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Abstract 

As organizations become ever more dependent on 
networked operations, they are increasingly vulnerable 
to attack by a variety of attackers, including criminals, 
terrorists and nation states using cyber attacks. New 
malware attacks, including viruses, Trojans, and 
worms, are constantly and rapidly emerging threats. 
However, attackers often reuse code and techniques 
from previous attacks. Both by recognizing the reused 
elements from previous attacks and by detecting 
patterns in the types of modification and reuse 
observed, we can more rapidly develop defenses, make 
hypotheses about the source of the malware, and 
predict and prepare to defend against future attacks. 
We achieve these objectives in Malware Analysis and 
Attribution using Genetic Information (MAAGI) by 
adapting and extending concepts from biology and 
linguistics. First, analyzing the “genetics” of malware 
(i.e., reverse engineered representations of the original 
program) provides critical information about the 
program that is not available by looking only at the 
executable program. Second, the evolutionary process 
of malware (i.e., the transformation from one species 
of malware to another) can provide insights into the 
ancestry of malware, characteristics of the attacker, 
and where future attacks might come from and what 
they might look like. Third, functional linguistics is the 
study of the intent behind communicative acts; its 
application to malware characterization can support 
the study of the intent behind malware behaviors.  To 
this point in the program, we developed a system that 
uses a range of reverse engineering techniques, 
including static, dynamic, behavioral, and functional 
analysis that clusters malware into families. We are 
also able to determine the malware lineage in some 
situations. Using behavioral and functional analysis, 
we are also able to identify a number of functions and 
purposes of malware.  

1. Introduction 

As organizations become ever more dependent on 
networked operations, they are increasingly vulnerable 
to attack by a variety of attackers, including criminals, 
terrorists and nation states using cyber attacks. New 
malware attacks, including viruses, Trojans, and 
worms are constantly and rapidly emerging threats. A 
lack of a deep, automated analysis of malware makes it 
hard to identify novel attacks, characterize the source 
of attacks (e.g., where does it come from and from 
what type of attacker), and forecast future attacks. 
Currently, manual analysis is relied upon, which is 
extremely time consuming and does not scale to the 
large amount of malware being encountered. 
Meanwhile, current automated systems use heuristics, 
such as signatures, to detect malware. These fail to 
detect most novel attacks because they do not provide a 
way to connect novel malware to known malware. 
They also provide no basis for characterizing malware 
sources or forecasting future malware developments. 

Our approach to developing a deep understanding 
of malware relies on two key insights, each of which 
produces a useful analogy. First, attackers often reuse 
code and techniques from one malware product to the 
next. They want to avoid having to write malware from 
scratch each time, but they also want to avoid 
detection, so they try to hide similarities. If we can 
understand reuse patterns and recognize reused 
elements, we will be able to connect novel malware to 
other malware from which it originated, create a 
searchable database of malware with relationships 
based on similarity, and predict and prepare to defend 
against future attacks. 

This insight suggests a biological analogy, in which 
a malware sample is compared to a living organism. 
Just like a living organism, the malware sample has a 
phenotype, consisting of its observed properties and 
behavior (e.g. eye color for an organism, packer type 
of a sample). The phenotype is not itself inherited 
between organisms; rather it is the expression of the 
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genotype, which is inherited. Likewise, it is the source 
code of the malware that is inherited from one sample 
to the next. By reverse engineering the malware to 
discover its intrinsic properties, we can get closer to 
the genetic features that are inherited. 

The second insight is that the function of malware 
has a crucial role to play in understanding reuse 
patterns. The function of malware – what it is trying to 
accomplish – is harder to change than the details of 
how it is accomplished. Therefore, analysis of the 
function of malware is a central component of our 
program. In our analysis of function, we use a 
linguistic analogy: a malware sample is like a 
linguistic utterance. Just like an utterance, malware has 
temporal structure, function, and context in which it 
takes place. The field of functional linguistics studies 
utterances not only for their meaning, but also for the 
function they are trying to accomplish and the context 
in which they occur.  

In this paper, we describe our Malware Analysis 
and Attribution Using Genetic Information (MAAGI) 
program. The program, which is currently at the end of 
its second year, has already produced promising results 
in determining malware similarity, clustering malware 
into families, determining the temporal ordering of 
malware, generating malware lineages, and identifying 
behaviors and purposes of malware. MAAGI uses an 
array of reverse engineering techniques, including 
semantic and functional analysis, coupled with a 
central evolutionary analysis component that fuses 
these analyses to determine the malware lineage. After 
providing some background in Section 2, we prevent 
an overview of the system architecture in Section 3. 
We describe our reverse engineering components in 
Section 4 and our approach to evolutionary analysis in 
Section 5, before concluding in Section 6. 

2. Background 

One of the advantages of our approach was that it 
largely did not compete with existing research; it 
borrowed significantly from it. While the genetic, 
evolutionary, and linguistic-based malware analysis 
tools are innovative, especially in their ability to reason 
about attackers, they are also related to a variety of 
existing efforts that each attempt to analyze malware 
for the purposes of recognizing and identifying attacks. 
By using a centralized arbiter, we are able to 
incorporate and reuse many of these existing 
techniques (e.g., [1-3]) and leverage their particular 
strengths and insights into the analysis of the 
phylogeny of malware and the classification of 
malware instances.  

There has been significant work over the past two 
decades in detecting and classifying malware. For 

instance, static, binary-level analysis is still the most 
common type of analysis used by anti-virus software 
(e.g., [4;5]). This approach looks at the object code of 
the incoming executable to try to identify bit strings 
that have been seen in previous malware attacks. This 
approach is able to rapidly detect previously seen 
malware and some instances of novel malware where 
there is significant binary-level overlap. Unfortunately, 
it is easily fooled into giving false negatives by minor 
changes to the code at the higher-level program level 
(e.g., moving functions around, adding no-ops or 
uncalled dummy functions), changing the packing 
algorithm used, or changing which compiler is used (or 
which flags are given to a compiler). It can also give 
false positives because non-maliciously packed 
software can share a packer header that is bitwise 
identical. 

To address these weaknesses, a range of new 
techniques have been developed, each of which makes 
an attempt to abstract away from the raw, static binary. 
For instance, a simple improvement is to do a bitwise 
comparison on the unpacked code (e.g., [6-9]). It is 
also possible to analyze the call-graph structure to 
detect which code is actually callable (e.g., [3]). Or, 
one can use dynamic analysis where the suspected 
malware is executed in a safe sandbox and its runtime 
performance is evaluated against the behavior of 
historical instances of malware [2;10]. All of these, 
however, have their own weaknesses. Static analysis, 
even of unpacked code, is still vulnerable to many 
forms of obfuscation, such as code transposition. Call-
graph analyses are vulnerable to other forms of 
obfuscation, such as creating callable but un-called 
functions. And dynamic analyses are vulnerable to 
mimicry, attacks on the analysis system itself, and 
malicious behavior that only happens after some time 
(e.g., on a particular date). 

The use of many types of analytic techniques is 
similar to the multiple types of analysis used by 
biologists who study organisms’ external anatomy 
(e.g., looking at the presence of hair), internal anatomy 
(e.g., looking at organs), behavior (e.g., nocturnal 
animals, nesting animals), the ecological habitat (e.g., 
which animals live in a certain ecological niche), 
genetics (e.g., which animals share significant amounts 
of genetic material and which genes), and evolution 
(e.g., which species descended from which other 
species). Just as in biology, where each of these types 
of analysis is useful but insufficient to characterize the 
subject fully, each of the current approaches to 
analyzing malware has specific advantages and 
disadvantages. 
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3. System architecture 

The general architecture of our approach is shown 
in Figure 1. Malware (or potential malware) enters the 
system either as historical instances or live data 
coming in from the network. MAAGI consists of two 
major subsystems. Reverse Engineering operates on 
each individual malware to obtain features of the 
malware that are not present at the surface. 
Evolutionary Analysis operates on the entire set of 
malware as a whole to cluster the malware and produce 
a lineage graph. The outputs of the system are Clusters
of the malware into families, a Lineage Graph, and 
identified Traits and Purposes of the malware.  

Figure 1: MAAGI architecture 

4. Reverse engineering 

One of the main principles behind MAAGI is that 
combining a variety of analyses can produce better 
results than each individual analysis method. 
Accordingly, the Reverse Engineering component 
consists of five different kinds of analysis, each of 
which produces malware Features:

Header Analysis is a simple component of the 
MAAGI system, but one that produces much useful 
information. It processes the malware’s PE header, 
which is useful both for characterizing the malware 
and for clustering and lineage construction. The header 
features are passed to the evolutionary analysis.  

Dynamic Analysis analyzes the behavior of the 
malware, which is executed in a Secure Sandbox. 
Dynamic analysis consists first of trace analysis,
which uses AIS’s Cuckoo dynamic trace environment 
with special-purpose hooks to produce the execution 
trace of the malware. The traces become features for 
the evolutionary analysis.  

Trace analysis then feeds into Semantic Analysis,
which analyzes the sequence of system calls made by 

the malware, together with a semantic understanding of 
the calls and their arguments, to identify behaviors of 
the malware. The Semantic Extractor (SemEx) merges 
dynamic API traces and expert programming 
knowledge to build an RDF graph that can be searched 
for patterns that identify high level behaviors. The 
patterns can contain many relations, including temporal 
orders and data flow relations. For example, the 
semantic extractor can determine whether the malware 
makes a network connection, receives data on that 
specific connection, writes that specific data to a file, 
and then executes that specific file.

According to functional linguistic theory, it is as 
important to understand the function and context of an 
utterance and its components as it is the plain meaning 
of the words. We apply the same principles to malware 
through our Functional Analysis component. The 
functional analysis takes in behaviors found by the 
semantic analysis and analyzes them using the 
framework of probabilistic systemic functional 
grammars (PSFGs). Behaviors are parsed using a 
PSFG to infer functional classes. We then use an 
explicit many-many mapping between functional 
classes and characterization/attribution classes. For 
example, given input behaviors ReadDriverSetupLog 
and CopySelfToUSB, we can infer that the malware is 
air gap capable and self-replicating, and possibly that 
the attacker has anti-forensics knowledge. 

For an example of semantic analysis, we now 
describe the semantic analysis we performed on 
directory walks. In a trace file we observed a set of 
related invocations. The relationships include things 
like data dependencies and juxtapositions. The simple 
directory walk we have observed looks something like: 
(FindFirstFile, CreateFile, ReadFile, ReadFile,
ReadFile, CloseFile, Send, FindNextFile,
CreateFile, ReadFile, ReadFile, ReadFile, CloseFile,
Send, FindNextFile, FindClose). In this case, the 
FindFirstFile invocation returns a value of type 
HANDLE which is consumed by the subsequent 
FindNextFile and FindClose invocations. This allows 
us to infer the existence of a directory walk containing 
all of these invocations. Note that it is important (but 
not required) that the application have a failed 
FindNextFile and successful FindClose at the end of 
the sequence, as these allow us to know that the walk 
has ended due to normal completion. 

To break this down, and label individual 
invocations as part of higher level behaviors, we create 
a table of invocations labeled with semantic tags, or 
lower level behaviors (LLBs), where each invocation is 
associated with the intermediate level behaviors (ILBs) 
and high level behaviors (HLBs) to which it belongs. 
The table is then encoded in an RDF structure. The 
first part of the table for our example is in Table 1. 
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Table 1: Part of behavioral analysis table 
Inv-ID Invocation Semantic Tags (LLB) Intermediate Behavior HLB 
Inv-1 FindFirstFile Success x Opens x 

ProgramaticFileListing 
DirectoryWalk-n-Start Directory-Walk-n-Step-1 DirectoryWalk-n 

(ProgramaticDirectoryWalk) 
Inv-2 CreateFile Success x Opens x File   
Inv-3 ReadFile Success x Reads x File 
Inv-4 ReadFile Success x Reads x File 
Inv-5 ReadFile Failure x Reads x File 
Inv-6 CloseFile Success x Closes x File 
Inv-7 Send Success x Writes x Network 
Inv-8 FindNextFile Success x ProgramaticFileListing DirectoryWalk-n-Step-2 
Inv-9 CreateFile Success x Opens x File 

In addition to the wider directory walk, we are able 
to infer other HLBs and ILBs that occur inside of the 
directory walk steps. A specific example of this in the 
example above is that we read two files until the end of 
the file. In our ontological system we add containment 
relationships to capture these additional behaviors, e.g., 
“DirectoryWalk-n has steps 1-2; DirectoryWalk-n-
Step-1 contains behavior ReadUntilEndFile-j; 
DirectoryWalk-n-Step-2 contains behavior 
ReadUntilEndFile-k”. 

Our semantic and functional analyses have already 
made significant progress towards being able to 
characterize useful properties of malware. For 
example, we have performed an automated analysis of 
a Koobface sample in which we found a number of 
behaviors, including directory walks and file searches, 
file downloads and concurrent execution. Our system 
has the potential to assist malware analysts by 
automatically discovering behaviors that previously 
required time-consuming analysis to find. In addition, 
we are able to detect a number of purposes of malware 
in some cases, such as Remote Access Tool (RAT), 
virus, rootkit, dropper, reconnaissance, keylogger, and 
destruction. 

5. Evolutionary analysis 

The first step of Evolutionary Analysis is to 
compare the similarity between malware samples 
based on their features. Similarity is computed by a 
memory-efficient component called the Sample 
Loader, which uses a trie structure to produce a 
similarity matrix from the features of all the samples. 
In this similarity matrix, rare features are weighted 
more highly, because sharing a rare feature provides 
stronger evidence of a relationship between samples 
than a common feature. 

Our hypothesis has been that using multiple feature 
types to measure malware similarity produces 
significantly better results than any single feature. This 
hypothesis is borne out in our experiments. Figure 2 
shows the individual similarity matrices obtained from 

seven features, as well as the matrix obtained from 
combining all these features. The data for these 
experiments is a collection of 140 malware samples 
from eight families. Each similarity matrix has samples 
across the rows and columns, so that each entry 
indicates the similarity between the row and column 
sample. Brightness indicates the degree of similarity. 
The samples are sorted by true family, so the ideal 
similarity matrix would contain eight bright squares 
along the diagonal. Of the input matrices, the one from 
static analysis comes closest to this ideal, but lacks 
definition in many of the families. Some of the 
behavior and header features find greater similarity 
within some of the families, but also find strong 
similarities between samples in different families, as 
indicated by the bright red regions away from the 
diagonal. In addition, these features are completely 
missing in some of the samples, indicated by the solid 
blue. Our combined output is, qualitatively, by far the 
closest to the ideal similarity matrix, and it is robust to 
missing inputs for some feature types. 

Figure 2: Individual and combined similarity 
matrices 

After the similarity matrices are computed, the 
Clustering component clusters the malware into 
families. The goal is to group samples that are strongly 
related, maximizing intra-cluster similarity (cohesion) 
and minimizing inter-cluster similarity (adhesion). We 
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use hierarchical clustering, choosing the level of the 
hierarchy to maximize the cohesion/adhesion tradeoff. 
We use two alternative clustering algorithms: the 
Louvain algorithm [11], which is an agglomerative 
algorithm that maximizes the modularity of clusters 
based on in-links and out-links; and the Girvan-
Newman algorithm [12], which is a partitional 
algorithm that iteratively removes edges that are most 
between two clusters. Since clustering is strongly 
dependent on good similarity, it naturally improves as 
we combine more features. 

To determine the lineage of malware, it is essential 
to know the order in which samples were generated. 
Without this information, it would be hard to 
determine the direction of parent-child relationships. 
The compiler timestamp in the header is an indication 
of the time at which malware is generated, but it may 
be missing or obfuscated. However, it should not be 
ignored completely, as it provides an accurate signal in 
cases where it is not obfuscated. The challenge of 
determining ordering is to (a) determine which samples 
have obfuscated timestamps, and (b) determine the 
correct times of those samples. To achieve these goals, 
our Order Determiner uses two additional pieces of 
information. First, it uses the size of the sample, as a 
proxy for sample complexity, since samples within a 
family tend to grow in complexity over time. Second, 
it uses the similarity between samples as a signal, since 
similar samples should be close to each other in time. 

We fuse all this information using a probabilistic 
graphical model, containing variables representing the 
true and observed timestamp of each sample, as well as 
a variable indicating whether the timestamp was 
obfuscated. We place soft constraints on the 
timestamps enforcing the size and similarity heuristics. 
The graphical model is implemented in our Figaro 
probabilistic programming language [13], which 
enables probabilistic models to be expressed as 
programs making it easy to express these complex 
constraints. 

Because our malware corpora do not include ground 
truth about the generation times of malware, we use 
benign software to evaluate our ordering algorithm. 
Figure 3 shows results for one such dataset, the 
MCMap Github repository. In each experiment, we 
obfuscated the timestamps of some of the samples and 
attempted to recover the ordering of all samples. The 
horizontal axis shows the percentage of timestamps 
that were obfuscated, while the vertical axis shows the 
percentage of pairs that were correctly ordered with 
respect to each other. The blue line shows the baseline 
performance achieved by taking the observed 
timestamps as correct. The other lines show the 
performance of the graphical model using various 
weightings of size and similarity. The similarity 

heuristic alone performs extremely well with smaller 
amounts of obfuscation but tails off with larger 
amounts, while size alone performs less well with 
smaller amounts but holds up well even with 100% 
obfuscation. Combining size and similarity provides 
the benefit of both. In particular, Combined 1:2, which 
weights size twice as highly is similarity, performs 
almost as well as similarity alone with lower levels of 
obfuscation, and as well as size alone with higher 
levels. 

Figure 3: Ordering results for MCMap dataset 

The final step in evolutionary analysis is the 
Lineage Graph Constructor. We view lineage 
construction as an optimization problem. We want to 
provide the best possible explanation of the features of 
each sample. In general, a feature can be explained in 
one of three ways: it can be inherited from a parent, a 
mutation of a feature of a parent, or fresh (generated de 
novo). We prefer the first explanation; however, we 
also prefer to minimize the number of parents of a 
sample, since most samples will be generated from a 
small number of parents (often one). In addition, we 
prefer simpler structures for the lineage as a whole. 

While we have explored many algorithms to solve 
this problem, our final algorithm is a combination of a 
directed best parent algorithm, which optimizes 
individual parent-child relationships, and a minimum 
spanning tree algorithm, which optimizes the lineage 
as a whole. Our algorithm, called best parent with 
minimum spanning merging, combines the best of both 
approaches. First, it identifies the best parent of each 
sample. Then, it creates strong straight line sublineages 
using the best parents. Finally, it merges sublineages 
using the minimum spanning tree. Lineages are 
constructed for each cluster separately, and then 
merged as appropriate.  

Figure 4 shows results from our evaluation of our 
lineage construction algorithm on benign samples from 
Github as well as a hand-generated dataset consisting 
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of fifteen malware samples with known ground truth 
(labeled as “Risk Reduction Dataset” in the figure). We 
measured the precision and recall of our parent-child 
predictions. If we define TP as the fraction of parent-
child relationships in the ground truth lineage that were 
correctly identified by the algorithm, FN as the fraction 
of correct parent-child relationships that were not 
identified by our algorithm, and FP as the fraction of 
parent-child relationships identified by the algorithm, 

then the precision is defined by 
TP

TP+FP
, while recall 

is
TP

TP+FN
. There is a natural tradeoff between false 

positive and false negative rate that is captured by 
precision and recall. To summarize precision and 
recall, we report the F-measure, which is defined to be 

Precision Recall2
Precision Recall

.

Figure 4: Lineage results on two datasets 

The figure compares three algorithms with two 
versions each. The three algorithms are best parent 
alone, minimum spanning tree, and best parent with 
minimum spanning merging.  For each algorithm, we 
show both the basic version that operates on all clusters 
simultaneously and the version that builds lineages on 
individual clusters separately before merging them as 
appropriate. We see that the cluster guided versions of 
the algorithms do better in all cases, and especially on 
the malware dataset. An explanation for the significant 
difference in the malware dataset is that that dataset 
contained a large number of noise samples that could 
interfere with the lineage; by focusing the lineage 
constructions on identified clusters, we avoid mixing 
the noise samples in the lineage. Of the three 
algorithms, we see that best parent with minimum 
spanning merging is slightly better than the others. 
Overall, the algorithm achieved a precision-recall F-
measure of 73% on the Github data and 92% on the 
malware. 

7. Conclusion 

We have described our Malware Analysis and 
Attribution through Genetic Information (MAAGI) 
effort. MAAGI uses reverse engineering, including 
semantic and functional analysis, and evolutionary 
analysis to determine the lineage of malware and 
characterize its source. Our approach of using multiple 
reverse engineering analysis components to produce 
“genetic” features appears to be successful. Our current 
results on determining malware similarity, clustering 
malware, order determination, lineage construction, 
and identifying behaviors and purposes, are promising. 
We plan to continue working on this project to 
improve these results, as well as to apply the lineage, 
together with our semantic and functional analysis, to 
assist in the source characterization and attribution of 
malware. 
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