

䄳
نام نام خانوادگى مام امضاء

صفُحه	509D	آزمون رشته مهندسى شيمى

PART A: Vocabulary
Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark your answer sheet.

1- Being an honest person, she was unwilling to \qquad Peter in the swindle he had planned.

1) confirm
2) abet
3) jeopardize
4) impede

2- The girl is surrounded by so many possessions that testity to her family's

1) opulence
2) activism
3) propensity
4) elitism

3- The physician advised the --------- man to lose weight if he wanted to not be afflicted with different medical complications.

1) craven
2) sturdy
3) immense
4) obese

4- Enlightened slave owners were willing to --------- their slaves and thus put an end to the evil.

1) initiate
2) emancipate
3) efface
4) reject

5- One of the most striking aspects of Indian cultures was the production of ceremonial costumes and ornaments worn during religious

1) rituals
2) subtleties
3) fashions
4) prefaces

6- The Clarks' \qquad spending habits have put them in debt.

1) extemporaneous
2) divisive
3) extravagant
4) passionate

7- The people who had lost their homes in the fire tried to $\ldots---{ }^{-}$.-. whatever was salvageable from the ruins of that fire.

1) confront
2) extinguish
3) exclude
4) glean

8 - The new study will test different doses for safety. And scientists should be able to tell if the antibodies --------- some of Alzheimer's devastating mind-robbing symptoms.

1) emerge
2) predict
3) alleviate
4) precede

9- Coaches often tell their players that a little nervousness is good because it keeps them on their -------.

1) limbs
2) toes
3) fingers
4) feet
10- Without liquids or food, people typically --......after 10 to 14 days.
5) diminish
6) recede
7) falter
8) perish

PART B: Cloze Passage

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark your answer sheet.

Like most people, students tend to be overconfident about newly learned skills. This selfassessment problem can occur because the common educational practice of "massed training" promotes rapid acquisition of a skill-and self-confidence-but (11) ---------- retention of that capability. In mass training, instructors teach students in one or a few intense sessions. Students (12) \qquad -such instruction quickly obtain the relevant knowledge. Yet skills taught in this way tend to decay rapidly, (13) --------- people remain unaware of this fact. (14) ------more evident than in driver education. Although millions of dollars (15) .-...-.-.-. on such courses, they do not, the data suggest, produce safer drivers.
11-1) not necessary for the
2) necessarily none of the
3) not necessarily the
4) for no necessary
12-1) undergo
2) undergone
3) by undergoing
4) undergoing
13-1) although
2) however
3) so that
4) then

آزمون رشته مهندسى شيمى

14-1) Nowhere might this problem be
3) Nowhere might be this problem

15-1) spent 2) are spent
2) This problem nowhere might be
4) Nowhere this problem might be
3) being spent 4) that are spent

PART C: Reading Comprehension

Directions: Read the following three passages and answer the questions based on what is stated in the passage by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

Passage 1:

Electrochemical engineering can be considered as a daughter of chemical engineering, whose first significant development occurred during World War II. Before this time, fundamental disciplines for example physics, chemistry, biology, physical chemistry and electrochemistry were the source of the main scientific discoveries, whereas the development of processes was carried out by engineers having a high expertise in mechanics and technology. Chemical engineering progressively became a discipline in the middle of the twentieth century, and two major, complementary tools fed this recent discipline in its very cradle: (i) transport and transfer phenomena resulting from investigations in physics made previously by Nernst, Einstein, Navier, Stokes, Planck and Maxwell, and (ii) a conceptual approach in designing reactors and processes.

16- According to the passage:

1) Electrochemistry is a basic discipline.
2) Engineers are highly expert in mechanics and technology.
3) Main scientific discoveries were made before World War II.
4) The development of processes after World War II was carried out by engineers.

17- A conceptual approach is an approach based on

1) previous experiences
2) logic and thought
3) fundamental evidences
4) important engineering principles

18- Electrochemical engineering

1) is part of chemical engineering
2) deals with electroplating processes

3) is closely related to chemical engineering
4) is a discipline combining physics and engineering
19- Chemical engineering was established

1) the same time as physics and engineering
2) long before electrical engineering
3)as a discipline around World War II
3) around 70 years ago.

20- Transport phenomena is

1) created in mid $20^{\text {th }}$ century
2) accomplished with reactor engineering
3) the basis for electrochemical engineering
4) an important tool for chemical engineering

Passage 2:

Pumps are among the most commonly used machines in the chemical process industries (CPI). Condition monitoring tests and predictive maintenance can help pump operators determine when to overhaul pumps in a way that minimizes costs. Despite pumps' ubiquity and large energy demands, however, relatively little information is available on how to apply predictive maintenance approaches and condition monitoring to process pumps.
Pump overhauls may occur on a fixed time schedule or as a result of a specific breakdown, but neither case necessarily represents the most cost-effective policy. In cases where deterioration in the performance of a centrifugal pump causes a drop in plant production, pump overhaul is readily justified, because the cost of performing the overhaul is usually small compared to the losses from reduced production. However, when pump performance deteriorates due to wear and the only effect is increased power consumption (with no discernable effect on productions), the question of when to perform an overhaul becomes important.

21- According to the passage the word "overhaul" means

1) proper repair to bring the pumps to the full working condition
2) a kind of preventive maintance
3) performing regular repairs
4) scheduled maintenance

22- There are

1) comprehensive documents for pump repair.
2) well-known programs for pump monitoring.
3) not enough experiences on pump performances.
4) not enough data available for pump preventive maintenance.

23- If there is any defect on a pump

1) it needs to go for overhaul
2) the pump may continue to work
3) it is better to replace the pump
4) it should be halted immediately

5) costly
6) cost effective
7) a common practice
8) energy demanding

25- Pump overhaul is justified when

1) it becomes important
2) wear of pump only increases its power consumption
3) there is no pronounced effect on plant performance
4) drop in pump performance results in decreased production

Passage 3:

Evaporators are used in a wide range of processes, including pharmaceuticals, foods and beverages, pulp and paper, chemicals, polymers and resins, inorganic gals, acids, bases, and a variety of other materials. There are many types and variations of evaporators, and the best for a particular application depends on the products characteristics and desired results.
Evaporating differs from drying in that the residue is flowable liquid instead of a solid. Evaporating is different from distillation in that there is no attempt to separate the vapors into individual components.

26- The phrase "pump's ubiquity" suggests that pumps \qquad

1) are used in the chemical process industries
2) have high fuel consumption
3) are encountered a lot
4) are expensive

آزمون رشته مههندسى شیيمى
27- In a number of inorganic industries

1) polymers and resins
2) acids and bases
3) evaporators
4) chemicals

28- A chemical engineer must choose an evaporator according to

1) vaporization characteristics
2) the product specifications
3) their size distribution
4) the product capacities

29- The product in

1) drying is not flowable
2) evaporation is not a residue
3) evaporation is vapor
4) drying is not solid

30- Vapors in

1) evaporation are useful products
2) distillation and evaporation are useful
3) distillation are separated to different products
4) evaporation are usually wasted

> انتقال حرارت (T,

شكل نشان دهنده توزيع دما در مجموعه نشان داده شده است؟ استوانهُ مركزى توپر است. شرايط را پايا

 شرايط ثابت باقى بماند، كدام عبارت در خصوص دماى خروجى آب و كل حرارت منتقل شد شده به سيال صحيح است؟

$$
\begin{aligned}
& \text { () دماي آب خروجى افزايش و حرارت منتقل شده به سيال بيشتر میشود. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「 }
\end{aligned}
$$

كدام عبارت صحيح نيستْ

1）ضخامت لايهماى مرزى سيالاتى و حرارتى جابجايى طبيعى مربوط به سيال مجاور يكى ديواره عمودى كرم با يكديكر برابر هستند．
 r هدايتى است．
艮 $\frac{\mathrm{Gr}}{\mathrm{Re}^{r}}$ رايين بيشتر است －در ميعان لايهای آرام روى يك سطح استوانهاي عمودى（مطابق شكل）چֵه موقع مى توان از روابط مربوط به ميعان روى سطح تخت عمودى استفاده كرن؟

$$
\begin{aligned}
& \text { () اتر نسبت } \\
& \text { (T) آر آر نسبت } \\
& \text { با } \\
& \text { (f اين امكان وجود ندارد. }
\end{aligned}
$$

 ميكَذرد برابر جگالش كدام است؟

$$
\frac{\mathrm{h}}{\left(r_{0}\right)^{0 / r \Delta}}\left(\varphi \quad \frac { r _ { 0 } } { (\mathrm { h }) ^ { 0 / r \Delta } } \left(r \quad r _ { 0 } (\mathrm { h }) ^ { 0 / r _ { 0 } } \left(r \quad \mathrm{~h}\left(r_{0}\right)^{\circ / r \Delta}()\right.\right.\right.
$$

$$
\begin{align*}
& \text { در مبدل هالى حرارتى ضريب كلى انتقال حرارت به كدام ترتيب زير افزايش مى يابد؟ }
\end{align*}
$$

(
 محاسبه ضر يب انتقال حرارت جابهجايى سيال بيرونى كدام مقدار (بر حسب سانتىمتر) به عنوان قطر معادل هيدروليكى استفاده میشود؟

10 (1
ro (r
ro (
ro (f
 فاصله المترى از هم قرار دارند. يك سير تابشى با حه ضريب گسيلى بين آنها قرار دهيم تا شدت اننقال
ra-ra مطابق شكل درون لولهاي كه فلاكس حرارتى ثابتى به ديواره آن وارد مى ششود سيالى ترم مى شود. در دو
 اططلاعات ارائه شده دماى سيال در نقطه دوم بر حسب درجه سانتىكراد و شار حرارتى اعمالى به لوله بر

$$
\begin{aligned}
& \text { حرارت به } \\
& \text { ojor (1) } \\
& 0009(r \\
& \% \text { \% } \% \text { (T) } \\
& \text { \% old (f }
\end{aligned}
$$

 است. بر اساس مشخصات ارائه شده زمان تقر يبى لازم (برحسب دقيقه) براى آنكه بيشتر از هو \% تغييبرات دماى كره طى شود، حه مقدار است؟
$0,5 k=00 \frac{w}{m . K}$
人 (1)
\circ, $\rho=\operatorname{vroo} \frac{\mathbf{k g}}{\mathbf{m}^{r}}$
$19(T$
rolr
$C_{p}=1000 \frac{\mathbf{j}}{\mathbf{k g}^{\circ} \mathbf{C}}$ rrif
j $k=0, \circ \Delta \frac{w}{m \cdot K}$
اF سطح فيندارى را در نظر بگيريد كه تعداد زيادى فين بر روى آن نصب شده است به طورى كه سطح

 راندمان فينهاى اين مجموعه چند درصد است؟ ضريب انتقال حرارت جابهجايى هوا و مجموعه

$$
\begin{aligned}
& \text { فيندار } \\
& 9 \circ \text { (1) } \\
& r \Delta(T \\
& \text { A (r } \\
& Y \text { if }
\end{aligned}
$$

شكل زير شماتيكى از جريان آرام يكى فلز مذاب بر روى يك سطح گرم شونده را نشان میىدهد كه در آن كرمايش از x=x آغاز مى شود. كدام عبارت صحيح است؟

 ضخامت لايه مرزى حرارتى مىتواند بزرگتثر از لايه مرزى سرعتى شود.
 r r) ضخامت لايه مرزى سرعتى همواره بزرگتر از ضخامت لايه مرزى حرارتى استى. (f
 نقطه B باشد و در نقطه C ضريب انتقال حرارت هدايتى برابر

تغييرات ضريب انتقال حرارت هدايتى (K) اين ديواره بر حسب دماست؟

$$
\begin{aligned}
& r \Delta+o, \Delta T(l \\
& r \Delta-o, \Delta T(r \\
& v \Delta-r T \\
& q_{0}-r T
\end{aligned}
$$

شكل زير شماتيكى از گسستهسازى دامنه حل براي مسأله هدايت حرارتى پايا در يكى صفحه دو بعدى

(f به شرايط مرزى ضلع يايبن بستگى دارد.
-FA - برای يك يره (فين) با مقطع مستطيلى با طول معين ييشنهاد شده است كه در جهت طولى هره بره به دو قسمت

(1) , أندمان حرارتى هجموعه كامثش مى يابيد.

 (f) افزايش يا كاهش راندمان حرارتى به جنس يره بستكى دارد.

$$
\begin{aligned}
& \text { () كمتر هیشيود. } \\
& \text { (T) زيادتر میشود. } \\
& \text { (r) تغييرى نمى كند. }
\end{aligned}
$$

 عبارت زير صحيح است؟

$$
\text { ا مرحله اول } ا \text { ا } \mathrm{C}=+10 \mathrm{~kJ}, \quad W=-\Delta \mathrm{kJ}
$$

$$
\text { مرحله دوم } r \rightarrow r \quad \mathbf{~ م ر ~}=-1 \Delta k J, \quad W=+10 \mathrm{~kJ}
$$

$$
\text { مرحله سوم } r \rightarrow 1 Q=+r \circ k J, W=-r \Delta k J
$$

(Tokg -FV میشود. اكر شدت جريان حرارت خروجى از مخزن در مقدار F/M $\frac{\text { Kj }}{\text { kg.k }}$

FA -FA

1) فقط براي ذوب (يا انجماد) صحيح نيست.
(T) فقط براى تصعيد صحيح نيست.

(f) براى هر تغيير فازى صحيح است.

$r / r(1$
9/4 (r
$9(\%$
10 (f

$$
\begin{aligned}
& \text { فرض كنيد. } \\
& \text { F000 (1) } \\
& \text { 0000 (r } \\
& 9000 \text { (r } \\
& \text { Y } \mathrm{B} 00 \text { (f }
\end{aligned}
$$

سانتىمتر مكعب فرض كنيد.
Vo (1
VA (T
$1 \circ$ (${ }^{2}$
1Δ (f
اها جريانى با شدت 100 و آنترويى مخصوص r به صورت كاملاً يكنواخت (بايدار) وارد يك مخزن اختلاط عايق
 خروجى برابر 0 ا باشد، شدّت تغيير خالص آنترويى اين تحولّ جقدر است؟ واحدها همه هماهنتى و اختيارى

هستند.

 حال به اين مخزن ترما مىیهيمه تا درست در لحظهايكه درون اين مخزن فقط و فقط يكـ فاز وجود داشته
 () اين فاز بخار اشباع با كيفيت صد در صد خواهد بود.
 (ا) اين فاز بخار اندكى داغ خواهد بود.

ror برای مادهاى دما و فشار بحرانى به صورت زير است، در دما و فشار ro bar و اين ماده در كدام فاز قرار دارد؟
$T_{\mathrm{c}}=\mathrm{rook}$
$\mathbf{P}_{\mathbf{c}}=\Delta \circ$ bar

$$
\begin{aligned}
& \text { (T) بخار (}
\end{aligned}
$$

() اليع سرد (فشرد0)
(T) تعادل مايع و بخار (امر

 مستقل بودن گرماى تبخير از دما، براى فشار تعادلى (P)، كدام مورد صحيح است؟ k يك ثابت بوده و R ثابت عمومى گازها میا میباشد.

$$
\begin{aligned}
& k \exp \left(\frac{-q}{R T}\right) \\
& k \exp \left(\frac{-\mathrm{Fq}}{\mathrm{RT}}\right) \\
& k \exp \left(\frac{\mathrm{q}}{\mathrm{PV} V_{\mathrm{g}}}\right) \sigma \\
& k \exp \left(\frac{-q}{\mathrm{PV}}\right)
\end{aligned}
$$

صورتى كه $C_{v}=r \circ \frac{J}{m o l .{ }^{\circ} \mathbf{K}}, \ln r=0,9 a r$

$$
\begin{aligned}
& \text { r/q90 (l } \\
& \text { g/qr (r } \\
& \text { ir/As (r } \\
& \text { ro, va (f }
\end{aligned}
$$

يه يك مخزن صلب عايق توسط يك غشاء به دو قسمت مساوى تقسيم شده است. درون يك قسمت دو كيلوگرم كاز كامل در دماى

 $\mathbf{R}=\wedge \frac{\mathbf{j}}{\operatorname{grmol}^{\circ} \mathrm{K}}, \ln Y=0, V, \ln r=1,1$

$$
\begin{aligned}
& \text { (1) } \\
& \text { - ora (r } \\
& \text { or (r } \\
& \text { li, (f) }
\end{aligned}
$$

 مورد زير است؟ A هارامتر ثابتى است.

$$
\begin{aligned}
& \frac{P}{r}+A P^{r}(1 \\
& P+A P^{r}(r \\
& P+r A P^{r}(r \\
& r P+A P^{r}(r
\end{aligned}
$$

 كدام است؟ واحدها هما همه هماهنع و اختيارى است.

$$
\begin{array}{r}
-\mathrm{a}(1 \\
+\mathrm{a}(\tau \\
\mathrm{a}-\mathrm{b}< \\
\mathrm{b}-\mathrm{a}(\uparrow
\end{array}
$$

 $\mathbf{x}_{1}^{\mathrm{az}}=\mathbf{y}_{1}^{\mathrm{az}}=0, \mathrm{~V}, \mathrm{P}_{1}^{\text {sat }}=100 \mathrm{kPa}, \mathrm{P}_{\mathrm{T}}^{\text {sat }}=\Lambda \circ \mathbf{k P a}, \mathrm{P}^{\mathrm{az}}=110 \mathrm{kPa}$,

$$
\begin{aligned}
& \text { - } \mathrm{NO} 0(1 \\
& \text { - Va (r } \\
& 0 / 10 \text { (} \\
& 0 / 10 \text { (f }
\end{aligned}
$$

- ヶ9 (1
- TH (r
- رr^ (r
- fiff (f)

 با فاز مايع حقدر است؟

0 0 (1

- Vo (T)
$\circ \wedge(\%$
0,9 (f)

 اوليه C برابر صفر است.

$$
\begin{aligned}
& \left(\prod_{i=1}^{n}\left(\mathbf{y}_{i}\right)^{v_{i}}=\left(\frac{\mathbf{P}}{\mathbf{P}_{o}}\right)^{-\mathbf{v}} \mathbf{k}: \int \text { فرض: مخلوط كاز كامل يا ايدمآل }\right) \\
& \mathbf{A}(\mathbf{g})+\mathbf{B}(\mathbf{g}) \rightleftarrows \mathbf{C}(\mathbf{g})
\end{aligned}
$$

$$
\begin{aligned}
& \text { - NAT (1 } \\
& \text { - MTT (T) } \\
& 0,9 \text { (} \\
& \text { - Ffft (f }
\end{aligned}
$$

 به اطلاعات داده شده در شرايط زير كدام عبارت صحيح است؟ $\frac{\mathbf{G}^{\mathbf{E}}}{\text { RT }}=-\mathbf{x}_{1} \mathbf{x}_{\Gamma}, \mathbf{P}_{1}^{\text {sat }}=100 \mathrm{kPa}, \mathbf{P}_{r}^{\text {sat }}=\Lambda \circ \mathbf{k P a}$
() مخلوط آزئوتروپ ندارد.

 كدام يك از روابط زير نادرست است

$$
\begin{aligned}
& \lim _{x_{1} \rightarrow 0} \gamma_{1}=1() \\
& \lim _{x_{1} \rightarrow 1} \gamma_{1}=1 \text { (} \\
& \lim _{x_{1} \rightarrow 0} \gamma_{1}^{*}=1 \text { (r } \\
& \lim _{x_{1} \rightarrow 1} \gamma_{r}^{*}=1 \text { (f }
\end{aligned}
$$

 فرض كره، مقدار تقريبى توان مصرفى كمير سور برحسب كالرى بردقيقه كدام است؟ ضر اسريب تراكمريذيرى كاز در نقطة خروجى از كميرسور برابر هـهر است؟ است
$\mathbf{R}=r \frac{\mathbf{c a l}}{\text { grmol. } \cdot{ }^{\circ} \mathbf{K}}, \mathbf{L n r}=0, \nu, \operatorname{Ln} r=1,1, \operatorname{Ln} \Delta=1,9$
$\exp (x)=1+x+\frac{x^{r}}{r!}+\ldots$

$$
\begin{aligned}
& 1100 \text { () } \\
& 9000 \text { (r } \\
& 9000 \text { (r) } \\
& 10000 \text { (f }
\end{aligned}
$$

99- منحنى جريان (flow Curve) دو سيال به صورت شكل زير است. در دبى يكسان از دو سيال داخل لوله

$$
\begin{aligned}
& \text { (T) ماكزيمم سرعت سيال (T) و (T) و(T) برابر است. } \\
& \text { (f) بستّى به نوع جريان دارد. }
\end{aligned}
$$

-9V برحسب متر بر ثانيه حقدر باشد كه باعث ورود آب از تانك به داخل لوله به مقدار $\mathbf{g}=10 \frac{\mathbf{m}}{\mathbf{s}^{r}}, \rho_{w}=1000 \frac{\mathbf{k g}}{\mathbf{m}^{r}}, \rho_{\text {air }}=1 \frac{\mathbf{k g}}{\mathbf{m}^{r}}$

$$
\begin{aligned}
& \mathrm{r} \sqrt{10}(1 \\
& +\sqrt{10}(r \\
& \Delta \sqrt{10} \text { (} \mathrm{r} \\
& \mathrm{v} \sqrt{10} \text { (}
\end{aligned}
$$

-9A- دو لوله با طول يكسان كه قطر يكى دو برابر ديگرى است براى تخليه آب از يكى مخزن روباز مطابق شكل
 باشد، دبى تخليه از لولهُ بزركتر حند برابر دبى تخليه از لو اله با با قطر كمتر است؟

99- منحنى مشخصه میيى به صورت زير داده شده است، اكر با اين يمب سيال با ويسكوسيته زياد يمب شود

-V. مايع خطى باشد، سرعت در فصل مشترك دو مايع حقدر است؟

$$
\begin{aligned}
& \frac{\mu_{1} h_{1} V}{\mu_{1} h_{1}+\mu_{Y} h_{Y}} \text { (l } \\
& \frac{\mu_{1} \mathrm{~h}_{\mathrm{r}} \mathrm{~V}}{\mu_{1} \mathrm{~h}_{\mathrm{Y}}+\mu_{\mathrm{r}} \mathrm{~h}_{\mathrm{Y}}} \text { (} \\
& \frac{\mu_{Y} h_{Y} V}{\mu_{Y} h_{Y}+\mu_{T} \mathrm{~h}_{\mathrm{Y}}} \text { (r }
\end{aligned}
$$

 مورد نياز براي كشيدن صفحه كدام است؟

$\mu \mathrm{VL}$ (
$\frac{\mu \mathrm{V}}{\mathrm{h}}$ (r

$$
\frac{\mu \mathrm{V}}{\mathrm{hL}}(r
$$

$$
\frac{\mu \mathrm{VL}}{\mathrm{~h}} \text { (f) }
$$

(Vr

-Vr

درى كره كدام است؟
ors (1)
$0,0(T$

f ${ }^{(f)}$

استوانه جامد A به جرم Y/ اس مطابق شكل زير، در داخل لولهاي به طرف هايين میلغزد. استوانه و لوله v×10 ${ }^{-r} \frac{\text { N.S }}{\mathbf{m}^{r}}$ g=10 $\frac{\text { m }}{s^{r}}$.

$$
\begin{aligned}
& \frac{1 \% v}{1000}(1) \\
& \frac{1 \psi V}{r \Delta 0}(r \\
& \frac{r \Delta 0}{1 F v}(\gamma \\
& \frac{1000}{1 F \gamma}(\psi
\end{aligned}
$$

 حجم خالى به حجم كل در مقطع قلممو ع، كشش سطحى رنى م

$$
\begin{aligned}
& \frac{r \sigma \varepsilon}{\rho g a} \cos \beta() \\
& \frac{r \sigma}{\rho g a} \frac{(1-\varepsilon)}{\varepsilon} \cos \beta(r \\
& \frac{r \sigma}{\rho g a} \frac{\varepsilon^{r}}{(1-\varepsilon)} \cos \beta(r \\
& \frac{r a}{\rho g \sigma} \frac{(1-\varepsilon)}{\varepsilon^{r}} \cos \beta(\tau
\end{aligned}
$$

$$
\begin{array}{r}
\rho g \mathrm{~h}_{\mathrm{f}_{\mathrm{r}}}(l \\
\rho g \mathrm{Q}_{\mathrm{r}} \mathrm{~h}_{\mathrm{f}_{\mathrm{r}}}
\end{array}\left(\begin{array}{r}
\text { re }
\end{array}\right.
$$

 سيال بين فاصله مخروط و ديواره را به دست آوريد (b خيلى كوحك است) استى .

$$
\begin{aligned}
& \frac{\pi \omega R^{\psi}}{r b \tan \theta \mathrm{~T}}() \\
& \frac{b \cos \theta \mathrm{~T}}{\mathrm{r} \pi \omega \mathrm{R}^{\psi}}(\tau \\
& \frac{r b \tan \theta \mathrm{~T}}{\pi \omega \mathrm{R}^{\psi}}(r \\
& \frac{r b \cos \theta \mathrm{~T}}{\pi \omega R^{\psi}}(\uparrow
\end{aligned}
$$

VA -VA يك صفحه مستطيل قائم طورى در آب قرار داده شده است كه لبة بالايى آن برسطح آزاد آب منطبق

 نيروى هيدرواستاتيكى وارده بر مستطيلهاى اللى זr باشد نسبت نيروى وارده به صفحه سوم به نيروى كل | (1) | h |
| :--- | :--- |
| (1) | h |
| (1) | h |

(1) دو برابر میشود و ار تفاع آب در شاخه متصل به مقطع بزر بتّر بالاتر میرود.
 r (f) جهار برابر میشود و ارتفاع آب در شاخه متصل به مفطع كوحكتر بالاتر مىرود:
 | و r برابر 10,000Pa باشد نيروى اصطكاك ديواره روى سيال تقر يباً برابر جند نيوتن است؟

$$
\begin{array}{r}
\left(\pi=r, \rho=1000 \frac{\mathbf{k g}}{\mathbf{m}^{r}}\right) \\
r \circ(1) \\
f_{0}(r \\
\Delta 0(r \\
9 \circ(f
\end{array}
$$

كنترل فرآيندها:

رابطه X و به صور ت زير است:

$$
\mathbf{y}(\mathrm{s})=\mathbf{G}(\mathrm{s}) \mathbf{x}(\mathrm{s})
$$

$$
\begin{aligned}
& \sin t(1 \\
& \cos t(\gamma \\
& r \sin t(\gamma \\
& r \cos t(f
\end{aligned}
$$

مكان هندسى ريشهههاى معادله مشخصه يك مدار كنترل كه كنترل كننده آن تناسبى است به صورت زير
مى باشد. اكر مقدار مقر ريك تغيير چلهالى واحد كند مقدار افت كنترل (off-set) چققدر است؟
-0Δ (1 (T of (r - Δ (f

(

$$
\begin{aligned}
& r h_{s}^{\frac{1}{r}} A(r \\
& r h_{s}^{\frac{r}{r}} A \text { (f } \\
& \text { - N - معادله مشخصه سيستمى به صورت زير است: } \\
& s^{F}+s^{r}+s+1=0 \\
& \text { كدام عبارت صحيح است؟ } \\
& \text { () إيايدار است } \\
& \text { (T) يك ريشه نا }
\end{aligned}
$$

(f) سه ريشَه نا

صفتحه	509D	آزمون رشته مهندسى شيمى

 مى باشد. كدام عبارت صحيح است؟

> (T) سيستّم نايايدار است و يكى ريشهى نايايدار دارد.

(f

99- با توجه به اينكه مقدار فركانس كذرا (Cross Over) سيستم كنترل نشان داده شده برابر هره است، مقدار حاشيه بهره (Gain Margin) سيسته حقدر است؟

-9. دامنهها در اين فركانس AR

كدام است؟ $\frac{\mathrm{AR}_{\mathrm{H}}}{\mathrm{AR}_{\mathrm{C}}}$
$\%$ (1)
$1(r$ $1 / \Delta \pi$ $r(f$

-9Y است؟

$\frac{R_{1} R_{Y}}{\left(\tau_{1} s+1\right)\left(\tau_{Y} s+1\right)}(1$

$$
\begin{gathered}
\frac{R_{r}}{\left(\tau_{1} s+1\right)\left(\tau_{r} s+1\right)}(\tau \\
\frac{R_{r}}{\left(\tau_{r} s+1\right)}
\end{gathered}
$$

$$
\frac{R_{r}}{R_{1}\left(\tau_{\gamma} s+1\right)}(\psi
$$

كه

T T () يك جفت ريشه روى محور موهومى و يك ريشه حقيقى در سمت راست محور موهومى است.

-9F نمودار جعبهاى يك سيستم كنترلى راكتور شيميايى به صورت زير رسم شده است. اكَر فركانس كـذرا برابر با با

$$
\begin{aligned}
& \frac{\sqrt{\Delta}}{r}(1 \\
& \frac{r}{\sqrt{\Delta}}(r \\
& \frac{r \sqrt{\Delta}}{\Delta}(r \\
& \frac{9 \sqrt{\Delta}}{r_{0}}(r
\end{aligned}
$$

هه- در حه شرايطى یاسخ سيستم كنترلى زير شامل يك كنترل كننده تناسبى -انتقرالى (PI) سريعتر است؟

> (r)

انتقال جرم و عمليات واحد (1 و Y):

() فلاكس انتقال جرم جزء A ناشى از نفوذ مولكولى r) فلاكس انتقال جرم جزء A ن ناشى از جابجايى

 فلاكس (شار) انتقال جرم (N (N) درآن موضع خاص كدام است؟

$$
\begin{aligned}
& -\frac{r D_{A C} \cdot P_{t}}{R T z} \ln \left(1+y_{A_{1}}\right)(1 \\
& \frac{\mathrm{D}_{\mathrm{AC}} \cdot \mathrm{P}_{\mathrm{t}}}{\mathrm{RTz}} \ln \left(\frac{1}{1+\mathrm{y}_{\mathrm{A}_{1}}}\right)(r \\
& \frac{\mathrm{D}_{\mathrm{AC}} \cdot \mathrm{P}_{\mathrm{t}}}{R T \mathrm{z}} \ln \left(\frac{1+\mathrm{y}_{\mathrm{A}_{1}}}{1+\mathrm{y}_{\mathrm{A}_{Y}}}\right)(\Gamma \\
& \frac{D_{A C} \cdot P_{t}}{r R T z} \ln \frac{1}{1+y_{A_{1}}} \text { (f }
\end{aligned}
$$

 A در نقطه ا به نقطه Y كدام است؟ $09(1)$
$1 / 4$
$10(4$
-99 دست آمده است. براى اين سيستم مقادير δ در نظريه فيلم (برحسب mm)، زمان تماس برحسب (s) در نظريه رسوخ (Penetration) و نرخ تجديد سطح (s) در نظريه Danckwerts (برحسب (إ) كدام است؟

$$
\begin{array}{r}
\varphi(\pi \cong r) \\
1, \frac{1}{10}, 0 \text { or }(1 \\
10, \frac{r}{10}, 0,01(r \\
10^{-\Delta}, \frac{f}{10}, \% \text { or (r } \\
10^{\circ}, \frac{\Lambda}{10}, 0,01(f
\end{array}
$$

 , $\mathbf{C a i l}_{\text {د }} \frac{\mathrm{kmol}}{\mathbf{m}^{r}}$

$$
\begin{aligned}
& \text { جدارة ثلاستيكى يعنى در } \\
& \mathrm{C}_{\mathrm{Ai}}\left[\frac{\ln \left(\frac{r_{i}+r_{0}}{r_{\mathrm{o}}}\right)}{\ln \left(\frac{r_{i}}{r_{0}}\right)}\right] \text { (} \\
& \mathrm{C}_{\mathrm{Ai}}\left[\frac{\frac{1}{r}-\frac{1}{r_{i}}}{\frac{1}{r_{i}}-\frac{1}{r_{a}}}\right](r \\
& \mathrm{C}_{\mathrm{Ai}}\left[\frac{\mathrm{r}-\mathrm{r}_{0}}{r_{i}-r_{5}}\right](r \\
& C_{A i}\left[\frac{r-r_{i}}{r_{0}-r_{i}}\right] \text { (f }
\end{aligned}
$$

> 00009 (1
> opoorf (r
> oporAf (T
> opoo99 (f

$$
\begin{aligned}
& \text { است؟ (m شيب خط تعادل است)؟ } \\
& \mathrm{m}^{\top} \text { (1 } \\
& e^{m} \text { (r } \\
& \text { m(r } \\
& \frac{1}{m}(f
\end{aligned}
$$

K.

 باشد، تعداد واحذهاى جمعى انتقال كاز (N $)$ (OG $\Delta(1$ $9(1)$ $19(4$ Tr (f
-1.F كداميك از خشكىنهای زير به ترتيب برای مواد حساس به دما و توليد ذرات كروى توخالى مناسبتر است؟
 (T) خشك (T)

ها- ا- كاهش فشار عملياتى تبخير كننده، كداميك از اثرات زير را همراه دارن؟ (ضريب كلى انتقال حرارت و تمام
(پارامتر ها ثابت فرض مى شوندن)

1.9- هر خصوص تغييرات تعداد سينىهاى مورد نياز يكى برج تقطير برحسب نسبت مايع بركشتى، كدام شكل

انجام عمل تقطير مخلوط آب و اسيد استيكى در فشار اتمسفر چگگونه است؟ - I•V

(F

اگر خوراك ورودى اين برج به صورت oه. \% ماده سبك بوده باشد، كدام عبارت صحيح است؟
(1) خوراكى مايع سرد بوده است.

1.9- در يكس برج تقطير دو جزئى، دو سينى متوالى داراى درجه حرارت يكسان بودهاند. كدام عبارت در اين مورد

صصحيحتر است؟
) إقطر برج بسيار بزر
(Y) قطر برج بسيار كوحكى بوده است
(Y) برج در شرايط نسبت برگشت حداقل كار ميكند

-11-
() با الضافه كردن مقدارى آب خالص به الين مخلوط تقطبر آزئوتروت بعم ميخورد. Y (Y) برای حذف نقطه آزئوتروت بايد تقطير در فشار كمتر از اتمسفر انحجام شود.

- - ا111 يك سيستم دو جزنى (A B B) داراى يكى نقطه مينيمم در محورهاى مختصات فشار بخار بر حسب مول
 تقطير شود، تركيب محصول پايين برج تقر يباً كدام است؟ () (1) نقطه آزئوتروبت
(A) جزء (T)
(B) جز (

 نقطه تفاضل در يكى فر آيند ناهمسو (Counter-Current) روى اين سيستم تعادلى، در كدام سمت قرار

دارد؟ (B حلال و C جزء انتقالى است.)

 (T) روى يكى خط موازى با قاعده مئث خواهد بود.
ケ) سمت جب خواهد بود.
f(f) سمت راست خواهد بود.
($\mathbf{G}_{\mathrm{s}}^{\prime}$)

 ترسيمى در دياكرام مثلثى براى اين حالت به حه صورتى استى (ضريب توزيع برابر يكى فرض شده است و اسِ

حلال مصرفى خالص مىيباشد)

(r

(f)

(Rotary Dryer) كداميك از موارد زير قطعاً باعث افزايش Hold up (ماندگى جامد) است

119－برای واكنش زير كه در راكتور ناييوسته انجام مىگيرد．ميزان تبديل بعد از كذشت يك ساعت حند درصد

俍 بر ليتر و میتواند حاصل شود جقدر است؟

$$
0,99(1)
$$

－NT N
－$⿴ 囗 ⿰ 丿 ㇄$
ors if
 در راكتور واكنش A با معادله سرعت $\mathbf{~ L ~}$
（T）برحسب دقيقه در راكتور حقدر است؟

$$
\begin{array}{r}
0, j t(1 \\
0,9 y(r \\
1 \text { (r } \\
\text { yors (f }
\end{array}
$$

119
تبديل B به Tه درصد بر سد، درصد R در محصولات جقدر است؟

$$
k_{1}=r k_{r}, C_{A_{o}}=C_{B_{o}}=C_{D_{o}}=1 \frac{\mathrm{~mol}}{\text { lit }}
$$

$$
\begin{aligned}
& A \rightarrow R,-r_{A}=\mu_{A}^{\circ} / \Delta, C_{A_{0}}=1 \frac{\mathrm{~mol}}{\text { lit }} \\
& \text { No (} 1 \\
& 10(T \\
& \text { 90 (} \Gamma \\
& 100 \text { (f }
\end{aligned}
$$

五.
 خالص است).

$$
\begin{aligned}
& \frac{r}{\Delta}(1 \\
& \frac{\Lambda}{r} \pi \\
& \frac{19}{r} \pi \\
& \lambda(\varphi
\end{aligned}
$$

וזا- واكنش درجه دوم A

(Vo و ميزان تبديل در راكتور 90 درصد است. درصد افزايش شدت جريان خروجى از راكتور حقدر است؟
90 (1)
$\Delta \circ$ (
ro (r
ro (f
 همراه هايين نكَداشته مى شود. اتر عدد بیى بُعد (

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{A}}=\frac{\Delta-\sqrt{\Delta}}{f}() \\
& \mathrm{x}_{\mathrm{A}}=\frac{\Delta+\sqrt{\Delta}}{r}(r \\
& \mathrm{x}_{\mathrm{A}}=\frac{\Delta-\sqrt{\lambda}}{r}(r \\
& \mathrm{x}_{\mathrm{A}}=\frac{\Delta+\sqrt{\lambda}}{r}(F
\end{aligned}
$$

rir
 $r(1$

共 محيط واكنش و غلظت واكنشعَر خالص A بايد جیَونه باشد؟

$$
\begin{aligned}
& \text { (1) نزولى و زياد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (f) مينيمهو و زياد }
\end{aligned}
$$

هr اr در واكنش موازى

$$
\begin{aligned}
& \mathrm{E}_{1}<\mathrm{E}_{T}() \\
& \mathrm{E}_{1}=\mathrm{E}_{T}(\tau \\
& \mathrm{E}_{1}>\mathrm{E}_{T}(\uparrow \\
& \mathrm{E}_{1} \geq \mathrm{E}_{\Gamma} \text { (个}
\end{aligned}
$$

انتخاب راكتور كدام است؟

$$
\begin{aligned}
\bar{t} & =\tau\left(1+\varepsilon_{A} x_{A}\right) \\
\tau & =\bar{t}\left(1+\varepsilon_{A} x_{A}\right)^{r} \\
\bar{t} & =\frac{\tau}{\left(1+\varepsilon_{A} x_{A}\right)} \\
\tau & =\frac{\bar{t}}{\left(1+\varepsilon_{A} x_{A}\right)}
\end{aligned}
$$

(در فاز مايع در يكى راكتور انجام میكيرد. اتر تغييرات تابع تشكيل كل A R R R R تغييرات غلظت A به صورت نزولى باشد، جه نوع راكتورى را بايد انتخاب كرد تا حداكثر مقدار R R توليد
كرده؟
 اضافه كنيه (با فرض اينكه واكنش سريع باشد) كدام عبارت زير صحيح است؟

(r) تركيب نسبى A A A ا ضمن واكنش يكنواخت است و R R توليد میشود.
(r) غلظت A (A (f خالص با A د A هال تركيب مخلوط مى شود ولى جسم واسط؛ R توليد نخواهد شد.

موازنة جرم براى R در يك راكتور مخلوط شونده با كدام يك از $\mathbf{~ م ~}$ موارد زير برابر است؟

$$
\frac{\mathrm{C}_{\mathrm{R}}}{\mathrm{C}_{\mathrm{A}}}=\frac{\mathrm{k}_{1} \tau \mathrm{~m}}{1+\mathrm{k}_{1} \tau \mathrm{~m}}
$$

$$
\frac{\mathrm{C}_{\mathrm{R}}}{\mathrm{C}_{\mathrm{A}_{\circ}}}=\frac{\mathrm{k}_{1} \tau \mathrm{~m}}{\left(1+\mathrm{k}_{1} \tau \mathrm{~m}\right)(1+\mathrm{k} \tau \mathrm{~m})^{r}}(r
$$

$$
\frac{\mathrm{C}_{\mathrm{R}}}{\mathrm{C}_{\mathrm{A}_{0}}}=\frac{\mathrm{k}_{\mathrm{r}} \tau \mathrm{~m}}{\left(1+\mathrm{k}_{1} \tau \mathrm{~m}\right)(1+\mathrm{k} \tau \mathrm{~m})}
$$

$$
\frac{\mathrm{C}_{\mathrm{R}}}{\mathrm{C}_{\mathrm{A}_{0}}}=\frac{\mathrm{k}_{1} \tau \mathrm{~m}}{\left(1+\mathrm{k}_{1} \tau \mathrm{~m}\right)\left(1+\mathrm{k}_{\mathrm{r}} \tau \mathrm{~m}\right)}
$$

رياضيات (كاربردى -عددى):

 تغييرات فشار ماده A برحسب زمان است؟ (فرض میشود دماى مخزن تغييرى نمىكند و كاز A ايدهآل

$$
\text { است)، } \alpha \text { : مقدار ثابت }
$$

$$
\begin{array}{r}
\mathrm{P}=\frac{\alpha}{\mathrm{t}}(\lambda \\
\mathrm{P}=\alpha \mathrm{t} \\
\mathrm{P}=\alpha \sqrt{\mathrm{t}} \quad(\gamma \\
\mathrm{P}=\alpha t^{r} \quad\left({ }^{r}\right.
\end{array}
$$

 ثابت)

$$
\begin{aligned}
& x^{r} \frac{d T^{r}}{d x^{r}}+x \frac{d T}{d x}-m x^{r}\left(T-T_{\infty}\right)=0(\\
& x^{r} \frac{d T}{d x}+x \frac{d T^{r}}{d x^{r}}-m\left(T-T_{\infty}\right)=0(T \\
& x^{r} \frac{d T^{r}}{d x^{r}}+r x \frac{d T}{d x}-m x\left(T-T_{\infty}\right)=0(r \\
& x^{r} \frac{d T^{r}}{d x^{r}}+r x \frac{d T}{d x}-m\left(T-T_{\infty}\right)=0(\tau
\end{aligned}
$$

rri- حل كدام مدل زير در زمان

$$
\frac{\partial^{r} T}{\partial x^{r}}+\frac{\dot{q}}{k}=\frac{1}{\alpha} \frac{d T}{d t} \quad\left\{\begin{array}{l}
x=0 \\
x=1 T=\alpha
\end{array} \quad t=0 \quad T=T_{0}(1\right.
$$

$$
\frac{\partial^{r} T}{\partial x^{r}}+\frac{\dot{q}}{k}=\frac{1}{\alpha} \frac{d T}{d t}\left\{\begin{array}{l}
x=0 \quad \frac{d T}{d x}=\alpha \\
x=1 \frac{d T}{d x}+b T=0
\end{array} \quad t=0 \quad T=T_{0}(T\right.
$$

$$
\frac{\partial^{T} T}{\partial x^{r}}=\frac{1}{\alpha} \frac{d T}{d t}\left\{\begin{array}{l}
x=0 \frac{d T}{d x}=\alpha \\
x=1 \frac{d T}{d x}=\beta
\end{array} \quad t=0 \quad T=T_{0}(T\right.
$$

$$
\frac{\partial^{r} T}{\partial x^{r}}=\frac{1}{\alpha} \frac{d T}{d t} \quad\left\{\begin{array}{l}
x=0 \frac{d T}{d x}-a T=-\alpha \\
x=1 \frac{d T}{d x}+b T=\beta
\end{array} \quad t=0 \quad T=T_{0}(\uparrow\right.
$$

(IFF ديفرانسيل انتقال حرارت به چه شكلى در مىى آيد؟
(r خطى مرتبه اول غير همگّن
(f) غير خططى مرتبه دوم غير همگن (f)
() خطى مرتبه اول همكن

「 () غير خطلى مرتبه دوم همگن
 شرايط پايا رابطه تغيير غلظت A A (CA) برحسب شعاع جداره كدام است؟ غلظت A , ا در جداره داخلى:

(r= $\left.r_{r}, C_{A_{Y}}^{*}\right)$ در نظر بكير يد.

$$
\begin{gathered}
\frac{C_{A}-C_{A_{1}}^{*}}{C_{A_{Y}}^{*}-C_{A_{1}}^{*}}=\frac{r_{Y}\left(r-r_{i}\right)}{r\left(r_{Y}-r_{1}\right)}(1) \\
\frac{C_{A}-C_{A_{1}}^{*}}{C_{A_{Y}}^{*}-C_{A_{1}}^{*}}=\frac{r-r_{1}}{r_{Y}-r_{1}}(r
\end{gathered}
$$

$$
\frac{C_{A}-C_{A_{Y}}^{*}}{C_{A_{T}}^{*}-C_{A_{Y}}^{*}}=\ln \left(\frac{r-r_{T}}{r_{T}-r_{1}}\right)(r
$$

$$
\frac{\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{A}_{1}}^{*}}{\mathrm{C}_{\mathrm{A}_{\mathrm{Y}}}^{*}-\mathrm{C}_{\mathrm{A}_{1}}^{*}}=\frac{\ln \mathrm{r}-\ln \mathrm{r}_{\mathrm{i}}}{\ln \mathrm{r}_{\mathrm{Y}}-\ln \mathrm{r}_{1}}
$$

 آب مخزن برحسب زمان كدام است؟ (مخزن ابتدا خالى است) ه α : مقدار ثابت.

$$
\begin{array}{r}
\mathrm{x}=\alpha \mathrm{t}^{r}(\mathrm{l} \\
\mathrm{x}=\alpha \mathrm{t} \\
\mathrm{c} \\
\mathrm{x}=\alpha \sqrt{\mathrm{t}}(\gamma \\
\mathrm{x}=1-\exp (\alpha \mathrm{t}) \text { (}
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{z} \frac{d}{d z}\left(z \frac{d C_{A}}{d z}\right)-\alpha \frac{d C_{A}}{d z}=0: \begin{cases}z \rightarrow 0 & C_{A}=C_{A_{0}} \\
z \rightarrow \infty & C_{A}=0\end{cases} \\
& \frac{C_{A}}{C_{A_{o}}}=1-\frac{\int_{0}^{z_{1}} \frac{1}{z} \exp (-\alpha z) d z}{\int_{0}^{\infty} \frac{1}{z} \exp (-\alpha z) d z}(r \\
& \frac{C_{A}}{\mathrm{C}_{\mathrm{A}_{0}}}=1-\frac{\int_{0}^{\mathrm{z}} \frac{1}{\mathrm{z}} \exp (\alpha \mathrm{z}) \mathrm{dz}}{\int_{0}^{\infty} \frac{1}{\mathrm{z}} \exp (\alpha \mathrm{z}) \mathrm{dz}} \text { (। } \\
& \frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{A}_{\circ}}}=\exp \left(-\alpha \frac{\mathrm{z}^{r}}{r}-z\right)(r \\
& \frac{\mathrm{C}_{\mathbf{A}}}{\mathrm{C}_{\mathrm{A}_{\sigma}}}=1-\int_{0}^{z^{z}} \frac{1}{\mathbf{z}^{r}} \exp \left(-\alpha z^{r}\right) \mathrm{d} z(r
\end{aligned}
$$

\mathbf{y}	$0, \Delta$	1	$1 / \Delta$
1	$0, \Delta$	1	r
r	1	$1, \Delta$	r / Δ
r	$1, \Delta$	r	r

r/s) (
risa <r
$r / \Delta(r$
r/vo of

 از موارد زير يكسان است؟

$$
\frac{\partial^{r} \theta}{\partial x^{r}}+\frac{\partial^{r} \theta}{\partial y^{r}}=0\left\{\begin{array}{cc}
\theta(\mathrm{L}, \mathrm{y})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{~L}^{r} & \theta(\mathrm{x}, \mathrm{~L})=0 \\
\theta(-\mathrm{L}, \mathrm{y})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{~L}^{r} & \theta(\mathrm{x},-\mathrm{L})=0
\end{array}\right.
$$

$$
\frac{\partial^{r} \theta}{\partial x^{r}}+\frac{\partial^{r} \theta}{\partial y^{r}}=0\left\{\begin{array}{cl}
\theta(\mathrm{L}, \mathrm{y})=0 & \theta(\mathrm{x}, \mathrm{~L})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{x}^{r} \\
\theta(-\mathrm{L}, \mathrm{y})=0 & \theta(\mathrm{x},-\mathrm{L})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{x}^{r}
\end{array}{ }^{r}\right.
$$

$$
\frac{\partial^{r} \theta}{\partial x^{r}}+\frac{\partial^{r} \theta}{\partial y^{r}}=0\left\{\begin{array}{cc}
\theta(\mathrm{L}, \mathrm{y})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{~L}^{r} & \theta(\mathrm{x}, \mathrm{~L})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{x}^{r} \\
\theta(-\mathrm{L}, \mathrm{y})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{~L}^{r} \quad \theta(\mathrm{x},-\mathrm{L})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{x}^{r}
\end{array}\right.
$$

$$
\text { كدام است؟ } \frac{d^{r} y}{d x^{r}}-\frac{d y}{d x}=x e^{x} \text { جواب خصوصى معادله ديفرانسيل }
$$

$$
\begin{array}{r}
y_{p}=-x e^{x}+\frac{1}{r} x^{r} e^{x}(1 \\
y_{p}=-1+\frac{1}{r} e^{x}+r \mathrm{xe}^{x}(r \\
y_{p}=-1+\frac{1}{r} e^{x}+r x^{r} e^{x}(r \\
y_{p}=-1+\frac{1}{r} e^{x}-r x e^{x}+x^{r} e^{x}(r
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial^{r} \mathbf{T}}{\partial \mathbf{x}^{r}}+\frac{\partial^{r} \mathbf{T}}{\partial \mathbf{y}^{r}}+\frac{\dot{\mathbf{q}}}{\mathbf{k}}=0 \quad \mathbf{T}(\mathbf{x}, \mathbf{L})=0, \mathbf{T}(\mathbf{x},-\mathbf{L})=0, \mathbf{T}(\mathbf{L}, \mathbf{y})=0, \mathbf{T}(-\mathbf{L}, \mathbf{y})=0 \\
& \frac{\partial^{r} \theta}{\partial x^{r}}+\frac{\partial^{r} \theta}{\partial y^{r}}=0\left\{\begin{array}{cc}
\theta(\mathrm{L}, \mathrm{y})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{~L}^{r} & \theta(\mathrm{x}, \mathrm{~L})=\frac{1}{r} \frac{\dot{\mathrm{q}}}{\mathrm{k}} \mathrm{x}^{r} \quad(1 \\
\theta(-\mathrm{L}, \mathrm{y})=0 & \theta(\mathrm{x},-\mathrm{L})=0
\end{array}\right.
\end{aligned}
$$

موازنه مواد A IFT معادلات به روش نيوتن رافسون ماتر يس راكوبين [M] كدام است؟ (هدف حل دستگاه $[\mathbf{~ م ى ~}$

$$
\left\{\begin{array}{l}
C_{A_{0}}-C_{A}-k \tau C_{A}^{r} C_{B}=0=f_{1} \\
C_{B_{o}}-C_{B}-k \tau C_{A} C_{B}=0=f_{Y}
\end{array}\right.
$$

$$
\left[\begin{array}{cc}
1+r k \tau C_{A} C_{B} & -r k \tau C_{A} C_{B} \\
-1-k \tau C_{B} & -1-k \tau C_{A}
\end{array}\right]\left[\begin{array}{l}
\Delta C_{A} \\
\Delta C_{B}
\end{array}\right]=-\left[\begin{array}{l}
f_{1} \\
f_{r}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1-r k \tau C_{A} C_{B} & -k \tau C_{A}^{r} \\
-1-k \tau C_{B} & -k \tau C_{A}
\end{array}\right]\left[\begin{array}{l}
\Delta C_{A} \\
\Delta C_{B}
\end{array}\right]=-\left[\begin{array}{l}
f_{1} \\
f_{r}
\end{array}\right](r
$$

$$
\left[\begin{array}{cc}
-1-r k \tau C_{A} C_{B} & -r k \tau C_{A}^{r} \\
-1+k \tau C_{B} & -k \tau
\end{array}\right]\left[\begin{array}{l}
\Delta C_{A} \\
\Delta C_{B}
\end{array}\right]=-\left[\begin{array}{l}
f_{1} \\
f_{r}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-1-r k \tau C_{A} C_{B} & -k \tau C_{A}^{r} \\
-k \tau C_{\mathrm{B}} & -1-k \tau C_{\mathrm{A}}
\end{array}\right]\left[\begin{array}{l}
\Delta \mathrm{C}_{\mathrm{A}} \\
\Delta \mathrm{C}_{\mathrm{B}}
\end{array}\right]=-\left[\begin{array}{l}
\mathrm{f}_{1} \\
\mathrm{f}_{\mathrm{r}}
\end{array}\right]
$$

 نوشته شود:
تفاضلههاى محدود به كدام صورت زير است؟

$$
\begin{aligned}
& \left(1-\frac{1}{r_{i}}\right) C_{p_{i-1}}-\left(r-\varphi^{r}\left(h^{r}\right)\right) C_{p_{i}}+\left(1+\frac{1}{r_{i}}\right) C_{p_{i+1}}=0 \\
& \left(1-\frac{1}{r i}\right) C_{p_{i-1}}-\left(r+\varphi^{r}\left(h^{r}\right)\right) C_{p_{i}}+\left(1+\frac{1}{r i}\right) C_{p_{i+1}}=0 \\
& \left(1-\frac{1}{r_{i}}\right) C_{p_{i-1}}-\left(r-\varphi^{r}\left(h^{r}\right)\right) C_{p_{i}}+\left(1-\frac{1}{r_{i}}\right) C_{p_{i+1}}=0 \\
& \left(1+\frac{1}{r i}\right) C_{p_{i-1}}-\left(r+\varphi^{r}\left(h^{r}\right)\right) C_{p_{i}}+\left(1-\frac{1}{r i}\right) C_{p_{i+1}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { مقدار عددى عبارت x } x=\sqrt{\ln \frac{r}{\sqrt{\pi}}} \text { كدام است؟ } \frac{d}{d x} \operatorname{erf}(x) \\
& \frac{r}{\sqrt{\pi}}(1 \\
& \begin{array}{l}
1(r \\
\frac{\sqrt{\pi}}{r}(r
\end{array}
\end{aligned}
$$

 شبكدبندى $\Delta x=0 \%$ باشد. به منظور بيدا كردن توزيع دماى انتقالى از روش صر يح، حداكثر محدودة انتخاب براى Δt برایى پايدارى روش حل، بر حسب ثانيه (s) كدام است؟ $\frac{\partial \mathbf{T}}{\partial \mathbf{t}}=\alpha \frac{\partial^{r} \mathbf{T}}{\partial \mathbf{x}^{r}}$

معادله ديفرانسيل توز يع دما به صورت مقابل است:

$$
\begin{gathered}
\Delta t<a, 0 \text { of }(1 \\
\Delta t<0,0)(t \\
\Delta t<0 \text { or (r } \\
\Delta t<0, \text { of (f }
\end{gathered}
$$

IF9- خطى سازى و استفاده از ركرسيون خطى در مورد تخمين ثارامترهاى كدام يى از معادلات زير صحيح

$$
\begin{array}{r|r}
\mathbf{x} & \mathbf{F}(\mathbf{x}) \\
\hline-1 & 1 / \wedge \\
0 & 1 \\
1 & r
\end{array}
$$

$$
\begin{array}{r}
0,1(1 \\
-0,1(4 \\
-0,1 \pi \\
1(f
\end{array}
$$

$$
\begin{aligned}
& y=a x_{1}^{\frac{b_{1}}{b} x_{r}^{c}(1} \\
& y=\frac{a_{1} x_{1}^{r}}{1+a_{\uparrow} x_{r}}(\tau \\
& y=\frac{a_{1} x_{1}}{\left(1+a_{Y} x_{Y}\right)^{r}}(r) \\
& y=\frac{a_{1} x_{\gamma}}{1+a_{\varphi} x_{1}+a_{\varphi} x_{\varphi}} d_{\uparrow}
\end{aligned}
$$

> كدام است؟
> 9ท/ه (1
> $100(r$
> iro (
> lfo (f
(IfA

$$
\begin{aligned}
& \mathrm{h} \leq \frac{1}{r}() \\
& \mathrm{h} \leq \frac{r}{r}(r \\
& \mathrm{h} \leq \frac{r}{f}(r \\
& h \leq \frac{r}{\partial}(\psi
\end{aligned}
$$

 $\frac{d y}{d t}=\frac{r y}{1+y}, y(0)=1$

$$
\begin{aligned}
& 1 / \Delta 0(1 \\
& 1 / \Delta \Delta(\gamma \\
& 1 / v \Delta(\sigma \\
& r(f
\end{aligned}
$$

-1 • دماى سيستمى يس از راه اندازى دردامنه زمان به صورت جدول زير است. درجه حند جملهاى عبورى (براساس جند جملهاى نيوتن پيشرو) از همه دادهها كدام استه

t (min.)	0	Δ	10	1Δ	r_{0}
$\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$	r_{0}	rV	FV	90	Vg

$$
\begin{aligned}
& \Delta() \\
& f(r \\
& r(\pi \\
& r\left(\psi^{*}\right.
\end{aligned}
$$

