
Malware Analysis and Attribution Using Genetic Information

Avi Pfeffer, Catherine Call,
John Chamberlain,

Lee Kellogg, Jacob Ouellette,
Terry Patten, Greg Zacharias

Charles River Analytics

Arun Lakhotia,
Suresh Golconda

University of Louisiana,
Lafayette

John Bay, Robert Hall,
Daniel Scofield

Assured Information Security

Abstract

As organizations become ever more dependent on
networked operations, they are increasingly vulnerable
to attack by a variety of attackers, including criminals,
terrorists and nation states using cyber attacks. New
malware attacks, including viruses, Trojans, and
worms, are constantly and rapidly emerging threats.
However, attackers often reuse code and techniques
from previous attacks. Both by recognizing the reused
elements from previous attacks and by detecting
patterns in the types of modification and reuse
observed, we can more rapidly develop defenses, make
hypotheses about the source of the malware, and
predict and prepare to defend against future attacks.
We achieve these objectives in Malware Analysis and
Attribution using Genetic Information (MAAGI) by
adapting and extending concepts from biology and
linguistics. First, analyzing the “genetics” of malware
(i.e., reverse engineered representations of the original
program) provides critical information about the
program that is not available by looking only at the
executable program. Second, the evolutionary process
of malware (i.e., the transformation from one species
of malware to another) can provide insights into the
ancestry of malware, characteristics of the attacker,
and where future attacks might come from and what
they might look like. Third, functional linguistics is the
study of the intent behind communicative acts; its
application to malware characterization can support
the study of the intent behind malware behaviors. To
this point in the program, we developed a system that
uses a range of reverse engineering techniques,
including static, dynamic, behavioral, and functional
analysis that clusters malware into families. We are
also able to determine the malware lineage in some
situations. Using behavioral and functional analysis,
we are also able to identify a number of functions and
purposes of malware.

1. Introduction

As organizations become ever more dependent on
networked operations, they are increasingly vulnerable
to attack by a variety of attackers, including criminals,
terrorists and nation states using cyber attacks. New
malware attacks, including viruses, Trojans, and
worms are constantly and rapidly emerging threats. A
lack of a deep, automated analysis of malware makes it
hard to identify novel attacks, characterize the source
of attacks (e.g., where does it come from and from
what type of attacker), and forecast future attacks.
Currently, manual analysis is relied upon, which is
extremely time consuming and does not scale to the
large amount of malware being encountered.
Meanwhile, current automated systems use heuristics,
such as signatures, to detect malware. These fail to
detect most novel attacks because they do not provide a
way to connect novel malware to known malware.
They also provide no basis for characterizing malware
sources or forecasting future malware developments.

Our approach to developing a deep understanding
of malware relies on two key insights, each of which
produces a useful analogy. First, attackers often reuse
code and techniques from one malware product to the
next. They want to avoid having to write malware from
scratch each time, but they also want to avoid
detection, so they try to hide similarities. If we can
understand reuse patterns and recognize reused
elements, we will be able to connect novel malware to
other malware from which it originated, create a
searchable database of malware with relationships
based on similarity, and predict and prepare to defend
against future attacks.

This insight suggests a biological analogy, in which
a malware sample is compared to a living organism.
Just like a living organism, the malware sample has a
phenotype, consisting of its observed properties and
behavior (e.g. eye color for an organism, packer type
of a sample). The phenotype is not itself inherited
between organisms; rather it is the expression of the

39978-1-4673-4879-9/12/$31.00 c©2012 IEEE

genotype, which is inherited. Likewise, it is the source
code of the malware that is inherited from one sample
to the next. By reverse engineering the malware to
discover its intrinsic properties, we can get closer to
the genetic features that are inherited.

The second insight is that the function of malware
has a crucial role to play in understanding reuse
patterns. The function of malware – what it is trying to
accomplish – is harder to change than the details of
how it is accomplished. Therefore, analysis of the
function of malware is a central component of our
program. In our analysis of function, we use a
linguistic analogy: a malware sample is like a
linguistic utterance. Just like an utterance, malware has
temporal structure, function, and context in which it
takes place. The field of functional linguistics studies
utterances not only for their meaning, but also for the
function they are trying to accomplish and the context
in which they occur.

In this paper, we describe our Malware Analysis
and Attribution Using Genetic Information (MAAGI)
program. The program, which is currently at the end of
its second year, has already produced promising results
in determining malware similarity, clustering malware
into families, determining the temporal ordering of
malware, generating malware lineages, and identifying
behaviors and purposes of malware. MAAGI uses an
array of reverse engineering techniques, including
semantic and functional analysis, coupled with a
central evolutionary analysis component that fuses
these analyses to determine the malware lineage. After
providing some background in Section 2, we prevent
an overview of the system architecture in Section 3.
We describe our reverse engineering components in
Section 4 and our approach to evolutionary analysis in
Section 5, before concluding in Section 6.

2. Background

One of the advantages of our approach was that it
largely did not compete with existing research; it
borrowed significantly from it. While the genetic,
evolutionary, and linguistic-based malware analysis
tools are innovative, especially in their ability to reason
about attackers, they are also related to a variety of
existing efforts that each attempt to analyze malware
for the purposes of recognizing and identifying attacks.
By using a centralized arbiter, we are able to
incorporate and reuse many of these existing
techniques (e.g., [1-3]) and leverage their particular
strengths and insights into the analysis of the
phylogeny of malware and the classification of
malware instances.

There has been significant work over the past two
decades in detecting and classifying malware. For

instance, static, binary-level analysis is still the most
common type of analysis used by anti-virus software
(e.g., [4;5]). This approach looks at the object code of
the incoming executable to try to identify bit strings
that have been seen in previous malware attacks. This
approach is able to rapidly detect previously seen
malware and some instances of novel malware where
there is significant binary-level overlap. Unfortunately,
it is easily fooled into giving false negatives by minor
changes to the code at the higher-level program level
(e.g., moving functions around, adding no-ops or
uncalled dummy functions), changing the packing
algorithm used, or changing which compiler is used (or
which flags are given to a compiler). It can also give
false positives because non-maliciously packed
software can share a packer header that is bitwise
identical.

To address these weaknesses, a range of new
techniques have been developed, each of which makes
an attempt to abstract away from the raw, static binary.
For instance, a simple improvement is to do a bitwise
comparison on the unpacked code (e.g., [6-9]). It is
also possible to analyze the call-graph structure to
detect which code is actually callable (e.g., [3]). Or,
one can use dynamic analysis where the suspected
malware is executed in a safe sandbox and its runtime
performance is evaluated against the behavior of
historical instances of malware [2;10]. All of these,
however, have their own weaknesses. Static analysis,
even of unpacked code, is still vulnerable to many
forms of obfuscation, such as code transposition. Call-
graph analyses are vulnerable to other forms of
obfuscation, such as creating callable but un-called
functions. And dynamic analyses are vulnerable to
mimicry, attacks on the analysis system itself, and
malicious behavior that only happens after some time
(e.g., on a particular date).

The use of many types of analytic techniques is
similar to the multiple types of analysis used by
biologists who study organisms’ external anatomy
(e.g., looking at the presence of hair), internal anatomy
(e.g., looking at organs), behavior (e.g., nocturnal
animals, nesting animals), the ecological habitat (e.g.,
which animals live in a certain ecological niche),
genetics (e.g., which animals share significant amounts
of genetic material and which genes), and evolution
(e.g., which species descended from which other
species). Just as in biology, where each of these types
of analysis is useful but insufficient to characterize the
subject fully, each of the current approaches to
analyzing malware has specific advantages and
disadvantages.

40 2012 7th International Conference on Malicious and Unwanted Software

3. System architecture

The general architecture of our approach is shown
in Figure 1. Malware (or potential malware) enters the
system either as historical instances or live data
coming in from the network. MAAGI consists of two
major subsystems. Reverse Engineering operates on
each individual malware to obtain features of the
malware that are not present at the surface.
Evolutionary Analysis operates on the entire set of
malware as a whole to cluster the malware and produce
a lineage graph. The outputs of the system are Clusters
of the malware into families, a Lineage Graph, and
identified Traits and Purposes of the malware.

Figure 1: MAAGI architecture

4. Reverse engineering

One of the main principles behind MAAGI is that
combining a variety of analyses can produce better
results than each individual analysis method.
Accordingly, the Reverse Engineering component
consists of five different kinds of analysis, each of
which produces malware Features:

Header Analysis is a simple component of the
MAAGI system, but one that produces much useful
information. It processes the malware’s PE header,
which is useful both for characterizing the malware
and for clustering and lineage construction. The header
features are passed to the evolutionary analysis.

Dynamic Analysis analyzes the behavior of the
malware, which is executed in a Secure Sandbox.
Dynamic analysis consists first of trace analysis,
which uses AIS’s Cuckoo dynamic trace environment
with special-purpose hooks to produce the execution
trace of the malware. The traces become features for
the evolutionary analysis.

Trace analysis then feeds into Semantic Analysis,
which analyzes the sequence of system calls made by

the malware, together with a semantic understanding of
the calls and their arguments, to identify behaviors of
the malware. The Semantic Extractor (SemEx) merges
dynamic API traces and expert programming
knowledge to build an RDF graph that can be searched
for patterns that identify high level behaviors. The
patterns can contain many relations, including temporal
orders and data flow relations. For example, the
semantic extractor can determine whether the malware
makes a network connection, receives data on that
specific connection, writes that specific data to a file,
and then executes that specific file.

According to functional linguistic theory, it is as
important to understand the function and context of an
utterance and its components as it is the plain meaning
of the words. We apply the same principles to malware
through our Functional Analysis component. The
functional analysis takes in behaviors found by the
semantic analysis and analyzes them using the
framework of probabilistic systemic functional
grammars (PSFGs). Behaviors are parsed using a
PSFG to infer functional classes. We then use an
explicit many-many mapping between functional
classes and characterization/attribution classes. For
example, given input behaviors ReadDriverSetupLog
and CopySelfToUSB, we can infer that the malware is
air gap capable and self-replicating, and possibly that
the attacker has anti-forensics knowledge.

For an example of semantic analysis, we now
describe the semantic analysis we performed on
directory walks. In a trace file we observed a set of
related invocations. The relationships include things
like data dependencies and juxtapositions. The simple
directory walk we have observed looks something like:
(FindFirstFile, CreateFile, ReadFile, ReadFile,
ReadFile, CloseFile, Send, FindNextFile,
CreateFile, ReadFile, ReadFile, ReadFile, CloseFile,
Send, FindNextFile, FindClose). In this case, the
FindFirstFile invocation returns a value of type
HANDLE which is consumed by the subsequent
FindNextFile and FindClose invocations. This allows
us to infer the existence of a directory walk containing
all of these invocations. Note that it is important (but
not required) that the application have a failed
FindNextFile and successful FindClose at the end of
the sequence, as these allow us to know that the walk
has ended due to normal completion.

To break this down, and label individual
invocations as part of higher level behaviors, we create
a table of invocations labeled with semantic tags, or
lower level behaviors (LLBs), where each invocation is
associated with the intermediate level behaviors (ILBs)
and high level behaviors (HLBs) to which it belongs.
The table is then encoded in an RDF structure. The
first part of the table for our example is in Table 1.

2012 7th International Conference on Malicious and Unwanted Software 41

Table 1: Part of behavioral analysis table
Inv-ID Invocation Semantic Tags (LLB) Intermediate Behavior HLB
Inv-1 FindFirstFile Success x Opens x

ProgramaticFileListing
DirectoryWalk-n-Start Directory-Walk-n-Step-1 DirectoryWalk-n

(ProgramaticDirectoryWalk)
Inv-2 CreateFile Success x Opens x File
Inv-3 ReadFile Success x Reads x File
Inv-4 ReadFile Success x Reads x File
Inv-5 ReadFile Failure x Reads x File
Inv-6 CloseFile Success x Closes x File
Inv-7 Send Success x Writes x Network
Inv-8 FindNextFile Success x ProgramaticFileListing DirectoryWalk-n-Step-2
Inv-9 CreateFile Success x Opens x File

In addition to the wider directory walk, we are able
to infer other HLBs and ILBs that occur inside of the
directory walk steps. A specific example of this in the
example above is that we read two files until the end of
the file. In our ontological system we add containment
relationships to capture these additional behaviors, e.g.,
“DirectoryWalk-n has steps 1-2; DirectoryWalk-n-
Step-1 contains behavior ReadUntilEndFile-j;
DirectoryWalk-n-Step-2 contains behavior
ReadUntilEndFile-k”.

Our semantic and functional analyses have already
made significant progress towards being able to
characterize useful properties of malware. For
example, we have performed an automated analysis of
a Koobface sample in which we found a number of
behaviors, including directory walks and file searches,
file downloads and concurrent execution. Our system
has the potential to assist malware analysts by
automatically discovering behaviors that previously
required time-consuming analysis to find. In addition,
we are able to detect a number of purposes of malware
in some cases, such as Remote Access Tool (RAT),
virus, rootkit, dropper, reconnaissance, keylogger, and
destruction.

5. Evolutionary analysis

The first step of Evolutionary Analysis is to
compare the similarity between malware samples
based on their features. Similarity is computed by a
memory-efficient component called the Sample
Loader, which uses a trie structure to produce a
similarity matrix from the features of all the samples.
In this similarity matrix, rare features are weighted
more highly, because sharing a rare feature provides
stronger evidence of a relationship between samples
than a common feature.

Our hypothesis has been that using multiple feature
types to measure malware similarity produces
significantly better results than any single feature. This
hypothesis is borne out in our experiments. Figure 2
shows the individual similarity matrices obtained from

seven features, as well as the matrix obtained from
combining all these features. The data for these
experiments is a collection of 140 malware samples
from eight families. Each similarity matrix has samples
across the rows and columns, so that each entry
indicates the similarity between the row and column
sample. Brightness indicates the degree of similarity.
The samples are sorted by true family, so the ideal
similarity matrix would contain eight bright squares
along the diagonal. Of the input matrices, the one from
static analysis comes closest to this ideal, but lacks
definition in many of the families. Some of the
behavior and header features find greater similarity
within some of the families, but also find strong
similarities between samples in different families, as
indicated by the bright red regions away from the
diagonal. In addition, these features are completely
missing in some of the samples, indicated by the solid
blue. Our combined output is, qualitatively, by far the
closest to the ideal similarity matrix, and it is robust to
missing inputs for some feature types.

Figure 2: Individual and combined similarity
matrices

After the similarity matrices are computed, the
Clustering component clusters the malware into
families. The goal is to group samples that are strongly
related, maximizing intra-cluster similarity (cohesion)
and minimizing inter-cluster similarity (adhesion). We

42 2012 7th International Conference on Malicious and Unwanted Software

use hierarchical clustering, choosing the level of the
hierarchy to maximize the cohesion/adhesion tradeoff.
We use two alternative clustering algorithms: the
Louvain algorithm [11], which is an agglomerative
algorithm that maximizes the modularity of clusters
based on in-links and out-links; and the Girvan-
Newman algorithm [12], which is a partitional
algorithm that iteratively removes edges that are most
between two clusters. Since clustering is strongly
dependent on good similarity, it naturally improves as
we combine more features.

To determine the lineage of malware, it is essential
to know the order in which samples were generated.
Without this information, it would be hard to
determine the direction of parent-child relationships.
The compiler timestamp in the header is an indication
of the time at which malware is generated, but it may
be missing or obfuscated. However, it should not be
ignored completely, as it provides an accurate signal in
cases where it is not obfuscated. The challenge of
determining ordering is to (a) determine which samples
have obfuscated timestamps, and (b) determine the
correct times of those samples. To achieve these goals,
our Order Determiner uses two additional pieces of
information. First, it uses the size of the sample, as a
proxy for sample complexity, since samples within a
family tend to grow in complexity over time. Second,
it uses the similarity between samples as a signal, since
similar samples should be close to each other in time.

We fuse all this information using a probabilistic
graphical model, containing variables representing the
true and observed timestamp of each sample, as well as
a variable indicating whether the timestamp was
obfuscated. We place soft constraints on the
timestamps enforcing the size and similarity heuristics.
The graphical model is implemented in our Figaro
probabilistic programming language [13], which
enables probabilistic models to be expressed as
programs making it easy to express these complex
constraints.

Because our malware corpora do not include ground
truth about the generation times of malware, we use
benign software to evaluate our ordering algorithm.
Figure 3 shows results for one such dataset, the
MCMap Github repository. In each experiment, we
obfuscated the timestamps of some of the samples and
attempted to recover the ordering of all samples. The
horizontal axis shows the percentage of timestamps
that were obfuscated, while the vertical axis shows the
percentage of pairs that were correctly ordered with
respect to each other. The blue line shows the baseline
performance achieved by taking the observed
timestamps as correct. The other lines show the
performance of the graphical model using various
weightings of size and similarity. The similarity

heuristic alone performs extremely well with smaller
amounts of obfuscation but tails off with larger
amounts, while size alone performs less well with
smaller amounts but holds up well even with 100%
obfuscation. Combining size and similarity provides
the benefit of both. In particular, Combined 1:2, which
weights size twice as highly is similarity, performs
almost as well as similarity alone with lower levels of
obfuscation, and as well as size alone with higher
levels.

Figure 3: Ordering results for MCMap dataset

The final step in evolutionary analysis is the
Lineage Graph Constructor. We view lineage
construction as an optimization problem. We want to
provide the best possible explanation of the features of
each sample. In general, a feature can be explained in
one of three ways: it can be inherited from a parent, a
mutation of a feature of a parent, or fresh (generated de
novo). We prefer the first explanation; however, we
also prefer to minimize the number of parents of a
sample, since most samples will be generated from a
small number of parents (often one). In addition, we
prefer simpler structures for the lineage as a whole.

While we have explored many algorithms to solve
this problem, our final algorithm is a combination of a
directed best parent algorithm, which optimizes
individual parent-child relationships, and a minimum
spanning tree algorithm, which optimizes the lineage
as a whole. Our algorithm, called best parent with
minimum spanning merging, combines the best of both
approaches. First, it identifies the best parent of each
sample. Then, it creates strong straight line sublineages
using the best parents. Finally, it merges sublineages
using the minimum spanning tree. Lineages are
constructed for each cluster separately, and then
merged as appropriate.

Figure 4 shows results from our evaluation of our
lineage construction algorithm on benign samples from
Github as well as a hand-generated dataset consisting

2012 7th International Conference on Malicious and Unwanted Software 43

of fifteen malware samples with known ground truth
(labeled as “Risk Reduction Dataset” in the figure). We
measured the precision and recall of our parent-child
predictions. If we define TP as the fraction of parent-
child relationships in the ground truth lineage that were
correctly identified by the algorithm, FN as the fraction
of correct parent-child relationships that were not
identified by our algorithm, and FP as the fraction of
parent-child relationships identified by the algorithm,

then the precision is defined by
TP

TP+FP
, while recall

is
TP

TP+FN
. There is a natural tradeoff between false

positive and false negative rate that is captured by
precision and recall. To summarize precision and
recall, we report the F-measure, which is defined to be

Precision Recall2
Precision Recall

.

Figure 4: Lineage results on two datasets

The figure compares three algorithms with two
versions each. The three algorithms are best parent
alone, minimum spanning tree, and best parent with
minimum spanning merging. For each algorithm, we
show both the basic version that operates on all clusters
simultaneously and the version that builds lineages on
individual clusters separately before merging them as
appropriate. We see that the cluster guided versions of
the algorithms do better in all cases, and especially on
the malware dataset. An explanation for the significant
difference in the malware dataset is that that dataset
contained a large number of noise samples that could
interfere with the lineage; by focusing the lineage
constructions on identified clusters, we avoid mixing
the noise samples in the lineage. Of the three
algorithms, we see that best parent with minimum
spanning merging is slightly better than the others.
Overall, the algorithm achieved a precision-recall F-
measure of 73% on the Github data and 92% on the
malware.

7. Conclusion

We have described our Malware Analysis and
Attribution through Genetic Information (MAAGI)
effort. MAAGI uses reverse engineering, including
semantic and functional analysis, and evolutionary
analysis to determine the lineage of malware and
characterize its source. Our approach of using multiple
reverse engineering analysis components to produce
“genetic” features appears to be successful. Our current
results on determining malware similarity, clustering
malware, order determination, lineage construction,
and identifying behaviors and purposes, are promising.
We plan to continue working on this project to
improve these results, as well as to apply the lineage,
together with our semantic and functional analysis, to
assist in the source characterization and attribution of
malware.

Acknowledgements

This work was supported by US Air Force contract
FA8750-10-C-0171, with thanks to Dr. Michael
VanPutte and Mr. Timothy Fraser. The views
expressed are those of the author and do not reflect the
official policy or position of the Department of
Defense or the U.S. Government.

References

[1] M. R. Chouchane, A. Walenstein, and A.
Lakhotia, "Metamorphic Authorship Recognition
Using Markov Models," Virus Bulletin, pp. 8-11,
May2008.

[2] A. Moser, C. Kruegel, and E. Kirda,
"Exploring Multiple Execution Paths for Malware
Analysis," 2007.

[3] G. Erdelyi and E. Carrera, "Digital Genome
Mapping: Advanced Binary Malware Analysis,"
Chicago, IL: 2004, pp. 187-197.

[4] R. W. Lo, K. N. Levitt, and R. A. Olsson,
"MCF: A Malicious Code Filter," Computers &
Security, vol. 14, no. 6, pp. 541-566, 1995.

[5] L. A. Goldberg, P. W. Goldberg, C. A.
Phillips, and G. B. Sorkin, "Constructing Computer
Virus Phylogenies," Journal of Algorithms, vol. 26, pp.
188-208, 1998.

[6] P. Royal, M. Halpin, D. Dagon, R. Edmonds,
and W. Lee, "PolyUnpack: Automating the Hidden-
Code Extraction of Unpack-Executing Malware,"
2006, pp. 289-300.

[7] L. Martignoni, M. Christodeorescu, and S.
Jha, "OmniUnpack: Automating the Hidden-Code
Extraction of Unpack-Executing Malware," 2007, pp.
431-441.

44 2012 7th International Conference on Malicious and Unwanted Software

[8] A. Dinaburg, P. Royal, M. Sharif, and W.
Lee, "Ether: Malware Analysis Via Hardware
Virtualization Extensions," 2008, pp. 51-62.

[9] M. Sharif, A. Lanzi, J. Giffin, and W. Lee,
"Automatic Reverse Engineering of Malware
Emulators," 2009.

[10] K. Rieck, P. Trinius, C. Willems, and T. Holz,
"Automatic Analysis of Malware Behavior Using
Machine Learning," Technical Report, vol. 18, no. 209
2009.

[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte,
and E. Lefebvre, "Fast Unfolding of Communities in
Large Networks,"2008.

[12] M. Girvan and M. E. J. Newman,
"Community Structure in Social and Biological
Networks," Proceedings of the National Academy of
Sciences, vol. 99, pp. 7821-7826, 2002.

[13] A. Pfeffer, "Creating and Manipulating
Probabilistic Programs with Figaro," 2012.

2012 7th International Conference on Malicious and Unwanted Software 45

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

