
Introduction to

Python – Part IV

Outline

• Files

• Modules and Packages

• Reading Web Pages

• Regular Expressions

• Python and Regexes

2

Files

Opening Files

• We can open a file for reading/writing using

open function

• open returns a file handle object

4

file = open('test.txt', 'w')

file.write('Hi!\n')

file.write('This is a test.\n')

file.close()

Reading Files

• Files handles are iterable

• We can use handles to read files line by line

5

file = open('test.txt', 'r')

for line in file:

print(line.rstrip())

file.close()

Reading Files at Once

• We can read the entire content of a file:

 as a single string by read, or

 as a list of strings by readlines

6

>>> open('test.txt').read()

'Hi!\nThis is a test.\n'

>>> open('test.txt').readlines()

['Hi!\n', 'This is a test.\n']

Modules and Packages

Modules

• A module is a file containing Python definitions

and statements to be used in other Python

programs

8

mymodule.py

def foo():

pass

bar = 10

test.py

import mymodule

mymodule.foo()

Importing Modules

• There are three different ways to import a

module

9

import math

math.pi

from math import pi, cos

cos(pi)

import math as m

m.pi

Packages

• We can organize modules inside packages, and

access them via dot notation

• A package is simply a directory containing an

(empty) __init__.py file

10

App/

__init__.py

test.py

Tools/

__init__.py

utils.py

mytools.py

from App.Tools import utils

Reading Web Pages

Retrieve a Page(python 3.x)

• We can use urlretrieve function to download any

kind of content from the Internet

• The function is located in request module in urllib

package

12

from urllib.request import urlretrieve

url = 'http://google.com'

 file_name = 'google.html'

urlretrieve(url, file_name)

Retrieve a page (python 2.x)13

import requests

url= 'http://google.com'

 r = requests.get(url)

text = r.content

f = open('a.html','w')

f.write(text)

Regular Expressions

Regular Expressions

• A regular expression (aka regex or regexp) is a

sequence of characters that forms a search

pattern

• Python supports regexes through the standard

library re module

15

import re

m = re.match('me', 'meanwhile')

if m is not None:

print(m.group())

Regular Expression Syntax

• Regular expressions are strings containing text

and special characters (such as ? and *) that

describe a pattern

• The simplest regular expressions are just strings,

with no special characters

• The choice | operator creates a regular

expression that matches one of two things

16

if re.match('Ali|Hamid', user):

// user is valid

Character Classes

• The character class operator [] allows to match

any character within the class

 [abcd] is equivalent to a|b|c|d

• We can use a range of characters within a class

 [a-f] is equivalent to [abcdef]

• We can also reverse a class using ^ operator

 [^0-9] matches any non-digit character

17

Predefined Classes

• There are a few predefined character classes

 \d any digit [0-9]

 \w any word character [0-9a-zA-Z_]

 \s any whitespace [\t\n\r]

 . any character (except \n)

 \D any non-digit character [^0-9]

 \W any non-word character [^\w]

 \S any non-space character [^\s]

18

Repetition Operators

• The following operators can be used to match

the same expression repeatedly

 * match 0 or more times

 + match 1 or more times

 ? match 1 or 0 times

 {n} match exactly n times

 {n,} match at least n times

 {n,m} match at least n but not more than m times

• These operators are greedy: they match as
much text as possible (add ? for minimal fashion)

19

Special Characters

• There are some important special characters

 ^ match the beginning of the string

 $ match the end of the string (or before the newline)

• You can use ^ and $ to make sure your strings
don't contain garbage

 This is good practice for validating user input

20

if re.match(r'^\w*$', filename):

// this is a safe filename

Groups

• We can group parts of the regular expression,

mainly for further retrieval

 (…) indicates the start and end of a group

 \number matches the content of a group of the same

number

• Examples:

 \d+(\.\d+)? matches a simple float number

 (.+) \1 matches e.g. "the the"

21

Named Groups

• We can assign names to matched groups for

easier access

 (?P<name>…) the substring matched by the group is a

given a name name

 (?P=name) matches the text matched by earlier group

named name

• Example:

 (?P<word>\w+) (?P=word) matches "the the"

22

Python and Regexes

The re Module

• Useful functions in re module

 match() match pattern to string from the beginning

 search() search for first occurrence of pattern in string

 compile() compile a pattern for faster match

 findall() find all (non-overlapping) occurrences of pattern

 finditer() like findall but returns an iterator instead of list

 split() split string according to pattern delimiter

 sub() replace all occurrences of pattern by a string

24

>>> re.findall('\w+', 'ali-ha 12!')

['ali', 'ha', '12']

Modifiers

• Modifiers that appear after the second / control

aspects of the RE matching process

 re.I performs case-insensitive matching

 re.M treats string as a multiline string

 re.S makes . match any character including newline

 re.X ignores whitespace in the pattern (for readability)

25

>>> re.findall('^a\w+', 'ali\nA12!', re.M | re.I)

['ali', 'ha', '12']

Match Objects

• The output of match() and search() functions, if

successful, is a match object

• Match objects have three primary methods,

group(), groups() and groupdict()

26

>>> re.match('(\w+)-(\w+)', 'ali-ha').group()

'ali-ha'

>>> re.match('(\w+)-(\w+)', 'ali-ha').groups()

('ali', 'ha')

>>> re.match('(?P<k>\w+)', 'ali-ha').groupdict()

{'k': 'ali'}

References

• Python Web Development with Django

 By Jeff Forcier, Paul Bissex, Wesley Chun

• Core Python Applications Programming

 By Wesley J. Chun

• Internet Programming by Pat Morin

 http://cg.scs.carleton.ca/~morin/teaching/2405/

27

http://cg.scs.carleton.ca/~morin/teaching/2405/

