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Biostatistics





1 Discriminant analysis based on
continuous and discrete variables:
application to systematic zoology

Avner Bar-Hen, Jean Jacques Daudin

Expected length of the paper: 15-20 pages

1.1 Abstract

In discrimination, as in many multivariate techniques, computation of a dis-
tance between two populations is often useful. Mahalanobis’∆2 has become
the standard measure of distance when the observations are quantitative and
Hotelling derived its distribution for normal populations. The aim of this ar-
ticle is to adapt these results to the case where the observed characteristics
are a mixture of quantitative and qualitative variables. In the first section we
use Kullback-Leibler divergence to obtain a generalization of the Mahalanobis
distance and we study distributional properties.

A problem frequently encountered by the practitioner in Discriminant Analysis
is how to select the best variables. In mixed discriminant analysis (MDA), i.e.,
discriminant analysis with both continuous and discrete variables, the problem
is more difficult because of the different nature of the variables. In section 2,
we propose a selection variable strategy. Stopping rules are established from
distributional results and penalized likelihood.

One of the aims of discriminant analysis is the allocation of unknown entities
to populations that are known a priori. A preliminary matter for consideration
before an outright or probabilistic allocation is made for an unclassified entity
X is to test the assumption that X belongs to one of the predefined groups.
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In section 3, for the general parametric case, a test is proposed to verify the
hypothesis that X is coming from a new population.

In section 4, we apply our results to discriminate between three populations
of kangaroos based on sex and eighteen continuous measurements (Andrews
DF, Hertzberg AM, DATA: A Collection of Problems from Many Fields for the
Student and Research Worker, 1985. New York: Springer-Verlag).



2 Estimation of linear regression
models Longitudinal data

Jörg Breitung, Rémy Slama and Axel Werwatz

2.1 Introduction

2.1.1 Motivations

It has become common in economics and in epidemiology to make studies in
which subjects are followed over time (longitudinal data) or the observations are
structured into groups sharing common unmeasured characteristics (hierarchi-
cal data). These studies may be more informative than simple cross-sectional
data, but they need an appropriate statistical modeling, since the ’classical’
regression models of the GLM family (Fahrmeir and Tutz, 1994) assume sta-
tistical independence between the data, which is not the case when the data
are grouped or when some subjects contribute for two or more observations.

Hierarchical regression models allow to analyze such surveys. Their main dif-
ference with classical regression models consist in the introduction of a group
specific variable that is constant within each group, but differs between groups.
This variable can be either a fixed-effect (classical) variable, or a random effect
variable. From a practical point of view, the fixed or random-effect variable
may be regarded as allowing to a certain extent to take into account unobserved
characteristics (genetic, behavioral, . . . ) shared by the observations belonging
to a given group. From a statistical point a view, the introduction of the group-
level variable ’absorbs’ the correlation between the different observations of a
given group, and allow the residuals of the model to remain uncorrelated.

http://ise.wiwi.hu-berlin.de/~joerg
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14 2 Estimation of linear regression models Longitudinal data

We will present here the fixed- and random-effect models in the case of linear
regression, and their implementation in XploRe. A particular attention will
be given to the case of unbalanced longitudinal data, that is studies in which
the number of observations per group is not the same for all groups. This is
an important issue in that the implementation of models adapted to such data
needs some adaptation compared to the balanced case and since the elimination
of the groups with only one observation could yield selection biases. The models
will be applied to an epidemiological study about reproductive health, where
women were asked to describe the birth of weight of all their children born in
a given calendar period.

2.1.2 Example

{panfix,panrand,panopt} = seq(seqlist1,seqlist2)
estimates linear panel data models

We want to describe the influence of tobacco consumption by the woman during
her pregnancy on the birth weight of her baby. We conducted a study among a
cross-sectional sample of N = 1, 037 women living in 2 French areas and asked
them to describe retrospectively all their pregnancies leading to a livebirth
during the 15 years before interview, and, for each baby, to indicate the num-
ber of cigarettes smoked during the first term of pregnancy (exposure, noted x).

The influence of cigarette exposure could be studied by linear regression on
birth weight (dependent variable, noted y). Given the amount of information
lying in the other pregnancies and the cost of data collection, it is tempting to
try to make use of all the available information. Using all the pregnancies (NT̄ ,
where T̄ is the mean number of pregnancies per woman) in a linear regression
model may not be appropriate, since the estimation of the linear regression
model

yj = µ+ x>j β + uj , j = 1, . . . , NT̄ (2.1)

by the ordinary least squares (OLS) method makes the assumption that the
residuals uj are independent random variables. Indeed, there may be correla-
tion between the birth weights of a the children of a given woman, since the

http://www.xplore-stat.de/help/seq.html
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corresponding pregnancies may have been influenced by the genetic character-
istics of the woman and some occupational or behavioral exposures remaining
constant over the woman’s reproductive life.

A possible way to cope with this correlation is to use hierarchical modelling.
The 2-levels structure of the data (woman or group level, and pregnancy or
observation level) must be made explicit in the model. If we index by i the
woman and t the pregnancies of a given woman, then a hierarchical linear
regression model for our data can be written:

yit = µ+ x>itβ + αi + uit, i = 1, . . . , N t = 1, . . . , Ti (2.2)

where yit is the birth weight of the pregnancy number t of woman i. The num-
ber of pregnancies described by the woman i is a value Ti between 1 and say 12
and can vary between women. Of course, xit, the mean number of cigarettes
smoked daily, can vary between women and between the various pregnancies
of a woman. The main difference with model linearreg is that the model now
contains the αi variables (i = 1, . . . , N) defined at the group (or woman) level.

The random-effect model can be estimated using the command

p=panrand(id,y,x)

where id stands for i and x for the independent variables. This allows to obtain
the output shown in Table 2.4.2

Table 2.1: Tobacco consumption by the woman during the first term of preg-
nancy

Parameters Estimate SE t-value p-value

Tobacco -9.8389 2.988 -3.292 0.001
Sex(Girl=1) -157.22 18.18 -8.650 0.000
(...)Constant 3258.1 83.48 39.027 0.000

St.dev of a(i): 330.16 St.dev of e(i,t): 314.72
R2(without): 0.2426

The model was adjusted for other variables, like duration of pregnancy, mother’s
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alcohol consumption, sex of the baby, which are not shown in this output. The
random-effect model estimates that, on average, tobacco consumption by the
woman during the first term of pregnancy is associated with a decrease by 9.8
grams (95% confidence interval: [−15.7;−4.0]) of the birth weight of the baby
per cigarette smoked daily.

2.1.3 Definitions and notations

The cross-section unit (e.g. individual, household, hospital, cluster etc.) will
be denoted group and be indexed by i, whereas t indexes the different observa-
tions of the group i. The t index can correspond to time, if a subject is followed
and observed at several occasions like in a cohort study, but it may also be a
mere identifying variable, for instance in the case of therapeutical trial about
a new drug, realized in several hospitals. In this case, it may be appropriate to
use a hierarchical model, with i standing for the hospital, and t indexing each
subject within the hospital.

We will use indifferently the terms of panel or preferably longitudinal data to
design data sets with a hierarchical structure, whatever the sampling method
(cross-sectional or cohort surveys) although the term of panel study is some-
times used exclusively in the case of cohort studies. The data set is said un-
balanced when the number of observations Ti is not the same for all groups,
i = 1, 2, . . . , N , and balanced when Ti = T for all i. The explained quantita-
tive variable will be denoted yi, which is a vector of dimension Ti. The average
number of observations is denoted as T̄ = N−1

∑N
i=1 Ti.

In the first section, we will present the theoretical bases of the fixed and random
effect models, and give explicit formulas for the parameters and options of the
panfix and panrand quantlets. This technical section can however be skipped
by the readers non-familiar to statistical notations.
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2.2 Theoretical aspects

2.2.1 The fixed-effect model

The model

For individual (or groups) i at time t we have

yit = αi + x>itβ + uit, i = 1, . . . , N, t = 1, . . . , T (2.3)

This model is also called the analysis of covariance model. It is a fixed effects
model in the sense that the individual specific intercepts αi are assumed to be
non-stochastic. The vector of explanatory variables xit is assumed independent
of the errors uit for all i and t. The choice of the fixed-effect model (as opposed
to a random effect model) implies that statistical inference is conditional on
the individual effects αi.

Writing (2.3) for each observation gives


y1

y2
...
yN


︸ ︷︷ ︸
NT×k

=


1T1 0 · · · 0
0 1T2 · · · 0
...

... · · ·
...

0 0 · · · 1TN


︸ ︷︷ ︸

NT×N


α1

α2

...
αN


︸ ︷︷ ︸
N×1

+


x>1
x>2
...
x>N


︸ ︷︷ ︸
NT×k

β +


u1

u2

...
uN


︸ ︷︷ ︸
NT×1

(2.4)

or, in matrix notation,
y = DNα+Xβ + u. (2.5)

Parameters estimation

The matrix DN can be seen as a matrix of N dummy variables. Therefore, the
least-squares estimation of (2.3) is often called ”least-squares dummy-variables
estimator” (Hsiao, 1986). The coefficient estimates results as:
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β̂WG =
(
X>W nX

)−1

X>W ny (2.6)

α̂ = (D>NDN )−1D>N (y −Xβ̂WG) (2.7)

=


T−1

1

T∑
t=1

(y1t − x>1tβ̂WG)

...

T−1
N

T∑
t=1

(yNt − x>Ntβ̂WG)

 (2.8)

where
W n = INT −DN (D>NDN )−1D>N

transforms the regressors to the deviation-from-the-sample-means form, where
lT is the unit vector of size T . Accordingly, βWG can be written as the “Within-
Group” (WG) estimator:

β̂WG =

[
N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)
>

]−1 [ N∑
i=1

T∑
t=1

(xit − x̄i)(yit − ȳi)

]
,

(2.9)

where the individual means are defined as

ȳi =
1
Ti

Ti∑
t=1

yit , x̄i =
1
Ti

Ti∑
t=1

xit.

To estimate the average of the individual effects ᾱ = N−1
∑N
i=1 αi, the individ-

ual means can be corrected by the sample means ȳ = (NT̄ )−1
∑N
i=1

∑Ti
t=1 yit

and x̄ is defined accordingly. The least-squares estimates of β and ᾱ is obtained
from the equation

yit − ȳi + ȳ = ᾱ+ (xit − x̄i + x̄i)>β + ũit . (2.10)

It is important to notice, from (2.9), that cross section units with only one
observation do not contribute to the estimation β̂ of the parameters associated
to the explaining variables x; that is, the same estimate results if these cross
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section units would be excluded from the data set. The groups with Ti = 1
only play a role in the estimation of the mean intercept.

Adequation of the model to the data

In complement to the parameter estimation, the degree of explanation of the
model and the variance of the error terms can be estimated. It is also possible
to test if the introduction of a group-specific variable makes sense with the data
used, by means of a F-statistic test presented below.
There are two different possibilities to compute the degree of explanation R2.
First, one may be interested in the fraction of the variance that is explained by
the explanatory variables comprised in xit. In this case R2 is computed as the
squared correlation between yit and x>itβ̂WG. On the other hand, one may be
interested to assess the goodness of fit when the set of regressors is enhanced
by the set of individual specific dummy variables. Accordingly, the R2 is com-
puted as the squared correlation between yit and x>itβ̂WG + α̂i. In the output
table of the panfix quantlet, the former goodness-of-fit statistic is referred to
as “R2 (without effects)”, whereas the latter is indicated by “R2 (with effects)”.

In practical applications the individual specific constants may have similar size
so that it is preferable to specify the model with the same constant for all
groups. This assumption can be tested with an F statistic for the hypothesis
α1 = α2 = · · · = αN . In the output table of the panfix pantlet the p-value of
this test statistic is presented in the line “F(no eff.)”.

In order to assess the importance of the individual specific effects, their “vari-
ances” are estimated. Literally, it does not make much sense to compute a
variance of αi if we assume that these constants are deterministic. Neverthe-
less, the variance of αi is a measure of the variability of the individual effect
and can be compared to the variance of the error uit. The formula for estimat-
ing the variance of the fixed effects is similar to the computation of variances
in the random-effects model. However, the residuals are computed using the
within-group estimator β̂WG (Amemiya, 1981).

Options for the fixed-effects model

a) Robust standard errors
Arelano and Bond (1987) suggests an estimator of the standard errors for β̂WG
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that is robust to heteroskedastic and autocorrelated errors uit:

Ṽ ar(β̂WG) =

(
N∑
i=1

X̃
>
i X̃i

)−1( N∑
i=1

X̃
>
i ûiû

>
i X̃i

)(
N∑
i=1

X̃
>
i X̃i

)−1

,

where

X̃i =


x>i1 − x̄>i
x>i2 − x̄>i

...
x>iT − x̄>i

 and ũi =


yi1 − ȳi − (xi1 − x̄i)>β̂WG

yi2 − ȳi − (xi2 − x̄i)>β̂WG
...

yiT − ȳi − (xiT − x̄i)>β̂WG

 .

It should be noted that the estimation of this covariance matrix requires two
steps. In the first step the within-group estimator is used to estimate β. In the
second step, the covariance matrix is computed by using the residuals of the
fixed-effects model. Therefore, the computation time is roughly doubled.

b) Test for autocorrelation
The test for autocorrelation tests the null hypothesis: H0 : E(uitui,t−1) = 0.
Since the residuals of the estimated fixed-effect model are correlated, a test
for autocorrelation has to adjust for a correlation that is due to the estimated
individual effect. Define

ũi,t−1 = yi,t−1 − x>i,t−1β̂WG − (T − 1)−1
T−1∑
s=1

yis − x>isβ̂WG.

It is not difficult to verify that under the null hypothesis

E
{

(yit − x>itβ̂WG)ũi,t−1

}
= −σ2

u/(T − 1),

where σ2
u = E(u2

it). The test statistic is therefore constructed as

ρ̃ =

N∑
i=1

T∑
t=2

[
(yit − x>itβ̂WG)ũi,t−1/σ̂

2
u + 1/(T − 1)

]
√

N∑
i=1

T∑
t=2

ũ2
i,t−1

.

Under the null hypothesis, the limiting distribution has a standard normal lim-
iting distribution.
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c) Estimates of the individual effects
The mean intercept is estimated by:

µ̂ = ȳ − β̂
>
x̄. (2.11)

It is also possible to estimate the group variables αi:

α̂i = ȳi − µ̂− β̂
>
x̄i. (2.12)
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2.2.2 The random effects model

The model

For the random effects model it is assumed that the individual specific intercept
αi in the model

yit = x>itβ + αi + uit, i = 1, . . . , N, t = 1, . . . , T (2.13)

is a random variable with E(αi) = 0 and E(α2
i ) = σ2

α. Furthermore we assume
that

E(αiuit) = 0 for all i, t,
E(αixit) = 0 for all i, t.

In general the vector xit includes a constant term.

The composed error term is written as vit = αi+uit and the model assumptions
imply that the vector vi = [vi1, . . . , viT ]> has the covariance matrix

E(viv>i ) = Ψ .

The model (2.13) can be efficiently estimated by using the GLS estimator

β̂GLS =

(
N∑
i=1

X>i Ψ−1Xi

)−1( N∑
i=1

X>i Ψ−1yi

)
, (2.14)

where Xi = [xi1, . . . ,xiT ]> and yi = [yi1, . . . , yiT ]>. This estimator is equiva-
lent to a least-squares estimator of the transformed model

yit − ψȳi = (xit − ψx̄i)>β + eit , (2.15)

where

ψ =

√
σ2
u

σ2
u + Tσ2

α

(2.16)

and eit = vit − ψv̄i.

In general, the variances σ2
u and σ2

α are unknown and must be replaced by
estimates. To this end several different estimators were suggested (Baltagi,
1995). The panrand quantlet employs the estimator suggested by Swamy and
Arora (1972), which is based on two different regressions. First, the model is
estimated by using the within-group estimator. The estimated error variance
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(corrected by the degrees of freedom) is an unbiased estimator for σ2
u. The

second regression is based on the individual means of the data

ȳi = x̄>i β + v̄i . (2.17)

Since E(v̄2
i ) = σ2

α + σ2
u/T , an estimator for σ2

α is obtained from the estimated
residual variance of (2.17). Let σ̂2

1 denote the estimated residual variance of
the between-group regression (2.17), which results from dividing the residual
sum of squares by (N −K−1). The estimated variance of the individual effect
results as σ̂2

α = (σ̂1 − σ̂2
u)/T . A serious practical problem is that the resulting

estimator of σ̂2
α may become negative. In this case σ̂2

α is set to zero.
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Table 2.2: Nama table

id y x1 x2

1 3409 38 0
1 3755 41 1
2 1900 32 1
3 4200 41 1
3 4050 40 0
3 4300 41 1
... ... ... ...

100 3000 39 0
100 2850 39 1

2.3 Computing fixed and random-effect models

2.3.1 Data preparation

Suppose we want to regress a quantitative variable y over explanatory variables
noted x. The variable indexing the group will be noted id. This is for instance
how the data set should look like in the case of two x variables:

If you have a balanced data set (same number of observations per group) sorted
by group, then the id variable is not necessary. You will have to give the num-
ber of observations per subject instead of the id vector, that XploRe will then
build for you.

2.3.2 Fixed and random-effect linear regression

The fixed-effect linear regression model can be estimated using the following
syntax:

library("metrics")
p=panfix(id,y,x{,opt})
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The random-effect linear regression model can be estimated using the following
syntax:

library("metrics")
p=panrand(id,y,x{,opt})

2.3.3 Options for panfix

The options must be defined by the panopt quantlet according to the syntax:

opt=panopt(optname,optvalue)

where optname is the name of the option, and optvalue the value associated
to the option. The name of the option has to be given as a string. You may
define several options at the same time according to the following syntax:

opt=panopt(optname1,optvalue1,optname2,optvalue2,optname3,optvalue3)

The following options can be defined:

alpha: If equal to 1, asks for the individual effect parameter to be estimated
and stored. The estimation is done assuming that the sum of all alpha
parameters is zero.

autoco: If equal to 1, an autocorrelation test is performed (only if the number
of observations is at least 2 for each group). Default is no test performed.

ci: If this parameter is set to the value pval, then the confidence intervals
will be given at the level (100-pval)%. By default, no ci are given.

notab: If this parameter is set to 1, then no table of results is displayed.

robust: The robust estimates of variance given in (Arelano and Bond, 1987)
are used. These should be more valid than the classical variance esti-
mates in the case of heteroscedasticity. Default is the standard variance
estimates.
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xlabel: Label of the explanatory variables, to make the output table more
explicit. This option must be given as a vertical array of the k strings
corresponding to the labels (constant term excluded). Maximum label
length is 11 characters. (k × 1) vector.

For example, if x is a vector of 2 columns containing the independent variables
tobacco and alcohol consumption, you may type:

lab="tobacco"|"alcohol"
opt=panopt("xlabel",lab)
p=panfix(id,y,x,opt)

In the output table, the parameters associated to the first and second variables
will be labelled by the indicated names. Unspecified options will be set at their
default value, and the order in which the options are given is not important.

2.3.4 Options for panrand

The options must be defined by the panopt quantlet according to the syntax:

opt=panopt(optname,optvalue)

where optname is the name of the option, and optvalue the value associated
to the option.

The following options can be defined:

opt.shf: Allows you to see the various steps of the estimation procedure.

opt.xlabel: Label of the explanatory variables, to make the output table
more explicit. This option must be given as a vertical array of the k
strings corresponding to the labels (constant term excluded). Maximum
label length is 11 characters and (k × 1) vector.

2.4 Application

In this section, we illustrate the use of the panfix and panrand quantlets pre-
sented above, with some estimations based on real data.
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Table 2.3: Nama table

Variable Mean Std Dev 5− 95th percentiles

Birth weight (g) 3409 510 2610-4250
Gestational length (days) 283 11.8 261-294
Mother’s age (years) 27.2 4.4 20.1-35.1
Proportion of parous women 0.60
Sex of the offspring (proportion of boys) 0.50

2.4.1 Presentation of the data

The data come from an epidemiologic study about human reproductive life
events. Briefly, a cross-sectional sample of 1089 women from Bretagne and
Normandie were questioned during spring 2000 about the birth weight of all
their children born between 1985 and 2000. We present here the association
between the birth weight (dependent variable), the gestational length, the age,
and the parity (previous history of livebirth, no/yes) of the mother (indepen-
dent variables). There was a total of 1963 births in the study period (1.8
pregnancy per woman) and the data can be considered as longitudinal data
with a hierarchical structure, the woman being the first level, and the preg-
nancy the second level. The use of fixed or random effect models allows to take
into account all the pregnancies who took place in the study period described
by the woman. In such epidemiological studies about human reproduction, the
exclusion of couples with only one pregnancy may give rise to selection bias,
since the couples with only one pregnancy are more likely than those with two
or more pregnancies to have difficulties in conceiving. Here is a brief descrip-
tion of the data set:

2.4.2 Results

First, we will describe briefly our data using the panstat quantlet:

library("metrics")
z=read("birthweight.dat")
panstat(z[,1:cols(z)])
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The first column of z contains the identified variable, whereas the next columns
contain the dependent variables, and then the independent variables. If the
panel is balanced and sorted by group, the first argument id can be replaced
by a scalar indicating the number of observations per group. We obtain the
following output:

Table 2.4: Nama table

Minimum Maximum Mean Within Var.% Std.Error

Variable 1 750 5300 3409 23.8 509.6
Variable 2 -98 21 -5.715 27.56 11.76
Variable 3 14.37 45.71 27.18 26.77 4.366
Variable 4 0 1 0.595 66.82 0.491
Variable 5 0 1 0.5028 45.7 0.5001

The column Within Var.% gives the value of the variance of the residuals of
the withing-group estimator, divided by the overall variance.

We can then estimate a fixed-effect regression model. The program:

z=read("birthweight.dat")
p=panfix(z[1,],z[2,],z[3:6])

gives the following estimates:

Thus, on average, an increase in 1 day of the duration of pregnancy was associ-
ated with a gain of weight of 18.4 grams (beta[1]), and girls are 145 g lighter
than boys at birth (beta[4]), with a 95% confidence interval of [-186;-103]
g. Moreover, women who already had a child have a tendency to give birth
to heavier babies (77 g on average). There is a non-significant tendency to an
increase in birth weight with mother’s age.

The R2 value of 0.22 indicates that only a small fraction of the variability of
the data is explained by the model, and that other variables should be included
(for instance height and weight of the mother before pregnancy, information
on health,. . . ).
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Table 2.5: Nama table

Parameters Estimate SE t-value p-value

beta[ 1 ] 18.548 1.17 15.8908 0.0000
beta[ 2 ] 7.964 4.61 1.7263 0.0843
beta[ 3 ] 75.239 25.97 2.8970 0.0038
beta[ 4 ] -144.51 21.27 -6.7931 0.0000
Constant 3326.1 115.3 28.8350 0.0000

St.dev of a(i): 321.47 St.dev of e(i,t):318.47
Log-Likelihood: 22627.617 R2(without) : 0.2203
F(no eff.) p-val: 0.0000 R2(with eff) : 0.8272

In this case, there are some groups with only one observation (cf. output
above); we cannot therefore perform an autocorrelation-test, nor obtain robust
confidence-intervals estimates. In the case of a data set with all groups having
at least 2 observations, this can be obtained by the following syntax:

z=read("birthweight_2.dat")
opt=panopt("robust",1,"autoco",1,"ci",10)
p=panfix(z[1,],z[2,],z[3:6],opt)

For the data, the a-priori choice between the fixed-effect and the random-effect
model would be the random-effect model, because the included women were
randomly selected from two French rural areas, and we wish to infer the model
estimates on the women who conceived between 1985 and 2000 in the whole
area.

We can obtain the random-effect model estimates by the program:

z=read("birthweight.dat")
p=panrand(z[1,],z[2,],z[3:6,],opt)

which gives the following estimates:

On the whole, these estimates are consistent with those of the fixed-effect
model. You can notice that for variable [2] (mother’s age), the estimates from
the two models differ (7.8 with a standard error of 4.6 for the fixed-effect model,
and 4.6 with a standard error of 2.6 for the random effect model). In such a



30 2 Estimation of linear regression models Longitudinal data

Table 2.6: Nama table

Parameters Estimate SE t-value p-value 95% CI

beta[ 1 ] 18.927 0.8286 22.844 0.000 17.3 20.55
beta[ 2 ] 4.5912 2.638 1.740 0.082 -0.58 9.76
beta[ 3 ] 88.389 18.89 4.678 0.000 51.36 125.4
beta[ 4 ] -152.53 17.46 -8.735 0.000 -186.8 -118.3
Constant 3413.3 68.94 49.509 0.000 3278.0 3548.0

St.dev of a(i): 337.9 St.dev of e(i,t): 312.19
R2(without): 0.2206

case, where the number of observations is small for many units, it is not rare
that both models yield different parameter estimates.
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3 Conditional quantiles with
functional covariates: an
application to ozone pollution
forecasting

Hervé Cardot, Christophe Crambes, Pascal Sarda

Expected length of the paper: 20 pages

3.1 Abstract

This work deals with the study of pollution data with the aim of forecasting
the Ozone pollution in the city of Toulouse. The ORAMIP (“Observatoire
Régional de l’Air en Midi-Pyrénées”) provided data which are hourly measures
of pollutants as well as hourly measurements of meteorological covariates. The
nature of these data allows us to deal with them as curves, known in some
discretization points, which are called functional data in the literature.

Our goal is then to give a prediction of the maximum of Ozone one day know-
ing one or several of these functional variables the day before. To do this,
we consider two models. The first one bases the prediction on the conditional
mean, and the second one on the conditional median. In each case, we have
functional covariates and we introduce a spline estimator of the functional co-
efficient which minimizes a least square type (in the first model) or a least
absolute value type (in the second model) penalized criterion. The minimiza-
tion criterion corresponding to the first model has an explicit solution, contrary
to the second one which is solved by an iterative weighted least square algo-
rithm. These two approaches are illustrated with the ORAMIP data and we
make a comparison of the prediction of these models with different covariates.
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4 Nonparametric functional
methods: new tools for
chemiometrical analysis

Frédéric Ferraty, Aldo Goia, Philippe Vieu

Expected length of the paper: 20 pages

4.1 Abstract

Spectrometric is an usual technique for chemiometric analysis. Spectrometric
data are consisting in continuous spectra of some components to be analysed.
From a statistical point of view these data are clearly of functional (continu-
ous) nature. We will center our purpose around a food industry spectrometric
real data set, which is a set of absorbances spectra observed on several pieces
of meat. The aim of this contribution is to show how the recent nonpara-
metric methodology for functional data may provide interesting results in this
setting. Concretely, we will present two functional nonparametric methods,
corresponding to two different statistical problem. The first one is the problem
of predicting some real response variable (percentage of fatness) corresponding
to some given continuous absorbance spectra, and we will decsribe a Nonpara-
metric Functional Regression method. The second one will be the question of
discrimating these spectra according to some categorical response, and we will
describe a Nonparametric Curves Discrimination method.

It is worth being noted that, even if our presentation will be centered aroubnd
this spectrometric food industry example, both the methodology and the pro-
grams will be presented in a general way. This will allow for posible application
of the proposed methods in many other fields of applied statistics in which func-
tional data have to be treated (environmetrics, econometrics, biometrics, ...).
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5 Polychotomous regression:
application to landcover
prediction

Frédéric Ferraty, Martin Paegelow, Pascal Sarda

Expected length of the paper: 20 pages

5.1 Abstract

The aim of this work is to predict landcover for a given area: analyzing at
first the evolution of landcover in the past one wants to produce a map of
landcover in the future. The data analyzed comes from a mountainous area in
the Pyrénées which name is Garrotxes. The size of the area is 8570 hectares
divided in pixels: for each pixel we have the value for a categorical variable
indicating the nature of vegetation for this pixel (with eight levels) and the
values of environmental variables (slope, . . .). We have three sets of such data
for the years 1980, 1989 and 2000.

The problem is then to predict at time t and for each pixel a categorical re-
sponse (the value of vegetation for this pixel) given both categorical and scalar
predictors i.e. the nature of vegetation at time t − 1 and the value of envi-
ronmental variables in the neighbouring pixels. For this we use the multiple
logistic (or polychotomous) regression model. To estimate the parameters of
this (linear) model, we use a penalized log-likelihood estimator: penalization
allows numerical stability of the solution whereas, for reasonable small values
of the penalization parameters, it does not affect the value of the estimators. A
Newton-Raphson algorithm is used to achieve the numerical mawimization of
the penalized log-likelihood. The first step of the procedure consists in an esti-
mation step based on the first two maps. The third map is then used to validate
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the choice of the size of the neighbourhood and the value of the penalization
parameter. Prediction of the map is done using the estimated parameters of
the model obtained at the second step.



6 A kernel method in analysis of
replicated micro-array
experiments

Ali Gannoun, Benôıt Liquet, Jérôme Saracco, Wolfgang Urfer

Expected length of the paper: around 20 pages

6.1 Abstract

Microarrays are part of a new class of biotechnologies which allow the moni-
toring of expression levels of thousands of genes simultaneously. In microarray
data analysis, the comparison of gene expression profiles with respect to dif-
ferent conditions and the selection of biologically interesting genes are crucial
tasks. Multivariate statistical methods have been applied to analyze these
large data sets. To identify genes with altered expression under two experi-
mental conditions, we describe in this chapter a new nonparametric statistical
approach. Specifically, we propose estimating the distributions of a t-type
statistic and its null statistic, using kernel methods. A comparison of these
two distributions by means of a likelihood ratio test can identify genes with
significantly changed expressions. A method for the calculation of the cut-off
point and the acceptance region is also derived. This methodology is applied
to a leukemia data set containing expression levels of 7129 genes. The corre-
sponding results are compared to the traditional t-test and the normal mixture
model.
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7 Kernel Estimates of Hazard
Functions for Biomedical Data
Sets

Ivana Horová, Jǐŕı Zelinka

Expected length of the paper: 20 pages

7.1 Abstract

The purpose of this chapter is to present a nonparametric method for censored
samples. This is a common situation in survival analysis problem. We will use
the model of random censorship where the data are censored from the right.
This type of censorship is often met in many applications, especially in clinical
research or in life testing of complex technical systems. In summarizing the
survival data there are two functions of central interest, namely the survival
function and the hazard function.

The well-known product-limit estimator of the survival function was proposed
by Kaplan and Meier. A single sample of survival data may be also summarized
through the hazard function which shows the dependence of the instantaneous
risk of death time. We focus on nonparametric estimates of the hazard functions
and their derivatives.

Among nonparametric estimates methods of kernel estimates represent one of
the most effective methods. These methods are simple enough which makes
the numerical calculation easy and fast and the possibilities for mathematical
analysis of properties of obtained estimates are very good, too.

The kernel estimates depend on a bandwidth, a kernel and on order of a kernel.
The procedure of choosing these three parameters is dealing with. As far as the
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biomedical application is concerned the attention will be paid not only to the
estimate of hazard function but also to the estimate of the second derivative
of this function since the dynamics of the underlying cause is often of a great
interest. For this reason the attention is also paid to the detection of the points
where the most rapid changes of the hazard functions occur.

The aforementioned method is applied to the real biomedical data sets. The
method of kernel estimate seems to be suited as an exploratory tool for an-
alyzing in hazard rates. Moreover this method offers the consistent estimate
and graphical representation can give suitable explanation of the detection of
points of the most rapid change as well.



8 Partially Linear Models

Wolfgang Härdle, Hua Liang

8.1 Introduction

Partially linear models (PLM) are regression models in which the response de-
pends on some covariates linearly but on other covariates nonparametrically.
PLMs generalize standard linear regression techniques and are special cases
of additive models. This chapter covers the basic results and explains how
PLMs are applied in the biometric practice. More specifically, we are mainly
concerned with least squares estimators of the linear parameter while the non-
parametric part is estimated by e.g. kernel regression, spline approximation,
piecewise polynomial and local polynomial techniques. When the model is het-
eroscedastic, the variance functions are approximated by weighted least squares
estimators. Numerous examples illustrate the implementation in practice.

http://ise.wiwi.hu-berlin.de/~haerdle
http://ise.wiwi.hu-berlin.de/~hliang
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plmest = plmk(x,t,y,h)
estimates the parameters with kernel regression

plmest = plmlp(x,t,y,h,p)
estimates the parameters with p-order local polynomial

plmest = plmp(x,t,y,m,mn)
estimates the parameters with piecewise polynomial approxima-
tion

plmest = plmls(x,t,y,m)
estimates the parameters with least squares spline

plmest = plmhetexog(x,t,y,w.h.h1)
estimates the parameters when the variance is a function of ex-
ogenous variables

plmest = plmhett(x,t,y,h,h1)
estimates the parameters when the variance is an unknown func-
tion of the nonparametric variable

plmest = plmhetmean(mn,x,t,y,h)
estimates the parameters when the variance is an unknown func-
tion of the mean

Partially linear models (PLM) are defined by

Y = X>β + g(T ) + ε, (8.1)

where X and T are d-dimensional and scalar regressors, β is a vector of un-
known parameters, g(·) an unknown smooth function and ε an error term with
mean zero conditional on X and T.

The PLM is a special form of the additive regression models (Hastie and Tib-
shrani, 1990) and (Stone, 1985), which allows easier interpretation of the effect
of each variables and may be preferable to a completely nonparametric regres-
sion since the well-known reason “curse of dimensionality”.

On the other hand, PLMs are more flexible than the standard linear models
since they combine both parametric and nonparametric components.

http://www.xplore-stat.de/help/plmk.html
http://www.xplore-stat.de/help/plmlp.html
http://www.xplore-stat.de/help/plmp.html
http://www.xplore-stat.de/help/plmls.html
http://www.xplore-stat.de/help/plmhetexog.html
http://www.xplore-stat.de/help/plmhett.html
http://www.xplore-stat.de/help/plmhetmean.html
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Several methods have been proposed to consider PLM. Suppose n observations

(Engle, Granger, Rice and Weiss, 1986), (Heckman, 1986) and (Rice, 1986)
used spline smoothing and defined estimators of β and g as the solution of

arg min
β,g

1
n

n∑
i=1

{Yi −Xi
>β − g(Ti)}2 + λ

∫
{g′′(u)}2du. (8.2)

Speckman (1988) estimated the nonparametric component byWγ, whereW is
a (n× q)−matrix of full rank and γ is an additional parameter. PLM may be
rewritten in a matrix form

Y = Xβ +Wγ + ε. (8.3)

The estimator of β based on (8.3) is

β̂S = {X>(I − PW)X}−1{X>(I − PW)Y }, (8.4)

where PW =W(W>W)−1W> is a projection matrix and I is a d−order identity
matrix. Green, Jennison and Seheult (1985) proposed another class of estimates

β̂GJS = {X>(I −Wh)X)}−1{X>(I −Wh)Y )}

by replacing W in (8.4) by another smoother operator Wh. Chen (1988) pro-
posed a piecewise polynomial to approximate nonparametric function and then
derived the least squares estimator which is the same form as (8.4). Recently
Härdle, Liang, and Gao (2000) have systematically summarized the up-to-date
results about PLM.

No matter which regression method is used for the nonparametric part, the
forms of the estimators of β may always be written as {X>(I−W )X}−1X>(I−
W )Y , where W is a projection operation. The estimators are asymptotically
normal under appropriate assumptions.

The next section will be concerned with several nonparametric fit methods
for g(t) because of their popularity, beauty and importance in nonparametric
statistics. In Section 8.4, a real data-set is investigated for illustrating the
theories and techniques.
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8.2 Estimation and Nonparametric Fits

As stated in the previous section, different ways to approximate the nonpara-
metric part may give the corresponding estimators of β. The popular nonpara-
metric methods includes kernel regression, local polynomial, piecewise poly-
nomial and smoothing spline. Related works are referred to Wand and Jones
(1995), Eubank (1988), and Fan and Gijbels (1996). Härdle (1990) gives an
extensive discussion of various nonparametric statistical methods based on the
kernel estimator. This section mainly mentions the estimation procedure for β
when one adapts these nonparametric methods and explains how to use XploRe
quantlets to calculate the estimates.

8.2.1 Kernel Regression

Let K(·) be a kernel function satisfying certain conditions and hn be a band-
width parameter. The weight function is defined as

ωni(t) = K
( t− Ti

hn

)/ n∑
j=1

K
( t− Tj

hn

)
.

Let gn(t, β) =
∑n
i=1 ωni(t)(Yi −X>i β) for a given β. Substitute gn(Ti, β) into

(8.1) and use least square criterion. Then the least squares estimator of β is
obtained as

β̂KR = (X̃>X̃)−1X̃>Ỹ,

where X̃> = (X̃1, . . . , X̃n) with X̃j = Xj−
∑n
i=1 ωni(Tj)Xi and Ỹ> = (Ỹ1, . . . , Ỹn)

with Ỹj = Yj −
∑n
i=1 ωni(Tj)Yi. The nonparametric part g(t) is estimated by:

ĝn(t) =
n∑
i=1

ωni(t)(Yi −X>i β̂KR).

When ε1, . . . , εn are identically distributed, their common variance σ2 may be
estimated by σ̂2

n = (Ỹ − X̃β̂KR)>(Ỹ − X̃β̂KR).
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The detailed discussions on asymptotic theories of these estimators are referred
to Härdle, Liang, and Gao (2000) and Speckman (1988). A main result in
literature on the estimator β̂KR may be described as follows.

THEOREM 8.1 Suppose (i) sup0≤t≤1E(‖X‖3|t) < ∞ and Σ = Cov{X −
E(X|T )} is a positive definite matrix.
(ii) g(t) and E(xij |t) are Lipschitz continuous; and (iii) the bandwidth h ≈
λn−1/5 for some 0 < λ <∞. Then

√
n(β̂KR − β) L−→N(0, σ2Σ−1).

In XploRe the quantlet plmk calculates the estimates β̂KR, σ̂2
n and ĝn(t). Its

syntax is the following:

plmest=plmk(x,t,y,h)

Input parameters are

x : the linear regressors,

t : represents the non-linear regressors,

y : the response, and

h : determines the bandwidth.

Output parameters are

plmest.hbeat : estimate the parameter of X,

plmest.hsigma : estimate the variance of the error, and

plmest.hg : estimate the nonparametric part.

We now give an example of XploRe code to generate a sample from the PLM
model, and then show the calculation results.

http://www.xplore-stat.de/help/plmk.html
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Simulation comparison
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Figure 8.1: The simulation results for nonparametric function via quantlet
plmk. Thin line: real data; Thick line: the fitting.

XCSplm01.xpl

8.2.2 Local Polynomial

The kernel regression (or local constant) can be improved by using local linear,
more generally, local polynomial smoothers since they have appealing asymp-
totic bias and variance terms that are not adversely affected at the bound-
ary (Fan and Gijbels, 1996)., see

Suppose that the (p + 1)-th derivative of g(t) at the point t0 exists. We then
approximate the unknown regression function g(t) locally by a polynomial of
order p. A Taylor expansion gives, for t in a neighborhood of t0,

g(t) ≈ g(t0) + g′(t0)(t− t0) +
g(2)(t0)

2!
(t− t0)2 + · · ·+ g(p)(t0)

p!
(t− t0)p

def=
p∑
j=0

αj(t− t0)j . (8.5)

http://www.xplore-stat.de/help/plmk.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm01.html
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To estimate β and g(t), we first estimate αj as the functions of β, denoted as
αj(β), by minimizing

n∑
i=1

Yi −X>i β −
p∑
j=0

αj(Ti − t0)j


2

Kh(Ti − t0), (8.6)

where h is a bandwidth controlling the size of the local neighborhood, and
Kh(·) = K(·/h)/h with K a kernel function. Minimize

n∑
i=1

Yi −X>i β −
p∑
j=0

αj(β)(Ti − t0)j


2

. (8.7)

Denote the solution of (8.7) by βn. Let αj(βn) be the estimate of αj , and
denote by α̂jn j = 0, . . . , p. It is clear from the Taylor expansion in (8.5) that
ν!α̂jn is an estimator of g(j)(t0) for j = 0, . . . , p. To estimate the entire function
g(j)(·) we solve the above weighted least squares problem for all points t0 in
the domain of interest.

It is more convenient to work with matrix notation. Denote by Z the design
matrix of T in problem (8.6). That is,

Z =


1 (T1 − t0) . . . (T1 − t0)p
...

...
...

...
1 (Tn − t0) . . . (Tn − t0)p

 .

Set Y = (Y1, · · · , Yn)> and α(β) = {α0(β), · · · , αp(β)}>. Let W be the n× n
diagonal matrix of weights: W = diag{Kh(Ti−t0)}. The weighted least squares
problems (8.6) and (8.7) can be rewritten as

min
β

(Y −Xβ − Zα)>W(Y −Xβ − Zα),

min
α
{Y −Xβ − Zα(β)}>{Y −Xβ − Zα(β)},

with α(β) = {α0(β), . . . , αp(β)}>. The solution vectors are provided by weighted
least squares and are given by
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β̂LP = [X>{I− Z(Z>WZ)−1Z>W}X]−1X>{I− Z(Z>WZ)−1Z>W}Y
α̂ = (Z>WZ)−1Z>W(Y −Xβ̂LP)

Theoretically the asymptotic normality is still valid under the conditions simi-
larly to those of Theorem 8.1. More detailed theoretical discussions are referred
to Hamilton and Truong (1997).

The quantlet plmp is assigned to handle the calculation of β̂LP and α̂ in XploRe.
Its syntax is similar to that of the quantlet plmk:

plmest=plmp(x,t,y,h,{p})

where x, t, y, h are the same as in the quantlet plmk. p is the local polynomial
order. The default value is p = 1, meaning the local linear.

As a consequence, the estimate of the parameter equals (1.2019, 1.2986, 1.3968)
and the estimates of the nonparametric function is shown in Figure 8.2. There
exists obvious differences between these results from the quantlet plmk and
plmp. More specifically, the results for parametric and nonparametric estima-
tion from the quantlet plmp are preferable to these from the quantlet plmk.

8.2.3 Piecewise Polynomial

We assume g are Hölder continuous smooth of order p = (m+ r), that is, let r
and m denote nonnegative real constants 0 < r ≤ 1, m is nonnegative integer
such that

|g(m)(t′)− g(m)(t)| < M |t′ − t|r, for t, t′ ∈ [0, 1].

Piecewise polynomial approximation for the function g(·) on [0, 1] is defined as
follows. Given a positive Mn, divide [0, 1] in Mn intervals with equal length
1/Mn. The estimator has the form of a piecewise polynomial of degree m based
on the Mn intervals, where the (m+1)Mn coefficients are chosen by the method
of least squares on the basis of the data. The basic principle is concisely stated
as follows.

http://www.xplore-stat.de/help/plmp.html
http://www.xplore-stat.de/help/plmk.html
http://www.xplore-stat.de/help/plmk.html
http://www.xplore-stat.de/help/plmk.html
http://www.xplore-stat.de/help/plmp.html
http://www.xplore-stat.de/help/plmp.html
http://www.xplore-stat.de/help/plmk.html
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Local Polynomial
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Figure 8.2: The simulation results for nonparametric function via quantlet
plmp. Thin line: real data; Thick line: the fitting.

XCSplm02.xpl

Let Inν(t) be the indicator function of the ν-th interval, and dν be the midpoint
of the ν-th interval, so that Inν(t) = 1 or 0 according to t ∈ [(ν−1)/Mn, ν/Mn)
for ν = 1, . . . ,Mn and [1 − 1/Mn, 1] or not. Pnν(t) be the m-order Taylor
expansion of g(t) at the point dν . Denote

Pnν(t) =
m∑
j=0

ajut
j for t in the νth interval

Consider the piecewise polynomial approximation of g of degree m given by

g∗n(t) =
Mn∑
ν=1

Iν(t)Pnν(t).

http://www.xplore-stat.de/help/plmp.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm02.html
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Suppose we have n observed data (X1, T1, Y1), . . . , (Xn, Tn, Yn). Denote

Z =


In1(T1) . . . In1(T1)Tm1 . . . InMn(T1) . . . InMn(T1)Tm1

...
...

...
...

...
...

...
In1(Tn) . . . In1(Tn)Tmn . . . InMn

(Tn) . . . InMn
(Tn)Tmn


and

ηg = (a01, . . . , am1, a02, . . . , am2, . . . , a0Mn
, . . . , amMn

)>

Then  g∗n(T1)
...

g∗n(Tn)

 =


∑Mn

u=1 Inu(T1)Pnν(T1)
...∑Mn

u=1 Inu(Tn)Pnν(Tn)

 = Zηg.

Hence we need to find β and ηg to minimize

(Y −Xβ − Zηg)>(Y −Xβ − Zηg).

Suppose that the solution of minimization problem exists. The estimators of β
and ηg are

β̂PP = {X>(I−P)X}−1X>(I−P)Y

and ηng = A(Y −Xβ̂PP), where A = (Z>Z)−1Z> and P = ZA. The estimate
of g(t) may be described

gn(t) = z(Z>Z)−1Z>(Y −Xβ̂PP)

for a suitable z.

THEOREM 8.2 There exist positive definite matrices Σ00 and Σ01 such that
both Cov(X|t) − Σ00 and Σ01 − Cov(X|t) are nonnegative definite for all t ∈
[0, 1]. Suppose that limn→∞ n−λMn = 0 for some λ ∈ (0, 1) and limn→∞

√
nM−pn =

0. Then
√

(β̂PP − β) converges to N(0, σ2Σ−1).
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The quantlet plmp evaluates the estimates β̂PP and gn(t) stated above. Its
syntax is similar to those of the two previous quantlets:

plmest=plmp(x,t,y,m,mn)

where m and mn represent m and Mn, respectively. We now use the quantlet
plmp to investigate the example considered in the quantlet plmk. We assume
m = 2 and Mn = 5 and compute the related estimates via the quantlet plmp.
The implementation works as follows.

XCSplm03.xpl

The result for parameter β is plmest.hbeta= (1.2, 1.2999, 1.3988)>. Alterna-
tively the estimates for nonparametric part are also given.

8.2.4 Least Square Spline

This subsection introduces least squares spline. We only state its algorithm
rather than the theory, which can be found in Eubank (1988) for an overall
discussion.

Suppose that g has m−1 absolutely continuous derivatives and m-th derivative
that is square integrable and satisfies

∫ 1

0
{g(m)(t)}2dt < C for a specified C > 0.

Via a Taylor expansion, the partially linear model can be rewritten as

Y = X>β +
m∑
j=1

αjT
j−1 +Rem(T ) + ε

where Rem(s) = (m− 1)!−1 ∫ 1

0
{g(m)(t)(t− s)m−1

+ }2 dt. By using a quadrature
rule, Rem(s) can be approximate by a sum of the form

∑k
j=1 dj(t − tj)

m−1
+

for some set of coefficients d1, . . . , dk and points 0 < t1, . . . , < tk < 1. Take
a basis V1(t) = 1, V2(t) = t, . . . , Vm(t) = tm−1, Vm+1(t) = (t − t1)m−1, . . . ,

Vm+k(t) = (t−tk)m−1 and set η = (α1, . . . , αm, d1, . . . , dk) def= (η1, . . . , ηm+k)>.
The least squares spline estimator is to minimize

http://www.xplore-stat.de/help/plmp.html
http://www.xplore-stat.de/help/plmp.html
http://www.xplore-stat.de/help/plmk.html
http://www.xplore-stat.de/help/plmp.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm03.html
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arg min
β,η

1
n

n∑
i=1

Yi −X>i β −
m+k∑
j=1

ηjVj(Ti)


2

.

Conveniently with matrix notation, denote Z = (Zij) with Zij = {Vj(Ti)} for
i = 1, . . . , n and j = 1, . . . ,m + k and X = (X1, . . . , Xn)>. The least squares
spline estimator is equivalent to the solution of the minimizing problem

(Y −Xβ − Zη)>(Y −Xβ − Zη).

If the problem has an unique solution, its form is the same as (β̂PP, ηng) in the
subsection about piecewise polynomial. Otherwise, we may use ridge idea to
modify the estimator. plmls is concerned with implementation of the above
algorithm in XploRe.

plmest=plmls(x,t,y,m,knots)

XCSplm04.xpl

Input parameters are

x : n× d matrix of the linear design points

t : n× 1 vector of the non-linear design points

y : n× 1 vector of the response variables

m : the order of spline, and

knots : k × 1 vector of knot sequence knots.

Output parameters are

plmest.hbeat : d× 1 vector of the estimate of the parameter and

plmest.hg : the estimate of the nonparametric part.

http://www.xplore-stat.de/help/plmls.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm04.html
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8.3 Heteroscedastic Cases

When the variance function given covariates (X,T ) is non-constant, the estima-
tors of β proposed in former section is inefficient. The strategy of overcoming
this drawback is to use weighted least squares estimation. Three cases will be
briefly discussed. Let {(Yi, Xi, Ti), i = 1, . . . , n} denote a sequence of random
samples from

Yi = X>i β + g(Ti) + σiξi, , i = 1, . . . , n, (8.8)

where Xi, Ti, Ti are the same as those in model (8.1). ξi are i.i.d. with mean
0 and variance 1, and σ2

i are some functions, whose concrete forms will be
discussed later.

In general, the least squares estimator β̂LS is modified to a weighted least
squares estimator

βW =
( n∑
i=1

γiX̃iX̃
>
i

)−1( n∑
i=1

γiX̃iỸi

)
(8.9)

for some weight γi i = 1, . . . , n. In our model (8.8) we take γi = 1/σ2
i . In

principle the weights γi (or σ2
i ) are unknown and must be estimated. Let

{γ̂i, i = 1, . . . , n} be a sequence of estimators of γ. One may define an estimator
of β by substituting γi in (8.9) by γ̂i. Let

β̂WLS =

(
n∑
i=1

γ̂iX̃iX̃
>
i

)−1( n∑
i=1

γ̂iX̃iỸi

)

be the estimator of β.

Under suitable conditions, the estimator β̂WLS is asymptotically equivalent to
that supposed the function σ2

i to be known. Therefore β̂WLS is more efficient
than the estimators given in the previous section. The following subsections
present three variance functions and construct their estimators. Three non-
parametric heteroscedastic structures will be studied. In the remainder of this
section, H(•) is always assumed to be unknown Lipschitz continuous.
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8.3.1 Variance is a Function of Exogenous Variables

Suppose σ2
i = H(Wi), where {Wi; i = 1, . . . , n} are design points, which are

assumed to be independent of ξi and (Xi, Ti) and defined on [0, 1] in the case
where {Wi; i = 1, . . . , n} are random design points. Let β̂LS and ĝn(·) be initial
estimators of β and g(·), for example, given by kernel regression in Section
8.2.1. Define

Ĥn(w) =
n∑
j=1

W̃nj(w){Yj −X>j β̂LS − ĝn(Ti)}2

as the estimator of H(w), where {W̃nj(t); i = 1, . . . , n} is a sequence of weight
functions satisfying appropriate assumptions. Then let σ̂2

ni = Hn(Wi).

Quantlet plmhetexog performs the weighted least squares estimate of the pa-
rameter. In the procedure of estimating the variance function, the estimate
given by plmk is taken as the primary one.

XCSplm05.xpl

Correspondingly the following output are shown in XploRe output window.
plmest.hbetals is d × 1 vector of LS estimate of parameter, plmest.hbeta
is d × 1 vector of the estimate β̂WLS, plmest.hg0 is the estimate of nonpara-
metric function based on plmest.hbetals, and plmest.hg is the estimate of
nonparametric function based on plmest.hbeta.

8.3.2 Variance is an Unknown Function of T

Suppose that the variance σ2
i is a function of the design points Ti, i.e., σ2

i =
H(Ti), with H(·) an unknown Lipschitz continuous function. Similarly to sub-
section 8.3.1, we define the estimator of H(·) as

Ĥn(t) =
n∑
j=1

W̃nj(t){Yj −X>j β̂LS − ĝn(Ti)}2.

Quantlet plmhett calculates the weighted least squares estimate of the param-
eter in this case. In the procedure of estimating the variance function, the

http://www.xplore-stat.de/help/plmhetexog.html
http://www.xplore-stat.de/help/plmk.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm05.html
http://www.xplore-stat.de/help/plmhett.html
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estimate given by plmk is taken as the primary one.

plmest=plmhett(x,t,y,h,h1)

XCSplm06.xpl

8.3.3 Variance is a Function of the Mean

We consider the model (8.8) with σ2
i = H{X>i β + g(Ti)}, which means that

the variance is an unknown function of the mean response.

Since H(·) is assumed to be completely unknown, the standard method is
to get information about H(·) by replication, i.e., we consider the following
“improved” partially linear heteroscedastic model

Yij = X>i β + g(Ti) + σiξij , j = 1, . . . ,mi; i = 1, . . . , n,

where Yij is the response of the jth replicate at the design point (Xi, Ti), ξij are
i.i.d. with mean 0 and variance 1, β, g(·) and (Xi, Ti) are the same as before.

We compute the predicted value X>i β̂LS + ĝn(Ti) by fitting the least squares
estimator β̂LS and nonparametric estimator ĝn(Ti) to the data and the residuals
Yij − {X>i β̂LS + ĝn(Ti)}, and estimate σ2

i by

σ̂2
i =

1
mi

mi∑
j=1

[Yij − {X>i β̂LS + ĝn(Ti)}]2,

where each mi is unbounded.

Quantlet plmhetmean executes the above algorithm in XploRe. For calculation
simplicity, we use the same replicate in practice. The estimate given by plmk
is taken as the primary one.

plmest=plmhetmean(mn,x,t,y,h)

http://www.xplore-stat.de/help/plmk.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm06.html
http://www.xplore-stat.de/help/plmhetmean.html
http://www.xplore-stat.de/help/plmk.html
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The following simulated data show us how to run the quantlet plmhetmean.

XCSplm07.xpl

8.4 Real Data Examples

In this section we provide some biometrics data sets and illustrate the calcu-
lation results when using the quantlets introduced in Section 8.2 to consider
these examples. The detailed descriptions are given in following.

EXAMPLE 8.1 We use the data from the Framingham Heart Study, which
consists of a series of exams taken two years apart, to illustrate one of the
applications of PLM in biometrics. There are 1615 men, aged between 31 to
65, in this data set. The outcome Y represents systolic blood pressure (SBP).
Covariates employed in this example are a patient’s age (T ) and the serum
cholesterol level (X). Empirical study indicates that SBP linearly depends upon
the serum cholesterol level but nonlinearly on age. For this reason, we apply
PLM to investigate the function relationship between Y and (T,X). Specifically,
we estimate β and g(·) in the model

Yi = Xiβ + g(Ti) + εi, i = 1, · · · , 1615.

For nonparametric fitting, we use a Nadaraya-Watson weight function with
quartic kernel

(15/16)(1− u2)2I(|u| ≤ 1)

and choose the bandwidth using cross-validation.

The estimate value of the linear parameter equals to 10.617, and the estimate
of g(T ) is given in Figure 8.3. The figure shows that with the age increasing,
SBP increases but looks like a straight line. The older the age, the higher the
SBP is.

http://www.xplore-stat.de/help/plmhetmean.html
http://www.quantlet.org/mdstat/codes/xcs/XCSplm07.html
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Framingham Data: SBP versus Age
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Figure 8.3: Relationship SBP and serum cholesterol level in Framingham Heart
Study.

XCSplm08.xpl

EXAMPLE 8.2 This is an example of using PLM to analyze NHANES Can-
cer data. This data set is a cohort study originally consisting of 8596 women,
who were interviewed about their nutrition habits and when later examined for
evidence of cancer. We restrict attention to a sub-cohort of 3145 women aged
25− 50 who have no missing data the variables of interest. The outcome Y is
saturated fat, while the predictors include age, body mass index (BMI), protein
and vitamin A and B intaken. Again it is believable that Y depends nonlinearly
on age but linear upon other dummy variables.

In this example we give an illustration of the plmls for the real data. We select
m = 3 and the knots at (35, 46). As a consequence, the estimates of linear
parameters are (−0.162, 0.317,−0.00002,−0.0047), and the nonparametric es-
timated are shown in Figure 8.4. The curve of the nonparametric part in this
data set is completely different from that of the above example and looks like
arch-shape. The pattern reaches to maximum point at about age 35.

http://www.quantlet.org/mdstat/codes/xcs/XCSplm08.html
http://www.xplore-stat.de/help/plmls.html
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NHANES Data: Saturated Fat vs Age
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Figure 8.4: NHANES regression of saturated fat on age.
XCSnhanes.xpl

We also run other quantlets for these two data sets. We found that the estimates
of nonparametric parts from different quantlets have similar shapes, although
differences in the magnitude of the estimates from different estimation methods
are visible.

http://www.quantlet.org/mdstat/codes/xcs/XCSnhanes.html
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9 Analysis of contingency tables

Masahiro KURODA

9.1 Abstract

This chapter presents log-linear modelings that are useful for analyzing con-
tingency tables. The log-linear models are easy to describe the dependence
among the variables of statistical models and are usually used to the analysis
of contingency tables. Given the observed data in a contingency table, the log-
linear analysis estimates the model parameters and selects a best model that
can explain the relationship among variables.

First section introduces the log-linear modelings for two- and three-ways con-
tingency tables and extend them to multidimensional contingency tables. Sec-
ond section provides the statistical inference for log-linear models that is to
find maximum likelihood estimates of model parameters and select a log-linear
model. Third section shows the computational algorithm to perform the log-
linear analysis. Final section illustrates numerical examples using XploRe.
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10 Identifying Coexpressed Genes

Qihua Wang

Some gene expression data contain outliers and noise because of experiment
error. In clustering, outliers and noise can result in false positives and false
negatives. This motivates us to develop a weighting method to adjust the
expression data such that the outlier and noise effect decrease, and hence result
in a reduction in false positives and false negatives in clustering.

In this paper, we describe the weighting adjustment method and apply it to
a yeast cell cycle data set. Based on the adjusted yeast cell cycle expression
data, the hierarchical clustering method with a correlation coefficient measure
performs better than that based on standardized expression data. The clus-
tering method based on the adjusted data can group some functionally related
genes together and yields higher quality clusters.

10.1 Introduction

In order to explore complicated biological systems, microarray expression ex-
periments have been used to generate large amounts of gene expression data
( Schena et al. (1995), DeRisi et al. (1997), Wen et al. (1998), Cho et al. (1998)).
An important type of those experiments is to monitor each gene multiple times
under some conditions ( Spellman et al. (1998), Cho et al. (1998), Chu et al.
(1998)). Those of this type have allowed for the identification of functionally
related genes due to common expression patterns ( Brown et al. (2000), Eisen
et al. (1998), Wen et al. (1998), Roberts et al. (2000)). Because of the large
number of genes and the complexity of biological networks, clustering is a
useful exploring technique for analysis of gene expression data. Different clus-
tering methods including the hierarchical clustering algorithm ( Eisen et al.
(1998), Wen et al. (1998)), the CAST algorithm (Ben-Dor et al., 2000) and
self-organizing maps (Tamayo et al., 1999) have been employed to analyze ex-
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pression data.

Given the same data set, different clustering algorithms can potentially gener-
ate very different clusters. A biologist with a gene expression data set is faced
with the problem of choosing an appropriate clustering algorithm or develop-
ing a more appropriate clustering algorithm for his or her data set. Cho et al.
(1998) recently published a 17-point time course data set measuring the expres-
sion level of each of 6601 genes for the yeast Saccharomyces Cerevisiae obtained
from using an Affymetrix hybridization array. Cells in a yeast culture were
synchronized, and cultured samples were taken at 10-minutes intervals until 17
observations were obtained. Heyer, Kruglyak and Yooseph (1999) presented a
systematic analysis procedure to identify, group, and analyze coexpressed genes
based on this 17-point time course data.

An important problem for clustering is to select a suitable pairwise measure
of coexpression. Possible measures include the Euclidean distance, correlation
and rank correlation. Euclidean distances and pattern correlation have a clear
biological meaning: Euclidean distances are used when the interest is in looking
for identical patterns, whereas correlation measures are used in the case of the
trends of the patterns.

In the clustering, most measures scored curves with similar expression patterns
well, but often gave high scores to dissimilar curves or low scores to similar
ones. We will refer to a pair that is dissimilar, but receives a high score from the
similarity measure as a false positive (Heyer, Kruglyak and Yooseph, 1999), and
a pair that is similar, but receives a low score as a false negative. As pointed
out by Heyer, Kruglyak and Yooseph (1999) that the correlation coefficient
performed better than the other measures, but resulted in many false positives.
It is noted that the reason for false positive to occur is outlier effect. Hence,
Heyer, Kruglyak and Yooseph (1999) proposed a new measure called jackknife
correlation. For a data set with t observations, the jackknife correlation Jij is
defined as Jij = min{ρ(1)

ij , ρ
(2)
ij , · · · , ρ

(t)
ij , ρij}, where ρij denotes the correlation

of the gene pair i, j and ρ
(l)
ij denotes the correlation of the pair i, j computed

with the lth observation deleted. An advantage of this method is that it results
in a reduction in false positives. However, this method might be radical and lead
to false negatives since it takes the least value of these correlation coefficients
as the measure of the similarity. On the other hand, the method may lose
much valuable information since it works by deleting data. Also, the jackknife
correlation is only robust to a single outlier. For n outliers, a more general
definition of jackknife correlation is needed. For this case, however, this method
is computationally intensive for even small values of n and can result in the
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loss of much valuable information since it deletes n data points.

If the expression level of a gene at each time point is viewed as a coordinate,
then the standardized expression level of each gene at all t time points describes
a point in the t dimensional space, and the Euclidean distance between any two
points in this space can be computed. Euclidean distances are more affected
by small variations in the patterns and produce less interpretable clusters of
sequences. As pointed by Heyer, Kruglyak and Yooseph (1999) the two points
for which the distance is minimized are precisely the points that have the
highest correlation. However, the opposite is not true. That is, a pair of
genes that are dissimilar and have large Euclidean distance may have high
correlation because of outlier effect and hence receive a high score from the
similarity measure of correlation coefficient.

This shows that the Euclidean distance measure with standardized data per-
forms better than the correlation coefficient measure in the sense of resulting
in less false positive. However, the Euclidean distance measure still result in
many false negatives due to the effect of outliers. If the expression levels of two
genes are close to each other but one of the time points, and one of the two
genes has a high peak or valley at the remaining time point, then the Euclidean
distance may be large and hence the pair which closes to each other except for
the outlier may be considered as dissimilarity.

It seems difficult to avoid outlier effect by selecting similarity measure. A
possible method to reduce the outlier effect is to adjust the expression data.

Wang (2002) proposes a weighting adjustment method and apply it to the
17 time-point time course data such that a similarity measure assigns higher
score to coexpressed gene pairs and lower scores to gene pairs with unrelated
expression patterns, and hence results in not only a reduction of false positives
but also a reduction of false negatives in clustering. Here, we present the work.

10.2 Methodology and Implementation

We consider the Saccharomyces cerevisiae data set by Cho et al. (1998). This
data set measures the expression level of each of the 6601 genes of Saccha-
romyces cerevisiae at 17 time points, sampled every ten minutes during roughly
two complete cell cycles. Before giving and applying our method to the data
set, we first filter away the genes that were either expressed at very low lev-
els or did not vary significantly across the time points (Heyer, Kruglyak and
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Yooseph, 1999). The reason to do so is that the fluctuations were more likely
noise than signal if the expression levels were below a detection threshold or
that the gene that showed so little variation over time may be inactive or not
involved in regulation. We remove the genes whose expression values across all
the time points are less than 250 and those whose maximum expression levels
are not larger than 1.1 times of their average expression levels. After filtering,
3281 genes remained in the data set.

10.2.1 Weighting Adjustment

Many of the false positives and false negatives occurred due to the effect of
outliers by standard clustering methods. A possible method to reduce the
effect of outliers is to adjust the raw data by a certain method. It is noted
that the expression level of a gene at any time point is closely related to the
expression levels of the gene at the time points in the nearest neighbor of this
point. It is likely that the closer the two time points, the higher the relationship
between the two expression levels at the two time points.

This leads us to use a weighting method to adjust the expression values so that
not only the effect of outliers decreases but also data analysis is less sensitive to
small perturbation in the data. The data have been standardized by subtracting
the mean and dividing by the standard deviation. Let xi,j be the standardized
expression level of the ith gene at the j time point for i = 1, 2, . . . , 3281 and
j = 1, 2, . . . , 17. We get the following adjusted expression level

x′i,j =


1
2xi,j + 1

3xi,j+1 + 1
6xi,j+2, if j = 1

1
5xi,j−1 + 1

2xi,j + 1
5xi,j+1 + 1

10xi,j+2, if j = 2
1
12xi,j−2 + 1

6xi,j−1 + 1
2xi,j + 1

6xi,j+1 + 1
12xi,j+2, if 3 ≤ j ≤ 15

1
10xi,j−2 + 1

5xi,j−1 + 1
2xi,j + 1

5xi,j+1, if j = 16
1
2xi,j + 1

3xi,j−1 + 1
6xi,j−2. if j = 17

It is easily seen that the adjusted expression level of a gene at the jth time
point is the weighting average of the expression levels of the gene at the time
points in the nearest neighbor of the j time point for j = 1, 2, . . . , 17.

Actually, the adjusted expression level of the jth time point is given by assign-
ing weight 1/2 to jth time point and total weight 1/2 to other points. The
symmetric points about the jth time point such as j+ 1 and j− 1 are assigned
the equal weights for j = 3, 2, . . . , 15.

The weights which are assigned to time points k with |k − j| > 2 are zero and
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to time point j+ 2 or j− 2 is 1/2 time of that for the time point j+ 1 or j− 1.
One intuitive method for seeing how the weighting method behaves is to plot
the expression data and the adjusted ones for some gene pairs.
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Figure 10.1: Standardized expression level curves for YDR224c/HTB1 and
YDR225w/HTA1 i. The gene pair has a correlation coefficient
of 0.8094 based on the standardized data.

XCSclust01.xpl

¿From Figure 10.1 to Figure 10.4, it seems that the curves of the function-
ally related gene pairs with coexpression become more similar to each other
after adjustment. ¿From Figures 10.5 and 10.6, the unrelated gene pair which
is not coexpressed seems to become further away from each other. Another
more exact method is to compare the correlation coefficients of gene pairs or
Euclidean distances of them based on the expression data with those based
on the adjusted ones. It is interesting to find that the correlation coefficients
of the most of highly correlated gene pairs become larger and those of lowly
correlated gene pairs become smaller after the expression values are adjusted.

http://www.quantlet.org/mdstat/codes/xcs/XCSclust01.html
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Figure 10.2: Adjusted expression level curves for YDR224c/HTB1 and
YDR225w/HTA1 i. The gene pair has a correlation coefficient
of 0.8805 based on the adjusted data.

XCSclust02.xpl

This can be seen from Table 10.1 and Figure 10.7.

¿From Figure 10.7, it is easy to see that the correlation coefficients of the most
gene pairs whose correlation coefficients are larger than 0.6 before adjustment
become larger after adjustment, and those whose correlation coefficients are less
than 0.2 before adjustment become less after adjustment. That is, this method
gives higher score to similar gene pairs and lower score to dissimilar ones. This
may be due to the fact that the weighting adjustment method can lead to a
reduction of effect of outliers and noise in expression data. From Figure 10.7
and Table 10.1, we also see that some of the highly correlated pairs are given
lower correlation coefficient score after the expression data are adjusted. The
reason may be that outliers or data noise lead to the high correlation between

http://www.quantlet.org/mdstat/codes/xcs/XCSclust02.html
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Figure 10.3: Standardized expression level curves for YDL179w/PCL9 and
YLR079w/SIC1. The gene pair has a correlation coefficient of
0.9106 based on the standardized data.

XCSclust03.xpl

these gene pairs, or that, randomly, some of them display very similar pattern
before adjustment. After weighting adjustment for the expression values, the
correlation coefficients for these pairs will decrease since the adjustment method
leads to a reduction of effect of outliers, data noisy and randomization. Also,
it is observed that some lowly correlated gene pairs are given much higher
correlation coefficient score after the expression data are adjusted. The reason
may be that only one of a gene pair contains outliers at the same time points
or one of the two genes has high peaks and another gene have high valleys at
the same time points, and these outliers lead to the low correlation between
the gene pair. After adjustment, effect of outliers decreases and hence the
correlation coefficient for the gene pair will increase. This, for example, can
be seen from Figures 10.8 and 10.9, which contain plots of the expression level

http://www.quantlet.org/mdstat/codes/xcs/XCSclust03.html
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Figure 10.4: Standardized expression level curves for YDL179w/PCL9 and
YLR079w/SIC1. The gene pair has a correlation coefficient of
0.9675 based on the adjusted data.

XCSclust04.xpl

curves for gene pair YAR002w and YBL102w/SFT2 based on standardized
expression data and adjusted ones, respectively. From Figure 10.8, we see that
YBL102w/SFT2 and YAR002w seem to be overly expressed at two different
time points of 90 minutes and 150 minutes, respectively. At the time point of
90 minutes, only YBL102w/SFT2 has a high peak. At the time point of 150
minutes, YAR002w has a high peak and YBL102w/SFT2 has a low valley. If
one removes the expression values of the two genes at the two time points, the
correlation coefficient of the two genes increase to 0.6036 from 0.3150. This
shows that the two special expression values lead to a low correlation between
the two genes. From Figure ??, it is easily seen that the weighting adjustment
method leads to a reduction of effect of the expression values at the two time

http://www.quantlet.org/mdstat/codes/xcs/XCSclust04.html
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Figure 10.5: Standardized expression level curves for YDL227c/HO and
YDR224c/HTB1. The gene pair has a correlation coefficient of
0.3172 based on the standardized data based on the standardized
expression data.

XCSclust05.xpl

points so that the correlation coefficient of the two genes increase to 0.8113.

By the above important features, we can expect that this adjustment method
will lead to a reduction of both the false positives and false negatives when
Pearson correlation coefficient clustering algorithm is used.

10.2.2 Clustering

We clustered the gene expression time series according to the Pearson correla-
tion coefficient since it not only conforms well to the intuitive biological notion

http://www.quantlet.org/mdstat/codes/xcs/XCSclust05.html
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Figure 10.6: Standardized expression level curves for YDL227c/HO and
YDR224c/HTB1. The gene pair has a correlation coefficient of
0.1401 based on the adjusted expression data.

XCSclust06.xpl

and performs better than other measures, but also the correlation coefficient
measure has the important features described in Section 2.1 for the adjusted
expression data.

The clustering method that we use is the popular hierarchical method. This
method computes a dendrogram that assembles all the genes into a single tree.
Starting with N clusters containing a single gene each, at each step in the
iteration the two closest clusters are merged into a larger cluster by calculating
an upper-diagonal similarity matrix by the metric described above and scanning
the matrix to identify the highest value. Similarity measure between clusters
is defined as that between their average expression pattern. After N − 1 steps,
all the genes are merged together into an hierarchical tree.

http://www.quantlet.org/mdstat/codes/xcs/XCSclust06.html
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Table 10.1: Correlation coefficients for some gene pairs based on the stan-
darized and adjusted expression data

Gene Pairs BA AA

YKL130c/SHEI YNL053w/MSG5 0.8047 0.8474
YDL179w/PCL9 YLR079w/SICI 0.9106 0.9676
YJL157c/FAR1 YKL185w/ASH1 0.9293 0.9535

YJR092w/BUD4 YLR353w/BUD8 0.6904 0.9684
YIL009w/FAA3 YLL040c/VPS13 0.7519 0.8798
YJL196c/EL01 YJR148w/TWT2 0.6815 0.7433

YBL023c/MCM2 YBR202w/CDC47 0.7891 0.8383
YHR005c/GPA1 YJL157c/FAR1 0.8185 0.8320
YOR373w/NUD YJL157c/FAR -0.1256 -0.2090

YOR373w/NVD1 YAL040c/c -0.1133 -0.2222

YDR225w/HTA1̃i YLL022c 0.3493 0.0673
YJR018w YJR068w/RFe2 0.9046 0.8968

YJR068/RFC2 YJR132w/NMD5 0.8700 0.7121

BA: Before Adjustment, AA: After Adjustment

Once the tree is constructed, the data can be partitioned into any number
of clusters by cutting the tree at the appropriate level. For large data sets,
however, it is not easy to choose an appropriate location for cutting the tree.
We will not address this problem here since our purpose in this paper is to
show how our weighting adjustment method improves the classification results.
To evaluate how ‘good’ our clustering is, let us identify some applications.

YDR224c/HTB1 and YDR225w/HTA1 are late G1 and G2 regularly genes
which have the same biological function (DNA replication, (Cho et al., 1998)).
A natural question is: Can the two genes be grouped together based on the
adjusted expression levels? To answer this question, let us find the clusters
including the two genes.

In our hierarchical tree, it can be found the smallest cluster including YDR224c/
HTB1 contains two genes, YDR224c/HTB1 and YDR225w/HTA1. It is inter-
esting to note that the two genes are just known functionally related by Cho
et al. (1998).

The above result implies that this cluster is also the smallest one which includes
the two genes. This shows that our method can group the two functionally
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Figure 10.7: Correlation coefficients of 10,000 gene pairs. ρ and ζ are the corre-
lation coefficients based on the standardized expression data and
the adjusted expression data, respectively. 869 gene pairs have
correlation coefficients which are larger than 0.6. The correlation
coefficients of 556 pairs of them become larger after adjustment.
2303 gene pairs have correlation coefficients which are less than
0.2. The correlation coefficients of 1520 pairs of them become less
after adjustment.

XCSclust07.xpl

related genes together.

Another intuitive method to evaluate objectively the quality of the clustering
for the particular application is to plot the expression data for the genes in
the clustering and determine whether the plots look similar and how the plots
look similar. Figure 5.1 plots the expression level curves for the two genes. By
Figure 5.1, their expression patterns are indeed similar to each other.

http://www.quantlet.org/mdstat/codes/xcs/XCSclust07.html
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Figure 10.8: Standardized expression level curves for YAR002w and
YBL102w/SFT2. The gene pair has a correlation coefficient
of 0.3750 based on the standardized expression data.

XCSclust08.xpl

It is known there are 19 late G1 regulatory genes and two of them are just
YDR224c/HTB1 and YDR225w/HTA1 (Cho et al., 1998). In our clustering
tree, the cluster including the two genes whose gene number is the closest
to 19 contains 17 genes, 4 of them are known to be late G1 regulary and
functionally related with DNA replication. It is known that some unrelated
genes also may have similar expression patterns. Hence, the remaining 13
genes are not necessarily functionally related with the 4 genes even though
they are coexpressed. However, the 13 genes provide excellent candidates for
further study.

We also try to find the smallest cluster including the 19 genes in late G1 group.

http://www.quantlet.org/mdstat/codes/xcs/XCSclust08.html
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Figure 10.9: Standardized expression level curves for YAR002w and
YBL102w/SFT2. The gene pair has a correlation coefficient
of 0.8113 based on the adjusted expression data.

XCSclust09.xpl

Unfortunately, this cluster contains 2930 genes and hence is not of high quality
since it contains many lowly related genes. This reason may be that some
gene pairs in the late G1 group are lowly related. For example, the correlation
coefficient of the gene pair, YDR225w/HTA1 and YPR175w/DPB2, in the late
G1 group is 0.0471.

Another problem we should answer is whether the adjustment method improves
the classification result compare to the corresponding hierarchical method based
on standardized expression data. Let us consider the above example again and
see how the clustering method based on standard expression data behaves.
From the hierarchical tree based on the standardized data without adjustment,
the smallest cluster including YDR224c/HTB1 is {YDR224c/HTB1, YDR134C/ f}.

http://www.quantlet.org/mdstat/codes/xcs/XCSclust09.html
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However, YDR134C/ f is not known to be functionally related with YDR224c/HTB1
though it provides a possible candidate. Figure 5.10 plots the expression level
curves of the two genes.
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Figure 10.10: Standardized expression level curves for YDR224c/HTB1 and
YDR134c/ f in the clustering tree based on the standardized ex-
pression data.

XCSclust10.xpl

In the clustering tree based on the standardized expression data without ad-
justment, the cluster including all the 3281 genes is the only one including both
YDR224c/HTB1 and YDR225w/HTA1. This shows that this method cannot
group the two functionally related genes together.

Both YDR224c/HTB1 and YDR225w/HTA1 are also in the late G1 group
mentioned above, which contains 19 genes. Hence, the cluster including the
3281 genes are also the only one including the 19 genes. This shows that this
clustering method with standardized expression data yields much lower quality

http://www.quantlet.org/mdstat/codes/xcs/XCSclust10.html
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clusters and also cannot group the 19 genes together.

Let us consider another example. YJR092W/BUD4 and YLR353W/BUD8 are
M regulatory genes which are functionally related to directional growth (Cho
et al., 1998). In our clustering tree, the smallest cluster including the two genes
contains four genes. The other two genes are YNL066W and YOR025W/HST3.
Figure 10.11 plots the standardized expression level curves of the four genes.
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Figure 10.11: Standardized expression level curves for the genes in the smallest
cluster including YJR092w/HUD4 and YLR353w/HUD8 in the
clustering tree based on the adjusted data. The remaining two
genes are YNL066w and YOR025w/HST3.

XCSclust11.xpl

¿From Figure 10.11, all the expression level curves are similar to each other
except YNL066W. It is easy to see that YOR025W/HST3 is coexpressed with
YJR092W/HUD4 and YLR353W/BUD8. Hence, YOR025W/HST3 provides
an excellent candidate for further study whether it is functionally related with

http://www.quantlet.org/mdstat/codes/xcs/XCSclust11.html
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YJR092W/HUD4 and YLR353W/BUD8.

Let us apply the clustering method with standardized data without adjustment
to the above example. The smallest cluster including YJR092W/BUD4 and
YLR353W/BUD8 contains 11 genes.

YJL157c/FAR1 is an early G1 regulary gene which is functionally related
with mating pathway. In our hierarchical tree, the smallest cluster includ-
ing this gene contains two genes,YJL157c/FAR1 and YGR183C/QCR9 ex1.
From Figure 10.12, we can see that YGR183C/QCR9 ex1 is coexpressed with
YJL157c/FAR1 though it is not known to be early G1 regularly gene which is
functionally related with YJL157c/FAR1. The second smallest cluster contains
5 genes in addition to YJL157c/FAR1. One of them is YKL185w/ASH1, which
is known to be functionally related with YJL157c/FAR1. Actually, this cluster
is also the smallest one including the two functionally related genes.

For the clustering method with standardized expression data, the smallest clus-
ter including YJL157c/FAR1 contains 6 genes. The second smallest cluster
contains 7 genes. No genes in the two clusters are known to be function-
ally related. The smallest cluster including the two functionally related genes,
YJL157c/FAR1 and YKL185w/ASH1, contains 96 genes.

It is known that YIL140w/SRO4 is the only one which is known to be S regu-
latory and to be related with directional growth. Are there any functionally re-
lated genes with it? Which genes are coexpressed with it? In our clustering tree,
the first smallest cluster including this gene is {YIL140w/SRO4, YPL163c/SVS1}.
The second smallest cluster contains another gene, YOR373w/NUD1, in addi-
tion to the above two genes. From the standardized data without adjustment,
different clusters are obtained. The smallest cluster including YIL140w/SRO4
is {YIL140w/SRO4, YLR326w}. The second smallest cluster contains YNL243w/SLA2
and YPR052c/NHP6A in addition to the two genes in the smallest cluster. Fig-
ures 10.13 and 10.14 plot the expression level curves for the genes in the two
second smallest clusters, respectively.

¿From Figures 10.13 and 10.14, we see that the expression level curves for the
genes in the cluster by our method are more closer to each other. This also can
be seen by their correlation coefficients. In our cluster, other genes are more
highly related with YIL140w/SRO4. This shows that our clusters have higher
quality for this special example. From Figure 10.14, the cluster based on the
standardized expression data is of much more lowly quality since it contains
some lowly related genes.

¿From the above examples, we see that the clustering method based on the
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Figure 10.12: Standardized expression level curves for the genes in the smallest
cluster including YJL157c/FAR1 in the clustering tree based on
the adjusted data.

XCSclust12.xpl

adjusted expression data behave better than that based on the standardized
expression data without adjustment. Our method can group coexpression
genes and some functionally related genes together. However, We have not
found that any known functionally related genes can be in the same clusters
with high quality in the clustering tree based on the standard expression data.
Figure 10.13 shows that two functionally related gene pairs, YJR092w/BUD4
and YLR353w/BUD8, are in a cluster with 11 genes. However, this cluster
is clearly not of high quality since it contains some lowly related genes with
YJR092w/BUD4 and YLR353w/BUD8.

It should be pointed out some functionally related genes cannot also group to-
gether based on the adjusted data. This reason may be that some functionally

http://www.quantlet.org/mdstat/codes/xcs/XCSclust12.html
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Figure 10.13: Standardized expression level curves for the genes in the second
smallest cluster including YIL140w/SRO4 in the clustering tree
based on adjusted expression data.

XCSclust13.xpl

related genes are not coexpressed. Also, genes in the same high quality clus-
ter are not necessarily functionally related since some functionally unrelated
genes have similar expression patterns. Because there is a connection between
coexpression and functional relation, the clusters are an exploratory tool that
meant to identify candidate functionally related genes for further study though
they do not reveal the final answer whether these genes in the same clusters
are functionally related.

10.3 Concluding Remarks

Our purpose to use the weighting method to adjust the expression data is to
decrease the the effect of the outliers and noise. It is reasonable to assign
a weight of 1/2 to the point that one hopes to adjust and a total weight of
1/2 to other points which are located in its nearest neighbor. This method
of assigning weights used in this paper can effectively result in a reduction of
effect of outliers and noise and does not change the normal expression levels
too much. Also, the weighting method is robust for the slight change of the

http://www.quantlet.org/mdstat/codes/xcs/XCSclust13.html
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Figure 10.14: Standardized expression level curves for the genes in the second
smallest cluster including YIL140w/SRO4 in the clustering tree
based on the standardized expression data.

XCSclust14.xpl

weights. If one assigns a much larger weight than 1/2 to the point which is
adjusted, effect of outlier or noise may not decrease effectively. If one assigns
a much less weight than 1/2 to the point, the adjusted expression level may
not provide correct information and hence the weighting method may result in
wrong clustering results since such a method changes the expression levels too
much. It should be pointed out that the weighting adjustment method can be
applied to any analysis procedures for any gene expression data to decrease the
effect of outlier and noise though we apply it only to a hierarchical clustering
for the yeast cell cycle data in this paper.

Heyer, Kruglyak and Yooseph (1999) proposed a jackknife correlation mea-
sure to resolve false positive. As pointed out before, this method may be

http://www.quantlet.org/mdstat/codes/xcs/XCSclust14.html
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radical and may lead to false negatives. An improved method which can
avoid the false negatives may be to use another jackknife correlation ρij,JK =
1
n

∑n
k=1(nρij − (n − 1)ρ(k)

ij ) based on the adjusted data, where ρij and ρ
(k)
ij

are as defined in Introduction. On the other hand, the clustering method with
the jackknife correlation measure ρij,JK based on the standardized expression
data without adjustment may be conservative and cannot avoid the occurring
of false positives very well. Based on the adjusted data, however, the jackknife
correlation measure may avoid the false positives and false negatives very well.
We will investigate the measure in future work.
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11 Calculating Odds Ratios in
Generalized Additive Models
including interactions.
Application to post-operative
infection data.

Javier Roca-Pardiñas, Carmen Cadarso-Suarez, Wenceslao Gonzalez-Manteiga

Expected length of the paper: 20 pages

11.1 Abstract

In many biomedical studies, there is often interest in calculating effect measures
in presence of interactions between two exposures that have been measured in a
continuous scale. Traditional approaches based on parametric regression mod-
els are limited by the degree of arbitrariness involved in transforming these
exposures into categorical variables or in imposing a given parametric func-
tional form on the regression function. Recently generalized additive models
(GAMs) were proposed to overcome these shortcomings, but there is currently
no analytical methods with which to calculate GAM-based association esti-
mates for interactions among continuous exposures. In this work we consid-
ered a modified version of the local scoring (with backfitting) algorithm that
allows nonparametric estimation of association curves through GAMs with it-
erations. Procedures for testing second-order interaction terms were also sug-
gested. Backfitting theory is difficult in this context, and bootstrap procedures
are therefore provided for estimating the distribution of the test statistics and
for the construction of pointwise confidence bands for association curves. Given
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the high computational cost involved, binning techniques were used to speed up
the computation in the estimation and testing process. The validity of the new
methods is supported by the results of a simulation study, and they are illus-
trated using binary data from a study of possible risk factors for post-operative
infection.



12 Survival Trees

Carmela Cappelli and Heping Zhang

12.1 Introduction

Survival trees are a useful regression tool to model the relationship between a
survival time and a set of covariates. Survival or censored data are particularly
common in medical research, and they also arise from many different areas of
scientific and clinical research. For example, in the social sciences, we may
be interested in the school drop-out rates and the turnover in a labor market.
Tree based methods, due to their nonparametric nature and flexibility, have
become very popular in the last two decades as an alternative to the traditional
proportional hazard model.

The term survival data refers to any data that deals with time to the occurrence
of an event of interest. Although the methods developed to cope with survival
data are primarily related to medical and biological research, they have their
root in insurance statistics and, in general, they are widely used in the social
and economic sciences, as well as in engineering. In economics we may study
the “survival” of firms or the ”survival” of products. For quality control pur-
poses it is a common practice to study the “survival” of electronic components
(reliability data analysis, failure time analysis, see Meeker and Escobar (1998)).

In medical research, the event of interest is usually the time to death of a patient
after the diagnosis but it might be the time to recovery or remission as well.
The main feature of survival data is the presence of incomplete data, which
are referred to as censored observations and often provide the most relevant
information about the phenomenon under study. Censoring can arise from
several reasons: the observation time is limited and the study ends before the
event is observed for all the subjects, some of the subjects may be lost to
follow up the study, subjects are entered at fixed times and the event occurred
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before recording. In all these cases, the exact time of the event is not observed.
Depending on the direction of the censoring, censored data can be classified
into right censored when the survival time exceeds the observed one, and left
censored when the survival time is less than the observed one. Left censoring is
particularly important in studies on infectious diseases such hepatitis or HIV
(human immunodeficiency) but it will not be discussed here. In the realm of
right censored data, a distinction can be made among three different types of
censoring:

• Type I censoring: the subjects enter the study at the same time, at a
given date the study ends and some of them are lost to follow up or the
event is not occurred;

• Type II censoring: the subjects enter the study at the same time, the
end of the study is not initially fixed and it is carried on until the event
occurs for a certain proportion of subjects;

• Type III censoring: the subjects enter the study at different times.

Figure 12.1 depicts these situations.

Note that Type II is nonrandom censoring, whereas Type I and III are random
censoring.

The circumstance that the survival time cannot be fully observed for all the
subjects under study can be formally expressed as follows. Let Y be the ob-
served time and T be the survival time. Without censoring, Y = T , i.e., the
observed time is the true survival time. With censoring, the observed time is
the censoring time denoted by U . A censoring indicator δ takes into account
the time being censored, so that δ = 1 if Y = T and δ = 0 otherwise. For the
latter, Y = min (T,U).

There are several important issues involved in the analysis of survival data.
They include the comparison of the survival distributions among two or more
groups and the identification of predictive variables of survival time. To these
ends, parametric, semiparametric and nonparametric methods have been devel-
oped. Briefly, parametric methods require specifying a distribution for the sur-
vival times (for example Exponential or Weibull). The semi-parametric meth-
ods make no assumptions concerning the distributions of the survival times
but assume a known form for the effects of the covariates on survivorship.
Non-parametric methods make no assumptions on distributions of the survival
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Figure 12.1: The various types of censor data

times. General discussions on various methods can be found in textbooks such
as Lee (1992) and Miller (1998).

Among nonparametric methods, tree based methods have become a very pop-
ular tool for survival data analysis thanks to the fact that multiple covariates
may be associated with the survival time and researchers are commonly inter-
ested in identifying subgroups of subjects with similar survival distributions as
determined by the covariates.

The XploRe quantlib hazreg provides a number of quantlets for the analysis
of survival data. We will describe here the quantlet stree, which implements
the tree based regression method for survival data developed by Zhang (1995)
and Zhang and Singer (1999), providing a complete tool to grow, prune and
display survival trees.

This chapter is a tutorial for the XploRe stree quantlet in the XploRe quantlib

http://www.xplore-stat.de
http://www.xplore-stat.de/help/0hazreg.html
http://www.xplore-stat.de/help/stree.html
http://www.xplore-stat.de
http://www.xplore-stat.de/help/stree.html
http://www.xplore-stat.de
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hazreg Grund and Yang (2000, Chapter 5), which represent the XploRe im-
plementation of the methodology decribed by Zhang (1995) and Zhang and
Singer (1999) and a modification of Heping Zhang’s program called STREE.
In Section 1, we describe censored survival data. In Section 2, the survival tree
methodology is presented. In Section 3, the syntax of the quantlets stree is
illustrated with some examples.

12.2 Methodology

Any tree based method involves two main steps:

1. growing the tree, i.e., partitioning the data (internal nodes) according
to a splitting criterion which allows to select the best covariate and cut
point along it to split any node;

2. pruning the tree, i.e, removing retrospectively some of the branches in
order to get a shorter and more accurate tree.

With censored data the survival time is not completely observed for all the
subjects and therefore it involves two response variables: the observed time and
the censoring indicator defined above. As a consequence, the data are triplets
{yi, δi,xi}, i = 1, . . . , n where yi is the observed time for the ith subjects, δi
indicates whether yi is censored and xi = (xi1, . . . , xip) is the vector of the p
covariates associated with the i-th subject. The events yi = ti are called event
times or failure times. It is noteworthy that in this approach, the censoring is
assumed to be random (Type I and Type III), so that, given the values of the
covariates, the conditional distributions of the survival time and the censoring
time are independent.

12.2.1 Splitting criteria

The growing phase is led by the objective of forming a number of homogeneous
subsets with respect to the response variable. In order to achieve this aim, the
quantlet stree allows three splitting criterion as described by Zhang (1995).
Two of them are based on an extension of the impurity measure introduced by
Breiman, Friedman, Olshen and Stone (1984) and the other one is based on
the log-rank test statistic.

http://www.xplore-stat.de/help/0hazreg.html
http://www.xplore-stat.de
http://www.xplore-stat.de/help/stree.html
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Impurity based criteria In order to discuss the impurity-based splitting crite-
ria, it is useful to recall some basic concepts and notation in the classification
of a multi-class response. Consider a candidate split s of a node t into two
offsprings tl and tr and let p(tl) and p(tr) be the proportions of observations
sent by s into node tl and tr, respectively. The impurity at node t, denoted by
i(t), measures the impurities based on the within-class probabilities. Then, a
natural way to evaluate the performances of a candidate split is the change in
impurity given by:

∆i(s, t) = i(t)− {p(tl)i(tl) + p(tr)i(tr)} (12.1)

The quantity ∆i(s, t) is used as a partitioning criterion. This notion of impurity
in the case of censored survival data cannot be used as it stands because,
although the outcome we are interested in is the survival time, this involves
two response variables: the observed time yi (continuous) and the censoring
indicator δi (binary). In this respect, a pure node would contain subjects whose
observed times are similar and who are in most part censored or uncensored. In
other words, a suitable impurity measure for censored data must take account
of both observed time and censoring. Therefore the impurity of a node can be
expressed as:

i(t) = w1iy(t) + w2iδ(t), (12.2)

where w1 and w2 are pre-specified weights and iy(t) and iδ(t) denote the impu-
rity of node t for the observed time and censoring, respectively. In particular,
the impurity for the time is given by

iy(t) =
n(t)∑
i=1

{yi − ȳ(t)}2∑
y2
i

(12.3)

where n(t) is the number of observations in node t and ȳ(t) is the average of
the observed times. The denominator is needed to be normalized with respect
to the other component of the impurity. When the summation in the denomi-
nator is over node t observations the criterion is called adaptive normalization.
When it is over the whole sample it is called global normalization.
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For the impurity of the censoring indicator, it is measured by the entropy
measure:

iδ(t) = −pt log(pt)− (1− pt) log(1− pt), (12.4)

where pt denotes the proportion of censored data in node t. Among all the
candidate splits at a given node, one split is chosen to maximize the reduction
in impurity as measured by 12.1. This simple adaptation of the impurity crite-
rion provides a straightforward way to combine the continuous and categorical
outcomes that characterize censored data.

Log-rank statistic criterion The log-rank test statistic is commonly used in
the analysis of censored survival data to compare the survival distributions of
different groups. For a given covariate and a split point, a 2 × 2 contingency
table is created of the form

Table 12.1: Contingency table for the log-rank statistic.

Event
Yes No

xij ≤ s ai ni
xij > s di Ki

where xij is the value of the j-th covariate for the i-th observation, s is a split
point, and Ki is the risk set at time yi. The log-rank test statistic is defined
as:

LR(s) =
∑
i(ai − Ei)√∑

i Vi
(12.5)

where
Ei =

dini
Ki

(12.6)

and

Vi =
{
di(Ki − ni)ni
Ki(Ki − 1)

}
(1− di

Ki
). (12.7)
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Given that the log-rank statistic testes the significance of the difference between
two survival distributions, it represents, in a way, a natural choice for splitting
the data into two groups with different survivals and it is widely adopted as
the splitting criterion Segal (1998), LeBlanc and Crowley (1993), Ciampi and
Thiffault (1986).

At a given node t, for every covariate and split point, the log-rank test statistic
is computed and the best split s∗ is chosen if

LR(s∗, t) = maxLR(s, t). (12.8)

12.2.2 Pruning

Tree growing, or recursive partitioning, is only one aspect of the tree construc-
tion. Tree pruning generally follows tree growing, because of the following two
concerns:

1. complexity – the long resulting structure tends to be very large; this
is especially the case with binary trees since an attribute may reappear
(although in a restricted form) many times down the tree;

2. overfitting – several branches, especially the terminal ones, reflect par-
ticular features of the data arising from the sampling procedure rather
than modeling the underlying relationship between the response variable
and the covariates.

Therefore, after a large tree Tmax is grown, a pruning step is carried out in
order to simplify the structure and avoid overfitting as discussed in Cappelli,
Mola and Siciliano (2002). The quantlet stree implements a practical bottom
up pruning procedure following the proposal suggested by Segal (1998), which
can be described as follows. A statistic St (say the log-rank test statistic) is
assigned to each internal node t of Tmax. These statistics are ordered in an
increasing order. A threshold is then selected and any internal node whose
statistic does not reach the threshold is changed into a terminal node.

The threshold can be fixed by simply considering a significance level. Cutting
off the branches stemming from the internal nodes that do not reach the thresh-
old results in a single final pruned tree. A more effective approach that allows

http://www.xplore-stat.de/help/stree.html
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insights into the pruning process is to generate a sequence of nested pruned
subtrees of Tmax in the spirit of the pruning procedure proposed in the CART
book (see the XploRe CART tutorial). The sequence is created by iterating
the process of locating the minimum value of the statistic and pruning the
offsprings of the node(s) that reaches this minimum value. The threshold and
therefore the final tree, is selected by plotting the minimal statistics against
the size (number of terminal nodes) of the corresponding subtree.

The inspection of the plot allows to select the final tree, in particular, usually
the plot shows a ”kink” where the pattern changes suggesting that the corre-
sponding tree could be the final one. An important point in the pruning process
concerns the assignment of the statistic to the internal nodes. This assignment
involves two steps: first, the statistic is computed for all internal nodes; next,
the assigned value is replaced with the maximum over the node offsprings if the
latter is greater. The sequence, therefore, is created considering the maximized
values. In this way the pruning process tends to retain branches that contain
sub-branches with higher values of the statistic.

12.3 The Quantlet stree

12.3.1 Syntax

The quantlet stree has the following syntax:

streeout = stree (covars, time, censor, covartypes, method)

grows, prunes and plots the survival tree

with input variables:

covars : A n× p matrix containing observations of covariates,

time : A n× 1 vector containing observations of survival time

censor : A n× 1 vector containing the censoring indicator,

covartypes : specifies the type of covariates

method : indicates the splitting criterion.

http://www.xplore-stat.de
http://www.xplore-stat.de/help/stree.html
http://www.xplore-stat.de/help/stree.html
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The arbitrary name streeout has been used to indicate the output which
includes the following output variables:

nodenum : the node number,

cases : the number of observations falling into the node,

dnleft : the left descendant node number ,

dnright : the right descendant node number,

median : the median survival time,

splitvar : the splitting variable chosen to split the node

splitval, splitting values or categories; observations having the variable splitvar
larger than the value in splitval are sent to the right daughter node,
otherwise to the left daughter node. For categorical variables splitval
reports the categories for cases sent into the right descendant.

Optional parameters allows to modify the output presentation. Note that the
output of stree is shown both in the form of a table and a graphical display.

12.3.2 Example

In order to illustrate the quantlet stree the Early Lung Cancer Detection
data has been considered; this data set is available at the Statlib archive
(http://lib.stat.cmu.edu/datasets/csb).

The following variables were recorded: patient ID (integer); institution
(0=Memorial Sloan Kettering, 1=Mayo Clinic, 2=John Opkins); group (0=stu-
dy, 1=controls); means of detection (0= routine cytology, 1=routine X-ray,
2=both X-ray and cytology, 3=interval); cell type (0=epidermoid, 1=adeno-
carcinoma, 2=large cell, 3=oat cell, 4= other); stage, this variable involves four
covariates: overall stage (three levels), tumor (three levels), lymph nodes
(three levels), distant metastases(two levels), operated (0=no, 1=yes); sur-
vival (days from detection to last date known alive); survival category(0=ali-
ve, 1=dead of lung cancer, 2=dead of other causes).

The analysis has been restricted to the study group, discarding the controls;
also, in the study group, patients dead for other causes than the lung cancer
has not been considered so that the subset consist of n = 475 patients. The

http://www.xplore-stat.de/help/stree.html
http://www.xplore-stat.de/help/stree.html
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Table 12.2: Global Normalization before Prune

left right median split split
node # cases nodes nodes value var # value

1 475 2 3 805.00 4 3,2
2 183 4 5 1719.00 1 2,1
3 292 6 7 516.50 1 2
4 47 8 9 2282.00 5 2
5 136 10 11 1339.50 8 1
6 78 12 13 1479.50 2 3,2
7 214 14 15 415.50 4 3
8 25 16 17 2772.00 3 4,3
9 22 18 19 1586.00 2 3,2
10 23 20 21 1208.00 5 2
11 113 22 23 1343.00 3 4
12 31 24 25 1336.00 6 2
13 47 26 27 1617.00 6 2
14 28 28 29 490.00 5 2
15 186 30 31 405.00 3 4,1
22 56 32 33 1002.00 2 3,2
23 57 34 35 1720.00 1 2
25 17 36 37 1331.00 3 3
27 36 38 39 1826.50 3 3,2

XCSstree01.xpl

following XploRe code reads the original data (file lung.dat), deletes the pa-
tient ID, creates the subset and the input variables for the quantlet stree and
runs the quantlet considering as splitting criterion the global normalization.

The results are displayed in Table 12.2 and 12.3, moreover the pruned tree is
displayed in Figure 12.2.

XCSstree01.xpl

The first discriminant variable selected by the global normalization splitting
criterion is the overall stage of the lung cancer, followed by the institution at

http://www.quantlet.org/mdstat/codes/xcs/XCSstree01.html
http://www.xplore-stat.de
http://www.xplore-stat.de/help/stree.html
http://www.quantlet.org/mdstat/codes/xcs/XCSstree01.html
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Table 12.3: Global Normalization after Prune

left right median split split
node # cases nodes nodes value var # value

1 475 2 3 805.00 4 3,2
2 183 4 5 1719.00 1 2,1
3 292 6 7 516.50 1 2
4 47 8 9 2282.00 5 2
5 136 10 11 1339.50 8 1
7 214 14 15 415.50 4 3
11 113 22 23 1343.00 3 4
23 57 34 35 1720.00 1 2

XCSstree01.xpl

both nodes 2 and 3. For example, the split of node 2 separates patients of the
Mayo Clinic and of John Hopkins, who are sent to node 5, from patients of
The Memorial Sloan Kittering. By setting in the above code the input vari-
able method=‘‘adaptnorm’’ and method=‘‘logrank’’ , the other available
criteria are used to grow the survival tree, adaptive normalization and log-rank
statistic, respectively. Since the different splitting criteria affect the structure
of the tree, it is advisable to try them all, selecting the final tree on the basis
of scientific judgement.

http://www.quantlet.org/mdstat/codes/xcs/XCSstree01.html
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Figure 12.2: The survival tree for Early Lung Cancer Detection Data
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13 Variable Selection in Principal
Component Analysis

Yuichi Mori, Masaya Iizuka, Tomoyuki Tarumi and Yutaka Tanaka

While there exist several criteria by which to select a reasonable subset of
variables in the context of PCA, we introduce herein variable selection using
criteria in Tanaka and Mori (1997)’s modified PCA (M.PCA) among others.

In order to perform such variable selection via XploRe, the quantlib vaspca,
which reads all the necessary quantlets for selection, is first called, and then
the quantlet mpca is run using a number of selection parameters.

In the first four sections we present brief explanations of variable selection in
PCA, an outline of M.PCA and flows of four selection procedures, based mainly
on Tanaka and Mori (1997), Mori (1997), Mori, Tarumi and Tanaka (1998) and
Iizuka et al. (2002a). In the last two sections, we illustrate the quantlet mpca
and its performance by two numerical examples.

13.1 Introduction

Consider a situation in which we wish to select items or variables so as to delete
the redundant variables or to make a small dimensional rating scale to measure
latent traits. Validity requires that all of the variables be included. On the
other hand, practical application requires that the number of variables be as
small as possible.

There are two types of examples: a clinical test and a plant evaluation. As for
the former case, a clinical test for ordinary persons is sometimes not suitable for
handicapped persons because the number of checkup items are too large. It is
desirable to reduce the number of variables (checkup items) and obtain global
scores which can reproduce the information of the original test. As for the latter

http://www.soci.ous.ac.jp/~mori/indexE.html/~mori
http://www.law.okayama-u.ac.jp/~masa//~iizuka
http://www.ems.okayama-u.ac.jp/stat/tarumi/homeJapan.html/~tarumi
http://www.ems.okayama-u.ac.jp/stat/tanaka/homeJapan.html/~tanaka
http://www.xplore-stat.de
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case, there are a large number of sensors (checkpoints) in a plant that are used
to measure some quantity at each point and evaluate the performance of the
entire plant. Exact evaluation requires evaluation based on data measured at
all points, but the number of points may be too large to obtain the result within
a limited time for temporary evaluation. Therefore, appropriately reducing the
number of points to be used in temporary analysis is helpful. For such cases,
we meet the problem of variable selection in the context of principal component
analysis (PCA).

Let us show another example. In Figure 13.1, the left-hand plot is a scatter
plot of the first and second principal components (PCs) obtained based on
all 19 original variables, and the right-hand plot is based on seven selected
variables. There are not so many differences between the two configurations
of PCs. This illustrates the meaningfulness of variable selection in PCA since
selected variables can provide almost the same result as the original variables
if the goal of the analysis is to observe the configuration of the PCs.

Figure 13.1: Scatter plots of principal component scores based on 19 variables
(left) and based on 7 selected variables {3, 7, 13, 15, 16, 17, 18}
(right).

vaspca01.xpl

Furthermore we can perform variable selection in PCA as a prior analysis, for
example, when the number of original variables is too large for the desired anal-
ysis, or as a posterior analysis, for example, when some clusters are obtained
and typical variables must be selected from among those in each cluster.

Thus, specifying a subset of variables in the context of PCA is useful in many

http://www.quantlet.org/mdstat/codes/xcs/vaspca01.html
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practical applications.

13.2 Variable selection in PCA

The problem of variable selection in PCA has been investigated by Jolliffe
(1972, 1973), Robert and Escoufier (1976), McCabe (1984), Bonifas et al.
(1984), Krzanowski (1987a, 1987b), Falguerolles and Jmel (1993), and Mori,
Tarumi and Tanaka (1994), among others. These studies sought to obtain ordi-
nary principal components (PCs) based on a subset of variables in such a way
that these PCs retain as much information as possible compared to PCs based
on all the variables: Jolliffe (1972, 1973)’s methods consider PC loadings, and
the methods of McCabe (1984) and Falguerolles and Jmel (1993) use a partial
covariance matrix to select a subset of variables, which maintains information
on all variables to the greatest extent possible. Robert and Escoufier (1976) and
Bonifas et al. (1984) used the RV -coefficient and Krzanowski (1987a, 1987b)
used Procrustes analysis to evaluate the closeness between the configuration
of PCs computed based on selected variables and that based on all variables.
Tanaka and Mori (1997) discuss a method called the “modified PCA” (M.PCA)
to derive PCs which are computed using only a selected subset of variables but
which represent all of the variables, including those not selected. Since M.PCA
naturally includes variable selection procedures in the analysis, its criteria can
be used directly to detect a reasonable subset of variables (e.g. see Mori (1997,
1998), and Mori, Tarumi and Tanaka (1998)). Furthermore, other criteria can
be considered, such as criteria based on influence analysis of variables using the
concept reported in Tanaka and Mori (1997) and criteria based on predictive
residuals using the concept reported in Krzanowski (1987b) (for details, see
Mori et al. (1999), Mori and Iizuka (2000) and Iizuka et al. (2003).)

Thus, the existence of several methods and criteria is one of the typical charac-
teristics of variable selection in multivariate methods without external variables
such as PCA (here the term “external variable” is used as a variable to be pre-
dicted or to be explained using the information derived from other variables).
Moreover, the existing methods and criteria often provide different results (se-
lected subsets of variables), which is regarded as another typical characterirstic.
This occurs because each criterion or PC procedure has its own reasonable pur-
pose of selecting variables. Therefore, we can not say that one is better than
the other. These characteristics are not observed in multivariate methods with
external variable(s), such as multiple regression analysis.
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In practical applications of variable selection, it is desirable to provide com-
putation environment where those who want to select variables can apply a
suitable method for their own purposes of selection without difficulties and/or
they can try various methods and choose the best method by comparing the
results. However, previously, we had no device by which to perform any
method easily. In order to provide useful tools for variable selection in PCA,
we have developed computation environments in which anyone can easily per-
form variable selection in PCA using any existing criteria. A windows package
“VASPCA (VAriable Selection in PCA)” was initially developed (Mori, 1997)
and has been converted to functions for use in general statistical packages,
such as R and XploRe. In addition, we have also constructed web-based
software using the functions as well as the document pages of variable se-
lection in PCA, see Mori et al. (2000a), Iizuka et al. (2002a) and also either
of the URLs, http://face.f7.ems.okayama-u.ac.jp/˜masa/vaspca/indexE.html or
http://mo161.soci.ous.ac.jp/vaspca/indexE.html.

13.3 Modified PCA

M.PCA (Tanaka and Mori, 1997) is intended to derive PCs which are computed
using only a selected subset but which represent all of the variables, including
those not selected. If we can find such PCs which represent all of the variables
very well, we may say that those PCs provide a multidimensional rating scale
which has high validity and is easy to apply practically. In order to find such
PCs we can borrow the concepts of Rao (1964)’s PCA of instrumental variables
and Robert and Escoufier (1976)’s RV -coefficient-based approach.

Suppose we obtain an n×p data matrix Y . If the original data set of Y consists
of categorical variables, the data set should be quantified in an appropriate
manner (Mori, Tanaka and Tarumi, 1997). Let Y be decomposed into an n× q
submatrix Y1 and an n × (p − q) submatrix Y2 (1 ≤ q ≤ p). We denote the

covariance matrix of Y = (Y1, Y2) as S =
(
S11 S12

S21 S22

)
, Y is represented as

accurately as possible by r PCs, where r is the number of PCs and the PCs
are linear combinations of a submatrix Y1, i.e. Z = Y1A (1 ≤ r ≤ q). In order
to derive A = (a1, . . . , ar), the following criteria can be used:

(Criterion 1) The prediction efficiency for Y is maximized using a linear pre-
dictor in terms of Z.

http://www.xplore-stat.de
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(Criterion 2) The RV -coefficient between Y and Z is maximized. The RV -
coefficient is computed asRV (Y,Z) = tr(~Y~Y>~Z~Z>)/{tr(~Y~Y>)·tr(~Z~Z>)}1/2,
where Ỹ and Z̃ are centered matrices of Y and Z, respectively.

The maximization criteria for the above (Criterion 1) and (Criterion 2) are
given by the proportion P

P =
r∑
j=1

λj/tr(S), (13.1)

and the RV -coefficient

RV =


r∑
j=1

λ2
j/tr(S2)


1/2

, (13.2)

respectively, where λj is the j-th eigenvalue, in order of magnitude, of the
eigenvalue problem (EVP)

[(S2
11 + S12S21)− λS11]a = 0. (13.3)

When the number of variables in Y1 is q, Y1 should be assigned by a subset
of q variables (Y2 by a subset of p− q remaining variables) which provides the
largest value of P in (13.1) for (Criterion 1) or the largest value of RV in (13.2)
for (Criterion 2), and the solution is obtained as a matrix A, the columns of
which consist of the eigenvectors associated with the largest r eigenvalues of
EVP (13.3).

Obviously, these criteria can be used to select a reasonable subset of size q,
that is, “variable selection using criteria in M.PCA” is to find a subset of size
q by searching for that which has the largest value of the above criterion P or
RV among all possible subsets of size q.

13.4 Selection procedures

Although the best method by which to find a subset of variables of size q pro-
vides the optimum value for a specified criterion among all possible pCq combi-
nations of variables, this method is usually impractical due to the high compu-
tational cost of computing criterion values for all possible subsets. Therefore,
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as practical strategies, Tanaka and Mori (1997) introduced the two-stage Back-
ward elimination procedure, and later Mori (1997) proposed three procedures,
Forward selection, Backward-forward stepwise selection and Forward-backward
stepwise selection, in which only one variable is removed or added sequentially.
These procedures allow automatic selection of any number of variables.

Let V be the criterion value P or RV obtained by assigning q variables to Y1.

Backward elimination

Stage A. Initial fixed-variable stage

A-1 Assign q variables to subset Y1, usually q := p.

A-2 Solve the EVP (13.3).

A-3 Look carefully at the eigenvalues, determine the number r of PCs to
be used.

A-4 Specify kernel variables which should always be involved in Y1, if
necessary. The number of kernel variables is less than q.

Stage B. Variable selection stage (Backward)

B-1 Remove one variables from among q variables in Y1, make a tempo-
rary subset of size q−1, and compute V based on the subset. Repeat
this for each variable in Y1, then obtain q V s. Find the best subset
of size q − 1 which provides the largest V among q V s and remove
the corresponding variable from the present Y1. Put q := q − 1.

B-2 If the V or q is larger (or smaller) than the preassigned values, go
to B-1. Otherwise stop.

Forward selection

Stage A. Initial fixed-variable stage

A-1 ∼ 3 Same as A-1 to 3 in Backward elimination.

A-4 Redefine q as the number of kernel variables (here, q ≥ r). If you
have kernel variables, assign them to Y1. If not, put q := r, find the
best subset of q variables which provides the largest V among all
possible subsets of size q and assign it to Y1.

Stage B. Variable selection stage (Forward)
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Basically the opposites of Stage B in Backward elimination

Backward-forward stepwise selection

Stage A. Initial fixed-variable stage

A-1 ∼ 4 Same as A-1 to 4 in Backward elimination.

Stage B. Variable selection stage (Backward-forward)

B-1 Put i := 1.

B-2 Remove one variable from among q variables in Y1, make a tempo-
rary subset of size q−1, and compute V based on the subset. Repeat
this for each variable in Y1, then obtain q V s. Find the best subset
of size q − 1 which provides the largest V (denoted by Vi) among q
V s and remove the corresponding variable from the present Y1. Set
q := q − 1.

B-3 If the V or q is larger (or smaller) than preassigned values, go to
B-4. Otherwise stop.

B-4 Remove one variable from among q variables in Y1, make a tempo-
rary subset of size q−1, and compute V based on the subset. Repeat
this for each variable in Y1, then obtain q V s. Find the best subset
of size q−1 which provides the largest V (denoted by Vi+1) among q
V s and remove the corresponding variable from the present Y1. Set
q := q − 1.

B-5 Add one variable from among p − q variables in Y2 to Y1, make a
temporary subset of size q + 1 and compute V based on the subset.
Repeat this for each variable, except for the variable removed from
Y1 and moved to Y2 in B-4, then obtain p− q− 1 V s. Find the best
subset of size q+ 1 which provides the largest V (denoted by Vtemp)
among p− q − 1 V s.

B-6 If Vi < Vtemp, add the variable found in B-5 to Y1, set Vi := Vtemp,
q := q + 1 and i := i − 1, and go to B-5. Otherwise set i := i + 1
and go to B-3.

Forward-backward stepwise selection

Stage A. Initial fixed-variable stage

A-1 to 4 Same as A-1 to 4 in Forward selection.
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Stage B. Variable selection stage (Forward-backward)

Basically the opposites of Stage B in Backward-forward stepwise selec-
tion

Mori, Tarumi and Tanaka (1998) showed that criteria based on the subsets of
variables selected by the above procedures differ only slightly from those based
on the best subset of variables among all possible combinations in the case of
variable selection using criteria in M.PCA. Mori, Tarumi and Tanaka (1998)
also reported that stepwise-type selections (Backward-forward and Forward-
backward) can select better subsets than single-type selections (Backward and
Forward) and that forward-type selections (Forward and Forward-backward)
tend to select better subsets than backward-type selections (Backward and
Backward-forward).

13.5 Quantlet

mpca (x{ ,r})
performs variable selection using criteria in M.PCA

Before calling the quantlet mpca, load quantlib metrics by typing:

library("metrics")

in the input line. This quantlib includes main quantlets such as mpca which
select subsets of variables automatically and sub quantlets which are used in
main quantlets: geigensm (solves the generalized EVP), divide (divides a
matrix Y into two submatrices Y1 and Y2), delcol (deletes specified columns
from the original matrix and generates a new matrix) and other necessary
modules for selection.

The quantlet mpca has a required argument, a data set X, and an optional
argument, the r-number of PCs. If the number of PCs of the data is unknown,
type the quantlet only using the first argument, e.g. mpca(data). If known,
type the quantlet with both arguments, e.g. mpca(data, 2) and then the
specification of the second parameter (the number of PCs) will be skipped.

When the mpca starts, four parameters are required for selection: a matrix type
(covariance or correlation), the number r of PCs (1 ≤ r < p), a criterion (the

http://www.xplore-stat.de/help/mpca.html
http://www.xplore-stat.de/help/metrics.html
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proportion P or the RV -coefficient) and a selection procedure (Backward, For-
ward, Backward-forward, Forward-backward or All-possible at q). We option-
ally implemented the All-possible selection procedure at a particular number q
of variables to obtain the best subset of that size. Note that computation may
take a long time.

After computation based on the specified parameters, two outputs are dis-
played: a list which indicates the criterion values and variable numbers to be
assigned to Y1 and Y2 for every number q of selected variables (r ≤ q ≤ p) and
a graph which illustrates the change of the criterion value. See the practical
actions in the next section.

Note that this quantlet has no function to specify initial variables and the
number of variables at the first stage. This quantlet simply selects a reasonable
subset of variables automatically as q changes from p to r (or from r to p). In
addition, mpca performs All-possible selection at the first stage of Forward and
Forward-backward procedures to find the initial subset of size r.

13.6 Examples

13.6.1 An artificial data

Here, we apply variable selection using M.PCA criteria to an artificial data
set which consists of 87 individuals 20 variables. Suppose the file name of the
artificial data set is artif.dat and the data set is saved in the folder in which
XploRe is installed. Although this data set was generated artificially, the data
set was modified in a clinical test (87 observations on 25 qualitative variables)
to make the data meaningful.

XCSvaspca01.xpl

Based on the specified parameters variable selection is performed. Here, we
apply variable selection with the following parameters: correlation matrix, two
PCs, the proportion P criterion and Backward procedure. After calculation,
the process of removing variables is output in the output window: the criterion
value and variable numbers of Y1 and Y2 separated by “|” for every number q
of selected variables (q = p, p− 1, . . . , r = 20, 19, . . . , 2).

http://www.xplore-stat.de
http://www.quantlet.org/mdstat/codes/xcs/XCSvaspca01.html
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The graph of criterion values is also displayed (Figure 13.2). You can observe
the change in the criterion visually using this graph.

Figure 13.2: Index plot of the proportion P s as q changes from 20 to 2. (Ar-
tificial data, r=2, correlation matrix, the proportion P and Back-
ward)

These outputs show that the proportion P changes slightly until the number
of variables is six (at step 15). The range of the proportion P ’s is only 0.02416
(= 0.74307 − 0.71891). This means that 14 of the 20 variables are almost
redundant for composing PCs to be used to reproduce the original variables.
Furthermore, if a subset of size 11 or more is selected, the difference between the
proportion based on the selected subset and that based on all of the variables
is less than 0.01.

Looking at the results, a subset of any number of variables displayed as Y1 can
be selected in the output list.

Here, we show another result obtained by applying Forward-backward stepwise
selection to the same data set. The index plot of the criterion value is illustrated
in Figure 13.3 and selected variables are
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r : number of principal components, q : number of selected variables Y1: subset
of variables to be selected, Y2: subset of variables to be deleted

Figure 13.3: Index plot of the proportion P s as q changes from 2 to 20. (Artifi-
cial data, r=2, correlation matrix, the proportion P and Forward-
backward)

The outputs are displayed in selected order (in reverse order of backward-
type selection). Although stepwise-type selection takes longer than single-type
selection, stepwise-type selection can provide more reasonable results. In fact,
when the number of variables is six, for example, the selected subset {3, 5, 10,
11, 15, 20} is the same result as that obtained by All-possible selection (see the
result of All-possible selection described below).

If you choose All-possible at a specified q in the fourth selection box, one ad-
ditional box opens to specify the number of variables to be investigated (Fig-
ure ??). Then, the best subset of the specified size q is displayed in the output
window:
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If mpca is called using the second argument, for example, mpca(artif, 2),
solving the prior EVP and the second selection to specify the number of PCs
are skipped.

13.6.2 Application data

As the second numerical example, we analyze a data set of alate adelges (winged
aphids), which was analyzed originally by Jeffers (1967) using ordinary PCA
and later by various authors, including Jolliffe (1973) and Krzanowski (1987a,
1987b), using PCA with variable selection functions. We applied our variable
selection method to the data set given in Krzanowski (1987a). The data set
consists of 40 individuals and 19 variables. Eigenvalues and their cumulative
proportions of the data are 13.8379 (72.83%), 2.3635 (85.27%), 0.7480 (89.21%),
. . ., therefore we use two PCs as in previous studies. Since Jeffers (1967) found
four clusters by observing the plot of PCs obtained by ordinary PCA based
on the correlation matrix of whole variables, we choose the RV -coefficient as a
selection criterion to detect a subset providing the close configuration of PCs to
the original configuration. Here, we apply Forward-backward stepwise selection
based on the correlation matrix to the data.

The results of (Y1, Y2) for every q are obtained as the following output and
their RV -coefficients changes as shown in Figure 13.4.
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Figure 13.4: Index plot of the RV -coefficients as q changes from 2 to 19. (Alate
data, r=2, correlation matrix, the RV -coefficient and Forward-
backward)

The results illustrate that the RV -coefficient changes slightly when the number
of variables is over five (at step 4). In particular, the sequential difference is
less than 0.0007 when the number of variables is over 7 (step 6).

Here, we draw a scatter plot of PC scores based on the seven selected variables
{3, 7, 13, 15, 16, 17, 18} and compare this plot with that based on the 19
original variables.

XCSvaspca02.xpl

Using these arguments in the quantlet geigensm to solve the generalized EVP
(13.3), we obtain the sorted eigenvalues mevp.values and the associated eigen-
vectors mevp.vectors. Thus, the modified PC scores mpc are obtained after
scale adjustment. The last block draws two scatter plots of the first two PC
scores. These are shown in Figure 13.1 in Section 13.1 (The figures can be ro-
tated and the first three PCs can be observed as the three-dimensional display
by mouse operation. Note, however, that the modified PCs were calculated as
the number of PCs is two).

As the plots illustrate, little difference exists between the two configurations,
i.e. the use of only seven among 19 variables is sufficient to obtain PCs that

http://www.quantlet.org/mdstat/codes/xcs/XCSvaspca02.html
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provide almost the same information as the original PCs.
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14 A semiparametric approach to
estimate reference curves for
biophysical properties of the skin

Saracco Jérôme, Ali Gannoun, Christiane Guinot, Benôıt Liquet

Expected length of the paper: 20 pages

14.1 Abstract

Reference curves which take one covariable into account such as the age, are of-
ten required in medicine, but simple systematic and efficient statistical methods
for constructing them are lacking. Classical methods are based on parametric
fitting (polynomial curves). In this chapter, we propose a new methodology for
the estimation of reference intervals for data sets, based on nonparametric esti-
mation of conditional quantiles. The derived method should be applicable to all
clinical or more generally biological variables that are measured on a continu-
ous quantitative scale. To avoid the curse of dimensionality when the covariate
is multidimensional, a new semiparametric procedure is also proposed. This
procedure is based on dimension-reduction and nonparametric estimation of
conditional quantiles as previously introduced. This semiparametric approach
combines sliced inverse regression (SIR) and a kernel estimation of conditional
quantiles. The usefulness of these nonparametric and semiparametric estima-
tion procedures are illustrated on a real data set collected in order to establish
reference curves for biophysical properties of the skin of healthy French women.
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15 Survival Analysis

Makoto TOMITA

.

15.1 Abstract

This chapter explains the technique of the fundamental survival time analysis
using XploRe. Kaplan-Meier estimator is mentioned as the typical technique
of non-parametric survival time analysis. The most common estimate of the
survival distribution, the Kaplan-Meier estimate, is a product of survival pro-
portions. It produces non-parametric estimates of failure probability distribu-
tions for a single sample of data that contains the exact time of failure, or
contains data is right censored. It calculates about a proportion surviving, and
a survival time, then it is plotted a Kaplan-Meier survival curve.

Some methods are proposed about approval of the difference of the survival time
of two groups. Log-rank test is the approval method which applied Kaplan-
Meier estimate. This tests the difference of survival proportions as the whole.

And Cox regression using a proportional hazard rate is indispensable in this
latest field. It is one of semi-parametric survival time analyzing methods. Cox’s
proportional hazard model is multiple linear regression analysis considered by
survival time can be taken to the response variable Y and explanatory variable
the factor X. And hazard rate is applied to variable Y . An effect of treatment
is given by a coefficient β on multiple linear regression analysis. Then we want
to evaluate β.

These techniques are explained applying to data using XploRe.
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16 Spatial Statistics

Pavel Č́ıžek, Wolfgang Härdle and Jürgen Symanzik

16.1 Introduction

In spatial statistics, we deal with spatial data, i.e., data collected in a particular
region such as a country, multiple states, etc. Examples for such data sets are
economic data, environmental data, or medical data. For spatial data, we
typically consider a spatial correlation; observations from nearby locations are
similar. The field of spatial statistics provides techniques that allow to deal
with spatially correlated data. Our intention is to provide with this text an
introduction into spatial statistics. Here, we describe practical problems in the
field of medicine, and agronomics. For a detailed overview of spatial statistics,
the reader is referred to Ripley (1981) or Cressie (1993).

We concentrate on two areas of specialization: (i) Spatial interpolation, smooth-
ing, and kriging; and (ii) Spatial point process analysis.

http://ise.wiwi.hu-berlin.de/~cizek
http://ise.hu-berlin.de/~haerdle
http://www.math.usu.edu/~symanzik
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16.2 Spatial Interpolation, Smoothing, and
Kriging

myres = SPKRsurfls (np, xmat)
fits a trend surface, i.e., a polynomial regression
surface, by least squares

myres = SPKRsurfgls (np, covmod, xmat, nx, dval, alpha,
se {, D}
fits a trend surface by generalized least squares

covvals = SPKRexpcov (r, d, alpha, se)
spatial covariance function for use with SPKRsurfgls

covvals = SPKRgaucov (r, d, alpha, se)
spatial covariance function for use with SPKRsurfgls

covvals = SPKRsphercov (r, d, alpha, se {, D})
spatial covariance function for use with SPKRsurfgls

mygrid = SPKRtrmat (obj, xl, xu, yl, yu, n)
evaluates a trend surface over a grid

mygrid = SPKRprmat (obj, xl, xu, yl, yu, n)
evaluates a kriging surface over a grid

mygrid = SPKRsemat (obj, xl, xu, yl, yu, n {, se})
evaluates a kriging standard error of prediction
surface over a grid

corres = SPKRcorrelogram (krig, nint)
computes spatial correlograms of spatial data or
residuals

varres = SPKRcorrelogram (krig, nint)
computes spatial (semi-)variograms of spatial data or
residuals

cont = SPKRmultcontours (disp, pos1, pos2, obj, start,
end, step)
draws multiple contour lines of a spatial object of
type "trmat", "prmat", or "semat"

http://www.xplore-stat.de/help/SPKRsurfls.html
http://www.xplore-stat.de/help/SPKRsurfgls.html
http://www.xplore-stat.de/help/SPKRexpcov.html
http://www.xplore-stat.de/help/SPKRgaucov.html
http://www.xplore-stat.de/help/SPKRsphercov.html
http://www.xplore-stat.de/help/SPKRtrmat.html
http://www.xplore-stat.de/help/SPKRprmat.html
http://www.xplore-stat.de/help/SPKRsemat.html
http://www.xplore-stat.de/help/SPKRcorrelogram.html
http://www.xplore-stat.de/help/SPKRcorrelogram.html
http://www.xplore-stat.de/help/SPKRmultcontours.html
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Quantlets related to spatial interpolation, smoothing, and kriging start with
the letters SPKR. The presented spatial statistics quantlets have been adapted
from Venables and Ripley (1999). In fact, the C-code from Venables and Rip-
ley (1999) has been linked to XploRe through a DLL. The sample data sets,
topo.dat and pines.dat have been taken from that book as well. Please check
this reference and the related Web site at http://www.stats.ox.ac.uk/pub/MASS3/
for more details.

The examples in this Section show how to do the computations and produce
the graphics from Sections 14.1 and 14.2 in Venables and Ripley (1999) using
XploRe.

16.2.1 Trend Surfaces

Our first example shows how to fit trend surfaces of order np, i.e., polynomial
regression surfaces, to a data set. In this example, we calculate trend surfaces
of order 2, 3, 4, and 6 for the topo.dat data set. The results are displayed as
contours on Figure 16.1, which is similar to Figure 14.1 in Venables and Ripley
(1999). Obviously, the higher-order surfaces show considerable problems near
the edges due to extrapolation.

This XploRe code results in the following graphical display that is similar to
Figure ?? in Venables and Ripley (1999).

16.2.2 Kriging

In the next step, we look at a trend surface based on least squares, a trend
surface based generalized least squares, and a kriged surface and its standard
error of prediction, based on the topo.dat data set. The results are displayed
as contours. The XploRe result displayed in Figure is similar to Figure 14.5 in
Venables and Ripley (1999).

16.2.3 Correlogram and Variogram

We now show how to construct a correlogram and variogram for the residuals
of the topo.dat data set, based on a least squares quadratic trend surface. The
result on Figure 16.3 is similar to Figure 14.6 in Venables and Ripley (1999).

Next, we look at two different covariance structures, see Figure 16.4. In the

http://www.stats.ox.ac.uk/ pub/MASS3/


16.2 Spatial Interpolation, Smoothing, and Kriging 137

Degree = 2

0 2 4 6
X

0
2

4
6

Y

750775800

825

850

875

900

925

950

975

Degree = 4

0 2 4 6
X

0
2

4
6

Y

700725750775800

825825
850850

875

875

900

900

925

950

975

Degree = 3

0 2 4 6
X

0
2

4
6

Y

725725
750750

775775
800800

825825
850850

875875

900

900

Degree = 6

0 2 4 6
X

0
2

4
6

Y

600625650675700725750775800825

850

850

850

850

850

875
875

875

875

900925 950950
97597510001000

Figure 16.1: Trend surfaces of various orders for topo.dat
XCSspa01.xpl

left plot, we construct two correlograms for the topo.dat data set - one with
residuals from a quadratic trend surface showing an exponential covariance
(solid blue line) and a Gaussian covariance (dashed cyan line) function. The
right plot shows the raw topo.dat data set with a fitted Gaussian covariance
function. The discussed plot is again similar to Figure 14.7 in Venables and
Ripley (1999).

Finally, we look at two more kriged surfaces and standard errors of prediction
for the topo.dat data set, see Figure 16.5, which is similar to Figure 14.8 in
Venables and Ripley (1999). In the top row, we use a quadratic trend surface

http://www.quantlet.org/mdstat/codes/xcs/XCSspa01.html
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LS trend surface
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Figure 16.2: Trend and kriged surfaces for topo.dat
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and a nugget effect. The bottom row is without a trend surface.

http://www.quantlet.org/mdstat/codes/xcs/XCSspa02.html
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Figure 16.3: Correlogram and Variogram for topo.dat data set
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http://www.quantlet.org/mdstat/codes/xcs/XCSspa03.html
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Figure 16.4: Correlogram for fitted and raw data topo.dat

XCSspa04.xpl

16.3 Spatial Point Process Analysis

ppobj = SPPPinit (pp, xl, xu, yl, yu, fac)
creates a point process object and calls
SPPPsetregion to set the rectangular spatial domain

SPPPinitrandom (rstart)
resets the random number generator for point
processes

SPPPsetregion (pp)
sets the rectangular spatial domain for spatial point
pattern analysis

area = SPPPgetregion ()
retrieves the rectangular spatial domain that
previously has been set by SPPPinit or SPPPsetregion

ppkfn = SPPPkfn (pp, fs, k)
computes K-fn of a point pattern

ppsim = SPPPpsim (nsim, n)
simulates a Binomial (Poisson) spatial point process

ppstrauss = SPPPstrauss (nsim, n, c, r)
simulates a Strauss spatial point process

ppssi = SPPPssi (nsim, n, r)
simulates a SSI (sequential spatial inhibition) point
process

ppkenvl = SPPPkenvl (fs, k, obj)
computes envelope (upper and lower limits) and
average of simulations of K-fns

ppkaver = SPPPkaver (fs, k, obj)
computes average of simulations of K-fns

http://www.quantlet.org/mdstat/codes/xcs/XCSspa04.html
http://www.xplore-stat.de/help/SPPPinit.html
http://www.xplore-stat.de/help/(rstart).html
http://www.xplore-stat.de/help/(pp).html
http://www.xplore-stat.de/help/SPPPgetregion.html
http://www.xplore-stat.de/help/SPPPkfn.html
http://www.xplore-stat.de/help/SPPPpsim.html
http://www.xplore-stat.de/help/SPPPstrauss.html
http://www.xplore-stat.de/help/SPPPssi.html
http://www.xplore-stat.de/help/SPPPkenvl.html
http://www.xplore-stat.de/help/SPPPkaver.html
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Figure 16.5: Trend and kriged surfaces for topo.dat
XCSspa05.xpl

Quantlets related to spatial point process analysis start with the letters SPPP.

The examples in this Section show how to do the computations and produce
the graphics from Section 14.3, i.e., Figure 14.9, in Venables and Ripley (1999),
using XploRe.

After initializing the pines.dat data set, we first draw the raw data in the
upper left plot (see Figure 16.6).

We now make 100 simulation runs of a Binomial process with 72 observations
that inhibit the same spatial domain as the original data. We draw the result

http://www.quantlet.org/mdstat/codes/xcs/XCSspa05.html
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of the first simulation run in the upper center plot and the envelope of L(t) of
these simulation runs in the upper right plot. Here, L(t) =

√
K(t)/π, where

K represents Ripley’s K function. For a Poisson process K(t) = πt2, thus
L(t) will be linear for a Poisson process. The solid black line is L(t) for the
pines.dat data set. Obviously, a Binomial process does not fit the pines.dat
data set.

In the middle plots, we consider a Strauss process as a possible alternative.
The middle left plot shows a one run of a Strauss(72, 0.15, 0.7) simulation. In
the middle center plot, we draw the envelope of L(t) of 100 of these simulation
runs. The solid black line is L(t) for the pines.dat data set. The solid cyan
lines represents the averages of the simulation runs.

In addition, we also conduct 100 simulation runs of a Strauss(72, 0.2, 0.7) pro-
cess. Similarly, we draw the envelope of L(t) of these simulation runs, the
averages, and the result from the pines.dat data set. Obviously, both pro-
cesses describe the data reasonably well.

Just for illustrative purposes, we also look at 100 simulation runs of Matern’s
sequential spatial inhibition (SSI) process in the bottom row. The result of the
first simulation run are displayed in the lower left plot. The lower center and
lower right plots display the envelope of L(t) of 100 of these simulation runs.
The solid black line is L(t) for the pines.dat data set. The solid cyan lines
represents the averages of the simulation runs.

Obviously, this SSI(72, 0.7) does not fit the pines.dat data set.

And here is the result of all these plots:
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Figure 16.6: Spatial analysis of pines.dat
XCSspa06.xpl

http://www.quantlet.org/mdstat/codes/xcs/XCSspa06.html
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17 Functional Data Analysis

Yoshihiro Yamanishi

17.1 Introduction

Functional data analysis (FDA) has been developed for analyzing functional (or
curve) data. In FDA, we treat the data that consist of functions not of vectors.
We take samples at time points t1, t2, . . . and regard {x(tj), j = 1, 2, . . .} as
multivariate observations. In this sense the original functional x(t) can be
regarded as the limit of {x(tj)} as the sampling interval tends to zero and the
dimension of multivariate observations tends to infinity. Ramsay and Silverman
(1997) have discussed several methods for analyzing functional data, including
functional regression analysis, functional principal component analysis (PCA),
and functional canonical correlation analysis (CCA). These methodologies look
attractive, because we often meet the cases where we wish to apply regression
analysis and principal component analysis to such data. In the following we
describe how to use the FDA tools for applying functional data analysis.

17.1.1 Basis Expansion

In practice we usually obtain sampled data such as {x(tj), j = 1, 2, . . .}. So at
the first stage of a general functional data analysis we must transform the data
into a functional form such as {x(t)}. That is, we have to estimate a function on
the basis of sampled observations with noise by using an appropriate smoothing
method. Most methods for functional data are based on an approximation with
truncated basis function expansions (Ramsay and Silverman, 1997). In other
words, it is assumed that functional data unit can be expressed with sufficient
accuracy by a linear combination of finite terms of basis functions. Suppose
we use a sets of basis functions φ(s) = (φ1(s), . . . , φK(s))>, where K is the

http://ise.wiwi.hu-berlin.de/~yoshihiro
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number of basis functions. Then observed functions xi(s) can be expanded as

xi(s) =
K∑
k=1

Cijφk(s) = C>i φ(s), i = 1, · · · , N,

where N is the number of observations, K is the number of basis functions,
and C is N by K coefficient matrix.

17.1.2 Basic Statistics in Functional Context

Suppose we haveN data functions, which are denoted by x1(t), x2(t), · · · , xN (t).
Similarly as in ordinary statistical theory, the basic statistics in functional con-
text are defined as follows:

Mean function:

x̄(t) = N−1
N∑
i=1

xi(t)

Variance function:

Var(x(t)) = N−1
N∑
i=1

[xi(t)− x̄(t)]2

Covariance function:

Cov(s, t) = N−1
N∑
i=1

{xi(s)− x̄(s)}{xi(t)− x̄(t)}

17.1.3 Representing the Functional Data

coef = fouriertrans (tmat, nbasis)
Calculates the coefficients in applying a basis expansion by using
Fourier series

phi = fouriereval (nbasis, nresol, period)
Evaluates the basis functions of Fourier series

http://www.xplore-stat.de/help/fouriertrans.html
http://www.xplore-stat.de/help/fouriereval.html
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The quantlet Fouriertrans calculates the coefficient matrix of functional data
in applying the basis expansion by using Fourier series. And the quantlet
Fouriereval evaluates the basis functions of Fourier series based on the period
and the number of the points where functions are evaluated.

Temperature Functions
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Figure 17.1: Example of Functional Data (Temperature).
XCSfda01.xpl

For example, the quantlets are applied to the daily temperature data of 35
weather stations in Canala (Ramsay and Silverman, 1997). We use Fourier
series as basis functions. Figure 17.1 shows temperature functions. Evidently
these data look like curves.

http://www.xplore-stat.de/help/Fouriertrans.html
http://www.xplore-stat.de/help/Fouriereval.html
http://www.quantlet.org/mdstat/codes/xcs/XCSfda01.html
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17.2 Functional Principal Component Analysis

Functional principal component analysis (PCA) is an important technique to
extract a few major and typical features from complex data functions. In
this section, we explain the outline of the functional PCA and how to use our
quantlets.

17.2.1 Ordinary Functional Principal Component Analysis

Suppose we have a set of functional data {xi(s)}Ni=1. Weight function ξ(s) is
chosen in such a way that it maximizes the variance

PCASV =
∫ ∫

ξ(s)v(s, t)ξ(t)dsdt,

where v(s, t) indicates the covariance function based on the functional data
set. Note that the right hand side just corresponds to the quadratic form
representing the variance of a linear combination of multivariate random vec-
tors in classical multivariate analysis. The maximization of PCASV under the
constraints ∫

ξl(t)2dt = 1 ,

∫
ξl(t)ξm(t)dt = 0 (l < m)

leads to an integral eigenequation as follows:∫
v(s, t)ξ(t)dt = ρξ(t).

17.2.2 Penalized Functional Principal Component Analysis

Here penalty function is introduced to incorporate smoothing into the principal
components (PCs). Suppose ξ satisfies periodic boundary conditions, that is,
the second and third derivatives of ξ satisfy periodic boundary conditions on
T . Then the most popular form of the penalty for ξ is given by

PEN2(ξ) =‖ D2ξ ‖2=
∫
ξ(t)D4ξ(t)dt.

In this case the penalized variance can be expressed by

PCAPSV =
PCASV

‖ ξ ‖2 +λ× PEN2(ξ)
,
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where λ is a smoothing parameter. This expression means that the trade-
off between maximizing the sample variance and smoothing ξ is controlled by
a smoothing parameter λ. The solution ξ is obtained as the eigenfunction
associated with the largest eigenvalue of the following penalized eigenequation∫

v(s, t)ξ(t)dt = ρ(I + λD4)ξ(s).

17.2.3 Algorithm

Suppose we use a set of basis functions φ(s) = (φ1(s), · · · , φK(s))>. Then a
data function xi(s) and a weight function ξ(s) can be expanded as

xi(s) =
K∑
k=1

Cikφk(s) = C>i φ(s), ξ(s) =
K∑
k=1

ykφk(s) = y>φ(s),

where K is the number of basis functions and C is N by K coefficient matrix.
Define V as the covariance matrix of coefficient Ci and let Jφ =

∫
φ(s)φ(s)>ds,

Kφ =
∫

(D2φ(s))(D2φ(s))>ds. Then the functional eigenequation is trans-
formed to the following matrix eigenvalue problem

(JφVJφ)y = ρ(Jφ + λKφ)y.

By using Cholesky factorization LL> = Jφ+λKφ, the above generalized eigen-
value problem leads to an eigenvalue problem of a symmetrical matrix as

(SJφVJφS>)(S−T y) = ρ(S−T y),

where S = L−1 and S−T = (S−1)T . After solving y, we transform back to
eigenfunction ξ(s).

17.2.4 Applying Functional PCA

fpcaresult = FDApca (fdcoef, period, lambda{, npc})
carries out a penalized functional PCA

The quantlet FDApca enables us to apply penalized functional PCA. The input
parameters of this quantlets are the coefficient matrix for functional data, the

http://www.xplore-stat.de/help/FDApca.html
http://www.xplore-stat.de/help/FDApca.html


152 17 Functional Data Analysis

period, the smoothing parameter, and the number of principal components to
be kept. The result of the application is assigned to the variable fpcaresult
which is a list containing the following output:

fpcaresult.values : the eigenvalues

fpcaresult.varprop : the proportion of variance explained by each eigen-
function

fpcaresult.scores : the PC scores

fpcaresult.harmcoef : the coefficient matrix of eigenfunctions
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Figure 17.2: Weight Functions for PCs when λ = 0.
XCSfda02.xpl

For example, the functional PCA is applied to the daily temperature data. We
use Fourier series as basis functions. Figure 17.2 shows the PC weight functions

http://www.quantlet.org/mdstat/codes/xcs/XCSfda02.html
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PC Weight Functions (lambda=10000)
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Figure 17.3: Weight Functions for PCs when λ = 10000.
XCSfda03.xpl

when λ = 0, while Figure 17.3 shows the PC weight functions when λ = 10000.
The black curve indicates the weight function for the first PC, the blue curve
indicates the weight function for the second PC, the red curve indicates the
weight function for the third PC, and the green curve indicates the weight
function for the fourth PC. You can see that the penalized method removes
the roughness in the raw PC curves as λ increases. Its effect makes it easier for
users to interpret the result at the expense of the decrease of PC variance. In
the case of ordinary functional PCA, the eigenvalues are shown in Table 17.1.

On the other hand, in the case of penalized functional PCA, the eigenvalues
are shown in Table 17.2.

http://www.quantlet.org/mdstat/codes/xcs/XCSfda03.html
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Table 17.1: Eigenvalues of ordinary functional PCA

Eigenvalues

804.69
73.104
27.11
7.122

Table 17.2: Eigenvalues of penalized functional PCA

Eigenvalues

802.45
71.01
22.883
5.0654

17.2.5 Interpretation

Looking at these weight functions, we can interpret the PCs as follows: The
first PC is a measure of overall temperatures throughout the year, because it is
positive throughout the year. In particular, the temperature in winter has the
greatest variability between the observations. The second PC represents the
contrast between the temperatures in summer and in winter, so it is a measure
of uniformity of temperature through the year. The third PC represents the
contrast between the temperatures in the first part and in the last part of
the year. So it is a time shift effect almost through the year. Finally, the
fourth PC consists of a positive contribution for the winter and summer months
and a negative contribution for the spring and autumn months, therefore it
corresponds to an effect on the onset of spring and autumn.
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18 Statistical Analysis of Failure
Time with microearthquakes
applications

Graciela Estévez-Pérez, Alejandro Quintela del Rio

Expected length of the paper: 15-20 pages

18.1 Abstract

This chapter is devoted to the Statistical Analysis of Failure Time by means
of nonparametric estimation of hazard function, and more specifically to its
application for analyzing temporal data on earthquake occurrences. We first
present the method of estimation and the framework: kernel estimation of haz-
ard function under a general dependence assumption on the sample data. In
this situation, the asymptotic optimality properties (consistency and asymp-
totic normality) are established and the controversial problem of bandwidth
selection is approached. In fact, we prove the asymptotic optimality of the
cross-validation procedure (both global and local version) and we get their
convergence rates. In addition, the global rate of convergence is used to moti-
vate the introduction of a penalized version of the cross-validation procedure,
which gives better estimations than the ordinary cross-validation bandwidth.

On the other hand, an important part of chapter is devoted to study the occur-
rence process of earthquakes in some geographic regions making use of the pre-
vious tools and showing the corresponding functions implemented in XploRe.
Our analysis, based on the information provided by the data and on the univer-
sally accepted assumption of temporal grouping of earthquakes, confirm this
grouping and characterize both, the occurrence process of main shocks and the
aftershock sequences (clusters).
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19 Fuzzy Clustering

Hizir Sofyan

Fuzzy clustering is one of the non-hierarchical clustering methods. The purpose
of clustering is to construct groups in such a way that the profiles of objects in
the same groups are relatively homogenous whereas the profiles of objects in
different groups are relatively heterogeneous.

In conventional clustering, sample is either assigned to or not assigned to a
group. Fuzzy clustering which apply the concept of fuzzy sets to cluster analysis
give belongedness to groups at each point of data set by a membership function.
Its advantage can adapt to noisy data and classes that are not well separated.
In this paper, we handled with biomedical data.

19.1 Introduction

The basic problem of clustering is to begin with a sample of n p-dimensional
points and then to classify the points into groups purely from their location
in p-dimensional space. The aim of clustering is to form groups in which the
observation characteristics in one group is relatively homogeneous whereas the
observation characteristics among different groups are relatively heterogeneous.
In general, clustering methods can be divided into two categories: hierarchical
clustering and non-hierarchical clustering. One of non-hierarchical clustering
methods is fuzzy clustering.

The use of fuzzy set theory is becoming popular because it produces not only
crisp decision when necessary but also corresponding degree of membership.
Usually, membership functions are defined based on a distance function, such
that membership degrees express proximities of entities to cluster centers.

http://ise.wiwi.hu-berlin.de/~hizir


160 19 Fuzzy Clustering

19.2 Basic Concepts

19.2.1 Probability and Fuzziness

An event E in τ -field in probability theory is defined as a subset of the sample
space Ω. Space Ω is a collection of possibilities or sample points and the
realization of these sample points indicates its occurrence. However, many real
world events that encounter daily are perceived to be vague or ill-defined rather
than being a probabilistic problem.

For example, if we are asked whether it will rain tomorrow or not then we will
answer by expressing that the probability of rain tomorrow is 40% with the
implication 60% not rain. While the fact is that we are not able to give an
exact answer. We prefer to use the linguistically expression like it is a very
likely to rain or the chance of rain is about 40%.

The concept of fuzzy sets was first introduced by Zadeh (1965) to represent
vagueness. Fuzzy sets extend to clustering in that object of the data set may
be fractionally assigned to multiple clusters. This allows for ambiguity in the
data and yields detailed information about the structure of the data. One of
the uses of fuzzy sets is fuzzy clustering, that will be discussed in the next
section.

19.2.2 Distance Measures

The distances between points play an important role in clustering. A dis-
tance between two p-dimensional observations x = (x1, x2, ..., xp)> and y =
(y1, y2, ..., yp)> is denoted in matrix notation as:

d(x, y) =
√

(x− y)>(x− y) (19.1)

and it is called Euclidean distance. The statistical distance between these two
observations is

d(x, y) =
√

(x− y)>A(x− y) (19.2)

where A = S−1 is the inverse of S, the matrix of sample variances and covari-
ances. It is often called Mahalanobis distance.

The distance measure or metric should be chosen with care. The Euclidean
metric should not be used where different attributes have widely varying aver-
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age values and standard deviations, since large numbers in one attribute will
prevail over smaller numbers in another. With the diagonal and Mahalanobis
metrics, the input data are transformed before use. Choosing the Mahalanobis
metric results in transformation of the data set to one in which all attributes
have zero mean and unit variance. Correlations between variables are taken
into account. Choosing the diagonal metric results in transformation of the
data set to one in which all attributes have equal variance.

19.3 Fuzzy Clustering

19.3.1 Fuzzy C-means Method

v = xcfcme(x, c, m, e, alpha)
Performs a fuzzy C-means cluster analysis

The idea of fuzzy clustering came from the Hard C-Means (HCM) founded
by Ruspini (1969). He introduced a notion of fuzzy partition to describe the
cluster structure of a data set and suggested an algorithm to compute the op-
timum fuzzy partition. Dunn (1973) generalized the minimum-variance clus-
tering procedure to a Fuzzy ISODATA clustering technique. Bezdek (1981)
generalized Dunn’s approach to obtain an infinite family of algorithms which
is called the Fuzzy C-Means (FCM) algorithm defined as follows:

Jm(U, V ) =
n∑
k=1

c∑
i=1

uikd
2(xk, vi), (19.3)

where X = (x1, x2, ..., xn) is n data sample vectors, U is a partition of X in c
part, V = (v1, v2, ..., vc) are cluster centers in Rp, d2(xk, vi) is an inner product
induced norm on Rp, and uik is referred to as the grade of membership of xk
to the cluster i, in this case the member of uik is 0 or 1.

One approach to fuzzy clustering is the fuzzy C-Means (Bezdek, 1981). Before
Bezdek, Dunn (1973) had developed the fuzzy C-Means Algorithm. The idea of
Dunn’s algorithm is to extend the classical within groups sum of squared error
objective function to a fuzzy version by minimizing this objective function.
Bezdek generalized this fuzzy objective function by introducing the weighting

http://www.xplore-stat.de/help/xcfcme.html
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exponent m, 1 ≤ m <∞:

Jm(U, V ) =
n∑
k=1

c∑
i=1

(uik)md2(xk, vi), (19.4)

where U is a partition of X in c part, V = v = (v1, v2, ..., vc) are the cluster
centers in Rp, and A is any (p× p) symmetric positive definite matrix defined
as the following:

d(xk, vi) =
√

(xk − vi)>(xk − vi) (19.5)

where d(xk, vi) is an inner product induced norm on Rp, uik is referred to as
the grade of membership of xk to the cluster i. This grade of membership
satisfies the following constraints:

0 ≤ uik ≤ 1, for 1 ≤ i ≤ c, 1 ≤ k ≤ n, (19.6)

0 <
n∑
k=1

uik < n, for 1 ≤ i ≤ c, (19.7)

c∑
i=1

uik = 1, for 1 ≤ k ≤ n. (19.8)

The fuzzy C-Means (FCM) uses an iterative optimization of the objective func-
tion, based on the weighted similarity measure between xk and the cluster
center vi.

Steps of the fuzzy C-Means algorithm, according to ? follow:

Algorithm

1. Given a data set X = {x1, x2, ..., xn}, select the number of clusters
2 ≤ c < N , the maximum number of iterations T , the distance norm
d2(xk, vi), the fuzziness parameter m > 1, and the termination condition
ε > 0.

2. Give an initial value U (0).

3. For t = 1, 2, ..., T
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a) Calculate the c cluster centers {vi,t}, i = 1, ..., c

vi,t =

∑n
k=1 u

m
ik,t−1xk∑n

k=1 u
m
ik,t−1

(19.9)

b) Update the membership matrix. Check the occurrence of singulari-
ties. Let I = {1, ..., c},

Ik,t = {i|1 ≤ i ≤ c, dik,t =‖ xk − vi,t ‖= 0},

and Īk,t = {1, 2, ..., c}/Ik,t
Then calculate the following

uik,t =
c∑
j=1

(
dik,t
djk,t

) 2
m−1

, if Υk,t = 0 (19.10)

Choose aik,t = 1/#(Υk,t),∀i ∈ Υ ; #(.) denotes the ordinal number.

4. If Et =‖ Ut−1 − Ut ‖≤ ε then stop otherwise return to step 3.

This procedure converges to a local minimum or a saddle point of Jm. The
FCM algorithm computes the partition matrix U and the clusters’ prototypes
in order to derive the fuzzy models from these matrices.

The syntax of this algorithm in XploRe is

fcm=xcfcme(x,c,m,e)

The inputs are the following; x is a n×p matrix of n row points to be clustered,
c is the number of clusters, m is an exponent weight factor (m > 1), e is
termination tolerance, and u is n× p matrix of initialized uniform distribution.

19.3.2 Fuzzy Gustafson Kessel

Gustafson and Kessel (GK) is an extension of FCM. Different distributions
and size of clusters usually load to sub optimal results with FCM. In order to
adopt to different structures in data, GK used the covariance matrix to capture
ellipsoidal properties of clusters.

http://www.xplore-stat.de


164 19 Fuzzy Clustering

Gustafson and Kessel (1979) extended the fuzzy C-Means algorithm for an
inner-product metric norm

d(xk, vi) =
√

(xk − vi)>Mi(xk − vi), (19.11)

where Mi is a positive definite matrix adapted according to the actual shapes
of the individual clusters, described approximately by the cluster covariance
matrices Fi.

Fi =
∑N
k=1(µi,k)m(xk − vi)(xk − vi)>∑N

k=1(µi,k)m
(19.12)

It can be shown that the distance inducing matrix Mi is calculated as the
normalized inverse of the cluster covariance matrix

Mi = det(Fi)
1
nF−1

i . (19.13)

The normalization by the determinant of Fi is involved in order to constraint
Mi. Without this constraint, the objective function

Jm(U, V ) =
n∑
k=1

c∑
i=1

(uik)md2(xk, vi), (19.14)

which is linear with respect to Mi could be made as small as desired by making
Mi less positive definite.

Algorithm

Given a data set X, we choose the number of clusters 1 < c < N , the weighting
exponent m > 1 and the termination tolerance ε > 0. Initialize the fuzzy
partition matrix U (0) randomly, such that it satisfies the conditions

c∑
i=1

µi,k = 1, k = 1, ..., N (19.15)
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and

0 <
N∑
k=1

µi,k < N, i = 1, ..., c. (19.16)

Say about iteration Repeat for t = 1, 2, ...

Step 1: Compute the cluster centers: Vi, t,

vi,t =

∑n
k=1 u

m
ik,t−1xk∑n

k=1 u
m
ik,t−1

(19.17)

Step 2: Compute the cluster covariance matrices:

Fi =
∑N
k=1(ui,k)m(xk − vi)(xk − vi)>∑N

k=1(ui,k)m
(19.18)

Step 3: Compute the distances

d2(xk, vi,t) = (xk − vi,t)>[det(Fi)1/nF−1
i ](xk − vi,t) (19.19)

Step 4: Update the fuzzy partition matrix:

uik,t =
c∑
j=1

{
dik,t
djk,t

} 2
m−1

, (19.20)

if dik = 0 for some i = s, set uks = 1 and uik = 0.

Until Et =‖ Ut−1 − Ut ‖≤ ε.

19.3.3 Fuzzy Gath-Geva

Gath Geva combines FC Means and FMLE. It ignores the objective function
J(X,V ) and simply replaces uik by posterior probability P(Ck/xi) of class
Ck given the observation xi. Although it does not give optimal partition in
cases of variable cluster shapes and densities. Using an ”exponential distance”
including the fuzzy covariance matrix (FMLE) results in optimal partition even
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when a great variability of cluster shapes and densities is present. Given a data
set X, we choose the number of clusters 1 < c < N , the weighting exponent
m > 1 and the termination tolerance ε > 0. Initialize the fuzzy partition matrix
U (0) randomly, such that it satisfies the conditions

c∑
i=1

µi,k = 1, k = 1, ..., N (19.21)

and

0 <
N∑
k=1

µi,k < N, i = 1, ..., c. (19.22)

Then repeat for t = 1, 2, ...

Step 1: Compute the cluster centers vi,t:

vi,t =

∑n
k=1 u

m
ik,t−1xk∑n

k=1 u
m
ik,t−1

(19.23)

Step 2: Compute the cluster covariance matrices:

Fi =
∑N
k=1(µi,k)m(zk − vi)(zk − vi)>∑N

k=1(µi,k)m
(19.24)

Step 3: Compute the prior probability

Pi =

∑n
k=1 u

m
ik,t−1∑n

k=1 u
m
ik,t−1

(19.25)

Step 4: Compute the distances:

(d2(xk, vi,t) =
1
Pi

√
Fi exp 1/2(xk − vi,tF−1

i (xk − vi,t)) (19.26)
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Step 5: Update the fuzzy partition matrix:

uik,t =
c∑
j=1

(
dik,t
djk,t

)
2

m−1 , (19.27)

if dik = 0 for some i = s, set uks = 1 and uik = 0.

Until Et =‖ Ut−1 − Ut ‖≤ ε.

19.4 Cluster Validity

In practical applications, we need a cluster validity method to measure the
quality of clustering result. The quality of a clustering process depends on
many factors, such as the method of initialization, the choice of the number
of classes c, and the clustering method. The method of initialization requires
a good estimate of the clusters and its application dependent, so the cluster
validity problem is reduced to the choice of an optimal number of classes c.
Several cluster validity measures have been developed in the past. In this
section, we describe only four of these measures.

19.4.1 The Partition Coefficient

The partition coefficient is defined as

F (U, c) =
1
n

c∑
i=1

n∑
k=1

(uik)2 (19.28)

Suppose that ωc represents the clustering result, then the optimal choice of c
is given by

max
c

{
max

Ωc
F (U, c)

}
, c = 2, ..., n− 1. (19.29)

The partition coefficient measures the closeness of all input samples to their
corresponding cluster centers. If each sample is closely associated with only
one cluster, that is, if for each k, uik is large for only one i value, then the
uncertainty of the data is small, which corresponds to a large F (U, c) value.
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19.4.2 The Partition Entropy

The partition entropy is defined as

H(U, c) = − 1
n

c∑
i=1

n∑
k=1

uiklog(uik). (19.30)

The optimal choice of c is given by

min
c

{
min
Ωc

H(U, c)
}
, c = 2, ..., n− 1. (19.31)

When all uik’s have values close to 0.5, which represents a high degree of
fuzziness of the clusters, H(U, c) is large and thus indicates a poor clustering
result. On the other hand, if all uik’s have values close to 0 or 1, H(U, c) is
small and indicates a good clustering result.

19.4.3 The Compactness and Separation Validity

The compactness and separation validity function is defined as:

S(U, c) =
1
n

∑c
i=1

∑n
k=1 u

2
ik|xk − vi|2

min |vi − vj |2
(19.32)

The optimal choice of c is given by

min
c

{
min
Ωc

S(U, c)
}
, c = 2, ..., n− 1, where (19.33)

S(U, c) is the ratio between the average distance of input samples to their cor-
responding cluster centers and the minimum distance between cluster centers.
A good cluster procedure should make all input samples as close to their cluster
centers as possible and all cluster centers separated as far as possible.

19.5 Illustrative Example

remotely sensing data will be used as an application.
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Härdle, W. and Simar, L. (2000). Applied Multivariate Statistical Analysis,
http://www.md-stat.com, Humboldt Universität zu Berlin.

Hellendorn, H. and Driankov, D. (1998). Fuzzy: Model Identification, Springer
Verlag, Heidelberg.

Johnson, R. A., and Wichern D. W. (1992). Applied Multivariate Statistical
Analysis, Prentice-Hall.

MacQueen, J. B. (1967). Some Methods for classification and Analysis of
Multivariate Observations, Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, University of California
Press, 1: 281–297.



170 Bibliography

Mucha, H. J. (1992). Clusteranalyse mit Microcomputern, Akademie Verlag,
Berlin.

Mucha, H. J. (1995). Clustering in an Interactive Way, Discussion Paper 9513,
Institut für Statistik und Ökonometrie, Humboldt-Universität zu Berlin.

Mucha, H. J. (1996). CLUSCORR: Cluster Analysis and Multivariate Graphics
under MS-EXCEL, Report No. 10, WIAS Institut, Berlin.

Ruspini, E. H. (1969). A New Approach to Clustering, Information Control
15: 22–32.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function,
Journal of Amer. Statist. Assoc. 58: 236–244.

Zadeh, L. A. (1965). Fuzzy Sets, Information Control 8: 338–353.


	Biostatistics
	Discriminant analysis based on continuous and discrete variables: application to systematic zoology
	Abstract

	Estimation of linear regression models Longitudinal data
	Introduction
	Motivations
	Example
	Definitions and notations

	Theoretical aspects
	The fixed-effect model
	The random effects model

	Computing fixed and random-effect models
	Data preparation
	Fixed and random-effect linear regression
	Options for panfix
	Options for panrand

	Application
	Presentation of the data
	Results


	Conditional functional quantiles and ozone forecasting
	Abstract

	Nonparametric functional methods in chemiometrics
	Abstract

	Polychotomous regression: application to landcover prediction
	Abstract

	A kernel method in analysis of replicated micro-array experiments
	Abstract

	Kernel Estimates of Hazard Functions for Biomedical Data Sets
	Abstract

	Partially Linear Models
	Introduction
	Estimation and Nonparametric Fits
	Kernel Regression
	Local Polynomial
	Piecewise Polynomial
	Least Square Spline

	Heteroscedastic Cases
	Variance is a Function of Exogenous Variables
	Variance is an Unknown Function of T
	Variance is a Function of the Mean

	Real Data Examples
	Bibliography

	Analysis of contingency tables
	Abstract

	Identifying Coexpressed Genes
	Introduction
	Methodology and Implementation
	Weighting Adjustment
	Clustering

	Concluding Remarks

	Calculating Odds Ratios in Generalized Additive Models including interactions. Application to post-operative infection data.
	Abstract

	Survival Trees
	Introduction
	Methodology
	Splitting criteria
	Pruning

	The Quantlet stree
	Syntax
	Example


	Variable Selection in Principal Component Analysis
	Introduction
	Variable selection in PCA
	Modified PCA
	Selection procedures
	Quantlet
	Examples
	An artificial data
	Application data


	Semiparametric reference curves and biophysical applications
	Abstract

	Survival Analysis
	Abstract


	Geostatistics
	Spatial Statistics
	Introduction
	Spatial Interpolation, Smoothing, and Kriging
	Trend Surfaces
	Kriging
	Correlogram and Variogram

	Spatial Point Process Analysis

	Functional Data Analysis
	Introduction
	Basis Expansion
	Basic Statistics in Functional Context
	Representing the Functional Data

	Functional Principal Component Analysis
	Ordinary Functional Principal Component Analysis
	Penalized Functional Principal Component Analysis
	Algorithm
	Applying Functional PCA
	Interpretation


	Analysis of Failure Time with microearthquakes applications
	Abstract

	Fuzzy Clustering
	Introduction
	Basic Concepts
	Probability and Fuzziness
	Distance Measures

	Fuzzy Clustering
	Fuzzy C-means Method
	Fuzzy Gustafson Kessel
	Fuzzy Gath-Geva

	Cluster Validity
	The Partition Coefficient
	The Partition Entropy
	The Compactness and Separation Validity

	Illustrative Example
	Bibliography



