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Abstract—Switching dc—dc converters are widely used to inter-
face the dc output of renewable energy resources with power dis-
tribution systems in order to facilitate the use of energy at the
customer side. In the case of residential photovoltaic (PV) applica-
tions, high conversion ratio is usually required, in order to adapt
the low output voltages of PV modules to a dc bus voltage, while
dealing with the appropriate impedance matching. In this paper, a
system connected to a PV panel consisting of two cascaded dc—dc
boost converters under sliding-mode control and working as loss-
free resistors is studied. The modeling, simulation, and design of the
system are addressed. First, an ideal reduced-order sliding-mode
dynamics model is derived from the full-order switched model tak-
ing into account the sliding constraints, the nonlinear characteristic
of the PV module, and the dynamics of the MPPT controller. For
this model, a design-oriented averaged model is obtained and its
dynamic behavior is analyzed showing that the system is asymptot-
ically globally stable. Moreover, the proposed system can achieve
a high conversion ratio with an efficiency close to 95% for a wide
range of working power. Numerical simulations and experimen-
tal results corroborate the theoretical analysis and illustrate the
advantages of this architecture in PV systems.

Index Terms—Cascaded boost converters, impedance matching,
loss-free resistor (LFR), MPPT, photovoltaic (PV) systems, sliding-
mode control (SMC).

1. INTRODUCTION

LEAN renewable energy resources have been given in-
C creasing interest in recent years, due to concerns about
global warming and its related harmful greenhouse effect, air
quality, and sustainable development [1]. In the future power
grid, not only the utilities, but also the users can produce elec-
tric energy by aggregating distributed generation sources [2]. In
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that context, photovoltaic (PV) arrays, wind turbines, and bat-
teries are used to feed a main (dc or ac) bus connected to its
loads, as well as the utility grid, forming the so-called nanogrid
system [3]. Nanogrids can then work in the stand-alone mode
or they can be connected to the utility grid performing peak
shaving and smooth transitions between the different modes of
operation.

While the realization of the nanogrids of the future remains
an open question, it seems that dc distribution systems will
present several advantages with respect to ac systems, despite
the cheaper protection circuit breakers and lower maintenance
costs of the latter. First, dc systems are more efficient and can
provide higher power quality with lower harmonics [4], [5]. Sec-
ond, a significant advantage of the dc-based approach is the fact
that power handling can be completely uninterrupted by hav-
ing switched-mode power converters featuring the current limit
[6], allowing the eventual aggregation of distributed generation
sources to the main dc grid [3], [7]. In such a context, the future
home electric system is foreseen to have two dc voltage levels:
a main dc bus of high voltage (380 V) powering major home
appliances and electric vehicle charging, and a low dc voltage
bus (48 V) for supplying computer loads, low power consumer
electronics or lighting [8]—-[11].

The interconnection of residential scale PV systems to such
a main dc bus can typically be carried out by two approaches.
The first one consists of connecting the series string(s) of PV
modules to a central power converter, which allows us to avoid
high-step up conversion ratios, with the disadvantages of high
sensitivity to mismatch induced loss and losses due to a cen-
tralized MPPT. The second one employs a power converter for
each module, in order to perform high granularity maximum
power point tracking (MPPT), which provides higher flexibility
in system layout, lower sensitivity to shading, better protection
of PV sources, redundancy in case of failures, and easier and
safer installation and maintenance, besides of data gathering
[12]. However, the converter per module approach can present
difficulties for achieving the desired output voltage under mis-
matched conditions of some PV modules, when converters are
connected in series at the output [13]. As an alternative, PV
modules can be connected in parallel to the dc bus. In such a
case, one of the key technology issues is the implementation of
a power converter that interfaces the possibly low voltage and
power of the PV module to the main voltage dc distribution bus
of 380 V. For this reason, it is necessary to have an adaptation
stage with a high-voltage conversion ratio (above 10) in addition
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to good static and dynamic performances, which should guaran-
tee a good impedance matching of the PV generator regardless
of the load variations and/or the weather conditions like fast
moving clouds, temperature changes or even shadowing effects.

The design of such a high-gain converter is not a simple task.
Challenges include high conversion efficiency, small number of
components, reliability, and high dynamic performance, result-
ing in appropriate MPPT accuracy and tracking speed [14]-[17].
Single-stage solutions can provide high efficiency. However,
they present limitations in the conversion ratio due to the finite
commutation times of the power devices and the size of the pas-
sive elements. A possible method to deal with these problems is
the inclusion of a step-up transformer. This is the usual approach
in dc—ac applications where the step-up converter supplies an
inverter [18]. However, the inclusion of a transformer limits the
frequency of operation and introduces switching surges in the
circuit. A recently explored single-stage alternative is the use of
coupled inductors as proposed in [19]-[22]. This method was
shown to be able to adapt a low voltage from a PV generator to a
dc voltage of 200 V with conversion efficiencies exceeding 95%.
Nevertheless, its large input current ripple imposes the use of an
electrolytic capacitor with a high capacitance value in parallel
with the PV generator, so that the voltage ripple does not affect
the MPPT accuracy [14], [15], which in turn can compromise
reliability [16]. Finally, Z-source converter has been proposed
as an alternative for high-gain conversion [23], but this topology
has a limited conversion efficiency as reported in [24].

In this paper, we propose the use of a two-stage approach
based on a cascade connection of two boost converters. While
this provides large conversion ratios and continuous input cur-
rent, the expected efficiency is low. In addition, the cascaded
connection of power converters has some inherent drawbacks
regarding controller design and dynamic stability of the system,
which can be tackled with well-known impedance ratio criteria
by Middlebrook [25]. We overcome these two problems as fol-
lows. First, we will show that, although, conversion efficiencies
are lower than those presented in [20], [21], this structure can
provide efficiencies well above 90% for an output voltage of
380 V. Note that this structure can take advantage of novel sili-
con carbide (SiC) diodes with breakdown voltages above 400 V,
effectively reducing the reverse recovery losses of the second
stage. Second, the dynamic stability is ensured with the use of a
sliding-mode control approach [26], [27] based on the loss-free
resistor (LFR) concept [28], which was proven to be particularly
advantageous in terms of robustness and performance in [29].
This method allows us to avoid the classical frequency response
approach shown in [25], which is only valid around the operat-
ing point of the analysis. The sliding-mode approach provides
a stable regulation regardless of uncertainty and the inherent
nonlinearities of the dynamics of switching dc—dc converters.

Previous literature dealing with two cascaded boost convert-
ers for PVs can be found in [30] and [31]. While [30] analyzed
its efficiency, [31] demonstrated the global stability of the two
cascaded boost converters using different canonical elements
with a certain choice of MPPT controller output. This paper ex-
tends the results of this last paper [31], including the nonlinear
voltage—current characteristic of the PV module, the dynamics
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Fig. 1. Dc grid connected to a PV module through cascaded dc—dc converters.

of the MPPT algorithm, and the nonlinear dynamics of the cas-
caded system with the proposed sliding-mode controller (SMC).
Besides, experimental results showing efficiency measurements
and demonstrating the advantages of the dynamic performance
of this approach are provided.

The rest of this paper is organized as follows. Section I
presents the problem of the impedance matching and proposes
a possible solution through a cascade connection of two boost
converters behaving as LFRs. The extremum seeking control
(ESC) MPPT is briefly reviewed in the same section. Section II
describes the system under study and the mathematical model-
ing of the system is addressed. In addition, its stability analysis is
carried out in the same section. In order to evaluate the reported
system, a comparison will be carried out between the proposed
system and a high step-up converter using coupled inductors in
Section V. Moreover, the theoretical predictions and associated
numerical simulations of the proposed system are presented
in the same section. Experimental validation is provided in
Section V. Finally, the conclusions of this study are summa-
rized in Section VI.

II. SYSTEM OVERVIEW

The proposed conversion system is based on two cascaded
boost converters behaving as LFRs as shown in Fig. 1. This
section describes briefly the different parts of the system, the
impedance matching of the PV characteristic, the realization of
an SMC to obtain the LFR characteristic, and the MPPT circuit.

A. Impedance Matching in PV Systems

The switching converters can be used as an interface element
to connect a PV generator to a load. Fig. 3 illustrates the problem
of matching a PV generator to a dc load using two cascaded boost
converters working as LFRs. An LFR is a two-port element
which is characterized by its input current being proportional
to the input voltage. The power absorbed by this input port
is virtually transferred to the output without losses, i.e., the
output port has an inherent power source characteristic [32],
[33]. The output power can be expressed as a function of the
LFR conductance g, = 1/7

P, =P = gv;. (1)

As a consequence, due to the feedback loop in the input side,
the output power is not influenced by the output port variables
as it can be shown in Fig. 2(b) [34]. This inherent characteristic
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Fig. 2. Impedance matching of a PV module generator to a dc load using two
cascaded boost-based LFRs. (a) Block diagram. (b) Power source characteristics
of the LFR output port.

of LFRs is of high importance to avoid the influence of the load
variations in the impedance matching of PV systems. The LFR
element does not exist naturally but its synthesis can be carried
out by using a switched mode converter [35]. Under specific
conditions regarding sliding-mode operation and stability, the
proportionality between the voltage and the current at the input
port can be guaranteed in steady-state.

Both PV generator and load have been modeled in the first
quadrant i—v characteristic. The dc load can be modeled by
means of a function iy = f, (v ), which corresponds to the one-
port description of the usual dc loads such as batteries, LED
lamps, electrolytic cells, etc., and can be expressed generally by

vy = folia) = Vae + 92 R1, )

where Vg, > 0 and Ry > 0. The analysis of the impedance
matching will be carried out by considering a very small equiv-
alent series resistance (R ~ 0) and with a nominal dc voltage
Vi, much greater than the open-circuit voltage V,. of the PV
module.

The PV module current-voltage characteristic and the LFR
steady-state input impedance are depicted in Fig. 3. Note that
there is no operating point that would result from the direct
connection of the PV generator and the dc bus since there is no
intersection between their respective characteristics (Vg >>
V,c). It can be observed that conductance g can naturally be used
to set up the operating point of the PV generator. The variation
of this parameter changes the operating point of the PV module
as illustrated in Fig. 3. Operating points A and B correspond,
respectively, to conductances g, and g, with g, > g;. The LFR
converters can operate at the optimal value of the conductance
that leads to an intersection of the PV i—v characteristic curve
and the LFR load line (i = gv) described by fi,(gopt) at the
MPP.
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Fig. 3. PV module operating points for an impedance matching between the
PV generator and the LFR.
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Fig. 4. Equivalent circuit diagram of the PV module model.

According to the current—voltage characteristic of the PV
module, Fig. 4 shows an equivalent circuit whose output current
can be expressed as follows [36], [37]:

i) =1, — I (exp (W) - 1> 3)

where v, is the voltage of the module, I,,, and I are the photo-
generated and saturation currents, respectively, V;, is the ther-
mal voltage which is given by V;, = N;AKT/q where A is
the diode quality factor, K is the Boltzmann constant, g is the
charge of the electron, 7" is the PV module temperature, and N
is the number of the cells connected in series.

In addition, the photogenerated current I;,, depends on the
irradiance and temperature as follows:

Ipv :ISCSE +Cf(T*Tn) (4)
n
where I, is the short-circuit current, 7}, and S,, are the nominal
temperature and irradiance, S is the ambient irradiance, and CY
is the temperature coefficient.

The implicit equation (3) can be transformed to an explicit
relation using the Lambert-W function, as in [38]. In this way,
a nonlinear relationship between the current 4, and the voltage
v, at the basic PV unit terminals can be obtained and expressed
as follows:

. ‘/ta RSIO v, +RS(IJV +IO)
Zp:IpV+IO_RSW<Wa exp(p le
(%)

where )V stands for the Lambert-W function. This equation is
used in the analysis of the system that follows.
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Fig. 5. Block diagram of two cascaded switching converters to synthesize a
LFR at the input of each converter.

B. Synthesis of LFR in Sliding-Mode Regime

Fig. 5 shows the block diagram of two cascaded switching
converters, which under an appropriate SMC behave as LFRs.
In this figure, the switching functions for the two converters are
given by

s1(x) = kyivr — kina (6)
S9(x) = kyava — kinta @)

where 71, vy, 42, and v are the instantaneous input and inter-
mediate currents and voltages, respectively. In the steady-state
operation, the switching functions become zero. Therefore, the
following relations between the steady-state variables are ob-
tained:

ky
s1x)=0=1=gVi.g = kll ®)
ki,‘Q
s9(x) =0= I = g2Va, 90 = s ©)

where I, V1, I, and V5 are the steady-state-averaged values of
the input and intermediate currents and voltages, respectively.
In practice, the control strategy is given by a hysteretic control

law with the following output values:
ifs;(t) < —h orls;(t)] < h and s;(t”) = —h

0
u;(t) = {1:
(10)

where s; is the switching function which is also the input to
the hysteresis controller of the stage ¢ and ¢~ is the last instant
when the control signal hit the switching boundaries defined by
+h. It has to be pointed out that the presence of a hysteretic
comparator (HC) in the feedback loop of each stage of Fig. 5
results in a variable switching frequency which depends mainly
on the hysteresis width /i and the operating point [39].

A possible circuit configuration of this system with the cas-
caded boost converters and the PV module is depicted in Fig. 6.
The circuit consists of two cascaded boost converters with their
corresponding SMC. The first sliding surface is described by
the switching function s;(x) = g;v, — 4, for the first stage,

ifs;(t) > +h orls;(t)] < h and s;(t”) = +h
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Fig. 6.  Schematic diagram of two cascaded boost-based LFRs under SMC.
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Generation of the conductance g; by means of an MPPT scheme based

which establishes the steady-state relationship between the volt-
age of the module v, and the input current 7,, where g; is
the output of the MPPT controller. The second sliding sur-
face for the second stage is described by the switching func-
tion sg(X) = gav.s — iz which establishes the relationship
between the intermediate voltage v.; and the intermediate cur-
rent i where go = (G is a constant coefficient.

C. Maximum Power Point Tracking

The goal of the MPPT circuit is to ensure that the PV mod-
ule always operates at its MPP regardless of the temperature,
insolation, and load variation. A number of tracking algorithms
have been applied for different types of dc-dc converter topolo-
gies [40]-[43]. ESC, whose block diagram is shown in Fig. 7,
is one of the commonly used types of MPPT algorithms which
can force the PV system to approach the MPP by increasing or
decreasing a suitable control variable. While the figure shows
a well-known architecture [43], it is worth to point out a few
aspects which are relevant to the stability analysis. The HC
provides a binary signal that indicates whether the power-time
derivative is positive or negative. This signal is introduced into a
logic circuit with an inhibition delay 7; which establishes, after
a fixed time interval, if the direction of maximum searching ¢
has to be maintained or should be changed. The waiting interval
ensures that the converter is operating in steady-state when the
decision on the change or maintenance of the control law sign
is made. Thus, in the proposed scheme, the settling time of the
PV voltage and current are directly related to the capacitor C),
and the loss-free resistance r as it can be easily deduced from
Fig. 6. The minimum time delay 7,; can then be defined as

Td > 5r1,maxCp

(1)
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where 7| ,ax 1S the maximum value that should be achieved
by the MPPT algorithm. Note that this maximum value can
be found by considering the point where the PV characteristic
presents the MPP at the highest current and the lowest voltage,
which corresponds to the highest irradiation level and tempera-
ture.

In the proposed model, the MPPT algorithm is described by
a square wave generator that can be implemented by a micro-
controller and an integrator as shown in Fig. 8. From this figure,
the output g; of the ESC MPPT controller can be described as

ko t
m:mm——/m@« (12)
0

T1
where vy = k3V. —e, 7 = RyC;, k1 = R3/Rs, ks = R3 /Ry,
ks = Ry /R;, and V, is a constant voltage source.
III. MATHEMATICAL MODELING AND STABILITY ANALYSIS
A. Switched Model

By applying Kirchhoff’s voltage and current laws to the cir-
cuit depicted in Fig. 6, the following set of differential equations
describing the system dynamical behavior are obtained:

diLl Up Vel

Qv _ % Velq |
& "L, I, L) (13)

diLQ Vel Vdc

QLo _Vea  Mdey 14
& L, L, a4
d’Up ip iL1

dv, _ % 15
a ¢, G, (15)

Qe _fL1 ),y 02 (16)

dt ¢,

where for the first stage (respectively, second stage) u; = 1
when the switch S (respectively, .S») is closed and u; = 0 when
the switch S; (respectively, Sy ) is open. All the parameters that
appear in (13)—(16) are shown in Fig. 6.
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B. Equivalent Control

A reduced-order dynamical model can be obtained from the
full-order switched model by substituting the discontinuous bi-
nary signals u; and us by their equivalent continuous vari-
ables u.q1(x) and w40 (x) and taking into account the order
reduction imposed by the sliding manifolds. These equivalent
control variables are obtained by imposing that the trajectories
are evolving on the switching manifolds and therefore one has
s1(x) = $1(x) = 0and s9(x) = $2(x) = 0. Therefore, the fol-
lowing set of equations defining the sliding-mode dynamics are
obtained:

Sl(X) =g1Vp — iLl =0 (17)
s2(x) = Gaver —ig2 =0 (18)
. - d’l}p dgl diLl o

(%) =g —F v ——= =0 (19)
: oy dua digy

Under sliding-mode conditions, the equivalent control vari-
ables ueq1 (x) and wueq2 (x) represent the control laws that de-
scribe the behavior of the system restricted to the switching
surfaces where the system motion takes place on an average.
Hence, from (13)—(16) and (19)—(20), teq1 (x) and ueq2 (%) can
be expressed as follows:

Uq Um

Ueql = l-———
Vel Vel

21

g“@w)) (22)
Vel

where oy = g1 L1 /Cp, as = GaLy/Ch, vqg = v, — a1 (ip —
g1 ), and vy, = v, Ly (ko (k3 V. — €)/71). Note that the equiv-
alent control variables .41 and u.y2» must be bounded between
the minimum and the maximum values of u; and us, respec-
tively, i.e.

1
Uegz = 1 — —— (Ucl + (Gwa +
Ve

0<tteqy <1and 0 < e < 1. (23)

C. Sliding-Mode Conditions and Ideal Dynamics

By imposing the existence conditions given by (23), the
sliding-mode domain can be obtained. For instance, in the plane
(vp, ve1) and based on (21)—(23), the sliding-mode regime exists
provided that v.1;, < v.1 < vear, , Where the critical values v, 1,
and v.o, are given by

VelL = U4 + Uy (24)

Vdc + \/Vd2(, + 404291’0,)(1 — OéQGQ)(Ud + ’Um)
2(1 — OzQGQ) ’

Other boundaries also exist but the ones expressed by (24) and
(25) are the most restrictive. The equivalent control variables
Ueq1 (x) and weqo(x) depend on gy, which is the output of
the MPPT algorithm. Introducing (21) and (22) into (13)—(16)
and considering (17)—(20) result in the following reduced-order
model for the ideal sliding-mode dynamics:

(25)

Ve2l, =

dv, iy 10
- P 26
dt C, C, (26)
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dve  q1v; 191, .
dt N Clv(:l ? Cl”(:l (glvp ZP)
Gave1
- — 27
C (27)
dg k3V. —¢

= _fy¢ = 28
dt 2 T1 ( )

where Oy =1+ kgusLy /7. The large-signal ideal sliding-
mode dynamics given in (26)—(28) can be represented by the
circuit depicted in Fig. 9. This model will be used for numerical
simulations after its validation by the full-order switched model
given in (13)—(16). The advantage of using this large-signal
reduced-order model is the significant consumption time reduc-
tion if compared to the switched model. The inductor currents
can be modeled by voltage controlled current sources which
are governed by g, v, and G2, as mentioned in the switching
surface equations. It is worth showing that the second term in
(27) is very small. Therefore, to simplify the large-signal model
block diagram, this term has been neglected.

D. Design-Oriented Averaged Model

The previous model (26)—(28) is a switched model whose
dynamical behavior characterization is challenging due to the
presence of the MPPT dynamics which introduce a switching
variable € and also due to nonlinearities. As a first step for
stability analysis, averaging of the previous equations (26)—(28)
over one period 27, is carried out, where 7 is the delay period
used in the MPPT controller. Let 7,,, Zp, V.1, Vs, §1, and € stand
for averaged quantities, i.e.

g = (29)

2Td t

with similar expressions for the rest of averaged variables.
Therefore, we obtain the following 27, —averaged equations:

v, — i’ _ 9% (30)
dt C, c,

dv., ?1@2; g1y = G2V

= A= — (917 —ip) —

dt Clvcl 011)61 Cl

dg, k3V.—¢

— = —kyg——. 31
dt 2 T1 ( )

The next step in our study will be the determination of the
equilibrium point of the averaged model defined in (30)—(30).
1) Equilibrium Point: The equilibrium point can be obtained
by forcing the time derivative of the state variables of the aver-
aged model to be null. In order to get an explicit expression of
the equilibrium point, let us suppose that R = 0 in (3) which

becomes
iy = Iy — I <exp (%”) — 1) . (32)
a
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From (30)—(31) and taking into account (17) and (18), the equi-
librium point of the averaged-model is given by

— — T
Ie Ie

GGG

where T stands for the transpose of a vector and I, can be
expressed as follows:

=V, VGl = KV, (33)

— — I() Iv+I()
I.=1,,+1)—GVW|( = S )) 34
e p 0 1V (lem exp( LV, (34)

In order to validate the previous analytical expression for the
equilibrium point, it has been calculated numerically by an it-
erating procedure with the exact expression (5) and using the
analytical approximated expression given in (33) and a good
agreement has been obtained for a wide range of practical pa-
rameter values.

The averaged values of the control variables at the equilibrium
point can be obtained by substituting (33) in (21) and (22) and
leads to the following expressions:

_ . |G
Teq1 (x7) =1 — é—j

Teq2 (x*) =1

(35)

1, 1 G
Vie ( VG 1Gy Gy )
As mentioned previously in (23), Ueq1 (z*) and Ueq2 () must be

bounded between 0 and 1. Moreover, in steady-state, [, = .
Therefore, from (23), the following condition must be satisfied:

(1 720[2G2)2I§ (37)
Gy V2

él > max (GQ,

It is worth to note that the previous condition (37) has been de-

rived considering that I,, — G1V, = 0 at the equilibrium point.

2) Small-Signal Stability Analysis: In order to study the sta-

bility of the system, the nonlinear equations (30)—(31) are first

linearized around the equilibrium point x* given by (33), ob-
taining the following expression of the Jacobian matrix J:

v
_s _ Y
0 &
_ 0z 7’ _
J=| 85+ 5(20, + 5) =B g (B + a1GY)
; ,
T1 (%p

(38)
where the parameters 6, £, 31, 32, 33, and 3, are given by

_ RG(1+L)+L

O RO+ L) o
. RSI() Vp + Rs ([pv + IO)

L=w < V;fa, P < V;/”' (40)
G,GyL k = L

B3 = \/?12 By = (1 + k2V51> (41)
171 G
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The characteristic polynomial equation of the linearized system
is given by det(J — sI) = 0, where I is the unitary matrix.
Developing this equation, the characteristic polynomial can be
written in the following form:

Ty ky OF

Cp T 861,

34’(54‘54)524’5545* UPkZC%

(43)
Observe that we cannot study the stability of the system using
the previous characteristic polynomial due to the nonavailabil-
ity of an explicit mathematical expression of Z in terms of v,
allowing a general result. It might be possible, however, to treat
the system using numerical simulations. This has the advantage
of not requiring such a mathematical expression as in the case
of an analytical stability analysis. Fortunately, in our system,
the averaged variable £ changes very slowly with respect to v),.
Therefore, it can be considered that 92/0v,, ~ 0 which implies
that the characteristic polynomial can be simplified as follows:

57+ (04 Ba)s + 86s. (44)

This new simplified expression of the characteristic polynomial
has two roots § and (3; located both in the left half plane, and
hence, the equilibrium point of the averaged system is asymp-
totically stable. Note, however, that the previous stability anal-
ysis is only valid locally near enough to the equilibrium point.
However, as the MPPT controller is included in the dynamical
model, the equilibrium point corresponds to the MPP. This is
because at the MPP one has dp/dv, ~ 0, which implies that
dp/dt =~ 0, i.e., dv,/dt =~ 0 and di, /dt =~ 0. If the stability is
guaranteed for this point, it becomes inherently an attractor of
the system. As the equilibrium point is unique, this ensures that
it is a global attractor for the system. The following section pro-

PSIM schematic diagram of the two cascaded boost-based LFRs connected to a PV module operating with an ESC MPPT controller.

TABLE 1
PARAMETERS OF THE PV MODULE

Parameter Value
Number of cells N 36 cell
Standard light intensity S 1000 W/m?
Ref temperature 7' ¢ 25°C
Series resistance R 0.008 ©
Short-circuit current I 5A
Saturation current [ 3.8074-10°% A
Band energy F, 1.12
Ideality factor A 1.2
Temperature coefficient C'; 0.00065 A/C
Open-circuit voltage v, ¢ 22V

vides numerical simulations showing that the basin of attraction
of this equilibrium point is indeed very large.

IV. NUMERICAL SIMULATIONS

In order to verify the previous theoretical results, the original
switched-mode system is simulated in PSIM using the schematic
shown in Fig. 10. The PSIM solar module has an open-circuit
voltage around 22 V based on the data of BP585, its internal
parameters being shown in Table I. Note that the input voltage
depends on the weather conditions and varies between 0 V and
open-circuit voltage with a nominal MPP value of 18 V. Table II
shows the rest of the system parameters. It has to be mentioned
that the conductance G5 has been selected in such a way that
both stages work with approximately the same duty cycle, which
in this case corresponds to a conversion ratio of 5 for each stage,
or equivalently an intermediate voltage v.; around 80 V. It is
worth mentioning also that the parasitic elements have been
included in the PSIM simulation shown in Fig. 10. They are the
internal resistance of the inductors (r7,; = 60 mQ and rro = 130
m(2), the ON resistance of the MOSFETS (r,,1 = 60 m{) and
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TABLE II
USED PARAMETER VALUES FOR THIS STUDY

L, L, C, Cy Gy hy ho k1 ko k3 T Td Ve fs
200 H 2 mH 100 uF 10 puF 0.008 S 04 A 02A 0.05 0.167 0.5 0.1s 5 ms 5V 50 kHz
82
400F e P ) 1
350 /_ R1.95}
300
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Fig. 11.

Transient response of the system. (a) Trajectories from different initial conditions in the plane (v, v.1) obtained from the full-order switched model

and the ideal sliding-mode dynamics model. (b) Steady-state response in the plane (v, v.1) form the full-order switched model and the reduced-order ideal

sliding-mode dynamics.

Ton2 = 165 m{2), and the internal resistances of the capacitors
Tep = Te1 = 0.1€0

A. Numerical Simulation of the Proposed System

The validity of the ideal sliding-mode dynamics model has
been checked in Fig. 11(a), where the trajectories of both the
ideal sliding-mode and switched-mode model are shown. Three
different initial condition points P1-P3 are considered, where
the sliding-mode boundaries defined by v.; = v.17 and v.,; =
veor, as defined in (24) and (25), are also plotted. It can be
observed that the system trajectories converge to the limit cycle
in the vicinity of the MPP in all the cases. For point P2, the ideal
and switched-mode trajectories are in perfect agreement. For
points P1 and P3, the mismatch between the ideal and switched
trajectories is due to the fact that these points are outside the
sliding-mode domain described previously. Fig. 11(b) shows
the steady-state behavior of the system in the state plane (v,,
v¢1) using the full-order switched model and the reduced-order
ideal sliding-mode dynamics model. The concordance between
the results obtained from the different models is remarkable.
Moreover, it can be noticed that the system converges to a limit
cycle in the vicinity of the MPP in all the cases.

The steady-state time domain waveforms of the two cascaded
boost-based LFRs using the ideal sliding-mode dynamics are
depicted in Fig. 12. It can be noticed that the output voltage
and the output current for the PV module have triangular wave-
forms and they are 180° out of phase. The frequency of the
instantaneous power p is twice the frequency of the current or
voltage. Therefore, each half period of the current or voltage,
the maximum value of the power p is reached.

0.1 0.12 0.14 0.16 0.18 0.2
Time (s)

Fig. 12.  Steady-state waveforms for the two cascaded converters behaving as
LFRs supplied from a PV module operating with an MPPT controller.

The response of the two cascaded boost-based LFRs con-
nected to the PV module with an MPPT have been checked also
under the change of temperature 7" and irradiance .S in Fig. 13.
Fig. 13(a) depicts the response under step change of temperature
with the same irradiance S = 700 W/m?. When the tempera-
ture increases from 25 °C to 45 °C, the power decreases but
the system still works at the MPP for this temperature. Simi-
larly, Fig. 13(b) illustrates the response of the system under a
step irradiance change from S = 700 W/m? to S = 500 W/m?
at constant temperature 7' = 25 °C. It can be noticed that the
system is able to maintain the power in the vicinity of the MPP
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Fig. 14.  Circuit diagram of the coupled-inductor high step-up converter of
[20] with PI controller.

TABLE III
COUPLED-INDUCTOR CONVERTER [20] PARAMETERS

Vae Ly Ly» c, Cni Cha G Te fs

380V 16 puH 470 uH 100 uF 14 pF 20 uF 05 0.dms 50kHz

under the variation of the external conditions. The PV i—v char-
acteristic curve and the LFR load line are depicted in Fig. 13(c)
and (d) for the same step change in the temperature and irradi-
ance, respectively. It can be noticed that when the temperature
increases from 25°C to 45°C, the average conductance e
changes from 0.2 S to 0.22 S to extract the maximum power as
shown in Fig. 13(c). However, when the irradiance changes from
S = 700 W/m? to S = 500 W/m?, the conductance G| changes
from 0.2 S to 0.15 S for achieving the MPP steady-state for the
new conditions as shown in Fig. 13(d). Therefore, the steady-
state of the system for both irradiance levels is at the MPP. This
can also be observed in the corresponding waveforms of v, and
p which are depicted in Fig. 13(e) and (f), respectively. It can be
noticed that when the irradiance decreases, the power decreases
while maintaining the operating point at the MPP. The previous
tests confirm that this system is robust regardless of the change
in temperature or irradiance.

B. Comparison of the Proposed Approach With a Previously
Reported Solution [20]

This section presents a comparison that illustrates the ad-
vantages and limitations of the proposed converter and control
approach. As mentioned in Section I there exists extensive liter-
ature in high-gain conversion topologies. The coupled-inductor
single-stage solution proposed in [20] and [21] has been chosen
for the comparison. This coupled-inductor converter was shown
to deal with the same problem of interfacing PV modules with
a high dc voltage in [21], and has the benefits of high efficient
power conversion with only one controllable switch.

The coupled-inductor converter, which is shown in Fig. 14,
using a conventional proportional integral (PI) controller scheme
has been simulated in the same conditions of the previous sec-
tion. The gain GG and the time constant 7. of the PI controller
are mentioned in Table III. Similarly, the same ESC MPPT al-
gorithm has been used to generate the reference for the current
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controller. Table III shows the set of parameter values of the con-
verter, which are the same that were reported in [21] with the
exception of the input capacitance C,,. This parameter, which
was equal to 3.3 mF in [21], has been reduced to 100 pF in order
to match the input capacitance of the cascaded boost converters.

Fig. 15 shows the waveforms of a transient simulation of the
coupled-inductor and cascaded boost converters during a step
change in irradiance at ¢ = 200 ms. It can be observed in the
figure that the settling time of the cascaded boost converter is
more than twice faster than the coupled-inductor converter. At
the same time, the much larger input voltage and input current
ripples of the coupled-inductor converter do not allow us to
increase the MPPT gain because a higher deviation from the
MPP would be expected under those conditions. It is worth to
remark that a very large and bulky coupled inductance would be
required in order to have a switching ripple similar to the one
achieved with the cascaded boost converters.

Fig. 16 shows the two compared systems’ response under a
step change of the output voltage from 380 to 440 V. It can be
noticed that increasing the output voltage has no effect on the in-
put variables v, and 4, of the PV module in the proposed system.
However, in case of the coupled inductor single-stage converter,
the change on the output voltage yields the interruption in the
input voltage, input current, and extracted input power.

In terms of cost and size, the coupled-inductor converter re-
quires three diodes, three capacitors, a MOSFET, and a coupled-
inductor (i.e., two inductors on the same core). The cascaded
boost converter needs two diodes, two capacitances, two MOS-
FETs, and two inductors, which for the same input current ripple,
they will have smaller volume with respect to the coupled in-
ductor. The proposed system presents lower volume and smaller
number of components when compared with the high step-up
gain converter. In general, the proposed system is more simple
than the coupled inductor converter as regards the implemen-
tation or the stability analysis. As disadvantages, the cascaded
boost converter requires some additional external circuitry for
the sliding-mode control and some driving for the two MOS-
FETs, which presents a lower conversion efficiency.

V. EXPERIMENTAL RESULTS

Two cascaded boost converter prototypes connected to a
BP585 PV module have been implemented in the laboratory.
This PV module has a nominal power of 85 W [44]. A picture
of the system and the PV module is shown inFig. 18. The nomi-
nal values of the circuit parameters are the same that were shown
in Table I. Current sensing is realized by means of an LA25-NP
current transducer in both stages of the cascaded boost convert-
ers. The implementation of the prototypes has been carried out
using Orcad program and the schematic diagram is depicted in
Fig. 17, which has the reference of the used components. Note
that this figure shows the power stage of the two cascaded boost
converters and only the control of the first stage because the
control of the second stage is similar.

A schottky diode is used for the first stage and a SiC diode
is used for the second stage. The MPPT algorithm has been
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Waveforms of the PV power, voltage, and current during an irradiance change from S = 500 W/m? to .S = 700 W/m? at constant temperature 25 °C.
(a) Coupled-inductor converter. (b) Two cascaded boost converters.
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Waveforms of the PV power, voltage, and current during an output voltage change from 380 to 440 V at constant temperature 25 °C. (a) Coupled-inductor
converter. (b) Two cascaded boost converters.
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Fig. 18.  Experimental prototypes for the two cascaded boost-based LFRs. (a) PV modules in the roof. (b) First stage LFR. (c) Second stage LFR. (d) SMC for
the first stage. (e) SMC for the second stage. (f) MPPT controller. (g) Tektronix oscilloscope TDS3014C. (h) Tektronix probe (TCP202). (i) Load (380 V dc bus)
SPS800X13.
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to (a) startup and (b) steady-state.

implemented using the microcontroller PIC18F1320 and an
external integrator circuit. The period of oscillation of the MPP
tracker has been fixed by means of the integrator gain and the
time delay 7,. This delay period has been fixed to 5 ms taking
into account the aforementioned settling time of the system and
the presence of noise in the prototype [14], [15]. In turn, the
integrator gain has been tuned in order to obtain a good tradeoff
between the static MPPT efficiency and the tracking speed at
both low and rated power levels. The output of the two cascaded
boost converters is connected to a constant dc voltage as a load
(SPS800X13) of 380 V.

A. Steady-State Results

In order to evaluate the cascaded system, efficiency mea-
surements for three different input voltage within a range of
output power were taken. The prototypes present efficiencies
above 90% for a wide range of output powers and input volt-
ages, achieving a peak efficiency close to 95% for a conversion
ratio between output and input voltages above 25. It is worth
to point out that it can be expected that both efficiency and
power density would increase with the use of GaN devices in
a near future, given their improved ON resistance and output
capacitance, which would also allow a significant increase of
the switching frequency.

(b)

Experimental waveforms of the two cascaded converters behaving as LFRs supplied from a PV module operating with an MPPT controller corresponding

B. Transient Results

The transient behavior of the PV module during startup is
depicted in Fig. 19(a). The starting point of the PV module is
at zero current and open-circuit voltage 20 V. The voltage of
the module decreases during the startup while the current and
the power increase. It can be noticed that the settling time is
small and that the system behaves as an LFR at steady-state.
Fig. 19(b) shows the behavior of the different variables around
the equilibrium. It can be observed that the slope change in both
current and voltage takes place between the two maximum of
power because the frequency of the power is twice the frequency
of these variables.

The system has been tested under several disturbances.
Fig. 20(a) shows the system response under a step change of
the output voltage from 380 to 420 V. It can be noticed that in-
creasing the output voltage has no effect on the input variables
v, and 4, of the PV module and consequently it does not alter
the tracking of the input power, given the inherent power source
characteristic of the LFRs that has been previously discussed
in Section II-A. However, because of the losses, a small in-
crease in the intermediate voltage v.; can be noticed. Similarly,
Fig. 20(b) shows the system response under a decrease of the
output voltage. It can be noticed that, in this case, no effect on
the PV power tracking can be observed.
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Fig.21. Experimental waveforms of the system showing the effect of irradiance and temperature changes. (a) Temperature effect at S =700 W/m?. (b) Irradiance

effect at T =25°C.

The system has been also tested under temperature 7" and irra-
diance S changes. In order to control such changing conditions, a
PV emulator E4360A has been used as a source for the following
measurements. Fig. 21(a) shows the response of the system un-
der a step change of temperature with the same irradiance level
S = 700 W/m?. When the temperature increases from 25 °C
to 45 °C, the power decreases but the system converges to the
MPP for this temperature after a short transient period of about
20 ms. On the other hand, Fig. 21(b) shows the response under a
step change of irradiance with the same temperature 7' = 25 °C.
When the irradiance decreases from 700 to 500 W/m?2, the power
decreases but the system steady state is at the MPP for this tem-
perature after a small transient time of about 30 ms.

VI. CONCLUSION

High-voltage conversion ratios can be achieved by using a
cascade connection of de—dc boost converters, in order to step
up the low voltage of a PV module to the dc voltage of the grid
(380 V). This cascade connection can be robustly controlled
with a sliding-mode scheme imposing an LFR, such that the in-

put current is proportional to the input voltage. The operation of
the circuit has been analyzed theoretically and with numerical
simulations using the PV and MPPT models which are plugged
in the ideal sliding-mode dynamic model. This model, which
has been validated by using the full-order switched model, has
the advantage of faster simulation time. Moreover, the ideal
sliding-mode dynamic model allows us to develop a design-
oriented description which facilitates the stability analysis of
the system. This stability analysis shows that the system ex-
hibits stable LFR characteristics without any conditions. Using
the LFR canonical element with SMC in the cascade connection
adds simplicity for the stability analysis and the implementa-
tion. The proposed system has been compared with a coupled-
inductor converter reported in [20] in terms of dynamic perfor-
mance, number of components, volume, and simplicity. While
the coupled-inductor converter achieves slightly larger conver-
sion efficiencies, the proposed system provides improved dy-
namic properties and higher reliability. The experimental tests
carried out in the laboratory for the proposed system are in good
agreement with the theoretical predictions and show that the ex-
traction of the maximum power can be achieved robustly even
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in the presence of climate (temperature or irradiance) or load
changes. Finally, with the proposed system, a high conversion
ratio can be achieved together with very fast tracking speed, high
efficiency for the converters, and high static MPPT efficiency,
which allows us to obtain the maximum available energy from
the PV module.
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