INnfroduction to
Python — Part |V




Outline

« Files

 Modules and Packages
« Reading Web Pages

« Regular Expressions

 Python and Regexes




Files




Opening Files

 We can open a file for reading/writing using
open function

« openreturns a file handle object

file = open('test.txt', 'w')

file.write('Hi!\n")
file.write('This is a test.\n')

file.close ()




Reading Files

* Files handles are iterable

« We can use handles to read files line by line

file = open('test.txt', 'r')

for line in file:
print (line.rstrip())

file.close ()




Reading Files at Once

 We canread the entire content of a file:
— as a single string by read, or
— as a list of strings by readlines

>>> open ('test.txt') .read()
'"Hi!\nThis 1is a test.\n'

>>> open('test.txt').readlines ()
['Hi!'\n', 'This is a test.\n']




Modules and Packages




Modules

« A module is a file containing Python definitions

and statements to be used in other Python
programs

# mymodule.py

def fool():
pass

bar = 10

# test.py
import mymodule

mymodule.foo ()




Importing Modules

« There are three different ways to import a
module

import math
math.pi

from math import pi, cos
cos (pi)

import math as m
m.pil




Packages

 We can organize modules inside packages, and
access them via dot notation

« A package is simply a directory containing an
(empty) __init__.py file

App/
__init .py
test.py
Tools/
__init .py
utils.py
mytools.py

from App.Tools import utils




Reading Web Pages




Retrieve a Page(python 3.x)

« We can use urlrefrieve function to download any
kind of content from the Internet

* The function is located in request module in urllib
package

from urllib.request import urlretrieve

url = 'http://google.com'
file name = 'google.html'

urlretrieve (url, file name)




Retrieve a page (python 2.x)

import requests

url= 'http://google.com'
r = requests.get (url)
text = r.content

f = open('a.html', 'w')
f.write (text)




Regular Expressions




Regular Expressions

A regular expression (aka regex or regexp) is a
sequence of characters that forms a search
pattern

Python supports regexes through the standard
library re module

import re

m = re.match('me', 'meanwhile')
if m 1is not None:
print (m.group () )




Regular Expression Syntax

« Regular expressions are strings containing text
and special characters (such as ¢ and *) that
describe a pattern

« The simplest regular expressions are just strings,
with no special characters

 The choice | operator creates aregular
expression that matches one of two things

if re.match('Ali|Hamid', user):
// user is wvalid




Character Classes

 The character class operator [| allows to match
any character within the class

— [abcd] is equivalent to a|b|c|d

« We can use arange of characters within a class
— [a-f] is equivalent to [abcdef]

 We can also reverse a class using A operator
— [*0-9] matches any non-digit character




Predefined Classes

\d
\w

\s

\D
\W
\S

There are a few predefined character classes

any digit [0-9]

any word character [0-9a-zA-Z ]
any whitespace [ \t\n\r]

any character (except \n)

any non-digit character [*0-9]
any non-word character [Mw]
any non-space character [M\s]



Repetition Operators

« The following operators can be used to match
the same expression repeatedly

— % match 0 or more times
— + match 1 or more times
= ? match 1 or O times

— {n}  match exactly n times
— {n,} match at least n times
— {n,m} match at least n but not more than m times

« These operators are greedy: they match as
much text as possible (add ¢ for minimal fashion)




Special Characters

« There are some important special characters
—  match the beginning of the string

— $ match the end of the string (or before the newline)

* You can use N and $ to make sure your strings
don't contain garbage

— This is good practice for validating user input

if re.match(r'*"\w*$', filename) :
// this is a safe filename




Groups

« We can group parts of the regular expression,
mainly for further retrieval

— (...) indicates the start and end of a group

— \number matches the content of a group of the same
number

« Examples:
— \d+(\.\d+)? matches a simple float number
— (.+)\1 matches e.g. "the the"




Named Groups

« We can assign names to matched groups for
eqsier access

— (?P<name>...) the substring matched by the group is a
given a name name

— (?P=name) matches the text matched by earlier group
named name

 Example:
— (?P<word>\w+) (?P=word) matches "the the"




Python and Regexes




The re Module

 Useful functions in re module

match() match pattern to string from the beginning
search() search for first occurrence of pattern in string
compile() compile a pattern for faster match

findall() find all (hon-overlapping) occurrences of pattern
finditer() like findall but returns an iterator instead of list
split() split string according to pattern delimiter

sub() replace all occurrences of pattern by a string

>>> re.findall ('\w+', 'ali-ha 12!")
['ali', lhal’ 1121]




Modifiers

« Modifiers that appear after the second / control
aspects of the RE matching process

— re.l performs case-insensitive matching
— re.M treats string as a multiline string
— re.S makes . match any character including newline

— re.X ignores whitespace in the pattern (for readability)

>>> re.findall('*a\w+', 'ali\nAl2!', re.M | re.I)
['ali', 'ha', '12']




Match Objects

« The output of match() and search() functions, if
successful, is a match object

« Match objects have three primary methods,
group(), groups() and groupdict()

>>> re.match (' (\w+)-(\w+) "', 'ali-ha') .group ()
'ali-ha'

>>> re.match (' (\w+)-(\w+) "', 'ali-ha') .groups/()
('ali', 'ha')

>>> re.match (' (?P<k>\w+) "', 'ali-ha') .groupdict ()
{'k': 'ali'}




References

« Python Web Development with Django
— By Jeff Forcier, Paul Bissex, Wesley Chun

« Core Python Applications Programming
— By Wesley J. Chun

* Infernet Programming by Pat Morin
— http://cg.scs.carleton.ca/~morin/teaching/2405/



http://cg.scs.carleton.ca/~morin/teaching/2405/



