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Chapter 1

σ-algebras and Borel functions

Preliminary discussion

• Suppose that X is a continuous random variable. Then Prob(X = s) = 0
for any s ∈ R. However, the event {X ∈ R } has probability one and is the
disjoint union of the events {X = s } for s ∈ R;

{X ∈ R } =
⋃
s

{X = s }.

Each event on the right hand side has probability zero, so the probabilities
of the events on the right hand side do not “add up” to that of the left hand
side. We wish to understand this.

• Suppose that X is a random variable on a sample space Ω, and suppose
that X takes values x1, x2, . . . . Put Ai = {ω ∈ Ω : X(ω) = xi }. Then

EX =
∑

i

xi Prob(X = xi)

=
∑

i

xi Prob(Ai).

In particular, for 1lAi(ω) =

{
1, ω ∈ Ai

0, ω /∈ Ai

,

E1lAi = 1 Prob(1lAi = 1)
= Prob(Ai).

Also E(xi1lAi) = xi Prob(Ai). But we can write X =
∑

i xi1lAi and we
recover EX as

EX =
∑

i

xi Prob(Ai) =
∑

i

E(xi1lAi).

Here X is a “step-function” on Ω. This formula forms the basis for the
“general” expectation, i.e., that for an arbitrary random variable.
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2 Chapter 1

• One must (sometimes) ask which subsets of a sample space are deemed
to be events. Can one take all subsets of the sample space to be events? The
answer is sometimes yes and sometimes no. For example, in the case when
the probability of an event within a bounded region of R3 is required to
be proportional to the volume associated with the event, then one naturally
asks whether every subset of (a bounded region) of R3 actually has a volume.
That this is not so is demonstrated by the Banach-Tarski theorem. (This
says that a ball of unit radius in R3 can be cut up into a finite number
of pieces which can then be reassembled to form a ball of radius 2. The
meaning of “volume” for these pieces is not clear.)

We must be precise about the concept of “event”. In the “modern” (Kol-
mogorov) theory of probability, this is formulated in terms of σ-algebras.

Definition 1.1. A collection Σ of subsets of a non-empty set X is called a
σ-algebra if

(i) X ∈ Σ,

(ii) if A ∈ Σ, then Ac = X \A ∈ Σ,

(iii) if An ∈ Σ for n = 1, 2, . . . , then
⋃∞

n=1 An ∈ Σ.

The sets in Σ are called measurable sets, and (X, Σ) is called a “mea-
surable space”.

Remarks 1.2.

1. Since ∅ = Xc, it follows that ∅ ∈ Σ.

2. For any A1, A2, . . . , An ∈ Σ, put An+1 = An+2 = · · · = ∅. Then we
see that A1 ∪ · · · ∪An =

⋃∞
k=1 Ak ∈ Σ, by (1) above, and (iii).

3. Let A1, A2, · · · ∈ Σ. Then since
⋂∞

n=1 An =
(⋃∞

n=1 Ac
n

)c, we see that⋂∞
n=1 An ∈ Σ.

If we take An+1 = An+2 = · · · = X, then we get A1 ∩ · · · ∩An ∈ Σ.

4. Let A, B ∈ Σ. Then A \B = A ∩Bc and so A \B ∈ Σ.

Proposition 1.3. Let {Σα } be an arbitrary collection of σ-algebras of X.
Then

⋂
α Σα is a σ-algebra.

Proof. We check the requirements.

(i) X ∈ Σα for all α and so X ∈ ⋂
α Σα.

(ii) Suppose that A ∈ ⋂
α Σα. Then A ∈ Σα for all α and so Ac ∈ Σα

for all α, that is Ac ∈ ⋂
α Σα.
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σ-algebras and Borel functions 3

(iii) Let A1, A2, . . . belong to
⋂

α Σα. Then, for each α, An ∈ Σα for
all n and so

⋃
n An ∈ Σα. Hence

⋃
n An ∈

⋂
α Σα.

The result follows.

Let C be any collection of subsets of X. Then certainly C is contained
in the σ-algebra consisting of all subsets of X. If we set

Σ(C) =
⋂

F
Σ

where the intersection is over the family F of all those σ-algebras Σ which
contain C, then Σ(C) is the “smallest” σ-algebra containing C. It is called
the σ-algebra generated by C.
Definition 1.4. Let C denote the collection of open subsets of R. Then Σ(C)
is called the Borel σ-algebra of R, usually written B(R). The elements of
B(R) are called Borel sets. Similarly, one defines B(Rn) as the σ-algebra
generated by the open subsets of Rn.

Proposition 1.5. The following subsets of R belong to B(R):

(i) (a, b) for any a < b;

(ii) (−∞, a) for any a ∈ R;

(iii) (a,∞) for any a ∈ R;

(iv) [a, b] for any a ≤ b;

(v) (−∞, a] for any a ∈ R;

(vi) [a,∞) for any a ∈ R;

(vii) (a, b] for any a < b;

(viii) [a, b) for any a < b;

(ix) any closed subset of R.

Proof. Each of the sets in (i), (ii) or (iii) is open and so belongs to B(R) by
construction.

(iv) [a, b] =
⋂∞

n=1

(
a− 1

n , b + 1
n

) ∈ B(R).

(v) (−∞, a] =
⋂∞

n=1

(−∞, a + 1
n

) ∈ B(R).

(vi) [a,∞) =
⋂∞

n=1

(
a− 1

n ,∞) ∈ B(R).

King’s College London



4 Chapter 1

(vii) (a, b] =
⋂∞

n=1

(
a, b + 1

n

) ∈ B(R).

(viii) [a, b) =
⋂∞

n=1

(
a− 1

n , b
) ∈ B(R).

(ix) If F is closed in R, then F c is open and so belongs to B(R). But then
F = (F c)c ∈ B(R).

In fact, we will se that each of these families of subsets of R generates
the σ-algebra B(R).

Proposition 1.6. Let Σ(closed) and Σ(compact) denote the σ-algebras of
subsets of R generated, respectively, by the closed sets and the compact
subsets in R. Then

Σ(closed) = Σ(compact) = B(R).

Proof. Every closed subset of R belongs to the σ-algebra B(R). But, by
definition, Σ(closed) is the smallest σ-algebra containing the closed sets, so
we must have Σ(closed) ⊆ B(R). On the other hand, every open set is
the complement of a closed set and so belongs to Σ(closed). By definition,
B(R) is the σ-algebra generated by the open sets of R and so we have
B(R) ⊆ Σ(closed). It follows that B(R) = Σ(closed).

Next, we note that since every compact set in R is closed, it follows that
Σ(compact) ⊆ Σ(closed). However, any closed set F can be written as the
(countable) union

F =
∞⋃

n=1

[−n, n] ∩ F.

Each [−n, n] ∩ F is closed and bounded and so is compact. It follows that
F ∈ Σ(compact) and therefore Σ(closed) ⊆ Σ(compact). Hence result.

Proposition 1.7. Let C1, . . . , C9 denote the collections of subsets of R as given
in Proposition 1.5. Then Σ(Ci) = B(R) for each i = 1, 2, . . . , 9.

Proof. Since Ci ⊆ B(R), we have Σ(Ci) ⊆ B(R), 1 ≤ i ≤ 9. We show that
Σ(compact) ⊆ Σ(Ci) which completes the proof, by Proposition 1.6.

To show this, we first observe that each Σ(Ci) contains all intervals (a, b)
with a < b. (For example in (v): (−∞, a] ∈ Σ(C5) implies (by taking
complements) that (a,∞) ∈ Σ(C5) for any a ∈ R. But then it follows that
(a, b] = (a,∞)∩ (−∞, b] ∈ Σ(C5) and so (a, b) =

⋃∞
n=1

(
a, b− b−a

2n

] ∈ Σ(C5).)

Now let K ⊂ R be any given compact set. For each x ∈ R and n ∈ N,
let In(x) be the interval (x − 1

n , x + 1
n). For each fixed n, the collection

{ In(x) : x ∈ K } is an open cover of K and so has a finite subcover,

K ⊂ In(x(n)
1 ) ∪ · · · ∪ In(x(n)

m(n)) ≡ Jn

for suitable points x
(n)
1 , . . . , x

(n)
m(n) in K. Evidently, Jn ∈ Σ(Ci).

Department of Mathematics



σ-algebras and Borel functions 5

We claim that K =
⋂∞

n=1 Jn. Clearly, K ⊆ ⋂∞
n=1 Jn. For the converse,

let x ∈ ⋂∞
n=1 Jn. Then x ∈ Jn for all n. Hence x belongs to some In(x(n)

j ),

that is, there is yn = x
(n)
j ∈ K such that |x− yn| < 1/n. We see that yn → x

as n → ∞ and, since K is closed, it follows that x ∈ K which proves the
claim. Therefore K =

⋂∞
n=1 Jn ∈ Σ(Ci) and so

B(R) = Σ(compact) ⊆ Σ(Ci)

and the proof is complete.

Definition 1.8. Let (X, Σ) be a measurable space and f : X → R a given
function. f is said to be Borel measurable if f−1(G) ∈ Σ for each G open
in R.

Proposition 1.9. The function f : X → R is Borel measurable if and only if
f−1(A) ∈ Σ for each A ∈ B(R).

Proof. If f−1(A) ∈ Σ for each A ∈ B(R), then certainly f−1(G) ∈ Σ for
each open set G in R (because such G belongs to B(R)).

Conversely, suppose that f−1(G) ∈ Σ for any open set G in R. Let S
denote the collection of subsets of R given by

S = {E ⊆ R : f−1(E) ∈ Σ }.

Then S is a σ-algebra. To see this, we note the following.

(i) f−1(R) = X ∈ Σ, so R ∈ S.

(ii) f−1(R \E) = X \ f−1(E), so if E ∈ S then so is R \ E.

(iii) If E1, E2, . . . belong to S, then

f−1(E1 ∪ E2 ∪ . . . ) = f−1(E1) ∪ f−1(E2) ∪ . . .

which belongs to Σ and so E1 ∪ E2 ∪ · · · ∈ S.

This shows that S is, indeed, a σ-algebra, as claimed. But S contains all
open sets, by hypothesis, and therefore B(R) ⊆ S. Hence, for any A ∈ B(R),
f−1(A) ∈ Σ. This completes the proof.

Remark 1.10. Note that S need not be equal to B(R). For example, if X is
the σ-algebra of all subsets of X then every function f : X → R is Borel
measurable and f−1(E) ∈ Σ for any subset E in R whatsoever.

As another example, suppose that f is constant. Then f−1(E) is either
equal to X or else is empty depending on whether E contains the value
assumed by f or not. In any event, f−1(E) ∈ Σ, whatever E is.

King’s College London



6 Chapter 1

We can improve somewhat on the previous proposition, still using the
same idea.

Proposition 1.11. Let C be a collection of subsets of R such that Σ(C) = B(R)
and let f : X → R. Then f is Borel measurable if and only if f−1(A) ∈ Σ
for all A ∈ C.
Proof. Suppose that f is Borel measurable. Since C ⊆ B(R), it follows by
Proposition 1.9 that f−1(A) ∈ Σ for any A ∈ C.

Now suppose that f−1(A) ∈ Σ for all A ∈ C. As before, let us set
S = {E ⊆ R : f−1(E) ∈ Σ }. Then S is a σ-algebra which contains C and
so we have

B(R) = Σ(C) ⊆ S.

It follows that f−1(A) ∈ Σ for any A ∈ B(R).

Remark 1.12. This means that we can take C to be any of the collections of
sets indicated in Proposition 1.5. For example, we can say that f is Borel
measurable if and only if f−1((−∞, a]) ∈ Σ for each a ∈ R.

We can choose any convenient collection to work with.

Proposition 1.13. Let f : X → R be Borel measurable and g : R → R
continuous. Then g ◦ f : X → R is Borel measurable.

Proof. Let G be any open set in R. Then g−1(G) is open in R and so
(g ◦ f)−1(G) = f−1(g−1(G)) belongs to Σ.

Proposition 1.14. Let f : X → R and g : X → R be Borel functions. Then
the set

E = {x ∈ X : f(x) < g(x) }
is measurable.

Proof. For each rational number r ∈ Q, let

Er = {x ∈ X : f(x) < r < g(x) }.

Then Er = {x : f(x) < r } ∩ {x : r < g(x) } which is the intersection
of two measurable sets in X and so is itself measurable. Finally, we note
that E =

⋃
r∈Q Er which is a countable union of measurable sets and so is

measurable.

Proposition 1.15. Let (X,Σ) be a measurable space and let f : X → R and
g : X → R be Borel functions. Then

(i) af + b is a Borel function for any a, b ∈ R;

(ii) f + g is a Borel function;
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σ-algebras and Borel functions 7

(iii) |f |α is a Borel function for any α ≥ 0;

(iv) if f never vanishes, then 1/f is a Borel function;

(v) fg is a Borel function;

(vi) |f |, max{ f, g } and min{ f, g } are Borel functions.

Proof. We shall consider each statement one by one.

(i) For any c ∈ R,

{x ∈ X : (af + b)(x) ≤ c } = {x : a f(x) + b ≤ c }
= {x : a f(x) ≤ c− b }

=





{x : f(x) ≤ (c− b)/a }, a > 0
{x : f(x) ≥ (c− b)/a }, a < 0

X, a = 0 and c ≥ b

∅, a = 0 and c < b.

In any event, the left hand side belongs to Σ, which proves (i).

(ii) Let c ∈ R. Then

{x : f(x) + g(x) > c } = {x : f(x) > −g(x) + c }.

But −g + c is a Borel function by (i) and so the right hand side belongs to
Σ by Proposition 1.14.

(iii) The function t 7→ |t|α is a continuous function and so |f |α is a Borel
function by Proposition 1.13. (Alternatively, we note that for c ≥ 0

{x : |f(x)|α ≤ c } = {x : −c1/α ≤ f(x) ≤ c1/α }
= {x : −c1/α ≤ f(x) } ∩ {x : f(x) ≤ c1/α }
∈ Σ.

For c < 0, the left hand side = ∅.

(iv) If c ≥ 0, then

{x : 1/f(x) ≤ c } = {x : f(x) < 0 } ∪ {x : 1 ≥ c f(x) } ∈ Σ,

using (i). If c < 0, then

{x : 1/f(x) ≤ c } = {x : 1 ≥ c f(x) } ∈ Σ,

again by (i).

King’s College London



8 Chapter 1

(v) This follows from the identity

fg = 1
4(f + g)2 − 1

4(f − g)2

together with (i), (ii) and (iii).

(vi) |f | is a Borel function by (iii) with α = 1. Now

max{ f, g }(x) = 1
2(f(x) + g(x)) + 1

2 |f(x)− g(x)|

and
min{ f, g }(x) = 1

2(f(x) + g(x))− 1
2 |f(x)− g(x)| .

The result now follows from (i), (ii) and (iii).

Theorem 1.16. Let (X, Σ) be a measurable space and let (fn) be a sequence
of Borel measurable functions on X. Suppose that f(x) = limn fn(x) exists
for each x ∈ X. Then f is a Borel function.

Proof. Let c ∈ R. We shall show that A = {x : f(x) < c } ∈ Σ. For any
m, k ∈ N, put

Em
k = {x : fn(x) < c− 1

m for all n > k }.

Then Em
k =

⋂
n>k{x : fn(x) < c− 1

m } and so Em
k ∈ Σ.

Claim: A =
∞⋃

m=1

∞⋃

k=1

Em
k .

To see this, fix x ∈ A. Then f(x) < c, by definition of A and there is some
m0 ∈ N such that f(x) < c − 1

m0
. But fn(x) → f(x) and so there is some

k0 ∈ N such that fn(x) < c− 1
m0

for all n > k0. In other words, x ∈ Em0
k0

.
Now suppose that x ∈ Em

k for some m, k. Then fn(x) < c − 1
m for all

n > k. In particular, f(x) = limn fn(x) ≤ c − 1
m < c and so x ∈ A. This

proves the claim.

Each Em
k ∈ Σ and so A =

∞⋃

m=1

∞⋃

k=1

Em
k =

⋃

(m,k)∈N2

Em
k is a countable union of

elements of Σ and so itself belongs to Σ.

Definition 1.17. Let (X, Σ) be a measurable space and f : X → C. We say
that f is Borel measurable if both Re f and Im f are Borel measurable.

Proposition 1.18. Let f : X → C be a Borel measurable function. Then |f |
is a Borel measurable function and there is a Borel function α : X → C with
|α(x)| = 1 for all x ∈ X such that f(x) = α(x) |f(x)|.

Department of Mathematics



σ-algebras and Borel functions 9

Proof. For each x, f(x) = |f(x)| eiθ. The value of θ depends on x and is
arbitrary up to constant additions of multiples of 2π, which may vary with x.
The point is that θ may be chosen such that the resulting function eiθ(x) is
Borel measurable.

First, we note that |f(x)| = (
(Re f(x))2 + (Im f(x))2

)1/2 and so is Borel
measurable, by Proposition 1.15.

Let E = {x : f(x) = 0 } = {x : |f(x)| = 0 }. Then E ∈ Σ. Let 1E be
the indicator function for E,

1E(x) =

{
1, x ∈ E,

0, otherwise.

Then 1E is a Borel function.
Set

α(x) =
f(x) + 1E(x)
|f(x)|+ 1E(x)

, for x ∈ X.

Then, evidently, |α(x)| = 1 (consider separately the cases x ∈ E and x /∈ E).
Furthermore, |f |+1E never vanishes and is a Borel function, and so therefore
is 1/(|f |+1E), by Proposition 1.15. Hence we deduce, again by Proposition
1.15, that α is a complex Borel function. It is clear that f(x) = α(x) |f(x)|
for all x ∈ X.

Definition 1.19. A function s : X → R is called a simple function if its range
consists of only finitely-many points.

Thus, if s is simple with distinct values α1, . . . , αn and if Aj = {x ∈ X :
s(x) = αj }, 1 ≤ j ≤ n, then

s(x) =
n∑

j=1

αj 1Aj (x)

for x ∈ X, i.e., s is a finite linear combination of indicator functions. Evi-
dently, s is Borel if and only if each Aj is measurable.

Theorem 1.20. Let f : X → R be a non-negative Borel function. Then there
is a sequence of non-negative simple Borel functions (sn) such that

(i) 0 ≤ s1 ≤ s2 ≤ · · · ≤ f ,

(ii) sn(x) → f(x), as n →∞, for each x ∈ X.

Proof. For n = 1, 2, . . . and for 1 ≤ i ≤ n2n, let

En,i = {x ∈ X :
i− 1
2n

≤ f(x) <
i

2n
}

and
Fn = {x ∈ X : f(x) ≥ n }.

King’s College London



10 Chapter 1

Then Fn ∈ Σ and En,i ∈ Σ and X = Fn ∪
n2n⋃

i=1

En,i.

Set

sn(x) =
n2n∑

i=1

(i− 1)
2n

1En,i(x) + n1Fn(x).

Then sn is a non-negative simple (Borel) function obeying sn(x) ≤ f(x) for
each x ∈ X.

To show that sn ≤ sn+1, suppose first that x ∈ Fn+1. Then we see that
sn+1(x) = n + 1 > n = sn(x) since Fn+1 ⊆ Fn.

Now, if x /∈ Fn+1, there is some j with 1 ≤ j ≤ (n + 1)2n+1 such that
x ∈ En+1,j . Then

sn+1(x) =
j − 1
2n+1

≡ [2n+1f(x)]
2n+1

where [v] denotes the integer part of v. (This last equality follows because
x ∈ En+1,j if and only if (j − 1)/2n+1 ≤ f(x) < j/2n+1 which holds if
and only if j − 1 ≤ 2n+1f(x) < j which, in turn, holds if and only if
j − 1 = [2n+1f(x)].)

If f(x) ≥ n, then [2n+1f(x)] ≥ 2n+1n and so

sn+1(x) =
[2n+1f(x)]

2n+1
≥ 2n+1n

2n+1
= n = sn(x).

Suppose now that 0 ≤ f(x) < n. Then x ∈ En,i for some 0 ≤ i ≤ n2n and
sn(x) = [2nf(x)]/2n.

Suppose that 2nf(x) = m + λ, some m = 0, 1, 2, . . . and 0 ≤ λ < 1, so
that [2nf(x)] = m. Then 2n+1f(x) = 2m + 2λ with 0 ≤ 2λ < 2 giving

[2n+1f(x)]
2n+1

=
2m + [2λ]

2n+1

=
m

2n
+

[2λ]
2n+1

≥ m

2n

=
[2nf(x)]

2n

= sn(x),

which completes the proof of (i).
To see that sn(x) → f(x) for each x, let x ∈ X be given and let n0 be

so large that f(x) < n0, i.e., x /∈ Fn for any n ≥ n0. Hence, for all n ≥ n0,
there is some i (depending on n) such that x ∈ En,i. Therefore, by definition
of En,i,

0 ≤ f(x)− sn(x) <
i

2n
− (i− 1)

2n

Department of Mathematics



σ-algebras and Borel functions 11

=
1
2n

→ 0, as n →∞,

and the proof of (ii) is complete.

Remark 1.21. If f is bounded, then there is n0 such that 0 ≤ f(x) < n0 for
all x ∈ X. But then for all n > n0, 0 ≤ f(x)− sn(x) < 1/2n, for any x ∈ X,
and so we see that sn → f uniformly on X in this case.

Definition 1.22. A collection A of subsets of a set X is an algebra if

(i) X ∈ A,

(ii) if A ∈ A and B ∈ A, then A ∪B ∈ A,

(iii) if A ∈ A, then Ac ∈ A.

Note that it follows that if A,B ∈ A, then A ∩ B = (Ac ∪ Bc)c ∈ A.
Also, for any finite family A1, . . . , An ∈ A, it follows by induction that⋃n

i=1 Ai ∈ A and
⋂n

i=1 Ai ∈ A.

Definition 1.23. A collection M of subsets of X is a monotone class if

(i) whenever A1 ⊆ A2 ⊆ . . . in M is an increasing sequence in M,
then

⋃∞
i=1 Ai ∈M,

(ii) whenever B1 ⊇ B2 ⊇ . . . in M is a decreasing sequence in M,
then

⋂∞
i=1 Bi ∈M.

One can show that the intersection of an arbitrary family of monotone
classes of subsets of X is itself a monotone class. Thus, given collection C
of subsets of X, we may consider M(C), the monotone class generated by
the collection C — it is the “smallest” monotone class containing C, i.e., it
is the intersection of all those monotone classes which contain C.
Theorem 1.24. Let A be an algebra of subsets of X. Then M(A) = Σ(A).

Proof. It is clear that any σ-algebra is a monotone class and so Σ(A) is a
monotone class containing A. Hence M(A) ⊆ Σ(A). The proof is complete
if we can show that M(A) is a σ-algebra, for then we would deduce that
Σ(A) ⊆M(A).

If a monotone class M is an algebra, then it is a σ-algebra. To see this,
let A1, A2, · · · ∈ M. For each n ∈ N, set Bn = A1∪· · ·∪An. Then Bn ∈M,
ifM is an algebra. But then

⋃∞
i=1 Ai =

⋃
n=1∞Bn ∈M ifM is a monotone

class. Thus the algebra M is also a σ-algebra. It remains to prove that M
is, in fact, an algebra. We shall verify the three requirements.
(i) We have X ∈ A ⊆M(A).

King’s College London



12 Chapter 1

(iii) Let A ∈M(A). We wish to show that Ac ∈M(A). To show this, let

M̃ = {B : B ∈M(A) and Bc ∈M(A) }.
Since A is an algebra, if A ∈ A then Ac ∈ A and so

A ⊆ M̃ ⊆M(A).

We shall show that M̃ is a monotone class. Let (Bn) be a sequence in
M̃ with B1 ⊆ B2 ⊆ . . . . Then Bn ∈ M(A) and Bc

n ∈ M(A). Hence⋃
n Bn ∈ M(A) and also

⋂
n Bc

n ∈ M(A), since M(A) is a monotone class
(and (Bc

n) is a decreasing sequence).
But

⋂
n Bc

n =
(⋃

n Bn

)c and so both
⋃

n Bn and
(⋃

n Bn

)c belong to
M(A), i.e.,

⋃
n Bn ∈ M̃.

Similarly, if B1 ⊇ B2 ⊇ . . . belong to M̃, then
⋂

n Bn ∈ M(A) and(⋂
n Bn

)c =
⋃

n Bc
n ∈ M(A) so that

⋂
n Bn ∈ M̃. It follows that M̃ is a

monotone class. Since A ⊆ M̃ ⊆ M(A) and M(A) is the monotone class
generated by A, we conclude that M̃ = M(A). But then this means that
for any B ∈M(A), we also have Bc ∈M(A).

(ii) We wish to show that if A and B belong to M(A) then so does A ∪B.
By (iii), it is enough to show that A∩B ∈M(A) (using A∪B = (Ac∩Bc)c).
To this end, let A ∈M(A) and let

MA = {B : B ∈M(A) and A ∩B ∈M(A) }.
Then for B1 ⊆ B2 ⊆ . . . in MA, we have

A ∩
∞⋃

i=1

Bi =
∞⋃

i=1

A ∩Bi ∈M(A)

since each A ∩Bi ∈M(A) by the definition of MA.
Similarly, if B1 ⊇ B2 ⊇ . . . belong to MA, then

A ∩
∞⋂

i=1

Bi =
∞⋂

i=1

A ∩Bi ∈M(A).

Therefore MA is a monotone class.
Suppose A ∈ A. Then for any B ∈ A, we have A ∩ B ∈ A, since A is

an algebra. Hence A ⊆ MA ⊆ M(A) and therefore MA = M(A) for each
A ∈ A.

Now, for any B ∈M(A) and A ∈ A, we have

A ∈MB ⇐⇒ A ∩B ∈M(A) ⇐⇒ B ∈MA = M(A).

Hence, for every B ∈M(A),

A ⊆MB ⊆M(A)
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and so (since MB is a monotone class) we have MB = M(A) for every
B ∈M(A).

Now let A,B ∈ M(A). We have seen that MB = M(A) and therefore
A ∈ M(A) means that A ∈ MB so that A ∩ B ∈ M(A) and the proof is
complete.
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Chapter 2

Measures

Definition 2.1. A finite measure on a measurable space (X, Σ) is a map
µ : Σ → [0,∞) such that if A1, A2, . . . is any sequence of pairwise disjoint
members of Σ, then

µ
( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An).

(This requirement is referred to as “countable-additivity” or “σ-additivity”.)
A measure space is a triple (X, Σ, µ), where µ is a measure on the

σ-algebra Σ of subsets of X.
If µ(X) = 1, then µ is called a probability measure and (X, Σ, µ) is

called a probability space. In this case, X is called the sample space and
the members of Σ are called events.

A random variable is a Borel measurable function on a probability space.

Proposition 2.2. Let µ be a finite measure on Σ. Then the following hold.

(i) µ(∅) = 0.

(ii) If A1, . . . , An ∈ Σ with Ai ∩Aj = ∅ for i 6= j, then

µ(A1 + A2 + · · ·+ An) = µ(A1) + · · ·+ µ(An).

(iii) If A,B ∈ Σ with A ⊆ B, then µ(A) ≤ µ(B).

(iv) If A1 ⊆ A2 ⊆ . . . with An ∈ Σ, n = 1, 2, . . . , then we have
µ(An) ↑ µ(

⋃
m Am) as n →∞.

(v) If A1 ⊇ A2 ⊇ . . . with An ∈ Σ for n = 1, 2, . . . , then we have
µ(An) ↓ µ(

⋂
m Am) as n →∞.

Proof. (i) Let An = ∅ for each n ∈ N. Then the Ans are pairwise disjoint
and so µ(

⋃
n An) =

∑
n µ(An), that is, µ(∅) =

∑
n µ(∅). We must have

µ(∅) = 0.

15
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(ii) Set Ak = ∅ for all k > n and use (i) together with the countable
additivity of µ.

(iii) We have B = A ∪ (B \A) and A ∩ (B \A) = ∅. Hence, using (ii),

µ(B) = µ(A) + µ(B \A) ≥ µ(A).

(iv) Put B1 = A1, B2 = A2 \ A1, B3 = A3 \ A2, . . . . Then Bn ∈ Σ and
Bi ∩Bj = ∅ for all i 6= j. Also An = B1 ∪ · · · ∪Bn and so

⋃
m Am =

⋃
Bm.

Hence

µ(An) =
n∑

i=1

µ(Bi), by (ii),

and µ(
⋃

m Am) = µ(
⋃

m Bm). But

µ(
⋃
m

Bm) =
∞∑

m=1

µ(Bm), by σ-additivity,

= lim
n

n∑

m=1

µ(Bm)

= lim
n

µ(An).

Since An ⊆ An+1, (µ(An)) is an increasing sequence.

(v) Set Cn = A1 \ An. Then Cn ∈ Σ and C1 ⊆ C2 ⊆ . . . . Let A =
⋂

m Am.
Then A1 \A =

⋃
n Cn giving

µ(A1 \A) = lim
n

µ(Cn), by (iv),

But µ(Cn) = µ(A1 \An) = µ(A1)− µ(An) and so

µ(A1)− µ(A) = lim
n

(µ(A1)− µ(An))

giving µ(A) = limn µ(An). The sequence (µ(An)) is decreasing since we
have An+1 ⊆ An.

Proposition 2.3. Suppose that µ : Σ → [0,∞) and that µ(A ∪ B) = µ(A) +
µ(B) whenever A,B ∈ Σ with A∩B = ∅ (i.e., µ is finitely-additive). Then µ
is σ-additive if and only if µ(En) ↓ 0 for every sequence (En) in Σ satisfying
E1 ⊇ E2 ⊇ . . . and

⋂
n En = ∅.

Proof. Suppose that µ is σ-additive. Then by Proposition 2.2 (part (v)),
we see that if En is a decreasing sequence in Σ with

⋂
n En = ∅, then

µ(En) ↓ µ(∅) = 0.
Conversely, suppose µ(En) ↓ 0 for any sequence (En) in Σ as above. Let

An be any given sequence in Σ such that Ai ∩ Aj = ∅ for any i 6= j. Let

Department of Mathematics
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A =
⋃

n An and set En = A \ (A1 ∪ · · · ∪An) for n ∈ N. Evidently, En ∈ Σ,
En ⊇ En+1 and

⋂
n En = ∅ and so, by hypothesis, µ(En) ↓ 0. However,

µ(En) = µ(A)− µ(A1 ∪ · · · ∪An) = µ(A)−
n∑

i=1

µ(Ai)

since µ is finitely additive. We conclude that limn
∑n

i=1 µ(Ai) = µ(A), that
is, µ is countably additive, as required.

Example 2.4. Let X be any countable set, say X = {x1, x2, . . . } and let Σ be
the collection of all subsets of X. Let (pn) be any sequence of non-negative
real numbers with

∑
n pn finite. If we define µ(A) for any A ∈ Σ by

µ(A) =
∑

n∈I

pn,

where I = { i : xi ∈ A }, then µ is a finite measure on (X, Σ).
If

∑
n pn = 1, then (X, Σ, µ) is a probability space. Such spaces are

called discrete probability spaces.

Suppose that (X, Σ, µ) is a finite measure space and suppose that A ∈ Σ
with µ(A) = 0. Suppose that C ⊂ A. If we think of µ as a probability or
a volume, then µ(A) = 0 should force µ(C) = 0. Indeed, we might invoke
Proposition 2.2 (part (iii)) to argue that

0 ≤ µ(C) ≤ µ(A) = 0

to conclude that, indeed, µ(C) = 0. However, this argument is only valid
if C ∈ Σ. Indeed, if C /∈ Σ then µ(C) is not defined. We can either accept
this rather intuitively weird situation or we can endeavour to ensure that
somehow µ(C) is defined in these circumstances and is equal to zero. This
process is called “completing the measure”. One proceeds as follows.

Let Σ′ denote the collection of subsets of X satisfying E ∈ Σ′ if and only
if there exist sets A, B ∈ Σ with A ⊆ E ⊆ B and µ(B \ A) = 0 (so that
µ(A) = µ(B)). Evidently, (take A = B ∈ Σ) we have Σ ⊆ Σ′.

Proposition 2.5. Σ′ is a σ-algebra.

Proof. (i) X ∈ Σ ⊆ Σ′.

(ii) If E ∈ Σ′, then there is A,B ∈ Σ with A ⊆ E ⊆ B and µ(B \ A) = 0.
It follows that Bc ⊆ Ec ⊆ Ac and µ(Bc) = µ(X)− µ(B) = µ(X)− µ(A) =
µ(Ac) and so µ(Ac \Bc) = 0. Hence Ec ∈ Σ′.

(iii) Let E1, E2, · · · ∈ Σ′. For each i, there is some Ai, Bi ∈ Σ such that
Ai ⊆ Ei ⊆ Bi and µ(Ai) = µ(Bi). It follows that

⋃
i Ai ⊆

⋃
i Ei ⊆

⋃
i Bi.

However,
(⋃

i Bi

) \ (⋃
i Ai

) ⊆ ⋃
i(Bi \Ai) and so

µ(
( ⋃

i

Bi

) \ (⋃

i

Ai

)
) ≤ µ(

⋃

i

(Bi \Ai) ).

King’s College London



18 Chapter 2

But
⋃n

i=1(Bi \ Ai) ≤
∑n

i=1 µ(Bi \ Ai) = 0 and
⋃n

i=1(Bi \ Ai) increases to⋃∞
i=1(Bi \ Ai) so that µ(

⋃n
i=1(Bi \ Ai)) ↑ µ(

⋃∞
i=1(Bi \ Ai)) which implies

that µ(
⋃∞

i=1(Bi \Ai)) = 0. Hence µ(
( ⋃

i Bi

) \ ( ⋃
i Ai

)
) = 0 and we finally

conclude that
⋃

i Ei ∈ Σ′.

We wish to define the “measure” of an element of Σ′. Let E ∈ Σ′ and
let A, B ∈ Σ with A ⊆ E ⊆ B and µ(A) = µ(B). Since E is sandwiched
between A and B and these have the same measure, it is clear what we
must do, namely, we set µ′(E) = µ(A). We must check that this value does
not depend on any particular choice of the pair A,B. So suppose also that
A1, B1 ∈ Σ with A1 ⊆ E ⊆ B1 and µ(A1) = µ(B1). Then

A ⊆ A ∪A1 ⊆ E ⊆ B ∩B1 ⊆ B

and therefore

µ(A) ≤ µ(A ∪A1) ≤ µ(B ∩B1) ≤ µ(B).

But µ(A) = µ(B) and so we have equality throughout. In particular, we have
µ(A) = µ(A ∪ A1). Interchanging the pairs A,B and A1, B1, we similarly
see that µ(A1) = µ(A1 ∪ A) = µ(A) and so, in fact, µ(A) = µ(B) =
µ(A1) = µ(B1). It follows that the construction of µ′ does not depend on
any particular choices of A and B obeying the required conditions above.

Proposition 2.6. µ′ is an extension of µ on Σ to a measure on Σ′, i.e., µ′ is
a measure on Σ′ and µ′(A) = µ(A) for all A ∈ Σ.

Proof. For any E ∈ Σ, we may define µ′(E) by µ′(E) = µ(E), since in
this case we may simply take A = E and B = E to get the requirements
A ⊆ E ⊆ B with µ(A) = µ(B). So trivially, µ′ is an extension of µ.

We must show that µ′ is a measure on Σ′. Evidently, µ′(E) ≥ 0 for any
E ∈ Σ′.

To show countable additivity, suppose that E1, E2, · · · ∈ Σ′ are pairwise
disjoint. For each i ∈ N, there is Ai and Bi in Σ such that Ai ⊆ Ei ⊆ Bi

and µ(Ai) = µ(Bi). Hence
⋃

i

Ai ⊆
⋃

i

Ei ⊆
⋃

i

Bi

and we have seen in the proof of Proposition 2.5 that µ
(⋃

i Ai

)
= µ

(⋃
i Bi

)
.

It follows from that the definition of µ′ that µ′
(⋃

i Ei

)
= µ

(⋃
i Ai

)
. However,

the Ais are pairwise disjoint (because Ai ⊆ Ei and the Eis are) and so

µ′
(⋃

i

Ei

)
= µ

(⋃

i

Ai

)
=

∞∑

i=1

µ(Ai) =
∞∑

i=1

µ′(Ei)

since µ′(Ei) = µ(Ai), which completes the proof.
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Definition 2.7. The measure space (X, Σ′, µ′) is called the completion of the
space (X, Σ, µ).

Remark 2.8. Suppose that A ∈ Σ and that µ(A) = 0. Then for any subset
E ⊆ A, we have ∅ ⊆ E ⊆ A, with ∅, A ∈ Σ and µ(∅) = 0 = µ(A). This
means that E ∈ Σ′ and µ′(E) = 0. So we can always complete a measure
space to ensure that subsets of sets of measure zero also have “measure”
zero, i.e., we consider the extension (X, Σ′, µ′) rather than (X, Σ, µ).

Definition 2.9. The measure space (X, Σ, µ) is called complete if E ⊆ A with
A ∈ Σ and µ(A) = 0 implies that E ∈ Σ (and therefore µ(E) = 0).

Remark 2.10. One sees that the completion of a measure space is complete
and also that a compete measure space is equal to its completion ( — if
we try to complete a measure space that is already complete, then we get
nothing new).

King’s College London
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Chapter 3

Probability spaces, random variables and distribution

functions.

Let (Ω,S,P) be a probability space: so Ω is the sample space, S is the
σ-algebra of events and P is the probability measure on (Ω,S). Let f be a
random variable, i.e., f : Ω → R is Borel measurable. Hence, for any Borel
set A ⊆ R, the set {ω ∈ Ω : f(ω) ∈ A } belongs to S, which means that it
is an event and so its probability is defined. In other words, we can ask the
question “what is the probability that f has its value in the (Borel) set A?”
The answer is the value

P(f−1(A)) = P({ω ∈ Ω : f(ω) ∈ A }).

We shall sometimes abbreviate this to just P(f ∈ A).

Definition 3.1. The distribution function of the random variable (RV) f is
the function Ff : R→ R given by

Ff (x) = P(f ≤ x) ≡ P({ω : f(ω) ≤ x }).

Note that Ff is well-defined since {ω : f(ω) ≤ x } ∈ S for all x ∈ R.

Proposition 3.2. The distribution function Ff has the following properties.

(i) 0 ≤ Ff (x) ≤ 1 for all x ∈ R.

(ii) Ff (x) ≤ Ff (y) whenever x ≤ y.

(iii) limx→−∞ Ff (x) = 0 and limx→∞ Ff (x) = 1.

(iv) Ff is continuous from the right, that is, for each x ∈ R, we have
Ff (x) = limh↓0 Ff (x + h).

Proof. (i) Ff (x) = P(f ≤ x) ∈ [0, 1] for all x.

21



22 Chapter 3

(ii) For any x ≤ y, we have {ω : f(ω) ≤ x } ⊆ {ω : f(ω) ≤ y } and so

Ff (x) = P({ω : f(ω) ≤ x }) ≤ P({ω : f(ω) ≤ y }) = Ff (y).

(iii) For n ∈ N, let En = {ω : f(ω) ≤ −n }. Then E1 ⊇ E2 ⊇ . . . and⋂
n En = ∅. Hence, by Proposition 2.2,

Ff (−n) = P(En) → P(∅) = 0

as n → ∞. Given ε > 0, let n0 be such that P(En0) < ε. Then for all
x < −n0, we have

0 ≤ Ff (x) ≤ Ff (−n0), by (ii),
= P(En0)
< ε

and the result follows.
Now let An = {ω : f(ω) ≤ n } for n ∈ N. Evidently, A1 ⊆ A2 ⊆ . . . and⋃

n An = Ω. Hence P(An) → P(Ω) = 1 as n → ∞. Let ε > 0 be given and
let n0 be such that P(An0) > 1− ε. Then, for all x > n0, we have

1 ≥ Ff (x) ≥ Ff (n0), by (ii),
= P(An0)
> 1− ε

and the result follows.

(iv) Fix x ∈ R and for n ∈ N set Bn = {ω : f(ω) ≤ x +
1
n
}. Then

B1 ⊇ B2 ⊇ . . . and
⋂

n Bn = {ω : f(ω) ≤ x }. Again, by Proposition 2.2,

P(Bn) → P({ω : f(ω) ≤ x }) = Ff (x).

Let ε > 0 be given and let n0 be such that |P(Bn0)− Ff (x)| < ε. Then, by
part (ii),

0 ≤ P(Bn0)− Ff (x) < ε

i.e., 0 ≤ Ff

(
x +

1
n0

)− Ff (x) < ε. Let 0 < h <
1
n0

. Then, again by (ii),

0 ≤ Ff (x + h)− Ff (x)

≤ Ff

(
x +

1
n0

)− Ff (x)

< ε .

Hence result.

Department of Mathematics



Probability spaces, random variables and distribution functions. 23

Remark 3.3. Ff is an increasing function on R (i.e., is non-decreasing) and
is bounded (by 1). Hence, if for given a ∈ R we have x ↑ a, it follows
that Ff (x) increases to some limiting value — namely, supx<a Ff (x). Since
Ff is increasing, this supremum is not greater than Ff (a). In other words,
Ff (a) is an upper bound for the set {Ff (x) : x < a } and so is greater than
(or equal to) the supremum of this set. Thus, the function Ff possesses a
left-limit at each point in R, but this limit value may be smaller than the
actual value of Ff at that point. Denote by Ff (a−) the limit of Ff (x) as x
increases to a. Then Ff (a−) ≤ Ff (a).

Definition 3.4. The jump of Ff at a ∈ R is the difference Ff (a) − Ff (a−).
We say that a is a point of continuity of Ff if Ff is continuous at a, in which
case Ff (a) = Ff (a−) and so the jump is zero.

Proposition 3.5. For any a ∈ R, the jump of Ff at a is equal to P(f = a).

Proof. By definition, Ff (a) = P(f ≤ a). Set An = {ω : f(ω) ≤ a − 1
n } for

n ∈ N. Clearly, A1 ⊆ A2 ⊆ . . . and
⋃

n An = {ω : f(ω) < a }. It follows
that P(An) ↑ P(f < a). But

lim
n
P(An) = lim

n
Ff (a− 1

n) = Ff (a−)

so that Ff (a−) = P(f < a). Therefore the jump of Ff at a is

“jump at a” = Ff (a)− Ff (a−) = P(f ≤ a)− P(f < a) = P(f = a),

as required.

Let us say that a set is countable if it is either finite (including empty)
or countably infinite (i.e., can be put into a one-one correspondence with
the set of natural numbers N).

Proposition 3.6. The non-zero jumps of the distribution function Ff form a
countable set.

Proof. Denote by J the set of non-zero jumps of Ff and let Jn be the subset

Jn = { a ∈ J : “jump of Ff at a” ≥ 1
n }.

Suppose a1, . . . ak ∈ Jn with a1 < · · · < ak. Let a0 be any real number such
that a0 < a1. Then 0 ≤ Ff (a0) ≤ Ff (ak) ≤ 1 and Ff (ai)− Ff (ai−1) ≥ 1

n so
that

1 ≥ Ff (ak)− Ff (a0) =
k∑

i=1

( Ff (ai)− Ff (ai−1) ) ≥
k∑

i=1

1
n = k

n .

It follows that k cannot be larger than n, that is, Jn is either empty or
otherwise cannot contain more than n elements. However, J =

⋃
n Jn and

so J is a countable union of (empty or) finite sets and so is countable.
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Corollary 3.7. For any random variable f , there is a countable set J ⊂ R
such that P(f = x) = 0 for all x ∈ R \ J .

Proof. Given f , let J ⊂ R denote the set of non-zero jumps of Ff . We have
seen that J is countable. But P(f = x) 6= 0 if and only if x ∈ J .

Remark 3.8. The distribution function Ff of the random variable f is a non-
decreasing function with values in the range [0, 1] and it is continuous except
possibly for countably-many jumps. Nonetheless, the behaviour of Ff can
be quite complicated, as the illustrated by the following examples.

Examples 3.9.

1. Let Ω = N, S = all subsets of N, and define P on Ω = N by the
assignment P({ k }) = 1/2k, for k = 1, 2, . . . . Then for any A ⊆ S,
P (A) =

∑
k∈A P({ k }) =

∑
k∈A 1/2k.

Define f on N by f(2k) = 1 + 1
k and f(2k + 1) = −4 + 1

k . Then Ff

has non-zero jumps at the points 2, 1 + 1
2 , 1 + 1

3 , 1 + 1
4 , . . . , and also

at −3, −4 + 1
2 , −4 + 1

3 , −4 + 1
4 , . . . .

Notice that the jumps cluster at 1 and at −4. There are infinitely-
many (but countably-many) jumps in any interval (1, 1 + δ) and also
in (−4,−4 + δ), any δ > 0.

2. We can put more frills on this example as follows. Let (Ω,S,P) be as
above and let r1, r2, . . . be an enumeration of the rationals, Q. Define
the random variable f on Ω = N by f(k) = rk, k ∈ N. Then Ff has a
non-zero jump at every rational point in R. The value of the jump of
Ff at the rational point rk is P(f = rk) = P({ k }) = 1/2k. Note that
the function Ff is continuous at every irrational in R.

Example 3.10 (Cantor). We shall construct a particular non-decreasing func-
tion F (x) on R, obeying 0 ≤ F (x) ≤ 1, by means of a certain limiting
procedure. We start with F1(x) defined as follows:

F1(x) =





0, x ≤ 0,

x, 0 ≤ x ≤ 1,

1, x ≥ 1.

6

-
0

F1(x)

x
¡

¡
¡

¡
¡

¡
¡

¡
¡1

1
q
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Next, we construct F2 from F1 by “flattening out” the middle third.

6

-
0

F2(x)

x












1

1/2

1
q

1
3

2
3

F3 is then constructed from F2 by “flattening out” the middle thirds over
[0, 1

3 ] and [23 , 1].

6

-
0

F3(x)

x
¯
¯̄

¯
¯̄

¯
¯̄

¯
¯̄

1

1/2

1/4

3/4

1
q

1
3

2
3

1
9

2
9

7
9

8
9

F4 is obtained from F3 by “flattening out” the portions over the intervals
[0, 1

9 ], [29 , 1
3 ], [23 , 7

9 ] and [89 , 1] . . . and so on.

In this way, we obtain a sequence of functions, (Fn). We make the
following observations.

(i) Each Fn(x) is non-decreasing, continuous, is zero for all negative
values of x and is 1 for all values of x ≥ 1.

(ii) The “flat” parts of Fn+1 contain the “flat” parts of Fn (so that
Fn+1 has more flat parts than Fn).

(iii) For any x ∈ R, |Fn+1(x)− Fn(x)| ≤ 1/2n.
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We will show that (Fn(x)) is a Cauchy sequence (uniformly in x). Indeed,
for n > m, we have

|Fn(x)− Fm(x)|
= |Fn(x)− Fn−1(x) + Fn−1(x)− Fn−2(x) + · · ·+ Fm+1(x)− Fm(x)|
≤ |Fn(x)− Fn−1(x)|+ |Fn−1(x)− Fn−2(x)|+ . . .

· · ·+ |Fm+1(x)− Fm(x)|
≤ 1

2n−1
+

1
2n−2

+ · · ·+ 1
2m

=
1

2m−1

( 1
2n−m

+ · · ·+ 1
2

)

<
1

2m−1
, since

∑∞
k=1

1
2k = 1.

It follows that (Fn(x)) is a Cauchy sequence, uniformly in x, as claimed.
Hence Fn(x) converges uniformly in R, as n →∞. Call the limit F (x).
(a) Evidently, F (x) = 0 for all x ≤ 0 and F (x) = 1 for all x ≥ 1 (because
these properties hold for every Fn). Furthermore, if x ≤ y, then we have
Fn(x) ≤ Fn(y), i.e., Fn(x) − Fn(y) ≤ 0 for all n. Taking the limit n → ∞,
gives F (x)− F (y) ≤ 0, i.e., F (x) ≤ F (y). So F is non-decreasing.

(b) F (x) is continuous. This is a direct consequence of the uniform conver-
gence together with the continuity of each Fn(x).

Now, F is “flat” whenever any Fn is, by observation (ii) above. That is,
F is differentiable, with F ′ = 0, on each of the intervals I1, I2, . . . given as
(1
3 , 2

3), (1
9 , 2

9), (7
9 , 8

9), ( 1
27 , 2

27), ( 4
27 , 5

27), (22
27 , 23

27), (25
27 , 26

27), . . . in [0, 1].
The total length of these intervals is

1
3

+
2
32

+
4
33

+
8
34

+
16
35

+ . . . =
1
3

+
2
32

+
22

33
+

23

34
+

24

35
+ . . .

=
1
3

[
1 +

2
3

+
(2

3

)2
+

(2
3

)3
+ . . .

]

=
1
3

1
(1− 2/3)

= 1.

Thus, F ′(x) = 0 for x ∈ I1 ∪ I2 ∪ . . . (and also for all x < 0, and all x > 0).
The total length of I1 ∪ I2 ∪ · · · ⊂ [0, 1] is equal to 1. But nonetheless, F is
continuous and increases from 0 to 1 over the interval [0, 1].

Remark 3.11. The above example was of a function F satisfying the prop-
erties of a distribution function as given by Proposition 3.2. However, it is
not yet clear that this F actually is a distribution function corresponding
to some random variable on some probability space. We will see later that
this is indeed the case.
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Remark 3.12. Let (X, Σ, µ) be a finite measure space and let f : X → R be
Borel measurable. For any Borel set E ⊆ R, define ν(E) = µ(f−1(E)), that
is,

ν(E) = µ({x ∈ X : f(x) ∈ E }).
Then it is straightforward to check that ν defines a finite measure on B(R).
In particular, if f is a random variable on (Ω,S,P), then the assignment
ν(E) = P({ω ∈ Ω : f(ω) ∈ E }) is a probability measure on (R,B(R)).
Moreover,

ν((−∞, a]) = P(f ≤ a) = Ff (a).

The sets of the form { (−∞, a] : a ∈ R } generate B(R) and so ν is completely
determined by the values { ν((−∞, a]) : a ∈ R }, that is, ν is determined
by Ff .

(Suppose that µ1 and µ2 are finite measures on a measurable space (X, Σ)
such that µ1(X) = µ2(X). Then the collection S = {E ∈ Σ : µ1(E) =
µ2(E) } is a sub-σ-algebra of Σ. If S contains a set which generates Σ then
it follows that S = Σ.)

Suppose now that ν is a given probability measure on (R,B(R)). Set
F (x) = ν((−∞, x]) for x ∈ R. Then using the properties of ν, we see that
F has values in [0, 1], is non-decreasing, is continuous from the right etc,
i.e., F satisfies all properties of Proposition 3.2.

Two questions now spring to mind.

1. Given a function F satisfying the properties of Proposition 3.2, is there
a probability measure ν on (R,B(R)) such that F (x) = ν((−∞, x]) for
all x ∈ R ?

2. Given some function F satisfying the properties of Proposition 3.2, is
F the distribution function of some random variable?

The answer to both these questions is “yes”. The first is dealt with by
the following theorem.

Theorem 3.13. For any given function F satisfying the properties of Proposi-
tion 3.2, there exists a probability measure ν on (R,B(R)) satisfying F (x) =
ν((−∞, x]) for all x ∈ R. Moreover, such ν is unique.

We will not prove this here, but we note that as a consequence,

ν((−∞, a)) = F (a−),
ν((a, b]) = F (b)− F (a+), a < b,

ν((a, b)) = F (b−)− F (a+), a < b,

ν([a, b)) = F (b−)− F (a−), a < b,

ν([a, b]) = F (b)− F (a−), a ≤ b.
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The measure associated with F in this way is called the Lebesgue-Stieltjes
measure given by F . In particular, suppose that F is given by

F (x) =





0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1.

Then the completed measure given by F , when thought of as a measure on
[0, 1], is called Lebesgue measure on [0, 1]. For this F , we have ν((−∞, 0]) =
F (0) = 0 and ν((1,∞)) = 1− F (1) = 0. For 0 ≤ a ≤ b ≤ 1, we have

ν((a, b)) = ν([a, b)) = ν((a, b])
= ν([a, b])
= b− a

so that ν is just “length”.

Remark 3.14. If we replace limx→∞ F (x) = 1 by, say, limx→∞ F (x) = M ,
then ν(R) = M rather than 1. We could also consider the function

F (x) =





0, x < a,

x− a, a ≤ x ≤ b,

b− a, x > b.

This would then give Lebesgue measure on [a, b] — it still corresponds to
“length”.

We can now answer the second question in the affirmative.

Theorem 3.15. Suppose that F satisfies the properties of Proposition 3.2.
Then there exists a random variable f such that F = Ff .

Proof. We must first specify a probability space on which f will be defined.
Take Ω = R, S = B(R) and let P be the Lebesgue-Stieltjes probability
measure on (R,B(R)) determined by F according to Theorem 3.13.

Define the random variable f on (R,B(R),P) by f(x) = x. Then f is a
random variable (i.e., it is Borel measurable) and

Ff (a) = Prob(f ≤ a)
= P({x ∈ R : f(x) ≤ a })
= P({x ∈ R : x ≤ a })
= P((−∞, a]))
= F (a),

by the construction of the Lebesgue-Stieltjes measure P from F .
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Remark 3.16. This result guarantees the existence of a random variable with
any preassigned distribution. For example, let

F (x) =
∫ x

−∞
e−t2/2 dt√

2π
.

Then by the Theorem, there is a random variable with this F as its dis-
tribution function. We conclude that standard normal random variables do
exist!

Also, there is a random variable f such that its distribution function is
the function F in the Cantor Example 3.10. Note that if λ denotes Lebesgue
measure, then

λ(I1 ∪ I2 ∪ . . . ) = λ(I1) + λ(I2) + . . .

= “sum of lengths”
= 1.

But if ν is the Lebesgue-Stieltjes measure given by F in this example, then
we find that ν(I1) = ν(I2) = · · · = 0 since F is constant on each of the
Ijs (so that ν(Ij) = F (bj−) − F (aj) = 0, where Ij = (aj , bj)). It follows
that ν(I1 ∪ I2 ∪ . . . ) = 0. The measure ν is “singular” when compared with
Lebesgue measure.
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Chapter 4

Integration theory.

We will develop the theory of integration on an arbitrary finite measure space
(X, Σ, µ). Recall that a simple function s is one which takes only finitely-
many values, α1, . . . , αn, say, so that s(x) =

∑n
i=1 αi1lAi(x) for disjoint

subsets A1, . . . , An in X. To avoid tedious repetition, we will use the word
“simple” to mean “measurable and simple”. Thus, the sets Ai belong to Σ.

Definition 4.1. Suppose that s =
∑n

i=1 αi1lAi is a simple function. For given
E ∈ Σ, we define the integral of s over E with respect to µ to be

∫

E
s dµ =

n∑

i=1

αi µ(Ai ∩ E).

Thus, in particular, for any A ∈ Σ, the integral of the indicator function
of A over X is just the measure of A:

∫

X
1lA dµ = µ(A).

If µ is Lebesgue measure on [0, 1] and A = [a, b] with 0 ≤ a ≤ b ≤ 1, then∫
[0,1] 1l [a,b] dµ = b− a, which is just the usual Riemann integral of 1l [a,b] over

the interval [0, 1].
If X = R and µ is the Lebesgue-Stieltjes measure on R as determined by

the function F (x) =
∫ x
−∞ ρ(t) dt, where ρ is a given non-negative Riemann-

integrable function, then for a < b,
∫

R
1l [a,b] dµ = µ([a, b]) = F (b)− F (a) =

∫ b

a
ρ(t) dt.

Definition 4.2. Let f : X → R be measurable and suppose that f ≥ 0. For
any E ∈ Σ, we define ∫

E
f dµ = sup

∫

E
s dµ

where the supremum is taken over all non-negative simple functions s satis-
fying 0 ≤ s(x) ≤ f(x), for x ∈ X.

If the right hand side is not finite, then we say that f is not integrable
over E (or has “infinite integral” over E).
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Note that there do exist simple functions s obeying 0 ≤ s(x) ≤ f(x) for
all x ∈ X. The function s(x) = 0 = 0 1lX(x) is one such. Various properties
of the integral are collected next.

Proposition 4.3. Suppose that f, g are measurable and let E ∈ Σ.

(i) If 0 ≤ f ≤ g, then
∫
E f dµ ≤ ∫

E g dµ.

(ii) If A ⊆ B, A, B ∈ Σ, and f ≥ 0, then
∫
A f dµ ≤ ∫

B f dµ.

(iii) If f ≥ 0 and c ≥ 0 is a constant, then
∫
E cf dµ = c

∫
E f dµ.

(iv) If f(x) = 0 for all x ∈ E, then
∫
E f dµ = 0.

(v) If µ(E) = 0, then
∫
E f dµ = 0 for any f ≥ 0.

(vi) If f ≥ 0, then
∫
E f dµ =

∫
X 1lEf dµ.

Proof. These are all fairly clear from the definitions.

(i) If s is simple and 0 ≤ s ≤ f , then 0 ≤ s ≤ f ≤ g and so, by definition
of

∫
E g dµ, we have

∫
E s dµ ≤ ∫

E g dµ. Taking the supremum over all s with
0 ≤ s ≤ f gives

∫
E f dµ ≤ ∫

E g dµ.

(ii) If 0 ≤ s ≤ f , then
∫
A s dµ ≤ ∫

B s dµ (since A ⊆ B) ≤ ∫
B f dµ. Taking

the supremum over s with 0 ≤ s ≤ f gives the inequality
∫
A f dµ ≤ ∫

B f dµ,
as required.

(iii) We may assume that c 6= 0. Then
∫

E
c f dµ = sup

{ s : 0≤s≤f }

∫

E
c s dµ

= c sup
{ s : 0≤s≤f }

∫

E
s dµ

= c

∫

E
f dµ.

The first equality here takes a moment’s thought. Any simple function s1

with 0 ≤ s1 ≤ cf has the form s1 = cs2 for simple s2(= s1/c) obeying
0 ≤ s2 ≤ f and, conversely, every if s2 satisfies 0 ≤ s2 ≤ f , then s1 = cs2

satisfies 0 ≤ s1 ≤ cf .

(iv) If f(x) = 0 for x ∈ E, then 0 ≤ s ≤ f forces s = 0 on E. Hence, if
Ai = s−1(αi) and Ai ∩ E 6= ∅, we must have αi = 0. If Ai ∩ E = ∅ then
µ(Ai ∩ E) = 0. It follows from the definition that

∫
E s dµ = 0. Hence the

supremum over all such s must also be zero.

(v) If µ(E) = 0, then
∫
E s dµ = 0 for any simple s.
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(vi) Clearly, if s ≥ 0 is simple, then so is 1lEs and
∫
E s dµ =

∫
X 1lE s dµ.

Now let 0 ≤ s ≤ f . Then 0 ≤ 1lE s ≤ 1lE f and so
∫

E
s dµ =

∫

X
1lEs dµ ≤

∫

X
1lEf dµ.

Taking the supremum over such s gives
∫

E
f dµ ≤

∫

X
1lEf dµ.

On the other hand, suppose that 0 ≤ s ≤ 1lEf . Then certainly 0 ≤ s ≤ f
and s vanishes off E so s = 1lEs. Hence

∫

X
s dµ =

∫

X
1lEs dµ =

∫

E
s dµ ≤

∫

E
f dµ.

Taking the supremum gives
∫

X
1lEf dµ ≤

∫

E
f dµ

and the equality follows.

Note that (i) and (vi) together imply (ii) and that (vi) implies (iv).

Proposition 4.4. Let s, t be any given simple functions with s ≥ 0 and t ≥ 0.
For E ∈ Σ, put ϕ(E) =

∫
E s dµ. Then ϕ is a finite measure on (X, Σ).

Furthermore, ∫

X
(s + t) dµ =

∫

X
s dµ +

∫

X
t dµ.

Proof. Suppose s =
∑n

i=1 αi1lAi . Then

ϕ(E) =
∫

E
s dµ =

n∑

i=1

αi µ(Ai ∩ E).

Each map E 7→ µ(Ai ∩E) is a finite measure on Σ and so therefore is their
finite sum over 1 ≤ i ≤ n.

To show that
∫
X(s+t) dµ =

∫
X s dµ+

∫
X t dµ, let us write s =

∑n
i=0 αi1lAi

and t =
∑m

j=0 βj1lBj where α0 = 0 = β0, the αis are distinct and the
βjs are distinct so that {A0, . . . , An } is a partition of X and similarly,
{B0, . . . , Bm } is a partition of X. The sum s + t is a simple function, say,
s + t =

∑k
`=0 γ`1lC`

, where γ0 = 0, the γ`s are distinct and {C0, . . . , Ck } is
a partition of X. Each γ` has the form γ` = αi + βj for suitable i, j and so
C` =

⋃
I`

Ai ∩Bj where I` = { (i, j) : αi + βj = γ` }. Then

∫

X
(s + t) dµ =

k∑

`=0

γ` µ(C`)
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and ∫

X
s dµ +

∫

X
t dµ =

n∑

i=0

αi µ(Ai) +
m∑

j=0

βj µ(Bj).

The collection {Ai ∩ Bj : 0 ≤ i ≤ n, 0 ≤ j ≤ m } forms a partition of X.
We have

∫

X
(s + t) dµ =

k∑

`=0

γ` µ(C`)

=
k∑

`=0

γ` µ
(⋃

I`

Ai ∩Bj

)

=
k∑

`=0

γ`

∑

I`

µ(Ai ∩Bj), since distinct Ai ∩Bjs are disjoint,

=
k∑

`=0

∑

I`

(αi + βj) µ(Ai ∩Bj)

=
∑

i,j

(αi + βj) µ(Ai ∩Bj)

=
∑

i,j

αi µ(Ai ∩Bj) +
∑

i,j

βj µ(Ai ∩Bj)

=
∑

i

αi µ(Ai) +
∑

j

βj µ(Bj)

=
∫

X
s dµ +

∫

X
t dµ

and the proof is complete.

Remark 4.5. From this result, we see that the integral of a simple function
is got by adding up its “elementary bits” and it does not matter how we
write the simple function as such a sum. For example, consider s = α1lA so
that

∫
s dµ = αµ(A). If A = B1 ∪B2 with B1 ∩B2 = ∅, then we could also

write s as s = α1lB1 + α1lB2 . We have
∫

X
α1lA dµ =

∫

X
α1lB1 dµ +

∫

X
α1lB2 dµ

= αµ(B1) + αµ(B2)
= αµ(A)

as it should.
In general, if s is simple, we can write s =

∑n
i=1 αi1lAi and we do not

have to worry whether the αis are all distinct, or indeed whether the Ais
are disjoint. In any event,

∫
X s dµ is

∑n
i=1 αiµ(Ai).
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The following theorem is crucial for further development.

Theorem 4.6 (Lebesgue’s Monotone Convergence Theorem). Let (fn) be a
sequence of measurable functions on X and suppose that

(i) 0 ≤ f1(x) ≤ f2(x) ≤ . . . for each x ∈ X,

(ii) fn(x) → f(x) as n →∞, for each x ∈ X.

Then f is measurable and
∫
X fn dµ → ∫

X f dµ as n →∞.

(Note: this last statement means that if some fnis not integrable, then
neither is f , or if

∫
X fn dµ diverges then f is not integrable.)

Proof. The limit of a sequence of measurable functions is measurable and
so f is measurable (Theorem 1.16). Also, since 0 ≤ f1(x) ≤ f2(x) ≤ . . . and
fn(x) → f(x), it is clear that fn(x) ≤ f(x) for all n ∈ N and all x ∈ X.

Suppose fN is not integrable. Then for any M > 0 there is a simple
function s with 0 ≤ s ≤ fN such that

∫
X s dmu > M . Since 0 ≤ s ≤ f we

deduce that sup{ ∫
X s dµ : 0 ≤ s ≤ f } is infinite, i.e., f is not integrable.

Suppose now that each fn is integrable. Since fn ≤ fn+1 it follows that∫
X fn dµ ≤ ∫

X fn+1 dµ. Hence the non-decreasing sequence (
∫
X fn dµ) (of

non-negative numbers) either diverges, as n →∞, or else converges to some
α ≥ 0 (its supremum).

Suppose first that the sequence diverges. Then for any M > 0, there
is N such that

∫
X fN dµ > M + 1. By definition of the integral, there is a

simple function s obeying 0 ≤ s ≤ fN such that
∫
X s dµ > M . But then

0 ≤ s ≤ f and it follows that sup{ ∫
X s dµ : 0 ≤ s ≤ f } is infinite and hence

f is not integrable.
Now suppose that the sequence

∫
X fn dµ converges to α ≥ 0. We must

show that f is integrable and that
∫
X f dµ = α. Let s be any simple function

such that 0 ≤ s ≤ f and let c be a constant with 0 < c < 1. For each n ∈ N,
set

En = {x ∈ X : fn(x) ≥ c s(x) } .

Then En ∈ Σ and, because (fn(x)) is increasing, E1 ⊆ E2 ⊆ E3 ⊆ . . . .
Moreover, since fn(x) → f(x) ≥ s(x) ≥ c s(x), it follows that

⋃
n En = X.

(If f(x) = 0, then also s(x) = 0 and x ∈ En for all n. On the other hand,
if f(x) 6= 0, then f(x) ≥ s(x) implies that f(x)/c > f(x) ≥ s(x) and so
f(x) > c s(x). It follows that for each x with f(x) 6= 0, fn(x) > c s(x) for
all sufficiently large n (which, of course, may depend on x). In other words,
any such x belongs to En for sufficiently large n.)

By Proposition 4.3, we have
∫

X
fn dµ ≥

∫

En

fn dµ ≥ c

∫

En

s dµ.
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Now, E 7→ ∫
E s dµ is a measure and En ↑ X and so letting n →∞ we get

α ≥ c

∫

X
s dµ.

This holds for any 0 < c < 1 and so we must have α ≥ ∫
X s dµ. It follows

that sup{ ∫
X s dµ : 0 ≤ s ≤ f } ≤ α, which shows that f is integrable and

also that
∫
X f dµ ≤ α.

On the other hand, fn ≤ f and so
∫
X fn dµ ≤ ∫

X f dµ for all n. Hence,
letting n → ∞, we see that α ≤ ∫

X f dµ. We conclude that, in fact, α =∫
X f dµ, that is, limn

∫
X fn dµ =

∫
X f dµ.

Corollary 4.7. Suppose that f ≥ 0 and g ≥ 0 and that both f and g are
integrable. Then f + g is integrable and

∫

X
(f + g) dµ =

∫

X
f dµ +

∫

X
g dµ.

Proof. Let (sn) and (tn) be increasing sequences of non-negative simple
functions such that sn(x) → f(x) and tn(x) → g(x) for x ∈ X. Then
(sn + tn) is an increasing sequence of non-negative simple functions with
(sn + tn)(x) → (f + g)(x) for each x ∈ X. Now

∫

X
(sn + tn) dµ =

∫

X
sn dµ +

∫

X
tn dµ (∗)

By Lebesgue’s Monotone Convergence Theorem, Theorem 4.6, the right
hand side of (∗) converges to

∫
X f dµ +

∫
X g dµ. Therefore the left hand

side must also converge, and so again by Lebesgue’s Monotone Convergence
Theorem, we deduce that f + g is integrable and that

∫

X
(f + g) dµ = lim

n

∫

X
(sn + tn) dµ =

∫

X
f dµ +

∫

X
g dµ

as required.

Corollary 4.8. Suppose that f ≥ 0 is integrable. Then the set function
E 7→ ∫

E f dµ is a finite measure on (X, Σ).

Proof. Let ϕ(E) =
∫
E f dµ =

∫
X 1lE f dµ. By Corollary 4.7, it follows that

E 7→ ϕ(E) is finitely-additive, that is, ϕ(
⋃n

i=1 Ei) =
∑n

i=1 ϕ(Ei) for any
finite set E1, . . . , En of pairwise disjoint sets in Σ. We must show that ϕ
is, in fact, σ-additive. To show this, suppose that (En) is any sequence in
Σ with En ⊇ En+1 and

⋂
n En = ∅. We claim that ϕ(En) → 0. Indeed,

En ↓ ∅ and so 1 − 1lEn ↑ 1 as n → ∞. Hence (1 − 1lEn) f ↑ f and so, by
Lebesgue’s Monotone Convergence Theorem,

∫
X(1 − 1lEn) f dµ ↑ ∫

X f dµ.
In other words, ∫

X
f dµ−

∫

X
1lEnf dµ ↑

∫

X
f dµ

and so ϕ(En) ↓ 0 as claimed and therefore ϕ is σ-additive.
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So far, we have only considered the integrability of non-negative func-
tions. The general situation is handled by linearity as follows.

Definition 4.9. The complex-valued function f on X is said to be (Lebesgue)
integrable (with respect to µ) if |f | is integrable. The collection of all such
functions is denoted by L1(X, µ).

For any f = u + iv ∈ L1(X, µ), we define
∫

X
f dµ =

∫

X
u+ dµ−

∫

X
u− dµ + i

∫

X
v+ dµ− i

∫

X
v− dµ

where u± and v± are the positive and negative parts of u and v, respectively.
(For any real-valued function g, g± = 1

2(|g| ± g) so that both g± ≥ 0,
g+g− = 0 and g = g+ − g− and |g| = g+ + g−.)

Note that u± ≥ 0 on X and u± ≤ |u| ≤ |f | and so u± is (measurable
and) integrable on X with the similar remark applying to v±. It follows that∫
X f dµ is well-defined.

Theorem 4.10. If f, g ∈ L1(X,µ) and a, b ∈ C, then af + bg ∈ L1(X, µ) and

∫

X
(af + bg) dµ = a

∫

X
f dµ + b

∫

X
g dµ.

Proof. We first note that |af + bg| ≤ |a| |f |+|b| |g| and so af+bg ∈ L1(X,µ)
and ∫

X
|af + bg| dµ ≤ |a|

∫

X
|f | dµ + |b|

∫

X
|g| dµ.

It is enough to prove that
∫
X(f + g) dµ =

∫
X f dµ +

∫
X g dµ and that∫

X af dµ = a
∫
X f dµ.

Suppose that f and g are real-valued. Let h = f + g. Then

h = h+ − h− = f+ − f− + g+ − g−

and so h++f−+g− = h−+f++g+ which implies that
∫
X(h++f−+g−) dµ =∫

X(h− + f+ + g+) dµ. But then, by Corollary 4.7, we have
∫

X
h+ dµ +

∫

X
f− dµ +

∫

X
g− dµ =

∫

X
h− dµ +

∫

X
f+ dµ +

∫

X
g+ dµ

which becomes
∫

X
h+ dµ−

∫

X
h− dµ =

∫

X
f+ dµ−

∫

X
f− dµ +

∫

X
g+ dµ−

∫

X
g− dµ ,

that is, by definition,
∫

X
h dµ =

∫

X
f dµ +

∫

X
g dµ.
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The case of complex-valued f and g now follows by looking at the real
and imaginary parts. Indeed, if h = f + g, then, by definition,

∫
X h dµ =∫

X Reh dµ+i
∫
X Imh dµ,

∫
X f dµ =

∫
X Re f dµ+i

∫
X Im f dµ and

∫
X g dµ =∫

X Re g dµ + i
∫
X Im g dµ. But Reh = Re f + Re g and Imh = Im f + Im g

and, from the argument above,
∫
X(Re f +Re g) dµ =

∫
X Re f dµ+

∫
X Re g dµ

and
∫
X(Im f +Im g) dµ =

∫
X Im f dµ+

∫
X Im g dµ. It follows that

∫
X h dµ =∫

X f dµ +
∫
X g dµ.

To show that
∫
X af dµ = a

∫
X f dµ for all a ∈ C, it is enough to consider

the cases (i) a real and positive, (ii) a = −1 and (iii) a = i. (The general
case then follows using this together with the previous part.)
(i) Suppose a ≥ 0. Then af = au+−au−+ iav+− iav− and from the above,

∫

X
af dµ =

∫

X
au+ dµ−

∫

X
au− dµ + i

∫

X
av+ dµ− i

∫

X
av− dµ

= a

∫

X
u+ dµ− a

∫

X
u− dµ + ia

∫

X
v+ dµ− ia

∫

X
v− dµ

= a

∫

X
f dµ.

(ii) Let a = −1. Then

∫

X
−f dµ =

∫

X
u− dµ−

∫

X
u+ dµ + i

∫

X
v− dµ− i

∫

X
v+ dµ

= −
∫

X
f dµ.

(iii) Finally, let a = i. Then

∫

X
if dµ =

∫

X
(i(u+ − u−) + (v− − v+)) dµ

=
∫

X
v− dµ−

∫

X
v+ dµ + i

∫

X
u+ dµ− i

∫

X
u− dµ

= i

∫

X
f dµ.

Using all the above results yields
∫
X af dµ = a

∫
X f dµ for a ∈ C.

Remark 4.11. The above result says that the space L1(X, µ) is a (complex)
linear space.

Theorem 4.12. For any f ∈ L1(X,µ),

∣∣∣
∫

X
f dµ

∣∣∣ ≤
∫

X
|f | dµ.
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Proof. Let a ∈ C be such that |a| = 1 and

a

∫

X
f dµ =

∣∣∣
∫

X
f dµ

∣∣∣.

Then, writing af = u + iv, we have

∣∣∣
∫

X
f dµ

∣∣∣ = a

∫

X
f dµ

=
∫

X
a f dµ

=
∫

X
u dµ + i

∫

X
v dµ

︸ ︷︷ ︸
=0, since lhs is real

≤
∫

X
|u| dµ

≤
∫

X
|af | dµ =

∫

X
|a| |f | dµ

=
∫

X
|f | dµ

and the proof is complete.

Theorem 4.13 (Lebesgue’s Dominated Convergence Theorem). Let (fn) be
a sequence of complex-valued measurable functions on X such that

(i) fn(x) → f(x), as n →∞, for every x ∈ X (pointwise convergence);

(ii) there is some g ∈ L1(X,µ) such that |fn(x)| ≤ g(x) for all n ∈ N
and each x ∈ X (the sequence (fn) is dominated by g).

Then f ∈ L1(X, µ) and
∫
X fn dµ → ∫

X f dµ as n → ∞. Furthermore,∫
X |fn − f | dµ → 0, as n →∞.

Proof. Given ε > 0, set

En = {x ∈ X : |fk(x)− f(x)| ≤ εg(x) for all k ≥ n }.

Then every x ∈ X belongs to some En, that is,
⋃

n En = X.
(Let x ∈ X. If g(x) = 0, then the hypotheses imply that fk(x) = 0 for
all k and so also f(x) = 0. Hence x belongs to every En. On the other
hand, if g(x) 6= 0, then fk(x) → f(x) implies that there is n0 such that
|fk(x)− f(x)| ≤ εg(x) for all k ≥ n0, that is, x ∈ En0 .)

Evidently, En ⊆ En+1 so that (En) is an increasing sequence with union
equal to X.
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Next, f = limn fn and so f is measurable. Furthermore, |f | ≤ g and
g ∈ L1 so that f ∈ L1. Now,

∣∣∣
∫

X
(fn − f) dµ

∣∣∣ ≤
∫

X
|fn − f | dµ

=
∫

En

|fn − f | dµ +
∫

X\En

|fn − f | dµ

≤
∫

En

ε g dµ +
∫

X\En

2g dµ

since |fn − f | ≤ εg on En and |fn − f | ≤ 2g on X

≤ ε

∫

X
g dµ +

∫

X\En

2g dµ.

But En ↑ X and so (using the Monotone Convergence Theorem applied to
the sequence ((1lEn2g)), we see that

∫
En

2g dµ ↑ ∫
X 2g dµ, as n → ∞. It

follows that
∫
X\En

2g dµ =
∫
X(1− 1lEn)2g dµ ↓ 0. Therefore

∣∣∣
∫

X
fn dµ−

∫

X
f dµ

∣∣∣ =
∣∣∣
∫

X
(fn − f) dµ

∣∣∣

≤
∫

X
|fn − f | dµ

→ 0

as n →∞ and the proof is complete.

Remark 4.14. Lebesgue’s Dominated Convergence Theorem is one of the
most important in the theory. It means that limits can be interchanged
with integration (under the required conditions — which are fairly general).

Remark 4.15. Suppose that λ is Lebesgue measure on an interval [a, b]; thus,
λ is the completion of the Lebesgue-Stieltjes measure on the Borel sets in
[a, b] determined by the function F (x) = x. Thus, λ([a, t]) = t − a for any
a ≤ t ≤ b. Then one can show the following.

Theorem 4.16. Let f be a bounded real-valued function on [a, b].

(a) The function f is Riemann-integrable on [a, b] if and only if there is
some set A ⊆ [a, b] with λ(A) = 0 such that f is continuous at each
point of [a, b] \A.

(b) If f is Riemann-integrable on [a, b], then f is integrable on [a, b] with
respect to λ and the two integrals are equal.

Proof. This really just follows from the definitions. The Riemann integral is
defined via upper and lower sums corresponding to partitions of [a, b] — this
can be rewritten in terms of simple functions. We omit the details here.
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Theorem 4.17. Let f be a bounded measurable function. Then f ∈ L1(X,µ).
(Note: µ is a finite measure on X).

Proof. Let f = f+ − f−, where f± are the positive and negative parts of f ,
respectively. Then there is some M such that f±(x) ≤ M for all x ∈ X.
Hence, for any simple function s with 0 ≤ s(x) ≤ f+(x), we have the
inequality

∫
X s dµ ≤ M µ(X) and so it follows that (the supremum over all

such simple functions is bounded by Mµ(X) and therefore) f+ is integrable.
Similarly, f− is integrable and so is f , i.e., f ∈ L1(X, µ).

Remark 4.18. This result is not true if µ is not a finite measure. No non-zero
constant is integrable with respect to Lebesgue measure on the real-line R,
but every constant is bounded.

Theorem 4.19 (Schwarz’ Inequality). Suppose that |f |2 ∈ L1(X, µ) and
|g|2 ∈ L1(X, µ). Then fg ∈ L1(X, µ) and

∣∣∣
∫

X
fg dµ

∣∣∣ ≤
∫

X
|fg| dµ ≤

(∫

X
|f |2 dµ

)1/2 (∫

X
|g|2 dµ

)1/2
.

Proof. Set

An = {x ∈ X : |f(x)| ≤ n } and Bn = {x ∈ X : |g(x)| ≤ n }

and let fn = f1lAn∩Bn and gn = g1lAn∩Bn . Then |fn| ≤ |f | and |gn| ≤ |g|.
However, fn and gn are bounded (by n) and therefore fngn, f2

n and g2
n are

bounded and are integrable, as is any linear combination of these functions.
But then, for any t ∈ R,

0 ≤
∫

X
(t |fn|+ |gn|)2 dµ = t2

∫

X
|fn|2 dµ + 2t

∫

X
|fngn| dµ +

∫

X
|gn|2 dµ

which means that

4
(∫

X
|fngn| dµ

)2
≤ 4

∫

X
|fn|2 dµ

∫

X
|gn|2 dµ (∗)

(the real quadratic at2 + bt + c ≥ 0 if and only if b2 ≤ 4ac). But |fn| ↑ |f |
and |gn| ↑ |g| and so |fngn| ↑ |fg|, as n →∞.

By Lebesgue’s Dominated Convergence Theorem, the right hand side
of inequality (∗) converges to 4

∫
X |f |2 dµ

∫
X |g|2 dµ. But then, looking

at the left hand side, Lebesgue’s Monotone Convergence Theorem shows
that fg is integrable and the left hand side of inequality (∗) converges to
4
(∫

X |fg| dµ
)2 from which the result follows.
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Chapter 5

Expectation in a probability space.

Let (Ω,S,P) be a probability space and let f : Ω → R be a random variable.
Denote by L2(Ω,P) the set { f : |f |2 ∈ L1(Ω,P) } — the set of “square-
integrable” functions on (Ω,P).

Definition 5.1. We say that the random variable f has finite expectation if
f ∈ L1(Ω,P) and we set

Ef =
∫

Ω
f dP, the expectation of f .

If f ∈ L2(Ω,P), the variance of f is

var f =
∫

Ω
(f − Ef)2 dP = E(f − Ef)2.

Remark 5.2. The constant random variable 1 is square-integrable and so,
by Schwarz’ inequality, if f ∈ L2(Ω,P), then |f | 1 ∈ L1(Ω,P), i.e., f is
integrable. Therefore, (f − Ef)2 = f2 − 2(Ef)f + (Ef)2 ∈ L1(Ω,P). In
other words, the condition f ∈ L2(Ω,P) ensures that var f is well-defined.

We have seen that Ff , the distribution function of f , defines a measure
on B(R) via the assignment µ((−∞, a]) = Ff (a) = Prob(f ≤ a). Indeed,
µ(A) = Prob(f ∈ A) = P(f−1(A)) for any A ∈ B(R). The measure µ is a
probability measure on R and so we can consider integrals,

∫
R h dµ, over R

with respect to µ. This is usually written as
∫
R h dFf .

Theorem 5.3. Suppose that f has finite expectation. Then

Ef =
∫

R
x dFf .

Proof. To say that f has finite expectation is to say that f is integrable,
i.e., f ∈ L1(Ω,P). We shall show that x is integrable with respect to µ on
R, that is, that x ∈ L1(R, µ) (where µ is the measure on R given by Ff ).
Let s be any simple function on R with 0 ≤ s(x) ≤ |x|; say,

s(x) =
n∑

i=1

αi1lAi(x),
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where {A1, . . . , An } is a partition of R. Then s(x) ≤ |x| implies that if
x ∈ Ai, then s(x) = αi ≤ |x|, that is, αi ≤ |x| for all x ∈ Ai.

Let Bi = {ω : |f(ω)| ∈ Ai } and set

t(ω) =
n∑

i=1

αi1lBi(ω).

Note that {B1, . . . , Bn } is a partition of Ω. Then t is a (measurable) simple
function on Ω. Furthermore, if ω ∈ Bi, say, then

t(ω) = αi ≤ |f(ω)| ,

since |f(ω)| ∈ Ai. Hence 0 ≤ t ≤ |f | and so
∫
Ω t dP ≤ ∫

Ω |f | dP. But

∫

R
s dµ =

n∑

i=1

αi µ(Ai), by definition of the integral,

=
n∑

i=1

αi P(Bi), by definition of the measure µ,

=
∫

Ω
t dP

≤
∫

Ω
|f | dP.

Hence the set { ∫
R s dµ : 0 ≤ s(x) ≤ |x| , s simple } is bounded and there-

fore |x| is integrable with respect to µ.

We wish to show that Ef =
∫
R x dµ. For k = 1, 2, . . . , let Ik denote

the interval Ik = ((k − 1)/n, k/n] and let Jk denote the interval Jk =
(−k/n,−(k − 1)/n]. Set

sn(x) =
n2∑

k=1

(
k−1
n

)
1lIk

(x) + n1l(n,∞)(x)−
n2∑

m=1

(
m−1

n

)
1lJm(x)− n1l(−∞,n](x).

We see that |sn(x)| ≤ |x| for all n. Let

Ak = {ω : f(ω) ∈ Ik } = f−1(Ak),

Bk = {ω : f(ω) ∈ Jk } = f−1(Bk),

A′n = {ω : f(ω) ≥ n } = f−1((n,∞)),

B′
n = {ω : f(ω) ≤ −n } = f−1((∞,−n]).

For any given x ∈ R, −n < x < n for all sufficiently large n. Hence, for
large n, x /∈ (∞, n]∪ [n,∞) and therefore |sn(x)− x| ≤ 1/n. In other words,
sn(x) → x, as n →∞, for each given x ∈ R.
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Set

tn(ω) =
n2∑

k=1

(
k−1
n

)
1lAk

(ω) + n 1lA′n(ω)−
n2∑

m=1

(
m−1

n

)
1lBm(ω)− n 1lB′n(ω).

Then, for given ω ∈ Ω, ω /∈ A′n ∪ B′
n for all sufficiently large n so that

|tn(ω)− f(ω)| ≤ 1/n. In other words, tn(ω) → f(ω) on Ω, as n → ∞.
Furthermore, by construction, |tn(ω)| ≤ |f(ω)| for all ω ∈ Ω. Therefore, by
Lebesgue’s Dominated Convergence Theorem,

∫

Ω
tn dP→

∫

Ω
f dP.

But, again by the Dominated Convergence Theorem,
∫

R
sn dµ →

∫

R
x dµ

and, since
∫
R sn dµ =

∫
Ω tn dP, we conclude that

∫
R x dµ =

∫
Ω f dP.

We can generalize this result somewhat.

Theorem 5.4. Let g : R → R be Borel measurable and let X be a random
variable. Then

E(g(X)) =
∫

R
g(x) dFX

in that if either side exists then so does the other and they are equal.

Proof. Suppose first that g has the form g(x) = α1lA(x) where α ≥ 0 and
A ∈ B(R). Let B = {ω : X(ω) ∈ A }. Then B ∈ S. We have

g(X)(ω) = g(X(ω)) = α1lA(X(ω)) = α1lB(ω).

Hence
∫
Ω g(X) dP = αP(B). But

∫

R
g(x) dFX = α µ(A) = αP(B)

by definition of the measure µ determined by FX . So

E(g(X)) =
∫

R
g(x) dFX

in this case. Next, suppose that g is a non-negative simple function on R,
say, g(x) =

∑n
i=1 αi1lAi(x), with αi ≥ 0 for all 1 ≤ i ≤ n. Then

E(g(X)) = E(
∑

i αi1lAi(X) )

=
∑

i

αiE(1lAi(X))
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=
∑

i

∫

R
αi1lAi dFX , from the result above,

=
∫

R
g(x) dFX

and we see that the theorem is true for such g.
Now let g ≥ 0 be any non-negative Borel function and let (gn) be an

increasing sequence of simple functions on R with 0 ≤ gn(x) ≤ g(x) and
gn(x) → g(x) for each x ∈ R. By the above,

∫
Ω gn(X) dP =

∫
R gn(x) dFX .

But then, by the Monotone Convergence Theorem, we deduce that
∫

Ω
g(X) dP =

∫

R
g(x) dFX

— if either side exists, so does the other, and they are equal.
Finally, for arbitrary Borel g : R → R, we write g = g+ − g− where

g± ≥ 0. Then, as above,
∫

Ω
g±(X) dP =

∫

R
g± dFX .

If both
∫
Ω g±(X) dP exist, then so does their sum

∫

Ω
g+(X) dP+

∫

Ω
g−(X) dP =

∫

Ω
|g(X)| dP.

Also, both
∫
R g± dFX exist and so |g| is integrable with respect to µ and we

have ∫

Ω
(g+(X)− g−(X)) dP =

∫

R
(g+ − g−) dFX ,

that is,

E(g(X)) =
∫

Ω
g(X) dP =

∫

R
g dFX

and the proof is complete.

Corollary 5.5. For a random variable X,

varX =
∫

R
(x− EX)2 dFX .

Proof. Let g(x) = (x− EX)2 and apply the theorem.

Theorem 5.6. Suppose that the random variable has distribution function
FX given by

FX(a) =
∫

(−∞,a]
ϕ(x) dx
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for some non-negative Borel function ϕ (with
∫
R ϕ(x) dx = 1), where dx

denotes Lebesgue measure on R. Then for any Borel function g : R→ R,

E(g(X)) =
∫

R
g(x)ϕ(x) dx.

Proof. If µ denotes the Lebesgue-Stieltjes measure on R given by FX , then
the hypothesis on FX means that µ(A) =

∫
A ϕ(x) dx for any Borel set A in

R. Now, suppose that g(x) = α1lA(x) for α ≥ 0 and A ∈ B(R). Then we
have

E(g(X)) =
∫

R
α1lA(x) dFX

= αµ(A)

= α

∫

A
ϕ(x) dx

=
∫

R
α1lA(x)ϕ(x) dx.

By linearity, it follows that

E(g(X)) =
∫

R
g(x) ϕ(x) dx

for any non-negative simple (Borel) function g on R. But if (gn) is an increas-
ing sequence of such functions, converging pointwise to g ≥ 0, then (gnϕ)
is an increasing sequence of non-negative functions converging pointwise to
gϕ. By the Monotone Convergence Theorem, (applied in both (Ω,S,P) and
(R,B(R), dx)), we have

∫

Ω
gn(X) dP→

∫

Ω
g(X) dP

and ∫

R
gn(x) ϕ(x) dx →

∫

R
g(x) ϕ(x) dx

as n →∞. However, for each n the left hand sides are equal and so therefore
are their limits, i.e.,

E(g(X)) =
∫

Ω
g(X) dP =

∫

R
g(x) ϕ(x) dx

holds for any (Borel) function g ≥ 0. The general result now follows (by
linearity) by writing an arbitrary (Borel) function g as g = g+ − g−.

Remark 5.7. If g(x)ϕ(x) is Riemann-integrable, then
∫
R g(x)ϕ(x)dx has the

same value irrespective of whether it is considered as a Lebesgue or as a
Riemann integral and so we recover the standard formula from elementary
probability theory.
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Example 5.8. The random variable X has N(µ, σ2) distribution (i.e., normal
with mean µ and standard deviation σ) if FX is given by

FX(a) =
∫ a

−∞
e−(x−µ)2/2σ2 dx

σ
√

2π
.

Then
E(g(X)) =

∫ ∞

−∞
g(x) e−(x−µ)2/2σ2 dx

σ
√

2π

— where this is a Riemann integral provided that g is sufficiently well-
behaved (for example, if g is continuous and polynomially bounded).

Definition 5.9. A random variable X is said to be absolutely continuous if
its distribution function FX has the form

FX(x) =
∫ x

−∞
ϕ(t) dt

for some non-negative function ϕ on R with
∫
R ϕ(t) dt = 1. If there is no

risk of confusion, one often simply just says that X is a ‘continuous’ random
variable rather than ‘absolutely continuous’.

If X is (absolutely) continuous, then FX : R → [0, 1] is a continuous
function. To see this, fix x ∈ R and suppose that an < x for all n and that
an → x. We have

F (x)− F (an) =
∫

(an,x]
ϕ(t) dt =

∫

R
1l(an,x](t)ϕ(t) dt .

Let gn(t) = 1l(an,x](t) ϕ(t). Then 0 ≤ gn(t) ≤ ϕ(t) and gn(t) → 1l{x}(t) ϕ(x),
so by the Dominated Convergence Theorem,

∫

R
gn(t) dt →

∫

R
1l{x}(t) ϕ(x) dt = 0.

This shows that FX is continuous at x from the left. Since every distribu-
tion function is continuous from the right, we conclude that FX is, indeed,
continuous on R, as claimed.

The converse is false. For example, if F is the Cantor distribution, then
we have seen that F : R → [0, 1] is continuous but F (x) cannot be written
as

∫ x
−∞ ϕ(t) dt for any ϕ.
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Characteristic functions.

Definition 6.1. Let X be a random variable on a probability space (Ω,S,P).
The characteristic function of X is the function ϕX : R→ C given by

ϕX(t) =
∫

Ω
eitX dP = E(eitX) = E(cos(tX)) + iE(sin(tX))

for t ∈ R.

Note that both cos(tX) and sin(tX) are bounded (Borel measurable)
functions on Ω and so are integrable for all t ∈ R. The moment generating
function, MX(t) of X has a similar definition, but without the i, namely,
MX(t) =

∫
Ω etX dP = E(etX). Unfortunately, it may happen that this is

not finite for any non-zero t. (For example, this happens if X has the
Cauchy distribution, FX(x) =

∫ x
−∞ ds/π(1 + s2). In this case, MX(t) =∫

R
(
est/π(1 + s2)

)
ds.)

Theorem 6.2. The characteristic function ϕX satisfies the following:

(i)
∣∣ϕX(t)

∣∣ ≤ ϕX(0) = 1.

(ii) ϕX is uniformly continuous on R.

(iii) ϕX(t) = ϕX(−t).

Proof. (i) Clearly, ϕX(0) = 1. Furthermore,
∣∣ϕX(t)

∣∣ =
∣∣∣
∫

Ω
eitX dP

∣∣∣ ≤
∫

Ω

∣∣eitX
∣∣ dP =

∫

Ω
dP = 1.

(ii) For any s, t ∈ R,
∣∣ϕX(t)− ϕX(s)

∣∣ ≤
∫

Ω

∣∣eitX − eisX
∣∣ dP =

∫

Ω

∣∣eisX
∣∣ ∣∣ei(t−s)X − 1

∣∣ dP

=
∫

Ω

∣∣ei(t−s)X − 1
∣∣ dP .

But for each ω ∈ Ω,
∣∣eiδnX(ω) − 1

∣∣ → 0 as n → ∞ for any sequence (δn)
with δn → 0. By the Dominated Convergence Theorem, we deduce that ϕX
is uniformly continuous on R.
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(iii) This is clear form the definition.

Theorem 6.3. Suppose that E(|X|n) exists for some n ≥ 1 (i.e., Xn ∈ L1).

Then, for all 1 ≤ r ≤ n, the rth-derivative ϕ
(r)
X (t) exists and

ϕ
(r)
X (t) =

∫

Ω
(iX)reitX dP = E

(
(iX)reitX

)

and

E(Xr) =
ϕ

(r)
X (0)
ir

.

Proof. If Xn ∈ L1, then it follows that Xr ∈ L1 for all r ≤ n. Now

ϕX(t + h)− ϕX(t)
h

= E
(
eitX

(eihX − 1
h

))
,

and
∣∣(eihX(ω) − 1)/h

∣∣ ≤ X(ω) for each ω ∈ Ω. Moreover, if hn → 0 as
n → ∞, then (eihnX(ω) − 1)/hn → X(ω) as n → ∞ so, by the Dominated
Convergence Theorem, we deduce that

E
(
eitX

(eihnX − 1
hn

))
→ E(iXeitX)

as n →∞. Hence ϕX(t) is differentiable with ϕ
(1)
X (t) = E(iXeitX).

The general result follows by induction. Finally, putting t = 0 gives the
formula E(Xr) = ϕ

(r)
X (0)/ir.

Remark 6.4. We can express these formulae in terms of FX as follows.

ϕX(t) = E(eitX) =
∫∫

Ω
eitX dP =

∫

R
eitx dFX ,

and

E(Xn) =
∫

R
xn dFX =

ϕ
(n)
X (0)
in

.

We recall the following approximation theorem (Weierstrass).

Proposition 6.5. Let g be a periodic continuous function on R with period
2π. Then g can be uniformly approximated by trigonometric polynomials:
i.e., given ε > 0, there is some m ∈ N and α0, α1, . . . , αm such that

∣∣ g(x)−
m∑

j=0

αje
ijx

∣∣ < ε

for all x ∈ R.
N.B. If h is continuous and periodic with period 2n, then defining g by

Department of Mathematics



Characteristic functions. 51

g(y) = h(ny/π), we see that g is continuous and periodic with period 2π.
Hence, as above,

∣∣g(y) −∑m
j=0 αje

ijy
∣∣ < ε for all y. Putting y = πx/n we

get
∣∣ h(x)−

m∑

j=0

αje
ixjπ/n

∣∣ < ε

for all x ∈ R.

Theorem 6.6. Let X and Y be random variables with distribution functions
F and G, respectively. Then ϕX(t) = ϕY (t) for all t if and only if F (x) =
G(x) for all x ∈ R.

Proof. If F = G, then

ϕX(t) =
∫

R
eitx dF =

∫

R
eitx dG = ϕY (t)

for all t ∈ R.
Conversely, suppose that ϕX(t) = ϕY (t) for all t ∈ R. Let a < b be fixed

and let ε > 0 be given. Let n be so large that [a, b + ε] ⊂ [−n, n] and let fε

be the (piece-wise linear) function on R as shown in the diagram.

6

-
0

fε(x)

x
¦
¦
¦
¦
¦
¦
¦
¦
¦¦

E
E
E
E
E
E
E
E
EE1

a + ε
q

a b
q

b + ε n
q

Now, fε(−n) = fε(n) (= 0) so f ε can be approximated uniformly on [−n, n]
by trigonometric polynomials. Thus, with ε′ = 1/n, there is α0, α1, . . . , αm

such that
|fε(x)− pn(x)| < ε′ = 1/n

for all x ∈ [−n, n], where pn(x) denotes the polynomial
∑m

j=1 αje
ijxπ/n.

Now, |fε| ≤ 1 and so |pn(x)| ≤ 2 for any x ∈ [−n, n], and so, by periodicity,
|pn(x)| ≤ 2 for all x ∈ R. Furthermore,

∫

R
pn(x) dF =

∫

R

∑m
j=1 αj eijxπ/n dF
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=
m∑

j=1

αj ϕX(jπ/n)

=
m∑

j=1

αj ϕY (jπ/n) , since ϕX = ϕY ,

=
∫

R
pn(x) dG.

Hence
∣∣∣
∫

R
fε dF −

∫

R
f ε dG

∣∣∣ =
∣∣∣
∫

R
1l [−n,n]f

ε dF −
∫

R
1l [−n,n]f

ε dG
∣∣∣

=
∣∣∣
∫

R
1l [−n,n](f

ε − pn) dF −
∫

R
1l [−n,n](f

ε − pn) dG

+
∫

R
1l [−n,n]pn dF −

∫

R
1l [−n,n]pn dG

∣∣∣

≤
∫

R
1l [−n,n] |f ε − pn| dF +

∫

R
1l [−n,n] |fε − pn| dG

+
∣∣∣
∫

R
1l [−n,n]pn dF −

∫

R
1l [−n,n]pn dG

∣∣∣

≤ 2
n

+
∣∣∣
∫

R
pn dF −

∫

R
pn dG

∣∣∣

+
∫

R
(1− 1l [−n,n]) |pn| dF +

∫

R
(1− 1l [−n,n]) |pn| dG

≤ 2
n

+ 0 + 2µF (R \ [−n, n]) + 2µG(R \ [−n, n])

→ 0 as n →∞.

It follows that
∫
R fε dF =

∫
R f ε dG. But as ε ↓ 0, fε → 1l(a,b] and so by the

Dominated Convergence Theorem, applied to a sequence εn ↓ 0, we deduce
that ∫

R
1l(a,b] dF =

∫

R
1l(a,b] dG ,

that is, F (b)− F (a) = G(b)−G(a). Letting a → −∞, we find F (b) = G(b)
for any b ∈ R and the proof is complete.

Remark 6.7. It is possible for two characteristic functions to agree on some
interval in R, but not on the whole of R.

There is an inversion theorem, which we will not prove quite completely.

Theorem 6.8. Let X be a random variable with distribution function F and
let F = 1

2{F (x) + F (x−)}. Then, for any a ≤ b,

F (b)− F (a) = lim
A→∞

1
2π

∫ A

−A

(e−iat − e−ibt)
it

ϕX(t) dt.
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Proof. We substitute ϕX(t) =
∫
R eitx dFX and then change the order of

integration (which can be justified).

IA ≡ 1
2π

∫ A

−A

( e−iat − e−ibt

it

) ∫

R
eitx dFX dt

=
1
2π

∫

R
dFX

∫ A

−A

( eit(x−a) − eit(x−b)

it

)
dt

=
1
2π

∫

R
dFX 2

∫ A(x−a)

A(x−b)

sin y

y
dy

=
1
2π

∫

R
dFX 2{g(A(x− a))− g(A(x− b))}

where g(s) =
∫ s
0 sin y/y dy. Now, g is an odd function and g(s) → 1

2π as
s →∞ and therefore g is bounded and IA is given by

IA =
1
π

∫

R
{g(A(x− a))− g(A(x− b))} dFX .

As A →∞, the integrand converges to




0 x < a

π/2 x = a

π a < x < b

π/2 x = b

0 x > b.

Hence, by the Dominated Convergence Theorem,

lim
A→∞

IA =
∫

R
(1l{ a } + 1l(a,b) + 1

21l{ b }) dFX

= 1
2(F (a)− F (a−)) + (F (b−)− F (a)) + 1

2(F (b)− F (b−))
= 1

2(F (b)− F (b−))− 1
2(F (a)− F (a−))

= F (b)− F (a) ,

as required.

Remark 6.9. Suppose that
∫∞
−∞

∣∣ϕX(t)
∣∣ dt exists. Then putting a = 0 in the

formula (and interchanging orders of integration), we get

F (b)− F (0) =
1
2π

∫ ∞

−∞

( 1− e−ibt

it

)
ϕX(t) dt

=
1
2π

∫ ∞

−∞
ϕX(t) dt

∫ b

0
e−itx dx
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=
1
2π

∫ b

0
dx

∫ ∞

−∞
ϕX(t) e−itx dt .

From this it follows that X has probability density function

pX(x) =
1
2π

∫ ∞

−∞
ϕX(t) e−itx dt .

(Thus, the integrability of ϕX implies that X is absolutely continuous and
has probability density function given by the Fourier transform of ϕX .)

Examples 6.10.

1. If X is B(n, p), then ϕX(t) = (q + pe(it))n, where q = 1− p.

2. If X is a Poisson random variable with mean µ, then the characteristic
function of X is given by ϕX(t) = exp

(
µ(eit − 1)

)
.

3. If X is a normal random variable, N(µ, σ2), then ϕX(t) = eitµ e−σ2t2/2.
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Independence.

We recall that two events A and B are independent if

P(A ∩B) = P(A)P(B).

We wish to extend the idea of independence from events to random variables.

Definition 7.1. Random variables X1, . . . , Xn are said to be independent if
for any Borel sets E1, . . . , En in R, we have

Prob(X1 ∈ E1, . . . , Xn ∈ En) = Prob(X1 ∈ E1) . . .Prob(Xn ∈ En)

i.e., if P(X−1
1 (E1) ∩ · · · ∩X−1

n (En)) =
∏n

j=1 P(X
−1
j (Ej)).

Hence, events A and B are independent if and only if the random vari-
ables 1lA and 1lB are independent.

Theorem 7.2. The random variables X1, . . . , Xn are independent if and only
if

P(X1 ≤ a1, . . . , Xn ≤ an) = P(X1 ≤ a1) . . . P(Xn ≤ an)

for all a1, . . . , an ∈ R.

Proof. If X1, . . . , Xn are independent, then the result follows directly by
setting E1 = (−∞, a1], . . . , En = (−∞, an] for any given a1, . . . , an ∈ R.

Conversely, suppose that

P(X1 ≤ a1, . . . , Xn ≤ an) = P(X1 ≤ a1) . . . P(Xn ≤ an)

for all a1, . . . , an ∈ R. Fix a2, . . . , an and for any E ∈ B(R), set

µ(E) = P(X1 ∈ E, X2 ≤ a2, . . . , Xn ≤ an)

and
ν(E) = P(X1 ∈ E)P(X2 ≤ a2) . . . P(Xn ≤ an).
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Then we see that µ and ν are finite measures on B(R). Moreover, for any
a ∈ R,

µ((−∞, a]) = P(X1 ≤ a,X2 ≤ a2, . . . , Xn ≤ an)
= P(X1 ≤ a)P(X2 ≤ a2) . . .P(Xn ≤ an)
= ν((−∞, a]) ,

so that µ((−∞, a]) = ν((−∞, a]). Letting a →∞, we see that µ(R) = ν(R).
Hence, for any α, β,

µ((α, β]) = µ((−∞, β])− µ((−∞, α])
= ν((−∞, β])− ν((−∞, α])
= ν((α, β]).

Also,

µ((a,∞)) = µ((R)− µ((−∞, a])
= ν((R)− ν((−∞, a])
= ν((a,∞)).

Let A be the algebra of sets in R generated by the intervals (−∞, a] with
a ∈ R. A can be described explicitly as follows. Let I(a) denote the interval
(−∞, a] and, for a < b, let J(a, b) denote the interval (a, b] ( = I(a)c∪ I(b)).
Then A consists of those subsets of R which take one of the following forms.
R or ∅ or I(a1) ∪ J(a2, b2) ∪ · · · ∪ J(an, bn) or J(a1, b1) ∪ · · · ∪ J(am, bm) or
J(a1, b1)∪· · ·∪J(ak, bk)∪(α,∞) or I(a1)∪J(a2, b2)∪· · ·∪J(ar, br)∪(α,∞)
where the sets in each finite union may be taken disjoint. Evidently, µ(E) =
ν(E) for any E ∈ A.

Let M = {E ∈ B(R) : µ(E) = ν(E) }. If A1 ⊆ A2 ⊆ . . . belong to M,
then

µ
(⋃

i

Ai

)
= lim

n
µ(An) = lim

n
ν(An) = ν

(⋃

i

Ai

)

and therefore
⋃

i Ai ∈ M. Similarly, if B1 ⊇ B2 ⊇ . . . belong to M, then
we see that

⋂
i Bi ∈ M. Thus, M is a monotone class. Since A ⊆ M, it

follows that Σ(A) ⊆M ⊆ B(R). But Σ(A) = B(R) and so M = B(R).

Now fix E1 in B(R) and start again.
For E ∈ B(R), set µ(E) = P(X1 ∈ E1, X2 ∈ E,X3 ≤ a3, . . . , Xn ≤ an)

and set ν(E) = P(X1 ∈ E1)P(X2 ∈ E)P(X3 ≤ a3) . . .P(Xn ≤ an). Then, as
above (and using the above), one shows that µ = ν on A and, once again,
it follows that µ = ν on B(R) = Σ(A).

Repeating this (i.e., by induction) the result follows.

Definition 7.3. For random variables X1, . . . , Xn, their joint distribution
function FX1,...,Xn : Rn → [0, 1] is the function

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn).

Department of Mathematics



Independence. 57

One can show that FX1,...,Xn satisfies properties similar to those satisfied
by FX , the distribution function of the single random variable X (such
as monotonicity and right continuity). We note the following (consistency
relation)

lim
xj→∞

FX1,...,Xn(x1, . . . , xn) = F
X1,...,cXj ,...,Xn

(x1, . . . , x̂j , . . . , xn),

where ŷ means omit the term y.

Corollary 7.4. The random variables X1, . . . , Xn are independent if and only
if

FX1,...,Xn(x1, . . . , xn) = FX1(x1) . . . FXn(xn)

for all x1, . . . , xn ∈ R.

Proof. This follows immediately from Theorem 7.2 and the definitions.

Remark 7.5. Just as for a single random variable, one can show that given
a function F : Rn → [0, 1] satisfying certain conditions (those which a
joint distribution function must satisfy) then there are random variables
whose joint distribution function is the given function F . In fact, one shows
that F defines a probability measure PF (the Lebesgue-Stieltjes measure)
on the Borel sets in Rn. Then one takes Ω = Rn, S = B(Rn) and puts
Xi(ω) = xi where ω = (x1, . . . , xn) ∈ Ω = Rn. By construction, F is the
joint distribution of the X1, . . . , Xn.

This shows that there do exist random variables with arbitrary pre-
assigned joint distribution. In particular, suppose that F1, . . . , Fn are n
given distribution functions. Then F (x1, . . . , xn) = F1(x1) . . . Fn(xn) is a
joint distribution function for random variables X1, . . . , Xn and these are
independent. So independent random variables with arbitrary preassigned
individual distributions always exist.

Theorem 7.6. Suppose that X1, . . . , Xn are independent random variables
and that g1, . . . , gn are Borel functions on R. Then the random variables
Y1 = g1(X1), . . . , Yn = gn(Xn) are independent.

Proof. Let E1, . . . , En be Borel sets in R. Then

P(Y1 ∈ E1, . . . , Yn ∈ En) = P(g1(X1) ∈ E1, . . . , gn(Xn) ∈ En)

= P(X1 ∈ g−1
1 (E1), . . . , Xn ∈ g−1

n (En))

= P(X1 ∈ g−1
1 (E1)) . . .P(Xn ∈ g−1

n (En))
= P(Y1 ∈ E1) . . .P(Yn ∈ En)

and the result follows.
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Definition 7.7. The joint characteristic function of n given random variables
X1, . . . , Xn is the function ϕX1,...,Xn

: Rn → C given by

ϕX1,...,Xn
(t1, . . . , tn) = E(ei(t1X1+···+tnXn))

for (t1, . . . , tn) ∈ Rn.

We state the following result, without proof.

Theorem 7.8. The joint characteristic function uniquely determines the joint
distribution function.

Theorem 7.9. Random variables X1, . . . , Xn are independent if and only if

E(g1(X1) . . . gn(Xn)) = E(g1(X1)) . . .E(gn(Xn)) (∗)
for all Borel functions g1, . . . , gn : R→ C such that each g1(X1), . . . , gn(Xn)
is integrable.

Proof. Let E1, . . . , En be Borel sets in R and let g1 = 1lE1 , . . . , gn = 1lEn .
In this case, each gi : R → R is a bounded Borel function and so gi(Xi) is
integrable, 1 ≤ i ≤ n.

Suppose that (∗) holds. Then

E(1lE1(X1) . . . 1lEn(Xn)) = E(1lE1(X1)) . . .E(1lEn(Xn)).

But 1lE1(X1) . . . 1lEn(Xn) : Ω → R is the function which is equal to 1 if
Xi ∈ Ei for every 1 ≤ i ≤ n and is zero otherwise. Therefore its expectation
is

E(1lE1(X1) . . . 1lEn(Xn)) = 1.P(X1 ∈ E1, . . . , Xn ∈ En).

Similarly, E(1lEi(Xi)) = 1.P(Xi ∈ Ei) for 1 ≤ i ≤ n. Therefore (∗) becomes

P(X1 ∈ E1, . . . , Xn ∈ En) = P(X1 ∈ E1) . . .P(Xn ∈ En)

which means that X1, . . . , Xn are independent.

To prove the converse, suppose that X1, . . . , Xn are independent. Then,
with the same notation as above, and working backwards, we find that

E(1lE1(X1) . . . 1lEn(Xn)) = 1.P(X1 ∈ E1, . . . , Xn ∈ En)
= P(X1 ∈ E1) . . .P(Xn ∈ En), by independence,
= E(1lE1(X1)) . . .E(1lEn(Xn)) .

Thus (∗) holds when the gi are indicator functions. By linearity, (∗) remains
valid for linear combination of indicator functions and, in particular, if each
gi is a non-negative simple function on R. The result now follows for non-
negative gi such that gi(Xi) is integrable by the Monotone Convergence
Theorem. But then it holds for any gi (such that gi(Xi) is integrable), again
by linearity.
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Corollary 7.10. The random variables X1, . . . , Xn are independent if and
only if

ϕX1,...,Xn
(t1, . . . , tn) = ϕX1

(t1) . . . ϕXn
(tn)

for all (t1, . . . , ti) ∈ Rn.

Proof. If X1, . . . , Xn are independent, then the result is a direct consequence
of Theorem 7.9.

Conversely, suppose that the joint characteristic function factorizes as
above. Let Y1, . . . , Yn be independent random variables such that FXi = FYi

for all 1 ≤ i ≤ n, i.e., Yi has the same distribution as Xi. Then

ϕY1,...,Yn
(t1, . . . , tn) = ϕY1

(t1) . . . ϕYn
(tn), by independence,

= ϕX1
(t1) . . . ϕXn

(tn)

= ϕX1,...,Xn
(t1, . . . , tn), by hypothesis.

Since the joint distribution function is uniquely determined by the joint
characteristic function, it follows that FY1,...,Yn = FX1,...,Xn . But FY1,...,Yn =
FY1 . . . FYn = FX1 . . . FXn , by construction. Hence

FX1,...,Xn = FX1 . . . FXn

which implies that X1, . . . , Xn are independent by Theorem 7.2.
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Convergence of random variables.

We consider here some notions of convergence of random variables on a
probability space (Ω,S,P). We begin with a definition.

Definition 8.1. We say that random variables X and Y are equal almost
surely (a. s.) if P({ω ∈ Ω : X(ω) = Y (ω) }) = 1.

Thus, the random variables X and Y are equal almost surely if they are
equal with probability one.

It is convenient to observe at this point that the intersection of two
events each with probability one also has probability one. Indeed, if A and
B are events with P(A) = P(B) = 1, then P(Ac) = P(Bc) = 0 and so
0 ≤ P((A ∩ B)c) = P(Ac ∪ Bc) ≤ P(Ac) + P(Bc) = 0. Hence P(A ∩ B) = 1,
as claimed.

Proposition 8.2. Let ∼ be the relation defined by X ∼ Y if and only if
X = Y almost surely. Then ∼ is an equivalence relation on the collection
of random variables on a probability space.

Proof. It is clear that X ∼ X and also that X ∼ Y implies that Y ∼ X.
Suppose that X,Y and V are random variables such that X ∼ Y and

that Y ∼ V . The proof is complete if we can show that X ∼ V .
Let A = {ω : X(ω) = Y (ω) } and B = {ω : Y (ω) = V (ω) }. By

hypothesis, P(A) = P(B) = 1 and so, as noted above, P(A ∩ B) = 1.
However, it is clear that A ∩ B ⊆ {ω : X(ω) = V (ω) } and so we deduce
that P({ω : X(ω) = V (ω) }) = 1, i.e., X = V , a. s.

Remark 8.3. In general, a property is said to hold almost surely (or with
probability one) if the event that it fails has probability zero.

Proposition 8.4. Suppose that X ≥ 0 and EX = 0. Then X = 0, a. s.

Proof. For each n ∈ N, let An = {ω : X(ω) > 1/n }. Then An ∈ S,
An ⊆ An+1 and

0 = EX =
∫

Ω
X dP
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≥
∫

An

X dP

≥ 1
n

∫

An

dP

= 1
n P(An).

Hence P(An) = 0 for every n ∈ N. But {ω : X(ω) > 0 } =
⋃∞

n=1 An and so

P({ω : X(ω) > 0 }) = lim
n
P(An) = 0

and so P({ω : X(ω) = 0 }) = 1.

Corollary 8.5. If varX = 0, then X is almost surely constant.

Proof. We have
0 = varX = E |X − EX|2 .

Since |X − EX|2 ≥ 0, we conclude that |X − EX|2 = 0, a. s. and therefore
X = EX, a. s.

Definition 8.6. The sequence (fn) of random variables is said to converge
almost surely to a random variable g if

P({ω : fn(ω) → g(ω), as n →∞}) = 1 ,

i.e., fn(ω) → g(ω), as n →∞, fails only for a collection of ωs forming a set
of probability zero.

Remark 8.7. Put hn = |fn − g|. Then each hn is a random variable. Set

Ak
m =

⋂

j>k

{ω : hj(ω) < 1/m }.

Then Ak
m ∈ S. Let Am =

⋃
k Ak

m. Then Am ∈ S and

Am = {ω : hn(ω) < 1/m, for all n > some k }.

Let A =
⋂∞

m=1 Am. Then A ∈ S and

A = {ω : for each m there is k such that hn(ω) < 1/m, for all n > k }

(where k may depend on m). That is, A = {ω : fn(ω) → g(ω), as n →∞}.
Since this set belongs to S, it makes sense to ask whether P(A) = 1 or not.
In other words, the definition is meaningful.

Proposition 8.8. If fn → f , a. s., as n → ∞ and fn → g, a. s., as n → ∞,
then f = g a. s.
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Proof. Let A = {ω : fn(ω) → f(ω) }, B = {ω : fn(ω) → g(ω) } and
C = {ω : f(ω) = g(ω) }. By hypothesis, P(A) = 1 and P(B) = 1 and so
P(A ∩B) = 1. But A ∩B ⊆ C which means that P(C) = 1.

Proposition 8.9. Suppose that fn → f , a. s. and gn → g, a. s. Then we have
fn + gn → f + g, a. s. and fngn → fg, a. s., as n →∞.

Proof. Let A = {ω : fn(ω) → f(ω) } and B = {ω : gn(ω) → g(ω) }. Then
both P(A) = 1 and P(B) = 1. Hence P(A ∩ B) = 1. But each of the sets
{ω : fn(ω) + gn(ω) → f(ω) + g(ω) } and {ω : fn(ω)gn(ω) → f(ω)g(ω) }
contains A ∩B and so each of these also has probability one.

Example 8.10. Let X have uniform distribution on [0, 1]. For each n ∈ N,
let fn = (cos(2πX))n. Evidently, fn(ω) → 0, as n →∞, except for those ω
for which X(ω) = 1

2k, for some k ∈ Z. But P(X = 1
2k) = 0 for every k ∈ Z

and so P(X 6= 0,±1
2 ,±1,±3

2 , . . . ) = 1. We see that fn → 0, a. s., as n →∞.

Definition 8.11. We say that the sequence (fn) of random variables converges
in probability to the random variable f if for each ε > 0

P( {ω : |fn(ω)− f(ω)| ≥ ε } ) → 0

as n →∞.

Note that fn → f in probability if and only if (fn−f) → 0 in probability.

Proposition 8.12. If fn → f and gn → g in probability, then fn +gn → f +g
in probability and fngn → fg in probability.

Proof. Let ε > 0 be given. First we note that

|fn(ω) + gn(ω)− f(ω)− g(ω)| ≤ |fn(ω)− f(ω)|+ |gn(ω)− g(ω)|
and so

{ω : |fn(ω)− f(ω)| < 1
2ε } ∩ {ω : |gn(ω)− g(ω)| < 1

2ε }
⊆ {ω : |fn(ω) + gn(ω)− f(ω)− g(ω)| < ε }.

Taking complements, we get

{ω : |fn(ω) + gn(ω)− f(ω)− g(ω)| ≥ ε }
⊆ {ω : |fn(ω)− f(ω)| ≥ 1

2ε } ∪ {ω : |gn(ω)− g(ω)| ≥ 1
2ε }.

Hence

P({ω : |fn(ω) + gn(ω)− f(ω)− g(ω)| ≥ ε })
≤ P({ω : |fn(ω)− f(ω)| ≥ 1

2ε }) + P({ω : |gn(ω)− g(ω)| ≥ 1
2ε })

→ 0 ,

as n →∞.
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For the last part, we first consider special cases. Suppose that fn → 0
in probability. We claim that fng → 0 for any random variable g. (It is
implicit that any random variable is finite-valued.) To see this, let Bm =
{ω : |g(ω)| < m }, for each m ∈ N. Then Bm ⊆ Bm+1 and

⋃
m Bm = Ω.

Hence P(Bm) ↑ 1 and therefore P({ω : |g(ω)| ≥ m }) = P(Bc
m) → 0, as

m →∞. But for any given ε > 0, we have

{ω : |fn(ω)g(ω)| ≥ ε } ⊆ {ω : |fn(ω)| ≥ ε/m } ∪ {ω : |g(ω)| ≥ m }
and so

P({ω : |fn(ω)g(ω)| ≥ ε })
≤ P({ω : |fn(ω)| ≥ ε/m }) + P({ω : |g(ω)| ≥ m }) (∗)

for any m ∈ N. For given δ > 0, fix m so that P({ω : |g(ω)| ≥ m }) < 1
2δ.

By hypothesis, there is N such that P({ω : |fn(ω)| ≥ ε/m }) < 1
2δ for all

n > N and so the right hand side of (∗) and therefore also the left hand side
is < δ for all such n which means that fng → 0 in probability, as claimed.

Next, we claim that if both fn → 0 and gn → 0 in probability, then
fngn → 0 in probability. Indeed, for any ε > 0,

{ω : |fn(ω)gn(ω)| ≥ ε } ⊆ {ω : |fn(ω)| ≥ ε } ∪ {ω : |gn(ω)| ≥ 1 }
and so

P({ω : |fn(ω)g(ω)| ≥ ε })
≤ P({ω : |fn(ω)| ≥ ε }) + P({ω : |g(ω)| ≥ 1 }) → 0 ,

as n →∞.

We are now in a position to complete the proof. Suppose, then, that
fn → f and gn → g in probability. We write

fngn − fg = (fn − f)(gn − g) + (fn − f)g + f(gn − g)

and note that both (fn − f) and (gn − g) converge to 0 in probability, as
n → ∞. Using the results established above, we see that each of the three
terms on the right hand side converges to 0 in probability and so, by the
first part, does their sum.

Proposition 8.13. Suppose that fn → f a. s. Then fn → f in probability.

Proof. Let ε > 0 and δ > 0 be given. Set gn = |fn − f | and let A be the set
A = {ω : gn(ω) → 0, as n →∞}. By hypothesis, P(A) = 1.

Let us use the word ‘eventually’ to mean ‘for sufficiently large n’. For
m ∈ N, let

Am = {ω : gn(ω) < 1/m, eventually }.
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Then Am =
⋃

k Ak
m where

Ak
m = {ω : gj(ω) < 1/m, for all j ≥ k } =

⋂

j>k

{ω : gj(ω) < 1/m }.

Since A ⊆ Am, it follows that P(Am) = 1. Furthermore, Ak
m ⊆ Ak+1

m and so
(since Am =

⋃
k Ak

m) we have P(Ak
m) ↑ 1 as k →∞.

Fix m ∈ N such that 1/m < ε. Then P(Ak
m) > 1− δ for large k, that is,

P({ω : gj(ω) < 1/m, for all j > k }) > 1− δ, for all sufficiently large k.
Hence, for any j > k, the fact that

{ω : gj(ω) < 1/m } ⊇ {ω : gj(ω) < 1/m, for all j ≥ k }
implies that

P({ω : gj(ω) < 1/m }) ≥ P({ω : gj(ω) < 1/m, for all j ≥ k }) > 1− δ

for sufficiently large k. Finally, we have

P({ω : gj(ω) ≥ ε }) ≤ P({ω : gj(ω) ≥ 1/m }) < δ

for suitably large k and all j > k.

The converse to this is false as the next example shows.

Example 8.14. Let X be a random variable with uniform distribution on the
interval [0, 1]. For each m ∈ N, construct the m subintervals Jm

1 = [0, 1/m],
Jm

2 = [1/m, 2/m], . . . , Jm
m = [(m − 1)/m, 1/m] of [0, 1] and let (In) be the

sequence I1 = J1
1 , I2 = J2

1 , I3 = J2
2 , I4 = J3

1 , I5 = J3
2 . . . . The point is

that as n increases, the intervals In become narrower and narrower but they
nevertheless continue to step across the whole interval [0, 1]. In particular,
every point a ∈ [0, 1] belongs to infinitely-many Ins.

Let fn = 1lIn(X). We claim that fn → 0 in probability. To see this, let
ε > 0 and δ > 0 be given. Now, by definition, fn(ω) is equal to either 0 or 1
and so P({ω : |fn(ω)| ≥ ε }) = 0 if ε > 1. On the other hand, for any ε ≤ 1,

P({ω : |fn(ω)| ≥ ε }) = P({ω : |fn(ω)| = 1 })
= P({ω : X(ω) ∈ In })
= length(In)
< δ

for all sufficiently large n. Hence fn → 0 in probability.

However, let A = {ω : X(ω) ∈ [0, 1] }. Then P(A) = 1 since X has
uniform distribution on [0, 1]. For any ω ∈ A, X(ω) ∈ [0, 1] and so X(ω) ∈ Ik

for infinitely-many ks. For such k, fk(ω) = 1lIk
(X(ω)) = 1 and so the

sequence (fn(ω)) does not converge to 0. Therefore {ω : fn(ω) → 0 } ⊆ Ac

and so we see that P({ω : fn(ω) → 0 }) = 0 6= 1 which means that it is false
that fn → 0 a. s.
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Chapter 9

The strong law of large numbers.

First, we recall the weak law of large numbers.

Proposition 9.1 (Chebyshev’s inequality). For any non-negative random vari-
able Y and any b > 0, we have

P(Y ≥ b) ≤ EY

b
.

Proof. Let A = {ω : Y (ω < b } and let B = {ω : Y (ω) ≥ b }. Evidently,
A ∪B = Ω and A ∪B = ∅. Hence

E(Y ) = E(1lAY + 1lBY ) =
∫

Ω
1lAY dP+

∫

Ω
1lBY dP

≥
∫

Ω
1lBY dP = E(1lBY ), since Y ≥ 0,

≥ b

∫

Ω
1lB dP = E(1lBb), since Y ≥ b on B,

= bP(B) ,

as required.

Corollary 9.2. Let X be any random variable. Then, for any c ∈ R, b > 0
and m > 0, we have

P(|X − c| ≥ b) ≤ E(|X − c|m)
bm

.

In particular, if EX = µ and varX = σ2, then

P(|X − µ| ≥ b) ≤ σ2

b2
.

Proof. Set Y = |X − c|m. Then Y ≥ 0 and so

P(|X − c| ≥ b) = P(|X − c|m ≥ bm) ≤ E(|X − c|m)
bm
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by Chebyshev’s inequality, Proposition 9.1. Putting c = µ and m = 2 gives

P(|X − µ| ≥ b) ≤ varX

b2
=

σ2

b2
,

as claimed.

Theorem 9.3 (Weak law of large numbers). Let X1, X2, . . . be a sequence
of independent random variables and suppose that there is some constant
M > 0 such that E(X2

i ) ≤ M for all i = 1, 2, . . . . Then, for any ε > 0,

P
( ∣∣∣ X1 + X2 + · · ·+ Xn − (EX1 + · · ·+ EXn)

n

∣∣∣ > ε
)
→ 0

as n →∞.

Proof. First note that by Schwarz’ inequality,

E(|Xi|)2 = E(|Xi| 1)2 ≤ E(|Xi|2) ≤ M2

and therefore varXi = E(X2
i )− (EXi)2 ≤ 2M2 for all i ∈ N.

Set Sn = X1 + · · · + Xn. Then, for any given ε > 0, Chebyshev’s
inequality implies that

P
( ∣∣∣ Sn − ESn

n

∣∣∣ ≥ ε
)
≤ E

( (
Sn−ESn

n

)2 )

ε2

=
var(Sn/n)

ε2

=
1
n2 var(X1 + · · ·+ Xn)

ε2

=
varX1 + · · ·+ varXn

n2ε2
, by independence,

≤ n2M2

n2ε2
=

2M2

nε2

→ 0 ,

as n →∞.

Remark 9.4. The weak law of large numbers says that the random variables
1
n(Sn − ESn) converge to 0 in probability. If EXi = µ, for all i, then this
becomes the statement that the 1

nSn → µ in probability.

Theorem 9.5 (Borel-Cantelli lemma). Suppose that A1, A2, . . . is a sequence
of events such that the series

∑∞
n=1 P(An) converges. Then

P({ω : ω ∈ An for infinitely-many n }) = 0.
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Proof. Let G = {ω : ω ∈ An for infinitely-many n }. Then we see that

G =
∞⋂

n=1

∞⋃

k=n

Ak .

Hence

P(G) = P
( ∞⋂

n=1

∞⋃

k=n

Ak

)

≤ P
( ∞⋃

k=n

Ak

)
, for any n,

≤
∞∑

k=n

P(Ak)

→ 0

as n → ∞, since the series
∑∞

n=1 P(An) converges. It follows that the left
hand side is zero.

We shall now prove (a version of) the strong law of large numbers.

Theorem 9.6 (Strong law of large numbers). Let X1, X2, . . . be a sequence
of independent random variables and suppose that there is some constant
M > 0 such that E((Xi−EXi)4) < M for all i ∈ N. Let Sn = X1+ · · ·+Xn.
Then

Sn − E(Sn)
n

→ 0 a. s.

as n → ∞. In particular, if EXi = µ for all i, then ESn = nµ and so it
follows that 1

n Sn → µ a. s.

Proof. Firstly, setting Yi = Xi − EXi, we see that EYi = 0, E(Y 4) < M
and Sn−E(Sn) = Y1 + · · ·+Yn. So by considering Yi instead of Xi, we may
assume that EXi = 0.

The idea of the proof is to use the Borel-Cantelli Lemma and Chebyshev’s
inequality. To this end, we shall show that

∑∞
n=1 E(( 1

n Sn)4) converges.
We have

S4
n = (X1 + · · ·+ Xn)4

=
n∑

i=1

X4
i +

∑

j<k

(
4
2

)
X2

i X2
j +

∑

i,k,` distinct

12 X2
i XkX`

+
∑

j,k,`,m distinct

XjXkX`Xm +
∑

j 6= k

12 X3
j Xk.

But, by independence,

E(X2
i XkX`) = E(X2

i )E(Xk)E(X`) = 0.
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Similarly, both E(XjXkX`Xm) = 0 and E(X3
j Xk) = 0. Hence

E(S4
n) =

n∑

i=1

E(X4
i ) +

∑

j<k

6 E(X2
i )E(X2

j ).

By Schwarz’ inequality,

E(X2
j ) = E(X2

j 1) ≤ E(X4
j )1/2 E(12)1/2 ≤ M1/2.

This gives

E(S4
n) ≤ nM + 6

(
n
2

)
M = (3n2 − 2n)M < 3n2M

and so ∞∑

n=1

E(( 1
n Sn)4) <

∞∑

n=1

3n2M

n4
=

∞∑

n=1

3M

n2

which converges.
Now, for any m ∈ N, Chebyshev’s inequality gives

P(
∣∣ 1
n Sn

∣∣ ≥ 1
m) ≤ E(( 1

n Sn)4)/( 1
m)4

and so it follows from the discussion above that
∑∞

n=1 P(| 1nSn| ≥ 1
m) is

convergent. By the Borel-Cantelli Lemma, it follows that P(Gm) = 0, where
Gm is the event

Gm = {ω : | 1n Sn| ≥ 1
m for infinitely-many n }

and therefore P
(⋃∞

m=1 Gm

)
= 0. But to say that ω is such that 1

n Sn(ω) 6→ 0
is to say that there is some m0 > 0 such that | 1n Sn(ω)| ≥ 1/m0 for infinitely-
many n. In other words,

{ω : 1
n Sn(ω) 6→ 0 } =

∞⋃

m=1

Gm

and we conclude that P({ω : 1
n Sn(ω) 6→ 0 }) = 0 which means that 1

n Sn → 0
a. s. and the proof is complete.

Remark 9.7. The condition on the expectations of the fourth powers can be
relaxed — but then the proof is harder.
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Stochastic processes.

A stochastic process is simply a “labelled” family of random variables on a
probability space. The label is usually motivated by physical applications is
considered to represent “time”.

Examples 10.1.

1. For n = 1, 2, 3, . . . , Xn could represent the number of customers en-
tering a shop on day n.

2. Xn, n ∈ N, could represent the bacteria population in a petri dish
after n minutes.

3. Xn, n ∈ N, is the number of heads after n tosses of a coin.

4. Xt, t ≥ 0, could represent the number of particles emitted by a ra-
dioactive source after time t.

5. For each t ≥ 0, Xt could be a random variable with a Poisson distri-
bution with mean µt. (This is called a Poisson process and is a good
model for the number of particles emitted in radioactive decay.)

6. Xt, t ≥ 0, could represent the position of a pollen particle at time t
when subjected to random collisions with air molecules. This “erratic”
motion was observed by the botanist Brown and later discussed by
Einstein. The mathematics behind this so-called “Brownian motion”
was developed by Norbert Wiener (so it is also referred to as a Wiener
process).

Let {Xα : α ∈ Λ } be a stochastic process indexed by α ∈ Λ. As noted
above, Λ is just some given set of labels, but in practice one usually takes
Λ = N or Λ = [0,∞) (or [0, T ]) or something of this kind.

For α1, . . . , αn ∈ Λ,

Fα1,...,αn(x1, . . . , xn) ≡ P(Xα1 ≤ x1, . . . , Xαn ≤ xn)
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is the joint distribution function of Xα1 , . . . , Xαn . These are increasing,
right-continuous functions of x1, . . . , xn for any choice of n and choice of
labels α1, . . . , αn ∈ Λ. Furthermore,

Fα1,...,αn(x1, . . . , xn) → Fα1,...,cαj ,...,αn
(x1, . . . , x̂j , . . . , xn)

as xj →∞, 1 ≤ j ≤ n. That is, by letting xj →∞, the distribution function
Fα1,...,αn(x1, . . . , xn) “reduces” to Fα1,...,cαj ,...,αn

(x1, . . . , x̂j , . . . , xn). This is
called a consistency condition.

One of the fundamental results in the theory of stochastic processes is
the theorem of Daniel-Kolmogorov which says that given any collection of
such functions Fα1,...,αn(x1, . . . , xn) indexed by finite subsets of Λ and sat-
isfying the consistency conditions, there exists a probability space (Ω,S,P)
and a stochastic process {Xα : α ∈ Λ }, labelled by Λ, on (Ω,S,P) such
that the given Fα1,...,αn(x1, . . . , xn)s are the joint distribution functions for
the process. (This is a generalization of the theorem that any increasing,
right-continuous . . . etc function actually is the distribution function of some
random variable.)

The idea of the proof is to explicitly construct Ω and P. One takes Ω to
be the collection of all functions from Λ into R and then, for α ∈ Λ, defines
Xα to be “evaluation at α”:

Xα(ϕ) = ϕ(α), ϕ ∈ Ω.

The given Fα1,...s are then used to construct a probability measure on a
suitable σ-algebra of subsets of Ω. The details are rather technical, as one
might guess.

Suppose that {Xn : n = 0, 1, 2, . . . } is a stochastic process (indexed by
{ 0 } ∪N). Then it is called a Markov process if, for any n, the probabilities
of events concerning the Xn for n > m given information about the Xn for
n ≤ m is the same as given only the information about Xm. For example,
if {Xn } is a Markov process, then, for events A1, A2, A3,

P( X10 ∈ A1 |X8 ∈ A2, X9 ∈ A3 ) = P( X10 ∈ A1 |X9 ∈ A3 ).

A Markov process takes account of the present, but forgets the past. It has
no memory. There is a similar definition for Markov processes indexed by
[0,∞).

Simple one-dimensional random walk.

We wish to discuss Brownian motion — a dust particle bombarded by air
molecules. To simplify matters, we consider motion in just one dimension.

Suppose, then, that we have a random walk — after each time interval
∆t, a particle moves one step to the right or one step to the left with equal
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probability . Let ∆d denote the size of the step. We shall consider both
∆t and ∆d to be very small — so that there are very many but very small
jumps as time goes by.

Let Y1, Y2, . . . be a sequence of independent random variables such that
P(Yi = 1) = P(Yi = −1) = 1

2 . Thus, EYi = 0 and varYi = 1
2 + 1

2 = 1. After
n jumps, the position of the random walk, given that it started at 0, is just

X(n) = ∆d Y1 + ∆d Y2 + · · ·+ ∆d Yn .

Given n, suppose that ∆t = 1/2n. Let t = k/2n and let X
(n)
t be the position

of the particle at time t, i.e., after k jumps:

X
(n)
t = ∆d Y1 + ∆d Y2 + · · ·+ ∆d Yk .

Consider t to be fixed but with n increasing, which means more and more
jumps, k = 2nt. So

X
(n)
t = ∆d Y1 + ∆d Y2 + · · ·+ ∆d Y2nt .

Now, var(∆d Yi) = (∆d)2 and E(∆d Yi) = 0 and so, by the Central Limit
Theorem,

P
( X

(n)
t√

2nt∆d
≤ a

)
= P

( ∆d Y1 + ∆d Y2 + · · ·+ ∆d Y2nt√
2nt ∆d

≤ a
)
→ Φ(a)

as n →∞, i.e., X
(n)
t√

2nt ∆d
is approximately a standard normal random variable.

But suppose we also let ∆d → 0, as n → ∞, in such a way that
∆d/

√
∆t = 1, i.e., ∆d/

√
1/2n = 1, i.e., ∆d

√
2n = 1. Then it follows

that X
(n)
t√

2nt ∆d
= Xt√

t
is approximately a standard normal random variable,

i.e., in the limit n →∞, Xt, the position of the particle after time t, has a
normal distribution with mean 0 and variance t.

Consider now, two times, s = m/2n and t = k/2n, with t > s (i.e.,
k > m). Then

X
(n)
t −X(n)

s = ∆d Y1 + · · ·+ ∆d Y1 −∆d Y1 − · · · −∆d Ym

= ∆d Ym+1 + · · ·+ ∆d Yk.

As before, we find that

X
(n)
t −X

(n)
s√

(k −m)∆d
=

X
(n)
t −X

(n)
s√

(t− s)2n ∆d
→ N(0, 1)

as n →∞, i.e., X
(n)
t −X

(n)
s√

(t−s)
is approximately standard normal and so Xt−Xs

is approximately N(0, t− s) (normal, mean 0, variance t− s).
Note also that X

(n)
t − X

(n)
s depends only on Yi for i > m and X

(n)
s

depends on Yj for i ≤ m, so these are independent.

King’s College London



74 Chapter 10

For given intervals (α, β) and (a, b), we have

Prob(X(n)
t ∈ (α, β), X(n)

s ∈ (a, b))

=
∑

x′∈(a,b)

Prob(X(n)
t ∈ (α, β)|X(n)

s = x′) Prob(X(n)
s = x′)

=
∑

x′∈(a,b)

Prob(X(n)
k−m steps ∈ (α, β)− x′) Prob(X(n)

s = x′)

=
∑

a<x′<b

Prob(X(n)
t−s + x′ ∈ (α, β)) Prob(X(n)

s = x′).

For large n, X
(n)
t−s + x′ is approximately N(x′, (t− s)) and so

Prob(X(n)
t−s + x′ ∈ (α, β)) '

∫ β

α

e−
1
2 (x−x′)2/(t−s)

√
2π(t− s)

dx.

Furthermore,

Prob(X(n)
s = x′) = Prob(x′ ≤ X(n)

s < x′ + ∆d) ' ϕXs
(x′)∆d

where ϕXs
(x′) = e−

1
2x′2/s/

√
2πs is the N(0, s) density. The sum is a

Riemann-sum approximation to the Riemann integral, so letting n → ∞,
we obtain the formula

Prob(Xt ∈ (α, β), Xs ∈ (a, b))

=
∫ b

a
dx′

∫ β

α
dx

e−(x−x′)2/2(t−s)

√
2π(t− s)

e−x′2/2s

√
2πs

.

Using this method, we can find the joint distribution functions Ft1,...,tn for
the process {Xt : t ≥ 0 } — this is one-dimensional Brownian motion.

There is a connection with the heat equation, as follows. Set

p(x; t) = 1√
2πt

exp
(− x2

2t

)
.

Then one sees that 2∂p
∂t = ∂2p

∂x2 , i.e., p(x; t) satisfies the one-dimensional heat

equation. (Note that the change of variable t = 2τ gives ∂p
∂τ = ∂2p

∂x2 .)
For given f : R→ R, define

ϕ(x, t) =
∫ ∞

−∞
f(y) p(x− y; t) dy.

Then (assuming f is sufficiently well-behaved),

2
∂ϕ

∂t
=

∂2ϕ

∂2x
,
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i.e., ϕ satisfies the heat equation. Furthermore, as t ↓ 0, ϕ(x : t) → f(x).
To see this, we write

ϕ(x; t) =
∫ ∞

−∞
f(y) p(x− y : t) dy

=
∫ ∞

−∞
f(x− z) p(z : t) dz , setting z = x− y,

= f(x) +
∫ ∞

−∞

(
f(x− z)− f(x)

)
p(z : t) dz ,

since
∫∞
−∞ p(z : t) dz = 1. Now,

∫ ∞

−∞

(
f(x− z)− f(x)

)
p(z : t) dz =

∫ ∞

−∞

(
f(x− z)− f(x)

) e−z2/2t

√
2πt

dz

=
∫ ∞

−∞

(
f(x− w

√
t)− f(x)

) e−w2/2

√
2π

dw ,

using the change of variable w = z/
√

t. The integrand → 0 as t ↓ 0 which
establishes our claim. (It is enough for f to be continuous and bounded.)

We have established that

ϕ(x, t) =
∫ ∞

−∞
f(y) p(x− y; t) dy

satisfies the heat equation and the initial condition limt↓0 ϕ(x; t) = f(x).
Now let X

(x)
t be Brownian motion starting from x. Then X

(x)
t = Xt +x,

where Xt is Brownian motion starting from 0. (To be precise, we should
really say that X

(x)
t and Xt +x have the same distribution, rather than that

they are equal.) X
(x)
t has a N(x, t) distribution and so

E(f(X(x)
t )) =

∫ ∞

−∞
f(y)

e−(y−x)2/2t

√
2πt

dy = ϕ(x; t)

as above. Hence E(f(X(x)
t )) satisfies the heat equation (also called the

diffusion equation) with initial condition E(f(X(x)
t )) → f(x) as t ↓ 0.

This connection between Brownian motion and the heat equation has
proved very fruitful.
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