
From Mathematics to
Generic Programming

Alexander A. Stepanov

Daniel E. Rose

Stepanov, Alexander A.
From mathematics to generic programming / Alexander A. Stepanov, Daniel E. Rose.

pages cm
Includes bibliographical references and index.
ISBN 978-0-321-94204-3 (pbk. : alk. paper)
1. Generic programming (Computer science)—Mathematics. 2. Computer algorithms. I. Rose,

Daniel E. II. Title.
QA76.6245.S74 2015
005.1'1—dc23

2014034539

Copyright © 2015 Pearson Education, Inc.

Library of Congress Cataloging-in-Publication Data

ISBN-13: 978-0-321-94204-3
ISBN-10: 0-321-94204-3
Text printed in the United States
ird printing, August 2015

Contents

Acknowledgments ix
About the Authors xi
Authors’ Note xiii

1 What This Book Is About 1
1.1 Programming and Mathematics 2
1.2 A Historical Perspective 2
1.3 Prerequisites 3
1.4 Roadmap 4

2 The First Algorithm 7
2.1 Egyptian Multiplication 8
2.2 Improving the Algorithm 11
2.3 Thoughts on the Chapter 15

3 Ancient Greek Number Theory 17
3.1 Geometric Properties of Integers 17
3.2 Sifting Primes 20
3.3 Implementing and Optimizing the Code 23
3.4 Perfect Numbers 28
3.5 The Pythagorean Program 32
3.6 A Fatal Flaw in the Program 34
3.7 Thoughts on the Chapter 38

4 Euclid’s Algorithm 41
4.1 Athens and Alexandria 41
4.2 Euclid’s Greatest Common Measure Algorithm 45
4.3 A Millennium without Mathematics 50
4.4 The Strange History of Zero 51
4.5 Remainder and Quotient Algorithms 53
4.6 Sharing the Code 57
4.7 Validating the Algorithm 59
4.8 Thoughts on the Chapter 61

5 The Emergence of Modern Number Theory 63
5.1 Mersenne Primes and Fermat Primes 63
5.2 Fermat’s Little Theorem 69
5.3 Cancellation 72
5.4 Proving Fermat’s Little Theorem 77
5.5 Euler’s Theorem 79
5.6 Applying Modular Arithmetic 83
5.7 Thoughts on the Chapter 84

6 Abstraction in Mathematics 85
6.1 Groups 85
6.2 Monoids and Semigroups 89
6.3 Some Theorems about Groups 92
6.4 Subgroups and Cyclic Groups 95
6.5 Lagrange’s Theorem 97
6.6 Theories and Models 102
6.7 Examples of Categorical and Non-categorical Theories 104
6.8 Thoughts on the Chapter 107

7 Deriving a Generic Algorithm 111
7.1 Untangling Algorithm Requirements 111
7.2 Requirements on A 113
7.3 Requirements on N 116
7.4 New Requirements 118
7.5 Turning Multiply into Power 119
7.6 Generalizing the Operation 121
7.7 Computing Fibonacci Numbers 124
7.8 Thoughts on the Chapter 127

8 More Algebraic Structures 129
8.1 Stevin, Polynomials, and GCD 129
8.2 Göttingen and German Mathematics 135
8.3 Noether and the Birth of Abstract Algebra 140
8.4 Rings 142
8.5 Matrix Multiplication and Semirings 145
8.6 Application: Social Networks and Shortest Paths 147
8.7 Euclidean Domains 150
8.8 Fields and Other Algebraic Structures 151
8.9 Thoughts on the Chapter 152

9 Organizing Mathematical Knowledge 155
9.1 Proofs 155
9.2 The First Theorem 159

9.3 Euclid and the Axiomatic Method 161
9.4 Alternatives to Euclidean Geometry 164
9.5 Hilbert’s Formalist Approach 167
9.6 Peano and His Axioms 169
9.7 Building Arithmetic 173
9.8 Thoughts on the Chapter 176

10 Fundamental Programming Concepts 177
10.1 Aristotle and Abstraction 177
10.2 Values and Types 180
10.3 Concepts 181
10.4 Iterators 184
10.5 Iterator Categories, Operations, and Traits 185
10.6 Ranges 188
10.7 Linear Search 190
10.8 Binary Search 191
10.9 Thoughts on the Chapter 196

11 Permutation Algorithms 197
11.1 Permutations and Transpositions 197
11.2 Swapping Ranges 201
11.3 Rotation 204
11.4 Using Cycles 207
11.5 Reverse 212
11.6 Space Complexity 215
11.7 Memory-Adaptive Algorithms 216
11.8 Thoughts on the Chapter 217

12 Extensions of GCD 219
12.1 Hardware Constraints and a More Efficient Algorithm 219
12.2 Generalizing Stein’s Algorithm 222
12.3 Bézout’s Identity 225
12.4 Extended GCD 229
12.5 Applications of GCD 234
12.6 Thoughts on the Chapter 234

13 A Real-World Application 237
13.1 Cryptology 237
13.2 Primality Testing 240
13.3 The Miller-Rabin Test 243
13.4 The RSA Algorithm: How and Why It Works 245
13.5 Thoughts on the Chapter 248

14 Conclusions 249

Further Reading 251

A Notation 257

B Common Proof Techniques 261
B.1 Proof by Contradiction 261
B.2 Proof by Induction 262
B.3 The Pigeonhole Principle 263

C C++ for Non-C++ Programmers 265
C.1 Template Functions 265
C.2 Concepts 266
C.3 Declaration Syntax and Typed Constants 267
C.4 Function Objects 268
C.5 Preconditions, Postconditions, and Assertions 269
C.6 STL Algorithms and Data Structures 269
C.7 Iterators and Ranges 270
C.8 Type Aliases and Type Functions with using in C++11 272
C.9 Initializer Lists in C++11 272
C.10 Lambda Functions in C++11 272
C.11 A Note about inline 273

Bibliography 275
Index 281

Authors’ Note

eseparation of computer science frommathematics greatly impoverishes both.
e lectures that this book is based on were my attempt to show how these two
activities—an ancient one going back to the very beginnings of our civilization
and the most modern one—can be brought together.

I was very fortunate that my friendDan Rose, under whosemanagement our
team was applying principles of generic programming to search engine design,
agreed to convert my rather meandering lectures into a coherent book. Both of
us hope that our readers will enjoy the result of our collaboration.

—A.A.S.

e book you are about to read is based on notes from an “Algorithmic Journeys”
course taught byAlex Stepanov atA9.comduring 2012. But asAlex and Iworked
together to transform the material into book form, we realized that there was a
stronger story we could tell, one that centered on generic programming and its
mathematical foundations. is led to a major reorganization of the topics, and
removal of the entire section on set theory and logic, which did not seem to be
part of the same story. At the same time, we added and removed details to create
a more coherent reading experience and to make the material more accessible to
less mathematically advanced readers.

While Alex comes from a mathematical background, I do not. I’ve tried to
learn from my own struggles to understand some of the material and to use this
experience to identify ideas that require additional explanation. If in some cases
we describe something in a slightly differentway than amathematicianwould, or
using slightly different terminology, or usingmore simple steps, the fault ismine.

—D.E.R.

What This Book Is About

It is impossible to know things of this world
unless you knowmathematics.

Roger Bacon, OpusMajus

is book is about programming, but it is different from most programming
books. Alongwith algorithms and code, you’ll findmathematical proofs and his-
torical notes about mathematical discoveries from ancient times to the
20th century.

More specifically, the book is about generic programming, an approach to
programming that was introduced in the 1980s and started to become popular
following the creation of the C++ Standard Template Library (STL) in the 1990s.
We might define it like this:

Definition 1.1. Generic programming is an approach to programming that fo-
cuses on designing algorithms and data structures so that they work in the most
general setting without loss of efficiency.

If you’ve used STL, at this point youmay be thinking, “Wait aminute, that’s all
there is to generic programming? What about all that stuff about templates and
iterator traits?” ose are tools that enable the language to support generic pro-
gramming, and it’s important to know how to use them effectively. But generic
programming itself is more of an attitude toward programming than a particular
set of tools.

We believe that this attitude—trying to write code in this general way—is
one that all programmers should embrace. e components of a well-written
generic programare easier to use andmodify than those of a programwhose data
structures, algorithms, and interfaces hardcode unnecessary assumptions about

2 Chapter 1: What This Book Is About

a specific application. Making a programmore generic renders it simultaneously
both simpler and more powerful.

1.1 Programming and Mathematics
So where does this generic programming attitude come from, and how do you
learn it? It comes frommathematics, and especially from a branch of mathemat-
ics called abstract algebra. To help you understand the approach, this book will
introduce you to a little bit of abstract algebra, which focuses on how to reason
about objects in terms of abstract properties of operations on them. It’s a topic
normally studied only by university students majoring in math, but we believe
it’s critical in understanding generic programming.

In fact, it turns out thatmany of the fundamental ideas in programming came
from mathematics. Learning how these ideas came into being and evolved over
time can help you think about soware design. For example, Euclid’s Elements,
a book written more than 2000 years ago, is still one of the best examples of how
to build up a complex system from small, easily understood pieces.

Although the essence of generic programming is abstraction, abstractions
do not spring into existence fully formed. To see how to make something more
general, you need to start with something concrete. In particular, you need to
understand the specifics of a particular domain to discover the right abstractions.

e abstractions that appear in abstract algebra largely come from concrete
results in one of the oldest branches of mathematics, called number theory. For
this reason, we will also introduce some key ideas from number theory, which
deals with properties of integers, especially divisibility.

e thought process you’ll go through in learning this math can improve
your programming skills. But we’ll also show how some of the mathematical
results themselves turn out to be crucial to some modern soware applications.
In particular, by the end of the bookwe’ll showhow someof these results are used
in cryptographic protocols underlying online privacy and online commerce.

e book will move back and forth between talking about math and talking
about programming. In particular, we’ll interweave important ideas in mathe-
matics with a discussion of both specific algorithms and general programming
techniques. We’ll mention some algorithms only briefly, while others will be
refined and generalized throughout the book. A couple of chapters will con-
tain only mathematical material, and a couple will contain only programming
material, but most have a mixture of both.

1.2 A Historical Perspective
We’ve always found that it’s easier and more interesting to learn something if it’s
part of a story. What was going on at the time? Who were the people involved,

Prerequisites 3

and how did they come to have these ideas? Was one person’s work an attempt to
build on another’s—or an attempt to reject what came before? So aswe introduce
the mathematical ideas in this book, we’ll try to tell you the story of those ideas
and of the people who came up with them. In many cases, we’ve provided short
biographical sketches of the mathematicians who are the main characters in our
story. ese aren’t comprehensive encyclopedia entries, but rather an attempt to
give you some context for who these people were.

Although we take a historical perspective, that doesn’t mean that the book is
intended as a history of mathematics or even that all the ideas are presented in
the order in which they were discovered. We’ll jump around in space and time
when necessary, but we’ll try to give a historical context for each of the ideas.

1.3 Prerequisites
Since a lot of the book is aboutmathematics, youmaybe concerned that youneed
to have taken a lot ofmath classes to understand it. While you’ll need to be able to
think logically (something you should already be good at as a programmer), we
don’t assume any specific mathematical knowledge beyond high school algebra
and geometry. In a couple of sections, we show some applications that use a little
linear algebra (vectors and matrices), but you can safely skip these if you haven’t
been exposed to the background material before. If you’re unfamiliar with any
of the notation we use, it’s explained in Appendix A.

An important part of mathematics is being able to prove something formally.
is book contains quite a few proofs. You’ll find the book easier to understand
if you’ve done some proofs before, whether in high school geometry, in a com-
puter science class on automata theory, or in logic. We’ve described some of the
common proof techniques we use, along with examples, in Appendix B.

We assume that if you’re reading this book, you’re already a programmer. In
particular, you should be reasonably proficient in a typical imperative program-
ming language like C, C++, or Java. Our examples will use C++, but we expect
you’ll be able to understand them even if you’ve never programmed in that lan-
guage before. When we make use of a construct unique to C++, we explain it
in Appendix C. Irrespective of our use of C++, we believe that the principles
discussed in this book apply to programming in general.

Many of the programming topics in this book are also covered from a dif-
ferent perspective, and more formally, in Elements of Programming by Stepanov
and McJones. Readers interested in additional depth may find that book to be
a useful companion to this one. roughout this book, we occasionally refer
interested readers to a relevant section of Elements of Programming.

4 Chapter 1: What This Book Is About

1.4 Roadmap
Before diving into the details, it’s useful to see a brief overview of where we’re
headed:

• Chapter 2 tells the story of an ancient algorithm for multiplication, and how
to improve it.

• Chapter 3 looks at some early observations about properties of numbers, and
an efficient implementation of an algorithm for finding primes.

• Chapter 4 introduces an algorithm for finding the greatest common divisor
(GCD), which will be the basis for some of our abstractions and applications
later on.

• Chapter 5 focuses on mathematical results, introducing a couple of important
theorems that will play a critical role by the end of the book.

• Chapter 6 introduces the mathematical field of abstract algebra, which pro-
vides the core idea for generic programming.

• Chapter 7 shows how thesemathematical ideas allowus to generalize ourmul-
tiplication algorithm beyond simple arithmetic to a variety of practical pro-
gramming applications.

• Chapter 8 introduces new abstract mathematical structures, and shows some
new applications they enable.

• Chapter 9 talks about axiom systems, theories, and models, which are all
building blocks of generic programming.

• Chapter 10 introduces concepts in generic programming, and examines the
subtleties of some apparently simple programming tasks.

• Chapter 11 continues the exploration of some fundamental programming
tasks, examining how different practical implementations can exploit theo-
retical knowledge of the problem.

• Chapter 12 looks at how hardware constraints can lead to a new approach for
an old algorithm, and shows new applications of GCD.

• Chapter 13 puts themathematical and algorithmic results together to build an
important cryptography application.

• Chapter 14 is a summary of some of the principal ideas in the book.

e strands of programming and mathematics are interwoven throughout,
though one or the other may lie hidden for a chapter or two. But every chapter
plays a part in the overall chain of reasoning that summarizes the entire book:

Roadmap 5

To be a good programmer, you need to understand the principles of
generic programming. To understand the principles of generic pro-
gramming, you need to understand abstraction. To understand ab-
straction, you need to understand themathematics on which it’s based.

at’s the story we’re hoping to tell.

The First Algorithm

Moses speedily learned arithmetic, and geometry.
…This knowledge he derived from the Egyptians,

who studymathematics above all things.

Philo of Alexandria, Life of Moses

An algorithm is a terminating sequence of steps for accomplishing a computa-
tional task. Algorithms are so closely associated with the notion of computer
programming that most people who know the term probably assume that the
idea of algorithms comes from computer science. But algorithms have been
around for literally thousands of years. Mathematics is full of algorithms, some
of which we use every day. Even the method schoolchildren learn for long ad-
dition is an algorithm.

Despite its long history, the notion of an algorithm didn’t always exist; it had
to be invented. While we don’t knowwhen algorithms were first invented, we do
know that some algorithms existed in Egypt at least as far back as 4000 years ago.

* * *

Ancient Egyptian civilization was centered on the Nile River, and its agricul-
ture depended on the river’s floods to enrich the soil. e problem was that
every time the Nile flooded, all the markers showing the boundaries of prop-
erty were washed away. e Egyptians used ropes to measure distances, and
developed procedures so they could go back to their written records and re-
construct the property boundaries. A select group of priests who had stud-
ied these mathematical techniques were responsible for this task; they became
known as “rope-stretchers.” e Greeks would later call them geometers, mean-
ing “Earth-measurers.”

8 Chapter 2: The First Algorithm

Unfortunately, we have little written record of the Egyptians’ mathematical
knowledge. Only two mathematical documents survived from this period. e
one we are concerned with is called the Rhind Mathematical Papyrus, named
aer the 19th-century Scottish collector who bought it in Egypt. It is a docu-
ment from about 1650 BC written by a scribe named Ahmes, which contains a
series of arithmetic and geometry problems, together with some tables for com-
putation. is scroll contains the first recorded algorithm, a technique for fast
multiplication, along with a second one for fast division. Let’s begin by looking
at the fast multiplication algorithm, which (as we shall see later in the book) is
still an important computational technique today.

2.1 Egyptian Multiplication
e Egyptians’ number system, like that of all ancient civilizations, did not use
positional notation and had no way to represent zero. As a result, multiplica-
tion was extremely difficult, and only a few trained experts knew how to do it.
(Imagine doing multiplication on large numbers if you could only manipulate
something like Roman numerals.)

How do we define multiplication? Informally, it’s “adding something to itself
a number of times.” Formally, we can define multiplication by breaking it into
two cases: multiplying by 1, and multiplying by a number larger than 1.

We define multiplication by 1 like this:

1a = a (2.1)

Next we have the case wherewewant to compute a product of onemore thing
than we already computed. Some readers may recognize this as the process of
induction; we’ll use that technique more formally later on.

(n+ 1)a = na+ a (2.2)

One way to multiply n by a is to add instances of a together n times. How-
ever, this could be extremely tedious for large numbers, since n−1 additions are
required. In C++, the algorithm looks like this:

int multiply0(int n, int a) {
if (n == 1) return a;
return multiply0(n - 1, a) + a;

}

e two lines of code correspond to equations 2.1 and 2.2. Both a and nmust
be positive, as they were for the ancient Egyptians.

Egyptian Multiplication 9

ealgorithmdescribed byAhmes—which the ancientGreeks knewas “Egyp-
tian multiplication” and which many modern authors refer to as the “Russian
Peasant Algorithm”1—relies on the following insight:

4a = ((a+ a) + a) + a
= (a+ a) + (a+ a)

is optimization depends on the law of associativity of addition:

a+ (b+ c) = (a+ b) + c

It allows us to compute a+ a only once and reduce the number of additions.
e idea is to keep halving n and doubling a, constructing a sum of power-

of-2 multiples. At the time, algorithms were not described in terms of variables
such as a and n; instead, the authorwould give an example and then say, “Nowdo
the same thing for other numbers.” Ahmes was no exception; he demonstrated
the algorithm by showing the following table for multiplying n = 41 by a = 59:

1 3 59
2 118
4 236
8 3 472

16 944
32 3 1888

Each entry on the le is a power of 2; each entry on the right is the result of
doubling the previous entry (since adding something to itself is relatively easy).
e checked values correspond to the 1-bits in the binary representation of 41.
e table basically says that

41× 59 = (1× 59) + (8× 59) + (32× 59)

where each of the products on the right can be computed by doubling 59 the
correct number of times.

e algorithm needs to check whether n is even and odd, so we can infer that
the Egyptians knew of this distinction, although we do not have direct proof.
But ancient Greeks, who claimed that they learned their mathematics from the

1Many computer scientists learned this name from Knuth’s e Art of Computer Programming,
which says that travelers in 19th-century Russia observed peasants using the algorithm. However,
the first reference to this story comes from a 1911 book by Sir omas Heath, which actually says,
“I have been told that there is a method in use today (some say in Russia, but I have not been able to
verify this),”

10 Chapter 2: The First Algorithm

Egyptians, certainly did. Here’s how they defined2 even and odd, expressed in
modern notation:3

n =
n
2 +

n
2 =⇒ even(n)

n =
n− 1

2 +
n− 1

2 + 1 =⇒ odd(n)

We will also rely on this requirement:

odd(n) =⇒ half(n) = half(n− 1)

is is how we express the Egyptian multiplication algorithm in C++:

int multiply1(int n, int a) {
if (n == 1) return a;
int result = multiply1(half(n), a + a);
if (odd(n)) result = result + a;
return result;

}

We can easily implement odd(x) by testing the least significant bit of x, and
half(x) by a single right shi of x:
bool odd(int n) { return n & 0x1; }
int half(int n) { return n >> 1; }

How many additions is multiply1 going to do? Every time we call the func-
tion, we’ll need to do the addition indicated by the + in a + a. Since we are halv-
ing the value as we recurse, we’ll invoke the function logn times.4 And some of
the time, we’ll need to do another addition indicated by the + in result + a. So
the total number of additions will be

#+(n) = ⌊logn⌋+ (ν(n)− 1)

where ν(n) is the number of 1s in the binary representation of n (the popula-
tion count or pop count). So we have reduced an O(n) algorithm to one that is
O(logn).

2e definition appears in the 1st-century work Introduction to Arithmetic, Book I, Chapter VII,
by Nicomachus of Gerasa. He writes, “e even is that which can be divided into two equal parts
without a unit intervening in the middle; and the odd is that which cannot be divided into two equal
parts because of the aforesaid intervention of a unit.”

3e arrow symbol “ =⇒ ” is read “implies.” See Appendix A for a summary of themathematical
notation used in this book.

4roughout this book, when we write “log,” we mean the base 2 logarithm, unless specified
otherwise.

Improving the Algorithm 11

Is this algorithm optimal? Not always. For example, if we want to multiply
by 15, the preceding formula would give this result:

#+(15) = 3+ 4− 1 = 6

But we can actually multiply by 15 with only 5 additions, using the following
procedure:

int multiply_by_15(int a) {
int b = (a + a) + a; // b == 3*a
int c = b + b; // c == 6*a
return (c + c) + b; // 12*a + 3*a

}

Such a sequence of additions is called an addition chain. Here we have discov-
ered an optimal addition chain for 15. Nevertheless, Ahmes’s algorithm is good
enough for most purposes.

Exercise 2.1. Find optimal addition chains for n < 100.

At some point the readermay have observed that some of these computations
would be even faster if we first reversed the order of the arguments when the first
is greater than the second (for example, we could compute 3 × 15 more easily
than 15×3). at’s true, and the Egyptians knew this. But we’re not going to add
that optimization here, because as we’ll see in Chapter 7, we’re eventually going
to want to generalize our algorithm to cases where the arguments have different
types and the order of the arguments matters.

2.2 Improving the Algorithm
Our multiply1 function works well as far as the number of additions is con-
cerned, but it also does ⌊logn⌋ recursive calls. Since function calls are expensive,
we want to transform the program to avoid this expense.

One principle we’re going to take advantage of is this: It is oen easier to do
more work rather than less. Specifically, we’re going to compute

r+ na

where r is a running result that accumulates the partial products na. In other
words, we’re going to perform multiply-accumulate rather than just multiply.
is principle turns out to be true not only in programming but also in hard-
ware design and in mathematics, where it’s oen easier to prove a general result
than a specific one.

12 Chapter 2: The First Algorithm

Here’s our multiply-accumulate function:

int mult_acc0(int r, int n, int a) {
if (n == 1) return r + a;
if (odd(n)) {

return mult_acc0(r + a, half(n), a + a);
} else {

return mult_acc0(r, half(n), a + a);
}

}

It obeys the invariant: r + na = r0 + n0a0, where r0, n0 and a0 are the initial
values of those variables.

We can improve this further by simplifying the recursion. Notice that the two
recursive calls differ only in their first argument. Instead of having two recursive
calls for the odd and even cases, we’ll justmodify the value of r before we recurse,
like this:

int mult_acc1(int r, int n, int a) {
if (n == 1) return r + a;
if (odd(n)) r = r + a;
return mult_acc1(r, half(n), a + a);

}

Now our function is tail-recursive—that is, the recursion occurs only in the re-
turn value. We’ll take advantage of this fact shortly.

We make two observations:

• n is rarely 1.

• If n is even, there’s no point checking to see if it’s 1.

So we can reduce the number of times we have to compare with 1 by a factor of
2, simply by checking for oddness first:

int mult_acc2(int r, int n, int a) {
if (odd(n)) {

r = r + a;
if (n == 1) return r;

}
return mult_acc2(r, half(n), a + a);

}

Some programmers think that compiler optimizations will do these kinds of
transformations for us, but that’s rarely true; they do not transform one algo-
rithm into another.

Improving the Algorithm 13

What we have so far is pretty good, but we’re eventually going to want to
eliminate the recursion to avoid the function call overhead. is is easier if the
function is strictly tail-recursive.

Definition 2.1. A strictly tail-recursive procedure is one in which all the tail-
recursive calls are done with the formal parameters of the procedure being the
corresponding arguments.

Again, we can achieve this simply by assigning the desired values to the vari-
ables we’ll be passing before we do the recursion:

int mult_acc3(int r, int n, int a) {
if (odd(n)) {

r = r + a;
if (n == 1) return r;

}
n = half(n);
a = a + a;
return mult_acc3(r, n, a);

}

Now it is easy to convert this to an iterative program by replacing the tail recur-
sion with a while(true) construct:

int mult_acc4(int r, int n, int a) {
while (true) {

if (odd(n)) {
r = r + a;
if (n == 1) return r;

}
n = half(n);
a = a + a;

}
}

With our newly optimizedmultiply-accumulate function, we canwrite a new
version ofmultiply. Our new versionwill invoke ourmultiply-accumulate helper
function:

int multiply2(int n, int a) {
if (n == 1) return a;
return mult_acc4(a, n - 1, a);

}

Notice that we skip one iteration of mult_acc4 by calling it with result already
set to a.

14 Chapter 2: The First Algorithm

is is pretty good, except when n is a power of 2. e first thing we do is
subtract 1, which means that mult_acc4 will be called with a number whose bi-
nary representation is all 1s, the worst case for our algorithm. So we’ll avoid this
by doing some of the work in advance when n is even, halving it (and doubling a)
until n becomes odd:

int multiply3(int n, int a) {
while (!odd(n)) {

a = a + a;
n = half(n);

}
if (n == 1) return a;
return mult_acc4(a, n - 1, a);

}

But now we notice that we’re making mult_acc4 do one unnecessary test for
odd(n), because we’re calling it with an even number. So we’ll do one halving
and doubling on the arguments before we call it, giving us our final version:

int multiply4(int n, int a) {
while (!odd(n)) {

a = a + a;
n = half(n);

}
if (n == 1) return a;
// even(n− 1) =⇒ n− 1 ̸= 1
return mult_acc4(a, half(n - 1), a + a);

}

Rewriting Code

As we have seen with our transformations of the multiply algorithm, rewriting
code is important. No one writes good code the first time; it takes many itera-
tions to find the most efficient or general way to do something. No programmer
should have a single-pass mindset.

At some point during the process you may have been thinking, “One more
operation isn’t going tomake a big difference.” But it may turn out that your code
will be reused many times for many years. (In fact, a temporary hack oen be-
comes the code that lives the longest.) Furthermore, that inexpensive operation
you’re saving now may be replaced by a very costly one in some future version
of the code.

Thoughts on the Chapter 15

Another benefit of striving for efficiency is that the process forces you to un-
derstand the problem in more depth. At the same time, this increased depth of
understanding leads to more efficient implementations; it’s a virtuous circle.

2.3 Thoughts on the Chapter
Students of elementary algebra learn how to keep transforming expressions until
they can be simplified. In our successive implementations of the Egyptian mul-
tiplication algorithm, we’ve gone through an analogous process, rearranging the
code to make it clearer and more efficient. Every programmer needs to get in
the habit of trying code transformations until the final form is obtained.

We’ve seen how mathematics emerged in ancient Egypt, and how it gave us
the first known algorithm. We’re going to return to that algorithm and expand
on it quite a bit later in the book. But for now we’re going to move ahead more
than a thousand years and take a look at some mathematical discoveries from
ancient Greece.

Ancient Greek Number Theory

Pythagoreans applied themselves to the study of mathematics.…
They thought that its principlesmust be the principles of all existing things.

Aristotle,Metaphysics

In this chapter, we’re going to look at some of the problems studied by ancient
Greek mathematicians. eir work on patterns and “shapes” of numbers led to
the discovery of prime numbers and the beginnings of a field of mathematics
called number theory. ey also discovered paradoxes that ultimately produced
some mathematical breakthroughs. Along the way, we’ll examine an ancient
algorithm for finding primes, and see how to optimize it.

3.1 Geometric Properties of Integers
Pythagoras, the Greek mathematician and philosopher who most of us know
only for his theorem, was actually the person who came up with the idea that
understanding mathematics is necessary to understand the world. He also dis-
coveredmany interesting properties of numbers; he considered this understand-
ing to be of great value in its own right, independent of any practical application.
According to Aristotle’s pupil Aristoxenus, “He attached supreme importance to
the study of arithmetic, which he advanced and took out of the region of com-
mercial utility.”

18 Chapter 3: Ancient Greek Number Theory

Pythagoras (ca. 570 BC–ca. 490 BC)

Pythagoras was born on the Greek is-
land of Samos, which was a major
naval power at the time. He came
from a prominent family, but chose
to pursue wisdom rather than wealth.
At some point in his youth he trav-
eled to Miletus to study with ales,
the founder of philosophy (see Sec-
tion 9.2), who advised him to go to
Egypt and learn the Egyptians’ math-
ematical secrets.

During the time Pythagoras was
studying abroad, the Persian empire
conquered Egypt. Pythagoras fol-

lowed the Persian army eastward to Babylon (in what is now Iraq), where he
learned Babylonian mathematics and astronomy. While there, he may have
met travelers from India; what we know is that he was exposed to and began
espousing ideas we typically associate with Indian religions, including the
transmigration of souls, vegetarianism, and asceticism. Prior to Pythago-
ras, these ideas were completely unknown to the Greeks.

Aer returning to Greece, Pythagoras started a settlement in Croton,
a Greek colony in southern Italy, where he gathered followers—both men
and women—who shared his ideas and followed his ascetic lifestyle. eir
lives were centered on the study of four things: astronomy, geometry, num-
ber theory, and music. ese four subjects, later known as the quadrivium,
remained a focus of European education for 2000 years. Each of these disci-
plines was related: the motion of the stars could be mapped geometrically,
geometry could be grounded in numbers, and numbers generatedmusic. In
fact, Pythagoras was the first to discover the numerical structure of frequen-
cies in musical octaves. His followers said that he could “hear the music of
the celestial spheres.”

Aer the death of Pythagoras, the Pythagoreans spread to several other
Greek colonies in the area anddeveloped a large body ofmathematics. How-
ever, they kept their teachings secret, somany of their resultsmay have been
lost. ey also eliminated competition within their ranks by crediting all
discoveries to Pythagoras himself, so we don’t actually know which indi-
viduals did what.

Geometric Properties of Integers 19

Although thePythagorean communitieswere gone aer a couple of hun-
dred years, their work remains influential. As late as the 17th century, Leib-
niz (one of the inventors of calculus) described himself as a Pythagorean.

Unfortunately, Pythagoras and his followers kept their work secret, so none
of their writings survive. However, we know from contemporaries what some
of his discoveries were. Some of these come from a first-century book called
Introduction to Arithmetic by Nicomachus of Gerasa. ese included obser-
vations about geometric properties of numbers; they associated numbers with
particular shapes.

Triangular numbers, for example, which are formed by stacking rows repre-
senting the firstnpositive integers, are those that formed the following geometric
pattern:

 ααα
 αα αααα

 αα ααα ααααα

 αα ααα ααααααααα
α

 αα ααα αααα ααααα
ααααααα

 αα ααα αααα ααααα
 αααααααααααααα

 1 3 6 10 15 21

Oblong numbers are those that look like this:

 αα ααα

 ααα ααα αααα

 αααα αααα αααα αααα
α

αααααααααααααααααααα
αααααα

αααααααααααααααααααααααα
ααααααααααααα

αααααααααααααααααααααααααααα
αααααααααααααααααααααα

 2 6 12 20 30 42

It is easy to see that the nth oblong number is represented by an n × (n + 1)
rectangle: ~n = n(n+ 1)
It’s also clear geometrically that each oblong number is twice its corresponding
triangular number. Since we already know that triangular numbers are the sum
of the first n positive integers, we have

~n = 2△n = 2
n∑

i=1
i = n(n+ 1)

20 Chapter 3: Ancient Greek Number Theory

So the geometric representation gives us the formula for the sum of the first n
positive integers:

△n =
n∑

i=1
i = n(n+ 1)

2

Another geometric observation is that the sequence of odd numbers forms
the shape of what the Greeks called gnomons (the Greek word for a carpenter’s
square; a gnomon is also the part of a sundial that casts the shadow):

 α ααα
 ααα ααα

 αααα αα ααα

ααααα αα αα αα
α

αααααα αα αα αα
 ααα

ααααααα αα αα αα
 αα ααα

 1 3 5 7 9 1 1

Combining the first n gnomons creates a familiar shape—a square:

 ααα
 ααα αααα

ααααααααααααα

αααααααααααααααααααα
α

αααααααααααααααααααααααα
ααααααα

αααααααααααααααααααααααααααα
ααααααααααααααα

 1 4 9 16 25 36

is picture also gives us a formula for the sum of the first n positive odd
numbers:

2n =
n∑

i=1
(2i− 1) = n2

Exercise 3.1. Find a geometric proof for the following: take any triangular num-
ber, multiply it by 8, and add 1. e result is a square number. (is problem
comes from Plutarch’s Platonic Questions.)

3.2 Sifting Primes
Pythagoreans also observed that some numbers could not bemade into any non-
trivial rectangular shape (a shape where both sides of the rectangle are greater

Sifting Primes 21

than 1). ese are what we now call prime numbers—numbers that are not prod-
ucts of smaller numbers:

2, 3, 5, 7, 11, 13, . . .

(“Numbers” for the Greeks were always whole numbers.) Some of the earliest
observations about primes come from Euclid. While he is usually associated
with geometry, several books of Euclid’s Elements actually discuss what we now
call number theory. One of his results is this theorem:

eorem 3.1 (Euclid VII, 32): Any number is either prime or divisible by some
prime.

e proof, which uses a technique called “impossibility of infinite descent,” goes
like this:1

Proof. Consider a number A. If it is prime, then we are done. If it is compos-
ite (i.e., nonprime), then it must be divisible by some smaller number B. If B
is prime, we are done (because if A is divisible by B and B is prime, then A is
divisible by a prime). If B is composite, then it must be divisible by some smaller
numberC, and so on. Eventually, wewill find a prime or, as Euclid remarks in his
proof of the previous proposition, “an infinite sequence of numbers will divide
the number, each of which is less than the other; and this is impossible.”

is Euclidean principle that any descending sequence of natural numbers ter-
minates is equivalent to the induction axiom of natural numbers, which we will
encounter in Chapter 9.

* * *

Another result, which some consider the most beautiful theorem in mathemat-
ics, is the fact that there are infinitely many primes:

eorem 3.2 (Euclid IX, 20): For any sequence of primes {p1, . . . , pn}, there is a
prime p not in the sequence.

Proof. Consider the number

q = 1+
n∏

i=1
pi

1Euclid’s proof of VII, 32 actually relies on his proposition VII, 31 (any composite number is
divisible by some prime), which contains the reasoning shown here.

22 Chapter 3: Ancient Greek Number Theory

where pi is the ith prime in the sequence. Because of the way we constructed q,
we know it is not divisible by any pi. en either q is prime, in which case it is
itself a prime not in the sequence, or q is divisible by some new prime, which
by definition is not in the sequence. erefore, there are infinitely many primes.

One of the best-known techniques for finding primes is the Sieve of Eratos-
thenes. Eratosthenes was a 3rd-century Greek mathematician who is remem-
bered in part for his amazingly accurate measurement of the circumference of
the Earth. Metaphorically, the idea of Eratosthenes’ sieve is to “si” all the num-
bers so that the nonprimes “fall through” the sieve and the primes remain at
the end. e actual procedure is to start with a list of all the candidate numbers
and then cross out the ones known not to be primes (since they are multiples of
primes found so far); whatever is le are the primes. Today the Sieve of Eratos-
thenes is oen shown starting with all positive integers up to a given number,
but Eratosthenes already knew that even numbers greater than 2 were not prime,
so he didn’t bother to include them.

Following Eratosthenes’ convention, we’ll also include only odd numbers, so
our sieve will find primes greater than 2. Each value in the sieve is a candidate
prime up to whatever value we care about. If we want to find primes up to a
maximum of m = 53, our sieve initially looks like this:

3 5 7 9 11 13 15 17 19 21 23 25 27
29 31 33 35 37 39 41 43 45 47 49 51 53

In each iteration, we take the first number (which must be a prime) and cross
out all themultiples except itself that have not previously been crossed out. We’ll
highlight the numbers being crossed out in the current iteration by boxing them.
Here’s what the sieve looks like aer we cross out the multiples of 3:

..3 5 7 �9 11 13 ��15 17 19 ��21 23 25 ��27
29 31 ��33 35 37 ��39 41 43 ��45 47 49 ��51 53

Next we cross out the multiples of 5 that have not yet been crossed out:

3 ..5 7 �9 11 13 ��15 17 19 ��21 23 ��25 ��27
29 31 ��33 ��35 37 ��39 41 43 ��45 47 49 ��51 53

And then the remaining multiples of 7:

3 5 ..7 �9 11 13 ��15 17 19 ��21 23 ��25 ��27
29 31 ��33 ��35 37 ��39 41 43 ��45 47 ��49 ��51 53

We need to repeat this process until we’ve crossed out all the multiples of factors
less than or equal to ⌊

√
m⌋, where m is the highest candidate we’re considering.

Implementing and Optimizing the Code 23

In our example, m = 53, so we are done. All the numbers that have not been
crossed out are primes:

3 5 7 �9 11 13 ��15 17 19 ��21 23 ��25 ��27
29 31 ��33 ��35 37 ��39 41 43 ��45 47 ��49 ��51 53

Before wewrite our implementation of the algorithm, we’ll make a few obser-
vations. Let’s go back to what the sieve looked like in the middle of the process
(say, when we were crossing out multiples of 5) and add some information—
namely, the index, or position in the list, of each candidate being considered:

index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …
values: 3 ..5 7 �9 11 13 ��15 17 19 ��21 23 ��25 ��27 29 31 ��33 ��35 37 ��39 …

Notice that when we’re consideringmultiples of factor 5, the step size—the num-
ber of entries between two numbers being crossed out, such as 25 and 35—is 5,
the same as the factor. Another way to say this is that the difference between the
indexes of any two candidates being crossed out in a given iteration is the same
as the factor being used. Also, since the list of candidates contains only odd
numbers, the difference between two values is twice as much as the difference
between two indexes. So the difference between two numbers being crossed out
in a given iteration (e.g., between 25 and 35) is twice the step size or, equiva-
lently, twice the factor being used. You’ll see that this pattern holds for all the
factors we considered in our example as well.

Finally, we observe that the first number crossed out in each iteration is the
square of the prime factor being used. at is, when we’re crossing out multiples
of 5, the first one that wasn’t previously crossed out is 25. is is because all the
other multiples were already accounted for by previous primes.

3.3 Implementing and Optimizing
the Code

At first glance it seems like our algorithm will need to maintain two arrays: one
containing the candidate numbers we’re siing—the “values”—and another con-
taining Boolean flags indicating whether the corresponding number is still there
or has been crossed out. However, aer a bit of thought it becomes clear that we
don’t actually need to store the values at all. Most of the values (namely, all the
nonprimes) are never used. When we do need a value, we can compute it from
its position; we know that the first value is 3 and that each successive value is 2
more than the previous one, so the ith value is 2i+ 3.

So our implementation will store just the Boolean flags in the sieve, using
true for prime and false for composite. We call the process of “crossing out”

24 Chapter 3: Ancient Greek Number Theory

nonprimes marking the sieve. Here’s a function we’ll use to mark all the non-
primes for a given factor:

template <RandomAccessIterator I, Integer N>
void mark_sieve(I first, I last, N factor) {

// assert(first != last)
*first = false;
while (last - first > factor) {

first = first + factor;
*first = false;

}
}

We are using the convention of “declaring” our template arguments with a de-
scription of their requirements. We will discuss these requirements, known as
concepts, in detail later on inChapter 10; for now, readers can consultAppendixC
as a reference. (If you are not familiar with C++ templates, these are also ex-
plained in this appendix.)

Aswe’ll see shortly, we’ll call this functionwith firstpointing to the Boolean
value corresponding to the first “uncrossed-out” multiple of factor, which as
we saw is always factor’s square. For last, we’ll follow the STL convention of
passing an iterator that points just past the last element in our table, so that last
- first is the number of elements.

* * *

Before we see how to si, we observe the following siing lemmas:

• e square of the smallest prime factor of a composite number c is less than
or equal to c.

• Any composite number less than p2 is sied by (i.e., crossed out as a multiple
of) a prime less than p.

• When siing by p, start marking at p2.

• If we want to si numbers up to m, stop siing when p2 ≥ m.

We will use the following formulas in our computation:

value at index i : value(i) = 3+ 2i = 2i+ 3

index of value v : index(v) = v− 3
2

Implementing and Optimizing the Code 25

step between multiple k and multiple k+ 2 of value at i:

step(i) = index((k+ 2)(2i+ 3))− index(k(2i+ 3))
= index(2ki+ 3k+ 4i+ 6)− index(2ki+ 3k)

=
(2ki+ 3k+ 4i+ 6)− 3

2 − (2ki+ 3k)− 3
2

=
4i+ 6

2 = 2i+ 3

index of square of value at i:

index(value(i)2) = (2i+ 3)2 − 3
2

=
4i2 + 12i+ 9− 3

2
= 2i2 + 6i+ 3

We can now make our first attempt at implementing the sieve:
template <RandomAccessIterator I, Integer N>
void sift0(I first, N n) {

std::fill(first, first + n, true);
N i(0);
N index_square(3);
while (index_square < n) {

// invariant: index_square = 2i^2 + 6i + 3
if (first[i]) { // if candidate is prime

mark_sieve(first + index_square,
first + n, // last
i + i + 3); // factor

}
++i;
index_square = 2*i*(i + 3) + 3;

}
}

Itmight seem thatwe should pass in a reference to a data structure containing
the Boolean sequence, since the sieve works only if we si the whole thing. But
by instead passing an iterator to the beginning of the range, together with its
length, we don’t constrain which kind of data structure to use. e data could be
in an STL container or in a block of memory; we don’t need to know. Note that
we use the size of the table n rather than the maximum value to si m.

26 Chapter 3: Ancient Greek Number Theory

e variable index_square is the index of the first value we want to mark—
that is, the square of the current factor. One thing we notice is that we’re
computing the factor we use to mark the sieve (i + i + 3) and other quanti-
ties (shown in slanted text) every time through the loop. We can hoist common
subexpressions out of the loop; the changes are shown in bold:
template <RandomAccessIterator I, Integer N>
void sift1(I first, N n) {

I last = first + n;
std::fill(first, last, true);
N i(0);
N index_square(3);
N factor(3);
while (index_square < n) {

// invariant: index_square = 2i^2 + 6i + 3,
// factor = 2i + 3
if (first[i]) {

mark_sieve(first + index_square, last, factor);
}
++i;
factor = i + i + 3;
index_square = 2*i*(i + 3) + 3;

}
}

e astute reader will notice that the factor computation is actually slightly
worse than before, since it happens every time through the loop, not just on
iterations when the if test is true. However, we shall see later why making fac-
tor a separate variable makes sense. A bigger issue is that we still have a rela-
tively expensive operation—the computation of index_square, which involves
two multiplications. So we will take a cue from compiler optimization and use
a technique known as strength reduction, which was designed to replace more
expensive operations like multiplication with equivalent code that uses less ex-
pensive operations like addition.2 If a compiler can do this automatically, we
can certainly do it manually.

Let’s look at these computations in more detail. Suppose we replaced

factor = i + i + 3;
index_square = 3 + 2*i*(i + 3);

with

factor += δfactor;

2While multiplication is not necessarily slower than addition on modern processors, the general
technique can still lead to using fewer operations.

Implementing and Optimizing the Code 27

index_square += δindex_square;

where δfactor and δindex_square are the differences between successive (ith and i+1st)
values of factor and index_square, respectively:

δfactor : (2(i+ 1) + 3)− (2i+ 3) = 2

δindex_square : (2(i+ 1)2 + 6(i+ 1) + 3)− (2i2 + 6i+ 3)
= 2i2 + 4i+ 2+ 6i+ 6+ 3− 2i2 − 6i− 3
= 4i+ 8 = (2i+ 3) + (2i+ 2+ 3)
= (2i+ 3) + (2(i+ 1) + 3)
= factor(i) + factor(i+ 1)

δfactor is easy; the variables cancel and we get the constant 2. But how did we sim-
plify the expression for δindex_square? We observe that by rearranging the terms,
we can express it using something we already have, factor(i), and something
we need to compute anyway, factor(i + 1). (When you know you need to
compute multiple quantities, it’s useful to see if one can be computed in terms
of another. is might allow you to do less work.)

With these substitutions, we get our final version of sift; again, our im-
provements are shown in bold:

template <RandomAccessIterator I, Integer N>
void sift(I first, N n) {

I last = first + n;
std::fill(first, last, true);
N i(0);
N index_square(3);
N factor(3);
while (index_square < n) {

// invariant: index_square = 2i^2 + 6i + 3,
// factor = 2i + 3
if (first[i]) {

mark_sieve(first + index_square, last, factor);
}
++i;
index_square += factor;
factor += N(2);
index_square += factor;

}
}

28 Chapter 3: Ancient Greek Number Theory

Exercise 3.2. Time the sieve using different data sizes: bit (using
std::vector<bool>), uint8_t, uint16_t, uint32_t, uint64_t.
Exercise 3.3. Using the sieve, graph the function

π(n) = number of primes < n

for n up to 107 and find its analytic approximation.

We call primes that read the same backward and forward palindromic primes.
Here we’ve highlighted the ones up to 1000:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163
167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251
257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547
557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751
757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859
863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997

Interestingly, there are no palindromic primes between 1000 and 2000:
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087
1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181
1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279
1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471
1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559
1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637
1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747
1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867
1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973
1979 1987 1993 1997 1999

Exercise 3.4. Are there palindromic primes > 1000? What is the reason for the
lack of them in the interval [1000, 2000]? What happens if we change our base
to 16? To an arbitrary n?

3.4 Perfect Numbers
As we saw in Section 3.1, the ancient Greeks were interested in all sorts of prop-
erties of numbers. One idea they came up with was that of a perfect number—

Perfect Numbers 29

a number that is the sum of its proper divisors.3 ey knew of four perfect
numbers:

6= 1+ 2+ 3
28= 1+ 2+ 4+ 7+ 14

496= 1+ 2+ 4+ 8+ 16+ 31+ 62+ 124+ 248
8128= 1+ 2+ 4+ 8+ 16+ 32+ 64+ 127+ 254+ 508+ 1016+ 2032+ 4064

Perfect numbers were believed to be related to nature and the structure of the
universe. For example, the number 28 was the number of days in the lunar cycle.

What the Greeks really wanted to know was whether there was a way to pre-
dict other perfect numbers. ey looked at the prime factorizations of the perfect
numbers they knew:

6 = 2 · 3 = 21 · 3
28 = 4 · 7 = 22 · 7

496 = 16 · 31 = 24 · 31
8128 = 64 · 127 = 26 · 127

and noticed the following pattern:

6 = 2 · 3 = 21 · (22 − 1)
28 = 4 · 7 = 22 · (23 − 1)

120 = 8 · 15 = 23 · (24 − 1) not perfect
496 = 16 · 31 = 24 · (25 − 1)

2016 = 32 · 63 = 25 · (26 − 1) not perfect
8128 = 64 · 127 = 26 · (27 − 1)

e result of this expression is perfect when the second term is prime. It was
Euclid who presented the proof of this fact around 300 BC.

eorem 3.3 (Euclid IX, 36):

If
n∑

i=0
2i is prime then 2n

n∑
i=0

2i is perfect.

3A proper divisor of a number n is a divisor of n other than n itself.

30 Chapter 3: Ancient Greek Number Theory

Useful Formulas

Before we look at the proof, it is useful to remember a couple of algebraic
formulas. e first is the difference of powers:

x2 − y2 = (x− y)(x+ y)
x3 − y3 = (x− y)(x2 + xy+ y2)

...
xn+1 − yn+1 = (x− y)(xn + xn−1y+ · · ·+ xyn−1 + yn) (3.1)

is result can easily be derived using these two equations:

x(xn + xn−1y+ · · ·+ xyn−1 + yn) = xn+1 + xny+ xn−1y2 + · · ·+ xyn (3.2)
y(xn + xn−1y+ · · ·+ xyn−1 + yn) = xny+ xn−1y2 + · · ·+ xyn + yn+1 (3.3)

e le and right sides of 3.2 and 3.3 are equal by the distributive law. If
we then subtract 3.3 from 3.2, we get 3.1.

e second useful formula is for the sum of odd powers:

x2n+1 + y2n+1 = (x+ y)(x2n − x2n−1y+ · · · − xy2n−1 + y2n) (3.4)

which we can derive by converting the sum to a difference and relying on
our previous result:

x2n+1 + y2n+1 = x2n+1 −−y2n+1

= x2n+1 − (−y)2n+1

= (x− (−y))(x2n + x2n−1(−y) + · · ·+ (−y)2n)
= (x+ y)(x2n − x2n−1y+ · · · − xy2n−1 + y2n)

We can get away with this because −1 to an odd power is still −1. We will
rely heavily on both of these formulas in the proofs ahead.

Now we know that for n > 0
n−1∑
i=0

2i = 2n − 1 (3.5)

by the difference of powers formula:

2n − 1 = (2− 1)(2n−1 + 2n−2 + · · ·+ 2+ 1)

(or just think of the binary number you get when you add powers of 2).

Perfect Numbers 31

Exercise 3.5. Using Equation 3.1, prove that if 2n − 1 is prime, then n is prime.

We are going to prove Euclid’s theorem the way the great German mathe-
matician Carl Gauss did. (We’ll learn more about Gauss in Chapter 8.) First,
we will use Equation 3.5, substituting 2n − 1 for both occurrences of

∑n−1
i=0 2i in

Euclid’s theorem, to restate the theorem like this:

If 2n − 1 is prime, then 2n−1(2n − 1) is perfect.

Next, we define σ(n) to be the sum of the divisors of n. If the prime factorization
of n is

n = pa1
1 p

a2
2 . . . pamm

then the set of all divisors consists of every possible combination of the prime di-
visors raised to every possible power up to ai. For example, 24 = 23 · 31, so the
divisors are {2030, 2130, 2230, 2330, 2031, 2131, 2231, 2331}. eir sum is

2030+2130+2230+2330+2031+2131+2231+2331 = (20+21+22+23)(30+31)

at is, we can write the sum of the divisors for any number n as a product of
sums:

σ(n) =
m∏
i=1

(1+ pi + p2
i + · · ·+ paii)

=
m∏
i=1

pi − 1
pi − 1 (1+ pi + p2

i + · · ·+ paii)

=
m∏
i=1

(pi − 1)(1+ pi + p2
i + · · ·+ paii)

pi − 1

=
m∏
i=1

pai+1
i − 1
pi − 1 (3.6)

where the last line relies on using the difference of powers formula to simplify
the numerator. (In this example, and for the rest of the book, whenwe use p as an
integer variable in our proofs, we assume it’s a prime, unless we say otherwise.)

Exercise 3.6. Prove that if n andm are coprime (have no common prime factors),
then

σ(nm) = σ(n)σ(m)

(Another way to say this is that σ is a multiplicative function.)

We now define α(n), the aliquot sum, as follows:

α(n) = σ(n)− n

32 Chapter 3: Ancient Greek Number Theory

In other words, the aliquot sum is the sum of all proper divisors of n—all the
divisors except n itself.

Now we’re ready for the proof of eorem 3.3, also known as Euclid IX, 36:

If 2n − 1 is prime, then 2n−1(2n − 1) is perfect.

Proof. Let q = 2n−1(2n−1). We know 2 is prime, and the theorem’s condition is
that 2n − 1 is prime, so 2n−1(2n − 1) is already a prime factorization of the form
n = pa1

1 p
a2
2 . . . pamm , where m = 2, p1 = 2, a1 = n − 1, p2 = 2n − 1, and a2 = 1.

Using the sum of divisors formula (Equation 3.6):

σ(q) = 2(n−1)+1 − 1
1 · (2

n − 1)2 − 1
(2n − 1)− 1

= (2n − 1) · (2
n − 1)2 − 1

(2n − 1)− 1 ·
(2n − 1) + 1
(2n − 1) + 1

= (2n − 1) · ((2
n − 1)(2n − 1)− 1)((2n − 1) + 1)

((2n − 1)(2n − 1)− 1)
= (2n − 1)((2n − 1) + 1)
= 2n(2n − 1) = 2 · 2n−1(2n − 1) = 2q

en
α(q) = σ(q)− q = 2q− q = q

at is, q is perfect.

We can think of Euclid’s theorem as saying that if a number has a certain
form, then it is perfect. An interesting question is whether the converse is true:
if a number is perfect, does it have the form 2n−1(2n − 1)? In the 18th century,
Euler proved that if a perfect number is even, then it has this form. He was
not able to prove the more general result that every perfect number is of that
form. Even today, this is an unsolved problem; we don’t know if any odd perfect
numbers exist.

Exercise 3.7. Prove that every even perfect number is a triangular number.

Exercise 3.8. Prove that the sum of the reciprocals of the divisors of a perfect
number is always 2. Example:

1+
1
2 +

1
3 +

1
6 = 2

3.5 The Pythagorean Program
For Pythagoreans, mathematics was not about abstract symbol manipulation, as
it is oen viewed today. Instead, it was the science of numbers and space—the

The Pythagorean Program 33

two fundamental perceptible aspects of our reality. In addition to their focus on
understanding figurate numbers (such as square, oblong, and triangular num-
bers), they believed that there was discrete structure to space. eir challenge,
then, was to provide a way to ground geometry in numbers—essentially, to have
a unified theory of mathematics based on positive integers.

To do this, they came up with the idea that one line segment could be “mea-
sured” by another:

Definition 3.1. A segment V is ameasure of a segment A if and only if A can be
represented as a finite concatenation of copies of V.

A measure must be small enough that an exact integral number of copies
produces the desired segment; there are no “fractional” measures. Of course,
different measures might be used for different segments. If one wanted to use
the same measure for two segments, it had to be a common measure:

Definition 3.2. A segment V is a commonmeasure of segments A and B if and
only if it is a measure of both.

For any given situation, the Pythagoreans believed there is a common mea-
sure for all the objects of interest. erefore, space could be represented discretely.

* * *

Since there could be many common measures, they also came up with the idea
of the greatest common measure:

Definition 3.3. A segment V is the greatest commonmeasure of A and B if it is
greater than any other common measure of A and B.

ePythagoreans also recognized several properties of greatest commonmea-
sure (GCM), which we represent in modern notation as follows:

gcm(a, a) = a (3.7)
gcm(a, b) = gcm(a, a+ b) (3.8)

b < a =⇒ gcm(a, b) = gcm(a− b, b) (3.9)
gcm(a, b) = gcm(b, a) (3.10)

Using these properties, they came up with the most important procedure in
Greek mathematics—perhaps in all mathematics: a way to compute the great-
est common measure of two segments. e computational machinery of the
Greeks consisted of ruler and compass operations on line segments. Using C++
notation, we might write the procedure like this, using line_segment as a type:

34 Chapter 3: Ancient Greek Number Theory

line_segment gcm(line_segment a, line_segment b) {
if (a == b) return a;
if (b < a) return gcm(a - b, b);

/* if (a < b) */ return gcm(a, b - a);
}

is code makes use of the trichotomy law: the fact that if you have two values a
and b of the same totally ordered type, then either a = b, a < b, or a > b.

Let’s look at an example. What’s gcm(196, 42)?
a b

196 > 42, gcm(196, 42) = gcm(196 − 42, 42) = gcm(154, 42)
154 > 42, gcm(154, 42) = gcm(154 − 42, 42) = gcm(112, 42)
112 > 42, gcm(112, 42) = gcm(112 − 42, 42) = gcm(70, 42)
70 > 42, gcm(70, 42) = gcm(70 − 42, 42) = gcm(28, 42)
28 < 42, gcm(28, 42) = gcm(28, 42 − 28) = gcm(28, 14)
28 > 14, gcm(28, 14) = gcm(28 − 14, 14) = gcm(14, 14)
14 =14, gcm(14, 14) = 14

So we’re done: gcm(196, 42) = 14.
Of course, whenwe say gcm(196, 42), we reallymeanGCMof segments with

length 196 and 42, but for the examples in this chapter, we’ll just use the integers
as shorthand.

We’re going to use versions of this algorithm for the next few chapters, so it’s
important to understand it and have a good feel for how it works. You may want
to try computing a few more examples by hand to convince yourself.

3.6 A Fatal Flaw in the Program
Greek mathematicians found that the well-ordering principle—the fact that any
set of natural numbers has a smallest element—provided a powerful proof tech-
nique. To prove that something does not exist, prove that if it did exist, a smaller
one would also exist.

Using this logic, the Pythagoreans discovered a proof that undermined their
entire program.4 We’re going to use a 19th-century reconstruction of this proof
by George Chrystal.

eorem3.4: ere is no segment that canmeasure both the side and the diagonal
of a square.

4We don’t know if Pythagoras himself made this discovery, or one of his early followers.

A Fatal Flaw in the Program 35

Proof. Assume the contrary, that there were a segment that could measure both
the side and the diagonal of some square.5 Let us take the smallest such square
for this segment:

A	
 B	

C	
 D	

Using a ruler and compass,6 we can construct a segmentAFwith the same length
as AB, and then create a segment starting at F and perpendicular to AC.

A	
 B	

C	
 D	

F	

E	

AB = AF ∧ AC ⊥ EF

Now we construct two more perpendicular segments, CG and EG:

5is is an example of proof by contradiction. For more about this proof technique, see Ap-
pendix B.1.

6Although modern readers may think of a ruler as being used to measure distances, for Euclid
it was only a way to draw straight lines. For this reason, some people prefer the term straightedge to
describe Euclid’s instrument. Similarly, although a modern compass can be fixed to measure equal
distances, Euclid’s compass was used only to draw circles with a given radius; it was collapsible, so it
did not preserve distances once lied.

36 Chapter 3: Ancient Greek Number Theory

E	

A	
 B	

C	
 D	

G	
 F	

AC ⊥ CG ∧ EG ⊥ EF

We know that ∠CFE = 90◦ (by construction) and that ∠ECF = 45◦ (since it’s
the same as ∠BCA, which is the angle formed by the diagonal of a square, and
therefore is half of 90◦). We also know that the three angles of a triangle sum to
180◦. erefore

∠CEF = 180◦ − ∠CFE− ∠ECF = 180◦ − 90◦ − 45◦ = 45◦

So ∠CEF = ∠ECF, which means CEF is an isosceles triangle, so the sides oppo-
site equal angles are equal—that is, CF = EF. Finally, we add one more segment
BF:

E	

A	
 B	

C	
 D	

G	

F	

Triangle ABF is also isosceles, with ∠ABF = ∠AFB, since we constructed AB =

AF. And ∠ABC = ∠AFE, since both were constructed with perpendiculars. So

∠ABC− ∠ABF = ∠AFE− ∠AFB
∠EBF = ∠EFB

=⇒ BE = EF

A Fatal Flaw in the Program 37

Now, we know AC is measurable since that’s part of our premise, and we know
AF is measurable, since it’s the same as AB, which is also measurable by our
premise. So their difference CF = AC − AF is also measurable. Since we just
showed that△CEF and△BEF are both isosceles,

CF = EF = BE

we know BC is measurable, again by our premise, and we’ve just shown that CF,
and therefore BE, is measurable. So EC = BC− BE is measurable.

We now have a smaller square whose side (EF) and diagonal (EC) are both
measurable by our common unit. But our original square was chosen to be the
smallest for which the relationship held—a contradiction. So our original as-
sumption was wrong, and there is no segment that can measure both the side
and the diagonal of a square. If you try to find one, you’ll be at it forever—our
line_segment_gcm(a, b) procedure will not terminate.

To put it another way, the ratio of the diagonal and the side of a square cannot
be expressed as a rational number (the ratio of two integers). Today we would
say that with this proof, the Pythagoreans had discovered irrational numbers,
and specifically that

√
2 is irrational.

e discovery of irrational numbers was unbelievably shocking. It under-
mined the Pythagoreans’s entire program; it meant that geometry could not be
grounded in numbers. So they did what many organizations do when faced
with bad news: they swore everyone to secrecy. When one of the order leaked
the story, legend has it that the gods punished him by sinking the ship carrying
him, drowning all on board.

* * *

Eventually, Pythagoras’ followers came up with a new strategy. If they couldn’t
unify mathematics on a foundation of numbers, they would unify it on a foun-
dation of geometry. is was the origin of the ruler-and-compass constructions
still used today to teach geometry; no numbers are used or needed.

Later mathematicians came up with an alternate, number-theoretic proof of
the irrationality of

√
2. One version was included as proposition 117 in some

editions of Book X of Euclid’s Elements. While the proof predates Euclid, it was
added to Elements some time aer the book’s original publication. In any case,
it is an important proof:

38 Chapter 3: Ancient Greek Number Theory

eorem 3.5:
√

2 is irrational.

Proof. Assume
√

2 is rational. en it can be expressed as the ratio of two inte-
gers m and n, where m/n is irreducible:

m
n =

√
2(m

n
)2

= 2

m2 = 2n2

m2 is even, which means that m is also even,7 so we can write it as 2 times some
number u, substitute the result into the preceding equation, and do a bit more
algebraic manipulation:

m = 2u
(2u)2 = 2n2

4u2 = 2n2

2u2 = n2

n2 is even, which means that n is also even. But if m and n are both even, then
m/n is not irreducible—a contradiction. So our assumption is false; there is no
way to represent

√
2 as the ratio of two integers.

3.7 Thoughts on the Chapter
e ancient Greeks’ fascination with “shapes” of numbers and other properties
such as prime and perfect were the basis of the mathematical field of number
theory. Some of the algorithms they used, such as the Sieve of Eratosthenes, are
still very elegant, thoughwe saw how to improve their efficiency further by using
some modern optimization techniques.

* * *

Toward the end of the chapter, we saw two different proofs that
√

2 is irrational,
one geometric and one algebraic. e fact that we have two completely different
proofs of the same result is good. It is actually essential for mathematicians to
look for multiple proofs of the same mathematical fact, since it increases their
confidence in the result. For example, Gauss spentmuch of his career coming up
with multiple proofs for one important theorem, the quadratic reciprocity law.

7is is easily shown: e product of two odd numbers is an odd number, so ifm were not even,
m2 could not be even. Euclid proved this andmany other results about odd and even numbers earlier
in Elements.

Thoughts on the Chapter 39

e discovery of irrational numbers emerged from the Pythagoreans’ at-
tempts to represent continuous reality with discrete numbers. While at first
glance wemight think they were naive to believe that they could accomplish this,
computer scientists do the same thing today—we approximate the real world
with binary numbers. In fact, the tension between continuous and discrete has
remained a central theme in mathematics through the present day, and will
probably be with us forever. But rather than being a problem, this tension has
actually been the source of great progress and revolutionary insights.

Euclid’s Algorithm

The whole structure of number theory rests on a single foundation,
namely the algorithm for finding the greatest common divisor.

Dirichlet, Lectures on Number Theory

In the previous chapter, wemet Pythagoras and the secretive order he founded to
study astronomy, geometry, number theory, and music. While the Pythagore-
ans’ failure to find a common measure of the side and the diagonal of a square
ended the dream of reducing the world to numbers, the idea of a greatest com-
mon measure (GCM) turned out to be an important one for mathematics—and
eventually for programming. In this chapter, we’ll introduce an ancient algo-
rithm for GCM that we’ll be exploring throughout the rest of the book.

4.1 Athens and Alexandria
To set the stage for the discovery of this algorithm, we now turn to one of the
most amazing times and places in history: Athens in the 5th century BC. For
150 years following the miraculous defeat of the invading Persians in the battles
of Marathon, Salamis, and Platea, Athens became the center of culture, learning,
and science, laying the foundations for much of Western civilization.

It was in the middle of this period of Athenian cultural dominance that Plato
founded his famous Academy. Although we think of Plato today as a philoso-
pher, the center of theAcademy’s programwas the study ofmathematics. Among
Plato’s discoveries were what we now call the five Platonic solids—the only con-
vex three-dimensional shapes inwhich every face is an identical regular polygon.

42 Chapter 4: Euclid’s Algorithm

Plato (429 BC–347 BC)

Plato was born into one of the ancient
noble families of Athens. As a young
man, he became a follower of Socrates,
one of the founders of philosophy,
who taught and learned by question-
ing, especially examining one’s own
life and assumptions.

Socrates was ugly, bug-eyed, shab-
bily dressed, old, and only a lowly
stonemason by trade, but his ideas
were revolutionary. At the time, self-
proclaimed wise men (“Sophists”)
promised to teach their students to
take any side of an argument and ma-

nipulate the voters. Socrates challenged the Sophists, questioning their sup-
posed wisdom and making them look foolish. While the Sophists charged
substantial fees to share their knowledge, Socrates’ followers received his
training for free. To this day, the technique Socrates introduced of asking
questions to get at the truth is known as the Socratic method. Although
Socrates was admired by some, and some of his followers went on to be
prominent leaders, he was generally considered to be a notorious trouble-
maker, and was publicly ridiculed in Aristophanes’ famous play Clouds.
Eventually, in 399 BC, Socrates was put on trial for corrupting the city’s
youth, and was condemned to death by poisoning.

Plato was profoundly influenced by Socrates, and most of his own writ-
ings take the form of dialogues between Socrates and various opponents.
Plato was devastated by Socrates’ execution, and by the fact that a society
would destroy its wisest and most just member. He le Athens in despair,
studying for a while with the priests in Egypt, and later learning mathe-
matics from the Pythagoreans in southern Italy. A decade or so later, he
returned to Athens and founded what is essentially the world’s first univer-
sity at a place called the Academy, named aer an ancient hero Academus.
Unlike the secret teachings of the Pythagoreans, the Academy’s program of
study was public and available to everyone: men and women, Greeks and
barbarians, free and slave.

Athens and Alexandria 43

Many of Plato’s dialogues, such as Apology, Phaedo, and Symposium, are
as beautifully written as any poetry. Although Plato’s best-known works
today are concernedwith a variety of ethical andmetaphysical issues, math-
ematics played a central role in the curriculum of the Academy. In fact,
Plato had the inscription “Let no one ignorant of geometry enter” writ-
ten over the entrance. He gathered many top mathematicians of the time
to teach at the Academy and develop a uniform course of study. While
Plato did not leave us any mathematical works, many mathematical ideas
are spread throughout his dialogues, and one of them,Meno, is designed to
demonstrate that mathematical reasoning is innate.

On several occasions, Plato traveled to Syracuse to influence the local
ruler to introduce a just society. He was unsuccessful; in fact, one of the
trips annoyed the ruler so much that he arranged for Plato to be sold into
slavery. Fortunately, the philosopher was quickly ransomed by an admirer.

It is hard to exaggerate the influence of Plato on European thought.
As the prominent British philosopher Whitehead said, “e safest general
characterization of the European philosophical tradition is that it consists
of a series of footnotes to Plato.”

Athenian culture spread throughout the Mediterranean, especially during
the reign of Alexander the Great. Among his achievements, Alexander founded
the Egyptian city of Alexandria (named for himself), which became the new cen-
ter of research and learning. More than a thousand scholars worked in what
we would now think of as a research institute, the Mouseion—the “Institution
of the Muses”—from which we get our word “museum.” e scholars’ patrons
were the Greek kings of Egypt, the Ptolemys, who paid their salaries and pro-
vided free room and board. Part of the Mouseion was the Library of Alexandria,
which was given the task of collecting all the world’s knowledge. Supposedly
containing 500,000 scrolls, the library kept a large staff of scribes busy copying,
translating, and editing scrolls.

* * *

It was during this period that Euclid, one of the scholars at the Mouseion, wrote
his Elements, one of the most important books in the history of mathematics.
Elements includes derivations of fundamental results in geometry and number
theory, as well as the ruler-and-compass constructions that students still learn
today.

44 Chapter 4: Euclid’s Algorithm

Euclid (flourished ca. 300 BC)

We know very little about Euclid—
not even exactly when he lived. What
we do know is that he took geometry
very seriously. According to a story
told by the philosopher Proclus Di-
adochus, one of Plato’s later successors
as head of the Academy: “Ptolemy
[the king of Egypt] once asked Euclid
whether therewas any shorterway to a
knowledge of geometry than by study
of theElements, whereuponEuclid an-
swered that there was no royal road to
geometry.” It is probable that Euclid
studied at the Academy some time af-

ter Plato’s death and brought the mathematics he learned to Alexandria.
Although we know almost nothing else about Euclid’s life, we do know

about his work. His Elements incorporatedmathematical results and proofs
from several existing texts. A careful reading reveals some of these layers;
for example, since ancient times the work on the theory of proportions in
Book V has generally been believed to be based on the work of Plato’s stu-
dent, Eudoxus. But it was Euclid who wove these ideas together to form a
carefully craed coherent story. In Book I, he starts with the fundamen-
tal tools for geometric construction with ruler and compass and ends with
what we now call the Pythagorean eorem (Proposition I, 47). In the
13th and final book, he shows how to construct the five Platonic solids, and
proves that they are the only convex regular polyhedra (bodies whose faces
are congruent, regular polygons) that exist.

Euclid’sElements shows a sense of purpose unique in the history ofmath-
ematics. Each proposition and proof is there for a reason; no unnecessary
results are presented. However beautiful, no theorem is presented unless
it is needed for the larger story. Euclid also prefers proofs that construct
as many useful results as possible with the fewest ruler-and-compass oper-
ations. His approach is reminiscent of a modern programmer striving for
minimal elegant algorithms.

From its publication around 300 BC until the beginning of the 20th cen-
tury, Euclid’s Elements was used as the basis of mathematical education. It
was not only scientists and mathematicians who studied Euclid; great po-
litical leaders such as omas Jefferson and Abraham Lincoln also admired

Euclid’s Greatest Common Measure Algorithm 45

and studied Elements throughout their lives. Even now, many people be-
lieve that students would still benefit from this approach.

4.2 Euclid’s Greatest Common Measure
Algorithm

Book X of Euclid’s Elements contained a concise treatment of incommensurable
quantities:

Proposition 2. If, when the less of two unequal magnitudes is contin-
ually subtracted in turn from the greater, that which is le never mea-
sures the one before it, then the twomagnitudes are incommensurable.

Essentially, Euclid is saying what we observed earlier in the chapter: if our pro-
cedure for computing greatest common measure never terminates, then there is
no common measure.

Euclid then goes on to explicitly describe the algorithm and prove that it
computes the GCM. is diagram may be useful in following the proof:

A	
 F	
 B	

E	
 D	
 C	

Since this is the first algorithm termination proof in history, we’re including the
entire text, using Sir omas Heath’s translation:

Proposition 3. Given two commensurable magnitudes, to find their
greatest common measure.

Proof.

Let the two given commensurable magnitudes be AB, CD of which
AB is the less; thus it is required to find the greatest common mea-
sure of AB, CD.

Now the magnitude AB either measures CD or it does not.
If then it measures it—and it measures itself also—AB is a com-

mon measure of AB, CD.
And it is manifest that it is also the greatest; for a greater magni-

tude than the magnitude AB will not measure AB.
Next, let AB not measure CD.

46 Chapter 4: Euclid’s Algorithm

en, if the less be continually subtracted in turn from the
greater, that which is le over will sometime measure the one be-
fore it, because AB, CD are not incommensurable; [cf. X. 2] let AB,
measuring ED, leave EC less than itself, let EC, measuring FB, leave
AF less than itself, and let AF measure CE.

Since, then, AF measures CE, while CE measures FB, therefore
AF will also measure FB.

But it measures itself also; therefore AF will also measure the
whole AB.

But AB measures DE; therefore AF will also measure ED.
But itmeasures CE also; therefore it alsomeasures thewhole CD.
erefore AF is a common measure of AB, CD.
I say next that it is also the greatest.
For, if not, there will be some magnitude greater than AF which

will measure AB, CD.
Let it be G.
Since then G measures AB, while AB measures ED, therefore G

will also measure ED.
But it measures the whole CD also; therefore Gwill alsomeasure

the remainder CE.
But CE measures FB; therefore G will also measure FB.
But it measures the whole AB also, and it will therefore measure

the remainder AF, the greater [measuring] the less: which is impos-
sible.

erefore no magnitude greater than AF will measure AB, CD;
therefore AF is the greatest common measure of AB, CD.

erefore the greatest common measure of the two given com-
mensurable magnitudes AB, CD has been found.

is “continual subtraction” approach to GCM is known as Euclid’s algo-
rithm (or sometimes the Euclidean algorithm). It’s an iterative version of the gcm
function we saw in Chapter 3. As we did before, we will use C++-like notation
to show its implementation:

line_segment gcm0(line_segment a, line_segment b) {
while (a != b) {

if (b < a) a = a - b;
else b = b - a;

}
return a;

}

In Euclid’s world, segments cannot be zero, so we do not need this as a
precondition.

Euclid’s Greatest Common Measure Algorithm 47

Exercise 4.1. gcm0 is inefficientwhen one segment ismuch longer than the other.
Come up with a more efficient implementation. Remember you can’t introduce
operations that couldn’t be done by ruler-and-compass construction.

Exercise 4.2. Prove that if a segment measures two other segments, then it mea-
sures their greatest common measure.

To work toward a more efficient version of line_segment_gcm, we’ll start by
rearranging, checking for b < a as long as we can:

line_segment gcm1(line_segment a, line_segment b) {
while (a != b) {

while (b < a) a = a - b;
std::swap(a, b);

}
return a;

}

We could avoid a swap in the case where a = b, but that would require an extra
test, and we’re not quite ready to optimize the code anyway. Instead, we observe
that the inner while loop is computing the remainder of a and b. Let’s factor out
that piece of functionality:

line_segment segment_remainder(line_segment a, line_segment b) {
while (b < a) a = a - b;
return a;

}

How do we know the loop will terminate? It’s not as obvious as it might appear.
For example, if our definition of line_segment included the half line starting at
a point and continuing infinitely in one direction, the code would not terminate.
e required assumptions are encapsulated in the following axiom:

Axiom of Archimedes: For any quantities a and b, there is a natural number n
such that a ≤ nb.

Essentially, what this says is that there are no infinite quantities.

* * *

48 Chapter 4: Euclid’s Algorithm

Now we can rewrite our GCM function with a call to segment_remainder:

line_segment gcm(line_segment a, line_segment b) {
while (a != b) {

a = segment_remainder(a, b);
std::swap(a, b);

}
return a;

}

So far we have refactored our code but not improved its performance. Most
of the work is done in segment_remainder. To speed up that function, we will
use the same idea as in Egyptianmultiplication—doubling andhalving our quan-
tities. is requires knowing something about the relationship of doubled seg-
ments to remainder:

Lemma 4.1 (Recursive Remainder Lemma): If r = segment_remainder(a, 2b),
then

segment_remainder(a, b) =
{
r if r ≤ b
r− b if r > b

Suppose, for example, that we wanted to find the remainder of some number
n divided by 10. We’ll try to take the remainder of n divided by 20. If the result
is less than 10, we’re done. If the result is between 11 and 20, we’ll take away 10
from the result and get the remainder that way.

Using this strategy, we can write our faster function:

line_segment fast_segment_remainder(line_segment a,
line_segment b) {

if (a <= b) return a;
if (a - b <= b) return a - b;
a = fast_segment_remainder(a, b + b);
if (a <= b) return a;
return a - b;

}

It’s recursive, but it’s a less intuitive form of upward recursion. In most recursive
programs, we go down from n to n− 1 when we recurse; here, we’re making our
argument bigger every time, going from n to 2n. It’s not obvious where the work
is done, but it works.

Euclid’s Greatest Common Measure Algorithm 49

Let’s look at an example. Suppose we have a segment a of length 45 and a
segment b of length 6, and we want to find the remainder of a divided by b:

a = 45, b = 6.
a ≤ b? (45 ≤ 6?) No.
a− b ≤ b? (39 ≤ 6?) No.
Recurse:

a = 45, b = 12
a ≤ b? (45 ≤ 12?) No.
a− b ≤ b? (33 ≤ 12?) No.
Recurse:

a = 45, b = 24
a ≤ b? (45 ≤ 24?) No.
a− b ≤ b? (21 ≤ 24?) Yes, return a− b = 21

a← 21
a ≤ b? (21 ≤ 12?) No.
return a− b = 9

a← 9
a ≤ b? (9 ≤ 6?) No.
return a− b = 9− 6 = 3

Remember that since the Greeks had no notion of a zero-length segment, their
remainders were in the range [1, n].

We still have the overhead of recursion, so we’ll eventually want to come up
with an iterative solution, but we’ll put that aside for now.

Finally, we can plug this code into our GCM function, providing a solution
to Exercise 4.1:

line_segment fast_segment_gcm(line_segment a, line_segment b) {
while (a != b) {

a = fast_segment_remainder(a, b);
std::swap(a, b);

}
return a;

}

Of course, no matter how fast it is, this code will still never terminate if a and
b do not have a common measure.

50 Chapter 4: Euclid’s Algorithm

4.3 A Millennium without Mathematics
As we have seen, ancient Greece was a source of several centuries of astonishing
mathematical developments. By the 3rd century BC, mathematics was a flour-
ishing field of study, with Archimedes (best known today for a story about dis-
covering the principle of buoyancy in his bathtub) itsmost dominant figure. Un-
fortunately, the rise of Roman power led to a stagnation inWesternmathematics
that would last for almost 1500 years. While the Romans built great works of en-
gineering, they were generally uninterested in advancing the mathematics that
made these structures possible. As the great Roman statesman Cicero said in his
Tusculan Disputations:

Among the Greeks geometry was held in highest honor; nothing
could outshine mathematics. But we have limited the usefulness of
this art to measuring and calculating.

While there wereGreekmathematicians working in Roman times, it is a remark-
able fact that there is no record of any original mathematical text written in Latin
(the language of ancient Rome) at that time.

e period of history that followed was not kind to the formerly great soci-
eties of Europe. In Byzantium, the Greek-speaking Eastern remnant of the for-
mer Roman Empire, mathematics was still studied, but innovation declined. By
the 6th to 7th centuries, scholars still read Euclid, but usually just the first book
of Elements; Latin translations didn’t even bother to include the proofs. By the
end of the first millennium, if you were a European who wanted to study math-
ematics, you had to go to cities like Cairo, Baghdad, or Cordoba in the realm of
the Arabs.

Other Mathematical Traditions

roughout ancient times, mathematics developed in many parts of the
world. Civilization depends on mathematics. All major civilizations de-
veloped number systems, which were a fundamental requirement for two
critical civic activities: collecting taxes and computing calendars to deter-
mine cultivation dates.

Furthermore, all major civilizations developed common mathematical
concepts, such as Pythagorean triples (sets of three integers a, b, c where
a2+b2 = c2). While somehave argued that this implies a commonNeolithic
source of mathematical knowledge that spread throughout the world, there
is no evidence for this claim. Today it seems more likely that this is sim-
ply the mathematical equivalent of convergent evolution in biology, where

The Strange History of Zero 51

the same characteristics evolve independently in unrelated species. e fact
that these same mathematical ideas were rediscovered independently sug-
gests their fundamental nature.

Many civilizations developed importantmathematical traditions at some
point in their history. For example, in China, 3rd-century mathematician
and poet Liu Hui wrote important commentaries on an earlier book, Nine
Chapters on the Mathematical Art, and extended the work. Among other
discoveries, he demonstrated that the value of π must be greater than 3, and
provided several geometric techniques for surveying. In India, 5th-century
mathematician and astronomer Aryabhata wrote a foundational text called
theAryabhatiya, which included algorithms for computing square and cube
roots, as well as geometric techniques. Ideas of Indian mathematics were
further developed by Arab, Persian, and Jewish scholars, all writing in Ara-
bic, who in turn heavily influenced the rebirth of European mathematics in
the early 13th century.

Computer science emerged from this reinvigorated European mathe-
matics, so this is what we are focusing on. As programmers, we are all heirs
of this tradition.

4.4 The Strange History of Zero
e next development in the history of Euclid’s algorithm required something
the Greeks didn’t have: zero. You may have heard that ancient societies had no
notion of zero, and that it was invented by Indians or Arabs, but this is only
partially correct. In fact, Babylonian astronomers were using zero as early as
1500 BC, together with a positional number system. However, their number
system used base 60. e rest of their society used base 10—for example, in
commerce—without either zero or positional notation. Amazingly, this state of
affairs persisted for centuries. Greek astronomers eventually learned the Baby-
lonian system and used it (still in base 60) for their trigonometric computations,
but again, this approachwas used only for this one application andwas unknown
to the rest of society. (It was also these Greek astronomers who started using the
Greek letter omicron, which looks just like our letter “O,” to represent zero.)

What is particularly surprising about the lack of zero outside of astronomy is
that it persisted despite the fact that the abacus was well known and commonly
used for commerce in nearly every ancient civilization. Abaci consist of stones
or beads arranged in columns; the columns correspond to 1s, 10s, 100s, and so
on, and each bead represents one unit of a given power of 10. In other words,
ancient societies used a device that represented numbers in base 10 positional
notation, yet there was no commonly used written representation of zero until
1000 years later.

52 Chapter 4: Euclid’s Algorithm

e unification of a written form of zero with a decimal positional notation
is due to early Indian mathematicians sometime around the 6th century AD.
It then spread to Persia between the 6th and 9th centuries AD. Arab scholars
learned the technique and spread it across their empire, from Baghdad in the
east to Cordoba in the west. ere is no evidence that zero was known anywhere
in Europe outside this empire (even in the rest of Spain); 300 years would pass
before this innovation crossed from one culture to the other.

e breakthrough came in 1203 when Leonardo Pisano, also known as Fi-
bonacci, published Liber Abaci (“e Book of Calculation”). In addition to in-
troducing zero and positional decimal notation, this astonishing book described
to Europeans, for the first time, the standard algorithms for doing arithmetic that
we are now taught in elementary school: long addition, long subtraction, long
multiplication, and long division. With one stroke, Leonardo brought mathe-
matics back to Europe.

Leonardo Pisano (1170–ca. 1240)

e Italian city of Pisa, which today
is landlocked, was a major port and
naval power in the 12th and 13th cen-
tury. It competed with Venice as
the dominant trading center in the
Mediterranean. ousands of Pisan
traders crisscrossed the sea routes to
the Middle East, Byzantium, North
Africa, and Spain, and the Pisan gov-
ernment sent trade representatives
to major cities to ensure their suc-
cess. One of these representatives,
Guglielmo Bonacci, was posted to Al-
geria. He decided to bring his son

Leonardo along, a decision that changed the course ofmathematical history.
Leonardo learned “Hindu digits” from the Arabs, and continued his

studies during business trips to Egypt, Syria, Sicily, Greece, and Provence.
In his book Liber Abaci, he would go on to introduce their innovations (in-
cluding zero) to Europe. But Liber Abaci was not just a translation of other
people’s work: it was a first-class mathematical treatise with many funda-
mental new contributions. Leonardo would go on to write several more
books on various branches of mathematics, including some of the most im-
portant mathematical developments in centuries.

Remainder and Quotient Algorithms 53

He called himself Leonardo Pisano (“Leonardo the Pisan”), although
since the 19th century he has usually been known as Fibonacci, an abbrevi-
ation of filius Bonacci (“son of Bonacci”).

Leonardo’s fame reached the Holy Roman Emperor, Frederick II, a great
intellectual conversant inmany languages and a patron of science andmath-
ematics, whose court was in Palermo, Sicily. Frederick came to Pisa and
organized a challenge to Leonardo by his court mathematicians. Leonardo
performed well and impressed the visiting dignitaries. Toward the end of
his life, the city of Pisa gave him a salary as a reward for his great
contributions.

Leonardo Pisano’s later work Liber Quadratorum (“e Book of Squares”),
published in 1225, is probably the greatest work on number theory in the time
span betweenDiophantus 1000 years earlier and the great Frenchmathematician
Pierre de Fermat 400 years later. Here is one of the problems from the book:

Exercise 4.3 (easy). Prove that 3
√

16+ 3
√

54 = 3
√

250.

Why was a problem like this difficult for the Greeks? ey had no terminat-
ing procedure for computing cube roots (in fact, it was later proven that no such
process exists). So from their perspective, the problem starts out: “First, execute
a nonterminating procedure.…”

Leonardo’s insight will be familiar to any middle-school algebra student, but
itwas revolutionary in the 13th century. Basically, what he saidwas,“Even though
I don’t know how to compute 3

√
2, I’ll just pretend I do and assign it an arbitrary

symbol.”
Here’s another example of the kind of problem Leonardo solved:

Exercise 4.4. Prove the following proposition from Liber Quadratorum: For any
odd square number x, there is an even square number y, such that x + y is a
square number.

Exercise 4.5 (hard). Prove the following proposition from Liber Quadratorum:
If x and y are both sums of two squares, then so is their product xy. (is is an
important result that Fermat builds on.)

4.5 Remainder and Quotient Algorithms
Once zero was widely used in mathematics, it actually took centuries longer be-
fore it occurred to anyone that a segment could have zero length—specifically,
the segment AA.

Zero-length segments force us to rethink our GCM and remainder proce-
dures, because Archimedes’ axiom no longer holds—we can add a zero-length

54 Chapter 4: Euclid’s Algorithm

segment forever, and we’ll never exceed a nonzero segment. So we’ll allow the
first argument a to be zero, but we need a precondition to ensure that the second
argument b is not zero. Having zero also lets us shi our remainders to the range
[0,n− 1], which will be crucial for modular arithmetic and other developments.
Here’s the code:

line_segment fast_segment_remainder1(line_segment a,
line_segment b) {

// precondition: b != 0
if (a < b) return a;
if (a - b < b) return a - b;
a = fast_segment_remainder1(a, b + b);
if (a < b) return a;
return a - b;

}

e only thing we’ve changed are the conditions; everywhere we used to say
a <= b, we now check a < b.

Let’s see if we can get rid of the recursion. Every time we recurse down,
we double b, so in the iterative version, we’d like to precompute the maximum
amount of doubling we’ll need. We can define a function that finds the first
repeated doubling of b that exceeds the difference a− b:

line_segment largest_doubling(line_segment a, line_segment b) {
// precondition: b != 0
while (a - b >= b) b = b + b;
return b;

}

Nowweneed our iterative function to do the same computation that happens
on the way out of the recursion. Each time it returns, the value of b has the value
it had before the most recent recursive call (i.e., the most recent doubling). So
to simulate this, the iterative version needs to repeatedly “undouble” the value,
which it will do by calling a function half. Remember, we’re still “computing”
with ruler and compass. Fortunately, there is a Euclidean procedure for “halving”
a segment,1 so we can use a half function. Nowwe can write an iterative version
of remainder:

line_segment remainder(line_segment a, line_segment b) {
// precondition: b != 0
if (a < b) return a;
line_segment c = largest_doubling(a, b);

1Draw a circle with the center at one end of the segment and radius equal to the segment; repeat
for the other end. Use ruler to connect the two points where the circles intersect. e resulting line
will bisect the original segment.

Remainder and Quotient Algorithms 55

a = a - c;
while (c != b) {

c = half(c);
if (c <= a) a = a - c;

}
return a;

}

e first part of the function, which finds the largest doubling value, does what
the “downward” recursion does, while the last part does what happens on the
way back up out of the recursive calls. Let’s look again at our example of finding
the remainder of 45 divided by 6, this time with the new remainder function:

a = 45, b = 6
a < b? (45 < 6?) No.
c← largest_doubling(45, 6) = 24
a← a− c = 45− 24 = 21
loop :

c ̸= b? (24 ̸= 6)? Yes, keep going.
c← half(c) = half(24) = 12
c ≤ a? (12 ≤ 21)? Yes. a← a− c = 21− 12 = 9

c ̸= b? (12 ̸= 6)? Yes, keep going.
c← half(c) = half(12) = 6
c ≤ a? (6 ≤ 9)? Yes. a← a− c = 9− 6 = 3

c ̸= b? (6 ̸= 6)? No, done with loop.
return a = 3

Notice that the successive values of c in the iterative implementation are the same
as the values of b following each recursive call in the recursive implementation.
Also, compare this to the trace of our earlier version of the algorithm at the end
of Section 4.2. Observe how the results of the first part (c = 24 and a = 21) here
are the same as the innermost recursion in the old example.

is is an extremely efficient algorithm, nearly as fast as the hardware imple-
mented remainder operation in modern processors.

* * *

What if we wanted to compute quotient instead of remainder? It turns out that
the code is almost the same. All we need are a couple of minor modifications,
shown in bold:

56 Chapter 4: Euclid’s Algorithm

integer quotient(line_segment a, line_segment b) {
// Precondition: b > 0
if (a < b) return integer(0);
line_segment c = largest_doubling(a, b);
integer n(1);
a = a - c;
while (c != b) {

c = half(c); n = n + n;
if (c <= a) { a = a - c; n = n + 1; }

}
return n;

}

Quotient is the number of times one line segment fits into another, so we
use the type integer to represent this count. Basically, we are going to count
multiples of b. If a < b, then we don’t have any multiples of b and we return 0.
But if a ≥ b, we initialize the counter to 1, then double it each time we halve
c, adding one more multiple for each iteration when it fits. Again, let’s work
through an example. is time, instead of finding the remainder of 45 divided
by 6, we’ll find the quotient of 45 divided by 6.

a = 45, b = 6
a < b? (45 < 6?) No.
c← largest_doubling(45, 6) = 24
n← 1
a← a− c = 45− 24 = 21
loop :

c ̸= b? (24 ̸= 6)? Yes, keep going.
c← half(c) = half(24) = 12; n← n+ n = 1+ 1 = 2
c ≤ a? (12 ≤ 21)? Yes. a← a− c = 21− 12 = 9;

n← n+ 1 = 2+ 1 = 3
c ̸= b? (12 ̸= 6)? Yes, keep going.

c← half(c) = half(12) = 6; n← n+ n = 3+ 3 = 6
c ≤ a? (6 ≤ 9)? Yes. a← a− c = 9− 6 = 3;

n← n+ 1 = 6+ 1 = 7
c ̸= b? (6 ̸= 6)? No, done with loop.

return n = 7

Sharing the Code 57

Essentially, this is the Egyptian multiplication algorithm in reverse. And Ahmes
knew it: a primitive variant of this algorithm, known to the Greeks as Egyptian
division, appears in the Rhind papyrus.

4.6 Sharing the Code
Since the majority of the code is shared between quotient and remainder, it
would make much more sense to combine them into a single function that re-
turns both values; the complexity of the combined function is the same as either
individual function. Note that C++11 allows us to use initializer list syntax {x,
y} to construct the pair that the function returns:

std::pair<integer, line_segment>
quotient_remainder(line_segment a, line_segment b) {

// Precondition: b > 0
if (a < b) return {integer(0), a};
line_segment c = largest_doubling(a, b);
integer n(1);
a = a - c;
while (c != b) {

c = half(c); n = n + n;
if (c <= a) { a = a - c; n = n + 1; }

}
return {n, a};

}

In fact, any quotient or remainder function does nearly all the work of the
other.

Programming Principle: The Law of Useful Return

Our quotient_remainder function illustrates an important programming prin-
ciple, which we call the law of useful return:

If you’ve already done the work to get some useful result,
don’t throw it away. Return it to the caller.

is may allow the caller to get some extra work done “for free” (as in the quo-
tient_remainder case) or to return data that can be used in future invocations
of the function.

Unfortunately, this principle is not always followed. For example, the C and
C++ programming languages have separate quotient and remainder operators;

58 Chapter 4: Euclid’s Algorithm

there is no way for a programmer to get both results with one call—despite the
fact that many processors have an instruction that returns both.

Most computing architectures, whether ruler-and-compass ormodernCPUs,
provide an easy way to compute half; for us, it’s just a 1-bit right shi. However,
if you should happen to be workingwith an architecture that doesn’t support this
functionality, there is a remarkable version of the remainder function developed
by Robert Floyd and Donald Knuth that does not require halving. It’s based on
the idea of the Fibonacci sequence—another of Leonardo Pisano’s inventions,
which we will discuss more in Chapter 7. Instead of the next number being dou-
ble the previous one, we’ll make the next number be the sum of the two previous
ones:2

line_segment remainder_fibonacci(line_segment a, line_segment b) {
// Precondition: b > 0
if (a < b) return a;
line_segment c = b;
do {

line_segment tmp = c; c = b + c; b = tmp;
} while (a >= c);
do {

if (a >= b) a = a - b;
line_segment tmp = c - b; c = b; b = tmp;

} while (b < c);
return a;

}

e first loop is equivalent to computing largest_doubling in our previous al-
gorithm. e second loop corresponds to the “halving” part of the code. But
instead of halving, we use subtraction to get back the earlier number in the Fi-
bonacci sequence. isworks becausewe always keep one previous value around
in a temporary variable.

Exercise 4.6. Trace the remainder_fibonacci algorithm as it computes the re-
mainder of 45 and 6, in thewaywe traced the remainder algorithm in Section 4.5.

Exercise 4.7. Design quotient_fibonacci and quotient_remainder_fibonacci.

Now that we have an efficient implementation of the remainder function, we
can return to our original problem, the greatest common measure. Using our
new remainder function from p. 54, we can rewrite Euclid’s algorithm like this:

2Note that this sequence starts at b, so the values will not be the same as the traditional Fibonacci
sequence.

Validating the Algorithm 59

line_segment gcm_remainder(line_segment a, line_segment b) {
while (b != line_segment(0)) {

a = remainder(a, b);
std::swap(a, b);

}
return a;

}

Since we now allow remainder to return zero, the termination condition for the
main loop is when b (the previous iteration’s remainder) is zero, instead of com-
paring a and b as we did originally.

We will use this algorithm for the next few chapters, leaving its structure
intact but exploring how it applies to different types. We will leave our ruler-
and-compass constructions behind and implement the algorithm with a digi-
tal computer in mind. For example, for integers, the equivalent function is the
greatest common divisor (GCD):
integer gcd(integer a, integer b) {

while (b != integer(0)) {
a = a % b;
std::swap(a, b);

}
return a;

}

e code is identical, except that we have replaced line_segment with integer
and used the modulus operator % to compute the remainder. Since comput-
ers have instructions to compute the integer remainder (as invoked by the C++
modulus operator), it’s better to use them than to rely on doubling and halving.

4.7 Validating the Algorithm
How do we know that the integer GCD algorithm works? We need to show
two things: first, that the algorithm terminates, and second, that it computes the
GCD.

To prove that the algorithm terminates, we rely on the fact that

0 ≤ (a mod b) < b

erefore, in each iteration, the remainder gets smaller. Since any decreasing
sequence of positive integers is finite, the algorithm must terminate.

To prove that the algorithm computes the GCD, we start by observing that
in each iteration, the algorithm computes a remainder of a and b, which by def-
inition is

r = a− bq

60 Chapter 4: Euclid’s Algorithm

where q is the integer quotient of a divided by b. Since gcd(a, b) by definition
divides a and also divides b (and therefore bq), it must also divide r. We can
rewrite the remainder equation as follows:

a = bq+ r

By the same reasoning, since gcd(b, r) by definition divides b (and therefore bq),
and also divides r, it must also divide a. Since pairs (a, b) and (b, r) have the
same common divisors, they have the same greatest common divisor. erefore
we have shown that

a = bq+ r =⇒ gcd(a, b) = gcd(b, r) (4.1)

At each iteration, the algorithm replaces gcd(a, b) with gcd(b, r) by taking the
remainder and swapping the arguments. Here is the list of remainders, starting
with a0 and b0, the initial arguments to the function:

r1 = remainder(a0, b0)

r2 = remainder(b0, r1)
r3 = remainder(r1, r2)
· · ·

rn = remainder(rn−2, rn−1)

Using the definition of remainder, we rewrite the sequence computed by the al-
gorithm like this:

r1 = a0 − b0q1

r2 = b0 − r1q2

r3 = r1 − r2q3

. . .

rn = rn−2 − rn−1qn

What Equation 4.1 guarantees is that theGCD stays the same each time. In other
words:

gcd(a0, b0) = gcd(b0, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn)

But we know that the remainder of rn−1 and rn is 0, because that’s what triggers
the termination of the algorithm. And gcd(x, 0) = x. So

gcd(a0, b0) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn

which is the value returned by the algorithm. erefore, the algorithm computes
the GCD of its original arguments.

Thoughts on the Chapter 61

4.8 Thoughts on the Chapter
We’ve seen how an ancient algorithm for computing the greatest common mea-
sure of two line segments could be turned into amodern function for computing
the GCD of integers. We’ve looked at variants of the algorithm and seen its re-
lationship to functions for finding the quotient and the remainder. Does the
GCD algorithm work for other things besides line segments and integers? In
other words, is there a way to make the algorithm more general? We’ll come
back to that question later in the book.

The Emergence of
Modern Number Theory

Mathematicians have tried in vain to this day
to discover some order in the sequence of prime numbers,

and we have reason to believe that it is amystery
into which the humanmindwill never penetrate.

Leonhard Euler

In the previous chapter, we saw how the fledging field of number theory, which
had fascinated the ancient Greeks, was revived in medieval Europe aer a long
period of dormancy. But number theory in its modern sense really emerged a
few hundred years later, in 17th-century France. For this chapter, we are going to
put programming aside for a bit and learn some of the results discovered by 17th-
century French mathematicians, which we’ll use for some important computer
applications later on.

5.1 Mersenne Primes and Fermat Primes
Mathematicians of the Renaissance rekindled the ancient Greeks’ fascination
with prime numbers. ey wondered whether there were certain predictable
patterns of primes. eywere particularly interested in primes of the form2n−1,
since (as we saw in Section 3.4) this was the source of perfect numbers. Mathe-
maticians from the 15th to the 18th centuries, like the Greeks before them, felt
that these numbers had special importance. Letters of the 17th-century mathe-
maticians Fermat, Mersenne, and Descartes contain many references to perfect
numbers, as well as a closely related concept, amicable numbers. In the 18th

64 Chapter 5: The Emergence of Modern Number Theory

century, the great mathematician Leonhard Euler still found the subject to be of
primary importance.

As we saw in Chapter 3, the Greeks knew that they could generate perfect
numbers from primes of the form 2n − 1. ey knew that numbers of that form
are prime for n = 2, 3, 5, and 7, and possibly 13. In 1536, Hudalricus Regius
showed that the expression was nonprime for n = 11, by finding

211 − 1 = 2047 = 23× 89

Pietro Cataldi added several more values of n to the list in 1603—17, 19, (23),
(29), 31, and (37)—but half of these (shown in parentheses) were incorrect.
Pierre de Fermat discovered that

223 − 1 = 8388607 = 47× 178481
237 − 1 = 137438953471 = 223× 61631877

In his 1644 book Cogitata Physico Mathematica, the French mathematician
Mersenne states that for n ≤ 257, 2n − 1 is prime if and only if

n = 2, 3, 5, 7, 13, 17, 19, 31, (67), 117, (257)

Two of these were wrong (shown in parentheses), and hemissed 89 and 107. Be-
cause of Mersenne’s conjecture, primes of this form became known asMersenne
primes. We still do not know whether there is an infinite number of them, but
even today Mersenne numbers are still used to search for large primes.

Marin Mersenne (1588–1648)

Starting around 1624, when Cardi-
nal Richelieu became chief minister,
France began to rise as a military, po-
litical, cultural, and scientific power.
While scholars at traditional universi-
ties still interpreted Aristotle’s ancient
works, philosophers like Descartes in
France, working outside of the uni-
versity system, were revolutionizing
the way people thought about the
world. Richelieu created the first
modern state, with a carefully orga-
nized central bureaucracy and mili-
tary, and even official control of the

French language. By 1660, France had become the undisputed leader of

Mersenne Primes and Fermat Primes 65

Europe, and French became the dominant language for diplomats and aris-
tocrats in most Western countries for the next 250 years.

It was during this period that Marin Mersenne, a French polymath and
a member of the strict religious order of Minims, had an enormous impact
on science. Although educated by the intellectual Jesuits and an accom-
plished classical scholar and mathematician, Mersenne chose the extreme
asceticism of the Minims, who held no property (even in common), ate a
strict vegan diet, and drank no alcohol. Mersenne’s humility extended to his
professional life; while other scientists proclaimed their own importance,
his cause was to help others disseminate their work and learn about each
other’s results. Mersenne did some important work on the theory of sound
and other areas, but his greatest contribution was the creation of a shared
scientific community.

Scientific journals did not yet exist, but Mersenne served as a “virtual
scientific journal,” by exchanging letters with friends and informing themof
each other’s results. Mersenne’s friends included people like Galileo, Huy-
gens, Torricelli, Descartes, Fermat, and Pascal. In fact, Mersenne arranged
for publication of Galileo’s work in Protestant Holland, despite Galileo’s
condemnation by the Catholic Church. Later in Mersenne’s life, scholars
would meet together in his cell in a kind of informal weekly conference.
When his letters were published aer his death, they were in essence the
world’s first scientific proceedings.

In a letter to Mersenne in June 1640, Fermat wrote that his factorization of
237 − 1 depends on the following three discoveries:

1. If n is not a prime, 2n − 1 is not a prime.

2. If n is a prime, 2n − 2 is a multiple of 2n.

3. If n is a prime, and p is a prime divisor of 2n− 1, then p− 1 is a multiple of n.

We’ll look at the proof of discovery 1 in a bit, but for now let’s assume that all
three statements are true.

Fermat reasoned that if 237 − 1 is not prime, it must have a prime factor p,
whichmust be odd. By observation 3, p−1 is amultiple of 37, which is equivalent
to saying that

p = 37u+ 1
Also, since p is odd, p − 1 = 37u must be even, so u must be even. at means
we can express u as 2v, which gives us:

p = 74v+ 1

Fermat therefore narrowed the factoring task from trying all possible numbers
to just those primes produced by this formula. Testing these in sequence:

66 Chapter 5: The Emergence of Modern Number Theory

What about v = 1? No, 75 is not a prime.
What about v = 2? No, 149 is prime, but is not a divisor of 237 − 1.
What about v = 3? Yes! 223 is prime, and is a divisor of 237 − 1.
So 237 − 1 is not prime.

* * *

Now let’s look at Fermat’s proof of discovery 1, which we state in its contraposi-
tive1 form.

eorem 5.1: If 2n − 1 is prime, then n is prime.

Proof. Suppose n is not prime. en there must be factors u and v such that

n = uv, u > 1, v > 1

en

2n − 1 = 2uv − 1
= (2u)v − 1
= (2u − 1)((2u)v−1 + (2u)v−2 + · · ·+ (2u) + 1) (5.1)

where the last step uses Equation 3.1, the difference of powers formula. Since
u > 1, we know that both of the following are true:

1 < 2u − 1
1 < (2u)v−1 + (2u)v−2 + · · ·+ (2u) + 1

So 5.1 shows that we have factored 2n− 1 into two numbers each greater than 1.
But this contradicts the condition of the theorem is that 2n − 1 is prime. So the
initial assumption in our proof must be false, and n must be prime.

As for discoveries 2 and 3, Fermat never shared the proofs. In a letter to his
friend Frenicle, Fermat wrote that “he would send [the proof] if he did not fear
being too long.” We shall return to them soon.

1Any implication p =⇒ q is logically equivalent to its contrapositive, which is the expression
¬q =⇒ ¬p. See “Implication and the Contrapositive” in Appendix A for more details.

Mersenne Primes and Fermat Primes 67

Pierre de Fermat (1601–1665)

Pierre de Fermat was a lawyer and
provincial magistrate from Toulouse
in the south of France. He was a
Renaissance man in the tradition of
Montaigne, interested in a variety of
subjects including classical literature,
and fluent in Latin andGreek. e last
of the great amateur mathematicians,
Fermat became interested in number
theory aer reading Bachet’s transla-
tion of Diophantus’ ancient Greek text
Arithmetic. Although he made enor-
mous contributions to mathematics,
he never personally interacted with
other mathematicians. In fact, Mersenne repeatedly invited him to visit
Paris, but as far as we know, Fermat never went.

Fermat oen boasted of his results while keeping his methods secret.
He would oen say that he had a proof of something, yet come up with an
excuse not to provide it. When he did publicize a result, he would try to
divulge as little as possible about how he did it.

During his life, Fermat never published his work, although he corre-
sponded with Mersenne and others through letters. Aer Fermat’s death,
his son published the edition of Diophantus with Fermat’s marginal notes.
ese notes contained many theorems, which were gradually confirmed by
other mathematicians in later years. e last to be solved—which became
known as Fermat’s Last eorem—was the statement that an + bn = cn has
no solutions in positive integers for n > 2. It was finally proved in 1994 by
Andrew Wiles.

Fermat notoriously wrote “the proof is too large to fit in themargin” next
to his statement of the Last eorem. As mentioned earlier, this was his
common pattern; he oen gave similar excuses to avoid sharing his proofs.
Although all but one of his conjectures have been confirmed, some of the
proofs are so complex and lengthy that later mathematicians such as Gauss
have been skeptical that Fermat actually discovered them.

In addition to his work on number theory, Fermat made major contri-
butions to other areas of mathematics. He invented analytic geometry—the
study of equations of curves—before Descartes, but described the work in

68 Chapter 5: The Emergence of Modern Number Theory

an unpublished manuscript. He also co-invented probability theory in the
course of a lengthy correspondence with Blaise Pascal.

Fermat made a lot of conjectures for which he le no proofs, but every one
has since been proven true except one:

2n + 1 is prime ⇐⇒ n = 2i

(e double-arrow symbol is read “if and only if ”; see Appendix A for details.)
Since then, numbers of this form (22i + 1) have been known as Fermat primes.
It’s easy to prove a part of his conjecture:

eorem 5.2: 2n + 1 is prime =⇒ n = 2i.

Proof. Suppose n ̸= 2i. en one of n’s factors must be odd, so we can express
that factor as 2q+ 1. is is > 1, so we can express n as

n = m(2q+ 1)

Substituting m(2q+ 1) for n and then using the formula for sum of odd powers
(Equation 3.4), we factor 2n + 1:

2n + 1 = 2m(2q+1) + 1
= 2m(2q+1) + 1m(2q+1)

= (2m)2q+1 + 12q+1

= (2m + 1)((2m)2q − (2m)2q−1 + · · ·+ 1)

But factoring 2n + 1 contradicts the premise of the conjecture; it can’t have non-
trivial factors if it’s prime. So our initial assumption in the proof is false, and
n = 2i.

What about other primes of the form 22i +1? Fermat states that 3, 5, 17, 257,
65537, 4294967297, and 18446744073709551617 are prime, and so are all the
rest of this form. Unfortunately, he was wrong about two of his examples—only
the first five are prime—and about his conjecture. In 1732, Euler showed that

232 + 1 = 4294967297 = 641× 6700417

In fact, we know that for 5 ≤ i ≤ 32, the numbers are composite. Are there any
more Fermat primes besides these five? As of this writing, no one knows.

Fermat’s Little Theorem 69

5.2 Fermat’s Little Theorem
We now come to one of the most important results in number theory.

eorem 5.3 (Fermat’s Little eorem):

If p is prime, ap−1 − 1 is divisible by p for any 0 < a < p.

Fermat claimed to have a proof of the theorem in 1640, but did not publish
it. Leibniz discovered a proof some time between 1676 and 1680, but did not
publish it either. Finally, Euler published two different proofs in 1742 and 1750.
We will prove the theorem here, but first we need to derive several other results.
While these may at first seem to be unrelated, we will see shortly how they come
together.

Leonhard Euler (1707–1783)

LeonhardEuler (pronounced “OILer”)
was born in a well-educated middle-
class family in Switzerland. A tal-
ented and well-rounded student with
an amazing memory, he studied with
Johann Bernoulli, the greatest math-
ematician of the time and a friend of
Euler’s father. (Bernoulli himself was
a student of Leibniz, the co-inventor
of calculus.)

For most of the 18th century, Czar
Peter the Great and his successors
conducted a period of dramatic re-
form that “Europeanized” Russian so-
ciety and culture. One of the results of these reforms was the creation of the
Imperial Academy of Sciences in St. Petersburg, which recruited European
scholars. It was there in 1727 that Euler, at age 20, got a job doing math-
ematical research. Within 10 years, his results in mathematics, mechanics,
and even shipbuilding established his reputation as one of the top scientific
minds in Europe. By the time Frederick the Great recruited him to come
to Berlin in 1741, Euler was an international superstar. At the time, kings
and queens considered associating with scientists and other intellectuals to

70 Chapter 5: The Emergence of Modern Number Theory

be an important way to increase their own status. roughout Euler’s years
in Berlin, the French and Russian royal courts competed to woo him away.
Eventually, in 1766, he returned to St. Petersburg, where he spent the rest
of his career.

Euler’s contributions to mathematics (and physics) were enormous. He
worked in many areas; he founded modern graph theory and made fun-
damental discoveries in number theory. However, his greatest achieve-
ment was the development of modern analysis—calculus and differential
equations—from the individual techniques invented by Newton and Leib-
niz to a systematic discipline. His three books on calculus (Introduction to
Analysis of the Infinite, Differential Calculus, and Integral Calculus) were the
definitive texts for nearly a century and still deserve careful study.

Euler wrote the first book on popular science, Letters to a German Prin-
cess, in which he explains the Newtonian view of the world to a lay person.
He also wrote an elementary algebra textbook intended for non-mathema-
ticians, which is still in print.

Euler was so prolific that aer his death, the Russian Academy of Sci-
ences took 60 years to publish all the additional work he had submitted. He
was generally regarded as the greatest mathematician in the world in his
time, and aer 200 years, we still share Laplace’s view that “he is the master
of us all.”

Our first step is another proposition from Euclid:

eorem 5.4 (Euclid VII, 30): e product of two integers smaller than a prime p
is not divisible by p.

(Another way to say this is that if p is prime and a and b are smaller than p, then
ab is not divisible by p.) If some number x is divisible by some other number y,
then x is a multiple of y: x = my. If x is not divisible by y, then dividing x by y
leaves a remainder r: x = my+ r. So we can restate the proposition like this:

p is prime ∧ 0 < a, b < p =⇒ ab = mp+ r ∧ 0 < r < p

Proof. Assume the contrary, that ab is a multiple of p. en for a given a, let b be
the smallest integer such that ab = mp. en since p is prime, we know dividing
p by b leaves a remainder v < b:

p = bu+ v ∧ 0 < v < b

Fermat’s Little Theorem 71

Multiplying both sides of the equation by a and then substituting with ab = mp
gives

ap = abu+ av
ap− abu = av
ap−mpu = av

av = (a−mu)p ∧ 0 < v < b

But this means that v is an integer smaller than b such that av is a multiple of p.
at’s a contradiction, since we chose b to be the smallest such number. So our
assumption is false, and ab is not divisible by p.

is approach was actually a common pattern for proofs in ancient Greek
mathematics: choose the smallest of something, and then show that certain as-
sumptions would lead to a smaller one.

* * *

Next, we prove a result about remainders:

Lemma 5.1 (Permutation of Remainders Lemma): If p is prime, then for any
0 < a < p,

a · {1, . . . , p− 1} =
{a, . . . , a(p− 1)} = {q1p+ r1, . . . , qp−1p+ rp−1}

where
0 < ri < p ∧ i ̸= j =⇒ ri ̸= rj

In other words, if we take all the multiples of a from 1a to (p − 1)a, and
express each multiple in the form qp + r, every remainder r will be unique and
the set of remainders will be a permutation of {1, . . . , p − 1}. (We know each
remainder is less than p, so we have p−1 unique numbers in the range [1, p−1].)

Example: If p = 7 and a = 4, then the lemma says that

{4, 8, 12, 16, 20, 24} = {0 · 7+ 4, 1 · 7+ 1, 1 · 7+ 5, 2 · 7+ 2, 2 · 7+ 6, 3 · 7+ 3}

so the remainders are
{4, 1, 5, 2, 6, 3}

which is a permutation of {1, . . . , 7− 1}.

72 Chapter 5: The Emergence of Modern Number Theory

Proof. Suppose ri = rj and i < j; that is, two of the remainders are equal. en
we could take the difference of the two corresponding elements in the set, and
the remainders ri and rj would cancel:

(qjp+ rj)− (qip+ ri) = qjp− qip
= (qj − qi)p

Since the ith and jth elements of the set are the products ai and aj, we could
equivalently write the difference of these two elements as aj− ai. at is:

aj− ai = (qj − qi)p
a(j− i) = (qj − qi)p

But this is of the form ab = mp, which implies that the product of two integers
smaller than p is divisible by p. Since this contradicts Euclid VII, 30, which we
just proved, our assumption must be false, and the remainders must be unique.

5.3 Cancellation
Now we will look at some results that deal with the notion of cancellation. If we
are multiplying two numbers x and y, they cancel (i.e., their product is 1) when
one is the multiplicative inverse of the other.

Cancellation and Modular Arithmetic

One way to view cancellation is in the context ofmodular arithmetic, which
was introduced by Carl Gauss, whom we shall meet in Chapter 8. Although
Euler did not use this technique in his proof of Fermat’s Littleeorem, you
may find it useful to understand the logic.

A good analogy for modular arithmetic is a standard 12-hour clock. If
it’s 10 o’clock, and you have to do something that’s going to take 5 hours,
you’ll be done at 3 o’clock. In a sense, you’re saying that 10 + 5 = 3. More
precisely, you’re saying that (10 + 5) mod 12 = 3. (Mathematicians would
call noon “0,” though.) Of course, we can do modular arithmetic in any
base. Here are a couple of examples using 7:

Cancellation 73

(6+ 4) mod 7 = 3

3	

2	

1
0	

5	

6	

4	

(3× 3) mod 7 = (3+ 3+ 3) mod 7 = 2

3	

2	

1
0	

5	

6	

4	

Notice in the latter case that we could also calculate our product in the tra-
ditional way, then express it in terms of multiples of the modular base and
a remainder:

(3× 3) = 9 = (1× 7) + 2

In otherwords, a valuemodulon is equivalent to the remainder aer using
n as a divisor.

In elementary arithmetic (for example, arithmetic of rational numbers),
if the product of two terms x and y is 1, then they are said to cancel, and x and
y are called inverses of each other. e same is true in modular arithmetic,
only the inverses will both be integers. For example,

(2× 4) mod 7 = 1

so 2 and 4 cancel, and are each other’s inverse.

74 Chapter 5: The Emergence of Modern Number Theory

Anegative number xmod n is equal to the positive number n−x; it’s the
position you’d get to if you “turned the clock back” by x hours. In particular,
−1 mod n = n− 1.

Just as with elementary arithmetic, we can write multiplication tables
for modular arithmetic. Here’s one for integers modulo 7:

× 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

First we express the product as amultiple of 7 and a remainder; themodular
product is then just the remainder. For example, 5×4 = 20 = (2×7)+6 =

6 mod 7, so there is a 6 in the table at the intersection of row 5 and column
4. Observe that every row is a permutation of every other row, and that
every row contains a 1. Recall that if the product is 1, the two factors are
inverses. In the table above, we see, for example, that 2 and 4 are inverses
since 2× 4 = 1 mod 7. Here’s a version of the table with the inverse of each
factor on the le shown in the column on the right:

× 1 2 3 4 5 6
1 1 2 3 4 5 6 1
2 2 4 6 1 3 5 4
3 3 6 2 5 1 4 5
4 4 1 5 2 6 3 2
5 5 3 1 6 4 2 3
6 6 5 4 3 2 1 6

Formally, for integer n > 1 and integer u > 0, we call v amultiplicative inverse
modulo n if there is an integer q such that uv = 1 + qn. In other words, u and
v are inverses if their product divided by n yields a remainder of 1. We will rely
heavily on this in the following proofs.

* * *

Cancellation 75

e next result relies on this generalized notion of cancellation:

Lemma 5.2 (Cancellation Law): If p is prime, then for any 0 < a < p there is a
number 0 < b < p such that ab = mp+ 1.

In other words, a and b cancel modulo p.
Example: Suppose again that p = 7 and a = 4. Is there a value of b that

satisfies the equation ab = mp+ 1? Let’s try all the values of b until we find one
that works:

b = 1 4 · 1 = 7m+ 1? No.
b = 2 4 · 2 = 7m+ 1? Yes, when m = 1.

Proof. By the Permutation of Remainders Lemma, we know that one of the pos-
sible products in the set

a · {1, . . . , p− 1}

will have a remainder of 1. In this case we have p− 1 unique remainders greater
than 0 and less than p, so one of themmust be 1. erefore, theremust be another
element b that cancels a.

Note that 1 and p−1 are self-canceling elements—that is, if youmultiply each
by itself, the result is 1 mod p, or (equivalently) the result can be expressed in the
formmp+1. It’s obvious that 1 ·1 can be expressed in this form, since it’s 0p+1.
What about p− 1?

(p− 1)2 = p2 − 2p+ 1 = (p− 2)p+ 1 = mp+ 1

In fact, 1 and p − 1 are the only self-canceling elements, which we’ll now
demonstrate.

Lemma 5.3 (Self-Canceling Law):

For any 0 < a < p, a2 = mp+ 1 =⇒ a = 1 ∨ a = p− 1

Proof. Assume there is a self-canceling a that’s neither 1 nor p− 1:

a ̸= 1 ∧ a ̸= p− 1 =⇒ 1 < a < p− 1

Rearranging the condition of the proof, we have

a2 − 1 = mp

76 Chapter 5: The Emergence of Modern Number Theory

Factoring the expression on the le, we have

(a− 1)(a+ 1) = mp

But since by our assumption 0 < a − 1, a + 1 < p, which means we have a
product of two integers smaller than p that is divisible by p, a contradiction with
Euclid VII, 30 (see p. 70). So our assumption is false, and the only self-canceling
elements are 1 and p− 1.

We are almost ready to prove Fermat’s Little eorem, but we still need one
more result: Wilson’s theorem, announced by Edward Waring in 1770, who at-
tributed it to his student, John Wilson. At the time, Waring stated that he was
unable to prove the theorem since he did not have the right notation—in re-
sponse to which Gauss later remarked, “One needs notion, not notation.”

eorem 5.5 (Wilson’s eorem): If p is prime, there exists an integer m such
that

(p− 1)! = mp+ (p− 1)

or in other words
(p− 1)! = (p− 1) mod p

Proof. By definition,

(p− 1)! = 1 · 2 · 3 . . . (p− 1)

By the Cancellation Law, every number a between 1 and p − 1 has a number b
in that range that’s its inverse; by the Self-Canceling Law, only 1 and p − 1 are
their own inverses. So every other number in the product except 1 and p − 1
is cancelled by its inverse; that is, their product divided by p has remainder 1.
In other words, we could express all the cancelled terms together—all the terms
between 1 and p−1—as np+1 for some n. We still have our uncanceled terms 1
and p− 1, so our product now becomes

(p− 1)! = 1 · (np+ 1) · (p− 1)
= np · p− np+ p− 1
= (np− n)p+ (p− 1)

en m = np− n satisfies the theorem.

Exercise 5.1. Prove that if n > 4 is composite, then (n− 1)! is a multiple of n.

Proving Fermat’s Little Theorem 77

5.4 Proving Fermat’s Little Theorem
Finally, using the resultswe’ve just derived, we canprove Fermat’s Littleeorem:

If p is prime, ap−1 − 1 is divisible by p for any 0 < a < p.

Proof. Consider the expression
∏p−1

i=1 ai. We can move the a terms outside the
product, so we have

p−1∏
i=1

ai = ap−1
p−1∏
i=1

i (5.2)

Wilson’s eorem can be written as
p−1∏
i=1

i = (p− 1) +mp

erefore we can make the above substitution into Equation 5.2, giving
p−1∏
i=1

ai = ap−1((p− 1) +mp)

= ap−1p− ap−1 + ap−1mp
= (ap−1 + ap−1m)p− ap−1 (5.3)

Now let’s return to the expression
∏p−1

i=1 ai. Its expansion contains all the
terms {a, 2a, 3a, . . . , (p−1)a}, which by the Permutation of Remainders Lemma
(p. 71) is the same as {q1p+ r1, . . . , qp−1p+ rp−1}. So we can write

p−1∏
i=1

ai =
p−1∏
i=1

(qip+ ri)

When we expand the product on the right, we get a sum containing many terms
with p, and one that is the product of all ri. We group all the p terms together;
they give us some multiple up. What remains is the product of all ri:

p−1∏
i=1

ai = up+
p−1∏
i=1

ri

Nowwe can applyWilson’seoremagain to the product on the right, then again
group multiples of p:

p−1∏
i=1

ai = up+ vp+ (p− 1)

= wp− 1 (5.4)

78 Chapter 5: The Emergence of Modern Number Theory

where w = u+ v+ 1. We know expressions 5.3 and 5.4 are equal, and need only
some simple rearrangement:

wp− 1 = (ap−1 + ap−1m)p− ap−1

ap−1 + wp− 1 = (ap−1 + ap−1m)p
ap−1 − 1 = (ap−1 + ap−1m)p− wp

Again, we can combine multiples of p on the right, giving our desired result:

ap−1 − 1 = np

So ap−1 − 1 is divisible by p.

We also observe that ap−2 is an inverse of a, since ap−2 · a = ap−1, which
Fermat’s Little eorem tells us is mp + 1. (Remember that being an inverse
with respect to p means having a remainder of 1 aer dividing by p.)

* * *

What about the converse of Fermat’s Littleeorem? To prove that, we need one
more intermediate result:

Lemma 5.4 (Non-invertibility Lemma): If n = uv ∧ u, v > 1, then u is not
invertible modulo n.

Proof. Let n = uv and w be an inverse of u (i.e., wu = mn+ 1). en

wn = wuv
= (mn+ 1)v
= mvn+ v

wn−mvn = v

So if we define z = (w−mv), then

(w−mv)n = zn = v

Since n > v, then zn > v, which is a contradiction with zn = v. So u cannot
have an inverse.

Definition 5.1. Two numbers m and n are coprime if gcd(m,n) = 1. Equiva-
lently, m and n are coprime if they have no common factors greater than 1.

eNon-invertibility Lemma tells us that whenwe are dealing with numbers
modulo n, where n is not prime, there are invertible elements and non-invertible
elements; elements that are not coprime to n are not invertible.

Euler’s Theorem 79

eorem 5.6 (Converse of Fermat’s Little eorem): If for all a, 0 < a < n,

an−1 = 1+ qan

then n is prime.

Proof. Suppose n is not prime; that is, n = uv. en by the Non-invertibility
Lemma, u is not invertible. But by the condition of the theorem, un−1 = un−2u =

1 + qun. In other words, u has an inverse un−2, which is a contradiction. So n
must be prime.

5.5 Euler’s Theorem
Like any great mathematician, Euler was not satisfied with just proving Fermat’s
Little eorem; he wanted to see if it could be generalized. Since Fermat’s Little
eorem was only for primes, Euler wondered whether there was a similar re-
sult that would include composite numbers. But composite numbers do strange
things in modular arithmetic. To illustrate this, let’s take a look at the multi-
plication table modulo 10, which we’ve annotated by showing inverses of the
le-hand factor on the right-hand side of the table:

× 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 1
2 2 4 6 8 0 2 4 6 8
3 3 6 9 2 5 8 1 4 7 7
4 4 8 2 6 0 4 8 2 6
5 5 0 5 0 5 0 5 0 5
6 6 2 8 4 0 6 2 8 4
7 7 4 1 8 5 2 9 6 3 3
8 8 6 4 2 0 8 6 4 2
9 9 8 7 6 5 4 3 2 1 9

e table should look a bit familiar, because it’s just like the traditional 10×10
multiplication table, if you keep only the last digit of each product. For example,
7×9 = 63, which is 3mod 10. Immediately we can see differences from the table
we did for 7, which was prime (see p. 74). For one thing, the rows are no longer
permutations of each other. More importantly, some rows now contain 0. at’s
a problem for multiplication—how can the product of two things be 0? at
would mean that we get into a situation where we can never escape zero—any
product of the result will be zero.

80 Chapter 5: The Emergence of Modern Number Theory

e other property we noted earlier about primes—that only 1 and −1 are
self-canceling—happens to be true for 10 as well, but is not always true for com-
posite numbers. (e integer 8, for example, has four self-canceling elements: 1,
3, 5, and 7.)

Let’s look at the multiplication table for 10 again, focusing on certain entries:

× 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 1
2 2 4 6 8 0 2 4 6 8
3 3 6 9 2 5 8 1 4 7 7
4 4 8 2 6 0 4 8 2 6
5 5 0 5 0 5 0 5 0 5
6 6 2 8 4 0 6 2 8 4
7 7 4 1 8 5 2 9 6 3 3
8 8 6 4 2 0 8 6 4 2
9 9 8 7 6 5 4 3 2 1 9

erows that contain only “good” products (i.e., no zeros) are the oneswhose
first factor is shown in a rectangular box on the le—which also happen to be
the rows where that factor has an inverse, shown on the right side of the table.
Which rows have this property? ose that represent numbers that are coprime
with 10. (Remember, being coprime means having no common factors greater
than 1.)

So could we just use the good rows and leave out the rest? Not quite, because
some of the results in good rows would themselves lead to bad rows if used in
a successive product. (For example, 3 is a good row, but (3 × 5) × 2 = 0.)
Euler’s ideawas to use only the entries in good columns as well as good rows—the
numbers in shaded cells. Notice that those numbers have all the nice properties
we saw for primes: the shaded numbers in each row are permutations of each
other, each set of shaded numbers contains a 1, and so on.

* * *

To extend Fermat’s Little eorem for composite numbers, Euler uses only these
bold values. He starts by defining the size of the set of coprimes:

Definition 5.2. e totient of a positive integer n is the number of positive in-
tegers less than n that are coprime with n. It is given by the formula:

ϕ(n) = |{0 < i < n ∧ coprime(i,n)}|

is is known as the Euler totient function or Euler ϕ function.

Euler’s Theorem 81

ϕ(n) gives us the number of rows containing shaded entries in the multipli-
cation table modulo n. For example, ϕ(10) = 4, and ϕ(7) = 6, as we can see
from the multiplication tables given earlier.

Since primes by definition don’t share any prime factors with smaller num-
bers, the totient of a prime number is

ϕ(p) = p− 1

In other words, all numbers less than a given prime are coprime with it.
What Euler realized was that the p − 1 in Fermat’s theorem is just a special

case; it’s whatϕ happens to be for primes. Nowwe can state Euler’s generalization
of Fermat’s Little eorem.

eorem 5.7 (Euler’seorem): coprime(a, n) ⇐⇒ aϕ(n)− 1 is divisible by n.

Exercise 5.2. Prove Euler’s eorem by modifying the proof of Fermat’s Little
eorem. Steps:

• Replace Permutation of Remainders Lemma with Permutation of Coprime
Remainders Lemma. (Essentially, use the same proof but look only at “good”
elements.)

• Prove that every coprime remainder has a multiplicative inverse. (We just
showed that the remainders form a permutation, so 1 has to be somewhere in
the permutation.)

• Use the product of all coprime remainders where the proof of Little Fermat
has the product of all nonzero remainders.

* * *

We would like to be able to compute the ϕ function for any integer. Since we can
express any integer as the product of powers of primes, we’ll start by seeing how
to compute the totient of a power of a prime p. We want to know the number of
coprimes of pm. We know there are at most pm− 1 of them, because that’s all the
possible numbers less than pm. But we also know that those divisible by p (i.e.,
multiples of p) are not coprime, so we need to subtract however many of these
there are from our total:

82 Chapter 5: The Emergence of Modern Number Theory

ϕ(pm) = (pm − 1)− |{p, 2p, . . . , pm − p}|
= (pm − 1)− |{1, 2, . . . , pm−1 − 1}|
= (pm − 1)− (pm−1 − 1)
= pm − pm−1

= pm
(
1− 1

p

)
What happens if we have ϕ(puqv), where p and q are both primes? Again, we

start with the maximum possible and then subtract off all the multiples. So we’ll
subtract the number of multiples of p and also the number of multiples of q, but
then we have to add back multiples of both p and q, because otherwise they’d
be subtracted twice. (is general technique, known as the inclusion-exclusion
principle, is oen used in combinatorics.) Let us assume n = puqv:

ϕ(n) = (n− 1)−
(
n
p − 1

)
−
(
n
q − 1

)
+

(
n
pq − 1

)
= n− n

p −
n
q +

n
pq

= n
(
1− 1

p −
1
q +

1
pq

)
= n

[(
1− 1

p

)
− 1

q

(
1− 1

p

)]
= n

(
1− 1

p

)(
1− 1

q

)
= pu

(
1− 1

p

)
qv
(
1− 1

q

)
= ϕ(pu)ϕ(qv)

As a special case when we have a simple product of two primes, p1 and p2, we
now know that

ϕ(p1p2) = ϕ(p1)ϕ(p2) (5.5)

For example, since 10 = 5× 2,

ϕ(10) = ϕ(5)ϕ(2) = 4

Although the case we caremost about is the one given here, we can generalize
the formula to handle a product of any number of primes raised to powers, not
just two. For example, if we had three factors p, q, and r, we’d subtract all the
multiples of each, then add back the double-counted multiples of pq, pr, and qr,

Applying Modular Arithmetic 83

and then compensate for our overcompensation by again subtracting multiples
of pqr. Extending this to m primes gives this formula, where n =

∏m
i=1 p

ki
i :

ϕ(n) = ϕ

(m∏
i=1

pkii

)

= n
m∏
i=1

(
1− 1

pi

)

=

m∏
i=1

ϕ
(
pkii
)

Euler’s interest in proving his theorem led to his need to count coprimes.
His derivation of the ϕ function gave him a tool that allowed him to efficiently
compute this count in the cases where the prime decomposition is known.

5.6 Applying Modular Arithmetic
In Section 5.3, we saw how modular multiplication was related to remainders.
Let’s take a look at a couple of our important results from earlier in the chapter
and seewhat some examples look like if we do themmodulo 7. Wilson’seorem
states that for a prime p, there exists some m such that

(p− 1)! = (p− 1) +mp

Another way to say this is

(p− 1)! = (p− 1) mod p

Let’s see if we can confirm that result if p is 7. p−1 is 6, so we start by expanding
6! into its factors, rearranging them, and using our modular multiplication table
to cancel inverses:

6! = 1× 2× 3× 4× 5× 6
= 1× (2× 4)× (3× 5)× 6
= (1× 1× 1× 6) mod 7
= 6 mod 7

which is what Wilson’s eorem predicts.
Similarly, let’s use modular multiplication to see what Fermat’s Little eo-

rem says. e original form is

If p is prime, ap−1 − 1 is divisible by p for any 0 < a < p.

84 Chapter 5: The Emergence of Modern Number Theory

But with modular arithmetic, we could restate it as

If p is prime, ap−1 − 1 = 0 mod p for any 0 < a < p.

or

If p is prime, ap−1 = 1 mod p for any 0 < a < p.

Again, let’s use p = 7, and try a = 2. is time we’ll expand our expression,
multiply both sides by 6!, and then use modular multiplication to cancel terms:

26 = (2× 2× 2× 2× 2× 2)
26 × 6! = (2× 2× 2× 2× 2× 2)× (1× 2× 3× 4× 5× 6)

= (2× 1)× (2× 2)× (2× 3)× (2× 4)× (2× 5)× (2× 6)
= (2× 4× 6× 1× 3× 5) mod 7
= (1× 2× 3× 4× 5× 6) mod 7
= 6! mod 7

26 = 1 mod 7

which is what Fermat’s Little eorem tells us.

5.7 Thoughts on the Chapter
Earlier, we sawhow the ancientGreekswere interested in perfect numbers. ere
wasn’t any practical value to this work; they were simply interested in exploring
properties of certain kinds of numbers for their own sake. Yet as we have seen in
this chapter, over time the search for these “useless” perfect numbers led to the
discovery of Fermat’s Littleeorem, one of themost practically useful theorems
in all of mathematics. We’ll see why it’s so useful in Chapter 13.

is chapter also gave us a first look at the process of abstraction in mathe-
matics. Euler looked at Fermat’s Littleeoremand realized that he could extend
it from one specific situation (primes) to a more general one (integers). He saw
that the exponent in Fermat’s theorem was a special case of a more general con-
cept, the number of coprimes. at same process of abstraction lies at the heart
of generic programming. Generalizing code is like generalizing theorems and
their proofs. Just as Euler saw how to extend Fermat’s result from one type of
mathematical object to another, so programmers can take a function that was
designed for one type of computational object (say, vectors) and extend it to
work equally well on another (perhaps linked lists).

Abstraction in Mathematics

Mathematicians do not study objects, but the relations between objects;
to them it is amatter of indifference if these objects are replaced by others,

provided that the relations do not change. Matter does not
engage their attention, they are interested in form alone.

Poincaré, Science and Hypothesis

e history of mathematics is filled with discoveries of new abstractions: find-
ing ways to solve a more general problem. For example, we saw in Chapter 5
how Euler generalized Fermat’s Little eorem so it would work with composite
numbers as well as primes. Eventually, mathematicians realized that they could
generalize beyond numbers, and derive results about abstract entities called al-
gebraic structures—collections of objects that follow certain rules. is led to the
development of an entirely new branch of mathematics, abstract algebra. In this
chapter, we’ll introduce the first examples of these abstract entities, and prove
some of their properties. As we did in the previous chapter, we’re going to put
programming aside while we build the foundations we need to derive a generic
algorithm in Chapter 7.

6.1 Groups
e first and most important of these algebraic structures, discovered by French
mathematician Évariste Galois in 1832, is called a group.

Definition 6.1. A group is a set on which the following are defined:

operations : x ◦ y, x−1

constant : e

86 Chapter 6: Abstraction in Mathematics

and on which the following axioms hold:

x ◦ (y ◦ z) = (x ◦ y) ◦ z associativity
x ◦ e = e ◦ x = x identity

x ◦ x−1 = x−1 ◦ x = e cancellation

e constant e is the identity element (also sometimes written id), which is oen
written as 1 inmultiplicative contexts. eoperation x−1 is the inverse operation;
applying the operation to an item and its inverse results in the identity element,
as the last axiom shows. e group operation is binary, which simplymeans that
it takes two arguments (it has nothing to do with the binary representation of
numbers used in computers). e symbol ◦ (sometimes written ∗) can represent
any binary operation, as long as it follows the axioms.

We oen treat the group operation as multiplication, and even refer to “mul-
tiplying” two elements of a group, although what we really mean is applying the
group operation, whatever it might be. Just as with multiplication, the sym-
bol for the operation is oen dropped; that is, x ◦ y may be written xy, and
x ◦ x = xx = x2.

e group operation is not necessarily commutative (commutativity means
that ∀x, y : x ◦ y = y ◦ x). When we want to require commutativity, we need to
specify a particular kind of group:

Definition 6.2. An abelian group is a group whose operation is commutative.

One kind of abelian group is the additive group:

Definition 6.3. An additive group is an abelian group where the group opera-
tion is addition.

Additive groups are the exception to the naming conventions given earlier. For
an additive group, the symbol+ is used to represent its operation and 0 its iden-
tity element. Even though the name “additive group” says nothing about com-
mutativity, it is by convention assumed to be commutative.

Groups are closed under their operation. is means that if you take any two
elements of the group and apply the group operation, the result will itself be a
member of the group. Similarly, they are closed under the inverse function: if
you take the inverse of any element of the group, the result is still an element of
the group.

Some examples of groups follow:

• Additive group of integers: the elements are integers and the operation is
addition.

• Multiplicative group of nonzero remainders modulo 7: the elements are the
numbers 1 through 6 and the operation is multiplication modulo 7.

Groups 87

• Group of rearrangements of a deck of cards: the elements are permutations of
the deck and the operation is composition of these permutations.

• Multiplicative group of invertible matrices (those with nonzero determinants)
with real coefficients: the elements are matrices and the operation is matrix
multiplication.

• Group of rotations of the plane: the elements are different rotations around the
origin and the operation is composition of these rotations.

Note that integers do not form a multiplicative group, because the multiplicative
inverse of most integers is not an integer. In other words, integers are not closed
under multiplicative inverse.

Exercise 6.1. How many integers have multiplicative inverses that are integers?
What are they?

Let’s look at one of the examples in a bit more detail. In Chapter 5, we looked
at the multiplication table for integers modulo 7:

× 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

e unique values in the table—the set {1, 2, 3, 4, 5, 6}—are also called “nonzero
remaindersmodulo 7,” and aswe noted earlier, these form amultiplicative group.
What does that mean? Since it’s a multiplicative group, the group operation is
multiplication, and its identity element is 1. We can see from the first row and
column of the table that 1 is the identity, because the product of any element x
and 1 is x.

Since groups are closed under their operation, if we multiply any two mem-
bers of the group, we get another member of the group. For example:

2 ◦ 5 = (2× 5) mod 7 = 3
4 ◦ 3 = (4× 3) mod 7 = 5
5 ◦ 2 = (5× 2) mod 7 = 3

Associativity and commutativity of modular multiplication follows from asso-
ciativity and commutativity of integer multiplication. e commutativity or

88 Chapter 6: Abstraction in Mathematics

abelianness of the group is evident by observing that the multiplication table
is symmetric with respect to the main diagonal.

Since groups are closed under inverse, if we take the inverse of any member
of the group, we get another member of the group. (Recall that the inverse of
an element x is the element that produces 1 when multiplied by x. From the
multiplication table, you can see the pairs of inverses by looking at the rows and
columns whose cells contain 1s.) For example:

2−1 = 4 mod 7
4−1 = 2 mod 7
5−1 = 3 mod 7

Évariste Galois (1811–1832)

e concept of groups started with
the work of Évariste Galois, a young
French college dropout involved in
a revolutionary movement, and the
most romantic figure in the history of
mathematics.

In the early 19th century, a ro-
mantic spirit spread through Europe;
young people idolized the English
poet Byron, who died fighting for
Greek independence, and others who
were willing to give their lives for a
cause. ey remembered Napoleon
not as a tyrant, but as a young hero

who abolished feudalism throughout Europe.
Paris in the early 1830s was aflame with revolutionary activity. Galois,

whowas a bohemian hothead, joined the revolutionarymovement. As a ro-
mantic rebel, Galois did not follow the conventional path through a univer-
sity education. Aer failing to be admitted to one school and being expelled
from another, he studied mathematics on his own, becoming an expert on
Lagrange’s theory of polynomials. He served brief prison sentences for vari-
ous protest activities, such asmarching through the streets in the uniformof
a banned national guard unit while carrying several loaded weapons—but
kept doing mathematics while in prison.

At age 20, Galois, defending the honor of a woman whom he apparently
barely knew, issued a challenge (or was challenged) to a duel. e night

Monoids and Semigroups 89

before the duel, certain of his impending death, he wrote a long letter to a
friend describing his mathematical ideas. is manuscript contained the
seeds of the theory of groups, fields, and their automorphisms (mappings
onto themselves). ese ideas laid the foundations for a major new field
of mathematics, abstract algebra. According to mathematician Hermann
Weyl, “is letter, if judged by the novelty and profundity of ideas it con-
tains, is perhaps themost substantial piece of writing in the whole literature
of mankind.”

e next day, Galois fought the duel and died as a result of his wounds.
It is ironic that while he only played at being a revolutionary in politics, he
was a true revolutionary in mathematics.

6.2 Monoids and Semigroups
In some situations, we are interested in algebraic structures that have fewer re-
quirements than groups. (We’ll see some of these applications in the next chap-
ter.) For example, there are times when we don’t need to require an inverse op-
eration, but we want to maintain the other properties of a group. is is called a
monoid. More formally:

Definition 6.4. A monoid is a set on which the following are defined:

operation : x ◦ y
constant : e

and on which the following axioms hold:

x ◦ (y ◦ z) = (x ◦ y) ◦ z associativity
x ◦ e = e ◦ x = x identity

is definition is literally the same as the one for groups, except we’ve le out
the inverse operation and the axiom of cancellation that uses it. As with groups,
we can define particular kinds of monoids by specifying the operation, such as
an additivemonoid (where the operation is addition) and amultiplicativemonoid
(where the operation is multiplication).

Some examples of monoids follow:

• Monoid of finite strings (free monoid): the elements are strings, the operation
is concatenation, and the identity element is the empty string.

• Multiplicative monoid of integers: the elements are integers, the operation is
multiplication, and the identity element is 1.

90 Chapter 6: Abstraction in Mathematics

Wecan relax the requirements even further by dropping the identity element.
is is called a semigroup:
Definition 6.5. A semigroup is a set on which the following is defined:

operation : x ◦ y

and on which the following axiom holds:

x ◦ (y ◦ z) = (x ◦ y) ◦ z associativity
Again, all we’ve done is taken the previous definition and removed some-

thing—in this case, the requirement that there be an identity element, and the
axiom that uses it. And as we did with groups and monoids, we can define addi-
tive semigroups and multiplicative semigroups as semigroups that use those op-
erations.

Some examples of semigroups follow:
• Additive semigroup of positive integers: the elements are positive integers and

the operation is addition.

• Multiplicative semigroup of even integers: the elements are even integers and
the operation is multiplication.
As we mentioned earlier, mathematicians write repeated applications of the

semigroup, monoid, or group operation with the same conventions as ordinary
multiplication. For example:

x ◦ x ◦ x = xxx = x3

More formally, we define raising a semigroup to a power as follows:

xn =

{
x if n = 1
xxn−1 otherwise

(6.1)

Exercise 6.2. Why can’t we define power for semigroups starting with n = 0?
Equation 6.1 shows the semigroup operation happening on the le side of the

power (i.e., it says xxn−1, not xn−1x). What if we wanted to write the expansion
the other way? We can do that, too, as we will now prove:

Lemma 6.1: For n ≥ 2, xxn−1 = xn−1x.

Proof. We prove this by induction.1
Basis: n = 2. It’s obviously true, because

xx1 = xx = x1x

1For a refresher on this proof technique, see Appendix B.2.

Monoids and Semigroups 91

As the induction hypothesis, we assume the statement is true for n = k− 1:

xx(k−1)−1 = xxk−2 = xk−2x = x(k−1)−1x

and then derive the result for n = k:

xxk−1 = x(xxk−2) by definition of power
= x(xk−2x) by induction hypothesis
= (xxk−2)x by associativity of semigroup operation
= (xk−1)x by definition of power

Even though a semigroup guarantees only associativity and not commutativ-
ity of its operation, it turns out that powers of a given semigroup element always
commute, which we can also prove by generalizing this result. is is perhaps
the most important theorem on semigroups.

eorem 6.1 (Commutativity of Powers): xnxm = xmxn = xn+m

Proof. Proof by induction on m.
Basis: m = 1:

xnx = xxn by Lemma 6.1
= xn+1 by definition of power

Inductive step: Assume true for m = k. Show for m = k+ 1:

xnxk+1 = xn(xxk) by definition of power
= (xnx)xk by associativity of semigroup operation
= xn+1xk by Lemma 6.1 and definition of power
= xn+1+k by inductive hypothesis
= xn+k+1 by commutativity of integer addition

We have shown that xnxm = xn+m. erefore, it is also true that xmxn = xm+n.
Since integer addition is commutative, xn+m = xm+n, so xnxm = xmxn.

A semigroup is the weakest interesting algebraic structure. e only require-
ment le to relax is the associativity axiom. An algebraic structure calledmagma
drops even that axiom, but it turns out not to be very useful. Since there are no
axioms le, no theorems can be proved.

92 Chapter 6: Abstraction in Mathematics

6.3 Some Theorems about Groups
Now let’s return to groups and look at some of their properties.

An important observation is that all groups are transformation groups. In
other words, every element a of the group G defines a transformation of G onto
itself:

x→ ax

For example, with the additive group of integers, if we choose a = 5, then this
acts as a “+5” operation, transforming the set of elements x to the set x+5. ese
transformations are one-to-one because of our invertibility axiom:

a−1(ax)→ x

In our example, we can undo our+5 transformation by applying the inverse,−5.

eorem 6.2: A group transformation is a one-to-one correspondence.2

is is equivalent to saying that for any finite set S of elements of group G and
any element a of G, a set of elements aS has the same number of elements as S.

Proof. If S = {s1, . . . , sn}, then aS = {as1, . . . , asn}. We know that the set aS
can’t contain more unique elements than S, but could it contain fewer? (at
would be the case if two of the elements in S were mapped to the same element
in aS.) Suppose two elements of aS were the same: asi = asj. en

a−1(asi) = a−1(asj)
(a−1a)si = (a−1a)sj by associativity

esi = esj by cancellation
si = sj by identity

So if two results of the transformation ask are equal, then their inputs sk must
be equal. Equivalently (by the contrapositive of the previous statement), if the
inputs are not equal, then the results of the transformation must not be equal.
Since we started with n distinct arguments, we will have n distinct results. In
other words, the set aS has the same number of elements as S.

2A one-to-one correspondence between two sets is a mapping between them that is both one-to-
one and onto.

Some Theorems about Groups 93

Here are a few more simple results about groups:

eorem 6.3: ere is a unique inverse for every element.

ab = e =⇒ b = a−1

Proof. Suppose ab = e. en we can multiply both sides by a−1 on the le, like
this:

ab = e
a−1(ab) = a−1e
(a−1a)b = a−1

eb = a−1

b = a−1

eorem 6.4: e inverse of a product is the reversed product of the inverses.

(ab)−1 = b−1a−1

Proof. e two expressions are equal if and only if multiplying one by the inverse
of the other yields the identity element. We’ll use the inverse of (ab)−1, which
by definition is (ab), and multiply it by b−1a−1:

(ab)(b−1a−1) = a(bb−1)a−1

= aa−1

= e

eorem 6.5: e power of an inverse is the inverse of the power.

(x−1)n = (xn)−1

Proof by induction. Basis: n = 1

(x−1)1 = x−1 = (x1)−1

Inductive step: Assume true for n = k − 1; that is, (x−1)k−1 = (xk−1)−1. en
prove for n = k.

We want to show that (x−1)k = (xk)−1; that is, the inverse of xk is (x−1)k. If
that’s true, then when we multiply them together, we should get the identity ele-
ment. Using the definition of power and the commutativity of powers theorem,

94 Chapter 6: Abstraction in Mathematics

we’ll rewrite xk as xk−1x and (x−1)k as x−1(x−1)k−1, regroup the terms to get
some to cancel, and then substitute using our inductive assumption:

xk(x−1)k = (xxk−1)(x−1(x−1)k−1)

= (xk−1x)(x−1(x−1)k−1)

= xk−1(xx−1)(x−1)k−1

= xk−1(x−1)k−1

= xk−1(xk−1)−1

= e

erefore (xn)−1 = (x−1)n.

Exercise 6.3 (very easy). Prove that any group has at least one element.

Definition 6.6. If a group has n > 0 elements, n is called the group’s order. If a
group has infinitely many elements, its order is infinite.

ere is also the notion of the order of an element in a group:

Definition 6.7. An element a has an order n > 0 if an = e and for any 0 < k <

n, ak ̸= e. (In other words, the order of a is the smallest power of a that produces
e.) If such n does not exist, a has an infinite order.

Exercise 6.4 (very easy). What is the order of e? Prove that e is the only element
of such order.

* * *

We now come to an important theorem about groups:

eorem 6.6: Every element of a finite group has finite order.

Proof. If n is an order of the group, then for any element a, {a, a2, a3, . . . , an+1}
has at least one repetition ai and aj. Let us assume that 1 ≤ i < j ≤ n + 1, ai is
the first repeated element and aj is its first repetition. en

aj = ai

aja−i = aia−i = e
aj−i = e

and j− i > 0 is the order of a.

Subgroups and Cyclic Groups 95

is proof uses a version of the pigeonhole principle. (To learnmore about the
pigeonhole principle and how to use it, see Appendix B.3.) e result guarantees
that this simple algorithm for computing the order of an element will terminate:
just keep multiplying by itself until you get e.

Exercise 6.5. Prove that if a is an element of order n, then a−1 = an−1.

6.4 Subgroups and Cyclic Groups
Definition 6.8. A subset H of a group G is called a subgroup of G if

e ∈ H
a ∈ H =⇒ a−1 ∈ H
a, b ∈ H =⇒ a ◦ b ∈ H

In otherwords, to be a subgroup,Hmust be a subset and a group. Associativity of
the operation on G implies its associativity onH, so we do not need to explicitly
state the associativity requirement in the definition; by the same reasoning, we
do not need to explicitly restate the identity and cancellation axioms.

For example, the additive group of even numbers is a subgroup of the additive
group of integers; so is the additive group of numbers divisible by 5.

Some groups have many subgroups, but almost all groups have at least two:
the group itself and the group consisting of just the element e. ese two sub-
groups are called trivial subgroups. (e only group that doesn’t have at least
two subgroups is the group that consists of just the identity element.)

Let’s return again to the multiplicative group {1, 2, 3, 4, 5, 6} of nonzero re-
mainders modulo 7 and its multiplication table:

× 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Our group has four multiplicative subgroups:

{1}, {1, 6}, {1, 2, 4}, {1, 2, 3, 4, 5, 6}

How canwe tell? To be a subgroup, each one first needs to be a subset of the orig-
inal group. Each of these is obviously a subset of {1, 2, 3, 4, 5, 6}, since all of their

96 Chapter 6: Abstraction in Mathematics

elements are contained in the larger set. Next, each subset also contains 1 (the
identity element) and is closed under its operation (multiplication modulo 7)
and its inverse operation.

For example, consider the set {1, 2, 4}: if we multiply any element of the set
by itself or any other member of the set any number of times (mod 7), we will
still get a result in the set.
Exercise 6.6. Find orders of every element of:
• e multiplicative group of remainders mod 7

• e multiplicative group of remainders mod 11
* * *

e simplest kind of groups are cyclic groups.
Definition 6.9. A finite group is called cyclic if it has an element a such that for
any element b, there is an integer n where

b = an

In other words, every element in the group can be generated by raising one par-
ticular element to different powers. Such an element is called a generator of the
group; a group may have multiple generators. e additive group of remainders
modulo n is an example of a cyclic group.

In our previous example of remainders modulo 7, we can tell that the gener-
ators are 3 and 5, because they are not in any nontrivial subgroup of the original
group.
Exercise 6.7. Prove that any subgroup of a cyclic group is cyclic.
Exercise 6.8. Prove that a cyclic group is abelian.

Lemma 6.2: Powers of a given element in a finite group form a subgroup.

In other words, every element of a finite group is contained in a cyclic subgroup
generated by this element.

Proof. For a set to be a subgroup, it must be a nonempty subset and it must be
a group. To be a subset, it must be closed under the group operation. We know
it’s closed under the operation because the product of two powers is a power.
To be a group, its operation needs to be associative, it must contain the identity
element, and it must have an inverse operation. We know the operation is as-
sociative, because it’s the same operation from the original group. We know the
set of powers of a given element has an identity element, since we showed ear-
lier (eorem 6.6) that every element of a finite group has finite order.3 And we

3Recall that part of the definition of an element a having a finite order is that an = e.

Lagrange’s Theorem 97

know that they have an inverse, because for every power ak, an−k is its inverse,
where n is the order of a.

6.5 Lagrange’s Theorem
One of the remarkable things about abstract algebra is that we can prove results
for structures such as groups without knowing anything about either the specific
items in the group or the operation. To see an important example of this, we will
start by proving a few simple results about cosets.

Definition 6.10. If G is a group and H ⊂ G is a subgroup of G, then for any
a ∈ G the (le) coset of a by H is a set

aH = {g ∈ G | ∃h ∈ H : g = ah}

In other words, a coset aH is a set of all elements in G obtainable by multiplying
elements of H by a.

As an example, consider the additive group4 of integers Z and its subgroup,
integers divisible by 4, 4Z. (e use of Z as a symbol for integers comes from
the German word Zahlen, which means “numbers.”) It has four distinct cosets:
4n, 4n + 1, 4n + 2, and 4n + 3. Adding other integers will result only in values
that are already in one of these cosets; for example, the coset 4n+ 5 will contain
the same elements as the coset 4n + 1. (e le and right cosets are the same,
since integer addition is commutative.)

Lemma 6.3 (Size of Cosets): In a finite group G, for any of its subgroups H, the
number of elements in a coset aH is the same as the number of elements in the
subgroup H.

Proof. We already proved the one-to-one correspondence of transformations aS
when S is a subset of G. Since a subgroup is by definition also a subset, then we
know themapping fromH to aH is also a one-to-one correspondence. If there is
a one-to-one correspondence between two finite sets, they are the same size.

Lemma 6.4 (Complete Coverage by Cosets): Every element a of a group G be-
longs to some coset of subgroup H.

Proof. a ∈ aH. at is, every element a belongs to the coset aH generated by
itself, because H, being a subgroup, contains the identity element.

4Remember, in an additive group, the role of group “multiplication” is played by addition. So the
coset aH consists of elements of G obtainable by adding a to elements of H.

98 Chapter 6: Abstraction in Mathematics

Lemma 6.5 (Cosets are either disjoint or identical): If two cosets aH and bH in
a group G have a common element c, then aH = bH.

Proof. Suppose the common element c is aha in one coset and bhb in the other
coset.

aha = bhb
Multiplying both sides on the right by h−1

a , we get

ahah−1
a = bhbh−1

a

a = bhbh−1
a

a = b(hbh−1
a)

e term on the right is b times something fromH (we know it’s fromH because
hb is from H and h−1

a is from H, and since H is a subgroup, it is closed under
multiplication). Now let’s multiply both sides on the right by x, an arbitrary
element from H:

ax = b(hbh−1
a)x

We know by definition that ax is in the coset aH. We also know that the term
on the right is b times something from H, so it’s also in the coset bH. Since we
can do this for any x in H, aH ⊆ bH. We can then repeat the process from
the beginning, this time using h−1

b instead of h−1
a , to show that bH ⊆ aH. So

bH = aH.

With these results, we can state an important theorem in group theory, which
illustrates the power of abstract reasoning. If you want to learn one theorem
in group theory, this is the one. While it’s very simple to state, it provides the
foundation for the theory of finite groups.

eorem 6.7 (Lagrange’seorem): e order of a subgroup H of a finite group
G divides the order of the group.

Proof.

1. e group G is covered by cosets of H. (Proved earlier, Lemma 6.4)

2. Different cosets are disjoint. (Proved earlier, Lemma 6.5)

3. ey are of the same size n, where n is the order of H. (Proved earlier,
Lemma 6.3. Specifically, the result says that |aH| = |H| for any a, so every
coset has size |H| and therefore the same size as every other coset.)

Lagrange’s Theorem 99

erefore the order of G is nm, where m is the number of distinct cosets, which
means that the order of G is a multiple of the order of H. In other words, the
order of H divides the order of G.

As an example, suppose a group G has two distinct cosets of its subgroup H.
en every element of G must be covered by one or the other (but not both) of
those cosets, so the order of H must be |G|/2.

Interestingly, the converse of Lagrange’s eorem is not true: in a group of
order n, not every divisor of n will have a subgroup of corresponding order.

Joseph-Louis Lagrange (1736–1813)

e leading mathematician in Europe
at the end of the 18th century was
Joseph-Louis Lagrange, who was a
successor of Leonhard Euler both in
terms of intellectual leadership and
as holder of a position as director of
mathematics at the Prussian Academy
of Sciences in Berlin.

Lagrange was bornGiuseppe Luigi
Lagrancia in Turin, in the northern
Italian region of Piedmont. As his
original name suggests, he grew up
speaking Italian, although his family
claimed French ancestry. Lagrange
discovered mathematics largely on his own while a student in Turin, and
within a few years became an instructor and began publishing his work.

Sometime around age 20, he began corresponding with Euler, who was
in Berlin at the time. Impressed by Lagrange’s work, Euler acted as amentor
to the youngermathematician, encouraging him and promoting his discov-
eries. Euler began lobbying to bring Lagrange to Berlin, but by the time this
plan came to fruition in 1766, Euler had moved back to Russia. With Euler
gone, Lagrange was appointed to his mentor’s former position, and soon es-
tablished himself as the second most prominent mathematician in Europe.

Lagrange spent the next 20 years in Berlin, and did his most important
work during this period, contributing to several areas of mathematics and
physics. His book Analytical Mechanics, perhaps one of the 10 most impor-
tant books in the history ofmathematics, described a top-down approach to
solving mechanical problems that was more general than using Newtonian
mechanics. Much of modern physics relies on Lagrange’s work. He also did

100 Chapter 6: Abstraction in Mathematics

extensive work on polynomial equations, realizing that coefficients could be
expressed as functions of a polynomial’s roots, and laid the groundwork for
a later breakthrough by Galois. And in number theory, Lagrange figured
out when continued fractions will be periodic, complementing Euler’s ear-
lier work on the subject.

Aer the death of his patron and friend, King Friedrich II of Prussia,
Lagrangewas approached by the French ambassador (acting on orders from
King Louis XVI) to convince the great mathematician to move to France.
Lagrange agreed, and would live in Paris from 1786 until his death.

Despite his prominence, Lagrange was a shy, unpretentious man with
few friends and little social life. He was prone to bouts of depression, and
made little progress on his work for years at a time, particularly during his
first years in France. However, the French Revolution revived his interest—
although he oen feared he would need to flee the country due to the revo-
lutionaries’ expulsion of most foreigners. He became involved in efforts to
come up with a new system of weights andmeasures, and was one of a com-
mittee of five prominent scientists who voted to approve what we now call
the metric system. Lagrange also began teaching again, although by many
accounts he was not popular with students, who had trouble understanding
both his ideas and his Italian accent.

In his later years, Lagrange was favored by the new emperor Napoleon
Bonaparte—himself quite an accomplished mathematician. Napoleon rec-
ognized Lagrange’s genius, and made him a Count of the Empire.

* * *

Now we’ll prove a couple of corollaries to Lagrange’s eorem:

Corollary 6.7.1: e order of any element in a finite group divides the order of the
group.

Proof. e powers of an element of G form a subgroup of G. Since the order
of an element is the order of the subgroup, and since the order of the subgroup
must divide the order of the group, then the order of the element must divide
the order of the group.

(Reminder: e order of an element is equal to the order of the cyclic group of
its powers.)

Lagrange’s Theorem 101

Corollary 6.7.2: Given a group G of order n, if a is an element of G, then an = e.

Proof. If a has an order m, then m divides n (by the previous corollary), so n =

qm. am = e (by definition of order of an element). erefore (am)q = e and
an = e.

Note that this doesn’t say that the order of a is n; it could be smaller.

Lagrange’s eorem lets us easily prove some important results from Chap-
ter 5 in much simpler fashion than we did the first time:

Fermat’s Littleeorem: If p is prime, ap−1−1 is divisible by p for any 0 < a < p.

Proof. Let us take the multiplicative group of remainders modulo p. It contains
p − 1 nonzero remainders. Since p − 1 is the order of the group, it follows im-
mediately from Corollary 6.7.2 that

ap−1 = e

Since the identity element for a multiplicative group is 1 (specifically, 1 mod p in
our group of remainders), we have

ap−1 = 1 mod p

ap−1 − 1 = 0 mod p
which is what it means to be divisible by p.

Euler’seorem: For 0 < a < n, where a and n are coprime, aϕ(n)− 1 is divisible
by n.

Proof. Let us take the multiplicative group of invertible remainders modulo n.
Since ϕ(n) is by definition the number of coprimes, and every coprime is invert-
ible, ϕ(n) gives us the order of the group. It follows immediately from Corol-
lary 6.7.2 that

aϕ(n) = e
aϕ(n) = 1 mod n

or equivalently
aϕ(n) − 1 = 0 mod n

e logic is exactly the same as the previous proof.

Exercise 6.9 (very easy). What are subgroups of a group of order 101?

Exercise 6.10. Prove that every group of prime order is cyclic.

102 Chapter 6: Abstraction in Mathematics

6.6 Theories and Models
Groups, monoids, and semigroups are examples of what mathematicians call
theories. People use the word “theory” in many ways, oen meaning some-
thing like “conjecture”—that is, an unproven explanation. But to mathemati-
cians, “theory” has a very specific meaning, which does not include this sense of
being unproven.

Definition 6.11. A theory is a set of true propositions.

From now on, when we use the word “theory,” we’ll mean this specific math-
ematical sense. Here are some important facts about theories:

• A theory can be generated by a set of axioms plus a set of inference rules.

• A theory is finitely axiomatizable if it can be generated from a finite set of
axioms.

• A set of axioms is independent if removing one will decrease the set of true
propositions.

• A theory is complete if for any proposition, either that proposition or its nega-
tion is in the theory.

• A theory is consistent if for no proposition it contains both that proposition
and its negation.

Let’s look at a specific example: the notion of groups that we’ve been dis-
cussing throughout the chapter. A group is a theory in the sense we’ve just
defined—specifically, a theory that, given operations x ◦ y and x−1 and the iden-
tity element e, has these axioms:

x ◦ (y ◦ z) = (x ◦ y) ◦ z
x ◦ e = e ◦ x = x

x ◦ x−1 = x−1 ◦ x = e

Starting with these, we can derive any number of true propositions (theorems),
such as

x ◦ y = x =⇒ y = e
(x ◦ y)−1 = y−1 ◦ x−1

We aren’t enumerating all the true propositions that constitute the theory of
groups. Rather, we’re generating the propositions by deriving them from the
axioms and from previously proven propositions. For example, we can prove
the first theorem by multiplying both sides of the equation by x−1. Like basis
vectors in linear algebra, axioms form a basis for the theory. Also like the linear
algebra case, we can have more than one basis for the same theory.

Theories and Models 103

* * *

Closely associated with the notion of a theory is that of a model. Again, the
mathematical meaning is quite different from the everyday meaning:

Definition 6.12. A set of elements where all the operations in the theory are
defined and all the propositions in the theory are true is called its model.

In a sense, a model is a particular implementation of a theory. A model gives
you the specific set of elements; a theory does not. Just as there can be multiple
implementations of, say, an algorithm, so there can be multiple models of a the-
ory. For example, the additive group of integers and the multiplicative group of
nonzero remainders modulo 7 are both models of the theory of abelian groups.

emore5 propositions there are in a theory, the fewer differentmodels there
are. If we generate propositions from axioms and inference rules, then fewer
axiomsmeans fewer propositions, and thereforemoremodels. ismakes sense
intuitively: axioms and propositions are constraints on a theory; the more of
them you have, the harder it is to satisfy all of them, so the fewer models there
will be that do so.

Conversely, the more models there are for a theory, the fewer propositions
there are. If there are more ways to do something, there must be fewer con-
straints on how you can do it.

Definition 6.13. Twomodels are isomorphic if there is a one-to-one correspon-
dence between them that preserves their operations. is means we can apply
the mapping (or its inverse) before or aer the operation and we’ll get the same
result.

x, y x', y'

f(x', y') = (f(x, y))' f(x, y)

mapping

mapping

operation operation

For example, we can map natural numbers to even natural numbers with the
mapping “multiply by 2,” anduse addition as our operation. Ifwe add twonatural

5e notion of “more” that we’re interested in here is that of additional. If the set of propositions
for theory A contains all the propositions of theory B, plus some additional ones, then we say A has
more, even if both have a countably infinite number of propositions.

104 Chapter 6: Abstraction in Mathematics

numbers and then apply the mapping (i.e., multiply by 2), we get the same result
as if we first multiply by 2 and then add the numbers:

3, 4 6, 8

14 7

N ⟼ even

N ⟼ even

f(x,y) = x + y f(x,y) = x + y

An isomorphism of a model with itself is called an automorphism.

Definition 6.14. A (consistent) theory is called categorical or univalent if all of
its models are isomorphic.6

An inconsistent theory is one that has no models—there’s no way to satisfy
all the propositions without a contradiction.

Categorical Theories versus STL

For a long time, people believed that only categorical theories were good for
programming. When the C++ Standard Template Library (STL) was first
proposed, some computer scientists opposed it on the grounds that many
of its fundamental concepts, such as Iterator, were underspecified. In fact, it
is this underspecification that gives the library its generality. While linked
lists and arrays are not computationally isomorphic, many STL algorithms
are defined on input iterators and work on both data structures. If you can
get by with fewer axioms, you allow for a wider range of implementations.

6.7 Examples of Categorical and
Non-categorical Theories

Let’s look at an example of a categorical theory with two isomorphic models:
cyclic groups of order 4. e first model is Z4, the additive group of remainders

6is is the original definition by Oswald Veblen. Modern logicians talk about κ-categorical
theories: all models of the cardinality κ are isomorphic. Full treatment of modern model theory is
well outside the scope of this book.

Examples of Categorical and Non-categorical Theories 105

modulo 4 (consisting of {0, 1, 2, 3}); the second model is
(
Z′

5,×
)
, the mul-

tiplicative group of nonzero remainders modulo 5 (consisting of {1, 2, 3, 4}).
ese groups have the following “multiplication” tables:

0	
 1	
 2	
 3	

0	
 0	
 1	
 2	
 3	

1	
 1	
 2	
 3	
 0	

2	
 2	
 3	
 0	
 1	

3	
 3	
 0	
 1	
 2	

1	
 2	
 3	
 4	

1	
 1	
 2	
 3	
 4	

2	
 2	
 4	
 1	
 3	

3	
 3	
 1	
 4	
 2	

4	
 4	
 3	
 2	
 1	

ℤ4! (ℤ5
ʹ′,	
 ×	
)	

!

Even though the numbers are different, these two models are isomorphic; we
could map elements of one to elements of the other. In theory, there are 4! = 12
possible mappings—0 in the first model could map to 1, 2, 3, or 4 in the second,
then 1 could map to the three remaining choices, and so on. But in this case, the
actual number of possibilities is much smaller.

We observe that in the first model, the values 1 and 3 are generators of the
group—we could start with either of them, raise it to a power using the group
operation, and get all the other elements. In the secondmodel, 2 and 3 are gener-
ators. is helps us narrow the choices: a generator from one group has to map
to a generator from the other group, which in this case gives us two different
mappings. For example, we can say, “the role of 1 in the first model is played by
2 in the second model, and 3 in the first model corresponds to 3 in the second.”

What about the other two values? We know from the multiplication tables
that 0 in the first model is the identity element, a role played by 1 in the second
model. Finally, we know that 2 in the first model maps to 4 in the second model,
because in both cases it is the only non-identity element that gives identity when
applied to itself.

So we have two possible mappings:

Value in Z4 Value in
(
Z′

5,×
)

0 1
1 2
2 4
3 3

Value in Z4 Value in
(
Z′

5,×
)

0 1
1 3
2 4
3 2

How do we know these mappings produce our second model? One way is to
see if we can use them to transform the Z4 multiplication table into the

(
Z′

5,×
)

multiplication table. Let’s try it using the second mapping.

106 Chapter 6: Abstraction in Mathematics

First, we replace the values from the Z4 table with the mapped values. at
gives us:

54	

1	
 3	
 4	
 2	

1	
 1	
 3	
 4	
 2	

3	
 3	
 4	
 2	
 1	

4	
 4	
 2	
 1	
 3	

2	
 2	
 1	
 3	
 4	

en we permute the rows and columns so the headers are in the right order.
We’ll start by swapping the last two columns and the last two rows (shaded in
the preceding table):

53	

1	
 3	
 2	
 4	

1	
 1	
 3	
 2	
 4	

3	
 3	
 4	
 1	
 2	

2	
 2	
 1	
 4	
 3	

4	
 4	
 2	
 3	
 1	

Finally, we’ll swap the middle two rows and columns:

54	

1	
 2	
 3	
 4	

1	
 1	
 2	
 3	
 4	

2	
 2	
 4	
 1	
 3	

3	
 3	
 1	
 4	
 2	

4	
 4	
 3	
 2	
 1	

is is exactly the multiplication table for
(
Z′

5,×
)

we showed on p. 105, which
is what we wanted.

* * *

Now let’s look at an example of a non-categorical theory: all groups of order 4.
While there is only one non-isomorphic group of order 1, 2, or 3, there are two
non-isomorphic groups of order 4: the cyclic group Z4, which we just described,
and a group called the Klein group. ere are two important models of the Klein

Thoughts on the Chapter 107

group: the multiplicative group of units modulo 8 (consisting of {1, 3, 5, 7}) and
the group of isometries transforming a rectangle into itself (the identity trans-
form, vertical symmetry, horizontal symmetry, and 180◦ rotation).

ese two kinds of groups have the following multiplication tables. Since we
don’t know the individual elements of a theory, this time we’ll write them using
e to mean the identity element and a, b, and c to mean their other elements:

Non-­‐isomorphic	
 groups	
 of	
 order	
 4	

e	
 a	
 b	
 c	

e	
 e	
 a	
 b	
 c	

a	
 a	
 b	
 c	
 e	

b	
 b	
 c	
 e	
 a	

c	
 c	
 e	
 a	
 b	

62	

e	
 a	
 b	
 c	

e	
 e	
 a	
 b	
 c	

a	
 a	
 e	
 c	
 b	

b	
 b	
 c	
 e	
 a	

c	
 c	
 b	
 a	
 e	

Cyclic	
 group	
 ℤ4! Klein	
 group	
 !

In the table on the le, addition is our operation and we can think of “e” as being
0 (the additive identity) and a, b, and c as representing the integers 1, 2, and 3.
So, for example, a ◦ b = 1 + 2 = 3 = c; therefore the value at row a and column b
is c.

Are these two groups really different (i.e., not isomorphic), or is there a way
to transform one into the other, as we did before? In other words, is there a
distinguishing proposition for groups of order 4? Yes, the proposition

∀x ∈ G : x2 = e

is true for the Klein group but false for Z4. We can see this by looking at the
diagonal of the multiplication table. Another way to see that they are different
is to notice that the cyclic group contains two generators, while the Klein group
contains none.

6.8 Thoughts on the Chapter
In this chapter we introduced the idea of algebraic structures, abstract sets of
elements that obey certain properties. We looked at groups, the most important
of these structures, and their weaker cousins monoids and semigroups. ese
are summarized in the following table, which we’ll be adding to later:

108 Chapter 6: Abstraction in Mathematics

   
semigroup x ◦ y x ◦ (y ◦ z) = (x ◦ y) ◦ z

Example: positive integers under addition
monoid x ◦ y e x ◦ (y ◦ z) = (x ◦ y) ◦ z

x ◦ e = e ◦ x = x
Example: strings under concatenation

group x ◦ y e x ◦ (y ◦ z) = (x ◦ y) ◦ z
x−1 x ◦ e = e ◦ x = x

x ◦ x−1 = x−1 ◦ x = e
Example: invertible matrices under multiplication

abelian group x ◦ y e x ◦ (y ◦ z) = (x ◦ y) ◦ z
x−1 x ◦ e = e ◦ x = x

x ◦ x−1 = x−1 ◦ x = e
x ◦ y = y ◦ x

Example: two-dimensional vectors under addition

Each row of the table includes all the properties of the previous row, with one or
more additions. We can view the relationships between the structures like this:

Iden%ty	

Binary	

Opera%on	

Inverse	

Associa%ve	

Commuta%ve	

Semigroup	

Monoid	

Group	

Abelian	

Group	

Magma	

Thoughts on the Chapter 109

For example, the diagram shows that a monoid is a semigroup that also has an
identity element (and the identity axiom).

A few additional structures we talked about are most easily defined in terms
of others:

 
additive semigroup semigroup where operation is + and (by convention)

commutes
additive monoid additive semigroup with identity element 0
subgroup group that is a subset of another group
cyclic group group where all elements can be obtained by raising (at

least) one element to different powers

We also saw how we could derive properties of groups (like the one stated by
Lagrange’s eorem) without knowing anything about the particular elements
being manipulated. In other words, we saw how to derive results about theories
without specifying a particular model. Now we’re ready to put these algebraic
structures to practical use.

Deriving a Generic Algorithm

To generalize somethingmeans to think it.

Hegel, Philosophy of Right

In this chapter we’ll take the Egyptian multiplication algorithm from Chapter 2
and, by using the mathematical abstractions introduced in the previous chapter,
generalize it to apply to a wide variety of problems beyond simple arithmetic.

7.1 Untangling Algorithm Requirements
Two steps are required to write a good piece of code. e first step is to get the
algorithm right. e second step is to figure out which sorts of things (types)
it works for. Now, you might be thinking that you already know the type—it’s
int or float or whatever you started with. But that may not always be the case;
things change. Next year someone may want the code to work with unsigned
ints or doubles or something else entirely. We want to design our code so we
can reuse it in these different situations.

Let’s take another look at the multiply-accumulate version of the Egyptian
multiplication algorithm we developed in Chapter 2. Recall that we are multi-
plying n by a and accumulating the result in r; also recall that we have a precon-
dition that neither n nor a can be zero:
int mult_acc4(int r, int n, int a) {

while (true) {
if (odd(n)) {

r = r + a;
if (n == 1) return r;

}

112 Chapter 7: Deriving a Generic Algorithm

n = half(n);
a = a + a;

}
}

is timewe’vewritten someof the code in a slanted typeface and someof it in
a bold typeface. Notice that the slanted and bold parts are disjointed; there are no
places where a “slanted variable” and a “bold variable” are combined or interact
with each other in any way. is means that the requirements for being a slanted
variable don’t have to be the same as the requirements for being a bold variable—
or to put it in programming language terms, they can be different types.

So what are the requirements for each kind of variable? Until now, we’ve
declared the variables as ints, but it seems as if the algorithm would work for
many other similar types as well. Slanted variables r and a must be some type
that supports adding—we might say that they must be a “plusable” type. e
bold variable n must be able to be checked for oddness, compared with 1, and
must support division by 2 (it must be “halvable”). Note that division by 2 is a
much more restricted operation than division in general. For example, angles
can be divided by 2 with ruler-and-compass construction, while dividing them
by 3 is impossible in that framework.

We’ve established that r and a are the same type, which we’ll write using the
template typename A. Similarly, we said that n is a different type, which we’ll call
N. So instead of insisting that all the arguments be of type int, we can now write
the following more generic form of the program:

template <typename A, typename N>
A multiply_accumulate(A r, N n, A a) {

while (true) {
if (odd(n)) {

r = r + a;
if (n == 1) return r;

}
n = half(n);
a = a + a;

}
}

is makes the problem easier—we can figure out the requirements for A
separately from the requirements on N. Let’s dig a bit deeper into these types,
starting with the simpler one.

Requirements on A 113

7.2 Requirements on A
What are the syntactic requirements on A? In other words, which operations can
we do on things belonging to A? Just by looking at how variables of this type are
used in the code, we can see that there are three operations:

• ey can be added (in C++, they must have operator+).

• ey can be passed by value (in C++, they must have a copy constructor).

• ey can be assigned (in C++, they must have operator=).

We also need to specify the semantic requirements. at is, we need to say
what these operationsmean. Ourmain requirement is that +must be associative,
which we express as follows:

A(T) =⇒ ∀a, b, c ∈ T : a+ (b+ c) = (a+ b) + c

(In English, we might read the part before the colon like this: “If type T is an A,
then for any values a, b, and c in T, the following holds: ….”)

Even though + is associative in theory (and in math generally), things are
not so simple on computers. ere are real-world cases where associativity of
addition does not hold. For example, consider these two lines of code:

w = (x + y) + z;

w = x + (y + z)

Suppose x, y, and z are of type int, and z is negative. en it is possible
that for some very large values, x + y will overflow, while this would not have
happened if we added y + z first. e problem arises because addition is not well
defined for all possible values of the type int; we say that + is a partial function.

To address this problem, we clarify our requirements. We require that the
axioms hold only inside the domain of definition—that is, the set of values for
which the function is defined.1

* * *

In fact, there are a couple more syntactic requirements that we missed. ey are
implied by copy construction and assignment. For example, copy construction
means tomake a copy that is equal to the original. To do this, we need the ability
to test things belonging to A for equality:

1For a more rigorous treatment of this topic, see Section 2.1 of Elements of Programming by
Stepanov and McJones.

114 Chapter 7: Deriving a Generic Algorithm

• ey can be compared for equality (in C++, they must have operator==).

• ey can be compared for inequality (in C++, they must have operator!=).

Accompanying these syntactic requirements are semantic requirements for
what we call equational reasoning; equality on a type T should satisfy our
expectations:

• Inequality is the negation of equality.

(a ̸= b) ⇐⇒ ¬(a = b)

• Equality is reflexive, symmetric, and transitive.

a = a
a = b =⇒ b = a

a = b ∧ b = c =⇒ a = c

• Equality implies substitutability.

for any function f on T, a = b =⇒ f(a) = f(b)

e three axioms in the middle (reflexivity, symmetry, and transitivity) provide
what we call equivalence, but equational reasoning requires something much
stronger, so we add the substitutability requirement.

We have a special name for types that behave in the “usual way”—regular
types:

Definition 7.1. A regular type T is a type where the relationships between con-
struction, assignment, and equality are the same as for built-in types such as int.

For example:

• T a(b); assert(a == b); unchanged(b);

• a = b; assert(a == b); unchanged(b);

• T a(b); is equivalent to T a; a = b;

For an extensive treatment of regular types, see Chapter 1 of Elements of Pro-
gramming. All types that we use in this book are regular.

* * *

Requirements on A 115

Now we can formalize the requirements on A:

• Regular type

• Provides associative +

As we saw in Chapter 6, algebraic structures that have a binary associative
operation are called semigroups (see Definition 6.5). Also, a regular type guar-
antees the ability to compare two values for equality, which we need for our
associativity axiom. erefore we can say that A is a semigroup. Its operation is
addition, so we might be tempted to call it an additive semigroup. But recall that
by convention, additive semigroups are assumed to be commutative. Since we
don’t need commutativity for our algorithm, we’ll say that A is a noncommutative
additive semigroup. is means that commutativity is not required; it does not
mean that commutativity is not allowed. In other words, every (commutative)
additive semigroup is also a noncommutative additive semigroup.

Definition 7.2. A noncommutative additive semigroup is a semigroup where
the associative binary operation is +.

Some examples of noncommutative additive semigroups are positive even
integers, negative integers, real numbers, polynomials, planar vectors, Boolean
functions, and line segments. ese examples happen to also be additive semi-
groups, but that is not always the case. As we shall see, + may have different
interpretations for these different types, but it will always be associative.

For many centuries, the symbol “+” has been used, by convention, to mean
a commutative operation as well as an associative one. Many programming lan-
guages (e.g., C++, Java, Python) use + for string concatenation, a noncommu-
tative operation. is violates standard mathematical practice, which is a bad
idea. e mathematical convention is as follows:

• If a set has one binary operation and it is both associative and commutative,
call it +.

• If a set has one binary operation and it is associative and not commutative,
call it ∗.

20th-century logician StephenKleene introduced the notation ab to denote string
concatenation (since in mathematics ∗ is usually elided).

The Naming Principle

If we are coming upwith a name for something, or overloading an existing name,
we should follow these three guidelines:

116 Chapter 7: Deriving a Generic Algorithm

1. If there is an established term, use it.

2. Do not use an established term inconsistently with its accepted meaning. In
particular, overload an operator or function name only when you will be pre-
serving its existing semantics.

3. If there are conflicting usages, the much more established one wins.

e name vector in STL was taken from the earlier programming languages
Scheme and Common Lisp. Unfortunately, this was inconsistent with the much
oldermeaning of the term inmathematics and violates Rule 3; this data structure
should have been called array. Sadly, if you make a mistake and violate these
principles, the result might stay around for a long time.

7.3 Requirements on N
Now that we know that A must be a noncommutative additive semigroup, we
can specify that in our template instead of just saying typename:
template <NoncommutativeAdditiveSemigroup A, typename N>
A multiply_accumulate(A r, N n, A a) {

while (true) {
if (odd(n)) {

r = r + a;
if (n == 1) return r;

}
n = half(n);
a = a + a;

}
}

Here we’re using NonCommutativeAdditiveSemigroup as a C++ concept, a set of
requirements on types that we’ll discuss in Chapter 10. Instead of saying type-
name, we name the concept we wish to use. Since concepts are not yet supported
in the language as of this writing, we’re doing a bit of preprocessor slight-of-
hand:

#define NonCommutativeAdditiveSemigroup typename

As far as the compiler is concerned, A is just a typename, but for us, it’s aNonCom-
mutativeAdditiveSemigroup. We’ll use this trick from now on when we want to
specify the type requirements in templates.

Although this behavior is not needed for abstract mathematics, in program-
ming we need our variables to be constructible and assignable, which are also

Requirements on N 117

guaranteed by being regular types. From now on, when we specify an algebraic
structure as a concept, we will assume that we are inheriting all of the regular
type requirements.

What about the requirements on our other argument’s type, N? Let’s start
with the syntactic requirements. N must be a regular type implementing

• half

• odd

• == 0

• == 1

Here are the semantic requirements on N:

• even(n) =⇒ half(n) + half(n) = n

• odd(n) =⇒ even(n− 1)

• odd(n) =⇒ half(n− 1) = half(n)

• Axiom: n ≤ 1 ∨ half(n) = 1 ∨ half(half(n)) = 1 ∨ . . .

Which C++ types satisfy these requirements? ere are several: uint8_t,
int8_t, uint64_t, and so on. e concept that they satisfy is called N Integer.

* * *

Nowwe can finally write a fully generic version of ourmultiply-accumulate func-
tion by specifiying the correct requirements for both types:

template <NoncommutativeAdditiveSemigroup A, Integer N>
A multiply_accumulate_semigroup(A r, N n, A a) {

// precondition(n >= 0);
if (n == 0) return r;
while (true) {

if (odd(n)) {
r = r + a;
if (n == 1) return r;

}
n = half(n);
a = a + a;

}
}

We’ve added one more line of code, which returns r when n is zero. We do this
because when n is zero, we don’t need to do anything. However, the same is not
true for multiply, as we’ll see in a moment.

118 Chapter 7: Deriving a Generic Algorithm

Here’s the multiply function that calls the preceding code; it has the same
requirements:

template <NoncommutativeAdditiveSemigroup A, Integer N>
A multiply_semigroup(N n, A a) {

// precondition(n > 0);
while (!odd(n)) {

a = a + a;
n = half(n);

}
if (n == 1) return a;
return multiply_accumulate_semigroup(a, half(n - 1), a + a);

}

We can also update our helper functions odd and half to work for any
Integer:

template <Integer N>
bool odd(N n) { return bool(n & 0x1); }

template <Integer N>
N half(N n) { return n >> 1; }

7.4 New Requirements
Our precondition for multiply says that n must be strictly greater than zero.
(We made this assumption earlier, since the Greeks had only positive integers,
but now we need to make it explicit.) What should an additive semigroup mul-
tiplication function return when n is zero? It should be the value that doesn’t
change the result when the semigroup operator—addition—is applied. In other
words, it should be the additive identity. But an additive semigroup is not re-
quired to have an identity element, so we can’t depend on this property. In other
words, we can’t rely on there being an equivalent of zero. (Remember, a no
longer has to be an integer; it can be any NoncommutativeAdditiveSemigroup,
such as positive integers or nonempty strings.) at’s why n can’t be zero.

But there is an alternative: instead of having a restriction on the data requir-
ing n > 0, we can require that any type we use know how to deal with 0. We
do this by changing the concept requirement on n from additive semigroup to
monoid. Recall from Chapter 6 that in addition to an associative binary opera-
tion, a monoid contains an identity element e and an identity axiom that says

x ◦ e = e ◦ x = x

Turning Multiply into Power 119

In particular, we’re going to use a noncommutative additive monoid, where
the identity element is called “0”:

x+ 0 = 0+ x = x

is is the multiply function for monoids:
template <NoncommutativeAdditiveMonoid A, Integer N>
A multiply_monoid(N n, A a) {

// precondition(n >= 0);
if (n == 0) return A(0);
return multiply_semigroup(n, a);

}

What if we want to allow negative numbers when we multiply? We need to
ensure that “multiplying by a negative” makes sense for any type we might have.
is turns out to be equivalent to saying that the type must support an inverse
operation. Again, we find that our current requirement—noncommutative addi-
tive monoid—is not guaranteed to have this property. For this, we need a group.
A group, as youmay recall fromChapter 6, includes all of themonoid operations
and axioms, plus an inverse operation x−1 that obeys the cancellation axiom

x ◦ x−1 = x−1 ◦ x = e

In our case, wewant a noncommutative additive group, onewhere the inverse
operation is unary minus and the cancellation axiom is:

x+−x = −x+ x = 0

Having strengthened our type requirements, we can remove our precondi-
tions on n to allow negative values. Again, we’ll wrap the last version of our
function with our new one:
template <NoncommutativeAdditiveGroup A, Integer N>
A multiply_group(N n, A a) {

if (n < 0) {
n = -n;
a = -a;

}
return multiply_monoid(n, a);

}

7.5 Turning Multiply into Power
Now that our code has been generalized to work for any additive semigroup (or
monoid or group), we can make a remarkable observation:

120 Chapter 7: Deriving a Generic Algorithm

If we replace + with ∗ (thereby replacing doubling with squaring),
we can use our existing algorithm to compute an instead of n · a.

Here’s the C++ function we get when we apply this transformation to our
code for multiply_accumulate_semigroup:
template <MultiplicativeSemigroup A, Integer N>
A power_accumulate_semigroup(A r, A a, N n) {

// precondition(n >= 0);
if (n == 0) return r;
while (true) {

if (odd(n)) {
r = r * a;
if (n == 1) return r;

}
n = half(n);
a = a * a;

}
}

e new function computes ran. e only things that have changed are high-
lighted in bold. Note that we’ve changed the order of arguments a and n, so as
to match the order of arguments in standard mathematical notation (i.e., we say
na, but an).

Here’s the function that computes power:
template <MultiplicativeSemigroup A, Integer N>
A power_semigroup(A a, N n) {

// precondition(n > 0);
while (!odd(n)) {

a = a * a;
n = half(n);

}
if (n == 1) return a;
return power_accumulate_semigroup(a, a * a, half(n - 1));

}

Here are the wrapped versions for multiplicative monoids and groups:
template <MultiplicativeMonoid A, Integer N>
A power_monoid(A a, N n) {

// precondition(n >= 0);
if (n == 0) return A(1);
return power_semigroup(a, n);

}

Generalizing the Operation 121

template <MultiplicativeGroup A, Integer N>
A power_group(A a, N n) {

if (n < 0) {
n = -n;
a = multiplicative_inverse(a);

}
return power_monoid(a, n);

}

Just as we needed an additive identity (0) for our monoid multiply, so we
need a multiplicative identity (1) in our monoid power function. Also, just as
we needed an additive inverse (unary minus) for our group multiply, so we need
a multiplicative inverse for our group power function. ere’s no built-in mul-
tiplicative inverse (reciprocal) operation in C++, but it’s easy to write one:

template <MultiplicativeGroup A>
A multiplicative_inverse(A a) {

return A(1) / a;
}

7.6 Generalizing the Operation
We’ve seen examples of two semigroups—additive andmultiplicative—eachwith
its associated operation (+ and ∗, respectively). e fact that we could use the
same algorithm for both is wonderful, but it was annoying to have to write dif-
ferent versions of the same code for each case. In reality, there could be many
such semigroups, each with its associative operations (for example, multiplica-
tion mod 7) that work on the same type T. Rather than having another version
for every operation we want to use, we can generalize the operation itself, just as
we generalized the types of the arguments before. In fact, there are many situ-
ations where we need to pass an operation to an algorithm; you may have seen
examples of this in STL.

Here’s the accumulate version of our power function for an arbitrary semi-
group. We still refer to the function it computes as “power,” even though the
operation it’s repeatedly applying may not necessarily be multiplication.

template <Regular A, Integer N, SemigroupOperation Op>
// requires (Domain<Op, A>)
A power_accumulate_semigroup(A r, A a, N n, Op op) {

// precondition(n >= 0);
if (n == 0) return r;
while (true) {

if (odd(n)) {

122 Chapter 7: Deriving a Generic Algorithm

r = op(r, a);
if (n == 1) return r;

}
n = half(n);
a = op(a, a);

}
}

Notice that we’ve added a “requires” comment to our template that says the
domain of operation Op must be A. If future versions of C++ support concepts,
this comment could be turned into a statement (similar to an assertion) that the
compiler could use to ensure the correct relationship holds between the given
types. As it is, we’ll have to make sure as programmers that we call this function
only with template arguments that satisfy the requirement.

Also, since we no longer know which kind of semigroup to make A—it could
be additive, multiplicative, or something else altogether, depending on Op—we
can require only that A be a regular type. e “semigroupness” will come from
the requirement that Op be a SemigroupOperation.

We can use this function to write a version of power for an arbitrary semi-
group:
template <Regular A, Integer N, SemigroupOperation Op>
// requires (Domain<Op, A>)
A power_semigroup(A a, N n, Op op) {

// precondition(n > 0);
while (!odd(n)) {

a = op(a, a);
n = half(n);

}
if (n == 1) return a;
return power_accumulate_semigroup(a, op(a, a),

half(n - 1), op);
}

As we did before, we can extend the function to monoids by adding an iden-
tity element. But since we don’t know in advance which operationwill be passed,
we have to obtain the identity from the operation:
template <Regular A, Integer N, MonoidOperation Op>
// requires(Domain<Op, A>)
A power_monoid(A a, N n, Op op) {

// precondition(n >= 0);
if (n == 0) return identity_element(op);
return power_semigroup(a, n, op);

}

Generalizing the Operation 123

Here are examples of identity_element functions for + and ∗:

template <NoncommutativeAdditiveMonoid T>
T identity_element(std::plus<T>) { return T(0); }

template <MultiplicativeMonoid T>
T identity_element(std::multiplies<T>) { return T(1); }

Each of these functions specifies the type of the object it expects to be called
with, but doesn’t name it, since the object is never used. e first one says, “e
additive identity is 0.” Of course, there will be different identity elements for
different monoids—for example, the maximum value of the type T for min.

* * *

To extend power to groups, we need an inverse operation, which is itself a func-
tion of the specified GroupOperation:

template <Regular A, Integer N, GroupOperation Op>
// requires(Domain<Op, A>)
A power_group(A a, N n, Op op) {

if (n < 0) {
n = -n;
a = inverse_operation(op)(a);

}
return power_monoid(a, n, op);

}

Examples of inverse_operation look like this:

template <AdditiveGroup T>
std::negate<T> inverse_operation(std::plus<T>) {

return std::negate<T>();
}

template <MultiplicativeGroup T>
reciprocal<T> inverse_operation(std::multiplies<T>) {

return reciprocal<T>();
}

STL already has a negate function, but (due to an oversight) has no
reciprocal. So we’ll write our own. We’ll use a function object—a C++ object
that provides a function declared by operator() and is invoked like a function
call, using the name of the object as the function name. To learn more about
function objects, see Appendix C.

124 Chapter 7: Deriving a Generic Algorithm

template <MultiplicativeGroup T>
struct reciprocal {

T operator()(const T& x) const {
return T(1) / x;

}
};

is is just a generalization of the multiplicative_inverse function we wrote
in the previous section.2

Reduction
e power algorithm is not the only important algorithm defined on semi-
groups. Another key algorithm is reduction, in which a binary operation is
applied successively to each element of a sequence and its previous result.

Two commonly seen examples of this in mathematics are the summa-
tion (Σ) function for additive semigroups and the product (Π) function for
multiplicative semigroups. We can generalize this to an arbitrary semigroup.

is generalized version of reduction was invented in 1962 by computer
scientist Ken Iverson in his language APL. In APL terminology, the / rep-
resented the reduction operator. For example, summation of a sequence is
expressed as

+ / 1 2 3
e idea of reduction has appeared in many contexts since then. John

Backus, inventor of the first high-level programming language, included a
similar operator called insert in his language FP in 1977. (He called opera-
tors “functional forms.”) An early paper on generic programming, “Oper-
ators and Algebraic Structures,” by Kapur, Musser, and Stepanov, extended
the idea to parallel reduction in 1981 and clarified the relationship to as-
sociative operations. e language Common Lisp, popular in the 1980s
for artificial intelligence applications, included a reduce function. Google’s
MapReduce system, and its open-source variant Hadoop, is a current prac-
tical application of these ideas.

7.7 Computing Fibonacci Numbers
Note: is section assumes some basic knowledge of linear algebra. e rest of the
book does not depend on thematerial covered here, and this sectionmay be skipped
without affecting the reader’s understanding.

2is time we do not need a precondition preventing x from being zero, because Multiplicative-
Group does not contain a non-invertible zero element. If in practice we have a type such as double
that otherwise would satisfy the requirements of MultiplicativeGroup if it did not contain a zero, we
can add a precondition to eliminate that case.

Computing Fibonacci Numbers 125

In Chapter 4 we met the early 13th-century mathematician Leonardo Pisano,
oen known today as Fibonacci. One of the things he’s best known for is a fa-
mous problem he posed: if we start with one pair of rabbits, how many pairs will
we have aer a certain number of months? To simplify the problem, Leonardo
made some assumptions: the original pair of rabbits and every litter aerward
consists of a male and a female; female rabbits take one month to reach sexual
maturity and have one litter per month aer that; rabbits live forever.

Initially we have 1 pair of rabbits. At the start of month 2, the rabbits mate,
but we still have only 1 pair. At the start of month 3, the female gives birth, so we
have 2 pairs. At the start of month 4, the initial female gives birth another time,
so we have 3 pairs. At the start of month 5, the initial female gives birth again,
but so does the female born in month 3, so now we have 5 pairs, and so on. If
we say that we had 0 rabbits in month 0 (before the experiment began), then the
number of pairs in each month looks like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34...

Each month’s population can be obtained simply by adding the populations of
each of the previous two months. Today, elements of this sequence are called
Fibonacci numbers, and such a sequence is defined formally like this:

F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2

How long does it take to compute the nth Fibonacci number? e “obvious”
answer is n− 2, but the obvious answer is wrong.

e naive way to implement this in C++ is something like this:

int fib0(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib0(n - 1) + fib0(n - 2);

}

However, this code does an awful lot of repeatedwork. Consider the calculations
to compute fib0(5):

F5 = F4 + F3

= (F3 + F2) + (F2 + F1)

= ((F2 + F1) + (F1 + F0)) + ((F1 + F0) + F1)

= (((F1 + F0) + F1) + (F1 + F0)) + ((F1 + F0) + F1)

126 Chapter 7: Deriving a Generic Algorithm

Even in this small example, the computation does 7 additions, and just the quan-
tity F1 + F0 is recomputed 3 times.

Exercise 7.1. How many additions are needed to compute fib0(n)?

Recomputing the same thing over and over is unacceptable, and there’s no
excuse for code like that. We can easily fix the code by keeping a running state
of the previous two results:

int fibonacci_iterative(int n) {
if (n == 0) return 0;
std::pair<int, int> v = {0, 1};
for (int i = 1; i < n; ++i) {

v = {v.second, v.first + v.second};
}
return v.second;

}

is is an acceptable solution, which takes O(n) operations. In fact, given that
we want to find the nth element of a sequence, it might appear to be optimal. But
the amazing thing is that we can actually compute the nth Fibonacci number in
O(log n) operations, which for most practical purposes is less than 64.

Suppose we represent the computation of the next Fibonacci number from
the previous two using the following matrix equation:3[

vi+1
vi

]
=

[
1 1
1 0

] [
vi
vi−1

]
en the nth Fibonacci number may be obtained by[

vn
vn−1

]
=

[
1 1
1 0

]n−1 [1
0

]
In other words, we can compute the nth Fibonacci number by raising a certain
matrix to a power. As we will see, matrix multiplication can be used to solve
many problems. Matrices are a multiplicative monoid, so we already have an
O(logn) algorithm—our power algorithm from Section 7.6.

Exercise 7.2. Implement computing Fibonacci numbers using power.

is is a nice application of our power algorithm, but computing Fibonacci
numbers isn’t the only thing we can do. If we replace the + with an arbitrary
linear recurrence function, we can use the same technique to compute any linear
recurrence.

3A brief refresher on matrix multiplication may be found at the beginning of Section 8.5.

Thoughts on the Chapter 127

Definition 7.3. A linear recurrence function of order k is a function f such that

f(y0, . . . , yk−1) =
k−1∑
i=0

aiyi

Definition 7.4. A linear recurrence sequence is a sequence generated by a linear
recurrence from initial k values.

e Fibonacci sequence is a linear recurrence sequence of order 2.
For any linear recurrence sequence, we can compute the nth step by doing

matrix multiplication using our power algorithm:
xn
xn−1
xn−2

...
xn−k+1

 =


a0 a1 a2 . . . ak−2 ak−1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0



n−k+1 
xk−1
xk−2
xk−3

...
x0


e line of 1s just below the diagonal provides the “shiing” behavior, so that
each value in the sequence depends on the previous k.

7.8 Thoughts on the Chapter
We began this chapter by analyzing the requirements on our code from Chap-
ter 2, abstracting the algorithms to use an associative operation on arbitrary
types. We were able to rewrite the code so that it is defined on certain algebraic
structures: semigroups, monoids, and groups.

Next, we demonstrated that the algorithm could be generalized, first from
multiplication to power, then to arbitrary operations on our algebraic structures.
We’ll use this generalized power algorithm again later on in the book.

e process we went through—taking an efficient algorithm, generalizing
it (without losing efficiency) so that it works on abstract mathematical con-
cepts, and then applying it to a variety of situations—is the essence of generic
programming.

More Algebraic Structures

For EmmyNoether, relationships among numbers, functions,
and operations became transparent, amenable to generalization,

and productive only after they have been dissociated from any particular
objects and have been reduced to general conceptual relationships.

B. L. van der Waerden

When we first introduced Euclid’s algorithm in Chapter 4, it was for computing
the greatest common measure of line segments. en we showed how to extend
it to work for integers. Does it work for other kinds of mathematical entities?
is is the question we’ll be investigating in this chapter. As we’ll see, attempts to
answer it led to important developments in abstract algebra. We’ll also showhow
some of these new algebraic structures enable new programming applications.

8.1 Stevin, Polynomials, and GCD
Some of the most important contributions to mathematics were due to one of
its least-known figures, the 16th-century Flemish mathematician Simon Stevin.
In addition to his contributions to engineering, physics, and music, Stevin rev-
olutionized the way we think about and operate on numbers. As Bartel van der
Waerden wrote in his History of Algebra:

[With] one stroke, the classical restrictions of “numbers” to integers
or to rational fractions was eliminated. [Stevin’s] general notion of a
real number was accepted by all later scientists.

In his 1585 pamphlet Deiende (“e Tenth”), published in English as Disme:
e Art of Tenths, or, Decimall Arithmetike, Stevin introduces and explains the

130 Chapter 8: More Algebraic Structures

use of decimal fractions. is was the first time anyone in Europe proposed
using positional notation in the other direction—for tenths, hundredths, and so
on. Disme (pronounced “dime”) was one of the most widely read books in the
history of mathematics. It was one of omas Jefferson’s favorites, and is the
reason why U.S. currency has a coin called a “dime” and uses decimal coinage
rather than the British pounds, shillings, and pence in use at the time.

Simon Stevin (1548–1620)

Simon Stevin was born in Bruges,
Flanders (now part of Belgium), but
later moved to Leiden in Holland.
Prior to this period, the Netherlands
provinces (which included both Flan-
ders and Holland) were part of the
Spanish empire, led by its Hapsburg
kings and held together by its invin-
cible professional army. In 1568, the
Dutch began a war of independence,
united by a common culture and lan-
guage, ultimately creating a repub-
lic and then an empire of their own.
Stevin, a Dutch patriot and military

engineer, joined in the rebellion and became friends with Prince Maurice
of Orange, its leader. In part helped by Stevin’s designs for fortifications
and his clever use of a system of sluices to flood invading Spanish troops,
the rebellion succeeded, creating an independent Dutch nation called the
United Provinces. is began the Dutch “Golden Age,” when the country
became a cultural, scientific, and commercial power, remembered today in
the great works of artists like Rembrandt and Vermeer.

Stevin was a true Renaissanceman, withmany far-reaching interests be-
yond military engineering. While Stevin’s official job for most of his career
was quartermaster-general of the army, in practice he also became a kind of
science advisor to Prince Maurice. In addition to his invention of decimal
fractions, polynomials, and other mathematical work, Stevin made many
contributions to physics. He studied statics, realizing that forces could be
added using what we now call the “parallelogram of forces,” and paved the
way for the work of Newton and others. He discovered the relationship
of frequencies in adjacent notes of a 12-tone musical scale. Stevin even
demonstrated constant acceleration of falling objects, a few years before
Galileo.

Stevin, Polynomials, and GCD 131

Stevin was also an ardent proponent of the Dutch language, which un-
til then had been considered a sort of second-rate dialect of German. He
helped Prince Maurice create an engineering school where teaching was in
Dutch, and wrote textbooks in the language. He used word frequency anal-
ysis and word length to “prove” that it was the best (most efficient) language
and the best to do science. Stevin insisted on publishing his own results in
Dutch rather than Latin, which may explain why he did not become better
known outside his country.

InDisme, Stevin expands the notion of numbers from integers and fractions
to “that which expresseth the quantitie of each thing” (as an English translation
at the time put it). Essentially, Stevin invented the entire concept of real num-
bers and the number line. Any quantity could go on the number line, including
negative numbers, irrational numbers, and what he called “inexplicable” num-
bers (by which he may have meant transcendental numbers). Of course, Stevin’s
decimal representations had their own drawbacks, particularly the need to write
an infinite number of digits to express a simple value, such as

1
7 = 0.142857142857142857142857142857...

Stevin’s representation enabled the solution of previously unsolvable prob-
lems. For example, he showed how to compute cube roots, which had given the
Greeks so much trouble. His reasoning was similar to what eventually became
known as the Intermediate Value eorem (see the “Origins of Binary Search”
sidebar in Section 10.8), which says that if a continuous function is negative
at one point and positive at another, then there must be an intermediate point
where its value is zero. Stevin’s idea was to find the interval between two con-
secutive integers where the function goes from negative to positive, then divide
that interval into tenths, and repeat the process with the tenths, hundredths, and
so on. He realized that by “zooming in,” any such problem could be solved to
whatever degree of accuracywas needed, or as he put it, “onemay obtain asmany
decimals of [the true value] as one may wish and come indefinitely near to it.”

Although Stevin saw how to represent any number as a point along a line,
he did not make the leap to showing pairs of numbers as points on a plane.
at invention—what we now call Cartesian coordinates—came from the great
French philosopher and mathematician René Descartes (Renatus Cartesius in
Latin).

* * *

132 Chapter 8: More Algebraic Structures

Stevin’s next great achievement was the invention of (univariate1) polynomials,
also introduced in 1585, in a book calledArithmétique. Consider this expression:

4x4 + 7x3 − x2 + 27x− 3

Prior to Stevin’s work, the only way to construct such a number was by per-
forming an algorithm: Take a number, raise it to the 4th power, multiply it by
4, and so on. In, fact, one would need a different algorithm for every poly-
nomial. Stevin realized that a polynomial is simply a finite sequence of num-
bers: {4, 7,−1, 27,−3} for the preceding example. In modern computer science
terms, we might say that Stevin was the first to realize that code could be treated
as data.

With Stevin’s insight, we can pass polynomials as data to a generic evalua-
tion function. We’ll write one that takes advantage of Horner’s rule, which uses
associativity to ensure that we never have to multiply powers of x higher than 1:

4x4 + 7x3 − x2 + 27x− 3 = (((4x+ 7)x− 1)x+ 27)x− 3

For a polynomial of degree n, we need n multiplications and n − m additions,
wherem is the number of coefficients equal to zero. Usually we will settle for do-
ing n additions, since checking whether each addition is needed is more expen-
sive than just doing the addition. Using this rule, we can implement a polyno-
mial evaluation function like this, where the arguments first and last specify
the bounds of a sequence of coefficients of the polynomial:
template <InputIterator I, Semiring R>
R polynomial_value(I first, I last, R x) {

if (first == last) return R(0);
R sum(*first);
while (++first != last) {

sum *= x;
sum += *first;

}
return sum;

}

Let’s think about the requirements on the types satisfying I and R. I is an iter-
ator, because we want to iterate over the sequence of coefficients.2 But the value
type of the iterator (the type of the coefficients of the polynomial) does not have
to be equal to the semiring3 R (the type of the variable x in the polynomial). For

1Univariate polynomials are polynomials with a single variable. For the rest of this chapter, we
will assume “polynomial” means univariate polynomial.

2We’ll explain iterators more formally in Chapter 10, but for now we can think of them as gen-
eralized pointers.

3A semiring is an algebraic structure whose elements can be added and multiplied and has dis-
tributivity. We will give its formal definition in Section 8.5.

Stevin, Polynomials, and GCD 133

example, if we have a polynomial like ax2+bwhere the coefficients are real num-
bers, that doesn’t mean x has to be a real number; in fact, it could be something
completely different, like a matrix.

Exercise 8.1. What are the requirements on R and the value type of the iterator?
In other words, what are the requirements on coefficients of polynomials and on
their values?

Stevin’s breakthrough allowed polynomials to be treated as numbers and to
participate in normal arithmetic operations. To add or subtract polynomials, we
simply add or subtract their corresponding coefficients. Tomultiply, we compute
the product of every pair consisting of one coefficient from each polynomial.
at is, if ai and bi are the ith coefficients of the polynomials being multiplied
(starting from the lowest-order term) and ci is the ith coefficient of the result,
then

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

...

ck =
∑
k=i+j

aibj

...

To divide polynomials, we need the notion of degree.

Definition 8.1. e degree of a polynomial deg(p) is the index of the highest
nonzero coefficient (or equivalently, the highest power of the variable).

For example:

deg(5) = 0
deg(x+ 3) = 1
deg(x3 + x− 7) = 3

Now we can define division with remainder:

Definition 8.2. Polynomial a is divisible by polynomial b with remainder r if
there are polynomials q and r such that

a = bq+ r ∧ deg(r) < deg(b)

(In this equation, q represents the quotient of a÷ b.)

134 Chapter 8: More Algebraic Structures

Doing polynomial division with remainder is just like doing long division of
numbers:

3x2 +2x −2
x− 2 3x3 −4x2 −6x+10

3x3 −6x2

2x2 −6x
2x2 −4x
−2x+10
−2x +4

6

Exercise 8.2. Prove that for any two polynomials p(x) and q(x):

1. p(x) = q(x) · (x− x0) + r =⇒ p(x0) = r

2. p(x0) = 0 =⇒ p(x) = q(x) · (x− x0)

* * *

Stevin realized that he could use the same Euclidean algorithm (the one we
looked at in the end of Section 4.6) to compute the GCD of two polynomials;
all we really need to do is change the types:

polynomial<real> gcd(polynomial<real> a, polynomial<real> b) {
while (b != polynomial<real>(0)) {

a = remainder(a, b);
std::swap(a, b);

}
return a;

}

e remainder function that we use implements the algorithm for polynomial
division, although we do not care about the quotient. e polynomial GCD is
used extensively in computer algebra for tasks such as symbolic integration.

Stevin’s realization is the essence of generic programming: an algorithm in
one domain can be applied in another similar domain.

Just as in Section 4.7, we need to show that the algorithmworks—specifically,
that it terminates and computes the GCD.

To show that the algorithm terminates, we need to show that it computes
the GCD in a finite number of steps. Since it repeatedly performs polynomial
remainder, we know by Definition 8.2 that

deg(r) < deg(b)

Göttingen and German Mathematics 135

So at every step, the degree of r is reduced. Since degree is a non-negative integer,
the decreasing sequence must be finite.

To show the algorithm computes the GCD, we can use the same argument
from Section 4.7; it applies to polynomials as well as integers.

Exercise 8.3 (from Chrystal, Algebra). Find the GCD of the following
polynomials:

1. 16x4 − 56x3 − 88x2 + 278x+ 105,
16x4 − 64x3 − 44x2 + 232x+ 70

2. 7x4 + 6x3 − 8x2 − 6x+ 1,
11x4 + 15x3 − 2x2 − 5x+ 1

3. nxn+1 − (n+ 1)xn + 1,
xn − nx+ (n− 1)

8.2 Göttingen and German Mathematics
In the 18th and 19th centuries, starting long before Germany existed as a uni-
fied country, German culture flourished. Composers like Bach, Mozart, and
Beethoven, poets like Goethe and Schiller, and philosophers like Kant, Hegel,
and Marx were creating timeless works of depth and beauty. German universi-
ties created a unique role for German professors as civil servants bound by their
commitment to the truth. Eventually this system would produce the greatest
mathematicians and physicists of their age, many of them teaching or studying
at the University of Götttingen.

The University of Göttingen

ecenter ofGermanmathematicswas a seemingly unlikely place: theUni-
versity of Göttingen. Unlike many great European universities that had
started hundreds of years earlier in medieval times, Göttingen was rela-
tively young, founded in 1734. And the city of Göttingen was not a ma-
jor population center. Despite this, the University of Göttingen was home
to an astonishing series of top mathematicians, including Gauss, Riemann,
Dirichlet, Dedekind, Klein, Minkowski, andHilbert, some of whomwewill

136 Chapter 8: More Algebraic Structures

discuss later in the book. By the early 20th century its community of physi-
cists was equally impressive, including quantum theorists Max Born and
Werner Heisenberg.

Göttingen’s greatness was destroyed in 1933 by the Nazis, who expelled
all Jews from the faculty and student body—includingmanyof the top physi-
cists and mathematicians. Some years later, the Nazi Minister of Education
asked the great German mathematician David Hilbert, “How is mathemat-
ics in Göttingen now that it has been freed of Jewish influence?” Hilbert
replied, “Mathematics in Göttingen? ere is none any more.”

Perhaps the most important mathematician to come out of Göttingen was
Carl Friedrich Gauss, who was the founder of Germanmathematics in the mod-
ern sense. Among his many accomplishments was his seminal work on number
theory, described in his 1801 book Disquisitiones Arithmeticae (“Investigations
of Arithmetic”). Gauss’s book is to number theory what Euclid’s Elements is to
geometry—the foundation on which all later work in the field is based. Among
other results, it includes the Fundamental eorem of Arithmetic, which states
that every integer has a unique prime factorization.

Carl Friedrich Gauss (1777–1855)

Carl Friedrich Gauss grew up in
Brunswick, Germany, and was recog-
nized as a child prodigy early in his
life. According to a famous story,
his elementary school teacher tried
to keep the class occupied by asking
them to add all the integers from 1
to 100. Nine-year-old Gauss came up
with the answer in seconds; he had ob-
served that the first and last numbers
added to 101, as did the second and
second to last, and so on, so he simply
multiplied 101 by 50.

Gauss’s talents came to the atten-
tion of the Duke of Brunswick, who paid for the young student’s education
starting at age 14, first at a school in his hometown and later at the Uni-
versity of Göttingen. Initially, Gauss considered a career in classics, which,
unlike mathematics, was one of the strengths of the university at the time.
However, he continued to domathematics on his own, and in 1796 hemade

Göttingen and German Mathematics 137

a discovery that had eluded mathematicians since Euclid: how to construct
a 17-sided regular polygon using a ruler and a compass. In fact, Gauss went
further, proving that construction of a regular p-gon was possible for prime
p only if p is a Fermat prime—that is, a number of the form 22k + 1. is
breakthrough convinced him to pursue a career in mathematics. In fact, he
was so proud of the discovery that he planned to have the 17-gon engraved
on his tomb.

In his Ph.D. dissertation, Gauss proved what became known as the Fun-
damentaleorem of Algebra, which states that every nonconstant polyno-
mial with complex coefficients has a complex root.

Gauss wrote his great number theory treatise, Disquisitiones Arithmeti-
cae, while he was still a student, and had it published in 1801 when he was
just 24. While great mathematicians throughout history, such as Euclid,
Fermat, and Euler, had worked on number theory, Gauss was the first to
codify the field and place it on a formal foundation by introducing modular
arithmetic. Disquisitiones is still studied today, and, in fact, some important
developments in 20th-century mathematics were the result of careful study
of Gauss’s work.

Gauss became world famous in 1801 when he predicted the location
of the asteroid Ceres using his method of least squares. Because of this
result, he was later appointed director of the astronomical observatory at
Göttingen. is pattern of practical problems inspiring his mathematical
results continued throughout his career. His work on geodesy (the science
of measuring the Earth) led to his invention of the new field of differential
geometry. His observations of errors in data led to the idea of the Gaussian
distribution in statistics.

roughout Gauss’s career, he chose his work very carefully, and pub-
lished only what he considered to be his best results—a small fraction of his
potential output. Oen he would delay publication, sometimes by years,
until he found the perfect way to prove a particular result. His motto was
“Few, but ripe.”

Because of the breadth and depth of his contributions, Gauss was known
as Princeps Mathematicorum, the Prince of Mathematicians.

Another of Gauss’s innovations was the notion of complex numbers. Math-
ematicians had used imaginary numbers (xi where i2 = −1) for over 200 years,
but these numberswere notwell understood andwere usually avoided. e same
was true for the first 30 years of Gauss’s career; we have evidence from his note-
books that he used imaginary numbers to derive some of his results, but then he
reconstructed the proofs so the published versions would not mention i. (“e
metaphysics of i is very complicated,” he wrote in a letter.)

138 Chapter 8: More Algebraic Structures

But in 1831, Gauss had a profound insight: he realized that numbers of the
form z = x + yi could be viewed as points (x, y) on a Cartesian plane. ese
complex numbers, he saw, were just as legitimate and self-consistent as any other
numbers.

Here are a few definitions and properties we’ll use for complex numbers:

complex number: z = x+ yi
complex conjugate: z = x− yi
real part: Re(z) = 1

2 (z+ z) = x
imaginary part: Im(z) = 1

2i (z− z) = y
norm: ∥z∥ = zz = x2 + y2
absolute value: |z| =

√
∥z∥ =

√
x2 + y2

argument: arg(z) = ϕ such that
0 ≤ ϕ < 2π and z

|z| = cos(ϕ) + i sin(ϕ)

e absolute value of a complex number z is the length of the vector z on
the complex plane, while the argument is the angle between the real axis and the
vector z. For example, |i| = 1 and arg(i) = 90◦.

Just as Stevin did for polynomials, Gauss demonstrated that complex num-
bers were in fact full-fledged numbers capable of supporting ordinary arithmetic
operations:

addition: z1 + z2 = (x1 + x2) + (y1 + y2)i
subtraction: z1 − z2 = (x1 − x2) + (y1 − y2)i
multiplication: z1z2 = (x1x2 − y1y2) + (x2y1 + x1y2)i
reciprocal: 1

z = z
∥z∥ = x

x2+y2 −
y

x2+y2 i

Multiplying two complex numbers can also be done by adding the arguments
andmultiplying the absolute values. For example, if we want to find

√
i, we know

it will also have an absolute value of 1 and an argument of 45◦(since 1 · 1 = 1 and
45 + 45 = 90).

* * *

Gauss also discovered what are now called Gaussian integers, which are com-
plex numbers with integer coefficients. Gaussian integers have some interesting
properties. For example, the Gaussian integer 2 is not prime, since it can be
expressed as the product of two other Gaussian integers, 1+ i and 1− i.

We can’t do full division with Gaussian integers, but we can do division with
remainder. To compute the remainder of z1 and z2, Gauss proposed the following
procedure:

1. Construct a grid on the complex plane generated by z2, iz2,−iz2, and −z2.

2. Find a square in the grid containing z1.

Göttingen and German Mathematics 139

3. Find a vertex w of the grid square closest to z1.

4. z1 − w is the remainder.

z2	

z1	

w	

-­‐iz2	

iz2	

-­‐z2	

Gauss realized that with this remainder function, he could apply Euclid’s
GCD algorithm to complex integers, as we’ve done here:

complex<integer> gcd(complex<integer> a, complex<integer> b) {
while (b != complex<integer>(0)) {

a = remainder(a, b);
std::swap(a, b);

}
return a;

}

e only thing we’ve changed are the types.

* * *

Gauss’sworkwas extended by anotherGöttingenprofessor, PeterGustav Lejeune-
Dirichlet. While Gauss’s complex numbers were of the form (in Dirichlet’s ter-
minology) t+ n

√
−1, Dirichlet realized that this was a special case of t+ n

√
−a

where a did not have to be 1, and that different properties followed from the use
of different values. For example, the standard GCD algorithm works on num-
bers of this form when a = 1, but it fails when a = 5 since there end up being
numbers that don’t have a unique factorization. For example:

21 = 3 · 7 = (1+ 2
√
−5) · (1− 2

√
−5)

140 Chapter 8: More Algebraic Structures

It turns out that if Euclid’s algorithm works, then there is a unique factorization.
Since we have no unique factorization here, then Euclid’s algorithm doesn’t work
in this case.

Dirichlet’s greatest result was his proof that if a and b are coprime (that is, if
gcd(a, b) = 1), then there are infinitely many primes of the form ak+ b.

Most of Dirichlet’s results were described in the second great book on num-
ber theory, appropriately called Vorlesungen über Zahlentheorie (“Lectures on
Number eory”). e book contains the following important insight, which
we used in our epigraph for Chapter 4:

[T]hewhole structure of number theory rests on a single foundation,
namely the algorithm for finding the greatest commondivisor of two
numbers.
All the subsequent theorems … are still only simple consequences
of the result of this initial investigation….

e book was actually written and published aer Dirichlet’s death by his
younger Göttingen colleague, Richard Dedekind, based on Dedekind’s notes
from Dirichlet’s lectures. Dedekind was so modest that he published the book
under Dirichlet’s name, even aer adding many additional results of his own in
later editions. Unfortunately, Dedekind’s modesty hurt his career; he failed to
get tenure at Göttingen and ended up on the faculty of a minor technical uni-
versity.

Dedekind observed that Gaussian integers andDirichlet’s extensions of them
were special cases of a more general concept of algebraic integers, which are lin-
ear integral combinations of roots ofmonic polynomials (polynomials where the
coefficient of the highest-order term is 1) with integer coefficients. We say that
these polynomials generate these sets of algebraic integers. For example:

x2 + 1 generates Gaussian integers a+ b
√
−1

x3 − 1 generates Eisenstein integers a+ b−1+i
√

3
2

x2 + 5 generates integers a+ b
√
−5

Dedekind’s work on algebraic integers contained almost all the fundamen-
tal building blocks of modern abstract algebra. But it would take another great
Göttingen mathematician, Emmy Noether, to make the breakthrough to full
abstraction.

8.3 Noether and the Birth of
Abstract Algebra

Emmy Noether’s revolutionary insight was that it is possible to derive results
about certain kinds of mathematical entities without knowing anything about the

Noether and the Birth of Abstract Algebra 141

entities themselves. In programming terms, we would say that Noether real-
ized that we could use concepts in our algorithms and data structures, with-
out knowing anything about which specific types would be used. In a very real
sense, Noether provided the theory for what we now call generic programming.
Noether taughtmathematicians to always look for themost general setting of any
theorem. In a similar way, generic programming defines algorithms in terms of
the most general concepts.

Emmy Noether (1882–1935)

Emmy Noether (pronounced almost
like “Nerter,” but without finishing the
first “r” sound) was born into an aca-
demic German-Jewish family. Her fa-
ther was a distinguished professor of
mathematics at the University of Er-
langen. Although it was very unusual
for women at the time, Noether was
able to study at the university and got a
doctorate inmathematics in 1907. She
then stayed on for several years at Er-
langen, assisting her father and teach-
ing without a position or salary.

Women had been excluded from
academic careers for centuries. With the single exception of Sofia Ko-
valevskaya, a Russianmathematician who became a professor in Stockholm
in 1884, there were no women in faculty positions in mathematics at uni-
versities at the time.

Two of the greatest mathematicians of the day, Felix Klein and David
Hilbert, recognized Noether’s talent, and felt that she deserved an academic
position. ey also believed as a matter of principle that women should
not be excluded from mathematics. ey arranged for Noether to come to
Göttingen in 1915.

Unfortunately, she still was not officially allowed to teach; the faculty
resisted her appointment. For the next four years, all of Noether’s courses
were listed under Hilbert’s name; she was treated as a kind of unofficial sub-
stitute teacher. Even in 1919, when she was finally given the right to teach
under her own name, it was an unpaid position as a Privatdozent, a kind of
adjunct professor.

During her time at Göttingen, Noether made enormous contributions
in two fields, physics and mathematics. In physics, she is responsible for

142 Chapter 8: More Algebraic Structures

Noether’s theorem,which fundamentally connected certain symmetries and
physical conservation laws (e.g., conservation of angular momentum). Al-
bert Einstein was impressed by Noether’s theorem, which is one of themost
profound results in theoretical physics. Her result underlies much of mod-
ern physics, from quantum mechanics to the theory of black holes.

In mathematics, Noether created the field of abstract algebra. Although
earlier mathematicians such as Cauchy andGalois had worked with groups,
rings, and other algebraic objects, they always used specific instances.
Noether’s breakthrough was to realize that these algebraic stuctures could
be studied abstractly, without looking at particular implementations.

Noether was known as an outstanding teacher, and attracted students
from all over the world. Under her leadership, these young researchers (of-
ten called “Noether’s Boys”) were creating a new kind of mathematics.

In 1933, when the Nazis expelled Jews from universities, Noether fled to
the United States. Despite being one of the greatest mathematicians in the
world, no major research university would hire her, primarily because she
was a woman. She ended up with a visiting appointment at Bryn Mawr, a
small undergraduate women’s college.

Tragically, EmmyNoether died in 1935 at age 53, a fewdays aer surgery
to remove an ovarian cyst. Since then, her contributions to mathematics
have increasingly been recognized as fundamental and revolutionary.

Noether was well known for her willingness to help students and give them
her ideas to publish, but she published relatively little herself. Fortunately, a
young Dutch mathematician, Bartel van der Waerden, audited her course and
wrote a book based on her lectures (which he credits on the title page). Called
Modern Algebra, it was the first book to describe the abstract approach she had
developed.

is book,Modern Algebra, led to a fundamental rethinking of the waymod-
ern mathematics is presented. Its revolutionary approach—the idea that you ex-
press your theorems in the most abstract terms—is Noether’s creation. Most
of mathematics—not just algebra—changed as a result of her work; she taught
people to think differently.

8.4 Rings
One of Noether’s most important contributions was the development of the the-
ory of an algebraic structure called a ring.4

4e term “ring,” coined by Hilbert, was intended to use the metaphor of a bunch of people
involved in a common enterprise, like a criminal ring. It has nothing to do with jewelry rings.

Rings 143

Definition 8.3. A ring is a set on which the following are defined:

operations : x+ y,−x, xy
constants : 0R, 1R

and on which the following axioms hold:

x+ (y+ z) = (x+ y) + z
x+ 0 = 0+ x = x

x+−x = −x+ x = 0
x+ y = y+ x
x(yz) = (xy)z

1 ̸= 0
1x = x1 = x
0x = x0 = 0

x(y+ z) = xy+ xz (y+ z)x = yx+ zx

Rings5 have the properties we associate with integer arithmetic—operators
that act like addition and multiplication, where addition is commutative and
multiplication distributes over addition. Indeed, rings may be thought of as an
abstraction of integers, and the canonical example of a ring is the set of integers,
Z. Also observe that every ring is an additive group and therefore an abelian
group. e “addition” operator is required to have an inverse, but the “multipli-
cation” operator is not.

In practice, mathematicians write the zeroes without their subscripts, just
as we’ve done in the axioms. For example, in discussing a ring of matrices, “0”
refers not to the single integer zero but to the additive identity matrix.

Besides integers, other examples of rings include the following sets:

• n× n matrices with real coefficients

• Gaussian integers

• Polynomials with integer coefficients

We say that a ring is commutative if xy = yx. Noncommutative rings usu-
ally come from the realm of linear algebra where matrix multiplication does not
commute. In contrast, polynomial rings and rings of algebraic integers do com-
mute. ese two types of rings lead to two branches of abstract algebra, known as
commutative algebra and noncommutative algebra. Rings are oen not explicitly

5Some mathematicians define rings without the multiplicative identity 1 and its axioms, and call
rings that include them unitary rings; we do not make that distinction here.

144 Chapter 8: More Algebraic Structures

labeled as “commutative” or “noncommutative”; instead, one type of ring or the
other is assumed from the branch of algebra. With the exception of Sections 8.5
and 8.6, the rest of this book will deal with commutative algebra—the kind that
Dedekind, Hilbert, and Noether worked on—so from then on we will assume
our rings are commutative.

Definition 8.4. An element x of a ring is called invertible if there is an element
x−1 such that

xx−1 = x−1x = 1

Every ring contains at least one invertible element: 1. ere may be more than
one; for example, in the ring of integers Z, both 1 and −1 are invertible.

Definition 8.5. An invertible element of a ring is called a unit of that ring.

Exercise 8.4 (very easy). Which ring contains exactly one invertible element?
What are units in the ring Z[

√
−1] of Gaussian integers?

eorem 8.1: Units are closed under multiplication (i.e., a product of units is a
unit).

Proof. Suppose a is a unit and b is a unit. en (by definition of units) aa−1 = 1
and bb−1 = 1. So

1 = aa−1 = a · 1 · a−1 = a(bb−1)a−1 = (ab)(b−1a−1)

Similarly, a−1a = 1 and b−1b = 1, so

1 = b−1b = b−1 · 1 · b = b−1(a−1a)b = (b−1a−1)(ab)

We now have a term that, when multiplied by ab from either side, gives 1; that
term is the inverse of ab:

(ab)−1 = b−1a−1

So ab is a unit.

Exercise 8.5. Prove that:

• 1 is a unit.

• e inverse of a unit is a unit.

Matrix Multiplication and Semirings 145

Definition 8.6. An element x of a ring is called a zero divisor if:
1. x ̸= 0

2. There exists a y ̸= 0, xy = 0
For example, in the ring Z6 of remainders modulo 6, 2 and 3 are zero divisors.
Definition 8.7. A commutative ring is called an integral domain if it has no zero
divisors.
It’s called “integral” because its elements act like integers—you don’t get zero
when you multiply two nonzero things. Here are some examples of integral
domains:
• Integers

• Gaussian integers

• Polynomials over integers

• Rational functions over integers, such as x2+1
x3−1 (A rational function is the ratio

of two polynomials.)
e ring of remainders modulo 6 is not an integral domain. (Whether a ring of
remainders is integral depends on whether the modulus is prime.)
Exercise 8.6 (very easy). Prove that a zero divisor is not a unit.

8.5 Matrix Multiplication and Semirings
Note: is section and the next assume some basic knowledge of linear algebra.
e rest of the book does not depend on the material covered here, and these sec-
tions may be skipped without impacting the reader’s understanding.

In the previous chapter, we combined power with matrix multiplication to com-
pute linear recurrences. It turns out that we can use this technique for many
other algorithms if we use a more general notion of matrix multiplication.

Linear Algebra Review

Let’s quickly reviewhow somebasic vector andmatrix operations are defined.

Inner product of two vectors:

x⃗ · y⃗ =
n∑

i=1
xiyi

146 Chapter 8: More Algebraic Structures

In other words, the inner product is the sum of the products of all the cor-
responding elements. e result of inner product is always a scalar (a single
number).

Matrix-vector product:

w⃗ =
[
xij
]
v⃗

wi =
n∑

j=1
xijvj

Multiplying an n×mmatrix with anm-length vector results in an n-length
vector. One way to think of the process is that the ith element of the result
is the inner product of the ith row of the matrix with the original vector.

Matrix-matrix product: [
zij
]
=
[
xij
] [
yij
]

zij =
n∑

k=1
xikykj

In the matrix product AB = C, if A is a k × m matrix and B is an m × n
matrix, then C will be a k × n matrix. e element in row i and column j
of C is the inner product of the ith row of A and the jth column of B. Note
that matrix multiplication is not commutative: there is no guarantee that
AB = BA. Indeed, it’s oen the case that only one of AB and BA will be
well defined, since the number of columns of the first term has to match the
number of rows of the second. Even when both products are defined, they
are almost always different.

Just as we generalized our power function to work with any operation, we
can now generalize the notion of matrix multiplication. Normally we think of
matrix multiplication as consisting of a series of sums of products, as shown in
the earlier formula. But what’s mathematically essential is actually that there be
two operations, a “plus-like” one that is associative and commutative (denoted
by ⊕) and a “times-like” one that is associative (denoted by ⊗), where the latter
operation distributes over the first:

a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c
(b⊕ c)⊗ a = b⊗ a⊕ c⊗ a

We’ve just seen an algebraic structure that has operations like this, a ring. How-
ever, rings have a few requirements we don’t need, specifically those involving

Application: Social Networks and Shortest Paths 147

the additive inverse operation. Instead, what we want is a semiring, a ring with-
out minus (−).

Definition 8.8. A semiring is a set on which the following are defined:

operations : x+ y, xy
constants : 0R, 1R

and on which the following axioms hold:

x+ (y+ z) = (x+ y) + z
x+ 0 = 0+ x = x

x+ y = y+ x
x(yz) = (xy)z

1 ̸= 0
1x = x1 = x
0x = x0 = 0

x(y+ z) = xy+ xz (y+ z)x = yx+ zx

Our definition follows the mathematical convention of referring to the opera-
tions as + and × rather than ⊕ and ⊗. But as with all the algebraic structures
we’ve been discussing, the symbols refer to any two operations that behave in
the manner specified by the axioms.

e canonical example of a semiring is the set of natural numbers N. While
natural numbers do not have additive inverses, you can easily perform matrix
multiplication on matrices with non-negative integer coefficients. (In fact, we
could relax the requirements further by removing the additive identity 0 and the
multiplicative identity 1, as well as their corresponding axioms; matrix multipli-
cation6 would still work. We might refer to a semiring without 0 and 1 as a weak
semiring.)

8.6 Application: Social Networks
and Shortest Paths

We can use semirings to solve a variety of problems. For example, suppose we
have a graph of friendships, as in a social network, and we want to find all the
people you are connected to through any path. In other words, we want to know
who your friends are, the friends of your friends, the friends of the friends of
your friends, and so on.

6Here we are assuming the straightforward algorithm formatrixmultiplication; faster algorithms
require stronger theories.

148 Chapter 8: More Algebraic Structures

Finding all such paths is known as finding the transitive closure of the graph.
To compute the transitive closure, we take an n× n Boolean matrix where entry
xij is 1 if the relation holds between i and j (in this case, if person i is friends with
person j), and 0 otherwise; we’ll also assume people are friends with themselves.
Here’s a small example:

Ari Bev Cal Don Eva Fay Gia

Ari 1 1 0 1 0 0 0

Bev 1 1 0 0 0 1 0

Cal 0 0 1 1 0 0 0

Don 1 0 1 1 0 1 0

Eva 0 0 0 0 1 0 1

Fay 0 1 0 1 0 1 0

Gia 0 0 0 0 1 0 1

e matrix tells us who each person’s friends are. We can apply generalized ma-
trix multiplication where we replace ⊕ by Boolean OR (∨) and ⊗ by Boolean
AND (∧). We say this is the matrix multiplication generated by a Boolean or
{∨,∧}-semiring. Multiplying the matrix by itself using these operations tells us
who the friends of our friends are. Doing this multiplication n − 1 times will
eventually find all the people in each network of friends. Since multiplying the
matrix by itself several times is just raising it to a power, we can use our existing
power algorithm to do the computation efficiently. Of course, we can use this
idea to compute the transitive closure of any relation.

Exercise 8.7. Using the power algorithm from Chapter 7 with matrix multipli-
cation on Boolean semirings, write a program for finding transitive closure of
a graph. Apply this function to find the social networks of each person in the
preceding table.

Another example of a classic problem we can solve this way is finding the
shortest path between any two nodes in a directed graph like this one:

Application: Social Networks and Shortest Paths 149

A	

B	

D	

C	

F	

E	

G	

3	

8	

4	
 5	

3	

2	

6	

10	

7	

6	

9	

7	

As before, we can represent the graph as an n× n matrix—this time one whose
values aij represent the distance from node i to node j. If there is no edge from
one node to another, we’ll initially list the distance as infinity.

A B C D E F G

A 0 6 ∞ 3 ∞ ∞ ∞

B ∞ 0 ∞ ∞ 2 10 ∞

C 7 ∞ 0 ∞ ∞ ∞ ∞

D ∞ ∞ 5 0 ∞ 4 ∞

E ∞ ∞ ∞ ∞ 0 ∞ 3

F ∞ ∞ 6 ∞ 7 0 8

G ∞ 9 ∞ ∞ ∞ ∞ 0

is time, we use matrix multiplication generated by a tropical or {min,+}-
semiring:

bij =
n

min
k=1

(aik + akj)

at is, the ⊕ operation is min, and the ⊗ operation is +. Again, we raise the
resulting matrix to the n − 1 power. e result tells us the shortest path of any
length up to n− 1 steps.

Exercise 8.8. Using the power algorithm fromChapter 7 withmatrixmultiplica-
tion on tropical semirings, write a program for finding the length of the shortest
path in a graph.

Exercise 8.9. Modify the program from Exercise 8.8 to return not just the short-
est distance but the shortest path (a sequence of edges).

150 Chapter 8: More Algebraic Structures

8.7 Euclidean Domains
We began this chapter by seeing how Euclid’s GCD algorithm could be gener-
alized beyond integers, first to polynomials, then to complex numbers, and so
on. How far could this generalization go? In other words, what are the most
general mathematical entities that the GCD algorithm works on (the domain or
setting for the algorithm)? With the abstractions Noether had developed, she
was finally able answer this question: the domain of the GCD algorithm is what
Noether called the Euclidean domain; it is also sometimes known as a Euclidean
ring.

Definition 8.9. E is a Euclidean domain if:

• E is an integral domain

• E has operations quotient and remainder such that

b ̸= 0 =⇒ a = quotient(a, b) · b+ remainder(a, b)

• E has a non-negative norm ∥x∥ : E→ N satisfying

∥a∥ = 0 ⇐⇒ a = 0
b ̸= 0 =⇒ ∥ab∥ ≥ ∥a∥
∥remainder(a, b)∥ < ∥b∥

e term “norm” here is a measure of magnitude, but it should not be con-
fusedwith the Euclidean norm youmay be familiar with from linear algebra. For
integers, the norm is their absolute value; for polynomials, it is the degree of the
polynomial; for Gaussian integers, it is the complex norm. e important idea is
that when you compute the remainder, the norm decreases and eventually goes
to zero, since it maps into natural numbers. We need this property to guarantee
that Euclid’s algorithm terminates.

* * *

Now we can write the fully generic version of the GCD algorithm:

template <EuclideanDomain E>
E gcd(E a, E b) {

while (b != E(0)) {
a = remainder(a, b);
std::swap(a, b);

}
return a;

}

Fields and Other Algebraic Structures 151

eprocess we’ve gone through in transforming the GCD algorithm from some-
thing that works only on line segments to something that works on very different
types illustrates the following important principle:

To make something generic, you don’t add extra mechanisms.
Rather, you remove constraints and strip down the algorithm to its essentials.

8.8 Fields and Other
Algebraic Structures

Another important abstraction is the field.7

Definition 8.10. An integral domain where every nonzero element is invertible
is called a field.

Just as integers are the canonical example of rings, so rational numbers (Q)
are the canonical example of fields. Other important examples of fields are as
follows:

• Real numbers R

• Prime remainder fields Zp

• Complex numbers C

A prime field is a field that does not have a proper subfield (a subfield different
from itself). It turns out that every field has one of two kinds of prime subfields:
Q or Zp. e characteristic of a field is p if its prime subfield is Zp (the field of
integer remainders modulo p), and 0 if its prime subfield is Q.

* * *

All fields can be obtained by starting with a prime field and adding elements that
still satisfy the field properties. is is called extending the field.

In particular, we can extend a field algebraically by adding an extra element
that is a root of a polynomial. For example, we can extend Q with

√
2, which is

not a rational number, since it is the root of the polynomial x2 − 2.
We can also extend a field topologically by “filling in the holes.” Rational

numbers leave gaps in the number line, but real numbers have no gaps, so the
field of real numbers is a topological extension of the field of rational numbers.
We can also extend the field to two dimensions with complex numbers. Surpris-
ingly, there are no other finite dimensional fields containing reals.8

7e term “field” relies on the metaphor of a field of study, not a field of wheat.
8ere are four- and eight-dimensional field-like structures called quaternions and octonions.

ese are not quite fields, because they are missing certain axioms; both quaternions and octonions
lack commutativity of multiplication, and octonions also lack associativity of multiplication. ere
are no other finite-dimensional extensions of real numbers.

152 Chapter 8: More Algebraic Structures

Up to now, every algebraic structure we’ve introduced in this book has op-
erated on a single set of values. But there are also structures that are defined in
terms ofmore than one set. For example, an important structure called amodule
contains a primary set (an additive group G) and a secondary set (a ring of co-
efficients R), with an additional multiplication operation R× G→ G that obeys
the following axioms:

a, b ∈ R ∧ x, y ∈ G :

(a+ b)x = ax+ bx
a(x+ y) = ax+ ay

If ring R is also a field, then the structure is called a vector space.
A good example of a vector space is two-dimensional Euclidean space, where

the vectors are the additive group and the real coefficients are the field.

8.9 Thoughts on the Chapter
In this chapter, we followed the historical development of generalizing the idea
of “numbers” and the corresponding generalization of the GCD algorithm. is
led to the development of several new algebraic structures, some of which we
used to generalize matrix multiplication and apply it to some important graph
problems in computer science.

Let’s extend our table from Section 6.8 to include the new structures we in-
troduced in this chapter. Note that every row of the table includes all the axioms
from earlier rows. (In the case of semirings and rings, the “times” operation
inherits all the axioms from monoids, while the “plus” operation inherits the
axioms from abelian groups.) To illustrate this, we’ve grayed out operations, el-
ements, and axioms that appeared previously in the table.

   
semigroup x ◦ y x ◦ (y ◦ z) = (x ◦ y) ◦ z

Example: positive integers under addition
monoid x ◦ y e x ◦ (y ◦ z) = (x ◦ y) ◦ z

x ◦ e = e ◦ x = x
Example: strings under concatenation

group x ◦ y e x ◦ (y ◦ z) = (x ◦ y) ◦ z
x−1 x ◦ e = e ◦ x = x

x ◦ x−1 = x−1 ◦ x = e
Example: invertible matrices under multiplication

Thoughts on the Chapter 153

   
abelian group x ◦ y e x ◦ (y ◦ z) = (x ◦ y) ◦ z

x−1 x ◦ e = e ◦ x = x
x ◦ x−1 = x−1 ◦ x = e

x ◦ y = y ◦ x
Example: two-dimensional vectors under addition

semiring x+ y 0R x+ (y+ z) = (x+ y) + z
xy 1R x+ 0 = 0+ x = x

x+ y = y+ x
x(yz) = (xy)z

1 ̸= 0
1x = x1 = x
0x = x0 = 0

x(y+ z) = xy+ xz
(y+ z)x = yx+ zx

Example: natural numbers
ring x+ y 0R x+ (y+ z) = (x+ y) + z

−x 1R x+ 0 = 0+ x = x
xy x+−x = −x+ x = 0

x+ y = y+ x
x(yz) = (xy)z

1 ̸= 0
1x = x1 = x
0x = x0 = 0

x(y+ z) = xy+ xz
(y+ z)x = yx+ zx

Example: integers

As we did before, we can also define some other structures more concisely in
terms of others:

 
integral domain A commutative ring that has no zero divisors (elements

other than 0 whose product is 0)
Euclidean domain An integral domain that has quotient and remainder

operations and a norm that decreases when remain-
der is computed

field An integral domain where every nonzero element is in-
vertible (Example: rational numbers)

(Continues)

154 Chapter 8: More Algebraic Structures

 
prime field A field that does not have a proper subfield
module Consists of a primary set that is an additive group G

and a secondary set of coefficients that is a ring R, with
distributive multiplication of coefficients over elements
of G

vector space A module where the ring R is also a field

is diagram shows the relationships between some of the most important
structures discussed in this chapter:

Commuta've	

Mul'plica'on	

Distribu've	

No	
 Zero	

Divisors	

Addi've	

Inverse	

Mul'plica've	

Inverse	

Ring	

Commuta've	

Ring	

Integral	

Domain	

Field	

Semiring	

Addi've	

Monoid	

Mul'plica've	

Monoid	

efirst time you encounter algebraic structures, it might seem as if there are
somany varieties that it’s hard to keep track of their properties. However, they fit
into a manageable taxonomy that makes their relationships clear—a taxonomy
that has enabled great progress in mathematics over the last hundred years.

Organizing Mathematical
Knowledge

All the truths of mathematics are linked to each other,
and all means of discovering them are equally admissible.

Legendre

Now we’re going to look at some of the building blocks for organizing knowl-
edge, particularly mathematical knowledge. We’ll start by exploring the notion
of proofs and the introduction of the idea of theorems. enwe’ll examine some
important examples of attempts to build up bodies of knowledge from axioms.

Mathematicians have been thinking about how to organize knowledge for
thousands of years. As programmers, we will use their organizational principles
in our domain of algorithms and data structures.

9.1 Proofs
People had been discovering and using mathematical results long before they
started proving them. Yet mathematical proofs are also a surprisingly old inven-
tion. For centuries mathematicians relied on visual proofs. e ancient Greeks
realized that they could use our innate spatial reasoning to prove algebraic facts.

Here are some examples of visual proofs.

Commutativity of addition: a+ b = b+ a

=	

156 Chapter 9: Organizing Mathematical Knowledge

If we have two strips of paper and tape them together to make one strip, we get
the same length regardless of which one is on the le and which one is on the
right. We can see this because the figure on the right is a mirror image of the
figure on the le.

Associativity of addition: (a+ b) + c = a+ (b+ c)

=	

=	

If we have three strips of paper and we tape the pieces together to make one long
strip, it doesn’t matter if we tape the first two pieces together and then tape the
third one to the result, or if instead we tape the last two and then the first. Either
way we’ll end up with a strip of the same length in the end.

Commutativity of multiplication: ab = ba

=	

A rectangle has a certain length and a certain width. If you turn it sideways,
you’ve reversed length andwidth, but you obviously still have the same rectangle.
In fact, this essential argument appears in a 19th-century book byDirichlet, who
says thatwhether you arrange soldiers in rows or columns, you still have the same
number.

Proofs 157

Associativity of multiplication: (ab)c = a(bc)

a	

c	

b	

Whether you slice this rectangular prism along one axis or along another, when
you put the slices back together, you still have the same volume.

(a+ b)2 = a2 + 2ab+ b2:

a	

b

a	

b

It’s clear just by looking that the rectangle on the lower le is the same area as
the rectangle on the upper right: not only do both have area ab, but you could
literally cut one out, turn it sideways, and lay it on the other.

158 Chapter 9: Organizing Mathematical Knowledge

π > 3:

Here we’ve inscribed a regular unit hexagon (one whose sides are all of length 1)
in the circle. It’s evident that the perimeter of the hexagon is shorter than the
circumference of the circle, because whenever we have two intersection points
between the two figures, the shortest path from one point to the next is along
the hexagon, not the circle. Since the triangles that make up the hexagon are
equilateral, all their sides are length 1, so the diameter of the circle is length 2.
So the ratio of the circle’s circumference to its diameter (i.e., π) must be greater
than the ratio of the hexagon’s perimeter (6) to its diameter (2).

Exercise 9.1. Design visual proofs for the following:

(a− b)2 = a2 − 2ab+ b2

a2 − b2 = (a+ b)(a− b)
(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a− b)3 = a3 − 3a2b+ 3ab2 − b3

Exercise 9.2. Using a visual proof, find an upper bound for π.

* * *

As useful as visual proofs are, this technique isn’t sufficient to prove every type
of proposition in mathematics, and some of the proofs are no longer considered
rigorous enough. Modern mathematicians have a variety of proof techniques
available to them, some of whichwe’ve used throughout this book, andwhich are
summarized in Appendix B. Proofs show connections between different truths.
But what exactly constitutes a proof? Today, we use the following definition:

Definition 9.1. A proof of a proposition is

• An argument

• Accepted by the mathematical community

The First Theorem 159

• To establish the proposition as valid

e second point is oen overlooked: proof is fundamentally a social process,
and one that changes over time. Our confidence in a proof increases as more
people understand and agree with it. At the same time, what is considered a
valid proof today might not be considered a valid proof 300 years from now, just
as some proofs that were viewed as valid by Euler—the greatest 18th-century
mathematician—are frowned upon today.

Now we’ll turn to another building block of mathematical knowledge,
theorems.

9.2 The First Theorem
As we discussed in Chapter 2, ancient Mediterranean civilizations believed that
the Egyptianswere the source ofmathematical knowledge. WhenGreek civiliza-
tion was just starting, Egyptian civilization had already existed for thousands of
years, so it is not surprising that the leading thinkers of ancient Greece would
travel to Egypt to study with their priests and learn their wisdom. e first
such person known to us is ales of Miletus. ales learned geometry from
the Egyptians, but he went beyond their work. While the Egyptians had algo-
rithms, ales had a theorem—in fact, he invented the very notion of a theo-
rem, which is a proposition derivable from other propositions. Today ales is
regarded as the founder of Western philosophy, and might also be considered
the first mathematician.

Thales of Miletus (flourished early 6th century BC)

Some time around the year 750 BC a
new society started to appear in dif-
ferent coastal regions of the Mediter-
ranean and even as far north as
the Black Sea. ey called them-
selves Hellenes; we call them Greeks.
ey came from a small mountain-
ous country where the geography pre-
vented the emergence of a large uni-
fied kingdom as was common else-
where. Greeks lived in small, inde-
pendent city-states unified not by a
central government, but by a common
language and culture. Whenever a
city’s population exceeded its resources, it would send some of its citizens to

160 Chapter 9: Organizing Mathematical Knowledge

settle a colony, a new practically independent city on some conveniently lo-
cated bay with a river. Within 200 years Greeks settled around the Mediter-
ranean, as Plato put it, “like frogs around a pond.”

By somewhere around 600 BC, the Greek colonies in Asia Minor (what
is nowTurkey)were gettingwealthy. Instead of spending all the extramoney
on luxuries, some of them started supporting intellectual pursuits. For the
first time in history they looked beyond mythology for the answers to eter-
nal questions such as what things were made of. e first person to do this
in a fundamental way was ales of Miletus. ales was the originator of
what ancient Greeks would eventually call philosophy andwhat we now call
science. He wanted to find the natural, non-mythological explanation of re-
ality. He proposed that all visible reality is made out of one single substance:
water. erefore, visible reality exists in one of three states—gas, liquid, or
solid—and there are transitions between the states.

While in Egypt, ales collected many geometric algorithms and, prob-
ably, some Babylonian astronomical knowledge. Herodotus reports that
ales was able to predict a total solar eclipse a year in advance. Aristotle—
usually a reliable source—tells us that ales was able to predict an excep-
tionally large harvest of olives by studying weather patterns and, by buying
options on the use of all the olive presses in the region, made a fortune.
ere are many other stories about his accomplishments, such as his dis-
covery of static electricity. While we do not know exactly which stories are
true, ales clearly amassed a large body of scientific knowledge and was
able to apply it to practical problems. His knowledge did not perish with
him; his students carried the program forward. But more important than
any of his specific discoveries was his approach to understanding the world,
which is still the basis of all science.

eorem 9.1 (ales’eorem): For any triangle ABC formed by connecting the
two ends of a circle’s diameter (AC) with any other point B on the circle,
∠ABC = 90◦.

A C	

B	

Euclid and the Axiomatic Method 161

Proof. Consider the triangles formed by joining point B with the center of the
circle, D:

A
D

C	

B	

Since DA and DB are both radii of the circle, they are equal and triangle ADB is
isosceles. e same is true for DB, DC, and triangle BDC. erefore

∠DAB = ∠DBA
∠DCB = ∠DBC

∠DAB+ ∠DCB = ∠DBA+ ∠DBC

where we get the third equation by adding the previous two. It was also known
that the angles of a triangle add up to 180◦, and we can see that∠CBA is the sum
of ∠DBA and ∠DBC, so

∠DAB+ ∠DCB+ ∠DBA+ ∠DBC = 180◦

By substituting using the equality we established, we can write this as follows:

(∠DBA+ ∠DBC) + (∠DBA+ ∠DBC) = 180◦

2 · (∠DBA+ ∠DBC) = 180◦

∠DBA+ ∠DBC = 90◦

∠CBA = 90◦

Why was ales’ discovery so important? What he realized is that truths are
connected. He saw that if you have one piece of knowledge, you can use it to find
another. Furthermore, theorems are essential to the idea of abstraction, for the
value of a theorem is that it applies to all entities that have certain properties.

9.3 Euclid and the Axiomatic Method
If we want to build up a system of knowledge, proofs and theorems are essential
tools. But we also need to have a set of starting assumptions, or axioms, as a
foundation for our system.

162 Chapter 9: Organizing Mathematical Knowledge

e first appearance of the axiomatic method, in which an entire mathemati-
cal systemwas built on the basis of a few formal principles, is in Euclid’sElements.
In fact, for centuries Euclid’s were the only known examples of axioms, and they
applied only to geometry.

Euclid divided his principles into three groups: definitions, postulates, and
common notions. He starts with his 23 definitions, which relate to geometric
figures. Here are a few of them:1

1. A point is that which has no parts.
2. A line is a breadthless length.

...

23. Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not
meet one another in either direction.

Next, he gave the following five “common notions”:

1. ings which are equal to the same thing are also equal to one
another.

2. If equals be added to equals, the whole are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. ings which coincide with one another are equal to one another.
5. e whole is greater than the part.

Today we would express these notions as follows:

1. a = c ∧ b = c =⇒ a = b

2. a = b ∧ c = d =⇒ a+ c = b+ d

3. a = b ∧ c = d =⇒ a− c = b− d

4. a ∼= b =⇒ a = b

5. a < a+ b

What’s interesting about these common notions is that, unlike the 23 defini-
tions, the notions are not limited to geometry; they also apply to positive inte-
gers. In fact, these common notions, such as transitivity of equality, are essential
to programming.2

1As before, we use Sir omas Heath’s translation of Euclid’s Elements.
2e definition of regular types in Chapter 7 is derived from these Euclidean notions.

Euclid and the Axiomatic Method 163

Finally, Euclid introduced his famous five postulates. ese are stated in
terms of allowable operations in the “computational machinery” of his geomet-
ric system. You can read the first three as being prefixed with a statement like
“ere is a procedure...”:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. at all right angles are equal to one another.
5. at, if a straight line falling on two straight lines makes the in-

terior angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side onwhich
are the angles less than the two right angles.

If we were writing Euclid’s system today, we would consider both “common no-
tions” and “postulates” to be axioms—unprovable assumptions onwhich the rest
of the system is built.

Euclid’s fih postulate, which provides the basis for reasoning about parallel
lines, is the most important axiom in the history of mathematics. Also known as
the parallel postulate, it expresses the relation shown in the following diagram:

!	

"	

! + " < 180°	

However, there are many equivalent ways to express the same notion:
• Given a line and a point not on it, at most one parallel to the given line can be

drawn through the point.3

• ere exists a triangle whose angles add up to 180◦.

• ere exist two similar triangles that are not congruent.
3is formulation, which is oen taught as “the parallel postulate” in secondary school geometry,

was actually published by Scottish mathematician John Playfair in 1795, and is properly known as
Playfair’s Axiom.

164 Chapter 9: Organizing Mathematical Knowledge

9.4 Alternatives to Euclidean Geometry
Almost from the time Euclid stated his five postulates, mathematicians felt that
there was something different about the fih one. Intuitively, they felt that the
first four postulates were somehow more fundamental; perhaps the fih postu-
late could be derived from the others, and therefore was not a true axiom. us
began a 2000-year search for a proof of the fih postulate, one pursued by such
luminaries as the astronomer (and mathematician) Ptolemy (90–168), the poet
(and mathematician) Omar Khayyam (1050–1153), and the Italian priest (and
mathematician) Giovanni Girolamo Saccheri, S.J. (1667–1733). Saccheri wrote
a book called Euclidus Vindicatus (“Euclid Vindicated”) in which he constructed
a whole geometrical system based on the assumption that the fih postulate is
false, then claimed that the consequences would be so bizarre that the postulate
must be true.

Whilemost 18th-centurymathematicians didn’t care about axioms, themood
shied in the 19th century. Mathematicians started to focus on the foundations
of their work. ey revisited geometry, no longer taking Euclid for granted, but
examining his assumptions.

Around 1824, Russian mathematician Nikolai Lobachevsky was working on
the problem. At some point, he realized that the parallel postulate was just one
possible assumption, and that the contrary assumption is equally valid. Instead
of saying “there is at most one line through a point parallel to a given line,”
Lobachevsky essentially explored the idea that “there are many lines….” Un-
like Saccheri, Lobachevsky realized that the resulting system of geometry was
entirely consistent. In other words, he invented an entirely new non-Euclidean
geometry, sometimes called hyperbolic geometry.

In Lobachevsky’s geometry, there are no similar triangles except for congru-
ent ones. By way of analogy, think of triangles on the surface of a sphere. For
small triangles, the surface is almost planar, so the sum of the angles is close to
180◦. But as the triangles get bigger, the angles need to get bigger because of the
curvature of the surface. Lobachevsky’smodelwas similar, butwith space curved
in the opposite way, so that bigger triangles corresponded to smaller angles.

Lobachevsky’s results, first published in 1826, were met with dismissal and
scorn from the Russianmathematical community, and Lobachevsky himself was
marginalized. One person who did recognize the validity of Lobachevsky’s work
was Gauss, who learned Russian to read Lobachevsky’s book. But in general, it
would takemany years before his work became an accepted part ofmathematics.
Today, Lobachevsky’s discovery is considered to be a monumental turning point
in the history of mathematics.

Alternatives to Euclidean Geometry 165

Nikolai Ivanovich Lobachevsky (1792–1856)

In the early 19th century, Russia was
not a major center for mathemat-
ics (despite Euler spending much of
his career in St. Petersburg). ere
were no great Russian mathemati-
cians. Yet by the middle of the
20th century, Russia was a math-
ematical superpower. is trans-
formation began with the first great
Russian mathematician, Nikolai Ivan-
ovich Lobachevsky.

Lobachevsky did not come from a
major city, nor did he attend one of the
two great universities (Moscow and
St. Petersburg); he was not sent abroad to learn from the leading thinkers
of Europe. He did not come from the aristocracy or even the upper middle
class; he and his brother were charity students at their local school. He grew
up inKazan, a provincial city on theVolga river that did not even have a uni-
versity until 1805. Lobachevsky entered the recently founded university in
1807. (Interestingly, Tolstoy and Lenin attended the same school decades
later.)

When Lobachevsky started at the University of Kazan, there was no one
to teach mathematics—students studied on their own. Fortunately, Mar-
tin Bartels, one of Gauss’s former professors, soon joined the faculty. Aer
receiving a master’s degree and continuing to study privately with Bartels,
Lobachevsky was appointed as an adjunct professor in 1814. He would go
on to spend most of his career at the university, eventually being elected its
rector (similar to president) in 1827.

Despite his humble origins, Lobachevsky was never afraid to challenge
conventional opinions. His groundbreaking work on non-Euclidean geom-
etry was submitted in 1826, but was not widely known until it was published
as a book in 1832. e book was publicly ridiculed in a review by Ostro-
gradsky, an important Russian mathematician who studied with Cauchy.

Lobachevsky continued his work on non-Euclidean geometry for the
rest of his life, refining it and publishing books about it in various languages.
By the 1840s, Gauss recognized the importance of the work, even reading
some of Lobachevsky’s books in the original Russian. Gauss nominated him
for membership in the Göttingen Academy of Sciences, a great honor at

166 Chapter 9: Organizing Mathematical Knowledge

the time. Yet Lobachevsky was still ostracized by the Russian mathematical
establishment until the end of his career.

In his later years, Lobachevsky’s life took a tragic turn. He lost his job at
the university, his house, andmost of his property, suffered the deaths of two
of his children, and then became blind. Even under these circumstances, he
persisted in his work, dictating a major new book, Pangeometry, just before
his death in 1856.

Oen when a new idea emerges in math or science, it is discovered inde-
pendently by multiple people at roughly the same time. is was the case with
non-Euclidean geometry. At about the same time Lobachevsky was working in
Kazan, a young Hungarian mathematician named János Bolyai made a similar
discovery. A few years later, Bolyai’s father Farkas Bolyai, a well-known math
professor and friend of Gauss, included the son’s results as an appendix to one
of his own books. Farkas sent Gauss the book. Although Gauss privately re-
marked that young Bolyai was a genius, the letter he sent Farkas had a discour-
aging message:

If I commenced by saying that I am unable to praise this work, you
would certainly be surprised for a moment. But I cannot say other-
wise. To praise it would be to praise myself. Indeed the whole con-
tents of the work, the path taken by your son, the results to which
he is led, coincide almost entirely with my meditations, which have
occupied my mind partly for the last thirty or thirty-five years.

e letter is typical of Gauss, both in his refusal to give credit to others and in his
insistence that his own unpublished thoughts gave him priority. (We now know
that Gauss had indeed discovered many of the same ideas, but had decided not
to publish them because he was afraid of the reaction.) Why he acknowledged
Lobachevsky’s work but dismissed Bolyai’s we will never know. But whatever
the reason, the results were tragic. Bolyai was devastated by Gauss’s response
and never attempted to publish in mathematics again. Even sadder, he became
mentally unstable. When he came across Lobachevsky’s book sometime later, he
was convinced that “Lobachevsky” was actually a pseudonym for Gauss, whom
he believed had stolen his ideas.

* * *

Once non-Euclidean geometry was discovered, many mathematicians wrestled
with what they considered to be an important question: which geometry is actu-
ally correct, Euclid’s or Lobachevsky’s? Gauss took the question quite seriously,
and proposed an ingenious experiment to test the theory.

First, find three mountains forming a triangle that are some distance apart,
but close enough so that a person standing on top of each with a telescope can

Hilbert’s Formalist Approach 167

see the others. en set up surveying equipment on each peak to accurately
measure the angles of the triangle. If the angles add up to 180◦, then Euclid is
right; if their sum is less than 180◦, then Lobachevsky is.

e actual experiment was never conducted. But over time, the question
became moot. Other mathematicians would ultimately prove the independence
of the fih postulate, showing that if Euclidean geometry is consistent, then so is
Lobachevskian geometry. Meanwhile, mathematicians began to treat questions
of reality as irrelevant. Whilemathwas originally invented to understand aspects
of the world we live in, by the end of the 19th century, it began to be seen as a
purely formal exercise.

9.5 Hilbert’s Formalist Approach
Onemust be able to say “tables, chairs, beer-mugs” each time in place
of “points, lines, planes.”

—David Hilbert

DavidHilbert, perhaps the greatest mathematician of the early 20th century, was
the leader of this formalist approach. In a view that eventually became standard
throughout mathematics, he said that if a theory was consistent, it was true.

While all of Euclid’s theorems and proofs are correct, by modern standards
the axioms are somewhat shaky. It took 2400 years before anyone tried to come
up with a better foundation for geometry. Hilbert spent 10 years rethinking Eu-
clid and constructing his own axiomatic system for geometry. As the quotation
suggests, Hilbert believed that the validity of his axiomatic system should not
rely on any intuitions about geometry. Hilbert’s system contained many more
axioms than Euclid’s, making explicit many things that Euclid took for granted.
Hilbert had:

• 7 axioms of connection (e.g., if two points lie on a plane, then all points on the
line going through these points are on this plane)

• 4 axioms of order (e.g., there is a point between any two points on a line)

• 1 axiom of parallels

• 6 axioms of congruence (e.g., two triangles are congruent if side-angle-side...)

• 1 Archimedes’ axiom

• 1 completeness axiom

Hilbert’s geometric system is quite complex, and was the subject of several of his
courses. Unfortunately, by the time hewas done constructing the axioms, he had

168 Chapter 9: Organizing Mathematical Knowledge

no energy le to prove many geometric theorems. Hilbert’s work on the axioms
of Euclidean geometry was the last major work done on that subject.

David Hilbert 1862–1943

David Hilbert was born in the Ger-
man city of Königsberg (now Kalin-
ingrad, Russia). He studied math-
ematics at the University of Königs-
berg, continued for a Ph.D., and even-
tually joined the faculty.

At age 33, he accepted an offer to
become a professor at the University
of Göttingen. He would stay there for
the rest of his career. As we saw earlier
(Section 8.2), Göttingen was the cen-
ter of the mathematical universe, and
Hilbert eventually became the leader
of the mathematical community there

during the pinnacle of the department’s fame.
It is difficult to convey the astounding variety of fundamental work done

by Hilbert and the profound effect he had on all of mathematics.
In his initial work on invariant theory, Hilbert championed the use of

nonconstructive proofs, which was a radical idea at the time. In fact, he
initially became famous as much for the approach as for the actual result.
Today, nonconstructive proofs are common.

When asked to summarize work on algebraic number theory (the area
Dedekind had been working on), Hilbert wrote a 600-page volume called
Zahlbericht (“Report on Numbers”). is book captured and explained all
the major developments in the field. While he mostly summarized (and
credited) the work of others, Hilbert’s unification drove the field forward,
eventually leading to Noether’s work on abstract algebra.

For the next 10 years, while working on geometry, Hilbert went be-
yond Lobachevsky and examined the validity of all of Euclid’s axioms. His
book Foundations of Geometry not only introduced his new axioms, but also
taught people for the first time how to think about and rigorously analyze
any axiomatic system.

Hilbert also worked on physics, co-inventing general relativity theory,
largely independently and at roughly the same time as Einstein. His inven-
tion ofHilbert spaces—anextension of vector spaces to infinite dimensions—

Peano and His Axioms 169

became an important building block in the mathematical foundation of
quantum mechanics.

In 1900, Hilbert gave a lecture at the Sorbonne in Paris where he listed 10
important unsolved problems in mathematics and challenged the commu-
nity to work on them. e list was later expanded to 23 problems in a pub-
lished paper. Work on these problems, which became known as Hilbert’s
problems, defined much of mathematics in the 20th century. He also spent
much of the last 25 years of his career working on mechanizing the foun-
dations of mathematics, an effort known as “Hilbert’s program.” Although
Hilbert’s program was shown to be flawed by the work of Kurt Gödel and
Alan Turing, that same work led to the development of the modern theory
of computation.

Hilbert was not only a great mathematician, but also a great mentor and
supporter of younger colleagues. Whenhis best friendHermannMinkowski
died, Hilbert spent several years editing and publishing Minkowski’s work.
He championed the career of EmmyNoether (Section 8.3). He also collabo-
rated withmany researchers in several fields; his lectures on physics became
the basis of a classic text co-authored by Richard Courant.

Hilbert’s one blind spot was his pride in German culture. With good
reason, he saw mathematics in Germany as the culmination of 200 years of
advances. He welcomed people from all over the world to join the German
mathematical community. But he also believed that only the research in
Germany was worthy of attention. Perhaps themost egregious example was
his unwillingness to cite the work of Giuseppe Peano in Italy or recognize its
seminal importance to the foundations of mathematics. At the same time,
Hilbert was completely opposed to the views of the Nazis (who came to
power a few years aer his retirement in 1930), having spent much of his
career promoting the work of many colleagues who happened to be Jewish,
including his best friend Minkowski and his protegé Noether.

Sadly, Hilbert lived to see everything he cared about destroyed. His
friends were driven into exile, his once-great department was reduced to
mediocrity, and his beloved country embraced beliefs he despised. But his
mathematical legacy was carried around the world by his many students
and collaborators, and lives on today.

9.6 Peano and His Axioms
Certainly it is permitted to anyone to put forwardwhatever hypothe-
ses he wishes, and to develop the logical consequences contained
in those hypotheses. But in order that this work merit the name of

170 Chapter 9: Organizing Mathematical Knowledge

Geometry, it is necessary that these hypotheses or postulates express
the result of the more simple and elementary observations of physi-
cal figures.

—Giuseppe Peano

Even before Hilbert announced his program on formalizing mathematics, oth-
ers had been working on similar ideas about formalizing mathematical systems.
One of thesewas ItalianmathematicianGiuseppePeano. As the quotation shows,
Peano was still interested in the connections between mathematics and reality.
In 1891, he began writing Formulario Mathematico (“Mathematical Formulas”),
which would become a comprehensive work containing all essential theorems in
mathematics expressed in a symbolic notation Peano invented. Much of his no-
tation, such as the symbols for quantifiers and set operations, is still used today.

In 1889, Peano published a set of axioms that provided a formal basis for
arithmetic. ere were five, just like Euclid’s:

ere is a set N called the natural numbers:

1. ∃0 ∈ N

2. ∀n ∈ N : ∃n′ ∈ N – called its successor
3. ∀S ⊂ N : (0 ∈ S ∧ ∀n : n ∈ S =⇒ n′ ∈ S) =⇒ S = N

4. ∀n,m ∈ N : n′ = m′ =⇒ n = m
5. ∀n ∈ N : n′ ̸= 0

In English, we might write them like this:

1. Zero is a natural number.

2. Every natural number has a successor.

3. If a subset of natural numbers contains zero, and every element in the subset
has a successor in the subset, then the subset contains all natural numbers.

4. If two natural numbers have the same successor, then they are equal.

5. Zero is not the successor of any natural number.

e third axiom, known as the axiom of induction, is the most important. It says
that if we take any subset S of N that contains zero and obeys the rule that the
successor of every element is also in S, then S is the same as N. Another way to
put this is “there are no unreachable natural numbers”; if you start with zero and
keep taking the successor, you’ll eventually get to every natural number. Many
modern texts put this axiom last, but we use Peano’s order.4

4Modern texts oen also start natural numbers with 1 rather than 0.

Peano and His Axioms 171

Peano’s axioms transformed arithmetic. In fact, he was building on earlier
work by Richard Dedekind and Hermann Grassman, both of whom showed
how to derive some basic principles of arithmetic. But Peano went further, and
his contributions were so important that mathematicians since then talk about
Peano arithmetic, not just arithmetic.

Giuseppe Peano (1858–1932)

Giuseppe Peano was born into a peas-
ant family near Turin in the north of
Italy, right around the time Italy be-
came a unified country. He attended
the University of Turin and eventu-
ally joined the faculty there. Later,
he also began teaching at the Royal
Military Academy. Among his best-
known achievements was the discov-
ery of the space-filling curve, known
as a Peano curve, which provided
a continuous mapping from a one-
dimensional segment to every point
on a two-dimensional square.

Formost of the 1890s, Peanoworked on the foundations ofmathematics
and his great book Formulario Mathematico. Formulario was meant to be a
compendium of all mathematical results, written formally. It was a master-
piece, not only providing a foundation for mathematics but also covering a
variety of topics, togetherwith references to the sources in their original lan-
guages. Peano gave a copy of the book to the British philosopher Bertrand
Russell, and it strongly influenced Russell’s work with Whitehead, Principia
Mathematica, which would come to play an important role in early theories
of computation.

Initially, Peano published Formulario Mathematico in French, but he
was frustrated by the ambiguity inherent in any natural language. Even-
tually, around 1900, he decided that the only solution was to invent an un-
ambiguous universal language for science andmathematics, and to then use
this for his writing.

e language Peano designed was called Latine sine Flexione (“Latin
without Inflection”), later renamed “Interlingua.” His idea was to start with
Latin, but to replace all its confusing declensions, conjugations, and irreg-
ular words with a simple, logical set of rules.

172 Chapter 9: Organizing Mathematical Knowledge

Peano rewrote Formulario in his new language, and this edition was
published in 1908. Here’s what his famous axioms looked like in Interlingua:

0. N0 es classe, vel “numero” es nomen commune.
1. Zero es numero.
2. Si a es numero, tunc suo successivo es numero.
3. N0 es classe minimo, que satisfac ad conditione 0, 1, 2; [...]
4. Duonumero, que habe successivo aequale, es aequale inter se.
5. 0 non seque ullo numero.

Peano also started using his formal notation in his teaching, which prob-
ably did not endear him to his students. In addition, he turned every course
he was supposed to be teaching into a discussion of the foundations of
mathematics, which eventually caused him to lose his position at the mili-
tary academy.

Peano’s dreamwas that other scientistswould start publishing theirwork
in Interlingua, but this did not happen. In fact, few people even attempted
to read Peano’s book, and his work was largely ignored. Toward the end of
his life, Peano spent much of his time trying to promote Interlingua, and
he was mostly forgotten by the mathematical community; they were more
interested in the work of Hilbert and others at Göttingen.

Even today, despite embracing Peano’s foundational axioms of arith-
metic, most mathematicians have never read more than the first page of his
monumental work. It has been out of print for years, and has never been
translated into English.

To prove that every axiom is needed, we need to remove each one from the
set and demonstrate that the remaining set has consequences that do not meet
our intent—in this case, that they do not correspond to what wemean by natural
numbers.

Removing existence of 0 axiom. If we remove this axiom, we are forced to
drop all axioms that refer to zero. Since we have no elements to start with, the
other axioms never apply and can be satisfied by the empty set, which is clearly
not a model of natural numbers.

Removing totality of successor axiom. If we remove the requirement that ev-
ery value have a successor, then we end up allowing finite sets like {0} or {0, 1, 2}.
Clearly, no finite set satisfies our notion of natural numbers. (However, on com-
puters, we give up this axiom, since all of our data types are finite; for example,
a uint64 can express only the first 264 integers.)

Removing induction axiom. If we remove the induction axiom, then we end
up with the situation where we have more integer-like things than there are
integers. ese “unreachable” numbers are called transfinite ordinals and are

Building Arithmetic 173

designated by ω. So we could end up with sets like {0, 1, 2, 3, . . . , ω, ω + 1, ω +

2, . . .}, {0, 1, 2, 3, . . . , ω1, ω1 + 1, ω1 + 2, . . . , ω2, ω2 + 1, ω2 + 2, . . .}, and so on.
Removing invertibility of successor axiom. If we remove the requirement that

equal successors have equal predecessors, then we’re allowing “ρ-shaped” struc-
tures where an item can havemultiple predecessors, some earlier in the sequence
and some later, such as {0, 1, 1, 1, . . .}, {0, 1, 2, 1, 2, . . .}, or {0, 1, 2, 3, 4,
5, 3, 4, 5, . . .}. Since all of these structures are finite, they clearly do not include
all natural numbers.

Removing “nothing has 0 as its successor” axiom. If we remove this axiom,
then we’d allow structures that loop back to zero, like {0, 0, . . .} and {0, 1, 0,
1, . . .}. Again, these structures are finite, so they do not capture our notion of
natural numbers.

9.7 Building Arithmetic
Now that we have established that all of Peano’s axioms are independent, and
therefore necessary for our notion of natural numbers, we can build up arith-
metic from first principles. We’ll do this now by defining exactly what it means
to add and multiply two natural numbers.

Definition of Addition:

a+ 0 = a (9.1)
a+ b′ = (a+ b)′ (9.2)

We are not proving these statements; we are defining addition to be these state-
ments. All properties of adding natural numbers follow from this definition. For
example, here’s how we prove that 0 is the le additive identity:

0+ a = a (9.3)

basis: 0+ 0 = 0
inductive step: 0+ a = a =⇒ 0+ a′ = (0+ a)′ = a′

In the basis step, we assert that it’s true when a is zero. We know this because
of Equation 9.1 in the definition of addition. In the inductive step, we assume
it’s true for any a. By Equation 9.2, we know that 0 + a′ = (0 + a)′. But by the
assumption of the inductive step, we can substitute a for 0 + a, so our result is
a′, and therefore 0+ a′ = a′.

Definition of Multiplication:

a · 0 = 0 (9.4)
a · b′ = (a · b) + a (9.5)

174 Chapter 9: Organizing Mathematical Knowledge

We can now prove that 0 · a = 0, much as we did for addition:
basis: 0 · 0 = 0

inductive step: 0 · a = 0 =⇒ 0 · a′ = 0 · a+ 0 = 0
Definition of 1. We also define 1 as the successor of 0:

1 = 0′ (9.6)
Now we know how to add 1:

a+ 1 = a+ 0′ = (a+ 0)′ = a′ (9.7)
We also know how to multiply by 1:

a · 1 = a · 0′ = a · 0+ a = 0+ a = a
We can derive fundamental properties of addition as well; they follow from

the axioms.

Associativity of Addition: (a+ b) + c = a+ (b+ c)
basis: (a+ b) + 0 = a+ b by 9.1

= a+ (b+ 0) by 9.1
inductive step:
(a+ b) + c = a+ (b+ c) =⇒

(a+ b) + c′ = ((a+ b) + c)′ by 9.2
= (a+ (b+ c))′ by induction hypothesis
= a+ (b+ c)′ by 9.2
= a+ (b+ c′) by 9.2

To get commutativity, we’ll start by proving it for the special case:
a+ 1 = 1+ a (9.8)

basis: 0+ 1 = 1 by 9.3
= 1+ 0 by 9.1

inductive step:
a+ 1 = 1+ a =⇒

a′ + 1 = a′ + 0′ by 9.6
= (a′ + 0)′ by 9.2
= ((a+ 1) + 0)′ by 9.7
= (a+ 1)′ by 9.1
= (1+ a)′ by induction hypothesis
= 1+ a′ by 9.2

Building Arithmetic 175

Commutativity of Addition: a+ b = b+ a

basis: a+ 0 = a by 9.1
= 0+ a by 9.3

inductive step:
a+ b = b+ a =⇒

a+ b′ = a+ (b+ 1) by 9.7
= (a+ b) + 1 by associativity of addition
= (b+ a) + 1 by induction hypothesis
= b+ (a+ 1) by associativity of addition
= b+ (1+ a) by 9.8
= (b+ 1) + a by associativity of addition
= b′ + a by 9.7

Exercise 9.3. Using induction, prove:

• Associativity and commutativity of multiplication

• Distributivity of multiplication over addition

Exercise 9.4. Using induction, define total ordering between natural numbers.

Exercise 9.5. Using induction, define the partial function predecessor on natural
numbers.

* * *

Do Peano axioms define natural numbers? No; as Peano put it, “number (pos-
itive integer) cannot be defined (seeing that the ideas of order, succession, ag-
gregate, etc., are as complex as that of number).” In other words, if you don’t
already know what they are, Peano’s definitions won’t tell you. Instead, they de-
scribe our existing idea of numbers, formalizing our notions of arithmetic, which
helps provide a way to structure proofs.

In general, we can say that axioms explain, not define. e explanation may
not be constructive; that is, it might not say how the result is achieved. Even if it
does suggest an algorithm, the algorithm could be computationally very ineffi-
cient. No sane personwould do addition by repeated application of the successor
function. But these axioms still serve a useful purpose; they get us to think about
which properties of natural numbers are essential and which are not.

is approach is a good attitude to take when studying the documentation
for a programming interface. Why is that requirement imposed? What would
the consequences be if it were not there?

176 Chapter 9: Organizing Mathematical Knowledge

9.8 Thoughts on the Chapter
We began the chapter by looking at the notion of proof, a formal—yet social—
process for demonstrating the truth of a proposition. We saw how proofs show
connections between truths; proof systems are a way to organize knowledge.
We also looked at the discovery of theorems, and the important abstraction they
provide.

Nextwe looked at a richer formalism for organizing knowledge, the axiomatic
system, and sawhowgeometry and arithmetic could be built up fromfirst princi-
ples. e critical role of axiomatic systems is their ability to reduce the complex-
ity of knowledge. You don’t need to memorize all the true propositions, because
you can derive them from a few axioms and inference rules.

However, it’s important to remember that historically, mathematicians did
not really start with axioms and derive theorems from them. e axioms were
proposed only aer the interrelationships between the theorems were well un-
derstood and the assumptions underlying them identified. e same process
holds for programming: designing good abstractions requires examining a large
number of real algorithms and understanding their interrelationships.

While axiomatic systems allow us to organize knowledge, they presuppose
that we already have some knowledge to organize. Discovery of a theorem is a
more important thing than proving it—you cannot attempt to prove something
unless you have reason to believe it is a truth.

Sometimes modern mathematicians forget the empirical origins of knowl-
edge. In his book e Method, the great Greek mathematician Archimedes dis-
cussed how anymeans for acquiringmathematical knowledge was valid, includ-
ing measurement and experimentation. Only aer discovering mathematical
truths should one attempt to derive a rigorous proof. e same principle ap-
plies to programming: before trying to prove a program correct, we should try
to write correct programs—even if our attempts involve trial and error.

Fundamental Programming
Concepts

All humans naturally desire to know.

Aristotle,Metaphysics I, 1

In this chapter we will introduce some of the important ideas associated with
generic programming, including concepts and iterators. We’ll also consider some
common programming tasks that rely on them. But we’ll start by looking at the
origins of the notion of abstraction.

10.1 Aristotle and Abstraction
e School of Athens, a famous painting by Italian Renaissance painter Raphael,
depicts many ancient Greek philosophers (see detail of painting on the next
page). At the center are Plato and Aristotle, the two most important philoso-
phers of the ancient world. Plato is pointing upward, while his student Aristotle
holds his hand out over the ground. According to popular interpretation, Plato
is pointing to the heavens, indicating that we should contemplate the eternal,
while Aristotle is indicating that we need to study the world. In fact, it could be
said that Plato invented mathematics and Aristotle invented the study of every-
thing else, especially science. Aristotle’s works cover everything from aesthetics
to zoology.

178 Chapter 10: Fundamental Programming Concepts

Aristotle (384 BC–322 BC)

Aristotle came from Stageira, a city
in the far north of Greece. We know
very little about his early life, but we
know that at some point he decided
to move to Athens in search of wis-
dom. He studied (and at some point,
probably taught) at Plato’s Academy
for about 20 years. Around the time of
Plato’s death—perhaps disappointed
because he was not appointed Plato’s
successor—he le Athens.

In 343 BC, King Philip of Mace-
don appointed Aristotle to be a tutor
for his son Alexander and Alexander’s

companions. We don’t know much about Aristotle’s relationship with the
prince, but in later years when Alexander became king and began the Asian

Aristotle and Abstraction 179

conquests that earned him the nickname “the Great,” he sent Aristotle ex-
otic plant and animal specimens for the philosopher’s collection.

Around 335 BC, Aristotle returned to Athens and created his own great
school, the Lyceum. During the next 12 years, he produced the most as-
tonishing collection of knowledge ever assembled. While his teacher Plato
had focused on studying eternal truths, Aristotle wanted to understand the
world as it really was. For example, when Plato wanted to write about pol-
itics, he described what the ideal society would be. When Aristotle wrote
about politics, he asked his students to visit each of the important Greek
city-states and then report on their constitutions. Aristotle’s approach was
to observe everything, describe it, and come up with explanations for what
he saw.

Aristotle taught, and wrote about, nearly every subject imaginable. Ac-
cording to several important writers of the period, Aristotle wrote beauti-
fully; unfortunately the books he intended for publication, such as his di-
alogues, have all been lost. What we have instead are terse treatises that
were probably lecture notes. Nevertheless, many of his works, such asNico-
machean Ethics, Politics, and Metaphysics are still essential reading today.
And regardless of their style, his collected works constitute the first ency-
clopedic treatment of knowledge.

AlthoughAristotle’s scientific descriptions include factual errors, he was
the first person to systematically describe the scientific world, with obser-
vations on topics as detailed as how the octopus reproduces.

Aristotle le Athens around 322 BC and died soon aerward. While
other philosophical traditions (e.g., Stoicism, Platonism) persisted in an-
cient times long aer their founders’ deaths, Aristotle’s did not. Greek phi-
losophy became increasingly introspective and lost interest in Aristotle’s
idea of studying observable reality. e Lyceum rapidly declined in impor-
tance, and few scholars in later Greek and Roman times considered them-
selves Aristotelians. Even when his work was rediscovered in the Middle
Ages, medieval scholars slavishly studied his writings rather than follow-
ing his methodology of going out and observing the world. Aristotle’s great
legacy is his empirical approach, which is the foundational principle of all
modern science. Furthermore, the organization of knowledge reflected in
the departments of modern universities is a direct descendent of the taxon-
omy that Aristotle proposed.

Aristotle’s writingswere preserved toward the end of the firstmillenniumAD
by Arab philosophers. In the 12th century, when Christian kingdoms recap-
tured much of Spain from the Islamic state known as Al-Andalus, they found
a library in the Spanish city of Toledo containing a great number of books in
Arabic, including translations of Aristotle’s works. Eventually the books were

180 Chapter 10: Fundamental Programming Concepts

translated from the original Greek into Latin, and an Aristotelian renaissance
spread through Europe. Aristotle became known as simply “the Philosopher,”
and his works became a part of generally accepted knowledge. e great An-
dalusian philosopher Ibn Rushd (known asAverroes to Europeans) wrote widely
read commentaries on Aristotle, reconciling his philosophy with the teachings
of Islam; he became known simply as “the Commentator.” In the 13th century,
Christian scholars such as omas Aquinas and Duns Scotus similarly showed
that Aristotelianism was compatible with Christianity; this was oen described
as “baptizing” Aristotle. As a result, Aristotle’s works were part of the required
study at European universities for literally hundreds of years.

Among Aristotle’s most important works is the Organon, a collection of six
treatises on various aspects of logic that would define the field for the next 2600
years.1 In Categories, the first part of the Organon, Aristotle introduced the
notion of abstraction. He wrote about the distinction between an individual,
a species, and a genus. While today most people think of these as biological dis-
tinctions, for Aristotle they applied to everything. A species incorporates all the
“essential” properties of a type of thing. A genusmay containmany species, each
identified by its differentia—the things that differentiate it from other species in
the genus.

It is Aristotle’s idea of genus that inspired the term generic programming—a
way to think about programming that focuses on the level of genera (the plural
of genus) rather than species.

10.2 Values and Types
Now we will see how some of the ideas we’ve been discussing fit in computer
programming. First, we need a few definitions:

Definition 10.1. A datum is a sequence of bits.

01000001 is an example of a datum.

Definition 10.2. A value is a datum together with its interpretation.

A datumwithout an interpretation has nomeaning. e datum 01000001 might
have the interpretation of the integer 65, or the character “A,” or something else
altogether. Every value must be associated with a datum in memory; there is no
way to refer to disembodied values in a language like C++ or Java.

Definition 10.3. A value type is a set of values sharing a common interpretation.

Definition 10.4. An object is a collection of bits in memory that contain a value
of a given value type.

1Unlike Aristotle’s other works, a Latin version of the Organon was available to Europeans much
earlier; Boethius provided the translation in the early 6th century.

Concepts 181

ere is nothing in the definition that says that all the bits of an object must
be contiguous. In fact, it’s quite common for parts of an object to be located at
different places in memory; these are called remote parts.

An object is immutable if the value never changes, and mutable otherwise.
An object is unrestricted if it can contain any value of its value type.

Definition 10.5. An object type is a uniform method of storing and retrieving
values of a given value type from a particular object when given its address.

What we call “types” in programming languages are object types. C++, Java,
andother programming languages donot providemechanisms for defining value
types.2 Every type resides in memory and is an object type.

10.3 Concepts
e essence of generic programming lies in the idea of concepts. A concept is
a way of describing a family of related object types. e relationship between
concept and type is exactly the relationship between theory and model in math-
ematics, and between genus and species in the scientific taxonomy introduced
by Aristotle.

Natural Science Mathematics Programming Programming
Examples

genus theory concept Integral, Character

species model type or class uint8_t, char

individual element instance 01000001 (65, ’A’)

Here are some examples of concepts and some of their types in C++:

• Integral:3 int8_t, uint8_t, int16_t, ...

• UnsignedIntegral: uint8_t, uint16_t, ...

• SignedIntegral: int8_t, int16_t, ...

While concepts exist in many languages implicitly, very few languages provide
an explicit way to talk about them.4

2e iterator trait value_type in C++, despite its name, does not actually return a value type in
the sense described here. Rather, it returns the object type of the value pointed to by the iterator.

3is refers specifically to the list of built-inC++ integral types. ere is a broader concept Integer
that includes all of these plus other representations of integers such as infinite-precision integers.

4ere have been proposals to include concepts in C++; the work is still in progress. ere are
also concept-like features in some functional programming languages such as Haskell.

182 Chapter 10: Fundamental Programming Concepts

Many programming languages provide a mechanism to specify the interface
of a type to be implemented later: abstract classes in C++, interfaces in Java, and
so on. However, these mechanisms completely specify the interface, including
strict requirements on the types of arguments and return values. In contrast,
concepts allow interfaces to be specified in terms of families of related types.
For example, in both Java and C++, you can specify an interface containing a
function size() returning a value of type int32. In the world of concepts, you
can have an interface with a function size() that returns a value of any integral
type—uint8, int16, int64, etc.

A concept can be viewed as a set of requirements on types, or as a predicate5
that tests whether types meet those requirements. e requirements concern

• e operations the types must provide

• eir semantics

• eir time/space complexity

A type is said to satisfy a concept if it meets these requirements.
When first encountering concepts, programmers oenwonder why the third

requirement, for space/time complexity, is included. Isn’t complexity just an im-
plementation detail? To answer this question, consider a real-world example.
Suppose you defined the abstract data type stack, but you implemented it as an
array, in such a way that every time you pushed something onto the array, you
had to move every existing element to the next position to make room. Instead
of pushing on the stack being a fast operation (constant time), it’s now a slow
operation (linear time). is violates a programmer’s assumption of how stacks
should behave. In a sense, a stack that doesn’t have fast push and pop is not re-
ally a stack. erefore these very basic complexity constraints are part of what it
means to satisfy a concept.

* * *

Two useful ideas related to concepts are type functions and type attributes. A type
function is a function that, given a type, returns an affiliated type. For example,
it would be nice to have type functions like this:

• value_type(Sequence)

• coefficient_type(Polynomial)

• ith_element_type(Tuple, size_t)

Unfortunately, mainstream programming languages do not contain type func-
tions, even though they would be easy to implement. (Aer all, the compiler
already knows things like the type of elements in a sequence.)

5A predicate is a function that returns true or false.

Concepts 183

A type attribute is a function that, given a type, returns a value representing
one of its attributes. For example:

• sizeof

• alignment_of

• Number of members in a struct

• Name of the type

Some languages provide some type attributes, like sizeof() in C and C++.

* * *

Let’s look at some very general concepts. e first one is Regular,6 which we
introduced back in Chapter 7. Roughly speaking, a type is regular if it supports
these operations:

• Copy construction

• Assignment

• Equality

• Destruction

Having a copy constructor implies having a default constructor, since T a(b)
should be equivalent to T a; a = b;. To describe the semantics of Regular, we’ll
express the requirements as axioms:

∀a ∀b ∀c : T a(b) =⇒ (b = c =⇒ a = c)
∀a ∀b ∀c : a← b =⇒ (b = c =⇒ a = c)

∀f ∈ RegularFunction : a = b =⇒ f(a) = f(b)

e first axiom says that if you copy construct a from b, then anything that was
equal to b will now also be equal to a. e second axiom says that if you assign
b to a, then anything that was equal to b will now also be equal to a. e third
axiom uses the notion of a regular function (not to be confused with a regular
type), which is one that produces equal results given equal inputs. It’s the re-
sponsibility of the programmer to specify which functions are supposed to be
regular; only then can other programmers (or, in the future, the compiler) rely
on the fact that these functions will preserve equality.

e complexity requirements on Regular are that each operation is no worse
than linear in the area of the object, where area is defined as all space occupied by
the object, both its header and its remote parts, both its data and its connectors.7

6By convention, we write concept names with initial capitals, and display them with a Sans Serif
typeface.

7For a more formal treatment of the concept Regular, see Elements of Programming Section 1.5.

184 Chapter 10: Fundamental Programming Concepts

e concept Regular is universal—it’s not specific to any programming lan-
guage. A type in any language is regular if it satisfies the requirements.

A related concept is Semiregular, which is just like Regular except that equal-
ity is not explicitly defined. is is needed in a few situations where it is very
difficult to implement an equality predicate. Even in these situations, equality
is assumed to be implicitly defined, so that axioms that control copying and as-
signment are still valid. Aer all, as we saw earlier, the meaning of assigning a
to b is that b’s value will be equal to a’s value aerward.

10.4 Iterators
An iterator is a concept used to express where we are in a sequence. In fact,
iterators were originally going to be called “coordinates” or “positions”; theymay
be viewed as a generalization of pointers. In some programming languages, what
they call iterators are heavyweight bundles of functionality, but the concept of an
iterator just expresses this very simple notion of position.

To be an iterator, a type must support three operations:

• Regular type operations

• Successor

• Dereference

One way to think of an iterator is “something that lets you do linear search
in linear time.” e essence of an iterator is the notion of successor. Indeed, iter-
ators come to us directly from Peano’s axioms; essentially, the concept Iterator
is “a theory with successor.” However, our iterator concepts will be less strict,
because we don’t require all of Peano’s axioms. For example, in Peano arith-
metic, every number has a successor, while with iterators, this is not always the
case—sometimes we get to the end of our data. Peano also tells us that if suc-
cessors are equal, the predecessors must be equal, and that we can’t have loops.
ese requirements are also not the case for programmers; we’re allowed to have
data structures that link back to earlier elements and form loops. In fact, this is
sometimes exactly what we need to do a computational task efficiently.

e second iterator operation, dereferencing, is a way to get from an iterator
to its value. Dereferencing has a time complexity requirement; it’s assumed to be
“fast,” which means that there is not a faster way of getting to data than through
the iterator. Iterators are sometimes bigger than traditional pointers, in situa-
tions where they need to store some additional state to enable fast navigation.
Iterators may also support special values indicating that we are past the end of
the object, as well as singular values like the null pointer that cannot be derefer-
enced. It’s okay that dereferencing is a partial function (i.e., that it isn’t defined

Iterator Categories, Operations, and Traits 185

for all values); aer all, mathematicians have no trouble saying what division is,
even though division by zero is not defined.

Dereferencing and successor are closely connected,8 and this relationship
imposes the following restrictions:

• Dereferencing is defined on an iterator if and only if successor is defined.

• If you are not at the end of the range, you can dereference.

Why do we need equality as a requirement for iterators? In other words, why
do we need iterators to be regular rather than semiregular? Because we need to
be able to see when one iterator reaches another.

10.5 Iterator Categories, Operations,
and Traits

ere are several kinds of iterators, which we call iterator categories. Here are the
most important:

• Input iterators support one-directional traversal, but only once, as is found in
single-pass algorithms. e canonical model of an input iterator is the posi-
tion in an input stream. Bytes are coming over the wire and we can process
them one at a time, but once they are processed, they are gone. In particular,
with input iterators i == j does not imply ++i == ++j; for example, if you’ve
already consumed a character from an input stream, you can’t consume the
same character again with a different iterator. Keep in mind that just because
an algorithm only requires input iterators does not mean it is limited to oper-
ating on input streams.

• Forward iterators also support only one-directional traversal, but this traversal
can be repeated as needed, as in multi-pass algorithms. e canonical model
of a forward iterator is the position in a singly linked list.9

• Bidirectional iterators support bidirectional traversal, repeated as needed (i.e.,
they also can be used in multi-pass algorithms). e canonical model of a
bidirectional iterator is the position in a doubly linked list. Bidirectional iter-
ators have an invertible successor function: if an element x has a successor y,
then y has a predecessor x.

• Random-access iterators support random-access algorithms; that is, they al-
low access to any element in constant time (both far and fast). e canonical
model is the position in an array.
8See Chapter 6 of Elements of Programming for more about the relationship between dereferenc-

ing and successor.
9We assume that link structure of the list is not modified as it is traversed.

186 Chapter 10: Fundamental Programming Concepts

In addition, there is another common iterator category that behaves differ-
ently from the others:

• Output iterators support alternating successor (++) and dereference (*) op-
erations, but the results of dereferencing an output iterator can appear only
on the le-hand side of an assignment operator, and they provide no equality
function. e canonical model of an output iterator is the position in an out-
put stream. We can’t define equality because we can’t even get to the elements
once they’ve been output.

While the iterators described so far are the only ones included in C++, other
useful iterator concepts also exist:

• Linked iterators work in situations where the successor function is mutable
(for example, a linked list where the link structure is modified).

• Segmented iterators are for cases where the data is stored in noncontiguous
segments, each containing contiguous sequences. std::deque, a data struc-
ture that is implemented as a segmented array, would immediately benefit;
instead of needing each successor operation to check whether the end of the
segment has been reached, a “top level” iterator could find the next segment
and know its bounds, while the “bottom level” iterator could iterate through
that segment.

Iterators like these can easily be implemented. Just because a concept is not built
into the language does notmean it’s not useful. In general, STL should be viewed
as a set of well-chosen examples, not an exhaustive collection of all useful con-
cepts, data structures and algorithms.

* * *

A simple but important thing we may want to do is find the distance between
two iterators. For an input iterator, we might write our distance() function
like this:

template <InputIterator I>
DifferenceType<I> distance(I f, I l, std::input_iterator_tag) {

// precondition: valid_range(f, l)
DifferenceType<I> n(0);
while (f != l) {

++f;
++n;

}
return n;

}

Iterator Categories, Operations, and Traits 187

ere are three notable things about this code: the use of the type function
DifferenceType, the use of the iterator tag argument, and the precondition.
We’ll discuss all of these soon, but before we do, let’s compare this to a different
implementation—one that’s optimized for random access iterators:

template <RandomAccessIterator I>
DifferenceType<I> distance(I f, I l,

std::random_access_iterator_tag) {
// precondition: valid_range(f, l)
return l - f;

}

Since we have random access, we don’t have to repeatedly increment (and count)
from one iterator to the other; we can just use a constant time operation—
subtraction—to find the distance.

e difference type of an iterator is an integral type that is large enough to
encode the largest possible range. For example, if our iterators were pointers,
the difference type in C++ could be ptrdiff_t. But in general we don’t know
in advance which type the iterator will be, so we need a type function to get
the difference type. Although C++ does not have a general mechanism for type
functions, STL iterators have a special set of attributes known as iterator traits,
one of which gives us the difference type. e complete set of iterator traits is

• value_type

• reference

• pointer

• difference_type

• iterator_category

We’ve mentioned value_type before; it returns the type of the values pointed
to by the iterator. e reference and pointer traits are rarely used in current
architectures,10 but the others are very important.

Since the syntax for accessing iterator traits is rather verbose, we’ll implement
our own type function for accessing difference_type, with the using construct
of C++11. (See Appendix C for more information about using.)

template <InputIterator I>
using DifferenceType =

typename std::iterator_traits<I>::difference_type;

10Earlier versions of the Intel processor architecture included different types for shorter and longer
pointers, so it was important to know which to use for a given iterator. Today, if the value type of an
iterator is T, the pointer iterator trait would normally be T*.

188 Chapter 10: Fundamental Programming Concepts

is gives us the DifferenceType type function used in the earlier code.
e iterator trait iterator_category returns a tag type representing the

kind of iterator we’re dealing with. Objects of these tag types contain no data.
As we did for DifferenceType, we define the following type function:

template <InputIterator I>
using IteratorCategory =

typename std::iterator_traits<I>::iterator_category;

Now we can return to the use of the iterator tag argument in the distance
functions. e iterator tags shown in the examples (input_iterator_tag and
random_access_iterator_tag) are possible values of the iterator category trait,
so by including them as arguments, we are distinguishing the type signature of
the two function implementations. (We will see more examples of this in Chap-
ter 11.) is allows us to perform category dispatch on the distance function;
that is, we can write a general form of the function for any iterator category, and
the fastest one will be invoked:

template <InputIterator I>
DifferenceType<I> distance(I f, I l) {

return distance(f, l, IteratorCategory<I>());
}

Note that the third argument is actually a constructor call creating an instance
of the appropriate type, because we cannot pass types to functions. When the
client calls distance(), it uses the two-argument version shownhere. at func-
tion then invokes the implementation that matches the iterator category. is
dispatch happens at compile time and the general function is inline, so there is
literally no performance penalty for choosing the right version of the function.

e use of tag types as arguments to distinguish versions of the functionmay
seem redundant, since we already specified different concepts in the templates.
However, recall that our use of concepts serves only as documentation for the
programmer; current C++ compilers don’t know anything about concepts. Once
concepts are added to the language, the arcane iterator category tag mechanism
will no longer be needed.

10.6 Ranges
A range is a way of specifying a contiguous sequence of elements. Ranges can
be either semi-open or closed;11 a closed range [i, j] includes items i and j, while
a semi-open range [i, j) includes i but ends just before j. It turns out that semi-
open ranges are the most convenient for defining interfaces. is is because

11In mathematics, there are also open ranges, but they are less useful in programming, so we do
not include them here.

Ranges 189

algorithms that operate on sequences of n elements need to be able to refer to
n + 1 positions. For example, there are n + 1 places to insert a new item: be-
fore the first element, between any two elements, or aer the last element. Also,
semi-open ranges, unlike closed ranges, can describe an empty range. Further-
more, a semi-open empty range can be specified at any position; it providesmore
information than a simple “nil” or empty list.

A range can be specified in one of two ways: a bounded range has two itera-
tors (one pointing to the beginning and one pointing just past the end), while a
counted range has an iterator pointing to the beginning and an integer n indicat-
ing how many items are included. is gives us four kinds of ranges altogether:

semi-open closed
bounded: two iterators [i, j) [i, j]
counted: iterator and integer [i,n) [i,n]

(A closed counted range must have n > 0.) As we shall see, there are different
situations where bounded or counted ranges are preferable.

While mathematical texts index sequences from 1, computer scientists start
from 0, and we will use the latter convention for our ranges. Interestingly,
although 0-based indexing in computer science was initially used as a way to
indicate the offset in memory, this convention turns out to be more natural re-
gardless of implementation, since it means that for a sequence with n elements,
the indices are in the range [0,n) and any iteration is bounded by the length.

* * *

Now we can return to the third notable feature of our distance functions: the
valid_range precondition. It would be nice if we could have a valid_range
function that returned true if the range specified by the two iterators was valid
and false otherwise, but unfortunately, it’s not possible to implement such a func-
tion. For example, if two iterators each represent cells in a linked list, we have
no way of knowing if there’s a path from one to the other. But even if we’re deal-
ing with simple pointers, we still cannot compute valid_range: there is no way
in C or C++ to determine if two pointers point to a single contiguous block of
memory; there might be gaps in the middle.

Sowe can’t write a valid_range function, butwe can still use it as a precondi-
tion. Instead of guaranteeing the correct behavior in code, we’ll use axioms that,
if satisfied, ensure that our distance function will behave as intended. Specifi-
cally, we postulate the following two axioms:

container(c) =⇒ valid(begin(c), end(c))
valid(x, y) ∧ x ̸= y =⇒ valid(successor(x), y)

e first axiom says that if it’s a container, the range from begin() to end() is
valid. e second axiom says that if [x, y) is a nonempty valid range, then the

190 Chapter 10: Fundamental Programming Concepts

range [successor(x), y) is also valid. All STL-style containers, as well as C++
arrays, must obey these axioms. is allows us to prove the algorithms correct.
For example, if you go back to our original distance function for input iterators
in Section 10.5, you’ll see that the second axiom ensures that if we start with a
valid range, we’ll still have one each time through the loop.

* * *

In addition to the successor (++) and distance operations, it’s useful to have
a way to move an iterator by several positions at once. We call this function
advance. As before, we’ll implement two versions, one for input iterators:
template <InputIterator I>
void advance(I& x, DifferenceType<I> n, std::input_iterator_tag) {

while (n) {
--n;
++x;

}
}

and another for random access iterators:
template <RandomAccessIterator I>
void advance(I& x, DifferenceType<I> n,

std::random_access_iterator_tag) {
x += n;

}

We’ll also provide with a top-level function for doing the dispatch:
template <InputIterator I>
void advance(I& x, DifferenceType<I> n) {

advance(x, n, IteratorCategory<I>());
}

10.7 Linear Search
Linear search is a fundamental programming task that all programmers should
understand. e simplest idea of linear search is to scan a linear list until we
find a specific element. But we will generalize that to a function that scans the
list until it finds an element that satisfies a given predicate. So in addition to
being able to search for a specific value, we could find, for example, the first odd
element, or the first element that has no vowels, or whatever else we like. Of
course, there might not be such an element, so we need some way to indicate
that no item is found. We’ll call our function find_if—“find it if it’s there”:12

12is name originated in the programming language Common Lisp.

Binary Search 191

template <InputIterator I, Predicate P>
I find_if(I f, I l, P p) {

while (f != l && !p(*f)) ++f;
return f;

}

is function relies on equality, dereference, and successor. If no item that satis-
fies the predicate exists, the returned value of fwill be the same as l, the iterator
that points past the end of the range. e calling function uses this comparison
to determine whether a matching item has been found. C and C++ guarantee
that a pointer is valid one position past the end of an array. However, such a
pointer should never be dereferenced. All STL containers provide similar guar-
antees for their iterators.

is function has an implicit semantic precondition: the value type of the
iterator and the argument type of the predicate must be the same; otherwise,
there is no way to apply the predicate to the items in the range.

Here’s a variation of our linear search function for the input iterator case.
Although we could have overloaded the name, we’ve deliberately added _n to
emphasize that this version uses a counted range:
template <InputIterator I, Predicate P>
std::pair<I, DifferenceType<I>>
find_if_n(I f, DifferenceType<I> n, P p) {

while (n && !p(*f)) { ++f; --n; }
return {f, n};

}

Why do we return a pair? Wouldn’t it be sufficient to return the iterator that
points to the found element, as we did in the previous version? No. In the previ-
ous version, the caller had the “last” iterator to compare to; here, it does not. So
the second returned value tells the caller whether we’re at the end, in which case
the item was not found and the returned iterator cannot be dereferenced. But
just as importantly, if we do find a matching item, this allows us to restart the
search where we le off. Without this, there would be no way to search a range
for anything but the first occurrence of a desired item.

is illustrates an important point: just as there can be bugs in code, so there
can also be bugs in the interface. We’ll see an example of one in the next section.

10.8 Binary Search
If we have a sorted sequence, we can search it much more efficiently by using
another essential algorithm, binary search. is function is easy to describe, but
hard to implement correctly and even harder to specify (design an interface for)
correctly.

192 Chapter 10: Fundamental Programming Concepts

Origins of Binary Search

eidea of binary search originated in the IntermediateValueeorem (IVT),
also known as the Bolzano-Cauchy eorem:

If f is a continuous function in an interval [a, b] such that
f(a) < f(b), then ∀u ∈ [f(a), f(b)] there is c ∈ [a, b] such that
u = f(c).

e proof of the theorem consists of doing binary search. Suppose, as an
example, we have a continuous function such that f(a) is −3 and f(b) is 5.
e IVT tells us that for a particular point in the image of the function—
let’s say, 0—there is a point c in the domain such that f(c) = 0. How can
we find that point? We can start by finding the point x1 that is half the
distance between a and b, and computing f(x1). If it equals 0, we’re done;
we’ve found c. If it’s greater than 0, we repeat with a point x2 that’s half the
distance from a to x1. If it’s less, we take half the distance from x1 to b. As
we keep repeating the process, we asymptotically converge to c.

Simon Stevin had a similar idea in 1594, when he devised a version of
the IVT for polynomials. But since Stevin was interested in doing every-
thing with decimals, he actually divided the interval into tenths rather than
halves, and examined all of them until he found the tenth that contained
the desired value. It was Lagrange who first described the binary approach
for polynomials in 1795. Bolzano and Cauchy generalized the IVT in the
early 19th century, and it is their version used by mathematicians today.

Binary search was first discussed as a programming technique in 1946 by
physicist and computing pioneer John Mauchly, co-creator of the ENIAC (the
first electronic general-purpose computer). However, many details were le un-
specified. e first “correct” algorithm for performing binary search was pub-
lished in 1960 byD.H. Lehmer, amathematicianwho hadworked on the ENIAC
years earlier. However, Lehmer’s version did not use the correct interface, and
this error was repeated for several decades aerward.

An example of the erroneous interface remains today in theUNIX bsearch()
function. According to the POSIX13 standard:

e bsearch() function shall return a pointer to a matching mem-
ber of the array, or a null pointer if nomatch is found. If two ormore
members compare equal, whichmember is returned is unspecified.14

13POSIX is the set of standards for UNIX-like operating systems. Linux, for example, is a POSIX-
compliant OS.

14http://www.unix.com/man-page/POSIX/3posix/bsearch/

http://www.unix.com/man-page/POSIX/3posix/bsearch/

Binary Search 193

ere are two fundamental flaws with this interface. e first concerns the
return of a null pointer to indicate that the item is not found. Oen you are doing
the search because you want to insert an item if it isn’t there, at the place it would
have been if it were there. With this interface, you have to start from scratch to
find your insert position, this time using linear search! Furthermore, there are
many applications where you actually want to find the closest or next value to
where the missing item would be; the item you’re searching for may simply be a
prefix of the kinds of items you hope to find.

e secondflaw concerns the situationwhere there aremultiplematches. e
matches may be keys of items that you need to retrieve. So how do you obtain
the entire range of equal items, if you don’t know which one you’re on? You have
to do linear search both backward and forward to find the ends of the matching
sequence.

* * *

e right way to implement binary search begins with the idea of a partition
point. Assume that we have a sequence of items [f, l) that is arranged such that
a certain predicate is true of the items in the range [f,m) and false for [m, l).15
en the partition point is the position m. Formally, if we have a function that
computes the partition point, then its precondition is

∃m ∈ [f, l) :
(
∀i ∈ [f,m) : p(i)

)
∧
(
∀i ∈ [m, l) : ¬p(i)

)
(i.e., the elements are already partitioned as described earlier). Its postcondition
is that it returns the valuem from the precondition. Note that f in this expression
refers to the first element in the range, not to a function.

For a counted range, the partition point algorithm looks like this:

template <ForwardIterator I, Predicate P>
I partition_point_n(I f, DifferenceType<I> n, P p) {

while (n) {
I middle(f);
DifferenceType<I> half(n >> 1);
advance(middle, half);
if (!p(*middle)) {

n = half;
} else {

f = ++middle;
n = n - (half + 1);

15In retrospect, it would have been better to have the false items first, since the Boolean value
false sorts before true; unfortunately, the “wrong” order is now part of the C++ language standard.

194 Chapter 10: Fundamental Programming Concepts

}
}
return f;

}

is is an extremely important algorithm, and it’s worth spending some time
to make sure you understand it. It uses a binary-search-style strategy just like
the Intermediate Value eorem. Recall that the goal is to return the first “bad”
element—that is, the first element for which the predicate is false. e outer
loop continues until n is zero. Inside the loop, we position the iterator middle
to a point halfway between f and f + n. If our predicate is false for the element
at that position, we set n to half of its previous value and repeat. Otherwise, we
know the predicate is true, so we set our starting point f to the next value aer
the middle, adjust n to reflect the number of items le, and repeat. When we are
done, the return value is the partition point: the point aer the last true value.

Notice that our function uses advance to move the iterator. Since we don’t
know the iterator type, we can’t assume that addition is allowed. However, if we
have a random access iterator, the advance function we wrote earlier will call the
fast implementation. (If we don’t have a random access iterator, we might have
to make as many as nmoves, but in either case we’ll never have to do more than
logn comparisons.)

If we are given a bounded range instead, we simply compute the distance and
invoke the counted range version:
template <ForwardIterator I, Predicate P>
I partition_point(I f, I l, P p) {

return partition_point_n(f, distance(f, l), p);
}

Now let’s return to the general binary search problem. To solve it, we’re going
to make use of the following lemma:

Lemma 10.1 (Binary Search Lemma): For any sorted range [i, j) and a value a
(the item you’re searching for), there are two iterators, lower bound bl and upper
bound bu such that

1. ∀k ∈ [i, bl) : vk < a
2. ∀k ∈ [bl, bu) : vk = a
3. ∀k ∈ [bu, j) : vk > a

where vk is the value at position k.

ese bounds always exist, though in the special case where there is nomatching
item, bl = bu. It may help to picture the data in the range:

Binary Search 195

…	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a	
 	
 	
 a	
 	
 	
 a	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 …	

items	
 <	
 a	
 items	
 >	
 a	

Exercise 10.1. Prove the Binary Search Lemma.

Now we can use our partition point function to perform binary search. If we
have total ordering, any sorted range is partitioned for any value a according to
the predicate x < a. STL actually provides a few functions that perform binary
search, depending on our task. If we want to find the first position where the
item is found, we use the lower_bound function. Using the features in C++11,
we can write lower_bound like this:

template <ForwardIterator I>
I lower_bound(I f, I l, ValueType<I> a) {

return partition_point(f, l,
[=](ValueType<I> x) { return x < a; });

}

e last line defines a new anonymous function (also known as a lambda expres-
sion16) that returns true if its argument is less than a, then passes that function as
the predicate used by partition_point. e lower_bound function returns the
position of the item a, or the position it would be in if it were there. ValueType
is just a shorthand type function for accessing the appropriate iterator trait, like
the one we wrote earlier for DifferenceType:

template <InputIterator I>
using ValueType = typename std::iterator_traits<I>::value_type;

In the casewhere the returned position is not l, we still need to knowwhether
we found the item. To do this, the caller needs to checkwhether the dereferenced
return value is equal to a.

If instead we want to find the last position where the item is found, we use
upper_bound. e code is almost the same, except that we define the predicate
to check if the value is less than or equal to a, rather than strictly less than a:

template <ForwardIterator I>
I upper_bound(I f, I l, ValueType<I> a) {

return partition_point(f, l,
[=](ValueType<I> x) {return x <= a;});

}

16See Appendix C for details on how to use lambda expressions.

196 Chapter 10: Fundamental Programming Concepts

Some readers may be wondering which function is the “real” binary search.
e answer is that it depends on the task. If you want to find the position of
the first matching element, then lower_bound is the “real” binary search. If you
want to find the position of the last matching element, then it’s upper_bound. If
you want to know the entire range of matching elements, STL provides a third
function, equal_range. And if all you care about is whether there was a match,
there is a function binary_search—but keep in mind that all it’s doing is calling
lower_bound and testing whether the dereferenced return value is equal to the
item.

e additional functionality of equal_range clearly benefits from the STL
convention of using semi-open ranges. Even when the element is not present,
the function returns an empty range at the position where it could be inserted.

10.9 Thoughts on the Chapter
We began this chapter by seeing how Aristotle’s levels of abstraction (individual,
species, genus) correspond to the programming notions of instance, type, and
concept. It is the notion of concept that allows a generic program to work in a
variety of settings.

One of your central goals as a programmer should be to identify existing con-
cepts in your application. You will oen develop new algorithms, occasionally
develop a new data structure, and only rarely define a new concept. In that rare
situation, a lot of work is needed to ensure that it is a true concept and not just a
collection of unrelated requirements. To restate Occam’s Razor, one should not
introduce new concepts without necessity.

We then introduced the concept of iterators, and saw the role they play in
some fundamental algorithms. By using compile-time type dispatch on differ-
ent kinds of iterators, we can ensure that the most efficient implementation gets
executed in a given situation.

Finally, we saw the importance of writing not only correct code, but also cor-
rect interfaces. An incorrect interface can severely limit the utility of a function;
a correct interface allows it to be used in a variety of situations without loss of
efficiency.

Permutation Algorithms

An algorithmmust be seen to be believed.

Donald Knuth

Complex computer programs are built up from smaller pieces that perform com-
monly used fundamental tasks. In the previous chapter, we looked at some tasks
involving searching for data. In this chapter, we’ll look at tasks that involve shi-
ing data into new positions, and show how to implement them in a generic way.
We’ll see how these tasks also end up using two ideas discussed earlier in the
book: groups from abstract algebra and the greatest common divisor (GCD)
from number theory.

e tasks we will focus on—rotate and reverse—allow us to introduce algo-
rithms that do the same task differently depending on the concept of the itera-
tor to which they apply. In addition to illustrating some generic programming
techniques, these algorithms are of great practical importance. e rotate al-
gorithm in particular is probably the most used algorithm inside the implemen-
tation of STL components from vector to stable_sort.

11.1 Permutations and Transpositions
Our exploration of the GCD algorithm led us to learn about groups and other
algebraic structures. Using this knowledge, we’re going to start investigating the
mathematical operations permutation and transposition, which play an impor-
tant role in some fundamental algorithms.

198 Chapter 11: Permutation Algorithms

Definition 11.1. A permutation is a function from a sequence of n objects onto
itself.

e formal notation for permutations1 looks like this:(
1 2 3 4
2 4 1 3

)
e first row represents the indexes (positions) of a sequence of objects; math-
ematicians start numbering from 1. e second row represents where the items
in those positions end up aer applying the permutation. In this example, the
item that used to be at position 1 will end up in position 2, the item that was in
position 2 will end up in position 4, and so on.

In practice, permutations are usually written using a shorthand format that
omits the first row: (

2 4 1 3
)

In other words, at position i, you write where the ith original element will end
up. An example of applying a permutation is

(2 4 1 3) : {a, b, c, d} = {c, a, d, b}

We can use the notion of permutation to define a symmetric group:

Definition 11.2. e set of all permutations on n elements constitutes a group
called the symmetric group Sn.

A symmetric group has the following group properties:

binary operation: composition (associative)
inverse operation: inverse permutation
identity element: identity permutation

is is the first example we’ve seen where the elements of a group are themselves
functions, and the group operation is an operation on functions. If we have a
permutation x that shis items two positions to the right, and another permu-
tation y that shis items three positions to the right, then the composition x ◦ y
shis items five positions to the right.

is is perhaps the most important group to know about, since every finite
group is a subgroup of a symmetric group. It is known as Cayley’s eorem.

Exercise 11.1. Prove Cayley’s eorem.

Exercise 11.2. What is the order of Sn?
1is is the same notation mathematicians use for matrices; hopefully the context will make it

clear which interpretation is intended.

Permutations and Transpositions 199

Now let’s look at a special case of permutation, transposition.

Definition 11.3. A transposition(i, j) is a permutation that exchanges the ith
and jth elements (i ̸= j), leaving the rest in place.

e notation for transpositions indicates which two positions should get
exchanged:

(2 3) : {a, b, c, d} = {a, c, b, d}

In programming, we have a simpler name for transposition: we call it swap. In
C++, we might implement it like this:

template <Semiregular T>
void swap(T& x, T& y) {

T tmp(x);
x = y;
y = tmp;

}

e swap operation requires only that the types of its arguments satisfy the con-
cept Semiregular.2 We can see that swap requires the ability to copy-construct,
assign, and destruct its data, since those operations are used in the code. It does
not need to explicitly test for equality, so we do not need the types to be Regular.
Whenwe design an algorithm, we’ll want to knowwhich concepts the types need
to satisfy, but we’ll also want to make sure not to impose extra requirements we
don’t need.

* * *

e transposition lemma demonstrates how fundamental the swap operation is:

Lemma 11.1 (Transposition Lemma): Any permutation is a product of
transpositions.

Proof. One transposition can put at least one element into its final destination.
erefore, at most n − 1 transpositions will put all n elements into their final
destinations.

Why do we need only n− 1 transpositions? Because once n− 1 items are in
the right place, the nth item must also be in the right place; there’s no place else
for it to go.

Exercise 11.3. Prove that if n > 2, Sn is not abelian.
2A discussion of C++ move semantics is beyond the scope of this book.

200 Chapter 11: Permutation Algorithms

Every permutation defines a directed graph of n elements. Aer applying
the permutation enough times, a given element will eventually be put back in its
original position, representing a cycle in the graph. Every permutation can be
decomposed into cycles. For example, consider the permutation (2 3 5 6 1 4).
e element in position 4 moves to position 6, and the element in position 6
moves to position 4, so aer applying the permutation twice, both of those ele-
ments will end up where they started. We see a similar pattern for the elements
at positions 1, 2, 3, and 5, although this time it takes four operations before they
get back to the beginning. We say that the permutation (2 3 5 6 1 4) can be
decomposed into two cycles, and we show them graphically like this:

1	

2	
 5	

3	

4	
 6	

We write this decomposition as (2 3 5 6 1 4) = (1 2 3 5)(4 6).
e cycle notation, used on the right, may be thought of as an extension of

the transposition notation. Although the notation is ambiguous (is this a cycle or
a permutation?), it is usually clear from the context. Also, permutations always
contain all the integers from 1 to n, while cycles might not.

Cycles are disjoint. If you are at a position in a cycle, you can get to all other
positions in that cycle. erefore, if two cycles share one position, they share all
positions; that is, they are the same cycle. So the only way to have separate cycles
is if they don’t share any positions.

Definition 11.4. A cycle containing one element is called a trivial cycle.

Exercise 11.4. How many nontrivial cycles could a permutation of n elements
contain?

eorem 11.1 (Number of Assignments): e number of assignments needed to
perform an arbitrary permutation in place is n− u+ v, where n is the number of
elements, u is the number of trivial cycles, and v is the number of nontrivial cycles.

Proof. Every nontrivial cycle of length k requires k + 1 assignments, since each
element needs to bemoved, plusweneed to save the first value being overwritten;
since every nontrivial cycle requires one extra move, moving all v cycles requires

Swapping Ranges 201

v extra moves. Elements in trivial cycles don’t need to be moved at all, and there
are u of those. So we need to move n − u elements, plus v additional moves for
the cycles.

A common permutation that has exactly n/2 cycles is reverse. In some sense
this is the “hardest” permutation because it requires the largest number of as-
signments. We’ll look at reverse in greater detail in Section 11.5.

Exercise 11.5. Design an in-place3 reverse algorithm for forward iterators; that
is, the algorithm should work for singly linked lists without modifying the links.

11.2 Swapping Ranges
Sometimes we want to swap more than one item at a time. In fact, a common
operation in programming is to swap all the values in one range of data with
the corresponding values in another (possibly overlapping) range. We do it in a
loop, one swap at a time:

while (condition) std::swap(*iter0++, *iter1++);

where iter0 and iter1 are iterators pointing to the respective values in each
range. Recall from Chapter 10 that we prefer to use semi-open ranges—those
where the range includes all elements from the first bound up to but not includ-
ing the second bound.

When we swap two ranges, oen only one of them needs to be specified ex-
plicitly. Here, first0 and last0 specify the bounds of the first range, while
first1 refers to the start of the second range:

template <ForwardIterator I0, ForwardIterator I1>
// ValueType<I0> == ValueType<I1>
I1 swap_ranges(I0 first0, I0 last0, I1 first1) {

while (first0 != last0) swap(*first0++, *first1++);
return first1;

}

ere’s no point in specifying the end of the second range, since for the swap to
work, it must contain (at least) the same number of elements as the first range.
Why do we return first1? Because it might be useful to the caller. For example,
if the second range is longer, we might want to know where the unmodified part
of the second range begins. It’s information that the caller doesn’t have, and it
costs us almost nothing to return.

is is a good time to review the law of useful return, which we introduced
in Section 4.6.

3We’ll discuss the notion of in-place algorithms more in Section 11.6; see Definition 11.6.

202 Chapter 11: Permutation Algorithms

The Law of Useful Return, Revisited

When writing code, it’s oen the case that you end up computing a value that
the calling function doesn’t currently need. Later, however, this value may be
important when the code is called in a different situation. In this situation, you
should obey the law of useful return:

A procedure should return all the potentially useful information it computed.

e quotient-remainder function that we saw in Chapter 4 is a good example:
when we first wrote it, we needed only the remainder, but we had already done
all the work to find the quotient. Later, we saw other applications that use both
values.

e law does not imply doing unneeded extra computations, nor does it im-
ply that useless information should be returned. For example, in the code given
earlier, it’s not useful to return first0, because the algorithm guarantees that at
the end it’s equal to last0, which the caller already has. It’s useless to give me
information I already have.

The Law of Separating Types

e swap_ranges code illustrates another important programming principle,
the law of separating types:

Do not assume that two types are the same when they may be different.

Our function was declared with two iterator types, like this:
template <ForwardIterator I0, ForwardIterator I1>
// ValueType<I0> == ValueType<I1>
I1 swap_ranges(I0 first0, I0 last0, I1 first1);

rather than assuming that they’re the same type, like this:
template <ForwardIterator I>
I swap_ranges(I first0, I last0, I first1);

e first way gives us more generality and allows us to use the function in situ-
ations we wouldn’t otherwise be able to, without incurring any additional com-
putation cost. For example, we could swap a range of elements in a linked list
with a range of elements in an array and it would just work.

However, just because two types are distinct does not mean there is no rela-
tionship between them. In the case of swap_ranges, for the implementation to

Swapping Ranges 203

be able to call swap on the data, we need to ensure that the value type of I0 is the
same as the value type of I1. While the compiler cannot check this condition
today, we can indicate it with a comment in the code.

In situations where we’re not sure if the second range is long enough to per-
form all the needed swaps, we canmake both ranges explicit and have our while
test check to make sure neither iterator has run off the end of the range:
template <ForwardIterator I0, ForwardIterator I1>
std::pair<I0, I1> swap_ranges(I0 first0, I0 last0,

I1 first1, I1 last1) {
while (first0 != last0 && first1 != last1) {

swap(*first0++, *first1++);
}
return {first0, first1};

}

is time we do return both first0 and first1, because one range may be ex-
hausted before the other, so we won’t necessarily have reached last0 and last1.

Swapping counted ranges is almost the same, except that instead of checking
to see if we reached the end of the range, we count down from n to 0:
template <ForwardIterator I0, ForwardIterator I1, Integer N>
std::pair<I0, I1> swap_ranges_n(I0 first0, I1 first1, N n) {

while (n != N(0)) {
swap(*first0++, *first1++);
--n;

}
return {first0, first1};

}

The Law of Completeness

Observe that we created both swap_ranges and swap_ranges_n. Even though
in a particular situation the programmer might need only one of these versions,
later on a client might need the other version.

is follows the law of completeness:

When designing an interface, consider providing all the related procedures.

If there are different ways of invoking an algorithm, provide interfaces for those
related functions. In our swap example, we’ve already provided two related in-
terfaces for bounded ranges, andwe’ll also provide interfaces for counted ranges.

204 Chapter 11: Permutation Algorithms

is rule is not saying that you need to have a single interface to handlemulti-
ple cases. It’s perfectly fine to have one function for counted ranges and another
for bounded ranges. You especially should not have a single interface for dis-
parate operations. For example, just because containers need to provide both
“insert element” and “erase element” functionality doesn’t mean your interface
should have a single “insert_or_erase” function.

Counted ranges are easier for the compiler, because it knows the number of
iterations, called the trip count, in advance. is allows the compiler to make
certain optimizations, such as loop unrolling or soware pipelining.

Exercise 11.6. Why don’t we provide the following interface?

pair<I0, I1> swap_ranges_n(I0 first0, I1 first1, N0 n0, N1 n1)

11.3 Rotation
One of the most important algorithms you’ve probably never heard of is rotate.
It’s a fundamental tool used behind the scenes in many common computing ap-
plications, such as buffer manipulation in text editors. It implements the math-
ematical operation rotation.

Definition 11.5. A permutation of n elements by k where k ≥ 0:

(k mod n, k+ 1 mod n, …, k+ n− 2 mod n, k+ n− 1 mod n)

is called an n by k rotation.

If you imagine all n elements laid out in a circle, we’re shiing each one “clock-
wise” by k.

At first glance, it might seem that rotation could be implemented with a
modular shi, taking the beginning and end of the range, together with the
amount to shi, as arguments. However, doing modular arithmetic on every
operation is quite expensive. Also, it turns out that rotation is equivalent to ex-
changing different length blocks, a task that is extremely useful for many appli-
cations. Viewed this way, it is convenient to present rotation with three iterators:
f,m, and l, where [f,m) and [m, l) are valid ranges.4 Rotation then interchanges
ranges [f,m) and [m, l). If the client wants to rotate k positions in a range [f, l),
then it should pass a value of m equal to l − k. As an example, if we want to
do a rotation with k = 5 on a sequence specified by the range [0, 7), we choose
m = l− k = 7− 5 = 2:

4e names f,m, and l are meant to be mnemonics for first, middle, and last.

Rotation 205

0 1 2 3 4 5 6
f m l

which produces this result:

2 3 4 5 6 0 1

Essentially, we’re moving each item 5 spaces to the right (and wrapping around
when we run off the end).

Exercise 11.7. Prove that if we do rotate(f, m, l), it performs distance(f, l)
by distance(m, l) rotation.

An important rotate algorithm was developed by David Gries, a professor
at Cornell University, together with IBM scientist Harlan Mills:
template <ForwardIterator I>
void gries_mills_rotate(I f, I m, I l) {

// u = distance(f, m) && v = distance(m, l)
if (f == m || m == l) return; // u == 0 || v == 0
pair<I, I> p = swap_ranges(f, m, m, l);
while(p.first != m || p.second != l) {

if (p.first == m) { // u < v
f = m; m = p.second; // v = v - u

} else { // v < u
f = p.first; // u = u - v

}
p = swap_ranges(f, m, m, l);

}
return; // u == v

}

e algorithm first uses the regular swap_ranges function to swap as many ele-
ments as we can—as many elements as there are in the shorter range. e if test
checks whether we’ve exhausted the first range or the second range. Depending
on the result, we reset the start positions of f and m. en we do another swap,
and repeat the process until neither range has remaining elements.

is is easier to follow with an example. Let’s look at how a range is trans-
formed, and how the iterators move, as the algorithm runs:

Start:

0 1 2 3 4 5 6
f m l

Swap [0, 1] and [2, 3]. Have we exhausted both ranges? No, only the
first one, so we set f = m and m = p.second, which points to the
first element in the sequence that hasn’t yet been moved:

206 Chapter 11: Permutation Algorithms

2 3 0 1 4 5 6
f m l

Swap [0, 1] and [4, 5]. Have we exhausted both ranges? No, only the
first one, so again we set f = m and m = p.second:

2 3 4 5 0 1 6
f m l

Swap [0] with [6]. Have we exhausted both ranges? No, only the
second one this time, so we set f = p.first:

2 3 4 5 6 1 0
f m l

Swap [1] with [0]. Have we exhausted both ranges? Yes, so we’re
done.

2 3 4 5 6 0 1
f m
l

Now look at the comments in the gries_mills_rotate code (shown in bold-
face). We call u the length of the first range [f,m), and v the length of the second
range [m, l). We can observe something remarkable: the annotations are per-
forming our familiar subtractive GCD! At the end of the algorithm, u = v =

GCD of the lengths of the initial two ranges.

Exercise 11.8. If you examine swap_ranges, you will see that the algorithm does
unnecessary iterator comparisons. Rewrite the algorithm so that no unnecessary
iterator comparisons are done.

It turns out that many applications benefit if the rotate algorithm returns a
new middle: a position where the first element moved. If rotate returns this new
middle, then rotate(f, rotate(f, m, l), l) is an identity permutation.
First, we need the following “auxiliary rotate” algorithm:
template <ForwardIterator I>
void rotate_unguarded(I f, I m, I l) {

// assert(f != m && m != l)
pair<I, I> p = swap_ranges(f, m, m, l);
while (p.first != m || p.second != l) {

f = p.first;
if (m == f) m = p.second;
p = swap_ranges(f, m, m, l);

}
}

Using Cycles 207

e central loop is the same as in the Gries-Mills algorithm, just written differ-
ently. (We could have written it this way before but wanted to make the u and v
computations clearer.)

We need to findm′—the element whose distance to the last is the same asm’s
distance from the first. It’s the value returned by the first call to swap_ranges.
To get it back, we can embed a call to rotate_unguarded in our final version
of rotate, which works as long as we have forward iterators. As we’ll explain
shortly, the forward_iterator_tag type in the argument list will help us invoke
this function only in this case:

template <ForwardIterator I>
I rotate(I f, I m, I l, std::forward_iterator_tag) {

if (f == m) return l;
if (m == l) return f;
pair<I, I> p = swap_ranges(f, m, m, l);
while (p.first != m || p.second != l) {

if (p.second == l) {
rotate_unguarded(p.first, m, l);
return p.first;

}
f = m;
m = p.second;
p = swap_ranges(f, m, m, l);

}
return m;

}

How much work does this algorithm do? Until the last iteration of the main
loop, every swap puts one element in the right place and moves another element
out of the way. But in the final call to swap_ranges, the two ranges are the same
length, so every swap puts both elements it is swapping into their final positions.
In essence, we get an extra move for free on every swap. e total number of
swaps is the total number of elements n, minus the number of free swaps we
saved in the last step. How many swaps did we save in the last step? e length
of the ranges at the end, as we saw earlier, is gcd(n− k, k) = gcd(n, k), where n =
distance(f, l) and k= distance(m, l). So the total number of swaps is n−gcd(n, k).
Also, since each swap takes three assignments (tmp = a; a = b; b = tmp), the
total number of assignments is 3(n− gcd(n, k)).

11.4 Using Cycles
Canwe find a faster rotate algorithm? We can if we exploit the fact that rotations,
like any permutations, have cycles. Consider a rotation of k = 2 for n = 6
elements:

208 Chapter 11: Permutation Algorithms

0 1 2 3 4 5
⇓

4 5 0 1 2 3

e item in position 0 ends up in position 2, 2 ends up in position 4, and 4 ends
up back in position 0. ese three elements form a cycle. Similarly, item 1 ends
up in 3, 3 in 5, and 5 back in 1, forming another cycle. So this rotation has two
cycles. Recall from Section 11.1 that we can perform any permutation in n−u+v
assignments, where n is the number of elements, u is the number of trivial cycles,
and v is the number of nontrivial cycles. Since we normally don’t have any trivial
cycles, we need n+ v assignments.
Exercise 11.9. Prove that if a rotation of n elements has a trivial cycle, then it
has n trivial cycles. (In other words, a rotation either moves all elements or no
elements.)

It turns out that the number of cycles is gcd(k,n), so we should be able to
do the rotation in n + gcd(k,n) assignments,5 instead of the 3(n− gcd(n, k)) we
needed for the Gries-Mills algorithm. Furthermore, in practice GCD is very
small; in fact, it is 1 (that is, there is only one cycle) about 60% of the time. So a
rotate algorithm that exploits cycles always does fewer assignments.

ere is one catch: Gries-Mills only required moving one step forward; it
works even for singly linked lists. But if we want to take advantage of cycles, we
need to be able to do long jumps. Such an algorithm requires stronger require-
ments on the iterators—namely, the ability to do random access.

To create our new rotate function, we’ll first write a helper function that
moves every element in a cycle to its next position. But instead of saying “which
position does the item in position xmove to,” we’ll say “in which position do we
find the item that’s going to move to position x.” Even though these two opera-
tions are symmetric mathematically, it turns out that the latter is more efficient,
since it needs only one saved temporary variable per cycle, instead of one for
every item that needs to be moved (except the last).

Here’s our helper function:
template <ForwardIterator I, Transformation F>
void rotate_cycle_from(I i, F from) {

ValueType<I> tmp = *i;
I start = i;
for (I j = from(i); j != start; j = from(j)) {

*i = *j;
i = j;

}
*i = tmp;

}

5See Elements of Programming, Section 10.4, for the proof.

Using Cycles 209

Note that we’re using the ValueType type function we defined near the end of
Section 10.8.

How does rotate_cycle_from know which position an item comes from?
at information will be encapsulated in a function object from that we pass
in as an argument. You can think of from(i) as “compute where the element
moving into position i comes from.”

e function object we’re going to pass to rotate_cycle_from will be an
instance of rotate_transform:

template <RandomAccessIterator I>
struct rotate_transform {

DifferenceType<I> plus;
DifferenceType<I> minus;
I m1;

rotate_transform(I f, I m, I l) :
plus(m - f), minus(m - l), m1(f + (l - m)) {}
// m1 separates items moving forward and backward

I operator()(I i) const {
return i + ((i < m1) ? plus : minus);

}
};

e idea is that even though we are conceptually “rotating” elements, in prac-
tice some items move forward and some move backward (because the rotation
caused them to wrap around the end of our range). When rotate_transform
is instantiated for a given set of ranges, it precomputes (1) how much to move
forward for items that should move forward, (2) how much to move backward
for things that move backward, and (3) what the crossover point is for deciding
when to move forward and when to move backward.

Nowwe canwrite the cycle-exploiting version of algorithm for rotation, which
is a variation of the algorithm discovered by Fletcher and Silver in 1965:

template <RandomAccessIterator I>
I rotate(I f, I m, I l, std::random_access_iterator_tag) {

if (f == m) return l;
if (m == l) return f;
DifferenceType<I> cycles = gcd(m - f, l - m);
rotate_transform<I> rotator(f, m, l);
while (cycles-- > 0) rotate_cycle_from(f + cycles, rotator);
return rotator.m1;

}

210 Chapter 11: Permutation Algorithms

Aer handling some trivial boundary cases, the algorithm first computes the
number of cycles (the GCD) and constructs a rotate_transform object. en
it calls rotate_cycle_from to shi all the elements along each cycle, and repeats
this for every cycle.

Let’s look at an example. Consider the rotation k = 2 for n = 6 elements that
we used at the beginning of this section. For simplicity, we’ll assume that our
values are integers stored in an array:

0 1 2 3 4 5

We also assume our iterators are integer offsets in an array, starting at 0. (Be
careful to distinguish between the values at a position and the position itself.)
To perform a k = 2 rotation, we’ll need to pass the three iterators f = 0, m = 4,
and l = 6:

0 1 2 3 4 5
f m l

e boundary cases of our new rotate algorithm don’t apply, so the first thing
it does is compute the number of cycles, which is equal to gcd(m − f, l − m) =
gcd(4, 2) = 2. en it constructs the rotator object, initializing its state variables
as follows:

plus← m− f = 4− 0 = 4
minus← m− l = 4− 6 = −2
m1← f+ (l−m) = 0+ (6− 4) = 2

e main loop of the function rotates all elements of a cycle, then moves on to
the next cycle. Let us see what happens when rotate_cycle_from is called.

Initially, we pass f + d = 0 + 2 = 2 as the first argument. So inside the
function, i = 2. We save the value at position 2, which is also 2, to our tmp
variable and set start to our starting position of 2.

Now we go through a loop as long as a new variable, j, is not equal to start.
Each time through the loop, we are going to set j by using the rotator function
object that we passed in through the variable from. Basically, all that object does
is add the stored values plus or minus to its argument, depending on whether
the argument is less than the stored value m1. For example, if we call from(0), it
will return 0 + 4, or 4, since 0 is less than 2. If we call from(4), it will return 4 +
(−2), or 2, since 4 is not less than 2.

Here’s how the values in our array change as we go through the loop in
rotate_cycle_from:

i← 2, j← from(2) = 0
0 1 2 3 4 5
j i

Using Cycles 211

∗i← ∗j

0 1 0 3 4 5
j i

i← j = 0, j← from(0) = 4

0 1 0 3 4 5
i j

∗i← ∗j

4 1 0 3 4 5
i j

i← j = 4, j← from(4) = 2 which is start, so loop ends

4 1 0 3 4 5
j i

∗i← tmp

4 1 0 3 2 5
j i

is completes the first call to rotate_cycle_from in the while loop of our
rotate function.

Exercise 11.10. Continue to trace the preceding example until the rotate func-
tion finishes.

Notice that the signatures of this rotate function and the previous one differ
by the type of the last argument. In the next section, we’ll write the wrapper that
lets the fastest implementation for a given situation be automatically invoked.

When Is an Algorithm Faster in Practice?

Wehave seen an example where one algorithmdoes fewer assignments than
another algorithm. Does that mean it will run faster? Not necessarily. In
practice, the ability to fit relevant data in cache can make a dramatic differ-
ence in this speed. An algorithm that involves large jumps inmemory—that
is, one that has poor locality of reference—may end up being slower than
one that requires more assignments but has better locality of reference.

212 Chapter 11: Permutation Algorithms

11.5 Reverse
Another fundamental algorithm is reverse, which (obviously) reverses the order
of the elements of a sequence. More formally, reverse permutes a k-element list
such that item 0 and item k− 1 are swapped, item 1 and item k− 2 are swapped,
and so on.

If we have reverse, we can implement rotate in just three lines of code:

template <BidirectionalIterator I>
void three_reverse_rotate(I f, I m, I l) {

reverse(f, m);
reverse(m, l);
reverse(f, l);

}

For example, supposewewant to performour k = 2 rotation on the sequence
0 1 2 3 4 5. e algorithm would perform the following operations:

f m l
start 0 1 2 3 4 5
reverse(f, m) 3 2 1 0 4 5
reverse(m, l) 3 2 1 0 5 4
reverse(f, l) 4 5 0 1 2 3

Exercise 11.11. How many assignments does 3-reverse rotate perform?

is elegant algorithm, whose inventor is unknown, works for bidirectional
iterators. However, it has one problem: it doesn’t return the newmiddle position.
To solve this, we’re going to break the final reverse call into twoparts. We’ll need
a new function that reverses elements until one of the two iterators reaches the
end:

template <BidirectionalIterator I>
pair<I, I> reverse_until(I f, I m, I l) {

while (f != m && m != l) swap(*f++, *--l);
return {f, l};

}

At the end of this function, the iterator that didn’t hit the end will be pointing to
the new middle.

Nowwe canwrite a general rotate function for bidirectional iterators. When
it gets to what would have been the third reverse call, it does reverse_until
instead, saves the new middle position, and then finishes reversing the rest of
the range:

Reverse 213

template <BidirectionalIterator I>
I rotate(I f, I m, I l, bidirectional_iterator_tag) {

reverse(f, m);
reverse(m, l);
pair<I, I> p = reverse_until(f, m, l);
reverse(p.first, p.second);
if (m == p.first) return p.second;
return p.first;

}

We have seen three different implementations of rotate, each optimized for
different types of iterators. However, we’d like to hide this complexity from the
programmer who’s going to be using these functions. So, just as we did with
the distance functions in Section 10.5, we’re going to write a simpler version
that works for any type of iterator, and use category dispatch to let the compiler
decide which implementation will get executed:
template <ForwardIterator I>
I rotate(I f, I m, I l) {

return rotate(f, m, l, IteratorCategory<I>());
}

e programmer just needs to call a single rotate function; the compiler will
extract the type of the iterator being used and invoke the appropriate
implementation.

* * *

We’ve been using a reverse function, but how might we implement it? For bidi-
rectional iterators, the code is fairly straightforward; we have a pointer to the
beginning that moves forward, and a pointer to the end that moves backward,
and we keep swapping the elements they point to until they run into each other:
template <BidirectionalIterator I>
void reverse(I f, I l, std::bidirectional_iterator_tag) {

while (f != l && f != --l) std::swap(*f++, *l);
}

Exercise 11.12. Explain why we need two tests per iteration in the preceding
while loop.
It might appear that according to the law of useful return we should return
pair<I, I>(f, l). However, there is no evidence that this information is ac-
tually useful; therefore the law does not apply.

Of course, if we already knew in advance how many times we had to execute
the loop (the trip count), we wouldn’t need two comparisons. If we pass the trip
count n to our function, we can implement it with only n/2 tests:

214 Chapter 11: Permutation Algorithms

template <BidirectionalIterator I, Integer N>
void reverse_n(I f, I l, N n) {

n >>= 1;
while (n-- > N(0)) {

swap(*f++, *--l);
}

}

In particular, if we have a random access iterator, we can compute the trip count
in constant time, and implement reverse using reverse_n, like this:

template <RandomAccessIterator I>
void reverse(I f, I l, std::random_access_iterator_tag) {

reverse_n(f, l, l - f);
}

What if we have only forward iterators and we still want to reverse? We’ll
use a recursive auxiliary function that keeps partitioning the range in half (the
h in the code). e argument n keeps track of the length of the sequence being
reversed:

template <ForwardIterator I, Integer N>
I reverse_recursive(I f, N n) {

if (n == 0) return f;
if (n == 1) return ++f;
N h = n >> 1;
I m = reverse_recursive(f, h);
if (odd(n)) ++m;
I l = reverse_recursive(m, h);
swap_ranges_n(f, m, h);
return l;

}

Exercise 11.13. Using the sequence {0, 1, 2, 3, 4, 5, 6, 7, 8} as an example, trace
the operation of the reverse_recursive algorithm.

e function returns the end of the range, so the first recursive call returns the
midpoint. en we advance the midpoint by 1 or 0 depending on whether the
length is even or odd.

Now we can write our reverse function for forward iterators:

template <ForwardIterator I>
void reverse(I f, I l, std::forward_iterator_tag) {

reverse_recursive(f, distance(f, l));
}

Space Complexity 215

Finally, we can write the generic version of reverse that works for any iter-
ator type, just as we did for rotate earlier:

template <ForwardIterator I>
void reverse(I f, I l) {

reverse(f, l, IteratorCategory<I>());
}

The Law of Interface Refinement

What is the correct interface for rotate? Originally, std::rotate returned
void. Aer several years of usage, it became clear that returning the new mid-
dle (the position where the first element moved) made implementation of sev-
eral other STL algorithms, such as in_place_merge and stable_partition,
simpler.

Unfortunately, it was not immediately obvious how to return this value with-
out doing any extra work. Only aer this implementation problem was solved
was it possible to redesign the interface to return the required value. It then took
more than 10 years to change the C++ language standard.

is is a good illustration of the law of interface refinement:

Designing interfaces, like designing programs, is a multi-pass activity.

Wecan’t really design an ideal interface until we have seen how the algorithmwill
be used, and not all the uses are immediately apparent. Furthermore, we can’t
design an ideal interface until we know which implementations are feasible.

11.6 Space Complexity
When talking about concrete algorithms, programmers need to think aboutwhere
they fall in terms of time and space complexity. ere are many levels of time
complexity (e.g., constant, logarithmic, quadratic). However, the traditional
view of space complexity put algorithms into just two categories: those that per-
form their computations in place and those that do not.

Definition 11.6. An algorithm is in-place (also called polylog space) if for an
input of length n it uses O((logn)k) additional space, where k is a constant.

Initially, in-place algorithms were oen defined as using constant space, but this
was too narrow a restriction. e idea of being “in place” was supposed to cap-
ture algorithms that didn’t need to make a copy of their data. But many of these

216 Chapter 11: Permutation Algorithms

non-data-copying algorithms, like quicksort, use a divide-and-conquer tech-
nique that requires logarithmic extra space. So the definition was formalized
in a way that included these algorithms.

Algorithms that are not in-place use more space—usually, enough to create
a copy of their data.

* * *

Let’s use our reverse problem to see how a non-in-place algorithm can be faster
than an in-place algorithm. First, we need this helper function, which copies
elements in reverse order, starting at the end of a range:
template <BidirectionalIterator I, OutputIterator O>
O reverse_copy(I f, I l, O result) {

while (f != l) *result++ = *--l;
return result;

}

Now we can write a non-in-place reverse algorithm. It copies all the data to a
buffer, then copies it back in reverse order:
template <ForwardIterator I, Integer N, BidirectionalIterator B>
I reverse_n_with_buffer(I f, N n, B buffer) {

B buffer_end = copy_n(f, n, buffer);
return reverse_copy(buffer, buffer_end, f);

}

is function takes only 2n assignments, instead of the 3n we needed for the
swap-based implementations.

11.7 Memory-Adaptive Algorithms
In practice, the dichotomy of in-place and non-in-place algorithms is not very
useful. While the assumption of unlimitedmemory is not realistic, neither is the
assumption of only polylog extra memory. Usually 25%, 10%, 5%, or at least 1%
of extra memory is available and can be exploited to get significant performance
gains. Algorithms need to adapt to however much memory is available; they
need to be memory adaptive.

Let’s create a memory-adaptive algorithm for reverse. It takes a buffer that
we can use as temporary space, and an argument bufsize indicating how big
the buffer is. e algorithm is recursive—in fact, it’s almost identical to the
reverse_recursive function in the previous section. But the recursion hap-
pens only on large chunks, so the overhead is acceptable. e idea is that for a
given invocation of the function, if the length of the sequence being reversed fits
in the buffer, we do the fast reverse with buffer. If not, we recurse, splitting the
sequence in half:

Thoughts on the Chapter 217

template <ForwardIterator I, Integer N, BidirectionalIterator B>
I reverse_n_adaptive(I f, N n, B buffer, N bufsize) {

if (n == N(0)) return f;
if (n == N(1)) return ++f;
if (n <= bufsize) return reverse_n_with_buffer(f, n, buffer);
N h = n >> 1;
I m = reverse_n_adaptive(f, h, buffer, bufsize);
advance(m, n & 1);
I l = reverse_n_adaptive(m, h, buffer, bufsize);
swap_ranges_n(f, m, h);
return l;

}

e caller of this function should ask the system howmuchmemory is available,
and pass that value as bufsize. Unfortunately, such a call is not provided inmost
operating systems.

A Sad Story about get_temporary_buffer

When the C++ STL library was designed by the first author of this book, he
realized that it would be helpful to have a function get_temporary_buffer
that takes a size n and returns the largest available temporary buffer up to
size n that fits into physical memory. As a placeholder (since the correct
version needs to have knowledge that only the operating system has), he
wrote a simplistic and impractical implementation, which repeatedly calls
malloc asking for initially huge and gradually smaller chunks of memory
until it returns a valid pointer. He put in a prominent comment in the code
saying something like, “is is a bogus implementation, replace it!” To his
surprise, he discovered years later that all the major vendors that provide
STL implementations are still using this terrible implementation—but they
removed his comment.

11.8 Thoughts on the Chapter
One of the things we’ve seen in both this chapter and the previous one is how
simple computational tasks offer rich opportunities to explore different algo-
rithms and learn from them. e programming principles that arise from these
examples—the laws of useful return, separating types, completeness, and inter-
face refinement—carry over into nearly every programming situation.

is chapter has also presented some good examples of how theory and prac-
tice come together in programming. Our knowledge of the theory of permuta-

218 Chapter 11: Permutation Algorithms

tions—itself based on group theory—allowed us to come upwith amore efficient
algorithm for rotation, one that exploited the properties that our theory guaran-
teed. At the same time, the example of memory-adaptive algorithms demon-
strated how practical considerations such as the amount of available memory
can have a profound impact on the choice of algorithm and its performance.
eory and practice are two sides of the same coin; good programmers rely on
knowledge of both.

Extensions of GCD

I swear by the even and the odd.

Quran, Surah Al-Fajr

Programmers oen assume that since a data structure or algorithm is in a text-
book or has been used for years, it represents the best solution to a problem.
Surprisingly, this is oen not the case—even if the algorithm has been used for
thousands of years and has been worked on by everyone from Euclid to Gauss.
In this chapter we’ll look at an example of a novel solution to an old problem—
computing the GCD.enwe’ll see how proving a theorem fromnumber theory
resulted in an important variation of the algorithm still used today.

12.1 Hardware Constraints and
a More Efficient Algorithm

In 1961, an Israeli Ph.D. student, Josef “Yossi” Stein, was working on something
called Racah Algebra for his dissertation. He needed to do rational arithmetic,
which required reducing fractions, which uses theGCD. But because he had only
limited time on a slow computer, he was motivated to find a better way. As he
explains:

Using “Racah Algebra” meant doing calculations with numbers of
the form a/b ·

√
c, where, a, b, c were integers. I wrote a program

for the only available computer in Israel at that time—the WEIZAC
at the Weizmann institute. Addition time was 57 microseconds, di-
vision took about 900microseconds. Shi took less than addition.…
We had neither compiler nor assembler, and no floating-point

220 Chapter 12: Extensions of GCD

numbers, but used hexadecimal code for the programming, and had
only 2 hours of computer-time per week for Racah and his students,
and you see that I had the right conditions for finding that algorithm.
Fast GCD meant survival.1

What Stein observed was that there were certain situations where the GCD
could be easily computed, or easily expressed in terms of another GCD expres-
sion. He looked at special cases like taking the GCD of an even number and an
odd number, or a number and itself. Eventually, he came up with the following
exhaustive list of cases:

first zero: gcd(0,n) = n
second zero: gcd(n, 0) = n
equal values: gcd(n,n) = n
even, even: gcd(2n, 2m) = 2 · gcd(n,m)

even, odd: gcd(2n, 2m+ 1) = gcd(n, 2m+ 1)
odd, even: gcd(2n+ 1, 2m) = gcd(2n+ 1,m)

small odd, big odd: gcd(2n+ 1, 2(n+ k) + 1) = gcd(2n+ 1, k)
big odd, small odd: gcd(2(n+ k) + 1, 2n+ 1) = gcd(2n+ 1, k)

Using these observations, Stein wrote the following algorithm:

template <BinaryInteger N>
N stein_gcd(N m, N n) {

if (m < N(0)) m = -m;
if (n < N(0)) n = -n;
if (m == N(0)) return n;
if (n == N(0)) return m;

// m > 0 && n > 0

int d_m = 0;
while (even(m)) { m >>= 1; ++d_m;}

int d_n = 0;
while (even(n)) { n >>= 1; ++d_n;}

// odd(m) && odd(n)

while (m != n) {
if (n > m) swap(n, m);

1J. Stein, personal communication, 2003.

Hardware Constraints and a More Efficient Algorithm 221

m -= n;
do m >>= 1; while (even(m));

}

// m == n

return m << min(d_m, d_n);
}

Let’s look at what the code is doing. e function takes two BinaryIntegers—
that is, an integer representation that supports fast shi and even/odd testing,
like typical computer integers. First, it eliminates the easy cases where one of
the arguments is zero, and inverts the sign if an argument is negative, so that we
are dealing with two positive integers.

Next, it takes advantage of the identities with even arguments, removing fac-
tors of 2 (by shiing) while keeping track of how many there were. We can use a
simple int for the counts, since what we’re counting is at most the total number
of bits in the original arguments. Aer this part, we are operating on two odd
numbers.

Now comes the main loop. We repeatedly subtract the smaller from the
larger each time (since we know the difference of two odd numbers is even),
and again use shis to remove additional powers of 2 from the result.2 When
we’re done, our two numbers will be equal. Since we’re halving at least once
each time through the loop, we know we’ll iterate no more than log n times; the
algorithm is bounded by the number of 1-bits we encounter.

Finally, we return our result, using a shi to multiply our number by 2 for
each of the minimum number of 2s we factored out at the beginning. We don’t
need to worry about 2s in themain loop, because by that point we’ve reduced the
problem to the GCD of two odd numbers; this GCD does not have 2 as a factor.

Here’s an example of the algorithm in operation. Suppose we want to com-
pute GCD(196, 42). e computation looks like this:

m n dm dn
factor out 2s:

196 42 0 0
98 42 1 0
49 42 2 0
49 21 2 1

(Continues)

2Weuse do-while rather than while because we don’t need to run the test the first time; we know
we’re starting with an even number so we know we have to do at least one shi.

222 Chapter 12: Extensions of GCD

m n dm dn
main loop iteration:

49 21 2 1
28 21 (by subtracting n from m) 2 1
14 21 (by shifting m) 2 1
7 21 (by shifting m) 2 1

21 7 (by swapping m and n) 2 1
14 7 (by subtracting n from m) 2 1
7 7 (by shifting m) 2 1

result:
7× 2min(2,1) = 7× 2 = 14

Aswe saw, Stein took some observations about special cases and turned them
into a faster algorithm. e special cases had to do with even and odd numbers,
and places where we could factor out 2, which is easy on a computer; that’s why
Stein’s algorithm is faster in practice. (Even today, when the remainder func-
tion can be computed in hardware, it is still much slower than simple shis.)
But is this just a clever hack, or is there more here than meets the eye? Does it
make sense only because computers use binary arithmetic? Does Stein’s algo-
rithm work just for integers, or can we generalize it just as we did with Euclid’s
algorithm?

12.2 Generalizing Stein’s Algorithm
To answer these questions, let’s review some of the historical milestones for Eu-
clid’s GCD:
• Positive integers: Greeks (5th century BC)

• Polynomials: Stevin (ca. 1600)

• Gaussian integers: Gauss (ca. 1830)

• Algebraic integers: Dirichlet, Dedekind (ca. 1860)

• Generic version: Noether, van der Waerden (ca. 1930)
It took more than 2000 years to extend Euclid’s algorithm from integers to poly-
nomials. Fortunately, it took much less time for Stein’s algorithm. In fact, just
2 years aer its publication, Knuth already knew of a version for single-variable
polynomials over a field F[x].

e surprising insight was that we can have x play the role for polynomials
that 2 plays for integers. at is, we can factor out powers of x, and so on. Car-
rying the analogy further, we see that x2 + x (or anything else divisible by x) is

Generalizing Stein’s Algorithm 223

“even,” x2 + x + 1 (or anything else with a zero-order coefficient) is “odd,” and
x2 + x “shis” to x + 1. Just as division by 2 is easier than general division for
binary integers, so division by x is easier than general division for polynomials—
in both cases, all we need is a shi. (Remember that a polynomial is really a
sequence of coefficients, so division by x is literally a shi of the sequence.)

Stein’s “special cases” for polynomials look like this:

gcd(p, 0) = gcd(0, p) = p (12.1)
gcd(p, p) = p (12.2)
gcd(xp, xq) = x · gcd(p, q) (12.3)
gcd(xp, xq+ c) = gcd(p, xq+ c) (12.4)
gcd(xp+ c, xq) = gcd(xp+ c, q) (12.5)

deg(p) ≥ deg(q) =⇒ gcd(xp+ c, xq+ d) = gcd
(
p− c

dq, xq+ d
)

(12.6)

deg(p) < deg(q) =⇒ gcd(xp+ c, xq+ d) = gcd
(
xp+ c, q− d

c q
)

(12.7)

Notice how each of the last two rules cancels one of the zero-order coefficients,
so we convert the “odd, odd” case to an “even, odd” case.

To get the equivalence expressed by Equation 12.6, we rely on two facts. First,
if you have two polynomials u and v, then gcd(u, v) = gcd(u, av), where a is a
nonzero coefficient. So we can multiply the second argument by the coefficient
c
d , and we’ll have the same GCD:

gcd(xp+ c, xq+ d) = gcd
(
xp+ c, cd (xq+ d)

)
Second, gcd(u, v) = gcd(u, v − u), which we noted when we introduced GCD
early in the book (Equation 3.9). So we can subtract our new second argument
from the first, and we’ll still have the same GCD:

gcd(xp+ c, xq+ d) = gcd
(
xp+ c− c

d (xq+ d), xq+ d
)

= gcd
(
xp+ c− c

dxq− c, xq+ d
)

= gcd
(
xp− c

dxq, xq+ d
)

Finally, we can use the fact that if one of the GCD arguments is divisible by
x and the other is not, we can drop x because the GCD will not contain it as a
factor. So we “shi” out the x, which gives

gcd(xp+ c, xq+ d) = gcd
(
p− c

dq, xq+ d
)

which is what we wanted.

224 Chapter 12: Extensions of GCD

We also see that in each transformation, the norm—in this case, the de-
gree of the polynomial—gets reduced. Here’s how the algorithm would compute
gcd(x3 − 3x− 2, x2 − 4):

m n 
x3 − 3x− 2 x2 − 4 m− (0.5x2 − 2)

x3 − 0.5x2 − 3x x2 − 4 shift(m)

x2 − 0.5x− 3 x2 − 4 m− (0.75x2 − 3)
0.25x2 − 0.5x x2 − 4 normalize(m)

x2 − 2x x2 − 4 shift(m)

x− 2 x2 − 4 n− (2x− 4)
x− 2 x2 − 2x shift(n)
x− 2 x− 2 GCD : x− 2

First we see that the ratio of their free coefficients (the c and d in Equations 12.6
and 12.7) is 1/2, so we will multiply n by 1/2 and subtract it from m (shown in
the first line of the preceding table), resulting in the newm shown on the second
line. en we “shi” m by factoring out x, resulting in the third line, and so on.

In 2000, Andre Weilert further generalized Stein’s algorithm to Gaussian in-
tegers. is time, 1+ i plays the role of 2; the “shi” operation is division by 1+ i.
In 2003, Damgård and Frandsen extended the algorithm to Eisenstein integers.

In 2004, Agarwal and Frandsen demonstrated that there is a ring that is not
a Euclidean domain, but where the Stein algorithm still works. In other words,
there are cases where Stein’s algorithmworks but Euclid’s does not. If the domain
of the Stein algorithm is not the Euclidean domain, then what is it? As of this
writing, this is an unsolved problem.

What we do know is that Stein’s algorithm depends on the notion of even and
odd; we generalize even to be divisible by a smallest prime, where p is a smallest
prime if any remainderwhen dividing by it is either zero or an invertible element.
(We say “a smallest prime” rather than “the smallest prime” because there could
be multiple smallest primes in a ring. For example, for Gaussian integers, 1 + i,
1− i, −1+ i, and −1− i are all smallest primes.)

Why do we factor out 2 when we’re computing the GCD of integers? Because
when we repeatedly divide by 2, we eventually get 1 as a remainder; that is, we
have an odd number. Once we have two odd numbers (two numbers whose
remainders modulo 2 are both units), we can use subtraction to keep our GCD
algorithmgoing. is ability to cancel remaindersworks because 2 is the smallest
integer prime. Similarly, x is the smallest prime for polynomials, and i + 1 for
Gaussian integers.3 Division by the smallest prime always gives a remainder of
zero or a unit, because a unit is the number with the smallest nonzero norm. So
2 works for integers because it’s the smallest prime, not because computers use
binary arithmetic. e algorithm is possible because of fundamental properties

3Note that 2 is not prime in the ring ofGaussian integers, since it can be factored into (1+i)(1−i).

Bézout’s Identity 225

of integers, not because of the hardware implementation, although the algorithm
is efficient because computers use binary arithmetic, making shis fast.

Exercise 12.1. Compare the performance of the Stein and Euclid algorithms on
random integers from the ranges [0, 216), [0, 232), and[0, 264).

12.3 Bézout’s Identity
To understand the relationship of GCD and ring structures, we need to intro-
duce Bézout’s identity, which also leads to an important practical algorithm for
computing the multiplicative inverse. e identity says that for any two values a
and b in the Euclidean domain, there exist coefficients such that the linear com-
bination gives the GCD of the original values.

eorem 12.1 (Bézout’s Identity):

∀a, b ∃x, y : xa+ yb = gcd(a, b)

For example, if a = 196 and b = 42, then this says there are values x and y
such that 196x+42y = gcd(196, 42). Since gcd(196, 42) = 14, in this case x = −1
and y = 5. We’ll see later in the chapter how to compute x and y in general.

Like many results in mathematics, this one is named aer someone other
than its discoverer. Although 18th-century French mathematician Étienne Bé-
zout did prove the result for polynomials, it was actually shown first for integers
a hundred years earlier, by Claude Bachet.

Claude Gaspar Bachet de Méziriac (1581–1638)

Claude Gaspar Bachet de Méziriac,
generally known as Bachet, was a
French mathematician during the Re-
naissance. Although he was a scholar
in many fields, he is best known for
two things. First, he translated Dio-
phantus’ Arithmetic from Greek to
Latin, the common language of sci-
ence and philosophy in Europe at the
time. It is his 1621 translation that
most mathematicians relied on, and it
was in a copy of his translation that
Fermat famously wrote the marginal
note describing his last theorem. Sec-
ond, Bachet wrote the first book on recreational mathematics, Problèmes

226 Chapter 12: Extensions of GCD

Plaisants, originally published in 1612. rough this book, mathematics
became a popular topic among educated people in France, something they
would discuss and spend time on as a hobby. Problèmes Plaisants intro-
duced magic squares, as well as proving what is now known as Bézout’s
identity.

Bachetwas chosen as one of the originalmembers ofAcadémie Française
(French Academy), the organization created by Cardinal Richelieu to be the
ultimate authority on the French language, and taskedwith the creation and
maintenance of the official French dictionary.

Recall that a ring is an algebraic structure that behaves similar to integers; it
has both plus-like and times-like operations, but only an additive inverse. (You
can review the definition of a ring in Definition 8.3 in Section 8.4.)

To prove Bézout’s identity, we need to show that the coefficients x and y al-
ways exist. To do this, we need to introduce a new algebraic structure, the ideal.

Definition 12.1. An ideal I is a nonempty subset of a ring R such that

1. ∀x, y ∈ I : x+ y ∈ I
2. ∀x ∈ I, ∀a ∈ R : ax ∈ I

efirst property says that the ideal is closed under addition; in other words,
if you add any two elements of the ideal, the result is in the ideal. e second
property is a bit more subtle; it says that the ideal is closed under multiplication
with any element of the ring, not necessarily an element of the ideal.

An example of an ideal is the set of even numbers, which are a nonempty sub-
set of the ring of integers. If you add two even numbers, you get an even number.
If you multiply an even number by any number (not necessarily even), you still
get an even number. Other examples of ideals are univariate polynomials with
root 5, and polynomials with x and y and free coefficient 0 (e.g., x2+3y2+xy+x);
we’ll see shortly why this last case is important. Note that just because something
is a subring doesn’t mean it’s an ideal. Integers are a subring of Gaussian inte-
gers, but they aren’t an ideal of Gaussian integers, becausemultiplying an integer
by the imaginary number i does not produce an integer.

Exercise 12.2.

1. Prove that an ideal I is closed under subtraction.
2. Prove that I contains 0.

Bézout’s Identity 227

Lemma 12.1 (Linear Combination Ideal): In a ring, for any two elements a and
b, the set of all elements {xa+ yb} forms an ideal.

Proof. First, this set is closed under addition:

(x1a+ y1b) + (x2a+ y2b) = (x1 + x2)a+ (y1 + y2)b

Next, it is closed under multiplication by an arbitrary element:

z(xa+ yb) = (zx)a+ (zy)b

erefore, it is an ideal.

Exercise 12.3. Prove that all the elements of a linear combination ideal are di-
visible by any of the common divisors of a and b.

Lemma 12.2 (Ideals in Euclidean Domains): Any ideal in a Euclidean domain
is closed under the remainder operation and under Euclidean GCD.

Proof.

1. Closed under remainder: By definition,

remainder(a, b) = a − quotient(a, b) · b

If b is in the ideal, then by the second axiom of ideals, anything multiplied
by b is in the ideal, so quotient(a, b) · b is in the ideal. By Exercise 12.2, the
difference of two elements of an ideal is in the ideal.

2. Closed under GCD: Since the GCD algorithm consists of repeatedly apply-
ing remainder, this immediately follows from 1.

Definition 12.2. An ideal I of the ring R is called a principal ideal if there is an
element a ∈ R called the principal element of I such that

x ∈ I ⇐⇒ ∃y ∈ R : x = ay

In other words, a principal ideal is an ideal that can be generated from one
element. An example of a principal ideal is the set of even numbers (2 is the
principal element). Polynomials with root 5 are another principal ideal. In con-
trast, polynomials with x and y and free coefficient 0 are ideals, but not principal
ideals. Remember the polynomial x2 + 3y2 + xy+ x, which we gave as an exam-
ple of an ideal? ere’s no way to generate it starting with just x (it would never
contain y), and vice versa.

228 Chapter 12: Extensions of GCD

Exercise 12.4. Prove that any element in a principal ideal is divisible by the prin-
cipal element.

Recall that an integral domain is a ring with no zero divisors (Definition 8.7).

Definition 12.3. An integral domain is called a principal ideal domain (PID) if
every ideal in it is a principal ideal.

For example, the ring of integers is a PID, while the ring of multivariate polyno-
mials over integers is not.

eorem 12.2: ED =⇒ PID. Every Euclidean domain is a principal ideal do-
main.

Proof. Any ideal I in a Euclidean domain contains an elementmwith a minimal
positive norm (a “smallest nonzero element”). Consider an arbitrary element
a ∈ I; either it is a multiple of m or it has a remainder r:

a = qm+ r where 0 < ∥r∥ < ∥m∥

Butwe chosem as the smallest element, sowe cannot have a smaller remainder—
that would be a contraction. erefore our element a can’t have a remainder; a =

qm. So we can obtain every element from one element, which is the definition
of a PID.

Now we can prove Bézout’s identity. Since it says that there is at least one
value of x and one value of y that satisfy the equation xa + yb = gcd(a, b), we
can restate it as saying that the set of all possible linear combinations xa + yb
contains the desired value.

Bézout’s Identity, Restated: A linear combination ideal I = {xa + yb} of a Eu-
clidean domain contains gcd(a, b).

Proof. Consider the linear combination ideal I = {xa + yb}. a is in I because
a = 1a+ 0b. Similarly, b is in I because b = 0a+ 1b. By Lemma 12.2, any ideal
in a Euclidean domain is closed under the GCD; thus gcd(a, b) is in I.

We can also use Bézout’s identity to prove the Invertibility Lemma, which we
encountered in Chapter 5:

Extended GCD 229

Lemma 5.4 (Invertibility Lemma):

∀a,n ∈ Z : gcd(a,n) = 1 =⇒ ∃x ∈ Zn : ax = xa = 1 mod n

Proof. By Bézout’s identity,

∃x, y ∈ Z : xa+ yn = gcd(a,n)

So if gcd(a,n) = 1, then xa+ yn = 1. erefore, xa = −yn+ 1, and

xa = 1 mod n

Exercise 12.5. Using Bézout’s identity, prove that if p is prime, then any
0 < a < p has a multiplicative inverse modulo p.

12.4 Extended GCD
e proof of Bézout’s identity that we saw in the last section is interesting. It
shows why the result must be true, but it doesn’t actually tell us how to find the
coefficients. is is an example of a nonconstructive proof. For a long time, there
was a debate inmathematics about whether nonconstructive proofs were as valid
as constructive proofs. ose who opposed the use of nonconstructive proofs
were known as constructivists or intuitionists. At the turn of the 20th century,
the tide turned against the constructivists, with DavidHilbert and the Göttingen
school leading the charge. e lone major defender of constructivism, Henri
Poincaré, lost the battle, and today nonconstructive proofs are routinely used.

Henri Poincaré (1854–1912)

Jules Henri Poincaré was a French
mathematician and physicist. He
came from a deeply patriotic fam-
ily, and his cousin Raymond was a
prime minister of France. He pub-
lished more than 500 papers on a va-
riety of subjects, including several on
special relativity developed indepen-
dently of, and in some cases prior to,
Einstein’s work on the subject. Al-
though he worked on many practical
problems, such as establishing time
zones, he mostly valued science as a
tool for understanding the universe.

230 Chapter 12: Extensions of GCD

As he wrote:

e scientist must not dally in realizing practical aims. He no
doubt will obtain them, but must obtain them in addition. He
never must forget that the special object he is studying is only
a part of this big whole, which must be the sole motive of his
activity. Science has had marvelous applications, but a science
that would only have applications inmind would not be science
anymore, it would be only cookery.

Poincaré also wrote several important books about the philosophy of sci-
ence, and was elected a member of the Académie Française.

Poincaré contributed to almost every branch of mathematics, originat-
ing several subfields, such as algebraic topology. People at the time debated
about whether Poincaré or Hilbert was the greatest mathematician in the
world. However, Poincaré’s criticism of set theory and the formalist agenda
of Hilbert put him on the wrong side of the rivalry between France and a
recently unified Germany. e rejection of Poincaré’s intuitionist approach
by the formalists was a great loss for 20th-centurymathematics. Both points
of view complement each other.

Whatever the view of formalist mathematicians, from a programming per-
spective, it is clearly more satisfactory to actually have an algorithm than simply
to know that one exists. So in this section, we will derive a constructive proof
of Bézout’s identity—in other words, an algorithm for finding x and y such that
xa+ yb = gcd(a, b).

To understand the process, it’s helpful to review what happens in several it-
erations of Euclid’s algorithm to compute the GCD of a and b.

template <EuclideanDomain E>
E gcd(E a, E b) {

while (b != E(0)) {
a = remainder(a, b);
std::swap(a, b);

}
return a;

}

Each time through themain loop, we replace a by the remainder of a and b, then
swap a and b; our final remainder will be the GCD. So we are computing this
sequence of remainders:

r1 = remainder(a, b)
r2 = remainder(b, r1)

Extended GCD 231

r3 = remainder(r1, r2)
...

rn = remainder(rn−2, rn−1)

Note how the second argument to the remainder function on iteration k shis
over to become the first argument on iteration k+ 1.

Since the remainder of a and b is what’s le over from a aer dividing a by b,
we can write the sequence like this:

r1 = a− b · q1 (12.8)
r2 = b− r1 · q2

r3 = r1 − r2 · q3

...
rn = rn−2 − rn−1 · qn (12.9)

where the q terms are the corresponding quotients. We can solve each equation
for the first term on the right—the first argument of the remainder function:

a = b · q1 + r1
b = r1 · q2 + r2
r1 = r2 · q3 + r3

...
rn−2 = rn−1 · qn + rn

In Section 4.7, we showed how the last nonzero remainder rn in the sequence
is equal to the GCD of the original arguments. For Bézout’s identity, we’d like to
show that rn = gcd(a, b) = xa + yb. If each of the equations in the preceding
series could be written as linear combinations of a and b, the next one could as
well. e first three are easy:

a = 1 · a+ 0 · b (12.10)
b = 0 · a+ 1 · b (12.11)
r1 = 1 · a+ (−q1) · b

e last equation comes from our original definition of r1 in the first remainder
sequence (Equation 12.8). e next one requires substituting the expansion of
r1 and rearranging terms:

232 Chapter 12: Extensions of GCD

r2 = b− r1q2

= b− (a− q1b)q2

= b− q2a+ q1q2b
= −q2a+ (1+ q1q2)b

Next, we have an iterative recurrence. Assume that we already figured out
how to represent two successive remainders as linear combinations:

ri = xia+ yib
ri+1 = xi+1a+ yi+1b

en we can use our previous observation about how to define an arbitrary re-
mainder in the sequence using the two previous ones (Equation 12.9), substitut-
ing those previous values and again distributing and rearranging to group all the
coefficients with a and all the coefficients with b:

ri+2 = ri − ri+1qi+2

= xia+ yib− (xi+1a+ yi+1b)qi+2

= xia+ yib− xi+1qi+2a− yi+1qi+2b
= xia− xi+1qi+2a+ yib− yi+1qi+2b
= (xi − xi+1qi+2)a+ (yi − yi+1qi+2)b

We have seen how we can express every entry in the sequence as a linear com-
bination of a and b, and our procedure gives us the coefficients x and y at every
step. Furthermore, we observe that the coefficients on a are defined in terms of
the previous coefficients on a (i.e., the only variables are xs), and the coefficients
on b are defined in terms of the previous coefficients on b (i.e., the only variables
are ys). In particular, the coefficients on iteration i+ 2 are

xi+2 = xi − xi+1qi+2 (12.12)
yi+2 = yi − yi+1qi+2

Whenwe reach the end, wehave coefficients x and y such that xa+yb = gcd(a, b),
which was what we wanted all along.

We’ve seen that that the ys do not depend on the xs and the xs do not depend
on the ys. Since we know xa + yb = gcd(a, b), then as long as b ̸= 0, we can
rearrange these terms to define y as

y = gcd(a, b)− ax
b

is means we don’t need to go through the trouble of computing all the inter-
mediate values of y.

Extended GCD 233

Exercise 12.6. What are x and y if b = 0?

* * *

Now that we know how to compute the coefficient x from Bézout’s identity, we
can enhance our GCD algorithm to return this value as well. e new algorithm
is called extended GCD (also known as the extended Euclid algorithm). It will
still compute the usual series of remainders for GCD, but it will also compute
the series of x coefficients from our earlier equations.

As we have seen, we don’t need to keep every value in the recurrence; we just
need the two previous ones, which we’ll call x0 and x1. Of course, we need to
know the first two values to get the series started, but fortunately we have them—
they are the coefficients of a in the first two linear combinations (Equations 12.10
and 12.11), namely 1 and 0. en we can use the xi+2 formula we have just de-
rived (Equation 12.12) to compute the new value each time. Each new x compu-
tation requires a quotient, so we’ll need a function for that. Meanwhile we’re still
computing the GCD, so we still need the remainder. Since we need both quo-
tient and remainder, we’ll use the generic version of the quotient_remainder
function we introduced in Section 4.6, which returns a pair whose first element
is the quotient andwhose second element is the remainder. Here is our extended
GCD code:

template <EuclideanDomain E>
std::pair<E, E> extended_gcd(E a, E b) {

E x0(1);
E x1(0);
while (b != E(0)) {

// compute new r and x
std::pair<E, E> qr = quotient_remainder(a, b);
E x2 = x0 - qr.first * x1;
// shift r and x
x0 = x1;
x1 = x2;
a = b;
b = qr.second;

}
return {x0, a};

}

At the end, when b is zero, the function returns a pair consisting of the value of
x that we wanted for Bézout’s identity, and the GCD of a and b.

Exercise 12.7. Develop a version of the extendedGCDalgorithmbased on Stein’s
algorithm.

234 Chapter 12: Extensions of GCD

12.5 Applications of GCD
To wrap up our discussion of GCD, we consider some important uses of the
algorithm.

Cryptography. As we shall see in the next chapter, modern cryptographic
algorithms rely on being able to find the multiplicative inverse modulo n for
large numbers, and the extended GCD algorithm allows us to do this.

We know from Bézout’s identity that

xa+ yb = gcd(a, b)

so
xa = gcd(a, b)− yb

If gcd(a, b) = 1, then
xa = 1− yb

us multiplying x and a gives 1 plus some multiple of b, or to put it another
way,

xa = 1 mod b

As we learned in Chapter 5, two numbers whose product is 1 are multiplicative
inverses. Since the extended_gcd algorithm returns x and gcd(a, b), if the GCD
is 1, then x is the multiplicative inverse of a mod b; we don’t even need y.

Rational Arithmetic. Rational arithmetic is very useful in many areas, and it
can’t be done without reducing fractions to their canonical form, which requires
the GCD algorithm.

Symbolic Integration. One of the primary components of symbolic integra-
tion is decomposing a rational fraction into primitive fractions, which uses the
GCD of polynomials over real numbers.

Rotation Algorithms. We saw in Chapter 11 how the GCD plays a role in
rotation algorithm. In fact, the std::rotate function in C++ relies on this
relationship.

12.6 Thoughts on the Chapter
In this chapter, we saw two examples of how continued exploration of an old
algorithm can lead to new insights. Stein’s observations about patterns of odd
and even numbers when computing the GCD allowed him to come up with a

Thoughts on the Chapter 235

more efficient algorithm, one that exposed some important mathematical rela-
tionships. Bachet’s proof of a theorem about theGCDgave us the extendedGCD
algorithm, which has many practical uses.

In particular, the discovery of the Stein algorithm illustrates a few important
programming principles:

1. Every useful algorithm is based on some fundamental mathematical truth.
When Stein noticed some useful patterns in computing the GCD of odd and
even numbers, he wasn’t thinking about smallest primes. Indeed, it’s very
common that the discoverer of an algorithm might not see its most general
mathematical basis. ere is oen a long time between the first discovery of
the algorithm and its full understanding. Nevertheless, its underlyingmathe-
matical truth is there. For this reason, every useful program is aworthy object
of study, and behind every optimization there is solid mathematics.

2. Even a classical problem studied by great mathematicians may have a new so-
lution. When someone tells you, for example, that sorting can’t be done faster
than n log n, don’t believe them. at statement might not be true for your
particular problem.

3. Performance constraints are good for creativity. e limitations that Stein
faced using the WEIZAC computer in 1961 are what drove him to look for
alternatives to the traditional approach. e same is true in many situations;
necessity really is the mother of invention.

A Real-World Application

I am fairly familiar with all forms of secret writings, and am
myself the author of a triflingmonograph upon the subject,
in which I analyze one hundred and sixty separate ciphers,

but I confess that this is entirely new tome.

Sherlock Holmes

roughout this book, we’ve seen examples of important algorithms that came
out of work on number theory. We’ve also seen how attempts to generalize those
mathematical results brought about the development of abstract algebra, and
how its ideas about abstraction led directly to the principles of generic program-
ming. Now we’re going put it all together. We’ll show how our mathematical
results and our generalized algorithms can be used to implement a real-world
application: a particular kind of system for secure communication, known as a
public-key cryptosystem.

13.1 Cryptology
Cryptology is the science of secret communication. Cryptography is concerned
with developing codes and ciphers;1 cryptanalysis with breaking them.

e idea of sending secret messages dates back to ancient times, with ex-
amples of cryptography in many societies including Sparta and Persia. Julius
Caesar used the technique of replacing letters with those in a “rotated” alpha-
bet (now known as the Caesar cipher) to send military messages. In the 19th

1Technically, a code is a system for secret communicationwhere ameaningful concept such as the
name of a person, place, or event is replaced with some other text, while a cipher is a system formod-
ifying text at the level of its representation (letters or bits). But we’ll use the terms interchangeably;
in particular, we’ll use encode and decode informally to mean encipher and decipher.

238 Chapter 13: A Real-World Application

century, cryptography and “cryptograms,” puzzles that use a simple substitu-
tion cipher, caught the public’s imagination. In an 1839 magazine article, Edgar
Allen Poe claimed he could decipher any such messages his readers submitted—
and apparently succeeded. A few years later he published a short story called
“e Gold Bug,” which includes an account of how to break such a code. A sub-
stitution cipher also featured prominently, several decades later, in Sir Arthur
Conan Doyle’s Sherlock Holmes mystery, “e Adventure of the Dancing Men.”

But the importance of cryptography went well beyond casual entertainment.
Codes and ciphers played an important role in diplomacy, espionage, and war-
fare. By the early 20th century, creating better cryptographic schemes was a top
priority for the military of the world’s leading powers. e ability to break these
codes could make the difference between success and failure on the battlefield.

Bletchley Park and the Development of Computers

InWorldWar II, themain British cryptanalysis group was based at an estate
in the countryside called Bletchley Park. At the time, the German navy was
using an enhanced version of a commercial encryption mechanism called
the Enigmamachine. An earlier version of the Engima had been cracked by
Polish cryptographer Marian Rejewski, using an electromechanical device
that tested many possible Enigma settings in parallel.

At Bletchley Park, a brilliant young mathematician named Alan Turing,
whose previous work provided much of the foundations of what became
computer science, designed a much more sophisticated version of Rejew-
ski’s device called a “bombe.” rough the work of Turing andmany others,
the Allies were able to decipher the Enigma messages, a great help in win-
ning the war.

Another encryptionmechanismused by theNazis was called the Lorenz
machine. To break the Lorenz cipher, the British cryptographers realized
that the electromechanical bombes were not fast enough. So an engineer
named Tommy Flowers designed a much more powerful electronic device
using vacuum tubes, called “Colossus.” Although itwas not a general-purpose
machine andwas only partially programmable, Colossusmay have been the
world’s first programmable electronic digital computer.

A cryptosystem consists of algorithms for encrypting and decrypting data.
e original data is called the plaintext, and the encrypted data is called the ci-
phertext. A set of keys determine the behavior of the encryption and decryption
algorithms:

ciphertext = encryption(key0, plaintext)
plaintext = decryption(key1, ciphertext)

e system is symmetric if key0 = key1; otherwise, it is asymmetric.

Cryptology 239

Many early cryptosystems were symmetric and used secret keys. e prob-
lem with this is that the sender and the receiver of the message both must have
the keys in advance. If the key is compromised and the sender wants to switch to
a new one, he has the additional problem of figuring out how to secretly convey
the new key to the receiver.

* * *

A public-key cryptosystem is an encryption scheme that makes use of a pair of
keys: a public key pub for encrypting, and a private key prv for decrypting. If
Alice wants to send amessage to Bob, she encrypts themessage with Bob’s public
key. e ciphertext is then unreadable to anyone but Bob, who uses his private
key to decrypt the message.

To have a public-key cryptosystem, the following requirements must be
satisfied:

1. e encryption function needs to be a one-way function: easy to compute,
with an inverse that is hard to compute. Here, “hard” has its technical com-
puter science meaning of taking exponential time—in this case, exponential
in the size of the key.

2. e inverse function has to be easy to compute when you have access to a
certain additional piece of information, known as the trapdoor.

3. Both encryption and decryption algorithms are publicly known. is ensures
the confidence of all parties in the technique being used.

A function meeting the first two requirements is known as a trapdoor one-way
function.

Perhaps the best-known and most widely used public-key cryptosystem is
the RSA algorithm, named aer its creators (Rivest, Shamir, and Adleman). As
we’ll see shortly, RSA depends on some mathematical results about primes.

Who Invented Public-Key Cryptography?

For years, it was believed that Stanford professor Martin Hellman, together
with two graduate students, Whitfield Diffie and Ralph Merkle, invented
public-key cryptography in 1976. ey proposed how such a system would
work, and realized it would require a trapdoor one-way function. Unfortu-
nately, they didn’t give an example of such a function—it was just a hypo-
thetical construct. In 1977, MIT researchers Ron Rivest, Adi Shamir, and
Len Adleman came up with a procedure for creating a trapdoor one-way
function, which became known as the RSA algorithm aer the inventors’
initials.

240 Chapter 13: A Real-World Application

In 1997, the British government disclosed that one of their intelligence
researchers, Clifford Cocks, had actually invented a special case of RSA in
1973—but it took 20 years aer the publication of the RSA algorithm before
they declassified Cocks’ memo. Aer that, Admiral Bobby Ray Inman, the
former head of the U.S. National Security Agency, claimed that his agency
had invented some sort of public-key cryptographic technique even earlier,
in the 1960s, although no evidence was given. Who knows which country’s
intelligence agency will come forward next with an earlier claim?

13.2 Primality Testing
eproblem of distinguishing prime numbers from composite… is
known to be one of the most important and useful in arithmetic.

C. F. Gauss, Disquisitiones Arithmeticae

An important problem in modern cryptography is determining whether an in-
teger is prime. Gauss believed that (1) deciding whether a number is prime or
composite is a very hard problem, and so is (2) factoring a number. He was
wrong about #1, as we shall see. So far, he seems to be right about #2, which is a
good thing for us, since modern cryptosystems are based on this assumption.

To find out if a number n is prime, it helps to have a predicate that tells us
whether it’s divisible by a given number i:

template <Integer I>
bool divides(const I& i, const I& n) {

return n % i == I(0);
}

We can call this repeatedly to find the smallest divisor of a given number n. Just
aswe didwith the Sieve of Eratosthenes inChapter 3, our loop for testing divisors
will start at 3, advance by 2, and stop when the square of the current candidate
reaches n:

template <Integer I>
I smallest_divisor(I n) {

// precondition: n > 0
if (even(n)) return I(2);
for (I i(3); i * i <= n; i += I(2)) {

if (divides(i, n)) return i;
}
return n;

}

Primality Testing 241

Now we can create a simple function to determine whether n is prime:

template <Integer I>
I is_prime(const I& n) {

return n > I(1) && smallest_divisor(n) == n;
}

is ismathematically correct, but it’s not going to be fast enough. Its complexity
is O(

√
n) = O(2(log n)/2). at is, it’s exponential in the number of digits. If we

want to test a 200-digit number, we may be waiting for more time than the life
of the universe.

To overcome this problem, we’re going to need a different approach, which
will rely on the ability to do modular multiplication. We’ll use a function object
that provides what we need:

template <Integer I>
struct modulo_multiply {

I modulus;
modulo_multiply(const I& i) : modulus(i) {}

I operator() (const I& n, const I& m) const {
return (n * m) % modulus;

}
};

We’ll also need an identity element:

template <Integer I>
I identity_element(const modulo_multiply<I>&) {

return I(1);
}

Now we can compute a multiplicative inverse modulo prime p. It uses the result
we showed in Chapter 5 that, as a consequence of Fermat’s Little eorem, the
inverse of an integer a, where 0 < a < p, is ap−2 (see Section 5.4, right aer the
proof of Fermat’s Little eorem). It also uses the power function we created in
Chapter 7:

template <Integer I>
I multiplicative_inverse_fermat(I a, I p) {

// precondition: p is prime & a > 0
return power_monoid(a, p - 2, modulo_multiply<I>(p));

}

With these pieces, we can now use Fermat’s Littleeorem to test if a number
n is prime. Recall that Fermat’s Little eorem says:

242 Chapter 13: A Real-World Application

If p is prime, then ap−1 − 1 is divisible by p for any 0 < a < p.

Equivalently:

If p is prime, then ap−1 = 1 mod p for any 0 < a < p.

We want to know if n is prime. So we take an arbitrary number a smaller than
n, raise it to the n − 1 power using modular multiplication (mod n), and check
if the result is 1. (We call the number a we’re using a witness.) If the result is not
equal to 1, we know definitely by the contrapositive of the theorem that n is not
prime. If the result is equal to 1, we know that there’s a good chance that n is
prime, and if we do this for lots of random witnesses, there’s a very good chance
that it is prime:
template <Integer I>
bool fermat_test(I n, I witness) {

// precondition: 0 < witness < n
I remainder(power_semigroup(witness,

n - I(1),
modulo_multiply<I>(n)));

return remainder == I(1);
}

is time we use power_semigroup instead of power_monoid, because we know
we’re not going to be raising anything to the power 0. e Fermat test is very
fast, because we have a fast way to raise a number to a power—our O(logn)
generalized Egyptian multiplication algorithm from Chapter 7.

* * *

While the Fermat test works the vast majority of the time, it turns out that there
are some pathological cases of numbers that will fool it for all witnesses coprime
to n; they produce remainders of 1 even though they’re composite. ese are
called Carmichael numbers.

Definition 13.1. A composite number n > 1 is a Carmichael number if and
only if

∀b > 1, coprime(b,n) =⇒ bn−1 = 1 mod n

172081 is an example of a Carmichael number. Its prime factorization is 7 · 13 ·
31 · 61.

Exercise 13.1. Implement the function:

bool is_carmichael(n)

Exercise 13.2. Find the first seven Carmichael numbers using your function
from Exercise 13.1.

The Miller-Rabin Test 243

13.3 The Miller-Rabin Test
To avoid worrying about Carmichael numbers, we’re going to use an improved
version of our primality tester, called the Miller-Rabin test; it will again rely on
the speed of our power algorithm.

We know that n − 1 is even (it would be awfully silly to run a primality test
on an even n), so we can represent n− 1 as the product 2k · q. e Miller-Rabin
test uses a sequence of squaresw20q,w21q, . . . ,w2kq, wherew is a random number
less than the one we are testing. e last exponent in this sequence is n− 1, the
same value the Fermat test uses; we’ll see why this is important shortly.

We’re also going to rely on the self-canceling law (Lemma 5.3), except we’ll
write it with new variable names and assuming modular multiplication:

For any 0 < x < n ∧ prime(n), x2 = 1 mod n =⇒ x = 1 ∨ x = −1

Remember that in modular arithmetic, −1 mod n is the same as (n− 1) mod n,
a fact that we rely on in the following code. If we find some x2 = 1 mod n where
x is neither 1 nor −1, then n is not prime.

Now we can make two observations: (1) If x2 = 1 mod n, then there’s no
point in squaring x again, because the result won’t change; if we reach 1, we’re
done. (2) If x2 = 1 mod n and x is not −1, then we know n is not prime (since
we already ruled out x = 1 earlier in the code).

Here’s the code, which returns true if n is probably prime, and false if it def-
initely is not:

template <Integer I>
bool miller_rabin_test(I n, I q, I k, I w) {

// precondition n > 1 ∧ n− 1 = 2kq ∧ q is odd

modulo_multiply<I> mmult(n);
I x = power_semigroup(w, q, mmult);
if (x == I(1) || x == n - I(1)) return true;
for (I i(1); i < k; ++i) {

// invariant x = w2i−1q

x = mmult(x, x);
if (x == n - I(1)) return true;
if (x == I(1)) return false;

}
return false;

}

244 Chapter 13: A Real-World Application

Note that we pass in q and k as arguments. Since we’re going to call the function
many times with different witnesses, we don’t want to refactor n− 1 every time.

Why canwe return true at the beginning if the power_semigroup call returns
1 or −1? Because we know that squaring the result will give 1, and squaring is
equivalent to multiplying the exponent in the power calculation by a factor of
2, and doing this k times will make the exponent n − 1, the value we need for
Fermat’s Little eorem to hold. In other words, if wq mod n = 1 or −1, then
w2kq mod n = wn−1 mod n = 1.

Let’s look at an example. Suppose we want to know if n = 2793 is prime. We
choose a random witness w = 150. We factor n − 1 = 2792 into 22 · 349, so
q = 349 and k = 2. We compute

x = wq mod n = 150349 mod 2793 = 2019

Since the result is neither 1 nor −1, we start squaring x:

i = 1; x2 = 15021·349 mod 2793 = 1374

i = 2; x2 = 15022·349 mod 2793 = 2601

Since we haven’t reached 1 or −1 yet, and i = k, we can stop and return false;
2793 is not prime.

Like the Fermat test, the Miller-Rabin test is right most of the time. Unlike
the Fermat test, the Miller-Rabin test has a provable guarantee: it is right at least
75% of the time2 for a random witness w. (In practice, it’s even more oen.)
Randomly choosing, say, 100 witnesses makes the probability of error less than
1 in 2200. As Knuth remarked, “It is much more likely that our computer has
dropped a bit, due … to cosmic radiations.”

AKS: A New Test for Primality

In 2002, Neeraj Kayal and Nitin Saxena, two undergraduate students at
the Indian Institute of Technology at Kanpur, together with their advisor,
Manindra Agrawal, came up with a deterministic polynomial-time algo-
rithm for primality testing, and published their result. is is a problem
that people in number theory had been working on for centuries.

ere is a very clear paper by Andrew Granville describing the tech-
nique. Although it is a dense mathematical paper, it is understandable to a
surprisingly wide audience. is is unusual; most important mathematical
results being published in recent decades require years of prior mathemat-
ical study to be understood. Determined readers who are willing to put in
serious effort are encouraged to read it.

2In fact, the requirement that q must be odd is needed for this probability guarantee.

The RSA Algorithm: How and Why It Works 245

Despite the fact that the AKS algorithm is a great accomplishment, we’re
not going to use it here, because the probabilistic Miller-Rabin algorithm is
still considerably faster.

13.4 The RSA Algorithm:
How and Why It Works

e RSA algorithm is one of the most important and widely used cryptosystems
in use today. It is oen used for authentication—to prove that users, companies,
websites, and other entities with an online presence are who they say they are.
It is also oen used to exchange private keys that are used in a separate, faster
symmetric cryptosystem used to encode data being communicated.

Some of the important communication protocols that use RSA are:

IPSec security for low-level data transport
PPTP virtual private networks
SET secure electronic transactions (e.g., credit card transactions)
SSH secure remote access to another computer

SSL/TLS secure data transfer layer

We use many of these protocols daily. For example, anytime you visit a “secure”
website (one whose URL has an https prefix), you’re relying on SSL/TLS, which
in turn uses RSA or (depending on the implementation) a similar public-key
cryptosystem.

RSA relies on themathematical results we’ve just shown for primality testing.
RSA requires two steps: key generation, which needs to be done only rarely, and
encoding/decoding, which is done every time a message is sent or received.

Key generation works as follows. First, the following values are computed:

• Two random large primes, p1 and p2 (theMiller-Rabin testmakes this feasible)

• eir product, n = p1p2

• eEuler function of their product, whichwe can compute using Equation 5.5
from Chapter 5: ϕ(p1p2) = (p1 − 1)(p2 − 1)

• A random public key pub, coprime with ϕ(p1p2)

• A private key prv, the multiplicative inverse of pub modulo ϕ(p1p2) (To com-
pute this, we’ll use the extended GCD function we derived in Chapter 12.)

When these computations are complete, p1 and p2 are destroyed; pub and n are
published, and prv is kept secret. At this point, there is no feasible way to factor
n, since it is such a large number with such large factors.

246 Chapter 13: A Real-World Application

eencoding and decoding process is simpler. e text is divided into equal-
size blocks, say 256 bytes long, which are interpreted as large integers. e mes-
sage block size s must be chosen so that n > 2s. To encode a plaintext block, we
use our familiar power algorithm:

power_semigroup(plaintext_block, pub, modulo_multiply<I>(n));

Decoding looks like this:

power_semigroup(ciphertext_block, prv, modulo_multiply<I>(n));

Observe that we do exactly the same operation to encode and decode. e only
difference is which text and which key we pass in.

* * *

Howdoes RSAwork? Encryption consists of raising amessagem to a power pub;
decryption consists of raising the result to the power prv. We need to show that
the result of applying these two operations is the original messagem (modulo n):

(mpub)prv = m mod n

Proof. Recall that we specifically created prv to be the multiplicative inverse of
pub modulo ϕ(p1p2), so by definition, the product of pub and prv is some mul-
tiple q of ϕ(p1p2) with a remainder of 1. We can make that substitution in the
exponent on the right.

(mpub)prv = mpub×prv

= m1+qϕ(p1p2)

= mmqϕ(p1p2)

= m(mϕ(p1p2))q

Now we can apply Euler’s theorem from Chapter 5, which says that aϕ(n)− 1 is
divisible by n; that is, aϕ(n) = 1+ vn. Making that substitution, we have

= m(1+ vn)q

When we expand (1 + vn)q, every term will be a multiple of n except 1, so we
can collapse all of these and just say we have 1 plus some other multiple of n:

= m+ wn
= m mod n

e Euler theorem step depends on m being coprime with n = p1p2. Since
the message m could be anything, how do we know that it will be coprime to

The RSA Algorithm: How and Why It Works 247

p1p2? Since p1 and p2 are enormous primes, that probability is practically indis-
tinguishable from 1, and people normally do not worry about it. However, if
you want to address this, you can add one extra byte to the end of m. e extra
byte is not actually part of the message, but is there only to ensure that we have a
coprime. When we createm, we check whether it is coprime; if it isn’t, we simply
add 1 to this extra byte.

* * *
Why does RSA work? In other words, why do we believe it’s secure? e reason
is that factoring is hard, and therefore computing ϕ is not feasible. Perhaps if
quantum computers prove to be realizable in the future, it will be possible to run
an exponential number of divisor tests in parallel, making factoring a tractable
problem. But for now, we can rely on RSA for many secure communications
applications.

Project
Exercise 13.3. Implement an RSA key generation library.
Exercise 13.4. Implement an RSA message encoder/decoder that takes a string
and the key as its arguments.
Hints:
• If your language does not support arbitrary-precision integers, you’ll need to

install a package for handling them.

• Remember that two numbers are coprime if their GCD is 1. is will come in
handy for one of the key generation steps.

• You’ll need the results that we derived in Chapter 12. ere are two relevant
functions, extended_gcd and multiplicative_inverse.
Recall that the extended_gcd function from Chapter 12 returns a pair (x, y)

such that ax+ ny = gcd(a,n). You can use this function to check for coprimes.
It’s also part of the implementation of multiplicative_inverse, a function that
returns the multiplicative inverse of a modulo n if it exists, or 0 if it does not.
Unlike the function multiplicative_inverse_fermat that we introduced in
Section 13.2, this one works for any n, not just primes:
template <Integer I>
I multiplicative_inverse(I a, I n) {

std::pair<I, I> p = extended_gcd(a, n);
if (p.second != I(1)) return I(0);
if (p.first < I(0)) return p.first + n;
return p.first;

}

You’ll need this to get the private key from the public key.

248 Chapter 13: A Real-World Application

13.5 Thoughts on the Chapter
Issues of identity, privacy, and security are becoming increasingly important as
more of our personal data lives online and more of our personal communica-
tion travels over the Internet. As we have seen, many important protocols for
keeping data private and secure from tampering rely on RSA or similar public-
key cryptosystems for authentication, exchange of keys used for encryption, or
other security features.

ese important practical capabilities owe their existence to results from one
of the most theoretical branches of mathematics, number theory. ere is a per-
ception among programmers that mathematicians are people who don’t know
or care about practical concerns and that mathematics, particularly in its more
abstract areas, has little practical value. Looking at the history, we can see that
both of these perceptions are false. e greatest mathematicians enthusiastically
worked on extremely practical problems—for example, Gauss worked on one of
the first electromechanical telegraphs, and Poincaré spent years developing time
zones. Perhaps more importantly, it is impossible to know which theoretical
ideas are going to have practical applications.

Conclusions

The strongest arguments prove nothing so long as
the conclusions are not verified by experience.

Roger Bacon, Opus Tertium

We started this book by characterizing generic programming as an attitude to-
ward programming that focuses on abstracting algorithms to their most general
setting without losing efficiency. roughout the book, we’ve seen examples
of this abstraction process in mathematics and in programming. We saw how
mathematicians’ attempts to find the most general setting for Euclid’s GCD al-
gorithm led to the development of abstract algebra, an entire area of mathe-
matics devoted to abstract structures, which itself provided the basis for generic
programming. We also saw how to use those same principles of abstraction to
generalize an ancient algorithm for multiplying positive integers to a fast power
function on semigroups, enabling a range of applications ranging from comput-
ing Fibonacci numbers to finding the shortest path in a graph to encrypting data
in Internet communication protocols. is process—starting with a specific effi-
cient solution and, whenever possible, relaxing the requirements—is at the heart
of generic programming.

While the idea of abstraction in generic programming comes to us directly
from abstract algebra, as programmers we also care about efficiency. A generic
algorithm that runs more slowly than its type-specific counterpart will not get
used. at’s why efficiency is also part of the definition of generic program-
ming. We’ve shown examples throughout the book of specific techniques for
improving efficiency, from rewriting code to use strength reduction, to using
memory-adaptive algorithms, to exploiting compile-time type dispatch so the
computer can invoke the fastest available implementation for a given situation.

250 Chapter 14: Conclusions

More generally, we have found that attempts to find generic versions of algo-
rithms oen lead to simpler and more efficient solutions.

We’ve also seen how the correctness of a programming interface can be just
as important as the correctness of the program itself. A correct interface can
enable a wider range of applications. It can also bring efficiency benefits—for
example, by returning all the relevant computations (the law of useful return)
to avoid a duplication of effort. In contrast, an incorrect interface cripples the
application by limiting what it can do. For example, we saw how a find function
that returns only a Boolean value instead of the position of a found item makes
it impossible to see if a second matching item exists. And just as you need to
rewrite a programa few times to get it right, so you need to redesign the interface;
the correct interface usually won’t be clear until you’ve already implemented an
algorithm and explored its use cases.

Another idea that’s essential to understanding generic programming is the
distinction between type and concept. In much the same way that axioms in a
mathematical theory are requirements that tell us what it means to be a certain
kind of abstract mathematical entity (such as a group), concepts in program-
ing are requirements on types; they tell us what it means to be a certain kind
of computational entity. Choosing the right concepts for an algorithm or data
structure is essential to good programming. Choosing a concept with too many
requirements places unnecessary limitations on the range of situations in which
an algorithm can be used. Choosing a concept with too few requirements makes
it impossible to define algorithms that do anything useful.

Next time you set out to write a program, try to adopt the generic program-
ming attitude. Start with specific implementations of your functions, then revise
and refine them to be more efficient and more general. As you refine your code,
think carefully about how the pieces fit together and how to provide an inter-
face that will still be useful in the future. Choose concepts that provide just the
right requirements for your data, without imposing unnecessary assumptions.
And remember that you are the inheritor of a long mathematical tradition of
algorithmic thought. In following the principles of generic programming, you
are already benefiting from the work of those who came before, from Euclid to
Stevin to Noether. By designing beautiful, general algorithms, you are adding
your own small contribution to their work.

Readers who are interested in learning more about the topics discussed in this
book may wish to look at some of the references mentioned here. Complete
citations are included in the Bibliography.

Chapter 1
Generic Programming. e language Tecton, which first used generic program-
ming concepts, is described in “Tecton: A Language for Manipulating Generic
Objects” by Kapur, Musser, and Stepanov (1981). e Ada library is described
in the paper “Generic Programming” by Musser and Stepanov (1988), and C++
STL in “e Standard Template Library” by Stepanov and Lee (1994). All of
these materials are available on www.stepanovpapers.com.

Chapter 2
History ofMathematics. Agood comprehensive reference, not only for this chap-
ter but also for much of the mathematical history in the book, is Katz’sAHistory
of Mathematics: An Introduction (2009). is general textbook combines thor-
oughness andmathematical rigor with accessibility to the layperson. An incisive
book that explains the historical development of somemajormathematical ideas
is Mathematics and Its History by John Stillwell (2010).

Rhind Papyrus. To see a reproduction of the Rhind Papyrus, together with its
translation, see e Rhind Mathematical Papyrus: An Ancient Egyptian Text by
Robins and Shute (1987). Van der Waerden includes a discussion of the Rhind
Papyrus in Geometry and Algebra in Ancient Civilizations (1983).

Chapter 3
Egyptian and Greek Mathematics. In addition to Katz, two excellent resources
are Van der Waerden’s Science Awakening (1963) and the two-volume History

Reading

http://www.stepanovpapers.com

252 Further Reading

of Greek Mathematics by Sir omas Heath (originally published in 1921 but
available in a 1981 reprint). Both are very accessible to the general reader.

Figurate Numbers. e best introduction to Pythagorean arithmetic is the
book by Nicomachus of Gerasa, which can easily be found in the 10th volume
of the Britannica’s Great Books of the Western World, edited by Mortimer Adler.
is volume also contains the complete works of Euclid and Archimedes.

Basic Number eory. A good introduction to basic number theory is in
Chapter III of George Chrystal’s Algebra: An Elementary Text-Book.

Chapter 4
Greatest CommonMeasure. For general history of Greekmathematics, including
the topics covered in this chapter, the best reference is still Heath’s A History of
Greek Mathematics, mentioned in the topics for Chapter 3. For a fascinating
and mathematically sophisticated account of the mathematical studies in Plato’s
Academy, including the algorithm for the greatest common measure, see David
Fowler’s e Mathematics of Plato’s Academy, a New Reconstruction. For those
interested in reading the source, Plato’s complete works are available in a one-
volume edition, with a clear modern translation, edited by John M. Cooper. A
good explanation of the GCD may be found in Chapter III of George Chrystal’s
Algebra: An Elementary Text-Book.

Decline of Greek Science. An important account of the rise and decline of
Greek mathematics is presented in the book by Lucio Russo, e Forgotten Rev-
olution: How Science Was Born in 300 BC and Why It Had to Be Reborn.

History of Zero. Our account of the history of zero is largely taken from van
der Waarden’s Science Awakening, pp. 56–57.

Leonardo Pisano (Fibonacci). A short autobiography of Leonardo Pisano has
been translated by Richard Grimm. His great work Liber Abaci is available in
an English translation by Laurence Sigler. A brief but thorough description of
Leonardo Pisano’s number theoretic treatise is given in McClenon’s 1919 arti-
cle “Leonardo of Pisa and His Liber Quadratorum.” Readers interested in his-
tory of arithmetic algorithms may want to read Leonardo Pisano’s original Liber
Quadratorum, available in a modern English translation by L. E. Sigler (see Fi-
bonacci in the Bibliography).

Remainder and Quotient. e full treatment of the extension of GCD to re-
mainder and quotient is in Chapter 5 of Elements of Programming by Stepanov
andMcJones (2009). Floyd andKnuth’s algorithm for remainder appears in their
1990 article “Addition Machines.”

Chapter 5
Fermat’s and Euler’s Number eory Work. A source for much of the material in
this chapter isNumbereory: AnApproach throughHistory fromHammurapi to
Legendre by André Weil. While this book does not assume any advanced math,

Further Reading 253

it is probably too detailed for most casual readers. e classic number theory
texts by Gauss (Disquisitiones Arithmeticae) and Dirichlet (Lectures on Number
eory) are still of great value, but would be of interest to serious scholars only.

Euler’s Books. Our biography of Euler also mentions his foundational works
on calculus. Although they are not directly related to the topics of this book, they
are still worth careful reading. Euler’s first book on the subject, Introduction to
Analysis of the Infinite is available in English. Sadly, only the first half of his
second book, Foundations of Differential Calculus, has an English translation,
and all of his Integral Calculus still awaits anEnglish translation. ebookLetters
to a German Princess is available on the Internet.

Chapter 6
Group eory. A classic book on group theory is Burnside’s eory of Groups of
Finite Order. ough first published in 1897, it still gives an unparalleled intro-
duction to what group theory is about and includes many more examples than
most modern books. It was reprinted by Dover Press in 2004.

Model eory. Sadly, we are not aware of an introduction to model theory
accessible to a layperson. For a more advanced reader, a good introduction is H.
Jerome Keisler’s “Fundamentals of Model eory,” a chapter in the Handbook of
Mathematical Logic.

Chapter 7
Requirements on Types. Many topics in this chapter are discussed more formally
in Elements of Programming by Stepanov and McJones.

Reduction. Iverson discusses reduction in his paper “Notation as a Tool of
ought” (1980). e idea is also discussed in Backus’ “Can Programming Be
Liberated from the Von Neumann Style?” (1978). Using reduction for parallel
computation was discussed in “Operators and Algebraic Structures” by Kapur,
Musser, and Stepanov (1981). Dean’s use of reduction is described in “Map-
Reduce: Simplified Data Processing on Large Clusters” (2004).

Chapter 8
Simon Stevin. Despite Stevin’s great contributions to science and mathematics,
very little has been published about hiswork. A good overview is Sarton’s “Simon
Stevin of Bruges.”

Polynomial Division and GCD. For a refresher on polynomial division and
polynomial GCD, see Chapters 5 and 6 of Chrystal’s Algebra.

Origins of Abstract Algebra. A good introduction to Gaussian integers is
Chapter 6 of Stillwell’s Elements of Number eory. e classic text that intro-
duced the general notion of algebraic integers is Richard Dedekind’s eory of
Algebraic Integers. Stillwell’s translation includes an excellent introduction that

254 Further Reading

explains many of the ideas. Leo Corry’s Modern Algebra and the Rise of Mathe-
matical Structures is an exhaustive scholarly treatment of the emergence of ab-
stract algebra from Dedekind to Noether and later developments.

Abstract Algebra. For the reader who wants to take the next step in under-
standing abstract algebra, a serious but accessible (and historically informed)
text is Stillwell’s Elements of Algebra.

Rings. Stillwell’s Elements of Number eory covers these topics thoroughly
and is quite accessible. (While its title might suggest that this topic is covered in
Stillwell’s Elements of Algebra, that book focuses on Galois’s work and therefore
does not cover rings.)

Chapter 9
Social Nature of Proof. e idea that proof is a social process is discussed in
“Social Processes and Proofs of eorems and Programs,” by De Millo, Lipton,
and Perlis (1979).

Euclid. Sir omas Heath’s translation of Euclid, e irteen Books of the
Elements, is widely available. is edition includes very extensive commentary
by the translator. In addition, there is new reproduction of Oliver Byrne’s 1847
unique edition, which demonstrates all the proofs through visual illustrations.
Robin Hartshorne’s Geometry: Euclid and Beyond is a textbook aimed at uni-
versity math majors, but the first chapter (describing Euclid’s geometry) is quite
accessible.

Axioms of Geometry. Chapters 1 and 2 of Hartshorne’s Geometry: Euclid and
Beyond provide a good introduction to Euclid’s axiomatic method and Hilbert’s
modern version of Euclidean axioms. Hilbert’s Foundations of Geometry is still
the definitive treatment of his axioms for Geometry.

Non-EuclideanGeometry. Aclassic treatment of this topic is Roberto Bonola’s
Non-Euclidean Geometry: A Critical and Historical Study of Its Development. A
modern (but still accessible) mathematical treatment may be found in Chapter 7
of Hartshorne’s Geometry.

PeanoArithmetic. For readers interested in how arithmetic can be built rigor-
ously from the ground up, Edmund Landau’s Foundations of Analysis describes
how to construct integers, rationals, reals, and complex numbers starting with
Peano-like axioms. Peano’smagnumopusFormularioMathematico actually cov-
ered many areas of practical mathematics, not just the axioms that became fa-
mous. Unfortunately, this great book has never been translated from its original
invented language. Formore about Peano’s work, seeTwelve Articles on Giuseppe
Peano by Hubert Kennedy.

Chapter 10
Aristotle’s Organization of Knowledge. A good introduction to Aristotle’s life
and philosophy is Sir David Ross’s Aristotle. ere are several good editions

Further Reading 255

of Aristotle’s complete works, including the two-volume Bollingen Foundation
edition and the multivolume Loeb Classical Library edition. Readers interested
only in Aristotle’s Categories, the work discussed in this chapter, can choose the
appropriate volume.

Concepts. Chapter 1 of Elements of Programming by Stepanov and McJones
covers this material more formally and in more detail.

Iterators and Search. Chapter 6 of Elements of Programming covers this ma-
terial more formally and in more detail.

Chapter 11
Permutations and Transpositions. A good introduction to permutations is in
Chapter XXIII of Chrystal’sAlgebra. Chapter 1 of Burnside’seory of Groups of
Finite Order, mentioned under Chapter 6, gives more details about these topics.

Rotate and Reverse. e algorithms in this chapter are described in more
detail in Chapter 10 of Elements of Programming.

Chapter 12
Stein’s Algorithm. Stein’s original paper on the faster GCD algorithm is “Com-
putational Problems Associated with Racah Algebra.” Knuth describes the algo-
rithm in Section 4.5.2 of e Art of Computer Programming, Vol. 2.

Recreational Mathematics. Many developments in mathematics came from
studying seemingly frivolous problems, andmanydistinguishedmathematicians
became interested in mathematics through exposure to mathematical games. A
classic book on the subject is Mathematical Recreations and Essays by W. W.
Rouse Ball.

Chapter 13
Cryptography. Anentertaining history of cryptography isDavidKahn’seCode-
breakers: eComprehensiveHistory of Secret Communication fromAncient Times
to the Internet. To learn more about methods used in modern cryptography, a
standard text is Introduction to Modern Cryptography: Principles and Protocols
by Katz and Lindell.

Number eory. A good modern introduction to number theory, which in-
cludes a discussion of the RSA algorithm, is John Stillwell’s Elements of Number
eory (2003). It also includes some material that we cover in Chapters 5 and 8.

AKS Primality Testing. edeterministic polynomial-time algorithm for pri-
mality testing is described in Granville’s paper “It Is Easy to Determine Whether
a Given Integer Is Prime” (2005).

Notation

e following are symbols used in the book that may not be familiar to a non-
mathematical reader and that are not explained in the main text. (Other new
symbols are explained when they are introduced.) We’ll list the symbols first,
then give a few examples of their use.

¬p
Logical negation. Read “not p.” If p is true, then ¬p is false, and vice versa.

p ∨ q
Logical disjunction. Read “p or q.” e statement p∨ q is true if either p is
true, or q is true, or they are both true.

p ∧ q
Logical conjunction. Read “p and q.” e statement p∧q is true only when
both p and q are true.

p =⇒ q
Logical implication. Read “p implies q” or “if p, then q.” Note that the
statement p =⇒ q is false only when p is true and q is false. It may not be
intuitive that the expression is true when p is false, but one way to think
of it is “you can make an argument for anything if you get to start by as-
suming something that isn’t true.” For more about logical implication, see
“Implication and the Contrapositive” at the end of this appendix.

p ⇐⇒ q
Logical equivalence. Read “p if and only if q” and sometimes written “p iff
q.” e statement p ⇐⇒ q is true when both p and q are true, or when
both p and q are false. is is exactly the same as saying
(p =⇒ q) ∧ (q =⇒ p).

258 Appendix A: Notation

x ∈ S
Set membership. Read “x is an element of S” or “x is in S.”

x /∈ S
Negation of set membership. Read “x is not an element of S” or “x is not
in S.”

∀x ∈ S
Universal quantifier. Read “for all x in S” or “for any x in S.” Sometimes
membership in the set S is assumed from the context, so we just write ∀x.

∃x ∈ S
Existential quantifier. Read “there exists an x in S” or “there is an x in S.”
Sometimes membership in the set S is assumed from the context, so we
just write ∃x.

S ∪ T
Set union. Read “the union of S and T.” An element x is in the union of S
and T if it is in either S or T or both.

S ∩ T
Set intersection. Read “the intersection of S and T.” An element x is in the
intersection of S and T if it is in both S and T.

S = {x | . . . }
Set definition. Read “S is the set of all x such that . . .” (where the “. . .”
could be any list of conditions about x).

N
e set of natural numbers 0, 1, 2, 3, …—numbers used for counting.
(Some authors do not include 0 in the set of natural numbers.)

Z
e set of integers, which includes all the natural numbers and (for all
except zero) their negations.

Zn
e set {0, 1, 2, . . . ,n− 1} of remainders modulo n.

Q
e set { pq} of rational numbers (the ratio of two integers).

R
e set of real numbers.

C
e set of complex numbers a + bi, where a and b are real numbers and
i2 = −1.

Notation 259

Examples
even(x) ⇐⇒ ¬odd(x)

“x is even if and only if x is not odd.”

S = {x | x ∈ Z ∧ even(x)}
“S is the set of all x’s such that x is in the set of integers and x is even” or,
more concisely, “S is the set of all even integers.”

∀x ∃y : y = x+ 1
“For any x, there is a y such that y equals x plus 1.”

x ∈ {S ∩ T} =⇒ x ∈ {S ∪ T}
“If x is in the intersection of S and T, then x is in the union of S and T.”

Implication and the Contrapositive
e implication p =⇒ q (also known as a conditional) is logically equivalent to
a variant called the contrapositive, which has the following form:

¬q =⇒ ¬p

Consider this example:

If n = 2, then n is even.

Here our proposition p is “n = 2” and our proposition q is “n is even”; this
conditional happens to be true. To form the contrapositive, we logically negate
both sides and reverse the direction of the implication. So the contrapositive of
the preceding statement is

If n is not even, then n ̸= 2

which is also true.
Since a conditional statement and its contrapositive are logically equivalent,

we occasionally replace one with the other, in situations where the latter form is
more convenient.

Don’t confuse the contrapositive of p =⇒ q with its converse, which is
q =⇒ p. Just because an implication is true does not mean its converse is true;
the two are independent. Continuing the earlier example, even though our orig-
inal statement was true, its converse

If n is even, then n = 2

is clearly false.

Common Proof Techniques

ere are a few standard proof techniques that occur frequently in mathematics
and computer science, and which we use in this book. If you are having trouble
understanding the proofs in the main text, you may want to review this section.

B.1 Proof by Contradiction
Many things we want to prove have the form “if p, then q” (also sometimes writ-
ten “p =⇒ q”), where p and q are two propositions. We always start with the
premise that p is true; otherwise, we would be solving a different problem. e
idea of proof by contradiction is to assume the opposite of what the original
conjecture concludes (i.e., assume that q is not true), and then show that this as-
sumption would lead to a logical contradiction—in particular, that proposition
p would be false, which we know is not the case. is forces us to conclude that
proposition q must be true aer all, which is what we really wanted all along.

Let’s look at an example. Suppose we want to prove that for all integers n:

If n2 is odd, then n is odd.

Here “n2 is odd” is our p and “n is odd” is our q. So let’s assume the opposite
conclusion is true, that n is not odd—that n is even. What does it mean for an
integer n to be even? It means we can write it as twice some other integer m:

n = 2m

What happens if we square n?

n2 = 2 · 2 ·m2

262 Appendix B: Common Proof Techniques

Let’s introduce a new variable x, and set x = 2m2. en we can substitute:

n2 = 2 · 2m2 = 2x

Now we see that n2 can be expressed as twice some other integer x. But that’s
the definition of even, and our premise was that n2 is odd. n2 can’t be both even
and odd—that’s a logical contradiction. So the assumption we made at the be-
ginning that n is even must be false; n must therefore be odd, and we’ve proved
the original result.

B.2 Proof by Induction
Some results we’d like to prove involve infinite sets of things. Obviously in these
situations we can’t enumerate all the cases, but we can oen use mathematical
induction to obtain our result. To prove something by induction, you need to do
two things:

• Prove that it’s true for the first element in the set. is is called the basis.

• Prove that if it’s true for an arbitrary element in the set (the induction hypoth-
esis), then it’s also true for the successor of that element. is is called the
inductive step.

For example, suppose we want to prove that for any positive integer n:

1+ 2+ 3+ · · ·+ n =
n(n+ 1)

2

Basis:
Does the equation hold if n = 1? In other words, is it true that

1 =
1 · (1+ 1)

2 ?

We can just do the arithmetic, and see that the answer is “yes.”

Inductive step:
Assume that the equation is true for n = k. If that were true, would it also
be true for k + 1? is is what it means to be true for k (i.e., this is our
induction hypothesis):

1+ 2+ 3+ · · ·+ k =
k(k+ 1)

2

The Pigeonhole Principle 263

Let’s add k+ 1 to both sides:

1+ 2+ 3+ · · ·+ k+ (k+ 1) = k(k+ 1)
2 + (k+ 1)

=
k(k+ 1)

2 +
2(k+ 1)

2

=
(k+ 1)(k+ 2)

2

=
(k+ 1)((k+ 1) + 1)

2

is is just n(n+1)
2 , where n = k+1. So we have proved that if the equation

is true for k, it’s true for k+ 1.

Since we have shown both the basis and the inductive step, we have proved our
original statement.

B.3 The Pigeonhole Principle
e pigeonhole principle (sometimes known as the Dirichlet principle) is very
simple: if you have n pigeonholes and more than n pigeons, then at least one
pigeonholemust containmore than one pigeon. ere are lots of examples of this
in real life. For example, if you have 367 people, at least two of them must have
the same birthday. But the idea also turns out to be useful in some mathematical
proofs. Oen when you see a theorem that’s trying to prove that two things will
be the same, the pigeonhole principle is a good approach.

Here’s an example:

Prove that any set of 10 positive integers smaller than 100
will always contain two different subsets with the same sum.

First, let’s consider how many possible sums we can get. Since one of the
subsets can be the empty set, the smallest possible sum is zero. e largest
possible sum would come from the set containing the 10 largest numbers, i.e.,
90+ 91+ 92+ . . .+ 99 = 945. So no matter which numbers we pick, the subset
sums must be somewhere in the range [0, 945]. at range contains 946 values,
so that’s the maximum number of possible sums. Next, let’s see how many pos-
sible subsets of those 10 integers there are. We can represent each subset as a
binary number where the ith bit is 1 if the ith integer in the set is in that subset,
and 0 otherwise. ere are 10 elements in the set, and we use one bit for each
element, so there are 210 = 1024 possible subsets. Since there are only 946 pos-
sible sums, and there are 1024 possible subsets, by the pigeonhole principle, at
least two of the subsets must have the same sum.

C++ for Non-C++ Programmers

is book generally uses a subset of C++ that should be easily understandable
to most programmers who have used a language like C or Java. However, there
are a few important features and idioms specific to C++ that we rely on. ese
are described in this Appendix. Except where noted, we use only features of
C++ that have been available in the 1998 standard version of the language. For a
good brief introduction to C++11, see A Tour of C++ by Bjarne Stroustrup. For
a complete reference, see Stroustrup’s e C++ Programming Language.

C.1 Template Functions
One way C++ supports the generic programming paradigm is through the use
of templates. Suppose you have a function like this:

int my_function(int x) {
int y;
... do something complicated ...
return y;

}

Now you want to do the same set of computations, but this time you want the
function to take and return a double-precision floating-point number. C++ al-
lows you to overload the function name, so you can write a whole new function
with the same name that works with different types:

double my_function(double x) {
double y;
... do something complicated ...
return y;

}

266 Appendix C: C++ for Non-C++ Programmers

But if everything is the same except for the type, writing a whole separate func-
tion is wasteful.

Templates avoid this problem. With templates, you can write a single func-
tion to work on any type that satisfies both the syntactic and semantic require-
ments of the code, like this:
template <typename T>
T my_function(T x) {

T y;
... do something complicated ...
return y;

}

Now we have a function that takes type T and returns type T, where T depends
on how the function is called. On the one hand, if you say
int x(1);
int y = my_function(x);

then my_function() will be called with T set to int. On the other hand, if you
say
double x(1.0);
double y = my_function(x);

then my_function() will be called with T set to double. is is done at compile
time, so there is no performance penalty for using templates.

C.2 Concepts
Concepts are the essential part of generic programming, and we discuss them in
some detail in Section 10.3. e following discussion is intended to be a quick
reference.

Ideally, we would like to have a way to tell the programmer what the require-
ments are on a given template argument. For instance, we’d like to say
template <Number N>

and have that mean that whatever type this function gets called with must be a
number. is means the code is intended to work for things ints and doubles
and uint64_ts, but not, say, for strings. A restriction like “Number” is an exam-
ple of a concept. Unfortunately, as of this writing, C++ does not support concepts
as a built-in part of the language—that is, C++ does not have any way to enforce
requirements on template types.

Despite this limitation, we will write our code examples as if concepts were
present in the language. We can implement this by just defining our favorite
concepts as aliases for typename:

Declaration Syntax and Typed Constants 267

#define Number typename

So when we write

template <Number N>

as far as the compiler is concerned, it’s as if we wrote

template <typename N>

but the human programmer will understand the intended restriction.

C.3 Declaration Syntax
and Typed Constants

C++ provides multiple ways to declare and initialize a variable. While the tradi-
tional C syntax

int x = y;

is legal, the common way to write this in C++ is

int x(y);

is is more consistent with the syntax used to construct arbitrary C++ objects.
(Note: e current version ofC++ supports an additionalway to do initialization:

int x{y};

However, this usage is still less widespread, so we do not use it in our examples.)
When using numeric constants, we’ll be very careful about types. For exam-

ple, a traditional C program might contain a line like this:

if (something) return 0;

is is a bit sloppy. Which type is the 0 returned by the function? By default,
it’s an int, but suppose our program was supposed to return a specific kind of
integer, like a 16-bit unsigned integer, or one specified by a template argument.
Rather than rely on implicit type conversion, we’ll try to be explicit about what
we’re returning by writing something like this:

if (something) return uint16_t(0);

or, in the case of a template argument:

if (something) return T(0);

where T is the type specified in the template.

268 Appendix C: C++ for Non-C++ Programmers

C.4 Function Objects
Oenwe’d like to have a function that requires some initialization andmaintains
some state. A common way to implement this in C++ is by the use of a function
object, also called a functor. A function object is an object that encapsulates a
single (unnamed) function. Let’s look at a simple example—a function object
for doing currency conversion:

struct converter {
double exchange_rate;

converter(double ex) : exchange_rate(ex) {}

double operator()(double amt) {
return amt * exchange_rate;

}
};

Note the use of the syntax operator() to declare the unnamed function that
belongs to the object.

To use this function, we first construct an instance of our converter object
(which initializes the exchange rate). In this example we want to convert euros
to U.S. dollars, so we’ll name our instance eur_to_usd. en we can invoke the
function by using that instance:

int main() {

converter eur_to_usd(1.3043);

double euros;
do {

std::cout << "Enter amount in Euros: ";
std::cin >> euros;
std::cout << euros << " euros is "

<< eur_to_usd(euros) << " dollars "
<< std::endl;

} while (euros > 0.0);
}

Function objects have the benefit thatwe can pass themas arguments to func-
tions. (C++ does not allow passing functions directly, only function pointers,
which requires the added cost of an indirect function call.) In addition, func-
tion objects can contain state information.

STL Algorithms and Data Structures 269

C.5 Preconditions, Postconditions,
and Assertions

Given valid arguments, a function performs a certain computation. Anotherway
to put this is that if its preconditions are satisfied, certain postconditions will be
true. Sometimes we write these preconditions and postconditions as comments
in our code, like this:

// precondition: y != 0.0
double my_ratio(double x, double y) {

return x / y;
}
// postcondition: returned value is x/y

However, the library also provides amechanismcalled assert for checking some
conditions. So we could write:

double my_ratio(double x, double y) {
assert(y != 0.0);
return x / y;

}

If the assert expression evaluates to true, nothing happens. But if it evaluates
to false, execution of the program halts and an error message is printed.

In production code, assertions are typically disabled to avoid a performance
penalty.

C.6 STL Algorithms and Data Structures
e C++ language contains a library of standard soware components, known
as the Standard Template Library (STL). is library includes data structures,
algorithms, and other utilities commonly used by C++ programmers. All STL
components belong to the namespace std; we will explicitly use the prefix std::
when we refer to them in our code examples.

STL is a generic library, meaning that each component can be used with any
appropriate type. In the case of data structures, the types are specified as template
arguments when the object is declared. For example,

std::vector<int> v;

declares a vector of integers, while

std::vector<bool> v;

declares a vector of Booleans.

270 Appendix C: C++ for Non-C++ Programmers

e following STL components are used in this book:

Function objects for arithmetic operations and comparisons (see Section C.4 for
explanation of function objects):

• std::plus—Computes the sum of its operator’s two arguments.

• std::multiplies—Computes the product of its operator’s two arguments.

• std::negate—Computes the negation of its operator’s argument.

• std::less—Returns true when its operator’s first argument is less than its
second, false otherwise.

• std:less_equal—Returns true when its operator’s first argument is less than
or equal to its second, false otherwise.

Data structures:

• std::pair—Astruct that stores two arbitrary objects; typically used to return
two things from a function.

• std::vector—A container for a sequence of elements of a single type that
supports constant-time random access.

Algorithms:

• std::fill—Fills the range specified by its first two arguments with the value
specified by the third argument.

• std::swap—Exchanges the contents of its arguments.

• std::partition_point—Returns an iterator to the first element in an already
partitioned range (specified by the first two arguments) for which the given
predicate (third argument) is not true. See discussion in Section 10.8.

Other utilities:

• std::advance—Increments the position of an iterator (its first argument) by
a distance (second argument).

For a more detailed description of these and other STL components, see Part
IV of Stroustrup’s e C++ Programming Language.

C.7 Iterators and Ranges
Iterators are an important part of generic programming, and we discuss them in
greater detail in Section 10.4. e following discussion is intended to be a quick
reference.

Iterators and Ranges 271

Iterators are an abstraction of pointers; an iterator indicates a position in a
sequence. e examples in this book use these four types of iterators, each with
its own iterator tag.

• Input iterators support one-directional traversal, but only once, as is found in
single-pass algorithms. e canonical model of an input iterator is the posi-
tion in an input stream.
Tag: std::input_iterator_tag

• Forward iterators also support only one-directional traversal, but this traversal
can be repeated as needed, as in multi-pass algorithms. e canonical model
of a forward iterator is the position in a singly linked list.
Tag: std::forward_iterator_tag

• Bidirectional iterators support bidirectional traversal, repeated as needed (i.e.,
they also can be used in multi-pass algorithms). e canonical model of a
bidirectional iterator is the position in a doubly linked list.
Tag: std::bidirectional_iterator_tag

• Random-access iterators support random-access algorithms; that is, they allow
access to any element in constant time. e canonical model is the position
in an array.
Tag: std::random_access_iterator_tag

e iterator tags are special types that may be used in function signatures to
ensure that the correct version of an overloaded function will be invoked when
a given iterator is used; see Chapter 11 for an example.

* * *

STL functions oen take two iterators representing the beginning and end of a
range of data. By convention, the iterator for the end of the data (oen called
last) points to the position directly aer the last element.

Iterators also have special attributes called iterator traits. e ones we use
are:

• value_type: the type of the objects pointed to by the iterator.

• difference_type: an integral type large enough to express the number of
increment operations needed to get from one iterator to another.

• iterator_category: the iterator tag, described earlier.

e syntax to access an iterator trait for a particular iterator type x is (for example)

std::iterator_traits<x>::value_type

For more information on iterators, see Chapter 10.

272 Appendix C: C++ for Non-C++ Programmers

C.8 Type Aliases and Type Functions
with using in C++11

C++11, the current standard version of C++, has a feature called using that al-
lows programmers to provide aliases for types and other constructs. is is typ-
ically used to provide a short way to write a long and complicated type. For
example:

using myptr = long_complicated_class_name*;

Aerwriting this statement, programmers could refer to myptr in the codewher-
ever they would have previously written long_complicated_class_name*.

Users of C and earlier versions of C++ may be familiar with an older aliasing
mechanism, typedef, but using is more flexible. For example, the using feature
allows us to write templatized type functions for iterator traits. If we write

template <InputIterator I>
using IteratorCategory =

typename std::iterator_traits<I>::iterator_category;

then every time we want to know the category of an iterator, we can say

IteratorCategory<I>

rather than

std::iterator_traits<I>::iterator_category

C.9 Initializer Lists in C++11
In C and C++, you can conveniently initialize an array by enclosing the list of
values in curly braces, like this:

char my_array[5] = {'a', 'e', 'i', 'o', 'u'};

C++11 extends this syntax beyond arrays, so now you can also write things like
this:

std::vector<char> = {'a', 'e', 'i', 'o', 'u'};
std::pair<int, double> = {42, 3.1415};

C.10 Lambda Functions in C++11
C++11 includes support for lambda functions. ese are anonymous functions
that are needed only once, oen as arguments to another function.

A Note about inline 273

Suppose for some application, we wanted to take a function that computed
the cube of its argument and pass it to another function. Traditionally, we’d have
to implement this as a function object, declare it separately, instantiate it, and
pass the instance, like this:

struct cuber {
cuber() {}; // constructor

int operator()(int x) {
return x * x * x;

}
};

int main() {
...
cuber cube;
int a = some_other_function(cube);
...

}

But if this is the only time we ever need the cube function, that’s a lot of work.
Why bother creating the function object, or even giving the function a name,
when we’re never going to use it again? Instead, we can write a lambda function
inline and pass the whole expression as an argument:

int main() {
...
int a = some_other_function([=](int x) { return x * x * x; });
...

}

e syntax for lambda functions is just like the syntax for implementing any
other function, except that the name of the function is replaced by the expres-
sion [=], and the return type usually does not need to be specified; the compiler
figures it out.

C.11 A Note about inline
e C++ directive inline before a function is a hint that tells the compiler that
the programmer would like the body of the function to be included as part of the
code of the caller, avoiding the usual function call overhead. In practice, many
functions in this book would benefit today from being declared inline.

Inlining makes sense only for relatively small pieces of code. Larger inlined
functions could end up increasing the size of the calling code enough to disrupt

274 Appendix C: C++ for Non-C++ Programmers

code caching or cause other performance problems. Compilers take this into ac-
count and ignore the inline request in those cases. At the same time, compilers
are getting smart enough to inline code automatically when it makes sense. For
these reasons, the inline directive will soon be obsolete, so we did not use it in
our examples.

Bibliography

Adler, Mortimer J. (Ed.). (1991). Great Books of the Western World, Vol. 10:
Euclid, Archimedes, Nicomachus. Chicago: Encyclopaedia Brittanica.

Aristotle. (1938). Aristotle: Categories, On Interpretation, Prior Analytics,
Vol. 325. Translated by H. P. Cooke and Hugh Tredennick. Cambridge,
MA: Loeb Classical Library.

Aristotle. (1984). e Complete Works of Aristotle: e Revised Oxford Transla-
tion. Edited by Jonathan Barnes. Princeton, NJ: Princeton University Press.

Backus, John. (1978). “Can Programming Be Liberated from the VonNeumann
Style?: A Functional Style and Its Algebra of Programs.” Communications of
the ACM 21(8), 613–641.

Ball, W. W. Rouse, and H. S. M. Coxeter. ([1922] 2010). Mathematical Recre-
ations and Essays (10th ed.). Reprint, New York: Dover Publications. Orig-
inal edition published 1892.

Bonola, Roberto. ([1955] 2010). Non-Euclidean Geometry: A Critical and His-
torical Study of Its Development. Translated by H. S. Carslaw. Reprint,
New York: Dover Publications. Originally published as La Geometria non-
Euclidea, 1912.

Burnside, William. ([1911] 2004). eory of Groups of Finite Order (2nd ed.).
Reprint, Mineola, NY: Dover Publications.

Byrne, Oliver. (2010). e First Six Books of the Elements of Euclid. Taschen.
Facsimile of 1847 edition.

Chrystal, George. ([1964] 1999). Algebra: An Elementary Text-Book (7th ed.).
Reprint, Providence, RI: American Mathematical Society. Original edition
published 1886.

276 Bibliography

Cohen, Morris R., and I. E. Drabkin. (1948). A Source Book in Greek Science.
Cambridge, MA: Harvard University Press.

Corry, Leo. (2004). Modern Algebra and the Rise of Mathematical Structures
(2nd revised ed.). Basel, Switzerland: Birkhäuser.

Dean, Jeffrey, and Sanjay Ghemawat. (2008). “MapReduce: Simplified Data
Processing on Large Clusters.” Communications of the ACM 51(1), 107–113.

Dedekind, Richard. (1996).eory of Algebraic Integers.Translated by John Still-
well. Cambridge, UK: Cambridge University Press. Originally published as
Über die eorie der ganzen algebraicschen Zahlen, 1877.

De Millo, Richard A., Richard J. Lipton, and Alan J. Perlis. (1979). “Social
Processes and Proofs of eorems and Programs.” Communications of the
ACM 22(5), 271–280.

Dirichlet, P. G. L. (1999). Lectures on Number eory. Supplements by
R. Dedekind. Translated by John Stillwell. Providence, RI: American
Mathematical Society. Originally published as Vorlesungen über Zahlen-
theorie, 1863.

Euclid. (1956). Euclid: eirteen Books of the Elements.Translated byomas
L. Heath. (2nd ed.). New York: Dover Publications.

Euler, Leonhard. (1988). Introduction to Analysis of the Infinite, Vol. 1 and 2.
Translated by John D. Blanton. New York: Springer. Originally published
as Introductio in analysin infinitorum, 1748.

Euler, Leonhard. (2000). Foundations of Differential Calculus. Translated by
John D. Blanton. New York: Springer. Originally published as Institutiones
Calculi Differentialis, 1755.

Fibonacci, Leonardo Pisano, and L. E. Sigler (Trans.). (1987). e Book of
Squares: An Annotated Translation into Modern English. Boston: Academic
Press. Originally published in Latin as Liber Quadratorum, 1225.

Floyd, Robert W., and Donald E. Knuth. (1990). “Addition Machines.” SIAM
Journal on Computing 19(2), 329–340.

Fowler, David H. (1987). e Mathematics of Plato’s Academy: A New Recon-
struction. Oxford, UK: Clarendon Press.

Gauss, Carl Friedrich. (1965). Disquisitiones Arithmeticae.Translated by Arthur
A. Clarke, S.J. New Haven, CT: Yale University Press. Original Latin
edition, 1801.

Bibliography 277

Granville, Andrew. (2005). “It Is Easy to Determine whether a Given Integer Is
Prime.” Bulletin of the American Mathematical Society 42(1), 3–38.

Gries, David, and Gary Levin. (1980). “Computing Fibonacci Numbers (and
Similarly Defined Functions) in Log Time.” Information Processing Let-
ters 11(2), 68–69.

Grimm, Richard E. (1973). “eAutobiography of Leonardo Pisano.” Fibonacci
Quarterly 11(1), 99–104.

Hartshorne, Robin. (2000). Geometry: Euclid and Beyond. New York: Springer.

Heath, omas. ([1921] 1981). A History of Greek Mathematics. Reprint, New
York: Dover Publications.

Hilbert, David. ([1971] 1999). Foundations of Geometry (10th ed.). Translated
by LeoUnger and revised by Paul Bernays. Chicago: OpenCourt. Originally
published as Grundlagen der Geometrie, 1899.

Iverson, Kenneth E. (1962). “A Programming Language.” In Proceedings of the
May 1–3, 1962, Spring Joint Computer Conference, AIEE-IRE ’62, pp. 345–
351. ACM.

Iverson, Kenneth E. (1980). “Notation As a Tool of ought.” Communications
of the ACM 35(1–2), 2–31.

Kahn, David. (1996). e Codebreakers: e Comprehensive History of Secret
Communication fromAncient Times to the Internet (Revised ed.). New York:
Scribner.

Kapur, D., D. R. Musser, and A. A. Stepanov. (1981a). “Operators and Algebraic
Structures.” In Proceedings of the 1981 Conference on Functional Program-
ming Languages and Computer Architecture, FPCA ’81, New York, NY, pp.
59–64. ACM.

Kapur, D., D. R. Musser, and A. A. Stepanov. (1981b). “Tecton: A Language for
Manipulating Generic Objects.” In Program Specification, Proceedings of a
Workshop, pp. 402–414. Springer-Verlag.

Katz, Jonathan, and Yehuda Lindell. (2008). Introduction to Modern Cryptogra-
phy. Boca Raton, FL: CRC Press.

Katz, Victor J. (2009). A History of Mathematics: An Introduction (3rd ed.).
Boston: Addison-Wesley.

Keisler, H. Jerome. (1989). “Fundamentals ofModeleory.” In J. Barwise (Ed.),
Handbook of Mathematical Logic. North Holland.

278 Bibliography

Kennedy, Hubert. (2002). Twelve Articles on Giuseppe Peano. San Francisco:
Peremptory Publications.

Knuth, Donald E. (2007). e Art of Computer Programming, Vol. 2: Seminu-
merical Algorithms. Boston: Addison-Wesley.

Landau, Edmund. ([1966] 2001). Foundations of Analysis (3rd ed.). Translated
by F. Steinhardt. Reprint, Providence, RI: Chelsea.

McClenon, R. B. (1919). “Leonardo of Pisa and His Liber Quadratorum.” e
American Mathematical Monthly 26(1), 1–8.

Musser, David R., and Alexander A. Stepanov. (1988). “Generic Programming.”
In Proceedings of the International Symposium ISSAC’88 on Symbolic and Al-
gebraic Computation, pp. 13–25. Springer-Verlag.

Peano, Giuseppe. (1960). Formulario Mathematico. Edizioni Cremonense.
Original edition published 1908.

Plato. (1997). Plato: CompleteWorks. Edited by J. M. Cooper andD. S. Hutchin-
son. Indianapolis, IN: Hackett Publishing.

Robins, Gay, and Charles Shute. (1987). e Rhind Mathematical Papyrus: An
Ancient Egyptian Text. London: British Museum Publications.

Ross, David. (2004). Aristotle (6th ed.). London: Routledge.

Russo, Lucio. (2004). e Forgotten Revolution: How Science Was Born in 300
BC and Why It Had to Be Reborn. Translated by Silvio Levy. New York:
Springer. Originally published as La rivoluzione dimenticata, 1996.

Sarton, George. (1934). “Simon Stevin of Bruges.” Isis 21(2), 241–303.

Sigler, Laurence. (1987). Fibonacci’s Liber Abaci: A Translation into Modern En-
glish of Leonardo Pisano’s Book of Calculation. New York: Springer. Original
Latin edition, 1202.

Stein, Josef. (1967). “Computational Problems Associated with Racah Algebra.”
Journal of Computational Physics 1(3), 397–405.

Stepanov, Alexander, and Meng Lee. (1995). e Standard Template Library.
Hewlett-Packard Laboratories, Technical Publications Department.

Stepanov, Alexander, and Paul McJones. (2009). Elements of Programming.
Boston: Addison-Wesley Professional.

Stillwell, John. (1994). Elements of Algebra. New York: Springer.

Bibliography 279

Stillwell, John. (2002). Elements of Number eory. New York: Springer.

Stillwell, John. (2010). Mathematics and Its History. New York: Springer.

Stroustrup, Bjarne. (2013a). eC++ Programming Language (4th ed.). Boston:
Addison-Wesley Professional.

Stroustrup, Bjarne. (2013b). A Tour of C++. Boston: Addison-Wesley
Professional.

van der Waerden, B. L. (1983). Geometry and Algebra in Ancient Civilizations.
Berlin: Springer-Verlag.

van der Waerden, B. L. (1988). Science Awakening: Egyptian, Babylonian, and
GreekMathematics.Translated byArnoldDresden. Dordrecht, Netherlands:
Kluwer Academic Publishers.

Weil, André. (2007). Number eory: An Approach through History from Ham-
murapi to Legendre. Cambridge, MA: Birkhäuser Boston.

Index

∗ (operator), mathematical convention
for, 115

+ (plus sign),mathematical convention
for, 115

α. See Aliquot sum
φ. See Euler totient function
σ (sum of divisors) formula, 31

A
Abelian group, 86, 108, 153
Abstract algebra

birth of, 85, 140–145
Euclidean domains, 150–151, 153
fields, 151–153
groups, 85–88, 92–95, 108, 152
ideals, 226–228
modules, 151, 154
monoids, 89, 108–109, 152, 154
and programming, 2, 141, 249
principal ideals, 227–228
rings, 142–145, 153
semigroups, 90–91, 108–109, 152
semirings, 145–149, 153
vector spaces, 152, 154

Abstraction
Aristotle, 177, 180, 196
in mathematics, 84, 85–109
and programming, 2, 5, 249

Academy (Plato’s), 41–44, 178
Addition

associativity of, 9, 156, 174

commutativity of, 155–156,
174–175

definition, 173
Addition chains, 11
Additive groups, 86
Additive monoids, 89, 109
Additive semigroups, 90, 109
Address, 181
Adleman, Len, 239
advance, 190
Agrawal, Manindra, 244
Ahmes, 8–9, 57
Ahmes algorithm. See Egyptianmulti-

plication, Egyptian division
AKS primality test, 244–245
Alexander the Great, 43, 178–179
Alexandria, 43–44
Algebraic integers, 140
Algebraic structures, 85. See also

Abstract algebra
Algorithms

in ancient Egypt, 7–11
definition, 7
domain or setting, 150
first recorded, 8
generalizing, 111, 119–123, 126–

127, 151
history of, 7–11
in-place, 215–216
memory adaptive, 216–217
polylog space, 215–216
space complexity, 215–216
performance in practice, 211

282 Index

Aliases, 272
Aliquot sum, 31
Amicable numbers, 63–64
Analytical Mechanics, 99
APL, 124
Apology, 43
Archimedes

on acquiring mathematical
knowledge, 176

axiom of, 47
place in history, 50

Aristophanes, 42
Aristotle, 17, 177–180
Aristoxenus, 17
Arithmétique, 132
e Art of Computer Programming, 9
Aryabhata, 51
Aryabhatiya, 51
Assertions, 269
Associative binary operation (◦), 108

in groups, 85–86
in monoids, 89
in semigroups, 90

Associativity axiom, semigroups, 91
Associativity of addition, 9, 113

definition, 174
visual proof, 156

Associativity of multiplication, visual
proof, 157

Asymmetric keys, 238
Athens, 41–43
Automorphism, 104
Averroes. See Ibn Rushd
Axiom of Archimedes, 47
Axiomatic method, 161–162
Axioms

definition, 163
Euclid’s, 162–163
Hilbert’s, 167
Peano’s, 170–171

B
Bachet de Méziriac, Claude Gaspar,

67, 235
profile, 225–226

Backus, John, 124

Bacon, Roger, 1, 249
Bartels, Martin, 165
Bernoulli, Johann, 69
Bézout’s identity, 225–229
Bidirectional iterators, 185
Binary search, 191–196. See also Parti-

tion points
Binary search lemma, 194–195
Bletchley Park, 238
Bolyai, Farkas, 166
Bolyai, János, 166
Bolzano-Cauchyeorem. See IVT

(Intermediate Value
eorem)

Boolean semirings, 148
Bounded ranges, 189, 203–204
bsearch, 192

C
C++, 3, 265–273
C++11, 57, 187, 195, 265, 272–273
e C++ Programming Language,

265, 270
C++ Standard Template Library.

See STL
Caesar cipher, 237
Cancellation

Cancellation Law, 74–75
definition, 72–73
inverse numbers, 73
and modular arithmetic, 72–76
Self-Canceling Law, 75–76

Cancellation Law, 74–75
Carmichael numbers, 242
Cartesian coordinates, 131, 138
Cataldi, Peter, 64
Categorical theories

vs. STL,104
definition, 104
examples of, 104–106

Category dispatch, 188, 190, 196, 213
Cayley’s eorem, 198
Chinese mathematics, 51
Chrystal, George, 34
Cicero, 50
Ciphertext, 238

Index 283

Closed ranges, 188
Clouds, 42
Cocks, Clifford, 240
Codes, definition, 237
Cogitata Physico Mathematica, 64
Colossus machine, 238
Common Lisp, 116, 124, 190
Common measure of segments, 33
Common notions, Euclid’s axiomatic

method, 162
Commutative algebra, rings, 143–144
Commutativity of addition, 155–156,

174–175
Commutativity ofmultiplication, visual

proof, 156
Commutativity of powers,

semigroups, 91
Compile-time dispatch. See Category

dispatch
Completeness, law of, 203–204
Completeness, theories, 102
Complex numbers, 137–138
Composite numbers. See also Prime

numbers
definition, 21
distinguishing fromprime, 240–245

Concepts
and abstract algebra, 141
definition, 181
choosing, 250
examples, 116–117, 181
naming conventions, 183
overview, 181–184, 266–267
Regular, 183–184
requirements on types, 24, 182
Semiregular, 184
type attributes, 182–183
type functions, 182–183

Consistency, theories, 102, 104
Constructivists, 229
Contradiction, proof by, 35, 261–262
Contrapositive, 259
Coprime, 31, 78, 80–81, 246–247
Cosets, 97. See also Lagrange’s

eorem
Counted ranges, 189, 203–204

Cryptanalysis, 237–238
Cryptography, 233–234, 237
Cryptology

asymmetric keys, 238
Bletchley Park, 238
Caesar cipher, 237
ciphertext , 238
codes, definition, 237
Colossus machine, 238
cryptanalysis, 237–238
cryptography, 237
cryptosystems, 238
Enigma machine, 238
keys, 238
Lorenz machine, 238
plaintext, 238
public-key cryptosystems,

239–240
RSA algorithm, 239–240, 245–247
symmetric keys, 238
trapdoor one-way functions, 239

Cryptosystems, 238
Cycles, of permutations, 200, 207–211
Cyclic groups, 96, 109

generator, 96
Cyclic subgroups, 96

D
Datum, 180
Decimal fractions, 129–131
Declaration syntax, 267
Dedekind, Richard, 140, 171
Degree of polynomials, 133
Dereferencing, iterators, 184–185
Descartes, René, 64, 131
Difference of powers formula, 30
Difference type, iterators, 187
difference_type iterator trait, 187
Differential Calculus, 70
Diffie, Whitfield, 239
Diophantus, 67, 225
Dirichlet, Peter Gustav Lejeune, 41,

139–140, 156
Dirichlet principle. See Pigeonhole

principle
Disme: e Art of Tenths, 129–131

284 Index

DisquisitionesArithmeticae (“Investiga-
tions of Arithmetic”),
136–137

distance, 186-188
divides, 240
Dividing polynomials, 133
Domain of algorithm, 150
Domain of definition, 113
Doubly linked lists, 185

E
Egyptian division, 57
Egyptian multiplication, 8–11

requirements, 111–118
generalizing to power, 120

Elements (of Euclid), 2, 21, 43–45,
161–163

Proposition [VII, 30], 70
Proposition [VII, 32], 21
Proposition [IX, 36], 29, 31–32
Proposition [X, 2], 45
Proposition [X, 3], 45–46
Proposition [X, 117], 37

Elements of Programming, 3, 113–114,
183, 185, 208

Enigma machine, 238
Equational reasoning, 114
Equivalence, 114
Eratosthenes, 22
Euclid. See also Elements

the axiomatic method, 161–163
GCM (greatest common measure)

algorithm, 45–49
incommensurable quantities,

45–49
on number theory, 21
profile, 44–45

Euclideandomains (ED), 150–151, 153
Euclidean geometry

alternatives to, 164–167
fih postulate, 163–164
vs. hyperbolic geometry, 164–167
vs. non-Euclidean, 166–167

Euclidean rings. See Euclidean
domains (ED)

Euclid’s algorithm, 45–47

Euler, Leonhard, 84, 85
Euler’s theorem, 79–83
and Lagrange, 99
perfect numbers, 32, 63–64
prime numbers, 63, 68
profile, 69–70

Euler totient function, 80, 245
Euler’s eorem, 79–83, 246

proof using Lagrange’s
eorem, 101

Even and odd numbers, 9–10, 117
in GCD, 219–220, 224, 234

Existence of zero axiom, 172
Extended GCD algorithm, 229–235,

245, 247
extended_gcd, 233

F
Fast-multiplication algorithm. See

Egyptian multiplication
Fermat, Pierre de, 63, 65–69

profile of, 67–68
proofs, 65–66, 68

Fermat primes, 63–68, 137
Fermat’s Last eorem, 67
Fermat’s Little eorem

converse of, 77–79
description, 69
non-invertibility lemma, 79
proof by Lagrange’s eorem, 101
proof, 77
testing for prime numbers,

241–242
restatement using modular

arithmetic, 84
Fermat test, 241–242
fermat_test, 242
Fibonacci. See Leonardo Pisano
Fibonacci numbers, computing,

124–127
Fibonacci sequence, 58–59
Fields

characteristic of, 151
definition, 151, 153
extensions, 151
prime, 151, 154

Index 285

Fih postulate of Euclidean geometry,
163–164

Figurate numbers
gnomons, 20
oblong numbers, 19
overview, 17, 19–20
triangular numbers, 19
square numbers, 20

find_if, 190–191
find_if_n, 191
Finite axiomatizability of theories, 102
Flowers, Tommy, 238
Floyd, Robert, 58
Formalist philosophy of mathematics,

167–169
Formulario Mathematico, 170–172
Forward iterators, 185
FP, 124
Function objects, 123–124, 268, 270
Functors. See Function objects

G
Galois, Évariste

discovery of groups, 85–88
profile of, 88–89

Gauss, Carl Friedrich, 31, 72, 136–140,
166, 240

profile of, 136–137
Gaussian integers, 138–139, 224
GCD (greatest common divisor)

applications of, 234
of polynomials, 134
description, 59
computing, 59
Euclid’s algorithm, 45–46
extended GCD, 229–235, 245, 247
historical milestones, 222
and rational arithmetic, 234
and ring structures, 225–229
rotation algorithms, 234
Stein’s algorithm, 219–225
symbolic integration, 234
validating, 59–60

gcd, 150, 230
GCM (greatest common measure)

33, 41
Euclid’s algorithm, 45–49
properties, 33

Generator elements in subgroups, 96
Generic programming

in C++, 265–266, 270
concepts, 181
essence, 127, 249–250
history, 124, 134, 141, 180
and mathematics, 84
overview, 1–2, 5

get_temporary_buffer, 217
Gnomons, 20
Gödel, Kurt, 169
Göttingen, University of

Carl Gauss, 136–140
David Hilbert, 168–169
Emmy Noether, 140–145
profile, 135–136

Granville, Andrew, 244
Grassman, Hermann, 171
Greatest common divisor (GCD). See

GCD (greatest common
divisor)

Greatest commonmeasure (GCM). See
GCM (greatest common
measure)

Gries, David, 205
Gries-Mills algorithm, 204–208
Groups

abelian, 86, 108, 153
additive, 86
binary operations, 86
cyclic, 96, 109
definition, 85
discovery of, 85
examples of, 86–88
identity elements, 86
inverse operations, 86
Klein group, 106
order of elements, 94
summary description, 108, 152

286 Index

Groups (continues)
symmetric, 198
theorems about, 92–95

H
half, 118
Heath, omas, 9, 45
Hegel, G.W.F., 111
Hellman, Martin, 239
Hilbert, David, 141, 167–169, 229

profile, 168–169
Hilbert spaces, 168–169
Hilbert’s problems, 169
Hilbert’s program, 169
History of Algebra, 129
Horner’s rule, 132
Hyperbolic geometry, 164–167

I
Ibn Rushd, 180
Ideals. See also Rings

definition, 226
ideals in Euclidean domains

lemma, 227
linear combination ideal lemma, 227
PID (principal ideal domains), 228
principal ideals, 227–228
principal elements, 227

Ideals inEuclideandomains lemma, 227
Identity element, 108–109, 121

in groups, 86
in monoids, 89
in rings, 143

identity_element, 123, 241
Immutable objects, 181
Impossibility of infinite descent, 21
Inclusion-exclusion principle, 82–83
Incommensurable quantities, 45–49
Independence, theories, 102
Indian mathematics, 51
Induction, proof by, 262–263
Induction axiom, 21, 170, 172–173
Inman, Bobby Ray, 240
Inner product of two vectors, 145–146
In-place algorithms, 215–216
Input iterators, 185

Integral Calculus, 70
Integral domains, 145, 153
Interface refinement, law of, 215
Interfaces, designing, 215
Interlingua, 171
Intermediate Valueeorem (IVT),

131, 192
Introduction to Analysis of the

Infinite, 70
Introduction to Arithmetic, 10, 19
Intuitionist philosophy of mathe-

matics, 229
Inverse numbers, 73
inverse_operation, 123
Inverse operation, 86, 119, 121

in groups, 86
Invertibility lemma, 229
Invertibility of successor axiom, 173
Invertible elements. See Units
Irrational numbers, 38–39
is_prime, 241
Isomorphism, models, 103–104
Iterator categories

bidirectional, 185
forward, 185
input, 185
output, 186
random-access, 185

Iterator traits, 187
iterator_category iterator trait, 187
Iterators

in arrays, 185
bidirectional, 185
definition, 184
dereferencing, 184–185
difference type, 187
finding the distance between,

186–187
forward, 185
input, 185
in noncontiguous data

segments, 186
linked, 186
output, 186
overview, 184–185
random access, 185

Index 287

segmented, 186
successors, 184

Iverson, Kenneth, 124
IVT (Intermediate Valueeorem),

131, 192

J
Jefferson,omas, 44, 130

K
Kapur, Deepak, 124
Kayal, Neeraj, 244
Keys, cryptography, 238
Khayyam, Omar, 164
Kleene, Stephen, 115–116
Klein, Felix, 106–107, 141
Klein group, 106–107
Knuth, Donald E., 9, 58, 197
Kovalevskaya, Sofia, 141

L
Lagrange, Joseph-Louis, 99–100, 192
Lagrange’s eorem, 97–99, 100–101
Lambda expressions, 195, 272–273
Laplace, Pierre-Simon, 70
largest_doubling, 54
Latine sine Flexione, 171
Law of completeness, 203–204
Law of interface refinement, 215
Law of separating types, 202–203
Law of useful return, 57–58, 201–

202, 213
Lectures on Number eory (Vorlesun-

gen über Zahlentheorie), 140
Legendre, Adrien-Marie, 155
Lehmer, D. H., 192
Leonardo Pisano

Fibonacci sequence, 58–59
introduction of zero, 52
profile, 52–53

Letters to a German Princess, 70
Liber Abaci, 52
Liber Quadratorum, 52
Library of Alexandra, 43

Lincoln, Abraham, 44
Linear algebra

inner product, 145–146
matrix-matrix product, 146
matrix-vector product, 146
review, 145–147

Linear combination ideal lemma, 227
Linear recurrence functions, 127
Linear recurrence sequences, 127
Linear search, 190–191
Linked iterators, 186
Liu, Hui, 51
Lobachevsky, Nikolai, 164–166
Lorenz machine, 238
lower_bound, 195–196
Lyceum, 179

M
Magmas, 91, 108
mark_sieve, 24
Math notation in this book, 257–259
Matrix multiplication, 145–147
Matrix-matrix product, 146
Matrix-vector product, 146
Mauchly, John, 192
McJones, Paul, 3
Measure of a segment, 33
Memory-adaptive algorithms,

216–217
Meno, 43
Mersenne, Marin, 64–65
Mersenne primes, 63–68
Metaphysics, 179
Miller-Rabin test, 243–245
miller_rabin_test, 243
Mills, Harlan, 205
Models. See alsoeories

definition, 103
isomorphism, 103–104

Modern Algebra, 142
Modular arithmetic, 72–74, 83–84

Fermat’s Little eorem, 83–84
Wilson’s eorem, 83

Modules, definition, 151, 154
modulo_multiply, 241

288 Index

Monoids. See also Groups
additive, 89, 109, 154
definition, 89
examples of, 89
multiplicative, 89, 154
summary description, 108, 152

Mouseion, 43
Multiplication

definition, 8, 173–174
Egyptian, 8–11
Russian Peasant Algorithm. 9

Multiplicative functions, 31
multiplicative_inverse, 121, 247
multiplicative_inverse_fermat, 241
Multiplicative monoids, 89
Multiplicative semigroups, 90
Multiply-accumulate function, 11–14
Musser, David R., 124
Mutable objects, 181

N
Naming conventions, concepts, 183
Naming principle, 115–116
Natural numbers, 147, 170, 172,

175, 258
Nicomachean Ethics, 179
Nicomachus of Gerasa, 10, 19
Nine Chapters on the Mathematical

Art, 51
Noether, Emmy, 129, 140–145

profile, 141–142
Non-categorical theories, 106–107
Noncommutative additivemonoids, 119
Noncommutative additive semi-

groups, 115
Noncommutative algebra, rings,

143–144
Nonconstructive proofs, 229
Noncontiguous data segments,

iterators, 186
Non-Euclidean geometry, 164–167
Non-invertibility lemma, 79
Notation in this book, 257–259
Number line, 131
Number of assignments theorem,

200–201

Number systems, ancient Egypt, 8
Number theory 2 , 41, 43

in ancient Greece, 17–39
Bezout’s identity, 225–229
Euler’s eorem, 79–83, 101
Fermat’s Littleeorem69–78, 101
figurate numbers, 17–20, 33
Gauss, 136–137
and GCD, 140
Liber Quadratorum, 53
modular arithmetic, 72–74
perfect numbers, 28–32
primality testing 240–245
prime numbers, 21–28
17th and 18th century, 63–72,

74–84
sieve of Eratosthenes, 22–23
Wilson’s eorem, 76, 83

O
Object types, definition, 181
Objects

definition, 180
immutable, 181
mutable, 181
remote parts, 181
unrestricted, 181

Oblong numbers, 19
Octonions, 151
odd, 118
Odd numbers. See Even and odd

numbers
One-to-one correspondence, 92
Open ranges, 188
“Operators and Algebraic

Structures,” 124
Order of group elements, 94
Organon, 180
Output iterators, 186

P
Palindromic primes, 28
Parallel postulate. See Fih postulate

of Euclidean geometry
Partition points, 193
partition_point, 194

Index 289

partition_point_n, 193
Peano, Giuseppe, 169–175

profile, 171–172
Peano arithmetic, 170–171, 173–175
Peano axioms, 170–173
Peano curve, 171
Perfect numbers

in ancient Greece, 28–32, 38
definition, 28–29
mathematicians’ interest in, 63

Permutation of remainders lemma,
71–72

Permutations, 197–201
Phaedo, 43
Philo of Alexandria, 7
PID (principal ideal domains), 228
Pigeonhole principle, 95, 263
Pisano, Leonardo SeeLeonardoPisano
Plaintext, 238
Plato, 41–43, 177–179

profile, 42–43
Platonic Questions, 20
Platonic solids, 41, 44
Playfair’s axiom, 163
Plus sign (+),mathematical convention

for, 115
Plutarch, 20
Poincaré, JulesHenri, 85, 229–230, 248

profile, 229–230
pointer iterator trait, 187
Politics, 179
Polylog space, 215–216
Polynomials

computing GCD for, 134
degree of, definition, 133
division with remainder, 133
history of, 132–135
Horner’s rule, 132
treating as numbers, 133–135

polynomial_value, 132
Population count, 10
Postconditions, 269

Postulates, Euclid’s axiomatic method,
162, 163

Power algorithm, 119–123, 249
computing Fibonacci

numbers, 126
computing linear recurrence, 127
use in cryptology, 241–243, 246
use in graph applications, 148–149

power_accumulate_semigroup, 121
power_group, 123
power_monoid, 122
power_semigroup, 122
Primality testing, 240–245
Prime factorization, 29, 31–32, 65, 136,

139–140
Prime fields, 151, 154
Prime numbers

in ancient Greece, 21–28
definition, 21
distinguishing from composite,

240–245
Fermat primes, 63–68
finding. See sieve of Eratosthenes
infinite number of, 21
Mersenne primes, 63–68
primality testing, 240–245

Principal element, 227
Principal ideal domains (PID), 228
Principal ideals, 227–228
Problèmes Plaisants, 225–226
Proof

by contradiction, 35, 261–262
definition, 158–159
by induction, 262–263
nonconstructive, 229
pigeonhole principle, 95, 263
visual, 155–159

Proper divisor, 32
Ptolemy, 164
Public-key cryptosystems, 239–240
Pythagoras, 17

profile, 18–19
Pythagorean program, 33–38

290 Index

Pythagoreaneorem, 44
Pythagorean triples, 50–51

Q
Quadrivium, 18
Quaternions, 151
Quotient, 55–57, 150, 153, 202

for polynomials, 133
quotient_remainder, 57

R
Random-access iterators, 185
Ranges

bounded, 189, 203–204
closed, 188
counted, 189, 203–204
definition, 188
open, 188
overview, 188–189
partition points, 193
semi-open, 188
swapping, 201–204

Rational arithmetic, GCD
applications, 234

Rational numbers, 151, 258
Real numbers, 131, 258
reciprocal, 124
Recreational mathematics, 225–226
Recursive remainder lemma, 48–49
Reduction algorithm, 124
reference iterator trait, 187
Regius, Hudalricus, 64
Regular concepts, 183–184
Regular functions, 183
Regular types, 114
Rejewski, Marian, 238
Remainder, 47–49, 53–55, 57–59, 150,

153, 222
Floyd-Knuth algorithm, 58
permutation of remainders, 71–72
in modular arithmetic, 73–75
of Gaussian integers, 138–139
of polynomials, 133–134

remainder, 54–55
remainder_fibonacci, 58

Remote parts of objects, 181
Requirements on algorithm, 111–119
reverse, 212–215
reverse_copy, 216
reverse_n, 214
reverse_n_adaptive, 217
reverse_n_with_buffer, 216
reverse_recursive, 214
Reverse permutation, 201, 212–215
Rewriting code, 14–15
Rhind Mathematical Papyrus, 8, 57
Rings. See also Ideals; Semirings

definition, 142–143
and the GCD, 225–229
integral domains, 145
summary description, 153
unitary, 143
units, 144
zero divisors, 145

Rivest, Ron, 239
Rotate algorithms, 204–213
rotate, 207, 210, 213
rotate_cycle_from, 208
rotate_transform, 210
rotate_unguarded, 206
Rotation, 204–207
Rotation algorithms, GCD

applications, 234
RSA algorithm, 239–240, 245–247
Russell, Bertrand, 171
Russian Peasant Algorithm, 9. See also

Egyptian multiplication

S
Saccheri, Giovanni Girolamo, 164
Saxena, Nitin, 244
Scheme, 116
e School of Athens, 177–178
Searches

binary, 191–196
linear, 190–191

Segmented iterators, 186
Self-Canceling Law, 75–76
Semantic requirements for generic al-

gorithms, 113

Index 291

Semigroups. See also Groups
additive, 90, 109
associativity axiom, 91
commutativity of powers, 91
definition, 90, 109
examples, 90
multiplication algorithm, 115
multiplicative, 90
summary description, 108, 152

Semi-open ranges, 188
Semiregular concepts, 184
Semirings. See also Rings

Boolean, 148
description, 145–147
matrix multiplication, 146
shortest path, 148–149
summary description, 153
tracing social networks, 147–148
transitive closures, 147–148
tropical, 149
weak, 147

Separating types, law of, 202–203
Setting of algorithm, 150
Shamir, Adi, 239
Shortest path, finding, 148–149
Sieve of Eratosthenes, 22–23

implementation 23–28
sift, 27
smallest_divisor, 240
Social network connections,

tracing, 147–148
Socrates, 42
Socratic method, 42
Sophists, 42
Space complexity, 215–216
Square root of 2, an irrational number,

37–38
Standard Template Library. See STL
Stein, Josef, 219–222
Stein’s algorithm, 219–225
stein_gcd, 220
Stepanov, Alexander A., 3, 124
Stevin, Simon, 129–135, 192

profile, 130–131

STL (Standard Template Library)
algorithms, 195–196, 215, 217
application of generic

programming, 1, 186
containers, 190–191
conventions, 24
non-categorical, 104

Strength reduction, 26
Stroustrup, Bjarne, 265
Subgroups. See also Groups

cyclic, 96
definition, 95, 109
generator elements, 96
trivial, 95

Successors, 170, 184
Sum of odd powers formula, 30
swap, 199
swap_ranges, 201–203
Symbolic integration, GCD appli-

cations, 234
Symmetric groups, 198
Symmetric keys, 238
Symposium, 43
Syntactic requirements for generic

algorithms, 113

T
Tail-recursive functions, 12–14
Template functions, 265–266
ales of Miletus, 18, 159–161
ales’ eorem, 160–161
eories. See alsoModels

categorical, 104–106
characteristics of, 102
completeness, 102
consistency, 102, 104
definition, 102
determining truth of, 167
finite axiomatizability, 102
independence, 102
non-categorical, 106–107
univalent, 104

Totality of successor axiom, 172
Totient of an integer, 80
A Tour of C++, 265
Transfinite ordinals, 172–173

292 Index

Transformation group, 92
Transitive closures, finding, 147–148
Transposition lemma, 199
Transpositions, 197, 199–201
Trapdoor one-way functions, 239
Triangular numbers, 19
Trichotomy Law, 34
Trip count, 204, 213
Trivial cycles, 200, 208
Trivial subgroups, 95
Tropical semirings, 149
Turing, Alan, 169, 238
Tusculan Disputations, 50
Type attributes, 182–183
Type dispatch. See Category dispatch
Type functions, 182–183

U
Unitary rings, 143
Units, rings, 144
Univalent theories, 104
Univariate polynomials. See

Polynomials
University ofGöttingen. SeeGöttingen,

University of
Unreachable numbers, 172–173
Unrestricted objects, 181
upper_bound, 195
Useful return, law of, 57–58,

201–202, 213

V
Value types, definition, 180
Values, definition, 180

value_type iterator trait, 187
van der Waerden, Bartel, 129, 142
Veblen, Oswald, 104
vector container, 116,
Vector space, 152, 154
Visual proofs, 155–159
Vorlesungen über Zahlentheorie

(Lectures on Number
eory), 140

W
Waring, Edward, 76
Weak semirings, 147
Weilert, Andre, 224
Well-ordering principle, 34
Whitehead, Alfred North, 43
Wiles, Andrew, 67
Wilson, John, 76
Wilson’s eorem

description, 76
using modular arithmetic, 83

Witnesses, primality testing, 242

Z
Zero

in Egyptian number system, 8
introduction of, 52
origins of, 51–53

Zero divisors, rings, 145, 154

	Contents
	Note
	What this Book is about
	Programming and Mathematics
	A Historical Perspective
	Prerequisites
	Roadmap

	The First Algorithm
	Egyptian Multiplication
	Improving the Algorithm
	Thoughts on the Chapter

	Ancient Greek Number Theory
	Geometric Properties of Integers
	Sifting Primes
	Implementing and Optimizing the Code
	Perfect Numbers
	The Pythagorean Program
	A Fatal Flaw in the Program
	Thoughts on the Chapter

	Euclid’s Algorithm
	Athens and Alexandria
	Euclid’s Greatest Common Measure Algorithm
	A Millennium without Mathematics
	The Strange History of Zero
	Remainder and Quotient Algorithms
	Sharing the Code
	Validating the Algorithm
	Thoughts on the Chapter

	Emergence of Modern Number Theory
	Mersenne Primes and Fermat Primes
	Fermat’s Little Theorem
	Cancellation
	Proving Fermat’s Little Theorem
	Euler’s Theorem
	Applying Modular Arithmetic
	Thoughts on the Chapter

	Abstraction in Mathematics
	Groups
	Monoids and Semigroups
	Some Theorems about Groups
	Subgroups and Cyclic Groups
	Lagrange’s Theorem
	Theories and Models
	Examples of Categorical and Non-categorical Theories
	Thoughts on the Chapter

	Deriving a Generic Algorithm
	Untangling Algorithm Requirements
	Requirements on A
	Requirements on N
	New Requirements
	Turning Multiply into Power
	Generalizing the Operation
	Computing Fibonacci Numbers
	Thoughts on the Chapter

	More Algebraic Structures
	Stevin, Polynomials, and GCD
	Göttingen and German Mathematics
	Noether and the Birth of Abstract Algebra
	Rings
	Matrix Multiplication and Semirings
	Application: Social Networks and Shortest Paths
	Euclidean Domains
	Fields and Other Algebraic Structures
	Thoughts on the Chapter

	Organizing Mathematical Knowledge
	Proofs
	The First Theorem
	Euclid and the Axiomatic Method
	Alternatives to Euclidean Geometry
	Hilbert’s Formalist Approach
	Peano and His Axioms
	Building Arithmetic
	Thoughts on the Chapter

	Fundamental Programming Concepts
	Aristotle and Abstraction
	Values and Types
	Concepts
	Iterators
	Iterator Categories, Operations, and Traits
	Ranges
	Linear Search
	Binary Search
	Thoughts on the Chapter

	Permutation Algorithms
	Permutations and Transpositions
	Swapping Ranges
	Rotation
	Using Cycles
	Reverse
	Space Complexity
	Memory-Adaptive Algorithms
	Thoughts on the Chapter

	Extensions of GCD
	Hardware Constraints and a More Efﬁcient Algorithm
	Generalizing Stein’s Algorithm
	Bézout’s Identity
	Extended GCD
	Applications of GCD
	Thoughts on the Chapter

	Real-World Application
	Cryptology
	Primality Testing
	The Miller-Rabin Test
	The RSA Algorithm: How and Why It Works
	Thoughts on the Chapter

	Conclusions
	Reading
	Notation
	Common Proof Techniques
	Proof by Contradiction
	Proof by Induction
	Pigeonhole Principle

	C++ for Non-C++ Programmers
	Template Functions
	Concepts
	Declaration Syntax & Typed Constants
	Function Objects
	Preconditions, Postconditions & Assertions
	STL Algorithms & Data Structures
	Iterators & Ranges
	Type Aliases & Type Functions with
	Initializer Lists in C++11
	Lambda Functions in C++11
	Note about inline

	Biblio
	Index

