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a b s t r a c t

Automatic facial expression analysis is an interesting and challenging problem, and impacts important
applications in many areas such as human–computer interaction and data-driven animation. Deriving
an effective facial representation from original face images is a vital step for successful facial expression
recognition. In this paper, we empirically evaluate facial representation based on statistical local features,
Local Binary Patterns, for person-independent facial expression recognition. Different machine learning
methods are systematically examined on several databases. Extensive experiments illustrate that LBP
features are effective and efficient for facial expression recognition. We further formulate Boosted-LBP
to extract the most discriminant LBP features, and the best recognition performance is obtained by using
Support Vector Machine classifiers with Boosted-LBP features. Moreover, we investigate LBP features for
low-resolution facial expression recognition, which is a critical problem but seldom addressed in the
existing work. We observe in our experiments that LBP features perform stably and robustly over a useful
range of low resolutions of face images, and yield promising performance in compressed low-resolution
video sequences captured in real-world environments.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Facial expression is one of the most powerful, natural and
immediate means for human beings to communicate their emo-
tions and intensions. Automatic facial expression analysis is an
interesting and challenging problem, and impacts important appli-
cations in many areas such as human–computer interaction and
data-driven animation. Due to its wide range of applications,
automatic facial expression recognition has attracted much atten-
tion in recent years [1–4]. Though much progress has been made
[5–24], recognizing facial expression with a high accuracy remains
difficult due to the subtlety, complexity and variability of facial
expressions.

Deriving an effective facial representation from original face
images is a vital step for successful facial expression recognition.
There are two common approaches to extract facial features: geo-
metric feature-based methods and appearance-based methods [4].
Geometric features present the shape and locations of facial com-
ponents, which are extracted to form a feature vector that repre-
sents the face geometry. Recently Valstar et al. [22,23] have
demonstrated that geometric feature-based methods provide
ll rights reserved.
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similar or better performance than appearance-based approaches
in Action Unit recognition. However, the geometric feature-based
methods usually requires accurate and reliable facial feature
detection and tracking, which is difficult to accommodate in many-
ituations. With appearance-based methods, image filters, such as
Gabor wavelets, are applied to either the whole-face or specific
face-regions to extract the appearance changes of the face.
Due to their superior performance, the major works on appear-
ance-based methods have focused on using Gabor-wavelet
representations [25,7,8,26,19]. However, it is both time and mem-
ory intensive to convolve face images with a bank of Gabor filters
to extract multi-scale and multi-orientational coefficients.

In this work, we empirically study facial representation based
on Local Binary Pattern (LBP) features [27,28] for person-indepen-
dent facial expression recognition. LBP features were proposed
originally for texture analysis, and recently have been introduced
to represent faces in facial images analysis [29–31]. The most
important properties of LBP features are their tolerance against
illumination changes and their computational simplicity. We
examine different machine learning methods, including template
matching, Support Vector Machine (SVM), Linear Discriminant
Analysis (LDA) and the linear programming technique, to perform
facial expression recognition using LBP features. Our study demon-
strates that, compared to Gabor wavelets, LBP features can be de-
rived very fast in a single scan through the raw image and lie in
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low-dimensional feature space, while still retaining discriminative
facial information in a compact representation. We further formu-
late Boosted-LBP by learning the most discriminative LBP features
with AdaBoost, and the recognition performance of different clas-
sifiers are improved by using the Boosted-LBP features. We also
evaluate the generalization ability of LBP features across different
databases.

One limitation of the existing facial expression recognition
methods is that they attempt to recognize facial expressions from
data collected in a highly controlled environment given high reso-
lution frontal faces [26]. However, in real-world applications such
as smart meeting and visual surveillance, the input face images are
often at low resolutions. Obviously low-resolution images in real-
world environments make real-life expression recognition much
more difficult. Recently Tian et al. [32,26] made a first attempt to
recognize facial expressions at low resolutions. In [26], Tian stud-
ied the effects of different image resolutions for each step of auto-
matic facial expression recognition. In this work, we investigate
LBP features for low-resolution facial expression recognition.
Experiments on different image resolutions show that LBP features
perform stably and robustly over a useful range of low resolutions
of face images. The encouraging performance on real-world com-
pressed video sequences illustrated their promising applications
in real-world environments.

This paper is an extended version of our previous work de-
scribed in [33]. The main contributions of this paper are summa-
rized as follows:

� We empirically evaluate LBP features for person-independent
facial expression recognition. Different machine learning meth-
ods are exploited to classify expressions on several databases.
LBP features were previously used for facial expression classifi-
cation in [31], and more recently, following our work [33], Liao
et al. [34] presented an extended LBP operator to extract fea-
tures for facial expression recognition. However, these existing
works were conducted on a very small database (JAFFE) using
an individual classifier. In contrast, here we comprehensively
study LBP features for facial expression recognition with differ-
ent classifiers on much larger databases.

� We investigate LBP features for low-resolution facial expression
recognition, a critical problem but seldom addressed in the
existing work. We not only perform evaluation on different
image resolutions, but also conduct experiments in real-world
compressed video sequences. Compared to the previous work
[32,26], LBP features provide just as good or better performance,
so are very promising for real-world applications.

� We formulate Boosted-LBP by learning the most discriminative
LBP histograms with AdaBoost for each expression, and the rec-
ognition performance of different classifiers are improved by
using the Boosted-LBP features. We also evaluate the generaliza-
tion ability of LBP features cross different databases.

The remainder of this paper is structured as follows. We present
a brief review of related work in the next section. Local Binary Pat-
terns are introduced in Section 4. Section 5 discusses facial expres-
sion recognition using LBP features with different classification
techniques. We investigate low-resolution expression recognition
in Section 6. Boosting LBP for expression recognition is presented
in Section 7. We also evaluate across-dataset generalization in Sec-
tion 8. Finally, Section 9 concludes the paper.
2. Previous work

Automatic facial expression recognition has attracted much
attention from behavioral scientists since the work of Darwin in
1872 [35]. Suwa et al. [36] made the first attempt to automatically
analyze facial expressions from image sequences in 1978. Much
progress has been made in the last decade, and a thorough survey
of the exiting work can be found in [1,2]. Here we briefly review
some previous work in order to put our work in context.

2.1. Facial representation

Automatic facial expression recognition involves two vital
aspects: facial representation and classifier design [4]. Facial repre-
sentation is to derive a set of features from original face images to
effectively represent faces. The optimal features should minimize
within-class variations of expressions while maximize between-
class variations. If inadequate features are used, even the best clas-
sifier could fail to achieve accurate recognition. In some existing
work [5,6,14,13], optical flow analysis has been used to model
muscles activities or estimate the displacements of feature points.
However, flow estimates are easily disturbed by the nonrigid mo-
tion and varying lighting, and are sensitive to the inaccuracy of im-
age registration and motion discontinuities [18]. Facial geometry
analysis has been widely exploited in facial representation
[9,10,16,17,24], where shapes and locations of facial components
are extracted to represent the face geometry. For example, Zhang
et al. [25] used the geometric positions of 34 fiducial points as fa-
cial features to represent facial images. In image sequences, the fa-
cial movements can be qualified by measuring the geometrical
displacement of facial feature points between the current frame
and the initial frame. Valstar et al. [22] presented AU detection
by classifying features calculated from tracked fiducial facial
points. Their method detects a similar amount of AUs with similar
or higher recognition rates than those reported in [10,3,37]. So they
argued that the facial representation based on tracked facial points
is well suited for facial expression analysis. Recently they [23] fur-
ther presented a fully automatic AU detection system that can
automatically localize facial points in the first frame and recognize
AU temporal segments using a subset of most informative spatio-
temporal features selected by AdaBoost. However, the geometric
feature-based representation commonly requires accurate and
reliable facial feature detection and tracking, which is difficult to
accommodate in many situations. In [18], motions of facial features
are measured by simultaneously using an active Infra-Red illumi-
nation and Kalman filtering to deal with large variations of head
motion.

Another kind of method to represent faces is to model the
appearance changes of faces. Holistic spatial analysis including
Principal Component Analysis (PCA) [38], Linear Discriminant
Analysis (LDA) [39], Independent Component Analysis (ICA) [40]
and Gabor wavelet analysis [7] have been applied to either the
whole-face or specific face regions to extract the facial appearance
changes. Donato et al. [8] explored different techniques to repre-
sent face images for facial action recognition, which include PCA,
ICA, Local Feature Analysis (LFA), LDA and local schemes such as
Gabor-wavelet representation and local principal components.
Best performances were obtained using Gabor-wavelet representa-
tion and ICA. Due to their superior performance, Gabor-wavelet
representations have been widely adopted in face image analysis
[25,7,26,19]. However, the computation of Gabor-wavelet repre-
sentations is both time and memory intensive, for example, in
[19], the Gabor-wavelet representation derived from each
48 � 48 face image has the high dimensionality of Oð105Þ. Recently
Local Binary Patterns have been introduced as effective appearance
features for facial image analysis [31,29,30]. We [33] compared LBP
features with Gabor features for facial expression recognition, and
studied their performance over a range of image resolutions. In
[41], we further presented facial expression manifold learning in
the LBP feature space. More recently, Liao et al. [34] introduced
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an improved LBP operator to extract features in both intensity and
gradient maps for facial expression recognition, and also tested
their methods on facial images of reduced resolutions. However,
their experiment was carried out on a very small database (213
images from 10 subjects). In this work, we comprehensively study
LBP features for facial expression recognition on several databases.

2.2. Facial expression recognition

Different techniques have been proposed to classify facial
expressions, such as Neural Network [42,25,26], Support Vector
Machine (SVM) [19], Bayesian Network (BN)[11] and rule-based
classifiers [9,17,24]. In Lyons et al.’ work [7], the principle compo-
nents of the feature vectors from training images were analyzed by
LDA to form discriminant vectors, and facial image classification
was performed by projecting the input vector of a testing image
along the discriminant vectors. Cohen et al. compared different
Bayes classifiers [11], and Gaussian Tree-Augmented-Naive (TAN)
Bayes classifiers performed best. Bartlett et al. [19] performed sys-
tematic comparison of different techniques including AdaBoost,
SVM and LDA for facial expression recognition, and best results
were obtained by selecting a subset of Gabor filters using AdaBoost
and then training SVM on the outputs of the selected filters. Pantic
and Rothkrantz adopted rule-based reasoning to recognize action
units and their combination [17].

To exploit the temporal behaviors of facial expressions, differ-
ent techniques were presented for facial expression recognition
in image sequences. There have been several attempts to track
and recognize facial expressions over time based on optical flow
analysis [5,6]. Tian et al. [10] presented a Neural Network based
approach to recognize facial action units in image sequences. Hid-
den Markov Models (HMMs) have been widely used to model the
temporal behaviors of facial expressions from image sequences
[11,13]. Cohen et al. [11] proposed a multi-level HMM classifier,
which allows not only to perform expression classification on a vi-
deo segment, bust also to automatically segment a long video se-
quence to the different expressions segments without resorting
to heuristic methods of segmentation. But HMMs can not deal with
dependencies in observation. Dynamic Bayesian Networks (DBNs)
recently were exploited for sequence-based expression recognition
[16,14,18]. Kaliouby and Robinson [16] proposed a system for
inferring complex mental states from videos of facial expressions
and head gestures, where a multi-level DBN classifier was used
to model complex mental states as a number of interacting facial
and head displays. Zhang and Ji [18] explored the use of multisen-
sory information fusion technique with DBNs for modeling and
understanding the temporal behaviors of facial expressions in im-
age sequences. Chang et al. proposed a probabilistic video-based
facial expression recognition method based on manifolds [15].
Lee and Elgammal [21] recently introduced a framework to learn
decomposable generative models for dynamic appearance of facial
expressions where facial motion is constrained to one dimensional
closed manifolds. The learned model can generate different dy-
namic facial appearances for different people and for different
expressions, so enabling simultaneous recognition of faces and
facial expressions.

3. Facial expression data

Facial expressions can be described at different levels [4]. A
widely used description is Facial Action Coding System (FACS)
[43], which is a human-observer-based system developed to cap-
ture subtle changes in facial expressions. With FACS, facial expres-
sions are decomposed into one or more Action Units (AUs). AU
recognition or detection has attracted much attention recently
[8,10,18,23]. Meanwhile, psychophysical studies indicate that basic
emotions have corresponding universal facial expressions across
all cultures [44]. This is reflected by most current facial expression
recognition systems [7,11–13,19] that attempt to recognize a set of
prototypic emotional expressions including disgust, fear, joy, sur-
prise, sadness and anger. Therefore, in this work, we also focus
on prototypic expression recognition. We consider both 6-class
prototypic expression recognition and 7-class expression recogni-
tion by including the neutral expression.

We mainly conducted experiments on the Cohn–Kanade data-
base [45], one of the most comprehensive database in the current
facial-expression-research community. The database consists of
100 university students aged from 18 to 30 years, of which 65%
were female, 15% were African-American and 3% were Asian or La-
tino. Subjects were instructed to perform a series of 23 facial dis-
plays, six of which were based on description of prototypic
emotions. Image sequences from neutral to target display were
digitized into 640 � 490 pixel arrays with 8-bit precision for gray-
scale values. Fig. 1 shows some sample images from the Cohn–Ka-
nade database.

For our experiments, we selected 320 image sequences from the
database. The only selection criterion was that a sequence could be
labeled as one of the six basic emotions. The sequences come from
96 subjects, with 1–6 emotions per subject. For each sequence, the
neutral face and three peak frames were used for prototypic
expression recognition, resulting in 1280 images (108 Anger, 120
Disgust, 99 Fear, 282 Joy, 126 Sadness, 225 Surprise and 320 Neu-
tral). To evaluate the generalization performance to novel subjects,
we adopted a 10-fold cross-validation testing scheme in our exper-
iments. More precisely, we partitioned the dataset randomly into
ten groups of roughly equal numbers of subjects. Nine groups were
used as the training data to train classifiers, while the remaining
group was used as the test data. The above process was repeated
ten times for each group in turn to be omitted from the training
process. We reported the average recognition results on the test
sets.

Following Tian [26], we normalized the faces to a fixed distance
between the two eyes. We manually labeled the eyes location, to
evaluate LBP features in the condition of no face registration errors.
Automatic face registration can be achieved by face detection [46]
and eye localization [26,47], which will be addressed in our future
work. Facial images of 110 � 150 pixels were cropped from original
frames based on the two eyes location. No further registration such
as alignment of mouth [25] was performed in our algorithms. As
the faces in the database are frontal view, we did not consider head
pose changes. For realistic sequences with head pose variation,
head pose estimation [26] can be adopted to detect front or near
front view. Illumination changes exist in the database, but there
was no attempt made to remove illumination changes [26] in our
experiments, due to LBP’s gray-scale invariance. Fig. 2 shows an
example of the original face image and the cropped image.

4. Local Binary Patterns (LBP)

The original LBP operator was introduced by Ojala et al. [27],
and was proved a powerful means of texture description. The oper-
ator labels the pixels of an image by thresholding a 3� 3 neighbor-
hood of each pixel with the center value and considering the
results as a binary number (see Fig. 3 for an illustration), and the
256-bin histogram of the LBP labels computed over a region is used
as a texture descriptor. The derived binary numbers (called Local
Binary Patterns or LBP codes) codify local primitives including dif-
ferent types of curved edges, spots, flat areas, etc (as shown in
Fig. 4), so each LBP code can be regarded as a micro-texton [30].

The limitation of the basic LBP operator is its small 3� 3 neigh-
borhood which can not capture dominant features with large scale



Fig. 1. The sample face expression images from the Cohn–Kanade database.

Fig. 2. The original face image and the cropped image.

Fig. 3. The basic LBP operator [29].
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structures. Hence the operator later was extended to use neighbor-
hood of different sizes [28]. Using circular neighborhoods and
bilinearly interpolating the pixel values allow any radius and num-
ber of pixels in the neighborhood. See Fig. 5 for examples of the ex-
tended LBP operator, where the notation ðP;RÞ denotes a
neighborhood of P equally spaced sampling points on a circle of ra-
dius of R that form a circularly symmetric neighbor set.
Fig. 4. Examples of texture primitives which can be detected by L
The LBP operator LBPP;R produces 2P different output values, cor-
responding to the 2P different binary patterns that can be formed
by the P pixels in the neighbor set. It has been shown that certain
bins contain more information than others [28]. Therefore, it is
possible to use only a subset of the 2P Local Binary Patterns to de-
scribe the texture of images. Ojala et al. [28] called these funda-
mental patterns as uniform patterns. A Local Binary Pattern is
called uniform if it contains at most two bitwise transitions from
0 to 1 or vice versa when the binary string is considered circular.
For example, 00000000, 001110000 and 11100001 are uniform
patterns. It is observed that uniform patterns account for nearly
90% of all patterns in the (8,1) neighborhood and for about 70%
in the (16,2) neighborhood in texture images [28]. Accumulating
the patterns which have more than 2 transitions into a single bin
yields an LBP operator, denoted LBPu2

P;R, with less than 2P bins. For
example, the number of labels for a neighborhood of 8 pixels is
256 for the standard LBP but 59 for LBPu2.

After labeling a image with the LBP operator, a histogram of the
labeled image flðx; yÞ can be defined as

Hi ¼
X
x;y

Iðflðx; yÞ ¼ iÞ; i ¼ 0; . . . ; n� 1 ð1Þ

where n is the number of different labels produced by the LBP oper-
ator and

IðAÞ ¼
1 A is true
0 A is false

�
ð2Þ

This LBP histogram contains information about the distribution of
the local micro-patterns, such as edges, spots and flat areas, over
the whole image, so can be used to statistically describe image
characteristics.
BP (white circles represent ones and black circles zeros) [30].



Fig. 5. Three examples of the extended LBP [28]: the circular ð8;1Þ neighborhood, the circular ð12;1:5Þ neighborhood, and the circular ð16;2Þ neighborhood, respectively.

Fig. 7. (Left) A face image divided into 6� 7 sub-region. (Right) The weights set for
weighted dissimilarity measure. Black squares indicate weight 0.0, dark gray 1.0,
light gray 2.0 and white 4.0.
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Face images can be seen as a composition of micro-patterns
which can be effectively described by the LBP histograms. There-
fore, it is intuitive to use LBP features to represent face images
[29–31]. A LBP histogram computed over the whole face image en-
codes only the occurrences of the micro-patterns without any indi-
cation about their locations. To also consider shape information of
faces, face images were equally divided into small regions
R0;R1; . . . ;Rm to extract LBP histograms (as shown in Fig. 6). The
LBP features extracted from each sub-region are concatenated into
a single, spatially enhanced feature histogram defined as

Hi;j ¼
X
x;y

Ifflðx; yÞ ¼ igIfðx; yÞ 2 Rjg ð3Þ

where i ¼ 0; . . . ;n� 1; j ¼ 0; . . . ;m� 1.
The extracted feature histogram represents the local texture

and global shape of face images. Some parameters can be opti-
mized for better feature extraction. One is the LBP operator, and
the other is the number of regions divided. Following the setting
in [29], we selected the 59-bin LBPu2

8;2 operator, and divided the
110 � 150 pixels face images into 18 � 21 pixels regions, giving a
good trade-off between recognition performance and feature vec-
tor length. Thus face images were divided into 42(6 � 7) regions
as shown in Fig 7, and represented by the LBP histograms with
the length of 2478(59 � 42).

5. Facial expression recognition using LBP

In this section, we perform person-independent facial expres-
sion recognition using LBP features. Different machine learning
techniques, including template matching, Support Vector Ma-
chines, Linear Discriminant Analysis and the linear programming
technique, are examined to recognize expressions.

5.1. Template matching

Template matching was used in [29] to perform face recogni-
tion using the LBP-based facial representation: a template is
Fig. 6. A face image is divided into small regions from which LBP histograms are
extracted and concatenated into a single, spatially enhanced feature histogram.
formed for each class of face images, then a nearest-neighbor clas-
sifier is used to match the input image with the closest template.
Here we first adopted template matching to classify facial expres-
sions for its simplicity. In training, the histograms of expression
images in a given class were averaged to generate a template for
this class.

Following [29], we also selected the Chi square statistic ðv2Þ as
the dissimilarity measure for histograms:

v2ðS;MÞ ¼
X

i

ðSi �MiÞ2

Si þMi
ð4Þ

where S and M are two LBP histograms. It is observed that some lo-
cal facial regions contain more useful information for expression
classification than others. For example, facial features contributing
to facial expressions mainly lie in regions such as eye and mouth re-
gions. Therefore, a weight can be set for each sub-region based on
its importance. The particular weight set we adopted was shown
in Fig. 7, which was designed empirically based on the observation.
The weighted v2 statistic is then given as

v2
wðS;MÞ ¼

X
i;j

wj
ðSi;j �Mi;jÞ2

Si;j þMi;j
ð5Þ

where S and M are two LBP histograms, and wj is the weight for re-
gion j.

The template matching achieved the generalization perfor-
mance of 79.1% for the 7-class task and 84.5% for the 6-class task.
We compared the results with that reported in [11], where Cohen
et al. adopted Bayesian network classifiers to classify 7-class emo-
tional expressions based on the tracked geometric facial features
(eyebrows, eyelids and mouth). They carried out 5-fold cross-vali-
dation on a subset of 53 subjects from the Cohn–Kanade database,
and obtained the best performance of 73.2% by using Tree-Aug-
mented-Naive Bayes (TAN) classifiers. Although we cannot make
a direct comparison due to different experiment setups and pre-
processing procedures, comparison in Table 1 indicates that our
simple template matching using LBP features provides slightly bet-
ter overall performance. The confusion matrix of 7-class recogni-
tion is shown in Table 2. We can observe that Joy and Surprise
can be recognized with high accuracy (around 90–92%), but Anger
and Fear are easily confused with others.



Table 1
Comparisons between the geometric features based TAN [11] and our LBP-based
template matching

Methods (feature + classifier) 7-Class recognition (%) 6-Class recognition (%)

LBP + template matching 79.1 ± 4.6 84.5 ± 5.2
Geometric features + TAN [11] 73.2 –

Table 2
Confusion matrix of 7-class facial expression recognition using template matching
with LBP features

Anger
(%)

Disgust
(%)

Fear
(%)

Joy
(%)

Sadness
(%)

Surprise
(%)

Neutral
(%)

Anger 58.7 5.5 0 0 26.7 0 9.1
Disgust 3.3 85.0 2.5 0 2.5 0 6.7
Fear 1.0 0 61.7 24.0 10.3 0 3.0
Joy 0 0 6.0 90.4 0 0 3.6
Sadness 4.9 0 0 0 72.4 1.7 21.0
Surprise 0 0 1.3 0 2.7 92.4 3.6
Neutral 2.0 0.8 0.4 0.8 25.7 0 70.3

Table 3
Recognition performance of LBP-based SVM with different kernels

6-Class recognition (%) 7-Class recognition (%)

SVM (linear) 91.5 ± 3.1 88.1 ± 3.8
SVM (polynomial) 91.5 ± 3.1 88.1 ± 3.8
SVM (RBF) 92.6 ± 2.9 88.9 ± 3.5

Table 4
Confusion matrix of 6-class facial expression recognition using SVM (RBF)

Anger (%) Disgust (%) Fear (%) Joy (%) Sadness (%) Surprise (%)

Anger 89.7 2.7 0 0 7.6 0
Disgust 0 97.5 2.5 0 0 0
Fear 0 2.0 73.0 22.0 3.0 0
Joy 0 0.4 0.7 97.9 1.0 0
Sadness 10.3 0 0.8 0.8 83.5 4.6
Surprise 0 0 1.3 0 0 98.7

Table 5
Confusion matrix of 7-class facial expression recognition using SVM (RBF)

Anger
(%)

Disgust
(%)

Fear
(%)

Joy
(%)

Sadness
(%)

Surprise
(%)

Neutral
(%)

Anger 85.0 2.7 0 0 4.8 0 7.5
Disgust 0 97.5 2.5 0 0 0 0
Fear 0 2.0 68.0 22.0 1.0 0 7.0
Joy 0 0 0.7 94.7 1.1 0 3.5
Sadness 8.6 0 0 0 69.5 2.3 19.6
Surprise 0 0 1.3 0 0 98.2 0.5
Neutral 1.6 0.4 0 1.6 6.0 0.4 90.0
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5.2. Support Vector Machine (SVM)

A previous successful technique to facial expression classifica-
tion is Support Vector Machine (SVM) [48,19,22,23], so we adopted
SVM as alternative classifiers for expression recognition. As a pow-
erful machine learning technique for data classification, SVM [49]
performs an implicit mapping of data into a higher (maybe infinite)
dimensional feature space, and then finds a linear separating
hyperplane with the maximal margin to separate data in this high-
er dimensional space.

Given a training set of labeled examples fðxi; yiÞ; i ¼ 1; . . . ; lg
where xi 2 Rn and yi 2 f1;�1g, a new test example x is classified
by the following function:

f ðxÞ ¼ sgnð
Xl

i¼1

aiyiKðxi; xÞ þ bÞ ð6Þ

where ai are Lagrange multipliers of a dual optimization problem
that describe the separating hyperplane, Kð�; �Þ is a kernel function,
and b is the threshold parameter of the hyperplane. The training
sample xi with ai > 0 is called support vectors, and SVM finds the
hyperplane that maximizes the distance between the support vec-
tors and the hyperplane. Given a non-linear mapping U that embeds
the input data into the high dimensional space, kernels have the
form of Kðxi; xjÞ ¼ hUðxiÞ �UðxjÞi. SVM allows domain-specific selec-
tion of the kernel function. Though new kernels are being proposed,
the most frequently used kernel functions are the linear, polyno-
mial, and Radial Basis Function (RBF) kernels.

SVM makes binary decisions, so the multi-class classification
here is accomplished by using the one-against-rest technique,
which trains binary classifiers to discriminate one expression from
all others, and outputs the class with the largest output of binary
classification. With regard to the parameter selection of SVM, as
suggested in [50], we carried out grid-search on the hyper-param-
eters in the 10-fold cross-validation. The parameter setting pro-
ducing best cross-validation accuracy was picked. We used the
SVM implementation in the public available machine learning li-
brary SPIDER1 in our experiments. The generalization performances
achieved with different kernels are shown in Table 3, where the de-
gree of the polynomial kernel is 1, and the standard deviation for the
RBF kernel is 213 for 7-class recognition and 211 for 6-class recogni-
tion. The confusion matrices of 6-class and 7-class recognition with
1 http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html.
the RBF kernel are shown in Tables 4 and 5. It is observed that, Dis-
gust, Joy, Surprise and Neutral can be recognized with high accuracy
(90–98%), while the recognition rates for Fear and Sadness are much
lower (68–69%). Compared to the recognition results of template
matching in Table 2, the recognition performance for every expres-
sion is increased except Fear. For the 6-class problem, the number
of support vectors of the linear/polynomial SVMs were 18–29% of
the total number of training samples, while the RBF SVMs employed
18–31%. For the 7-class problem, the linear/polynomial SVMs em-
ployed 15–30%, while the RBF SVMs employed 16–35%.

We further compare LBP features with Gabor-wavelet features
for facial expression recognition using SVMs. Following Bartlett
et al. [48,19], we converted images into a Gabor magnitude repre-
sentation using a bank of Gabor filters at 8 orientations and 5 spa-
tial frequencies (9:36 pixels per cycle at 1/2 octave steps2). To
reduce the length of the feature vector, the outputs of the 40 Gabor
filters were downsampled by a factor of 16 [8], so the dimension-
ality of the Gabor feature vector is 42;650ð40� 110=4� 150=4Þ.
We report the generalization performance of Gabor-wavelet fea-
tures in Table 6.

Bartlett et al. [48,19] recently conducted similar experiments
using the Gabor-wavelet representation with SVMs on the Cohn–
Kanade database. They selected 313 image sequences from the
database, which came from 90 subjects, with 1–6 emotions per
subject. The facial images were converted into a Gabor magnitude
representation using a bank of 40 Gabor filters. They [48] divided
the subjects randomly into ten groups of roughly equal size and
did ‘‘leave one group out” cross-validation. SVMs with linear, poly-
nomial and RBF kernels were used to classify 7-class expressions.
Linear and RBF kernels performed best, achieving recognition rates
of 84.8% and 86.9%, respectively. We also include the recognition
2 i.e., 9, 9
ffiffiffi
2
p

, 18, 18
ffiffiffi
2
p

, 36 pixels per cycle, so the frequencies used �12, 6
ffiffiffi
2
p

, 6,
3
ffiffiffi
2
p

, 3 cycles/image-width.
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Table 6
Comparisons between LBP features with Gabor-filter features for facial expression
recognition using SVMs.

6-Class 7-Class

LBP
(%)

Gabor
(%)

LBP
(%)

Gabor
(%)

Gabor [48]
(%)

SVM (linear) 91.5 ± 3.1 89.4 ± 3.0 88.1 ± 3.8 86.6 ± 4.1 84.8
SVM (polynomial) 91.5 ± 3.1 89.4 ± 3.0 88.1 ± 3.8 86.6 ± 4.1 Worse than

RBF/linear
SVM (RBF) 92.6 ± 2.9 89.8 ± 3.1 88.9 ± 3.5 86.8 ± 3.6 86.9
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results they reported in Table 6. In their more recent paper [19],
they reported 88.0% (Linear) and 89.1% (RBF) in Leave-one-sub-
ject-out experiments.

Comparisons summarized in Table 6 show that the LBP-based
SVMs perform slightly better than the Gabor-wavelet based SVMs.
More crucially though, the advantage of LBP features lies at very
fast feature extraction. We compare the time and memory costs
of feature extraction process (Matlab implementation) between
LBP features with Gabor-wavelet features in Table 7, where the
Gabor-filter convolutions were calculated in spatial domain. It is
observed that LBP features bring significant speed benefit, and,
compared to the high dimensionality of the Gabor-wavelet
features, LBP features lie in a much lower dimensional space.

5.3. Linear Discriminant Analysis (LDA)

Facial deformations lie intrinsically on much lower dimensional
subspaces. Therefore, subspace analysis has been widely exploited
to discover subspaces for face image analysis [38,39,42,7]. LDA [39]
is a supervised subspace learning technique, and has been previ-
ously applied to facial expression recognition [7]. Here we further
adopted LDA to recognize expressions using LBP features. LDA
searches for the projection axes on which the data points of differ-
ent classes are far from each other while requiring data points of
the same class to be close to each other.

Given multi-dimensional data samples x1; x2; . . . ; xm in Rn that
belong to c classes, LDA find a transformation matrix W that maps
these m points to y1; y2; . . . ; ym in Rlðl 6 cÞ, where yi ¼WTxi. The
objective function of LDA is as follows:

max
w

wTSBw
wTSW w

ð7Þ

SB ¼
Xc

i¼1

niðmðiÞ �mÞðmðiÞ �mÞT ð8Þ

SW ¼
Xc

i¼1

Xni

j¼1

ðxðiÞj �mðiÞÞðxðiÞj �mðiÞÞT
 !

ð9Þ

where m is the mean of all the samples, ni is the number of samples
in the ith class, mðiÞ is the average vector of the ith class, xðiÞj is the jth
sample in the ith class, SB is between-class scatter matrix, and SW is
within-class scatter matrix. In practice, the dimension of the feature
space ðnÞ is often much larger than the number of samples in a
training set ðmÞ. So the matrix SW is singular. To overcome this
problem, usually the dataset is first projected into a lower dimen-
sional PCA space.
Table 7
Time and memory costs for extracting LBP features and Gabor-filter features

LBP Gabor Gabor [48]

Memory (feature dimension) 2478 42,650 92,160
Time (feature extraction time) 0.03 s 30 s –
In each trial of our 10-fold cross-validation experiments, the
training data was first projected into a PCA subspace (98% of infor-
mation was kept according to the reconstruction error, and the
resulting number of eigenvectors ranges 358–378 for the 6-class
problem and 405–431 for the 7-class problem), then the LDA trans-
formation matrix was trained in the PCA subspace, where the
dimension that LDA kept was c � 1. For facial expression recogni-
tion, we adopted a Nearest-Neighbor (NN) classifier for its simplic-
ity. The Euclidean metric was used as the distance measure. The
generalization performance LDA + NN achieved is 73.4% for 7-class
recognition and 79.2% for 6-class recognition. We also adopted
SVM (linear) to perform recognition in the PCA subspace, i.e., the
input of SVM is not the original LBP features but their PCA projec-
tions. We compare LDA + NN with SVM (linear) in Table 8, and it is
observed that the performance of LDA + NN is much lower than
that of SVMs.

5.4. Linear programming

Feng et al. [51] recently presented an approach for facial expres-
sion recognition that uses LBP features with a linear programming
technique, and demonstrated its effectiveness on a small database
(JAFFE). In [52], the linear programming technique was adopted to
perform simultaneous feature selection and classifier training for
facial expression recognition. Here we also examine the linear pro-
gramming technique for facial expression recognition using LBP
features.

Given two sets of data samples A and B in Rn, we seek a linear
function such that f ðxÞ > 0 if x 2A, and f ðxÞ 6 0 if x 2 B. This func-
tion is given by f ðxÞ ¼ wTx� c, and determine a plane wTx ¼ c with
normal w 2 Rn that separate A from B. Let the set of m samples in
A be represented by a matrix A 2 Rm�n and the set of k samples in
B be represented by a matrix B 2 Rk�n. After normalization, we
want to satisfy

Aw P ecþ e; Bw 6 ec� e ð10Þ

where e is a vector of all 1s with appropriate dimension. Practically,
because of the overlap between the two classes, one has to mini-
mize some norm of the average error in Eq. (10) [52]:

min
w;c

f ðw; cÞ ¼min
w;c

1
m
kð�Awþ ecþ eÞþk1 þ

1
k
kðBw� ec

þ eÞþk1 ð11Þ

where xþ denotes the vector with components satisfying
ðxþÞi ¼ maxfxi;0g; i ¼ 1; . . . ; n, and k � k1 denotes the 1-norm. Eq.
(11) can be modeled as a so-called robust linear programming prob-
lem [52]:

min
w;c;y;z

eTy
m
þ eTz

k
ð12Þ

subject to
�Awþ ecþ e 6 y;

Bw� ecþ e 6 z;

y P 0; z P 0

8><
>:

which minimizes the average sum of misclassification errors. We
use Eq. (12) to solve the classification problem.

Following Feng et al. [51], multi-class facial expression recogni-
tion was decomposed into one-to-one pairs of binary classification,
Table 8
Comparison between LDA + NN and SVM (linear) for facial expression recognition
using LBP features

7-Class recognition (%) 6-Class recognition (%)

LDA + NN 73.4 ± 5.6 79.2 ± 7.2
SVM (linear) 80.2 ± 4.9 87.7 ± 4.7



Table 9
Comparison between the linear programming technique and SVM (linear) for facial
expression recognition

7-Class recognition (%) 6-Class recognition (%)

Linear programming 82.3 ± 3.5 89.6 ± 3.6
SVM (linear) 86.0 ± 3.3 90.4 ± 3.9

Fig. 8. An example of low-resolution facial expressions recorded in real-world
environments (from PETS 2003 dataset).
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where each binary classifier was produced by the linear program-
ming technique. Binary classifiers were combined with a voting
scheme to output the final recognition result. To reduced the
length of the LBP feature vector, we also discarded the dimensions
whose occurrence frequency is lower than a threshold [51]. The
threshold of 5 was adopted in our experiments.

In our 10-fold cross-validation experiments, the linear pro-
gramming technique produces the generalization performance of
82.3% for 7-class recognition and 89.6% for 6-class recognition.
We compare its performance with that of SVM (linear) in Table
9, where the input of SVM (linear) is also the feature vectors with
dimensions discarded. It is observed that the linear programming
technique produces the slight inferior performance to SVM (linear).

6. Low-resolution facial expression recognition

In real-world environments such as smart meeting and visual
surveillance, only low-resolution video input is available. Fig. 8
shows a real-world image recorded in a smart meeting scenario.
How to derive a discriminative facial representation from low-res-
olution images is a critical problem for real-world applications. In
this section, we investigate LBP features for low-resolution facial
expression recognition. We first evaluated LBP features on differ-
ent image resolutions, then performed experiments on real-world
compressed low-resolution video sequences.

6.1. Evaluation on different resolutions

As shown in Table 10, totally six different resolutions of the face
region were studied (110 � 150, 55 � 75, 36 � 48, 27 � 37, 18 � 24
and 14 � 19 pixels) based on the Cohn–Kanade database. The low-
er resolution images were down-sampled from the original images.
For LBP feature extraction, lower resolution face images were di-
vided into 10� 10 pixels regions (which may overlap with each
other in the small face images). For example, face images of
14 � 19 pixels were divided into 12(3 � 4) regions of 10� 10 pix-
els: the overlap between adjacent regions is 8 pixels (along the side
of 14 pixels) or/and 7 pixels (along the side of 19 pixels). We
adopted the 4-neighborhood LBP operator LBP4;1 for each sub-
region.

To compare with Tian’s work [26], we conducted experiments
on 6-class basic expression recognition using SVM with RBF kernel.
We report the recognition results in Table 10, where the standard
deviation of RBF kernels were 211, 29, 27, 28, 26 and 28, respectively.
Besides LBP features, We also carried out experiments with the Ga-
bor-magnitude representation by convolving images with a bank
of 40 Gabor filters at 8 orientations and 5 spatial frequencies.
The generalization performances of the Gabor-wavelet representa-
tion are also shown in Table 10.

In Tian’s experiments [26], 375 image sequences were selected
from the Cohn–Kanade database for 6-class expression classifica-
tion. Tian extracted two types of facial features: geometric features
and appearance features. Geometric features were derived by fea-
ture tracking [10] and feature detection [32], respectively. For
appearance features, a bank of 40 Gabor filters were applied to
the difference images to extract facial appearance changes, where
the difference images were obtained by subtracting a neural
expression for each image. A three-layer Neural Network was
adopted to recognize expressions. Recognition results of Tian’s
methods are summarized in Table 10.3 However, we cannot make
direct comparative analysis between Tian’s results with ours be-
3 In [26], the different resolutions of the head region are 144 � 192, 72 � 96, 36 � 48,
18 � 24 pixels, which are comparable to the resolutions of the face region 110 � 150,
55 � 75, 27 � 37, 14 � 17 pixels in our experiments.
cause of different experimental setups, pre-processing procedures
and classifiers.

We can draw the following conclusions from the experimental
results shown in Table 10: (1) Geometric features are not available
for lower resolution, while appearance features such as Gabor
wavelets and LBP features can be extracted on different resolu-
tions. It is difficult to detect or track facial components such as
mouth, eyes, brows and nose in lower resolution images, so geo-
metric features are not reliable in low-resolution images. On the
contrary, appearance features present the appearance changes of
faces such as wrinkles and furrows, and are available even in lower
resolutions. (2) The presented LBP features perform slightly better
than the Gabor-wavelet representation on low-resolution expres-
sion recognition. Recently Liao et al. [34] also compared LBP fea-
ture with Gabor-filter features on the JAFFE database, and their
experiments demonstrated that LBP features provide better perfor-
mance for low-resolution face images, which reenforces our find-
ing (3) The LBP features perform robustly and stably over a
useful range of low resolutions. This reenforce the superiority of
LBP features in face detection and recognition in low-resolution
images reported in [30]. So LBP features are very promising for
real-world applications where low-resolution video input is only
available.

6.2. Evaluation on real-world video sequences (PETS)

We further conducted experiments on compressed low-resolu-
tion image sequences recorded in a real environment. We used the
smart meeting dataset in the PETS 2003 evaluation datasets.4 Re-
sults on scenario A, camera 1 were reported here. In this scenario,
each person enters the conference room one after the other, goes to
his place, presents himself to the frontal camera, and sits down.
Then each person looks at the other people with different expres-
sions. Fig. 8 shows an example frame in the video sequence. Three
facial expressions, neutral, anger and joy, are available in the
dataset.
4 http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/pets-icvs-db.html.
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Table 10
Recognition performance (%) in low-resolution images with different methods

110 � 150 55 � 75 36 � 48 27 � 37 18 � 24 14 � 19

LBP 92.6 ± 2.9 89.9 ± 3.1 87.3 ± 3.4 84.3 ± 4.1 79.6 ± 4.7 76.9 ± 5.0
Gabor 89.8 ± 3.1 89.2 ± 3.0 86.4 ± 3.3 83.0 ± 4.3 78.2 ± 4.5 75.1 ± 5.1
Gabor [26] 92.2 91.6 – 77.6 – 68.2
Feature tracking [26] 91.8 91.6 – N/A – N/A
Feature detection [26] 73.8 72.9 – 61.3 N/A

‘‘–” indicates that the image resolution was not examined in [26], and ‘‘N/A” indicates that the image resolution was studied in [26], but no recognition result was obtained.

Table 11
Examples of modified GT vs original GT

Original GT Neutral Joy Neutral Neutral
Modified GT Sideview Sideview Joy Joy

Table 12
Examples of failed recognition

Modified GT Joy Joy Neutral Neutral
Test Results Others Others Joy Others
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The real-world video sequence contains the full range of head
motion. In Tian’s previous work [32], the head pose was first esti-
mated based on the detected head, and then for frontal and near
frontal views of the face, the facial features were extracted to per-
form facial expression recognition. Since our focus was investigat-
ing the validity of LBP features in real-world compressed video
inputs, we did not consider pose estimation currently. We cropped
the face region in frontal and near frontal views based on the loca-
tion of two eyes from the input image sequence, then performed
recognition on the cropped face images. Fig. 9 shows face regions
cropped in one frame.

It is very difficult, even for human beings, to recognize facial
expressions at low resolution. Following Tian et al. [32], experi-
ments were conducted on showing some frames of expression at
low resolution to a small set of human observers (in this instance
five researchers in our lab) resulting in many who could not per-
form recognition against the ground truth provided by the PETS
dataset (original GT). Tian et al. modified the ground truth based
on the majority. Here we also generated a new ground truth (mod-
ified GT) for some frames based on human observations. Examples
of modified GT vs original GT are shown in Table 11.

A total of 1209 images from the Cohn–Kanade database were
used to train the SVM classifier. Since face regions in PETS dataset
are around 40 � 50 pixels, the training images were down-sampled
from the original images to 38 � 48 pixels. The trained classifier
recognized five expressions: neutral, joy, angry, surprise and others
(including fear, sadness and disgust).

Our method performed well with the input real-world image
sequence. The overall recognition rate on frames from 18,000 to
18,190 was 91.5%, which is comparable to results reported in
Tian’s work [32]. Table 12 shows some failed examples. We ob-
serve that some frames of near frontal view were incorrectly clas-
sified because our training data includes only frontal view
Fig. 9. We cropped the face region in frontal and near frontal view based on the
location of two eyes from the input image sequence (frame 17,130).
expressions. Additionally, as the training images are captured
when subjects exaggeratedly pose their facial expressions, while
the test images are natural facial expressions without any delib-
erate exaggerated posing, this difference in data also brings some
classification errors.

7. Boosting LBP for facial expression recognition

The above experiments clearly demonstrate that the LBP fea-
tures are effective for facial expression recognition, and performed
just as well or better than reported existing techniques but with a
significant low-computation advantage. In the above investigation,
face images are equally divided into small sub-regions from which
LBP histograms are extracted and concatenated into a single fea-
ture vector. However, apparently the extracted LBP features de-
pend on the divided sub-regions, so this LBP feature extraction
scheme suffers from fixed sub-region size and positions. By shifting
and scaling a sub-window over face images, many more sub-re-
gions can be obtained, bringing many more LBP histograms, which
yield a more complete description of face images. To minimize a
very large number of LBP histograms necessarily introduced by
shifting and scaling a sub-window, boosting learning [53] can be
used to learn the most effective LBP histograms that containing
much discriminative information. In [54], Zhang et al. presented
an approach for face recognition by boosting LBP-based classifiers,
where the distance between corresponding LBP histograms of two
face images is used as a discriminative feature, and AdaBoost was
used to learn a few of most efficient features. In our previous work
[55], we presented a conditional mutual information base boosting
scheme to select the most discriminative LBP histograms for facial
expression recognition. We observed that AdaBoost performs bet-
ter than the conditional mutual information based boosting when
using several tens of weak classifiers. Therefore, in this section, we
learn the most discriminative LBP histograms using AdaBoost for
better facial representation.
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AdaBoost methods [56,53] provide a simple yet effective ap-
proach for stagewise learning of a nonlinear classification function.
AdaBoost learns a small number of weak classifiers whose perfor-
mance can be just better than random guessing, and boosts them
iteratively into a strong classifier of higher accuracy. The process
of AdaBoost maintains a distribution on the training samples. At
each iteration, a weak classifier which minimizes the weighted er-
ror rate is selected, and the distribution is updated to increase the
weights of the misclassified samples and reduce the importance of
the others. AdaBoost has been successfully used in many problems
such as face detection [46].

As each LBP histogram is calculated from a sub-region, Ada-
Boost is actually used to find the sub-regions that contain more
discriminative information for facial expression classification in
term of the LBP histogram. On selecting a weak classifier for Ada-
Boost, we adopted the histogram-based template matching. For
each sub-region, the LBP histograms in a given class are averaged
to generate a template for this class. The trained weak classifier
matches the input histogram with the closest template, and out-
puts the corresponding class label. The Chi square statistic ðv2Þ
was used as the dissimilarity measure for histograms (Eq. (4)). As
the traditional AdaBoost works on two-class problems, the multi-
class problem here is accomplished by using the one-against-rest
technique, which trains AdaBoost between one expression with
all others. For each AdaBoost learner, the images of one expression
were positive samples, while the images of all other expressions
were negative samples.

By shifting and scaling a sub-window, 16,640 sub-regions, i.e.,
16,640 LBP histograms, in total were extracted from each face im-
age. The sub-window was shifted in the whole image with the
shifting step of 4 pixels, while its size was scaled between
10 � 10 pixels and 25 � 20 pixels with the scaling step of 5 pixels.
AdaBoost was used to learn a small subset (in tens) of effective LBP
histograms. we plot in Fig. 10 the spatial localization of the 50 sub-
regions (i.e., the centers of the sub-regions) that corresponded by
the top 50 LBP histograms selected by AdaBoost for each expres-
sion. It is observed that different expressions have different key
discriminant LBP features, and the discriminant features are
mainly distributed in the eye and mouth regions.

We performed facial expression recognition using the strong
classifiers boosted by AdaBoost, and outputs the class with the
Fig. 10. Distributions of the top 50 sub-regions (LBP h

Fig. 11. The sub-regions (LBP histograms) selected by AdaBoost for each e
largest positive output of binary classifiers. In our experiments,
AdaBoost training continued until the classifier output distribution
for the positive and negative samples were completely separated,
so the number of LBP histograms selected for each expression
was not pre-defined, but automatically decided by the AdaBoost
learner itself. In the 10-fold experiments, the number of selected
LBP histogram ranges 49–52 for 6-class expressions and 65–70
for 7-class expressions. For example, Fig. 11 displays the selected
sub-regions (LBP histograms) for each basic expression in one trial
of the 10-fold cross-validation. We can observe that the selected
sub-regions have variable sizes and positions. Moreover, while
the weights of sub-regions in the template matching in Section
5.1 were chosen empirically, the weights in boosted classifiers
were learned by AdaBoost. The generalization performance of the
boosted classifiers is 84.6% for 7-class recognition and 89.8% for
6-class recognition, respectively. As shown in Table 13, compared
to the LBP based template matching in Section 5.1, AdaBoost
(Boosted-LBP) provides improved performance. We also show the
confusion matrix of 7-class recognition using AdaBoost in Table
14, where Disgust, Joy, Surprise and Neutral can be recognized
with high accuracy. It can be seen that AdaBoost’s performance is
inferior to that of SVM (RBF) reported in Table 5 for most expres-
sions except Fear and Neutral.

We further combine feature selection by AdaBoost with classi-
fication by SVM. In particular, we train SVM with the Boosted-
LBP features. In each trial of the 10-fold cross-validation, we ap-
plied AdaBoost to learn the discriminative LBP histograms for each
expression, and then utilized the union of the selected LBP histo-
grams as the input for SVMs. For example, in Fig. 11, the union
of all sub-regions selected resulted in a total of 51 LBP histograms.
The generalization performance of Boosted-LBP based SVM is sum-
marized in Table 15, where the degree of the polynomial kernel is 1
and the standard deviation for the RBF kernel is 211. For compari-
son, we also include the recognition performance of LBP based
SVMs (in Section 5.2) in Table 15. We observe that Boosted-LBP
based SVMs outperform LBP-based SVMs by around 2.5–3.5%
points. The 7-class expression recognition result of 91.4% is very
encouraging, compared to the state of the art [11]. Bartlett et al.
[19] obtained the best performance 93.3% by selecting a subset
of Gabor filters using AdaBoost and then training SVM on the out-
puts of the selected filters. With regard to the 6-class recognition,
istograms) selected AdaBoost for each expression.

motion. from left to right: Anger, Disgust, Fear, Joy, Sadness, Surprise.



Table 14
Confusion matrix of 7-class facial expression recognition using AdaBoost (Boosted-
LBP)

Anger
(%)

Disgust
(%)

Fear
(%)

Joy
(%)

Sadness
(%)

Surprise
(%)

Neutral
(%)

Anger 66.6 3.7 2.0 0 7.3 0 20.4
Disgust 0 92.5 2.5 0 0 0 5.0
Fear 0 0 70.0 17.0 3.0 0 10.0
Joy 0 0 2.5 90.1 0 0 7.4
Sadness 6.4 0 0 0 61.2 0.8 31.6
Surprise 0 0 1.3 0 0.5 92.5 5.7
Neutral 0 0 0.8 0.4 3.6 0 95.2

Table 15
Recognition performance of Boosted-LBP based SVMs vs LBP based SVMs

7-Class 6-Class

Boosted-LBP (%) LBP (%) Boosted-LBP (%) LBP (%)

SVM (linear) 91.1 ± 4.0 88.1 ± 3.8 95.0 ± 3.2 91.5 ± 3.1
SVM (polynomial) 91.1 ± 4.0 88.1 ± 3.8 95.0 ± 3.2 91.5 ± 3.1
SVM (RBF) 91.4 ± 3.8 88.9 ± 3.5 95.1 ± 3.4 92.6 ± 2.9

Table 13
Recognition performance of Boosted-LBP vs LBP

7-Class recognition (%) 6-Class recognition (%)

AdaBoost (Boosted-LBP) 85.0 ± 4.5 89.8 ± 4.7
LBP + template matching 79.1 ± 4.6 84.5 ± 5.2

Table 17
Recognition performance of LBP based LDA vs Boosted-LBP based LDA

7-Class recognition (%) 6-Class recognition (%)

LBP based LDA 73.4 ± 5.6 79.2 ± 7.2
Boosted-LBP based LDA 77.6 ± 5.7 84.2 ± 6.1
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the result of 95.1% is, to our best knowledge, the best recognition
rate reported so far in the published literature on this database.
Previously Tian [26] achieved 94% performance using a three-layer
neural networks when combining geometric features and Gabor
wavelet features. The confusion matrix of 7-class expression recog-
nition using Boosted-LBP based SVM (RBF) is shown in Table 16.
We can observe that, Disgust, Joy and Surprise can be recognized
with very high accuracy (more than 97%), and Sad is the easiest
confused expression with recognition accuracy around 75%. We
also re-conducted the experiments on low-resolution face images
in Section 6 using the Boosted-LBP features, and the recognition
rates all increase 3–5%.

We also evaluated LDA using Boosted-LBP features. As dis-
cussed in Section 5.3, in each trial of the 10-fold cross-validation,
the training data was first projected into a PCA subspace with
98% of variance kept, and the dimension of LDA subspace was
c � 1. The nearest-neighbor classifier was adopted as the classifier
using the Euclidean distance measure. Boosted-LBP based LDA ob-
tained the generalization performance of 77.6% for 7-class recogni-
tion and 84.2% for 6-class recognition. As shown in Table 17, LDA’s
performance is clearly improved by using Boosted-LBP features.
But the performance of LDA is still inferior to that of SVM.
Table 16
Confusion matrix of 7-class facial expression recognition using Boosted-LBP based
SVM

Anger
(%)

Disgust
(%)

Fear
(%)

Joy
(%)

Sadness
(%)

Surprise
(%)

Neutral
(%)

Anger 85.1 2.7 0 0 8.6 0 3.6
Disgust 0 97.5 0.8 1.7 0 0 0
Fear 0 1.0 79.9 11.0 3.1 1.0 4.0
Joy 0 0 0 97.5 0.4 0 2.1
Sadness 12.0 0 0.8 0 74.7 0 12.5
Surprise 0 0 1.3 0.9 0 97.3 0.5
Neutral 1.2 0 0.8 3.6 2.4 0 92.0
8. Generalization to other datasets

We evaluated the Boosted-LBP based SVM approach on another
two publicly available databases: the MMI database [57] and the
JAFFE database [7]. The MMI database includes more than 20 stu-
dents and research staff members of both sexes (44% female), rang-
ing in age from 19 to 62, having either a European, Asian, or South
American ethnic background. Subjects were instructed to display
79 series of facial expressions, six of which are prototypic emo-
tions. Image sequences have neutral faces at the beginning and
the end, and were digitized into 720 � 576 pixels. Some sample
images from the MMI database are shown in Fig. 12. Although
the original data in the MMI database are color images, in our
experiment, we converted them to 8-bit grayscale images. As can
be seen, the subjects displayed facial expressions with and without
glasses, which makes facial expression recognition more difficult.
The JAFFE database consists of 213 images of Japanese female facial
expression. Ten expressers posed 3 or 4 examples for each of the
seven basic expressions (six emotional expressions plus neutral
face). The image size is 256 � 256 pixels. Fig. 13 shows some sam-
ple images from the JAFFE database.

In our experiments, 96 image sequences were selected from the
MMI database. The only selection criterion is that a sequence can
be labeled as one of the six basic emotions. The sequences come
from 20 subjects, with 1–6 emotions per subject. The neutral face
and three peak frames of each sequence (hence, 384 images in to-
tal) were used for 7-class expression recognition. All 213 images of
the JAFFE database were used for 7-class expression recognition. As
we did on the Cohn–Kanade database, we normalized faces from
the MMI database and the JAFFE database to a fixed distance be-
Fig. 12. The sample face expression images from the MMI database.
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tween the two eyes; face images of 110 � 150 pixels were cropped
from original frames based on the two eyes location.

We first performed 10-fold cross-validation on each dataset,
and the recognition rates are shown in the top two rows of Table
18, where the degree of the polynomial kernel is 1 and the stan-
dard deviation for the RBF kernel is 215 for the MMI database and
28 for the JAFFE database. The best recognition performance of
86.9% on the MMI database is inferior to that on the Cohn–Kanade
database. This is possibly because that there are fewer images in
the dataset, and subjects are wearing glasses. The performance
on the JAFFE is worst overall compared to that of the Cohn–Kanade
database and the MMI database, and this may be also due to a
much small dataset. With LBP features and the linear programming
technique, Feng et al. [51] reported the performance of 93.8% on
the JAFFE database. They preprocessed the images using the CSU
Face Identification Evaluation System [58] to exclude nonface area
with an elliptical mask. Liao et al. [34] recently reported the recog-
nition performance of 85.6% on the JAFFE database, but they did
not conducted 10-fold cross-validation.

We then performed across-dataset experiments, i.e., we per-
formed LBP feature selecting and SVM training on the Cohn–Ka-
nade database, and then tested the classifier on the MMI
database and the JAFFE database, respectively. Recognition results
are shown in the bottom two rows of Table 18, where the degree of
the polynomial kernel is 1 and the standard deviation for the RBF
kernel is 214 for the MMI database and 211 for the JAFFE database.
We observe that generalization performance across datasets was
much lower, such as around 50% on the MMI database and around
40% on the JAFFE database. These results actually reenforce Bartlett
et al.’s recent finding [59], where they trained selected Gabor-
wavelet features based SVMs on the Cohn–Kanade database and
tested them on another Pictures of Facial Affect database, and ob-
tained 56–60% performance. As we preprocessed face images of
Table 18
Generalization performance of Boosted-LBP based SVM on other datasets

SVM (linear)
(%)

SVM (polynomial)
(%)

SVM (RBF)
(%)

MMI 86.7 86.7 86.9
JAFFE 79.8 79.8 81.0
Train:Cohn–Kanade Test:MMI 50.8 50.8 51.1
Train:Cohn–Kanade Test:JAFFE 40.4 40.4 41.3
different databases in the same way, the only difference between
them is that they were collected under different controlled envi-
ronments. So the current expression classifier trained on a single
dataset with uniformly controlled environment works well only
within that dataset. In order to generalize across image collection
environments, we have to collect large training datasets with vari-
ations in image conditions [59].

9. Conclusions and future work

In this paper, we present a comprehensive empirical study of fa-
cial expression recognition based on Local Binary Patterns features.
Different classification techniques are examined on several dat-
abases. The key issues of this work can be summarized as follows:

1. Deriving an effective facial representation from original face
images is a vital step for successful facial expression recogni-
tion. We empirically evaluate LBP features to describe appear-
ance changes of expression images. Extensive experiments
illustrate that LBP features are effective and efficient for facial
expression recognition.

2. One challenge for facial expression recognition is recognizing
facial expressions at low resolutions, as only compressed low-
resolution video input is available in real-world applications.
We investigate LBP features on low-resolution images, and
observe that LBP features perform stably and robustly over a
useful range of low resolutions of face images.

3. We adopt AdaBoost to learn the most discriminative LBP fea-
tures from a large LBP feature pool. Best recognition perfor-
mance is obtained by using SVM with Boosted-LBP features.
However, this method has limitation on generalization to other
datasets.

Since the performance of the boosted strong classifier originates
in the characteristics of its weak hypothesis space, we will evaluate
other kinds of weak classifiers as alternative to template matching,
in order to achieve better classification performance. One limita-
tion of this work is that the recognition is performed by using static
images without exploiting temporal behaviors of facial expres-
sions. The psychological experiments by Bassili [60] have sug-
gested that facial expressions are more accurately recognized
from a dynamic image than from a single static image. We will ex-
plore temporal information in our future work. Recently volume
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LBP and LBP from three orthogonal planes have been introduced
for dynamic texture recognition [61], showing promising perfor-
mance on facial expression recognition in video sequences. An-
other limitation of the current work is that we do not consider
head pose variations and occlusions, which will be addressed in
our future work. We will also study the effect of imprecise face
location on expression recognition results.
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