

Network Security

Ali Shakiba Vali-e-Asr University of Rafsanjan ali.shakiba@vru.ac.ir www.1ali.ir

What's ahead?

- The Course's Big Picture
- Introduction to Cryptography and Data Security
 - Overview on the field of cryptology
 - Basics of symmetric cryptography
 - Cryptanalysis
 - Substitution Cipher
 - Modular arithmetic
 - Shift (or Caesar) Cipher and Affine Cipher

Why do we need to study Computer/Networks/Information security?

The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position unassailable.

-The Art of War, Sun Tzu

Why do we need to study <u>Computer/Networks/Information</u> security?

The art of war teaches the enemy's not com receive him; not on the rather on the fact t unassailable.

Why these three different terms?

OUTLINE OF THE COURSE

- Cryptographic Algorithms
 - Symmetric Ciphers
 - Asymmetric Ciphers
 - Hash Functions
 - Protocols
- Mutual Trust
- Network & Internet Security
- Computer Security

CIA Triad

- Confidentiality
 - Data confidentiality
 - Privacy
- Integrity
 - Data integrity
 - System integrity
- Availability

OSI Security Architecture

- ITU-T X.800 "Security Architecture for OSI"
 - defines a systematic way of defining and providing security requirements
 - for us it provides a useful, if abstract, overview of concepts we will study

STANDARDS ORGANIZATIONS

- National Institute of Standards & Technology (NIST)
- Internet Society (ISOC)
- International Telecommunication Union Telecommunication Standardization Sector (ITU-T)
- International Organization for Standardization (ISO)

Aspects of Security

- X.800 considers 3 aspects of information security:
 - security **attack**
 - security **mechanism**
 - security **service**
- note terms (RFC 2828)
 - threat a potential for violation of security
 - **attack** an assault on system security, a deliberate attempt to evade security services

PASSIVE ATTACKS

- Release of message content
- Traffic analysis

ACTIVE ATTACKS

A Security Service

- enhance security of data processing systems and information transfers of an organization
- intended to counter security attacks
- using one or more security mechanisms
- often replicates functions normally associated with physical documents
 - which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

SECURITY SERVICES

• X.800:

"a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers"

• RFC 2828:

"a processing or communication service provided by a system to give a specific kind of protection to system resources"

SECURITY SERVICES (X.800)

- **1. Authentication** assurance that communicating entity is the one claimed
 - have both peer-entity & data origin authentication
- 2. Access Control prevention of the unauthorized use of a resource
- **3.** Data Confidentiality protection of data from unauthorized disclosure
- **4. Data Integrity** assurance that data received is as sent by an authorized entity
- **5.** Non-Repudiation protection against denial by one of the parties in a communication

Security Mechanism

- feature designed to detect, prevent, or recover from a security attack
- no single mechanism that will support all services required
- however one particular element underlies many of the security mechanisms in use:
 - cryptographic techniques
- hence our focus on this topic

Security Mechanisms (X.800)

• specific security mechanisms:

• encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding, routing control, notarization

• pervasive security mechanisms:

• trusted functionality, security labels, event detection, security audit trails, security recovery

Security Service vs. Mechanism?

								ME	CHANISM
SERVICE	/~	helinghe	internation in the second	spaure cccss	ontrol ontrol	agine internity	ation e	xchange adding	ontrol
Peer entity authentication	Y	Y			Y				
Data origin authentication	Y	Y							
Access control			Y						
Confidentiality	Y						Y		
Traffic flow confidentiality	Y					Y	Y		
Data integrity	Y	Y		Y					
Nonrepudiation		Y		Y				Y	
Availability				Y	Y				

Model for Network Security

Model for Network Security

using this model requires us to:

- 1. design a suitable algorithm for the security transformation
- 2. generate the secret information (keys) used by the algorithm
- 3. develop methods to distribute and share the secret information
- 4. specify a protocol enabling the principals to use the transformation and secret information for a security service

Model for Network Access Security

Model for Network Access Security

using this model requires us to:

- 1. select appropriate gatekeeper functions to identify users
- 2. implement security controls to ensure only authorised users access designated information or resources

Required References

[PP10] Paar, Christof, and Jan Pelzl. *Understanding cryptography: a textbook for students and practitioners*. Springer Science & Business Media, 2010.

All Chapters

Required References

Cryptography and Network Security Principles and Practice Sixth Edition

William Stallings

[S14] Stallings, William.
Cryptography and Network
Security: Principles and
Practice, 6th Edition. Pearson
Higher Ed, 2014.

Parts 4 to 6

EVALUATION

Title		Grade	Description			
Exercises		5	At least 10 series, weekly			
Drojact	Written Report	3				
Project	Presentation 2					
Mritton Exame	Midterm	4	Thursday, 4 th Azar 1395			
WITLEN EXAMS	Final	6	Consult EDU			
Excellence		+2				
Total		20 + 2				

Course Page:

HTTP://1ALI.IR/NETWORK-SECURITY-95-1.HTML

			(عج) رفسنجان	دانشگاه ولی عصر R ^G (D)	প্র				
	وبلاک	تماس با من	تدريس →	پژوهش 🗕	درباره	خانه			
	للاعات ھندسی	ناوری اط فزار) و م ۱۳۹	ی: ۸مهر ۱۳۹۵ می ارشد ف ولید نر ما فزار درس =	^{آخرین به روزرسان کارشناسے بوتری - تر نرما اول سال تح اخبار}	بکه - ر کامپی ترم	نيت ش كەھاي	ام (شب		
	نبل از جلس دی	ہی از جلسەی اول و ۂ	پرسش نامهی درس را . بوندها مشاهده نمایید. عمومی	مدید. مرید امتنان است ا میتوانبد در قسمت پر اطلاعات	، شبکه» خوش آر کاهای مربوطه را	ر ۹۵ به درس «امنیت میل فرمایید. لین	۸ می، با سلام. سوم تک		
سؤالات رايج	نمرات	أزمونها	جلسات درس	لللاعات عمومى	س اه	اخبار در	ابتدای صفحه		

FILL IN THE SURVEY BY THE NEXT SESSION, PLEASE!

ت شبکه»	پرسشنامهی درس «امنیت
فرایند در می مورد	سلام دوست عزیز از اینکه سوالات این پرسشنامه را با حوصله و دقت، پاسخ میدهید؛ از شما متشکرم. پاسخهای شما صرفا در بهبود استفاده قرار خواهد گرفت. با تقدیم احتر ام علی شکیبا <u>http://1ali.ir</u>
NEXT	Page 1 of 5
Never submit pass	swords through Google Forms.
This content is ne	ither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms
	Google Forms

LET'S START OUR JOURNEY! The Empire of Cryptology

Classification of the Field of Cryptology

29

Some Basic Facts

- Ancient Crypto: Early signs of encryption in Eqypt in 2000 B.C. Letter-based encryption schemes (e.g., Caesar cipher) popular ever since.
- **Symmetric ciphers:** All encryption schemes from ancient times until 1976 were symmetric ones.
- Asymmetric ciphers: In 1976 public-key (or asymmetric) cryptography was openly proposed by Diffie, Hellman and Merkle.
- **Hybrid Schemes:** The majority of today's protocols are hybrid schemes, i.e., the use both
 - symmetric ciphers (e.g., for encryption and message authentication) and
 - asymmetric ciphers (e.g., for key exchange and digital signature).

Symmetric Cryptography

• Alternative names: **private-key**, **single-key** or **secret-key** cryptography.

- Problem Statement:
 - 1) Alice and Bob would like to communicate via an unsecure channel (e.g., WLAN or Internet).

2) A malicious third party Oscar (the bad guy) has channel access but should not be able to understand the communication.

Symmetric Cryptography

Symmetric Cryptography

- Encryption equation $y = e_K(x)$
- Decryption equation $x = d_K(y)$
- Encryption and decryption are inverse operations if the same key K is used on both sides:

$$d_{K}(y) = d_{K}(e_{K}(x)) = x$$

- Important: The key must be transmitted via a secure channel between Alice and Bob.
- The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi Protected Access (WPA) protocol or a human courier.
- However, the system is only secure if an attacker does not learn the key K!
- \Rightarrow The problem of secure communication is reduced to secure transmission and storage of the key K.