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Harvesting a Renewable Resource. Suppose that the population y of a certain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt = r(l — v/K)y.

Although it is desirable to utilize this source of food. it is intuitively clear that if too many fish
are caught, then the fish population may be reduced below a useful level and possibly even
driven to extinction. Problems 20 and 21 explore some of the questions involved in formulating
a rational strategy for managing the fishery."

20. At a given level of effort, it is reasonable to assume that the rate at which fish are caught

21.

depends on the population y: the more fish there are. the easier it is to catch them. Thus we
assume that the rate at which fish are caught is given by Ey. where E is a positive constant.
with units of 1/time, that measures the total effort made to harvest the given species of
fish. To include this effect, the logistic equation is replaced by

dy/dt = r(1 — y/K)y — Ey. (i)

This equation is known as the Schaefer model after the biologist M. B. Schaefer, who
applied it to fish populations.

(a) Show thatif E < r, then there are two equilibrium points, y; = 0 and
v=K(1-Efr)> 0

(b) Show that y = y; is unstable and y = y- is asymptotically stable.

(c) A sustainable yield ¥ of the fishery is a rate at which fish can be caught indefinitely.
It is the product of the effort E and the asymptotically stable population y,. Find ¥ as a
function of the effort E; the graph of this function is known as the yield—effort curve.

(d) Determine E so as to maximize ¥ and thereby find the maximum sustainable yield Y.

In this problem we assume that fish are caught at a constant rate /1 independent of the size
of the fish population. Then y satisfies

dyfdt = r(l — y/K)y — h. (1)

The assumption of a constant catch rate i may be reasonable when y is large but becomes
less so when y is small.

(a) If h = rK/4, show that Eq. (i) has two equilibrium points y; and y, with y; < y2:
determine these points.

(b) Show that y, is unstable and y; is asymptotically stable.

(¢) From a plot of f(y) versus y, show that if the initial population yy > yi.then y — y;
as r — oo, but that if yy < v, then y decreases as r increases. Note that y = 0 is not an
equilibrium point, so if yy < y;, then extinction will be reached in a finite time.

(d) If h = rK /4. show that y decreases to zero as r increases, regardless of the value of yo.
(e) It h =rK /4, show that there is a single equilibrium point y = K/2 and that this point
is semistable (see Problem 7). Thus the maximum sustainable yield is h,,, = rK /4. corre-
sponding to the equilibrium value y = K /2. Observe that h,, has the same value as Y,
in Problem 20(d). The fishery is considered to be overexploited if y is reduced to a level

below K /2.

SAn excellent treatment of this kind of problem, which goes far beyond what is ouilined here, may be
found in the book by Clark mentioned previously, especially in the first two chapters. Numerous additional
references are given there.
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Another equation that has been used to model population growth is the Gompertz"*
equation

dyfdt = ryIn(K /v),

where r and K are positive constants.

(a) Sketch the graph of f(v) versus y. find the critical points, and determine whether each
is asymptotically stable or unstable.

(b) For0 = y = K. determine where the graph of v versus ¢ is concave up and where it is
concave down.

(c) Foreachyin(0 < y < K, show that dv/drt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

(a) Solve the Gompertz equation
dy/di = ryIn(K fv),

subject to the initial condition y(0) = yo.

Hint: You may wish to let v = In(y/K).

(b) For the data given in Example 1 in the text (r = 0.71 per year, K = 80.5 x 10° kg,
vo/K = 0.25), use the Gompertz model to find the predicted value of y(2).

(c) For the same data as in part (b). use the Gompertz model to find the time t at which
yir) =0.75K.



