ·· . . I Mclhod 1J':lup-cuunt :'\umerlcal Properties 

Overdetermined I Normal If~ (I) Diffh:uhies with 
1/Hl: + -:;--

Full-Rank 

I 
Equations ·' formation of AT A 

(2) Produces more errors 

I 
in the solution than what Js 
warr..tnted by daw, in 
certain cases 

Overdetcmlincd I Householder-OR JIJ Stable: The compu!ed '2mn~ -2-
Full-Rank I 3 solution is the exact 

solution of n nearby 
problem 

OverdeJermined MGS-QR 2mn1 Almost as stable us 
Fuli~Rnnk Householder-OR 

Overdclermlncd Houscholder~QR 2mr- r2i,m + 11) Mildly stable: The 
Runk-Defident wi!h Column 2r:; computed minimum 

Pivming + -norm solution is dose to 
where r = r .. mk(A) the minimum-nann 

solution of n pt:;rturbcd 
problem 

Underdetcrmincd Nonnal ' 
m3 ) Same difficulties us in the 

nrn·r·~ 
Fuli~Runk Equations 3 J case or the overdetermined 

j problem 

Undelcnnincd I Householdcr-QR "' mJ 

I 
Same as the runk-deficient 

full-Rank 
2uru-2J 

overdctennincd problem 

Overdetermined I SVD 41!W
1 + 811" I Stahle 

Full-Rank i 

8.9 least-Squares Iterative Refinement 

I 

I 

It is natural to wonder if a computed least-squares solution x can be improved cheaply in an 
iterative manner, us was done in the case of a linearsystcm. A natural analogue of the iterative 
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re!1nemcnt procedure for the linear system problem described in a sectlon of Chapter 6 can 
be easily worked out. This is left as an exercise for the readers (Exercise 8.22). 

An analysis by Golub and Wilkinson (1966) reveals lhat lhc method is satisfactory 
only when the residual vector r = b- Ax is sufficiently small. A successful procedure used 
widely in practice now follows. The method is based upon an interesting observation made 
by Golub lhat the least-squares solution x and the corresponding residual vector r satisfy 
the linear syslcm 

~)(~)=(~). A_ E IDim~-~~. bE m;_m_ 

ALGORITHlVI 8.7. Iterative Refinement for Least-Squares Solutions. 

Inputs: An m x n matrix A of full rank, and ann-vector b. 
Output: A refined least-squares solution and residual. 

Step I. Set r 10l ~ 0, x(U} = 0. 
Step 2. Fork = l, 2, , .. do 

(r'") (b) ( I A) (r"l) 2.1. Compute rl" = 0 - A r 0 xlkJ · 

, ( r A) (c'") (r"'') 2.2. Solve the system AT 0 ctki = r~kl . 

2.3. Update the solution and the residual: 

(rl'+>l) (r"') (c'"') 
xO•+ll = x\kl + c~k) · 

End 

Implementation of Step 2. Since the matrix Ur ~) is or order m + 11, the above scheme 
would be quite expensive- when m is large. However, using QR decomposition QT A = 
( ~~).the system 

can be transformed into 

Q1 c 1 +(~1 )c2 Q7
r 1• (Rf.O)Qrc,=rz. 

This shows that the above augmemedsystem can be solved by solving two triangular systems 
and two matrix-vector multiplications as follows: 

L Form Q7
r 1 ~ GJ 

2. Solve for cJ: Rj c; = r;. 
3. Solve for c:z: R 1c1 = r; - c;. 

(c~) 4, Formc 1 = Q r~ . 



268 Chapter B. Least-Squares Solutions to Linear Systems 

Flop-count. With the above formulation each iteration will require only 8nm- 2n 2 flops, 
assuming that the Householder method has been used and that Q has not been formed 
explicitly. Note that for the matrix-vecwr multiplications in steps I and 4, Q does not need 
to be formed explicitly; these products can he obtained if Q is known only in implicit form, 
for example, as the product of Householder matrices. 

Round-off error. It can be shown (Bjorck ( 1996)) that, using extended precision in com­
puting step 2.1 of Algorithm 8.7, the initial rate of improvement of the solution is linear 
with rate 

jjxt>l -x!!, 
,. . -

11 

< C{l Cond(A), 
ll rt'-"- x • • 2 

s = 2,3, ... ' 

and c is an error constant, depending upon m and n. 

·· An interpretation ofthe resultand remarks, J'he.above result tells us that the iteratil'e 
refinemellf procedure is quite satisfactory, It is even more satisfactory fO~T-least~sqwifeS 
problems with large residuals, Note that for these problems, (Cond(Alf serves as the 
condition number. However. the ahovc result shows that the error at an iterative refinement 
step depends upon the condition number of A, The procedure "may give solutions to full 
single precision accuracy even when the initial solution may have no correct significant 
figures" (Bjorck ( 1996, p. 123)). For a well-conditioned matrix, the convergence may 
occur even in one iteration. Bjorck and Golub (1967) have shown that with an 8 x 8 ill­
conditioned Hilbert matrix, three digits of accuracy per step both for the solution and the 
residual can be obtained. 

Example 8.30. 

A=(~ ;) ' 
3 4 

k = 0. 

Step 1. 

Step 2. Solve the system 

( 

0.3333] -0,6667 
0.3333 . 
3.3333 

-0.3333 
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Step 3. Update the solution and the residual: 

The compmations of ci0l and c~0} are shown below. 

ri0
' b. rj0

' = (g) 

( 

0.3333) -0.6667 
0.3333 . 
3.3333 

-0.3333 

(r!) = QTb = (-=-1~26198~). Thus, r; = (-01 ~·1689~), r; = (0,8165). r, 0.8165 ·- -

(··,·. (0) (Ol -( 3.3333 ). d (0) _ (~0·363~63_) 
0 

• c2 - _
0 3131 , an c, - . 1 . 

.. . • • 0.3333 
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Nnle that xUl = ( 3·3333 ) is !.he same least~squares solurion a.r.; obtained by the QR -0.3333 
and nonnal equation methods. I 

MATCOMNote: Algorithm 8.7 has been implemented in the MATCOM program LSITRN2. 
The Hnear system analogue least-squares iterative rellnement process has been implemented 
in the MATCOM program LSITRNl. 

8.1 0 Review and Summary 

8.1 0.1 Existence and Uniqueness 

The least-squares solution x to the problem Ax = b always exists. In the orerdetenuined 
case, it is unique if A. has full rank (Theorem 8.2). 

8.1 0.2 Overdetermined Problems 

For full~rank problems, we have discussed the following methods: 

• The nonnul equations (Algorithm 8.1) 

• The QR method (Algorithms 8.2 and 8.3) 

• The SVD method (Algorithm 8.4) 

The normal equations method Is easy to implement but has some numerical difficulties. 
The QR approach can be irnplcrncnlcd using Householder, Givens, and the modified 

Gram-Schmidt methods. The Householder QR method is the most efficient among all the 
QR methods, and if the matri.t A is well-conditioned, rhe method is recommended as a 
general~purpose least-squares solve;: For near(v rank-deflcien! matrices, tile QR method 
witlt column pil•oting should he used. 
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For rank-deficient problems, there arc basically two choices: 

• The QR method with pivoting (Exercise 8.16) 

• The SVD method (Algorithm 8.5). 

The SVD metllodj although more expensive than all other merlwds, is mosr reliable ro 
deal with rank~dcficiency or near rank~deficir.ncy. 

8.1 0.3 The Underdetermined Problem 

The underdetcm1ined lease-squares problem is discussed in Section 8.8. \Ve have described 
two methods for the minimunHwrm solution to an tmderdetermilled problem: the QR 
algorithm (Algorithm 8.6) and the SVD method (Section 8.8.2). 

8:10:4 Perturbation Analysis 

The results of perturtmtion analyses vary for different cases or lhe perturbations in the data. 

If only b is perturbed, then Cond(A) = IIAIIIIA 111 serves as the condition number 
forthc unique least-squares solution (Theorem 8.1 0). 

Ir only A is perturbed, then the sensitivity of the unique least-squares solution, in 
general, depends upon the square of the condition number (Theorem 8.13). In certain 
cases, such as when the residual is zero. lhe sensitivity depends only on the condition 
number of A. 

8.1 0.5 Iterative Refinement 

As in the case of the Hnear system problem, it Is possible to improve the accuracy of a 
computed Jeast~squarcs solution ln an iteratlve fashion. An algorithm which is a natural 
analogue to the one for the linear system (Section 6.9) is satisfactory only when the residual 
vector r = b Ax is sufficiently small. A widely used algorithm due to Bjorck is presented 
in Section 8.9. This algorithm requires the solution of an augmented system of order m + 11 

(where A ism x n). 1t is shown how to solve the .system in a rather inexpensive way using 
QR factorization of A. 

The solution obtained by this iterative refinement algorithm is quile satisfactory. 

8.1 0.6 Comparison of least-Squares Methods 

We summarize the speed, stability, and accuracy of the least-squares methods as follows: 

Tile nonnal equations method: Fastest but in certain cases might have numerical 
diftlculties. 

The QR approach: More expensive than the normal equations method, but is stable 
and can be used as a general-purpose least-squares problem solver. 

• The SVD approach: Most expensive but most reliable, especially while dealing with 
rank-deficient, nearly rank-deficient, and underdetennined problems. 
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8.11 Suggestions for Further Reading 
Techniques of h:.:ast~squares solutions are covered in any numerical linear algebra and some 
numerical analysis texts. The emphasis in most hooks is on the overdetennincd probJcms. 
For a thorough treatment or the subject we refer the readers to Golub and Van Loan ( 1996) 
and Stewart (1973, 1998b). The book by Gill, Murray, and Wright (1991) also contains 
detailed discussions on perturbation analyses of the feast-squares problems. 

Two authoritative books completely devoted to the subject arc Lawson and Hanson 
( 1995) and Bjorck ( 1996), These two books are must-reads for anyone interested in further 
study on tlw subjecL The book by Lawson and Hanson, in particular, gi vcs the proofs of the 
round-off error analyses of the various algorithms described in the present book. Sec also 
Higham (2002) in this context. 

Any book on regression analysis in statistics contains applications of least-squares 
problem in statistics. We have, in particular, used the book by Neter. Wasserman, and Kut­
ner ( 1983). A classical survey paper of Golub (1969) contains an excellent exposition of 
nunietical"linear algebra techniques TOr least-squares problems and singular value decom­
position problems arising in statistics and elsewhere. A paper by Stewart (1987) is also 
interesting to read. 

These papers, along with other papers in the an:a by Golub, Bjtjrck, Stewart, etc., 
representing the most fundamental contributions in this area, ure highly recommended. For 
details, sec the list or references in Bj6rck ( 1996) and Lawson and Hanson ( 1995) as well 
as the bibliography of this book. For more on underdelerminc:d problems, see the papers by 
Cline and Plemmons (1976) and Arioli and Laratta ( 1985). For more on least-squares by 
MGS, sec Plemmons (1974). 

Exercises on Chapter 8 

EXERCISES ON SECTIONS 6.2-8.6 

8.1 (a) Prove that .4 7 .4 is symmetric and positive definite if and only if .4 has full rank. 

(b) Show tl1at lhe residual vector r = b- Ax is orlhogonalto all vectors in R(.4). 

8.2 Prove that x is a least-squares solution to ,4..t = b if and only if 

Ax=bR and b Ax=/JN, 

where bRand bN arc, respectively, the range-space and column-space components of 
the vector b. 

8.3 Let a vector x satisfy At = P,~/J, where A is 111 x n (Ill ;:: 11) and has full rank. Then 
prove that x is a unique least~squares solution to Ax b. 

8.4 Using least-squares, fit a straight line and a quadratic to lhe data 

Compare your results. 

Com pule the condilion number of the associated Vandermondc matrix in cuch case. 



272 Chapter 8. least-Squares Solutions to linear Systems 

8.5 Find the condition number of each of the following matrices using both generalized 
inve-rse and singular values and compare your results: 

A- ('7 - 4 
6.990) 

4 , 

1 ) 0 • 
0.0001 

(
I 2 3) 

A= 3 4 5 . 
0 7 8 

(Compute the generalized inverse from its definition given in Section 8.5.) 

8.6 Let A and A have full rank. Let x and .i' be, respectively, the unique least-squares 
solutions to the problems Ax= band Ax= b, where A= A+ E. Then prove that 

11'11~1j<li:Scond(AJ ::~:: (1 :::::) + (Cond(AJJ'::~:: ( 1 + ::~:;). 
(Him: Apply the perturbation analysis of the linear systems with normal equations.) 

8.7 Verify the inequality of Exercise 8.6 with the following data: 

(I 2) 
A= 3 4 , 

5 6 

8.8 Verify the inequality of Theorem 8.16 in each of the following cases. 

(a) A=(; ~). E = w-4 A. (b) A= (~~-4 b ) , E = I0-4 A. 
s 6 o w-• 

(c)A=(g l).E=J0-3A. 
8.9 Work out a proof of Theorem 8.13 (least-squares left perturbation theorem). 

8.10 Let 

b G)· 
(a) Find the unique least-squares solution x using 

(i) .t = A'b. 
(ii) the normal equations method, 

(iii) the Householder and the Givens QR factorization methods, 

(iv) the COS and MOS methods. 

(b) Find Cond(A). 

(c) Show that for this problem the sensitivity of the least-squares problem. when 
only A is perturbed, depends upon Cond(A). 
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(d) Let t.A =A w-'A and let"!= A'b, where A= A+ E. Find 11 ~,~~ 11 and 
verify the inequality of Theorem 8.13 for this problem. 

(e) Find r and r and verify the inequality of Theorem 8. 16. 

8.11 (a) If A is of order m x nand has full rank, then, using the pscudoinvcrse, prove 
that Cond2(A 7 A) Cond~(;\), 

(b} Construct your own example where the sensitivity of the Ieast~squares problem 
will depend upon the square of the condition number of the matrix. (Show all 
your work.) 

EXERCISES ON SECTION 8.7 

8.12 Consider the following well-known ill-conditioned matrix (Bjiirck ( 1996)): 

(
I l 1)· · 
E 0 0 

A= 0 E 0 ' 
0 0 E 

1•1 «I. 

(a) Choose an E small, so that rank(A) = 3. TI1cn compute Cond,(A) to check 
that;\ is ill-conditioned. 

(b) Find the least-squares solution to 

Ax (i) 
using 

(i) the normal equations method. 

(ii) the Householder, CGS, and MGS QR factorization methods. 

(c) Changcbto 

Keep A unchanged. Find an upper bound for the relative change in the least­
squares solution. 

(d) Change A to;\'= A+ t>A, where 6;\ = 10-3 A. Keep b unchanged. Find an 
upper bound for the relative change in the least-squares solulion. 

(c) Find the maximum departure from orthogonality of the computed columns of 
the Q matrix using the CGS and MGS methods, 

(f) Compute the least-squares solution of the problem in (b) using the SVD. 

8.13 (Square-root-free Cholesky.) Given a symmetric positive detinite matrix A, develop 
an algoriLhrn for finding the Cholcsky decomposition of A without any square roots: 

r A= l.DL , 
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where L is a unit lower triangular matrix and D is a diagonal matrix with posilive 
diagonal entries. 

Apply your algorithm to solve tho full-rank least-squares problem based on solving 
nonnal equations 

8.14 (a) Construct an example to show that the MGS will not yield an accurate result if 
the matrix Q obtained from the algorithm is explicitly used to solve a full-rank 
overdetermined least-squares problem. 

(b) Do the example now with Algorithm 8.3 and compare the results. 

8.15 Show that the ftop-count for solving the least-squares problem for an m x n overde­

termined system using the Householder QR method requires about 2n 2m - 2 ~ flops. 

and the corresponding count for the underdcterrnined system is 2m2n - 2 11~1 : 

8.16 (a) (Le~st-sqnares solution using '(Jk with colrmnipi>;otini) Consider the QR 
factorization with column pivoting of A E lR111 xn. m :?: n, vvith rank r < n: 

AP = QR, where R = ( R~, R") r 
0 m -r. 

r " - r 
Develop an expression for least-squares solutions to Ax = b based on this 
faclorization. Give a flop-count for this computation. 

(b} Show that in the rank~dcficicntcuse, a least~squarcs solution cannOl be a minimum­
norm so1ntion unless Rn is zero. 

(c) Using the MATLAB function [Q, R, Pj = QR(A) for QR factorization with 
column pivoting, t1nd the minimum-nann solution to Ax = b, where 

(d) Work out the above example using the SVD of A. 

8.17 Prove that the relative error obtained by the normal equations method is proportional 
to the squurc of the condition number of the matrix. 

8.18 Consider the complete orthogonal decomposition of A: A= Q (~g) vr. 

(R-' 0) (a) Show that A'= V 
0 0 

QT 

{b) Obtain an expression for the minimum-norm solution to Ax b. 
(c) Fmd the minimum-norm solution to the least-squares problem with 

A= (i :) . 
using the results of (a). 
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EXERCISES ON SECTIONS 8.8 AND 8.9 

8.19 Develop an algorithm based on QR factorization with MGS to compure the minimum-
norm solution to the underdewrmined system Ax b, where A is 111 x n, m < n. 
Give a ~op-count for the algorithm. Apply your algorithm to 

2 
5 3) (X') (6) 6 ~~ = 15 . 

8.20 Develop an algorithm based on QR factorization with column pivoting to tind a 
solution to the undcrdetcrmined problem. 

8.21 Prove that the minimum-norm solution to an underdctcrmined system can be obt.aincd 

by projecting any solution to the system onto R(A'). That is. if P~ is the onhogonal 

projection onto R(At), Lhcn the rnin!mum-nonn solution xis given by x = P"~y, 
WhCre y is any solution. Using the above formula, compute the minimum~norm 
solution to the system 

(l 
w-• 

0 
0 

0 
w-• 

0 

0 x, J 0 ) (x') (I) 
Jo-• ::: J . 

8.22 Consider the natural algorithm for iterative refinement to improve a computed least-
squares solution with xill (0, ... , 0)7 . 

Fork = l. 2 .... do 

Step 1. r 1'l = b Axlkl. 

Step 2. Solve the least-squares problem: Find c<'l such that II Ac"1 - rlkl ib is 
minimum. 

Step 3. CmTcct the solution 

End 

(a) Apply three iterations of this algorithm to each of the following problems: 

(b) 

(i) A= 0), b 0). 
(

100

1

-4 ~ ) ' 
w-• 

(ii) A 

(iii) A= (1o
0

1
-• b ) , 

Jo-" 
What is the relationship of this algorithm with the iterative algorithm using the 
augmented system (Algorithm 8.7)? 
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8.23 Apply Algorithm 8.7 to each of the problems of Exercise 8.22 and compare the results. 

8.24 Apply Algorithm 8.7 to the least-squares problem with the 7 x 7 Hilbert matrix and 

b = (1, !, ~' ~· ~' *' t)T. 
Tell how many digilS of accuracy per iteration step were obtained in both the solution 
and the residuaL 

8.25 In many applications, only the diagonal entries of the variance-covariance matrix 
X= (At A)- 1 are needed. Show how these diagonal entries can be computed from 
A = QR using only jn' flops. lllustmte the computation of X with a numerical 
example of order 5 x 2. 

8.26 Develop Algorithm 8.7 in detail by incorporating the implementation of Step 2 as 
shown in the text. Apply this algorithm nowJo ~uc:hof the IJroblems of Exercise 8.22. 

MATLAB Programs and Problems on Chapter 8 

MB.l Consider the following set of data points: 

Using the MATLAB command vander and the operation "\" compute the least· 
squares fit of the data to polynomials of degrees I through 4. 

Plot the original data point and the least-squares fits using the MATLAB commands 
plot and polyval and compare the results. 

M8.2 (Swdy of sensitiFities of the least-squares problem.) Let 

E - 10-4 0 0.0009 
(

0 -0.0001) 

A- Q 0.0003 ' ob= a<r' ~::ii . 
(

0.0001) 

0 0.0001 0.0001 

Using the MATLAB commands pinv, cond, norm,orth, null, etc., verify the inequal­
ities of Theorems 8,1 0, 8.13, 8.16. and 8.18 on different sensitivities of least-squares 
problems. 

Test Data for Problems M8.3, M8.4, and M8.5: 

1. A randomly generated matrix of order 100. 
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2. Hilbert matrix of order 20. 

3. (~ ~ ~); E is such that ft(l + <2
) = l. 

0 0 " 
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For each of these matrices. generate b so that the least-squares solution x iu 
each case lws all enrries equal to 1. 

l\tl8.3 (Implementation of the least-squares QR algorithm using Givens rotations,) Using 
givqr and bcksub, from MATCOM, write a MA1LAB program to implement the 
QR algorithm using Givens rotations for the full-rank overdelennined least-squares 
problem[£]= lsfrqrg (A,b). 

M8.4 (lmplemelltation of the SVD algorithm for full-rank overdetermined /east-squares 
problems.) Write a MATLAB program, called lsfrsvd, to implement Algorithm 8.4 
using reduced SVD as follows: 

[.i'J = lsfrsvd (A, b). 

l\18.5 (Tire purpose of this exercise is Ia compare tire accuracy and residuals of different 
least-squares methods for full~rank overdetermined problems.) 

(n) Compute the least-squares solution .t for each data set using the following: 

(i) [,t] ~ lsfrmgs (A,b) (least-squares using MGS). 

(ii) [.t] = lsfrqrh (A,b) (least-squares using Householder QR). 

(iii) [.i'] = lsfrqrg (A,b) (least-squares using Givens QR). 

(iv) J£] = lsfrnme (A,bj (least-squares using normal equations). 

(v) {.t] = pinv (A)* b (least-squares using generalized inverse). 

(vi) {.t] = lsfrsvd (A) (least-squares using SVD). 

Note: lsfrmgs, lsfrqrh, and lsfrnme are all available in MATCOM. pinv is a 
MATI.AB command for computing the generalized inverse of a matrix. 

(b) Using the results of (a), make one table for each data set in the following format 
shown in Table 8.2. Note also that the vector x has all entries equal to 1. Write your 
observations. 

M8.6 Using housqr from MATCOM or [Q, Rl = qr(A) from MA1LAB, and backsub 
from MATCOM, write a MA1LAB program, called lsrdqrh(A,b), to compute the 
rninimunHWI711 least-squares solution.\: to tiw rank-dejiciellf O\'erdetermined problem 
Ax = b. and lhe corresponding residual;, using Householder QR factorization of A: 

[.i', rl = lsrdqrh (A. b). 

Test dara: A 20 x 2 matrix with all entries equal to I. and b a vector with all entries 
equal to 2. 



278 Chapter 8. Leost-Squares Solutions to Linear Systems 

Table 8.2. Comparison ~{different metlwdsfor thejirll-rank overdetermined least­
squares problem. 

Method llx- xllz/llxilz !fA.<- bli1 

lsfrmgs 

lsfrqrh 

lsfrqrg 

lsfrnme 

generalized-
inverse 
lsfrsvd 

M8.7 Using the MATLAB function [U,S, V] svd (A) write a MATLAB program, called 
lsrdsvd, to compute the minimum-norm least-sq11ares solUTion .t to the rank-deficient 
overdetermined system Ax = h: 

[.t] = lsrdsvd (A. b). 

Use the same test data ns in Problem M8.6 and compare the results with those of 
lsrdqrh. 

M8.8 Run the programs mnudnrne (least-squares solution for the underdetennined full­
rank problem using normal equations) and mnudqrh (least-squares solution for the 
underdetermiuedfu/1-rank problem using Householder QRfactorizarion) from MAT­
COM on the following sets of data to compute the minimum-nann solution i to the 
full-rank underdetcnnined problem Ax = b, and compare the results. 

A=C 
2 3 4 5 6), A= (b I 1 I I I ~)' 2 3 4 5 6 

c 10 10 10 10 10 10) 
A= 6 l 0 0 0 0 0 ' 

1 0 0 0 0 0 

Construct b for each A so that the minimum~norm solution x has nil its entries equal 
to l. 

M8.9 Run the programs lsitrn2 {based on Algorithm 8.7) from MATCOM on the 20 x 20 
Hilbert matrix A and construct b randomly. How do these results compare with those 
obtained by the algorithm developed in Exercise 8.22'! 

M8.10 {a) Compute {A r A)- 1 for each of the following matrices A: 

(i) Compute explicitly (AT A)-1 using MATLAB command inv. 

(ii) Run the program varcovar from MATCOM. 
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(b) Compare the results of (i) and (ii). 

Test da1a: 

A = The 20 x 20 Hilbert matrix. 

( ld~3 b b l 
A= 0 10~3 0 ' 

0 0 10-3 

A = A 30 x 30 randomly generated matrix. 



Chapter 9 

Numerical Matrix Eigenvalue 
Problems 

Background Material Needed 

Norm properties of matrices (Section 2.5) 

The QR factorization of an arbitrary and a Hessenberg matrix using Householder and 
Givens transformations (Algorithms 7.2 and 7.6) 

Linear systern solutions with arhitrary, Hcsscnberg, and triangular matrices {Sec­
tions 6.4 and 6.12) 

• The condition number and its properties (Sections 4.6 and 4.7) 

9.1 Introduction 
This chapter is devoted to the study of the numerical matrix eigenvalue problem. The 
problem is a very important practical problem and arises in a variety of application areas, 
including engineering, physics. chemistry, statistics, and economics. 

Since the eigenvalues of a matrix A arc the zeros of the characteristic polynomial 
det(A - U), one would naively think of computing the eigenvalues of A by finding its 
characteristic polynomial and then computing its zeros by a standard root-iinding method. 
Unfortunately, eigenvalue computation via the characteristic polJ•Jwmial is not a practical 
approach, 

A standard practical algarltltm for finding the eigem•alues of a matrix is the QR 
iteration method witll a single or double shift. Several applications do not need knowledge 
or the whole spectrum, A few selected eigenvalues, usually a few largest or smallest ones. 
suffice, A classical method, based on implicit powering of A, known as the power method 
is useful for this purpose. 

The organization or this chapter is as follows. 
Section 9.2 is devoted to the discussions of how the eigenvalue problem arises in 

some practical applications such as stability analyses of a system of differential and differ­
ence equations, vibration analysis, transieni behavior of an eleclrical circuit, the buckling 
pmhlem, and principal component analysis in srcuistics. 

281 
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ln Section 9.3 some classical results on eigenvalues locations such as Ger~gorin's disk 
theorem are stated and proved. 

Section 9.4 describes the power method, the inverse power method, the Rayleigh 
Quotient iteration, etc., for finding a selected number of eigenvalues and the corresponding 
eigenvectors. 

ln Section 9.5, we describe two powerful methods, the Householder and Givens meth­
ods, for transfonnlng an arbitrary matrix to a Hessenberg matrix by orthogonal similarity. 
Numerical difficulties with diagonal similarity transformation and the dif.fic/1/ties ofcomp!lt­
ing the eigenvalues of a matrix via the characteristic polynomial and the Jordan canonical 
fomr are highlighted. 

Eigenvalue and eigenvector sensitivily are discussed in Sections 9.6 and 9.7. The 
most important result in this section is the Bauer-Pike theorem (Theorem 9.37). 

Section 9.8 is the most important section of this chapter. The QR iteration method 
with and without shifts and their implementations arc described in this section. 

The Hcssenberg-invcrse iteration is described in Section 9.9. 
··-·- ------' ----·-- --------' '"" - - - ----~--~ 

9.2 Eigenvalue Problems Arising in Practical Applications 
The problem of finding eigenvalues and eigenvectors arises in a wide variety of practical 
applications in science and engineering. The words ''eigenvalue" and "eigenvector" are 
derived from the German word ''eigenwerte:· As we have seen before, the mathematical 
models of many engineering problems are systems of differential and difference equations, 
and the solutions of these equations are oflen expressed in terms of the eigenvalues and 
eigenvectors of the matrices of these systems. Furthcnnore, many important characteristics 
of physical and engineering systems, such as stability, often can be detennined only by 
knowing the nature and location of the eigenvalues. We will give a few representative 
examples in this secllon. 

9.2.1 Stability Problems for Differential and Difference Equations 

A homogeneous linear system of differential equations with constant coefficients of the form 

.i(l) Ax (I), x(O) =xu. (9.1) 

where 

:I (Xi(/)) ' 
XII (t) 

arises in a wide variety of physical and engineering systems. As can be seen from lhe proof 
of Theorem 9.2 below, the solution of this system is intimately related to the eigenvalue 
problem for matrix A. Many interesting and desirable properties of physical and engineering 
systems can be studied just by knowing the location or the nature of the eigenvalues of 
matrix A. Stability is one such property. 

Definition 9.1. An equilibrium solution of (9.1) is the vector Xe such tlrat Axe = 0. A.n 
equilibrium solution Xc is asymptotically stable (f there exists a 8 > 0 such that l!x(t) -
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X ell ~ 0 as t _...,. oo, '>vhenever llxo - xt' II .:;:: 8. Sysrem (9.1) is as.vmptotically stable if the 
equilibrium solution x,., 0 is a::.~'mlptotically swble, A system tllat is not asymptotically 
stable will be called unstable. 

Asymptotic stability guaramces that if the system is perturbed from the position of 
equilibrium a little bit, then it will eventually return to that position after making small 
osci11ations. 

Mathematical Criteria for Asymptotic Stability 

Theorem 9.2 (stability theorem for a homogeneous system of differential equations). 
A necessary and sufficient condition for system {9, 1) to be asymptotically stable is that the 
eigenvalues of matrix A all have negative real parts. lt is unstable if at least one eigenvalue 
has a positive real part. 

Proof. We will sketch the proof in the case when A is diagonalizablc. that is, in the case 
where there exists u nonsingular matrix X such that x-1 AX= D diag (A 1, ••• , J.. 11 ). In 
this case, eA' = XeD1 x-! = X diag (e1·1t, .. , , e'·"1 )X~ 1 • 

Again if Aj a1 + if31, j = 1, 2, ... , n, then eA,r = e11
'
1e1fl,1, and e>·:1 -+ 0, when 

t -+ co, if and only if"' j < 0. 0 

Remark. The proof of Theorem 9.2 in lhc general case is obtained by using the Jordan 
canonical form of A (Theorem 9.28). 

Stability of a Nonhomogeneous System 

Many practical situations give rise to mathematical models of the form 

.\·(1) = Ax(t) + IJ, (9.2) 

where IJ is a constant vector. The stability of such a system is also governed by the eigen­
values of A. This can be scl!n as follows. 

Let x(l) be an equilibrium solution of (9.2). Define z:(t) = .t(t)- .t(l). Then 

t(f) = .t(l)- (.t)(f} = Ax(l) + b- A.t(t) -IJ = .4(-<(t) - _t(t)) = Ao(t). 

Thus. x(t)-+ .t(t) if and only if z(t)-+ 0. The following theorem therefore follows from 
Theorem 9.2_ 

Theorem 9.3 (stability theorem for a nonhomogeneous system of differential equa­
tions). (i) An equilibrium solution of (9.2) is asymptorically stable if and only if ali the 
eigenvalues of A /rave negative real parts. (ii)An equilibrium soflllion is unstable ifat least 
one eigem•alue has a positit·e real part. 

Stability of a System of Difference Equations 

Like the system of differential equations (9.2), there are practical systems which are modeled 
by systems of difference equations of the form -'k+t = Ax, +b. 
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A weB-known mathematical criterion for the asymptotic stability of such a system is 
given in the following theorem. We leave the proof lo the reader. 

Theorem 9.4 (stability theorem for a nonhomogeneous system of difference equations). 
The S)'Stem 

Xk+l = Axt + b 

is asymptotically stable if and only if all rhe eigenvalues of A are inside the unit circle. It 
is unstable if arleast one eigenvalue has a magnitude greater than L 

Summarizing. to determine the stability and asymptotic stability of a system modeled 
by a system of first order ordinary differential or difference equations, all we need to know 
is if the eigenvalues of A are in the left half plane or inside the unit circle, respectively. The 
explicit knowledge of the eigenvalues ls not ne.edcd. 

E:xatitple'I:!:C A European arlliS race. Considcrthe arms race of 1909~ 1914 between 
two European alliances. 

Alliance I: France and Russia, Alliance 2: Germany and Austria-Hungary. 
The two alliances went to war against each other. Let's try to explain this historical 

fact through the notion of stability. 
First consider the following crude (but simple) mathematical mode! of war between 

two countries: 

dx, 
- = k,:to - UJXt + g,, dt - . 

where 

xdt) war potential of the country i, i =I, 2 

g1 (t) = the grievances that country i has against the other, i I, 2. 

The quantities g1, a;, and ki, i = 1, 2, are all positive constants. O'iXi denotes the cost of 
armaments or the country i. This mathematical model is due to L. E Richardson and is 
known as the Richardson model. 

Note that this simple model is realistic in the sense that the rate of change of the war 
potential of one coumry depends upon the war potential of the other country, the grievances 
that one country has against its enemy country, and the cost of the annamcnts the country 
can afford. While the first lwo factors cause the rate to increase, the last factor certainly has 
a slowing effect {that is why we have- a negative sign associated \~lith that term). 

In matrix form, this model can be written as .i(l) = Ax(r) + g, where 

( 
-a, 

A= ko 
k, ) 

-Cl'1 ' 

The. eigenvalues of A are 

Thus the equilibrium solution x(t) is asymptotically stable if a 1 <>2 - k 1k2 > 0, and unstable 
if a 1 a2- k1k1 < 0. This is because, when a1a2 k1 k2 > 0, bolh the eigenvalues will have 
negative real parts; if it is negative, then one eigenvalue will have positive real part. 
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For the above European arms race, the estimates of a 1• a 1 and k1• k1 w~rc mude 
under some realistic assumptions: a 1 0'2 = 0.2; k1 = k 2 = 0.9. {For details of how 
these ~:stimates were obtained! sec Braun ( 1978).) Tiw main assumptions are that both the 
alliances have roughly the same strength, and a1 and a 2 are rlze same as Great Britain, 
which is usually taken ro be the reciprocal of Ihe liferime af !he British Parliamen/ (jive 
years). 

With these values of a 1 , "'' and k,, k,, we have 

a1a2- k1kz =aT- kT = -o.11oo. 

1/ws tl1e equilibrium is rmstable. In fact, the two eigenvalues arc 1.4000 and -2.2000. I 

For a general model of Richardson's theory of arms races and the role ol' eigenvalues 
there, see Luenbergcr (1979, pp. 209-214). 

9.2.2 Phenomenon of Resonance 

Vibrating structures such as buildlngs, bridges, and highways, sometimes experience a dan­
gerous oscillation, called resonance, causing parlial or complete destruction of the struc­
tures, Some classical and recent events that possibly might have been caused by resonances 
includc9 

• the fall of the Tacoma Narrows Bridge in !.he state of Washington in lhc United Stales; 

• the fall of the Broughton Suspension Bridge in England; 

the wobbling of the Millennium Bridge over the River 1l1ames in London. 

A general model of vibrating structures is a system of second-order differential equa-
tions: 

M'i(t) + Di(l) + Kx(l) = O. (9.3) 

where M, K, and Dare, respectively. known as the mass, stiffizess! and damping matrices, 
Substituting x(t) = ue'' leads to the "quadratic eigenvalue problem'' 

c,<2 M + !.D + K)u(t) = 0 or P().)u(l) = 0, where P(!.) = J..1M + !.D + K. 

Tn many practical instances. matrices il4, K, and D are symmetric, and furthermore 
M = !vir > 0 and K = KT 2: 0. Assuming M is nonsingular, the above quadratic 
cigenvaiue problem reduces to lhc standard eigenvalue problem: 

( -M
0
-r K --~-! D ) ( t, ) =!. ( i'r ) 

or Az = i.z;, where:: = ( {r ). 

<JThe commonly accepted explunalion tOr the collapse of the Tacoma Narrows Bridge hus been recently 
chnllcnged by scientists who believed that there mny bt: ~omething more to iL See the papers by Lazcr and 
McKennu ( 1990). For a complete story of the collupse of the Tacoma Bridge, see Braun { 1978, pp. 167-169). 
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Tlms, if each of the matrices M, K. and Dis of order n, then there are 2n eigenFa(ues 
of A, wrd these 2n eigenvalues are rhe same as rlwse of P(!..) (sec Section l l .8). These 
eigenvalues are relalcd to the natural frequencies of the structure (see Section t 1.8 for 
specifics). 

The resonance occrtrJ when a frequency of the external force becomes equal or very 
close to a natura/frequency, as explained below (see also section 11.7 .2). 

As in the case of (9.1 ), the system of equations (9.3) can also be solved by knowledge 
of the eigenvalues and eigenvectors of the pencil P().). Specifically, if the eigenvalues At 
are all distinct and Zk are the corresponding eigenvectors, then we can write 

where ak arc scalars. 

2n 

x(t) = L a,zte'·•'. 
k=l 

Suppose .. now.the system is excited by an externaLtime-hrumonic fprce of th~ ""·'''········""' 
f(t) =foe''"'. with the frequency ru. Then a particular solution in this case is given by 

where .\'j are the left eigenvectors of P(}.). This shows that as i w approaches a particular 
eigenvalue}.;, the response of tile system becomes unbounded and the system approaches 
a resona11ce condition (see more on this in Chapter 11 ). 

In each of the above cases, a periodic force of very large amplitude was generated, 
and the frequency of this force became equal or close to one of the natural frequencies. In 
the case of the Broughton Bridge, the large response was set up by soldiers marching in 
cadence over the bridge. In the case of the Tacoma Bridge, it was wind (see Figure 9.1). 
Because of what happened idth the Broughton Bridge, soldiers are no longer permitted to 
march in cadence over a bridge. In the case of the "Millennium Bridge, it was again the 
pedestrian-induced movements (see Figure 9.2). This bridge was closed only twn days after 
its opening, because on its openin,_~ day in June 2000 the bridge started to wobble due to 
the t-veigltt of several thousand people who came to see the bn'dge. For more on this event, 
visit www,arup.com/MillenniumBridge/Challenge/11. 

9.2.3 Buckling Problem (a Boundary Value Problem) 

Consider a thin, uniform beam of length I. An axial load P is applied to the beam at one of 
the ends (see Figure 9.3). 

We arc interested in knowing how and when the beam buckles. 
Let y denote the vertical displacement of a point of the beam which is at a distance x 

from the (deflection) left support. Suppose that both ends of the beam are simply supported, 
i.e., y(O) = y(l) = 0. 

Using the relationship between the curvature ~:~ and lhe internal moment M j we 

obtain lhc bending moment eqt~ation E I~.:.i = ~Py, where E is the modulus of elasticity 
and l is the area moment of inertia of column cross section. 
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Figure 9.1. Fall of the Tacoma Bridge. 

Figure 9.2. Millennium Bridge. 

Let the interval [0, l] be partltioncd into n subintervals of equal length llj with xo. 
Xt, ..•• Xn us the points of division. That is, 0 = Xo < Xt < x:: < · · · < x; < · · · < x,.-1 < 
Xn = [, 

Let 

where h (9.4) 
II 
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1: e 

... ... 
···~.. . .. 

Figure 9.3. Buckling of o beam. 

p 

Substitul.ing_thJ~JH?PfQ]{i_l!lation of~ in_to the ~~~~i~¥_mof!l_cntequation ~-hove and taking 
into account the given boundary conditions, we obtain the fOlloWiftg SYDiirietric tridiagonal 
matrix eigenvalue problem: 

2 -] 
-I 2 

0 0 

h t Ph1 
were A= 7fT· 

0 0 
-I 0 

-I 
0 -1 2 

Yl Yt 
Y2 Y2 

=I. (9.5) 

y . " Yn 

Each value of>. determines a load P = which is called a critical load. These 
critical loads are the ones which are of practical interest. because they determine the possible 
onset of the buckling of the beam. 

In particular. the smallest value of P is of primary importance, since the bending 
associated tvith larger values of P may not he obtained lVirhout failure occurring under the 
action of the lowest critical value of P. 

9.2.4 Simulating Transient Current for an Electric Circuit 

(See Chapra and Canale (2002).) Given an electric circuit consisting of lour loops (see 
Figure 9.4), suppose we are interested in the transient behavior of the electric circuit. In 
particular, we want to kuaw the oscillation of each loop tvith respect to the miter. 

Kirchhoff's voltage law applied to each loop gives the following. 

Loop 1: 

di, 1 £' ' -L,--- (11 
dt c,,_, i,)dt = 0. (9.6) 
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Loop 2: 

Loop 3: 

Loop4: 

Figure 9.4. Trtmsient current for electric current. 

di, 
-L, 

. dt 

di4 1 J' I £' -L,-- i4dt +- (i)- h)dt = 0. 
dt c, -00 c,. -"' 
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(9.7) 

0 . (9.8) 

(9.9) 

The system of ordinury differential equations given above can be differentiated and 
rearranged w give 

Assume 

From (9.10), we have 

or 
1 
~A2=0. 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

(9.15) 
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Similarly, from (9.11). (9.14), we obtain, respectively, the following equations: 

--A,+ - + - L7r.r.r A-;- -A1 I ( I I ') I c, c, - - c, .. 0, (9.16) 

--A,+ - +-- L3ar A3 - -A,= 0, 1 ( I 1 ') I 
c, - c, c, c, (9.17) 

--A3 + - +-- L+w- A+= 0. I ( I I ') 
c, c, c. (9.18) 

The above is an eigenvalue problem. To see it more clearly, consider the special case 

C, = C, = C, = C4 = C and L, = L, = L, = L, = L. 

Assuming A = LCw2, and noting thul i i = A j sin wt, j = 1 ....• 4. we obtain the following 
cigenvJllue problem:-

-1 
2 

-1 
0 

0 
-l 

2 
(9.19) 

71re solution o.fthis eigem•alue problem will give us the natural frequencies (wf = A;/ LC). 
Moreover the knowledge of the eigem·ectors can be used to study the circuit:~ physical 
behavior such as the natural modes of oscillation. 

These eigenvalues and the corresponding nonnulized eigenvectors (in four-digit arith­
metic) arc :!. 1 = 0.1206, :!.2 = l, :!.3 = 2.3473, i.4 3.5321. 

(

0.6665) 
0.5774 
0.4285 ' 
0.2280 

( 

0.5774) 
-0.00110 
-0.5774 ' 
-0.5774 

(

-0.4285) 
0.5774 
0.2289 ' 

-0.6565 
(

-0.2280) 
0.5774 

-0.6565 . 
0.4285 

From the directions of the eigenvectors we conclude that for ) .. 1 all the loops oscillate in the 
same direction, For A3 the second and third loops oscillate in the opposite directions from 
the first and fourth, and so OIL This is shown in Figure 9.5. 

9.2.5 An Example of the Eigenvalue Problem Arising in Statistics: 
Principal Component Analysis 

Many practical~lifc applications involving statistical analysis {e.g. 1 stock market or weather 
prediction) involve a huge amount of data. The volume .and complexities of the data in these 
cases can make the compulalions required for analysis practically infeasible, In order to 
handle and analyze such a voluminous amount of data in practice. it is therefore necessary 
to reduce the data. The basic idea then will be to choose judiciously "k" components from 
a data set consisting of n measuremems on p (p > k) original variables, in such a way 
th<Jt much of the information (if not most) in the original p variables is contained in the 
k chosen components. Such k components are called the first k principal components in 
statistics" 



9.2. Eigenvalue Problems Arising in Practical Applications 291 

ic,=O,l206 

J J J J 
ic, =I 

2.3473 

Jr Jr Jr Jr 
).4 = 3.5321 

+ J J~J J 
Figure 9 .. 5. Oscillations of loops from eigenvectors. 

The knowledge or eigenvalues and eigenvectors of the covariance matrix is needed 
to r-ind these principal components. 

Specifically, if l: is the covariance matrix corresponding to the random vector X 
(X 1,X2 , ••• ,Xp). 1. 1 2: A2 ::: ••• 2: Ap 2: Oaretheeigcnva1ues,andx1 throughxparcthc 
corresponding eigenvectors of the matrix L:, then the ith principal component is given by 
Y1 xfX, i= l,2, ... ,p. 

Furthermore, the proportion of total population variance due to the ith principal com­

ponent is given by the ratio ~, 1 +"-~~- .. +}., = tru£ecL}, i = I, ... , p. 
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Note: The covariance matrix is symmetric positive semidefinite, and therefore its 
eigenvalues are all nonnegative. 

If the first k ratios constitute the most of the total population variance, then the first k 
principal components can be used in statistical analysis, 

Note that in computing the kth ratio, we need to know only the kth eigenvalue of the 
covariance matrix; tlte entire spectrum does not need to be computed. 

To end this section, we remark that many real~life practices, such as computing the 
index or the Dow Jones Industrial Average, can now be better understood and explained 
through principal component analysis. This is shown in the example below. 

A Stock Market Example (Johnson and Wichern (1992)) 

Suppose that the covariance matrix for the weekly rates of return for stocks of five major 
companies (Allied Chemical, DuPon~ Union Carbide, Exxon, and Texaco) in a given period 

.. oLtimcjs given by __ 

(

1.000 0.577 0.509 0.387 0.462) 
0.577 1.000 0.599 0.389 0.322 

R = 0.509 0.599 !.000 0.436 0.426 . 
0.387 0.389 0.436 !.000 0.523 
0.462 0.322 0.426 0.523 I .000 

The first two eigenvalues of R are i. 1 = 2.857, !..2 = 0.809. The proportion of total 
population variance due to the first component is approximately =57%. The proportion 

of total population variance due to the second component is = approximately 16%, 
Thus the first two principal components account for 73% or the total population variance. 
The eigenvectors corresponding to these principal components are 

xi = (0.464, 0.457, 0.470. 0.421, 0.421). 

x:f = (0.240, 0.509, 0.260, -0.526, -0.582). 
(9.20) 

These eigenvectors have interesting interpretations. From the expression of x 1 we 
see that the first component is a (roughly) equally weighted sum of the five stocks. This 
component is generally called the market componellf. However1 the exprcsslon for x 2 tells 
us that the second component represents a contrast between the chemical stocks and the 
oil industry stocks. This component will be genemlly called an industry component. Thus, 
we conclude that about 57% of total variations in these stock ren1rns is due to the market 
activity nnd 16% is due to industry activity. 

The eigenvalue problem also arises in many other important statistical analysis, for 
example, in computing the canonical correlations. Interested readers are referred to the 
book by Johnson and Wichern (1992) for further reading. 

A final comment: Most eigenvalue problems arising in statistics, such as in principal 
component analysis and canonical correlations, are actually SVD problems and should be 
handled computationally using singular valne decomposition (see Chapters 7 and 10). 

9.3 localization of Eigenvalues 
As we have just seen, in several practical applications explicit knowledge of eigenvalues is 
not required: all that is required is a knowledge of distribution of the eigenvalues in some 
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givBn regions of the complex plane or estimates of some specific eigenvalues. There are 
ways such information may be acquired without actually compuling the eigenvalues of the 
matrix. We start with a well-known result or Gcrlgorin 10 (1931 ), 

9.3.1 The Gersgorin Disk Theorems 

Theorem 9.6 (Gerggorin's first theorem). Let A= (a,j)""'' Define 

" 
r1 = L laiji. 

J=! 
iof-j 

1'.,. l 11. 

Then each eigenvalue A of A satisfies at least one qftltefollowing inequalities: 

lA aui.:Sr;. i=1.2, .. ,,n. 

In otlter words, ail the eigenvalues of A can be found in the union of disks lz : lz - au I ~ 
r1, i l, .... nJ. 

Proof. Let A be an eigenvalue of A and x be an eigenvector associated with/ .. Then from 
Ax= Ax, we have 

{A - aii }.tj - L ai1x 1, i = 1. ... , n, 
J=! 
ip.j 

where Xi is the ilh component of the vector x. Let Xt: be [he largest component of x (in 
absolute value). Then, since l.l)ilxd 5 I for j c,b k, we have from above 

" I ··I " 
J).- a;; I 5 L fakjl ·::, 5 L Ja,jl· 

j=l 1- '"' j"".j 
j-:p.k j# 

Thus A is contained in the disk (A: 1'-- akkl 5 r,J. 0 

Definition 9.7. The disks R1 = (z iz niil 5 r,], i = I, .... n. are called Gerrgarill 
disks in the complex plane, 

Example 9.8. 

ElSemyon Aranovich Gersgortn ( 1901 ~l933) was bom in Belarus and educa!cd at St. Petersburg Techno­
logical Institute. He was a professor at SL Petersburg ivlm:hinc-Construction lnstimtc from 1930-1933. His 
seminal contributions include the results ofthe convergence of finite difference approximation to the solution 
of Laplace-type equations .:tnd his original results on estimating the eigenvalue of a complex 11 x n matrix. 
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(The eigenvalues of A are 7.3067, -0.6533 ± 0.3473i .) 

r1 = 5, r"2 = l2. r3 = 2, 

The GerS:gorin disks (shown in Figure 9.6) arc 

R,:[z:!z-11:55]. R,:[::lz-41:512}, R3:{z:lz 11:52]. I 

Irnag 

R, 

Figure 9.6. GerSgorin disks of Example 9.8. 

While the above theorem only tells us that the eigenvalues of A lie in the union of ll 
GerSgorin disks. the following theorem gives some more specific information. We state the 
theorem without proof. Several other generalizations exist. See Horn and Johnson (1985) 
Brualdi and Mellendorf (1994). and the recent book by Varga (2004). 

Theorem 9.9 (Ge..Sgorin's second theorem). Suppose that r Gersgarin disks are disjoinr 
from the re:u. Then exactly r eigenvalues of A lie in the union of the r disks. 

Proof. See Horn and Johnson (1985, pp. 344-345). 0 

Example 9.10. 

The GerSgorin disks are 

( 

l 0.1 0.2) 
A= 0.2 4 0.3 . 

0.4 0.5 8 

R, : {;:: j;:- II :5 0.3]. R2 : {;:: lz- 41 :5 0.5], RJ : {z: lz- 81 :5 0.9]. 

All three disks are disjoint from each other. Therefore, by Theorem 9.9, each disk must 
contain exactly one eigenvalue of A. This is indeed true. Note that the eigenvalues A are 
0.9834, 3.9671, and 8.0495. I 
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9.3.2 Eigenvalue Bounds and Matrix Norms 

Simple matrix norms can sometimes be 11sed to obtain useful bounds for the eigenvalues. 
Here are two examples. 

Theorem 9.11. Let A be an eigenvalue of A. The11, for any consistent pair of matrix-vector 
nonns, 

1!-1 ::5 IIA 11-
/n particular, p(A), the spectral radius of A (largest eigenvalue in magnitude), is bounded 
by II All: p(A) ::5 II All. 

Proof. From Ax = Ax, we have 

IIA.tll = IIA.tll ::5 IIAIIII.tll 
or 

IAI!Ixll ::5 IIAIIII.tll: that is, !AI ::5 II All. D 

Theorem 9.12. 

Proof. The proof follows immediately from Theorem 9.11. 0 

9.4 Computing Selected Eigenvalues and Eigenvectors 
We have just seen that in several applications all one needs to compute is a few largest or 
smallest eigenvalues and the corresponding eigenvectors. Examples of such applications 
include the following. 

The buckling problem. It is the smallest eigenvalue that is the most important one 
here. 

Vibration analysis of structures. A common engineering practice h1 vibration en­
gineering is to compute just the first few smallest eigenvalues (frequencies) and the 
corresponding eigenvectors (modes), because it has been seen in practice tlzat tlze 
larger eigenvalues and eigenvectors contribllle veiJ' little to the total response of 
the system. The same remarks also hold in the case of control problems modeled by a 
system of second-order differential equations arising in the finite-element-generated 
reduced-order model of large flexible space structures (see Inman (2006)). 

Statistical applications. In statistical applications, such as those arising in principal 
component analysis, only the first few largest eigenvalues need to be computed. There 
arc other applications where only the dominant and the subdominant eigenvalues and 
the corresponding eigenvectors play an imponant role (see Luenberger ( 1979)). 
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9.4.1 The Power Method, the Inverse Iteration, and the Rayleigh 
Quotient Iteration 

In this section we will bricAy describe two well-known classical methods for finding the 
dominant eigenvalues and the corresponding eigenvectors of a matrix. The methods are 
particularly suitable for sparse matrices. because they rely on matrix-vector multiplications 
only(and.thcrefore, the zero entries in a sparse matrix do not get filled in during the process). 

Perhaps one of the most famous applications of the power method is its use in com­
puting the PageRank of the Googlc matriJ<. Titc PageRank is an eigenvector of the Google 
matrix and meao;ures the relative importance of each element of a hyperlinked s.ct of doc~ 
uments, such as the World Wide Web, within the set. Thus, PageRank is Google's way 
of deciding a page's importance. The concept ofPageRank was developed by Larry Page 
(hence the name PageRank) and Sergcy Brin while they were graduate students at Stanford 
University. 

·-" .Th_~ __ Q{J_og~~-~!l(:JJ!/:t itself is not sparse,_ but it is_ a rank-one modification of very sparse 
matrix. The matrix size crin be as large as jHw billion. Th-ough not practiCally feriSiblc;- the 
power method can, in principle, be used to compute the eigenvector of such a large matrix. 
But il is still a viable method for computing the Page Rank of a modest-sized Google matrix. 
Many articles computing the Page Rank and its relation to the power method (with its several 
variations) can he found from the Internet. 

The Power Method 

The power method is frequently used to find the dominant eigenvalue and the correspond­
ing eigenvector of a matrix. ft is so named because it is based on implicit construction of 
the powers of A. 

Let the eigenvalues 1.,, Az, ... , 1., of A be such that 

!let! > 11.,1 ?': P-31 ?': .. · ?': I-A, I; 

that is, /.1 is the dominant eigenvalue of A. Let v1 be the corresponding eigenvector. Let 
max(g) denote the element of maximum modulus of the vector g. 

ALGORITHM 9.1. Power Method. 

Input: Ann x n matrix A. 
Outputs! Approximate dominant eigenvalue and the corresponding eigenvector. 

Step l. Choose x0 , an initial approximation to the eigenvector. 

Step 2. Fork~ I, 2, 3, ... do 
2.1 Compute .\\ = Ax,~ l· 
2.2 Nonnalize Xk = _t,f max(.\\). 
End 

Theorem 9.13, max(.tkl ->;.,,and lxd-+ w 1, a mulliple ofv1, ask-+ oo. 
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Proof. From Step 2 of Algorithm 9.1, we have 

A'xo x, = max(A'xo) · 

297 

Assume that eigenvectors v1 , ••• , V11 associated with )'-1, •.• , 1.. 11 arc linearly independent. 
We can then write xo = Ct't Vt + a::v2 + · · · + ct11 V11 , a1 i=- 0. So, 

A' A'( ) ,~; 1k ,1.: Xo = Ct']V] + U1V2 + · · · +a,1 Vn = D:']A]Ul + a21\..:2V2 + · · · +Ct'11 11.nV11 

=l.i[a 1v1 +a2 G:)' v,+···+a,C')' v,]. 
Since A1 is the dominant eigenvalue, ( L,·· )k -+ 0 as k -+ oo, i = 2, 3, ... , n. Thus, ., 

Akxo 
x, = --> cur and I max {.tk}) --> !. 1. D 

max(A'xo) 

Example 9.14. 

A=(~;~); 
3 4 5 

T x0 =(l,l,l). 

The eigenvalues of A are 0, -0.6235, and 9.6235. The normalized eigenvector correspond­
ing to the largest eigenvalue 9.6233 is (0.3851, 0.5595, 0.7339/. 

k = 1: 

UJ; c-50) .i- 1 = Axo = max(.i'r) = 12, 
X[ 

0.~5 . x, = max{.t 1) 

k = 2: 

coo) £2 ( 0.5263 )· .t2 = Ax 1 = 7.25 ; max (.t2 ) = 9 .50, X1 = 0.7632 
9.50 max(.t2 ) 1.0000 

k = 3: 

C0526) c-5246) .t3 = Ax2 = 7.3421 ; max(.i'3 ) = 9.6316, 
X] = 0.7623 . X)= 

max(.tJ) 9.6316 1.000 

Thus the sequence !max(.i"k)} is converging towards the largest eigenvalue 9.6235, and 
{xk} is converging towards the direction of the eigenvector associated with this eigenvalue. 
(Note that the normalized dominant eigenvector 

(

0.3851) 
0.5595 
0.7339 

is a scalar multiple of x 3.) I 
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Remarks. We have derived the power method under two constraints: (i) ar I 0, ami (ii) 1 1 
is the a Illy dominant eigenvalue. Tl1e first constraint (a1 !: 0) is not really a serious practical 
constraint, because after a few iterations. round-off errors will almost always make 1t happen. 

As far as the second constraint is concerned. we note that the method still converges 
\Vhen matrix A has more than one dominant eigenvalue. For example. let }.._, = A2 = 
· · · =A, and fi. 1f > [1.,+ 11 > , , , > fl.,[, and assume that the eigenvectors associated with 
-\ 1 are independent Then we have 

( 

' r, ) ' 
Akxo = t..i Laivi + L etiO.ifl~dJ:t1i = J..t Eat' Vi 

i==l i==r+! l 

(since 0., fi. 1 )k is small for large values of k), This shows that in this case the power met fwd 
converges to some vector in the subspace spallned by v1, ... , vll. 

MATCOM Note: Algorithm 9.1 has been implemented in the MATCOM program POWER­
ITERATION: 

Convergence of the Power Method 

The rate of convergence of tire power method is determined by the ratio j ~ /. This is seen 
as follows. Consider · · 

fix, - "'r Vrll = I\ a, G: )' "' + "' + "'" c·: )' "" li 
:s Ia,! !;c,( lfvzl\ + .. ·+Ia,! I;." I' lfv,ll 

I 1-, ! ).I 

:<: I~: I' ([a,[lfv,JI + · · · + !a,[Jiv, Ill 

(since[¢c[ < f~l,i 3,4, .. ,11), Thus we have 
AI - "'-1' 

where 

fix; - ar vrlf :<:a I ;c, I', k = I. 2, 3, .. ,, 
J.r 

a= (fazfflv,fl + · · · + fa,flfv,.[IJ. 
This shows that the rate at which x, approaches <>r Vr depends upon how fast I f,l' goes to 

zero. The absolute value of the error at each step decreases by the ratio ( f: ); that is, i{).. 2 is 
close to A1, then the convergence will be very slow; if this ratio is small. the convergence 
will be fast. 

The Power Method with a Shift 

ln some cases, convergence can he significantly improved by using a suitable shift. Thus. 
if u is a suitable shift so that A1 -a is the dominant eigenvalue of A. a 1, and if the 
power method is applied to the shifted matrix A- a!, then the rate of convergence will be 
determined by the ratio~~~:~ I. rather than 1r,1. (Note tltar by shifting the marrix A by a, 
the eigenvalues get shifted by u, but the eigen·\·ectars remain tmalrered.) 
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By choosing a appropriately, in some cases, the ratio I~~=: I can be made significantly 

smaller than I~ 1. thus yielding the faster convergence. (Do an example to conl'ince yourself 
and see also Exercise 9.1 0.) 

The Inverse Power Method/Inverse Iteration 

The following iterative method, known as the inverse iteration, is an effective method 
for computing an eigenvector when a reasonably good approximation to an eigenvalue is 
known. 

ALGORITHM 9.2. Inverse Iteration. 

Inputs: (i) An approximation cr to a real eigenvalue ). such that lA; - a I << 
ll-1- al, i o;f I. (ii) Error tolerance E; maximum number of iterations N. (iii) An 
initial approximation x0 of the eigenvector. 
Output: An approximation Xk to the eigenvector corresponding to u. 

Step 1. Choose xo. 

Step 2. Fork = I, 2, 3, ... , do 

End 

2.1 Solve (A- a l).r, = x,_l. 
2.2 Compute x, = .rdll-<<ilo. 
2.3 Stop if II Ax,- ax, II < E or if k > N. 

Theorem 9.15. The sequence !xk J converges to the directio11 of the eigenvector correspond­
ingtoAJ. 

Proof The eigenvalues of (A -a 1)-1 are (l-1 - a)- 1, (1-o- a)- 1, ... , (A, - a)- 1 and 
the eigenvectors are the same as those of A. Thus, as in the case of the power method, we 
can write 

1 
k [CJVJ +co (AJ -a)' vo+···+c, (AJ -a)' u,]. 

()~.J-0") A::-cr A11 -CT 

Since A1 is closer to a than any other eigenvalue, the first tenn on the right-hand side is the 
dominating one, and therefore xk converges to the direction of u1• ll is the dircclion of v 1 
which we are trying to compute. D 

Remark. Note that inverse iteration is simply the power method applied to (A- a 1)~ 1 • 
That is why it is also known as the ifll'erse power method. 

An illustration: Let us illustrate the above with k = 1. Suppose that x0 = c1 v1 + 
CzVz + · · · + C11 V11 • Then 

.rJ = (A -a /)~l Xo = (Ar -a )-I Ct Vt + (A:! -a )~l C2V2 + · · · + (A,1 -a )-I Cn Vn. 
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Since /.1 is closer to a than any other eigenvalue, Lhe coefficient of the first term in the 
expansion. namely, (A:~o; , is rhc dominant nne (it is the largest), Thus, .t1 is roughly a 
multiple of v1, which is what we desire. 

Numerical Stability of the Inverse Iteration 

At first sight the inverse iteration procedure seems dangerous, because if rr is near ). 1, 

then the matrix (A a I) is obviously ill-conditioned. Consequently, this ill-conditioning 
might affect the computed approximations of the eigenvector. Fortunately, in practlce the 
ill-conditioning of the matrix (A- a I) is exactly whm we want. The error at each iteration 
grows towards the direction of the eigenvecwr. and it is the direction of the eigenvector that 
we are interested in. 

Wilkinson ( 1965, pp. 620-62 I) has remarked that in practice .i', is remarkably close to 
the solution of (A- a I+ F)x, = x,_,, where F issmall. For details see Wilkinson (1965, 
pp:62lF-62J-);·"Thcitcrmcd vectors do indeed converge eventually to the eigenvectors of 
A+ F." 

Example 9,16, Consider matrix A of Example 9.14. Choose 

xo = (1, I,!)', rr = 9. 

k = 1: 

.t 1 =(I, 1.5, 2)r, 

x, = .1',/ilidb = (0.3714, 0.5571. 0.7428{. 

k = 2: 

.i'2 = (0.6!9, 0.8975, l.I76!)T, 

x;, = i2/ll.i2lb (0.3860f 0.5597.0.7334/. 

k = 3: 

.t3 = (0.6176, 0.8974, 1.1772)T, 

x, = .<,;n.<,lh = (0.38so. o.ss9s. o.7340J. 

k=4: 
• T 
X;= (0.6!76, 0.8974, 1.1772) , 

X; = .f,Jil.i;jlJ = {0.3850, 0.5595, 0.7340)T 

k = 5: 

.1'5 = (0.6177, 0.8974, 1.1772)', 

xs = .i',/ll{.rsllb = (0.3851, 0.5595, 0.7339). I 

Remark. Note that scaling is immaterial since we are working tmvards the direction of tire 
eigenvector. 

Choosing the initial vector Xo. To choose the initial vector Xo we can run a few iterations 
of the power method and then swilch to the inverse iteration, with the last vector generated 
by the power method as the initial vector x0 in the inverse iteration. 
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MATCOM Note: Algorithm 9.2 has been implemented in the MATCOM program 
INVITR. 

The Rayleigh Quotient 

Theorem 9.17. Let A be a symmetric matrix and let x be a reasonably goad approximation 
to a11 eigenvectm: Then the quotielll 

xTAx 
R=a=--

lf xTx 

is a good approximation to the eigenvalue Afar which xis the corresponding eigenvector. 

Proof Since A is symmetric there exists a set of orthogonal eigenvectors v1, v1 , ••. , V11 • 

Therefore we can writex = Ct v1 +···+en Vn. Assume that v1, i = I, ... , 11, are normalized, 
that is, v( v1 =I. Then, since Av1 = A1v1, i = 1, ... , n, and noting that v/'vj = 0, i :f=. j, 
we have 

XT Ax (C]V[ + · ·· + C11 V11 l A(CtV[ + · · · + CnV11 ) 
a=--= 

XTX (c]VJ +···+C11 V11 )T(CJV] +···+C11 V,1) 

(cJVJ +···+cnvnfr(cJAJVt +···+cnA11 v,J A1cf+A1c~+···+Auc~ 
= 

cf + c~ + .. · + c~ cf + c~ + .. · + c~ 

l+f, ~,+··+~,;:;-. 
[ 

(A')(c')' (A")(c")'. 
I + C;) + .. + (;:;-) 

Because of our assumption that x is a good approximation to v 1, c1 is larger than other ci, 
i = 2, ... , n. Thus, the expression within brackets is close to I, which means that a is 
close to !c 1• D 

Definition 9.18. The quotient Rq =·~:·~/is called the Rayleigh quotient. 11 

Example 9.19. Let 

A= G ~) and x = ( -b.s) . 
Then the Rayleigh quotient 

x 7 Ax 
a=-- =-0.2 

x:Tx 

is a good approximation to the eigenvalue -0.2361. I 

11 John William Strutt ( 1842-1919), the third Baron Rayleigh, wa~ hom in England and studied at Trinity 
College, Cambridge, and eventually became the chancellor of Cambridge University. His research was 
mainly mathematical, concerning optics and vibrating systems. He won the Nobel Prize in Physics in 1904. 
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Note: It can be shown (Exercise 9.14) thnl for a symmetric matrix A, A, ::; Rq ::; Ar, 
where A11 and A1 are the smallest and the largest eigenvalue of A. respectively. 

Rayleigh Quotient Iteration 

The above idea of approximating an eigenvalue ora symmetric matrix can be combined whh 
the inverse iteration procedure (Algorithm 9.2) to compute successive approximations of an 
eigenvalue and the corresponding eigenvector Jn an iterative fashion, known as Rayleigh 
quotient iteration, described as follows (see Figure 9.7). 

I 
I Starting Vector Rayleigh 

r· 
Quotient 

l 

I Approximate Eigenvalue 

I 
Inverse 
Iteration 

I Approximate Eigenvector 

Figure 9.7. Rayleigh quotient iteration. 

ALGORJTHl\1 9.3. Rayleigh Quotient Iteration. 

lnputs: (i) A symmetric matrix A. (ii) Maximum number of iterations N. (iii) 
An initial approximation x0 of the eigenvector 
Output: An approximate cigenpair. 

Fork 0, I. 2, .... do 

I. Compute ak = x[ Axkfx[x_~;. (Rayleigh quotient). 

2. Solve for .tk+t: (A-u, f).f,.,., x, (inverse iteration). 

3. Normalize xk+l = .i'k+ll max(.tk+l ). 

4. Stop if the pair (ak, Xk) is an acceptable cigenvaJuc-eigenvcctor 
pairorifk > N, 

End 
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Convergence. ll can be shown (Wilkinson ( 1965, p. 630)) that the rate of convergence 
of Algorithm 9.3 is cubic. 

Choice of xo. As for choosing an initial vector xo. perhaps the be.st thing to do is to use 
the power method ilself a few times and then usc the last approximation as Xo. 

Remark. Rayleigh quotient iteration can also be defined in the nonsymmetric case. where 
one llnds both left and right eigenvectors at each step. We omit the discussion of the 
nonsymmetric case here and refer the reader to Wilkinson ( 1965, p. 636). Sec also Parlett 
(1974). 

Example 9.20. Consider 

A 
(

I 
2 
3 

2 3) 
3 4 , 
4 5 (

0.5246) 
with x0 = 0.7622 . 

1.000 

This initial vector xo was obtained after 3 iterations of the power method. 

k=O: 

UQ X~ A.to/(X~Xo) = 9.6235. 

k =I: 

Ut = x{ Ax,j(x{xtl = 9.6235, 

(

0.5247) 
Xt = 0.7623 . 

1.000 

( 

1.000) 
1.4529 . 
1.9059 

The normalized eigenvector associated with 9.6255 is 

(

0.3851) 
0.5595 . 
0.7339 

Note that 0.3851 times .t2 is this eigenvector to three digits. Thus two iterations were 
sufficient. I 

MATCOM Note: Algorithm 9.3 has been implemented in the MATCOM program 
RAYQOT. 

Computing the Smallest Eigenvalues 

It is easy to see that the power method applied lo A -l gives us the smallest eigenvalue in 
magnitude (the least dominant one) of A. 

Let A be nonsinguiar and lel the eigenvalues of A be ordered such that 

l'-1 I > 11.,1::: I!" I ::: · · ·11-,_,J > 11-,1 > 0. 
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Then the eigenvalues o[ A- 1 (which nre the reciprocals of the eigenvalues of A) are ar­
ranged as 

1_1_1>1-l 1>'-l 1>···>-1 >0. )., ).,_, - I A,_, - - 1-'tl 

That is, f- is the dominant eigenvalue of A--l. This suggests that the reciprocal of the 

smallest ;{gem'alue can be computed by applying the power method to A- 1, 

ALGORITHM 9.4. Computing the Smallest Eigenvalue in Magnitude. 

Step 1. Apply the power method (Algorithm 9.1) to A_, to compute the dominant 
eigenvalue of A -I. 

_Step 2. Take the reciprocal of the eigenvalue obtained in Step I. 

Note: Since the power method is implemented by matrix-vector multiplication only, 
the inverse of A does not have to be computed explicitly. This is because computing 
y A -I x, where x is a vector, is equivalent to solving the Hnear system Ay ;;;:;;: x, 

Example 9.21. 

The power method (without shift) applied to A-! with the starting vector xo = (I. l. I )r 
gives the dominant eigenvalue of A -I as +- =a 9.5145. Thus the smallest eigenvalue of •. , 
A is f; = 0.1051. (Note that the eigenvalues of A are 6.3850. -1.490 l. and 0.! 051.) I 

9.5 Similarity Transformations and Eigenvalue 
Computations 

A basic idea to numerically compute the eigenvalues of a matrix is to transform the matrix: 
to a ''simpler" form by nsing a similarity transfnrmation.from which the eigenvalues can 
be more easily computed. 

Theorem 9.22. Two similar matrices have tlte same eigenvalues. 

Proof. Let A and B he two similar matrices; that is. there exists a nonsingular matrix X 
such that 

x-> AX= B. 

Then 

det(B- >.!) = del(X-1 AX- icf) = det(X- 1(A- H)X) 

= det(X~ 1 )det(X)det(A "AI)= det(A- l..l). 
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Thus, A and 8 have the same characteristic polynomial, and therefore the eigenvalues 
are same. D 

Note: The converse is not true. Two matrices having the same set of eigenvalues arc 
not necessarily similar. Here is a simple example: 

A=u : ). B=u n. 
A and B have the same eigenvalues, but they cannot be similar. 

Some of the "simpler" forms associated with eigenvalue computation that can be 
obtained via similarity transfonnations include 

diagonal and block diagonal forms (Jordan canonical form), 

Hcssenbcrg form, 

Companion form, 

Triangular form. 

The Hessenbcrg and triangular forms can be achieved via orthogonal transformations 
and should be used for eigenvalue comptttation. On the other hand, reduction to the diagonal, 
block diagonal, and companion forms, in general, require nonorthogonal transformations. 
The transforming matrices for these forms can be highly ill-conditioned, and therefore these 
forms should be avoided in eigenvalue computations, as the following discussions show. 

9.5.1 Diagonalization of a Matrix 

Definition 9.23. A matrix A is called diagona/izable if x- 1 AX is a diagonal matrix D. 
This decompositio11 is referred to as the eigenvalue decomposition. 

We now give a characterization of diagonalizabilily. 

Definition 9.24. The algebraic multiplicity of an eigenvalue A of A is the number of times 
it appears as a root of the characteristic equation. An eigenvalue A is a simple eigenvalue 
if its algebraic multiplicity is I. The geometric multiplicity of A is the dimension of the 
nul/space of A-!..!. 

Example 9.25. 
0 
I 
0 B= u 0 :) 

The algebraic multiplicity of the eigenvalue 1 of both matrices is 3; however, the geometric 
multiplicity of I of matrix A is 3 and that of matrix B is I. I 

Definition 9.26. An eigenvalue is called a defective eigenvalue if its geometric multiplicity 
is less than its algebraic multiplicity. A matrix is a defective matrix if it has a defective 
eigenvalue. Othe1-wise, it is nondefectiJ1e. 
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Theorem 9.27. Ann x n matrix is diagonalizable tf alld only if it is nondefective. 

Proof. First, suppose that A is diagonatizable. That is, x- 1 AX = D. a diagonal matrix. A 
diagonal matrix is clearly nondefective. Thus Dis nondefective and so is A. Next. suppose 
that A is nondcfectivc. Since the geometric multipllcity of each eigenvalue is the same as its 
algebraic multiplicity, matrix A must have 11 linearly independent eigenvectors. Call them 
X!' ' .. 'Xn· Then X = (x,'''.' x,) is nonsingular and we have x-' AX = D. 0 

Note: ff x- 1 AX= D = diag(AI'.''' ).JI), tlren X is the eigenvector matrix. 

The above theorem lells us that a matrix is always not diagonalizabie. However, the 
following theorem shows that it is always possible to block diagoHalize matrix A. A block 
diagonal matrix A is written as 

A= diag(A 1, A2 , ... , A,), 

where Al, l = 1, .--. , ,'-k, arc matrices. A welf~kftown eiamplc'"Of a- blOCk diagonal n:mtrix is 
the Jordan canonical forrn. 12 

Theorem 9.28 (Jordan canonical theorem). If A is 11 x 11, rlre11 there exists a nonsingular 
matrix X such that x- 1 AX= diag(J1,., •• J<), where 

0 0 

J, = 0 i=1,2, ... ,k. 

'-i 
If J, is ~f order p1, then PI + P2 + · · · + p; = 11. The matrices J, are called the Jorda11 
block matrices or simply the .Jordan matrices. The number 1.1 is an eigenvalue of Ji with 
multiplicity Pi· 

Note: If each Pi = I. then the Jordan matrix .11 is u diagonal matrix. 

9.5.2 Numerical Instability of Nonorthogonal Diagonalization 

Extreme caution should be taken in using diagonalization or block diagonaliz.ation to com­
pute the eigenvalues of a matrix. The following theorem shows that the conditioning of the 
transformlng matdt X lws a significanr impact on eigenvalue computation. A proof of the 
theorem can be found in Golub and Van Loan ( 1996, p. 317). 

Theorem 9.29. 

fi(X- 1 AX)= x-' AX+ E. 

12 Mmie Ennemond Camile Jordan ( 1838-1922) was a French mathematician known for his many funda~ 
mental contributions to mmhcmalics, including complex analysis, linear algebra. malhcmatical analysis, and 
group theory. Besides the Jordan crmonical fimn, other well~ known rnathcnmticallenns a:nd results named 
after him include the Jordan C/11'\'£> rheorem, rile Jordan mea.wre, nnd the Jordnn-Hiilder theorem. 
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wl1ere 

Implication ofTheorem9.29. Thus, if X is ill-conditioned, the computed matrix x-1 AX+ 
E will be different from A and the compU!cd eigenvalues will have errors. 

Because of this, il is not advisable to compute the eigenvalues of a matrix A via 
Jordan canonical form, Whenever A is close !o a defective matrix. the trausform~ 
ing X will be highly ill-conditioned. 

9.5.3 Reduction to Hessenberg Form via Orthogonal Similarity 

Theorem 9.30 (Hessenberg reduction theorem). An arbitrary H x n matrLt can always be 
transformed into an upper Hessenberg 13 matrix H 11 by orthogonal similarity; that is, there 
exists an orthogonal marri.r P such that 

J' PAP = H". 

As we will see a little later, the importance of Hessenberg transformation lies in the 
fact that the red11crion tv a Hessenberg fonn must be performed before applying t/1e QR 
iteration algorithm to A to compute the eigenvalues. 

Householder's Method 

The process of QR factorization using Householder matrices described in Chapter 7 can be 
easily extended to obtain P and H.,. 

The idea is to reduce the matrix A to an upper Hessenbcrg matrix f111 by suc­
cessively premultiplying A with a series of Householder matrices followed by 
postmultiplication with their transposes. 

The matrix Pin this case is constructed as the product of (n-2) Householder matrices 
P1 through P., .. 2• 

P1 is constructed to create zeros in the first column of A below the entry (2, I). 
resulting in the matrix P1APr = A( 1i. 

• P2 is determined to create zeros below ihe entry (3, 2) of the second column of the 
matrix A or, resulting ln the matrix P2A(I) P[ = A11J. The process can be continued. 

13 Karl Hcssenbcrg { 1904-1959) was a German engineer whose disscrtationAujWsung Unearer Eigenwcr· 
tmtfgaben mir Hi{(e der flamUron·Cayh'}'Sc!Jen Gleiclumg f_Tcchnische Hochschulc. Darmstadt, Gcmmny, 
19-tl) investigalt:d computation of the eigenvalue and eigenvectors of linear operators. The Hcssenbcrg 
form of a matrix, named after him, appeared later in a pnper related to his dissertation. For details visit 
http:/!www.Hcsscnbcrg.delknrll.hlml. 
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The proces.v consists of(n- 2) steps. {Note that ann x 11 Hess en berg matrix contains 
at least w-2~(n-ll zeros,) 

An illt"istration: Let n = 4. There are only 2 steps. 

Stepl. ( ~ 
X 

X 

X 

X 

X 

X 

X 

X 

A 

Step 2 •... ( ~O ~ : 
· --x .. x ~ ) ( ~ 

X 

X 

X 

X 

X 

X 

X 

0 

X 

X 

X 

X 

X 

X 

X 

X 

X ) ( X X p,J X 

X -+ 0 
X 0 

~) ( ~ 

X 

X 

X 

X 

X 

X 

X 

0 

X 

X 

X 

X 

X 

X 

X 

X 

H _ ,(2) _ P-Atl)pT 
11- •"1 - .! 2 

Notes: (i) Each of the matrices P1 and Pz is computed in two substeps as shown 
below. 

(ii) The zeros created by prernultiplication of A by Pt do not get destroyed by post­
multiplication with P,T. Similarly for the other steps. 

The general case now can be easily written down. In the following. in order to simplify 
notation and save computer storage, each of the matrices A (O will be stored in place of A. 

Step 1. Find a Householder matrix P, of order n - I such that 

(a'') (") -- fl31 = 0 
Pt . . • . . . . 

G11 ! 0 

Define 

Then 

'"'"' ~ (l 
X 

:J 
X 

a:n 

Dn2 

Step 2. Find a Householder matrix P2 of order (II - 2) such that 
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Define 

Pz = ( ci ~) and implicitly compute A Ill = P2 A" 1 P{. 

Then 

X X X X 

X X X X 

0 X X X 
A=Am 0 0 X X 

0 0 X X 

The general Step k can now easily be written down. 
At the end of (11 2) steps. the matrix Afn-J:) is an upper Hessenberg matrix H 11 • 

Obtaining the Orthogonal Transforming Matrix P 

Set 

(9.21) 

Then P is orthogonal (since it is the product of (11 - 2) Householder matrices), and it is 
easy to sec that 

PAPT = HH. (9.22) 

II= 4: 

Example 9.31. Let 

Since 12 = 3, we have just one step to perfonn. 
"'"" 1U UT 

• Fonn P1 = [,., - ~ such that 
- Ill lit 

- (1) ('*) P, 1 = 0 ' 

So, 

?, I _ ,J!'"f =(I 0) _ O ?g?g (5.8184 2.4142) _ (-0.7071 
'-r- 0 I ·-- ?414' I --0-071 u 1 tt1 -·- ,I 

-0.7071) 
0.7071 . 



310 Chapter 9. Numerical Matrix Eigenvalue Problems 

• Fonn P1 out of P, us follows: 

0 
Pr 

0 
-0.7071 
-0.7071 

• Form the Hessenberg matrix l-111 and store it over A: 

-0.~071). 
0.7071 

( 

0 -2.1213 0.7071 ) 
A: A01 = PrAPr -1.4142 3.5000 -0.5000 

0 1.5000 -0.5000 

ALGORITHM 9.5. Householder Hcssenberg Reduction. 

Input: Ann x n matrix A. 
Output": Ann x 11 upper Hcssenberg matrix stored over A. 

For-K:: I, 2; ... ,n - 2 do 

I 

1. Determine the vector Hk. = (u.i:+l.b ... ,UnJ.-)T defining the Householder 
~ lit/it 

matrix P, h - 2 --r-'- of order (11 - k) and a scalnr a such thut 
llj: lit 

. ( a,~'·' )- ( ~ l P, - . , 
' . 
' . 
' 0 

Onk 

2. Store a over G{4.J.k : 

3. Compute fJ, = and save"' and {J;. 

4. Updute the entries of A in rows k + I through 11 and columns k + I through 11 

by premultiplication, and then in columns k+ l through 11 and rows I ton by 
postmultiplication by performing the following multiplicariom implicitly. 
Store them in respective positions of A: 

End 

A(k + I : 11, k : n) = A (k + 1 : 11, k : n) - fJ, "'" {A (k + I : 11, k : "), 

A(l :n,k+l :n)=A(I :n,k+l :11)-fJ,A(l :n,k+l :n)u,"f. 

Note: The algorithm does not explicitly compute the transfonning matrix P. How­
ever, the latter can be computed out of the Householder vectors UJ through u'l-2' Note that 
P = Pn_,P,_,.,, P,P,, where P, = diag (h. I- Ptllkili}, k = I, 2, ... , n- 2. 

Example 9.32. 
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Jusr one srep: k = l. 

1. "' = (2.2019.0.6667) 7 • u -3.6056(usingAigorithm7.1). 

2. "" = 0 = -3.6056. 

3. {1, = + = 0.3779. 
U j Uj 

4. Upriate A: a,= -4.4376, a,3 3.0509; a,. = -3.6056, llzz = 12.2308, 
-2.8462: CIJ2 = 1.1538, 033 -2.2308. 

• .,. ( I -4.4376 
So, A.= H.,= P1AP1 -3.

0
6056 12.2308 

1.1538 

3.0509 ) 
-2.8462 . 
-2.2308 

I 

311 

Flop-counL Algorithm 9.5 requires Jf11'3 flops to compute H11 • This cmmrdoes not include 
the explicit computation of P. P can be stored in factored fonn. If Pis computed explicitly, 
anotlter ~n: flaps \vii! be required. However. when n is large, the storage required to form 
P is prohibiti vc. 

Round-off property. The algorithm is slab/e. It can be shown (Wilkinson (1965, p. 351 )) 
that the computed Hu is ot1hogonally similar to a 11earb~v matdt A+ E. Sp~:cifically, there 
exists an orthogonal matrix Q such that Q T (A + E) Q = H.,, with 

11£11,- :5 m 2Jti1AIIF. 

where c is a small constant. 

MATCOM Note: Algorithm 9.5 has been implemented in the MATCOM program 
HOUSHESS. 

Tridiagonal Reduction of a Symmetric Matrix 

If the matrix A is symmetric, then from 
'{ PAP =H., 

it follows immediately that the upper Hessenbcrg matrix: HH is also symmetric and, therefore, 
is tridiagonaL Thus, if the algorithm is applietlw a symmetric matrix A, the resulting matrix 
H11 will be asymmetric tridiagonal matrix T. Furthermore, one obviously can take advantage 
of lhc symmetry of A to modify the algorithm. For example. a significant savings can be 
obtained in storage by taking advantage of the symmetry of each A(ki, 

The symmetricalgorirltm requires only tn 3 flops to com pure T, compared ro J¥n 3 flops 
needed to compute H11 • The round-ofT propcriy is essentially the same as the nons)rmmctric 
ulgori<hm. The algorithm is stable. 

Givens Rotations and Reduction to Hessenberg Form 

As in the case of QR factorization. the Givens matrices can also be employed ro transform 
an arbitrary n x n matrix A to an upper Hessenberg matrix H 11 by orthogonal similarity: 
PAP7 = H11' However. to do this, Givens rotations must be constructed in a certain special 



312 Chapter 9. Numerical Matrix Eigenvalue Problems 

manner. For example, in the first step, Givens rotations J (2, 3, 0), J(2, 4, 0), ... , J (2, n, II) 
are successively computed so that with P1 = 1 (2, n, 0) · .. 1(2, 4, 11)1(2. 3, II), the updated 
matrix A ill = P1 A P,' has 7.eros on the first column below the (2, I) entry. The other steps 
are similar, We leave the derivation as an exercise (Exercise 9. 16). This reduction will re­
quire about ~n 3 flops to compute H11 • almost twice as many as required by the Householder 
rednction. 

Round-off property. The round-off property is essentially the same as the Householder 
method. The method is numerically !itable. 

Example 9.33. Consider matrix A of Example 9.31 again. 

Step L Find c and s such that 

Step 2. 

Pr 1(2.3,B)= (~ 

A 

0 
I 

.. li 
I 

- .. /2 
J~} 
·./2 

2.1213 
3.5000 

-1.5000 

0.7171 ) 
0.5000 . 
-0.5000 

I 

Observation. Note that the upper Hessenberg matrix obtained here is essentially tl1e same 
as that obtained by Householder's method (Example 9.31 ). (They differ only by the signs 
of the snbdiagonal elltries.) 

MATCOM Note: The Givens method for Hessenberg reduction has been implemented in 
the MATCOM program GIVHESS. 

9.5.4 Uniqueness of Hessenberg Reduction 

The above example and the observation made therein brings up the question of uniqueness 
in Hcsscnbcrg reduction. To this end. we state a simplified version of what is known as the 
implicit Q theorem. For a complete statement and proof, see Golub and Van Loan (1996, 
pp. 346-347). 

Theorem 9.34 (implicit Q theorem). Let P and Q be orthogonal matrices such that 
pTA P = ii 1 and Q7 A Q = li2 are two unreduced upper liessenberg marrices. Suppose 
that P and Q have the same first columns. Then H1 and H2 are essentially the same in the 
sense that H2 = v~ I HID, where 

D = diag(±l, .... ±I). 
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Example 9.35. Denote the Hcssenberg matrices in Examples 9.3 I and 9.33 ohtained by 
the Householder and Givens methods. respectively. by H1 and /1,. 

Using the notation of Theorem 9.34 we have 

p = Pr, QT 1(2,3,8). 

Both P and Q have the same 11rst columns, namely, the first column of the identity matrix. 
We verify that H2 = n- 1 H1D. where D = diag(l, -I, 1). I 

9.5.5 Eigenvalue Computations Using the Characteristic Polynomial 

Why .should eigenvalues not be computed via rite characteri.';tic polynomial? 
Since the eigenvalues of a matrix arc the zeros of the characteristic polynomial. it is 

natural to think of computing the eigenvalues of A by tlnding the zeros of ils characteristic 
polynomiaL However, this approach is not numerically ~tfecrive . .. .. 

Difficulties with Eigenvalue Computations 
Using the Characteristic Polynomial 

Firsl, the process of explicitly computing the coefficients of the characlerislic 
polynomial may be numerically unstable. 

Second. the zeros of the characteristic polynomial may be very sensitive to pertur­
bations of the coefficients of the characteristic polynomial. Thus if the- coefficients 
of the characteristic polynomial are nol computed accurately. lhcrc will be errors 
in the computed eigenvalues. 

In Chapter 4 we illustrated the sensitivity of the root-linding problem by means of the 
Wilkinson polynomial and other examples. We will now discuss the difficulty of computing 
the characteristic polynomial in some detail here. 

Computing the characteristic polynomial of a matrix explicitly amounts lo transfonn­
ing the matrix to a btock-companion (or Frobenius) form. Every matrix A cun he reduced 
by similarity to C = diag(C1 •••• , C1J, where each C is a companion matrix. The matrix 
Cis said to be in Frobenius form. lf k = l, the matrix A is nonderogator)'. 

Assume that A is nonderogalOry and let's see how A can he reduced to a companion 
matrix by similarity. This can be achieved In two stages. 

Reduction of a Matrix to a Companion Matrix 

Stage 1: The matrix A is transformed to an upper Hessenberg matrix H by orthog­
onal similarity using the Householder (Algorithm 9.5) or Givens method. 

Stage 2: 'The transformed unreduced Hessenberg matrix H is further reduced to 
a companion matrix C by similarity (assuming that H is unreduced), 

'V'./c have already seen that Stage I can be performed in a numerically stable way. 
Consider now Swge 2, that is, the transformation of the unreduced Hesscnherg malrix H to 
a companion matrix C. 
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Let X be the nonsingular transforming matrix such that H X= XC, where 

~ 
0 0 

") 0 0 Co 

C= l 0 0 

;~ ' : : 
0 l 

lf XJ, x2 •••• , X11 are then successive columns or X,then from H X= XC, it is easy to see 
that knowing x 1, one can com pule x2, ... , Xn recursively as 

Hx; .t;..r.t. i=J,.,,,n l. 

Furthermore, if x 1 = (I, 0,, .. , O)r, then it is easy to see thut matrix X is a lower triangular 
matrix with 1, h21,,,,, li:.Jll32 .. . llnn-1 us the diagonal entries. Thus, X is nonsingular, 
since hi+u :/= 0, i 1. 2,.,,; n - 1. However, if one or more of these subdiagonal 
emriesjs small, then clearly X is i/1-conditiolled. 

Thus, the first stage, in which A is transformed to a Hessenberg matrix H using 
the Householder or the Givens method is numerically stable, while the second 
stage, in which H is further reduced to a companion matrix C, might be highly 
unstable. 

Example 9.36. 

Xt (l,O, O)r, 

2 
I I , 3) 
2 3 

T x2 = Hx1 = (1,0.0001,0) , 

x, = Hxz = (1.0002, 0.0002, 0.0002)r, 

0.0001 
0 

1.0002) 
0.0002 , 
0.0002 

Cond2 (X) = 3.1326 x 104 

(Note that the exisrence of a small subdiagonal ellfry of H, namely, 1!11 • made the trans­
forming matrix X ill-conditioned.) I 

Other methods for reduction to companion form. There are also other equivalent 
methods for reducing H to C. For example. Wilkinson ( 1965, p. 400) describes a pivoting 
method for transforming an unreduced Hessenberg matrix H to a companion matrix C using 
Gaussian ellmination, which also shows that small subdiagonal entries of H can make the 
method highly uns!able. The subdiagonal entries arc used as pivots, and we have seen before 
that small pivots can be dangerous. 

The well-known LeVerrier's method (Wilkinson (1965, pp. 434-435)) computes the 
cocllicicnts of the characteristic polynomial using the traces of the various powers of A. 
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Here, \Vilkinson has shown that in Le Verrier j," method, severe cancellation can take place 
while compllling the coefficients from rhe traces using Newron :r swns. 

Having emphasized the danger of using the Frobenius form in the eigenvalue com­
pulalions or a matrix. let's point out some remarks ofVVllkinson about Frobenius forms of 
matrices arising in certain applications such as mechanical and electrical systems, 

Altlrougli we haw; made it dear thai we regard tJre use of the Frobenius j(mn as dan­
gerous, in 1ho.r it may well be cawstropltica!ly lvorse-condirioned than 1he original 
matrix, we have found the program based 011 its use surprisingly satisfactory in general 
for matrices arising from damped mechanical or electrical systems. It is common for 
the corresponding characteristic polynomial to be \rell-canditioned. When this is tme 
methods based an the use of rile explicit dwracterisric polynomial are both fast and 
acmrate. [Wilkinson (!965. p. 482)] 

Remarks. The above remarks of Wilkinson clearly support a long tradition by engineers 
of computing the eigenvalues ·by- finding the zeros of the associated companion matrix. 
Haweret: in general. it is nor a good idea. 

9.6 Eigenvalue Sensitivity 
ln the previous two sections we have cautioned the readers about the danger of computing 
the eige-nvalue via Jordan canonical fonn or the Frobcnius form of a matrix. Tile danger 
was mainly the possibility of the trcm.\forming matrix X being UJ~conditioned. 

ln this section we wiU see nO\\' what specific role the condition number of the Lrans­
fonning matrix X, Cond(X) = iiXII·IIX- 1 11, plays in eigenvalue sensitivity. 

We start with a well-known theorem by Friedrich L. Bauer and C. T. Fike. 

9.6.1 The Bauer-Fike Theorem 

Theorem 9.37 (Bauer and Fike (1960)). Let A be diagmwlhable; that is. there exists a 
uansingular matrix X such that X- 1 A X = D = diag(AJ, , .. , 1 11 ). Then for an eigenvalue 
I. of A+ £, J.ve ltave 

mini"' -lei :"c IIXIIIIr'iiiiEII. 
where I! !I is a subordinate matrix norm and A1• A:z, ...• A11 are tile eigenva{ues of A. 

Proof. Consider two cases. 
Case l: f. = Ai for some L The theorem is triviul1y true. 
Case 2: A f:: A.i for any i. Then the diagonal entries of rhe diagonal matrix /./ - D 

are different from zero. Since the determinant or a matrix is e-qual to the product of its 
eigenvalues, the matrix (A/ D) is nonsingular. Now from (A+ E)x =Ax we have 

Ex= (J..l A)x =(AI XDX- 1)x X(i.l- D)x-•x. (9.23) 

Set x-• X=)'. Then from (9.23) we have. by multiplying the equation by x-' !o the left, 

(/../ - D)y = x-' Ex 
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or 
y =(AI -Dr' X'' 1 EXy (note that x = Xy). 

Taking a subordinate norm on both sides, we have 

IIYII = 11()./- DJ-1 x-' E Xyll ~ ItCH- DJ'1 illlx-' 1111Ei111Xi111YII· 
Dividing both sides by IJyll, we get 

(9.24) 

or 

I~ JI(H- DJ-'!IIIX-'JliiEIIIIXIJ. (9.25) 

Now for a subordinate norm, 

IJ(AJ- D)'1 11 =max (-
1
-) = . 1 

' A.->., m•n(l. A,) 
i 

So, (9.25) becomes 

I~ . (AI /.. l ux-'IIJiXJIIIEIJ. 
mm - i, 

min(/..- A;)~ nx-'UIIXIIIIEJI. 0 
' 

Implications of the Theorem 

The above theorem tells us that ifthe p-nonn condition number of the eigenvectors 
matrix X, namely, 

Condp(X) = IIXli~' 11x-' Ji 1, 
is large. then an eigenvalue~. of the perturbed matrix A + E can be significantly 
diftbrent from an eigenvaiue A1 of A. In generaL lhe more ill-conditioned the 
eigenvector matrix X is, the more ill-conditioned the cigenproblem for A will be. 

Remark. In A is not diagonalizablc, a similar result aiso holds. (For details, sec Golub 
and Van Loan (1996, p. 321).) 

Example 9.38. Consider lhe following upper triangular matrix with eigenvalues 1, 2, 
and 0.9990: 

A= G 2 3) 0.9990 I . 
0 2 

X= (g I 0.9623) 
0.0005 0.1923 : x-• AX= diag(l, 0.9990, 2). 

0 0.1925 

Let E = 10-' (g g ~) . The eigenvalues of A+ E arc 0.9995 ± 0.0044i, 2. 
I 0 0 

Note that tlrese changes in the eigenvalues are due to the relative(v large condition 
number of X, as tlwfallmving computarions slrow: 

Cond2 (X) = 6.8708 x 103 and Cond2(X) -IJE!b = 0.0687. I 
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Thus a change of 1 o-s in (3, I )th entry of A completely changed the first two eigen­
values. The question that arises, howeve1; is why did the first two eigenvalues of A change 
and not the third one? The question will be answered in the following section. 

9.6.2 Sensitivity of the Individual Eigenvalues 

The condition number IIX 1111 x- 1 11 gives an overall assessment of the changes in eigenvalues 
with respect to changes in the coefficients of the matrix. However, as we have seen from 
the examples in Chapter 4, some eigenvalues of A may be more sensitive than others. In 
fact, some may be very well-conditioned while others arc ill-conditioned. Similarly, some 
eigenvectors may be well-conditioned while others arc not. 

It is therefore more appropriate to talk about conditioning of the individual eigenval­
ues, rather than conditioning of the eigenvalue problem. Recall that in Chapter 4 an analysis 
of the ill-conditioning of the individual eigenvalues or the slightly perturbed Wilkinson ma­
trix was given in terms of the condition numbers of the individual eigenvalues of this matrix. 
In general, this can be done for any diagonalizablc matrix. 

Let x- 1 AX = diag(A 1, ••• , An). Then the normalized right and left eigenvectors 
corresponding to an eigenvalue A1 are given by 

Xe, 
r· =--- v·= ·' uxe,ll2 -' 

ex-] J' e; 

II(X-l)Te;ll2. 

Definition 9.39. The number l, where s1 is defined by 
·'· 

T 
S; = !y1 xi!, 

is called the condition number of the eigenvalue Ai. 

MATCOM and MATLAB Notes: Individual sensitivities of the eigenvalues can be com­
puted using the MATCOM program SENSEI G. See also the MATLAB command condeig. 

A Relationship between s; and Cond(X) 

It is easy to see that the condition numbers si and Cond2(X) are related. This relationship 
is derived in the following: 

Now 

and 

So, 

IIXe;llo :'0 IIXIIolldo = IIXII2 

I 
- :'0 IIXII,IIX-1 112 = Cond,(X). 
Sj 



318 Chapter 9. Numerical Matrix Eigenvalue Problems 

Example 9.40. Consider Example 9.38 again: 

Thus, 

(

I 2 
A= 0 0.999 

0 0 
3) I ' 
2 

I - 1 - = 2.830~ X I 0 ' 
S! 

_!_ = 2.8270 X !01, 
.S::!: 

Cond2(X) = 6.8708 x 102• 

1 
- < Cond2 {X), 
,\i 

i = L 2, 3. 

1 
- =5.!940, 
SJ 

I 

Remark.Note_thal.lh<! condition numbers or the eigenvalues I and 0.9999 are large. That 
is why they are sensitive to small pertUrbaii~ns. · - ·- - -

The Condition Numbers and linear Dependence of Eigenvectors 

Since for a diagonallzuble matrix lhe columns of the matrix X are lhe eigenvectors of A. 
Cond;(X) gives us an indication of how linearly independent the eigenvectors are: 

l[Cond2(X) is large, it means that the eigenvecrors are nearly dependent. 

Note the almost linear dependence of the first two eigenvectors or the matrix A of 
Example 9.38. This is because 

Cond2{X) =6.8708 x 10'1 . 

The Eigenvalue Sensitivity of a Normal Matrix 

A matrix A is called normal if AA' = A•A, where A' = (A)r. A Hermitian matrix is 
normal. Normal matrices are diagonalizable. A remarkable property of u nonnni matrix 
A is that if X is the transforming matrix that transforms A lo a diagonal matrix. then 
Condo(X) = L 

Thus the following is an immediate consequence of the Bauer-Fike theorem. 

Corollary to the Dauer-Fike theorem. Let A be a normal matrix, and let ). 1• •.. , l., be 
tlte eigenvalues of A, Then for an eige1nralue A of A+ Ewe have 

min 11., - ).j ~ II Ell,. 

In other words. the eigenvalues of u normal matrix are perfectly well-conditioned. 

Remark (the eigenvalue sensitivity of a symmetric matrix). The normal matrices most 
commonly found in practical applications are symmetric (or Hermitian, if complex) matri~ 
ces. Thus, by the corollary above, the eigenvalues of a symmetric (or Hermitian) matrix 
are well-conditioned. 
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9.7 Eigenvector Sensitivity 
We shall not go into any detail in our discussion on the sensitivity of eigenvectors, but 
rather just state a theorem (in somewhat crude form) that will highlight the main differences 
between eigenvalue and eigenvector sensitivities. For an exact statement and proof, see 
Watkins (2002, pp. 468-472). 

Theorem 9.41. Let LlA be a l'er)' small perturbation of A and let the eigenvalue !., af A 
be perturbed by OA~.;.; that is, Ak + (j)._k is an eigenvalue of A+ .6.A. Let xk +Ox~; be the 
eigenvector corresponding to Ak + 8Ak. Then, assuming that the eigenvalues of A are all 
distinct, we have 

Implications ofthe theorem. The above theorem tells us that if A is perturbed by a small 
amount, then the amount of perturbation an eigenvector Xk experiences is determined by 

I. the condition numbers of all the eigenvalues other than Ab and 

2. the distance of Ak from the other eigenvalues. 

An immediate consequence of this theorem is that if there is a multiple eigenvalue or 
an eigenvalue near another eigenvalue, then there are some ill-conditioned eigenvectors. 
This is significant especially for a Hermitian or a symmetric matrix, because we know 
that the eigenvalues of such a matrix are all well-conditioned, bllt the eigenvectors could 
be ill-conditioned. If the eigenvalues are well-separated and well-conditioned, then the 
eigenvectors are well-conditioned. 

Example 9.42. Consider the following diagonal matrix: 

Let 

(

I 0 
A= 0 0.99 

0 0 

A'=A+M= (o.ogol 
0o0J~ 1 D. 

The eigenvalues of A+ .6.A are l, 0.99, 2. (No change; since A is symmetric the eigen\'Czlues 
are well-conditioned.) However, the eigenvectors of A' are 

while those of A arc 

(-~~} c~:i), and m, 
G). m. and m· 
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Note that the eigenvector corresponding to A3 = 2 has not changed, while the other two 
eigenvectors have changed; this is due to the proximity of the associated eigenvalues, 1 
and 0.99. I 

9.8 The Real Schur Form and QR Iterations 
In the preceding discussions we have seen that computing eigenvalues of A via reduction 
of A to the companion or the Jordan canonical form is 1wt numerically effective. If the 
transrorrning matrix is ill-conditioned, then there may be large errors in the computed 
canonical form, and this in turn will introduce large errors in the eigenvalues. 

Therefore, the lesson is that we should avoid nonorthogonal traw,formations in eigen­
value or eigenvector computations and use only orthogonal or unitary transformations, 
which are perfectly conditioned. 

Indeed, if a matrix A is transformed to a matrix B using unitary similarity transfor­
mation;---then--a- perturbation in A will result in a perturbation in B of the same magnitude. 
That is, if 

8 = u• AU and u•(A + 6.A)U = 8 + 6.8, 

then 
116.8112"" II6.AIIz. 

Example 9.43. 

Let 

Then 

and 

A= (
I 2 3) 
~ ~ ~ . (

-0.5774 
u = -0.5774 

-0.5774 

-0.5774 
0.7887 

-0.2113 

-0.5774) 
-0.2113 ' 
0.7887 

( 

13 
8 = U"AU = -0.9019 

-6.0981 

-0.6340 
0 
0 

-2.3660) 
0 . 
0 

6.A = 10-5 x hx3· 

(

l.OOOOI 
A1=A+6.A= ~ 

(

13.00001 
81 = u•(A + 6.A)U = -0.9019 

-6.0981 

2 
4.00001 

7 

-0.633974 
0.00001 

0 

-2.3660) 
0 . 

0.00001 

So, 6.8 = Bl- 8 = w-s X I,,, and 116.Aib = II6.BIIz = w-5 I 

A perfect canonical fonn displaying the eigenvalues is a triangular form (the diagonal 
entries are the eigenvalues). In this context we now recall a classical result due to Schur. 14 

14 Jssai Schur (1875-1941), a Lithuanian-German-lsraeli mathematician, is well known for his funda­
mental work on the representation theory of groups, but also worked in number theory, analysis, and linear 
algebra. 
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Theorem 9.44 {Schur triangularization theorem). lf A is an n x n matrix, then there 
exisrs a unitary matrix U such that 

U'AU = T. 

where T is a triangular matrix with the eigenvalues iq, A1 , ... , A11 as the diagonal ewries. 

Proof. We will prove the theorem using induction on n. 
If u l, the lheorem is trivially true. Next assume the theorem is true for 11 = k - I. 

Then we will show that it is also true for 11 = k. 
Let u be a normalized eigenvector of A associated with an eigenvalue A1• Deline 

u, = (II' V), where l' is k X (k- I) and is unitary. Then u, is unitary and A 1 = ur AU, = 

diug(A1, A), where ,\ is (k- I) x (k - 1). By our hypothesis there exists u unitru·y matrix 
V1 of order (k I) such that T = V,'(;\j V1 is triangular. Then, defining U1 diag( I, V,), 
we see that U2 is unitary (because so is V1) and 

u;A,Uo"' u;u;· AU,Uo = U'AU, 

and furthermore, U* AU= diag VtAVJ =f. Because Tis triangular, so is U"' AU, Since 
the eigenvalues of a triangular matrix appear on the diagonal, we are done. 0 

Since a real matrix can have complex eigenvalues (occurring in complex conjugate 
pairs), even for a real matrix A. U and T in the Schur theorem above can be complex. 
However, we can choose U to be real ortlwgoual if T is replaced by a quasi-rriangular 
matrix R, known as the real Schur form of A. 

Theorem 9.45 {real Schur triangularization theorem). Let A be a11 11 x 11 realmatrb;, 
Then r!rere e.rists ann x n orthogonal matrix Q such that 

c 
Rn 

'") QT AQ = R = ~ R2.1 R2.k 

' ' 

0 R~k 
where each Ru is either a scalar or a 2 x 2 marrix. The scalardlagoual e!lfries correspond 
to real eigenvalues and 2 x 2 matrices 011 tile diagonal correspond to complex conjugate 
eigenvalues. 

Proof. The proof is similar to that of Theorem Y.44. D 

Definition 9.46, Tf1e matrix R in Theorem 9.45 is known as the real Schur form r;f A. 

Notes: 

The 2 x 2 matrices on the diagonal are usually referred to as •·bumps." 

The columns of Q are called Scft11r l'ectors, For each k( I ;<: k ;<: n ), rl>e first k 
columns of Q form an orthonormal basis for rfle invaricmt subspace corresponding 
ro the first k eige11values. 
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Remark. Since the proofs of both lhc theorems are based on the knowledge of eigenvalues 
and eigenvectors of matrix A. they cannot be considered to be constructive, They do not 
help us in computing the eigenvalues and eigenvectors. 

We present below a method, known as the QR iteration method, for computing the 
real Schur form of A. A properly implemented QR method is widely used nowadays for 
computing the eigenvalues of an arbitrary matrix. As the name suggests, the method is based 
on the QR factorization and is iterative in nature. The QR iteration method was proposed in 
algorithmic form by Francis ( 1961 ), though its roots can be traced to a work of Rutishauser 
(1958). The method was also independently discovered by the Russian mathematician 
Kublanovskaya (1961). 

Note: Since the eigenvalues of a matrix A are the 11 zeros of its characteristic poly~ 
nomial. and it is well known (proved hy Galois more than a century ago) that the roots of a 
polynomial equation of degree higher than four cannot be found in a finite number of steps, 
any numerical eigenvalue method for an arbiLrary matrix has to be iterative in nature. 

9.8.1 The Basic QR Iteration 

The idea he/rind the QR iteration method is to iteratively construct a sequence of matrices 
{Ak}, sTarting from Ao = A, such that each A;+r is orrlrogonal/y similar 10 A;, with 
an expectation that the sequence will converge to a real Schur matrLt: from w/riclt the 
eigenvalues of A can be easily extracted. Each matrix in the sequence is constructed by 
taking QR factorization of the previous matrix and then multiplying the matrices Q and R 
in reverse order. Specifically, the basic QR iteration method is as follows. 

ALGORITHM 9.6. Basic QR Iteration Algorithm. 

Input: An n x n matrix A. 
Output: A sequence of matrices {A.d containing the eigenvalues of A. 

Step I. Set A0 =A. 

Step 2. Compute now a sequence of matrices (A,) defined as follows: 
Fork = ], 2, , .. do 

End 

2.1. Find the QR factorization of A,_, :A,_, = Q,_, R,_ 1 

(QR factorization). 

2,2, Compute A, = R,_ 1 Q,_, (reverse multiplication). 

Eigenvalue property of {AkJ. The matrices in the sequence {Ad have a very interesting 
property. Each matri'\ in the sequence is ortlrogonafly similar to the previous one and is 
therefore orthogonally similar to the original matrix. 1t is easy to see this, For example, 

1' 1' A,= RoQo Q0 AoQo (since Q0 Ao = Rol. 

A,= R,Q, = Q[ A,Q,. 
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Thus A 1 is orthogonally similar to A, and A2 is orthogonally similar to A 1• Therefore, A 2 

is orthogonally similar to A, as the following computation shows: 
T T T T T A,= Q 1 A,Q, = Q 1 {Q0 AoQo)Q, = {QuQ,) Ao(QoQ,) = (QoQ,) AQoQ,. 

Since each matrix is orthogonally similar to the original matrix A, it has the same eigenvalues 
as A. Thus, if the sequence {Ad converges to a triangular or quasi-triangular matrix, we 
will be done. The following result shows that under ccnain conditions, this indeed happens 
(see Wilkinson ( 1965, pp. 518-519)). 

A Condition for Convergence 

Theorem 9.47 (convergence theorem for basic QR iteration). Let the eigenvalues 
At, ... , An be such that IAtl > i) ... zl > · · · > i) ... 11 j, and Let the eigenvector matrix X of 
the left eigenvectors (that is, the right eigellvectors of x~]) be such that its leading princiw 
pal minors are nonzero. Then I A.~:) COIJ\'erges to WJ upper triangular matrix or to the real 
Schurform. 

In fact, it can be shown that under the above conditions, the first column of Ak 
approaches a multiple of e1• Thus, for sufficiently large k we get 

We can apply the QR iteration again to Ak and the process can be continued to show that 
the sequence converges to an upper triangular matrix. 

Example 9.48. 

A= G ~). 
The eigenvalues of A are 5.3723 and -0.3723.1A-,I > IA-ol. 

k=O: 

k = 1: 

k = 2: 

Ao =A= QoRo, 

Q - (-0.3162 
0 - -0.9487 

-0.9487) 
0.3162 ' R - (-3.1623 

0- 0 

(
5.2 1.6) Q A,= RoQo = .6 -.2 = ,R,, 

Q = (-0.9934 -0.1146) R _ (-5.2345 
I -0.1146 -0.9934 ' I - 0 

(
5.3796 

A,= R, Q, = 0.0438 
-0.9562) 
-0.3796 = Q,R,. 

-4.4272) 
-0.6325 . 

-1.5665) 
-0.3821 . 

(Note that we have already made some progress towards obtaining the 
eigenvalues.) 

( 
-1 

Q, = -0.0081 
-0.0082) R = (-5.3797 

I ' 2 0 
0.9593 ) . 

-0.3718 



324 Chapter 9. Numerical Matrix Eigenvalue Problems 

k = 3: 

k = 4: 

A R Q (
5.3718 1.0030) Q R 

'= ' 2 = 0.0030 ·-0.3718 = ' 3' 

Q ( 
I -0.0006) R _ (-5.3718 

3 = -0.0006 I ' 3 - 0 

A R Q (
5.3723 

4 = 3 3 = 0.0002 
-0.9998) 
-0.3723 . I 

-!.0028) 
-0.3723 . 

MATCOM Note: Algorithm 9.6 has been implemented in thcMATCOM program QRITRB. 

9.8.2 The Hessenberg QR Iteration 

Tlii:QKilcfation nfcthod as presented above is not efficient if the matrix A is full and d.ense. 
We have seen in Chapter 7 that the QR factorization of such a matrix A requires O(n3) 

Hops, and thus n QR iterations will require O(n4 ) flops, making the method impractical. 
Fortunately, something simple can be done: Reduce rile matrix A to a Hessenberg 

matrix by orrlwgona/ similarity before starting the QR iterations. 
The question now is, Will tlte Hessenberg structure be preserved at each iteraTion 

step? The answer is yes and provided by the following theorem. Note that the Hessenberg 
matrix al each iteration has to be unreduced. This is not a restriction, because the eigenvalue 
problem for a reduced Hessenberg matrix can be .split into clgenvalue problems of unreduced 
Hesscnberg matrices (Exercise 9.21(c)). 

Theorem 9.49. Let A, be an unreduced upper Hessenberg matrix and let A, = Q, R, be 
tlte QR factorization of A;. Then .4k+1 = R, Q, is also upper Hessenberg. 

Proof. Suppose Givens rotations are used to factorize A; into Q,R,. Then 

Q, = J(2,l,li)J(3,2,B)· .. J(n,ll-1,8) 

is also upper Hessenbcrg, 
Again. since R, is upper triangular and Q, is upper Hessenberg, Ak+t = R,Q, is 

also upper Hcssenberg. D 

An implication. Since the QR factorization of a Hessenberg matrix requires only O(n2 ) 

flops, the QR iteration method with tfle initial reduction of A to a Hessenberg matrix will 
be an O(n 3) merltod. 

Example 9.50. Illustration of in variance of Hessenberg form in Hessenberg QR iter· 
ation~ 

( 

0.2190 
A = Au = -0.6805 

-0.0000 

-0.5651 
0.1226 
0.8872 

-0.6418) 
0.4398 
0.8466 

(Hessenberg). 
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k = 1: 

k=2: 

(

-03063 -0.4676 0.8291) 
I. Q0 = 0.9519 -0.1505 0.2668 , 

0.0000 0.8710 0.4913 

(

-0.7149 0.2898 0.6152) 
Ro= 0.0000 1.0186 0.9714 , 

-0.0000 0 0.0011 

r.4949 
0.8265 -0.2132) 

2. A, = R0 Q0 = 0.9697 0.6928 0.7490 
0.0000 0.0010 0.0006 

r.4546 
-0.8907 -0.0021) 

I. Q, = 0.8907 0.4546 0.0011 , 
0.0000 -0.0023 1.0000 

(1.0886 0.9928 0.5702) 
R, = 0.0000 -0.4213 0.5303 . 

0.0000 -0.0000 0.0018 

-0.5197 

325 

(Hessenberg}. 

2. A, = R1 Q 1 = -0.3752 
( 1.3792 

-0.1927 0.5299 
0.5690) 

(Hessenberg). I 
-0.0000 -0.0000 0.0018 

MATCOM Note: The Hessenberg QR iteration algorithm has been implemented in the 
MATCOM program QRITRH. 

9.8.3 Convergence of the QR Iterations and the Shift of Origin 

Although an initial reduction to a Hessenberg matrix makes the QR iteration algorithm 
an O{n 3) method, the rate of convergence, that is, tlte rare ar which a :mbdiagonal entry 
appmaches zero, can still be l'CtT slow (fan eigenvalue J..i is close to the previo11s one, A;-J. 

This is because the rate is determined by the ratio 

I ~!:LI' Ai-l 

Fortunately, the rate can be improved substantially by using a shift i;, close ro the 
eigenvalue !.1, as illustrated by the following example (Ortega and Poole (1981, p. 227)): 

Suppose/.1 = 0.99, /.1_ 1 = l.l,anui, =I. Then I l.,-i., I= 0.1, while 1-,'· I= 0.9. 
)..,_]-}., ·•-l 

This observation teJls us that if we appl;v the QR iteration to the shifted matrix ii = 
H- S..J. where X is a suitable shift, rather than to the original matrix H, then the rate of 
convergence will bejaste1: Of course. once an eigenvalue of fl is found, lhe corresponding 
eigenvalue of li can be compmed just by adding the shift back (Exercise 9.9). At each 
iteration, the (I!, n)tfl element of the Citrrem matrix can be taken as the shift. 

The above procedure is known as single-shift Hessenberg QR iteration method. 
The details of the procedure are left as an exercise for the readers (Exercise 9.30). The 
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process is meaningful if an approximation loa real eigenvalue is desired, In the case of 
approximating a complex conjugate pair of eigenvalues. the following modified procedure, 
known as the double-shift QR iteration, is to be used by raking the eigenvallleS oft he 2 x 2 
trailing principal submatrix 011 the bottom rightMhand comer as the shift parameters. 

9.8.4 The Double-Shift QR Iteration 

In the following we describe one iteration step of the double-shift Hessenberg QR iterations. 

One Iteration Step of the Double-Shift QR (Complex) 

Let the pair of complex conjugate eigenvalues of the 2 x 2 bottom right-hand corner of 
the starting Hessenbcrg matrix H0 be kt and k2 = k1. Then the first iteration step of the 
double-shift QR iteration is given by 

Ho-kti=QoRo, H,=RoQo+k,l, 

H 1 -k,I = Q 1R,, H, = R,Q, +k,l. 

Avoiding Complex Arithmetic in Double-Shift QR Iteration 

Since k1 and k2 are complex, the above double-shift QR iteration step will require complex 
arithmetic for implementation, even lhough the starting matrix Ho is reaL However. ·with a 
little manipulation complex arithmetic can be avoided. We will discuss this aspect now. 

We will show thar matrix Hz is orthogona/{y similar to H0 via a real transforming 
matrix, and can be formed directly from lfo without computing H1. 

Step l. (H, is orthogonally similar to Ho.) 

H1 = R1 Q1 + k1I = Q;(llt- k21)Q 1 + k1I = Q;(R0 Q0 + (k, k,)l)Q, + k,I 

= Q;(Q0(Ho-k,l)Qo+(kt-k1)l)Q, +k,l = Q;Q~HoQoQ,. 

Thus, H, = (Q0 Q,)' HoQ0 Q 1, proving that H, and Hoare orthogonally similar. 

Step 2. (The matrLt Q0 Q, from Step l is a real marrix.) To show this, we define the matrix 

N = (Ho k,l)(Ho k,I). 

Then we show that (i) N is a real matrix, and (ii) the matrix Q0 Q1 is the Q matrix of the 
QR factorization of N. 

(Marn~t N is real.) N = (Ho- k,!)(Ho- k, I) = HJ - (k, + k,)Ho + k,k,l = 
HJ- tHo+ dl, where t = k1 + k1 and d = k 1k2. Thus matrix N is real (since 
k, = ii,}. 

(QoQ 1 is rite Q matrix ofrhe QRfacroritation ofN.) N = {Ho- k,l)( Ho- k, I) 
(Ho -k,lJQoRo = QoQ0Ulo- k,I)QoRo = Qo(H, k,l)Ro = QoQ,R,Ro. 

So, the matrix Q0 Q 1 R1 Ro is the QR factorization of N, and tlw matrLt QoQt is the 
Q matn~·L Since N is real, so is QoQt- Combining the result of the above two steps, 
we see that Hn is similar to H2 Pia a real orlfwgonal similarity trtmsft;rmation. 
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This allows us to wrilc the one-srep of double-shift QR iteration in real arithmetic as follows. 

One Step of Explicit Double-Shift QR Iteration (Real Arithmetic) 

Fom\ the real matrix N HJ - t H0 + d I. 

Find the QR factorization of N: N = Q R. 

Form H, = Qr HoQ. 

We will call the above comp!llation explicit double-shift QR iteration for reasons to 
be slaled in the next section. 

Example 9.51. 

N=H' 

2 
0 
-2 

3) I : 
2 

I= 2, 

( 

3 -8 
tH+dl = -1 2 

-2 0 

d =2. 

5) 
~ . 

The Q matrix of the QR factorization of N: 

(

-0.8018 
Q = 0.2673 

0.5345 

(

-0.8571 
H2 = QTH0 Q = -1.1867 

0.0000 

-0.5470 -0.2408) 
0.0322 -0.9631 • 

-0.8365 0.1204 

1.1007 2.5740 ) 
3.0455 -0.8289 . 
1.8437 0.8116 

I 

MATCOM Note: The explicit single-shift and double-shift QR iterations have been im­
plemented in the MATCOM programs QRITRSSE and QRITRDSE. respecLively. 

9.8.5 Implicit QR Iteration 

After all this, we note, with utter disappointment, that the above double-slr(ft (explicit) QR 
iteration is not practical. The reason for this is that forming the mutrix N itsc1f in Step 
2 requires O(n3) flops. Fortunately, a little trick again allows us to implement the step in 
O(n2 ) flops. 

One Iteration of the Implicit Double-Shift QR 

I. Compute the first column n 1 of the matrix N 

2. Find a Householder matrix Po such that P0n 1 is a multiple or e 1• 

I T 3. Form H0 = P0 HoPo. 

4, Compute Householder matrices P1 through Pn-2 such that if Z = P0 P1 ••• Pn-2• then 
H~ = zT H~Z is upper Hessenberg and lhe first column of Q and Z are the same. 
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By using tile implicit Q theorem (Theorem 9.34) we can then show that matrices H2 
of the explicit Q R method and H~ of the implicit QR method are both unreduced upper 
Hessenberg and are essentially the same matrix:. 

The above four steps constitute one iteration of the double-shift implicit QR. 
It now remains to show that (i) the above implicit computation requires only O(n 2) 

flops (instead of 0 (11 3)), and (ii) Z and Q have the some first column. 

A Close Look at O(n2) computation of the Double-shift Implicit QR Iteration Step 

• The entries of vector H 1, the first column of N, can be explicitly written down: 

n 1 = {hi 1 + h nh21 - t h 11 + d, h2 1 (h 11 + lt11 - t), lz2tll3:., 0, .... 0) r. 

Because n1 has almost three nonzero entries, Po has the form Po= diag cPa, ln~3 ). 
where fo0 is a 3 x 3 Householder matrix, Thus the computation of Po requires only 
0 (I) .flops. 

Becaus~-~i-the above structure P0 mld the matrix HQ being-HesSc'riberg, the matriX 
Prf' H0 P0 is not o full matrix. It is a Hessenberg matrix with a bulge. 

For example, when 11 = 6, we have 

X X X X X X 

X X X X X X 

' 1' + X X X X X 
(The entries indicated by+ H0 = P0 HoPo 

+ + X X X X 

0 0 0 X X X 
form a bulge.) 

0 0 0 0 X X 

Bulge-chasing phenomenon. A bulge wi11 be created at each step of the reduction of 
H0 to Hessenberg fnnn, and the constructions of Householder matrices Pt through Pn~2 
amount to chasing Lhese bulges systematically, as shown below with the previous 6 x 6 
case. The entries (3, 1), (4, 1), and (4, 2) form a bulge in H~. 

I. Create P1: 

2. 

X X X X X X 

X X X X X X 

P,rH~P, = 
0 X X X X X 

0 + X X X X 

0 + + X X X 

0 0 0 0 0 X 

The entries (3,1) and(4,1) of H~ are annihilated and the 2 x 2 bulge has been chased 
one column down. 

Create P.1.: 
X X X X X X 

X X X X X X 

P{(P,' H~P,)P2 = 
0 X X X X X 

0 0 X X X X 

0 0 + X X X 

0 0 -1- + X X 
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3. 

4. 

The entries (4, 2) and (5, 2) of the matrix P,r H6P1 have been annihilated and the 
2 x 2 bulge has been chased further down one column. 

Create P3: 

X X X X X X 

X X X X X X 

P[ (P[ Pt' H6Pt Po)P, = 
0 X X X X X 

0 0 X X X X 

0 0 0 X X X 

0 0 0 + X X 

The entries (5, 3) and (6, 3) of the matrix P[ Pt' H6Pt P, have been annihilated and 
the 2 x 2 bulge has been chased to a I x l bulge slill further one column down. 

Create P.~: 

X X X X X X 

X X X X X X 

pT(pTpTpTH'PPP)P z"~"H'Z H' 0 X X X X X 
-+32JOI23-t= o=2= 0 0 X X X X 

0 0 0 X X X 

0 0 0 0 X X 

The last bulge has now been eliminated and the matrix H~ is Hessenbcrg again, this 
time without any bulge and possibly some smaller subdiagonal entries. 

In the general case, (11 - 2) Householder matrices P1, ••• , P11 _ 2 have to be created 
and each P" k = I, 2, ... , 11 - 3, has the form 

where Pk is a 3 x 3 Householder matrix. The last Householder matrix ? 11 _ 2 has the form 

(
!,_, 

?11-2 = O 

Taking imo consideration the abol'e structures of computations, we see that one step of the 
double-shift implicit QR iteration requires only 0(11 2)jlops. 

For details of this O(n 1 ) computations of one iteration of the double-shift implicit 
QR, see the book by Stewart (1972, pp. 375-378). 

To see that the matrices Q and Z have the same first column, observe that (i) Pke! = 
e1 fork = I, ... , 11 - 2, and (ii) Po and Q have the same first column. Thus Ze 1 = 
PoP! ... Pn-1e! = Poe! = Qe1. 
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ALGORITHM 9.7. One Iteration Step of the Double-Shift Implicit QR. 

Input: An unreduced upper Hesscnberg matrix H. 
Output: An unreduced upper Hesscnberg matrix QT H Q, where Q = 
PoP1 ••• P11 ~ 2 is a product of Householder matrices. The matrix QT H Q is stored 
over H. 

Step 1. Compute the numbers 1 and d us follows: 

Step 2. Compute the first three nonzero entries of the first column of N = 
H 2 - tH +dl: 

x:=n11 lri1 thJ1+d+h11h:n. 

r= tl;n = h21 (II 1 r + h2'!_ l), 

z = 1132 = h2lhJ2· 

Step 3. Compute the Householder matrices P0 P1 ••• P,_, such that the final 
matrix is upper Hessenberg: 

(a) Fork = 0, I. 2, ... , n - 3 do 

(i) Find a 3 x 3 Householder matrix Pk such that 

/mplir:itly form P{ H Pb where P, diag(l;. A.!,_,_,), and store 
it over H: H"' P{ H P;. 

(ii) Update x, y, and z: 

x = hk+2,k+l, y = hk+?o.k+l, and (if k < n - 3) z = h~-+4-.k_..i. 

End 

(b) Find a Householder matrix fi,_, of order 2 such that 

Implicitly form P[_2H Pll-2• where Pn-2 = diag{lrl-2• Pn-2), and store it over 

H: H s P,;_1 H Pn-2· 

Flop-count. One iteration of the implicit double-shift QR method takes aboutl011 2 Aops. 
If the transfonning matrix Q is needed and accumulated, then another I011 2 Hops will be 
needed (see Golub and Van Loan (1996, p. 358). 
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Example 9.52. Consider the same matrix H as in Example 9.51. 

Step 1. t = 2, d = 2, 

H = (: ~ ~). 
0 -2 2 

Step 2. x = llJl = 3, y = n21 = -1, z = 1131 = -2. 

Step 3. k = 0: 

2uu T 
Po= I-

(

6.7417) 
where 11 = -1.000 , 

-2.000 

(

-0.8018 
Po= 0.2673 

0.5345 

H::PcJHPo= 0.0581 
( 

-0.8571 

l1.ts52 I 
Update x andy: 

0.2673 
0.9604 

-0.0793 

-2.6248 
0.8666 

-0.7221 

0.5345 ) 
-0.0793 , 
0.8414 

-0.9733) 
1.9505 . 
2.9906 

X= lz11 = .0581 )' = lz31 = 1.1852. 

Find P1: 

• ( 0.0490 
P, = -0.9988 

-0.9988) p (X) = (-1.1866) 
0.0490 ' I )" 0 ' 

331 

(

I 0 
P1 = 0 0.0490 

0 -0.9988 

0 ) (-0.8571 
-0.9988 ; H = Pt' H P 1 = -1.1867 
0.0490 0 

1.1007 2.5740 ) 
3.0455 -0.8289 . 
1.8437 0.8116 

Note: The matrix H obtained by the implicit QR is the same as H2 obtained earlier 
in Example 9.51 using the explicit QR. I 

MATCOM Note: Algorithm 9.7 has been implemented tn the MATCOM program 
QRITRDSI. 

9.8.6 Obtaining the Real Schur Form A 

Putting together the results of the preceeding section, we can now formulate the procedure 
of obtaining the real Schur form as follows: 

Step 1. Transform the matrix A to Hcssenberg form H. 

Step 2. Perform the QR iteration method on the Hessenberg malrix H using implicit double­
shift. 
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Typically, after two to three steps of the doubly-shirt implicit QR iteration, one or 
two (and sometime more) subdiagonal entries from the bottom of the Hesscnberg matrix 
converge to zero. 

This then will give us a real or a pair of complex conjugate eigenvalues. Once a real 
or a pair of complex conjugate eigenvalues is computed, the last row and the last column 
in the i1rst case, or the last two rows and the last lwo columns in the second case, can be 
deleted, and computation of the other eigenvalues can be continued with the submatrix. 
This process is known us deflation. 

Note that the eigem•alues of rite deflated submatrix are also the eigenvalues of the 
original matrix. For, suppose immediately before deflation, the matrix has the form 

(
A' 

H, = 0 C') 
B' ' 

~-b~~e .l:f_~)?_Jh.~) x 2 trailing submatrix or is a I x 1 matrix. Then the characteristic equation 
of H, is ··· · 

dct(U- H,) = dct(AJ- A')dct(l/- 8'). 

Thus. the eigenvalues of Hk are the eigenvalues of A 1 together with rhose of B'. Since Hk 
is orthogonally similar to the original matrix A and therefore has the same eigenvalues as 
A, the eigenvalues of 8' are also the eigenvalues of A, 

When to Accept a Subdiagonal Entry as Zero 

A major decision that we have to make during the iteration procedure is when to accept a 
subdiugonal entry as zero so that the matrix can be deflated. 

Accept a subdlagonal entry hu- 1 to be zero if 

!llu-d ::': tol (lll;d + 111;-u-d), 

where wlls a tolerance greater than the unit round-off (Golub and Van Loan ( 1996. 
p, 359)). 

Example 9.53. Consider 

3 ) -~ ~ . 

2 

Iteration 
-LJ867 

2 0.3543 
0.0129 

4 0.0000 
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The real Schur form is 

( 
- 1.~1663 L---'.CJ..:._33c..:2.:._6_-.::.2.:._. 0::.:5.:._3_1 .ll 1.2384 1.6659 

-1.9409 2.9279 

The eigenvalues of the 2 x 2 right-hand lower corner submatrix are 2.0832 ± I .5874i. I 

Titus the eigenvalues of A are -1.1663, 2.0832 ± 1.5874i 

Example 9.54. Consider 

H=( 
0.2190 -0.0756 0.6787 -0.6391 ) 

-0.9615 0.9032 -0.4571 0.8804 
0 -0.3822 0.4526 -0.0641 . 
0 0 -0.1069 -0.0252 

Iteration "'1! lz32 h43 

I 0.3860 -0.5084 -0.0064 
2 -0.0672 -0.3773 0.0001 
3 0.0089 0.3673 0 
4 0.0011 -0.3590 0 
5 0.0001 -0.3905 0 

The real Schur form is 

H=( 
1.4095 0.7632 -0.1996 0.8394 ) 
0.0001 0.1922 0.5792 0.0494 

0 -0.3905 0.0243 -0.4089 ' 
0 0 0 -0.0763 

The eigenvalues of ( _9o~j~Js 8:gj~j) arc 0.1082 ± 0.4681 i. 
Thus, the eigenvalues of H are 1.4095, 0. I 082 ± 0.4681 i, and -0.0763. I 

Flop-count. Since the QR iteration method is an iterative method, it is hard to give an 
exact tlop-count for this method. However, empirical observations have established that 
it takes about two QR iterations per eigenvalue. Thus, it will require about 1 On 3 flops to 
compute all the eigenvalues (Golub and Van Loan (1996, p. 359)). If tlte transfonning 
matrix Q and the final real Sclwr matrix Tare also needed, then the cost will be about 251l3 

flops. 

Round-off property. The QR iteration method is stable. An analysis of the round-off 
property of the algorithm shows that the computed real Schur form Tis orthogonally similar 
to a nearby matrix A+ E. Specifically, 

Qr(A+E)Q=T, 

where Qr Q =I and IIEIIF :": ¢(11)11IIAIIF· Here ¢(11) is a sloll'(\' growingfimction of 11. 
The computed orthogonal matrix Q is also almost orthogonal. 
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Balancing. As in the process of solving a linear system problem. it is advisable to balance 
the entries of the original malrix A, if they vary widely~ before starting the QR iterations. 

The balancing is equivalent to transforming the matrix A to n-i AD~ where the 
diagonal mauix D is chosen so that a norm of each rmr is appro;rimately equal to tlte norm 
of the corresponding column. 

In general, preprocessing the matrix by balancing improves the accuracy of the QR 
iteration merhod. Note that no round-off error is involved in this computation and it takes 
only O(n2 ) flops. The MATI~AB command balance i\nds balancing of a matrix. For more 
on this topic, see Parlett and Reinsch (1969). 

9.8.7 The Real Schur Form and Invariant Subspaces 

Definition 9.55. LetS be a subspace of the complex plane tC". 11wn S is be called an 
illi-iiftiiillrsubspace-(witlt respect to premultiptication by A) ifx-E S implies that AxES. 

Thus, since Ax = Ax for each eigenvalue/., each eigenvector is an invariant subspace 
of dimension l associated with tlte corresponding eigenvalue. 

The real Schur form of A displays information on the invariant subspaces as stated 
below. 

Lei 

Basis of an Invariant Subspace from the Real Schur Form 

Rt2). 
Rn -

and let us assume that R11 and R22 do not have eigenvalues in common. Then the 
first p columns of Q, where p is the order of R 11, fonn a basis for the invarialll 
subspace associated with the eigenvalues of Rn. 

Ordering the eigenvalues. 1n many applications, such as in the solution of algebraic 
Riccati equations (see Datta (2003), Patel, Laub, and Van Dooren (1994), Pctkov ct al. 
( 1991 ), and Van Dooren ( 198! a, !981 b, 1991) ), one needs to compute the orthononnal bases 
of an invariant subspace associated with a selected number of eigenvalues. Unfortunately, 
the real Schur form obtained by QR iteration may not give the eigenvalues in soiue desired 
order. Thus, if the eigenvalues arc not in a desired order, one wonders if some extra work 
can be done to bring them into that order. That this can indeed be done is seen from the 
following simple discussion. Let A be 2 x 2. 

Let 

If /q and A2 urc not in the right order, all we need to do to reverse lhe order is to form u 
Givens rotation J (I. 2, II) such thal 

1(1,2,8{./~\,) (~) 
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ThenQ=Q 11(1,2,B).,.issuchthat 

QTAQ=(~ 
Example 9.56. 

Q = ( 0.8507 0.5257) Qr A Q = (-0.236 I 0.0000) 
1 -0.5257 0.8507 ' 1 I 0.0000 4.236 I ' 

1(1.2.B)= (~~ -~n. 1(1.2.e)(-4.~722) = e·4~22). 
Q- Q 1(1 ? 8)T- (-0.5257 -0.8?507). QT AQ = (4.2361 0.0?01 ) . I 

- 1 '-· - -0.8507 0.5_57 0.00 I -0._36 I 

The above simple process can be easily extended to achieve any desired ordering of 
the eigenvalues in the real Schur form. 

The process is quite inexpensive. It requires only k( 12n) flops, where k is the number 
of interchanges required to achieve the desired order. For more on eigenvalue ordering or 
ordering in real Schur form, see Bai and Demmel (1993b) and Bai and Stewart (1998). The 
latter provides a Fortran subroutine. 

MATLAB Note: The MATLAB commands ordschur and ordeig are important in the 
context of ordering the eigenvalue in several speci11cd regions or in some order. 

[US, TSJ =ordschur(U, T, keyword), 

where U and Tare the matrices produced by the schur command and "keyword" specifies 
one of the following regions: 

lhp -left half plane 
rhp - right half plane 
udi -interior of the unit disk 
udo- exterior of the unit disk 

9.9 Computing the Eigenvectors 

9.9.1 The Hessenberg-lnverse Iteration 

As soon as an eigenvalue A is computed by QR iteration, we can invoke inverse iteration 
(Algorithm 9.2) to compute the corresponding eigenvector. However, since A is initially 
reduced to a Hessenberg matrix H for the QR iteration, it is natural to take advantage of 
the structure of the Hessenberg matrix H in the solutions of the linear system that need 
to be solved in the process of inverse iteration. Once an approximate eigenvector of the 
Hessenberg matrix H is found, the corresponding eigenvector of A can be recovered by an 
orthogonal matrix multiplication, as follows: 

Let y be an eigenvector of H, and let PrAP = H. Then Hy = Ay or pT APy = Ay, 
that is, APy = A.Py, showing that x = Py is an eigenvector of A. 

Thus the Hessenberg~Inverse iteration can be stated as follows. 
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ALGORITHM 9.8. The Hessenberg-lnverse Iteration. 

Inputs: {i) An n x n matrix A, {ii) an integer N, maximum number of itera­
tions, (iii) €, a tolerance, and (iv} an initial approximate eigenvector )'(Ol of the 
trans fanned Hesscnbcrg matrix H. 
Output: An approximate eigenvector x of A. 

Step 1. Reduce the matrix A to an upper Hessenbcrg matrix H: pT AP =H. 

Step 2. Compute an eigenvalue A, whose eigenvector x is sought, using the 
implicit QR iteration. 

Step 3. Apply the inverse iteration 
Fork = l, 2, ... do 

3.1. Solve the Hesscnberg system (fl- A/)~tkJ = yfl-1). 

· 3,2,- Nonnulize y'" = ='" jmax(:lkt). 
3.3. Stop if 1\Hy'"- !.yt"l\ < E or if k > N. 

End 

Step 4. Recover the eigenvector x: 

X= Py(J:.). 

9.1 0 Review and Summary 
This chapter has been devoted to the study of the eigenvalue problem, the problem of 
computing the eigenvalues and eigenvectors of a matrix Ax= Ax. 

Here are the highlights of the chapter. 

9.1 0.1 Applications of the Eigenvalues and Eigenvectors 

The eigenvalue problem arises in a wide variety of practical applications. Mathematical 
models of many of the problems arising in engine-ering applications are systems of differ~ 
entiai and difference equations, and the eigenvalue problem arises mainly in solutions and 
analysis of stability of these equations. Maintaining the stability of a system is a real concern 
for engineers. For example, in the study of vibrations of structures, the eigenvalues and 
eigenvectors are related to the natural frequencies and amplitude of the masses, and if any 
of the natura! frequencies becomes equal or close loa frequency of the imposed periodic 
force on the structure, resonance occurs. An engineer would like to avoid lhis situation. In 
this chapter we have included examples on the European arms race, buckling of a beam, 
simulating transiem current of an electric circuit, vibration of a building, and principal 
componellf analysis in statistics with a reference to a stock market analysis. We have at­
tempted just to show how important the eigenvalue problem is in practical applications. 
These examples arc given in Section 9.2. 

9.1 0.2 localization of Eigenvalues 

In several applications, explicit knowledge of the eigenvalues is not required: all that is 
needed is a knowledge of the distribution of the eigenvalues in a region of the complex 
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plane or estimates of some specific eigenvalues. 

The GcrSgorin disk theorems (Theorems 9.6 and 9.9) can be used to obtain a region 
of the complex plane containing all the eigenvalues or, in some cases, a number of 
the eigenvalues in a region. The estimates are, however. very crude. 

Also, IAI :S IIA II (Theorem 9.11 ). This resulr says rhar rhe upper bound of any 
eigenvalue of A can be found by computing its norm. 

This result plays an important role in convergence analysis of iterative methods for 
linear systems (Chapter 12). 

9.1 0.3 The Power Method and the Inverse Iteration 

There are applications such as analysis of dynamical systems, vibration analysis of struc­
tures, buckling of a beam, and principal component analysis in statistics, where only the 
largest or the smallest (in magnitude) eigenvalue or only the first or last few eigenvalues 
and their corresponding eigenvectors are needed. 

The power method (Algorithm 9.1) and the inverse power method (Algorithm 9.2) 
based on implicit construction of powers of A can be used to compute these eigenvalues 
and the eigenvectors. The power method is extremely simple to implement and is suitable 
for large and sparse matrices, but there are certain numerical limitations. 

In practice, the pmver method should be used with a suitable shift. The inverse power 
method is simply the power method applied to (A- a 1)- 1

, where a is a suitable shift. 
It is widely used to compute an eigenvector when a reasonably good approximation 

to an eigenvalue is known. 

9.1 0.4 The Rayleigh Quotient Iteration 

The quotient 
xTAx 

R,,=--, xTx 
known as the Rayleigh quotient, gives an estimate of the eigenvalue).. of a symmetric matrix 
A for which x is the corresponding eigenvector. 

This idea, when combined with the inverse iteration m!:!thod (Algorithm 9.2), can be 
US!:!d to compute an approximation to an eigenvalue and the corresponding eigenvector. The 
process is known as the Rayleigh quotient iteration (Algorithm 9.3). 

9.1 0.5 Sensitivity of Eigenvalues and Eigenvectors 

The Bauer-Fike theorem (Theorem 9.37) tells us that if A is a diagonalizable matrix, 
then the condition number of the transforming matrix X, Cond(X) = II XII ux-'11. 
plays the role of the condition number of the eigenvalue problem. If this number is 
large, then a small change in A can cause significant changes in the eigenvalues. 

Since a symmetric matrix A can be transformed into a diagonal matrix by orthogonal 
similarity and the condition number of an orthogonal matrix (with respect to the 
2-norm) is I, it immediately follows from the Bauer-Pike theorem that the eigenvalues 
of a symmetric matri.1: are insensitive to small perturbations. 
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If an eigenvaiuc problem is iH-condilioned. then it might happen thai some eigenvalues 
are more sensitive than others. It is thus important to know the sensitivity of the 
individua] eigenvalues. Unfortunately, to measure the sensitivity of an individua1 
eigenvalue, one needs lhe knowledge of both left and right eigenvectors corresponding 
to that eigenvalue (Section 9.6.2). The condition number of the simple eigenvalue 1., is 
the reciprocal of the number Lvrxi !. where xi and )'r arc, respectively, the nonnalized 
righl and left eigenvectors corresponding to A1• 

• The sensitivity of an eigenvector X,i. corresponding to an eigenvalue Ak depends upon 
(i) the condition number of aiithe eigenvalues other than)." and (ii) the distance of 
i.., from the other eigenvalues (Theorem 9.4 I). 

Thus, if the eigenvalues are well-separated and well~conditioned, then the elgen­
vectors are well~conditioned. On the other hand, if there is a multiple eigenvalue or 
there is an eigenvalue close to anothe-r eigenvalue, then there are some ill-conditioned 
eijfe·nvcctors:··-~This-Is--cspecially -significant-fur a symmetric matrix. The eigenvaf.::-__ 
Hes of a symmetric matrix are tvell~conditioned, but tire eigenvectors can be quite 
ill-conditioned. 

9.1 0.6 Eigenvalue Computation via the Characteristic Polynomial and 
the Jordan Canonical Form 

A similarity transfom1ation preserves the eigenvalues. and it is well known that a matrix A 
can be transformed by similarity (Theorem 9.28) to the Jordan canonical form and to the 
Frobenius form (or a companion fonn if A is nonderogatory), The eigenvalues of these 
condensed fomu; are rather easily computed. The Jordan canonical form displays lhe eigen~ 
values explicitly, and with the companion or Frobenius form. the characteristic polynomial 
of .4 is triviuJiy computed and then a root-finding method can be applied to the characteristic 
polynomial to obtain the eigenvalues, which are the zeros of the characteristic polynomial. 

However, compuration of eigenvalues via the characteristic polynomial or rhe Jordan 
cmwnic.alform is not recommended in practice. Obtaining these fonns may require a very 
iii-conditioned transforming matrix, and the sensitivity of the eigenvalue problem depends 
upon the condition number of this tmnsforming matrix (Sections 9.5.2 and 9.6.1 ). 

In general, ill-conditioned similarity Jrcmsformation sltould be avoided in eigenvalue 
comptitation, The use of well~conditioned Jransforming matrices, such as orthogonal ma­
trices, is necessary. 

9.1 0.7 Hessenberg Transformation 

An arbitrary matrix .4 can always be transformed to a Hessenberg matrix by orthogonal 
similarity transformation. Two numerically stable methods. Householder's (Algorithm 9.5) 
and Givens' methods, are described in Section 9.5.3. 

9.1 0.8 The QR Iteration Algorithm 

The most widely used algorithm for finding the eigenvalues of a matrix is the QR iteration 
algorithm. 
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For a real matrix .4, 1hc algorithm itcratJveiy constructs the real Schur form of .4 
by orthogonal similarity. Since the algorithm is based on repeated QR faclOrizations and 
each QR factorization of ann x 11 full matrix requires O(n 1 ) flops, the 11 steps of the QR 
iteration algorithm, if implemented naively (which we call the basic QR iteration), will 
require 0(n 4

) flops. making !he algorithm impractical. 

• Matrix A is, therefore. inilially reduced to a Hessenberg matrix H by orthogonal 
similarity before the stan of the QR iteration. The key observations here are (i) the 
reduction ~fA to H has to be made once for all, and (ii) the Hessenherg form is 
preserved at each iteration (Theorem 9.49). 

• The convergence of the Hessenberg QR iteration algorithm. however, can be quite 
slow in the presence of a near~ multiple or a multiple eigenvalue. The convergence 
can be accelerated by using suitable shifts. 

In_ prac_ticc, double shifts are ~sed. At each_ileration, the shifts are t~e eigenvaJues 
of lhc 2 x 2 submatrix at the bottom right-hand corner. Since the eigenvalues or 
a real matrix can be complex, complex arithmetic is usually required. However, 
computations can be arranged so that complex arithmetic can be avoJdcd. Also, lhc 
eigenvalues of the 2 x 2 bottom right-hand corner matrix at each iteration do not 
need to be computed explicitly. The process is known as !he double-shift implicit QR 
iteration (Algorithm 9.7). 

With double shifts, the eigenvalues arc computed two at a time. Once two eigenvalues 
arc computed, the matrix is deflated. and the process is applied to the deflated matrix. 

The double-slz(ff implicit QR iteration is the most practical algorithm for computing 
rite eigenvalues of a nonsymmetric dense matrix of modest si;:.e. 

9.1 0.9 Ordering the Eigenvalues 

The eigenvalues appearing in real Schur fonn obtained by the QR iteration algorithm do not 
appear in the desired order, although there are some applications which need this. However, 
with a lillie extra work, the eigenvalues can be put in the desired order (Section 9.8.7). 

9.1 0.10 Computing the Eigenvectors 

Once an approximation to an eigenvalue is obtained for the QR iteration, inverse iteration 
can be invoked to compute the corresponding eigenvector. 

Since the matrix A is initially reduced to a Hessenberg matrix for practical implemen­
tation of the QR iteration algorithm. advantage can be taken or the structure of a Hessenberg 
matrix in computing an eigenvector using inverse iteration (Algorithm 9.8), 

9.11 Suggestions for Further Reading 
Mosl books on vibration discuss eigenvalue problems arising in vibration of structures. 
Howc\'er, almost all eigenvalue problems here arc generalized eigenvalue problems; as a 
matler of fact, they are symmetric definite prohlems (sec Chapter II). 
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For references of well-known books on vibration, sec Chapter II. Those by Inman 
(2006, 2007) and Thomson ( 1992) arc, in pmticular, very useful and important books in this 
area. 

For learning more about how the eigenvalue problem arises in other areas of engi­
neering, see the books on numerical methods in engineering by Chapra and Canale {2002) 
and O'Neil (1991), referenced in Chapter 6. There are other engineering books (too nu­
merous to llst here). especially in the areas of electrical, mechanical, civil, and chemical 
engineering, containing discussions on eigenvalue problems in engineering, The real Schur 
fom1 of a matrix is an important tool in numerically effective solutions of many important 
control problems. such as solutions of the Lyapunov, Sylvester, and algebraic Riccati matrix 
equations (sec Datta (2003)). 

For some generalizations of the Ger~gorin disk theorems. see the paper by Brualdi and 
Mellendorf ( 1994 ). This paper contains results giving a region of the complex plane for each 
eigenvalue; fora full description oflhc GerS'gorindisk theorems and applications. sec the book 
by~Horn~and)oiluson (]985). ~The recent book by Varga (2004) has been devoted exclusively 
to the subject. For the GerSgorin theorem frJr~pa~titioned lllauices. see Johns tori ( 1971 ). 

A nice description of stability theory in dynamic systems is given in the classic book 
by Lucnberger ( 1979). 

For more results on eigenvalue bounds and eigenvalue sensitivity, see Bhatia (2007), 
Varah ( 1968b), and Davis and Moler ( 1978). 

For computation of the Jordan canonical form, see the papers by Golub and Wilkinson 
(1976), Kagstrom and Rube ( 1980a, 1980b), Demmel ( 1983), and the recent work of Zeng 
and Li (2008). 

For computation of condition numbers and cstimalors for eigenvalue problems, see 
Bai et al. (1993) and Van Loan ( 1987). 

Descriptions of the standard techniques tbr eigenvalue and eigenvectorcompututions 1 

including the power method, the inverse power method, the Rayleigh quotient iteration 
method, and Ule QR iteration method, can be found in all numerical linear algebra books: 
Golub and Van Loan ( 1996), Trefethen and Bau (I 997), Dcmmel ( 1997), Stewart (200 I a), 
Watkins (2002), and Hager ( 1988). See also the papers by Dongarra et al. (1983, 1992) and 
Parlett (1965, I 966, 1968). 

The papers by Varah ( 1968a, 1970) and Peters and Wilkinson ( 1979) are important in 
the context of eigenvalue computation and inverse iteration. See also an imeresting paper 
by Dhilon (1998) in this context. 

Eigenvalue problems studied in this chapter concern computing the eigenvalues of 
u matrix. On the othe-r hand, inverse eigenvalue problems concern constructing a matrix 
from the knowledge of a partial or complete set of eigenvalues and eigenvectors. Active 
research on this topic is currently being carried out. An authoritative account on inverse 
eigenvalue problems can he found in the recent book by Chu and Golub (2005). Another 
important book on this topic is Gladwell (2004 ). For an account of a special type of 
inverse eigenvalue problem arising in control theory. usually known as pole-placement or 
the eigenvalue assignment problem, see the book by Datta (2003, Chapters \0 and II), See 
also the thesis by Arnold ( 1992). 

Hessenbcrg and real Schur matrices urise in a wide variety or applications. For 
their applications in control theory, see the books by Datta (2003), Patel, Laub, and Van 
Dooren (1994), and Pctkov, Christov, and Konstantinov (1991). The book by Bhaya and 
Kaszkurcwicz (2006) gives an account of control perspectives of numerical algorithms and 
matrix problems. 
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Exercises on Chapter 9 
(Use MATLAB, whenever needed and appropriate.) 

EXERCISES ON SECTION 9.2 

9.1 Consider the following model for the vertical vibration of a motor car: 

Y2 

(a) Show that the equation of motion of the car, neglecting the damping constants 
d 1 of the shock absorber and d2 of the tire, is gi vcn by 

M)'+Ky=O 

where M = diag(mt,m2). K = (!I
1 

k~_tL), andy=(:::~). Determine the 

stability of motion when lll[ = m:: = 1200kg, kt = k'l = 300c%· 

(b) Show that the equation of motion when just the damping d2 of the tire is neglected 
can be written as 

M)'+D}·+Ky=O, 

where M and K arc the same as in part (a) and D = ( d 1 -r/1 ). 
' -Jl dl 

Investigate the stability of motion in this case when d1 = 4500~. 

Hints: Show that the system 

M)'+D}•+Ky=O 

is equivalent to the first-order system _i:(f) =Ax (f), where 

A= ( -Mo_, K _J_, D). with x(f) = Gi:O. 
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9.2 Write tho solution of the equation M)' + Ky = 0 with the numerical values of M 
and K as given in Exercise 9. !(a), using initial conditions y(O) = 0 and j(O) = 
(1,1, ... ,1)7 . 

9.3 Develop an eigenvalue problem for an LC network similar to the case study given in 
Section 9.2.4, but with only three loops. Compute the natural lrequencies. Find the 
mnrles and illustrate how the currents oscillate in the-se modes. 

EXERCISES ON SECTION 9.3 

9.4 Apply the Ger!:gorin disk theorems to obtain bounds for the eigenvalues of the fol· 
lowing matrices: 

(a)ll =G I :) G 
0 

~) ·IO (b) 5 
2 10 

c 
-I 0 

~} (d) u~ 
-I 0 

~} -I 2 -I 2 -I 
(c) g -I 2 -I 2 

0 -1 0 -I 

(e) A randomly generated matrix of order 4. 

m (I ~i 0 
l ) I I . 

I- i l + i 

9.5 Using a GerSgorin disk theorem. prove that a sLrictly diagonally domlnanl matrix is 
nonsingular. 

9.6 Let.x be an eigenvector corresponding to a distinct eigenvalue;. in the Gerggorin disk 
R,. Prove that Jx,J > Jx;J fori ,C k, where .t = (.t,, x2, ... , Xn)t 

9.7 Let A = (au) be ann x n symmetric matrix. 11len using n GerSgorin disk theorem 
prove that each eigenvalue of A will lie in one of the intervals: I au - r1, a0 + r1 ). 

Find an interval where all the eigenvalues of A must lie. 

EXERCISES ON SECTION 9.4 

9.8 Applying the power method and inverse power method, find the dominant eigenvalue 
and the corresponding eigenvector for each of the matrices in Exercise 9.4. 

9.9 Prove that if 1.. 1, ... , f.r. are the eigenvalues of A and v1,.. , Vn are lhe correspond-
ing eigenvectors, then A1 - cr • ... , An - cr arc the eigenvalues of A -a f. and the 
corrcspnnding eigenvectors are Vj, •. ,. V11 • 
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9.10 Explain the slow rate of convergence of the power method with the following matrices: 

(

3 

(a) A= ~ 
2 3) 2.9 I . 
0 I 

(b) A= (l 0 
10 
I 

0) 0 . 
9.8 

Choose a suitable shift cr and then apply the shifted power method to each of the 
matrices and observe the improvement of the rates of' convergence. 

9.11 (Orthogonal iteration.) The following iterative procedure generalizes the power 
method and is known as the orthogonal ire ration process. The process can be used 
lO compute p {p > I) largest eigenvalues (in magnitude) and the corresponding 
eigenvectors. 

Let Q 1 be an 11 x p orthononnal matrix: 

Then 

Fork = 2, 3, ... do 

(I) Compute B1 AQ;~t· 

(2) Factorize B; into QR: B, = Q,R,. 

End 

Apply lhe nbove method to compute the first two dominant cigcnvulucs and eigen­
vectors for ench of the matrices in Exercise 9.4. 

9.12 (Inverse ortlwgonaJ iteration.) The following iteralionj called the inverse orthogonal 
iteratioH, generalizes !he inverse power method and can be used to compute the p 
smallest eigenvalues (in magnitude). 

Let Q t be an If x p orthonormal matrix. 

Fork= 2,3 •... do 

(I) Solve forB,: AB, = Qk~!· 
(2) Factorize into QR: B, = Q,R,. 

End 

Apply the inverse orthogonal iteration to compute the 2 smallest (least dominant) 
eigenvalues of each of the matrices in Exercise 9.4. 

9.13 Let T be a symmetric tridiagonal matrix. Let the Rayleigh quotient iteration be 
applied toT with .to= e11 , then prove that Xt = CJ 11 , where lJn is the lasl column of Q 
in (T rro/) QR. 

9.14 Prove that for a symmetric matrix A, the Rayleigh quotient lies between the smallest 
and the largest eigenvalues. 

9.15 Compute the smallest eigenvalue of each of the matrices A in Exercise 9.4 by applying 
the power method to A~ 1, without explicitly computing A -I. 
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EXERCISES ON SECTIONS 9.5 

9.16 Develop an algorithm. based on the usc of Givens rotations~ to transform a matrix A 
to an upper Hesscnberg matrix. 

9.17 Apply both the Householder and the Givens methods of reduction to the matrix 

A=(~g!~~l 
0 0 0 0 I 
I 2 3 4 5 

to reduce it to a Hessenherg matrix by similarity. Compare the results in the context 
of the implicit Q theorem ('Theorem 9.34). 

9.18 (a) Develop an algorithm to transform a symmetric matrix A into a symmetric 
tridiagonal matrix using Householder transformations •. which takes adv:aiJ.tages 
of the symmetry of A. 

(b) Given the pair (A, b), develop an algorithm to compute an orthogonal matrix P 
such that P APr is an upper Hessenberg matrix H and Pb is a multiple of e1, 

What conditions guarantee that H is unreduced and b is a nonzero multiple of 
e 1? Construct an example to illustrate the algorithm with a matrix of order 4. 

9.19 (a) Show thai it requires !jln3 nops to compute the upper Hcssenberg matrix H., us­

ing the Householder n;ethod of reduction. (Hint: I:;;;~ 4(n-k )2 +I:;;;~ 4n (n­

k) ~ !u3 + 2n 3 = 1~' .) 

(b) Show that if the transforming matrix Pis required explicitly, another ~113 flops 
will be needed. 

(c) Work out the corresponding flop-count for reduction to Hesscnberg fom1 using 
Givens rotations. 

(d) If A is symmetric, then show that the corresponding count in (a) is 

9.20 (a) Given an unreduced upper Hessenberg matrix H, show that matrix X defined 
by X= (e 1,He1, ... , H"'1er) is nonsingularand is such that x- 1HX is a 
companion matrix in upper Hessenberg form. 

(b) What are the possible numerical difficulties with the above computations? 

(c) Give nn example illustrating the numerical difficulties. 

9.21 (a) Prove that if R is upper triangular and Q is upper Hessenberg, then R Q is upper 
Hcssen berg. 

(b) Given an cigenpair (),, x) of an upper Hessenberg matrix H, develop an algo­
rithm using Givens rotalions to compute an orthogonal matrix P such that 

pTf!p = ( ~ ~)' 
where H is (n - I) x (n - I) upper Hcssenherg. How arc the eigenvalues of 
H and if related? Construct a 4 x 4 example to illustrate the algorithm. 

(c) Prove that the eigenvalue problem of a reduced Hessenberg matrix can be split 
into eigenvalue problems of unreduced Hcssenberg matrices. 
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EXERCISES ON SECTIONS 9.6 and 9.7 

9.22 Construct a simple example to show that an arbitrary similarity transformation can 
worsen the conditioning of the eigenvalues or the transformed matrix. 

9.23 If 8 = U' AU, where U is unitary and U'(A + L':.A)U = 8 + 1':.8, then show that 
llt.81b = llt.AIIo-

9.24 (a) Prove that A is normal if there exists an unitary matrix U such that u· AU = D, 
where D is diagonal. 

(b) Prove that a matrix A has a set of 11 orthonormal eigenvectors if and only if A 
is normal. 

(c) Prove that a normal matrix A is unitary if and only if its eigenvalues arc on the 
unit circle; that is, for each eigenvalue A of A, we have P.-1 = 1. 

(d) How does the real Schur form of a normal matrix look? 

(e) Using the eigenvector-sensitivity theorem (Theorem 9.41 ), show that if A is 
normal, then the eigenvector xk corresponding to the eigenvalue )..k is well­
conditioned if Ak is well-separated from the other eigenvalues. 

9.25 Explain both theoretically and experimentally that two of the eigenvectors of the 
matrix 

A= diag(l + E, I-E, 2), 

where Eisa very small positive number, are ill-conditioned. However, the eigenvalues 
are well-conditioned. 

9.26 Show that the unitary similarity transformation preserves the condition number of an 
eigenvalue. 

9.27 Prove the Bauer-Fike theorem using Ger~gorin's first theorem. 

9.28 (a) Given 

(b) 

A=(b I~E)' 
find the eigenvector maLrix X such that x- 1 AX is diagonal; hence show that 
the eigenvalues of A arc ill-conditioned. 

Verify the ill-conditioning of the eigenvalues of A computationally by con­
structing a small perturbation to A and finding the eigenvalues of the perturbed 
matrix. 

Consider 
12 II 10 2 
II II 10 2 

A= 0 10 10 2 
2 

0 0 0 0 II 

Show that the largest eigenvalues of A are well-conditioned while the smallest 
ones are very ill-conditioned by computing the eigenvalues using MATLAB. 
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EXERCISES ON SECTION 9.8 

9.29 Apply 3 iterations of the single-shift QR iteration to each of the following matrices 
and observe the convergence or nonconvergence of the subdiagonal entries: 

(ii) A = (i ~ ~) . 
0 -2 2. 

9.30 (Implicit single-shift QR.) Consider one step of the single-shift Hessenbcrg QR iter-
ation: 

or (simply) 
H- AI= QR. H = RQ +AI, !. is reaL 

(•0 Prove·tharUtc first column of Q is a-multiple of the first column of H -.M. <lnd .. 
therefore contains only two nonzero entries. 

(b) Denote the first column of H !.! by 11 1 =(!ttl- A. h,1, 0, ... , O)r Find a 
Givens rotation Po such that Poh 1 is a multiple of e 1• Show thatthc first column 
of Po is the same as the first column of Q, except possibly for signs. 

(c) Fonn H' PJ H Po. Find Givens rolalions h2, J.n, ... , J,c11-i such lhat 

u; = (JnJ43· ... ' ln.r.-tlT FI'(J,, < <.' .!,_,_,) 

is upper Hessenberg. ShO\v thal the matrix 

Q = Pol;.2. , .. , lr.,n-1 

has the same first column as Po and hence the same first column as Q. Conclude 
finally from the implicit Q theorem (Theorem 9.34) that the Hessenberg matrix 
H{ is essenrially the same as fl. 

Steps (a) to (c) constitute one step of the implicit single-shift Hessenberg QR iteration. 

Apply one step of the implicit single-shift QR iteration to the symmetric tridiagonal 
matrix 

-1 

-I 

9.31 Construct one step of the explicit double-shift QR iteration (real arithmetic) and one 
step of the implicit double-shift QR iteration for the matrix 

(

1 2 3 

A
- 1 4 5 
- 0 1 0 

0 0 _) !) 
and show that the obtained Hesscnberg matrices in both cases are (essentially) the 
same. 
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9.32 (LR iteration.) In analogy with the QR iteration algorithm, develop an LR iteration 
algorithm, based on LU decomposition of A, making the necessary assumptions. 

(I) Set A= A 1• 

(2) Compute A,= L,R, Ak+ 1 = R,L, k = I, 2, .... 

Why is this algorithm not to be preferred over the QR iteration algorithm? 

9.33 Considering the slructures of the matrices P;, i = 0, 1 .... , n - 2, in the implicit 
double-shift QR iteration step; show that it requires about 10n 2 Oops to implement 
this step. 

9.34 Show that the matrices Ho and H2 in the double-shift QR iteration have the same 
eigenvalues. 

9.35 Prove the following: 
Let H = Ho be an upper Hessenberg matrix. Generate the sequence !Hd: 

H,- Jlkkl = Q,R" Hk+l = R, Q, + Jl,l. 

Then 
n:'~ 1 (H- J1;/) = (Q1, ... , Q")(R", ... , R1 ). 

9.36 (Deflation using invariallf subspace.) Suppose that we have ann x m matrix X with 
independent columns and an m x m matrix M such that 

AX= XM. 

Consider the QR factorization of X: Q 7 X= (§).Then show that 

(a) QAQT = (Aol A,). A, , 

(b) the eigenvalues of A are those of A 1 and A3 ; 

(c) the eigenvalues of A 1 are those of M. 

MATLAB and MATCOM Programs and Problems on Chapter 9 

In Problems M9.1-M9.3(a) (i) X 0 stands for the initial vector, (ii) epsilon is the tolerance 
for convergence, and (iii) 11 is the order of matrix A. 

M9.1 Write a MATLAB program to compute the dominant eigenvalue of a matrix using 
the power method as follows: 

[lambda I]= power( A, xO, epsilon, n). 

(a) Modify the program power to incorporate a shift sigma: 

[lambdalj = powershift(A, xO, sigma, epsilon, n). 

(b) Apply power and powershift to the following matrices and compare the speed 
of convergence: 

(i) A =a randomly generated matrix of order 15. 

(ii) A = the Wilkinson bidiagonal matrix of order 20. 
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M9.2 Using givhs(A) from MATCOM and the MATLAB function hess( A) on each of the 
two matrices from Problem M9.l, verify the implicit Q theorem (Theorem 9.34). 

M9.3 (a) Write a M.'\"fLAB program called invitr to implement the inverse iteration 
algorithm (Algorithm 9.2) as follows: 

x = invitr(A,xO.sigma,epsilon,n). 

(b) Write a MATLAB program called powersmallto compute lambdan, the small­
est eigenvalue (in magnitude) of a matrix A: 

lamhdan = powersmali(A,xO,epsilon,n). 

Test data and experiment: 

(a) Consider the symmetric tridiagonal matrix given in (9.5) of order 200appearing 
in the buckling problem of Section 9.2.3. Apply power to compute the dominant 

-eigenvalue lambda! by choosing .to arbitrarily. 

(b) Now compute the smallest eigenvalue in magnitude,lambdan, by using 

(i) powershift with sigma= lambda!; 
(ii) powersmall with the same Xo as used to implement power. 

(e) Compare the flop-count of (i) and (ii) in (b). 

(d) Find the smallest critical load that will buckle the beam. 

(e) Taking sigma= lambdan, find the eigenvector corresponding to the smallest 
eige-nvalue A" using in,itr . 

.1\'19.4 (The purpose of this exercise is rostudy how the eigenvalues of a matrix A are aJfected 
by conditioning of the transforming matrix.) 

(a) For each of the following matrices, construct a matrix X of appropriate order 
which is upper triangular with all the entries equal to I except for a few very 
small diagonal entries. Then compute the eigenvalues of A and those of x- 1 AX 
using MATLAB commands eig and inv: 

(i) A = an upper triangular matrix of order 200 with several eigenvalues 
clustered around L 

(ii) A = the Wilkinson bidiagonal matrix of order 20. 

(b) Repeat part (a) by taking X as a Householder matrix of appropriate order (note: 
tlris X is ortlwgona/). 

(c) Compare the results of (a) and (b). 

M9.5 (a) Compute the eigenvalues of the matrices in Exercise M9.4 using 

(i) MATLAB commands poly and roots; 

(ii) MATLAB command eig. 

(b) Compare your results of (i) and (ii) for each matrix. 

l\19.6 (The purpose oftlris exercise is to study the sensitivities oftlte eigenvalues o.f.mme 
well-known matn'ces with ill-conditioned eigenvalues.) 
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Perfonn the following on each of the rnaLrices in the test data: 

(a) Using the MATLAB command [V, DJ = eig(A), find the eigenvalues and the 
matrix of right eigenvectors. Then find the matrix of left eigenvectors W as 
follows W = (inv(V))' /norm(inv(V)'). 

(b) Compute si = wT V;, i = 1, ... , 11, where Wi and Vi are the ith columns of W 
and V. 

(c) Compute c1 ::::the condition number of the ith eigenvalue= I js1, i = 1, 2, ... , n. 

(d) Perturb the (11, l)th entry of A byE = 10- 10 Then compute the eigenvalues 
5.1, i = I, ... , n, of the perturbed matrix using the MATLAB command eig. 

(e) Make the following table for each matrix. 

!..; i; !!..; -i;! Cond (V) c-
' 

(I) Write your conclusions. 

Test data: 

(I) A = the Wilkinson bidiagonal matrix of order 20. 

(2) A = the transpose of the Wilkinson bidiagonal matrix of order 20. 

(3) 

12 I I 10 3 2 
I I I I 10 3 2 

A= 

2 2 
0 0 0 

M9.7 Study the sensitivities of the eigenvectors of the following matrices by actually com­
puting the the eigenvectors of the original and perturbed matrices using the MATLAB 
command IV, D] = eig(A), IV, D] = eig(A), where A is the matrix obtained from 
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A by perturbing the (n, I )th entry by E = I0-5, 10-7 , and w- 10 : 

(I) 

,1 _(~ Og99 g ~ ) 
.- 0 0 0 2 . 

0 0 0 0.0005 

(2) A = diag( I, 0.9999, I, 0.9999, I). 

(3) Randomly genermcd matrices of order 25, 30, 40, and 50. 

M9.8 Write a MATLAB program called qritrb to implement the basic QR iteration. 

(a) [A] = qritrb(A, nwn), where Jtum is the maximum number of iterations. 

(b) Modify the program now to implement the Hesscnberg QR iteration [t1] = 
qritrh(A. num). where man is the number of iterations 

(c) Ciimpareilicfiop'count in (a)iu1d (b). 
Usc random matrices of order 50. 60, and I 00. 

M9.9 (The purpose of this exercise is to verify that explicit and implicit double-shift QR 
iterations produce essentially the same Hessenberg matrix.) 

(a) Write a MATLAB program to compute one step of the explicit double-shift QR 
iteration: [A]= qritrdse(A). 

(b) Write a MATLAB program to compute one step of the implicit QR iteration 
with double shift: [A]= qritrdsi(A). 

(c) Compare your results of (a) and (b) and conclude that they are essentially the 
same, using random matrices of order 10, 15, 20, and 50. 

M9.10 Write a MATLAB program to deflate the last k rows and k columns of a Hessenbcrg 
matrix in the following form: hprimc ~ deHat( H, k ). 

Test your program with a randomly generated matrix with different values of k. Note 
that fork = 1, hprimc will be of order 11 - l, fork = 2, hprime will be of order n - 2, 
and so on. 

1\19.11 Using qritrdsi and della!, write a MATLAB program to dctcnnine tbc real Schur 
fonn of a Hessenberg matrix A in the following fonn: 

[hl rsf(h, cps), 

where eps is the tolerance. 

Test: Generate randomly a 20 x 20 Hessenbcrg matrix and make the following table 
using rsf. 

iteration h2! "" I 11., h'"' ... ... I lt,o,t9 

I I 
Note: Some of the above programs are available in MATCOM. 



Chapter 10 

Numerical Symmetric 

Eigenvalue Problem and 

Singular Value Decomposition 

Background Material Needed 

Basic propenies of eigenvalues and eigenvectors (Theorem 2. 7) 

• Vector and matrix norms {Section 2.5) 

• Singular value decomposition anti its properties {Section 7.8) 

10.1 Introduction 
ln this chapter, we mainly describe computational algorilhms for two intimately relaled 
problems; the symmetric eigenFafue pmblem and sb;gular value decomposition (SVD). 

The symmetric eigenvalue problem enjoys certain remarkable special properties, 
and to exploit these properties, specialized methods have heen developed. These in­
clude the tridiagonal QR iteration, bisection, divide-andMconqucr, and Jacobi methods (Sec­
tion 10.2.2-l 0.2.5). A brief description of these methods will he given here. In addition, a 
brief review of the special properties or the symmetric eigenvalue problem will be presented 
(Section 1 0.2. I). 

The concept of the SVD has been introduced in Chapter 7 and some properties have 
heen described there. 

The SVD has a long and fascinating history. The names of at least rtvc classical and 
celebrated mathematicians-E. Beltrami (1835- I 899), C. Jordan ( 1838- I 922 ), J. Sylvester 
( 1814-1897), E. Schmidt{ 1876-1959), and H. Weyl ( 1885-1955)--can be associated with 
the development of the theory of the SVD. Some details of the contributions of these 
mathematicians to the SVD can be found in an interesting paper by Stewan ( l993b). Also 
the book by Horn and Johnson(! 99 I) contains a nice history of the SVD. 

As we have already seen in Chapter 7, in recent years the SVD has become a com­
putationally viable tool for solving a wide variety of problems arising in many practical 
applications, 

In this chapter, we will give a fomml proof of the SVD theorem (Theorem 10.8). 
There arc scvcml proofs of lhe SVD theorem available in the literature: see Golub and Van 
Loan (1996, p. 70) and Horn and Johnson (1991). See also Pan and Sigmon (1994). We 
will, however, give a more traditional and constructive proof that exhibits rlw relationship 

351 
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between the singular values and singular vectors of A with tire eigenvalues and eigenvectors 
of AT A. 

We will also discuss the sensitivity of the singular values (Section 10.3.2). The 
singular valttes are insensitive to perturbations. and this is remarkable. 

Finally, we describe the popular Golub-Kahan-Reinsch algorithm (Section I 0.3.6) 
and one of its variants. called the Chan-Lawson-Hanson algorithm (Section 10.3.7) for 
computing the SVD. 

10.2 Computational Methods for the Symmetric 
Eigenvalue Problem 

In lhis section, we will first describe some special properties of the symmetric eigenvalue 
problem which have been exploited 1n development of several special algorithms for the 
problem. We shall then describe briefiy four such methods: 

• The bisection method (Algorithm 10.1). 

• The symmetric QR iteration algorithm (Algorithm I 0.2). 

• The divide-and-conquer method (Algorithm 10.3). 

• ll1e Jacobi method (Section 10.2.5). 

Except for the Jacobi method. all the other ones compute the eigenvalues by first transform­
ing the symmetric matrix A into the symmetric tridiagonal form. 

If the eigenvectors are desired, the inverse iteration merhod (Algorithm 9.8) has to 
be invoked by replacing the Hessenberg matrix with the symmetric tridiagonal matrix T. 

1 0.2.1 Some Special Properties of the Symmetric Eigenvalue Problem 

A. The real Schur form of a real symmetric matrix is a diagonal matrix. That is, there 
exists an orlhogonal matrix Q such that 

Q7 AQ = D = diag(lq, .... i.,), 

where ;_i, i = I, ... , 11, are the eigenvalues of A. 

B. The eigenvalues of a symmetric matrLt are real and the eigenvectors can be chosen 
to be orthogonal. 

C. Minimax characterization (Cot~rant 15-Fischer minimax: theorem). Let /..1 2::: A2 2:: 
· · · 2: A11 be the eigenvalues of a symmetric matrix A, Then 

, xTA.x 
A.;= mtn max --. (IO.l) 

S O;bxES _t Tx 

15Richard Courant (1888~ 1972) was born in Lublinitz, Gennany (now Lublinicc, Poland). He studied un~ 
dersuch celebrated mathematicians as Hilbert and Mlnkowski and obtained his doctorate fromGtlttingen, Ger­
many, in 191 ()under Hilbcn's supervision. One of the most famous mathemalical:contributions of Courant is 
the finite element method. He served r~s Professor of Mathematics at New York Un,iversity from 1936 to 1972. 
The present Courant Institute of Mathematical Sciences at New York University wils named after him in 1964. 
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where the minimum is taken over all subspaces of dimension (n - i + i) and the 
maxlmum is taken over aU nonzero vectors in the subspace S. In particular. 

}.I =).max 
x 7 Ax 

max-­
xf'O J:Tx 

and 1.11 = Amin = min 
x:;LO 

Praaf. See Golub and Van Loan (1996. p. 394 ). 0 

xTAx 
(10.2) 

D. General perturbation property. Let A be an n x n real symmetric matrix. Let 
A' = A + E. where E is a real symmetric perturbation of the matrix A, and let 
A1 ;;;: A:; 2: · · · ~ An and A~ ?: i.2_ ::: · · · 2:: A;1 be the eigenvalues of A and A', 
respectively. Then it follows from the Baucr-Fike theorem (Theorem 9.37) that 

)..; - IIE112 ::51.: ::5 A1 +liEU, i = l. 2 .... ,11. (10.3) 

This result is remarkable. It says that rile eigenvalues of a real symmetric mntri.t· are 
well~conditioned; that is, small changes in lhe elements of A can cause only small 
changes in the eigenvalues of A. Specifically, it says that tire eigenvalues of the 
perturbed matrix A' cannot differ from the eigeui'alues of the original matri..~; A by 
more than the largest eigenvalue of the perturbed matn"x E. (Sec also the corollary 
of the Buuer-Fike theorem given in Section 9.7.2.) 

Example 10.1. 

A (
I 2 3) 
2 3 4 ' 
3 4 6 

The eigenvalues of .4 are -0.4203.0.2336, and 10.1867. The eigenvalues of A+ E 
are -0.4203,0.2337, and 10.1868. Note that IIEI!2 10-4

• I 

E. Rank-one perturbation property. In this section we state a theorem that shows how 
the eigenvalues are shifted if Eisa rank-one perturbation matrix. The result plays an 
important role in the divide-and-conquer algorithm (Dongarra and Sorensen ( 1987)) 
for the symmetric eigenvalue problem, to be discussed in Section 10.2.4. 

Eigenvalues of a Rank-One Perturbed Matrix 

Theorem 10.2. Suppose B A +abbT, where .4 is ann x n symmetric matrix, a is a scalm; 
and b is an H-vectOI: Let A1 ?: ).2 ;:: · · · 2: An be the eigenvalues of A and),_~ :::: · · · :=:: >.;, 
he rite eigenvalues of B. Then 

A; E [J .. i> ,i,i_iJ, i = 2, ... , u, if a?:: 0, 

A;E[).;+t·l.d, i=I, ... ,II-1, ifa<O. 
(I 0.4) 

Pmof. See Wilkinson (1965, pp. 97-98). 0 
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Example 1 0.3, 

A = (~ ~ ;) , a = I, b = (I, 2, 3)r. 
3 5 6 

The eigenvalues of Bare J.j -3.3028, 1.; = 0, '-I = 0.3028. The eigenvalues of 
A arc AJ = -0.5157, 1.2 =0.1709, 1. 1 = 11.3448. ItiscasilyverifiedthatA2 < >.; < /. 1 
and A3 < A; < Az. I 

1 0.2.2 The Bisection Method for the Symmetric Tridiagonal Matrix 

In this section we describe a method for finding the eigenvalues or a symmetric matrix. 
The method is particularly useful if eigenvalues arc required in an interval. ln principle., 
i]_QW~Y.t;_t::,_h (;a_~ be_ used to find all eigenvalues. 

Fi;st: the-;;ymme-tfic matrix A -is tfansf{irmed intO ·a symmetric tridiagonal matrix T 
using Householder's method described in Chapter 9; that is. an orthogonal matrix P is 
constructed such that 

"'' f!t 
{J, "' fJ1 0 

PAPT=T= (10.5) 

0 flll-1 CYn-l fin~! 

f3n-l a, 

A three-term recursion. Let p1()..} denote the characteristic polynomial of the I x i 
prlncipal submatrix ofT. Then these polynomials satisfy a lhree-term recursion: 

p,(!.) = {a; -A) P1-1 (A) - {J,'_ 1 Pi~·li'-). i = 2, 3, ... , ll, (10.6) 

with 

po().) = I and p, (I.)= a, - !... 

Without loss of generality, we may assume that {J1 # 0. i = I, 2, ...• n - l. Recall 
that matrix T with this property is called unreduced. If a subdiagonal entry ofT is zero, 
then T becomes a block diagonal matrix and its eigenproblem can thus be reduced to that 
of its submatrices. The eige11vafues of an unreduced symmetric tridiagonal matrix Tare all 
real and distinct. Since the characteristic polynomial P,().) ofT can be easily computed, an 
immediate idea that comes in one's mind is to apply the well-known bisectio11- method for 
root-finding to P11 {A) to locate an eigenvalue. This wiH he in contradiction to the warning 
that we gave in Section 9.5.5 that the eigenvalues should not be computed by finding the 
zeros of the- characteristic polynomiaL The differellce here, however, is tltat the coefficients 
of the characteristic polynomial do not have to be explicitly computer]; all that is needed 
is to determine the sig11s of Pi(/..), i = 1, .. ,, n, for a given number {l. This is possible 
by exploiting some additional remarkable spectral properties of the symmetric tridiagonal 
matrix T. as given in the following theorem, 



1 0.2. Computational Methods for the Symmetric Eigenvalue Problem 355 

Theorem lOA (interlacing property). Let T be an unreduced symmetric tridiagonal 
matrix. Let the eigenvalues of the kth leading principal minor Tlkl ofT be denoted by 

(k} (k) '\k) ' A1 < A2 < ·, , < A~; . Uwn 

dk-+-1i ~ .::~! 1 {k-i·l! k I 
Ai < Ai < ""i+l ' • = ,2, ... ,/J I, i = I, 2, .... k L ( 10.7) 

.An illustration: Suppose T is a 4 x 4 unreduced symmetric tridiagonal matrix. Then 
rm has just one eigenvalue, Ai 1 )~ T 121 has two, Af1

, Af1
: T0l has three, Ai31

, A~3 l, and >..~31 ; 
and yH·l = T has four, ;._;·n, A.~4l, A~4 ', Ai'11 . Figure JO.l shows how the interlacing oflhese 
eigenvalues will then look like. 

T (l). "flj 

. "' 
T t2). 1 {2) 1 {2) 

• AI •""1 

T
{3). 1 {3) .\J) d3) 

' I\. I 'A2 'A3 

),_(41 
J 

't3l 

"' 

Figure 10.1. The interlacing property. 

• (3) ,, 

Reul Line 

Real Line 

A(.J-_1 
4 

Real Line 

Real Line 

The ahove results lead to the following remarkable property of the polynomials p1().). 

Theorem 10.5. The number of sign agreements benveen the consecwive terms of rlw 
sequence ofpolynomials I Po(!'). Pt (IlL , , , . Pn (fl.) I equals the number of eigenvaluesof T, 
which are strictly greater rllan fl. 

Proof. See Wilkinson (1965, pp. 30~301). D 

Note: The sequence {Pk (/1)} might contain zeros. fn this case the convention is that 
pk{fi) has the opposite sign of Pt-J (!')if pdf<)= 0. 

Example 10.6. Let 

T= u 2 D· 
The characteristic polynomials (p,(!.)} are 

PoP-l =I; p,(J,.) = 2-!.; p,().) (2 !..) 2 -I; 

p,(!..) = (2- i.)p,(!..)- p,(l.) (2- ).)3
- 2(2- !..). 
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Let 11 = 0. Then the sequence {po. Pt(/.L), p,(Jt), p,(J<)I is ( 1, 2, 3, 41. There are 
three agreements in sign. Thus aH the eigenvalues ofT are greater than or equal to zero. In 
fact, since p3(0) = 4 cF 0, it follows that all the eigenvalues ofT are positive. 

Let I' = 2. Then the sequence {po(ft), PI (Jl), P2(Jl), p,(/1)) is {I, 0, -I, Oj. The 
signs here arc + - - +. There is only one agreement in sign confinning lhat T has one 
eigenvalue greater than 2. 

Verify: The eigenvalues ofT are {2, 2 + J2, 2- J2J. I 

Bisection idea. Theorem 10.5 makes it possible to use the well-known bisection algo­
rithm to locate a zero of the characteristic polynomial p, (A) or, in other words. a specific 
eigenvalue of A. 

GORITHM 10.1. The Bisection Algorithm r:r the Symmetric Eigenvalue 
blem. 

I 
Inputs: An n x n symmetrJc tndiagonal matrix T ~ an integer m < n, and 

f > 0. 
Output: An approximation to the eigenvalue f.n-m+h assuming that Al < 

1

·. ;c, < ... < ;<,, 

Step 1. Find an interval [st, s2] containing An~m+ l· Since A~' =:: !IT jl, initially, 
we can takes, =-II Til,.,, s, = IITII00 • 

s 1 +s"" 
Step 2. Compute s3 = ~2~·. 
Step 3. Compute N (s3) = the number of agreements in sign in the sequence 

{I, p,(s3}, p2(ss) •.... p,(s,)}. 

If N(s3) < m, sets2 = s3 ; otherwise, sets1 s3 . 

S• +sJ 
Step 4. Test whether Jso - s11 < E. lf so, accept s3 = T us an approx-

imate value of 1-!l-m+!· Otherwise go to Step 2. 

Note: After k steps, the desired zero is located in an inten,al of width !.•,;s1
). 

Example 10.7. Consider the matrix Tin Example 10.6. Suppose we want to approximate 

A1 = 2- J2. Then m 3. 

Iteration 0. Initially, s1 = -4, s2 = 4, s3 = 0; N(s3} = N(O) = 3. Sets,= S3-

Iteration 1. s1 = 0, s1 = 4, s3 = = 2; N(s3} = N(2) = 2 < 3. Sets,= 's3 . 

Iteration 2. s 1 = 0, s2 = 2, s3 = 0'!2 1; N(s3 = 2 < 3. Set s2 SJ. 

Iteration 3. s, = 0, s2 = I. s3 = 0.5; N(s3) = 3. Set St = s;. 

The eigenvalue 1. 1 is clearly in the interval [0.5, I], which is, in facl. the case. We can 
continue our iterations until the length or the interval ls::: - SJI < E. I 
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Flop-count and stability. Once A is transformed into T, it requires about O(n) Oops for 
evaluation of the sequence {p;(/1)}. Thus to find k eigenFalues, only O(kn)jlops will be 
needed. A remarkable fact is that absolwe errors in the computed eigenvalues are small; 
but the relative errors in the small eigenvalues may be large. If eigenvectors arc desired, 
inverse iteration can be invoked. Computing one eigenvector then requires only O(n) 
flops, since ann x n tridiagonal system can be solved using O(n) flops (Chapter 6). Thus 
in principle, all the eigenvalues and eigenvectors ccm be computed in O(n 2)flops by this 
method, once the symmetric matrix A has been tran!lfonned to the symmetric tridiagonal 
matrix T. However, the method is best used to find a selected number of eigenvalues, the 
eigenvalues in an interval or a prescribed number of eigenvalues to the left or right of a 
given eigenvalue. 

10.2.3 The Symmetric QR Iteration Method 

To apply the QR iteration method of Chapter 9 to a symmetric tridiagonal matrix, we note 
that if the starting matrix is a symmetric tridiagonal matrix T, then so is each matrix Tk in 
the sequence 

and, furthermore, we need only 0 (n) flops to generate each T~:. (note that the QR factorization 
of asymmetric tridiagonal matrix requires only O(n) flops). Thus, the tridiagonal symmetric 
QR iteration is an O(n 1 ) algorithm. 

Also, since the eigenvalues of a symmetric matrix are all real and the real Schur 
form of a symmetric matrix is a diagonal rather than a triangular matrix, the double-shift 
strategy discussed for the general eigenvalue problem in Chapter 9 is not needed in this 
case. However, in this case a popular shift, known as the Wilkinson shift, defined below, is 
normally used. 

Instead of taking the (n, n)th entry at every iteration as the shift, the eigenvalue or the 
trailing 2 x 2 matrix that is closer to the (n, n)th entry is usually chosen as the shift. This 
is known as the Wilkinson shift. Thus if a trailing 2 x 2 submatrix ofT~:. is given by 

then the Wilkinson shift is 

(

(k} 
!1!-1.1!-l 

(k) 
tl!,/1-1 

(k) ) 
t/1,/J-1 

(k) ' 
tn,J 

' 
11 = t(kJ + r- sion(r) r' + (r(kl )-

/J/1 • 0 - 11.11-1 ' 

where 

r= 
( (k) (k)) 
tl!-l,n-1 - t/111 

2 

( 10.8) 

(10.9) 

Remark. It is possible to compute Tk+l from T1:. without explicitly forming the matrix 
T~:. - f-11:./. This is known as the implicit symmetric QR algorithm. For details, see Golub 
and Van Loan ( 1996, pp. 420-421 ). Sec also Exercise 9.30 in Chapter 9. 
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ALGORITHM 10.2. Symmetric QR Iteration with the Wilkinson Shift. 

Input: A symmetric matrix A. 
Output: The approximate eigenvalues of A. 

Phase I. Transform A into a symmetric tridiagonal matrix T using orthogonal 
similarity transformations: 

PAPT = T. 

Phase II. Apply single-shift QR iteralioo to T with the Wilkinson shift w 
Set T = T1• 

For k = l, 2 .... do until convergence 

Find a real shift I' 

... J .. T,- Jli Q,R, (shiftedQRfactorizatioo). 

2. T,_,., Rt Q, -1- fLI (reverse multiplication with shift added). 

End 

Convergence of the Symmetric QR Iteration with the Wilkinson Shift 

The QR algorithm with the Wilkinson shift always converges. The rate of convergence is 
cubic for most matrices; in the worst case it is at least quadratic. 

Flop-count. 

• Transformation toT: 1n3• 

Eigenvalue computations: 0{n 2). (Note that the QR factorization of a tridiagonal 
matrix requires only O(n) flops (Chapter 6)). 

• All the eigenvectors ofT: a little over 6n3 on average. 

Round-off error property. As in the general nonsymmelric case, the symmetric QR with 
implicit shift is stable. Il can be shown that, given a symmelric matrix A. the symmetric 
QR algorithm with impiicit shift generates an orthogonal matrix Q and a diagonal matrix D 
such that 

where 

¢(n) is a slowly growing funclion of 11. 
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Accuracy of the computed eigenvalues. Each computed eigenvalue l., satisfies the 
inequality 

Thus, the absolute error in each computed eigenvalue is small. 

1 0.2.4 The Divide-and-Conquer Method 

As the title suggests, this method is based on the divide-and-conquer principle. The al­
gorithm.first divides a given symmetric tridiagonal eigenvalue problem into two smaller 
subproblems, and then combines the solutions of the subproblems to recover (conquer) the 
solation of' the original problem. The method was originally suggested by Cuppen ( 1981 ). 

The method can be used to compute all the eigenvalues and the corresponding eigen­
vectors of a symmetric matrix, and it is faster than the symmetric QR iteration method just 
described. We present here a very brief sketch of the method. 

Suppose that the symmetric matrix A has been transformed to a symmetric tridiagonal 
matrix T by an orthogonal similarity. Let 

bl 0 

l (10.10) 

bn-1 
bn-1 a, 

Define 

(" 
bl 0 

l Tl 
bl 

= 
ak-1 bk-l 

0 bk-l ak- bk 

(10.11) 

( 
ak+1 -Ilk bk+l 0 

l T2 = 
bk+1 

b/l-1 

0 bn-1 a, 

(10.12) 

Then 

T=( 
T1 0 ) + b,vvr, 0 T, 

where 

v = (0, 0, ... , I, I, 0, ... , O)r, 
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Since T1 and T;. are symmetric tridiagonal. we can find orthogonal matrices Q1 and 
Qz such that 

r r, = Q,D,Q, and r, = Q2D,Qi. where D 1 and D1 are diagonal matrices. 

Then 

T ( Q, 0 ) [ ( D, 0 
) +b'""']( Qf 0 ). 0 Q, 0 D, 0 Qi 

where 

~r )v. 
Therefore, the eigenvalues ofT are the same as those of 

' T 
D = D + b'"" = (10.13) 

where D is given by 

and p = bk. \Ve therefore concentrate now on how to obtain lhe eigenvalues and eigenvec­
tors of the rank-one perturbed diagonal matrix D = D + puu'~'. 

Assume without any loss of generality that llu liz = I and p = b, ;6 0. Let D = 
diag (d1, d2, ••• , d,1). Assume that d1 < d2 < d3 < · · · < d 11 and 11011£! aftlte components 
ofrhe l'ector 1t is zero. 

In fact, a zero component of u is a blessing in disguise, \Ve cnn show (Exercise 1 0.7) 
lhat. in this case, we get an eigenvalue and eigenvector pair free. Also, if k eigenvalues 
of D are equal, then the problem can be de Hated by deleting (k I) rows and columns 
(Exercise I 0.8). 

Let (A, q) be an eigenpair of D. 1l1en we show that 

(i) lc is a root of the equation 

(ii) 

and 

q = (D- 'A/)- 1
!1 

is an eigenvector of {D + puur) corresponding to A.. 

To show (i), we note that since(/., q) is an eigenpair of b we must have 

( D + pwir )q = J.q for some q ;6 0, 

(10.14) 

(10.15) 
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that is. 
(0- i.l)q = -p(11Tq)11. 

Now our assumptions that p :{: 0, that d1 < d2 < d3 < · · · < d11 , and that none of 
the components of u is zero imply !hm (a) {D- /.1) is nonsingular, and (b) uT q is nonzero 
(Exercise I 0.1 0). 

Multiplying by (D- ).1)- 1 we have 

q = -p(u1q)(D- :C/)-1
11. (10.16) 

Multiplying both sides of(l0.16) by uT and dividing by the nonzero scalar urq, we 
have 

To show (ii), we note that 

( D + Plllir)(D - l.l)-1 11 = (D - M +AI + pwt")(D - ),.l)-1u 

= 11 +MD- )./)- 1 11 + upur (D -H)- 1u 

= 11 +MD- J..l)- 1u +u(-1) (using 10.14) 

t~+i.(D i.l)- 111-u =A(D-/../)-111. 

locating the roots of (10.14). Note that 

l+puT(D-AI)-111=0 

can bt: written in terms of the components Ui of u as follows: 

(10.17) 

II ll~ 
f(i.)=l+pii,.(D-Al)- 1u l+p~--1 -=0. (10.18) 

L.d !. 
j~J J 

This equation is usually known as the secular equation. 
Again, because d1 ~s arc all distinct and none of the components of u is zero, we can 

show (Exercises 10.11) that j(i.) = 0 has precisely n roots, one in each of the intervals 
(dJ. d1+!), j = I, 2, ... , 11- I, and one 10 the right of d, if p > 0 or one to the left of d1 if 
p < 0. 

For example if 11 = (0.7, 0.8. 0.9, l)T, p = {.and D = ding( I, 2. 3, 4 ), the graph of 
the secular equation will look like the graph in Figure 10.2. 

-V ) ' 

' 
1 

·-1 I 
-11 

-2 

-l 

-4 

Figure 10.2. An illustrative graph of the secular equation. 
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Obtaining the eigenvalues and eigenvectors. Knowing that the roots of f(l.) = 0 
arc located in such spedfied intervals, we can then apply the blscction method or Ne\\'ton's 
method to find these roots in each of these intervals. Once a root is found, the corresponding 
eigenvector can be obtained from ( 10.15). 

However, a more stable way of computing an eigenvector u is as follows (see Demmel 
(1997, pp. 224-225)): 

Lctdll <An<··· <di+l < l.i ··· <d1 < A1. 

"' Compute. the ith component llj as 

• ComputeJhe eig~nvectors of D + uu T using ( 10. 15), 

ALGORJTHM 10.3. Divide-and-Conquer Method. 

Input: A symmetric tridiagonal matrix T as given in (10. 10). 
Output: Approximate eigenvalues and eigenvectors ofT. 

Step 1. Form 

T = ( ri ;, ) +b1vv
1

, 

where T1 and T2 arc as given by (10.1 I) and ( 10, 12). 

(10.19) 

Step 2. Find orthogonal matrices Q 1 and Qz such that QfT, Q, = D1 and 
QiT,Q, = D,, where D, and D, arc diagonal matrices. 

Step 3. Form D = diag(D 1, D2 ) = diag(d1 ... d,) and " = diag( Qf, Ql'Jv. 

Step 4. Find the eigenvalues ofT by solving the secular equation (10. 18), 

" 
Jf'.) =I +p"' =0, 

L.,d-1. 
j=i J 

and obtain the eigenvectors of D + puu 1 from ( !0, 15) with 11 computed by 
(10.19). 

Step 5. Recover the eigenvectors ofT: If Q' is the eigenvector matrix of D + 
puuT. then the eigenvector matrix ofT is given by 

Flop-count. Assuming that one Newton iteration step costs about 0(11) flops, tile algo­
rithm wilt require only O(n1 ) flops for all then eigenvalues. The cost of computing each 
eigenvector from a computed eigenvalue is also O(n) flops. 
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Remarks. (i) Bunch. Nielsen, and Sorensen ( 1978) proposed a method for solving f()..) = 0 
using rational function approximations. Their method converges quadratically. For more 
on this method and implemcntational details, see Bunch, Nielsen, and Sorensen ( 1978), 
Dongarra and Sorensen (1987), and Sorensen and Tang (1991). 

(ii) The divide-and-conquer method is naturally parallel. 
Note that, because T1 and T2 are both symmetric tridiagonal, the eigenvalue problem 

for each of these matrices can further be decomposed into two subproblems, resulting in four 
subproblems. These four subproblems again can be decomposed into eight smaller problems 
and the process can be continued for us long as desired (possibly until the problem sizes 
become I x I or 2 x 2). Since each of these subproblems is independent, the original 
problem can be divided into many independent subproblems. Sec Dongarra and Sorensen 
( 1987) for parallel implcmentutional aspects of this method, fn fact. the divide-and-conquer 
algorithm was originally targeted as a parallel scheme, but it turns out to be faster than the 
symmetric QR algorithm if properly implemented (see Gu and Eisenstat (1995a)). 

1 0.2.5 The Jacobi Method 

One of the classical methods for computing the eigenvalues of a symmetric matrix is the 
method introduced by C. J. JacoW6 in 1846. Since asymmetric matrix A can be diagonalized 
by onhogonal similarity. the idea is to create onhogonal matrices J0• J1, ••• , ];_ 1 such that 
the sequence {At J defined by Ao A, 

A, f[_,A,_,J[_ 1• k=l,2, .... 

approaches a diagonal matrix for large k. 
In Jacobi's method, the orthogonal matrices arc nntbing but Givens rotations: but Lhi.!y 

were originally invented by Jacobi, 1l1ese matrices arc created successively to make one 
pair of off-diagonal entries zeros, one pair at a time. Recall from Chapter 7 that each of 
these rmalions is uniquely determined by two numbers, c and s. Formulas for c =cosO 
and s =sin llnsedfor QRfactorizarion in Chapter 7 have to be modified It ere. 

It can be easily verified that (i. j) and (j, i) entries of the matrix A,+ 1 = f! A,J, can 

be made zeros simultaneously in the Jacobi method: if A,= (a)j'J, then this will happen 
if J,(i, j, c, s) is constructed with c and s defined by 

I 
c = ,.....----,;:-, s =ct. 

v' I + 12 

where 

sign(r) 

(!rl + JJ + r2)' 
r= 

Unfortunately, the zeros created at an earlier step get destroyed by subsequent steps. 
However, as in tire QR iteration algorithm for eigeJJvalue compurarions. tire nonzero eHtries 
decreases steadily as the iteration proceeds. 

l 6 Carllakob Jacobi {180~1850 was a Gennnn mathematician. lie wrote the dassic !realise on elliptic 
functions, studied Jacobi theta fimctions, proved Fermm:;- polygonal number theon:m, put the dererminam 
in its modem fonn. found the Jacobi imesral, and did much to develop the Hnmilum~Jncobl;heory 
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Choosing the off-diagonal entries for zeroing. In the classical Jacobi scheme, the 
indices i and j arc chosen so thatlhe entry a11 is the largest off-diagonal entry in magnitude 
at each step. 

It can be shown (Exercise l 0, 12) that the sum of the squares of the off-diagonal entries, 
denoted by off2(A), 

" 
off

2
(A) =I: 2::>5-

i=l jfn 
J=! 

decreases at least by the factor I - ll(n~ll at each step; that is, 

'f' ' 
2 

ff' of ·(A)- a;j s 
1 

o ·(A). 
ll(ll- ) 

Thus the classical Jacobi scheme converges at least linearly; in pmctice the conver~ 
gence is actuo.Uy quadratic. Note lhat implementation of the scheme involves an 0(n1) 

.. search· for £he--!argcsn;ntry at each step. 
In practice, a scheme called the cyclic Jacobi scheme is used, in which the off-diagonal 

entries arc annihilated in the rowwise order (1, 2), (1, 3), ... , (l, n); (2, 3), (2,4), .. 
(2,n); and so on. 

This scheme is faster since it does nol require off .. diagonal search. and is more accurate, 
Tile rare of convergence is also ultima/ely quadratic (Wilkinson ( 1965, p. 270)). The details 
can he found in Demmel (1997), Golub and Van Loan ( 1996), and Parlett ( 1998). 

1 0.2.6 Comparison of the Symmetric Eigenvalue Methods 

Tridiagonal QR iteration. The QR iteration algorithm applied to an 11 x n symmetric 
tridiagonal malrix requires only O(n2) flops to compute all the eigenvalues. However. 
finding all the eigenvectors requires another 6n 3 flops approximately. 

Divide-and-conquer method. Like the QR iteration algorithm. the divide-and­
conquer algorithm also requires about 0(n 2 ) !lops to compute all the eigenvalues 
of a symmetric tridiagonal matrix. 

However. if aH the eigenvectors arc also desired, this algorithm is more efficient than 
the QR iteration hecausc it can be shown that the Oop-count for all eigenvectors is 

about 4~ 1 , comrarcd to 6n 3 needed by the QR iterulion algorithm. There are several 
other faster implementations of this popular algorithm (see Demmel ( 1997) and Gu 
and Eisenstat ( 1995a) for details). 

Bisection method. This method needs only O(nk) Hops if k number of eigenvalues 
are required. If the eigenvalues arc well-separated, the cost of computing the eigen­
vectors via inverse iterafion is also O(nk). Thus, in principle it takes only O(n 2 ) flops 
to compute all the eigenvalues and eigenvectors of a symmetric tridiagonal matrix~ 
making the method much faster than both the QR and divide-and-conquer methods. 
ln the worst case, when several eigenvalues are clustered together, the cost becomes 
O(n 3 ) for inverse iteration, and, furthermore. the accuracy of the computed eigen­
vectors is not guaranteed. However, there has been some progress in obtaining the 
eigenvectors more accurately with not much more than O(n) nops per eigenvector 
(Demmel ( 1997)). 
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The mer hod is best if only a few eigem·alues or those in an interval are desired. 

The Jacobi method. The method also requires O(n~) flops to compute all the eigen­
values and eigenvectors or a symrnelrit: matrix A (note that rhe method t.locs not 
require tridiagonalization). However. it is fn general much slower than the other 
methods. The rnerhod sometimes, howe,·er, computes rhe eigenvalue.\' with a relative 
high accuracy. 

Conclusion: 

The divide-nnd-conquer method is the fastest algorithm for symmetric matrices if all 
the eigenvalues and eigenvectors arc desired. 

The symmetric QRalgorithm with the Wilkinson shift is the rastest practical algorithm 
for finding all the eigenvalues of small-order symmetric matrices. 

•- The bisection method may be used to compute a small number of eigenvatucs of a 
syrnmell'ic malrix or a number of eigenvalues in a sp~:cified inlcrvaL 

10.3 The Singular Value Decomposition and Its 
Computation 

We remind the reader of the statement of the SVD theorem from Chapter 7. 

Theorem 10.8 (SVD theorem). Let A E RmAr.. Then there exist orthogonal matrices 
U E Rmxm and V E IR11

"
11 such tlwt 

A=U'Evr, (10.20) 

where E is an m x n "diagonal" mmn~t.. The diagonal emries of :E are all nmmegmive 
and can be arranged in nonincreasing order. 

Proof Denote the eigenvalues of the symmetric positive semidelinite matrix A r A, which 
are nonnegative, by At = rr;1 • A2 = a{, ... , t..fl = a1T and the corresponding eigenvectors 
by IJ!' '''' Vr;:. Let U! :::: a1 ::::. •.• ::.: Ur > 0 and !1r+ l = Uu = 0, Sel VI {Vj. U2, .. '' v,), 
v,_ = (Vr+l.'' Vu). and v = (VJ, V2). Then vis an 11 X n orthogonal matrix. Also, since 
{ v1, v2, • , •• Vn} forms an orthonormal set of eigenvectors of A 7 A, we have 

t{A'~'Av1 =al and v/'A.,.Avj=O, if.j. 

Define now a set of vectors {u;) by 

I 
u; = -Av;, 

0; 
I, ... , r. 

The u1 's. i = 1, .. , . r, then fonn an orthonormal scl, because 

T I T I I r r I 0 when i -"- j 
u1 IIJ (Au;) -(AVJ) = --(v, A AvJ) = . , . r .' 

a1 aj a 1aj 1 when 1 = J. 

(10.21) 

{ 10.22) 

(10.23) 

SeLU1 = (u 1, .... u,), andchooscl.I2 = (tlr+I·····Hm)suchthaturA = 0, j = 
r + l, .... m. Then the sel { liJ, ... , u,, llr+ 1 ,,_.,um J forms an orthonorm:~l basis of the 
m-space .:c_m. 
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Now set U = (U1, U,). Then U and V are orthonormal, and using (10.22), we obtain 

l..uT AT 
a, I 

.LvT AT 
ll; 2 

(

itT) I 

T 
. T ll '! 

U AV = :~ A(v1,. .. , v,) = 

tim 

.l, a1 
"' I 

0 0 0 0 
.. 0 .l. . a; 

t!;: ~ 
0 0 0 

J_, a2 =E (using (10.21)). 
0 

o, ' 
0 0 

0 0 0 
0 0 

1 0.3.1 The Relationship between the Singular Values and the 
Eigenvalues 

(10.24) 

(10.25) 

0 

The above proof of the SVD theorem reveals the following interesting relationship between 
lhe singular values and singular vectors of A with the eigenvalues and eigenvectors of .4 T A: 

• The singulur values of A arc nonnegative square roots of the eigenvalues of A r A. 

The right singular vectors are lhc eigenvectors of AT .4. 

Furthermore, the SVD of A is related to d1e eigendecomposition of A r A as 

vr AT AV =ErE. 

Theorem 10.9. Tile nonzero singular values of an m x 11 (m 2: n) matrix A are positive 
eigenvalues o,f the matrr:r 

Proof Let 

Partition 

A= UEV7 be theSVDof A. 

u- ( ul 
m x n 

U:. 
m x (m 
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Define 

\vhere 

Then it is easy to verify that 

P= (~ 
. I u, = ~u, and 

V2 
• I 
\1 = -o=V. 

0 
-:E, 

0 

./2 

()) 
0 ' 
0 
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which shows that lhe nonzero eigenvalues of C arc a1 •••• , ak, -at, ... , -Clk, where a-1 

through ok arc the nonzero singular values of A. 0 

1 0.3.2 Sensitivity of the Singular Values 

We stated a remarkable properly of the singular values in Chaplcr 7: the singular values of 
o matrix are well-conditioned. \Vc now give a proof or this result. 

Theorem 10.10 (perturbation theorem for singular values), Let A and B = A + E he 
two m x n matrices (m :=: n). Let a-1• i l, ... , n, and iY;, i l, ... , n, be, respectively, 
the singular values of A and A+ E, appearing in decreasing o1der. Then liT; ad :5 IIEII2 
for each i. 

Proof. Define 

By Theorem 10.9, we have that the nonzero eigenvalues of A arc a1;,,,, akt 

-a1, ••• t -crk, where a 1 through O'k are the nonzero singular values of A. The remain­
ing eigenvalues of A are. of course, zero. Define now iJ = (n°r g), E = (lr g). Then 

8- A.= E. 
The eigenvalues of i1 and E arc r!?lated. respectively, lo the singular values of B and 

E in the same way the eigenvalues of A are related to the singular values of A. The result 
now follows immediately by applying the Bauer-Fikc theorem (Theorem 9.37) to iJ, A, 
and E. 0 

1 0.3.3 Computing the Variance-Covariance Matrix with SVD 

In Chapter 7 we described a method to com pule the variancc-cnvuriancc matrix (A 1 A}~ 1 

using the QR factorization of A. \Vc note here that this matrix cun also be computed 
immediarely once the singular values and the left singular vectors of A huve been computed. 

Computing (A' A)- 1 using the SVD. Let 
A=U:EVT 
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be the SVD of A. Then the entries of the matrix C = (AT A)~ 1 

C;j = I:Z=l where 11 =rank( A). (Note that C = (A 7 A)~ 1 

Example 10.11. 

A=(~~)· 
3 4 

' ' _ Vjl Vj2 _ c, - -, + -, - 4.833. 
a1~ Uf 

' ' Vii V,11 ') en = -, + -., = _.3333. I 
crr as 

= (cij) are given by 
n;~'vr.J 

MATCOM Note: The MATCOM program COVSVD computes the variance-covariance 
-matrix-using_lhe __ SVD __ of A, 

1 0.3.4 Computing the Pseudoinverse with SVD 

In Chapter 8 we have seen that when A is an m x n (m ~ n) matrix having full rank, the 
pseudoinvcrse of A is given by At (A r A)-1 AT A fonnal definition of the pseudoinverse 
of any matrix A (whether it has full rank or not) can he given as follows: The pseudoinverse 
is also known as the Moore-Penrose inverse. 

Four properties of the pseudo inverse. The pseudoinversc of an m x n matrix A is an 
n x m matrix X sutisfying the following properties: 

L AXA =A. 

2. XAX =X. 

3. (AX)r =AX. 

4. (XA)T XA. 

The pseudoim•erse of a matrix always exists and is unique. We now show that the 
SVD provides a nice expression for the pseudoinverse. 

Let A = U .E V7 be the SVD of .4.; then it is easy to verify that the matrix 

A'= 1'.E1U 7
. whcre.E' =ding (~1 ) 

(if a1 = o. usc ~~ = o). 
(I 0.26) 

satisfies all the four properties above and therefore is the pseudoinversc of A. Note that this 
expression for the pseudoinvcrse coincides with A -I when A is nonsingulur, because 

A~l = (Ar A)~ 1 AT = (V.E 7 U7 U.EV~')- 1 V.ETUT (10.27) 

= v.E-'(.Erl-'1'rv.Erur = vE~•ur 

(Note that in this ease E' E~ 1 .) 
The process ror computing the pscudoinversc At of A using the SVD of A can be 

summarized as follows, 
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ALGORITHM 1 0.4. Computing the Pseudoinverse Using the SVD. 

Input: An m x n matrix A. 
Output: At, the pseudoinverse of A. 

Step 1. Find the SVD of A: 
A= ur;vr 

Step 2. Compute 
_!_ 

"' _!_ 

'Et = diag 0 
_!_ 

0 0 

where a!, ... , ar are the r nonzero singular values of A. 

Step 3. Compute A'= VE'UT. 

Example 10.12. Find the pseudoinverse of 

A= (~1 ~ ~I) (6 
0 -1 0 0 

ur = ( ~ 
-1 

Thus 

('; 
6 -:) (' ~) 

-, 0 

u1 
-1 

A'= I I 0 3 -, 0 ;: 
6 I 0 0 0 

-ij 3 

1 0.3.5 Computing the SVD 

-1 
0 
0 

~~) (: 
I 

-3 
1 
3 
1 
3 
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-'t) I 
I 
3 

Since the singular values of a matrix A arc just the nonnegative square roots of the eigen­
values of the symmetric matrix AT A, it is natural to think of com puling the singular values 
of A by finding the eigenvalues of the symmetric matrix AT A. However, this is not a 
nwnerically effective process because, as we have seen in Chapter 7, some vital information 
may be lost due to round-off error in the process of computing AT A. 

The following simple example illustrates the phenomenon. 
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Example 10.13. 

A= (1.0001 
1.0000 

1.0000) 
1.0001 . 

The singular values of A are 2.0010 and 0.0001. 
Now 

A y A _ (2.0002 2.0002) 
- 2.0002 2.0002 

(10.28) 

(to four significant digits). The eigenvalues of AT A are 0 and 4.0004. Thus the singular 
values of A will be computed as 0, 2.0001 (in 4-digit arithmetic), whereas the actual singular 
values are 0.000 l and 2.00 I 0. I 

1 0.3.6 The Golub-Kahan-Reinsch Algorithm 

F'oLmwethanthree decades. the following algorithm, called the Golub:-Kahan-Rcinsch 
algorithm (Golub and Kahan (1965), Golub and Reinsch (1970)). has been a standard al­
gorithm tor SVD computation. There have been some recent developments and recent 
algorithms such as the zero-shift QR algorithm, the differential QD algorithm, and the 
divide~and-conquer a(~orithm (see later in this section for further remarks on these algo­
rithms). We describe here the Golub-Kahan-Reinsch algorithm. The algorithm comes into 
two phases, as illustmted in Figure 10.3. 

Phase l (direct). 

Bidiagonal 
Phase 2 (iterative). 

8--+~=(~~)-
Diagonal 

Phase I (bidiagonalization). Them x n matrix A(m :': 11) is u·ansfonned into an 
upper bidiagonal matrix by orthogonal equivalence; that is, the matrices U0 E JRnrxm and 
V0 E R"~:/! are created such that 

UciAVo=(~). {10.29) 

where 8 is an 11 x 11 bidiagonal matrix given by 

0 0 
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Phase 2 (reduction to diagonal form). The bidiagonal matrix B is further reduced by 
onhogonal equivalence to a diagonal rnutrix I:; that is, the orthogonal matrices U1 and i'1 

arc crcaled such that 

X 

X 

X 

X 

X 

A 

X 

X 

X 

X 

X 

ur BV, = E = diag(a,, ... , a,). 

X 

X X 

X 

B = UJ AVo 

Figure 10.3. lllustratian of the two-phose procedure. 

Obtaining the SVD of A from Phases 1 and 2 

E -the matrix of the singular values. 

X 

X 

The singular vector matrices U and V are given by U = U0 U 1• V Vo V1• 

(10.30) 

Remark. In the numerical linear algebra litcmture, Phase I is known as the Golub-Kahan 
bidiagonal procedure, and Phase 2 is known as the Golub-Reinsch algorithm. We will call 
the combined two-stage procedure the Golub-Kahan-Reinsch method. 

High relative accuracy of the singular values of bidiagonal matrices. The following 
result due to Demmel and Kahan ( 1990) slwws that the singular values ~fa bidiagonal 
matrix can be compured 1vith very high accuracy, 

Theorem 10.14. Let B = (b;j) be an 11 x n bidiago11almatrix. Let t;B = (iibij) also be 
bidiagonal. Suppose thar bn + 8bn = fX?J-1 bu and 8b;,i+! + bu+t = a2;bu .. H. Ctj :fo 0, 

Let Ci = n~~~~ max(la; 1. la[ 1!). Let a1 ?:.: · ·, ~ cr11 be the singular values of Band 
Let a{?:.: ·,, ?:.: a

1
: be the singular values of B +!lB. Then 

i = I,,,., n. (10.31) 

Phase 1. Reduction to Bidiagonal Form. The matrices U0 and V0 in Phase I are 
consLructed as the product of Householder matrices as follows; 

U(J = U01 U02 · · · Von (I 0.32) 

and 

Vo Vm Vm · · · Vo,n-1· ( 10.33) 

Lees illustrate the bidiagonalization process with m = 5 and n 4. "*"indicates the elfllJ: 
to be ~eroed. 
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Step 1. Apply a Householder matrix U01 to the left of A to create zeros in positions (2, I) 
through (5, I), then apply another Householder matrix V01 to the right to create zeros in 
(I, 3) and (I , 4) positions of A. 

(~ 
X X ;l ,, 

(! 
X * 

}~(j 
X 0 

~l 
X X X X X X 

X X X -------+ X X X X = A''l. 
X X X X X X X 

X X X X X X X 

A Uo,A Uo,AVot 

Step 2. Apply a Householder matrix U02 to the left of A'' 1 and apply another Householder 
matrix V02 to the right to create zeros in the places indicated by"*". 

X X 0 0 \ 

0 

(! 
X 0 :l ,, (i 

X 0 

~l 
X X X X X X X 

0 
Um 

0 0 = A(2l. * X X -------+ X X -------+ X 

0 0 X X 0 X 

* X X 
0 X X 0 X 

0 * X X 

A''' UmA(tJ UmA( 1JVm 

Step 3. Apply a Householder matrix U03 to the left of Am to create zeros in the position 
indicated by "*". 

X X 0 0 \ 

(l 
X 0 

~l 
0 X X 0 X X 

0 0 
Uo_; 

0 =A"'· X X -------+ X 

0 0 * 
0 0 

X 
0 0 

0 0 * X 

A(2J U03A(2J 

Step 4. Apply the Householder matrix U04 to the left of A (Jl to create zeros in the positions 
indicated by"*". 

(i j ~ ~ l ~ (i j i ~l 0 

' '" 

0 

( : ) ' ''""''""''· 

General step for an n x 11 matrix. In general, at the kth step, Um is constructed to 
create zeros in the kth column, while V0~; introduces zero in the kth row in appropriate 
places. 
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Computational Notes. 

• In Step 2, one can work with the 4 x 3 submmrix of A'" indicated by the box. Call 
it A 1• Thus, orthogonal matrices U02 and V02 may be constructed such that 

Then U01 and Vo2 are conslructcd from D02 and i'm in Lhe usual way by embedding 
them inw the identity matrices of appropriate orders. 

• This holds similarly for the other steps. 

• Construction of a Householder matrix V for zeroing entries in a ro>l' l'ectm: At every 
step, V malriccs arc created to zcms in a row vector. We now show how w do this. Let 
x T = (x1, x1, ... , x11 ) be a row vector. Suppose we wanl lO construcl a Householder 
matrix V such that x 7 V = ( x, 0, .... 0). To do this, just construct V such that 

Then x 1 V (X, 0, ... , 0). 

Flop-count. The above process will require approximately 4mn1 - Oops. If the matrices 

Uo and Vo arc also explicitly needed. then their accumulations will require 4m2n- '1;' and 
4

;
3 

flops, respectively. 

Example 1 0.15. 

A= (
I 2 3) 
~ ~ ~ . 

Step 1. 

(

-0.1474 
U01 = -0.4423 

-0.8847 

-0.4423 
0.8295 

-0.3410 

-0.8847) (-6.7823 
-0.3410 , U01A = 0 
0.3180 0 

-8.2567 
0.0461 

-0.9077 

0 
-0.6470 
-0.7625 

0 ) (-6.7823 
-0.7625 , U01 A V01 = 0 
0.6470 0 

12.7620 
1.0002 

1.9716 

-9.7312) 
0.0923 ' 

-1.8154 
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Step 2. 

0 
-0.0508 
0.9987 

0.9~87). 
0.0508 

(

-6.7823 
Uoo U01 A 1'01 = g 

12.7620 
1.9741 

0 

Note that from the above expression of B, it immediately follows that zero is a singular 
value of A. I 

MATCOM Note: The above bidiagonalization process has been implemented in the MAT­
COM program BID lAG. 

· Phase2. Finding the SVD of the Bidiagonal Matrix. The process is 
of the QR iteration. Starting from the 11 x rr bidiagonal matrix B obtained in Phase I, 
it successively constructs a sequence of bidiagonal matrices {Bd such that each 81 has 
possibly smaller off-diagonal entries than the previous one. The ith iteratl'onls equivalent 
to applying the implicit symmetric QR algorithm, described in Chapter 9, with tire Wllkinson 
sltiftto the symmetric tridiagonal matrix BT B; without, ofcourse,forming tlte product Br Bi 
explicitly. The cff~;;ctivc tridiagonal matrices are assumed to be unreduced (noLc thut the 
implicit symmetric QR works with unreduced matrices); otherwise we would work with 
decoupled SVD problems. For example, if bu~ 1 0. then B can be written as the direct 
sum of two bidiagonal matrices B1 and B, and cr(B) cr(B,) Ucr(B2). 

The process has guaranteed convergence, and the rate of convergence is quite ff.L~L 
The details of the process can be found in Golub and Van Loan (1996, pp. 452-456). We 
outline the process briefiy in the following. 

In the following just one iteration step of the method is described. To simplify the 
notation, let's write 

B 

(
"' fh fJ .. )· 

"" 

(10.34) 

Wilkinson shift a the eigenvalue A of the 2 x 2 right-hand corner subrnatrix of Br B, 

(10.35) 

which is closer to a; + {J1~. 

Step 1. Form the Givens rotation 1 1, such thati1 (<Y/ -cr, " 1 jl2, 0, ... , 0) T = ( x, 0, ... , OJ'. 
This is done in lwo steps as follows. 

1.1. Compute a Givens rotation 1[ such that 1{ ( al,~,cr) = ( ~). 

1.2. Form J1 = ( ~ !,~,) . 
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Step 2. Apply 1 1 to the right of Band overwrite 81 1 with B. 

X X 

+ 
B = BJ, = 

X 

X 

where +indicates a fill-in. (The fill-in is at the (2, I) position.} 

375 

(10.36) 

The idea is 1101v to chase the nonzero entry"+" dmvn the subdiagoual to the end of tile matrix 
by applying the Givens rotations in an appropriate order, as indicated by the following. 

Step 3. Fonn the Givens mtation J, such that the fill-in at the (2, I) position is eliminated. 

B = J,B = 

(The fill-in is attire (I, 3) position.) 

X X + 
X 

X 

X 

Step 4. Fonn the Givens rotation I, to eliminate the fill-in of the (I. 3) position. 

X X 

X 

B BJ, = + 

(The fill-in is at (3. 2) position.) 

X 

X 

Step 5. Fonn 14 to eliminate the fill-in ol' the (3. 2) position. 

X X 

X X + 

(The fill-in is at (2. 4) position.) 

X 

X 

The process is continued. The general process iHJOI!' clear. The entries (2, 1). (3, 2), (4, 3), 
etc., arc annihilated by a premultiplication, whereas the entries (I, 3), (2. 4), (3, 5), etc., arc 
annihilated by a postmultiplication. 
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At the end of one iteration we will have a new bidiagonal matrix B orthogonally 
equivalent to the original bidiagonal matrix 8: 

B = (J,,_, · · · J,J,)8(J, h · · · J,,_,). 

Example 10.16. 

Step 1. The Wilkinson shift CJ = 15.0828: 

Step 2: 

(

-0.9901 
J, = -0.6406 

0.1406 
-0.9901 

0 

(

-1.2713 
8 = 81, = -0.~812 

-1.8395 
-1.9801 

0 

(The fill-in is at the (2, I) position.) 

Step 3, Form 

(

-0.9764 
J, = 0.2~60 

(

1.3029 
8 = 1,81, = ~ 

-0.2160 
-0.9764 

0 

2.2238 
1.5361 

0 

-0.6480) 
-2.~292 . 

(The fill-in is at the (I, 3) position.) 

Step 4, Form 
0 

0.9601 
-0.2797 

0.2~97), 
0.9601 

(

1.3029 
8=1,81,1)= ~ 

2.3163 
2.2942 

-0.2797 
-2.~827) . 
0.9601 

(The fill-in is at the (3, 2) position.) 

Step 5, Form 
0 

0.9926 
0.1210 

-0.~210), 
0.9926 

2.3163 
2.3112 

0 
-2.~812). 
0.6646 

I 
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Stopping criterion. The algorithm typically requires a few iterations belorc the off­
diagonal entry f3r. becomes negligible. A criterion for off-diagonal negligibility follows. 

Criterion for neglecting an off-diagonal entry (Golub and Van Loan (1996, 
p. 455)). Accept an otT-diagonal {31 to be zero if 

Accept a diagonal entry a; to be zero if 

where € is a small multiple of the machine precision Jl.,. 

Flop-.count. The cost of the. two-phase.SVD method is detennined by the cost of Phase I. 
Phase 2 is iterative and is quite: cheap. 'TI1e estimared !lop-count is 4m1u + 8nw 2 + 
9n 3(m 2: n). This coullf includes the cost of U, L. and V, There are applications (e.g., 
least squares) where all three matrices are not explicitly required. A nice table of different 
flop-counts of the Golub-Kahan-Reinsch SVD and the triangular SVD (to be described in 
the next section) for different requirements of U, E. and V appears in Golub and Van Loan 
(1996, p. 254). 

Compllling ofE alone will cast about4mn1 -
4~' flops by the Golub-Kahan-Reinsch 

algorithm. · 

Round-off property. ll can be shown that the computed SVD. Uf:(II)T, produced by 
the Golub-Kahan-Reinsch algorithm, is nearly the exact SVD of A+ E, that is. 

A+ E"' (U HiiJf:rv + oV), 

where (J + oU and V + 8V are orthogonaL Spccilically, 

(IIE112111AibJ ::o p(m, ll)fL, i18UII ::o p(m, n)J.L, 

IIJVil ::0 p(m.n)J.L, 

and p(m, n) is a slowly growing funclion of m and 11. 

Entrywise errors of the singular values. Furthermore, let 0'1 be a computed singular 
value. Then 

where p(n) is a slowly growing function of 11. 

The result says that the computed singular values cannot differfrom the rrue singular 
values by an amount larger than 0 = J!p(n)umar.· 

Thus, the singular values which arc not much smaller than uma" will be computed by 
the algorithm quite accurately. 
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10.3.7 The Chan SVD Algorithm 

The Golub-Kahan-Reinsch procedure can be made faster sometimes if matrix A is trian­
gularized first by QR factorization and then the procedure is applied to the upper triangular 
matrix R. The idea was mentioned in Lawson and Hanson in their celebrated 1974 book 
Solving Least-Squares Problems and later fully analyzed by Chan (I 982a). The triangular 
SVD, to be called the Chan SVD, can be described as follows. 

Step 1. Find the QR factorization of A: 

T (R) Q A= 0 . 

Step 2. Find the SVD of R using the Golub-Kahan-Reinsch algorithm: 

R=)(L;YT 

Step 3. Compute the singular values and singular vectors of A. 
The singular values of A are just the singular values of R. The singular 
vector matrices U and V are given by 

U = Qdiag (X,/,_,), V = Y. 

(1 0.37) 

(10.38) 

(1 0.39) 

Flop-count. The triangular SVD (the Chan SVD) requires about 4m'n + 22n 3 flops to 
compute L;, U, and V, compared to the 4m'n + 8mn 2 + 9n 3 flops required by the Golub­
Kahan-Reinsch SVD algorithm. Clearly, there will be savings with the triangular-SVD 
whenm ;:: ¥· Note that in this case one needs to bidiagonalize an upper triangular matrix 
rather than a full matrix. 

Example 10.17. 

Step 1. The QRfactorization of A: 

(

-0.2182 
Q = -0.4364 

-0.8729 

Step 2. The SVD of R: 

-0.8165 
-0.4082 

0.4082 

R=XL;YT, 

A= (; ;) . 
4 5 

-0.5345) 
0.8018 ' 

-0.2673 

R = (-4.5826 -6.1101) 
0 -0.8165 . 

X = (-0.9963 0.0856 ) , 
-0.0856 -0.9963 

y - (0.5956 -0.8033) 
- 0.8033 0.5956 ' 

E _ (7.6656 0 ) 
- 0 0.4881 . 
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The singular value decomposition of A= UI:Vr, The singular values of A are 7.6656, 
0.4881. 

(

0.2873 0.7948 
u = 0.4698 0.3694 

0.8347 0.4814 

-0.5345) 
0.8018 ' 

-0.2673 
V = Y. I 

Flop-count for the least-squares problem using the SVD and other methods. In 
view of two SVD algorithms just described, let's have another close look at the llop~count 
or different approaches for least-squares solutions or Ax= !J, where A ism X n (m ?: 11). 

Using the Golub-Khan-Reinsch SVD: 4mn 2 + 8n 3 

Using the Chan SVD: 2mn 2 + lln 3. 

Using norm11l equations: 

Using Householder QR: 

.. 1!3 
11111.:.. +--, 

3 

,. 2n 3 

2uur- -
3
-. 

Using modified Gram-Schmidt (MGS): 2nlll 2• 

(See Golub and Van Loan ( 1996, p. 263) for a comprehensive list.) 

Recent developments. The other notable works on SYD computation include: 

Zero-shift QR iteration (Demmel and Kahan (1990)). Dcmmel and Kahan show 
that, using zero-shift. the tiny singular values and the singular vectors can be found 
{almost) as accurately as the data permits. 

Differential QD algorithm for large matrices (Fernando and Parlett (1994 )). This 
is a variation of the QR ileration algorithm for finding all the singular values with 
high relative accuracy. it is the fastest algorirhm now for computing all lhe singular 
values of a bidiagonal matrix. 

Di\ide-and-conquer algorithm (Jessup and Sorensen ( 1994), Gu and Eisenstat 
( 1995b), etc,), A fast algorithm. but does not guarantee that tire tiny singn/ar values 
will be computed 1-vith high relative accuracy, 

Jacobi method. For some classes of matrices the Jacobi metflod computes the 
singular values and singular recrors to high relatiFe accuracy hy implicitly rorming 
the matrix BBr or BT B. This method is not discussed here; see Demmel (1997). 
See also the recent papers of DrmaC and Veselic (2008a, 2008b ). 

10.4 Generalized SVD 
The SYD theorem (Theorem 10.8) can be gcncrulized for a pair of matrices;\ and B, and 
this generalized SVD is useful in certain applications such as constrained least squares 
problems (Golub and Van Loan (1996, pp. 586-587)). 
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The generalization was first obtained by Van Loan (1976). We stnte only the theorem 
here without proof. For a proof, see Golub and Van Loan (1996. p. 466). 

Theorem 10.18 (generalized SVD theorem). Let A a11d B be, respectively, real matrices 
of order m x nand p x n (m 2: n). Then there exist orthogonal matrices U E !R111

"
111 and 

V E JRPx P ami ann x n nonsingular matrix Hl such that 

U'AW=C=diag(c1, ••• ,c,), c, 2:_0, 

!I lid 
T • V BW = D = dtag(d, ... .,d,), d, 2:0, 

wfrere q = min(p, n) and d1 2: · · · 2: d, > d,+ 1 = · · · = d4 = 0, r = rank(B). 
The demellfs ( *"; ~ ..... ¥J;) are cnUed the generalized singular values of A and B. 

10.5 Review and Summary 

The two closely related topics, the symmetric eigenvalue problem and theSVD. arc discussed 
in this chapter. Emphasis here is on computations of the eigenvalues and singular values. 

10.5.1 The Symmetric Eigenvalue Computation 

Here we hu ve described 

the bisection method (Algorithm 10.1); 

the QR iteration method with Wilkinson shift (Algorithm I 0.2): 

• the divide-and-conquer method (Algorithm 10.3); 

• The Jacobi method (Section 10.2.5). 

1 0.5.2 The SVD 

Existence and uniqueness of the SVD, The SVD of a matrix A always exists (The­
orem 10.8). 

A= u;:;vr. 
The singular values {the diagonal entries of L:) arc unique, but the singular vectors 
are not 

• Relationship of the singular values and singular vectors with the eigenvalues. 
The singular values of A arc lhe nonnegative square roots of lhc eigenvalues of AT A. 
See Theorem 10.9 for another interesting relationship. 

Sensitivity of the singular values. The singular values are insensitive to small 
perturbations (Theorem I 0.1 0). 
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• Computing the SVD. The most widely used approach for computing the SVD of A 
is the Golub-Kahan-Reinsch algorithm (Section 10.3.6). This algorithm works in 
lwo phases. In Phase L the matrix A is reduced to a bidiagonal matrix by orthogonal 
equivalence, and in Phase 2, the bidiagonal matrix is further reduced to a diagonal 
matrix by orthogonal similarity using implicit QR ileratlon wilh Wilkinson shift. 
Unfortunately~ very tiny singular values may not be computed wilh very high relative 
accuracy by this method. A modification of this method. known as the ~ero·shift QR 
iteration or the QR iteration wirlt a zero shift has been proposed hy Demmel and 
Kahan in 1990. The Dcmmcl-Kahan method computes all the singular values and 
singular vectors with high relative accuracy for small-order (about25) matrices. TI1e 
dqds algorithm of Fernando and Parlett ( 1994), however, computes all the singular 
values most accuralcly. 

1 0.6 Suggestions for Further Reading 
A book specialized to the symmetric eigenvalue problem is Parlett (1998); a !'air amount 
of discussion on this problem also appears in most contemporary numerical linear algebra 
books, including Demmel ( 1997), Golub and Van Loan ( 1996), Trel'cthcn and Baa ( 1997), 
and Watkins (2002). For more on the interlacing property. see Hill and Purlcll ( 1992). A 
book devoted to perturbation analysis, including that of the symmetric eigenvalue problem, 
is by Stewart and Sun (I 990). Many important results, including some classical ones, can be 
found in this book. See also Horn and Johnson ( 1985) and Stewart ( 1991) !'or perturbation 
analysis of the SVD. For some olhcr importanl papers on SVD and symmetric eigenvalue 
computations, see Demmel and Kahan ( 1990), Go and Eisenstat ( 1995b ). Fernando and 
Parlett (1994). Parlett (1995), Demmel et al. (1999), Demmel and Veselit (1992). Drma~ 
and Vcsclic (2008a, 2008b). Bai (\ 988), Charlier eta!. (1988), and Bui and Demmel (1993a). 

For more on the generalized SVD and its variations, see Van Loan ( 1976), Paige and 
Saunders (1981). Kagstrorn (1985), De Moor and Van Doorcn (1992), De Moor and Zha 
(1991), Stewan (1983), Paige (1986), De Moor (1991, 1992), De Mom and Golub (1991), 
and Paige and Van Dooren (1986). For perturbation analysis of the generalized SVD, see 
Son ( 1983) and Stewart (1991 ). 

Exercises on Chapter 1 0 

EXERCISES ON SECTION 10.2 

10.1 (u) Develop the symmetric tridiagonal QR iteration algorithm in detail using the 
implicit symmetric QR step with Wilkinson shift. 

10.2 

(b) Apply your algorithm to compute all the eigenvalues of a symmetric matrix of 
order20generatedrandomly: A rand (20), A"" A +Ar. 

( 

I 
-I 

(a) Let A= 
0 
0 

-1 
2 
-I 
0 

0 
-I 
2 
-I 

~~)· 
2 

Without computing the eigenvalues show that P..! < 4 for each eigenvalue!,. of 
A. Show that there are exacily two eigenvalues greater thun 2 und two less than 2, 
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Apply the bisection algorithm (Algorithm I 0.1) to compute the eigenvalue close 
to 2. 

(b) Apply the inverse Hcssenbcrg iteration algorithm to A to compute the eigen­
vector associated with the eigenvalue close to 2. 

(c) Compute the eigenvalues of A by applying the symmetric QR iteration with 
Wilkinson shift (Algorithm 10.2). 

10.3 (a} Prove that the eigenvalues of an unreduced real symmetric tridiagonal matrix 
arc real and distincL 

(b) Prove that if). is an eigenvalue of multiplicity k of an unreduced symmetric 
tridiagonal malrix T, then at least (k- 1) subdiagonal entries ofT must be zero. 

10.4 (a) Develop a QR-type algorithm to compute the eigenvalues of a symmetric posi­
tive definite matrix A, based upon the Cholesky decomposition (Section 6.12.3). 

(b) Test your algorithm with matrix A of Exercise 10.2. 

10.5 Let 

Prove that the eigenvalue f5 o[ A closest toy is given by 

sign(r){f2 

w=y- • 
lrl + ,;r2 + {J 2 

where r = ("- y)/2. Explain why this formula is better than the one given by 
(10.8)-(10.9). 

10.6 Let A= A1 + iA2 be a Hermitian matrix. Then prove that 

8 = (~; -Az) 
A, 

is symmetric. How are the eigenvalues and eigenvectors of A related to those of B? 

10.7 Prove that if the ith component 111 of 11 in ( !0.13) is zero, then 

(a) the ith column of bin (JO.l3) is d,e1; 

(b) the ith row of b is d1e{; 

(c) d1 is an eigenvalue of b wilh the associated eigenvector ei, 

10.8 Prove that if k eigenvalues of Dare equal, then the eigenvalue problem of bin ( 10.13) 
can be deflated by deleting (k I) rows and columns. 

10.9 Assume that 

(a) p cF 0; 

(b) the eigenvalues of Dare arranged in the order d 1 < dz < · · · < dn; and 

{c) none of the components of u is zero. 
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Then prove that each interval (d1, di+t) contains exactly one eigenvalue of iJ = 
D + pliiiT 

10.10 Prove that if the assumptions of Exercise I 0.9 hold, then D -AI is nonsingular and 
II T q oF 0. 

10.11 By drawing the graphs of the secular equation or otherwise, prove that 

(a) dt < At < dz < Az < · · · < An < dn + p if p > 0; 

(b) dt + p < A1 < d2 < A2 < · · · < d,1-t < A11 < d,1 if p < 0. 

10.12 Show that in the classical Jacobi scheme, the sum of the squares of the off-diagonal 
entries decreases by at least the factor of 1 - - 2

- at each step. 
n(n-1) 

EXERCISES ON SECTION 1 0.3 

10.13 (a) Derive Theorem I 0.10 without using Theorem I 0.9. 

(b) Given 

(1 2) 
A= ; ~ , 

find the singular values a1 and az of A by computing the eigenvalues of A 7 A. 
Then Hnd the orthogonal matrix P such that 

PrSP=diag(u1, a2 , -a1, -u2 , 0), 

(
o,,, 

where S = AT o~,). 
10.14 Using the constructive proof ofTheorem I 0.8, find the SYD of the following matrices: 

(i) A= G D, 
(ii) A=(l 2 3), 

(iii) A= (i), 
(iv) A= diag(l, 0, 2, 0, -5), A= G D, where E = w-5 

10.15 Prove that the singular values of a symmetric positive definite matrix are the same as 
its eigenvalues. How are the singular vectors and eigenvectors related? 
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10.16 Let 

"'' 0 

D= cr, 
Uj > Q, i 1, ... l r. 

0 

0 0 

Then show that 
1. 0 
"' 

D' 
1. 

= "• 
0 

0 0 

10.17 VerifythatthcmatrixA' = Vl: 1U',whcrcl:' diag( l.) (with the convention that 
o, 

if aj = 0, we use ;!: 0), is the pscudoinversc of A. (Check all four conditions for 

the definition of th~ pseudoinvcrsc.) 

10.18 For any nonzero matrix A, show that 

(a) AA' v = v for any vector v in R(A); 

(b) A'x = 0 for any x in N(Ar); 

(c) (Ar)' = (A1)r; 

(d) (A1)' =A. 

10.19 Let A be an 111 x n matrix. Show the following: 

(a) If A has full column rank, then 

A'= (A~'A)- 1 Ar. 

(b) If A has full row mnk, then 

10.20 From the SVD of A, compute the SVDs of the projection matrices P1 = A' A, P2 = 
I- A' A, P3 = AA t, and P4 = I AA '· Also verify that each of these is a projection 
matrix. 

10.21 (a) Let B be an upper bidiagonal matrix having a multiple singular value. Then 
prove that B must have a zero either on its diagonal or superdiagonal. 

(b) Prove that if the entries of both diagonals of a bidiagonal matrix are all nonzero, 
then its singular values are distinct. 
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10.22 Consider the family of bidiagonal matrices 

I-n flCI+nl 

8(1]) = 

fl(l + 1]) 
1-1] 

{3 » I. It can be shown (Demmcl and Kahan ( 1990)) that the smallest singular value 
of 8(1]) is approximately {3 1-"(1- (2n- 1)1]). 

Taking fJ = 106 , and using 17 = 0, verify the above rcsull. 

10.23 Develop a procedure to upper bidiagonalize an 11 x n tridiagonal matrix using Givens 
rotations. 

10.24 Based on discussions in Section I 0.3.6, develop an algorithmic procedure to imple­
ment Phases I and 2 of the SVD computation. 

10.25 Develop the Jacobi algorithm for computing the SVD. 

10.26 Prove that flop-count for an ovcrdctcrminc least-squares problem using the Chan SVD 
scheme is about 2mn 2 + 2n 3 • 

MATLAB Programs and Problems on Chapter 10 

M10.1 (a) Write a MATLAB program called polysymtri to compute the characteristic 
polynomial Pn (A) or an unreduced symmetric tridiagonal matrix T, based on 
the recursion in Section I 0.2.2: 

[valpoly] = polysymtri(T,lambda). 

(b) Using polysymtri, write a MATLAB program called signagree that finds the 
number of eigenvalues of T greater than a given real number JL, based on 
Theorem I 0.5: 

[number] = signagree(T, meu). 

(c) Using polysmtri and signagree, implement the bisection algorithm (Algo­
rithm 10.1): 

[lambda]= bisection(T, 111,11). 

Compute A,1_m+1 form = 1, 2, 3, ... , using bisection, and then compare your 
results with those obtained by using eig(T). 

Test data: 

A =the symmetric tridiagonal matrix arising in the buckling problem in Section 
8.3.2, with 11 = 200. 

M 10.2 (The purpose ofthis exercise is to study the sensitivities (insensitivities) of the singular 
values of a matrix.) 
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Using the MATLAB commands svd and norm, verify the inequalities in Theorem 
10.10. 

Test data: 

(i) 
I 

0.99 
0 
0 

1 
I 

0.99 
0 

I ) I 
I . 

0.99 

(ii) A =the Wilkinson bidiagonal matrix of order 20. 

In each case, construct a suitable E so that (A+ E) differs from A in the (11, l)th 
clement only by an E = JO-S. 

(Nore that the eigenvalues of both matrices are ill-conditioned.) 

M10.3 Let A = rand (10, 3). and X = pinv(A). Verify that )( satisfies alrfour condi-. 
lions of the pseudoinvcrsc using MATLAB: AXA = X, XAX =X, (AX}7 = 
AX, (XA)7 = XA. 

M10.4 Write a MATLAB program called chansvd to implement the Chan SVD algorithm 
described in Section 10.3.7, using the MATLAB commands qr and svd: 

[U.S. V] chansvd(A). 

Run your program with a randomly generated 500 x 40 matrix A rand (50, 40} 
and compare the ftop-count and elapsed time with those obtained by using svd(A}. 

M10.5 Write a MATLAB program called bidiag to bidiagonalize a matrix A using the sketch 
of the procedure give in (Section I 0.3.6). 

(a) [B] = bidiag(A, tol}. 

where B is a bidiagonal matrix and tol is the tolerance. 
Test your program using A= rand(l5, 10). 

(b) Use bidiag to write a MATLAB program to compute the singular values of the 
bidiagonal matrix B. 

Test your program by using a randomly generated matrix of order l 00 x 1 0. 

M10.6 Write MATLAB programs to compute the singular values of a matrix A in the fol­
lowing two ways: (a) by calling the standard SVD routine from MATLAB, and (b) 
by explicitly forming A r A and then computing its eigenvalues . 

Test matrLt: an upper triangular matrix of order 100 with 0.0001 on the main diagonal 
and 1 everywhere above the main diagonal. 

Plot your results. 



Chapter 11 

Generalized and Quadratic 

Eigenvalue Problems 

Background Material Needed 

• The Householder and Givens methods to create zeros in a vector and the corresponding 
QR factorization algorithms (Algorithms 7.1, 7.2, 7.4, and 7.5) 

• The Cholesky factorization algorithm (Algorithm 6.8) 

• The methods for symmetric eigenvalue problem (Algorithms 10.1, 10.2, and 10.3) 

• The inverse iteration algorithm (Algorithm 9.2) 

• The Rayleigh quotient algorithm (Algorithm 9.3) 

11.1 Introduction 

ln this chapter we consider the generalized eigenvalue problem for a matrix pair {A, B) 
defined as follows. 

Statement of the Generalized Eigenvalue Problem 

Given 11 x n matrices A and B, find 11 scalars A and nonzero vectors x such that 
Ax= !..Bx. 

Note that the standard eigenvalue problem ror matrix A considered in Chapter 9 is a 
special case of this problem (take B = /). 

Definition 11.1. The matrix A - AB is called a matrix pencil. This pencil is conveniently 
denoted by (A, B). It is very often referred to as the pair (A, B). 

The pencil A- !..B is singular if for all A, det(A- !..B) = 0. Otherwise, the pencil 
is regular. We will assume throughout the whole chapter that the pencil is regulm: 

Example 11.2, The pencil (A, B) defined by A = (6 8) , B = ( g 6) is a singular pencil, 
since del(A- !..B) = 0 for all!... I 

387 
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Definition 11.3. Tire scalars), E C such that det(A - J..B) 0 are called the eigenvalues 
of the pencil (A. B). A noncero vector xis a right eigenvector of the pencil (A. B) if 

Ax= /..Bx. 

The vector y ;h 0 is a left eigenvector if 
y"'A=Ay*B. 

The polynomial det(A- AB) is called the characteristic polynomial of the pencil 
(A, B). The eigenvalues oft he peucil (A. B) are the <eras of the characteristic polynomial. 

The finite and infinite eigenvalues of a regular pencil. If B is nonsingular, then a 
regular pencil A - /..B of order 11 has n eigenvalues. An eigenvalue).. of the pair (A. B) is 
also an eigenvalue of 8- 1 A. If B is singular, then the characteristic polynomial will have 
degree less than n. In this case. there will be less than n llnite eigenvalues and the missing 
eigenvalues will be set to co. Thus, if the degree of det(A I. B) is r( < u), theu there will 
b!: r}rilitea,!tf'J~1''- r infinite eigent•alues. 

Example 11.4. 

A=(b n. B=(~ n-
The degree of the characteristic polynomial is 1. The eigenvalues of this regular pencil 
A- t.B areO and oo. I 

A note on the use of the word "pencil." "The rather strange use of the word 'pencil' 
comes from optics and geometry. An aggregate of (light) rays converging tn a point docs 
suggest the sharp end of a pencil and, by a natural extension, the term came to be used 
for any one parameter family of curves, spaces. matrices, or other mathematical objects." 
(Parlett (I 998, p. 339)). 

If A and B are real symmetric mafriccs and, furthennore, if B is positive definite, 
then the generalized eigenvalue problem Ax i..Bx is called the symmetric definite 
generalized eigenvalue problem. 

This chapter is devoted to the study of the generalized eigenvalue problem with 
particular attention to the symmetric definite problem. The chapter is organized in ~lc 
following manner. 

In Section J 1.3 we present a result that shows how the generalized eigenvalues and 
eigenvectors can be extracted once the matrices A and B are reduced to generalized Schur 
or generalized real Schur forms. 

In Section I I A we describe the QZ algorithm (Algorithm 11.2) for the generalized 
eigenvalue problem. It is a namral generalization oftlte QR iteraiion algorithm tlescribed 
in Chapter 9. 

In Section 11.5 we show how to compute a generalized eigenvector when an ap­
proximation of a generaHzcd eigenvalue is known using the inverse iteration (Algorithm 
11.3). 

Sections 11.6-11.8 are devoted to the study of the symmetric definite generalized 
eigenvalue problems. Several case studies on the problems arising in vibration of struc­
tures are presented. A popular algorithm widely used in engineering prnciice-namely, the 
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simultaneous diagonalization algorithm (Algorithm 11.5), is described and several engi­
neering applications of this technique arc discussed. The generalized Rayleigh quotient 
iteration for a symmetric definite pencil is presented in Algorithm 11.6. 

Finally, in Section 11.9, we include a brief discussion of the quadratic eigenvalue 
problem. 

11.2 Eigenvalue-Eigenvector Properties of Equivalent 
Pencils 

Definition 11.5. if X andY are nonsingular matrices, then the pencil (A, B) and (Y* AX, 
Y' BX) is called equivalent to (A, B). 

The following arc easily proven properties of two equivalent pencils (Exercise 11.3): 

The eigenvalues of two equivalent pencils A- AB andY* AX- AY* B X are the same. 

If x is a right eigenvector of A - AB, then x- 1 x is a right eigenvector of Y* AX -
AY'BX. 

If y is a left eigenvector of A -AB, then y-l y is a left eigenvector of Y* AX -AY* B X. 

Thus, in order to compute the eigenvalues of A- AB, we will seek orthogonaimatrices 
to transform the pair (A, B) into an equivalent pair from which the eigenvalues can 
be more easily computed. Also, once the eigenvectors of the transformed pencil arc 
computed, the eigenvectors of the original pencil can be recm•eredfromthose of the 
transfonned pencil by appropriate matrix muLtiplications as shown above. 

11.3 Generalized Schur and Real Schur Decompositions 
Fortunately, analogous to the Schur decomposition of matrix A, there exists the generalized 
Schur decomposition of the pair (A, B) of the matrix pencil A - AB. 

Schur decomposition of A. There exists a unitary matrix U such that U* AU = T, 
an upper triangular matrix. 

Generalized Schur decomposition of (A, B). There exist unitary matrices U1 and 
U1 such that u; AUz and U] BU1 are upper triangular: 

UjAU, = T, = 
(

100':_, * 

UjBU, = T, = 

(

100::_' * 

,} 
J 

(II. I) 

( 11.2) 
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The finite eigenvalues A;, i = 1, ... , n, of the regular pencil (A- AB) are then given 
by A; = tiiftf;, tf; =f=. 0. By convention, the eigenvalues corresponding to the zero 
diagonal entries of T2 are oo. 

Generalized real Schur decomposition. Analogous to the real Schur decomposition 
of a single matrix A, there also exists the generalized real Schur decomposition of 
(A, B). In the case where both A and Bare real, the matrices U1 and U2 can be 
chosen to be orthogonal. That is, when A and B are both real, there exist onhogonal 
matrices Q and Z such that 

Qr AZ = R, an upper real Schur matrix, 

Q7 BZ = T, an upper triangular matrix. 

The pair (R, T) is said to be the generalized real Schur form of (A, B). 

The eigenvalues of (A, B) can then be extracted from Rand T as follows: 

(11.3) 

(i) The I x I diagonal blocks of (R, T) contain the real eigenvalues of (A, B) 

(ii) The 2 x 2 diagonal blocks of (R, T) contain the pairs of complex conjugate 
eigenvalues. 
For example, if 

( ~I 
R = 0 

0 

I I 
0 I 
0 3 
0 0 

and 
( 

I 0 0 0 ) 
T- 0 I 3 3 

- 0 0 2 2 ' 
0 0 0 -I 

then the real eigenvalues are~ and -f, and the two pairs of complex conjugate 
eigenvalues arc the eigenvalues of the pair ( ( _?1 6) , ( 6 ? ) ) , which are i and -i. 

11.4 The QZ Algorithm 
A standard algorithm for finding the generalized real Schur form of the pair (A, B) is the 
QZ iteration algorir!zm, developed by Moler and Stewart (1973). It is a narural analogue 
of the QR iteration for computing the eigenvalues of A. 

Like the QR iteration algorithm, the QZ algorithm also comes in two stages: 

QR Iteration for the matrix A: 

Stage I. A_!_, pT AP = H, upper Hessenberg 

Stage II. H ....!!.. Q T H Q = T, real Schur 

QZ Iteration for the pair (A,B): 
Q' Z' 

Stage I. A --'-+ Q'T AZ' = A', upper Hessenberg 

B ~· (Q')T BZ' = B', upper triangular 

Stage II. A'£ QT A'Z = R, upper real Schur 

B' ~ QTB'Z = T, upper Lriangular 

Stage I is direct and Stage II is iterative. The Stage II is achieved by applying implicit 
QR iteration algorithm to the matrix B- 1 A without explicitly forming the matrLr:. 
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A Note of Caution. If B is ill-conditioned, and C = B~ 1 A is explicitly computed, 
then C will not be computed accurately and thus the computed eigenvalues of the pencil i\­
'AB will be inaccurate. This is true eren if the eigenvalues themselves are n•ell-conditioned. 

11.4. 1 Stage 1: Reduction to Hessenberg Triangular Form 

Let .4 and B be two n x n matrices. Then: 

Step 1. Triangularize the matrix B by QR factorization. That is, find an orthogonal matrix U 
such that 

B UT B is an upper triangular matrix. 

Form 
A o= UTA (in general, A wi//befu/1). 

Step_ 2. Now reduce A obtained in Step l to upper Hcssenberg form \\lhilc preserving the 
triangular structure of B. 

This step is achieved as follows for the case 11 4 {"+"indicates a fill-in}. 

2.1. Apply a Givens transformation Q34 = J (3, 4, II) in the (3, 4) plane to the left of .4 
to make the entry (4, I) of A zero and then update B. 

(~ 
X X 

D (~ 
X X 

:); (~ 
X X 

D rl 
X X X X B~ X X 

X X X X 0 X 

X X X X X 0 + 
A Q34A B = Q,.B 

2.2. Apply the Givens rotation Z 34 to the right of B to make the (4, 3) entry of B zero and 
then update A. 

B~ e X X 

~)~ (~ 
X X 

~); (~ 
X X 

D· 
X X X X 

A 
X X 

- 0 0 X 0 X X X 

0 0 + 0 0 X X 

B = BZ34 A= AZ34 
!no fill·ill) 

2.3. Apply the Givens rotation Q 23 to the left of .4 to make the (3, l) entry zero and then 
update B. 

A=(~ 
X X 

~) (~ 
X X 

DB~~ G 
X X 

~). X X X X X X 

X X X X + X 

X X X X 0 0 

A QnA B = QnB 
(fill-in ar the 
(3, 2) entry) 
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2.4. Apply the Givens rotation Z23 to the right of B to make the (3, 2) entry zero and then 
update .4. 

B- c X X 

D~ (~ 
X X 

~} (~ 
X X 

:) X X X X A 2"_1 X X 

- 0 + X 0 X X X X ' 

0 0 0 0 0 X X X 

B = BZD AZ, 
(no Jill·in) 

Note: At this point, B is upper triangular and A is Hessenbcrg in its first column. 

2.5. Apply the Givens rotation Q 12 to the left of A to make the entry (4, 2) zero and then 
update B. 

A- e X X 

D (~ 
X X 

~): (~ 
X X 

D· 
X X X X X X 

- 0 X X X X 0 X 

0 X X 0 X 0 0 

A= Q11A B= Q12B 
(jill-in at tlte 

(2, I) entry) 

2.6. Apply the Givens rotation Z 12 to the right of B to make the {2, I) entry zero and then 
update A. 

c 
X X 

~)~ G 
X X 

D:A~ (~ 
X X 

D B= i X X X X X X 

0 X 0 X X X 

0 0 0 0 0 X 

B = BZ11 (lriangular) A AZn 
(upper Hessenberg) 

General case. The process is similar. For each au to be zeroed. two Givens rotations are 
used: one. applied to the left of A for zeroing an entry of A. and the other, applied to tl1e 
right of B to recover the B's triangularity. 

Flop·count. ll1e process requires about 8n3 !lops. If Q' and Z' are accumulated and are 
explicitly required, then it will additionally require about 4n3 and 3n 3 !lops, respectively. 

Example 11.6. 

2 3) 3 4 . 
3 3 

Since B is already an upper triangular matrix, Step l is skipped. I 
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Step 2. Reduce A to upper Hessenberg while retaining upper triangular structure of B. 

Step 2.1. Form Q23 to make a31 zero and update 8: 

( 

I 0 
Q,J = 0 0.7071 

0 0.7071 

1.4142 
0 

I 
0.7071 

-0.7071 

0 
-0.7071 
0.7071 

2 
4.2426 

0 

3 ) 4.9497 ' 
-0.7071 

(jill-ill at the (3, 2) elltry). 

Step 2.2. Form Zn to make b32 zero and update A: 

Zn = u ~ ~I ) , 

I 
2.8284 

0 
-0.7071 ' 

-l ) 

1.4142 
0 

3 
4.9497 

-0.7071 

0.7071 

-2 ) 
-4.~426 . 

A is in upper Hessenberg and 8 is in upper triangular form. 

MATCOM Note: The algorithmic process of reduction of (A, B) to a Hessenberg triangular 
pair has been implemented in the MATCOM function HESSTRI. 

11.4.2 Stage II: Reduction to the Generalized Real Schur Form 

From Stage I, we have 

A= Q''~'AZ = 11pper Hesse11berg 
(assume it is unreduced) 

B = Q'T B Z = upper triangula1: 

The basic idea now is to apply an implicit QR step to AB- 1 without el'ercompletelyforming 
this matrix explicitly. 

One Iteration of the QZ Algorithm 

Step 1. Compute the first column of N = (C- a 1/)(C- ct2 /), where C = AB- 1, and ct 1 

and a 2 are suitably chosen shifts. 
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Step 2. Find a Householder matrix Q 1, such that Q 1 N er is a multiple of er. 

Step 3. Form Q1 A and Q1 B. 

Step 4. Transform simultaneously Q 1A to an upper Hessenberg matrix A1 and Q1B to an 
uppertriangular matrix B1; that is, find orthogonal matrices Q and Z such that Q(Q 1 A)Z = 
Ar (upper Hessenberg), Q(Q, B)Z = 8 1 (upper triangular). 

Using the implicit Q theorem (Theorem 9.34), we can then show that the matrix 
A 1 81 1 is essefltially the same as what we would have obtained by applying an implicit QR 
iteration step directly to As- I. 

Application of a few QZ steps sequentially will then yield a real Schur matrix R = 
Qr AZ and an upper triangular T = QrBz. The generalized eigenvalues now can be 
computed from the real Schur triangular pair (R, T), as shown in Section 11.3. 

Implementation of Step 1: Computation of the First Column of N 

The real bottleneck in implementing the whole algorithm is in computing the first column 
ol' (C- ~> 1 /)(C "'I) without forming C = AB- 1 explicitly. Fortunately, this can be 
done. First, note that because A is upper Hcssenberg and B is upper triangular, this first 
column of N contains at most three nonzero entries in the first three places: 

nr =Ner =(C-~> 1 l)(C-~>2 /)e 1 =(x,y,z,O, ... ,o)'. 

To compute x, y, and z all we need to know is the first two columns of C, which can be 
obtained just by inverting the 2 X 2 leading principal SUbmatriX of 8-l; the whofe 8-l 
does not need to be computed. Thus, if c1 and c2 arc the first two columns of C = A s- 1, 

then 

where ai, i = 1, 2, are the first two columns of A. Note that c1 has at most two nonzero 
entries and c2 has at most three. 

Let Ct = (Ctt, c21, 0, ... , O)r and cz = (c12, cz1, CJz, 0, ... , O)r. 

Then it is easy to sec that 

G)= 
Example 11.7. Let 

A=(~ I 
0 

I 
4 B=(~ ~ ~ !). 

0 0 0 3 
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The 2 X 2 leading principal submatrix orB = ( b l): 

c1 =(1.2.0.0)r. c2 (-1,-3,-1,()) 7
• 

Choose"'' = I. "' = I; then x = -2, y = -8. z = 2. I 
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Implementation of Step 2. Since the first column"' or N = (C- "'' /)(C- a, f) has at 
most three nonzero entries. the Householder matrix Q1 lhut transforms lit into a multiple 
of e1 has the form 

Q,=(%' !,~;)· 
where Q 1 is a 3 x 3 Householder matrix. 

Implementation of Step 4: Computation of A1 and B 1• The matrices Q[ A and Qf B 
now have lhe following structures, as mustrated wilh li = 6. (ln the following"+" denotes 
a possible fill-in.) 

X X X X X X X X X X X X 

X X X X X X + X X X X X 

A= Q,A + X X X X X , B= Q,B + + X X X X 

0 0 X X X X 0 0 0 X X X 

0 0 0 X X X 0 0 (] 0 X X 

0 0 0 () X X 0 0 0 0 0 X 

1bat is, both the Hessenherg fonn of A and the triangular form or B arc now lost in that 
there is now fill-in at the (3, I) position of A and the (2. 1), (3, I), and (3, 2) positions of B. 
The job now at hand is to cleverly chase away these unwanted nonzero entries ro restore the 
original Hessenberg form of A and tlte ttiauguJar form of B. This is done iteratively as 
shown below. 

• Apply a Householder matrix z, to the right orB to eliminate the (3, I) and (3, 2) 
entries, followed by another Householder matrix to the right to eliminate the (2. I) entry. 

X X X X X X 

+ X X X X X 

B= + + X X X X 

0 0 0 X X X 

0 0 0 0 X X 

0 0 0 0 0 X 

X X X X X X X X X X X X 

+ X X X X X 0 X X X X X 

0 0 X X X X z, 0 () X X X X 

0 0 0 
--'--+ 

0 0 0 X X X X X X 

0 0 0 0 X X 0 0 0 0 X X 

0 0 0 0 0 X 0 0 0 0 0 X 

BZ, BZ1Z2 
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Update A: 

X X X X X X X X X X X X 

X X X X X X X X X X X X 

A= + X X X X X Z:l: + X X X X X 

0 0 X X X X + + X X X X 

0 0 0 X X X 0 0 0 X X X 

0 0 0 0 X X 0 0 0 0 X X 

A= Az,z, 

(Updating A created two additional fill-ins. We now have unwanted zeros in the (3, l ), 
(4, I), and (4, 2) positions of A.) 

•Apply a Householder matrix Q, to the left of .4 to eliminate the (3, 1) and {4, l) 
entries. 

X X X X X X 

X X X X X X lx I 
X X X X "I X X X X X X 

+ X X X X X 0 X X X X xi 
A= + + 1 

X X X X 0 + X X X :j 0 0 0 X X X 
0 0 0 

0 0 0 0 
X X 

X X 

0 0 0 0 X x! 

A = Q2A 

Update B: 

X X X X X X 

X X X X X X 
() 

0 
X X X X X 

X X X X X 

0 0 X X X X () + X X X X 
B= 0 0 0 X X X 0 + + X X X 

0 0 0 0 X X 
0 0 0 0 

0 0 0 0 0 
X X 

X 

X~ 0 0 0 0 0 

B = Q,B 

At this point, the submatriccs of the current A and B enclosed by the boxes have the same 
structure as that of the original matrices Q 1A and Q1 B. The problem is now dc~atcd. 
So, we can now work with these submatrices and !he process can be continued until the 
Hessenberg triangular structure of the pair (A, B) is restored. 

In view of the above discussion, let's now summarize one iteration step of the QZ 
algorithm. 
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ALGORITHM 11.1. One Iteration Step of the QZ Algorithm. 

Inputs: (i) A E IR'1xn, an unreduced upper Hessenberg matrix. (ii) B E lf!:'P:n, an 
upper triangular matrix 
Output: The orthogonal matrices Q and Z such that A1 = Q7 AZ is upper 
Hessenberg and B1 = QT BZ is upper triangular. 

1. Choose the shifts a 1 and a2. 

2. Compute the first column of N = (C- " 1/)(C- " 2!), where C = AB- 1, 

without explicitly forming s- 1: Let (c 1, c1 ) be the first two columns of C. 

Tl ( ) ( ) ( "" "" ) _, Th h . 1· h 1· t 1en Ct, c1 = a1, a2 0 11,: . e t rcc nonzero cntncs o l c 1rs 
column of N are given by --

X= (Ctt- a!)(CJJ- a2) + CJ2C2t, 

y = c21 (err - a2) + c21 (en- ad, 
Z = C]J CJ2· 

The first column of N = n 1 = (x, y, z, 0, ... , O)T 

3. Find a Householder matrix Q 1 such that 

4. FormQ 1AandQ 1B. 

5. Transform the matrices Q 1 A and Q 1 B, respectively, into an upper Hcsscn­
berg matrix A 1 and an upper triangular matrix 8 1 by orthogonal equivalence 
in the way shown previously, creating orthogonal matrices Q2 through Qn-1 
and z, through z,_,, 
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Obtaining the transforming matrices. The transforming matrices Q ami Z arc ohlaincd 
as follows. 

The matrix Q: 
Q=Q,Q,···Q,_,. 

The matrix Z: 
Z=Z1Z2···Zn-l· 

Note that Q has the same first row as Ql . 

Flop-count. One QZ iteration step requires about 22n' flops. If Q and Z are to be 
accumulated, then-an additiona18n 2 and 13n 2 flops, respectively, will be required. 

Choosing the shifts. The double shifts"' and a, at a QZ step can be taken as the eigen­
values of the lower 2 x 2 submatrix of C = AB- 1

• The 2 x 2/ower submatrix ofC can be 
computed without explicitly forming B -I (Exercise I 1.5 ). 
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ALGORITHM 11.2. The Complete QZ Algorithm. 

Inputs: (i) A E Rnxn. (ii) BE !Rn:-: 11 • 

Outputs: (i) R. real Schur form of A. (ii) T. an upper triangular matrix. The 
pair (R. T) contains the eigenvalues of (A, B). 

Step 1. Transform (A, B) into a Hcssenberg triangular pair by orthogonal 
equivalence (assume tlrat A is unreduced): 

A a QT AZ, upper Hessenberg. 
B "' Q T B Z, upper!riangular. 

Step 2. Iterate with Algorithm 11.1 to produce lAd and I Bd. choosing the 
shifts for each iteration as described above. 

Step 3. Monitor the convergence of the sequences lAd and IB,J: 

{Ad -+ R, real Schur, 
{ Bk} -+ T, upper triangular. 

Remark. In a computational selling. it will be necessary to monitor the subdiagonal entries 
of A and the diagonal entries of B in each iteration step to see if a decoupling is possible, 
The same criterion for deflation as used for the QR iteralion algorithm in Cl!apter9 can be 
used. For details, see Golub and Van Loan ( 1996). 

Flop-count. Algorithm 11.2 requires about 30n 3 flops. The formation of Q and Z, if 
required, needs, respectively, another 16n3 and 20n3 Jlop.s (jrom experience it is ktw·wn that 
about two QZ steps per eigenvalue are needed). 

Round-off properties. The QZ iteration algorithm is as stable as the QR iteration algo­

rithm. It can be shown that the computed R and .5' satisfy 
T "' T "', Q0 (A + E)Zo = R and Q0 (B + F)Zo = S, 

.--- ~- .---
where Qo and Zo are orthogonal and 

II Ell~ !Li!Ail and IIFii ~ 111!Bil. 
where JL is the machine precision. 

MATLAB Note: The MATLAB program qz finds the QZ factorization for generalized 
eigenvalues. [R, T, Q, Z. I'] = qz(A, B) produces complex upper u·iangular matrices 
Rand T such that QAZ =Rand QBZ T, and the matrix V contains the generalized 
eigenvectors, The MATLAB program ordqz reorders the eigenvalues in QZ factorization, 
Several options of reordering arc available. 

11 .5 Computations of Generalized Eigenvectors 
Once an approximate generalized eigenvalue A is computed, the corresponding generalized 
eigenvector v can be computed using the inverse iteration as before. 
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ALGORITHM 11.3. Computation of a Generalized Eigenvector. 

Input: A E Rnxu. B E IR'1 
XII, and approximate eigenvalue A of the pencil A -i.E. 

Output: An approximate eigenvector corresponding to A. 

Step 1. Choose an initial eigenvector Vo. 
Step 2. Fork 1, 2 .... do 

2.1. Solve (A - t..B)l;k = Bv,_,. 

2.2. v, = iidllil, 112· 

End 

A Remark on Solving (A J.B)v, = Bv,_1, In solving (A -1B)v; = Bv,_ 1, substan­
tial savings can be made hy exploiting rhe Hessenberg triangular structure to whic!t rhe 
pair (A, B) is reduced ar Stage I of the QZ algoritlun Note that for a given A, the matrix 
A - ) .. 8 is u Hessenberg rnatrix. Thus, at each iterarion only a Hessenberg system needs 
to be solved. Note that when 8 is uonsingufar. this is equivalent ro solving the system with 
s-• A and Algorithm 113 becomes idemical to Algorithm 9.2 

Example 11.8. 

-1.5 
3 

-1.5 
-~.s). 
1.5 

B (
2 0 0) 
0 3 0 . 
0 0 4 

!. 1 = a genemlized eigenvalue of (A - i. B) 1.9508. u0 = (I. I. I) r. 

k = 1. Solve for c1: (A - !. 1 B)ii1 = B c0• 

u, = il 1/lliir!b = (0.8507, -0.5114,0<l217)r. I 

MATCOM Note: Algorithm 113 has been implemented in the MATCOM function 
lNVITRGN. 

11.6 The Symmetric Positive Definite Generalized 
Eigenvalue Problem 

In this section, we study the- symmetric definife genera!i';.ed eigenvalue problem Ax = ABx. 
The problem routinely arises in vibration analysis of structures (Inman (2006)). 

11.6.1 Eigenvalues and Eigenvectors of Symmetric Definite Pencil 

We start wilh un imponanl (but not surprising) property of Lht: symmetric definite pencil. 

Theorem 11.9. The symmetric defi1dte pencil (A -I. B) has real eigenvalues and Unearly 
independent eigent•ectors. 
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Proof. Since B is symmetric positive definite, it admits the Cholesky decomposition B = 
LLT So, from Ax= !..Bx we have Ax= !..LL''x. So, 

L -I A(LT)- 1 LTx = !..Lrx, 

or 

Cy = Ay, wherey = Lrx. 

The matrix C = L -I A(Lr)- 1 is symmetric; therefore A is real. The assertion about 
the eigenvectors is obvious, since a symmetric matrix has a set of 11 independent eigen-
vectors. D 

An interval containing the eigenvalues of a symmetric definite pencil. The eigen­
values of the symmetric definite pencil A- !..8 lie in the interval [-IJB-1A11. IIB- 1AIJ]. 
(Exercise 11.14 ). 

11.6.2 Conditioning of the Eigenvalues of the Symmetric Definite 
Pencil 

If x is an eigenvector of the symmetric definite pencil (A, B) corresponding to the eigen­
value A, then the number 

1Jxll2 
v = -.j~"(.=x.=Ao=x~-):;=2 ~+~(=x=• B"'."'r l"'' 

is a conditionmmtber [or the eigenvalue A (Stewart and Sun (1990)). (Compare this ·with 
the definition ofthe conditionnwnber of a simple eigenvalue of a matrix given in Chapter 9.) 

Two important consequences 
I 

In contrast with the eigenvalues of a symmetric matrix, the eigenvalues Qf a definite 
pair (A, B) are not necessarily well-conditioned. 

For example, the eigenvalue 1 of the pair ( ( 6 o.&n ), ( 6 o.8m ) ) is well-conditioned 
(with a perturbation of order 10-4 ) but the eigenvalue 2 is ill-conditioned. 

Even though the eigenvalues of a definite pair may be ill-conditioned, the degree of 
ill-conditioning can be bounded. 

For further discussions on conditioning of the generalized eigenvalue problem, see 
Stewart and Sun ( 1990) and Golub and Van Loan ( 1996, p.378). See also Tisseur (2000), 
Higham and Higham (1998), and Tisseur and Meerbergen (200 I). 

11.6.3 The QZ Method for the Symmetric Definite Pencil 

The QZ algorithm described in the previous section for the regular pencil A AB can, of 
course, be applied to a symmetric definite pencil. However, the drawback here is that botlz 
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the symmetry and definiteness of tlte problem will be lost in general. We describe now a 
specialized algorithm for the symmetric definite pencil based on Theorem 11.9. 

11 .6.4 The Cholesky QR Algorithm for the Symmetric Definite Pencil 

ALGOIUTHM 11.4. The Cholesky QR Algorithm for the Symmetric Definite 
Pencil. 

Input; (i) A E If!:"", symmetric, and (ii) B E !R"", symmetric positive definite. 
Output: The eigenvalues and eigenvectors of the definite pencil A - AB, 

Step l. Find the Cholesky factorization of B: B = Ll/. 

Step 2. Form C = L _,A (L T )- 1 by taking advantage of the symmetry of A. 

Step 3. Compute the -eigenvalues· A-; and the eigenvectors y;, i = I •...• n, of 
the symmetric matrix C using the QR iteration with single shift, specialized for 
symmetric matrices, (The eigenvalues of the pencil A~ AB =the eigenvalues 
of C.) 

Step 4. Compute the generalized eigenvectors x; of the pencil A-ABby solving 
L T _\i Yi' i = I' .. ' ' If. 

Stability oi the Cholesky QR Algorithm 

When B is well-conditioned, there is nothing objectionable about the algorithm. However, 
if B is ill-conditioned or nearly singulm; then so is L ~l, and then matrix C camwr be 
compwed accurately. Therefore, in this case. the eigenvalues and the eigenvectors will be 
inaccurate. 

Specifically, it can be shown (Golub and Van Loan ( 1996)) that a computed eigenvalue 
~obtained by the algorithm is the exact eigenvalue of the matrix 

(L _, A(L'f' + £), where il£11,"" lli!AibiiB- 1 h 

Thus, ill-conditioning of B will severely affect the computed eigenFalues. even ~f they are 
tlzemselves weil-conditioned. 

Another disadvantage of this algorithm is the loss of the s-parsity-matrLr C is in gen­
era/full, even though A and B may be sparse. Since many problems in practical application 
are large and sparse, the algorithm \Vili not be able to take advantage of the sparsity of the 
problem in a computational setting. For .an analysis of this mclhod with iteralivc relinement, 
see Davies, Higham, and Tisscur (2001). The best known algorithm in the 1990s for the 
sparse symmetric definite generalized eigenvalue problem, which has been incorporaled 
in some well-known structural engineering software packages, is by Grimes, Lewis, and 
Simon ( 1994 ), which is bused on the block Lancws method. 

MATLAil and MATCOM Note; The MATLAB function cig (A, B, 'chol') hus imple­
mented Algorithm 11.4. The algorithm has also been implemented in the MATCOM function 
CHOLQR. 
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As we will sec in the next section, in many practical applications only a few of the 
smallest generalized eigenvulucs are of interest. These smallest eigenvalues sometimes cau 
be computed reasonably accurately, even when B is ill~conditioned, by using the ordered 
RSF of B in which the eigenvalues are ordered from the smallest to the largest. We leave 
this an exercise for readers (Exercise 1 1.11). 

11.6.5 Diagonalization of the Symmetric Definite Pencil: 
Simultaneous Diagonalization of A and B 

The Cholcsky QR iteration algorithm (Algorithm 1 l.4)ofthe symmetric definite pencil gives 
us a method for finding a nonsingular malrix P that transronns A and B simultaneously to 
diagonal forms by congruence. This can be seen as follows: 

Let Q be an orthogonal matrix such that 

Qr C Q= diag(c 1, ••• , c.,). 

Set P (L - 1 )T Q. Then 

pT AP = QTL- 1A(L- 1)7 Q = Q7CQ diag(c1,c2,, .. ,c,) 

and 

PTBP= Q7 L- 1B(L-1{Q = Q'~'L- 1 LLT(L- 1 ) 7 Q =I (note that B =LLr)_ 

r-;;ORITHM ll.5. Simu;taneous Diagonalization of a Symmetric Definite 

I :·~cil. 
• Input: Asymmetricdefinitepair(r1,B); A= A7 ,B BT > 0. 

Output: A nonsingular matrix P such that pT B P =I and pr AP is·a diagonal 
matrix. 

Step 1. Compute the Cholesky factorization of B: B = LLr. 

Step 2. Form C = L - 1 A(LT)-1 by taking advantage of the symmetry of A (Cis 
symmetric). 

Step 3. Applying the symmetric QR iteration algorithm to C, find an orthogonal 
matrix Q such that Q r C Q is a diagonal matrix. 

Step 4. Form P (L -1 )T Q. 

Flop-count. Algorithm 1 1.5 requires about 1 4n 1 flops. 

Example ll.lO. Consider 

(
I 2 3) 

A= ~ 3 ~ , 
' 4 ) (

10 

B= : 

A is symmetric and B is symmetric positive definite. 

I 
10 :) . 

10 
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Step 1. The Cholesky decomposition of B = LLT: 

(

3.1623 0 
L = 0.316~ 3.1464 

0.316. 0.2860 
0 ) 0 . 

3.1334 

Step 2. Form C = L -l A(L -I )T. 

(

0.1000 
c = 0.1910 

0.2752 

0.1910 0.2752) 
0.2636 0.3320 . 
0.3320 0.3864 

Step 3. Find wz orthogonal Q such that QT CQ = diag(c1, ••• , c11 ): 

Step 4. Form 

Step 5. Verify 

(

0.4220 
Q = 0.5684 

0.7063 

-0.8197 
-0.0936 
0.5651 

-0.3873) 
0.8174 . 

-0.4262 

(

0.09409 
P=(L-l)TQ= 0.1601 

0.2254 

-0.2726 -0.1361) 
-0.0462 0.2722 . 
0.1803 -0.1361 

pT AP = diag(0.8179, -0.0679,0) and pT BP = diag(l, I, 1). I 

MATCOM Note: Algorithm 11.5 has been implemented in the MATCOM function 
SIMDIAG. 

Frequencies, Modes, and Modal Matrix 

As we will see a little later, in vibration engineering, a frequently arising eigen­
value problem is the symmetric definite generalized eigenvalue problem of the 
form 

Kx =!..Mx. 

The matrices M and K are called, respectively, mass and st(ffitess matrices. The 
eigenvalues of this problem are related to the natural frequencies, and "the size 
and sign of each element of an eigenvector determines the shape of the vibration at 
any instant of time." The eigenvectors are, therefore, referred to as mode shapes 
or simply as modes. 

"The language of modes, mode shapes, and natural frequencies form the basis for 
discussing vibration phenomena of complex systems. An entire industry has been 
formed around the concept of modes" (Inman (2006)). 

The diagonal matrix P that simullaneously diagonalize M and K (sec Algorithm 
11.5) is called the modal matrix, and the columns of matrix P arc called normal 
modes. 
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Orthogonality of the eigenvectors. Note that P (pt. P2,, .. , Pn} is an eigenvector 
matrix and it is easy to sec that 

p{Bp; = l, i= l. ... ,n: p{Bp1 =0, i ybj. 

and 

p{Ap1 =c;. i=l ... .,n: pTAp1=0, iybj. 

11.6.6 Generalized Rayleigh Quotient 

The Rayleigh quotient iteration defined for a symmetric matrix A in Chapter 9 can easily 
be generalized to the symmetric definite pair (A, B). 

Definition 11.11. The number 

xTAx 
!.. = - 7- (ilxiJ, = 1), 

X Bx 

is called the generalized Rayleigh quotienl 

Significance of the generalized Rayleigh quotient. It can be shown that the generdlizcd 
Rayleigh quotient as defined above has the following property: the generalized Rayleigh 
quotiellf A minimizes 

j('A) !lAx )..BxiJB. 

where II · iln is defined by !lzll~ = : 7 B-1 z (Exercise 11.15). 

It can be used to compute approximations to generalized eigenvalues Ak and eigen­
vectors x~; for the symmetric definite generalized eigenvalue problem. as shown in the 
following algorithm, which is a natural generalization of Algorithm 9.3. 

I I ALGORITHM 11.6. Generali1.ed Rayleigh Quotient Iteration. 

I
' Input: Asymmetricdcfinitepair(A,B); A= AT,B = BT > 0. 

Output: An approximate eigenpair of (A, B). 

Step 0. Choose xo such that ilxoll = I. 
Step L Fork = 0, I, ... do until convergence 

End 

1.1. Compute >-k = x~BAXt (generali::.ed Rayleigh quotient). 
XI. X; 

1.2. Solve for .rk+ 1: (A- J.,B).rk+ 1 = Bx, (generalized e£genvector). 

1.3~ Normalize .ik+l : Xk+l = H.i:1~'-1 1 r: (normalized generali:ed eigen-
vectors), 
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MATCOM Note: Algorithm 11.6 has been implemented in the MATCOM function 
GENRAYQT. 

11.7 Symmetric Definite Generalized Eigenvalue 
Problems Arising in Vibrations of Structures 

In this section, we present some case studies on the symmetric definite generalized eigen­
value problem arising in vibration analysis of buildings, airplanes, and others. 

11.7.1 Vibration of a Building: A Case Study 

Consider a four-story reinforced concrete building as shown in Figure 11.1. The floors and 
roofs, which arc fairly rigid, arc represented by lumped masses m 1 to ULJ. having a horizontal 
motion caused by shear deformation of columns, and k1 to k4 are equivalent spring constants 
of columns that act as springs in parallel. 

1/l.j. 

)'.; 

k. 
111) 

}'3 

k, 
Ill] 

)'2 

k2 
lilt 

Yt 

k, 

Figure 11.1. Schematic of four-story building. 
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We would like to study the configuration when the building is vibrating in its first two 
modes (corresponding to two smnllest eigenvalues). 

Formulation of the generalized eigenvalue problem. To find these modes, first we 
formulate the problem as a symmetric definite generalized eigenvalue problem in terms 
of mass and stiffness matrices. Kx = i-Mx as follows: The equations of motion of the 
system are tV!);+ K y = 0. where y = ()'J. Y2· )'3, )'..J) 7 . Nf diag{m 1, 1112,. m3, m4), and 

(

k, + k, -k, 

K = k2 + k, 
0 -k, 
0 0 

0 
-k, 

k?, +k4 
-k, 

I). 
k, 

Assuming harmonic motionj we can write Jk = Xkeiw!, k = 1, 2, 31 4. where Xk is 
the amplitude of the mass m, and w denotes the natural frequency. Now, substitut­
irif{ffiese--cxptlYSSi'6rtS' for-y 1, y1• ) 13• and ')14 ·into the· equations-·· of motjon, and· noting that 
jk -w1x~;eiaJI, k = 1, 2, 3. 4, we obtain the generalized eigenvalue problem Kx = 11\t!x. 

Since M and K are both symmetric and M is positive definite. this is a symmetric 
positive definite generalized eigenvalue problem. 

Take m, = 5 x 107 , 1112 = 4 x 107 , nz 3 = 3 x 107 , m, = 2 x 107
, and k, = 

10 x 1014 , k2 = 8 x 1014, k; = 6 x 1014 , k4 = 4 x 1014. We then have 

(

1.8 

K = JO'·' ~8 
-8 
14 
-6 
0 

0 
-6 
10 
-4 

and M = 107 x diag(5, 4. 3. 2). 

Solution of the eigenvalue problem Kx = 'AMx using the Cholesky QR algorithm 
(Algorithm 11.4). The eigenvalues are 107 {6.1432, 1.8516, 0.3435, 4.0950}. The eigen­
vectors corresponding to the two smallest eigenvalues 107 (0.3435) and 107 (1.8516) are 

(

0.0370) 
IO~J 0.0753 

0.1091 • 
0.1318 

(

-0.0785) 
to-' -0.0858 

0.0104 . 
0.1403 

The first two modes of vibration corresponding to these two smallest eigenvalues are 
shown in Figures 11.2 and I 1.3, respectively. 

11.7 .2 Forced Harmonic Vibration: Phenomenon of Resonance 

In the previous example, we considered vibration of a system without nny external force. 
Consider now a system with two degrees of freedom with different masscs 1 but having the 
same stiffness coefficients, excited by a harmonic force F1 sin (JJf, as shown in Figure 11.4, 
This example will explain how resonance can occur in stntc!ure. 

Then the equations of motion of the system are 

m d;1 = -k(yl - )'2) - ky1 + F1 sin wt, 
m:j;1 = k(yl y:)- kyz. 

(1 1.4) 
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f1l4 X4 lll4 
X4 

k, fll] 
k, 

X] 

k, Ill'] k, 

kz Ill] 
k'2 

:x1 k! 

Figure 11.2. First mode ofl'ibration 
ojfour-sf01)7 building. 

Figure 11.3. Second mode of vibra­
tion offour-story building. 

k I F1 sinwl 

~~ ~ +)'! 
k 

k 

Figure 11.4. Forced vibration of a two-degrees-of-freedom system. 

Assuming the solution ( :~:~) = (:~-~)sin wt, and substituting this into the equation ( 11.4), 
we get 

(2k- m 1w
2)x 1 - kx2 = Ft, 

-kXt + (2k - 11l]W1 )X1 = 0. 
(11.5) 
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The solution of ( l 1.5) can he written as 

(11.6) 

(11.7) 

where w 1 and wz are the modal frequencies. For the special case when m 1 = m 2 = m, w1 

and w2 are given by Wt = ) ~ and w2 = J3f;, 

'( ' m- wj 
(11.8) 

From ubove, it follows immediately that ~vhenever w is equal to or close to w1 or w2, 

the amplitude becomes arbitrarily large, signaling the occurrence of resonance, Nolc that 
in this case. the denominator is :r.cro or close toiL 

In or her tvords, when the frequency of the imposed periodic force becomes equal to 
or nearly equal to one of the natural frequencies of a system, resonance results, a situation 
which is quite alarming for some applications. 

'I - \ 
I~ 

---~-·3 

Figure 11.5. Airplane landing on a runway. 

Example 11.12. Illustration or resonance. Consider the landing of an airplane on a rough 
runway, The fuselage and engine arc assumed to have a combined mass ml, The wings arc 
modeled by lumped masses m2 and m3, and stiffness k2 and k,; k1 represents the combined 
stiffness of the landing gear and tires. The mass of the wheels and landing gear is assumed 
negligible compared to that of the fuselage and the wings. 

The runway is modeled by a sinusoidal curve asshown in Figure 11.5. Let the contour 
be described by y = Yo sin wt, and lelthe airplane be subjected to a forcing input of f 1 sin wt, 
where f1 = kr)'o. Let y 1, )'1, and )'3 represent motion relative to the ground. 
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Figure 11.6. Model of the airplane. 

So, the equations of motion for the three-degrees-of- freedom system so described are 
given by 

-k
3

) (y1
) (f' sin'"') 0 Yz = 0 . 

k3 YJ 0 

The airplane is shown schematically in Figure 11.6. 
Let 

k1 = 1.7 x to' N/m: k3 = k1 = 6 x to' N/m, 

m 1 = I 300kg; 1111 = lll3 = 300kg. 

The natural frequencies obtained by solving the generali~ed eigenvalue problem Kx = 
AMx = w2Mx are given by 

w 1 = 9.39 rad/sec, w1 = 44.72 rad/sec, w3 = 54.46 rad/scc. 

The forcing frequency w is related to the landing velocity v by v = w£j2rr. So if w = WJ, 

then 
W] £ 9.39 X 2Qm/SCC 

v = - = = 29 .8m/scc = t 07km/hr. 
2rr 2rr 

Thus, if the landing velocity is 107 kmlhr. or close to it, then there is dcmger of excitation 
at or near the resonance. I 

11.8 Applications of Symmetric Positive Definite 
Generalized Eigenvalue Problem to Decoupling 
and Model Reduction 

In this section we will mention a few more engineering applications of the generalized 
eigenvalue problem. These include (i) decoupling of a second-order system of differential 
equations, and (ii) model reduction. 
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11.8.1 Decoupling of a Second-Order System 

Case 1. The Undamped System 

As we have seen before. vibration problems in structural analysis may be modeled by a 
homogene.ous system of second-order differential equations of the form 

M)'+Ky=O, ( 11.9) 

where y = (Yt. Y2· ••. , y11 )r and )i = ~· 
The matrices lvf and K are 1 as usual, the mass and sriffiress matrices, Assuming 

thal lhcsc matrices are symmetric and ll'f is positive definite, we will now show how the 
simultaneous diagonalization technique described earlier (Algorithm 11.5) can be employed 
to solve this syslcm of second-order di!Tcrcntial equations, 

The idea is to decouple the system into n uncoupled equations so that each of these 
uncoupled equations can be solved using a standard rechniqHe. Let P be the modal matrix 
sticli tliat 

PT,up [ PTKP ' d' ( ' ') '" , = n = mg w1, ... , w; . 

Let y Pz, so the homogeneous system M )~ + K y 0 becomes 

MPz+ KPz =D. 

Next prernultiplying the above equation by pr, we have 

pT .lvf P"i + pT K Pz = 0 

or 

z + 1\z = 0, 

(11.10) 

(11.11) 

Denoting z = (z 1, z2 , ... , Zn) 7 we sec that (II. II) is a set of 11 uncoupled equations: 

.. ' 0 Zi + W{Zi = , i = l, 2, ... , n. 

111e solution of the original system ( 11.9) now can be obtained by solving these 11 uncoupled 
equalions using standard techniques and then recovering the original solution y from 

y = Pz. 

Thus, if the solutions of tlte decoupled system ( 11.11) are given by 

then the solutions of the original system ( 11.9) arc 

(

y 1l [ A 1 cosw11 + B1 sinw1t 
v~ A7 ens w,t + B"~ sin aht 

y~ = p ~:cos w:.t+ B:, sin w~,t l (11.12) 

The constants Ai and B1 are to be determined from the initial conditions. For example, 

Yi \1=o = displacerncnl at time 1 = 0, j·1 1 1 ~0 = initial velocity. 

Example 11.13. We will illustrate thcdecoupling technique with the following mass-spring 
example (sec Figure 11.7). 
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L[J k"! 

~I ,,.~ 
/ L,, 

~k;~~J:l VVVVVLJ 
L}'J 

Figure 11.7. Three-degrees-of-freedom spring-mass system: Decoupling. 
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The equations of motion are M)i + ky = 0, where y = y1, y1 , y3)r, M = diag(m 1, 

m1 , m3 ) and 

( 

k, + k, -k, 0 ) 
K = -k, k, + k, -k, . 

0 -k, k, 

Take m 1 = 2 x I04kg, m, = 3 x 104kg, lllJ = 4 x I04kg, and k1 = k, = k3 = 
I 09 X !.5N I M. Then the natural frequencies [w,' w,, WJ) = I 02 (4.4 I 68, 2.895 I' 0.9273). 

Suppose that the system, when released from rest at t = 0, is subjected to a 
displacement. 

We would like to find the undamped time response of the system. The initial condi­
tions are 

Since the initial velocities are zeros, we obtain 

)•; = P Biwi = 0, i = I, 2, 3. 

These equations give 8 1 = 8 2 = 8 3 =D. 
Again, at t = 0, we have from ( 11.12) 

(
;::) = p (~:) = (~) . 
YJ A3 3 

The modal matrix P (obtained by using Algorithm 11.5) corresponding to the natural fre­
quencies is given by 

IS 

( 

0.0056 
p = -0.0034 

0.0008 

The solution of the linear system 

-0.0040 
-0.0035 
0.0028 

O.OOI7) 
0.003I . 
0.0040 

A 1 = 6. I 8 I 6, A, = 50.6264, A3 = 705.2650. 
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Substituting these values of A1, A 2 , A 3 and the values of Wt, w2, and w3 obtained 
earlier, we get 

(
;::) = p (~:) = p (~: ~~: :::) . 
Y3 Z3 A3 cos W]f 

The values of)'!, )'2, and )'3 give the undamped time response of the systems subject to the 
given initial conditions. I 

Case 2. The Damped Systems 

Some damping, such as that due to air resistance, fluid and solid friction, etc., is presetlt in 
all structures. Let us now consider damped homogeneous systems. 

Let D be the damping matrix. Then the equations of motion of the damped system 
become 

M)' + Dj• + Ky = 0. (11.13) 

Assume that Dis a linear combination of M and K; that is, 

D =ctM+fJK, (11.14) 

where a and f3 are constants. Damping of this type is called proportional or Rayleigh 
damping. Let P be the modal matrix. Then we have 

pTDP =ctPTMP +{JPTKP =ctl+fJA. 

Let z = pT y. Then the above homogeneous damped equations are transformed to n 
uncoupled equations: 

.. ( fJ ')' ' 0 Zi + a+ Wj Zi + WjZi = , i=1,2, ... ,1l. (11.15) 

In engineering practice it is customary to assume modal damping, that is, a and fJ are 
chosen so that 

' a+ {Jwj = 2~iwi. 

The number I;; is called the modal damping ratio of the ith mode. The quantity I;; is usually 
taken as a small number between 0 and l. The most common values are 0 :::: ~ :::: 0.05. (See 
Inman (2007).) However, in some applications, such as in the design of flexible structures, 
{I;; I arc taken to be as low as 0.005. On the other hand, for an automobile shock absorber, 
a value as high as ~ = 0.5 is possible. 

Assuming modal damping, the dccouplcd equations ( 11.15) become 

i=l,2, ... ,1l. 

The solutions of these equations are given by 

Z; = e-(,w,r (A; cosw,jl -1}1 + 8; sin w;j1 -t,}r), i = I, 2, ... , 11, 

where the constants A1 and B1 are to be determined from the given initial equations. 
The original system can flOW be solved by solving these n wu:oupled equations sepa­

rately and then recovering the original solution y from y = Pz. 
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Figure 11.8. Two~degrees-of-freedom spring-mass system: Nonproportional damping. 

Remark. We have just seen that if damping is proportional, then the system can be decou­
plcd. Unfortunately, however, the concept of proportional damping is more of theoretical 
interest rather than practical. Systems can always he constructed whose damping cannot 
be proportional. We cite a simple example below. 

Example 11.14. Nonproportional damping. Consider the following system with two 
degrees of freedom (as shown in Figure 11.8): 

The equations of motion of the system are developed by considering a free body 
diagram for each mass. 

For mass m: 

Ill 
d2 (5'2 - -''I) 
k(y2- y,) 

Thus, the equation of motion for the mass m is 

-dd'J + d2U2- 5'1)- ky, + k(y2- y,) =my,. 
Similarly, the equation of motion for the mass 2m is 

-d2U2- )',)- d3)'2- k(y2- y 1 )- 2ky2 =2m)',. 

Thus, for the whole system we have 

('~ 2~,) G:) + (d'-~:2 
d2-:

2
dJ G:) + (~~ -k) ()'') = (0). 

3k )'2 0 

Now let's take k = 2,111 = 5, d 1 = 2, d2 = 4, d3 = I. 

T f the relation D = aM+ f3 K were satisfied, then there would exist a and f3 satisfying 
the equations 

6 = 5a +4,8, 

-4 = -2,8, 

5 = lOa+ 6,8. 

(11.16) 

(11.17) 

(11.18) 

However, the above equations cannot all be satislled with any set of values of a and fl. 
This is a case of nonproportional damping. Proportional damping is not possible in this 
case. I 
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Damped Systems under Force Excitation 

When a damped syslcm is subject to an external force F, the equations of motion ore 
given by 

(
F,(I)l 
F,(l) 

Mj' +D)·+ Ky = F(t) = : . 

F,(t) 

(l 1.19) 

Assuming that M is symmetric positive definite K is symmetric, and that damping is pro­
portional, it ls easy to see from our previous discussion that the above equations can.- be 
deeoupled using simultaneous diagonalization. · 

Let P (pij) be the modal matrix, Then the uncoupled equations will be given by 

Zr +2~i<Vti.i +w~zr = PuF1- +PziP'l + ·-·-·-+ Pnif"n 

or 

(11.20) 

where Erft) L]=1 PJiF.i· i I, 2, ... ,n. 
The function £,(I) is called the exciting or forcing function of the ith mode. If each 

force Fi is written as 

F; = f,s(t), 

then 

" 
E,(t) = s(t) L Pjih 

i=i 

Definition 11.15. The expression 

is called the mode participation factor for the ilh mode. 

Once the uncoupled equations (11.20) arc solved for Z;, the solutions of the original 
equations are given by 

y::::; Pz. 

Remark. The solutions of the uncoupled equations 

depend upon the nature of the force F(t). For example. when the force is a shock-type force, 
such as an earthquake, one is normally lntercsted in maximum responses. The maximum 
values of Z~< ::2 •.. ,. Z11 can be obtained from the responses or a single equation of one 
degree of freedom. 
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11.8.2 The Reduction of a Large Model 

Many applications give rise to a vel)' large system of second-order differential equations: 

M); + Dj• + Ky = F(t). (11.21) 

For example, the large space structure is a distributed parameter system. It is therefore 
infinite-dimensional in theory. A finite element generated model can have many degrees 
of freedom (e.g., several million). Naturally, the solution of a large system will lead to a 
solution of a very large generalized eigenvalue problem. Unfortunately, effective munerical 
techniques for computing generalized eigenvalues and eigenvectors of a large generalized 
eigem'alue problem are not vel)' well developed. State-of-the-art computational techniques 
can compute only a few extremal eigenvalues of a large pair (A, B) (sec Bai et al. (2000)). 
It is, therefore, natural to think of solving a vibration problem by consLructing a reduced­
order model with the help of a few eigenvalues and eigenvectors which are feasible to 
compute. Such a thought is based on an assumption that, in many instances, the response 
of the structllre depends mainly on- the first few eigenvalues (lower ji·eqllencies). Usually 
the higher modes do not get excited. 

We will now show how the computations can be simplified by using only the knowledge 
of a few eigenvalues and eigenvectors. 

Suppose that, under the usual assumption that M and K are symmetric and of order 
11 and that M is positive definite, we were able to compute only the first few normal modes, 
perhaps 111 of them where m << 11. Let the matrix of these nonnal modes be P11 xm. Then 
from Algorithm 11.5, we have 

pT M P = lm;.:m; 
T . .., 1 

P KP = A 111 ;.: 111 =diag(wj, ... ,W~1 ). 

Settirig y = Pz and assuming that the damping is proportional to mass or st~ffness, the 
system of n differential equations (11.21) then reduces tom equations: 

Z1 +2~,w,i:,+wTz1 = £ 1(!), i = 1,2, ... ,m, 

where £ 1 is the ith coordinate of the vector P 7 F. Once this small number of equations is 
solved, the displacement of any masses under the external force can be computed from 

i = l' ... '11. 

Sometimes only the mcLtimwn value of the displaceme11t is of interest. 
Several vibration groups in industry and the military use the following approximation 

to obtain the maximum value of y, (see Thomson ( 1992)): 

"' 
IYilma~> = IPIZI(nmx)l + L IPjZj(max)f, 

j=2 

where p1 is the ith column of P evaluated at :::. 1• 

11.8.3 A Case Study on the Potential Damage of a Building Due 
to an Earthquake 

Suppose we are interested in finding the absolute maximum responses of the four-story 
building considered in the example of Sec lion 11.7 .1, when the building is suhjcclcd lo a 
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strong earthquake (see Figure 11.9), using some known responses of the building due to a 
previous earthquake. We will use only the first two modes (the modes corresponding to the 
hvo lowest frequencies) in our calculations. 

k3 

Y2 

k'1 

k, 

Yo 
•• 

. . • . ... -
Figure 11.9. Buildillg subjcct/0 an earthquake. 

Let Yo denote the displacement of the moving support. The uncoupled normal mode 
equations in modal form in this case can be written as 

where 

i =I, 2. 

Yo = absolute acceleration or the moving support, 
4 

Ei = L p Jim i = mode participation foetor of the chosen mode Pi 
j""'l 

due to support existence. 

Here p1; arc the coordinates of lhc participating mode P1, that is, 

((~;:). (~::)). Pll P32 
P-tl P'-~2 

P = (p,, P2l 

where p1 and p2 are the lwo chosen participatlng modes. 
Let R1 and R1 denott: the maximum relative responses of Zl(ma\) and Z2(ma11 ) obtained 

from a previous experience. Then we can take 
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This observation immediately gives 

( }'] ) Y1 = E,R, 
}'3 

Y.t max 

417 

Using now the data of the example in Section I 1.7 .I (vibration of the four-story building), 
we have 

Et = Ill] Pit + 1112P21 + 11l3P31 + 1/l.tP.tl = I .0772 X 104
' 

£2 = m 1 Pn + m1P11 + m3P31 + 111.;p.n = -4.2417 x 103
. 

Assume that R, = 1.5 inches, R, = 0.25 inches. We then obtain 

(
y,) (0.0370) 
~:: = 10-3 x 104 (1.0772)(1.5) ~:~b~~ + 10-3 x 103 (-4.2417)(0.25) 

Y-1. max 0.1318 

(

-0.0785) (0.5979) ( 0.0833) (0.6812 in.) 
x 0.0858 = 1.2169 + 0.0910 = 1.3079 in. . 

0.0104 1.7636 -0.0110 l. 7526in. 
0.1403 2.1293 -0.1488 l.9805in. 

Thus, the absolute maximwn displacement (relative to the moving support) of the first 
floor is 0.6812 in., that of the second floor is 1.3079 in., etc. (see Figure ll.IO). 

y, 11l.t 

)'3 

)'2 

)'J fllJ 

Figure 11.10. Absolute maximwn displacement. 

Note: The contribution to the second participating mode to responses is small in 
comparison with the contribution of the first mode. 
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The absolute max:imum relative displacements are obtalned by adding the terms using 
their absolute values: 

(

y
1
) (0.6812in.) y, 1.3079 in. 

"' = 1.7747 in. · 
)'4 {abs. max.) 2.2781 10. 

Average maximum relative displacement of the masses. The absolute maximum rel­
ative displacement of tire masses provides us with an upper bound for the largest relative 
displacements the masses can have, and thus help Wi to choose design parameters. Another 
practice for such a measure in engineering literature has been to use the root sum square 
or the same terms. giving the "'average" maximum rclati·vc displacement values: 

(y, )"'eruge mux. = J (E, R, p; J) 2 + (EzRzP12)2 + · · · + (E.kRkp,KJ' . 

....... FOf .. ~fhe· ·aoovc cxarrij)ie, k = 2 and the average maxfmum relative displacements are 
given by 

()'Jlmrngemax. = J(E, R:p!l)2 + (E,R,pl2)1 = 0.9975 inches, 

(J2lmmge mn>. = v (£, R, P21 )2 + (E,R,pn)2 = 1.5610 inches, 

und so on. 

11.9 The Quadratic Eigenvalue Problem 
In this section, we discuss a more general eigenvalue problem, called the quadratic eigen· 
value problem (QEP): 

(}..1M+ i.D + K)x = 0, (11.22) 

where M, D. and K are n x 11 matrices. The scalars A are the eigenvalues, and the vectors 
x are the right eigenvectors. 

The left eigenvectors yare given by 

y'(ic2M+i..D+K)=0. (!L23) 

The matrix P2 (i.) ).2M+ i.D + K is called the quadratic matrix pencil. 
T11e pencil is called regular if det(P2(i.)) is not identically zero for all values of},; 

otherwise it is called singular. Unless otherwise stated, we will assume tltar the pencil is 
regular. 

When M is nonsingular, the pencil is regular and has 2n finite eigenvalues. In fact, 
it is easy lo see these are the 2n eigenvalues of the 2n x 2n matrix 

A= ( ~Mo_, K ~,';;_, D ) ' (I 1.24) 

where I i.s an n x n identity matrix. An eigenvector u of A corresponding to the 
eigenvalue A is of the fonn 11 = ( {, ). 1l1Us an eigenvector x of ?2(1 .. ) is just the 
vector of the first n componenrs of u. 
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• When M is singular, the degree of det(P2 ().)) is r < 2n. In this case P2 (A) has r 
finite eigenvalues and the remaining (2n - r) eigenvalues are infinite eigenvalues. 

Consider the pencil P,(A) with M = diag(l, 0), K = ( .:'2 (,
2 

), and D = (: :).Then 

det(P2 (A)) = A3 + 6A2 + 14A + 20 is a polynomial of degree 3. Therefore, P2 (A) has 
three finite eigenvalues and one infinite. Readers are invited to verify this using MATLAB 
command polyeig, 

The algebraic multiplicity of an eigenvalue ). is the order a of the corresponding 
zero in detP2 (A). The geometric multiplicity of A is the dimension of Ker(P2 (A)). 
An eigenvalue is semisimple if its algebraic multiplicity is the same as the geometric 
multiplicity. A defective eigenvalue is an eigenvalue that is not semisimple. An 
eigenvalue of multiplicity k > n is necessarily defective. 

11.9.1 Orthogonality Relations of the Eigenvectors of Quadratic 
Matrix Pencil 

Recall that the eigenvectors of a symmetric matrix can be chosen to be orthogonal. 

The eigenvector matrix¢ of the symmetric positive definite generalized eigenvalue 
problem K- AM can be chosen such that <1> 7 M<l> =I (Section 11.6.5). 

lL is natural to wonder if such relations hold for a symmetric positive definite quadratic 
pencil as well. To this end, the following result on the orthogonality of the eigenvectors of 
a symmetric positive definite quadratic pencil has been proved by Datta, E\hay, and Ram 
( 1997). 

Theorem 11.16 (orthogonality of the eigenvectors of quadratic pencil). Let P(A) = 
A 2M+ AD+ K, where M = MT > 0, D = DT, and K = K T. Assume that the eigenvalues 
A1, ... , A11 are all distinct and differellf from zero. Let A = diag (}q, ... , A211 ) be the 
eigenvalue matrix and let X = (x1, ... , X11 ) be the corresponding matrix of eigem•ectors. 
Then there exist diagonal matrices D 1, D2, and D 3 such that 

Furthermore 

AX 7 M X A - X 7 K X = D 1, 

AX.,.DXA + AX.,.KX + X 7 KXA = D 2 , 

AX 7 MX + X 7 MXA + X 7 DX = D3 . 

( 11.25) 

(11.26) 

( 11.27) 

( 11.28) 

Proof By definition, the pair (X, A) must satisfy the 11 x 211 system of equations (called 
the eigendecomposition of the pencil P(A) =A 2M+ AD+ K): 

MXA 2 +DXA+KX=0. (11.29) 



420 Chapter 11, Generalized and Quadratic Eigenvalue Problems 

Isolating the term in D, we have from above 

-DXA=MXA1+KX. 

Mllltiplyiog this on the left by AX~' gives 

AX~'DXA = AX'~'MXA2 +AX7 KX. 

Taking the transpose gives 

-AX 7 DXA l\ 1 X 7MXA+X~'KXA. 

Now. subtracting the latter from the former gives. upon rearrangement. 

AXr MXl\1 - X~'KX A= A 2X 7 MXA- AXT KX 

or 

( 11.30) 

Thus, the matrix AXTMXA - xr K X, which we denote by 0, must be diagonal since it 
commutes with a diagonal matrix, the diagonal entries of \Vhich arc distinct. We thus have 
the first orthogonality relation: 

/\X7 MXA- X7 Kx = D,. 

Similarly, isolating the term in M of the cigendccomposition equation (11.29) we obtain 

-MXI\1 = OXA + KX, 

and multiplying this on the left by A' xr gives 

-l\2X~'MXI\ 2 = l\ 2 Xr OX 1\ + A 2X 7 KX. 

Taking the trJnspose, we have 

-I\ 2XTMXI\ 2 AX~'DXA2 +XrKXl\ 2 , 

Subtracting the last equation from the previous one and adding 1\XT K X A to both sides 
gives, after some rearrangement, 

A(AX7 OXA +AXrKX + x 7 KXI\) = (1\XTOXI\ + l\XrKX + xr KXA)A, 

Again, this commutativity property implies, since A has distinct diagonal entries, that 

l\XTOXA+AXTKX+XrKXl\ 02 

is a diagonal matrix. This 1s the second orthogonality relation. 
The first and second onhogonality relations together ea.-;ily imply the third ortlwgo­

nality relation: 
AX~'MX+X7MXA +XTOX = 03. 

To prove (I 1.28), we multiply the last equation on the right by A, giving 

AX7 MXA+XTMXA2+XTDXA D3A. 

which, using the eigendecomposition equation (I I .29) of the quadratic pencil. becomes 

I\X7 MXA+XT(-KX)= D,A. 

So, from the first onhogonality relation we sec that 

(11.31) 
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Next; using again the eigendecomposition equation ( 11.29), we rewrite the second 
orthogonality relation as 

D2 = l\XT(DXA + KX) + X 7 KXA 

= AX 7 (-MXl\. 2) + XT KXA (-AX7 MX A+ X'~" KX)A. 

By the first orthogonality relation we then have D, = -D1l\.. 
Finally, from D 1 = D3 A and D, -D1A we have D2 -D3A 2• 

We remind the reader that matrix and vector transposition here doex Hot mean con­
jugation for complex quanrities, A real-valued representation of the relations in Theorem 
11.16 have been recently obtained in Datta et al. (2009) in the context or !inite elemem 
model updation (FEMUP). For more on FEMUP, see the authoritative book by Friswell and 
Mottershead (1 Y\15). 0 

11.9.2 Applications of the Quadratic Eigenvalue Problem 

The QEP arises in a wide varimy of applications, which include 

vibration of structures 

vi bra-acoustic systems 

fluid dynamics 

• electric circuit simulation 

• signal processing 

microelectronic mechanical systems 

A brief account of how a QEP arises in these applications can be found in the recent 
survey by Ttsscur and Meerbergen (200 1 ). The end-users of these applications frequently 
do not see the QEP as such; these problems are rominely rormulated in terms of the standard 
or generalized eigenvalue problems, because, as we will see here, that is how these problems 
are usually solved. 

Vibration Analysis and the Quadratic Eigenvalue Problem 

We have seen in Section 1 1.7 that vibrating slructures are modeled by a system of matrix 
second-order differenlial equations of the form 

M.'i(t) + D.i;(l) + Kx(t) = F(t). ( 11.32) 

By using separation of variables; 
x(t) = uef.1, 

where u a constant vector, we obtain the quadratic eigcnvalut: problem 

P,(!.duk = 0, k 1, ... , 2n, 

where P1(!.) = ;,'M + icD + K. 
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Proportional damping. Under the assumption that (i) M MT > 0, K = KT =:: 0, and 
(ii) proportional damping. we showed in Section I L8.! that(! 1.!3) can be decoupled 
into independent equations which can be solved separately. This decoupling was possible, 
because under those assumptions, M and K (and therefore D) were simultaneously diago­
nalized and the modal matrix P was obtained from lhe solution of the symmetric positive 
definite generalized eigenl'alue problem: Kx = i..Mx. Thus, the QEP did not explicitly 
appear there. 

Nonproportional damping. We have also seen in Example 11.14 that there are systems 
for which proportional damping is impossible or does not make much sense. The gyroscopic 
systems corresponding to spinning structure are other examples of such nonproportional 
damped ~~vstems. Mathematical models of gyroscopic systems are of the form 

M.tu) + (D + G).t(t) + Kx(t) = F(t), 

....... whereM.,D, and Kare the same as before and Gisa skew-symmetric matrix: G =-Gr. 
Dceoupling of such systems would be possible if the coefficient matrices were simul­

taneously diagonalized. However, this is, unfortunately. not possible in general. Indeed, it 
has been shown in Williams and Laub ( 1992) that under general damping. these matrices 
cannot even be simultaneously triangularized. It can be shown {sec Inman (2006)) thm the 
most general condition for simulraneousdiagonali7..ation of the maSS 1 stiffness, and damping 
matrices is 

D!Vr 1 K = KM- 1 D. 

The details are left as an exercise (Exercise 11.27). (Note that Rayleigh damping is a 
special case ~{this property.) 

Computing Frequencies and Damping Ratios 

Let A., = "'' + if!, be an eigenvalue of the quadratic eigenvalue pruhlem; that is, 
"'and f!k are, respectively. the real and imaginary parts of the complex eigenvalue 
A.,. Then the natural frequency w, corresponding to this eigenvalue is given by 

w, = Jcif+ f!r k = 1. 2 .... • n. (11.33) 

Note thal the eigenvalues ),k occur in complex conjugate pairs. 

The modal damping ratio is given by 

(11.34) 

11.9.3 Numerical Methods for the Quadratic Eigenvalue Problem 

A natural way to solve the QEP: 1'-' M + ).D + K)x = 0 is to transform !he problem into a 
generalized eigenvalue problem (GEP) of the form 

Az = ABz, 

ct219862
Sticky Note
vezi de asemenea [Dat2010, pp.~91]
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where A and B are 2n x 2n matrices (sec below for the general forms of A and B). This is 
known as linearization of the QEP. 

Finding the Eigenvalues and Eigenvectors of the QEP from GEP 

The eigenvalues of the regular QEP arc the same as those of an associated GEP. 

The right eigenvectors x of the QEP and the right eigenvectors z of the associated 
GEP arc related by z = ( {, ). 

Thus, an eigenvector x of the QEP consists of the first 11 components of the corresponding 
eigenvector z of the transformed GEP (note that;:: has 2n components). 

The transformation of the QEP into the GEP is not unique. Here are some of the commonly 
used forms of A and B. 

Firsr Companion Form: 

A=( 
0 -~ ). B- ( W ~ )· -K - 0 ( 11.35) 

Second Companion Form: 

A=( 
-K ~)' B- ( D ~ ). 0 - w (11.36) 

where W is an arbitrary nonsingular matrix both in ( 11.35) and ( 11.36). 
Note that 

del (A- )..8) = del (W) · del ().. 2M+ )..D + K). 

Thus, the eigenvalues of A 2M +AD+ K are the same as those of A -AB, and the eigenvectors 
arc rclaLCd, as shown above. 

Special cases of the first companion form, 

• W =I. Then 

I 
-D 

(11.37) 

• Assume that M = Mr, K = Kr > 0, D = D7 , and W = -K. Then we have the 
symmetric linearization 

(11.38) 

Computing the eigenvalues and eigenvectors of the QEP from GEP. Once the QEP 
is transformed into a linearized GEP, the QZ iteration now can be applied to compute the 
eigenvalues of the transformed linearized GEP Az = ABz to obtain the eigenvalues or the 
QEP. The eigenvectors of A - AB arc computed by using the generalized inverse iteration 
and the eigenvectors of the quadratic pencil then can be extracted from the eigenvectors 
or A - AB as shown above. See Section 12.9 for more on computing the eigenvalues and 
eigenvectors of the QEP. 
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Accuracy and stability. Tlw accuracy of a computed eigenvalue depends upon the choice 
of linearization. For details, see Tisseur and Mecrbcrgen (200 I) and Tisseur (2000). Fur­
thermore, although the QZ algorithm is stable for the GEP, it is not stable for rlw QEP in 
the sense that it cannot exploit the special structure of the problem. 

Linearization of the symmetric positive-definite QEP. In case the QEP is symmetric 
positive definite~ lhe natural choice between L 1 and L 1 is probably 1... 2, which preserves 
the symmetry. Unfortunately, it cannot presen1e defini!eness. Even though A and B are 
symmclric, they may be indefinite. Other symmetric choices are also possible. See Parlett 
and Chen ( 1990) in this context. 

MATCOM Note: The symmetric linearization L, of the QEP has been implemented in the 
MATCOM function QUADEIG2. 

MATLAB Note: The MATLAB function polyeig (K. D. M) solves the QEP ().2M+ 
/..D + K)x = 0. It uses a companion realization and the QZ algorithm. 

11.1 0 Review and Summary 

This chapter has been devoted to the study of the most commonly arising eigenvalue problem 
in engineering, namely, the generalized eigenvalue problem involving two matrices: Ax= 
ABx. We now review and summarize lhc most important results, 

11.1 0.1 Existence Results 

There exist Schur and real Schur analogues (Section 11.3) of the ordinary eigenvalue problem 
for the generalized eigenvalue problem as well. Once the pair (A, B) is transformed into 
the generalized real Schur form, the eigenvalues can be easily extracted, 

11.10.2 The QZ Algorithm 

The most widely used algorithm for the genemlized eigenvalue problem is the QZ algorithm 
(Section 11.4). which constructs the generalized real Schur form of (A, B). The algorithm 
comes in two stages. In Stage I. the pair (A, B) is reduced to a Hessenberg triangular 
pair, In Stage 11, the Hessenberg triangular pair ts further reduced to the generalized real 
Sc/wrform by applying the implicit QR iteration to A B-;. The rnutrix B- 1 is never formed 
explicitly. 

11.10.3 The Generalized Symmetric Eigenvalue Problem 

tf we neglect the damping forces, then all clgcnvalue problems arising in structural and 
vihration engineering can be cast in the form Kx = AMx, \\'hereM is symmetric positive 
definite, and K is symmeLric positive semidefinite. This is called the symmetric definite 
generalized eigenvalue problem. Because of the imporlance of this problem. it has been 
studied in some depth here. 
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Several case studies from vibration engineering have been presen!cd in Section 11.7 
to show how this problem arises in important practical applications. These include 

(i) vi/Jration of a free spring-mass system, 

(ii) vibration of a building, 

(iii) forced harmonic vibration of a spring-mass system. 

The natural frequencies and amplitudes of a vibrating system arc related, respectively, to 
lhe generalized eigenvalues and cigenvectors.lfthefrequency of the imposed periodicforce 
becomes equal or nearly equal to one oftlw natural frequencies oftlte system, tlten resonance 
occurs, and the siwation is quite alarming. 

The fall of the Tacoma Bridge ln the state of Washington and of Broughton Bridge in 
England are possibly related to such a phenomenon. (See Chapter 9.) 

Here are some of lhe methods and applications of the generalized eigenvalue problem: 

• The QZ method can, of course, be used to solve a symmetric definite generalized 
eigenvalue problem. However. borlt symmetry and definiteness will be lost in general. 

• The Clwlesky QR algorirhm (Algorithm 11.4) computes the eigenvalues of the sym­
metric definite pencil A- i.B by transforming the problem into a symmetric problem 
using the Cholesky decomposition of B. The accuracy obtained by this algorithm can 
be severely impaired if the matrix B is ill-conditioned. 

The accuracy can be sometimes improved by constructing an ordered real Sclmrform 
of B rather than irs CholesJ..y' factorizatioll, in which the eigen\'alttes are computed 
from the smallest to the largest (Exercise I I. J l). 

Simultaneous diagona/ization and applications (Sections 11.6-11.8) The Cholesky 
QR algorithm (Algorithm 11.4) for the symmetric definite problem Ax= !.Bx basi~ 
cally constructs a nonsingular matrix P that transforms A and B simultaneously into 
diagonal matrices hy congruence: pT AP =a diagonal matrix, nnd pT B P =I. This 
is called simultaneous diagona!ization of A and B. In vthration and other engineering 
applications, this decomposition is called modal decomposition and the matrix P is 
called a modal matri.T. The technique of simultaneous diagonalization is a very useful 
technique in engineering practice (Algorithm J 1.5). Its applications include 

(i) decoupling of a secoud-order system of differential equations 

lvfi+ Dj·+ky =0 

ton independent equations 

.. ( fJ '·. ' 0 Zi + 0! + Wj)Z; + WjZ.i = , 
where D aM+ f!K, and 

i = 1,2, ... ,11, 

(ii) reduction of a very large system of second-order systems to a reduced-order 
modeL 

Dccoupling and model reduction arc certainly very useful approaches for handling a 
large second-order system nf differential equations. Uufartunmely, simultaneous di­
agonalhatiou tedmique is 1101 practical for large and sparse problems. On the other 
hand, many practical problems; such as the design of large space strucrures. pmver 
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systems, etc., giwg rise to ver:.v large and sparse symmetric definite eigenvalue prob~ 
!ems. Furthermore, simultaneous diagonalization techniqt~e destroys the sparsity, 
bmuledness, and other exploitable properties of the matrices M, D, and K. The most 
practical large problems are spc1rse, and maintaining sparsity is a major concern for 
algorithm developers in economizing computer storage requiremeuts. 

11.10.4 The Quadratic Eigenvalue Problem 

The QEP arises in a wide variety of practical applications, including vibration analysis and 
design, vibroacoustic systems, fluid mechanics, processing, and cofltrol theory. In most of 
lhese applications, the end users, however, do not see the associated eigenvalue problem as 
the QEP. These problems are routinely formulated as the standard or generalized eigenvalue 
problem of the form Ax= /.Bx, where A and Bare 2n x 2n matrices, This is because that 
is how a QEP is generally solved. There exlst, however1 some projection methods that work 
directly orith'c QEP arid compute a few cxtreriialor seleCted eigenvalues artd eigenvectors. 
The Jacobi-Davidson method is an example of such a method. We will discuss it briefly in 
Chapter 12. 

11.11 Suggestions for Further Reading 
Almost all books in vibration and structural engineering discuss implicilly or explicitly how 
generalized eigenvalue problems arise in these applications. Some well-known books in 
the literature of vibration include Inman (2006, 2007) and Thomson ( 1992). 

The QZ iteration algorithm has been discussed in detail in the books by Golub and 
Van Loan (1996), Stewart ( 1973), and Demmel (1997). (The original paper of Maler 
and Srewarr (1973) is worth reading in this context.) For further reading on simultaneous 
diagonalization techniques, see Golub and Van Loan ( 1996) and the references therein. See 
Demmel and Kagstrom ( 1993) for generalized Schur decomposition of a pencil. 

For results on perturbation analysis and sensitivity of the generalized eigenvalue 
problem, see, for instance. Stewart and Sun (1990), Boley (1990), Stewart (1978, 1979), 
and Tisseur(2000). For Gerggorin theory of the generalized eigenvalue problem, see Stewart 
(1975). See Ward (1981) for balancing of the generalized eigenvalue problem. 

For applications of the symmetric definite generalized eigenvalue problem to earth­
quake engineering, sec the book by Okamoto ( 1984). 

A technique more eflicient than the Cholesky QR iteration method for computing 
the generalized eigenvalues of a symmetric definite pencil for banded matrices has been 
proposed by Crawford (1973). See also the papers by Wang and Zhao ( 1991 ), Kaufman 
(1993), Davies, Higham, and Tisseur (2001), and Erxiong (1990), 

Williams and Laub (1992) have considered the simultaneous triungularizations of 
matrices lvf, D. and K o[ the second-order system M )' + D _i' + K y = 0. 

Chapter 15 of the book by Parlett (1998) is a rich source of information on sym­
metric generalized eigenvalue problems. A delightful survey on theory, methods, and 
applications of the QEP has been given by Tisseur and Mcerbergen (200 I). TI1is paper 
also contains a bibliography rich on the subject. See also an earlier survey on the QEP by 
Slcijpcn. van der Vorst, and van Gijzcn ( 1996). Several papers on conditioning, backward 
errors, scaling, and other aspects of solving quadratic and other polynomial eigenprob­
lems have been written by N, Higham, Tisseur, and their coilaboralOrs in recent years. 
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These include Tisseur (2000), Higham, Li, and Tisseur (2007), Higham, Mackey, and 
Tisseur (2006, 2009), Higham el a!. (2008), and Higham and Tisseur (2003). Visit the 
home pages of N. Higham (http://www.maths.manchcstcr.ac.uk/"'higham) and F. Tisscur 
(http://www.maths.manchcster.ac.uk/·-·-.ftisseur) for more recent papers. See also an earlier 
paper by Langer el a!. ( 1992) for perturbation analysis. 

Other recent papers of interests on computational nonlinear eigenvalue problems 
include Mackey el a!. (2006), Mehrmann and Voss (2004), and Hwang el a!. (2003). For 
a collection of nonlinear eigenvalue problems, see Betcke et al. (2008). For the results on 
orthogonality of the eigenvectors of the symmclric definite quadratic pencil and their uses 
in partial quadratic eigenvalue and eigenstruct/lre assignmellfs, see Datta and Sarkissian 
(2001), Dalla, Elhay, and Ram (1997, 2000), Dalla, Ram, and Sarkissian (2002), Brahma 
and Dalla (2009), and Bai, Dalla, and Wong (2009). A classical book on the QEP is Lancaster 
(1966). The book by Gohberg, Lancaster, and Rodman ( 1982) is a rich source of knowledge 
in theoretical aspects of polynomial eigenvalue problems. 

Several variations of the quadratic orthogonality relations in Theorem 11.16 appear 
in the dissertations of J. Carvalho and D. R. Sarkissian (available from the author's website, 
www.math.niu.edtt!"-'dattab) and in Datta and Sarkissian (2001). 

Exercises on Chapter 11 

EXERCISES ON SECTION 11 .2 and 11.3 

11.1 Compute the eigenvalues and eigenvectors of the following pairs (A, B) by finding 
the zeros of det(A- !..B): 

. ( 2 (1) A= O 

... ( I (111) A = O 

(ii) A- ( I - 0 

11.2 Show that when A and B have a common null vector, the generalized characteristic 
polynomial is identically zero. 

11.3 Let A and B be 11 x 11 matrices. Then prove that (i) del(A -!..B) is a polynomial 
of degree at most11, (ii) the degree of det(A- !..B) is equal to 11 if and only if B is 
nonsingular, and (iii) the eigenvalues of two orthogonally equivalent pencils are the 
same. How are the eigenvectors related? 

EXERCISES ON SECTIONS 11 .4-11 .6 

11.4 Show lhallhe matrix Q 1 in the initial QZ step can be computed just by inverting the 
2 x 2 leading principal submatrix of the triangular matrix B. 

11.5 Show that the shifts a 1 and a 2 in a QZ step, which are the eigenvalues of the lower 
2 x 2 principal submatrix of C = AB- 1

, can be computed without forming the 
complete s-J. (Him: Computation depends only on the lower right3 x 3 submatrix 
of B- 1.) 

11.6 Using the implicit Q theorem, prove that matrix Q in the QZ step has the same first 
row as Q 1• 
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ll.7 Work out the flop-count for 

(u) Hessenberg Lriangular reduction wilh and without accumulations of the trans­
forming matrices~ 

(b) one step of the QZ iteration; 

(c) reduction of (A. B) to the generalized Schur fonn. 

11.8 Consider the Hessenberg triangular reduction of (A. B) with B singular. Show that 
in this case, if the dimension of the null space AB is k1 then the Hessenberg triangular 
structure takes Lhe form 

A = (Ao" A") . B (0 B") A::1 0 822 ' 
where A 11 is a k x k upper Lriangular matrix, A 21 is upper Hessenberg, and 8 22 is 
(n -k) x (n-k) upper triangular and nonsingular. How does this help in the reduction 
process of the generali7.ed Schur form? 

11.9 Verify the statement on the conditir;~ing of the cigenval~es of the matrix pair 

(( b O.g02 ). ( b OgOI )) 

given in Section 11.6.2. 

ll.lll Work out the Hop-count for the Cholesky QR algorithm (Algorithm 11.4) of the 
symmetric definite pencil. 

ll.ll Develop an algorithm for computing the smallest eigenvalues of the symmetric defi­
nite pencil A - 1.8 by using an ordered real Schur fonn of B and then construct an 
example to show that this algorithm yields better accuracy than Algorithm 11.4. 

11.12 (Generalized orthogonal iteration.) Consider the following iterative algorithm known 
as the generalized orthogonal iteration: 

Step 1. Choose ann x m orthononnul matrix Qo such that Qr Qo = !,,,. 
Step 2. Fork = I. 2, , , , do 

2.1 Solve for z,: BZ, = AQ,_,. 

2.2 Find QR factorization of z, ; z, = Q,R,. 
Apply the above algorithm to the pair (A, B) given by 

A= (l ~ i ~). B (It I:O 
I 4 5 6 I I 

11.13 Given 

A= (l I) c I ; • B = b 10 
I 

l) '- (; 
I c I 2 

A= : 10 L 

J 
1 L 

:; 

I 
I 

10 l). 
10 

~); 
10 

;) 4 • 

I 
'i 
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Find the eigenvalues and eigenvectors for each of the above pairs using 

(a) the QZ algorithm followed by inverse iteration (Algorithms 11.2 and 11.3); 

(b) the generalized Rayleigh quotient iteration algorithm (Algorithm 11.6); 

(c) techniques of simultaneous diagonalization (Algorithm II .5). 

11.14 Prove that the eigenvalues of a symmetric definite pencil (A, B) lies in the interval 
[-IIB-'AII. IIB-'AIIJ. 

11.15 Show that the generalized Rayleigh quotient!.. minimizes j(!..) =II Ax- !..Bxlln. 

PROBLEMS ON SECTIONS 11.7 AND 11.8 

11.16 Suppose that a bridge trestle has a natural frequency of 5 Hz (known from an earlier 
test). Suppose that it deflects about 2mm at midspan under a vehicle of 90000 kg. 
What arc the natural frequencies of the bridge and the vehicle? 

11.17 For the equation of motion m}; + ky = F 1 eiwr, find the amplitude and determine the 
situation which can give rise to resonance. 

11.18 Consider the spring-mass problem shown in Figure 11.11. 

(a) Determine the equations of motion. 

(b) Set up the generalized eigenvalue problem in the form Kx = !..Mx, and then 
determine the natural frequencies and modes of vibration. 

}'] )'::!. )'3 
~ ,....--;-- ~ 

~ 3k k k 

~ 
Ill] fll::!. 1113 

/ 

Figure 11.11. A three~degrees~of-Jreedom spring-mass system: Generalized eigen­
value problem. 

11.19 Consider the four story building as depicted by Figure II.!. 

Given 

Ill] = l.Q X 1Q5kg, 

k 1 = 15 x 108N/m, 

m, = 0.8 X 105kg, IIIJ = 0.5 X I 05 kg, m, = 0.6 X I 05kg, 

k2 = 12 x 108N/m, k3 = 15 x J08N/m, k4 = IO x I08N/m, 

find the maximum amplitude of each floor for a horizontal displacement of 3rnm with 
a period of 0.25 seconds, assuming zero initial conditions. 
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c:1rlvJ 

:J 
d 

' 

guillc way 

Figure _1Ll2. Automobile suspension_ \Vitlr vibrpti{)IIJJ(Jsprhr;l: __ 

11.20 Consider the diagram of an automobile suspension with vibration absorber shown 
in Figure 1 I. 12 (taken from the book Linear Vibrations by P. C Muller and W. 0. 
Schiehlen (I 985, p. 226)). 

Given 

m 1 = l 200kg, m2 80kg, m3 = 20kg. 

k1 = 300 N/crn, k2 = 3200 N/cm, k3 = 600 N/cm, 

find the responses with different damping values of the absorber d, = 0, 300, 600, 
and 1000 Ns/rn (the response of a system is measured by the amplitude ratios), 
assuming that d1 = 0 and that the road profile is described by a sine wave (similar to 
Example I 1.12). 

PROBLEMS ON SECTION 11.9 

11.21 Find the eigenvalues and eigenvectors of each of the quadratk pencils with the rna-
trices 

K=Cl 
-1 

:} D= (l :) ; 
(i) M = hxJ, 2 

-1 

(ii) M = ( : ) .K = ( 
lO I 

: ).D=2M+3K; l 10 l I 10 

(iii) fl,f = l]x], K=( ) ,D=K; 

u 2 

n.K=( ) ,D =0; (iv) M 5 
8 



Exercises on Chapter 11 431 

11.22 Show that the first and second companion forms ( 11.35) and ( 11.36) arc linearizations 
of the quadratic matrix polynomial P2 (!c). 

11.23 Let (lc, x) be an eigenpair of (lc2 M +leD+ K)x = 0. Let ic =" + i{3. Then prove 
the following (Datta and Rinc6n (1993)): 

(a) a = i).I~~;,~K,, where D.r, M.r- and K.r stand forthc expressionsx r Dx, xr Mx, 

and xT Kx, respectively. 

(b) Using (a), prove that (i) if M, K, and D arc positive definite, then Re(lc) < 0; 
(ii) if M > 0, K > 0, and D = 0, then the eigenvalues are purely imaginary; 
and (iii) if M > 0 and D ::0 0, K ::0 0, then Rc(lc) :0:: 0. 

11.24 (a) Construct an example to show that if a regular quadratic pencil P,(lc) has 21l 
distinct eigenvalues, then there exists a set of linearly independent eigenvectors. 

(b) Show that an infinite eigenvalue of a quadratic matrix pencil P1(A) corresponds 
to a zero eigenvalue of the reverse polynomial 

ic2 P2(1c- 1) =ic1 K+icD+M. 

Construct an example to illustrate this. 

11.25 In finding frequency responses of a vibrating system, one has to solve the linear 
systems of the form 

(w2 M + wD + K)x = bw 

for many different values of w. Develop an efficient computational method to solve 
such systems based on a linearization A - wB of the quadratic matrix polynomial 
P1(w) = w1 M +wD+ K, and using the Schur decomposition of the 211 x 2nlinearized 
form. 

11.26 Develop a procedure to solve the damped second-order system 

M_'t(t) + D_r(t) + Kx(t) = f(t) 

when damping is non proportional, based on a first-order linearization and assuming 
that the eigenvalues are all distinct. 

11.27 Prove that a necessary and sufficient condition for simultaneous diagonalization of 
the mass, stiffness, and damping matrices is that the following commutativity relation 
is satisfied: DM- 1 K = K M- 1 D_ 

MATLAB Programs and Problems on Chapter 9 

Mll.l Write a MATLAB program, called hesstri, to reduce a pair of matrices (A, B) to a 
Hcsscnbcrg triangular pair: 

[H, Tj = hesstri(A, B). 

Test your program by randomly generating A and B, each of order up to I 00. 
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Mll.2 (a) Write a lv!ATLAB progmm. called qzitri. to implement one iteration step of the 
QZ iteration algorithm (Algorithm 11.1): 

[A I, Bll = qzitri (A, B). 

where (A, B) is a Hesscnberg triangular pair. 

(b) Now apply one step of qritrdsi (double-shift implicit QR iteration from Chapter 
9) to C = s-• A: 

[C] qritrdsi (C). 

(c) Compurc D = A 1 * B 1-1, where (A J, B I) is the Hesson berg triangular pair 
obtained in step (a}. 

(d) Compare C and D to verify that they are essentially the same. 

Testdara: 
.4 = 50 x 50 randomly gencmted unreduced upper Hessenberg matrix. 
B = 50 x 50 upper triangular matrix with all entries equal to I, except five 
diagonal emries each equal to 10-5 , 

Mll.3 Write aMATLAB program, called invitrgn, to implementAlgorithm 11.3 by reducing 
the pair (A, B) first to a Hessenberg triangular pair: 

[u] = invitrgn(A, B, A. Val-

Test your program using randomly generated matrices A and 8, each of order 50, 
and then compare the result with that obtained by running the MATLAB command 
[U, D] = eig(A, 8). 

Ml1.4 (The purpose of this exercise is to compare the accuracy of different ways of finding 
the generalized eigenvalues and eigenvectors of the symmetric definite pencil K -
'AM.) 

(a} Usc the MATCOM program CHOLQR and the MATLAB command eig( K, M) 
w compute the eigenpairs (V1, D 1} and (V2, D2 ), respectively, of a symmetric 
positive definite pencil .4- I. B. 

(b) Run eig(inv(M) * K) from MATLAB to compute (V3, D3) : [V3, D3] = 
eig (inv(M) * K). 

(c) Compare the results obtained in two different ways above. 

Test data: 

/1.1 = diag(m, m,.,,, mhoox2oo: m = IOO. 

k -k 0 0 0 
-k 2k -·k 0 0 

K= k = 103
. 

-k 
0 0 -k 2k 200:.:200 
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Mll.S Using chol, inv, eig from MATLAB, write a MATLAB program, called simdiag, to 
simultaneously diagonalize a pair of matrices (M, K), where M is symmetric positive 
definite and K is symmetric (Algorithm 11.5): [/, D] = simdiag (M, K). 

Test data: Usc M and K from the case study on the vibration of a building in Sec­
tion 11.7.1. 

M11.6 (The purpose of this exercise is to compare differellf approaches for solving the 
symmetric positive defmite quadratic eigenvalue problem (A 1M+ AD+ K)x = 0.) 

(i) Form the matrix A = ( -il/0-1 K -t.J-1 0 ) by using the MATLAB commands inv, 
eig, and zeros. Then compute the eigenvalues and eigenvectors of A using the 
MATLAB command IV,, D, I = eig (A). 

(ii) Use the program cholqr to compute the eigenvalues 

I V2, D21 = cholqr (A, B), 

where A = ( 0 • -K) 
-1\. -D ' ( -K 0) B= oM· 

(iii) Usc the MATLAB command [V3, D3] = eig (A, B), where matrices A and B 
are given as in part (ii). 

(iv) Usc the MATLAB command [V4 , D4 1 = polyeig(M, K, D). 
Compare the results of the above four approaches with respect to accuracy and 

nop-count Use IIMV, D,"+D, v, D,+K V;ll as a measure of accuracy 
. 11~11 . 

Test data: Use the same M and K as in Problem Mll.4 and with D = 10-'•M. 

M11.7 Find the natural frequencies and modal damping ratios of a quadratic pencil with the 
matrices M, K, and D as given by the test data of Problem M.ll.6 (equations ( 11.33) 
and ( 11.34 )). 

M11.8 Perform an experiment to compare the relative errors of the largest and the small­
est eigenvalues (in magnitude) of the QEP with different linearizations, as stated in 
Section 11.9.3, using the test data or Problem M11.6. 



Chapter 12 

Iterative Methods for large 
and Sparse Problems: 
An Overview 

12.1 Introduction 

The direct methods based on triangularization of matrix A becomes prohibilive in terms 
of computer time and storage if matrix A is quite large. On the other hand, there are 
practical situations, such as the discretization of partial differential equations, where the 
matrix size can be as large as several hundred thousand or even more. For such problems, 
direct methods for linear systems such as the Gaussian elimination and QR factorization 
methods become impractical. Furthermore, most large problems are sparse. A sparse matrix 
is roughly defined as a matrix with a few nonzero emries and a large number of zero entries. 
Unfortunately, the !lparsity gets lost to a considerable exte1lf during the triangulariz.ation 
procedure, so that at the end we have to deal with a very large matrix with too many nonzero 
entries, and storage becomes a crucial issue. For such problems, it is advisable to use a 
class of methods called iterative methods that never alter matrix A and require the storage 
of only a few vectors of length n at a time. These methods, unlike the direct methods, 
do not produce an exact solution, but rather aim at iteratively improving solutions at each 
iteration. These methods then allow a user to stop as soon as a certain stopping criterion is 
satisfied. 

In this chapter, we will first sLUdy the classical iterative methods for linear systems, 
such as the Jacobi, Gauss-Seidel, and successive overrehLtation (SOR) methods, and then 
discuss Krylov sub.':ipace methods, both for large and sparse linear systems and eigenvalue 
problems. 

Much research has been done in recent years on Krylov subspace methods and the 
research on this topic is still at developing stage. We only give a very brief overview of 
these methods and refer the reader to the specialized books and papers in this area. 

Our discussions on Krylov subspace methods include (i) the conjugate gradient 
(CG) method for symmetric positive definite systems, (ii) the generalized minimal residual 
(GMRES) method, (iii) the bi-conjugate gradient (Bi-CG) method, and (iv) the quasi­
minimal residual (QMR) methods for nonsymmetric systems. A brief discussion on precon­
ditioning techniques is also included. We also include a brief discussion on Krylov subspace 
methods to compute extreme eigenvalues of large and sparse matrices. 

435 
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12.2 The Jacobi, Gauss-Seidel, and SOR Methods 
The basic idea behind these methods is to first write the system Ax = b in an equivalent 
fonn, 

X= Bx +d, (12.!) 

and then, starting with an tnitial approximation xOl of the solution vector x, to generate a 
sequence of approximations [xl<J}. iteratively defined by 

xlk+IJ = Bx"1 +d. k = !, 2, ...• (!2.2) 

with a hope that under certain mHd conditions the sequence {xO:l} converges to the solution 
ask-+ oo. 

To solve the linear system Ax = b iteratively using this idea, we therefore need to 
know 

(a) how to write the system Ax =bin the form ( 12.1 ), and 

(b) h,;,~./11 should be chosen so thatth~ iteration ( 12.2) converges to the limit or under 
what sort of assumptions the iteration converges to the limit \Vilh any arbitrary choice 
of x\ll. 

There are three well-known classical iterative methods: Jacobi, Gauss-Seidel, and 
successive 0\'errelaxation (SOR). These three methods differ in way mauix B and vector d 
are computed. 

Computations of xlk+tJ from x\k) by each ofthesc methods in (12.2) are shown below. 
Let xlkJ (xikl • ... • x~~k!)T. 

jacobi iteration. 

i = 1,2 •.... (!2.3) 

Matrix form rif the Jacobi iteration. Write A = D + L + U. where D diag(a 11 , 

.... a,,) (diagonal of A), 

c-( 
0 0 

n a:::J 0 
(lower triangular with zeros on the (!2.4) 
diagonal) 

a111 Gn.n-l 

and 

0 Ot:! aln 

0 0 az:; Gzn 

u (upper triangular with ;:,eros on the (12.5) 
diagonal). 

lln-l,ll 

0 0 0 0 0 
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DefineB1 = -D-1(L+U),d1 = D-1b. ThentheJacobiiterations(l2.3)canbewrittenas 

_~.y+IJ = BjX(k) + dj 

Gauss-Seidel iteration. 

xi'+"=...!__ (b;- iaij.tjk+l!- i: aijx)"), 
au j=l j=l+l 

i = 1, 2, .... (12.6) 

The idea is to use each new component, as soon as it is availabLe, ill the complltation of the 
next component. This is not done in the Jacobi method. 

MatrLr form of Gauss-Seidel iteration. Define BGs 
(D + L)-1b. Then 

SOR iteration. 

-(D + L)- 1 U, das 

( 

i-1 " ) .(k+l) W .(k+IJ .(!.:) .k xi = ~ bi- Laij-':j - L aijxj + (1- w)x1 , 

II j=J j=i+l 

i = I, 2, .. .. (12. 7) 

Matrix form ofSOR. Define BsoR = (D + wL)- 1[(1- w)D- wU)] and dsoR = 
w(D + wL)- 1 b. Then the above iteration can be writlen as 

x(k+JJ = BsoRX(kJ + dsoR-

Notes: (i) H w = I, then the SOR method becomes identical to the Gauss-Seidel 
method. 

(ii) H w > I, then in computing the (k + I )th iteration, more weight is placed on the 
most current value than when w < I, with the hope that convergence will be faster. The 
number w is called the relaxation factor. 

Example 12.1. We apply the Jacobi, Gauss-Seidel, and SOR methods to 

with x'" = (0, 0, O)". Note that the exact solution is x = (I, I, I )r I 

The results arc displayed in Table 12.1. 

Comment: The matrix A above is strictly row diagonally dominant and positive definite. 
The Jacobi and Gauss-Seidel methods converge for strictly row diagonally dominant matri­
ces with an arbitrary initial approximation, and the SOR converges for a symmetric positive 
dellnite matrix if 0 < w < 2. See discussions in the next section. 

Stopping criteria for iteration (12.2). It is natural to wonder when iteration ( 12.2) can 
be terminated. Let E > 0 be the tolerance. Let II · II be a subordinate norm. 
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Table 12.1. A few iterations af rile Jacobi, Gauss-Seidel, and SOR methods for 
Example 12. l. 

Method x\1l x<3l x14) x(5} xt6J x{7l xt8J 

Jacobi 1.4 0.84 1.0640 0,9744 1.0102 0.9959 I L0016 
1.4 0.84 1.0640 0.9749 1.01021 0.9959,1.0016 
1.4 0.84 1.0640 0.9744 1.0102 0.9959 1.0016 

Gauss Seidel 1.400 0.9968 0.9964 0.9996 1.0000 
1.1200 1.0214 1.0014 1.0000 1.0000 
0.8960 0.9964 1.0014 1.0010 1.0000 

SOR 1.6800 0.8047 1.0266 1.0022 0.9979 0.9979 1.0000 
(w = 1.2) 1.2768 0.9986 0.9811 1.062 0.9991 0.9991 1.0001 

0.9704 1.0531 0.9875 1.0006 1.0070 1.0007 ' 1.0001 

There are several criteria that can be used (see Higham (2002, pp. 335-337)). The 
one that is the most convenient and widely used in existing code is 

'lb- Ax1'ill 
Relative residual norm: · lib II :S E. 

See also Arioli, Duff, and Ruiz (1992) and Barrett et al. ( 1994, pp. 57-63). A user 
might want to stop if the number of iterations exceeds the maximum number of iterations 
pennitted to perform. 

12.2.1 Convergence of the Jacobi, Gauss-Seidel, and SOR Methods 

It is often hard to make a good guess as to the initial approximation x"1• Thus, it will he nice 
to have conditions that will guarantee the convergence oriteration (12.2) for any arbitrary 
choice or xU l. 

In the following we derive such a condition. 

Theorem 12.2 (iteration convergence theorem), The iteration 

xlk+JJ = Bxlkl + d 

converges to a limit witlt an arbitrary choice of the initial approximation x(ll if and only if 
matrix Bk -+ 0 as k ----i- oo, that is, 8 is a convergent matrix. 

Proof. From 
x = Bx+d 

and 

we have 
x - xlk+l) = B(x - x"1). (12.8) 

Since this is true for any value of k, we can write 

x- xi"= B(x xtk-tt). (12.9) 



12.2. The jacobi, Gauss-Seidel, and SOR Methods 439 

Substituting ( 12.9) in ( 12.8), we have 
x- x(k+ll = B2(x- xlk-ll). (12.10) 

Continuing this process k times we can write 
x- xik+il = B'(x- x 11 l). 

This shows that {xlkl J converges to the solution x [or any arbitrary choice of x 111 if and only 
if B' -+ 0 ask -+ oo. D 

Convergence in terms of spectral radius and matrix norm. Using the Jordan canonical 
theorem (Theorem 9.28) it can be shown that B is a convergeflf matrix if and only if 
tlte spectral radius of B. p(B), is less t!tau 1. Now p(B) =max((!.;!, i = I, ... , uj, 
where )q through A11 are the eigenvalues of B. Since lAd :::: II B II for each i (see Theorem 
9.11); in particular, p(B) :S II Bll. Thus, if liB II < I, then the convergence is guaranteed. 
Computationally, it is lot easier to check than llnding the spectral radius. Unfortunately, the 
converse ofthisfact is not true. 

In the following theorem, we combine the result ofTheorem 12.2 with the observation 
just made. 

Theorem 12.3 (conditions for convergence of iteration (12.2)). A necessary and sufficient 
condition for t!te convergence of iteration ( 12.2), for any arbitral)' choice of x(l 1, is that 
p (B) < I. A sufficient condition is that II B II < I for a subordinate matrix norm. 

We now apply the above result to identify classes of matrices for which the Jacobi 
and/or Gauss-Seidel methods converge for any choice of the initial approximation x{ 1 l. 

The jacobi and Gauss-Seidel Methods for Diagonally Dominant Matrices 

Corollary 12.4. If A is strictly row diagonally dominant, then the Jacobi method conve1~r:es 
for any arbitrary choice of the initial approximation x(1l. 

Proof. Since A = (aij) is strictly row diagonally dominant, we have by definition 

" 
laul > L laijl, i =I, 2, ... , 11. ( 12.11) 

j=l 
i¥-j 

The Jacobi iteration matrix B1 can be written as 

0 
Cit:: alii 

a21 
a11 

0 
a23 

a::z a22 

Cln-1.11 

Clu-l,n-1 

0 

From ( 12.11) we therefore have that the absolute row sum of 81 (that is, the row sum taking 
absolute values) of each row is Jess than I, which means IIBJ lloo < 1. Thus by Theorem 
12.3, we have Corollary 12.4. D 
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Corollary 12.5. if A is a strictly raw diagonally dominant matrLr. then the Gauss-Seidel 
met/rod converges for any arbitral)' choice ofx(tl. 

Proof. Let I. be an eigenvalue and let11 = (u 1, ••• , u,)r be the corresponding eigenvector 
of the Gauss-Seidel iteration matrix Bas. Then we will show that p(Bcsl < I. From the 
expression of BGs given in Section 12.2, we have 

-Uu = (D + L)icll 

or 
!1 i 

l:auui >.Lauuj, i=1,2, .... n, 
j:::::i+l J=! 

which can be rewritten as 
i-1 IT 

A.anui = -:<.La;1u1 - 2::: a1iu 1, l =I_1.2, .. _., __ n. 
]=1 }""'i+J 

Let llk be the largest component (having magnitude I) of the vector 11. Then from the above 
equation, we have 

k~l II 

i>.llaHI :=Ii-i L [a,j[ + L iakjl (12. 12) 
j=l j=k+! 

or 

l
·r < I:i~H fa,j[ 
A . l • 

- ([akk I - 2::): 1 [Otj ll 
(12.13) 

Since A is strictly row diagonally dominant, [au[- 2::~:: [a,j[ > I:}~k+l [a,ji· Thus 
from (12.13), we then conclude that[!.[< 1. that is, p(Basl < 1. 

From Theorem 12.3, we now have Corollary 12.5, D 

Remark. It is usually true that the greater the diagonal dominance of A, the faster the 
convergence of the Jacobi method. However, there are simple counterexamples that show 
that this does not always happen. 

The following simple 2 x 2 example in support of this statement appears in Golub 
and Van Loan (I 996). The example was provided by RichardS. Varga. 

( 1 _l) ( I 
A1 = -t 1

2 
, A2 = -! -~) I . 

It is easy to verify that p(B 1 ) of A 1 is greater than p(B;) of A,. Readers are invited to try 
tlte Jacobi method with A 1 and A:z to verify the statement, 

The Gauss-Seidel Method for a Symmetric Positive Definite Matrix 

We show that the Gauss-ScidcJ method converges. \Vith an arbitrary choice of x 0 l, for a 
symmetric positive definite matrix. 

Theorem 12.6. Let A be a symmetric positive definire matrix. Then the Gauss-Seidel 
method converges for any arbitrary choice of the initial approximation xi 1 ). 
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Proof Because A is symmetric, we have A = L + D + Lr, where L is as defined in ( 12.4) 
and D = diag (ClJJ, ... , Cl 1111 ). 

Thus BGs = -(D + L)- 1 LT We will now show that p(BGs) < I. 
Let -A be an eigenvalue of BGs and t1 be the corresponding eigenvector. Then 

(D + L)-t Lru =AU. 

Multiplying the last equation to the !crt of both sides first by (D + L) and then by u•, we 
gel 

or 
u• Au- u'(L + D)u = Au'(L + D)u (since A = L + D + LT) 

or 
u· Au= (I+ A)u'(L + D)u. (12.14) 

Taking the conjugate transpose on both sides, we have 

u• Au= (I+ !:.)u'(LT + DT)u. 

Adding (12.14) and (12.15), we obtain 

( __ I_+--~---) u• Au= u'(L + D)u + u'(L 7 + Dr)u 
(I +A) (I +A) 

= u'(L + D + L 7 + D 7 )u = u'(A + D7 )u = u'(A + D)u > u• Au. 

(Note that since A is positive definite, so is D and, therefore, u" Du > 0.) 

or 

Dividing both sides of the last equation by u* Au(> 0) we have 

(o ~A)+ (I~ J:.J > I 

(2 +A+ 5:.) 
(I +A)( I +A) 

> I. 

Let A="'+ if3. Then 5:. ="'- if3. From (12.16) we then have 

2(1 + <>) 
'J 7 > I, 

(I +<>)-+{3-

(12.15) 

(12.16) 

from which it follows that<> 2 + {3 2 <I. That is, p(BGs) <I, since fAI = )<>2 + {3 2 D 

Rates of Convergence and a Comparison between 
the Gauss-Seidel and jacobi Methods 

We have just seen that for strict row diagonally dominant matrices both the Jacobi and the 
Gauss-Seidel methods converge for an arbitrary x(ll. The question as to whether this is 
true for some other matrices as well naturally arises. Also, when both methods converge, 
another question arises: Which one converges faster? 

From our discussion in the last section we know that it is the iteration matrix B that 
plays a crucial role in the convergence of an iterative method. More specifically, recall 
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from the proof of Theorem 12.2 that ek+t = error at the (k + I )!h step = x - xl+', and 
e1 = initial error = x - x!ll arc related by 

llc,+Jii:::IIB'IIIIetll. k 1.2,3, .... 

Thus. JIB'II gives us an upper bound of the ratio of the error between the (k + 1 )th step and 
the initial error. 

Definition 12.7. ifi!Bk!l < I. then tile quantity 

In liB' II 
k 

is called the average rate of convergence fork iterations, and the quantity 

-In p(B) 

is called the asymptotic rate of co11vergeuce. 

{{the asymptotic rate of convergence of one iterative method is greater than that of 
the other and both methods are known to converge, tlren rhe one with the larger asymptotic 
rate of convergence converges asymptotically faster than the arhet: 

The following results on the rate of convergence of the Jacobi and Gauss-Seidel 
methods (Varga (2000)) can be proved. 

If 0 < p(B1 ) < I, then the asymptotic rate of convergence of the Gauss-Seidel 
method is larger than that of the Jacobi method. 

If matrix A has all its diagonal entries positive and off~diagonal entries nonnegative, 
then 

(i) the Jacobi and the Gauss-Seidel methods either both converge or both diverge; 

(ii) when both methods converge, the Gauss-Seidel method converges faster than 
the Jacobi method. 

Remarks. Note that in (ii) above we are talking about the asymptotic rate of convergence. 
not the average rate of convergence. 

Unfortunately, in the general cn.sc no such statements about the convergence and the 
asymptotic rates of convergence of two iterative methods can be made. In fact, there are 
examples where one method converges but the other diverges. However, when hath the 
Gauss-Seidel and the Jacobi methods converge, because of the lower storage requirement 
and the faster rates of convergence, the Gauss-Seidel method should be preferred over the 
Jacobi method. 

Convergence of the SOR Method: Choice of w in the SOR Iteration 

It is nutural to wonder what is the range of w for which the SOR iteration converges and 
what is the optimal choice of oJ. To this end, we first prove the following importanl result 
due to Kahan ( 1958). 

Theorem 12.8 (Kahan). For the SOR irerationto converge for every initial approximation 
x<n, w must lie in rhe imen1al (0, 2}. 
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Proof Recall that SOR iteration matrix BsoR is given by 

BsoR = (D + wL)- 1 I (I - w)D- wU], 

where A= L+ D+ U. 
The matrix (D + wL)- 1 is a lower triangular matrix with 1..., i = I, ... , 11, as the a,. 

diagonal entries, and the matrix ( 1 -w)D -wU is an upper triangular matrix with ( 1-w)aii, 
i = l, ... , n, as the diagonal entries. So, dct(Bsmd =(I - w) 11

• 

Since the determinant of a matrix is equal to the product of its eigenvalues, we con­
clude that 

p(BsoR) :0: I I - wl, 
where p(BsoR) is the spectral radius of the matrix BsoR· 

Since by Theorem 12.3, p(Bs01<1 has to be less than l, we conclude that w must lie 
in the interval (0,2). D 

The next theorem, known as the Ostrowski-Reich theorem, shows that the above 
condition is also st~!Jicient in case matrix A is symmetric anJ positive dejinife. 

The theorem was proved by Reich for the Gauss-Seidel iteration (w = l) in 1949 
and subsequently extended by Ostrowski 17 in 1954 for the SOR method. 

Theorem 12.9 (Ostrowski). Let A be a symmetric posith'e definite matrix and let 0 < 
w < 2. Then the SOR method will co11Verge for any arbitral)' choice of x(IJ. 

There are certain classes of matrices, such as consistently ordered and 2-cyclic ma­
trices with nonzero diagonal entries (sec Young (1971, 1972), and Varga (2000)), for which 
there exists an optimal choice of w. The block diagonal matrices with nonsingular diagonal 
blocks are such matrices. Note that the block tridiagonal matrix A arising in the discretiza­
tion of Poisson's equation, encountered in Chapter 6, belongs to this class. In this case, the 
optimal choice for w, denoted by Wopt• can be shown to be 

and p(BsoR) = w,,,- l. 
Furthermore, for consistently ordered 2-cyclic matrices, if the Jacobi method con­

\'erges, so does the Gauss-Seidel method, and the Gauss-Seidel method converges twice as 
fast as the Jacobi method. 

Example 12.10. 
4 -1 0 -1 0 0 l 
-1 4 -1 0 -1 0 0 

A= 
0 -1 4 0 0 -1 

b= 
0 

-1 0 0 4 -1 0 0 
0 -1 0 -1 4 -1 0 
0 0 -1 0 -1 4 0 

17 Alexander Ostrowski ( 1893-1986) was born in Kiev. Ukraine, and lived in several countries, including 
the United States, the United Kingdom, Germany, and Switzerland. He studied under such celebrated 
mathematicians as Hilbert, Klein, and Landau and solved the famous Hilbert's Eighteenth Problem. He 
made profound contributions in several areas of mathematics, including determinanL<>, matrix theory, algebraic 
equations, differential equations, number theory, geometry, topology, and numerical analysis. Some details 
of his contributions can be found in hup:!lwww-hi.Hory.mcs . .H-andrews.ac.uk/References/Osrmwski.html. 
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The eigenvalues of 8 1 are 0.1036, 0.2500, -0.1036, -0.2500, 0.6036, -0.6036. 

p(B1 ) = 0.6036, p(Bos) = 0.3643, 

2 
Wopt = = 1.1128. 

I + J I - (0.6036)' 

lt took live iterations for the SOR method with Wopt to converge to the exact solution 

(up to four significant figures), starting with x~gR = {0, 0, ... , O)T, and 

xi~R = (0.2948, 0.0932, 0.0282, 0.0861, 0.0497, 0.0195/. 

With the same starting vector x(ll, the Gauss-Seidel method required nine iterations. 
(Try it!) Also eighteen iterations is required by the Jacobi method. I 

MATCOM Note: The Jacobi, Gauss-Seidel, and SOR methods have been implemented, 
respectively, in the MATCOM programs jacobi, gaused, and sucov. 

Table 12.2 summarizes properties of the three methods discussed above. 

Symmetric Successive Overrelaxation (SSOR) Method 

There exists a symmetric version of the SOR method which is derived by combining the 
SOR scheme with the backward SOR scheme. The SSOR matrix and the corresponding 
vector can be written as 

BssoR = (D + wu)- 1 
( -wL +(I - w)D)(D + wL)- 1 

( -wU +(I - w)D), 

dssoR =w(D+wU)-1(!+[-wL+(l-w)D](D+wL)- 1)b. 

The reader is invited to develop the complete algorithm (Exercise 12.12). 

Table 12.2. Comparison of some classical iterative methods. 

Method Properties 
Jacobi Easy to usc. Convergence with an arbi­

trary initial guess is guaranteed if A is 
strictlv row diaRonallv dominant. 

Gauss-Seidel Typically converges faster than the Jacobi 
method. Convergence with an arbitrary 
initial guess is guaranteed for the strictly 
row diagonally dominant and symmetric 
oositive definite matrices. 

Successive overrelaxation (SOR) When w > 1, convergence is typically 
faster than Gauss-Seidel. The speed of 
convergence depends upon w. Guaran­
teed convergence for a symmetric posi­
tive definite matrix. Optimal w is avail­
able for certain classes of matrices, such 
as the block symmetric positive definite 
matrices arisinR in Poisson S equation. 
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12.3 Krylov Subspace Methods for Linear Systems: 
Lanczos, Arnoldi, GMRES, Conjugate Gradient, 
and QMR 
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Given an 11 x n matrix A and ann-vector x, the sequence {x, Ax, .. , , An-I x} is the called a 
Krylov sequence and the matrix (x, Ax, ... A11 - 1x) is called the Krylov matrix, denoted 
by K,(A, x), after A.N. Krylov. 18 

The subspace IC.,(A, x) = span{x, Ax, ... , A"'- 1x} is called the Krylov subspace 
of dimension m, assuming that the vcctors arc independent. Two basic Krylov subspace 
methods are the Lanczos and Arnoldi methods. Historically, the Lanczos method, devel­
oped by C. Lanczos (Lanczos (1950)), was the first of its type. When A is symmetric, both 
methods become identical if the starting vectors are the same. 

The Arnoldi and Lanczos methods are used as projection methods in numerical linear 
algebra to solve large-scale matrix computational problems which are typically sparse (see 
Bai et al. (2000), Saad ( 1992, 2003), and Stewart (200 I a)). 

A large problem is typically projected onto a Krylo\' subspace of dimension 
m (m << n). Then the projected problem is solved using a standard technique, and .fi­
nally an approximate solution of the original problem is retrieved from the solllfion of the 
smaller projected problem. 

We will describe the basic Arnoldi (Algorithm 12.1) and Lanczos (Algorithms 12.4 
and 12.6) methods first and then discuss some of their well-known applications to linear 
system and eigensolutions of large and sparse matrices. Our discussions will include the 
following: 

Arnoldi-based full orthogonalization (Algorithm 12.2) and GMRES (Algorithm 12.3) 
methods for nonsymmetric linear systems 

Nonsymmetric Lanczos-based hi-conjugate gradient (Algorithm 12.7) (Bi-CG) and 
QMR methods for nonsymmetric linear systems (Section 12.3.11 ). 

Symmetric Lanczos-based conjugate gradient (CO) (Algorithm 12.5) and precondi­
tioned conjugate gradient (Algorithm 12.9) methods for symmel.ric positive definite 
systems. 

The Lanczos method for the symmetric eigenvalue problem (Section 12.6.3). 

• An explicitly restarted Arnoldi algorithm (Algorithm 12.1 0) for the nonsymmetric 
eigenvalue problem. 

The implicit Arnoldi method for the nonsymmetric eigenvalue problem (Algorithm 
12.11). 

There arc some drawbacks to these methods. Both the Arnoldi and Lanczos methods might 
encounter "breakdowns" or "near breakdowns" during the process of orthogonalization. In 

lH Alexei Nikolaevich Krylov (1863-1945) was a Russian maritime engineer. His celebrated paper "On the 
numerical solution of the equation by which the technical questions frequencies of small oscillations of ma­
terial systems are determined" [h:vestija Akad. Nauk SSSR. Otdel. Mat. i Est est. Na11k, 7(4) ( 1931 ), 491-539 
{in Russian)] forms the basis of the so-called Krylov .wbspace methods. (Consult http:!/www.navy.ru/lti.\'IOI)'f 
b-krylm•.htm (in Russian).) 
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case of the Arnoldi and symmetric Lanczos methods, such a '"'breakdown" is considered to 
be "happy breakdown" for the eigenvalue problem because in such a case one obtains an 
exact eigenvalue. \Vith the nonsymmetric Lanczos method, however, this is not always true. 

12.3.1 The Basic Arnoldi Method 

(See Arnoldi (1951).) Given A E II<'"", a nonzero vector v. and an integer m S 11, the 
idea is to create the set of (m + I) orrlwnormal vectors I Vt, ... , Vm+,} and an (m + 1) x m 
Hessenberg matrix ifm such that if Vm = (Vi, .... Vm) and Vnr+l (Vt., .• , Vm, Vm+d, 

then 

(12.17) 

or 

hlm l 
h..,~t.m , 

From above, it follows that if we set v, = vfl!vll2. then we can compute, at step k, the 
vector vk+ 1 and the kth column of H,, by comparing the entries of the kth column of both 
sides, us shown below, 

Step 1. Compute v2 and the entries of the first column oflfm. By comparing the entries 
of the first column of both sides of the above equation, we have 

Av1 = ll 11 v1 + 11:11 v2 . 

Multiplying by vf on both sides, we gel 

vf Av, = lt11 (since vf v, = l and vf v2 = 0). 

Next set 

and take lt21 = llillb- Then set 

The other steps are analogous. 

Step k. At step k, the entries of the kth column of the matrix H, together with Vk+l can be 
generated from the (k + I )-term recursive relation 

(12.18) 

and making use of the fact that I v1, e2 , ...• vk) are orthonormal. 
Algorithmically, ltu will not he computed from the relation ltu = v[ Avk (see 

Algorithm 12.1 ). 
Thus, the above process is simply the modified Gram-Schmidt process for generating 

a set of orthonormal i'eL'tors. We will now write the process nlgorilhmically in the following. 
There exists a Householder version of the algorithm due to Walker (1988), which is more 
numerically stable but more expensive as welL 
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ALGORITHM 12.1. The Arnoldi Method (Modified Gram-Schmidt Version). 

Inputs: (i) A, an 11 x n matrix, (ii) v, ann-vector, and (iii) m, a positive integer 
less than or equal to n. 

Outputs: (i) A set of (m +I) orthonormal vectors (v 1, v2 , •.. , Vm+l }. (ii) A 
(m +I) x m Hesscnberg matrix ilm = (hiJ). 

Step 0. 

Step 1. 

Nonnalize the vector v to obtain u1 : v1 

Fork = I, 2, ... , 111 do 
V =Auk 

End 

For j = I, 2, ... , k do 

End 

I T. 
lj,k=VjV 

iJ = iJ- flj.kVj 

hk+t.k =liD lb. Ifli,+i., = o, stop. 
vk+l = v; hk+l.k 

v 
i1vll2 

Some Important Relations obtained from Algorithm 12.1. 
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Here we summarize some important relations which can be easily derived from theArnoldi 19 

method. 
Let 

V111 = (U[, V], ••• , V 111 ), 

Vm+l = (UJ, V]., .•. , Um+J), 

Hm =the 111 x m Hessenberg matrix obtained by 

deleting the (m + l)th row of the matrix il111 • 

I. (Amoldifactorization.) The relation (12.17) can be written as 

or 

or 
where fm = hm+J.mVm+l· 

(12.19) 

( 12.20) 

( 12.21) 

The above factorization is called the Arnoldi factorization and can be represented 
as shown in Figure 12.1. 

1 '~Walter Edwin Arnoldi ( 1917-1995), an American engineer/scientist, was born in New York and educated 
at Stevens Institute of Technology and Harvard University. He was employed as an analytic engineer by 
Hamilton Standard Division of United Aircraft Corporation from 1939 to 1977. His paper "The principle 
of minimized iterations in the solution of the eigenvalue problem" (Arnoldi ( 1951 )) is perhaps one of the 
most cited papers in numerical linear algebra. An article about Arnoldi can be found in American Men & 
Women of Science [18th cd. Vol. 7, 1993]. See also NA Digest, Monday, March 4, 1996, Vol. 96, issue 09 
(http://www. net\ i b. orgl na~d i ge s t -h tm 1/96/ v96n09 .h tm l ) . 
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A ~=~ ~ u u H, 
mxm 

+ fme~ 
nxm 

1l X 1l nxm IJXIIl 

Figure 12.1. Arnoldifactorization. 

II. (QRfactorization of the Arnoldi-Krylov matrix.) The matrix Vm is such that 

(12.22) 

where K 111 is the Krylov matrix (b, Ab, ... , A 111
-

1b). That is, Vm is the Q matrix of 
the reduced QRfactorization of the KJ)'lov matrix K111 • 

Ill. From_ A Vm = Vm+J H111 , it follows that 

(12.23) 

IV. Finally, it can be established that each v; = p;-~(A)v 1 , where p;_ 1 is a polynomial 
of degree i - I. 

Breakdown of the Arnoldi method. The algorithm breaks down at step j if vat that step 
is a zero vector. It can be shown that this will happen if and only if the degree of the minimal 
polynomial ofvl is exactly j; that is, it is a combination of j eigenvectors. As indicated 
earlier, this is a happy breakdown for the eigenvalue problem. In this case, the subspace 
Kj(A, vJ) is invariant and the approximate eigenvalues and eigenvectors arc exacl. 

Restarted Arnoldi methods. The storage and computational costs of the Arnoldi method 
increase substantially as m increases. Note that form steps of the process, approximately 

0 (m 2n) flops and (mn + ~~~~ )n storage locations are required. To overcome this difficulty, 
the Arnoldi method is usually restarted with a different starting vector (keeping m fixed) or 
by changing m dynamically by introducing a fixed variable m 1 (a small integer) such that 
the accuracy of the method is checked after every m 1 iterations of the Arnoldi method. Such 
variations of the Arnoldi method are usually called restarted Arnoldi methods and will 
be described in what follows in the context of applications of Arnoldi methods for solving 
linear systems. There are, however, other types of restarted Arnoldi methods (Saad (2003)). 

12.3.2 Solving Ax = b Using the Arnoldi Method 

The Arnoldi method, described in the previous section, can be conveniently used to solve 
the large and sparse linear system Ax = b. We will describe two methods: a Galerkin 
method and a minimal residual method. The basic idea behind these methods is the same: 
both are projection methods and work as follows. 

Guess an initial approximation x0 and compute the residual: r0 = b - Axo. 

Find a correction vector Zm by solviilg an m-dimensional problem (m << 11) such that 

A(.to + Zm) = A.tm =b. 
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How to Determine Zn~< To determine Z111 , them steps of the Arnoldi method, starting 
with Vt = ro/llrolb, can be run to generate the matrices H111 , V111 , and Hm, and then Zm is 
sought in the form 

for some )'111 E IR111
• 

The two methods differ in the way the vector Z111 is computed. 
Let the Arnoldi method be started with u, = ro/llrollz, where ro = b- Axo and xo is 

the initial solution. Then the following hold. 

In the Galerkinmetlzod, the residual vector r111 = b- Ax111 is required lD be orthogonal 
to K.111 (A, ro). This is equivalent to finding )'111 by solving an m x m Hessenberg system. 
Specifically, the following 111 x m Hessenberg system is solved (see the discussion 
below): 

(12.24) 

In the generalized minimal residual (GMRES) method, it is required that r111 be min­
imized. This is equivalent to finding Ym by solving an m-dimensional least-squares 
problem (see Theorem 12.12 below). Specifically, )'111 minimizes 

J(y) = lletllroll2- H,yll2· (12.25) 

The Galerkin Method 

In the Galerkin (also know as the Ritz-Galerkin) method, it is required that the residual 
vectorr111 = b-AXm beorthogona1toiC111 (A, ro). Sincer111 = b-A(xo+Z111 ) = ro-AVmYm• 
this condition gives 

That is, 

Noting that VJ = ro/llrolb. we can simplify the right-hand side as follows: 

( 

VT l I 

vi 
- ro = 

v~~ 

rJ"ro 

llroll2 
T v2 llroll2v1 

u;~;llroll::u! 

(Note that vr Vt = 0, i = 2, ... ' 111.) Thus the projected Ill X 111 system to be solved, 
v,;~·AVmYm = V,~ro, reduces to 

Hm)'m = llroll2e1, 

which is an m x m Hessenberg system with the above special right-hand side. 

This projected problem is now solved to obtain )'111 ; then the correction vector Z111 = 
VmYm is computed, and finally an improved solution vector Xm = Xo + Z111 is obtained. The 
method is also known as the full orthogonalization method (FOM). 
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Restarting. If the corresponding residual vector rm = b- Axm is not small enough. then 
the process is restarted, setting .to = Xm and r 0 = rm. Other types of restarting methods, 
such as restarting with an increased value of m, are a1so possible. However, we will consider 
here restarting methods only of the first type. 

Computing the residual. Since the residual r, at every iteration (aftcrthc fixed m steps of 
the Arnoldi method) needs to be computed and checked for smallness lo sec if the method 
needs to be restarted, it is desirable that this can be computed cheaply. It turns out lllis 
indeed can be done with information available only at the end of m steps of the Arnoldi 
merhod, and, br fact, this can be computed even before the next updating, as seen from the 
following. 

The residual vector rm and its norm arc given by the following theorem (Exercise 
12.15). 

TheoremT2.11 (residualby FOMJ. Let x0 be on initial apphirimalion andleir0 be the 
corresponding residual. If the starting vector in the Arnoldi method is taken as v1 = 
ro/Urolb. tlten the residual vector rm of the approximate solution Xm computed by the FOM 
and its norm are, respective(v, given by 

and 

(12.26) 

(12.27) 

ALGORITHM 12.2. An Explicitly Restarted Arnoldi Algorithm (FOM) for 
Ax = h (Galerkin type). 

Inputs: (i) A, ann x 11 matrix, (ii) m, a positive integer less than n, (iii) E, the 
lolcrunce {>0), and (iv) .to, an initial approximation, 

Output: An approximate solution Xm such that the associated residual vector 
r 111 = b- .4xm is orthogonal to IC111 (A, ro). 

Step 0. 
Step I. 

Step 2. 

Step 3. 

Step 4. 

StepS. 

Compute r0 = b - Axo. 
Run m steps of the Arnoldi algorithm (Algorithm 12.1) to generate 
the matrices \1m, Hm, and hm+l,m using VJ ro/llrolb. 
Solve them x m system H,y"' = l!roll1e, 
Compute the correction vector Z111 : Zm = v;" Ym. 

Compute lhe new solution vector: Xm = xo + Zm· 

Compute the norm of the new residual vector, llrm ib = 
hm+Lmle~Yml· Stop if llrml! < E and accept Xu1 as the approx-
imate solmion. 

Step 6. Compute r111 -hm+Lme~ym Vm+l and sct.to =- Xm and ro rm. 
Return to Step I. 
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Numerical Experiment with Algorithm 12.2 

Algorithm 12.2 was run with a sparse matrix of order 99 and fixed m = 4. Using MATLAB 
notation, we write 

A = diag((l : 99)) + diag(l, 98) + diag( I, -98), 

which is a sparse matrix with entries I, ... , 99 on the diagonal and 1 on the top right and 
bouom left corners, with a suitably chosen right-hand side vector b. 

Choose the initial approximation x0 = ( 0.1 0.1 0.1 0.1 ) T. 

The norms of the residual vectors b- Axi, i = 0, I, ... , 20, are shown in Table 12.3. 
The table shows that the restarted Arnoldi algorithm for Ax = b converges as the number 
of iterations i increases. 

Table 12.3. Residua/norms by FOM. 

i lib Ax; liz i lib Ax;ll2 i lib Ax;lb 
0 515.875101 7 0.489985 14 0.055578 
I 17.950331 8 0.337757 15 0.043757 
2 4.739720 9 0.263640 16 0.030658 
3 2.455344 10 0.183782 17 0.024151 
4 1.380971 II 0.144290 18 0.016929 
5 0.971805 12 0.100907 19 0.013341 
6 0.641555 13 0.079375 20 0.009355 

12.3.3 The GMRES Method for Solving Ax= b 

We now present the other method, the minimized residual method, called the generalized 
minimal residual method (GMRES), developed by Saad and Schultz ( 1986). 

Recall that for this method one seeks an approximate solution Xm of the form xo+ V111 Ym 
such that the norm of the residual vector r111 = b - Axm is minimized by choosing Ym 
appropriately. Let e1 be the first unit (Ill+ l)t!J vector: (I, 0, ... , O)T 

Theorem 12.12. Minimization of the residual11orm is equivalent to solving them x m 
least-squares problem: Minimize 1 (y) = I! II ro I! 2e1 - Hm y IL"!, where ro = b- Axo and Hm 
is the (m + I) x m Hessenberg matrix obtained by applying m steps of rite Arnoldi method, 
starting with v, = r/llroll2· 

Proof. 

rm =b- Ax111 = b- A(xo + VmYm) 

= ro- A VmYm = ro- Vm+l HmYm (note that A Vm = Vm+l fi111 ) 

= Vm+l (e,llroll2 - H,y,) (note that ro = v, /llro lb = Vm+l e,llro ll2l· 

Since Vm+l has orthonormal columns, we obtain 

llrmll2 =II e,llroll2- H,y,lb. 
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Thus llrm II will be minimized if Ym is chosen so that 

J(y) = llllrollzel- HmYIIz 

is minimized over all y E IR111
• D 

The above least-squares problem can be solved using the QR factorization method 
described earlier (see Chapter 8). Once Ym is so obtained, the correction vector Zm = VmYm 
and the new improved solution vector Xm = xo + Zm can easily be obtained. 

Restarting. If llrm 112 is not small enough, the process can be restarted by sclting Xo = Xm 

and ro = r111 , the residual of the approximate solution Xm. But for this restarting process to 
be practical, the residual and its norm have to be computed cheaply. We now show how 
this. can .. be. done. 

Computing the Residual and Its Norm Cheaply from Least-Squares Solution 

Let the least-squares problem, minimize I! llroll.,e1 - HmYII.,, be solved using QR factoriza­
tion method wilh Givens rotalions. Since this -is a Hessenberg least-squares problem, the 
Givens method is ideal and a natural choice. 

Let Qmifm = ku (QR factorization of ifm), where Q,,, = lnJm-1 ... l1; J; is the 
Givens rotation in the ith and (i + I )th planes. Define 

g, = Q,(llrollze,) = ( ~: l , 
Ym+l 

R111 = them x m matrix obtained from the (m + 1) x m matrix 
Rm by deleting the last column, 

g 111 = them-dimensional vector obtained from the (m + 1 )­
dimensional vector gm by deleting its last component. 

Then the following can be shown (Saad (2003, p. 169)). 

• The vector )'111 that minimizes llllroll:zel - ifmYmll is given by 

• The residual vector rm and its nann can be computed, respectively, as 

and 

(12.28) 

(12.29) 

(12.30) 

(12.31) 

(12.32) 

(12.33) 
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ALGORITHM 12.3. An Explicitly Restarted GMRES Method for Ax = h. 

Inputs: (i) A, ann x n matrix, (ii) m, a positive integer less than n, (Hi) E', the 
tolerance(> 0), and (iv) x 0 , an initial approximation. 

Output: An approximate solution Xm such that the associated residual vector 
T111 = b- Ax111 satisfies !!rmli2 <E. 

Step 0. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Compute r0 = b - Axo. 
Run m steps of the Arnold] method (Aigorilhm 1 2.1} to generate 
the {m + 1) x m Hcsscnberg matrix Hm and the orthonormal matrix 
Vm+h using Vt = ro/!lroib. 
Find the vector Ym such that the function 

J(y) = llllrolhet- H,ylb 
Js minimized over all vector y E IF.:m; e1 = (1, 0, ... , O)r E JRm-rl 

by solving them x m upper triangular system 

where R, and g, are defined by ( 12.29)-( 12.30). 

Compute the correction vector Zm = VmYm· 

Compute lhe new approximate solution Xm = wt'o + Zm· 

Compute the new residual norm !lrmlb = l;t11Hd• where Yu1+1 is 
given by (12.28). If llr.,lb < E, then stop and accept x., as the 
approximate solution. 

Compute the new residual rm = b ,~ Axm = Vm+l Q~;{Ym+!t'm+L). 
Set xo Xm and ru == r111 and return to Step I. 

453 

Remark. Since the residual at any substep j can be computed without computing the update 
x ,,, one can slop early as soon as the residual nom1 is small enough. The readers, is invited 
t~ develop this variation of the GMRES algorithm. 

Breakdown of the GMRES method. Clearly, the GMRES method breaks down when 
the Arnoldi algorithm (Algorithm 12.1) slops m step j. If this happens, then the residual 
vector is zero; that is, the solution obtained at this step by GMRES is exact. The converse 
is also true. The following can be proved (see Saad (2003, p. 171 )): 

• if A is nonsingulur, then the GMRES method breaks down at step j if and only if the 
approximate solution x1 is exact. 

Convergence of the GMRES Method 

The global convergence of the method has been proved only in the case when A is positive 

definite; that is, A+./r is symmelric positive definilc. Two consequences of Lhis result: 

If A is positive definite, then the GMRES converges for any 111 ::: 1. 

if A is not positive definite, then the GMRES may stagnate. 
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There exist results on the upper bound of the residual norm obtained after m steps of 
the OM RES method in case the matrix A is diugonalizablc. These results involve Cond 2(X) 
of the transforming matrix X that diagonaHzcs A and arc thus useful only when this quantiry 
is known in advance. For details, we refer the readers to Sand (2003, pp. 205-227). We 
present one such result here wilhout proof. 

An Error Bound. Let x-1 AX = diag(J.,, ... , >.,.). Then it can be shown (Greenbaum 
(1997, p. 54), Saud (2003, p. 206)) that 

ilr,ll2/llrollz :'0 Cond,(X) n;in. m;x jp,(A;)I, 
,J.., !=J,_,."'./1 

where the minimum is taken over all polynomials p,(x) of degree less than or equal tom 
with Pm (0) = I. 

.. R~lllnrks, . 

lf A Is normal, the above error bound is sharp. In lhis case, if the eigenvalues 
are clustered around a single point away from the origin, then there wi11 be rapid 
convergence. 

In case A is not normal but has a reasonably weU~condilioned X, the distribution of 
eigenvalues of A essentially determines the convergence behavior of GMRES. 

In general, however, it is not true that the convergence can be determined from the 
eigenvalue distribution alone. For example, eigenvalues clustered around I is not 
necessarily a favorable distribution for convergence in case A is u nonnormaJ matrix. 

Choosing m. Unfortunately, there is no definite guideline for choosing m. If it is "too 
smaJl." then lhcrc could be very slow convergence or no convergence at all. If m is ••too 
large," then the storage and computational costs are prohibhive. 

12.3.4 Solving Shifted linear Systems Using the Arnoldi Method 

An impo11am observation is that tlteArnoldi basis [v!, ... , U111 } is invariant under a diagonal 
sl1ift a of A: if we were lo use A -a I instead of A, we wuuld obtain the same sequence 
{ "" ... , v, ). This is because the Krylov subspace K,(A, v,) is the same asK, (A -a I, v1 ). 

Note that from ( 12.20) we have 

(12.34) 

which means that if we run m steps of the Arnoldi method with the matrix A - c; I, we will 
obtain the same matrix V110 but matrix Hm will have its diagonal shifted by a 1. 

A consequence or this is that for solving several linear systems of the form 

(A - i<J)x; = b, i = 1, 2, .. , 

we might use the same information "'11 and Hm. generated only once, to solve these systems 
approximately. See Dalla and Saad (1991) and Saad (1987). 
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12.3.5 The Symmetric lanczos Algorithm 

In case matrix A is symmetric, the Arnoldi algorithm (Algorithm I 2.1) becomes what is 
well known as the symmetric Lanczos algorithm, named after C. Lanczos ( 1952).::1.0 

In this case, the Hessenberg matrix Hm reduces to the symmetric tridiagonal matrix Tm, 
written as 

~,:_,]· 
f3m-l am 

(
"' 

T," = ~[ 

~I 

"' 

The (k + l)th term recurrence (12.18) in the Arnoldi method now reduces to the well-known 
three-term recurrence: 

Avj=a,;v,;+fJ,;-tVj-1· +{J,;v.i+l• j=I,2, ... ,m 

(where we assume that ~ovo = 0). 

ALGORITHM 12.4. The Symmetric Lanczos Algorithm. 

(12.35) 

Inputs: (i) A symmetric A E JRil :-:rl, (ii) a vector v, and (iii) a positive integer 
111 < 11. 

Outputs: (i) A set of orthonormal vectors { u1, u2 , ••• , Vm+l}, and (ii) the entries 
a .i and fJ .i of the symmetric tridiagonal matrix T111 • 

Step 1. Set vo = 0, ~o = 0, v, = vfllvll,. 

Step 2. For j = I, ... , 111 do 
2.1 vH1 = Avj- ~j-iVj-1· 
2 2 

'[', 
• Uj = Vj Vj+l· 

2.3 vj+l = vj+!- ajvj. 

2.4 ~j = llvj+l 11,. II' ~j = o, stop. 

2 5 !iJ+l 
, Vj+l = T,· 

End 

The relations ( 12.17), (12.22), and (12.23 ), stated for the Arnoldi method, specialize 
to the case of the symmetric Lanczos method, respectively, as follows. Define Vj = 
(VJ, V}, . .. , Vj). 

I. AVm = Vm+l T,11 (symmetric Lanczosfactorization). 

11. K 111 = V111 Rm (QRfactorizatioll of the symmetric Lanczos-Krylov matrix). 

III. v,;~ A vm = Tm . 

2°Cornclius Lanczos ( 1893-1974), a Hungarian physicist, after receiving his doctorate degree from Bu­
dapest Technical University in 1921, moved to Germany, where he worked as an assistant to Albert Einstein 
during the years 192.8-1929. He worked as n Professor of Physics at Purdue University, as a scientist at 
Boeing and the National Bureau of Standards in the United States. and as Professor of Physics at the Dublin 
Institute for Advanced Stutly in Ireland. His paper "An iteration method for the solution of eigenvalue prob­
lems of linear differential and integral operations" (Lanczos (1950)) forms the hasis of the much-studied 
Lanc-:,m method.\'. 
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Loss of orthogonality. The Lanczos algorithm clearly breaks down when any of the 
/3; equal 0, which is a blessing in disguise for eigenvalue problems. We immediately obtain 
an invariant subspace. This, however. seldom happens in practice. In general, in the process 
there is always some loss of orthogonality! which takes place as soon a:> one eigenvalue 
converges. 

In such cases, procedures such as Lcmc::.os with complete ortlwgonalization, which 
produces the Lanczos vectors that are orthogonal to working precision, or Lanczos with 
selective orthogonalizatiorr, which is used to enforce orthogonality only in selective vec­
tors, arc used when needed. For details, we refer the reader to the well-known books on 
this subject by Parlett ( 1998) and Cullum and Willoughby ( 1985). Several papers of Paige 
( 1970, I 971, 1976, 1980). whose pioneering work in the early 1970s rejuvenated the inter­
ests or the researchers in this area. are also very useful references. Procedures for complete 
and selective orthogonaHzation have been described ln some detail in Golub and Van Loan 
(1996) and Parlett and Scott (1979). 

MATCOM Note: Algorithm 12.4 has been implemented in lhC MATCO!vr program 
LANSYM. 

Solving the Symmetric System Using the lanczos Method 

The symmetric Lanczos algorithm for solving the symmetric system Ax = b can be used 
exactly in the same way as in the case of the Arnoldi method. In this case, the approximate 
solutions will be given by 

(12.36) 

12.3.6 The Conjugate Gradient Method 

The method was originally devised by Hestenes and Stiefel (1952) and today is widely 
used to solve large and sparse symmetric positive definite systems. It is direct in theory, 
but iterative in practice. The method is a Krylov subspace method. In factt this metlwd 
can be derived from the syrnmetric Lanczos method (Exercise 12.20). We will, however; 
present this method as an optimization method and then display its connection with a Krylov 
subspace metfwd. Our derivation is based on the following well-known result. 

Theorem 12.13. Let t\ E 1!1" "'' be symmetric positive definite and let b E !R" 1. D~fine the 
quadratic function 

"/" z b. 

Then the minimizer z of¢(:) is tl1e solution of Ax =b. 

Proof. 

1 
rf;(zl = -zr Az 

2 

1 
= :z<z- x)

7 A(z 
I 

x)- -xr Ax (note that z7 Ax= x 7 Az). 
2 

Since -~x7 Ax is a constant here, rf;(z) will be minimized i[ z x. 0 

(12.37) 
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There is a large number of iterative methods in the literature of optimization for solving 
this minimization problem (sec Luenberger ( 1973) and Nocedal and Wright (2006)). ln these 
iterative methods the successive approximations x,.. are computed recursively: 

(12.38) 

where the vectors { pk) are called the direction vectors and the scalars "'' are chosen to 
minimize ¢(p) in lhc direction of pk; thut is, ak is chosen to minimize the function ¢a(:q. + 
a pi;), Let rk = b Ax~, It will now be shown how ak and fJk arc chosen in the conjugate 
gradient method, 

The algorithm will be developed using the following facts (Exercise 12.1 8): 

(i) 1l1e residual vectors lrd are orthogonal: r[ r1 = 0 (k > j). 

(ii) The direction vectors are A-conjugate: p[ Apj = 0 (k > j). 

Determining "'k· From ( 12.38), it follows that !.he residual vectors {r; I must satisfy the 
recurrence 

fj,+J = rt.- akAp;,. 

Since {rk) are orthogonal, we have-r[ rk+l = 0; that is, 

r[ (r,- a, Ape) = 0, 

which gives 
r[ rk 

CX.k = -T--. 
rk Ap~.; 

Again, the direction vectors {p,d are updated using the residuals as 

Pk+l = rk+l + fhp~;. 
from which it follows that 

r[ Ap, = {p,- fh-1Pk-1J' Apk = p[ Apk 

(since Ap, is orthogonal to p,_.J. 
Thus. we have 

Determining {3,. Since P<+> is onhogonal to Apk< we obtain from (12.40) 

fJ _ -{Ap,) T rk~! 
k - (Ap,)T {h . 

Again, from (12.39), we have Apk = -;};<rk+l - r;J. 

(12.39) 

( 12.40) 

(12.41) 

Thus, substituting the value of"'' from ( 12.41) and noting that r[ ~'k+l = 0. we get 

1 ((r~.;..o.J - rJ.:) 7 ~"k+l) r[+ 1 r~;;.-.J 
{J k = T = ...:!.:!OJT' ::__:_ 

CYi. Pk Apk rk rk (]2.42) 
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ALGORITHM 12.5. The Classical Conjugate Gradient Algorithm (CG Algo­
rithm). 

Inputs: A E R'1 :-;n, symmetric pasiril'e definite; b E R"x 1. 

Output: An approximate solution x of Ax = b 

Step 1. Choose an initial approximation xo and a tolerance E. Set Po ro = 
b Axo. 

Step 2. Fori = 0, l, 2, 3, ... do 
2.1 w = Ap;. 
2.2 Compute the step length: ct1 llr1 II~/ pf'w. 
2.3 Update the iterates: x1.,., =X;+<>; Pi· 
2.4 Update the residuals: r1+t = r;- a,w. 
2.5 Test for convergence: lf llr1+1 11; ~ €, continue. 

2.6 Compute p, = li:,·-:,"l. -
, r,," 

2.7 Update the direction vectors: Pi+!= r1+1 + fJiPi· 
End 

Example 12.14. 

i = 0: 

(

1.0003) 
Xt = xo + Dlo{Jo = 1.0003 , 

1.0003 

11r 11
2 

-~-0!4?9 ao-r-·~· 
PoW 

r, = ro aaw = (=~:~;:) , 
-0.0021 

(

-0.0021) 
P> = r, +Po Po= -0.0021 . 

-0.0021 

i = 1: 

(

-0.0147) 
w = Ap, = -0.0147 , 

-0.0147 
a 1 = 0.1429, (

1.0000) 
x2 =x1 +a1p 1 = 1.0000, 

1.0000 
I 

MATCOM Note: Algorithm 12.5 has been implemented in the MATCOM program 
CONGRAD. 
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Krylov subspace properties of the CG iteration. From the description of the CG algo­
rithm and the discussions preceding it, the following can be proved (Exercise 12.1 0): 

(ConjugaTe iterates span the KIJ'lov subspace.) 

K., =span {x,, x2, ... , xk} 
=span lpo, p,, ... , Pk-1 I = span lro. r,, ... , r,_, I (12.43) 
=span lb. Ab, ... , A'-'bl. 

Convergence of the CG Method 

In the absence of round-ofT errors the CG gradient method should converge in no more than 
n iterations as the following theorem shows. 

Theorem 12.15. The CG algorithm converges in no more than 11 steps. 

Proof. We know that r11 is orthogonal to ro, r1, ... , r,r-l· Again, from the above Krylov 
subspace identities ( 12.43), we have that ro, ... , r,1_1 form a basis of IRn. Since r11 is 
orthogonal to this entire basis, we conclude that r,, = 0, that is, e11 = 0, which means that 
X 11 =X. 0 

Minimizing of the A-Norm Error 

Minimizing ¢(z) is equivalent to minimizing the A-norm of the err01; as shown below. 
Define the function II · IIA by 

(12.44) 

Then it can be verified (Exercise 12.4) that this function is a norm on IR11 and is called 
the A~norm. 

Deline the errore = z - x. Then from ( 12.37) we have 

I 1 1 -:~ 
rp(z) = 211ell;,- 211xll;,. 

Since ! llx II 71 is constant, minimizing ¢ (z) is equivaleflf to minimizing II e !I A· 

Rate of Convergence of the CG Method 

The rate of convergence of the CG method is determined by the distribution of the eigenval­
ues of A. The following is an important result in this context (for a proof, see Greenbaum 
(1997, pp. 50-51)). 

Theorem 12.16 (error bound for CG). The error ek = x- Xk at the kth iteration is related 
to the initial error eo = x - Xo as 

lie, IIA/IIeoiiA S min max lpdA; ll. 
fJ• i-1, ... ,/l 

where ). 1 , ••• , A,1 are the eigenvalues of A and the minimum is taken over all polynomials 
p,(x) of degree less than or eqnal to k with p,(O) = 1. 
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As a corollary of Theorem 12.16. we also obtain il1e following. 

Corollary 12.17. If A has k distinct eigenvalues, tlten the CG method converges in at most 
k steps. 

Proof. Let pk(x) = n~=l (1- f; ). Then p,(x) = 0 atx = A.1. i I, ... , k. 0 

The following well~known result shows how the ratio of the largest eigem)aiue to the 
smallest influences the rare of convergence when nothing is known about the clustering. 
A proof of Theorem 12.18 can be found in Greenbaum (1997, pp. 51-52). 

Theorem 12.18. 

llx1- x!IA ::S 2akllxa- xiiA 

or 

1-vhere 

a=(vlK-IJ/(vlK+I) and K=Cond,(A)=IIAihiiA- 111o='·"f/.,. 

Here A1: and A-1 are the largest and smallest eigenvalues of the symmetric positive dejillite 
matrix A (note rlwt the eigewvalues of A are all posirivej. 

Note: a 0 when Cond(A) = 1. When a - I, Cond(A) -> oo. Thus, the larger 
Cond(A) is, the sloiVer the rate of convergence. 

12.3.7 Solving Indefinite Symmetric Systems Using CG-type Methods: 
MINRES and SYMMLQ. 

The CO method was derived under the assumption that matrix A is symmetric and positive 
definite, In fact, the posiTive definiteness of A ensures the minimization property of the 
CG In case A is symmetric indefinite, the minimization property can no longer be ensured. 
In such a case, two well-known alternatives, due to Paige and Saunders (1975), are the 
MINRES and SYMMLQ methods. 

MINRES: MINRES (minimum residual method) aims at minimizing IIAxk blh by 
extracting information from the symmetric Lancz,os algorithm. It can be shmvn that 

UAx,- /Jih = IIDk+,i,y, llrollzedlz, 

where Dk+l = diag(llroli2, ilrri!J, ... , ilrkll2), i, is the (k +I) x k tridiagonal matrix 
obtained after k steps of the symmetric Lanczos method, and Yk is the solution of the 
prt:(iected problem obtained after k steps of rhe Lanczos merhod that is. y, satisfies 

1iYk = ilroll2e1. 

The above then is a minimum-norm least-squares problem and can be solved uslng Givens 
rotations, as in the case of the GMRES method. 
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Theorem 12.19 (error bound for MINRES). 

llr,ll/llroll :S min max llp,(A;)II, 
p; l=!, .... n 

where Pk and A are the same as in Theorem 12.16. 

For a proof'. see Greenbaum ( 1997, pp. 50-51). 

Implications ofTheorems 12.16 and 12.19 for the CG and MIN RES methods. From 
the above theorems it follows that a favorable distribution of eigenvalues is one in which 
the polynomials Pk are small. This will happen, for example, if the eigenvalues are tightly 
clustered around a single point c away from the origin. This is because in this case the kth 
degree polynomial p,(z) = (1- ;' J' at points close to cis small in magnitude and p,(O) = I. 
Similarly, an example of an unfavorable distribution is one in which the eigenvalues are 
well separated, especially if they lie on both sides of the origin, because, in this case, it is 
difficult to find a low-order polynomial with its value l at the origin and which is small at a 
large lllllllber of poi11ts (see Greenbaum (1997) ). See the results of numerical experiments 
below for illustrations (Figures 12.2 and 12.3). 

Comparison of CG and MIN RES with two examples, one with favorable and another 
with not-so-favorable eigenvalue distributions. 

i0° 1·~-~--~-----~;=~====;-, 
~ -:_-- cg method 

10-• ~ . --<o-- minres method 

m 10-2 ' 1 iO_, ~ • 
. ?! ~ 
1il 
~ iO~ 

;o-•L--~--~--~--~--~--~--
0 2 4 6 8 10 12 14 

iteration number 

Figure 12.2. Comparison of CG and MIN RES 011 a diagonal matrix of order 
1000 x 1000 with eigellva/ues distributed ill [0.5, 1.5]. 
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iteration number 

I
. '3 cg method I 
~ mimes method I 

Figure 12.3. Comparison of CG and MIN RES on a I 000 x I 000 diagonal matrLt 
with eigenvalues distribwed in [ -2.5. -1.5] and [0.5, 1.5]. 

SYMMLQ: The SYMMLQ (symmetric LQ method) is based upon solving the symmetric 
tridiagonal system Tk by using an LQ decomposition. For details, see Paige and Saunders 
( 1975). 

12.3.8 The Nonsymmetric Lanczos Method 

The nonsymmetric Lanczos algorithm (also known as the two-sided Lanczos algorithm) 
aims at transforming A into a nonsymmetric tridiagonal matrix Tm rather than a Hcssenberg 
matrix, as is done by the Arnoldi method. However, having insisted on obtaining a tridiago­
nal matrix, we must give up the orthogonality of the vectors {vi}. Instead, one computes two 
sets of biorthogonal vectors { VJ, ••. , Vm+l}, { w1, .•• , Wm+l J (that is, vT w j = 0, i =/= j, 
and vT w1 = 1) by using a three-term recurrence in place of (k + l)th-tenn recurrence, as 
needed for the Arnoldi method. If the tridiagonal matrix T111 is given by 

(12.45) 

and Om+J and fJm+l are two scalars, then the three-term recurrences for generating {vi~~~~~~, 
{ w1 J;'~~~ (satisfying the biorthogonality relations) are 

Av~,; = C:ti,;Vk + fJkVk-1 + ok+l Vk+J' 

AT w~,; = a~,;w~,; + O~.:wk-1 + fJk+l, Wk+l· 

The reader is invited to fill in the details. 

(12.46) 
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ALGORITHM 12.6. The Nonsymmetric (Two·Sided) Lanczos Algorithm. 

Input'i: A E R_ll>: 11 , v E ~nx!, wE IR11 >' 1, and m, a positive integer less than n. 
Outputs: The set of vectors lvJ, ... ,v111 +t} and fwt •.... W 111 -?Jl such that wr V j = 0, f :j:: j, f 2: 1, j ~ 111, wr Vi l, 7;11 is an lfl X m l!OJIS)'Ifllfletrfc !ridi~ 
ago11al matrix as defined above. 

Step 0. Scale the vectors v and w to get the vectors u1 and w1 such that 
wfvl = L Set fit 0,61 :=O,wo= vo=O. 

Step 1. For j = 1, 2, .. , m do 

f'ij = w) rlvi; 

iJ}--t-1 =AVj -CljVj- {3jVj-l; 
. 4' . Wj+l =, Wj CljWj- cljWj-l; 

, , I "' r ,.. I . t· , 
Uj,"'J =v U!j+JUj+l; l Clj+! 

a • 1 • ., 
tJh·l Wj+JV]+l/U}+!; 

O.slop; 

Wj+l =Wj+lifJJ+l; 
Vj+l = V;+J/8j+l· 

End 

The Nonsymmetric tanczos Relations 
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• The vectors {v1 J and {w;} form biorthogonal bases for the subspnces K 111 (A. vJ) and 
!Cm(AT, w1 ), respectively (provided that the algorithm does not break down before 
m steps). 

From the bjorthogonality relations, it follows immediately that 

Furthermore, 

and 

V~~~ Wm = l'V1~ Vm /, 

\l'1~ A V111 = ~~~ (a trOIIsymmetric tridiagonal matrix) 

( lWHsymmetric Lnnczos 
factorizations). 

For proofs of the above relations, sec Saud (2003, pp. 218-229). 

Breakdown of the lanczos Method. 

(12.47) 

(12.48) 

( 12.49) 

It is clear that Algorithm 12.6 will break down if wf+ 1 uH 1 = 0 for some j. In can happen 
either \Vhcn (i) one of these vectors is zero or (ii) they are both nonzero, but their inner 
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product is zero. In the first case, if Uj+l = 0, then the approximate solution to the system 
Ax = b is exact If t:i; J+l = 0, then we also have an invariant subspace with the vectors 
(w~; J, and the approximate solution ls exact for the dual system; however, nothing can be 
said about the approximate solution of Ax = b. 

In !he second case, we have a "serious breakdown." A cure for this problem is to use 
the Iook~ahead Lanczos method. The idea behind this is to courinue to tlte next step even 
if there is a breakdown at tire current step, 

We refer the reader to the papers of Parlett, Taylor, and Liu ( 1985), Freund, Gutknecht, 
and Nachtigal (1993), and Brezinski, Zagila, and Sadok (1991) for theory and implementa­
tions of the look-ahead Lanczos method. The look-ahead Lanczos algorithm is implemented 
in the software package QMRPACK (Lehoucq, Sorensen. and Yang (1998)). 

12.3.9 Solving linear System Ax = b Using the lanczos Algorithm 

As,in,theArnoldi--method, the Lanczos vectors and the nonsymmetrie-tridiagonai matrix ~n 
can he used to solve Ax =b. 

Step 1. Starting withxo. v1 = ro/llrolb and an arbitrary vectorw, such that wf v, I, run 
m steps of the Lanczos algorithm (Algorithm 12.6) to generate the Lanczos vectors 
[ V1, • , .• Vm, Vm+d, iw1. w2 •••• , Wm ), the tridiagonal matrix T"" and Om+l, 

Step 2. Solve the tridiagonal system 

T,,y, = fle,, where fl =!!rob (12.50) 

Step 3. Compute the new approximation Xm = Xo + Vm)'m, where Vm = (VJ, u2, .•• , V111 ). 

Note that if one has to solve a dual system with AT as well, lhis algorithm is quite 
suitable. 

Restarting. As in the FOM case, the method can be restarted after every m steps, and 
the norm of the residual vector, needed for a convergence test. can be cheaply computed as 
(Saad (2003, p. 222)) 

{12.51) 

12.3.1 0 The Bi-conjugate Gradient Algorithm 

For nonsymmetric systems, the CG method is not suitable. However, a CO-type method 
called the hi-conjugate gradient method (Bi-CG) can be developed for such systems, 
based on the nonsymmetric Lanczos algorithm by using the LU factorization of the tridi­
agonal matrix T,, (Exercise 12.20). The Bi-CG algorithm is a projection process onto the 
Krylov subspace IC, =spun (v 1,Av,.A2v1, •••• A"'-'vd orthogonaltoiC,(Ar,w,) = 
span(w,, Arw, ... , (Ary•-1wd. taking"' = ro!lrull2 and w, such that wrv, o? 0. We 
will. however, describe the algorithm here in a manner analogous to the CG method. The 
major difference between the two methods is that in the Bi-CG method, unlike the CG 
method, the two sets of residuals !rd and (i';} are produced which are biortbogonal. The 
set 1•'1 I is obtained by using A r rather than A. Similarly, the two sets of direction vectors 
(p; I and Iii; I are produced from the residuals, which are mutually A-conjugate. 
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These two sets of the residuals and the directions arc, respectively, given by 

and 

The choices 

will yield the biorthogonality and conjugacy relations 

0, • ..L • 
l r- 1· 

ALGORITHM 12.7. The Bi-CG Algorithm for Ax =b. 

Input: A E Rnxn. b E R10d, and xo, an initial approximate solution. 
Output: Approximations [xd of the solution x. 

Step 0. Compute r0 b - Axo. 
Choose Po such that FJ" ro # 0. 

Step 1. Set Po = ro, fio Fo. 

Step 2. For j 0, I, .... do umil convergence 

End 

2.1. Compute the step length Olj rJ'rJ! PJ Apj-

2.2. Update the ttcratcsxj+l =xi +ttjPJ· 
2.3. Update the residuals rj+J = r1 - 11JAPj· 
2.4. Update the dual residuals r ~+I = Tj - Cij AT ji j· 
2.5. Compute fJJ = rJ+J'j+l/ij Tj. 
2.6. Update the direclion vectors P.i+l = rJ+! + f1JPJ· 
2.7. Update the dual direction vectors fij~ = r1+ + flJPJ· 
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(12.52) 

( 12.53) 

(12.54) 

(12.55) 

Orthogonal properties. As noted before, the residual and direction vectors produced by 
the Bi-CG algorithm have the following properties (Exercise 12.22): F,'rj = 0. i t j; 
·TA 0 . ./. ' p, Pj = . I .,.. J. 

Notes: (i) (Relations/tip between CG and Bi-CG methods.) The Bi-CG method 
produces the same iterates as CG if applied to lhe symmetric positive definite matrices. 

(ii) (lirriants of Bi-CG.) There now exist several variants of the Bi-CG method. These 
include the Bi-CGSTAB (hi-conjugate stabilized) (van dcr Vorst ( 1992, 1996. 2003)) 
and CGS {conjugate gradient squared) {Sonneveld ( 1989)) methods. These two methods 
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avoid compwations witlt A 7 , as required by the Bi-CG method. The CGS method often 
converges much faster than the Bi-CG, but might huvc Jrregular convergence patterns. The 
Bi-CGSTAB method avoids this problem and at the same time maintains the same speed of 
convergence, Vander Vorst (1992) calls it "a more smoothly convergent variant of CGS," 
See Saud (2003) and van dcr Vorst (2003) and for details. Avoiding breakdown in the CGS 
method has been discussed in Brezinski and Sadok ( 1991 ). 

(iii) (G!v!RES <'ersus Bi-CG.) The GMRES method generates the smallest residual 
over the current search spa.~ . .:c~ while the Bi-CG method docs not minimize the residual in 
any suitable norm. The GMRES method, however, does so at the cost of longer recurrences 
than the Bi-CG method. 

12.3.11 The QMR Algorithm 

It is natural to wonder if there exists a GMRES analogue based on the nonsymmetric tridiag" 
anal Lunczos reduction. Indeed, the quru;i-minimal residual (QMR) is such a method, The 
method was developed by Freund and Nachtigal in an award-winning paper in 1991 (Freund 
and Nachtigal (1991)). The idea here is to minimize the norm of the residual lib Axlb 
using the Lanczos reduction. In this case, it can be shown (Exercise 12.17) that after m 
steps of the nonsymmetric Lanczos method, the residual is given by 

(12.56) 

where 

T, = ( 0 T, r ) and fJ = llro 112. 
m+!em 

Thus, 

(12.57) 

Since the columns of Vm+l are not orthonormal in the Lanczos algorithm, we do nat have 
lib - Ax!l2 = llllet - i;,yjj 2• However, the QMR algorithm is obwined by minimizing 
II .Bel - fmYib over y anyway, and then the new approximation is obtained as Xm = x0 + 
VmYm· where Ym is the solution of the above least-squares problem. This is why the method 
is referred to as the quasi-minimal residual method. The reader is invited to write the QMR 
algorithm in algorithmic form, as was done for GMRES (Exercise 12.21 ), 

Remarks, (i) In actual implementations. the QMR method is implememed using the look· 
ahead varia Ill oft he Lanczos method to deal with the breakdown, See Freund and Nachtigal 
( 1991) for details. 

(ii) (Residual norm.) The residual nann of the approximate solution Xm satisfies 

where Ym+l, as in the case of GMRES, is the last component of the vector Q 111 (,Bed; Q~ is 
the Q matrix of the QR factorization of i;,. 
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(iii) (Relationship between QMR and GMRES residuals.) Lctr8 and r,~ be the residual 
norms after III steps of QMR and GMRES, respectively; then 

llr,~ll :": Cond,(V,+illlr,~llo-

For proofs, see Saad (2003, p. 226). 
(iv) (Relationship between QMR and Bi-CG methods.) The QMR method avoids the 

breakdown of the Bi-CG method using the look-ahead Lanezos idea. Thus, when the Bi-CG 
method temporarily stagnates, the QMR may still work (though slowly). 

(v) A transpose-free QMR algorithm, called TFQMR, was developed by Freund 
( 1993) from the COS algorithm. For details, see Freund ( 1993) and Saad (2003, pp. 234-239). 

(vi) (MLted Bi-CGSTAB-CGS method.) A new Krylov subspace method, called the 
mixed the Bi-CGSTAB-CGS method, was developed by Chan and Ye (1997). The idea is 
to combine these two methods by switching from one to the other at each iteration step so 
that the stability of the COS can be improved. 

12.4 Preconditioners 
For making the GMRES-type methods practically viable, it is almost mandatory to use a 
precondilioncr so that the preconditioned system has a better spectral property. 

For the idea to be effective, the preconditioner M should be such that 

it is a reasonably good approximation to the original matrix, 

its construction is not too expcnsi ve, and 

the preconditioned system is easier to solve than the original system. 

If the preconditioner Misused to solve the preconditioned system 

M- 1Ax = M- 1b, 

then M is called a left preconditioner. 
The Kry lov subspace method in this case will construct an orthonormal basis of 

the Krylov subspace K.(M- 1 A, ro) = span(ro, M-1 Aro, ... , (M- 1 A)"- 1 ro), where ro = 
M- 1(b- Ax0 ) and u1 = ro/llrollo-

The computed residuals and their norms will be those of the preconditioned system 
rather than those of the original system. 

M is called a right preconditioner if M is such that it solves 

AM- 1 ~ = b, ~ = Mx. 

A compromise between a left and right preconditioner is to have a preconditioncr M 
that can be factorized into M = Mr M2, resulting in the two successive systems: 

and t--M-1-. - 2 .(.. 

In this case the matrix A = M[ 1 AM:Z 1 should be as close as possible to the identity matrix. 
Such a preconditioner is called a two-sided preconditioner. 

There is now a wide range of preconditioners available in the literature. Some of the 
most common ones are stated below. 
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12.4.1 Classical Iterative Methods as Preconditioners 

Here the idea is to use the iteration matrices that we encountered in developing Jacobi, 
Gauss-Seidel, and SOR methods as preconditioncrs. Recall that these methods are bused 
on the iteration of the form Xk+l = Bx, +d. 

Suppose A has the following splitting: ;\ = M + N. Then the left preconditioned 
system M-1 Ax= f',r 1b can be written as 

x=-Bx+d, whcre8=-lvf'"1N=l-M- 1A, d=M-1b. 

Jacobi and block Jacobi preconditioner. Recall that 

81 -D- 1(L + U) = -D-1 (A- D) 
=I - D-1 A (since A = L + D + U). 

Thus, We cafl -choose D as the preconditioncr M. denoted b)~--M'jac~h-;--

Mtacob = D = diag(aJJ, ""· ... ,a,.), provided that ali ;f 0. 

This is the simplest possible prcconditioner and is known as the Jacobi preconditioner. lf 
A is a block matrix A = (A1j)hb where Ali are square, then the block matrix 

M = diag(AtJ, A,2 .... , Akk) 

can be taken as a preconditioner, known as the block Jacobi preconditioner. The block 
Jacobi preconditioner.s are suitable for strucwred linear systems arising from solutimu of 
partial dfjferential equations on regular grids. 

Mscs and SSOR preconditioner. Since the splitting matrix M for SOR is not symmetric, 
a better preconditioner can be derived for a symmetric matrix A from SSOR iteration as 

I I T Mssot< = (D + wL)D- (D + wL ), 
w(2 -- w) 

which is known as the SSOR preconditioner. The symmetric Gauss-Seidel precondi· 
tioner is then obtained as (taking w = I) 

Msos = (D + L)D~ 1 (D + L 7 ). 

12.4.2 Polynomial Preconditioners 

The idea here is to find a low-degree polynomial matrix of order, say, p, p,(A) (with better 
properties), so that the iterative method can be applied to p,(A)Ax = Pp(A)b. 

If such a polynomial can be found, then the prcconditioner M can be defined by 
M- 1 = Pp(A). 

One way to find a polynomial preeonditioner is to use the low-order tenns of the 
Neuman series of (I - B)-' if A is written as A = I 8, and when the series converges; 
that is, when p(B), the spectral radius of B, is less than I. 
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More genernl polynomial preconditioncrs, involving the shifted Chebyshev poly­
nomials. have hcen developed and arc currently being used. For details, see Saud (2003, 
Chapter 10). 

12.4.3 Incomplete LU (ILU) Factorization as a Preconditioner 

The basic idea here is to compute the LU factorization of a sparse matrix, allowing .fill-in 
only ill certain positions, for example, computing the corresponding entries of the L and 
U matrices only when aii tf: 0 and leaving the zero entries of A in their places, We shall 
discus5 this type of preconditioner in case A is symmetric positive definite in the context 
of the CO Method. Details can be found in Sand (2003, pp. 287~320). The slability of 
incomplete LU (ILU) factorizmion has been analyzed by Elman (1986). Bank and Wagner 
(1999) have discussed mullilevel fLU decomposition. 

12.4.4 Preconditioning with Incomplete Cholesky Factorization 

Lei A be symmctlic positive definite; then a prcconditioncr M of type M (l L T) will be a 
suitable candidate for the CO method. A natural choice for such an L will be the incomplete 
CholesJ..}' factor (a special case of lhe ILU preconditioner discussed in the last section). 
lvlathematically, this Ja~torizarimr is equivaleut to A = i.L 7 + R, where_ R f:: 0, 

To generate this L, we use the Cholesky factorization of A LLr, as follows: If 
aij = 0, set lu = 0: otherwise calculate lhc approprialc lij. 

ALGORITHM 12.8. Incomplete Cholesky Factorization. 

Input: .4 E R 11 x\ Iorge and sparse, and symmelric positive definite. 
Output: The incomplete Cholesky factor L = (lij) or .4. 

Set e 11 = ,/Gil 

Fori = l, 2, ... , n do 
For j = I, 2, ... , i- l do 

If "IJ 0. then Iii = 0 else 
il 1 ( "j~l il ., ) 
f..ij En aiJ- L...t.""'l LfJ.:Ljk 

Remark. Algorithm 12.8 requires computation of square roots. However, one can obtain a 
no-fill incomplete L DLT factorization of A that avoids square mol computations (Exercise 
!2, 14). 

MATCOM Notes: Algorithm 12.8 has been implemented in the MATCOM program IC­
HOLES. The no-ftl! incomplete LDLT factorization algolithm has been implemented in 
the MATCOM program NICHOL. 



470 Chapter 12. Iterative Methods: An Overview 

ALGORITHM 12.9. The Preconditioned Conjugate Gradient Method. 

Inputs: Same as in Algorithm 12.8. 
Output: Same as in Algorithm 12.8. 

Step 1. Find a preconditioner M. 
Step 2. Choose x0 and e. 
Step 3. Set ro = b Axo. po = )'o ~>r 1 ro. 
Step 4. Fori = 0, I, 2, 3 .... do 

4.1. w = Ap,. 
4.2. C!r = ){ r,.; pr w. 
4.3. Xi+l = Xj + 0!; Pi· 
4.4. ri+l = ri - a,,w. 
4.5. Test for convergence: 1f llr1+1 II~ 2: f, continue. 
4.6. Yi+l = !v1- 1ri·•+ -
4:7. · (3· -" "r r· · '"rr. I- Yi+J 1+\!J[ /' 

4.8. Pi+t = Yi+t + {3;p;. 
End 

Note: If M = I, then the preconditioned conjugate gradient method reduces to the 
basic conjugate gradient. 

Remarks. At every iteration step in the preconditioned conjugarc gradient method, one 
symmetric positive definite system (Step 4.6) has to be solved. However, since matrix M 
is the same at each itcmtion, the incomplete Clwlesky factorization or no-jill incomplete 
L D L'~' (Exercise ( 12. 14)) has to be computed once for all. 

12.4.5 Numerical Experiments on Performance Comparison 

In this section, we present results on our numerical experiments with different solvers: CO. 
MlNRES, QMR. Bi-CG, and GMRES, on several matrices using different preconditioncrs. 

Experiment 1. Here we compare CG and MlNRES, and CG with incomplete Cholcsky as 
a prcconditioner on a lwo-dimensional Poisson matrix of order 1024 (Figure 12.4). 

Experiment2. Here we compare GMRES, Bi-CG, and QMR on a nonsymmetric matrix of 
order I 042 constructed from the MA'rLAB gallery matrix Wathen, with and without several 
preconditioners. The preconditioners used are Jacobi. Gauss-Seidel, and ILU (Figures 12.5-
12.7). 

12.5 Comparison of Krylov Subspace Methods 
for linear Systems 

What method to pick'' It is a dil'licult question to answer. The choice ~fa method is often 
problem-dependem. Here are some rough guidelines (see Table 12.4). 
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Figure 12.4. Comparison of CG, MIN RES, and CG with incomplete Cholesky 
preconditioner on two~dimensional Poisson matrix of order 1024. 

Variation ol relative residual with Iterations for("\ • n X"' 8) ;n :1042 

100 --r-· -----------r======.=====;l 
-----&----- gmras 
-+-- Jacobi gmres 
------><-- Gauss Seidel gmres 
--F.!-- Inc LU gmres 

number of iterations 

Figure 12.5. Pe1formance ofGMRES with preconditioners. 

For symmetric definite systems: An obvious choice is the CG method. 

For symmetric indefinite systems: The choices are between MIN RES and SYMLQ. 
They suffer no breakdown. The MINRES method minimizes the residual and SYMLQ 
solves a projected problem. 
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number of ilerallons 

Figure 12.6. Peifonnance qf Bi-CG with preconditioners. 
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Figure 12.7. Peiformance qf QMR with preconditioners. 

• For nonsymmetric systems: The choices include GMRES. QMR, Bi-CG, CGS, 
Bi-CGSTAB, and some others (not described in this book; see Saad (2003) for these 
methods). 
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Table 12.4. Comparison of some Ktylov s11bspace methods for Ax =b. 

Method Properties 
Full- Work for nonsymmctric matrices. Thc 
orthogonalization GMRES method is guaranteed tu give I he 
and GMRES smallest residual. Full-orthugonalization 

solves a projected system. Both methods 
require restarting in practice. 

CG Applicable only to the symmetric posi-
li vc definite systems. A -norm error is 
minimized at each iteration. The speed 
of convergence in general depends upon 
the distribulion of the eigenvalues. 

Bi-CG , Applicable to nonsymmetric matrices. 
The convergence behavior might be quite 
irregular in some cases. 

QMR Applicable lo nonsymmetric matrices. 
Avoids breakdown of Bi-CG May work 
when Bi-CG fails. 

-~----.--

CGS somellmes works well, but the 
round-off error in the method is a ma­
jor concern. Bi-CGSTAB is the stabi­
lized version of Bi-CG and convergence 
is often raster. 

CGS and 
Bi-CGSTAB 

, 
1 

I 

t 
t 

-. 

Implementation 
Require only 
malrix-vector 
products, but both the 
storage requirement 
and work grow with 
m significantly. 
Requires only 
matrix-vcclor 
products with A. 

Requires 
matrix-vector 
products with both A 
and Ar. 
Requires the 
transpose 
matrix-vector 
product. 
CGS does nm requtre 
computation with Ar. 
Bi-CGS requires two 
matrix-vector products 
and four inner 

roducts. 

Try Giv1RES first. Hthe matrix-vector multiplication is not too expensive and storage 
is an issue, then other methods can be tried. The QMR is generaliy recommended over 
Bi-CG. The choice between QMR, CGS, and Bi-CGSTAB is problem-dependent. 

Conclusion: There is no clear winner among the Krylov subspace methods. A comparative 
study by Nachtigal, Reddy, and Trefethen (1992) shows that while one method is the best 
for one specific class of problems, it may not work as welt for other problems. For more 
details, see also, for example, Saud (2003), Greenbaum ( 1997), van der Vorst (2003), and 
Barrett et al. (1994, pp. 33-35). 

12.6 Eigenvalue Approximation Using Krylov Subspace 
Methods 

Because of high storage and computational costs, it \Viii be unrealistically ambitious to think 
of computing the whole spectrum (and the associated eigenvectors) using a Krylov subspace 
method. We will be lucky if approximations or only a few eigenvalues and eigenvectors 
are obtained in this way. 
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Here we will discuss 

eigenvalue approximations of a nonsymmetric matrix using the Arnoldi method; 

eigenvalue approximations of a symmetric matrix using the symmetric Lanczos 
method; 

Krylov subspace methods for the generalized eigenvalue problem Ax = )..8x; 

Krylov subspace methods for the quadratic eigenvalue problem. 

12.6.1 Eigenvalue Approximation Using the Arnoldi Method 

If Algorithm 12.1 is run form = 11 steps, then we will obtain the 11 x 11 Hessenberg H11 such 
that 

v,;AVn=Hn. 

where V,1 is orthogonal. Thus, in this case the eigenvalues of A and those of H11 are the same. 
Thus, in theory if the Arnoldi method is carried out for n steps, all the eigenvalues of A arc 
obtained by finding the eigenvalues of H11 • However. this is not practical for large n. The 
question, therefore, arises: When m < 11, how well do the eigenvalues of Hm approximate 
those of A? To this end, note that the algorithm breaks down at step k when IIDII2 is zero. 

It can be shown that this happens if and only if the starting vector v1 is a combination 
of the eigenvectors. Then the subspace }(k is an invariant subspace of A and the breakdown 
is a happy breakdown. 

Definition 12.20. An eigenvalue Ajm) of H111 is called a Ritz value and the vector ujm) = 

VmYim), where Yim), is the eigenvector associated with the eigem'alue Aj111
), is called the Ritz 

eigenvector. The pair (Ajm}, ut)) is called a Ritz pair. 

A small number of Ritz values typically constitute good approximations to the corre­
sponding eigenvalues ).i of A. 

However, in practice, it is desirable to compute one eigenpair at a time and then use 
deflation to compute the other pairs, as required. To obtain a good approximation of one 
pair, the Arnoldi method can be restarted explicitly with a fixed m as shown below. 

Residual norm. Let (Aj11n, uj111
)) be a Ritz pair. Then 

II tm> II II tm> I) tm> II I I ' tm> I ri 2 = (A- A; ui 2 = lm+l.m emyi , 

where e111 is the mth unit vector. 
Though this norm is not always a sure indicator of a good approximation, it can be 

used as a stopping criterion. 
From experience it has been seen that the outermost eigenvalues are approximated 

first. 

Choosing the starting vector. For eigenvalue computation, the starting vector for the 
Arnoldi method ideally should be chosen as the dominant one in the direction of eigenvectors. 
rr such vectors are not known, a random vector is a reasonable choice. 
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ALGOR!T!Thl 12. 10. An Explicit Restarted Arnoldi Algorithm for Computing 
an Eigenpair~ 

Step 1. Run 111 steps of Algorithm 12.1. 

Step 2. Compute the rightmost eigenvalue •-i"'l and the corresponding Ritz eigen-
(ml tt (m) vector u 1 = vmY 1 , 

Step 3. If Lhe residual norm ll 111 _...J,m ~e~~Yim'l is small, stop. Otherwise, return to 
S I · h (ml • tep wtt v1 u 1 • 
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Computing several eigenpairs: Deflation. The above algorithm will approximate the 
rightmost eigenpair (1 .. 1, u d of A. If several pairs are needed, then the obvious thing to do 
is to use deflation. This deflation technique is as follows: 

Suppose that an orthogonal basis [u 1 ••••• u,. d of the invariant subspace correspond­
ing to the eigenvalues A1, ... , At-l has been computed. Set 

uk~l = (HJ, ••. , l(~:-J). 

Then to compute the eigenvalue!.,, form the matrix .4 =A-U,., u;_,, where L = 
diag (a 1, a1 , ... , a~,:_J) is the matrix of the shifts. 

Then the eigenvalues of A are [1- 1 - a 1, !..2 - a 2 , ...• ;,,_, - ak, .. ,} U {Ak. ... , !." ). 

Choosing the shifts. The shifts can be chosen in the context of eigenvalues of interest. 
If the eigenvalues with the largest rcul purts are desired, then the shifts should be chosen so 
thal Ak becomes the next eigenvalue with the largest real part of A. Other types of deflations 
are also possible. See Bai et al. (2000). 

12.6.2 Implicitly Restarted Arnoldi Method for the Nonsymmetric 
Eigenvalue Problem 

The implicitly restarted Amoldi method. developed in Lehoucq and Sorensen (1996) (see 
also (Lehoucq 1995) ), is a method for extracting useful information (such as the eigenvalues 
with largest (sma{/est) real parts or of largest (smallest) magnitudes) rrom an m-s1cp Krylov 
subspace by avoiding lhc storuge and computational cosLSj using the standard QR iteration 
technique. For implemcntutional aspects of the method, sec the ARPACK Users' Guide by 
Lehoucq, Sorensen and Yang ( 1998). For details of this method, sec Bai ct ul. (2000, pp. 
169-175). The description here has been taken from that book. 

Letm =k+ p. Let Vk (vr, v,, ... ,vk). 
The step-by-step process follows: 

Do m steps of the Arnoldi method to obtain V., and H,,. yielding the Arnoldi factor-
ization 

Compress this factorization to one of length k (containing the eigenformation of inter­
est) by applying the QR iteration algorithm with p shifts, say, fLr •... , /lp, resulting in 

Av,;; = V~t H,~ + fme~Q, 
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where v,; = Vm Q, H,~ = Q* Hm Q, and Q = QJ Q2 ... Qp. Each Qj is the orthog­
onal matrix associated with the shift 11 j used in the shifted QR iteration algorithm. 

Equating the first k columns on both sides of the above equation, compute vt and 
Ht such that we have an updated k-step Arnoldi factorization 

A v,+ = vt H,+ + Jt e[. 

Using the above as a starting point, now apply p additional steps or the Arnoldi 
method to obtain the new m-step Arnoldi factorization 

. T 
AV111 = \!,11 H111 + fmem. 

ALGORITHM 12.11. Implicitly Restarted Arnoldi Metbod for Nonsymmetric 
Eigenvalue Problem. 

Inputs: (i) A large and sparse matrix A, (ii) a starting vector v1 or unit length, 
and (iii) positive integers k, p, and m such that m = k + p. 
Output: k approximate eigenvalues of A. 

Step 1. Run m steps or the Arnoldi method (Algorithm 12.1) to obtain the Arnoldi 
factorization (12.21): AVm = V111 H111 + fme~. 
Step 2. Do until convergence: 

2.1. Compute the spectrum of Hm and choose p shifts 111, .•. , flp. 

2.2. Initialize Q = 1111 • 

2.3. For j = I, 2, ... , p do 

QRfactorized: Hm tJ-J = QjRj· 

Update: Hm = QjHmQj, Q = QQj. 
End 

2.4. ComputetJ, = Hm(k+ l,k); a,= Q(m,k). 

2.5. Compute fk = Vk+dh + };ncrk. where fm = hm+l.me~;. 

2.6. Compute v, = VmQ(:, I: k) and H, = Hm(l: k, I: k), where Q(:, I 
k) denote the first k columns of Q and Hm (I : k, k : k) denotes the k x k 
principal submatrix of Hm. 
We have now the k-stcpAmoldifactorization 

A v, = v,H, + J,e[. 

2.7. Now beginning with the above k-stcp factorization, apply p additional 
steps of the Arnoldi algorithm to obtain a new m-step factorization: 

End 

A Vm = V111 H111 + fme,~. (Note that in this case the Arnoldi loop in 
Step I of Algorithm 12.1 runs from the index (k + I) tom starting with 
the previous starting vector or the previous residual.) 
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Remarks. 

1. (Choosing the shifts.) The shifts should be chosen in the context of the eigenvalues 
of interest. If the eigenvalues of H111 arc sorted into two groups, "wanted" and "un­
wanted," then the latter can be chosen as the shifts 11 1, ••• , flp· With this strategy, 
the matrix Hk+ will have the k "wanted" eigenvalues as its spectrum. 

Examples of the "wanted" set are (i) the k eigenvalues with largest real parts, (ii) the k 
eigenvalues with smallest real parts, and (iii) the k eigenvalues with largest (smallest) 
absolute values. 

2. Convergence. Accept a Ritz pair (fJ, u), where u = V111 y, as a convergent pair if the 
residual norm llf,llle[yl is less than IIH,IIE, where e is "wanted." 

Deflation. Upon convergence, this pair should be deflated. There are two types of deflation, 
locking and purging, in the context of the implicitly restarted Arnoldi method, depending 
on whether a member of the wanted set of eigenvalues has converged or not. See Bai et al. 
(2000, pp. 176-177). 

MATLAB Note: A slightly modified version of Algorithm 12.11 has been implemented in 
the MA1LAB function eigs. 

12.6.3 Computing the Eigenvalues of a Symmetric Matrix Using the 
Symmetric Lanczos Algorithm 

In this section, we turn our attention to computing approximate eigenvalues of a symmetric 
matrix A using the symmetric Lanczos method (Algorithm 12.4). 

We have remarked that, when a f3j is exactly equal to zero, we have an invariant 
subspace. This is indeed good news. Unfortunately, this happens very rarely in practice. 
In practice, for large enough values of j, the eigenvalues ofTj provide vef}1 good approxi­
mations to the extremal eigenvalues of A. 

To answer the question of how well a Ritz pair or Tj approximates an eigenpair of A, 
we state the following result. 

Theorem 12.21. Let (B;, y;) be a Ritz pair and let R; = Ay; - y;B;, i = I, ... , j. Then in 
each interval [B; -IIR;II,, e; + IIR;U,], there is an eigenvalue of A. 

Thus, it follows from the above theorem that !I R; 11 2 is a good measure of how accurate 
the Ritz pair (8;, y;) is. It also turns out that !I R; !12 can be computed cheaply .from the Schur 
decomposition ofT;, as shown by the .following theorem. 

Theorem 12.22 (residual theorem for symmetric Lanczos ritz pair). Let Tj be the j x j 
symmetric tridiagmwl matrLt obtained after j steps of the symmetric Lcmczos algorithm. 
Let SJTjSj denote the real Sclwr.form o.fTj: 

sJrjsj = diag(e,, ... , ej); 
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that is, 81, ... , 81 are the eigenvalues ofTJ. Let 

v1s1 = Y1 = (yJ,Y2·····YJ)· 

Then for each i from 1 to j, we have 

where 

s ·· - e7 s·· s,· is the ith column o-r S1·. )I - j I• 'J 

Proof. 

IIR;II = IIAy;- y;B;II = IIAV;s;- V;s;B;II 

= II (A V; - V;T; )s; II (because T;s; = s;B;) 

= ll(fl;Vj+Jej)s;ll (note that AV;- V;T; = fl;Vj+Jej) 

= lfl;lllejs;ll = lfl;lls;;l (note that llv;+ili2 = 1). D 

A computable error bound. Combining Theorems 12.21 and 12.22, we obtain the fol­
lowing eigenvalue bounds for the eigenvalues A's of A: 

min 18;- AI ::0 lfl,lls,;l, i =I, 2, ... , k. 
). 

"Ghost" eigenvalues phenomenon. The loss of orthogonality of the Lanczos vectors 
due to round-off errors can have a severe effect on the eigenvalue approximations obtained 
by the Lanczos process. For example, the matrix Tk in exact arithmetic is an unreduced 
symmetric tridiagonal matrix and therefore should have all eigenvalues real and distinct. 
However, in practical computations, it might happen that the computed matrix Tk. has some 
multiple eigenvalues that correspond to simple eigenvalues of A. This is known as the 
"Ghost" eigenvalue phenomenon. For details and some cures of this problem, see Golub 
and Van Loan (1996, pp. 484-487). 

12.7 The Bisection Method for the Tridiagonal Symmetric 
Positive Definite Generalized Eigenvalue Problem 

As we have seen in several previous case studies, in many practical situations, matrices A 
and B are structured: tridiagonal and banded cases are quite common. Unfortunately, the 
Cholesky QR algorithm for the symmetric definite pencil A- icB described in Chapter II 
(Algorithm 11.4), when applied to such structured problems, will very often destroy the 
sparsity. Even though A and Bare banded, the matrix C = L -! A(LT)-! will in general 
be full. Thus, the Cholesky QR algorithm is not practical for large and sparse matrices. The 
following is a straightforward generalization of the bisection method (Algorithm 10.1) for 
the single symmetric matrix A to the symmetric positive definite generalized pair (A, B). 
We assume that A and B arc both symmetric tridiagonal and that B is positive definite. The 
method takes advantage of the tridiagonal forms of A and B. 
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12.7.1 The Bisection Method for Tridiagonal A and B 

Let 

fJr 

,;,). 
a, f3r!~l 

Define the sequence of polynomials [p, (A)} given by 

po(A) =I, 

pr(A) =a,- Aa;, 

p,(A) =(a,- Aa;)p,_ 1(A)- (fJ,_ 1 - A{J;_,) 2p,_2(A), 

r=2,3, ... ,n. 

( 12.58) 

( 12.59) 

(12.60) 

( 12.61) 

Then it can be shown (Exercise 12.24) that these polynomials form a Sturm sequence. 
The generalized eigenvalues of the pencil (A - AB) are then given by the zeros of 

p 11 ('A). The zeros can be found by bisection or any other suitable root-finding method for 
polynomials. For a proof of the algorithm, see Wilkinson ( 1965, pp. 340-341 ). 

Computing a Generalized Eigenvector 

Once a generalized eigenvalue is computed, the corresponding eigenvector can be computed 
using the inverse iteration by takingfltll ad~·wltage of the tridiagonal forms of A and Bas 
.follows: 

Let y0 be the initial approximation of an eigenvector corresponding to a computed 
generalized eigenvalue A. Then this inverse iteration will be as follows: 

Fori = 0, 1, 2, ... , do until convergence occurs 

End 

I. Solve for Xi+J : (A -AB)x;+t =)';by taking advantage of the tridiagonal 
structures of A and B. 

2. Fonn Yi+l = Bxi-f.J. 

Remark. About two iterations per eigenvector are usually adequate. 

MATCOM Note: The above process has been implemented in the MATCOM program 
GENSTURM. 

12.8 Krylov Subspace Methods for Generalized 
Eigenvalue Problems 

The Arnoldi and Lanczos methods described in Section 12.6 for the standard eigenvalue 
problem can be applied to the generalized eigenvalue problem (GEP): ;\x = !.B once the 
latter is reduced to a standard one. The followings arc some of the possible cases. For 
details, sec Bai et al. (2000). 
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• (Invert B.) If B is nonsingular, then the GEP is equivalent to the standard eigenvalue 
problem 

rs-' i\)x =h. 

To apply the Arnoldi or Lanczos method to B- 1 A, one needs to evaluate the matrix-vector 
product of the form r = (8- 1 A)y, which can be accomplished without inverting B as 
follows: 

(a) Form 11 Ay. 

(b) Solve Br = 11 for r. 

One can take advamage of the sparsity of A and B in the above computations. 

• (Shift-and-invert.) A and Bare both singular orB is ill-conditioned, In this case, 
it is advisable to usc the shift-and-invert technique as described below: 

Let u be a user-supplied shift such that (A - u B) is nonsingular. Then the GEP can 
betransforll1cd Ill the sfandaiClcigcnvalue problem ..... . 

c 

Cx = JLt, where 

and 
I 

fL=--, 
J..-u 

(12,62) 

( 12.63) 

To apply the Arnoldi or Lanczos method to C, the matrix-vector product of type 
r = Cy can be computed as follows without explicitly computing the inverse: 

(i) Find the sparse LU factorization: A -a B = LU. 

(ii) Fonn v By. 

(iii) Solve Lw = v for w. 

(iv) Solve Ur = w torr. 

(12.64) 

(12.65) 

( 12.66) 

(12.67) 

• (Symmetric po.sitil'e definite generalized eigenvalue problem.) Here A. and B are 
both symmetric and, furthennorc, B is positive definite. Assume lhal B is well~condilioncd 
(which happens in some applications). Let B = LL1 be the Cholesky factorization. Then, 
as we have seen before, the GEP: Ax = ABx is transformed into the Standard symmetric 
eigenvalue problem 

( 12.68) 

where .r = L T,. The symmetric Lanczos algorithm can now be applied to the symmetric 
matrix L _, A(L1 )-1• The matrix-vector product of the fonn 

r=C 1A(L")- 1y (12.69) 

needed in this implementation of the symmetric Lanczos algorilhm can be computed withoul 
explicitly evaluating the matrix L ~t A(L 1 )- 1, as follows: 

(i) Solve L 1 u = y for 11. 

(ii) Form w =Au. 

(iii) SolveLr = w for r. 

(12.70) 

(12.71) 

(12.72) 

• (Symmetric indefinite generalized eigenvalue problem.) Here A and B are both 
symmetrict but neither A nor B nor a linear combination of them is positive definite. This 
is the case arising mostly in structural dynamics. 
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If B is nonsingular and one wants a few largest eigenvalues in magnitude, one may 
solve the standard eigenvalue problem s- 1 Ax = Ax, which is symmetric with respect to 
A or B. 

If one wants a few eigenvalues closest to a number a, the shift-and-hn•ert technique 

((A-u B)- 1 B)x =(A- u)- 1x (12.73) 

can be used. Choose the shift a = 0 if the smallest eigenvalues in magnitude arc desired. 
For details of how to solve the above eigenvalue problem using the symmetric indefinite 
Lanczos method, see Bai eta!. (2000, pp. 253-256). 

Concluding remarks. The shift-and-invert technique is a powe1jili tool for the largest and 
smallest eigenvalues of the pencil A- AB, both in symmetric and general cases, provided 
a suitable sparse factorization technique of (A- a B) is available. Otherwise, one can 
use the generalized version of the Jacobi-Davidson method. See Bai et al. (2000) for 
details. 

12.9 Krylov Subspace Methods for the Quadratic 
Eigenvalue Problem 

The quadratic eigenvalue problem (QEP) for large and sparse matrices M, D, and K can 
be solved by using the methods for the GEP described in the last section once the QEP is 
transformed into a linear problem as shown in Section 11.9. 

Numerical methods discussed in Section 12.8 can be used to solve these linear for­
mulations of the QEP. For example, in the MSC/NASTRAN software package, the later 
formulation is used and the "linear" problem is solved by using the block Lanczos method. 
When implementing a symmetric linearization, the symmetric nature or A and B can be 
exploited, thus reducing the cost to a significant amount. Sec Grimes, Lewis, and Simon 
(1994). 

Spectral Transformations for the QEP 

An iterative solver, such as the one described in Section 12.8, is suitable for solving the 
QEP via linearization to a GEP when only a few exterior eigenvalues and eigenvectors are 
desired. However, if one wants to compute some of the smallest (in magnitude) eigenvalues 
and eigenvectors, or the eigenvalues closest to a shift a, some spectral transformation will 
be needed first. 

• Computing the Smallest Eigenvalues and Eigenvectors 
In this case, a natural transformation is 11 = ±. This transforms the QEP () .. 2M + 

AD+ K)x = 0 to the inverted QEP 

(M + 11D + 111 K)x = 0. (12.74) 

Assuming that A f= 0, we will then have the GEP in terms of A, rather then Jl, as 

(12.75) 
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where 

A=( -D 
I -:), B = ( ~ and (12.76) 

(
X ) z = Ax . (12.77) 

For the case when M > 0, D = D 7 and K > 0, we may formulate the GEP 
Az = lsz, with 

'· 
A=(~ B=( 

Note that A and B are both symmetric but indefinite. 

-K 
0 

o Computing the Eigenvalues Closest to a Shift 

~ )· (12.78) 

If one would like to approximate the eigenvalues of the QEP closest to the shift rr, 
then one may use the shift-and-invert spectral transformation, which transfers the QEP 

to (J1. 2M + tdJ + K)x = 0, where J1. ='-~"'and M = u 2M +uD + K, D = D+2uM, 
and K = M. The exterior eigenvalues 11 approximate the eigenvalues A of the original 
pencil closest to the shift a. 

The corresponding GEP to be solved (in terms of A, rather than 11) is 

( -b -K) C' ) I ( M ~ ) ( -~A - u )x ) ' I 0 (A- rr ).t = >-a 0 
(12.79) 

or 

( b ~ ) ( -~A - u )x ) = A ~ u ( 
-M 0 ) ( X ) k 0 K (A-rr)x 

(12.80) 

if the symmetry is to be preserved. 

Sensitivity of the linearization. The accuracy of a computed eigenvalue A of the quadratic 
pencil Po (A) depends upon the type of linearization used. It might happen that for the same 
eigenvalues A the condition numbers are different for different linearizations, and thus the 
accuracy will be different. See the results of a numerical experiment in support of this 
statement by Tisseur and Meerbergen (200 I). Tisseur (2000) has shown that by knowing 
II M 11. II K 11. and II Dll, and the structures of the left and right eigenvectors of P,(A), it is pos­
sible to identify which formulations arc preferred for the large and the small eigenvalues. 
For several recent results on these topics, sec Higham, Mackey, and Tisseur (2006, 2009), 
Higham et al. (2008), and Higham, Li, and Tisscur (2007). 

12.1 0 The Jacobi-Davidson Method for the Quadratic 
Eigenvalue Problem 

The Jacobi-Davidson method belongs to a family of projection methods applied directly to 
the QEP. These methods build an orthonormal basis V, for the subspace K., and then solve 
a projected smaller problem: Vt P2()..) V~,:z = 0. Here is the basic idea. For details see 
Sleijpen, Booten, Fokkema, and van der Vorst (1996), Bai et al. (2000), and Tisscur and 
Meerbergen (200 I). 
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• Compute a Ritz pair (.i. .. i') corresponding to a pair(/., x) of(,\. 2M+ A.D + K)x = 0 
with x~ x = I, by finding an orthonormal basis {v 1, V;!_ •••• , VJ:} for K.k. 

• Compute the correction pair (u, ~)by solving the linear system 

where Po(.i.) =PM+ J..D + K, P0{i.) = 2XM + D, and r = P,(i.).i' (residual). 

• Obtain the new basis vector Vk+! by orthononnalizing v against the prcvinus columns 
of the orthonormal basis matrix v, = (v 1, v2 ,, .• , v!). 

• Repeat the process until r is sufficiently smalL 

Notes: (i) The above linear system can be rewritten as 

P!<i).r.<·) _ ( :r.t*) _ 
-:-"-~_,-- Po(!.) I - - v - -r, 
.r* P!{J.).t - .i''.i 

which can be solved using an iterative solver such as 0~1RES. 
(ii) The Jacobi-Davidson method targets one eigenvalue at a time1 in contrast with the 

Krylov subspace methods, which can compute several eigenvalues simultaneously. This 
leads to fast local convergence but slow global convergence. See Sleijpen, vandcr Vorst, and 
van Gijzcn ( 1996) for details. For using the Jacobi-Davidson method for linear problems, 
sec Sleijpcn and van dcr Vorst (1996). 

12.11 Review and Summary 

12.11.1 The Classical Iterative Methods 

The Jacobi. Gauss-Seidel, and SOR methods have been discussed. 
A generic ronnulation of these iterative methods is 

xlk+JJ = Bx<l;) +d. 

Different methods differ in the way Band dare chosen. Writing A = L + D + U, we have 
the following: 

For the Jacobi method, 

B B1 = -D- 1(L + U), d =b1 D- 1b. 

For the Gauss-Seidel method, 

B Bns -(D+L)- 1U, d=bns=W+L). 1b. 

For the SOR method, 

B=BsoR W+wL)- 1[(1-w)D-wUJ, d=bson w(D+wL)-'b 

(w is the relaxation parameter), 
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• The iteration 

x 1
''·

11 
= Bx1

" + d 

converges for any arbitrary choice of the initial approximation xl'l if and only if the 
spectral radius of B is less than I (Theorem 12.3 ). 

A sufficient condition for convergence is II B II < 1 (Theorem 12.3 ). 

Using this sufficient condition, it has been shown that both the Jacobi and Gauss­
Seidel methods converge when A is a strictly row diagonally dominant matrix 
(Corollaries 12.4 and 12.5). 

The Gauss-Seidel method also converges when A is symmetric positive definite 
(Theorem 12.6). 

Forthc·SOR itcnllion to converge for any arbitrary choice·ofthe·initial approximation, 
the relaxation parameter w has to lie in (0, 2) (Theorem 12.8). 

If the matrix A is symmetric positive definite, then the SOR iteration is guaranteed 
to converge for any arbitrary choice of win the interval (0. 2) (Theorem 12.9}. 

For a consistently ordered and 2~cycHc malrix A with nonzero diagonal entries. the 
optimal choice of m. denoted by Wopt. is given by 

2 

assuming that the eigenvalues of 8 1 are real and p(B1 ) < 1, where p(A) stands 
for the spectral radius of .4. For definitions of these matrices, sec Varga (2000) and 
Young (1971). 

12.11.2 Krylov Subspace Methods 

A brief overview of Krylov subspace methods, both for linear syslems and eigenvalue 
problems. has been given. Firs~ two basic methods,Amoldi (Algorithm 12.1) and Lanczos 
(Algorithms 12.4 and 12.6) (both symmetric and nonsymmetric) and their Krylov subspace 
properties, have been described. Then it was shown how these methods could he applied to 
solve linear systems and compute eigenvalues. 

For linear systems, we described the following: 

Lanczos-based Conjugate Gradient (CGJ method for symmetric positive definite sys­
tems (Algorithm 12.5). 

Arnoldi-bascd full-orthogonalization (Algorithm 12.2), GMRES (Algorithm 12.3), 
Bi-CG (Algorithm 12.7), and QMR methods for nonsymmetric systems. Other meth­
ods, such as MINRES, SYMMLQ for symmetric indefinite systems, and variants of 
Bi-CG, including CGS and Bi-CGSTAB, have been mentioned with proper references. 
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12.11.3 Large Eigenvalue Problem 

A brief discussion of the eigenvalue problem includes 

an explicitly restarted Arnoldi algorithm (Algorithm 12.1 0); 

an implicitly restarted Arnoldi method for an eigenpair nonsymmctric eigenvalue 
problem (Algorithm 12.11); 

a Lanczos algorithm for the symmetric eigenvalue problem (Section 12.6.3); 

the bisection method for the symmetric definite generalized eigenvalue problem (Sec~ 
tion 12.7); 

Krylov subspace methods for GEPs (Section 12.8); 

Krylov subspace methods for the QEP (Section 12.9); 

the Jacobi-Davidson method for the QEP (Section 12.1 0). 

12.12 Suggestions for Further Reading 

Some well-known books on the classical iterative methods include Varga ( 1992, 2000), 
Young (1971 ), Hageman and Young ( 1981 ), Ortega ( 1990), and Axclsson ( 1994). In recent 
years, several books on Krylov subspace methods have been published. These include 
Greenbaum (1997), Saad (2003), and van der Vorst (2003). Some or the seminal papers 
on Krylov subspace methods that made a profound impact on research in this area, such 
as Saad and Schultz (1986) on the GMRES method; Freund and Nachtigal (1991, 1994) 
and Freund, Gutknecht, and Nachtigal (1993) on the QMR method; Paige (1970, 1971, 
1976, 1980) on the Lanczos method; and Parlett, Taylor, and Liu ( 1985) on the look-ahead 
Lanczos method arc highly recommended for further readings on these methods. There 
are several interesting survey papers which contain a wealth of information, including 
Saad and van der Vorst (2000), van der Vorst and Chan ( 1997), Gutknecht ( 1992), Freund, 
Golub, and Nachtigal (1992), and Saad ( 1981 ). Most of the modern textbooks on matrix 
computations-Trefethen and Bau ( 1997), Demmel ( 1997), Golub and Van Loan (1996), 
and Watkins (2002)-also contain a fair amount of discussion on Krylov subspace methods. 
See also Hackbush ( 1994). A book devoted solely to the Lanczos method and its applications 
in industry is Komzsik (2003). For more on the Lanczos method and its applications and 
implementation see Parlett ( 1980, 1989, 1992) and Ye (1994, 1996). 

The CG method was discovered independently by Lanczos ( 1952) and Hestenes and 
Stiefel ( 1952). An excellent overview of this history of the method and its development can 
be found in Golub and O'Leary (1989). See also Ashby, Manteuffel, and Saylor (1990). 
Shewchuk (1994), Greenbaum and Strakos (1992), and Golub and Ye (1999). See Elman, 
Saad, and Saylor ( 1986) for a hybrid Chebyshev-Krylov algorithm, and Ferng, Golub, and 
Plemmons (1991) for an adaptive Lanczos algorithm for recursive condition estimation. 
Some other earlier papers of interest related to the conjugate gradient method include Young 
et a!. (1980, 1988). Bischof ( 1990) and Bischof et a!. (1990) have discussed incremental 
condition estimation of sparse matrices. 

A two-level preconditioned scheme for the CG method was developed by Pierce and 
Plemmons (1988). See Brezinski and Sadok ( 1991 ), Brezinski, Zagila, and Sadok (1991, 
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1992), and Ye ( 1994) for discussions on detailed breakdown in Lanczos-type algorithms. 
A concise and useful account of the iterative methods is given in Barrett eta!. (!994). See 
Arioli, Dcmmc1, and Duff (1989) for a discussion on solving sparse system with sparse 
backward error. For more on convergence of Gl'v!RES, see van der Vorst and Vuik ( 1993). 
For a hybrid GMRES algorithm, see Nachtigal, Reichel, and Trefethen ( 1992). 

Saad's book (2003) contains a complete chapter on precondilioning. A fair amount 
of discussion on preconditioning also appears in Greenbaum ( 1997). See some of Saad's 
papers also in this context (Sand (!984, 1988, 1993)) and Axclsson (1985). Sec Tong and 
Yc (2000) on the analysis of the Bi-CG algorithm, Chan and Yc ( 1997) on the development 
of a hybrid Krylov subspace method combining CGS and Bi-CG, Golub and Ye (1999) 
on the inexact preconditioned conjugate gradient method, Reichel and Yc (2005) on the 
breakdown-free GMRES for singular systems, van de Vorst and Ye (2000) on residual 
replacement strategies for Krylov subspace metlmds, Bai, Hu, and Reichel ( 1994) for a 
Newton basis GMRES implementation, and Bank and Chan ( 1993) for analysis of the 
composite Bi-CG method. Saylor and Smolarki ( 1988) have described an optimal iterative 

-metliOd-for SOFiiifg-an-y--liriCtiY system with ~i square matrix:': 
Books exclusively devoted to large eigenvalue problems are Sand (1992), Bai ct al. 

(2000), van der Vorst (2002), and Cullun and Willoughby ( 1995). Some interesting recent 
papers on sparse eigenvalue problems include Calvetti et aL (!994), Golub and van der Vorst 
(2000), Golub and Ye (2000), Li and Ye (2003), Bai, Day, and Ye (1999), Stewart (20Dib), 
and Jiaand Stewart (2000). Some earlier papers on this topic include Parlett and Reid ( 1981 ), 
Parlett, Simon, and Stringer ( 1982), Ericsson and Ruhe (1980), Jennings and Stewart ( 1975), 
Paige, Parlett and van der Vorst ( 1995), Stewart (1976a), and Ruhe ( 1994). See Money and 
Ye (2005) for a MATLAB program for the symmetric generalized eigenvalue problem. 

For mare recent developments on numerical methods for quadratic and higher-order 
eigenvalue problems. see Ye (2006), Hoffnug, Li, and Ye (2006), and severn! recent papers 
by Higham, Tisseur, and others mentioned in Chapter II. A brief account of the recent 
developments on the quadratic inverse eigenvalue problem and its applications to finite 
element model updating can be found in the dissertation by Sokolov (2008). 

For a collection of nonlinear eigenvalue problems, see Betke et al. (2008). Mehrmann 
and Voss (2004) have discussed some challenges of solving nonlinear eigenvalue problems. 

Multigrid methods (not discussed in this book) are powerful tools for solving partial 
differential equations arising from discretization. They have superior performance com· 
pared to preconditioned Krylov subspace methods. See Briggs (1987), Demmcl (1997), 
and Sand (2003) for details. A classical book on direct methods for sparse SPD systems 
(not discussed here) is by George and Liu ( 1981 ). A recent book is by Davis (2006). 

The research in lhis area is indeed very dynamic and new papers arc coming up all 
the time. 

Exercises on Chapter 12 
12.1 Construct an example to show that the convergence of the Jacobi method does not 

necessarily imply that the Gauss-Seidel method will converge. 

12.2 Let the 11 x 11 matrix A be partitioned into the form A = (Aij), where there arc N 
diagonal blocks. and each diagonal block Aii is square and nonsingulur. 
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(a} Write down the block Jacobi. block Gauss-.Seidel, and block SOR iterations 
for the linear system Ax = b {Hint: Write A = L + D + U, where D = 
diag(A 0 , ... , ANN), and Land U are strictly block lower and uppertriangular 
matrices.) 

(b) If A is symmetric positive definite, then show that U L T and D is positive 
definite. In this case, from the corresponding results in lhc scalar ca~cs, prove 
that, with an arbitrary choice of the initial approximation, block Gauss-Seidel 
always converges and block SOR converges if and only if 0 < tv < 2. 

12.3 Show that the block Jacobi iteration for Poisson's equation (6.46) is given by 

i = L .. ., N. 

Then write down the block Gauss-Seidel and block SOR iterations also forthis system. 

12.4 Show that the function llxiiA = xr Ax is a norm in !R". 

12.5 (a) Prove that v'I711xlb ;"; !lxiiA ;"; Allx!b. where A is a symmetric positive 
definite matrix with the eigenvalues 0 < A1 ::; A:2 :s; · · ·::.::: }.·n· 

(b) Using the result in (a), prove the A-norm eiTor bound (Theorem 12.18) for the 
conjugate gradient (CO) method. 

12.6 Compute p(BJ) and p(Bosl for the block diagonal system Bx = d, where B = 
diag(A 5, .•. , As), and As has the same form as the matrix of the Poisson equation 
(6.46), and dis chosen so tlmt x = ( l, ... , l)T Solve the system using 5 iterations of 
Gauss-Seidel and SOR with optimal value of IV. Compare the r&tes of convergence. 

12.7 Prove that"'' given by ( 12.41) minimizes the function <f>,(x, + ap;). 

12.8 Show thatlhe eigenvectors of A are the direction vectors of the CG method. 

12.9 (a) Apply the incomplete Cholesky factorization algorithm (Algorithm 12.8) to an 
unreduced tridiagonal matrix T and show that the result is the usual Cholesky 
ractorizalion ofT. Verify the above statement with a 5 x 5 matrix of the same 
form as in Poisson's equation. 

(b) Apply the SOR iteration to the matrix T in (a) with IV = 1.5 using x 101 

(0, 0, 0, 0, O)r, and make a table of the results of the iterations. 

12.10 Let p0 , p 1, ••• , p,- 1 be the direction vectors genemtcd by the cla.,.ical CO algorithm. 
Let r, b- Ax,. k = 0, I, ... , 11 - I. Then prove that 

{a) r, E span (po, ... , pk), k = 0, I, 2, ... , 11 - I; 

(b) span (po, ... , p;) = span (ro, Aro, ... , A' r0 ), i = 0, I, .... ll - I; 

(c) ro .... , l'n-1 are mutually orthogonal. 

12.!1 (Mu/rispliuing.) Consider solving Ax = b by using the iteration x<k+ll Bx"' +d. 
where Band dare given by 8 = 2::7~, D;B,-1C;.d (L;~, D,B1-

1)b, and A= 
B; - C;. i I, ... , k, L;~, D; = l (D; :;-: 0). 

Develop the Jacobi, Gauss-Seidel, and SOR methods based on the multisplitting of 
A (O'Leary and White ( 1985), Neumann and Plemmons ( 1987)). 
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12.12 Develop the symmetric successive ovcrrclaxation (SSOR) method in detail and make 
an illustrative example. 

12.13 Apply the Jacobi, Gauss-Seidel, and SOR (with optimal relaxation factor) methods 
to the system in Example 12.1 0 and verify the statement made there about the number 
of ilemtions for different methods. 

12.14 (No fill-in incomplete Clw/es/..J•.) Develop the preconditioned conjugate gradient 
algorithm with a square root-free incomplete ClwlesA.;' factor as a preconditioner of 
the form LDLT 

12.15 Prove the residual expression (12.26) for the full-orthogonalization method method. 

12.16 Prove formulas ( 12.31 )-( 12.32) for the GMRES method. 

12.17 Deduce the relation (12.56) for the QMR method. 

12.18 ProvethCTollowing formulas for the CO method: p[ Apj = 0 and r[ rj = 0, j < k. 

12.19 Prove (a) the residuals {r,) in the CO method are orthogonal to K,(A, r 0 ), k = 
I, 2, ... ; (b) II celiA = min{llx- x'll,dx• E xo + Kc(A, ro)). 

12.20 Develop the CO and Bi-CG methods from the symmetric and nonsymmetrie Lanczos 
methods, respectively. 

12.21 Develop the MINRES and QMR methods in detail. 

12.22 Prove the biorthogonality and A-conjugacy relations for the Bi-CG method. 

12.23 Develop the implicitly restarted Arnoldi algorithm fornonsymmctric eigenvalue prob­
lem (Algorithm 12.11) by incorporating the details of Step 2.7. 

12.24 Prove that the polynomials (12.59)-(12.61) form a Sturm sequence. 

12.25 (a) Develop a generalized Lanczos algorithm for the symmetric definite pencil A­
!..B. 

(b) Prove that the Lanczos vectors are 8-ort/wgonal: 

vrsvi =I; vTBvj =0, i i=j. 
(c) Find the generalized eigenvalues for the pair (A, B), where 

A= (l :) , B = u 1:0 I~O), 
using this algorithm. 

12.26 Develop an Arnoldi algorithm based on the shift-and-invert technique for the gener­
alized eigenvalue problem Ax = !..Bx, using (12.62)-(12.67). Test your algorithm 
with an illustrative example. 

12.27 Develop an Arnoldi algorithm for computing the smallest and largest eigenvalues of 
the symmetric indefinite generalized eigenvalue problem using the shift-and-invert 
technique (12.73). Test your algorithm with a 10 x 10 random example. 
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12.28 Develop on algorithm for computing the smallest eigenvalue of the quadratic pencil 
P2(l) based on ( 12.74). Give an illustrative example. 

I:t29 Develop an algorithm for computing the eigenvalue closest to a shirt of the pencil 
P,(i,) based on (12.79Hl2.80). 

12.30 Construct an example to show that the different linearizations of the pencil P2(l) can 
produce differcrll sensitivities for the same eigenvalue A. 

MATlAB Programs and Problems on Chapter 12 

Notes: (i) The functions gmres, qmr, hicg, peg, and minres are available in MATLAB. 
(ii) The functions jacobi, gaused, sucov, and nichol arc available in MATCOM. 

l\'112.1 Run the programs jacobi, gaused, and sucov (choosing was an optional relaxation 
parameter) from MATCOM on the 500 x 500 matrix .4 of the same type as that 
of Example 12.10 with the same starting vector x!O! = (0, 0, . , , , O)r Find how 
many iterations each method will take to convL:rge. 

Ml2.2 (Van der Vorsr (2003).) Run gmres from MATLAB with the following data: 
A = sas-L of order II 200, where 

fJ 

and B 

Ml2.3 Run the program nichol from MATCOM implementing the "no-fill incomplete 
Cholesky factorization·· oo the nonsymmetric tridiagonal symmetric positive defi­
nite matrix Tor ordcr200 arising in discretization ofPoisson's equation. Compare 
your result with that obtained by running choi(T) on T. 

Ml2.4 (a) Run MATLAB program gmres to implement the GMRES algorithm without 
a preconditioner (M = I) for solving Ax = b, with A taken as (i) an 500 x 
500 diagonal matrix with eigenvalues clustered around I, (ii) an 500 x 500 
upper bidiagonal matrix with eigenvalues clustered around zero and I 's along 
the suhdiagonal. (iii) the symmellic part of A in (ii). and (iv) wilkinson (500) 
from MATLAB. 

(b) Plot relative residuals versus the number of iterations k for each of the systems 
in (a). Write down your conclusions. 

M12.5 Repeat Problem M 12.4 with MATLAB function qmr and compare the results with 
those of OMRES on the same data as in Problem M 12.4. 

Ml2.6 (Comparison ~{GMRES, QMR, and Bi-CG) Run gmres, qmr, and bicg (without 
preconditioners) on the same 500 x 500 sparse matrix created by MATLAB func­
tion spdiags and plot the logarithms of the norms o[ the residuuls versus number 
of iterations. \Vrile your observations. 
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M12.7 (Study of convergence of the CG method with varying eigenvalue distribwions.) 

(a) Run MATLAB program peg to implement the CG method without any pre­
conditioner (M = I) on the following systems: Ax= b, taking A as (i) the 
symmetric positive definite matrix of the system (6.46) arising in solution of 
Poisson S equation of order 500; (ii) the 500 x 500 diagonal matrix with one 
isolated eigenvalue 0.0001 and the other 499 eigenvalues distributed eqHatly 
over the inten•al [0.05, 1.5]; (iii) a 500 x 500 diagonal matrix with the first 
255 eigenvalues set as I, 2, ... , 255 and the rest distributed equally over 
the interval [255, 500]; (iv) a 500 x 500 symmetric tridiagonal matrix with 
1, 2, ... , 500 on the diagonal and 1 's along the sub- and supcrdiagonals; and 
(v) a 500 x 500 symmetric tridiagonal matrix with a parameter r such that as 
r increases from zero, the matrix A becomes more and more ill-conditioned. 

(b) In one single graph, plot llr, II versus number of iterations k for all the above 
systems. Write your observations. 

M12.8 For each system in Problem M 12.7, present the following results in tabular form (in 

one single table): (i) number of iterations Nk for convergence; (ii) 11 1'1-N~11 1L1 ; (iii) the 
ro ,\ 

condition number K; (iv) 2( ~~: )N'; and (v) actual residual norm II A - bxN, 11 2 • 

M12.9 (Comparison of the CG method with different preconditioners.) Repeat Problem 
Ml2.7 with (i) incomplete Cholesky preconditioner (write a separate MATLAB 
program and then use it to feed into the program peg), (ii) Jacobi preconditioner, 
and (iii) a diagonal preconditioner having a few distinct eigenvalues and the others 
closely clustered. Plot relative residuals versus number of iterations kin a separate 
graph for each of these preconditioners. 

M12.10 Repeat Problem Ml2.8 with each of the preconditioncrs used in Problem Ml2.9. 
Make one separate table for each preconditioner. 

M12.11 (Study of convergence of the CG method with d~fferent matrices having the same 
condition number.) Run MATLAB program peg on five diagonal matrices with 
positive diagonal entries, each of order 500, having the same condition number 
(ratio of the largest to the smallest diagonal entries) and plot the relative residuals 
versus the number of iterations in each case. 

M12.12 Run MATLAB program bicg on the matrices of Problem M 12.11 with some di­
agonal entries negatives this time. Plot relative residuals versus the number of 
iterations in each case. 

M12.13 (a) Run MATLAB program minres (without a preconditioncr) on five different 
diagonal matrices of order 500 with eigenvalues contained in the intervals 
[a, b] U [c, d], where a < b < 0 < c < d and b- a= d- c, by choosing 
different values of a, b, c, and d. Plot relative residuals versus the number 
of iterations. 

(b) Repeal part (a) in the special ease when the two intervals are symmetrically 
placed; that is, a = -d and b =-c. 
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Ml2.14 Repeat Problem M 12.13 with the following prcconditioners: Jacobi, SSOR, and 
ILU. 

1\112.15 Construct a parametric matrix A with a parameter r as follows: A = QDQr, 
where Q is orthogonal, and D = diag()..l, ... , An). with ).i = /..1 + :

1
:_

1
! (i.n 

A1 )T 11 ~i, i = 2, .. , , n - 1. Run the unpreconditioncd CG method on A with 
11 =50 and r = 0. I, 0.5, 0.6, 0.7. 0.8, 0.9, LO. Plot the A·norm error versus the 
number of iterations in a single graph. Tabulate (i) the condition number K of A. 

and (ii) for each value of the parameter r. Write your observations. 

M12.16 Implement Algorithm 12.10 in MA1LAB for onding the rightmost eigenvalue 
of A. 

Test data: {i) A nmdom matrix A of order 1000; (ii) A = numgrid (' R',n) with 
R = C, D, and n = 500; (iii) A = V T B V, where 8 is a diagonal matrix of order 
500 with most eigenvalues chosen randomly from a normal Gaussian distribution 
and V is a 500 x 500 orthogonal matrix. For each A, plot the results of residual 
nonns versus the number of iterations. Take m = 20, 25, 50, and 100. (Note: 
numgrid is a MATLAB function.) 

MI2.17 Find the 10 largest and smallest eigenvalues for each of the matrices in Problem 
Ml2.16 using MATLAB function eigs. 

M12.18 Construct a diagonal matrix A of order 500 with only a few distinct eigenvalues 
and the rest clustered around the center of the spectrum, and then run the symmetric 
Lancws method on A fork= 5. 10. 15. 25, and 50. 

(a) Plot eigenvalues ofT, for each k and those of the original matrix A. Write 
your observations, 

(b) Plot the relative errors lil.,i 1~l-A,(A)I for the 11rst Hvc and the Ima five eigcn­
I;.,(All 

values. 

M12.19 Repeat Problem M 12.18 with a diagonal matrix of 1000 with eigenvalues chosen 
randomly from a normal Gaussian distribution. 

Ml2.20 lllustrate by means of a plot the phenomenon of "ghost eigenvalues" by taking .4 
as a 500 x 500 diagonal matrix wbose eigenvalues are clustered in (0, !) and has 
two eigenvalues 2 and 3 lying outside the interval. 

Ml2.21 Run each of the programs written for problems (I 2.27)-( 12.29) with an appropriate 
problem of dimension 500. 
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Some Key Terms in Numerical 

linear Algebra 

algorithm: An ordered set of operations, logical and/or arithmetic, which when applied to 
a computational problem defined by a given set of data, called the input data, produces 
a solution ro the problem. 

Arnoldi method: A Krylov subspace method that forms the basis of many modem large· 
scale algorithms for linear systems and eigenvalue computations. 

back substitution: The process of solving an uppertriangular system Tx b. The entries 
of the column vector x are obtuincd one by one. starting from the bottom and working 
up through the element;; of the vector. 

backward stability: An algorithm is backward stable if the computed solution obtained 
by the algorithm is the exact solution of a nearby problem. 

balancing: A process applied to ,1, before the start of the QR iteration algorithm, so that 
the entries of matrix A become somewhat uniform. 

BLAS: Busic Linear Algebra Subroutines. There are three levels: Level 1 subroutines are 
for vector-vector operations, Level 2 are for matrix-vector operations, and Level 3 
are for matrix-matrix operations. 

catastrophic cancellation: A phenomenon that occurs when two numbers that arc nearly 
equal are subtracted. ~1any significant digits are lose It often indicates that errors 
were made in previous computations. 

characteristic polynomial: For an 11 x 11 matrix A, the polynomial p(f") = det(A -H) 
of degree n in i .. 

Cholesky factorization: 111e factorization of a symmetric positive definite matrix A into 
H /{r, where H is a lower triangular matrix with positive diagonal entries. 

companion matrix: An unreduced upper Hcsscnberg matrix with ones along the subdi­
agonal and possible nonzero entries on the last column and zeros everywhere else is 
an upper companion matrix. The coefficients of lhe characteristic polynomial of the 
upper companion matrix are given by the entries of the last column. The transpose 
of an upper companion matrix is a lower companion matrix, 

493 
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complete pivoting: The fonn of pivoting where the search for the pivot en!ry at step k is 
made among the entries of the submatrix below the row (k- 1) during the Gaussian 
elimination process. 

condition number: The number indicating the sensitivity of a problem. The condition 
number of the linear sys!cm problem Ax = b is Cond (A) = II A 1111 A - 111. It is also 
called the condition number of the matrix A. 

condition number of eigenvalue: If' A is an eigenvalue of a nondefective matrix, then the 
number 1.,/.r,l, where y1 and Xi are the left and right unit Iength eigenvectors of the 

malrix, respectively, is the condition number of J. •. 

deflation: A technique used in eigenvalue computations. Once an eigenvalue (or a pair 
of eigenvalues) is computc.:d, an appropriate row and column (or pair of rows and 
co1umns) are deleted and the computations proceed with the remaining submatrix for 
the remaining eigenvalues. 

dense~matrix: "A matrix in which most entries are""'nonzero. -The--zem entries are too few 
to devise any specialized algorithm. 

direct method: A method that produces the solution of a problem in a finite number 
of steps. The Gaussian elimination. QR factorization. and Cholesky factorization 
methods arc examples of direct methods for the linear system problem. 

double-shift QR iteration: The shifted QR iteration where two single shifts are used 
successively. 

efficiency of an algorithm: An algorithm involving matrices of order 11 is efficient if it 
does not require more than order n3 floating point operations for implementation. 

eigenvalue and eigenvector: A scalar i. is an eigenvalue of A if there exists a nonzero 
vector x such that Ax = !ex. x is called the eigenvector COJTesponding !o A. 

elementary lower triangular matrix: A matrix of the fonn I + m,eJ, where m, = 
(0 ....• 0, lllk+Lb •••• m,.klr. It is an identity matrix. except possibly for a few 
nonzero entries below the diagonal of a single column. 

Hoatiug point number: A floating point number x has the form x = ±J'fJ', where e is 
the exponent, y is the significant. and {J is the base of the number system. A floating 
point number xis denoted by fl(x). 

Hop: Floating point operation. 

forward elimination: The process of solving a lower uiangular system Ly = b. The 
entries of the unknown vector x are obtained one by one, starting from the top and 
working down through the vector's elements. 

forward stability: An algorithm is forward stable if the computed solution .i by the 
algorithm is close to the exacl solution x in some sense. 

[ ,~, "'"' ' 1"] 112 h A ( ). l' d Frobenius norm: !I A !IF L.....j=l L.i=;;l 1au- , w ere = au ts o or er m x n. 

Gaussian elimination: An ciimination process used to solve a linear system. It is named 
after the celebrated mathematician Karl Friedrich Gauss. 

Gauss-Seidel method: An iterative method for solving Ax = b, named after the math­
ematicians Gauss and Seidel. The ith component of the (k + I )th iteration vector 
xfk+l) is computed using a combination of information from the kth step and that 
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which is available at the current (k + I )th step: 

tk-1}- l ( ~ .(k+ll ~ (J.l) 
Xi - a• b, - L., au.t j - L., a,jX1 . 

d J~l J=i+l 

generalized eigenvalue problem; The eigenvalue problem Ax = ABx involving two 
matrices A and B. 

Gerilgorin disks: The disks in the complex plane (z : 1;:- ""I < r;), where r1 = 
L~=LJ#i jaiil associated with A= (au), Each eigenvalue of A lies in ut least one of 
the disks. 

Givens matrix: A matrix J(L j, 8) is a Givens matrix ifit is an idenlity matrix except for 
the four entries Jii = c. 111 = -s, Jjj = c, where c cos 8, s = sin FJ. A Givens 
matrix is orthogonal. 

GMRES method: The Generalized Minimal Residual Method. A Krylov subspace 
method for solving large and sparse linear systems. 

Gram-Schmidt process; A process to generate an orthonormal basis of a subspace, 
starting from a given basis. If applied to the columns of a matrix A, it yields a QR 
factorization of A, 

growth factor: The ratio of the largest element (in magnitude) of the matrices A, A oJ, .. , , 
Al"-' 1 (obtained during the Gaussian elimination process) to the largest element (in 
magnitude) of A. The growth factor is an indicator of stability or instability of the 
Gaussian elimination process, 

guard digit: An extra digit in the lower end of the arithmetic register whose purpose is to 
catch the low-order digit that would otherwise be pushed out of existence when the 
decimal poims are aligned. 

Hilbert matrix: The matrix H = (/t;i), with h,i = i+i-t, named after the celebrated 
mathematician David Hilbert The higher-order Hiibert matrices are extremely ill-
conditioned. 

Householder matrix: A matrix of the fonn I- 2~. where His a veclor, A Householder 
matrix is syrnmelric and orthogonal. lt is also known as a projector. 

ill-conditioned problem: A problem is ill-conditioned if a small change in the input data 
can cause a significant change in the solution. 

implicit QR iteration: A version of the QR iteration algorithm where nne constructs the 
QR iteration step A.-+ 1 = R, Q, + JLI implicitly without forming the matrix .4,, -JLI, 

incomplete Cholesky factorization: The Cholesky factorization of a sparse symmetric 
positive definite matrix where calculations are made only with the nonzero entries, 
and the nonzero entries in the Cholesky factor are allowed only in those positions I hat 
have a nonzero in A, 

inverse iteration: An iterative process for finding an eigenvector given an approximalion 
to the eigenvalue for which the eigenvector is to be computed. 

inverse power method: The same as inverse iteration. 

iterative method: A method that produces the solution of a problem after a few number 
of iterations~ starling from an initial approximation of the solution. Usually. the 
approximations become closer and closer to the solution as the iteration proceeds. 
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The Jacobi, Gauss-Seidel, and successive overrelaxation methods are examples of 
iterative methods for solving linear systems problems. The power method, the inverse 
power method, and the QR method are examples of iterative methods for solving 
eigenproblems. 

iterative refinement: A procedure to iteratively improve a computed solution of a problem. 

Jacobi method: An iterative method for solving the system Ax = b; named after the 
mathematician Karl Gustav Jacobi. The ith component of the (k + l)th iteration 

vector xj"+ll is computed using only information from kth iteration step: 

x)'+'l =_I_ (b;- t aux)'1). 
au .i=l.i#) 

Krylov subspace: The subspace spanned by the sequence of vectors {x, Ax, ... , Am-I x }; 
tn __ i§Jh~ .. Qi __ m~_I1sion of the subspace. The sequence [A1.t} is called the Krylov sequence. 

Krylov subspace method: A method based on generating an orthonormal basis of a Krylov 
subspace. The Lanczos, conjugate gradient, GMRES. and the Arnoldi methods are 
examples of such methods. 

LU factorization: A factorization of A into LU, where L is lower triangular and U is 
upper triangular. Elementary lower triangular matrices are used to achieve an LU 
factorization. 

LAPACK: A mathematical software package for linear algebra computations. The package 
was developed mainly for portable high-performance computing. 

leastRsquares solution: A solution x to the linear system Ax = b having the property that 
II Ax- bll 2 is minimized. 

machine precision: The machine precision fl. is the smallest positive floating point number 
in a computer such that tl(l + fl) > I. 

MATCOM: A MATLAB-based software package implementing all the major algorithms 
of this book. 

MATLAB: MATLAB stand for MATrix LABoratory. It is an interactive computing system 
designed for easy computations of various matrix-based scientific and engineering 
problems. 

minimum-norm solution: Among all the least-squares solutions to the linear system 
Ax = b, the one having the minimum norm is the minimum-norm solution. 

norm of a matrix: Let A be an 111 x 11 matrix. Then the norm of A, II All, is a scalar such 
that II All :0: 0, II a A II = fafiiAII, and IIA + Bll :'0 flAil+ II Bll. where a is a scalar. 

norm of a vector: Let x be a vector. Then the nann of x, llx II, is a scalar associated with 
x such thatllx II :0: O. II ax II = lalllx 11. and llx + yll :'0 llx II+ IIY 11. where a is a scalar. 

normal equations: For the system Ax = b, the nonnal equations arc the set of equations 
A7 Ax= A 7 b. 

orthogonal projection: P is the orthogonal projection onto a subspace S of m;_n if range 
(P) = S. P2 = P, and P 7 = P. 

overdetermined system: A linear system having more equations than unknowns. 
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overflow: A situation that results when an exponent of a computed quantity becomes too 
large to fit in a given computer. 

partial pivoting: The fol1tl of pivoting where the search for the pivot cmry at step k 
is made in the kth column below the row (k - !) during the Gaussian elimination 
process. 

perturbation analysis: Analysts pertaining to the effect on the solution uf a problem by 
the perturbation of the data of the problem. 

power method: An iterative method for computing the dominant eigenvalue and the 
corresponding eigenvector of a matrix A. The method is .so called because it is based 
on implicitly computing the powers of A. 

preconditioning: A process to improve the condition number of a matrix. 

pseudoinverse: The matrix At defined by At I'L:' UT, where A = U 1: \IT is the SVD 
of A, E' =ding( t. ;!; , ... , a, 0 ..... 0), and r is the rank of A. 

pseudocode: Form of codes for describing algorithms which can be lr:.mslated easily into 
computer codes. 

QR iteration: An iterative process for finding the eigenvalues of a matrix A, based on 
repeated QR factorizations of matrices orthogonally similar to A. 

QR factorization: A factorization of A into QR, where Q is orthogonal and R is upper 
triangular. Householder malrices, Givens matrices, and the Gram-Schmidt process 
are used w achieve a QR factorization. 

QR factorization with column pivoting: The factorization of A in the form 

R, ) 0 • 

\Vherc Q is orthogonal. Pis a permutation matrix. and R 11 is upper rriangular and 
nonsingular. 

quadratic eigenvalue problem: The eigenvalue problem of the form (A 2 A+ J.B +C)x = 
0. 

quasi-minimal residual method: A Kry\ov subspace method to solve a large and sparse 
linear system. It is popularly known as the QMR method. 

QZ algorithm: An algorithm for finding the eigenvalues of the pencil A- i.B. The or­
thogonal matrices Q and Z are constructed so that Q 1 A Z is an upper quasi-triangular 
matrix T, and Qr B Z = Sis upper triangular, The eigenvalues are then extracted 
from the eigenvalues ofT and S. 

rank-revealing QR: A QR factorization of the fom1 

Qr AP = ( R~, R~, ) 

that reveals the nmk of A in exact arithmetic. Rank of A = rank{Ru ). 

Rayleigh quotient: The quotient is called the Rayleigh quotient of the vector.<- If x 
is an approximation of an eigenvector, then lhe Rayleigh quotient is an upproximatinn 
of the eigenvalue corresponding to which the approximate eigenvector is .c 
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real Schur form: A real quasi-triangular matrix whose diagonal entries arc 1 x I or 2 x 2 
matrices. Every real matri.x A can be transformed to real Schur form by orthogonal 
similarity. 

relative error: If .i is an approximation to x, then lhc relative error is 

rounding error: The error made in rounding a computed quantity. 

sealing (row): A process by which a diagonal matrix D is constructed so that the rows of 
n-t A have more or less equal infinity norms. 

single-shift QR iteration: The shifted QR iteration where a single shift is used but the 
shift varies from iteration to iteration. 

singular value decomposition: A decomposition of matrix A in the form A = Ul: vr, 
where U and V arc orthogonal and I: is a "diagonal" malrix. 

sparse matrix; A matrix with a large number of zero entries. Sparsity is an asset with 
a large problem, A sparse mntrix may conveniently be stored in a computer and 
s(JCdriJiiCd 'Utgorithrns-can be devised, 

special matrices: Ann x n matrix A = (a1j) is 

diagonal if au 0, i c/ j; 

upper triangular if au= O,i > j; 

lower triangular if ail = 0, i < j; 

upper Hessenberg if Gij 0 fori > j + l; 

lower Hessenberg if a11 = 0 for j > i + 1; 

tridiagonal if it is both lower and upper Hessenberg; 

a permutation matrix if there is exactly one nonzero entry in each row and 
column that is a 1 and the rest are zero; 

unreduced upper Hcsscnberg if A is upper Hcsscnbcrg and au~1 c/ 0. i = 
2, . ' . ' 11; 

unreduced lower Hessenberg if A is 1ower Hessenberg and ai,i+l "# 0, i = 
I, ... , 11 - I: 

(row) diagonally dominant if lnul 2:: Li# ]a,il for all i; 

symmetric (Hermitian) if A7 = A(A' =A); 

positive definite if A is symmetric (Hermitian) and x r Ax > O{x' Ax > 0) for 
every nonzero vector x; 

a defective matrix lf it has fewer than n eigenvectors; 

a convergent matrix if Ak -+ 0 ask-+ oo. 

spectral norm: UAib = Jmaximum eigenvalue of A7 A. 

spectral radius: The spectral radius is max lA; I, i = l, .. , • 11, \Vhcrc i.J, , ... A11 are the 
eigenvalues of A. 

spectrum: The set of all the eigenvalues of a matrix. 

stopping criterion: A criterion that terminates an iterative method. 
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successiveoverrelaxation method: A modified Gauss-Seidel method. The ith component 
of the (k + I )th approximation is given by 

( ;-] " ) k+l w k. l k k xi l = -;; b; - L aijxj -r-
1

- L aux) J + (1 - w)xi J. 

I! j=l j=i+J 

w is called the relaxation factor. 

symmetric definite generalized eigenvalue problem: The eigenvalue problem Ax 
ABx, where A and B are symmetric matrices and B is positive definite. 

underdetermined system: A linear system having more unknowns than equations. 

underflow: A situation that resulls when the exponent of a computed quantity becomes 
too small to fit in a given computer. 

well-conditioned problem: A problem whose solution is not sensitive to small perturba­
tions of the input data. 

Wilkinson bidiagonal matrix: The bidiagonal matrix whose entries along the diagonal 
arc I, 2, ... , 20, and those along the supcrdiagonal (subdiagonal) are 20, 19, ... , I. 
Certain eigenvalues of this malrix are exlremely sensitive. 

Wilkinson shift: A special shift, named after James H. Wilkinson, used in the symmetric 
QR iteration algorithm. If a1, ... , a11 and {3 1, ... , {311 _ 1 are, respectively, the diagonal 
and off-diagonal entries of a symmetric tridiagonal matrix, then the Wilkinson shift 

is given by fl = a,1 + r- sign(r)Jr2 + {3,;_ 1, where r = u,_~-a". 
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