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Abstract—This paper presents comparative analysis of the
performance of three efficient estimation methods when applied
to the probabilistic assessment of small-disturbance stability of
uncertain power systems. The presence of uncertainty in system
operating conditions and parameters results in variations in the
damping of critical modes and makes probabilistic assessment
of system stability necessary. The conventional Monte Carlo
(MC) approach, typically applied in such cases, becomes very
computationally demanding for very large power systems with
numerous uncertain parameters. Three different efficient esti-
mation techniques are therefore compared in this paper—point
estimation methods, an analytical cumulant-based approach, and
the probabilistic collocation method—to assess their feasibility for
use with probabilistic small disturbance stability analysis of large
uncertain power systems. All techniques are compared with each
other and with a traditional numerical MC approach, and their
performance illustrated on a multi-area meshed power system.

Index Terms—Cumulant, eigenvalues, electromechanical oscil-
lations, Monte Carlo (MC), point estimation, probabilistic colloca-
tion method (PCM), small disturbance stability, uncertainty.
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I. INTRODUCTION

P OWER systems are operated in increasingly uncertain
conditions as stochastic and intermittent renewable energy

sources see greater levels of penetration and new load types are
introduced. The effect of these uncertain conditions and system
parameters on all aspects of system performance needs to be
thoroughly investigated and quantified. Probabilistic studies
provide a way in which to include these uncertainties in system
planning and operation analysis and yield a better depiction
of expected system variation than conventional deterministic
approaches.
Low-frequency oscillations are inherent to large power

systems [1], and they can often be exacerbated by the use of
fast-acting, high-gain, generator exciters introduced to improve
power system transient recovery [2]. As complex conditions
evolve within uncertain power systems, these underlying os-
cillatory modes can become poorly damped or even unstable.
This can lead to equipment disconnection, loss of supply, and,
in some cases, eventual system collapse.
Due to increased uncertainties associated with the operation

of modern power systems, probabilistic approaches towards
small-disturbance stability analysis have started to receive
greater research attention recently, e.g., [3]–[5]. The benefits
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of the probabilistic approach are evident and result in more
accurate depictions of the true modal variation. The dependence
of the methods proposed in [3] and [4] on numerical studies,
however, severely limits their potential applications. The need
for a large number of numerical simulations (typically thou-
sands) means that the computational burden of the technique
can often be too high for repeated probabilistic studies or
online applications. A more efficient approach was proposed
first in [6] and implemented more recently in [5]. It utilizes
tetrachoric series in order to generate a probabilistic stability
region for a power system. This work, however, is limited in its
assumption that all electromechanical modes can be described
by a multivariate normal distribution which does not generally
hold for nonlinear power systems.
Efficient estimation techniques which do not impose para-

metric output distributions include point estimate methods
(PEMs) [7]–[10], analytical cumulant-based approaches
[11]–[14], and the probabilistic collocation method (PCM)
[15]–[17]. These methods have typically been applied within
the area of probabilistic load flow, though some have also been
used to analyze the effects of uncertainties on small-disturbance
studies, such as [10]–[12], and [17]. All of these techniques can
be used to derive the probability density functions of
an uncertain system output, based on known input uncertainty,
using significantly fewer sample points than are required for
traditional numerical Monte Carlo (MC) approaches. This
significant reduction in the number of required sample points
means that these methods are sufficiently fast for online appli-
cation and repeated probabilistic studies (though this will be
ultimately dependent on system size and complexity).
This paper presents the first comparative analysis of the

reported efficient estimation techniques against each other in
order to establish their applicability to probabilistic small-dis-
turbance stability studies. Previous studies such as [10]–[12],
and [17] have compared individual methods against the numer-
ical MC approach; however a comparison of these estimation
techniques against each other has not been done. Thesemethods
are referred to as efficient throughout this paper to differentiate
them from the traditional numerical approach—however, it
should be noted that the accuracy of these techniques is not
guaranteed. The accuracy of the efficient approaches at pro-
ducing both descriptive moments and entire of system
outputs, for differing levels of system parameter uncertainty,
is tested on a multi-area meshed power system. Based on the
comprehensive results obtained, recommendations are made
regarding suitability of the examined methods for probabilistic
small-disturbance stability analysis of uncertain power systems.

II. EFFICIENT ESTIMATION TECHNIQUES FOR PROBABILISTIC
SMALL-DISTURBANCE STABILITY ANALYSIS

Small-disturbance stability relates to the ability of a power
system to maintain synchronous operation when subjected to
the small disturbances that occur constantly during operation
[18]. By linearizing the power system model and calculating
the eigenvalues of the state matrix, the system modes of
oscillation can be identified. In large power systems, low-fre-
quency, inter-area, electromechanical oscillations are typically
the least damped, most persistent modes which dominate
post-disturbance system behavior and, therefore, represent

the critical modes in the system. Conventional, deterministic,
small-disturbance stability analysis identifies and characterizes
these modes. Probabilistic small-disturbance stability analysis
incorporates system uncertainties (e.g., in system loading or
power generation from renewable energy sources) in small-dis-
turbance stability assessment in order to produce statistical
distributions of critical modes which more accurately describe
the behavior of uncertain power systems.
There are a variety of efficient estimation techniques that

can be used for probabilistic small-disturbance stability analysis
[7]–[17]. This section presents a brief theoretical background
on several of the most promising and commonly used methods.
These methods are further investigated and their application il-
lustrated in subsequent sections. In all cases, it is assumed that
the uncertain parameter set is known and that probability den-
sity functions are fully detailed for each uncertain input param-
eter .
Throughout this section, reference is made to raw moments
, central moments , and standardized moments of distri-
butions. The following definitions apply for a random variable
with probability density function [19].
The th-order raw moment is given by

(1)

The first raw moment is the mean .
The th-order central moment is given by

(2)

The second central moment is the variance .
The th-order standardized moment is given by

(3)

The third and fourth standardized moments are the measures of
skewness and kurtosis of the distribution, respectively.

A. Monte Carlo (Numerical) Method

The numericalMC approach is used as the benchmark against
which the other methods described in this paper are assessed
(in terms of both accuracy and computational burden). This ap-
proach relies on extensive and repeated random sampling of
system uncertainties in order to obtain a large data set from
which output can be determined [20].
For each input set, randomly generated using the MC ap-

proach, a deterministic study is performed (consisting of load
flow, system linearization, eigenvalue analysis, and modal
identification) in order to calculate the details of critical system
modes. As the number of samples increases, it becomes in-
creasingly probable that the distribution of output variation is
an accurate representation of the true variation. It is therefore
necessary to run large numbers of full deterministic studies,
which can limit the application of the MC method when per-
forming probabilistic studies of large uncertain power systems.
Efficient sampling techniques aim to reduce the number of
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deterministic studies required whilst maintaining the accuracy
of the results produced.

B. Point Estimate Method

A number of PEMs have been developed, with varying levels
of application to probabilistic power system research [7]–[9].
The aim of all point estimate techniques is to compute the mo-
ments of the system output that is a function of uncertain
input variables. The distribution of can be subsequently es-
tablished using a variety of expansion techniques.
The PEM techniques used within this study are taken from

[21] and were shown to be effective for probabilistic load flow
studies in [9]. These PEM approaches can be used with sym-
metric or asymmetric variables but not with correlated system
uncertainties. Other PEM approaches also exist and if input cor-
relation is essential, different PEM techniques such as [22]–[24]
may be more suitable—howeverm accuracy and efficiency may
be sacrificed. PEM variants are developed in [21], where
or full deterministic studies are required (where is
a positive integer). The variants that can be used are dependent
on the distribution of input uncertainties. In this study (consid-
ering input uncertainties with Gaussian distributions), both the

and PEM variants are investigated. The PEM de-
tails are briefly presented below, with full details given in [9]
and [21].
1) Theoretical Background: Deterministic studies are re-

quired at or separate operating points (termed
concentrations). The th concentration is defined
as a pair consisting of a location and an associated weight
value . This location represents the th value that the
variable will take during full deterministic studies.
For PEM deterministic studies, only one input variable is

varied at a time, and the remaining uncertainties in take their
mean values . Therefore, only deterministic studies are
required, i.e., variations of each of the uncertain inputs. In
the PEM variants, an additional deterministic study is
completed with all uncertainties at their mean values.
Locations are determined using

(4)

in which and are themean and standard deviation (st.d.)
of the th uncertain parameter , and is the standard loca-
tion.
Standard locations and weights are determined by solving the

nonlinear equation [21]

(5)

In (5), is the th standardized moment of the th uncer-
tain parameter [21]. As per standard definitions, ,

, is the skewness, and is the kurtosis of .
Equation (5) can only be solved analytically for . For

, numerical solutions are required.

Full deterministic studies are performed for each concentra-
tion at the operating point to ob-
tain the value of the system output for that concentra-
tion. These values are subsequently combined with the previ-
ously determined weight factors using

(6)

to determine the th raw moment of the system output .
The raw moments can be used to establish the central

moments of the system output. If sufficient moments are
estimated, the of can be estimated using a suitable ex-
pansion. However, the accuracy of PEM approaches typically
deteriorates as the order of the estimated raw moment increases
[9]. Distributions produced using this approach will, therefore,
be more accurate if they are predominantly described by low
order moments.
2) Variant: For the PEM variant, only the first three

standardized moments of each uncertain input are required.
The standard locations and weights of the uncertain input are
calculated using [9]

(7)

(8)

3) Variant: For the PEM variant, the standard
locations are calculated as the roots of the polynomial (9), where
the coefficients are found by solving the linear equations in [9]

(9)

(10)

The weights are subsequently determined by solving

(11)

with the weight value in

(12)

used for the “ ”’ operating point where all uncertainties take
their mean values.
4) Summary: The PEM approach can be summarized as fol-

lows: 1) calculate concentrations (locations and weights) for
each uncertain input using (4), (7), and (8) for the variant,
and (4), (9)–(12) for the variant; 2) perform determin-
istic studies at each concentration; 3) calculate the output raw
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moments using (6); and 4) if desired, calculate output central
moments or standard moments and generate .

C. Cumulant Method

The cumulants of a probability distribution provide an al-
ternative mathematical description to the moments of the dis-
tribution. The use of cumulants allows an analytical solution to
be derived for the output variation based on system input uncer-
tainty.
Analytically, the moments of the system output are de-

scribed by a mathematical convolution of the moments of the
independent input uncertainties . This is extremely complex to
calculate for high-ordermoments when there aremultiple uncer-
tainties. However, the cumulants of the system output can be
described simply by a sum of the cumulants of the indepen-
dent input uncertainties [13]. This is much easier to calculate,
and the output cumulants can subsequently be used to establish
the output moments.
The cumulant-based approach has been used in power

system studies to determine probabilistic load flow solutions in
[13] and [14] and for probabilistic small-disturbance stability
studies in [11], [12]. The method is typically used alongside
the Gram–Charlier expansion [25] in order to generate output

from the calculated output cumulants and yielded good
results [11]–[14]. The mathematical analysis required, how-
ever, is complex, and it is often necessary to include numerical
approximations within the calculations in order to converge on
a solution within an acceptable length of time.
The cumulant-based approach can also be used with corre-

lated input uncertainties [11], [12]. This has not been inves-
tigated in this paper as both the PEM and PCM approaches
studied here assume independence of uncertainty distributions.
1) Theoretical Background: The th-order cumulants

of the th uncertain parameter are determined from its mean
and central moments using the standard relationships

given by [13]

(13)

The cumulants of the change in system output can then
be calculated directly using

(14)

The sensitivity term in (14) can be determined ei-
ther numerically or analytically. For probabilistic small-distur-
bance studies, an analytical sensitivity determination requires
knowledge of the full linearized state matrix and is detailed in
[12]. Many power system simulation software programs do not
provide this, and instead the following numerical approxima-
tion is required:

(15)

In (15), represents a small change in the uncertain input
. A 1% positive variation is used for all uncertain inputs in

this study. Numerical calculation of this sensitivity will require
deterministic studies for system uncertainties (once

for each change and one more with all mean values for compar-
ison). This represents the only deterministic studies required for
this efficient estimation technique. The numerical calculation of
sensitivity is used within this work and the cumulant-based ap-
proach can therefore be considered as an analytical technique
that utilizes a numerical approximation.
Once sufficient output cumulants have been established, the

central moments of (equal to the central moments of ) can
be calculated using the relationships given by [13]

(16)

These moments are used to determine the probability distribu-
tion of (and subsequently ) using suitable expansions
(such as the Gram–Charlier) if required.
2) Summary: The cumulant based method can be summa-

rized as follows: 1) calculate uncertain input cumulants based
on input mean and input central moments using (13); 2) per-
form deterministic studies in order to numerically calcu-
late the sensitivity of the output to each uncertainty using (15);
3) calculate the cumulants of the change in system output di-
rectly using (14); 4) calculate the central moments of the system
output using the relationships detailed in (16); and 5) if desired,
calculate output standard moments and generate .

D. Probabilistic Collocation Method

With the PCM, the approximated system output is modeled
directly a as a polynomial function of the uncertain parameter
set , as in

(17)

The key aspects of the PCM are: 1) the selection of the func-
tion and 2) specifying the points at which to run deterministic
power system simulations to gather the data from which the
PCM model is formed. These details are provided briefly here
and are covered in greater depth in [15]–[17].
1) Theoretical Background: Orthogonal polynomials of in-

creasing order are derived for the known probability distribu-
tions of each uncertain parameter . The model function
is formed as a sum of products of these polynomials (selected
based on the desired order of the final PCM model) which are
weighted by a set of coefficients . Orthogonal polynomials can
be created for any known probability density function .
Normally distributed parameters are simply represented by the
transformation

(18)

In (18), and are as previously described, and
is the first-order orthogonal polynomial of the standard normal
distribution .
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The orthogonal polynomials , where is the polyno-
mial order, are given by the standard Hermite polynomials [26].
Orthogonal polynomials for other distributions can be found
using recursive methods, for example with functions available
from the orthpol set for MATLAB [27].
The number of combinations of the orthogonal polynomials

(and therefore the number of coefficients to find) increases with
both the number of uncertainties and the PCM model order
, according to

(19)

where ! is the factorial operation.
This number increases rapidly as and increase, and, for

each new coefficient, a deterministic study must be performed.
These deterministic simulations must be run in order to provide
the points around which to solve the set of coefficients and fit
the model as shown in

(20)

where is a vector of observed system output values and
is a matrix with rows formed by the combinations of orthog-
onal polynomials for each uncertain parameter evaluated at the
points resulting in the corresponding system output in .
The points for deterministic studies (the collocation points)

are selected by taking inspiration from the Gaussian quadra-
ture technique of estimating integrals [28]. The roots of the next
higher order polynomial are chosen as the points at which to per-
form deterministic simulations and collocation points with the
greatest probability of occurring are selected. By doing this, the
accuracy of the PCM model is concentrated in the regions de-
fined by the pdfs as most likely to occur.
The PCM differs from the point estimation methods and the

cumulant-based approach, as it does not directly estimate the
moments of the system output. Instead, the PCM function can be
used as a computationally inexpensive substitute for running a
full simulation of the power system during a standard MC based
uncertainty study. Output moments, if desired, can subsequently
be determined from the data set produced.
It is also possible to extract the directly from the PCM

model functions without using an MC approach. However, this
requires the inversion of the PCM function. This is not trivial
for nonmonotonic multidimensional functions, and often the nu-
merical methods would take so long as to negate all of the com-
putational benefits associated with using the PCM.
2) Uncertainty Reduction: The number of full deterministic

studies required, given by (19), increases extremely rapidly as
the number of system uncertainties increases. For example,
in order to produce a third-order PCM model, 56 simulations
are required if , 286 simulations are required if
, and 1771 if . This exponential increase is different

from the other efficient methods examined where the number
of deterministic studies increases linearly with the number of
uncertainties. As a result, for larger power systems, a reduction
in the number of uncertainties considered is required in order to
preserve the advantages of using an efficient estimation method.

Fig. 1. Reduced-order 16-machine, 68-bus model of NETS & NYPS.

All uncertain parameters are ranked using (21) which de-
scribes the sensitivity of the damping of the critical mode
to the uncertain parameter , derived from [16]

(21)

The first term (the sensitivity measure) is determined using a
1% positive increase in from its mean value. The second term
weights this sensitivity by the variation in that uncertain param-
eter. Based on this ranking, only the most influential parameters
are selected for further studies. The effectiveness of this param-
eter reduction technique is illustrated in [17].
3) Summary: The PCM can be summarized as follows: 1) re-

duce the number of considered uncertainties (if large) based on
ranking completed using (21) and illustrated in [17]; 2) establish
orthogonal polynomials to represent considered system uncer-
tainties based on desired model order; 3) determine collocation
points for each considered system uncertainty using the roots
of higher order orthogonal polynomials and order based on the
joint probability density associated with the operating point; 4)
complete sufficient number of deterministic studies to calculate
all coefficients for the PCMmodel as in (20), selecting the most
probable collocation points first; 5) use the PCMmodel function
as a computationally inexpensive substitute for full determin-
istic studies in a standard MC simulation process to generate a
large data set for the system output; and 6) if desired, calculate
output moments or produce a based on the obtained data set.

III. TEST SYSTEM

The efficient estimation methods described within this paper
are illustrated using the 16-machine, 68-bus reduced-order
representation of the New England Test System and the New
York Power System (NETS& NYPS) [29], shown in Fig. 1.
All methods and deterministic system studies are performed
within the MATLAB/Simulink environment making use of
MATPOWER [30] functions to perform power flows.

A. System Description

Generators G1–8 use slow dc excitation (IEEE-DC1A), G9
is equipped with a fast acting static exciter (IEEE-ST1A) and
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power system stabilizer (PSS), and the remaining generators
G10–16 are under manual excitation as in [29]. All generators
are represented by full sixth-order models. System loads are
modeled as constant impedance. Full system details, generator,
and exciter parameters are given in [29] with PSS settings for
G9 taken from [2].

B. System Uncertainties

System uncertainties are represented for all generator out-
puts and system loads within the network. Therefore, there are
a total of 50 uncertain parameters within the test system being
investigated (15 generators excluding the slack and 35 loads).
Generator outputs and loads are both modeled using Gaussian
distributions with nominal values set as mean values of cor-
responding Gaussian distributions. Different levels of standard
deviation are considered in order to assess the accuracy of the
various methods for differing levels of system parameter vari-
ation. Load power factors are considered to be constant at the
nominal values.
The uncertainties considered in this work are assumed to

follow Gaussian distributions. It should be noted that these
efficient methods can be used with any continuous distribution
provided that moments, cumulants and orthogonal polynomials
can be derived.

IV. SIMULATION RESULTS

The test network displays four inter-area modes with
damping factors lower than 5% as detailed in [31]. The analysis
presented here focusses on the lowest frequency inter-area
mode (of approximately 0.4 Hz) which is the critical mode
for the system. Specifically, the aim of the simulations is to
produce the moments and for the damping (real part )
of this critical electromechanical oscillation.

A. Simulation Details

In all cases presented here, comparisons are made relative to
the MC numerical approach that was carried out using 10,000
simulations.
Point Estimate Method: The and point estimate

variants are implemented requiring a total of 100 and 201 deter-
ministic studies, respectively.
Cumulant Method: The cumulant-based approach requires a

total of 51 deterministic studies to complete the integral sensi-
tivity analysis. The analytical calculation of the critical damping
moments was performed using uncertain input cumulants up
to fourth order (though higher order cumulants can also be in-
cluded).
Probabilistic Collocation Method: For the PCM approach,

different orders of model function are considered. To enable a
balanced comparison, the same number of uncertainties is used
for each model. This number is limited by the highest order
model considered, which is of third order in this work. The limit
imposed in this research is such that the PCM approach does
not greatly exceed the number of deterministic studies required
by the point estimate variant. This restricts the number
of considered uncertainties to nine for all models. This results
in ten deterministic studies for the first-order model, 55 for the
second-order model, and 220 for the third-order model.

TABLE I
MOMENTS OF MODE DAMPING AND PERCENTAGE ERRORS USING VARIOUS
EFFICIENT ESTIMATION METHODS FOR 5% VARIATION OF UNCERTAINTIES

The ranking of parameters using the sensitivity-based rank of
(21)must first be completed (requiring 51 deterministic studies).
The highest ranked uncertainties are selected, creating a reduced
set of uncertainties consisting of six generators and three loads.
The final PCM models are used as a computationally inexpen-
sive substitute for full deterministic studies in a standard MC
approach consisting of 10 000 runs in order to produce the final
data sets.

B. Accuracy of Moment Estimation

The results from each efficient estimation method for the cal-
culated selected moments (mean, st.d., skewness, and kurtosis)
are shown in Table I. These results are shown for a level of input
uncertainty variation equal to 5% at (i.e., 99.7% of input vari-
ation is found within 5% of nominal mean values).
A number of features can be observed from the results col-

lated in Table I. All methods are very accurate at estimating the
mean value of with errors never exceeding 0.38%. Estima-
tion of the st.d. is more variable, with errors between 0.66%
(with the cumulant method) to approximately 40% (with the
PCM and PEM variant). It can also be observed that the
methods are less accurate at determining higher order moments.
The skewness is never estimated more accurately than to within
an 87% error typically cause be estimations near zero. Although
the PCM models and cumulant approach can estimate the kur-
tosis to within 14.8%, the point estimatemethods provide results
that are over 76% in error.
1) Effect of Level of Uncertainty: These moments have also

been collated for different levels of input variation with
levels of 2.5% and 7.5% also considered in addition to the 5%
variation previously shown in Table I. The percentage errors of
the mean of is shown in Fig. 2 for the different estimation
methods at differing levels of variation in input uncertainty.
It can be seen that the error increases with input variability for

all methods. It is also evident that the point estimate methods
display lower error than the cumulant and PCM approaches
(with the exception of the PEM variant which becomes the
least accurate once input variation reaches 7.5%). Very little
change is evident between the different order PCMmodels, sug-
gesting that the additional computational requirements of higher
order models may not be necessary.
Similar plots could also be produced for the st.d., skewness,

and kurtosis. With the st.d. estimation, the increase in input
variation has the greatest effect on the PEM variant (with
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Fig. 2. Error in estimation of mean for different levels of uncertainty.

an error of 176% once this input variation reaches 7.5%). Er-
rors for the PCMmodels are relatively unchanged by increasing
input uncertainty and are approximately 40% in all cases with
the PCM consistently underestimating the true st.d. of . The

PEM variant and the cumulant-based approach display
the best results. Errors remain below 5.5% in all cases, evenwith
7.5% input variation. It is these two approaches which appear to
be the most promising for the efficient estimation of modal pa-
rameters.
It should be noted that skewness is poorly estimated by all

methods with errors never smaller than 84.5%. Kurtosis is also
poorly estimated by both PEM variants with errors greater than
78.0%. However, this is more accurately estimated by the cu-
mulant and PCM approaches with errors below 4.9% for 2.5%
input variation, below 14.8% for 5% input variation, and below
45.3% when input variation is 7.5%.

C. Accuracy of Probability Density Function Estimation

In addition to assessing the accuracy of the estimated mo-
ments of , the accuracy of the final probability density func-
tions is also assessed. Both the numerical MC approach and the
PCM result in the production of large data sets. Probability dis-
tributions are subsequently produced using a kernel smoothing
density estimate [32].
1) Expansion for PEM Variants: Due to the large inaccu-

racy in the estimation of moments above second order using
the PEM, only the mean and st.d. are used to generate pdfs for

. A Gaussian distribution is, therefore, used for both con-
sidered PEM variants. It should be noted that other expansions
(such as the Cornish–Fisher [33]) may also provide good re-
sults and should be considered when applying these methods to
further power system studies. The Cornish–Fisher expansion,
though originally considered for this study, was not used due to
problem-specific parameters which violate restrictions specified
in [33] for application of this expansion.
2) Expansion for the Cumulant Approach: As in previous

research [11]–[14], the cumulant approach is combined with the
Gram–Charlier expansion in order to produce pdfs for . In-
vestigations into expansions of varying order were completed,
and it was found that no significant improvement in accuracy
was gained by using expansions above fourth order—as in [13].
Fourth-order Gram–Charlier expansions have therefore been
used to produce the cumulant-based pdfs for comparison.
3) Comparison of Probability Density Functions: The pdfs

and cumulative probability density functions (cdfs) of pro-
duced using different techniques are shown in Fig. 3 for the case
when uncertain input variation is equal to 5%. Only one plot is

Fig. 3. (a) PDFs , and (b) cdfs of produced for 5% input uncertainty.

shown for the PCM approach as all models produce very sim-
ilar traces. As predicted from the analysis of the moments, the

PEM variant and the cumulant-based approach both
accurately track the MC-based results. The effect of the under-
estimation of the st.d. by the PCM and of the overestimation of
the st.d. by the PEM variant can clearly be seen—resulting
in a loss of accuracy.
To numerically calculate the accuracy of these estimated dis-

tributions, the average root mean square error measure
given by

(22)

is used.
In (22), is the th value of the cdf obtained using the

MC approach, is the th value of the cdf obtained using an
efficient estimation technique, and is the number of samples
considered when calculating . In this study, is
calculated in the range between the 1st and 99th percentiles of

(to avoid large low error tail regions from skewing
towards misrepresentative low values) using 1000 samples.
4) Effect of Level of Uncertainty: The values of are

collated in Table II, not only for the 5% variation shown in
Fig. 3, but also for 2.5% and 7.5% input variability. These fig-
ures enable a thorough analysis of the suitability of different
efficient estimation methods for probabilistic small-disturbance
stability studies.
As suggested by Fig. 3, the values for the PEM

variant and cumulant-based approach are similar (and low) for
all levels of system uncertainty. It can also be seen that the distri-
bution errors increase slightly with increasing uncertainty. The

PEM variant displays the greatest sensitivity to the level of
uncertainty. When input variability is 2.5%, the value is
acceptable at just 1.14%. However, as the input variability rises
to 5% and subsequently to 7.5%, the distribution error values
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TABLE II
VALUES OF FOR DIFFERENT ESTIMATION METHODS WITH INCREASING

LEVELS OF UNCERTAIN INPUT VARIABILITY

Fig. 4. Diagrammed are the 90% confidence intervals of for 5% input
uncertainty.

rise to 5.60% and 12.67%, respectively. No other efficient esti-
mation method reduces so greatly in accuracy. All PCMmodels
display approximately the same error (7%–8%) for all model or-
ders at all levels of uncertain input variation. This efficient es-
timation approach appears to be largely unaffected by the level
of uncertainty, however it is also typically the least accurate.
A common practical measure of distribution fit is the 90%

confidence interval (the range between the 5th and 95th per-
centiles). Plotting these ranges for all efficient estimation tech-
niques in Fig. 4, the best estimations produced by the cumulant
and PEM approach are clearly evident.

D. Accuracy and Efficiency

The results obtained have shown that the cumulant and
PEM variant consistently provide the most accurate results. It is
also important to assess this error against the efficiency of the
methods when assessing which technique is most suitable for
fast probabilistic small-disturbance stability studies.
Fig. 5 shows the values of the distribution error (at all consid-

ered levels of uncertainty) plotted against the ratio, where
is the number of full deterministic studies required to com-

plete the analysis, and is the number of uncertainties. Results
in the bottom left of this plot display both low error and low
computational requirements—the characteristics desired from
such techniques. It is clear that although both the cumulant and

PEM variant are comparable in terms of error perfor-
mance, the cumulant approach is approximately four timesmore
efficient. It should be noted that all methods demonstrate con-
siderable efficiency savings over the traditional numerical MC
approach. The least efficient method used here (the third-order
PCM model) still requires just 2.71% of the number of full de-
terministic studies required by the MC approach. For the most
efficient method—the cumulant approach—this drops to 0.51%.

Fig. 5. Accuracy and efficiency of different techniques.

V. DISCUSSION AND RECOMMENDATIONS

Based on the results obtained within this work, it is recom-
mended that the cumulant-based approach is used as an efficient
estimation technique in future probabilistic small-disturbance
stability studies. This approach is the most efficient technique
considered (with an ratio of approximately one) and it con-
sistently produces results with low error.
It should be noted that the PEM variant also provides

results with low error, albeit with lower efficiency than the cu-
mulant approach. In [9], the PEM variant was shown to
provide results as accurate as the variant, improving the
efficiency of the method. This variant however, cannot be used
with normally distributed uncertainties if [21] and it was,
therefore, unsuitable for application in this study. Although the
PEM approach does not impose a parametric distribution for
the output, it was found that estimated moments above second
order were too erroneous to include. The modeling of output
distributions was therefore effectively restricted to Gaussian. If
outputs are known to be non-Gaussian, then the cumulant ap-
proach should be used as it estimates high-order moments more
accurately.
It should also be noted that the cumulant method estimates

the mean output value as the output when all inputs are at their
mean values. For this test network this did not lead to any signif-
icant error, however in some systems it has been observed that
this results in inaccuracies. In these cases, alternative methods
may be required to maintain accuracy—compromising on ef-
ficiency. The cumulant method is also dependent on the accu-
racy of the sensitivity term in (14) and may become less accu-
rate if the system moves far from the linear region of behavior.
This could occur (though it was not observed during this study)
during stressed conditions, such as very high loading, and re-
quires further investigation. Finally, it was observed that all the
considered techniques are able to reproduce the mean values
(first raw moment) with very low error. If only mean values
are required then any method would suffice—though the
PEM variant should be avoided when input uncertainty vari-
ability increases.

VI. CONCLUSION

The paper presented a comparative investigation of a number
of efficient estimation techniques in order to assess their suit-
ability for probabilistic small-disturbance stability studies of
large uncertain power systems. The analysis presented here is
not only the first comparison of different efficient estimation
techniques for these type of studies but also the first analysis of
the way in which the level of uncertainty affects the accuracy of
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the different proposed techniques. The accuracy of the methods
has been assessed through comparisons with traditional numer-
ical Monte Carlo simulation. Errors have been compared for
both descriptive moments and also entire probability distribu-
tions of damping of critical electro-mechanical mode.
It has been established that the cumulant-based analytical ap-

proach (utilizing a numerical approximation to calculate system
sensitivities) is the most suitable method for such studies. It
provides the highest efficiency and best accuracy and can be
used with non-parametric distributions (both input and output).
Furthermore, although not investigated within this work, it has
been shown in the past that input correlation can also be in-
cluded in the formulation of this method [11], [12]. The study
enables more informed decisions to be made when selecting ef-
ficient estimation methods for probabilistic small disturbance
stability studies of large uncertain power systems. These effi-
cient techniques could also be used to gather further statistical
information about the system modes (such as participation fac-
tors or residual values) that could enable probabilistic controller
design.
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