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Vector Mechanics for Engineers: Dynamics
Introduction

e Previously, problems dealing with the motion of particles were
solved through the fundamental equation of motion, F =ma.
Current chapter introduces two additional methods of analysis.

e Method of work and energy: directly relates force, mass, velocity
and displacement.

e Method of impulse and momentum: directly relates force,
mass, velocity, and time.
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Differential vector dis the particle displacement.

Work of the force 1s

dU = F edr
=Fds cosa
= Fdx+Fdy+F.dz

Work is a scalar quantity, i.e., it has magnitude and
sign but not direction.

O§

Dimensions of work are length X forc&Jnits are
1T (joule)=(IN)1m) 1ft-1b=1.35617
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Sy Sy
= I(F cos & )ds = th ds

51 |
Ay
:y@ﬂ+@@+gﬁ)
1

 Work is represented by the area under the
curve of F, plotted against s.
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 Work of a constant force in rectilinear motion,
Ui =(F cosa) Ax

 Work of the force of gravity,
dU = F dx+ Fydy + F dz

 Work of the weight 1s equal to product of weight
W and vertical displacement Ay.

 Work of the weight 1s positive when Ay < 0,
i.e., when the weight moves down.
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Work of a Force

Spring undeformed

Magnitude of the force exerted by a spring is
proportional to deflection,

F =kx
k = spring constant (N/m or Ib/in.)

 Work of the force exerted by spring,
dU = —F dx = —kx dx

A2
Ui =—jkx dx=%kx12 —%kx%

X1

 Work of the force exerted by spring 1s positive when
X, < X, 1.e., when the spring 1s returning to its
undeformed position.

 Work of the force exerted by the spring 1s equal to
negative of area under curve of F plotted against x,

Uiy =—5(F + Fp) Ax
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Work of a Force

Vector Mechanics for Engineers: Dynamics

Work of a gravitational force (assume particle M occupies
fixed position O while particle m follows path shown),

dU = —Fdr = —GM—Zldr

r
M M M
Uiy =—[G=rdr=G="-G="
’ r ) n
1
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Forces which do not do work (ds = 0 or cos a= 0):

reaction at frictionless pin supporting rotating body,

e reaction at frictionless surface when body in contact
moves along surface,

 reaction at a roller moving along its track, and

e weight of a body when its center of gravity moves
horizontally.
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Particle Kinetic Energy: Principle of Work & Energy

e Consider a particle of mass m acted upon by force ~ F

F; =ma, = md—v
dt
dv ds dv
= = my
ds dt ds
F,ds=mvdy
 Integrating from A, to A,,
52 @)
thds =m jvdv = %mv% —%mvlz
51 Vi
Ui, =T, -T T =Lmv? = kinetic energy

2

e The work of the force  Hs equal to the change in kinetic
energy of the particle.

e Units of work and kinetic energy are the same:

2
T:%mvzzkg(gj :(kg%)m:N-sz
S S
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* Forces which do no work are eliminated from
the problem.

YIUdASS

A d * Wish to determine velocity of pendulum bob at
I 5 A,. Consider work & kinetic energy.

\ P e Force P actsnormal to path and does no work.

T.+U,,=T,

0+ml =1mv§
2

v, =/2gl

Velocity found without determining
expression for acceleration and integrating.

1-2

All quantities are scalars and can be added
directly.
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Applications of the Principle of Work and Energy

Principle of work and energy cannot be applied to
directly determine the acceleration of the
pendulum bob.

Calculating the tension in the cord requires
supplementing the method of work and energy
with an application of Newton’s second law.

As the bob passes through A, ,

> F =ma,
.
P—mg =ma, =m—= 2

P = mg+m¥—3mg
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e Power = rate at which work 1s done.

_dU Fedr
dt dt
:F.\_}

e Dimensions of power are work/time or force*velocity. Units
for power are

IW (wath =12 =1 N
S S

e 7 = efficiency

__output wor k

input work

__ power output

power input
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SOLUTION:
e Evaluate the change in kinetic energy.

e Determine the distance required for the
work to equal the kinetic energy change.

50

An automobile weighing 19.62 kN is
driven down a 5° incline at a speed of 100
km/h when the brakes are applied causing
a constant total breaking force of 7 k.

Determine the distance traveled by the
automobile as 1t comes to a stop.
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Sample Problem 13.1
v, = 100 kmv/h SOLUTION:

e Evaluate the change in kinetic energy.

km)(lOOOm ( 1h
h 1km /\3600s

T =Lmv? =1(2000ke)(27.78 m/s2 ) =771.73kJ

v, = (IOO j =27.78m/s

Vy = 0 Tz =0
19.62 kN . . .
e Determine the distance required for the work to

equal the kinetic energy change.
U, =(=7kN)x+(19.62kN)(sin 5°)x
=—(5.29kN)x

L+U_, =T,
771.73kJ —(5.29kN)x =0

x=1459m

13-15
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Sample Problem 13.2

kg SOLUTION:

e Apply the principle of work and energy
separately to blocks A and B.

* When the two relations are combined, the
work of the cable forces cancel. Solve
for the velocity.

Two blocks are joined by an inextensible
cable as shown. If the system 1s released
B8 from rest, determine the velocity of block A
@ after it has moved 2 m. Assume that the
| coefficient of friction between block A and
’E\ the plane is &, = 0.25 and that the pulley 1s
weightless and frictionless.
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Sample Problem 13.2

SOLUTION:
» Apply the principle of work and energy separately to

blocks A and B.

W, = (200 kg)(0.81m/s%)=1962 N
Fy =Ny = ;W4 =0.25(1962 N) =490 N
I1+U 50 =15

O+FC(2111)—FA(21rn)=%mAv2

Fe(2m)-(490 N)(2m) =1 (200 kg)v*

Wy = (300 kg )9.81m/s2 )= 2940 N
Tl +U1%2 =T2 :

0-— F(2m)+WB(2m) 2 mpgv p?

— F,(2m)+ (2940 N)(2m) = 1 (300 ke v?
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Sample Problem 13.2

200 kg

* When the two relations are combined, the work of the cable
forces cancel. Solve for the velocity.

Fe(2m)-(490 N)(2m)=1(200 kg )y

L(300kg)v*

—F.(2m)+ (2940 N)(2m)

(2940 N)(2m) - (490 N)(2m) = 1.(200 kg +300 kg )v >
4900 J = 1(500 kg )v*

v=4.43m/s




Vector Mechanics for Engineers: Dynamics
Sample Problem 13.3

2.5 m/s Cable

ﬂ

[72)
®
<
D
=
=t
=

SOLUTION:

e Apply the principle of work and energy
between the initial position and the point
at which the spring is fully compressed

and the velocity 1s zero. The only

A spring is used to stop a 60 kg package unknown in the relation is the friction
which 1s sliding on a horizontal surface. coefficient.

The spring has a constant k = 20 kN/m and
1s held by cables so that it is initially
compressed 120 mm. The package has a

=8 velocity of 2.5 m/s in the position shown

i< and the maximum deflection of the spring 1s

40 mm.

» Apply the principle of work and energy
for the rebound of the package. The only
unknown in the relation is the velocity at
the final position.

Determine (a) the coefficient of kinetic

friction between the package and surface
and (b) the velocity of the package as it
passes again through the position shown.
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Sample Problem 13.3

SOLUTION:

e Apply principle of work and energy between initial position
and the point at which spring is fully compressed.

myi = 1(60kg)(2. 5m/s)* =187.5] T, =0

(U1—>2)f

kWX

= — 11, (60kg)0.81m/s20.640 m) = (377 1),

P, = kxg =(20kN/m)(0.120 m) = 2400 N
P =k(xg+Ax)= (20 kN/m)(0.160 m) = 3200 N

Ui52), =

Ax

( min max )

= —5(2400 N +3200 N )(0.040 m)=-112.0J

Uiy =U152)p +Ui5), ==(8777)py —1123

h+Ui =1y

187.57-(377 J)u, —1127=0 w1, =0.20
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e Apply the principle of work and energy for the rebound of the
package.

VB V2=0

T,=0  Ti=1imvi=21(60kg)v}

1
2 2

Uy3=WUs53)p +(Us53), = =377 Dy +1127

=+36.5]
lW
— I +Uy 3=15:
— _1 2
Ml t 0+36.57 = 5 (60kg v3

v3 =1.103m/s
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SOLUTION:

» Apply principle of work and energy to
determine velocity at point 2.

e Apply Newton’s second law to find normal

force by the track at point 2.
A 1000 kg car starts from rest at point 1

and moves without friction down the
track shown.

» Apply principle of work and energy to
determine velocity at point 3.

e Apply Newton’s second law to find

Determine: L. : :
& minimum radius of curvature at point 3
== a) the force exerted by the track on such that a positive normal force 1s exerted
B thecarat point 2, and by the track.

’E‘ b) the minimum safe value of the
>l radius of curvature at point 3.
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Sample Problem 13.4

SOLUTION:

» Apply principle of work and energy to determine velocity
at point 2.

_ _1 2 _ -7
T,=0 T, =5mv; = V)

U,,=+W(2m)
,+U, _,=T,: O+mg(12m):%mvz2
v; =24g=24(9.81) v,=153m/s

e Apply Newton’s second law to find normal force by the
track at point 2.

+T>F, =ma,:
-mg+N =ma, —mv2 :m2(12m)g

P 6m

N =5mg N =49.1kN




Vector Mechanics for Engineers: Dynamics
Sample Problem 13.4

* Apply principle of work and energy to determine velocity at
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point 3.
3 L
4.5 m
¥
2 v; =15¢=15(9.81) v, =12.1m/s

* Apply Newton’s second law to find minimum radius of
mg curvature at point 3 such that a positive normal force is
exerted by the track.

_ — +I > F, =ma,:

K] l

— mg =ma,

’%‘ TN: v M v 2(15m)

] =m - =m= g 0, =15m
B ’ ’
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Sample Problem 13.5

The dumbwaiter D and its load have a
combined weight of 300 kg, while the
& counterweight C weighs 400 kg.

Determine the power delivered by the

B clectric motor M when the dumbwaiter (a)
1s moving up at a constant speed of

8 ft/s and (b) has an instantaneous velocity

of 2.5 m/s and an acceleration of 0.75 m/s2,
both directed upwards.

SOLUTION:
T Force exerted by the motor cable
has same direction as the
- I dumbwaiter velocity. Power

7 delivered by motor 1s equal to
Fvp, vy = 2.5 m/s.

(300) (9.81) N

e In the first case, bodies are in uniform
motion. Determine force exerted by
motor cable from conditions for static
equilibrium.

e In the second case, both bodies are
accelerating. Apply Newton’s second
law to each body to determine the
required motor cable force.
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Sample Problem 13.5

e [n the first case, bodies are in uniform motion. Determine

1(_‘,‘
Yo

(400) (9.81) N

(300) (9.81) N

force exerted by motor cable from conditions for static
equilibrium.

Free-body C:

+TYF,=0:2T—(400)(9.8)N=0  T=19.62N

Free-body D

+TYF,=0: F+T—(300)(9.8)N=0
F=(300)(9.8)N-T
=(300)(9.81) N-19.62N=9.81N
Power = Fv, =(9.81 N)(2.5m/s)
=2453]/s

Power =(24531/s) Lhp
7461 /s

=3.3hp
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 In the second case, both bodies are accelerating. Apply
Newton’s second law to each body to determine the required
motor cable force.

a,=0.75m/s*T  a.=-La,=0375m/s* |

Free-body C:
2 +1>F =mca.: (400)(9.81)—2T =400(0.375) T =18.87N
‘N = ?C Free-body D
<1 [ SR, +T Y F,=mpap: F+T-(300)(9.81) =300(0.75)
] F +1887—(300)(9.81)=225 F=1281N
’E‘ mpap
— Power = Fv, = (1281 N)(2.5m/s) =3203J/s
> — 2
Power = (32033/s)— 1P — 4 3hp
(300) (9.81) N 746 J/S
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« Work of the force of gravity W

Ui =Wy =Wy,

* Work 1s independent of path followed; depends only
on the 1nitial and final values of Wy.

V, =Wy

= potential energy of the body with respect to
force of gravity.

Uiz =WV, ) =V, ),

Choice of datum from which the elevation y 1s
measured 1s arbitrary.

Units of work and potential energy are the same:
Ve =Wy=N-m=]
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* Previous expression for potential energy of a body
with respect to gravity is only valid when the weight of
the body can be assumed constant.

e For a space vehicle, the variation of the force of
gravity with distance from the center of the earth
should be considered.

 Work of a gravitational force,
GMm  GMm

) n

Uiy =

S

Potential energy V, when the variation in the force
of gravity can not be neglected,

_GMm _ WR*

Ve =

r r
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* Work of the force exerted by a spring depends
only on the initial and final deflections of the

spring,

_17.2 1.2
U1%2 —Ekxl _Ekx2

e The potential energy of the body with respect to
the elastic force,

V =1lkx®

e

U, :(Ve )1_(‘/e )2

* Note that the preceding expression for V, 1s valid
only if the deflection of the spring is measured
from 1ts undeformed position.
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Conservative Forces

Y

e Concept of potential energy can be applied if the work
of the force 1s independent of the path followed by its
N point of application.

Uiy =V (x,y1,21)=V(x2, ¥2,22)
Such forces are described as conservative forces.

Aglxg, 19, 23)

’c}/- p * For any conservative force applied on a closed path,
. fFedr=0

* Elementary work corresponding to displacement
between two neighboring points,

dU =V (x,y,z)-V(x+dx,y+dy,z+dz)
= —dV(x, y,z)

1% oV 1%
Frdx+F,dy+F dz = —(axdx+aydy+azdzj

Ajlxy, 4y, 21)

BN

F:_(av vV IV

— _gradV
8x+8y+az] sra
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Conservation of Energy

* Work of a conservative force,
Uis=V1-V,

e Concept of work and energy,
Uis,=1, -1

e Follows that
Ti + Vl = T2 + V2
E =T +V =constant

 When a particle moves under the action of
conservative forces, the total mechanical energy

I is constant.

B 1w . :

< T, = %mv% =——(2gf)=Wr¢ V,=0 e Friction forces are not conservative. Total

> § mechanical energy of a system involving friction
5 LAV, =Wt decreases.

e Mechanical energy is dissipated by friction into
thermal energy. Total energy is constant.

13 - 32



: Vector Mechanics for Engineers: Dynamics
Motion Under a Conservative Central Force

 When a particle moves under a conservative central force,
both the principle of conservation of angular momentum

= rmv sin
and the ?er&p]l conservatlc?n of energy

Iy+Vy=T+V
M M
Ly - SMM 1,2 GMm
% 7 2 r
may be applied.’0

e Given r, the equations may be solved for v and ¢.

e At minimum and maximum r, @ =90°. Given the launch
conditions, the equations may be solved forr,,, r, .,
v,.,andv,

min?®
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200 mm SOLUTION:

NV L

A

x » Apply the principle of conservation of
energy between positions 1 and 2.

10 mm e The elastic and gravitational potential
energies at 1 and 2 are evaluated from the
ol Y given information. The initial kinetic
B 2 energy 1s Zero.

A 9 kg collar slides without friction along « Solve for the kinetic energy and velocity at
88 3 vertical rod as shown. The spring 2.

@ attached to the collar has an undeflected
N length of 100 mm and a constant of 540

N/m.

W If the collar is released from rest at

position 1, determine its velocity after it
has moved 150 mm to position 2.
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Sample Problem 13.6

’17 200 mm Datum SOLUTION

AR * Apply the principle of conservation of energy between
positions 1 and 2.

Position 1:  V, = Lkx} = 1(540 N/m)(0.1m)* =2.77J
V=V, +V, =271

Position 2: V., = 2kx? = 1(540 N/m)(0.15m)* = 6.17J
V. =Wy =(9%x9.81 N)(-0.15m)=-13.3J
V,=V,+V, =(6.11)-(13.35)=-7.2]

E 1

— F T, =tmv: ==—9v> =45y
3 : Lo
’E\ Fy Conservation of Energy:

’E‘ x; = 100 mm . Tl+Vl =T2+V2

0+2.7]=4.5v;-72]

- Xo = 150 mm —




mo

. Vector Mechanics for Engineers: Dynamics
| Sample Problem 13.7

=

SOLUTION:
-  Since the pellet must remain in contact with
> the loop, the force exerted on the pellet
- e - k =540 N/m must be greater than or equal to zero.
/ Setting the force exerted by the loop to
. mi{%iv \iﬂ zero, solve for the minimum velocity at D.
A
» Apply the principle of conservation of
energy between points A and D. Solve for
B The 200 g pellet is pushed against the the spring deflection required to produce
spring and released from rest at A. the required velocity and kinetic energy at
Neglecting friction, determine the D.

B smallest deflection of the spring for

which the pellet will travel around the

loop and remain in contact with the loop
at all times.
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Sample Problem 13.7

SOLUTION:
o Setting the force exerted by the loop to zero, solve for the
. b %40 N/ minimum velocity at D.
2005/ +4>F,=ma,: W=ma, mgzmvlz)/r

V2 = rg = (0.6 m)(9.81m/s?) = 5.89m?/s

e Apply the principle of conservation of energy between points

T — T Aand D
V=V, +V, =1k* +0=1(540 N/m)x* =270x’
1,=0

i< )

— . g V, =V, +V, =0+ Wy =(0.2x9.81) N(1.2m) = 2.35]
B omc : T, =Lmy —(0 2)(5.89) =0.589 ]

E ‘ | :_f

’_‘ Datum \\l-B _— /?V\i( 71 +‘/1 = T2 —|—V2

0+270x* =0.589)+2.357 x=0.104 m =104 mm

13 - 37
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e 36 900 ki/h

Yluanas

SOLUTION:

 For motion under a conservative central force,
Maximum altitude _ the principles of conservation of energy and
conservation of angular momentum may be
applied simultaneously.

-

e 500 km e Apply the principles to the points of minimum

and maximum altitude to determine the

A satellite 1s launched 1n a direction . .
maximum altitude.

parallel to the surface of the earth with a
velocity of 36900 km/h from an altitude ¢ Apply the principles to the orbit insertion

& of 500 km. point and the point of minimum altitude to

— : : : determine maximum allowable orbit insertion
Det (a) th Ititud

etermine (a) the maximum altitude angle error.

B8 reached by the satellite, and (b) the

maximum allowable error in the

direction of launching if the satellite 1s
to come no closer than 200 km to the

surface of the earth
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Sample Problem 13.9

e Apply the principles of conservation of energy and conservation

36 900 km/h

Maximum altitude

£

of angular momentum to the points of minimum and maximum
altitude to determine the maximum altitude.
Conservation of energy:

TA +VA = TA’ +VA’ %mv% —

GMm | o2 GMm
= Emvl —
10 n

Conservation of angular momentum:

Iz
romvo = rlmvl Vl = VO —

Combining,

2
EVO 1— 3 :GM£ _r_()j 1+7’_0:2GA24
4] o n n Vo

1y =6370km +500km = 6870km
v, =36900km/h =10.25x10° m/s

GM = gR* = (9.81m/52)(6.37 x10° m)’ =398 10" m?/s>

— 60.4x10%°m = 60400 km




: Vector Mechanics for Engineers: Dynamics

YIUdASS

Sample Problem 13.9

/

s6900kmh * Apply the principles to the orbit insertion point and the point of
minimum altitude to determine maximum allowable orbit insertion

Maximum altitude angle error.

—F

Conservation of energy:

M. M.
TO+VO:TA+VA l7’}’l\/’§_(; m 1 2 —G—m

= > my
S~ 500 km 2 0 2T min
Conservation of angular momentum:
: o
ToMv SIN @y = Fin MV max Vinax = VoSN @y ——
Fmin

Combining and solving for sin ¢,
K] sin ¢y = 0.9801
’ ‘ @y =90°+11.5° allowable error = +11.5°
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e From Newton’s second law,

= d L.
ts F=-—(mV)  mv =linear momentum
Imp 1%2:'/; F(It dt

1

mvy

J‘ﬁdt = m\72 —m\71
]
* Dimensions of the impulse of a

I
force are jF dt = Imp_,» =1mpulse of the force F
oy
& force*time. t ) )
w=| * Units for the impulse of a force myv; +Impy_,, =mv,
< are ’
> * The final momentum of the particle can be

— (ko . 2] g = ko .
= N-s= (kg m/s ) s=kg -m/s obtained by adding vectorially its initial

momentum and the impulse of the force during
the time interval.
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* Force acting on a particle during a very short
time interval that is large enough to cause a
significant change in momentum is called an
impulsive force.

 When impulsive forces act on a particle,

m171+ZFAt:m\72

 When a baseball 1s struck by a bat, contact
occurs over a short time interval but force is
large enough to change sense of ball motion.

Nonimpulsive forces are forces for which
F At is small and therefore, may be neglected.
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SOLUTION:

* Apply the principle of impulse and
momentum. The impulse is equal to the
product of the constant forces and the time
interval.

An automobile weighing 1800 kg is

driven down a 5° incline at a speed of 100

km/h when the brakes are applied, causing
& a constant total braking force of 6.5 kN.

N Determine the time required for the
B8 automobile to come to a stop.
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Sample Problem 13.10

SOLUTION:

e Apply the principle of impulse and
momentum.

m\71 + Zlmp 1—2 = m\72

Taking components parallel to the
incline,

Wi go
Nt

(1800)(27.78 m/s) + (1800x9.81)
(sin 5°)t—6500¢r =0

t=10.08s
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P SOLUTION:
s /
529736 s Apol L :
s e Apply the principle of impulse and
7 momentum in terms of horizontal and
- vertical component equations.

L+ St
B —
24 m/s

A 120 g baseball 1s pitched with a velocity
of 24 m/s. After the ball 1s hit by the bat,
it has a velocity of 36 m/s in the direction
shown. If the bat and ball are in contact
for 0.015 s, determine the average
impulsive force exerted on the ball during
the impact.
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7 SOLUTION:
s
//’ 36 m/s « Apply the principle of impulse and momentum in terms
) o of horizontal and vertical component equations.
7
4 t //§4Oo nv + Imp1_>2 = mv,
B e X component equation:
s —mv, + F At = mv, cos 40°

—(0.12kg) (24 m/s) + F_(0.0155s)
= (0.12kg) (36 m/s)cos 40°
F.=412.6N

y component equation:
0+ F At = mv, sin40°
F,(0.015s)=(0.12 kg) (36 m/s)sin 40°
F,=+185.1N

F=4522N _724.2°
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Sample Problem 13.12

Vector Mechanics for Engineers: Dynamics

A 10 kg package drops from a chute into a
24 kg cart with a velocity of 3 m/s.
Knowing that the cart is initially at rest
<1 and can roll freely, determine (a) the final
velocity of the cart, (b) the impulse
exerted by the cart on the package, and (c)

the fraction of the initial energy lost in the
N impact.

SOLUTION:

e Apply the principle of impulse and
momentum to the package-cart system to
determine the final velocity.

e Apply the same principle to the package
alone to determine the impulse exerted on
it from the change in its momentum.
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Sample Problem 13.12

SOLUTION:

e Apply the principle of impulse and momentum to the package-cart system to
determine the final velocity.

”i]\|

(mp +me)vo

mp‘_;l +Zlmp1—>2 = (mp +m, )‘72

]
| x components: m vy cos 30°+0 = (172 m, +m - s
B (10 kg )(3 m/s )cos 30° = (10 kg + 25 kg v,

D v, =0.742 m/s
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* Apply the same principle to the package alone to determine the impulse exerted
on it from the change in its momentum.

YIUdASS

mp171 + Zlmp1_>2 = mp\72

X components: m vy COs 30°+ F At = m,vy
& (10 kg )(3 m/s )cos 30° + F At = (10 kg )v, F.At=-18.56N s
]é\ y components: —m,v sin 30° + FyAt =0
B — (10 kg )(3 m/s )sin 30° + F Ar = 0 F,At=15N-s
]

>Imp, ,, = FAt=(-18.56 N-s)i +(I5N-s)j  FAt=239N-s
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Mmpv,

(mp +mie)vo

To determine the fraction of energy lost,

T =1m,vi =1(10kg)3m/s)* =457

D= N[—

T, =1 (m, +m 3 = 1(10kg +25kg)(0.742m/s)* =9.63

T,-T, 451-9.63]
Ti 45]

=(0.786
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Impact

e Impact: Collision between two bodies which occurs
during a small time interval and during which the
bodies exert large forces on each other.

e Line of Impact: Common normal to the surfaces in
contact during impact.

* Central Impact: Impact for which the mass centers
of the two bodies lie on the line of impact;
otherwise, it 1S an eccentric impact..

e Direct Impact: Impact for which the velocities of the
two bodies are directed along the line of impact.

e Oblique Impact: Impact for which one or both of the
bodies move along a line other than the line of
impact.

Oblique Central Impact
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i Direct Central Impact

VB * Bodies moving in the same straight line,
V4> Vp.

=

e Upon impact the bodies undergo a
period of deformation, at the end of which,
they are in contact and moving at a common
velocity.

* A period of restitution follows during which
the bodies either regain their original shape or
remain permanently deformed.

* Wish to determine the final velocities of the
two bodies. The total momentum of the two
body system is preserved,

mAVA +mBVB = va;g +va39

* A second relation between the final velocities
1s required.
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Direct Central Impact
& | f Pdit
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+ —=
e = coefficient of restitution
* Period of deformation: m v, — I Pdt = m 4u _ j Rdt _u —v:4
j Pdt v,-—u
+ —
0<e<l
* Period of restitution: MU — I Rdt =m vy
. . . . vp — U
* A similar analysis of particle B yields € = "y
VB
@ e Combining the relations leads to the desired Vg —Vy = e(v A—Vp )
<l second relation between the final velocities.
’E‘ / /

s ° Perfectly plastic impact, e = 0: Vg =V =V MpvVp TMpVp = (mA +mp Jv

e Perfectly elastic impact, e = 1. VB —VA =V4—Vp
Total energy and total momentum conserved.
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mgv'g

n e Final velocities are
unknown 1n magnitude
and direction. Four

o equations are required.

THAVA

e No tangential impulse component; (v 4 )t = (v )z (vg )t = (v )t
tangential component of momentum
for each particle 1s conserved.

Normal component of total momentum 74 (va ) +mp(vp ) =my (V) )n +mp(vp )n
of the two particles 1s conserved.

Normal components of relative vp), —(vy), =el(v,), —(vg),]
velocities before and after impact are

related by the coefficient of

restitution.
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e Block constrained to move along horizontal
surface.

e Impulses from internal forces F and — F
along the n axis and from external force F oxt
exerted by horizontal surface and directed along
the vertical to the surface.

 Final velocity of ball unknown in direction and
magnitude and unknown final block velocity
magnitude. Three equations required.
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T BVH
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Yy

e Tangential momentum of ball is (vg )z =(v3 )t
conserved.
e Total horizontal momentum of block m 4 (v A )+ m B (v B ) L =My (v;\ )+ m B (v}; ) .

and ball i1s conserved.

Normal component of relative velocities (vg), —(vy), =el(vy), —(vg),]
of block and ball are related by
coefficient of restitution.

Note: Validity of last expression does not follow from previous relation for the
coefficient of restitution. A similar but separate derivation is required.
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e Three methods for the analysis of kinetics problems:
- Direct application of Newton’s second law
- Method of work and energy

- Method of impulse and momentum

e Select the method best suited for the problem or part of a problem under

consideration.
Impact:
Conservation Conservation of momentum Conservation
— of energy Relative velocities of energy
M " O ) . — :
R (W), =0
’E‘ l l [ l [
>
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SOLUTION:

B
[

* Resolve ball velocity into components
normal and tangential to wall.

e Impulse exerted by the wall is normal to
the wall. Component of ball momentum
tangential to wall is conserved.

e Assume that the wall has infinite mass so
that wall velocity before and after impact
1s zero. Apply coefficient of restitution
relation to find change in normal relative
velocity between wall and ball, 1.e., the
normal ball velocity.

A ball is thrown against a frictionless,
vertical wall. Immediately before the
ball strikes the wall, its velocity has a
magnitude v and forms angle of 30° with
the horizontal. Knowing that

e = (0.90, determine the magnitude and
direction of the velocity of the ball as it
rebounds from the wall.
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Sample Problem 13.14

,—
Ve =

O—v

/

<
S

SOLUTION:

* Resolve ball velocity into components parallel and perpendicular
to wall.

v, =vcos30°=0.866v v, =vsin 30° = 0.500v

e Component of ball momentum tangential to wall 1s conserved.

v, =0.500v

* Apply coefficient of restitution relation with zero wall velocity.

= e(v -0)
—-0.9(0.866v)=—-0.779v

0 779)

v =—-0.779v A +0.500v 1,

v =0.926v tan_I('— =
0.500

(o]
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Sample Problem 13.15

Vector Mechanics for Engineers: Dynamics

Va4 =9 m/s

vg =12 m/s

The magnitude and direction of the

velocities of two i1dentical frictionless

balls before they strike each other are
& = shown. Assuming e = 0.9,
determine the magnitude and direction
< of the velocity of each ball after the

[B| impact.

SOLUTION:

e Resolve the ball velocities into components

normal and tangential to the contact plane.

Tangential component of momentum for
each ball 1s conserved.

Total normal component of the momentum of
the two ball system 1s conserved.

The normal relative velocities of the
balls are related by the coefficient of
restitution.

Solve the last two equations simultaneously
for the normal velocities of the balls after the
impact.
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SOLUTION:

e Resolve the ball velocities into components normal and tangential
to the contact plane.

m — (v,) =v,cos30°=7.8m/s (v,) =v,sin30°=+4.5m/s
60°
% (vy) =-v,c0860°=-6.0m/s (v,) =v,sin60°=+10.4m/s
e Tangential component of momentum for each ball is
conserved.

(v;‘)t = (VA)t =4.5m/s (v;)t = (VB)t =10.4m/s
e Total normal component of the momentum of the two ball
system is conserved.
m, (VA )n T My (VB )n =nmy (V;x )n T My (VJ; )n
m(7.8) + m(— 6.0) = m(v;1 )n + m(v; )n
(vi) +(vy) =1.8
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mp(vp), e The normal relative velocities of the balls are related by the
. coefficient of restitution.

) (w3), =05, =), ~(v3),]

=0.90[7.8—(-6.0)|=12.4

* Solve the last two equations simultaneously for the normal
velocities of the balls after the impact.

(vi), =-5.3m/s (v,) =7.1m/s

BlRoms g =53], +4.5],

v, =6.95m/s tan”'| - 4.5 =40.3°
§ 5.3

5 =714 +10.44,

v, =12.6m/s tan” 10.4 =55.6°
! 7.1




mo

. Vector Mechanics for Engineers: Dynamics
| Sample Problem 13.16

L
=

SOLUTION:

e Determine orientation of impact line of
action.

e The momentum component of ball A
tangential to the contact plane 1s conserved.

e The total horizontal momentum of the two
ball system is conserved.

Ball B is hanging from an inextensible
cord. An identical ball A is released from
rest when it is just touching the cord and
acquires a velocity v, before striking ball
B. Assuming perfectly elastic impact (e = * Solve the last two expressions for the
1) and no friction, determine the velocity  velocity of ball A along the line of action
of each ball immediately after impact. and the velocity of ball B which is
horizontal.

» The relative velocities along the line of
action before and after the impact are
related by the coefficient of restitution.
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SOLUTION:

e Determine orientation of impact line of action.

e The momentum component of ball A
tangential to the contact plane is conserved.

mv 4 + FAt = mv,
m(vy),, mvysin 30°+0 = m(v:4 )t
(V4 ), = 0.5v,
m(vy),
e The total horizontal (x component)

momentum of the two ball system 1is
conserved.

mv 4 + TAt = mvy +mvp

0=m(v}), cos30°—m(vy) sin30°—mvy
0 =(0.5vg )cos 30° — (v} ), sin30° — v}
0.5(vy ), +vp =0.433y,
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Sample Problem 13.16

e The relative velocities along the line of action before and

after the impact are related by the coefficient of
restitution.

(V}a) (VA = el VA

(VB )n J

v sin30°— (v} ) =vycos30°—-0

0.5vp — (v} ), =0.866v,

* Solve the last two expressions for the velocity of ball A

along the line of action and the velocity of ball B which i1s
horizontal.

(vVy), =-0.520vy v =0.693v,

(VA),,=0.52000 4™

74 =0.5v9A, —0.520v 4,

vy =0.721v, S = tan_l(%j = 46.1°

@ =46.1°-30°=16.1°
v = 0.693v «
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Sample Problem 13.17

A - e Apply the principle of conservation of
B 10kg __¢_2 - energy to deFermine thF: velocity of the
N B block at the instant of impact.

I il

 Since the impact is perfectly plastic, the
block and pan move together at the same
velocity after impact. Determine that
velocity from the requirement that the total
momentum of the block and pan is

B A 30 kg block is dropped from a height of ~ conserved.
2 m onto the the 10 kg pan of a spring
scale. Assuming the impact to be
perfectly plastic, determine the maximum

2 deflection of the pan. The constant of the
spring is k = 20 kN/m.

e Apply the principle of conservation of
energy to determine the maximum
deflection of the spring.
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Um;ﬁj*‘j;m SOLUTION:
=0 ) e Apply principle of conservation of energy to determine
B /(f[-“itumﬂ velocity of the block at instant of impact.
or g

T,=0 V,=W,y=1(30)9.81)(2)=5881]
Ty=1my(va);=1(30)vs); Vo =0
L+Vi=1T,+V,

0+5887=2(30)vs)5+0  (v4), =6.26m/s

[mpact: Total
momentum conserved

A e Determine velocity after impact from requirement that
total momentum of the block and pan 1s conserved.

ma(va )2 +mp(vp )2 = (m4 +mp Jvs
(30)(6.26)+ 0 = (30 +10)v; v; =4.70m/s
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e Apply the principle of conservation of energy to

Conservation
of energy determine the maximum deflection of the spring.
( * )
P
TJ/(N"E'FSBT-;Z“"“) Ty =L(m, +myhvi =1(30+10)(4.7) =442

V,=V, +V,
=0+ 1he? =120 x10%)(4.91x1073)* = 0.241 ]

=0
4
Initial spring deflection due to pan V=V, +V, = (WA +Wpg )(— h) + % kxf
weight: =392 (x, — x;)+ 1 (20 x 10° )2
o _ B 3), 1 3) .2
- (10)(9'8£)=4.91X10_3m =392 (x, —4.91x107%)+ 1 (20 x 10?2
- kK 20x10
< 5+V,=T,+V,
> 442 +0.241=0-392{x, —4.91x107 )+ 120 x 10?2
> x,=0.230m

h=x,-%=0230m-491x10"m [h=0.225m

13 - 68



