

LPI LINUX
CERTIFICATION

IN A NUTSHELL

LPI LINUX
CERTIFICATION

IN A NUTSHELL

Third Edition

Adam Haeder, Stephen Addison Schneiter,
Bruno Gomes Pessanha, and James Stanger

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

LPI Linux Certification in a Nutshell, Third Edition
by Adam Haeder, Stephen Addison Schneiter, Bruno Gomes Pessanha, and James
Stanger

Copyright © 2010 Adam Haeder, Stephen Addison Schneiter, Bruno Gomes Pessanha, and
James Stanger. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Adam Zaremba
Copyeditor: Genevieve d’Entremont
Proofreader: Jennifer Knight

Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2001: First Edition.
July 2006: Second Edition.
June 2010: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O’Reilly Media, Inc. LPI Linux Certification in a Nutshell, the image of a bull, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80487-9

[M]

1276182761

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

1. LPI Exams . 1

2. Exam 101 Study Guide . 5
Exam Preparation 5

3. System Architecture (Topic 101.1) . 7
Objective 1: Determine and Configure Hardware Settings 7

BIOS 7
USB Topology 10
USB Controllers 10
USB Devices 11
USB Drivers 11
USB Hotplug 12
Reporting Your Hardware 12
Manipulating Modules 14
Device Management Definitions 20

4. Change Runlevels and Shut Down or Reboot System (Topics 101.2 and
101.3) . 21
Objective 2: Boot the System 21

Boot-time Kernel Parameters 21
Introduction to Kernel Module Configuration 22

Objective 3: Change Runlevels and Shut Down or Reboot System 24
Single-User Mode 25
Overview of the /etc Directory Tree and the init Process 26

v

Setting the Default Runlevel 28
Determining Your System’s Runlevel 28

5. Linux Installation and Package Management (Topic 102) 33
Objective 1: Design a Hard Disk Layout 34

System Considerations 34
Swap Space 37
General Guidelines 38

Objective 2: Install a Boot Manager 38
LILO 39
GRUB 41

Objective 3: Manage Shared Libraries 44
Shared Library Dependencies 44
Linking Shared Libraries 45

Objective 4: Use Debian Package Management 46
Debian Package Management Overview 46
Managing Debian Packages 47

Objective 5: Use Red Hat Package Manager (RPM) 52
RPM Overview 52
Running rpm 53
YUM Overview 58

6. GNU and Unix Commands (Topic 103) . 63
Objective 1: Work on the Command Line 64

The Interactive Shell 65
Command History and Editing 71
Manpages 75

Objective 2: Process Text Streams Using Filters 77
Objective 3: Perform Basic File Management 91

Filesystem Objects 91
File-Naming Wildcards (File Globbing) 100

Objective 4: Use Streams, Pipes, and Redirects 102
Standard I/O and Default File Descriptors 102
Pipes 103
Redirection 104
Using the tee Command 106
The xargs Command 106

Objective 5: Create, Monitor, and Kill Processes 107
Processes 107
Process Monitoring 108
Signaling Active Processes 115
Terminating Processes 117
Shell Job Control 118

Objective 6: Modify Process Execution Priorities 120
nice 120

Objective 7: Search Text Files Using Regular Expressions 123

vi | Table of Contents

Regular Expression Syntax 123
Using grep 125
Using sed 127
Examples 130

Objective 8: Perform Basic File Editing Operations Using vi 135
Invoking vi 135
vi Basics 135

7. Devices, Linux Filesystems, and the Filesystem Hierarchy
Standard (Topic 104) . 139
Objective 1: Create Partitions and Filesystems 140

Disk Drives Under Linux 140
Objective 2: Maintain the Integrity of Filesystems 151

Monitoring Free Disk Space and Inodes 151
Monitoring Disk Usage 153
Modifying a Filesystem 154
Checking and Repairing Filesystems 157

Objective 3: Control Filesystem Mounting and Unmounting 161
Managing the Filesystem Table 161
Mounting Filesystems 163
Unmounting Filesystems 166

Objective 4: Set and View Disk Quotas 167
Quota Limits 168
Quota Commands 169
Enabling Quotas 175

Objective 5: Manage File Permissions and Ownership 176
Linux Access Control 176
Setting Access Modes 181
Setting Up a Workgroup Directory 186

Objective 6: Create and Change Hard and Symbolic Links 187
Why Links? 188

Objective 7: Find System Files and Place Files in the Correct Location 192
Datatypes 193
The root Filesystem 194
Locating Files 200

8. Exam 101 Review Questions and Exercises . 205
System Architecture (Topic 101) 205

Review Questions 205
Exercises 206

Linux Installation and Package Management (Topic 102) 206
Review Questions 206
Exercises 207

GNU and Unix Commands (Topic 103) 208
Review Questions 208
Exercises 208

Table of Contents | vii

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard
(Topic 104) 211

Review Questions 211
Exercises 212

9. Exam 101 Practice Test . 215
Questions 215
Answers 226

10. Exam 101 Highlighter’s Index . 229
System Architecture 229

Objective 101.1: Determine and Configure Hardware Settings 229
Objective 101.2: Boot the System 230
Objective 101.3: Change Runlevels and Shut Down or
Reboot System 230

Linux Installation and Package Management 230
Objective 102.1: Design Hard Disk Layout 230
Objective 102.2: Install a Boot Manager 231
Objective 102.3: Manage Shared Libraries 231
Objective 102.4: Use Debian Package Management 232
Objective 102.5: Use Red Hat Package Manager (RPM) 232

GNU and Unix Commands 232
Objective 103.1: Work on the Command Line 232
Objective 103.2: Process Text Streams Using Filters 233
Objective 103.3: Perform Basic File Management 235
Objective 103.4: Use Streams, Pipes, and Redirects 237
Objective 103.5: Create, Monitor, and Kill Processes 238
Objective 103.6: Modify Process Execution Priorities 239
Objective 103.7: Search Text Files Using Regular Expressions 239
Objective 103.8: Perform Basic File Editing Operations Using vi 241

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard 243
Objective 104.1: Create Partitions and Filesystems 243
Objective 104.2: Maintain the Integrity of Filesystems 244
Objective 104.3: Control Filesystem Mounting and Unmounting 244
Objective 104.4: Set and View Disk Quotas 246
Objective 104.5: Manage File Permissions and Ownership 246
Objective 104.6: Create and Change Hard and Symbolic Links 248
Objective 104.7: Find System Files and Place Files in the Correct
Location 248

11. Exam 102 Overview . 251

12. Exam 102 Study Guide . 253
Exam Preparation 253

viii | Table of Contents

13. Shells, Scripting, and Data Management (Topic 105) 255
Objective 1: Customize and Use the Shell Environment 256

An Overview of Shells 256
The Bash Shell 257

Objective 2: Customize or Write Simple Scripts 267
Script Files 267
Basic Bash Scripts 272

Objective 3: SQL Data Management 285
Accessing a MySQL Server 285
Database Overview 287
Aggregate Functions 292
Multitable Queries 293

14. The X Window System (Topic 106) . 297
An Overview of X 298
Objective 1: Install and Configure X11 298

Selecting and Configuring an X Server 299
X Fonts 306
Controlling X Applications with .Xresources 308

Objective 2: Set Up a Display Manager 308
Configuring xdm 308
X Terminals 311
Configuring KDM 311
Configuring GDM 314

Objective 3: Accessibility 316

15. Administrative Tasks (Topic 107) . 319
Objective 1: Manage User and Group Accounts and Related System
Files 319

User Accounts and the Password File 320
Groups and the Group File 321
The Shadow Password and Shadow Group Systems 322
User and Group Management Commands 323

Objective 2: Automate System Administration Tasks by Scheduling
Jobs 326

Using cron 326
Using at 329
Controlling User Access to cron and at 330

Objective 3: Localization and Internationalization 330

16. Essential System Services (Topics 108.1 and 108.2) 333
Objective 1: Maintain System Time 333

NTP Concepts 334
The NTP Software Package Components 334
The Hardware Clock 339

Table of Contents | ix

Time Zones 340
Objective 2: System Logging 341

Configuring syslogd 341
Client/Server Logging 343
Logfile Rotation 343
Examining Logfiles 344

17. Mail Transfer Agent (MTA) Basics (Topic 108.3) . 347
Objective 3: Mail Transfer Agent (MTA) Basics 347

Configuration of Sendmail 348
Configuration of Postfix 351
Configuration of Qmail 353
Configuration of Exim 354

18. Manage Printers and Printing (Topic 108.4) . 355
Objective 4: Manage Printers and Printing 355
An Overview of Printing 355

BSD and System V Interfaces 356
LPRng 356
CUPS 357

Troubleshooting General Printing Problems 365
The Error Logfile 365
The Page Logfile 366
The Access Logfile 366
Using the cups-config Utility for Debugging 366

19. Networking Fundamentals (Topic 109.1) . 369
Objective 1: Fundamentals of Internet Protocols 369

Network Addressing 370
Masks 372
Protocols 374
Services 376
Utilities 377

20. Basic Network Configuration (Topics 109.2 and 109.4) 383
Objective 2: Basic Network Configuration and Objective 4:
Configuring Client Side DNS 383

Network Interfaces 384
DHCP 390
A Standard Linux Network Configuration 393

21. Basic Network Troubleshooting (Topic 109.3) . 395
Objective 3: Basic Network Troubleshooting 395

x | Table of Contents

22. Security (Topic 110.1) . 405
Objective 1: Perform Security Administration Tasks 405

The (In)Security of SUID 406
User IDs and Passwords 411
Shadow Passwords 414
Setting Limits on Users 418
Querying System Services 422

23. Set Up Host Security (Topic 110.2) . 431
Objective 2: Set Up Host Security 431

The Super-Server 431
Security with TCP_WRAPPERS 437

24. Securing Data with Encryption (Topic 110.3) . 441
Objective 3: Securing Data With Encryption 442
Using Secure Shell (SSH) 442

Installation and Configuration 443
DSA and RSA Overview 444

Generating and Using Keys 444
The Server Public and Private Key 447
ssh-agent 447
Other SSH Tricks 449
SSH Port Forwarding 450

Configuring OpenSSH 450
Configuring and Using GNU Privacy Guard (GPG) 451

Generating a Key Pair 451
Importing a Public Key to a GPG Keyring 453
Signing Keys 453
Listing Keys 453
Export both a Public and Private Key 454
Encrypting a File 454
Troubleshooting Files in the ~/.gnupg/ Directory 454

25. Exam 102 Review Questions and Exercises . 457
Shells, Scripting, and Data Management (Topic 105) 457

Review Questions 457
Exercises 458

The X Window System (Topic 106) 458
Review questions 458
Exercises 458

Administrative Tasks (Topic 107) 459
Review questions 459
Exercises 459

Essential System Services (Topic 108) 460
Review Questions 460

Table of Contents | xi

Exercises 460
Networking Fundamentals (Topic 109) 461

Review Questions 461
Exercises 462

Security (Topic 110) 462
Review Questions 462
Exercises 463

26. Exam 102 Practice Test . 465
Questions 465
Answers 473

27. Exam 102 Highlighter’s Index . 475
Shells, Scripting, and Data Management 475

Objective 105.1: Customize and Use the Shell Environment 475
Objective 105.2: Customize or Write Simple Scripts 476
Objective 105.3: SQL Data Management 476

The X Window System 477
Objective 106.1: Install and Configure X11 477
Objective 106.2: Set Up a Display Manager 477
Objective 106.3: Accessibility 477

Administrative Tasks 477
Objective 107.1: Manage User and Group Accounts and Related
System Files 477
Objective 107.2: Automate System Administration Tasks by
Scheduling Jobs 478
Objective 107.3: Localization and Internationalization 479

Essential System Services 480
Objective 108.1: Maintain System Time 480
Objective 108.2: System Logging 480
Objective 108.3: Mail Transfer Agent (MTA) Basics 481
Objective 108.4: Manage Printers and Printing 481

Networking Fundamentals 482
Objective 109.1: Fundamentals of Internet Protocols 482
Objective 109.2: Basic Network Configuration 483
Objective 109.3: Basic Network Troubleshooting 484
Objective 109.4: Configuring Client Side DNS 484

Security 484
Objective 110.1: Perform Security Administration Tasks 484
Objective 110.2: Set Up Host Security 485
Objective 110.3: Securing Data with Encryption 485

Index . 487

xii | Table of Contents

Preface

Certification of professionals is a time-honored tradition in many fields, including
medicine and law. As small computer systems and networks proliferated over the
last decade, Novell and Microsoft produced extremely popular technical certifica-
tion products for their respective operating system and network technologies. These
two programs are often cited as having popularized a certification market for prod-
ucts that had previously been highly specialized and relatively rare. These programs
have become so popular that a huge training and preparation industry has formed
to service a constant stream of new certification candidates.

Certification programs, offered by vendors such as Sun and Hewlett-Packard, have
existed in the Unix world for some time. However, since Solaris and HP-UX aren’t
commodity products, those programs don’t draw the crowds that the PC platform
does. Linux, however, is different. Linux is both a commodity operating system and
is PC-based, and its popularity continues to grow at a rapid pace. As Linux deploy-
ment increases, so too does the demand for qualified and certified Linux system
administrators.

A number of programs such as the Linux Professional Institute (LPI), the Red Hat
Certified Engineer (RHCE) program, and CompTIA’s Linux+ have formed to service
this new market. Each of these programs seeks to provide objective measurements
of a Linux administrator’s skills, but they approach the problem in different ways.

The RHCE program requires that candidates pass multiple exam modules, including
two hands-on and one written, whose goals are to certify individuals to use their
brand of products. The Linux+ program requires a single exam and is focused at
entry-level candidates with six months’ experience. LPI’s program is a job-based
certification and currently consists of three levels; this book focuses on the most
basic level.

xiii

The Linux Professional Institute
The Linux Professional Institute is a nonprofit organization formed with the single
goal of providing a standard for vendor-neutral certification. This goal is being ach-
ieved by certifying Linux administrators through a modified open source develop-
ment process. LPI seeks input from the public for its exam Objectives and questions,
and anyone is welcome to participate. It has both paid and volunteer staff and re-
ceives funding from some major names in the computer industry. The result is a
vendor-neutral, publicly developed program that is offered at a reasonable price.

LPI currently organizes its most popular Linux Professional Institute Certification
(LPIC) series in three levels. This book covers the LPIC Level 1 Exams 101 and 102.

Level 1 is aimed at junior to midlevel Linux administrators with about two years of
practical system administration experience. The Level 1 candidate should be com-
fortable with Linux at the command line as well as capable of performing simple
tasks, including system installation and troubleshooting. Level 1 certification is re-
quired prior to obtaining Level 2 certification status.

All of LPI’s exams are based on a published set of technical Objectives. These tech-
nical Objectives are posted on LPI’s website and for your convenience printed at the
beginning of each chapter within this book. Each Objective set forth by LPI is
assigned a numeric weight, which acts as an indicator of the importance of the Ob-
jective. Weights run between 1 and 8, with higher numbers indicating more impor-
tance. An Objective carrying a weight of 1 can be considered relatively unimportant
and isn’t likely to be covered in much depth on the exam. Objectives with larger
weights are sure to be covered on the exam, so you should study these closely. The
weights of the Objectives are provided at the beginning of each chapter.

LPI offers its exams through Pearson VUE, Thomson Prometric, and at on-site lo-
cations at special Linux events, such as trade shows. Before registering for any of
these testing methods, you need to obtain an LPI ID number by registering directly
with LPI. To obtain your LPI ID, visit http://www.lpi.org/register.html. Once you’ve
received your LPI ID, you may continue your registration by registering with a testing
center or special event. You can link to any of these registration options through
LPI’s website.

In Vue and Prometric testing centers, the exams are delivered using a PC-based
automated examination program. As of this writing, the exams are available in
English, Japanese, Chinese (both Traditional and Simplified), German, Spanish,
Portuguese, and French. Exam questions are presented in three different styles:
multiple-choice single-answer, multiple-choice multiple-answer, and fill-in-the-
blank. However, the majority of the questions on the exams are multiple-choice
single-answer. Also, with the multiple-choice questions, the candidate is told exactly
how many answers are correct.

For security purposes, multiple forms of each exam are available at testing centers
to help minimize memorization and brain dumps of exams if candidates take them
multiple times. Due to this, actual question numbers may vary slightly. LPI’s psy-
chometric team develops these forms and adjusts the scoring appropriately so all

xiv | Preface

http://www.lpi.org
http://www.vue.com
http://www.prometric.com
http://www.lpi.org/register.html
http://www.lpi.org/eng/certification/faq/procedure_for_taking_exams

forms are equally difficult. The scores are between 200 and 800, and passing score
is 500.

Audience for This Book
The primary audience for this book is, of course, candidates seeking the LPIC cer-
tification. These may range from administrators of other operating systems looking
for a Linux certification to complement an MSCE certification to Unix administra-
tors wary of a growing pool of Linux-certified job applicants. In any case, this book
will help you with the specific information you require to be successful with the
Level 1 Exams. Don’t be fooled, however, as book study will not be enough to pass
your exams. Remember, practice makes perfect!

Due to the breadth of knowledge required by the LPI Objectives and the book’s one-
to-one coverage, it also makes an excellent reference for skills and methods required
for the day-to-day use of Linux. If you have a basic working understanding of Linux
administration, the material in this book will help fill gaps in your knowledge while
at the same time preparing you for the LPI Exams, should you choose to take them.

This book should also prove to be a valuable introduction for new Linux users and
administrators looking for a broad, detailed introduction to Linux. Part of the LPI
exam-creation process includes a survey of Linux professionals in the field. The
survey results drive much of the content found on the exams. Therefore, unlike
general-purpose introductory Linux books, all of the information in this book ap-
plies directly to running Linux in the real world.

Organization
This book is designed to exactly follow the Topics and Objectives established by LPI
for Level 1. That means that the presentation doesn’t look like any other Linux book
you’ve read. Instead, you can directly track the LPI Objectives and easily measure
your progress as you prepare.

The book is presented in two parts, one for Exam 101 and the other for Exam 102.
Each part contains chapters dedicated to the LPI Topics, and each of those sections
contains information on all of the Objectives set forth for the Topic. In addition,
each part contains a practice exam (with answers), review questions and exercises,
and a handy highlighter’s index that can help you review important details.

Book Chapters
Each part of this book contains some combination of the following materials:

Exam overview
Here you find an introduction to the exam along with details about the format
of the questions.

Preface | xv

Study guide
This chapter offers a few tips to prepare for the LPI Exams and introduces the
Objectives contained in the Topic chapters that follow.

Topic chapters
A separate chapter covers each of the Topic areas on the exam. These chapters
provide background information and in-depth coverage for each Objective,
with “On the Exam” (see bottom of this page) tips dispersed throughout.

Review questions and exercises
This chapter reinforces important study areas with review questions. The pur-
pose of this section is to provide you with a series of exercises that can be used
on a running Linux system to give you valuable hands-on experience before you
take the exams.

Practice test
The practice test is designed to be similar in format and content to the actual
LPI Exams. You should be able to attain at least an 80 percent score on the
sample test before attempting the live exam.

Highlighter’s index
This unique chapter contains highlights and important facts culled from the
Topic chapters. You can use this as review and reference material prior to taking
the actual exams.

Conventions Used in This Book
This book follows certain typographical conventions:

Italic
Italic is used to indicate URLs, filenames, directories, commands, options, sys-
tem components (such as usernames), and to highlight comments in examples.

Constant Width
Used to show the contents of files or the output from commands.

Constant Width Bold
Used in examples and tables to show commands or other text that should be
typed literally by the user.

Constant Width Italic
Used to show arguments and variables that should be replaced with user-
supplied values.

#, $
Used in some examples as the root shell prompt (#) and as the user prompt
($) under the Bourne or Bash shell.

On the Exam
Provides information about areas you should focus on when studying for the exam.

xvi | Preface

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

A final word about syntax: in many cases, the space between an option and its ar-
gument can be omitted. In other cases, the spacing (or lack of spacing) must be
followed strictly. For example, -wn (no intervening space) might be interpreted dif-
ferently from -w n. It’s important to notice the spacing used in option syntax.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “LPI Linux Certification in a Nut-
shell, Third Edition, by Adam Haeder et al. Copyright 2010 Adam Haeder, Stephen
Addison Schneiter, Bruno Gomes Pessanha, and James Stanger. ISBN:
9780596804879.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
As a reader of this book and as an LPI examinee, you can help us to improve future
editions. Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

Preface | xvii

mailto:permissions@oreilly.com

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596804879

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

If you have taken one or all of the LPIC Exams after preparing with this book and
find that parts of this book could better address your exam experience, we’d like to
hear about it. Of course, you are under obligation to LPI not to disclose specific
exam details, but comments regarding the coverage of the LPI Objectives, level of
detail, and relevance to the exam will be most helpful. We take your comments
seriously and will do whatever we can to make this book as useful as it can be.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos
to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your
favorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
For the third edition, we thank reviewers Don Corbet, Jon Larsen, Gregor Purdy,
Rick Rezinas, G. Matt Rice, and Craig Wolf.

Adam Haeder dedicates his work to Tina, Erin, Ethan, Stanley, and Stefon: the rea-
son I work so late into the night.

Bruno dedicates his work to his grandfather, Oswaldo Cabral Pessanha, in
memoriam.

xviii | Preface

http://oreilly.com/catalog/9780596804879
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

1
LPI Exams

LPI Exam 101 is one of two exams required for the LPIC Level 1 (officially referred
to as LPIC 1) certification. In total, ten major Topic areas are specified for Level 1;
this exam tests your knowledge on four of them.

Exam Topics are numbered using the topic.objective notation (e.g., 101.1, 101.2,
102.1). The 100 series topics represent LPI Level 1 certification topics, which are
unique to all levels of LPI exams (e.g., 101, 102, 201, 202, etc.). The objective number
represents the Objectives that are associated with the Topic area (e.g., 1, 2, 3, 4, and
so on).

The Level 1 Topics are distributed between the two exams to create tests of similar
length and difficulty without subject matter overlap. As a result, there’s no require-
ment for or advantage to taking them in sequence, the only caveat being that you
cannot be awarded an LPIC 2 or higher certifications until you pass the requirements
for the lower-level certification.

Each Topic contains a series of Objectives covering specific areas of expertise. Each
of these Objectives is assigned a numeric weight, which acts as an indicator of the
importance of the Objective. Weights typically run between 1 and 8, with higher
numbers indicating more importance. An Objective carrying a weight of 1 can be
considered relatively unimportant and isn’t likely to be covered in much depth on
the exam. Objectives with larger weights are sure to be covered more heavily on the
exam, so you should study these Topics closely. The weights of the Objectives are
provided at the beginning of each Topic section. In the current version of LPI exams,
all of the weighting totals for each exam add up to 60. With 60 questions per exam,
this means that the weighting is exactly equivalent to how many questions the Ob-
jective will have in the exam.

The Topics for Exam 101 are listed in Table 1-1.

1

Table 1-1. LPI Topics for Exam 101

Name Number of
objectives

Description

System Architecture 3 These Objectives cover all the fundamentals of configuring common types of
hardware on the system, managing the boot process, and modifying the run-
levels of the system and the shut down or reboot process from the
command line.

Linux Installation
and Package
Management

5 Objectives for this Topic include the basics of getting any LSB-compliant Linux
distribution installed and installing applications. Some of the basics include
partitioning hard drives, installing your choice of boot managers, managing
shared libraries, and using Debian’s dpkg and apt family of commands and RPM
and Yellowdog Updater Modified (YUM) package management systems.

GNU and Unix
Commands

8 This heavily weighted Topic addresses the most utilized command-line tools
used on standard Linux systems as well as most commercial Unix systems. The
Objectives detail working on a command line, processing text streams using
command-line tools, managing files, manipulating text with pipes and redirects,
monitoring system processes, managing task priorities, using regular expres-
sions, and editing files with vi, lilo, syslog, and runlevels.

Devices, Linux
Filesystems, and the
Filesystem Hierarchy
Standard

8 Objectives for this Topic include the creation of partitions and filesystems, file-
system integrity, mounting, quotas, permissions, ownership, links, and file
location tasks.

As you can see from Table 1-1, the Topic numbers assigned by the LPI are not
necessarily sequential. This is due to various modifications made by the LPI to its
exam program as it developed. The Topic numbers serve only as reference and are
not used on the exam.

Exam 101 lasts a maximum of 90 minutes and contains exactly 60 questions. The
exam is administered using a custom application on a PC in a private room with no
notes or other reference material. The majority of the exam is made up of multiple-
choice single-answer questions. These questions have only one correct answer and
are answered using radio buttons. Some of them present a scenario needing admin-
istrative action. Others seek appropriate commands for a particular task or proof of
understanding of a particular concept. Some people may get an exam with an ad-
ditional 20 items. These items are used to test new questions and don’t count as part
of the score. An additional 30 minutes is provided in this case, and there is no indi-
cation which items are unscored.

About 10 percent of the exam questions are multiple-choice multiple-answer ques-
tions, which are answered using checkboxes. These questions specify that they have
multiple correct responses, each of which must be checked to get the item correct.
There is no partial credit for partially answered items. This is probably the most
difficult question style because the possibility of multiple answers increases the like-
lihood of forgetting to include an answer, even though the candidate is told in the
question exactly how many answers to select. But they also are a good test of your
knowledge of Unix commands, since an incorrect response on any one of the pos-
sible answers causes you to miss the entire question.

2 | Chapter 1: LPI Exams

The exam also has fill-in-the-blank questions. These questions provide a one-line
text area input box for you to fill in your answer. These questions check your knowl-
edge of concepts such as important files and commands, plus common facts that
you are expected to be aware of. Don’t let this scare you, however, since most of
these items accept a variety of answers. Unless specified otherwise, they are not case-
sensitive and do not require full paths in your answers.

LPI Exams | 3

LPI Exam
s

2
Exam 101 Study Guide

The first part of this book contains a section for each of the four Topics found on
LPI Exam 101. Each section details certain Objectives, which are described here and
on the LPI website.

Exam Preparation
LPI Exam 101 is thorough, but you should find it fairly straightforward if you have
a solid foundation in Linux concepts. You won’t come across questions intended to
trick you, and you’re unlikely to find ambiguous questions.

Exam 101 mainly tests your knowledge of facts, including commands and their
common options, important file locations, configuration syntax, and common pro-
cedures. Your recollection of these details, regardless of your level of Linux admin-
istration experience, will directly influence your results.

For clarity, the material in the following sections is presented in the same order as
the LPI Topics and Objectives. However, you may choose to study the Topics in any
order you wish. To assist you with your preparation, Table 2-1 through Table 2-4
list the Topics and Objectives found on Exam 101. Objectives within each Topic
occupy rows of the corresponding table, including the Objective’s number, descrip-
tion, and weight. The LPI assigns a weight for each Objective to indicate the relative
importance of that Objective on the exam on a scale of 1 to 8. We recommend that
you use the weights to prioritize what you decide to study in preparation for the
exams. After you complete your study of each Objective, simply check it off here to
measure and organize your progress.

Table 2-1. System architecture (Topic 101)

Objective Weight Description

1 2 Determine and Configure Hardware settings

2 3 Boot the System

3 3 Change Runlevels and Shut Down or Reboot System

5

http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_101_detailed_objectives

Table 2-2. Linux installation and package management (Topic 102)

Objective Weight Description

1 2 Design Hard Disk Layout

2 2 Install a Boot Manager

3 1 Manage Shared Libraries

4 3 Use Debian Package Management

5 3 Use RPM and YUM Package Management

Table 2-3. GNU and Unix commands (Topic 103)

Objective Weight Description

1 4 Work on the Command Line

2 3 Process Text Streams Using Filters

3 4 Perform Basic File Management

4 4 Use Streams, Pipes, and Redirects

5 4 Create, Monitor, and Kill Processes

6 2 Modify Process Execution Priorities

7 2 Search Text Files Using Regular Expressions

8 3 Perform Basic File Editing Operations Using vi or vim

Table 2-4. Devices, Linux filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Objective Weight Description

1 2 Create Partitions and Filesystems

2 2 Maintain the Integrity of Filesystems

3 3 Control Filesystem Mounting and Unmounting

4 1 Set and View Disk Quotas

5 3 Manage File Permissions and Ownership

6 2 Create and Change Hard and Symbolic Links

7 2 Find System Files and Place Files in the Correct Location

6 | Chapter 2: Exam 101 Study Guide

3
System Architecture (Topic 101.1)

This Topic requires general knowledge of fundamental PC architecture facts that
you must know before attempting any operating system installation. It includes this
Objective:

Objective 1: Determine and Configure Hardware Settings
Candidates should be able to determine and configure fundamental system
hardware. Weight: 2.

Objective 1: Determine and Configure Hardware Settings
Setting up a PC for Linux (or any other operating system) requires some familiarity
with the devices installed in the system and their configuration. Items to be aware
of include modems, serial and parallel ports, network adapters, SCSI adapters, hard
drives, USB controllers, and sound cards. Many of these devices, particularly older
ones, require manual configuration of some kind to avoid conflicting resources. The
rest of the configuration for the system hardware is done in the PC’s firmware, or
Basic Input/Output System (BIOS).

BIOS
The firmware located in a PC, commonly called the BIOS, is responsible for bringing
all of the system hardware to a state at which it is ready to boot an operating system.
Systems vary, but this process usually includes system initialization, the testing of
memory and other devices, and ultimately locating an operating system from among
several storage devices. In addition, the BIOS provides a low-level system configu-
ration interface, allowing the user to choose such things as boot devices and resource
assignments. Quite a few BIOS firmware vendors provide customized versions of
their products for various PC system architectures. Exams do require an under-
standing of the basics. For example, a laptop BIOS may differ significantly from a
desktop system of similar capability from the same manufacturer. Due to these
variations, it’s impossible to test specifics, but the LPIC Level 1 exams do require
an understanding of the basics.

7

At boot time, most PCs display a method of entering the BIOS configuration utility,
usually by entering a specific keystroke during startup. Once the utility is started, a
menu-based screen in which system settings can be configured appears. Depending
on the BIOS vendor, these will include settings for disks, memory behavior, on-board
ports (such as serial and parallel ports), and the clock, as well as many others.

Date and time

One of the basic functions of the BIOS is to manage the on-board hardware clock.
This clock is initially set in the BIOS configuration by entering the date and time in
the appropriate fields. Once set, the internal clock keeps track of time and makes
the time available to the operating system. The operating system can also set the
hardware clock, which is often useful if an accurate external time reference, such as
an NTPD server (see Chapter 16), is available on the network while the system is
running.

Disks and boot devices

Another fundamental configuration item required in BIOS settings is the selection
of storage devices. Newer systems are able to detect and properly configure much
of this hardware automatically. However, older BIOS versions require manual con-
figuration. This may include the selection of floppy disk sizes and disk drive
parameters.

Most PCs have at least three bootable media types: an internal hard disk (IDE or
SCSI, or perhaps both), a CD-ROM drive (again IDE or SCSI), and a floppy disk.
After initialization, the BIOS seeks an operating system (or an operating system
loader, such as the Linux Loader [LILO]) on one or more of these media. By default,
many BIOS configurations enable booting from the floppy or CD-ROM first, then
the hard disk, but the order is configurable in the BIOS settings.

In addition to these default media types, many server motherboard BIOS (as well as
high-end system motherboards) support booting from a network device such as a
NIC with a bootable ROM. This is often used when booting diskless workstations
such as Linux-based terminals.

On the Exam
You should be familiar with the general configuration requirements and layout of
the BIOS configuration screens for a typical PC.

Using the /proc filesystem

When adding new hardware to an existing Linux system, you may wish to verify
which resources the existing devices are using. The /proc filesystem, the kernel’s
status repository, contains this information. The proc files, interrupts, dma, and
ioports, show how system resources are currently utilized. (These files may not show
devices unless their device files/drivers are open/active. This may make the problem
harder to find if you’re experiencing resource conflicts.) The following is an example

8 | Chapter 3: System Architecture (Topic 101.1)

of /proc/interrupts from a dual-CPU system with an Adaptec dual-AIC7895 SCSI
controller:

cat /proc/interrupts
 CPU0 CPU1
 0: 98663989 0 XT-PIC timer
 1: 34698 34858 IO-APIC-edge keyboard
 2: 0 0 XT-PIC cascade
 5: 7141 7908 IO-APIC-edge MS Sound System
 6: 6 7 IO-APIC-edge floppy
 8: 18098274 18140354 IO-APIC-edge rtc
 10: 3234867 3237313 IO-APIC-level aic7xxx, eth0
 11: 36 35 IO-APIC-level aic7xxx
 12: 233140 216205 IO-APIC-edge PS/2 Mouse
 13: 1 0 XT-PIC fpu
 15: 44118 43935 IO-APIC-edge ide1
NMI: 0
ERR: 0

In this example, you can see that interrupt 5 is used for the sound system, so it isn’t
available for a second parallel port. The two SCSI controllers are using interrupts 10
and 11, respectively, while the Ethernet controller shares interrupt 10. You may also
notice that only one of the two standard IDE interfaces is enabled in the system
BIOS, freeing interrupt 14 use for another device.

Here are the /proc/dma and /proc/ioports files from the same system:

cat /proc/dma
0: MS Sound System
1: MS Sound System
2: floppy
4: cascade
cat /proc/ioports
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
02f8-02ff : serial(auto)
0370-0371 : OPL3-SAx
0376-0376 : ide1
0388-0389 : mpu401
03c0-03df : vga+
03f0-03f5 : floppy
03f7-03f7 : floppy DIR
03f8-03ff : serial(auto)
0530-0533 : WSS config
0534-0537 : MS Sound System
e800-e8be : aic7xxx
ec00-ecbe : aic7xxx
ef00-ef3f : eth0

Objective 1: Determine and Configure Hardware Settings | 9

System
Architecture

ffa0-ffa7 : ide0
ffa8-ffaf : ide1

On the Exam
You should know how to examine a running Linux system’s resource assignments
using the /proc filesystem.

Universal Serial Bus (USB) is a type of interface used to connect various types of
peripherals, ranging from keyboards and mice to hard drives, scanners, digital cam-
eras, and printers. The USB Objective covers the general architecture of USB, USB
modules, and configuring USB devices.

USB Topology
USB devices are attached to a host in a tree through some number of hub devices.
The lsusb command can be used to see how devices are physically attached to a Linux
system.

lsusb -t
Bus# 4
'-Dev# 1 Vendor 0x0000 Product 0x0000
Bus# 3
'-Dev# 1 Vendor 0x0000 Product 0x0000
 |-Dev# 2 Vendor 0x046d Product 0xc501
 '-Dev# 3 Vendor 0x0781 Product 0x0002
Bus# 2
'-Dev# 1 Vendor 0x0000 Product 0x0000
 |-Dev# 2 Vendor 0x0451 Product 0x2036
 | |-Dev# 5 Vendor 0x04b8 Product 0x0005
 | '-Dev# 6 Vendor 0x04b8 Product 0x0602
 '-Dev# 3 Vendor 0x0451 Product 0x2046
 '-Dev# 4 Vendor 0x056a Product 0x0011
Bus# 1
'-Dev# 1 Vendor 0x0000 Product 0x0000

USB Controllers
There are three types of USB host controllers:

• Open Host Controller Interface (OHCI)

• Universal Host Controller Interface (UHCI)

• Enhanced Host Controller Interface (EHCI)

OHCI and UHCI controllers are both USB 1.1 controllers, which are capable of a
maximum of 12 Mbps. EHCI controllers are USB 2.0 controllers, which are capable
of a theoretical maximum of 480 Mbps. To get greater than USB 1.1 speeds, you
must have a USB 2.0 controller, as well as USB 2.0 devices, hubs, and cables. A USB
2.0 device attached to a USB 1.1 hub will only be able to run at USB 1.1 speeds.

10 | Chapter 3: System Architecture (Topic 101.1)

USB Devices
There are several classes of USB devices, including the following:

Human Interface Device (HID)
Input devices (mice, keyboards, etc.)

Communications device
Modems

Mass storage device
Disk devices, flash readers, etc.

Audio
Sound devices

IrDA
Infrared devices

Printer
Printers and USB-to-parallel cables

USB Drivers
USB support was added to the Linux kernel in the 2.3.x development kernel series,
then back-ported to 2.2.x, minus support for USB mass storage devices (due to SCSI
changes in 2.3.x). The back-port was included in the 2.2.18 kernel release.

There is no kernel USB support in 2.0.x and earlier.

The Linux kernel USB drivers fall into three categories:

Host controller drivers
The USB host controller drivers include usb-ohci.o (OHCI driver), usb-uhci.o
(UHCI driver), uhci.o (old “alternate” UHCI driver), and ehci-hcd.o (EHCI
driver).

Class drivers
The USB class drivers include hid.o, usb-storage.o (mass storage driver),
acm.o (Automated Control Model [ACM] communications class driver, which
deals with modems that emulate the standard serial modem AT command in-
terface), printer.o, and audio.o.

Other device drivers
There are many drivers for devices that either don’t fit into one of the standard
USB classes or don’t work with one of the standard class drivers. Examples
include rio500.o (the driver for the Diamond Rio 500 MP3 player) and pwc.o
(the driver for various Philips webcams).

The Linux drivers implement USB support in layers. At the bottom is usbcore.o,
which provides all of the generic USB support for the higher-level drivers as well as

Objective 1: Determine and Configure Hardware Settings | 11

System
Architecture

USB hub support. The host controller drivers load in the middle of the stack. On
top are the device and class drivers and any modules they require.

The following is an example of what you might see in /proc/modules (or from the
output of lsmod) on a system with several USB devices:

Module Size Used by
usb-storage 68628 0
scsi_mod 106168 2 [usb-storage]
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hcd 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [usb-storage printer wacom hid ehci-hcd \
 usb-uhci]

USB Hotplug
Modularized USB drivers are loaded by the generic /sbin/hotplug support in the ker-
nel, which is also used for other hotplug devices such as CardBus cards.

Although not covered on the LPI exams, the Linux IEEE 1394
(also known as FireWire or i.Link) drivers have a similar design.
If you understand how to set up USB devices, setting up IEEE
1394 devices should be easy.

Configuring specialized hardware has become easier and easier, even since the de-
velopment of LPI’s Level 2 Exams. Items such as LCD panels and serial UPS devices
used to not be as common in our homes and offices, but today they are considered
standard equipment.

When you prepared for Level 1, you became familiar with a number of the tools you
must utilize when adding new hardware to your systems. For the Level 2 exams, you
must be prepared to understand when to use them and the most efficient methods
for installing your new devices.

Reporting Your Hardware
Before you tackle adding any new hardware devices to your system, it’s useful to
obtain information about the hardware you have installed. Some useful tools to
report this information include lsmod, lsdev, and lspci.

12 | Chapter 3: System Architecture (Topic 101.1)

lsmod

Syntax
lsmod [options]

Description
The lsmod command displays all the information available about currently loaded modules.
Reviewing your loaded modules is often the first step in identifying possible problems, such as
driver conflicts (quite frequently found with USB device drivers). This information can also be
found in /proc/modules. lsmod has only two options, neither of them affecting its operation.

Options

-h, --help
Display help information.

-V, --version
Display the version.

The output of lsmod is a series of columns identifying the module name, its size, its use number,
and its status. A sample of lsmod output looks like this:

Module Size Used by Not tainted
vfat 12844 0 (autoclean)
fat 38328 0 (autoclean) [vfat]
nfs 79960 0 (autoclean)
ide-scsi 11984 0 (autoclean)
ide-cd 35196 0 (autoclean)
cdrom 33440 0 (autoclean) [ide-cd]
tuner 11680 1 (autoclean)
tvaudio 14940 0 (autoclean) (unused)
bttv 73568 0 (autoclean)
videodev 8192 2 (autoclean) [bttv]
radeon 114244 28
agpgart 46752 3
parport_pc 18756 1 (autoclean)
lp 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc lp]

lsdev

Syntax
lsdev

Description
The lsdev command displays information about your system’s hardware, such as interrupt ad-
dresses and I/O ports. The command is useful for obtaining information prior to installing
devices that may have hardware addressing conflicts, such as ISA devices. This command uses
DMA files in /proc to also report I/O addresses and IRQ and DMA channel information. There
are no options for lsdev.

lsdev

Chapter 3: System Architecture (Topic 101.1) | 13

System
Architecture

The output of lsdev is very simple, similar to lsmod. It lists information in four columns: device
name, DMA address, IRQ address, and I/O ports. The following is some sample output from
lsdev:

Device DMA IRQ I/O Ports
--
ATI c800-c8ff
bttv 10
Creative e800-e81f ec00-ec07
dma 0080-008f
dma1 0000-001f
dma2 00c0-00df
e100 e000-e03f
EMU10K1 11 e800-e81f
fpu 00f0-00ff
ide0 14 01f0-01f7 03f6-03f6 fc00-fc07
ide1 15 0170-0177 0376-0376 fc08-fc0f
Intel e000-e03f
keyboard 1 0060-006f
ohci1394 12
PCI 0cf8-0cff c000-cfff

lspci

Syntax
lspci [options]

Description
The lspci command displays information about your system’s PCI buses and your installed PCI
devices. This information is found primarily within /proc.

Options

-t
Show a treelike diagram containing all buses, bridges, devices, and connections between
them.

-vv
Very verbose mode.

Manipulating Modules
A module is dynamically linked into the running kernel when it is loaded. Much of
Linux kernel module handling is done automatically. However, there may be times
when it is necessary for you to manipulate the modules yourself, and you may come
across the manipulation commands in scripts. For example, if you’re having diffi-
culty with a particular driver, you may need to get the source code for a newer version
of the driver, compile it, and insert the new module in the running kernel. The
commands listed in this section can be used to list, insert, remove, and query
modules.

lspci

14 | Chapter 3: System Architecture (Topic 101.1)

lsmod

Syntax
lsmod

Description
For each kernel module loaded, display its name, size, use count, and a list of other referring
modules. This command yields the same information as is available in /proc/modules.

Example
Here, lsmod shows that quite a few kernel modules are loaded, including filesystem (vfat, fat),
networking (3c59x), and sound (soundcore, mpu401, etc.) modules, among others:

lsmod
Module Size Used by
radeon 112996 24
agpgart 45824 3
parport_pc 18756 1 (autoclean)
lp 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc lp]
e100 59428 1
ohci1394 19976 0 (unused)
ieee1394 48300 0 [ohci1394]
scsi_mod 106168 0
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
emu10k1 68104 1
ac97_codec 13512 0 [emu10k1]
sound 73044 0 [emu10k1]
soundcore 6276 7 [emu10k1 sound]
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hcd 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [printer wacom hid ehci-hcd usb-uhci]
ext3 87240 3
jbd 51156 3 [ext3]

insmod

Syntax
insmod [options] module

Description
Insert a module into the running kernel. The module is located automatically and inserted. You
must be logged in as the superuser to insert modules.

insmod

Chapter 3: System Architecture (Topic 101.1) | 15

System
Architecture

Frequently used options

-s
Direct output to syslog instead of stdout.

-v
Set verbose mode.

Example
The msdos filesystem module is installed into the running kernel. In this example, the kernel
was compiled with modular support for the msdos filesystem type, a typical configuration for
a Linux distribution for i386 hardware. To verify that you have this module, check for the
existence of /lib/modules/kernel-version/fs/msdos.o:

insmod msdos
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_add_cluster_Rsmp_eb84f594
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_cache_inval_inode_Rsmp_6da1654e
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_scan_Rsmp_d61c58c7
(... additional errors omitted ...)
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_date_unix2dos_Rsmp_83fb36a1
echo $?

This insmod msdos command yields a series of unresolved symbol messages and an exit status
of 1, indicating an error. This is the same sort of message that might be seen when attempting
to link a program that referenced variables or functions unavailable to the linker. In the context
of a module insertion, such messages indicate that the functions are not available in the kernel.
From the names of the missing symbols, you can see that the fat module is required to support
the msdos module, so it is inserted first:

insmod fat

Now the msdos module can be loaded:

insmod msdos

Use the modprobe command to automatically determine these dependencies and install pre-
requisite modules first.

rmmod

Syntax
rmmod [options] modules

Description
The rmmod command is used to remove modules from the running kernel. You must be logged
in as the superuser to remove modules, and the command will fail if the module is in use or
being referred to by another module.

rmmod

16 | Chapter 3: System Architecture (Topic 101.1)

Frequently used options

-a
Remove all unused modules.

-s
Direct output to syslog instead of stdout.

Example
Starting with both the fat and msdos modules loaded, remove the fat module (which is used by
the msdos module):

lsmod
Module Size Used by
msdos 8348 0 (unused)
fat 25856 0 [msdos]
rmmod fat
rmmod: fat is in use

In this example, the lsmod command fails because the msdos module is dependent on the fat
module. So, to unload the fat module, the msdos module must be unloaded first:

rmmod msdos
rmmod fat

The modprobe -r command can be used to automatically determine these dependencies and
remove modules and their prerequisites.

modinfo

Syntax
modinfo [options] module_object_file

Description
Display information about a module from its module_object_file. Some modules contain no
information at all, some have a short one-line description, and others have a fairly descriptive
message.

Options

-a
Display the module’s author.

-d
Display the module’s description.

-p
Display the typed parameters that a module supports.

Examples
In these examples, modinfo is run using modules compiled for a multiprocessing (SMP) kernel
Version 2.2.5. Your kernel version, and thus the directory hierarchy containing modules, will
be different.

modinfo

Chapter 3: System Architecture (Topic 101.1) | 17

System
Architecture

modinfo -d /lib/modules/2.2.5-15smp/misc/zftape.o
zftape for ftape v3.04d 25/11/97 - VFS interface for the
 Linux floppy tape driver. Support for QIC-113
 compatible volume table and builtin compression
 (lzrw3 algorithm)
modinfo -a /lib/modules/2.2.5-15smp/misc/zftape.o
(c) 1996, 1997 Claus-Justus Heine
 (claus@momo.math.rwth-aachen.de)
modinfo -p /lib/modules/2.2.5-15smp/misc/ftape.o
ft_fdc_base int, description "Base address of FDC
 controller."
Ft_fdc_irq int, description "IRQ (interrupt channel)
 to use."
ft_fdc_dma int, description "DMA channel to use."
ft_fdc_threshold int, description "Threshold of the FDC
 Fifo."
Ft_fdc_rate_limit int, description "Maximal data rate
 for FDC."
ft_probe_fc10 int, description "If non-zero, probe for a
 Colorado FC-10/FC-20 controller."
ft_mach2 int, description "If non-zero, probe for a
 Mountain MACH-2 controller."
ft_tracing int, description "Amount of debugging output,
 0 <= tracing <= 8, default 3."

modprobe

Syntax
modprobe [options] module [symbol=value ...]

Description
Like insmod, modprobe is used to insert modules. In fact, modprobe is a wrapper around
insmod and provides additional functionality. In addition to loading single modules,
modprobe has the ability to load modules along with their prerequisites or all modules stored
in a specific directory. The modprobe command can also remove modules when combined with
the -r option.

A module is inserted with optional symbol=value parameters. If the module is dependent upon
other modules, they will be loaded first. The modprobe command determines prerequisite re-
lationships between modules by reading modules.dep at the top of the module directory hier-
archy (i.e., /lib/modules/2.2.5-15smp/modules.dep).

You must be logged in as the superuser to insert modules.

Frequently used options

-a
Load all modules. When used with the -t moduletype, all is restricted to modules in the
moduletype directory. This action probes hardware by successive module-insertion at-
tempts for a single type of hardware, such as a network adapter (in which case the
moduletype would be net, representing /lib/modules/kernel-version/kernel/net). This may
be necessary, for example, to probe for more than one kind of network interface.

modprobe

18 | Chapter 3: System Architecture (Topic 101.1)

-c
Display a complete module configuration, including defaults and directives found in /etc/
modules.conf (or /etc/conf.modules on older systems). The -c option is not used with any
other options.

-l
List modules. When used with the -t moduletype, list only modules in directory module
type. For example, if moduletype is net, then modules in /lib/modules/kernel-version/net
are displayed.

-r
Remove module, similar to rmmod. Multiple modules may be specified.

-s
Direct output to syslog instead of stdout.

-t moduletype
Attempt to load multiple modules found in the directory moduletype until a module suc-
ceeds or all modules in moduletype are exhausted. This action “probes” hardware by suc-
cessive module-insertion attempts for a single type of hardware, such as a network adapter
(in which case moduletype would be net, representing /lib/modules/kernel-version/kernel/
net).

-v
Set verbose mode.

Example 1
Install the msdos filesystem module into the running kernel:

modprobe msdos

Module msdos and its dependency, fat, will be loaded. modprobe determines that fat is needed
by msdos when it looks through modules.dep. You can see the dependency listing using grep:

grep /msdos.o: /lib/modules/2.2.5-15smp/modules.dep
/lib/modules/2.2.5-15smp/fs/msdos.o:
 /lib/modules/2.2.5-15smp/fs/fat.o

Example 2
Remove fat and msdos modules from the running kernel, assuming msdos is not in use:

modprobe -r fat msdos

Example 3
Attempt to load available network modules until one succeeds:

modprobe -t net

Example 4
Attempt to load all available network modules:

modprobe -at net

modprobe

Chapter 3: System Architecture (Topic 101.1) | 19

System
Architecture

Example 5
List all modules available for use:

modprobe -l
/lib/modules/2.2.5-15smp/fs/vfat.o
/lib/modules/2.2.5-15smp/fs/umsdos.o
/lib/modules/2.2.5-15smp/fs/ufs.o
 . . .

Example 6
List all modules in the net directory for 3Com network interfaces:

modprobe -lt net | grep 3c
/lib/modules/2.2.5-15smp/net/3c59x.o
/lib/modules/2.2.5-15smp/net/3c515.o
/lib/modules/2.2.5-15smp/net/3c509.o
/lib/modules/2.2.5-15smp/net/3c507.o
/lib/modules/2.2.5-15smp/net/3c505.o
/lib/modules/2.2.5-15smp/net/3c503.o
/lib/modules/2.2.5-15smp/net/3c501.o

Device Management Definitions
Hotplugging is often taken to mean the opposite of coldplugging—in other words,
the ability of a computer system to add or remove hardware without powering the
system down. Examples of devices that are coldpluggable include PCI (some PCI
chipsets have hotplug support, but these are very expensive and almost exclusively
used in server systems), ISA devices, and PATA devices.

In most computer systems, CPUs and memory are coldpluggable, but it is common
for high-end servers and mainframes to feature hotplug capability of these
components.

sysfs is a RAM-based filesystem initially based on ramfs. It provides a means to export
kernel data structures, their attributes, and the linkages between them to the user
space. sysfs contains several directory hierarchies showing the available hardware
devices and attributes of the modules/drivers. It can be accessed by running:

mount -t sysfs sysfs /sys

The udev process uses sysfs to get the information it needs about the hardware and
creates dynamic device files as kernel modules are loaded. The directory /etc/
udev.d holds all the rules to be applied when adding or removing a device.

D-Bus is an application that uses sysfs to implement a message bus daemon. It is
used for broadcasting system events such as “new hardware device added” or
“printer queue changed” and is normally launched by an init script called
messagebus.

The hald process is the daemon that maintains a database of the devices connected
to the system in real time. The daemon connects to the D-Bus system message bus
to provide an API that applications can use to discover, monitor, and invoke oper-
ations on devices.

modprobe

20 | Chapter 3: System Architecture (Topic 101.1)

4
Change Runlevels and Shut Down

or Reboot System (Topics 101.2
and 101.3)

This Topic continues the subject of general knowledge of fundamental PC archi-
tecture. It includes these Objectives:

Objective 2: Boot the System
Candidates should be able to guide the system through the booting process.
Weight: 3.

Objective 3: Change Runlevels and Shut Down or Reboot System
Candidates should be able to manage the runlevel of the system. This objective
includes changing to single-user mode, shutdown, or rebooting the system.
Candidates should be able to alert users before switching runlevel and properly
terminate processes. This objective also includes setting the default runlevel.
Weight: 3.

Objective 2: Boot the System
It is the job of a boot loader, such as LILO or GRUB, to launch the Linux kernel at
boot time. In some cases, the boot loader has to deliver information to the Linux
kernel that may be required to configure peripherals or control other behavior. This
information is called a kernel parameter.

Boot-time Kernel Parameters
By default, your system’s kernel parameters are set in your boot loader’s configura-
tion file (/etc/lilo.conf or /boot/grub/menu.lst, and boot/grub/grub.conf on Red Hat
and some other distributions). However, the Linux kernel also has the capability to
accept information at boot time from a kernel command-line interface. You access
the kernel command line through your installed boot loader. When your system

21

boots, you can interrupt the “default” boot process when the boot loader displays
and specify your desired kernel parameters. The kernel parameters on the command
line look similar to giving arguments or options to a program during command-line
execution.

For an example, let’s say you wanted to boot with a root partition other than your
default, /dev/hda1. Using LILO, you could enter the following at the LILO prompt:

LILO: linux root=/dev/hda9

This command boots the kernel whose label is linux and overrides the default value
of /dev/hda1 to /dev/hda9 for the root filesystem.

On the Exam
There are far too many kernel parameters to list in this book. Consequently, you
must familiarize yourself with them in general terms so that you can answer ques-
tions on their form. Remember that they are specified to your boot loader as either
a single item, such as ro, or name=value options such as root=/dev/hda2. Multiple
parameters are always separated by a space.

Introduction to Kernel Module Configuration
Modern Linux kernels are modular, in that modules of code traditionally compiled
into the kernel (say, a sound driver) are loaded as needed. The modules are separate
from the kernel and can be inserted and removed by the superuser if necessary.
Although parameters in the boot loader’s configuration file and the kernel command
line affect the kernel, they do not control kernel modules.

To send parameters to a kernel module, they are inserted into the file /etc/mod-
ules.conf as text (in the past this configuration file was /etc/conf.modules). Common
module options you may find in your module configuration file are I/O address,
interrupt, and DMA channel settings for your sound device. This file will also prob-
ably carry PCMCIA driver information when installed on laptops. Module config-
uration will probably be handled by your distribution’s installation procedure but
may require modifications if hardware is added or changed later. Example 4-1 shows
a typical /etc/modules.conf file.

Example 4-1. A typical /etc/modules.conf file

alias parport_lowlevel parport_pc
alias eth0 8139too
alias sound-slot-0 via82cxxx_audio
post-install sound-slot-0 /bin/aumix-minimal \
 -f /etc/.aumixrc -L >/dev/null 2>&1 || :
pre-remove sound-slot-0 /bin/aumix-minimal \
 -f /etc/.aumixrc -S >/dev/null 2>&1 || :
alias usb-controller usb-uhci

22 | Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

On the Exam
Read questions that ask about kernel or module parameters carefully. Kernel op-
tions can be passed on the kernel command line; module options are specified in
modules.conf.

In this example, note that an alias named sound-slot-0 is created for the audio driver
via82cxxx_audio. Most devices won’t need any additional configuration, but systems
with older ISA cards may still need to pass options for I/O port, IRQ, and DMA
channel settings. In addition, some drivers may need options to specify nonstandard
settings. For example, an ISDN board used in North America will need to specify
NI1 signaling to the driver:

options hisax protocol=4 type=40

Kernel boot-time messages

As the Linux kernel boots, it gives detailed status of its progress in the form of console
messages. Modules that are loaded also yield status messages. These messages con-
tain important information regarding the health and configuration of your hardware.
Generally, the kinds of messages you will see are:

• Kernel identification

• Memory and CPU information

• Information on detected hardware, such as pointers (mice), serial ports, and
disks

• Partition information and checks

• Network initialization

• Kernel module output for modules that load at boot time

These messages are displayed on the system console at boot time but often scroll off
the screen too quickly to be read. The messages are also logged to disk and can easily
be viewed using the dmesg command, which displays messages logged at the last
system boot. For example, to view messages from the last boot sequence, simply
pipe the output of dmesg to less:

dmesg | less

It is also common to use dmesg to dump boot messages to a file for later inspection
or archive, by simply redirecting the output:

dmesg > bootmsg.txt

The kernel buffer used for log messages that dmesg displays is a
fixed size, so it may lose some (or all) of the boot-time messages
as the kernel writes runtime messages.

Objective 2: Boot the System | 23

Change Runlevels/
Shutdown/Reboot

Reviewing system logs

In addition to kernel messages, many other boot-time messages will be logged using
the syslog system. Such messages will be found in the system logfiles such as /var/
log/messages. For example, dmesg displays information on your network adapter
when it was initialized. However, the configuration and status of that adapter is
logged in /var/log/messages as a result of the network startup. When examining and
debugging boot activity on your system, you need to review both kinds of informa-
tion. syslogd, its configuration, and logfile examination are covered in Chapter 16.

Objective 3: Change Runlevels and Shut Down or Reboot
System
Linux has the same concept of runlevels that most Unix systems offer. This concept
specifies different ways to use a system by controlling which services are running.
For example, a system that operates as a web server is configured to boot and initiate
processing in a runlevel designated for sharing data, at which point the web server
is started. However, the same system could be booted into another runlevel used for
emergency administration, when all but the most basic services are shut down, so
the web server would not run.

One common use of runlevels is to distinguish between a system that offers only a
text console and a system that offers a graphical user interface through the X Win-
dow System. Most end-user systems run the graphical user interface, but a server
(such as the web server just discussed) is more secure and performs better without it.

Runlevels are specified by the integers 0 through 6. Runlevels 0 and 6 are unusual
in that they specify the transitional states of shutdown and reboot, respectively.
When an administrator tells Linux to enter runlevel 0, the operating system begins
a clean shutdown procedure. Similarly, the use of runlevel 6 begins a reboot. The
remaining runlevels differ in meaning slightly among Linux distributions and other
Unix systems.

When a Linux system boots, the first process it begins is the init process, which starts
all other processes. The init process is responsible for placing the system in the de-
fault runlevel, which is usually 2, 3, or 5 depending on the distribution and the use
for the machine. Typical runlevel meanings are listed in Table 4-1.

Table 4-1. Typical runlevels

Runlevel Description

0 Halt the system. Runlevel 0 is a special transitional state used by administrators to shut down the system
quickly. This, of course, shouldn’t be a default runlevel, because the system would never come up; it would
shut down immediately when the kernel launches the init process. See also runlevel 6.

1, s, S Single-user mode, sometimes called maintenance mode. In this mode, system services such as network
interfaces, web servers, and file sharing are not started. This mode is usually used for interactive filesystem
maintenance. The three choices 1, s, and S all mean the same thing.

2 Multiuser. On Debian-based systems, this is the default runlevel. On Red Hat–based systems, this is multiuser
mode without NFS file sharing or the X Window System (the graphical user interface).

24 | Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

Runlevel Description

3 On Red Hat–based systems, this is the default multiuser mode, which runs everything except the X Window
System. This and levels 4 and 5 usually are not used on Debian-based systems.

4 Typically unused.

5 On Red Hat–based systems, full multiuser mode with GUI login. Runlevel 5 is like runlevel 3, but X11 is
started and a GUI login is available. If your X11 cannot start for some reason, you should avoid this runlevel.

6 Reboot the system. Just like runlevel 0, this is a transitional device for administrators. It should not be the
default runlevel, because the system would eternally reboot.

It is important to note that runlevels, like most things in Linux, are completely con-
figurable by the end user. For the purposes of the LPIC test, it’s important to know
the standard meanings of each runlevel on Red Hat–based and Debian-based sys-
tems and how the runlevels work. However, in a production environment, runlevels
can be modified to do whatever the system administrator desires.

Single-User Mode
Runlevel 1, the single-user runlevel, is a bare-bones operating environment intended
for system maintenance. In single-user mode, remote logins are disabled, networking
is disabled, and most daemons are not started. Single-user mode is used for system
configuration tasks that must be performed with no user activity. One common
reason you might be forced to use single-user mode is to correct problems with a
corrupt filesystem that the system cannot handle automatically.

If you wish to boot directly into single-user mode, you may specify it at boot time
with the kernel’s command line through your boot loader. For instance, the GRUB
boot loader allows you to pass arbitrary parameters to a kernel at boot time. In order
to change the default runlevel, edit the line that boots your kernel in the GRUB
interactive menu, adding a 1 or the word single to the end of the line to indicate
single-user mode. These arguments are not interpreted as kernel arguments but are
instead passed along to the init process. For example, if your default GRUB kernel
boot line looks like this:

kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda1 rhgb quiet

you can force the system to boot to runlevel 1 by changing this to:

kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda5 rhgb quiet 1

or:

kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda5 rhgb \
 quiet single

To switch into single-user mode from another runlevel, you can simply issue a run-
level change command with init:

init 1

This is not the preferred way of taking a currently running system to runlevel 1,
mostly because it gives no warning to the existing logged-in users. See the

Objective 3: Change Runlevels and Shut Down or Reboot System | 25

Change Runlevels/
Shutdown/Reboot

explanation of the shutdown command later in this chapter to learn the preferred
way of handling system shutdown.

Overview of the /etc Directory Tree and the init Process
By themselves, the runlevels listed in Table 4-1 don’t mean much. It’s what the
init process does as a result of a runlevel specification or change that affects the
system. The actions of init for each runlevel are derived from the style of initialization
in Unix System V and are specified in a series of directories and script files under
the /etc directory.

When a Linux system starts, it runs a number of scripts in /etc to initially configure
the system and switch among runlevels. System initialization techniques differ
among Linux distributions. The examples in this section are typical of a Red Hat–
based system. Any distribution compliant with the Linux Standards Base (LSB)
should look similar. The following describe these files:

/etc/rc.sysinit or /etc/init.d/rcS
On Red Hat–based systems, rc.sysinit is a monolithic system initialization
script. The Debian rcS script does the same job by running several small scripts
placed in two different directories. In each case, the script is launched by init at
boot time. It handles some essential chores to prepare the system for use, such
as mounting filesystems. This script is designed to run before any system dae-
mons are started.

/etc/rc.local
Not used on Debian-based systems. On Red Hat–based systems, this file is a
script that is called after all other init scripts (after all system daemons are
started). It contains local customizations affecting system startup and provides
an alternative to modifying the other init scripts. Many administrators prefer to
avoid changing rc.sysint because those changes will be lost during a system
upgrade. The contents of rc.local are not lost in an upgrade.

/etc/rc
This file is a script that is used to change between runlevels. It is not provided
on Debian.

The job of starting and stopping system services (also known as daemons, which are
intended to always run in the background, such as web servers) is handled by the
files and symbolic links in /etc/init.d and by a series of runlevel-specific directories
named /etc/rc0.d through /etc/rc6.d. These are used as follows:

/etc/init.d
This directory contains individual startup/shutdown scripts for each service on
the system. For example, the script /etc/init.d/httpd is a Bourne shell script that
performs some sanity checks before starting or stopping the Apache web server.

These scripts have a standard basic form and take a single argument. Valid
arguments include at least the words start and stop. Additional arguments are
sometimes accepted by the script; examples are restart, status, and sometimes
reload (to ask the service to reread its configuration file without exiting).

26 | Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

Administrators can use these scripts directly to start and stop services. For ex-
ample, to restart Apache, an administrator could issue commands like these:

/etc/init.d/httpd stop
/etc/init.d/httpd start

or simply:

/etc/init.d/httpd restart

Either form would completely shut down and start up the web server. To ask
Apache to remain running but reread its configuration file, you might enter:

/etc/init.d/httpd reload

This has the effect of sending the SIGHUP signal to the running httpd process,
instructing it to initialize. Signals such as SIGHUP are covered in Chapter 6.

If you add a new service through a package management tool such as rpm or
dpkg, one of these initialization files may be installed automatically for you. In
other cases, you may need to create one yourself or, as a last resort, place startup
commands in the rc.local file.

It’s important to remember that these files are simply shell scripts that wrap the
various options accepted by the different daemons on Linux. Not all Linux
daemons recognize the command-line arguments stop, start, etc., but the
scripts in /etc/init.d make it easy to manage your running daemons by
standardizing the commands that you use to control them.

The directories /etc/rc0.d through /etc/rc6.d
The initialization scripts in /etc/init.d are not directly executed by the init
process. Instead, each of the directories /etc/rc0.d through /etc/rc6.d contains
symbolic (soft) links to the scripts in the /etc/init.d directory. (These symbolic
links could also be files, but using script files in each of the directories would
be an administrative headache, because changes to any of the startup scripts
would mean identical edits to multiple files.) When the init process enters run-
level N, it examines all of the links in the associated rcN.d directory. These links
are given special names in the forms of KNNname and SNNname, described as
follows:

K and S prefixes
These letters stand for kill and start, respectively. Each runlevel defines a
state in which certain services are running and all others are not. The S
prefix is used to mark files for all services that are to be running (started)
for the runlevel. The K prefix is used for all other services, which should
not be running.

NN
Sequence number. This part of the link name is a two-digit integer (with a
leading zero, if necessary). It specifies the relative order for services to be
started or stopped. The lowest number represents the first script executed
by init, and the largest number is the last. There are no hard-and-fast rules
for choosing these numbers, but it is important when adding a new service
to be sure that it starts after any other required services are already running.

Objective 3: Change Runlevels and Shut Down or Reboot System | 27

Change Runlevels/
Shutdown/Reboot

If two services have an identical start order number, the order is indeter-
minate but probably alphabetical.

name
By convention, the name of the script being linked to. init does not use this
name, but including it makes maintenance easier for human readers.

As an example, when init enters the default runlevel (3 for the sake of this ex-
ample) at boot time, all of the links with the K and S prefixes in /etc/rc3.d will
be executed in the order given by their sequence number (S10network,
S12syslog, and so on). Links that start with S will be run with the single argument
start to launch their respective services, and links that start with K will be run
with the single argument stop to stop the respective service. Since K comes
before S alphabetically, the K services are stopped before the S services are
started. After the last of the scripts is executed, the requirements for runlevel 3
are satisfied.

Setting the Default Runlevel
To determine the default runlevel at boot time, init reads the configuration file /etc/
inittab looking for a line containing the word initdefault, which will look like this:

id:N:initdefault:

In the preceding, N is a valid runlevel number, such as 3. This number is used as the
default runlevel by init. The S scripts in the corresponding /etc/rcN.d directory are
executed to start their respective services. If you change the default runlevel for your
system, it will most likely be in order to switch between the standard text login
runlevel and the GUI login runlevel. In any case, never change the default runlevel
to 0 or 6, or your system will not boot to a usable state.

Determining Your System’s Runlevel
From time to time, you might be unsure just what runlevel your system is in. For
example, you may have logged into a Linux system from a remote location and not
know how it was booted or maintained. You may also need to know what runlevel
your system was in prior to its current runlevel—perhaps wondering if the system
was last in single-user mode for maintenance.

To determine this information, use the runlevel command. It displays the previous
and current runlevel as integers, separated by a space, on standard output. If no
runlevel change has occurred since the system was booted, the previous runlevel is
displayed as the letter N. For a system that was in runlevel 3 and is now in runlevel
5, the output is:

runlevel
3 5

For a system with a default runlevel of 5 that has just completed booting, the output
would be:

runlevel
N 5

28 | Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

runlevel does not alter the system runlevel. To do this, use the init command (or the
historical alias telinit).

Changing runlevels with init and telinit

The init or telinit command sends signals to the executing init process, instructing
it to change to a specified runlevel. You must be logged in as the superuser to use
the init command.

Generally, you will use a runlevel change for the following reasons:

• To shut down the system using runlevel 0

• To go to single-user mode using runlevel 1

• To reboot the system using runlevel 6

init

Syntax
init n

Description
The command puts the system into the specified runlevel, n, which can be an integer from 1
through 6. init also supports S and s, which are equivalent to runlevel 1, and q, which tells
init to reread its configuration file, /etc/inittab.

Examples
Shut down immediately:

init 0

Reboot immediately:

init 6

Go to single-user mode immediately:

init 1

or:

init s

telinit
The telinit command may be used in place of init. telinit is simply a link to init, and the two may
be used interchangeably.

System shutdown with shutdown
When shutdown is initiated, all users who are logged into terminal sessions are notified that
the system is going down. In addition, further logins are blocked to prevent new users from
entering the system as it is being shut down.

init

Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3) | 29

Change Runlevels/
Shutdown/Reboot

Syntax
shutdown [options] time [warning_message]

Description
The shutdown command brings the system down in a secure, planned manner. By default, it
takes the system to single-user mode. Options can be used to halt or reboot the system instead.
The command internally uses init with an appropriate runlevel argument to affect the system
change.

The mandatory time argument tells the shutdown command when to initiate the shutdown
procedure. It can be a time of day in the form hh:m, or it can take the form +n, where n is a
number of minutes to wait. time can also be the word now, in which case the shutdown proceeds
immediately.

warning_message is sent to the terminals of all users to alert them that the shutdown will take
place. If the time specified is more than 15 minutes away, the command waits until 15 minutes
remain before shutdown to make its first announcement. No quoting is necessary in
warning_message unless the message includes special characters such as * or '.

Frequently used options

-f
Fast boot; this skips the filesystem checks on the next boot.

-h
Halt after shutdown.

-k
Don’t really shut down, but send the warning messages anyway.

-r
Reboot after shutdown.

-F
Force filesystem checks on the next boot.

Examples
To reboot immediately (not recommended on a system with human users, because they will
have no chance to save their work):

shutdown -r now

To reboot in five minutes with a maintenance message:

shutdown -r +5 System maintenance is required

To halt the system just before midnight tonight:

shutdown –h 23:59

Following are the two most common uses of shutdown by people who are on single-user
systems:

shutdown –h now

and:

shutdown –r now

init

30 | Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

These cause an immediate halt or reboots, respectively.

Although it’s not really a bug, the shutdown manpage notes that omission of the required
time argument yields unusual results. If you forget the time argument, the command will prob-
ably exit without an error message. This might lead you to believe that a shutdown is starting,
so it’s important to use the correct syntax.

On the Exam
You need to be familiar with the default runlevels and the steps that the init process
goes through in switching between them.

init

Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3) | 31

Change Runlevels/
Shutdown/Reboot

5
Linux Installation and Package

Management (Topic 102)

Many resources, such as the book Running Linux (O’Reilly), describe Linux instal-
lation. This section of the test does not cover the installation of any particular Linux
distribution; rather, its Objectives focus on four installation Topics and packaging
tools.

Objective 1: Design Hard Disk Layout
This Objective covers the ability to design a disk partitioning scheme for a Linux
system. The Objective includes allocating filesystems or swap space to separate
partitions or disks and tailoring the design to the intended use of the system. It
also includes placing /boot on a partition that conforms with the BIOS’s re-
quirements for booting. Weight: 2.

Objective 2: Install a Boot Manager
An LPIC 1 candidate should be able to select, install, and configure a boot
manager. This Objective includes providing alternative boot locations and
backup boot options using either LILO or GRUB. Weight: 2.

Objective 3: Manage Shared Libraries
This Objective includes being able to determine the shared libraries that exe-
cutable programs depend on and install them when necessary. The Objective
also includes stating where system libraries are kept. Weight: 1.

Objective 4: Use Debian Package Management
This Objective indicates that candidates should be able to perform package
management on Debian-based systems. This indication includes using both
command-line and interactive tools to install, upgrade, or uninstall packages,
as well as find packages containing specific files or software. Also included is
obtaining package information such as version, content, dependencies, package
integrity, and installation status. Weight: 3.

33

http://oreilly.com/catalog/9780596007607

Objective 5: Use Red Hat Package Manager (RPM)
An LPIC 1 candidate should be able to use package management systems based
on RPM. This Objective includes being able to install, reinstall, upgrade, and
remove packages as well as obtain status and version information on packages.
Also included is obtaining package version, status, dependencies, integrity, and
signatures. Candidates should be able to determine what files a package pro-
vides as well as find which package a specific file comes from. Weight: 3.

Objective 1: Design a Hard Disk Layout
Part of the installation process for Linux is designing the hard disk partitioning
scheme. If you’re used to systems that reside on a single partition, this step may seem
to complicate the installation. However, there are advantages to splitting the file-
system into multiple partitions and even onto multiple disks.

You can find more details about disks, partitions, and Linux filesystem top-level
directories in Chapter 7. This Topic covers considerations for implementing Linux
disk layouts.

System Considerations
A variety of factors influence the choice of a disk layout plan for Linux, including:

• The amount of disk space

• The size of the system

• What the system will be used for

• How and where backups will be performed

Limited disk space

Filesystems and partitions holding user data should be maintained with a maximum
amount of free space to accommodate user activity. When considering the physical
amount of disk space available, the system administrator may be forced to make a
trade-off between the number of partitions in use and the availability of free disk
space. Finding the right configuration depends on system requirements and available
filesystem resources.

When disk space is limited, you may opt to reduce the number of partitions, thereby
combining free space into a single contiguous pool. For example, installing Linux
on a PC with only 1 GB of available disk space might best be implemented using
only a few partitions:

/boot
50 MB. A small /boot filesystem in the first partition ensures that all kernels are
below the 1024-cylinder limit for older kernels and BIOS.

/
850 MB. A large root partition holds everything on the system that’s not in /boot.

34 | Chapter 5: Linux Installation and Package Management (Topic 102)

swap
100 MB.

Larger systems

On larger platforms, functional issues such as backup strategies and required file-
system sizes can dictate disk layout. For example, suppose a file server is to be con-
structed serving 100 GB of executable data files to end users via NFS. Such a system
will need enough resources to compartmentalize various parts of the directory tree
into separate filesystems and might look like this:

/boot
100 MB. Keep kernels under the 1024-cylinder limit.

swap
1 GB, depending on RAM.

/
500 MB (minimum).

/usr
4 GB. All of the executables in /usr are shared to workstations via read-only NFS.

/var
2 GB. Since log files are in their own partition, they won’t threaten system sta-
bility if the filesystem is full.

/tmp
500 MB. Since temporary files are in their own partition, they won’t threaten
system stability if the filesystem is full.

/home
90 GB. This big partition takes up the vast bulk of available space, offered to
users for their home directories and data.

On production servers, much of the system is often placed on redundant media,
such as mirrored disks. Large filesystems, such as /home, may be stored on some
form of disk array using a hardware controller.

Mount points

Before you may access the various filesystem partitions created on the storage
devices, you first must list them in a filesystem table. This process is referred to as
mounting, and the directory you are mounting is called a mount point. You must
create the directories that you will use for mount points if they do not already exist.
During system startup, these directories and mount points may be managed through
the /etc/fstab file, which contains the information about filesystems to mount when
the system boots and the directories that are to be mounted.

Superblock

A superblock is a block on each filesystem that contains metadata information about
the filesystem layout. The information contained in the block includes the type, size,
and status of the mounted filesystem. The superblock is the Linux/Unix equivalent

Objective 1: Design a Hard Disk Layout | 35

Installation/Pack-
age M

anagem
ent

to Microsoft systems’ file allocation table (FAT), which contains the information
about the blocks holding the top-level directory. Since the information about the
filesystems is important, Linux filesystems keep redundant copies of the superblock
that may be used to restore the filesystem should it become corrupt.

MBR

The master boot record (MBR) is a very small program that contains information
about your hard disk partitions and loads the operating system. This program is
located in the first sector of the hard disk and is 512 bytes. If this file becomes
damaged, the operating system cannot boot. Therefore, it is important to back up
the MBR so that you can replace a damaged copy if needed. To make a backup of
the MBR from the hard drive and store a copy to your /home directory, use the dd
command. An example of such a backup command is:

dd if=/dev/hda of=~/mbr.txt count=1 bs=512

The preceding example assumes that your hard drive is /dev/hda. With this com-
mand you are taking one copy (count=1) consisting of 512 bytes (bs=512) from /dev/
hda (if=/dev/hda) and copying it to a file named mbr.txt in /home (of=~/mbr.txt).

If you need to restore the MBR, you may use the following command:

dd if=~/mbr.txt of=/dev/hda count=1 bs=512

Booting from a USB device

Linux may be booted from a Live USB, similar to booting from a Live CD. One
difference between booting to the USB opposed to the CD is that the data on the
USB device may be modified and stored back onto the USB device. When using a
Live USB distribution of Linux, you can take your operating system, favorite appli-
cations, and data files with you wherever you go. This is also useful if you have
problems and are not able to boot your computer for some reason. You may be able
to boot the system using the Live USB and access the hard drive and troubleshoot
the boot issue.

In order to boot from the USB device, you will need to make the USB device bootable.
This requires setting up at least one partition on the USB with the bootable flag set
to the primary partition. An MBR must also write to the primary partition on the
USB. There are many applications that can be used to create live USB distributions
of Linux, including Fedora Live USB Creator and Ubuntu Live USB Creator. The
computer may also need the BIOS to be configured to boot from USB.

Some older computers may not have support in the BIOS to boot from a USB device.
In this case it is possible to redirect the computer to load the operating system from
the USB device by using an initial bootable CD. The bootable CD boots the
computer, loads the necessary USB drivers into memory, and then locates and loads
the filesystem from the USB device.

36 | Chapter 5: Linux Installation and Package Management (Topic 102)

System role

The role of the system should also dictate the optimal disk layout. In a traditional
Unix-style network with NFS file servers, most of the workstations won’t necessarily
need all of their own executable files. In the days when disk space was at a premium,
this represented a significant savings in disk space. Although space on workstation
disks isn’t the problem it once was, keeping executables on a server still eliminates
the administrative headache of distributing updates to workstations.

Backup

Some backup schemes use disk partitions as the basic unit of system backup. In such
a scenario, each of the filesystems listed in /etc/fstab is backed up separately, and
they are arranged so that each filesystem fits within the size of the backup media.
For this reason, the available backup device capabilities can play a role in determin-
ing the ultimate size of partitions.

Using the dd command as discussed earlier, you can back up each of the individual
partitions. The command may also be used to back up the entire hard drive. To back
up a hard drive to another hard drive, you would issue the following command,
where if=/dev/hdx represents the hard drive you want to back up and of=/dev/hyd
represents the target or destination drive of the backup:

dd if=/dev/hdx of=/dev/hyd

If you are just interested in making a backup of the partition layout, you can also
use the sfdisk command to create a copy of the partition table:

sfdisk -d /dev/hda > partition_backup.txt

Then, if you need to restore the partition table, you can use the sfdisk command
again:

sfdisk /dev/hda < partition_backup.txt

Swap Space
When you install Linux, you’re asked to configure a swap, or virtual memory, par-
tition. This special disk space is used to temporarily store portions of main memory
containing programs or program data that are not needed constantly, allowing more
processes to execute concurrently. An old rule of thumb for Linux is to set the size
of the system’s swap space to be double the amount of physical RAM in the machine.
For example, if your system has 512 MB of RAM, it would be reasonable to set your
swap size to at least 1 GB. These are just guidelines, of course. A system’s utilization
of virtual memory depends on what the system does and the number and size of
processes it runs. As hard disk and memory gets cheaper and Linux application
footprints grow, the guidelines for determining swap sizes become more and more
about personal preference. However, when in doubt, using twice the amount of main
memory is a good starting point.

Objective 1: Design a Hard Disk Layout | 37

Installation/Pack-
age M

anagem
ent

General Guidelines
Here are some guidelines for partitioning a Linux system:

• Keep the root filesystem (/) simple by distributing larger portions of the direc-
tory tree to other partitions. A simplified root filesystem is less likely to be
corrupted.

• Separate a small /boot partition below cylinder 1024 for installed kernels used
by the system boot loader. This does not apply to newer BIOS and kernels (e.g.,
2.6.20).

• Separate /var. Make certain it is big enough to handle your logs, spools, and
mail, taking their rotation and eventual deletion into account.

• Separate /tmp. Its size depends on the demands of the applications you run. It
should be large enough to handle temporary files for all of your users
simultaneously.

• Separate /usr and make it big enough to accommodate kernel building. Making
it standalone allows you to share it read-only via NFS.

• Separate /home for machines with multiple users or any machine where you
don’t want to affect data during distribution software upgrades. For even better
performance (for multiuser environments), put /home on a disk array and use
Logical Volume manager (LVM).

• Set swap space to at least the same size (twice the size is recommended) as the
main memory.

On the Exam
Since a disk layout is the product of both system requirements and available
resources, no single example can represent the best configuration. Factors to re-
member include placing the old 2.2.x kernel below cylinder 1024, effectively uti-
lizing multiple disks, sizing partitions to hold various directories such as /var
and /usr, and the importance of the root filesystem and swap space size.

Objective 2: Install a Boot Manager
Although it is possible to boot Linux from a floppy disk, most Linux installations
boot from the computer’s hard disk. This is a two-step process that begins after the
system BIOS is initialized and ready to run an operating system. Starting Linux con-
sists of the following two basic phases:

Run the boot loader from the boot device
It is the boot manager’s job to find the selected kernel and get it loaded into
memory, including any user-supplied options.

Launch the Linux kernel and start processes
Your boot loader starts the specified kernel. The boot loader’s job at this point
is complete and the hardware is placed under the control of the running kernel,
which sets up shop and begins running processes.

38 | Chapter 5: Linux Installation and Package Management (Topic 102)

All Linux systems require some sort of boot loader, whether it’s simply bootstrap
code on a floppy disk or an application such as LILO or GRUB. Because the popu-
larity of GRUB has grown, LPI has added it to the second release of the 101 exams.

LILO
The LILO is a small utility designed to load the Linux kernel (or the boot sector of
another operating system) into memory and start it. A program that performs this
function is commonly called a boot loader. LILO consists of two parts:

The boot loader
This is a two-stage program intended to find and load a kernel. It’s a two-stage
operation because the boot sector of the disk is too small to hold the entire boot
loader program. The code located in the boot sector is compact because its only
function is to launch the second stage, which is the interactive portion. The first
stage resides in the MBR or first boot partition of the hard disk. This is the code
that is started at boot time by the system BIOS. It locates and launches a second,
larger stage of the boot loader that resides elsewhere on disk. The second stage
offers a user prompt to allow boot-time and kernel image selection options,
finds the kernel, loads it into memory, and launches it.

The lilo command
Also called the map installer, the lilo command is used to install and configure
the LILO boot loader. The command reads a configuration file that describes
where to find kernel images, video information, the default boot disk, and so
on. It encodes this information along with physical disk information and writes
it in files for use by the boot loader.

The boot loader

When the system BIOS launches, LILO presents you with the following prompt:

LILO:

The LILO prompt is designed to allow you to select from multiple kernels or operating
systems installed on the computer and to pass parameters to the kernel when it is
loaded. Pressing the Tab key at the LILO prompt yields a list of available kernel
images. One of the listed images will be the default as designated by an asterisk next
to the name:

LILO: <TAB>
linux* linux_586_smp experimental

Under many circumstances, you won’t need to select a kernel at boot time because
LILO will boot the kernel configured as the default during the install process. How-
ever, if you later create a new kernel, have special hardware issues, or are operating
your system in a dual-boot configuration, you may need to use some of LILO’s
options to load the kernel or operating system you desire.

Objective 2: Install a Boot Manager | 39

Installation/Pack-
age M

anagem
ent

The LILO map installer and its configuration file

Before any boot sequence can complete from your hard disk, the boot loader and
associated information must be installed by the LILO map installer utility. The lilo
command writes the portion of LILO that resides to the MBR, customized for your
particular system. Your installation program creates a correct MBR, but you’ll have
to repeat the command manually if you build a new kernel yourself.

lilo

Syntax
lilo [options]

The lilo map installer reads a configuration file and writes a map file, which contains information
needed by the boot loader to locate and launch Linux kernels or other operating systems.

Frequently used options

-C config _ file
Read the config _ file file instead of the default /etc/lilo.conf.

-m map _ file
Write map _ file in place of the default as specified in the configuration file.

-q
Query the current configuration.

-v
Increase verbosity.

LILO’s configuration file contains options and kernel image information. An array of options
is available. Some are global, affecting LILO overall, whereas others are specific to a particular
listed kernel image. Most basic Linux installations use only a few of the configuration options.
Example 5-1 shows a simple LILO configuration file.

Example 5-1. Sample /etc/lilo.conf file

boot = /dev/hda
timeout = 50
prompt
read-only
map = /boot/map
install = /boot/boot.b

image=/boot/bzImage-2.6.0
 label=test-2.6.0
 root=/dev/hda1

Each line in the example is described in the following list:

boot
Sets the name of the hard disk partition device that contains the boot sector. For PCs with
IDE disk drives, the devices will be /dev/hda, /dev/hdb, and so on.

lilo

40 | Chapter 5: Linux Installation and Package Management (Topic 102)

timeout
Sets the timeout in tenths of a second (deciseconds) for any user input from the keyboard.
To enable an unattended reboot, this parameter is required if the prompt directive is used.

prompt
Sets the boot loader to prompt the user. This behavior can be stimulated without the
prompt directive if the user holds down the Shift, Ctrl, or Alt key when LILO starts.

read-only
Sets the root filesystem to initially be mounted read-only. Typically, the system startup
procedure will remount it later as read/write.

map
Sets the location of the map file, which defaults to /boot/map.

install
Sets the file to install as the new boot sector, which defaults to /boot/boot.b.

image
Sets the kernel image to offer for boot. It points to a specific kernel file. Multiple image
lines may be used to configure LILO to boot multiple kernels and operating systems.

label
Sets the optional label parameter to be used after an image line and offers a label for that
image. This label can be anything you choose and generally describes the kernel image.
Examples include linux and smp for a multiprocessing kernel.

root
Sets the devices to be mounted as root for the specified image (used after each image line).

There is more to configuring and setting up LILO, but a detailed knowledge of LILO is not
required for this LPI Objective. It is important to review one or two sample LILO configurations
to make sense of the boot process.

LILO locations

During installation, LILO can be placed either in the boot sector of the disk or in
your root partition. If the system is intended as a Linux-only system, you won’t need
to worry about other boot loaders, and LILO can safely be placed into the boot
sector. However, if you’re running another operating system you should place its
boot loader in the boot sector. Multiple-boot and multiple-OS configurations are
beyond the scope of the LPIC Level 1 exams.

On the Exam
It is important to understand the distinction between lilo, the map installer utility
run interactively by the system administrator, and the boot loader, which is
launched by the system BIOS at boot time. Both are parts of the LILO package.

GRUB
GRUB is a multistage boot loader, much like LILO. It is much more flexible than
LILO, as it includes support for booting arbitrary kernels on various filesystem types
and for booting several different operating systems. Changes take effect at once,
without the need for a command execution.

lilo

Chapter 5: Linux Installation and Package Management (Topic 102) | 41

Installation/Pack-
age M

anagem
ent

GRUB device naming

GRUB refers to disk devices as follows:

(xdn[,m])

The xd in this example will be either fd or hd—floppy disk or hard disk, respectively.
The n refers to the number of the disk as seen by the BIOS, starting at 0. The op-
tional ,m denotes the partition number, also starting at 0.

The following are examples of valid GRUB device names:

(fd0)
The first floppy disk

(hd0)
The first hard disk

(hd0,1)
The second partition on the first hard disk

Note that GRUB does not distinguish between IDE and SCSI/SATA disks. It refers
only to the order of the disks as seen by the BIOS, which means that the device
number that GRUB uses for a given disk will change on a system with both IDE and
SCSI/SATA if the boot order is changed in the BIOS.

Installing GRUB

The simplest way to install GRUB is to use the grub-install script.

For example, to install GRUB on the master boot record of the first hard drive in a
system, invoke grub-install as follows:

grub-install '(hd0)'

grub-install looks for a device map file (/boot/grub/device.map by default) to deter-
mine the mapping from BIOS drives to Linux devices. If this file does not exist, it
will attempt to guess what devices exist on the system and how they should be
mapped to BIOS drives. If grub-install guesses incorrectly, just edit /boot/grub/de-
vice.map and rerun grub-install.

The device map file contains any number of lines in this format:

(disk) /dev/device

So, for example, on a system with a floppy and a single SCSI disk, the file would
look like this:

(fd0) /dev/fd0
(hd0) /dev/sda

GRUB can also be installed using the grub command. The grub-install example
shown earlier could also have been done as follows, assuming /boot is on the first
partition of the first hard disk:

grub
grub> root (hd0,0)
grub> setup (hd0)

lilo

42 | Chapter 5: Linux Installation and Package Management (Topic 102)

Booting GRUB

If there is no configuration file (or the configuration file does not specify a kernel to
load), when GRUB loads it will display a prompt that looks like this:

grub>

GRUB expects a certain sequence of commands to boot a Linux kernel. They are as
follows:

1. root device

2. kernel filename [options]

3. initrd filename – optional, only present if an initial ramdisk is required

4. boot

For example, the following sequence would boot a stock Red Hat 8.0 system
with /boot on /dev/hda1 and / on /dev/hda2:

grub> root (hd0,0)
grub> kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
grub> initrd /initrd-2.4.18-14.img
grub> boot

The GRUB configuration file

GRUB can be configured to boot into a graphical menu, allowing the user to bypass
the GRUB shell entirely. To display this menu, GRUB needs a specific configuration
file, /boot/grub/menu.lst.

The location of this file may be different on your system. For
example, on Red Hat systems the default configuration file
is /boot/grub/grub.conf.

The configuration file defines various menu options along with the commands re-
quired to boot each option. The earlier example of booting a stock Red Hat Fedora
8.0 system could have been accomplished with the following configuration file:

default=0
timeout=3
title Red Hat Linux (2.4.18-14)
 root (hd0,0)
 kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
 initrd /initrd-2.4.18-14.img

GRUB has many more features, including serial console sup-
port, support for booting other operating systems, and so on.
For more information about GRUB, see the info documentation
(info grub or pinfo grub) or the online documentation.

lilo

Chapter 5: Linux Installation and Package Management (Topic 102) | 43

Installation/Pack-
age M

anagem
ent

http://www.gnu.org/software/grub

Objective 3: Manage Shared Libraries
When a program is compiled under Linux, many of the functions required by the
program are linked from system libraries that handle disks, memory, and other
functions. For example, when the standard C-language printf() function is used in
a program, the programmer doesn’t provide the printf() source code, but instead
expects that the system already has a library containing such functions. When the
compiler needs to link the code for printf(), it can be found in a system library and
copied into the executable. A program that contains executable code from these
libraries is said to be statically linked because it stands alone, requiring no additional
code at runtime.

Statically linked programs can have a few liabilities. First, they tend to get large
because they include executable files for all of the library functions linked into them.
Also, memory is wasted when many different programs running concurrently con-
tain the same library functions. To avoid these problems, many programs are dy-
namically linked. Such programs utilize the same routines but don’t contain the
library code. Instead, they are linked into the executable at runtime. This dynamic
linking process allows multiple programs to use the same library code in memory
and makes executable files smaller. Dynamically linked libraries are shared among
many applications and are thus called shared libraries. A full discussion of libraries
is beyond the scope of the LPIC Level 1 exams. However, a general understanding
of some configuration techniques is required.

Shared Library Dependencies
Any program that is dynamically linked will require at least a few shared libraries.
If the required libraries don’t exist or can’t be found, the program will fail to run.
This could happen, for example, if you attempt to run an application written for the
GNOME graphical environment but haven’t installed the required GTK+ libraries.
Simply installing the correct libraries should eliminate such problems. The ldd utility
can be used to determine which libraries are necessary for a particular executable.

ldd

Syntax
ldd programs

Description
Display shared libraries required by each of the programs listed on the command line. The results
indicate the name of the library and where the library is expected to be in the filesystem.

Example
The bash shell requires three shared libraries:

ldd /bin/bash
/bin/bash:

44 | Chapter 5: Linux Installation and Package Management (Topic 102)

 libtermcap.so.2 => /lib/libtermcap.so.2 (0x40018000)
 libc.so.6 => /lib/libc.so.6 (0x4001c000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Linking Shared Libraries
Dynamically linked executables are examined at runtime by the shared object dy-
namic linker, ld.so. This program looks for dependencies in the executable being
loaded and attempts to satisfy any unresolved links to system-shared libraries. If
ld.so can’t find a specified library, it fails, and the executable won’t run.

To find a new library, ld.so must be instructed to look in /usr/local/lib. There are a
few ways to do this. One simple way is to add a colon-separated list of directories
to the shell environment variable LD_LIBRARY_PATH, which will prompt ld.so to look
in any directories it finds there. However, this method may not be appropriate for
system libraries, because users might not set their LD_LIBRARY_PATH correctly.

To make the search of /usr/local/lib part of the default behavior for ld.so, files in the
new directory must be included in an index of library names and locations. This
index is /etc/ld.so.cache. It’s a binary file, which means it can be read quickly by
ld.so. To add the new library entry to the cache, first add its directory to the
ld.so.conf file, which contains directories to be indexed by the ldconfig utility.

ldconfig

Syntax
ldconfig [options] lib_dirs

Description
Update the ld.so cache file with shared libraries specified on the command line in lib_dirs, in
trusted directories /usr/lib and /lib, and in the directories found in /etc/ld.so.conf.

Frequently used options

-p
Display the contents of the current cache instead of recreating it.

-v
Verbose mode. Display progress during execution.

Example 1
Examine the contents of the ld.so library cache:

ldconfig -p
144 libs found in cache '/etc/ld.so.cache'
 libz.so.1 (libc6) => /usr/lib/libz.so.1
 libuuid.so.1 (libc6) => /lib/libuuid.so.1
 libutil.so.1 (libc6, OS ABI: Linux 2.2.5) => /lib/libutil.so.1
 libutil.so (libc6, OS ABI: Linux 2.2.5) => /usr/lib/libutil.so \
 libthread_db.so.1 (libc6, OS ABI: Linux 2.2.5) => /lib/libthread_db.so.1
 libthread_db.so (libc6, OS ABI: Linux 2.2.5) => /usr/lib/libthread_db.so

ldconfig

Chapter 5: Linux Installation and Package Management (Topic 102) | 45

Installation/Pack-
age M

anagem
ent

Example 2
Look for a specific library entry in the cache:

ldconfig -p | grep ncurses
 libncurses.so.5 (libc6) => /usr/lib/libncurses.so.5

Example 3
Rebuild the cache:

ldconfig

After /usr/local/lib is added, ld.so.conf might look like this:

/usr/lib
/usr/i486-linux-libc5/lib
/usr/X11R6/lib
/usr/local/lib

Next, ldconfig is run to include libraries found in /usr/local/lib in /etc/ld.so.cache. It is important
to run ldconfig after any changes in system libraries to be sure that the cache is up-to-date.

Objective 4: Use Debian Package Management
The Debian package management system is a versatile and automated suite of tools
used to acquire and manage software packages for Debian Linux. The system au-
tomatically handles many of the management details associated with interdependent
software running on your system.

Debian Package Management Overview
Each Debian package contains program and configuration files, documentation, and
noted dependencies on other packages. The names of Debian packages have three
common elements, including:

Package name
A Debian package name is short and descriptive. When multiple words are used
in the name, they are separated by hyphens. Typical names include binutils,
kernel-source, and telnet.

Version number
Each package has a version. Most package versions are the same as that of the
software they contain. The format of package versions varies from package to
package, but most are numeric (major.minor.patchlevel).

A file extension
By default, all Debian packages end with the .deb file extension.

Figure 5-1 illustrates a Debian package name.

46 | Chapter 5: Linux Installation and Package Management (Topic 102)

Figure 5-1. The structure of a Debian GNU/Linux package name

Managing Debian Packages
The original Debian package management tool is dpkg, which operates directly
on .deb package files and can be used to automate the installation and maintenance
of software packages. The alternative apt-get tool operates using package names,
obtaining them from a predefined source (such as CD-ROMs, FTP sites, etc.). Both
tools work from the command line.

The dselect command offers an interactive menu that allows the administrator to
select from a list of available packages and mark them for subsequent installation.
The alien command allows the use of non-Debian packages, such as the Red Hat
RPM format.

For complete information on Debian package management commands, see details
in their respective manpages.

dpkg

Syntax
dpkg [options] action

Description
The Debian package manager command, dpkg, consists of an action that specifies a major mode
of operation as well as zero or more options, which modify the action’s behavior.

The dpkg command maintains package information in /var/lib/dpkg. There are two files that are
of particular interest:

available
The list of all available packages.

status
Contains package attributes, such as whether it is installed or marked for removal.

These files are modified by dpkg, dselect, and apt-get, and it is unlikely that they will ever need
to be edited.

Frequently used options

-E
Do not overwrite a previously installed package of the same version.

-G
Do not overwrite a previously installed package with an older version of that same package.

dpkg

Chapter 5: Linux Installation and Package Management (Topic 102) | 47

Installation/Pack-
age M

anagem
ent

-R (also --recursive)
Recursively process package files in specified subdirectories. Works with -i, --install,
--unpack, and so on.

Frequently used options

--configure package
Configure an unpacked package. This involves setup of configuration files.

-i package_file (also --install package_file)
Install the package contained in package_file. This involves backing up old files, unpack-
ing and installation of new files, and configuration.

-l [pattern] (also --list [pattern])
Display information for installed package names that match pattern.

-L package (also --listfiles package)
List files installed from package.

--print-avail package
Display details found in /var/lib/dpkg/available about package.

--purge package
Remove everything for package.

-r package (also --remove package)
Remove everything except configuration files for package.

-s package (also --status package)
Report the status of package.

-S search_pattern (also --search search_pattern)
Search for a filename matching search_pattern from installed packages.

--unpack package_file
Unpack package_file, but don’t install the package it contains.

Example 1
Install a package using dpkg -i with the name of an available package file:

dpkg -i ./hdparm_3.3-3.deb
(Reading database ... 54816 files and directories
 currently installed.)
Preparing to replace hdparm 3.3-3 (using hdparm_3.3-3.deb)
Unpacking replacement hdparm ...
Setting up hdparm (3.3-3) ...

Alternatively, use apt-get install with the name of the package. In this case, the package comes
from the location or locations configured in /etc/apt/sources.list. For this example, the location
is http://http.us.debian.org:

apt-get install elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 libncurses4 xlib6g
The following NEW packages will be installed:
 elvis

dpkg

48 | Chapter 5: Linux Installation and Package Management (Topic 102)

http://http.us.debian.org

2 packages upgraded, 1 newly installed, 0 to remove
 and 376 not upgraded.
Need to get 1678kB of archives. After unpacking 2544kB
 will be used.
Do you want to continue? [Y/n] y
Get:1 http://http.us.debian.org stable/main
 libncurses4 4.2-9 [180kB]
Get:2 http://http.us.debian.org stable/main
 xlib6g 3.3.6-11 [993kB]
Get:3 http://http.us.debian.org stable/main
 elvis 2.1.4-1 [505kB]
Fetched 1678kB in 4m11s (6663B/s)
(Reading database ... 54730 files and directories
 currently installed.)
Preparing to replace libncurses4 4.2-3 (using
 .../libncurses4_4.2-9_i386.deb) ...
Unpacking replacement libncurses4 ...
(installation continues...)

Example 2
Upgrading a package is no different from installing one. However, you should use the -G option
when upgrading with dpkg to ensure that the installation won’t proceed if a newer version of
the same package is already installed.

Example 3
Use dpkg -r or dpkg --purge to remove a package:

dpkg --purge elvis
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(purge continues...)

Example 4
Use the dpkg -S command to find a package containing specific files. In this example, apt-get is
contained in the apt package:

dpkg -S apt-get
apt: /usr/share/man/man8/apt-get.8.gz
apt: /usr/bin/apt-get

Example 5
Obtain package status information, such as version, content, dependencies, integrity, and in-
stallation status, using dpkg -s:

dpkg -s apt
Package: apt
Status: install ok installed
Priority: optional
Section: admin
Installed-Size: 1388
(listing continues...)

dpkg

Chapter 5: Linux Installation and Package Management (Topic 102) | 49

Installation/Pack-
age M

anagem
ent

Example 6
List the files in a package using dpkg -L and process the output using grep or less:

dpkg -L apt | grep '^/usr/bin'
/usr/bin
/usr/bin/apt-cache
/usr/bin/apt-cdrom
/usr/bin/apt-config
/usr/bin/apt-get

Example 7
List the installed packages using dpkg -l; if you don’t specify a pattern, all packages will be listed:

dpkg -l xdm
ii xdm 3.3.2.3a-11 X display manager

Example 8
Use dpkg -S to determine the package from which a particular file was installed with the
filename:

dpkg -S /usr/bin/nl
textutils: /usr/bin/nl

apt-get

Syntax
apt-get [options] [command] [package_name ...]

Description
The apt-get command is part of the Advanced Package Tool (APT) management system. It does
not work directly with .deb files like dpkg, but uses package names instead. apt-get maintains a
database of package information that enables the tool to automatically upgrade packages and
their dependencies as new package releases become available.

Frequently used options

-d
Download files, but do not install. This is useful when you wish to get a large number of
package files but delay their installation to prevent installation errors from stopping the
download process.

-s
Simulate the steps in a package change, but do not actually change the system.

-y
Automatically respond “yes” to all prompts, instead of prompting you for a response dur-
ing package installation/removal.

Frequently used commands

dist-upgrade
Upgrade automatically to new versions of Debian Linux.

apt-get

50 | Chapter 5: Linux Installation and Package Management (Topic 102)

install
Install or upgrade one or more packages by name.

remove
Remove specified packages.

update
Fetch a list of currently available packages. This is typically done before any changes are
made to existing packages.

upgrade
Upgrade a system’s complete set of packages to current versions safely. This command is
conservative and will not process upgrades that could cause a conflict or break an existing
configuration; it also will not remove packages.

Additional commands and options are available. See the apt-get manpage for more information.

apt-get uses /etc/apt/sources.list to determine where packages should be obtained. The file
should contain one or more lines that look something like this:

deb http://http.us.debian.org/debian stable main contrib non-free

Example
Remove the elvis package using apt-get:

apt-get remove elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be REMOVED:
 elvis
0 packages upgraded, 0 newly installed, 1 to remove
 and 376 not upgraded.
Need to get 0B of archives. After unpacking 1363kB
 will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(removal continues...)

In this example, the user is required to respond with y when prompted to continue. Using the
-y option to apt-get would eliminate this interaction.

dselect

Syntax
dselect

Description
dselect is an interactive, menu-driven, frontend tool for dpkg and is usually invoked without
parameters. The dselect command lets you interactively manage packages by selecting them for
installation, removal, configuration, and so forth. Selections are made from a locally stored list
of available packages, which may be updated while running dselect. Package actions initiated
by dselect are carried out using dpkg.

dselect

Chapter 5: Linux Installation and Package Management (Topic 102) | 51

Installation/Pack-
age M

anagem
ent

alien

Syntax
alien [--to-deb] [--patch=patchfile] [options] file

Description
Convert to or install a non-Debian (or “alien”) package. Supported package types include Red
Hat .rpm, Stampede .slp, Slackware .tgz, and generic .tar.gz files. rpm must also be installed on
the system to convert an RPM package into a .deb package. The alien command produces an
output package in Debian format by default after conversion.

Frequently used options

-i
Automatically install the output package and remove the converted package file.

-r
Convert package to RPM format.

-t
Convert package to a gzip tar archive.

Example
Install a non-Debian package on a Debian system using alien with the -i option:

alien -i package.rpm

On the Exam
dselect, apt-get, and alien are important parts of Debian package management, but
detailed knowledge of dpkg is of primary importance for Exam 101.

Objective 5: Use Red Hat Package Manager (RPM)
The Red Hat Package Manager is among the most popular methods for the distri-
bution of software for Linux and is installed by default on most distributions. It
automatically handles many of the management details associated with interde-
pendent software running on your system.

RPM Overview
RPM automates the installation and maintenance of software packages. Built into
each package are program files, configuration files, documentation, and dependen-
cies on other packages. Package files are manipulated using the rpm command,
which maintains a database of all installed packages and their files. Information from
new packages is added to this database, and the database is consulted on a file-by-
file basis for dependencies when packages are removed, queried, and installed. As
with Debian packages, RPM packages have four common elements:

alien

52 | Chapter 5: Linux Installation and Package Management (Topic 102)

Name
An RPM package name is short and descriptive. If multiple words are used, they
are separated by hyphens (not underscores, as you might expect). Typical
names include binutils, caching-nameserver, cvs, gmc, kernel-source, and telnet.

Version
Each package has a version. Most package versions are the same as that of the
software they contain. The format of package versions varies from package to
package, but most are numeric (major.minor.patchlevel).

Revision
The revision tag is simply a release number for the package. It has no significance
except to determine whether one package is newer than another when the ver-
sion number does not change.

Architecture
Packages containing binary (compiled) files are by their nature specific to a
particular type of system. For PCs, the RPM architecture designation is i386,
meaning the Intel 80386 and subsequent line of microprocessors and
compatibles.

Packages optimized for later x86 CPUs will have an architecture tag appropriate
for the specific CPU the code is compiled for, such as i586 for Intel Pentium
(and compatible) processors, i686 for Intel Pentium Pro and later processors
(Pentium II, Celeron, Pentium III, and Pentium 4), or athlon for AMD Athlon.

Other possible architecture tags include alpha, ia64, ppc, and sparc (for the
Alpha, Itanium, PowerPC, and SPARC architectures, respectively). Another
arch tag, noarch, is used to indicate packages that can install on any architecture.

While the filename of an RPM package is not significant, Red Hat does have a
standard naming scheme for its packages that most of the other RPM-based distri-
butions also follow. It is constructed by tying these elements together in one long
string.

Running rpm
The rpm command provides for the installation, removal, upgrade, verification, and
other management of RPM packages. rpm has a bewildering array of options, in-
cluding the traditional single-letter style (-i) and the double-dash full word style
(--install). In most cases, both styles exist and are interchangeable.

Although configuring rpm may appear to be a bit daunting, its operation is simplified
by being segmented into modes. rpm modes are enabled using one (and only one) of
the mode options. Within a mode, additional mode-specific options become
available to modify the behavior of rpm. The major modes of rpm and some of the
most frequently used mode-specific options follow. For complete information on
how to use and manage RPM packages, see the rpm manpage or the synopsis offered
by rpm --help.

Objective 5: Use Red Hat Package Manager (RPM) | 53

Installation/Pack-
age M

anagem
ent

rpm

Syntax
rpm -i [options]
(also rpm --install)
rpm -U [options] (also rpm --upgrade)
rpm -e [options] (also rpm --uninstall)
rpm -q [options] (also rpm --query)
rpm -V [options] (also rpm --verify)

Install/upgrade mode
The install mode (rpm -i) is used to install new packages. A variant of install mode is the upgrade
mode (rpm -U), where an installed package is upgraded to a more recent version. Another variant
is the freshen mode (rpm -F), which upgrades only packages that have an older version already
installed on the system. But rpm’s -F option has limited value, since it doesn’t handle
dependency changes at all. In other words, if a new version of a package requires that another
package be installed, -F won’t automatically install the new package, even if it is listed on the
command line.

Frequently used install and upgrade options

--force
Allows the replacement of existing packages and of files from previously installed pack-
ages; for upgrades, it allows the replacement of a newer package with an older one. (Lit-
erally, it is equivalent to setting all of the options --replacepkgs, --replacefiles, and
--oldpackage.) Use this option with caution.

-h (also --hash)
Prints a string of 50 hash marks (#) during installation as a progress indicator.

--nodeps
Allows you to install a package without checking for dependencies. This command should
be avoided because it makes the dependency database inconsistent.

--test
Runs through all the motions except for actually writing files; it’s useful to verify that a
package will install correctly prior to making the attempt. Note that verbose and hash
options cannot be used with --test, but -vv can.

-v
Sets verbose mode. (Package names are displayed as the packages are being installed.)

-vv
Sets really verbose mode. The manpage describes this as “print lots of ugly debugging
information.”

Example 1
To install a new package, simply use the rpm -i command with the name of a package file. If
the new package depends upon another package, the install fails, like this:

rpm -i gcc-2.96-113.i386.rpm
error: failed dependencies:
 binutils >= 2.11.93.0.2-6 is needed by gcc-2.96-113

rpm

54 | Chapter 5: Linux Installation and Package Management (Topic 102)

 cpp = 2.96-113 is needed by gcc-2.96-113
 glibc-devel is needed by gcc-2.96-113

To correct the problem, the dependency must first be satisfied. In this example, gcc is dependent
on binutils, cpp, and glibc-devel, which all must be installed first (or at the same time, as in this
example):

rpm -i binutils-2.11.93.0.2-11.i386.rpm cpp-2.96-113.i386.rpm \
 glibc-devel-2.2.5-44.i386.rpm gcc-2.96-113.i386.rpm

Example 2
Upgrading an existing package to a newer version can be done with the -U option. Upgrade
mode is really a special case of the install mode, where existing packages can be superseded by
newer versions. Using -U, a package can be installed even if it doesn’t already exist, in which
case it behaves just like -i:

rpm -U gcc-2.96-113.i386.rpm

Uninstall mode
This mode is used to remove installed packages from the system. By default, rpm uninstalls a
package only if no other packages depend on it.

Frequently used uninstall options

--nodeps
rpm skips dependency checking with this option enabled. This command should be avoided
because it makes the dependency database inconsistent.

--test
This option runs through all the motions except for actually uninstalling things; it’s useful
to verify that a package can be uninstalled correctly without breaking other dependencies
prior to making the attempt. Note that verbose and hash options cannot be used with
--test, but -vv can.

Example
Package removal is the opposite of installation and has the same dependency constraints:

rpm -e glibc-devel
error: removing these packages would break dependencies:
 glibc-devel is needed by gcc-2.96-113

Query mode
Installed packages and raw package files can be queried using the rpm -q command. Query
mode options exist for package and information selection.

Frequently used query package selection options

-a (also --all)
Display a list of all packages installed on the system. This is particularly useful when piped
to grep if you’re not sure of the name of a package or when you want to look for packages
that share a common attribute.

-f filename (also --file)
Display the package that contains a particular file.

rpm

Chapter 5: Linux Installation and Package Management (Topic 102) | 55

Installation/Pack-
age M

anagem
ent

-p package_filename
Query a package file (most useful with -i, described next).

Frequently used query information selection options

-c (also --configfiles)
List only configuration files.

-d (also --docfiles)
List only documentation files.

-i package
Not to be confused with the install mode. Display information about an installed package,
or when combined with -p, about a package file. In the latter case, package is a filename.

-l package (also --list)
List all of the files contained in package. When used with -p, the package is a filename.

-R (also --requires)
List packages on which this package depends.

Example 1
To determine the version of the software contained in an RPM file, use the query and package
information options:

rpm -qpi openssh-3.4p1-2.i386.rpm | grep Version
Version : 3.4p1 Vendor: Red Hat, Inc.

For installed packages, omit the -p option and specify a package name instead of a package
filename. Notice if you have multiple versions of the same package installed, you will get output
for all of the packages:

rpm -qi kernel-source | grep Version
Version : 2.4.9 Vendor: Red Hat, Inc.
Version : 2.4.18 Vendor: Red Hat, Inc.
Version : 2.4.18 Vendor: Red Hat, Inc.

Example 2
List the files contained in a package:

rpm -qlp gnucash-1.3.0-1.i386.rpm
/usr/bin/gnc-prices
/usr/bin/gnucash
/usr/bin/gnucash.gnome
/usr/doc/gnucash
/usr/doc/gnucash/CHANGES
 (...output continues ...)

For an installed package, enter query mode and use the -l option along with the package name:

rpm -ql kernel-source
/usr/src/linux-2.4.18-14
/usr/src/linux-2.4.18-14/COPYING
/usr/src/linux-2.4.18-14/CREDITS
/usr/src/linux-2.4.18-14/Documentation
/usr/src/linux-2.4.18-14/Documentation/00-INDEX
/usr/src/linux-2.4.18-14/Documentation/BUG-HUNTING

rpm

56 | Chapter 5: Linux Installation and Package Management (Topic 102)

/usr/src/linux-2.4.18-14/Documentation/Changes
 (...output continues ...)

Example 3
List the documentation files in a package:

rpm -qd at
/usr/doc/at-3.1.7/ChangeLog
/usr/doc/at-3.1.7/Copyright
/usr/doc/at-3.1.7/Problems
/usr/doc/at-3.1.7/README
/usr/doc/at-3.1.7/timespec
/usr/man/man1/at.1
/usr/man/man1/atq.1
/usr/man/man1/atrm.1
/usr/man/man1/batch.1
/usr/man/man8/atd.8
/usr/man/man8/atrun.8

Use -p for package filenames.

Example 4
List configuration files or scripts in a package:

rpm -qc at
/etc/at.deny
/etc/rc.d/init.d/atd

Example 5
Determine what package a particular file was installed from. Of course, not all files originate
from packages:

rpm -qf /etc/fstab
file /etc/fstab is not owned by any package

Those that are package members look like this:

rpm -qf /etc/aliases
sendmail-8.11.6-15

Example 6
List the packages that have been installed on the system:

rpm -qa
(... hundreds of packages are listed ...)

To search for a subset with kernel in the name, pipe the previous command to grep:

rpm -qa | grep kernel
kernel-source-2.4.18-24.7.x
kernel-pcmcia-cs-3.1.27-18
kernel-utils-2.4-7.4
kernel-doc-2.4.18-24.7.x
kernel-2.4.18-24.7.x

rpm

Chapter 5: Linux Installation and Package Management (Topic 102) | 57

Installation/Pack-
age M

anagem
ent

Verify mode
Files from installed packages can be compared against their expected configuration from the
RPM database by using rpm -V.

Frequently used verify options

--nofiles
Ignores missing files.

--nomd5
Ignores MD5 checksum errors.

--nopgp
Ignores PGP checking errors.

On the Exam
Make certain that you are aware of rpm’s major operational modes and their
commonly used mode-specific options. Knowledge of specific options will be
necessary. Read through the rpm manpage at least once.

YUM Overview
YUM (Yellowdog Updater Modified) is a package manager offering a fast way for
installing, updating, and removing packages. The yum command has a very simple
interface and functions similar to rpm, but yum additionally manages all of the de-
pendencies for you. Yum will detect if dependencies are required for the installation
of an application and, if need be, fetch the required dependency and install it. Yum
has the ability to support multiple repositories for packages and has a simple
configuration.

YUM is configured through the /etc/yum.conf configuration file. A sample of the
configuration file follows. Repositories may be added and modified through
the /etc/yum.repos.d directory:

cat /etc/yum.conf
[main]
cachedir=/var/cache/yum
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3

This is the default. If you make this bigger yum won't see if the metadata
is newer on the remote and so you'll "gain" the bandwidth of not having to
download the new metadata and "pay" for it by yum not having correct
information.
It is especially important, to have correct metadata, for distributions
like Fedora that don't keep old packages around. If you don't like this

rpm

58 | Chapter 5: Linux Installation and Package Management (Topic 102)

checking interrupting your command line usage, it's much better to have
something manually check the metadata once an hour (yum-updatesd will do this).
metadata_expire=90m

PUT YOUR REPOS HERE OR IN separate files named file.repo
in /etc/yum.repos.d

The most common commands used with yum are:

install
Install a package or packages on your system.

erase
Remove a package or packages from your system.

update
Update a package or packages on your system.

list
List a package or group of packages on your system.

search
Search package details for the given string.

Checking installed packages

Check installed packages with list:

yum list

This command will show all of the packages that are currently installed on your
computer. It will also list available packages. In the following example the partial
output is filtered through |more to display content one page at a time. Here you can
see that some of the packages are installed (marked installed) and others are avail-
able through update (@update):

yum list |more
Loaded plugins: refresh-packagekit
Installed Packages
Canna-libs.i586 3.7p3-27.fc11 installed
ConsoleKit.i586 0.3.0-8.fc11 installed
ConsoleKit-libs.i586 0.3.0-8.fc11 installed
ConsoleKit-x11.i586 0.3.0-8.fc11 installed
DeviceKit.i586 003-1 installed
DeviceKit-disks.i586 004-4.fc11 @updates
DeviceKit-power.i586 009-1.fc11 @updates
GConf2.i586 2.26.2-1.fc11 installed
GConf2-gtk.i586 2.26.2-1.fc11 installed
ImageMagick.i586 6.5.1.2-1.fc11 installed
MAKEDEV.i586 3.24-3 installed
NetworkManager.i586 1:0.7.1-8.git20090708.fc11 @updates
NetworkManager-glib.i586 1:0.7.1-8.git20090708.fc11 @updates
...

You can also check to see if a particular package is installed or available for install
using the list command. The following example checks to see whether Samba is

rpm

Chapter 5: Linux Installation and Package Management (Topic 102) | 59

Installation/Pack-
age M

anagem
ent

installed. From the output you see that the samba package is not installed but avail-
able for installation through the repository:

yum list samba
Loaded plugins: refresh-packagekit
Available Packages
samba.i586 3.3.2-0.33.fc11 fedora

If you need to collect information about a particular package, use the info command.
In this situation we ask for information about the httpd service:

yum info httpd
Loaded plugins: refresh-packagekit
Installed Packages
Name : httpd
Arch : i586
Version : 2.2.11
Release : 8
Size : 2.6 M
Repo : installed
Summary : Apache HTTP Server
URL : http://httpd.apache.org/
License : ASL 2.0
Description: The Apache HTTP Server is a powerful, efficient, and extensible
 : web server.

Checking for updates

yum may be used to check for available updates for packages running on the com-
puter. You can run the check-updates command to perform a check for any available
package or specify a particular package you want to update. This example checks
for any available updates:

yum check-update
Loaded plugins: refresh-packagekit
gtk2.i586 2.16.5-1.fc11 updates
mysql-libs.i586 5.1.36-1.fc11 updates
selinux-policy.noarch 3.6.12-69.fc11 updates
selinux-policy-targeted.noarch 3.6.12-69.fc11 updates

Installing packages

Installing packages using yum is really quite straightforward. To install a package,
you specify its name with the install command and the package name, along with
any dependencies that will be downloaded and installed. This example installs the
samba package:

yum install samba
Loaded plugins: refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package samba.i586 0:3.3.2-0.33.fc11 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

rpm

60 | Chapter 5: Linux Installation and Package Management (Topic 102)

==
 Package Arch Version Repository Size
==
Installing:
 samba i586 3.3.2-0.33.fc11 fedora 4.4 M

Transaction Summary
==
Install 1 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 4.4 M
Is this ok [y/N]:
Downloading Packages:
samba-3.3.2-0.33.fc11.i586.rpm | 4.4 MB 00:06
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : samba-3.3.2-0.33.fc11.i586 1/1

Installed:
 samba.i586 0:3.3.2-0.33.fc11

Complete!

Removing packages

Removing a package from your system is similar to the installation process. Two
options remove packages: remove and erase. They perform the same function, but
remove should be used with caution because it also can uninstall dependent
packages:

yum remove httpd
Loaded plugins: refresh-packagekit
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package httpd.i586 0:2.2.11-8 set to be erased
--> Processing Dependency: httpd >= 2.2.0 for package: \
 gnome-user-share-2.26.0-2.fc11.i586
--> Running transaction check
---> Package gnome-user-share.i586 0:2.26.0-2.fc11 set to be erased
--> Finished Dependency Resolution

Dependencies Resolved
===
 Package Arch Version Repository Size
===
Removing:
 httpd i586 2.2.11-8 installed 2.6 M

Removing for dependencies:
 gnome-user-share i586 2.26.0-2.fc11 installed 809 k

rpm

Chapter 5: Linux Installation and Package Management (Topic 102) | 61

Installation/Pack-
age M

anagem
ent

Transaction Summary
===
Install 0 Package(s)
Update 0 Package(s)
Remove 2 Package(s)

Is this ok [y/N]: Y

rpm

62 | Chapter 5: Linux Installation and Package Management (Topic 102)

6
GNU and Unix Commands

(Topic 103)

This Topic covers the essential skill of working interactively with Linux command-
line utilities. Although it’s true that GUI tools are available to manage just about
everything on a Linux system, a firm understanding of command-line utilities is
required to better prepare you to work on any LSB-compliant Linux distribution.

The family of commands that are part of Linux and Unix systems have a long history.
Individuals or groups that needed specific tools contributed many of the commands
in the early days of Unix development. Those that were popular became part of the
system and were accepted as default tools under the Unix umbrella. Today, Linux
systems carry new and often more powerful GNU versions of these historical com-
mands, which are covered in LPI Topic 103.1.

This LPI Topic has eight Objectives:

Objective 1: Work on the Command Line
This Objective states that a candidate should be able to interact with shells and
commands using the command line. This includes using single shell commands
and one-line command sequences to perform basic tasks on the command line,
using and modifying the shell environment, including defining, referencing, and
exporting environment variables, using and editing command history, and in-
voking commands inside and outside the defined path. Weight: 4.

Objective 2: Process Text Streams Using Filters
This Objective states that a candidate should be able to apply filters to text
streams. Tasks include sending text files and output streams through text utility
filters to modify the output, and using standard Unix commands found in the
GNU coreutils package. Weight: 3.

Objective 3: Perform Basic File Management
This Objective states that candidates should be able to use the basic Linux
commands to copy, move, and remove files and directories. Tasks include ad-
vanced file management operations such as copying multiple files recursively,

63

removing directories recursively, and moving files that meet a wildcard pattern.
The latter task includes using simple and advanced wildcard specifications to
refer to files, as well as using find to locate and act on files based on type, size,
or time. This also includes usage of the commands tar, cpio, and dd for archival
purposes. Weight: 4.

Objective 4: Use Streams, Pipes, and Redirects
This Objective states that a candidate should be able to redirect streams and
connect them to efficiently process textual data. Tasks include redirecting
standard input, standard output, and standard error, piping the output of one
command to the input of another command, using the output of one command
as arguments to another command, and sending output to both stdout and a
file. Weight: 4.

Objective 5: Create, Monitor, and Kill Processes
This Objective states that a candidate should be able to manage processes. This
includes knowing how to run jobs in the foreground and background, bring a
job from the background to the foreground and vice versa, start a process that
will run without being connected to a terminal, and signal a program to con-
tinue running after logout. Tasks also include monitoring active processes,
selecting and sorting processes for display, sending signals to processes, and
killing processes. Weight: 4.

Objective 6: Modify Process Execution Priorities
This Objective states that a candidate should be able to manage process exe-
cution priorities. The tasks include running a program with higher or lower
priority, determining the priority of a process, and changing the priority of a
running process. Weight: 2.

Objective 7: Search Text Files Using Regular Expressions
This Objective states that a candidate should be able to manipulate files and
text data using regular expressions. This includes creating simple regular ex-
pressions containing several notational elements, as well as using regular
expression tools to perform searches through a filesystem or file content.
Weight: 2.

Objective 8: Perform Basic File Editing Operations Using vi
This Objective states a candidate should be able to edit files using vi. This in-
cludes vi navigation, basic vi modes, and inserting, editing, deleting, copying,
and finding text. Weight: 3.

The tools and concepts discussed here represent important and fundamental aspects
of working with Linux and are essential for your success on Exam 101.

Objective 1: Work on the Command Line
Every computer system requires a human interface component. For Linux system
administration, a text interface is typically used. The system presents the adminis-
trator with a prompt, which at its simplest is a single character such as $ or #. The
prompt signifies that the system is ready to accept typed commands, which usually

64 | Chapter 6: GNU and Unix Commands (Topic 103)

occupy one or more lines of text. This interface is generically called the command
line.

It is the job of a program called a shell to provide the command prompt and to
interpret commands. The shell provides an interface layer between the Linux kernel
and the end user, which is how it gets its name. The original shell for Unix systems
was written by Stephen Bourne and was called simply sh. The default Linux shell is
bash, the Bourne-Again Shell, which is a GNU variant of sh. This chapter will not
cover all aspects of the bash shell. At this point, we are primarily concerned with our
interaction with bash and the effective use of commands.

The Interactive Shell
The shell is a powerful programming environment, capable of automating nearly
anything you can imagine on your Linux system. The shell is also your interactive
interface to your system. When you first start a shell, it does some automated house-
keeping to get ready for your use, and then presents a command prompt. The com-
mand prompt tells you that the shell is ready to accept commands from its standard
input device, which is usually the keyboard. Shells can run standalone, as on a phys-
ical terminal, or within a window in a GUI environment. Whichever the case, their
use is the same.

Shell variable basics

During execution, bash maintains a set of shell variables that contain information
important to the execution of the shell. Most of these variables are set when bash
starts, but they can be set manually at any time.

The first shell variable of interest in this topic is called PS1, which simply stands for
Prompt String 1. This special variable holds the contents of the command prompt
that are displayed when bash is ready to accept commands (there is also a PS2 var-
iable, used when bash needs multiple-line input to complete a command). You can
easily display the contents of PS1, or any other shell variable, by using the echo
command with the variable name preceded by the $ symbol:

$ echo $PS1
\$

The \$ output tells us that PS1 contains the two characters \ and $. The backslash
character tells the shell not to interpret the dollar symbol in any special way (that is,
as a metacharacter, described later in this section). A simple dollar sign was the
default prompt for sh, but bash offers options to make the prompt much more in-
formative. On your system, the default prompt stored in PS1 is probably something
like:

[\u@\h \W]\$

Each of the characters preceded by backslashes has a special meaning to bash,
whereas those without backslashes are interpreted literally. In this example, \u is
replaced by the username, \h is replaced by the system’s hostname, \W is replaced
by the unqualified path (or basename) of the current working directory, and \$ is

Objective 1: Work on the Command Line | 65

GNU/Unix
Com

m
ands

replaced by a $ character (unless you are root, in which case \$ is replaced by #). This
yields a prompt of the form:

[adam@linuxpc adam]$

How your prompt is formulated is really just a convenience and does not affect how
the shell interprets your commands. However, adding information to the prompt,
particularly regarding system, user, and directory location, can make life easier when
hopping from system to system and logging in as multiple users (as yourself and
root, for example). See the online documentation on bash for more information on
customizing prompts, including many more options you can use to display system
information in your prompt.

Another shell variable that is extremely important during interactive use is PATH,
which contains a list of all the directories that hold commands or other programs
you are likely to execute. A default path is set up for you when bash starts. You may
wish to modify the default to add other directories that hold programs you need to
run.

Every file in the Linux filesystem can be specified in terms of its
location. The less program, for example, is located in the direc-
tory /usr/bin. Placing /usr/bin in your PATH enables you to execute
less by simply typing less rather than the explicit /usr/bin/less.

Also be aware that "." (the current directory) is not included in
the PATH either implicitly (as it is in DOS) or explicitly for se-
curity reasons. To execute a program named foo in the current
directory, simply run ./foo.

For bash to find and execute the command you enter at the prompt, the command
must be one of the following:

• A bash built-in command that is part of bash itself

• An executable program located in a directory listed in the PATH variable

• An executable program whose filename you specify explicitly

The shell holds PATH and other variables for its own use. However, many of the shell’s
variables are needed during the execution of programs launched from the shell (in-
cluding other shells). For these variables to be available, they must be exported, at
which time they become environment variables. Environment variables are passed
on to programs and other shells, and together they are said to form the environ-
ment in which the programs execute. PATH is always made into an environment var-
iable. Exporting a shell variable to turn it into an environment variable is done using
the export command:

$ export MYVAR

Do not include a preceding dollar sign when defining or exporting a variable (be-
cause in this command, you don’t want the shell to expand the variable to its value).
When a variable is exported to the environment, it is passed into the environment

66 | Chapter 6: GNU and Unix Commands (Topic 103)

http://www.gnu.org/software/bash/manual/

of all child processes. That is, it will be available to all programs run by your shell.
Here is an example that displays the difference between a shell variable and an en-
vironment variable:

$ echo $MYVAR

No output is returned, because the variable has not been defined. We give it a value,
and then echo its value:

$ MYVAR="hello"
$ echo $MYVAR
hello

We’ve verified that the variable MYVAR contains the value “hello”. Now we spawn a
subshell (or child process) and check the value of this variable:

$ bash
$ echo $MYVAR

Typing bash spawned another copy of the bash shell. This child process is now our
current environment, and as you can see from the blank line that ends the example,
the variable MYVAR is not defined here. If we return to our parent process and export
the variable, it becomes an environment variable that can be accessed in all child
processes:

$ exit
$ export MYVAR
$ bash
$ echo $MYVAR
hello

Typing the export command without any arguments will display all of the exported
environment variables available to your shell. The env command will accomplish
the same thing, just with slightly different output.

Along the same lines are the bash built-in commands set and unset. The command
set with no arguments will display of list of currently set environment variables. The
command unset will allow you to clear the value of an environment variable (as-
suming it is not read-only). The set command also gives you the ability to change
the way bash behaves. The following are some examples of using set to modify your
interactive shell.

To change to vi-style editing mode:

$ set –o vi

This example automatically marks variables that are modified or created for export
to the environment of subsequent commands:

$ set –o allexport

To view the current settings for the variables that set can modify, run set –o.

Objective 1: Work on the Command Line | 67

GNU/Unix
Com

m
ands

Entering commands at the command prompt

Commands issued to the shell on a Linux system generally consist of four
components:

• A valid command (a shell built-in, program, or script found among directories
listed in the PATH, or an explicitly defined program)

• Command options, usually preceded by a dash

• Arguments

• Line acceptance (i.e., pressing the Enter key), which we assume in the examples

Each command has its own unique syntax, although most follow a fairly standard
form. At minimum, a command is necessary:

$ ls

This simple command lists the contents of the current working directory. It requires
neither options nor arguments. Generally, options are letters or words preceded by
a single or double dash and are added after the command and separated from it by
a space:

$ ls -l

The -l option modifies the behavior of ls by listing files in a longer, more detailed
format. In most cases, single-dash options can be either combined or specified sep-
arately. To illustrate this, consider these two equivalent commands:

$ ls -l -a
$ ls -la

By adding the -a option, ls displays files beginning with a dot (which it hides by
default). Adding that option by specifying -la yields the same result. Some com-
mands offer alternative forms for the same option. In the preceding example, the
-a option can be replaced with --all:

$ ls -l --all

These double-dash, full-word options are frequently found in programs from the
GNU project. They cannot be combined like the single-dash options can. Both types
of options can be freely intermixed. Although the longer GNU-style options require
more typing, they are easier to remember and easier to read in scripts than the single-
letter options.

Adding an argument further refines the command’s behavior:

$ ls -l *.c

Now the command will give a detailed listing only of C program source files, if any
exist in the current working directory.

Using the asterisk in *.c allows any file to match as long as it
ends with a .c extension. This is known as file globbing. More
information on file globbing and using wildcards can be found
later in this chapter.

68 | Chapter 6: GNU and Unix Commands (Topic 103)

Sometimes, options and arguments can be mixed in any order:

$ ls --all *.c -l

In this case, ls was able to determine that -l is an option and not another file
descriptor.

Some commands, such as tar and ps, don’t require the dash preceding an option
because at least one option is expected or required. To be specific, ps doesn’t require
a dash when it is working like BSD’s version of ps. Since the Linux version of ps is
designed to be as compatible as possible with various other versions of ps, it some-
times does need a dash to distinguish between conflicting options. As an example,
try ps -e and ps e. The first version invokes a Linux-specific option that shows ev-
eryone’s processes, not just your own. The second version invokes the original BSD
option that shows the environment variables available to each of your commands.

Also, an option often instructs the command that the subsequent item on the com-
mand line is a specific argument. For example:

$ sort name_list

$ sort –k 2 name_list

These commands invoke the sort command to sort the lines in the file name_list.
The first command just sorts beginning with the first character of each line, whereas
the second version adds the options -k 2. The -k option tells the command to break
each line into fields (based on whitespace) and to sort the lines on a particular field.
This option requires a following option to indicate which field to sort on. In this
case, we have told sort to sort on the second field, which is useful if name_list contains
people’s names in a “Joe Smith” format.

Just as any natural language contains exceptions and variations, so does the syntax
used for GNU and Unix commands. You should have no trouble learning the
essential syntax for the commands you need to use often. The capabilities of the
command set offered on Linux are extensive, making it highly unlikely that you’ll
memorize all of the command syntax you’ll ever need. Most system administrators
are constantly learning about features they’ve never used in commands they use
regularly. It is standard practice to regularly refer to the documentation on com-
mands you’re using, so feel free to explore and learn as you go.

Entering commands not in the PATH

Occasionally, you will need to execute a command that is not in your path and not
built into your shell. If this need arises often, it may be best to simply add the di-
rectory that contains the command to your path. However, there’s nothing wrong
with explicitly specifying a command’s location and name completely. For example,
the ls command is located in /bin. This directory is most certainly in your PATH
variable (if not, it should be!), which allows you to enter the ls command by itself
on the command line:

$ ls

Objective 1: Work on the Command Line | 69

GNU/Unix
Com

m
ands

The shell looks for an executable file named ls in each successive directory listed in
your PATH variable and will execute the first one it finds. Specifying the literal path-
name for the command eliminates the directory search and yields identical results:

$ /bin/ls

Any executable file on your system may be started in this way. However, it is im-
portant to remember that some programs may have requirements during execution
about what is listed in your PATH. A program can be launched normally but may fail
if it is unable to find a required resource due to an incomplete PATH.

Entering multiple-line commands interactively

In addition to its interactive capabilities, the shell also has a complete programming
language of its own. Many programming features can be very handy at the interactive
command line as well. Looping constructs, including for, until, and while, are often
used this way. (Shell syntax is covered in more detail in Chapter 13.) When you
begin a command such as these, which normally spans multiple lines, bash prompts
you for the subsequent lines until a valid command has been completed. The prompt
you receive in this case is stored in shell variable PS2, which by default is >. For
example, if you wanted to repetitively execute a series of commands each time with
a different argument from a known series, you could enter the following:

$ var1=1
$ var2=2
$ var3=3
$ echo $var1
1
$ echo $var2
2
$ echo $var2
3

Rather than entering each command manually, you can interactively use bash’s
for loop construct to do the work for you. Note that indented style, such as what
you might use in traditional programming, isn’t necessary when working interac-
tively with the shell:

$ for var in $var1 $var2 $var3
> do
> echo $var
> done
1
2
3

You can also write this command on one line:

$ for var in $var1 $var2 $var3; do echo $var; done
1
2
3

The semicolons are necessary to separate the variables from the built-in bash
functions.

70 | Chapter 6: GNU and Unix Commands (Topic 103)

Entering command sequences

There may be times when it is convenient to place multiple commands on a single
line. Normally, bash assumes you have reached the end of a command (or the end
of the first line of a multiple-line command) when you press Enter. To add more
than one command to a single line, separate the commands and enter them sequen-
tially with the command separator, a semicolon. Using this syntax, the following
commands:

$ ls
$ ps

are, in essence, identical to and will yield the same result as the following single-line
command that employs the command separator:

$ ls ; ps

On the Exam
Command syntax and the use of the command line are very important topics. Pay
special attention to the use of options and arguments and how they are differen-
tiated. Also be aware that some commands expect options to be preceded by a
dash, whereas other commands do not. The LPI exams do not concentrate on
command options, so don’t feel like you need to memorize every obscure option
for every command before taking the exams.

Command History and Editing
If you consider interaction with the shell as a kind of conversation, it’s a natural
extension to refer back to things “mentioned” previously. You may type a long and
complex command that you want to repeat, or perhaps you need to execute a com-
mand multiple times with slight variation.

If you work interactively with the original Bourne shell, maintaining such a “con-
versation” can be a bit difficult. Each repetitive command must be entered explicitly,
each mistake must be retyped, and if your commands scroll off the top of your screen,
you have to recall them from memory. Modern shells such as bash include a signif-
icant feature set called command history, expansion, and editing. Using these capa-
bilities, referring back to previous commands is painless, and your interactive shell
session becomes much simpler and more effective.

The first part of this feature set is command history. When bash is run interactively,
it provides access to a list of commands previously typed. The commands are stored
in the history list prior to any interpretation by the shell. That is, they are stored
before wildcards are expanded or command substitutions are made. The history list
is controlled by the HISTSIZE shell variable. By default, HISTSIZE is set to 1,000 lines,
but you can control that number by simply adjusting HISTSIZE’s value. In addition
to commands entered in your current bash session, commands from previous bash
sessions are stored by default in a file called ~/.bash_history (or the file named in the
shell variable HISTFILE).

Objective 1: Work on the Command Line | 71

GNU/Unix
Com

m
ands

If you use multiple shells in a windowed environment (as just
about everyone does), the last shell to exit will write its history
to ~/.bash_history. For this reason you may wish to use one shell
invocation for most of your work.

To view your command history, use the bash built-in history command. A line num-
ber will precede each command. This line number may be used in subsequent history
expansion. History expansion uses either a line number from the history or a portion
of a previous command to re-execute that command. History expansion also allows
a fair degree of command editing using syntax you’ll find in the bash documentation.
Table 6-1 lists the basic history expansion designators. In each case, using the des-
ignator as a command causes a command from the history to be executed again.

Table 6-1. Command history expansion designators

Designator Description

!! Spoken as bang-bang, this command refers to the most recent command. The exclamation
point is often called bang on Linux and Unix systems.

!n Refer to command n from the history. Use the history command to display these numbers.

!-n Refer to the current command minus n from the history.

!string Refer to the most recent command starting with string.

!?string Refer to the most recent command containing string.

^string1^string2 Quick substitution. Repeat the last command, replacing the first occurrence of string1 with
string2.

While using history substitution can be useful for executing repetitive commands,
command history editing is much more interactive. To envision the concept of com-
mand history editing, think of your entire bash history (including that obtained from
your ~/.bash_history file) as the contents of an editor’s buffer. In this scenario, the
current command prompt is the last line in an editing buffer, and all of the previous
commands in your history lie above it. All of the typical editing features are available
with command history editing, including movement within the “buffer,” searching,
cutting, pasting, and so on. Once you’re used to using the command history in an
editing style, everything you’ve done on the command line becomes available as
retrievable, reusable text for subsequent commands. The more familiar you become
with this concept, the more useful it can be.

By default, bash uses key bindings like those found in the Emacs editor for command
history editing. (An editing style similar to the vi editor is also available.) If you’re
familiar with Emacs, moving around in the command history will be familiar and
very similar to working in an Emacs buffer. For example, the key command Ctrl-p
(depicted as C-p) will move up one line in your command history, displaying your
previous command and placing the cursor at the end of it. This same function is also
bound to the up-arrow key. The opposite function is bound to C-n (and the down
arrow). Together, these two key bindings allow you to examine your history line by
line. You may re-execute any of the commands shown simply by pressing Enter when

72 | Chapter 6: GNU and Unix Commands (Topic 103)

it is displayed. For the purposes of Exam 101, you’ll need to be familiar with this
editing capability, but detailed knowledge is not required. Table 6-2 lists some of
the common Emacs key bindings you may find useful in bash. Note that C- indicates
the Ctrl key, and M- indicates the Meta key, which is usually Alt on PC keyboards
(since PC keyboards do not actually have a Meta key).

In circumstances where the Alt key is not available, such as on
a terminal, using the Meta key means pressing the Escape (Esc)
key, releasing it, and then pressing the defined key. The Esc key
is not a modifier, but applications will accept the Esc key se-
quence as equivalent to the Meta key.

Table 6-2. Basic command history editing Emacs key bindings

Key Description

C-p Previous line (also up arrow)

C-n Next line (also down arrow)

C-b Back one character (also left arrow)

C-f Forward one character (also right arrow)

C-a Beginning of line

C-e End of line

C-l Clear the screen, leaving the current line at the top of the screen

M-< Top of history

M-> Bottom of history

C-d Delete character from right

C-k Delete (kill) text from cursor to end of line

C-y Paste (yank) text previously cut (killed)

M-d Delete (kill) word

C-rtext Reverse search for text

C-stext Forward search for text

Command substitution

bash offers a handy ability to do command substitution. This feature allows you to
replace the result of a command with a script. For example, wherever $(command) is
found, its output will be substituted. This output could be assigned to a variable, as
in the system information returned by the command uname –a:

$ SYSTEMSTRING=$(uname -a)
$ echo $SYSTEMSTRING
Linux linuxpc.oreilly.com 2.6.24.7-92.fc8 #1 SMP Wed May 7 16:50:09 \
EDT 2008 i686 athlon i386 GNU/Linux

Another form of command substitution is `command`. The result is the same, except
that the back quote (or backtick) syntax has some special rules regarding

Objective 1: Work on the Command Line | 73

GNU/Unix
Com

m
ands

metacharacters that the $(command) syntax avoids. Refer to the bash manual at http:
//www.gnu.org/software/bash/manual/ for more information.

Applying commands recursively through a directory tree

There are many times when it is necessary to execute commands recursively. That
is, you may need to repeat a command throughout all the branches of a directory
tree. Recursive execution is very useful but also can be dangerous. It gives a single
interactive command the power to operate over a much broader range of your system
than your current directory, and the appropriate caution is necessary. Think twice
before using these capabilities, particularly when operating as the superuser.

Some of the GNU commands on Linux systems have built-in recursive capabilities
as an option. For example, chmod modifies permissions on files in the current
directory:

$ chmod g+w *.c

In this example, all files with the .c extension in the current directory are given the
group-write permission. However, there may be a number of directories and files in
hierarchies that require this change. chmod contains the -R option (note the upper-
case option letter; you may also use --recursive), which instructs the command to
operate not only on files and directories specified on the command line, but also on
all files and directories contained beneath the specified directories. For example, this
command gives the group-write permission to all files in a source-code tree
named /home/adam/src:

$ chmod -R g+w /home/adam/src

Provided you have the correct privileges, this command will descend into each sub-
directory in the src directory and add the requested permission to each file and
directory it finds. Other example commands with this ability include cp (copy), ls
(list files), and rm (remove files).

A more general approach to recursive execution through a directory is available by
using the find command. find is inherently recursive and is intended to descend
through directories executing commands or looking for files with certain attributes.
At its simplest, find displays an entire directory hierarchy when you simply enter the
command and provide a single argument of the target directory. If no options are
given to find, it prints each file it finds, as if the option -print were specified:

$ find /home/adam/src
...files and directories are listed recursively...

As an example of a more specific use, add the -name option to search the same
directories for C files (this can be done recursively with the ls command as well):

$ find /home/adam/src -name "*.c"
....c files are listed recursively...

find also can be used to execute commands against specific files by using the -exec
option. The arguments following -exec are taken as a command to run on each
find match. They must be terminated with a semicolon (;), which needs to be

74 | Chapter 6: GNU and Unix Commands (Topic 103)

http://www.gnu.org/software/bash/manual/
http://www.gnu.org/software/bash/manual/

escaped (\;, for example) because it is a shell metacharacter. The string {} is replaced
with the filename of the current match anywhere it is found in the command.

To take the previous example a little further, rather than execute chmod recursively
against all files in the src directory, find can execute it against the C files only, like this:

$ find /home/adam/src -name "*.c" -exec chmod g+w {} \;

The find command is capable of much more than this simple example and can locate
files with particular attributes such as dates, protections, file types, access times, and
others. Although the syntax can be confusing, the results are worth some study of
find.

Manpages
Traditional computer manuals covered everything from physical maintenance to
programming libraries. Although the books were convenient, many users didn’t al-
ways want to dig through printed documentation or carry it around. So, as space
became available, the man (manual) command was created to put the books on the
system, giving users immediate access to the information they needed in a
searchable, quick-reference format.

There is a manpage for most commands on your system. There are also manpages
for important files, library functions, shells, languages, devices, and other features.
man is to your system what a dictionary is to your written language. That is, nearly
everything is defined in detail, but you probably need to know in advance just what
you’re looking for.

man

Syntax
man [options] [section] name

Description
Format and display system manual pages from section on the topic of name. If section is omitted,
the first manpage found is displayed.

Frequently used options

-a
Normally, man exits after displaying a single manpage. The -a option instructs man to
display all manpages that match name, in a sequential fashion.

-d
Display debugging information.

-k
Search for manpages containing a given string.

-w
Print the locations of manpages instead of displaying them.

man

Chapter 6: GNU and Unix Commands (Topic 103) | 75

GNU/Unix
Com

m
ands

Example 1
View a manpage for mkfifo:

$ man mkfifo
...

Results for the first manpage found are scrolled on the screen.

Example 2
Determine what manpages are available for mkfifo:

$ man -wa mkfifo
/usr/share/man/man1/mkfifo.1
/usr/share/man/man3/mkfifo.3

This shows that two manpages are available, one in section 1 (mkfifo.1) of the manual and
another in section 3 (mkfifo.3). See the next section for a description of manpage sections.

Example 3
Display the mkfifo manpage from manual section 3:

$ man 3 mkfifo

Manual sections
Manpages are grouped into sections, and there are times when you should know the appropriate
section in which to search for an item. For example, if you were interested in the mkfifo
C-language function rather than the command, you must tell the man program to search the
section on library functions (in this case, section 3, Linux Programmer’s Manual):

$ man 3 mkfifo

An alternative would be to have the man program search all manual sections:

$ man -a mkfifo

The first example returns the mkfifo(3) manpage regarding the library function. The second
returns pages for both the command and the function. In this case, the pages are delivered
separately; terminating the pager on the first manpage with Ctrl-C causes the second to be
displayed.

Manual sections are detailed in Table 6-3.

Table 6-3. Man sections

Section Description

1 User programs

2 System calls

3 Library calls

4 Special files (usually found in /dev)

5 File formats

6 Games

7 Miscellaneous

8 System administration

man

76 | Chapter 6: GNU and Unix Commands (Topic 103)

Some systems might also have sections 9, n, and others, but only
sections 1 through 8 are defined by the FHS.

The order in which man searches the sections for manpages is controlled by the MANSECT envi-
ronment variable. MANSECT contains a colon-separated list of section numbers. If it is not set,
man (as of version 1.5k) behaves as if it were set to 1:8:2:3:4:5:6:7:9:tcl:n:l:p:o.

Manpage format
Most manpages are presented in a concise format with information grouped under well-known
standard headings such as those shown in Table 6-4. Other manpage headings depend on the
context of the individual manpage.

Table 6-4. Standard manpage headings

Heading Description

Name The name of the item, along with a description

Synopsis A complete description of syntax or usage

Description A brief description of the item

Options Detailed information on each command-line option (for commands)

Return values Information on function return values (for programming references)

See also A list of related items that may be helpful

Bugs Descriptions of unusual program behavior or known defects

Files A list of important files related to the item, such as configuration files

Copying or copyright A description of how the item is to be distributed or protected

Authors A list of those who are responsible for the item

man mechanics
System manpages are stored mostly in /usr/share/man, but may exist in other places as well. At
any time, the manual pages available to the man command are contained within directories
configured in your man configuration file, /etc/man.config. This file contains directives to the
man, telling it where to search for pages (the MANPATH directive), the paging program to use
(PAGER), and many others. This file essentially controls how man works on your system. To
observe this, use the debug (-d) option to man to watch as it constructs a manpath (a directory
search list) and prepares to display your selection:

$ man -d mkfifo

Objective 2: Process Text Streams Using Filters
Many of the commands on Linux systems are intended to be used as filters, meaning
that multiple commands can be piped together to perform complex operations on
text. Text fed into the command’s standard input or read from files is modified in
some useful way and sent to standard output or to a new file, leaving the original
source file unmodified. Multiple commands can be combined to produce text

Objective 2: Process Text Streams Using Filters | 77

GNU/Unix
Com

m
ands

streams, which modify text at each step. This section describes basic use and syntax
for the filtering commands important for Exam 101. Refer to a Linux command
reference for full details on each command and the many other available commands.

cat

Syntax
cut options [files]

Description
Concatenate files and print on the standard output. Cat is often used as the first command in
a text stream, as it simply sends the contents of a file (or multiple files) to the standard output.

Frequently used options

-s
Never output more than one single blank line.

-v
Display nonprinting characters (these usually are not displayed).

-A
Display nonprinting characters, display $ at the end of each line, and display Tab characters
as ^I.

Example
Send the contents of the file /etc/passwd to the file /tmp/passwd:

$ cat /etc/passwd > /tmp/passwd

cut

Syntax
cut options [files]

Description
Cut out (that is, print) selected columns or fields from one or more files. The source file is not
changed. This is useful if you need quick access to a vertical slice of a file. By default, the slices
are delimited by a Tab character.

Frequently used options

-blist
Print bytes in list positions.

-clist
Print characters in list columns.

-ddelim
Set field delimiter (default is ;).

cat

78 | Chapter 6: GNU and Unix Commands (Topic 103)

-flist
Print list fields.

Example
Show usernames (in the first colon-delimited field) from /etc/passwd:

$ cut -d: -f1 /etc/passwd

expand

Syntax
expand [options] [files]

Description
Convert Tabs to spaces. Sometimes the use of Tab characters can make output that is attractive
on one output device look bad on another. This command eliminates Tabs and replaces them
with the equivalent number of spaces. By default, Tabs are assumed to be eight spaces apart.

Frequently used options

-tnumber
Specify Tab stops in place of the default 8.

-i
Initial; convert only at start of lines.

fmt

Syntax
fmt [options] [files]

Description
Format text to a specified width by filling lines and removing newline characters. Multiple
files from the command line are concatenated.

Frequently used options

-u
Use uniform spacing: one space between words and two spaces between sentences.

-w width
Set line width to width. The default is 75 characters.

head

Syntax
head [options] [files]

head

Chapter 6: GNU and Unix Commands (Topic 103) | 79

GNU/Unix
Com

m
ands

Description
Print the first few lines of one or more files (the “head” of the file or files). When more than one
file is specified, a header is printed at the beginning of each file, and each is listed in succession.

Frequently used options

-c n
Print the first n bytes, or if n is followed by k or m, print the first n kilobytes or megabytes,
respectively.

-nn
Print the first n lines. The default is 10.

join

Syntax
join [options] file1 file2

Description
Print a line for each pair of input lines, one each from file1 and file2, that have identical join
fields. This function could be thought of as a very simple database table join, where the two
files share a common index just as two tables in a database would.

Frequently used options

-j1field
Join on field of file1.

-j2field
Join on field of file2.

-jfield
Join on field of both file1 and file2.

Example
Suppose file1 contains the following:

1 one
2 two
3 three

and file2 contains:

1 11
2 22
3 33

Issuing the command:

$ join -j 1 file1 file2

yields the following output:

join

80 | Chapter 6: GNU and Unix Commands (Topic 103)

1 one 11
2 two 22
3 three 33

nl

Syntax
nl [options] [files]

Description
Number the lines of files, which are concatenated in the output. This command is used for
numbering lines in the body of text, including special header and footer options normally ex-
cluded from the line numbering. The numbering is done for each logical page, which is defined
as having a header, a body, and a footer. These are delimited by the special strings \:\:\:, \:
\:, and \:, respectively.

Frequently used options

-b style
Set body numbering style to style, which is t by default (styles are described next).

-f style
Set footer number style to style (n by default).

-h style
Set header numbering style to style, (n by default).

Styles can be in these forms:

A
Number all lines.

t
Number only nonempty lines.

n
Do not number lines.

pREGEXP
Number only lines that contain a match for regular expression REGEXP.

Example
Suppose file file1 contains the following text:

\:\:\:
header
\:\:
line1
line2
line3
\:
footer
\:\:\:
header

nl

Chapter 6: GNU and Unix Commands (Topic 103) | 81

GNU/Unix
Com

m
ands

\:\:
line1
line2
line3
\:
footer

If the following command is given:

$ nl -h a file1

the output would yield numbered headers and body lines but no numbering on footer lines.
Each new header represents the beginning of a new logical page and thus a restart of the num-
bering sequence:

 1 header
 2 line1
 3 line2
 4 line3
footer
 1 header
 2 line1
 3 line2
 4 line3
footer

od

Syntax
od [options] [files]

Description
Dump files in octal and other formats. This program prints a listing of a file’s contents in a
variety of formats. It is often used to examine the byte codes of binary files but can be used on
any file or input stream. Each line of output consists of an octal byte offset from the start of the
file followed by a series of tokens indicating the contents of the file. Depending on the options
specified, these tokens can be ASCII, decimal, hexadecimal, or octal representations of the
contents.

Frequently used options

-t type
Specify the type of output.

Typical types include:

A
Named character

c
ASCII character or backslash escape

O
Octal (the default)

od

82 | Chapter 6: GNU and Unix Commands (Topic 103)

x
Hexadecimal

Example
If file1 contains:

a1\n
A1\n

where \n stands for the newline character, the od command specifying named characters yields
the following output:

$ od -t a file1
00000000 a 1 nl A 1 nl
00000006

A slight nuance is the ASCII character mode. This od command specifying named characters
yields the following output with backslash-escaped characters rather than named characters:

$ od -t c file1
00000000 a 1 \n A 1 \n
00000006

With numeric output formats, you can instruct od on how many bytes to use in interpreting
each number in the data. To do this, follow the type specification by a decimal integer. This
od command specifying single-byte hex results yields the following output:

$ od -t x1 file1
00000000 61 31 0a 41 31 0a
00000006

Doing the same thing in octal notation yields:

$ od -t o1 file1
00000000 141 061 012 101 061 012
00000006

If you examine an ASCII chart with hex and octal representations, you’ll see that these results
match those tables.

paste

Syntax
paste [options] [files]

Description
Paste together corresponding lines of one or more files into vertical columns. Similar in func-
tion to the join command, but simpler in scope.

Frequently used options

-dn
Separate columns with character n in place of the default Tab.

paste

Chapter 6: GNU and Unix Commands (Topic 103) | 83

GNU/Unix
Com

m
ands

-s
Merge lines from one file into a single line. When multiple files are specified, their contents
are placed on individual lines of output, one per file.

For the following three examples, file1 contains:

1
2
3

and file2 contains:

A
B
C

Example 1
A simple paste creates columns from each file in standard output:

$ paste file1 file2
1 A
2 B
3 C

Example 2
The column separator option yields columns separated by the specified character:

$ paste -d'@' file1 file2
1@A
2@B
3@C

Example 3
The single-line option (-s) yields a line for each file:

$ paste -s file1 file2
1 2 3
A B C

pr

Syntax
pr [options] [file]

Description
Convert a text file into a paginated, columnar version, with headers and page fills. This com-
mand is convenient for yielding nice output, such as for a line printer from raw, uninteresting
text files. The header will consist of the date and time, the filename, and a page number.

Frequently used options

-d
Double space.

pr

84 | Chapter 6: GNU and Unix Commands (Topic 103)

-hheader
Use header in place of the filename in the header.

-llines
Set page length to lines. The default is 66.

-o width
Set the left margin to width.

sort

Syntax
sort [options] [files]

Description
Write input to stdout (standard out), sorted alphabetically.

Frequently used options

-f
Case-insensitive sort.

-kPOS1[,POS2]
Sort on the key starting at POS1 and (optionally) ending at POS2.

-n
Sort numerically.

-r
Sort in reverse order.

-tSEP
Use SEP as the key separator. The default is to use whitespace as the key separator.

Example
Sort all processes on the system by resident size (RSS in ps):

$ ps aux | sort -k 6 -n
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? SW Feb08 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SWN Feb08 0:00 [ksoftirqd_CPU0]
root 4 0.0 0.0 0 0 ? SW Feb08 0:01 [kswapd]
root 5 0.0 0.0 0 0 ? SW Feb08 0:00 [bdflush]
root 6 0.0 0.0 0 0 ? SW Feb08 0:00 [kupdated]
root 7 0.0 0.0 0 0 ? SW Feb08 0:00 [kjournald]
root 520 0.0 0.3 1340 392 tty0 S Feb08 0:00 /sbin/mingetty tt
root 335 0.0 0.3 1360 436 ? S Feb08 0:00 klogd -x
root 1 0.0 0.3 1372 480 ? S Feb08 0:18 init
daemon 468 0.0 0.3 1404 492 ? S Feb08 0:00 /usr/sbin/atd
root 330 0.0 0.4 1424 560 ? S Feb08 0:01 syslogd -m 0
root 454 0.0 0.4 1540 600 ? S Feb08 0:01 crond
root 3130 0.0 0.5 2584 664 pts/0 R 13:24 0:00 ps aux
root 402 0.0 0.6 2096 856 ? S Feb08 0:00 xinetd -stayalive
root 385 0.0 0.9 2624 1244 ? S Feb08 0:00 /usr/sbin/sshd

sort

Chapter 6: GNU and Unix Commands (Topic 103) | 85

GNU/Unix
Com

m
ands

root 530 0.0 0.9 2248 1244 pts/0 S Feb08 0:01 -bash
root 3131 0.0 0.9 2248 1244 pts/0 R 13:24 0:00 -bash
root 420 0.0 1.3 4620 1648 ? S Feb08 0:51 sendmail: accepti
root 529 0.0 1.5 3624 1976 ? S Feb08 0:06 /usr/sbin/sshd

split

Syntax
split [option] [infile] [outfile]

Description
Split infile into a specified number of line groups, with output going into a succession of files,
outfileaa, outfileab, and so on (the default is xaa, xab, etc.). The infile remains unchanged.
This command is handy if you have a very long text file that needs to be reduced to a succession
of smaller files. This was often done to email large files in smaller chunks, because at one time
it was considered bad practice to a send a single large email message.

Frequently used option

-n
Split the infile into n-line segments. The default is 1,000.

Example
Suppose file1 contains:

1 one
2 two
3 three
4 four
5 five
6 six

Then the command:

$ split -2 file1 splitout_

yields as output three new files, splitout_aa, splitout_ab, and splitout_ac.

The file splitout_aa contains:

1 one
2 two

splitout_ab contains:

3 three
4 four

and splitout_ac contains:

5 five
6 six

split

86 | Chapter 6: GNU and Unix Commands (Topic 103)

tac

Syntax
tac [file]

Description
This command is named as an opposite for the cat command, which simply prints text files to
standard output. In this case, tac prints the text files to standard output with lines in reverse
order.

Example
Suppose file1 contains:

1 one
2 two
3 three

Then the command:

$ tac file1

yields as output:

3 three
2 two
1 one

tail

Syntax
tail [options] [files]

Description
Print the last few lines of one or more files (the “tail” of the file or files). When more than one
file is specified, a header is printed at the beginning of each file, and each is listed in succession.

Frequently used options

-cn
This option prints the last n bytes, or if n is followed by k or m, the last n kilobytes or
megabytes, respectively.

-nm
Prints the last m lines. The default is 10.

-f
Continuously display a file as it is actively written by another process (“follow” the file).
This is useful for watching logfiles as the system runs.

tail

Chapter 6: GNU and Unix Commands (Topic 103) | 87

GNU/Unix
Com

m
ands

tr

Syntax
tr [options] [string1 [string2]]

Description
Translate characters from string1 to the corresponding characters in string2. tr does not have
file arguments and therefore must use standard input and output.

Note that string1 and string2 should contain the same number of characters since the first
character in string1 will be replaced with the first character in string2 and so on.

Either string1 or string2 can contain several types of special characters. Some examples follow,
although a full list can be found in the tr manpage.

a-z
All characters from a to z.

\\
A backslash (\) character.

\nnn
The ASCII character with the octal value nnn.

\x
Various control characters:

\a bell
\b backspace
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab

Frequently used options

-c
Use the complement of (or all characters not in) string1.

-d
Delete characters in string1 from the output.

-s
Squeeze out repeated output characters in string1.

Example 1
To change all lowercase characters in file1 to uppercase, use:

$ cat file1 | tr a-z A-Z

or:

$ cat file1 | tr '[:lower:]' '[:upper:]'

tr

88 | Chapter 6: GNU and Unix Commands (Topic 103)

Example 2
To suppress repeated whitespace characters from file1:

$ cat file1 | tr -s '[:blank:]'

Example 3
To remove all non-printable characters from file1 (except the newline character):

$ cat file1 | tr -dc '[:print:]\n'

unexpand

Syntax
unexpand [options] [files

Description
Convert spaces to Tabs. This command performs the opposite action of expand. By default,
Tab stops are assumed to be every eight spaces.

Frequently used options

-a
Convert all spaces, not just leading spaces. Normally unexpand will work only on spaces
at the beginning of each line of input. Using the -a option causes it to replace spaces
anywhere in the input.

This behavior of unexpand differs from expand. By default,
expand converts all Tabs to spaces. It requires the -i option
to convert only leading spaces.

-t number
Specify Tab stops in place of the default 8.

uniq

Syntax
uniq [options] [input [output]]

Description
Writes input (or stdin) to output (or stdout), eliminating adjacent duplicate lines.

Since uniq works only on adjacent lines of its input, it is most often used in conjunction with sort.

Frequently used options

-d
Print only nonunique (repeating) lines.

uniq

Chapter 6: GNU and Unix Commands (Topic 103) | 89

GNU/Unix
Com

m
ands

-u
Print only unique (nonrepeating) lines.

Examples
Suppose file contains the following:

b
b
a
a
c
d
c

Issuing the command uniq with no options:

$ uniq file

yields the following output:

b
a
c
d
c

Notice that the line with c is repeated, since the duplicate lines were not adjacent in the input
file. To eliminate duplicate lines regardless of where they appear in the input, use sort on the
input first:

$ sort file | uniq
a
b
c
d

To print only lines that never repeat in the input, use the -u option:

$ sort file | uniq -u
d

To print only lines that do repeat in the input, use the -d option:

$ sort file | uniq -d
a
b
c

wc

Syntax
wc [options] [files]

Description
Print counts of characters, words, and lines for files. When multiple files are listed, statistics
for each file output on a separate line with a cumulative total output last.

wc

90 | Chapter 6: GNU and Unix Commands (Topic 103)

Frequently used options

-c
Print the character count only.

-l
Print the line count only.

-w
Print the word count only.

Example 1
Show all counts and totals for file1, file2, and file3:

$ wc file[123]

Example 2
Count the number of lines in file1:

$ wc -l file1

Objective 3: Perform Basic File Management
This section covers basic file and directory management, including filesystems, files
and directories, standard file management commands, their recursive capabilities
(where applicable), and wildcard patterns (also known as file globbing).

Filesystem Objects
Nearly every operating system in history structures its collection of stored objects
in a hierarchy, which is a tree of objects containing other objects. This hierarchy
allows a sane organization of objects and allows identically named objects to appear
in multiple locations, an essential feature for multiuser systems such as Linux. In-
formation about each object in the filesystem is stored in a table (which itself is part
of the filesystem), and each object is numbered uniquely within that table. Although
there are a few special object types on Linux systems, the two most common are
directories and files.

Directories and files

A directory is a container intended to hold objects such as files and other directories.
A directory’s purpose is primarily for organization. A file, on the other hand, exists
within the directory, and its purpose is to store raw data. At the top of all Linux
filesystem hierarchies is a directory depicted simply by /; this is known as the root
directory. Beneath / are named directories and files in an organized and well-defined
tree. To describe these objects, you simply refer to them by name separated by
the / character. For example, the object ls is an executable program stored in a di-
rectory called /bin under the root directory; it is depicted simply as /bin/ls.

Objective 3: Perform Basic File Management | 91

GNU/Unix
Com

m
ands

Don’t confuse root directory with the username root, which is
separate and distinct. There’s also often a directory
named /root for the root user. Keeping /, /root, and the root user
straight in a conversation can be a challenge.

Inodes

The identification information for a filesystem object is known as its inode. Inodes
carry information about objects, such as where they are located on disk, their mod-
ification time, security settings, and so forth. Each Linux ext3 filesystem is created
with a finite number of inodes that is calculated based on the size of the filesystem
and other options that are given to mke2fs (the command used to create an ext2 or
ext3 filesystem on a partition). Multiple objects in the filesystem can share the same
inode; this concept is called linking.

File and directory management commands

Once a hierarchy is defined, there is a never-ending need to manage the objects in
the filesystem. Objects are constantly created, read, modified, copied, moved, and
deleted, so wisely managing the filesystem is one of the most important tasks of a
system administrator. In this section, we discuss the basic command-line utilities
used for file and directory management. There are GUI tools for this task, but the
LPI Level 1 exams only test on command-line tools, and although GUI tools are
sometimes more intuitive, a good system administrator should always be always be
able to administer his or her system from the command line.

bzip2

Syntax
bzip2 [options] [filenames ...]
bunzip2 [options] [filenames ...]

Description
Compress or uncompress files using the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding. bzip2 is generally considered one of the most efficient com-
pression programs available for Linux systems. Files compressed with bzip2 usually have the
extension .bz2.

Frequently used options

-d
Decompress a file. bzip2 –d is the same as bunzip2.

-1 to -9
Set the block size to 100k, 200k, 300k...900k when compressing. This essentially means
that -1 compresses faster but leaves larger compressed files, whereas -9 compresses more
slowly but results in smaller files.

bzip2

92 | Chapter 6: GNU and Unix Commands (Topic 103)

Example 1
Compress the file /etc/largefile using the highest level of compression. It will be compressed and
renamed /etc/largefile.bz2:

$ bzip2 -9 /etc/largefile

Example 2
Uncompress /etc/largefile.bz2. It will be uncompressed and renamed /etc/largefile:

$ bunzip2 /etc/largefile.bz2

or:

$ bzip2 -d /etc/largefile.bz2

cp

Syntax
cp [options] file1 file2
cp [options] files directory

Description
In the first command form, copy file1 to file2. If file2 exists and you have appropriate priv-
ileges, it will be overwritten without warning (unless you use the -i option). Both file1 and
file2 can be any valid filename, either fully qualified or in the local directory. In the second
command form, copy files to directory. Note that the presence of multiple files implies that
you wish to copy the files to a directory. If directory doesn’t exist, an error message will be
printed. This command form can get you in trouble if you attempt to copy a single file into a
directory that doesn’t exist, as the command will be interpreted as the first form and you’ll end
up with file2 instead of directory.

Frequently used options

-f
Force an overwrite of existing files in the destination.

-i
Prompt interactively before overwriting destination files. It is common practice (and ad-
vised) to alias the cp command to cp -i to prevent accidental overwrites. You may find that
this is already done for you for the root user on your Linux system.

-p
Preserve all information, including owner, group, permissions, and timestamps. Without
this option, the copied file or files will have the present date and time, default permissions,
owner, and group.

-r, -R
Recursively copy directories. You may use either upper- or lowercase for this option. If
file1 is actually a directory instead of a file and the recursive option is specified, file2 will
be a copy of the entire hierarchy under directory file1.

-v
Display the name of each file verbosely before copying.

cp

Chapter 6: GNU and Unix Commands (Topic 103) | 93

GNU/Unix
Com

m
ands

Example 1
Copy the messages file to the local directory (specified by .):

$ cp /var/log/messages .

Example 2
Make an identical copy, including preservation of file attributes, of directory src in new direc-
tory src2:

$ cp -Rp src src2

Copy file1, file2, file5, file6, and file7 from the local directory into your home directory
(in bash):

$ cp file1 file2 file[567] ~

On the Exam
Be sure to know the difference between a file destination and a directory destina-
tion and how to force an overwrite of existing objects.

cpio

Syntax
cpio –o [options] < [filenames ...] > [archive]
cpio –i < [archive]
cpio –p [destination-directory] < [filenames...]

Description
cpio is used to create and extract archives, or copy files from one place to another. No
compression is done natively on these archives; you must employ gzip or bzip2 if you desire
compression.

Frequently used options

-o
Copy-out mode. This mode is used to create an archive.

-i
Copy-in mode. This mode is used to copy files out of an archive.

-p
Copy-pass mode. Don’t create an archive; just copy files from one directory tree to another.

Example 1
Create an archive that contains all the files in the current working directory:

$ ls | cpio –ov > /tmp/archive.cpio

Notice that instead of passing files to archive to cpio on the command line, we had the ls com-
mand create a list of files for us, which we then send to the cpio command via standard input
using the | (vertical bar) character.

cpio

94 | Chapter 6: GNU and Unix Commands (Topic 103)

Example 2
Extract all the files from the archive we just created:

$ cpio –iv < /tmp/archive.cpio

dd

Syntax
dd [options]

Description
dd converts and copies files. It is one of the few commands in the Linux world that can operate
directly on block devices, rather than requiring access through the filesystem layer. This is
especially useful when performing backups of block devices, such as hard drive partitions, CD-
ROMs, or floppy disks.

Frequently used options

-if=file
Read from file instead of standard input.

-of=file
Output to file instead of standard output.

-ibs=n
Read n bytes at a time.

-obs=n
Write n bytes at a time.

-conv=list
Perform the conversions defined in list.

Example 1
Create an image of the compact disc currently in the default CD drive (/dev/cdrom):

$ dd if=/dev/cdrom of=/tmp/cd.img

Example 2
Copy /tmp/file to /tmp/file2, converting all characters to lowercase:

$ dd if=/tmp/file of=/tmp/file2 conv=lcase

file

Syntax
file [options] [file]

file

Chapter 6: GNU and Unix Commands (Topic 103) | 95

GNU/Unix
Com

m
ands

Description
file is designed to determine the kind of file being queried. Because Linux (and other Unix-like
systems) don’t require filename extensions to determine the type of a file, the file command is
useful when you’re unsure what kind of file you’re dealing with. file accomplishes this by per-
forming three sets of tests on the file in question: filesystem tests, magic tests, and language
tests. Filesystem tests involved examining the output of the “stat” system call. Magic tests are
used to check for files with data in particular fixed formats. If neither of these tests results in a
conclusive answer, a language test is performed to determine whether the file is some sort of
text file.

Frequently used options

-f namefile
Read the names of the files to be examined from namefile (one per line) before the argu-
ment list.

-z
Try to look inside compressed files.

Example 1
Determine the file type of the currently running kernel:

$ file /boot/vmlinuz-2.6.27.29-170.2.78.fc10.i686
/boot/vmlinuz-2.6.27.29-170.2.78.fc10.i686: Linux kernel x86 boot executable \
 RO-rootFS, root_
0x902, swap_dev 0x2, Normal VGA

Example 2
Determine the file type of /etc/passwd:

$ file /etc/passwd
/etc/passwd: ASCII text

find

Syntax
find [options] [path...] [expression]

Description
find searches recursively through directory trees for files or directories that match certain
characteristics. find can then either print the file or directory that matches or perform other
operations on the matches.

Frequently used options

-mount
Do not recursively descend through directories on mounted filesystems. This prevents
find from doing a potentially very long search over an NFS-mounted share, for example.

find

96 | Chapter 6: GNU and Unix Commands (Topic 103)

-maxdepth X
Descend at most X levels of directories below the command-line arguments. –maxdepth 0
eliminates all recursion into subdirectories.

Example 1
Find all files in /tmp that end in .c and print them to standard out:

$ find /tmp –name "*.c"

The expression "*.c" means “all files that end in .c”. This is an example of file globbing and is
explained in detail later in this Objective.

Example 2
Find files (and only files) in /tmp older than seven days. Do not recurse into subdirectories
of /tmp:

$ find /tmp -maxdepth 1 -type f -daystart -ctime +7

Example 3
Find files in /usr that have the setuid permission bit set (mode 4000):

$ find /usr -perm -4000

gzip and gunzip

Syntax
gzip [options] [filenames ...]
gunzip [options] [filenames ...]

Description
Compress or uncompress files using Lempel-Ziv coding. gzip is one of the most common com-
pression formats found on Linux systems, although it is starting to be replaced by the more
efficient bzip2. Files compressed with gzip usually have the extension .gz. Command-line op-
tions for gzip are very similar to those for bzip2.

Frequently used options

-d
Decompress a file. gzip -d is the same as gunzip.

-r
Travel the directory structure recursively. If any of the filenames specified on the command
line are directories, gzip will descend into the directory and compress all the files it finds
there (or decompress them in the case of gunzip).

Example 1
Compress the file /etc/largefile. It will be compressed and renamed /etc/largefile.gz:

$ gzip /etc/largefile

gzip and gunzip

Chapter 6: GNU and Unix Commands (Topic 103) | 97

GNU/Unix
Com

m
ands

Example 2
Uncompress /etc/largefile.gz. It will be uncompressed and renamed /etc/largefile:

$ gunzip /etc/largefile.gz

or:

$ gzip -d /etc/largefile.gz

mkdir

Syntax
mkdir [options] directories

Description
Create one or more directories. You must have write permission in the directory where direc
tories are to be created.

Frequently used options

-mmode
Set the access rights in the octal format mode for directories.

-p
Create intervening parent directories if they don’t exist.

Examples
Create a read-only directory named personal:

$ mkdir -m 444 personal

Create a directory tree in your home directory, as indicated with a leading tilde (~), using a
single command:

$ mkdir -p ~/dir1/dir2/dir3

In this case, all three directories are created. This is faster than creating each directory
individually.

On the Exam
Verify your understanding of the tilde (~) shortcut for the home directory, and the
shortcuts . (for the current directory) and .. (for the parent directory).

mv

Syntax
mv [options] source target

mkdir

98 | Chapter 6: GNU and Unix Commands (Topic 103)

Description
Move or rename files and directories. For targets on the same filesystem (partition), moving a
file doesn’t relocate the contents of the file itself. Rather, the directory entry for the target is
updated with the new location. For targets on different filesystems, such a change can’t be
made, so files are copied to the target location and the original sources are deleted.

If a target file or directory does not exist, source is renamed to target. If a target file already
exists, it is overwritten with source. If target is an existing directory, source is moved into that
directory. If source is one or more files and target is a directory, the files are moved into the
directory.

Frequently used options

-f
Force the move even if target exists, suppressing warning messages.

-i
Query interactively before moving files.

rm

Syntax
rm [options] files

Description
Delete one or more files from the filesystem. To remove a file, you must have write permission
in the directory that contains the file, but you do not need write permission on the file itself.
The rm command also removes directories when the -d, -r, or -R option is used.

Frequently used options

-d
Remove directories even if they are not empty. This option is reserved for privileged users.

-f
Force removal of write-protected files without prompting.

-i
Query interactively before removing files.

-r,-R
If the file is a directory, recursively remove the entire directory and all of its contents,
including subdirectories.

rmdir

Syntax
rmdir [option] directories

rmdir

Chapter 6: GNU and Unix Commands (Topic 103) | 99

GNU/Unix
Com

m
ands

Description
Delete directories, which must be empty.

Frequently used option

-p
Remove directories and any intervening parent directories that become empty as a result.
This is useful for removing subdirectory trees.

On the Exam
Remember that recursive remove using rm –R removes directories too, even if
they’re not empty. Beware the dreaded rm –Rf /, which will remove your entire
filesystem!

touch

Syntax
touch [options] files

Description
Change the access and/or modification times of files. This command is used to refresh time-
stamps on files. Doing so may be necessary, for example, to cause a program to be recompiled
using the date-dependent make utility.

Frequently used options

-a
Change only the access time.

-m
Change only the modification time.

-t timestamp
Instead of the current time, use timestamp in the form of [[CC]YY]MMDDhhmm[.ss]. For ex-
ample, the timestamp for January 12, 2001, at 6:45 p.m. is 200101121845.

File-Naming Wildcards (File Globbing)
When working with files on the command line, you’ll often run into situations in
which you need to perform operations on many files at once. For example, if you
are developing a C program, you may want to touch all of your .c files in order to be
sure to recompile them the next time you issue the make utility to build your pro-
gram. There will also be times when you need to move or delete all the files in a
directory or at least a selected group of files. At other times, filenames may be long
or difficult to type, and you’ll want to find an abbreviated alternative to typing the
filenames for each command you issue (see Table 6-5).

To make these operations simpler, all shells on Linux offer file-naming wildcards.

touch

100 | Chapter 6: GNU and Unix Commands (Topic 103)

Wildcards are expanded by the shell, not by commands. When
a command is entered with wildcards included, the shell first
expands all the wildcards (and other types of expansion) and
passes the full result on to the command. This process is invis-
ible to you.

Rather than explicitly specifying every file or typing long filenames, you can use
wildcard characters in place of portions of the filenames, and the shell can usually
do the work for you. For example, the shell expands *.txt to a list of all the files that
end in .txt. File wildcard constructs like this are called file globs, and their use is
awkwardly called globbing. Using file globs to specify multiple files is certainly a
convenience, and in many cases is required to get anything useful accomplished.
Wildcards for shell globbing are listed in Table 6-5.

Table 6-5. Common file-naming wildcards

Wildcard Description

* Commonly thought to “match anything,” it actually will match zero or more char-
acters (which includes “nothing”!). For example, x* matches files or directories x,
xy, xyz, x.txt, xy.txt, xyz.c, and so on.

? Match exactly one character. For example, x? matches files or directories xx, xy,
xz, but not x and not xyz. The specification x?? matches xyz, but not x and xy.

[characters] Match any single character from among characters listed between the brackets.
For example, x[yz] matches xy and xz.

[!characters] Match any single character other than characters listed between the brackets.
For example, x[!yz] matches xa and x1 but does not match xy or xz.

[a-z] Match any single character from among the range of characters listed between the
brackets and indicated by the dash (the dash character is not matched). For example,
x[0-9] matches x0 and x1, but does not match xx. Note that to match both upper-
and lowercase letters (Linux filenames are case-sensitive), you specify
[a-zA-Z]. Using x[a-zA-Z] matches xa and xA.

[!a-z] Match any single character from among the characters not in the range listed
between the brackets.

{frag1,frag2,frag3,...} Create strings frag1, frag2, frag3, etc. For example,
file_{one,two,three} yields the strings file_one, file_two, and
file_three. This is a special operator named brace expansion that can be used
to match filenames but isn’t specifically a file wildcard operator and does not
examine directories for existing files to match. Instead, it will expand any string.

For example, it can be used with echo to yield strings totally unrelated to existing
filenames:

$ echo string_{a,b,c}
string_a string_b string_c

A few examples of the useful things you can do with wildcards follow:

• If you remember part of a filename but not the whole thing, use wildcards with
the portion you remember to help find the file. For example, if you’re working

touch

Chapter 6: GNU and Unix Commands (Topic 103) | 101

GNU/Unix
Com

m
ands

in a directory with a large number of files and you know you’re looking for a
file named for Linux, you may enter a command like this:

$ ls -l *inux*

• When working with groups of related files, wildcards can be used to help sep-
arate the groups. For example, suppose you have a directory full of scripts
you’ve written. Some are Perl scripts, for which you’ve used an extension
of .pl, and some are Python, which have a .py extension. You may wish to sep-
arate them into new, separate directories for the two languages like this:

$ mkdir perl python
$ mv *.pl perl
$ mv *.py python

• Wildcards match directory names as well. Suppose you have a tree of directories
starting with contracting, where you’ve created a directory for each month (that
is, contracting/january, contracting/february, through contracting/december). In
each of these directories are stored invoices, named simply
invoice_custa_01.txt, invoice_custa_02.txt, invoice_custb_01.txt, and so on,
where custa and custb are customer names of some form. To display all of the
invoices, wildcards can be used:

$ ls con*/*/inv*.txt

The con* matches contracting. The second * matches all directories under the
contracting directory (january through december). The last * matches all the
customers and each invoice number for each customer.

See the bash manpages or info page for additional information on how bash handles
expansions and on other expansion forms.

Objective 4: Use Streams, Pipes, and Redirects
Among the many beauties of Linux and Unix systems is the notion that everything
is a file. Things such as disk drives and their partitions, tape drives, terminals, serial
ports, the mouse, and even audio are mapped into the filesystem. This mapping
allows programs to interact with many different devices and files in the same way,
simplifying their interfaces. Each device that uses the file metaphor is given a device
file, which is a special object in the filesystem that provides an interface to the device.
The kernel associates device drivers with various device files, which is how the sys-
tem manages the illusion that devices can be accessed as if they were files. Using a
terminal as an example, a program reading from the terminal’s device file will receive
characters typed at the keyboard. Writing to the terminal causes characters to appear
on the screen. Although it may seem odd to think of your terminal as a file, the
concept provides a unifying simplicity to Linux and Linux programming.

Standard I/O and Default File Descriptors
Standard I/O is a capability of the shell, used with all text-based Linux utilities to
control and direct program input, output, and error information. When a program
is launched, it is automatically provided with three file descriptors. File descriptors

102 | Chapter 6: GNU and Unix Commands (Topic 103)

are regularly used in programming and serve as a “handle” of sorts to another file.
We have mentioned these already in our discussion of text streams and “piping”
together programs on the command line. Standard I/O creates the following file
descriptors:

Standard input (abbreviated stdin)
This file descriptor is a text input stream. By default it is attached to your key-
board. When you type characters into an interactive text program, you are
feeding them to standard input. As you’ve seen, some programs take one or
more filenames as command-line arguments and ignore standard input.
Standard input is also known as file descriptor 0.

Standard output (abbreviated stdout)
This file descriptor is a text output stream for normal program output. By de-
fault it is attached to your terminal (or terminal window). Output generated by
commands is written to standard output for display. Standard output is also
known as file descriptor 1.

Standard error (abbreviated stderr)
This file descriptor is also a text output stream, but it is used exclusively for
errors or other information unrelated to the successful results of your command.
By default, standard error is attached to your terminal just like standard output.
This means that standard output and standard error are commingled in your
display, which can be confusing. You’ll see ways to handle this later in this
section. Standard error is also known as file descriptor 2.

Standard output and standard error are separated because it is often useful to process
normal program output differently from errors.

The standard I/O file descriptors are used in the same way as those created during
program execution to read and write disk files. They enable you to tie commands
together with files and devices, managing command input and output in exactly the
way you desire. The difference is that they are provided to the program by the shell
by default and do not need to be explicitly created.

Pipes
From a program’s point of view there is no difference between reading text data from
a file and reading it from your keyboard. Similarly, writing text to a file and writing
text to a display are equivalent operations. As an extension of this idea, it is also
possible to tie the output of one program to the input of another. This is accom-
plished using a pipe symbol (|) to join two or more commands together, which we
have seen some examples of already in this chapter. For example:

$ grep "01523" order* | less

This command searches through all files whose names begin with order to find lines
containing the word 01523. By creating this pipe, the standard output of grep is sent
to the standard input of less. The mechanics of this operation are handled by the
shell and are invisible to the user. Pipes can be used in a series of many commands.

Objective 4: Use Streams, Pipes, and Redirects | 103

GNU/Unix
Com

m
ands

When more than two commands are put together, the resulting operation is known
as a pipeline or text stream, implying the flow of text from one command to the next.

As you get used to the idea, you’ll find yourself building pipelines naturally to extract
specific information from text data sources. For example, suppose you wish to view
a sorted list of inode numbers from among the files in your current directory. There
are many ways you could achieve this. One way would be to use awk in a pipeline
to extract the inode number from the output of ls, then send it on to the sort com-
mand and finally to a pager for viewing (don’t worry about the syntax or function
of these commands at this point):

$ ls -i * | awk '{print $1}' | sort -nu | less

The pipeline concept in particular is a feature of Linux and Unix that draws on the
fact that your system contains a diverse set of tools for operating on text. Combining
their capabilities can yield quick and easy ways to extract otherwise hard-to-handle
information. This is embodied in the historical “Unix Philosophy”:

• Write programs that do one thing and do it well.

• Write programs to work together.

• Write programs to handle text streams, because that is a universal interface.

Redirection
Each pipe symbol in the previous pipeline example instructs the shell to feed output
from one command into the input of another. This action is a special form of redi-
rection, which allows you to manage the origin of input streams and the destination
of output streams. In the previous example, individual programs are unaware that
their output is being handed off to or from another program because the shell takes
care of the redirection on their behalf.

Redirection can also occur to and from files. For example, rather than sending the
output of an inode list to the pager less, it could easily be sent directly to a file with
the > redirection operator:

$ ls -i * | awk '{print $1}' | sort -nu > in.txt

When you change the last redirection operator, the shell creates an empty file
(in.txt) and opens it for writing, and the standard output of sort places the results in
the file instead of on the screen. Note that, in this example, anything sent to standard
error is still displayed on the screen. In addition, if your specified file, in.txt, already
existed in your current directory, it would be overwritten.

Since the > redirection operator creates files, the >> redirection operator can be used
to append to existing files. For example, you could use the following command to
append a one-line footnote to in.txt:

$ echo "end of list" >> in.txt

Since in.txt already exists, the quote will be appended to the bottom of the existing
file. If the file didn’t exist, the >> operator would create the file and insert the text
“end of list” as its contents.

104 | Chapter 6: GNU and Unix Commands (Topic 103)

It is important to note that when creating files, the output redirection operators are
interpreted by the shell before the commands are executed. This means that any
output files created through redirection are opened first. For this reason you cannot
modify a file in place, like this:

$ grep "stuff" file1 > file1

If file1 contains something of importance, this command would be a disaster because
an empty file1 would overwrite the original. The grep command would be last to
execute, resulting in a complete data loss from the original file1 file because the file
that replaced it was empty. To avoid this problem, simply use an intermediate file
and then rename it:

$ grep "stuff" file1 > file2
$ mv file2 file1

Standard input can also be redirected, using the redirection operator <. Using a
source other than the keyboard for a program’s input may seem odd at first, but
since text programs don’t care about where their standard input streams originate,
you can easily redirect input. For example, the following command will send a mail
message with the contents of the file in.txt to user jdean:

$ mail -s "inode list" jdean < in.txt

Normally, the mail program prompts the user for input at the terminal. However,
with standard input redirected from the file in.txt, no user input is needed and the
command executes silently. Table 6-6 lists the common standard I/O redirections
for the bash shell, specified in the LPI Objectives.

Table 6-6. Standard I/O redirections for the bash shell

Redirection function Syntax for bash

Send stdout to file. $ cmd > file
$ cmd 1> file

Send stderr to file. $ cmd 2> file

Send both stdout and stderr to file. $ cmd > file 2>&1

Send stdout to file1 and stderr to file2. $ cmd > file1 2> file2

Receive stdin from file. $ cmd < file

Append stdout to file. $ cmd >> file
$ cmd 1>> file

Append stderr to file. $ cmd 2>> file

Append both stdout and stderr to file. $ cmd >> file 2>&1

Pipe stdout from cmd1 to cmd2. $ cmd1 | cmd2

Pipe stdout and stderr from cmd1 to cmd2. $ cmd1 2>&1 | cmd2

Objective 4: Use Streams, Pipes, and Redirects | 105

GNU/Unix
Com

m
ands

On the Exam
Be prepared to demonstrate the difference between filenames and command
names in commands using redirection operators. Also, check the syntax on com-
mands in redirection questions to be sure about which command or file is a data
source and which is a destination.

Using the tee Command
Sometimes you’ll want to run a program and send its output to a file while at the
same time viewing the output on the screen. The tee utility is helpful in this situation.

tee

Syntax
tee [options] files

Description
Read from standard input and write both to one or more files and to standard output (anal-
ogous to a tee junction in a pipe).

Option

-a
Append to files rather than overwriting them.

Example
Suppose you’re running a pipeline of commands cmd1, cmd2, and cmd3:

$ cmd1 | cmd2 | cmd3 > file1

This sequence puts the ultimate output of the pipeline into file1. However, you may also be
interested in the intermediate result of cmd1. To create a new file_cmd1 containing those results,
use tee:

$ cmd1 | tee file_cmd1 | cmd2 | cmd3 > file1

The results in file1 will be the same as in the original example, and the intermediate results of
cmd1 will be placed in file_cmd1.

The xargs Command
Sometimes you need to pass a list of items to a command that is longer than your
shell can handle. In these situations, the xargs command can be used to break down
the list into smaller sublists.

tee

106 | Chapter 6: GNU and Unix Commands (Topic 103)

xargs

Syntax
xargs [options] [command] [initial-arguments]

Description
Execute command followed by its optional initial-arguments and append additional arguments
found on standard input. Typically, the additional arguments are filenames in quantities too
large for a single command line. xargs runs command multiple times to exhaust all arguments on
standard input.

Frequently used options

-n maxargs
Limit the number of additional arguments to maxargs for each invocation of command.

-p
Interactive mode. Prompt the user for each execution of command.

Example
Use grep to search a long list of files, one by one, for the word “linux”:

$ find / -type f | xargs -n 1 grep -H linux

find searches for normal files (-type f) starting at the root directory. xargs executes grep once for
each of them due to the -n 1 option. grep will print the matching line preceded by the filename
where the match occurred (due to the -H option).

Objective 5: Create, Monitor, and Kill Processes
This Objective looks at the management of processes. Just as file management is a
fundamental system administrator’s function, the management and control of pro-
cesses is also essential for smooth system operation. In most cases, processes will
live, execute, and die without intervention from the user because they are automat-
ically managed by the kernel. However, there are times when a process will die for
some unknown reason and need to be restarted. Or a process may “run wild” and
consume system resources, requiring that it be terminated. You will also need to
instruct running processes to perform operations, such as rereading a configuration
file.

Processes
Every program, whether it’s a command, application, or script, that runs on your
system is a process. Your shell is a process, and every command you execute from
the shell starts one or more processes of its own (referred to as child processes).
Attributes and concepts associated with these processes include:

Lifetime
A process lifetime is defined by the length of time it takes to execute (while it
“lives”). Commands with a short lifetime such as ls will execute for a very short

Objective 5: Create, Monitor, and Kill Processes | 107

GNU/Unix
Com

m
ands

time, generate results, and terminate when complete. User programs such as
web browsers have a longer lifetime, running for unlimited periods of time until
terminated manually. Long-lifetime processes include server daemons that run
continuously from system boot to shutdown. When a process terminates, it is
said to die (which is why the program used to manually signal a process to stop
execution is called kill; succinct, though admittedly morbid).

Process ID (PID)
Every process has a number assigned to it when it starts. PIDs are integer num-
bers unique among all running processes.

User ID (UID) and Group ID (GID)
Processes must have associated privileges, and a process’s UID and GID are
associated with the user who started the process. This limits the process’s access
to objects in the filesystem.

Parent process
The first process started by the kernel at system start time is a program called
init. This process has PID 1 and is the ultimate parent of all other processes on
the system. Your shell is a descendant of init and the parent process to com-
mands started by the shell, which are its child processes, or subprocesses.

Parent process ID (PPID)
This is the PID of the process that created the process in question.

Environment
Each process holds a list of variables and their associated values. Collectively,
this list is known as the environment of the process, and the variables are called
environment variables. Child processes inherit their environment settings from
the parent process unless an alternative environment is specified when the pro-
gram is executed.

Current working directory
The default directory associated with each process. The process will read and
write files in this directory unless they are explicitly specified to be elsewhere
in the filesystem.

On the Exam
The parent/child relationship of the processes on a Linux system is important. Be
sure to understand how these relationships work and how to view them. Note that
the init process always has PID 1 and is the ultimate ancestor of all system processes
(hence the nickname “mother of all processes”). Also remember the fact that if a
parent process is killed, all its children (subprocesses) die as well.

Process Monitoring
At any time, there could be tens or even hundreds of processes running together on
your Linux system. Monitoring these processes is done using three convenient util-
ities: ps, pstree, and top.

108 | Chapter 6: GNU and Unix Commands (Topic 103)

ps

Syntax
ps [options]

Description
This command generates a one-time snapshot of the current processes on standard output.

Frequently used options

-a
Show processes that are owned by other users and attached to a terminal. Normally, only
the current user’s processes are shown.

-f
“Full-format” listing. This option prints command arguments in addition to the command
itself.

-l
Long format, which includes priority, parent PID, and other information.

-u
User format, which includes usernames and the start time of processes.

-w
Wide output format, used to eliminate the default output line truncation. Specify it twice
(-ww) for unlimited width.

-x
Include processes without controlling terminals. Often needed to see daemon processes
and others not started from a terminal session.

-C cmd
Display instances of command name cmd.

-U user
Display processes owned by username user.

Examples
Simply entering the ps command with no options will yield a brief list of processes owned by
you and attached to your terminal:

$ ps

Use the -a, -u, and -x options to include processes owned by others and not attached to terminals
as well as to display them in the “user” mode. The command is valid with or without the dash:

$ ps -aux
$ ps aux

In this case, the dash is optional. However, certain ps options require the dash. (See the manpage
for details.)

If you are interested in finding process information on a particular command, use the -C option.
This command displays all web server processes:

$ ps u -C httpd

ps

Chapter 6: GNU and Unix Commands (Topic 103) | 109

GNU/Unix
Com

m
ands

You’ll note that the -C option requires the dash, but the u option won’t work with it if a dash
is included. This confusion exists because the ps command as implemented on Linux under-
stands options in three differing forms:

Unix98 options
These may be grouped and must be preceded by a dash.

BSD options
These may be grouped and must not be used with a dash.

GNU long options
These options are preceded by two dashes.

The Linux ps tries to be compatible with ps from various other
systems. How it interprets various command-line options,
which determines how compatible it is with other versions of
ps, can be controlled by setting I_WANT_A_BROKEN_PS, PS_PERSON
ALITY, and various other environment variables. See the ps man-
page for details.

All of these option types may be freely intermixed. Instead of the -C option, you may wish to
use ps with other options that you usually use and pipe the output to grep, searching for process
names, PIDs, or anything else you know about the process:

$ ps aux | grep httpd

In this case, the result would be the same list of httpd servers, as well as the grep command itself.

pstree

Syntax
pstree [options] [pid|user]

Description
This command displays a hierarchical list of processes in a tree format. pstree is very handy for
understanding how parent/child process relationships are set up.

If the PID is specified, the displayed tree is rooted at that process. Otherwise, it is rooted at the
init process, which has PID 1. If user (a valid username) is specified, trees for all processes owned
by user are shown. The tree is represented using characters that appear as lines, such as | for
vertical lines and + for intersections (VT100 line-drawing characters, displayed as solid lines by
most terminals, are optional). The output looks similar to this:

httpd-+-httpd
 |-httpd
 |-httpd
 |-httpd
 '-httpd

By default, visually identical branches of the tree are merged to reduce output. Merged lines are
preceded by a count indicating the actual number of similar processes. The preceding example
is normally displayed on a single line:

pstree

110 | Chapter 6: GNU and Unix Commands (Topic 103)

httpd---5*[httpd]

This behavior can be turned off with the -c option.

Frequently used options

-a
Display command-line arguments used to launch processes.

-c
Disable the compaction of identical subtrees.

-G
Use the VT100 line-drawing characters instead of plain characters to display the tree. This
yields a much more pleasing display but may not be appropriate for printing or paging
programs.

-h
Highlight the ancestry of the current process (usually the shell). The terminal must support
highlighting for this option to be meaningful.

-n
The default sort order for processes with the same parent is alphanumerically by name.
This option changes this behavior to a numeric sort by PID.

-p
Include PIDs in the output.

Example
Display a process tree including PIDs:

pstree -p
init(1)-+-atd(468)
 |-bdflush(5)
 |-crond(454)
 |-httpd(440)-+-httpd(450)
 | |-httpd(451)
 | |-httpd(452)
 | |-httpd(453)
 | |-httpd(455)
 | |-httpd(456)
 | |-httpd(457)
 | '-httpd(458)
 |-keventd(2)
 |-kjournald(7)
 |-klogd(335)
 |-ksoftirqd_CPU0(3)
 |-kswapd(4)
 |-kupdated(6)
 |-login(475)---bash(478)---pstree(518)
 |-sendmail(420)
 |-sshd(385)
 |-syslogd(330)
 '-xinetd(402)

pstree

Chapter 6: GNU and Unix Commands (Topic 103) | 111

GNU/Unix
Com

m
ands

top

Syntax
top [options]

Description
The top command offers output similar to ps, but in a continuously updated display. This is
useful for situations in which you need to watch the status of one or more processes or to see
how they are using your system.

In addition, a header of useful uptime, load, CPU status, and memory information is displayed.
By default, the process status output is generated with the most CPU-intensive processes at the
top of the listing (and is named for the “top” processes). To format the screen, top must un-
derstand how to control the terminal display. The type of terminal (or terminal window) in use
is stored in the environment variable TERM. If this variable is not set or contains an unknown
terminal type, top may not execute.

Popular command-line options
Dashes are optional in top options:

-b
Run in batch mode. This is useful for sending output from top to other programs or to a
file. It executes the number of iterations specified with the -n option and terminates. This
option is also useful if top cannot display on the terminal type you are using.

-d delay
Specify the delay in seconds between screen updates. The default is five seconds.

-i
Ignore idle processes, listing only the “interesting” ones taking system resources.

-n num
Display num iterations and then exit, instead of running indefinitely.

-q
Run with no delay. If the user is the superuser, run with highest possible priority. This
option causes top to update continuously and will probably consume any idle time your
CPU had. Running top -q as superuser will seriously affect system performance and is not
recommended.

-s
Run in secure mode. Some of top’s interactive commands can be dangerous if running as
the superuser. This option disables them.

Frequently used interactive options
Once top is running interactively, it can be given a number of commands via the keyboard to
change its behavior. These commands are single-key commands, some of which cause top to
prompt for input:

spacebar
Refresh the screen.

h
Generate a help screen.

top

112 | Chapter 6: GNU and Unix Commands (Topic 103)

k
Kill a process. You will be prompted for the PID of the process and the signal to send it.
(The default signal is 15, SIGTERM.) See “Terminating Processes” on page 117.

n
Change the number of processes to show. You will be prompted to enter an integer num-
ber. The default is 0, which indicates that the screen should be filled.

q
Quit the program.

r
Change the priority of a process (renice). You will be prompted for the PID of the process
and the value to nice it to (see nice and renice in “Objective 6: Modify Process Execution
Priorities” on page 120). Entering a positive value causes a process to lose priority. If the
superuser is running top, a negative value may be entered, causing a process to get a higher
than normal priority. This command is not available in secure mode.

s
Change the delay in seconds between updates. You will be prompted for the delay value,
which may include fractions of seconds (e.g., 0.5).

Example 1
Simply executing top without options gives a full status display updated every five seconds:

$ top

Use the q command to quit.

Example 2
To run top with a faster refresh rate, use the interval option, specified here with a one-second
refresh:

$ top -d 1

Example 3
You may wish to use top to log its output to a file. Use the -b (batch) option for this purpose.
In this batch example, the -i option eliminates idle processes, the -n option, with its argument,
indicates five iterations, and the -d option indicates a one-second interval. Results will be re-
directed to file1. This command will take five seconds to execute and does not use the optional
dashes:

$ top –bi -n 5 -d 1 > file1

The single-key interactive commands can be used when top is running interactively. For exam-
ple, if you type the h command, top displays a help screen. If you enter the n command, top
prompts you for the number of lines you wish to display.

Using top to change the nice (priority modifier) value for a process is discussed in “Objective 6:
Modify Process Execution Priorities” on page 120.

top

Chapter 6: GNU and Unix Commands (Topic 103) | 113

GNU/Unix
Com

m
ands

free

Syntax
free [options]

Description
Display amount of free and used memory in the system.

Frequently used options

-b
Show memory usage in bytes.

-k
Show memory usage in kilobytes.

-m
Show memory usage in megabytes.

-t
Display a line showing totals.

-s X
Continuous operation at X second intervals.

Example
Display current memory usage in megabytes and display a total line:

$ free –tm
 total used free shared buffers cached
Mem: 2023 1874 149 0 77 1089
-/+ buffers/cache: 707 1316
Swap: 4031 351 3680
Total: 6055 2225 3830

This tells me that I have 2,023 megabytes of system memory (2 gigabytes) and 4,031 megabytes
(about 4 gigabytes) of swap space. I’m currently using 1,874 megabytes of memory, leaving 149
free.

uptime

Syntax
uptime

Description
uptime gives a one-line display of the following information: the current time, how long the
system has been running, how many users are currently logged on, and the system load averages
for the past 1, 5, and 15 minutes.

free

114 | Chapter 6: GNU and Unix Commands (Topic 103)

Examples
$ uptime
13:17:57 up 214 days, 2:52, 4 users, load average: 0.09, 0.03, 0.01

Load average on a Linux system is defined as the number of blocking processes in the run queue
averaged over a certain time period. A blocking process is a process that is waiting on a resource
to continue, usually the CPU, disk I/O, or network. Many processes waiting in the run queue
will drive up the load average of your system. It’s not uncommon to see a load average over 1;
that just means for the designated time interval (1, 5 or 15 minutes) there was an average of at
least one process waiting on resources in the run queue. This is usually indicative of a busy
system and might not necessarily mean anything is amiss. However, high load averages will
negatively affect system performance, so it’s always a good idea to be aware of what is causing
them. Here is the uptime output of a relatively busy web server:

$ uptime
1:20pm up 3 days 15:49, 1 user, load average: 1.47, 1.10, 0.83

Signaling Active Processes
Each process running on your system listens for signals, simple messages sent to the
process either by the kernel or by a user. The messages are sent through inter-process
communication. They are single-valued, in that they don’t contain strings or
command-like constructs. Instead, signals are numeric integer messages, predefined
and known by processes. Most have an implied action for the process to take. When
a process receives a signal, it can (or may be forced to) take action.

For example, if you are executing a program from the command line that appears
to hang, you may elect to type Ctrl-C to abort the program. This action actually
sends an SIGINT (interrupt signal) to the process, telling it to stop running.

There are more than 32 signals defined for normal process use in Linux. Each signal
has a name and a number (the number is sent to the process; the name is only for
our convenience). Many signals are used by the kernel, and some are useful for users.
Table 6-7 lists popular signals for interactive use.

Table 6-7. Frequently used interactive signals

Signal
namea

Number Meaning and use

HUP 1 Hang up. This signal is sent automatically when you log out or disconnect a modem. It is also
used by many daemons to cause the configuration file to be reread without stopping the
daemon process. Useful for things like an httpd server that normally reads its configuration file
only when the process is started. A SIGHUP signal will force it to reread the configuration file
without the downtime of restarting the process.

INT 2 Interrupt; stop running. This signal is sent when you type Ctrl-C.

KILL 9 Kill; stop unconditionally and immediately. Sending this signal is a drastic measure, as it cannot
be ignored by the process. This is the “emergency kill” signal.

TERM 15 Terminate, nicely if possible. This signal is used to ask a process to exit gracefully, after its file
handles are closed and its current processing is complete.

TSTP 20 Stop executing, ready to continue. This signal is sent when you type Ctrl-Z. (See the later section
“Shell Job Control” for more information.)

uptime

Chapter 6: GNU and Unix Commands (Topic 103) | 115

GNU/Unix
Com

m
ands

Signal
namea

Number Meaning and use

CONT 18 Continue execution. This signal is sent to start a process stopped by SIGTSTP or SIGSTOP. (The
shell sends this signal when you use the fg or bg commands after stopping a process with
Ctrl-Z.)

a Signal names often will be specified with a SIG prefix. That is, signal HUP is the same as signal SIGHUP.

As you can see from Table 6-7, some signals are invoked by pressing well-known
key combinations such as Ctrl-C and Ctrl-Z. You can also use the kill command to
send any message to a running process. The kill command is implemented both as
a shell built-in command and as a standalone binary command. For a complete list
of signals that processes can be sent, refer to the file /usr/include/bits/signum.h on
your Linux install, which normally is installed with the glibc-headers package.

kill

Syntax
kill [-s sigspec | -sigspec] [pids]
kill -l [signum]

Description
In the first form, kill is used with an optional sigspec. This is a signal value, specified as either
an integer or the signal name (such as SIGHUP, or simply HUP). The sigspec is case-insensitive
but is usually specified with uppercase letters. The bash built-in kill is case-insensitive, both
when using the -ssigspec and the -sigspec forms, but the standalone kill is only case-insensitive
in the -ssigspec form. For this reason, it is best to use uppercase signal names. You may use
-ssigspec or simply -sigspec to make up the signal value or name. If a sigspec is not given, then
SIGTERM (signal 15, “exit gracefully”) is assumed. The sigspec is followed by one or more
PIDS to which the signal is to be sent. In the second form with the -l option, kill lists the valid
signal names. If signum (an integer) is present, only the signal name for that number will be
displayed.

Examples
This command displays the signal name SIGTERM, the name of signal 15, and the default when
kill is used to signal processes:

$ kill -l 15
TERM

All of the following commands will send SIGTERM to the processes with PIDs 1000 and 1001:

$ kill 1000 1001
$ kill -15 1000 1001
$ kill -SIGTERM 1000 1001
$ kill -sigterm 1000 1001
$ kill -TERM 1000 1001
$ kill -s 15 1000 1001
$ kill -s SIGTERM 1000 1001

If those two processes are playing nicely on your system, they’ll comply with the SIGTERM
signal and terminate when they’re ready (after they clean up whatever they’re doing). Not all

kill

116 | Chapter 6: GNU and Unix Commands (Topic 103)

processes will comply, however. A process may be hung in such a way that it cannot respond,
or it may have signal handling code written to trap the signal you’re trying to send. To force a
process to die, use the strongest kill:

$ kill -9 1000 1001s
$ kill -KILL 1000 1001

These equivalent commands send the KILL signal to the process, which the process cannot
ignore. The process will terminate immediately without closing files or performing any other
cleanup. Because this may leave the program’s data in an inconsistent state, using the KILL
signal should be a last resort. When a process is blocked waiting for I/O, such as trying to write
to an unavailable NFS server or waiting for a tape device to complete rewinding, the KILL signal
may not work. See “Terminating Processes” below.

The httpd daemon will respond to the HUP signal by rereading its configuration files. If you’ve
made changes and want httpd to reconfigure itself, send it the HUP signal:

$ kill -HUP 'cat /var/run/httpd.pid'

Many other daemons respond to SIGHUP this way.

The back quotes are replaced by the shell with the contents of the file httpd.pid, which httpd
creates when it starts.

Other programs allow you to send signals to processes without indicating their PID. killall will
send a signal to all processes that match a given name, and killproc will send a signal to all
process that match a full pathname.

On the Exam
Note that kill is used for sending all kinds of signals, not just termination signals.
Also, be aware of the difference between the PID you intend to kill and the signal
you wish to send it. Since they’re both integers, they can sometimes be confused.

Terminating Processes
Occasionally, you’ll find a system showing symptoms of high CPU load or one that
runs out of memory for no obvious reason. This often means an application has gone
out of control on your system. You can use ps or top to identify processes that may
be having a problem. Once you know the PID for the process, you can use the kill
command to stop the process nicely with SIGTERM (kill -15 PID), escalating the
signal to higher strengths if necessary until the process terminates.

Occasionally you may see a process displayed by ps or top that
is listed as a zombie. These are processes that are stuck while
trying to terminate and are appropriately said to be in the zombie
state. Just as in the cult classic film Night of the Living Dead, you
can’t kill zombies, because they’re already dead!

If you have a recurring problem with zombies, there may be a
bug in your system software or in an application.

kill

Chapter 6: GNU and Unix Commands (Topic 103) | 117

GNU/Unix
Com

m
ands

Killing a process will also kill all of its child processes. For example, killing a shell
will kill all the processes initiated from that shell, including other shells.

Shell Job Control
Linux and most modern Unix systems offer job control, which is the ability of your
shell (with support of the kernel) to stop and restart executing commands, as well
as place them in the background where they can be executed. A program is said to
be in the foreground when it is attached to your terminal. When executing in the
background, you have no input to the process other than sending it signals. When
a process is put in the background, you create a job. Each job is assigned a job
number, starting at 1 and numbering sequentially.

The basic reason to create a background process is to keep your shell session free.
There are many instances when a long-running program will never produce a result
from standard output or standard error, and your shell will simply sit idle waiting
for the program to finish. Noninteractive programs can be placed in the back-
ground by adding a & character to the command. For example, if you start firefox
from the command line, you don’t want the shell to sit and wait for it to terminate.
The shell will respond by starting the web browser in the background and will give
you a new command prompt. It will also issue the job number, denoted in square
brackets, along with the PID. For example:

$ /usr/bin/firefox &
[1] 1748

Here, firefox is started as a background process. Firefox is assigned to job 1 (as
denoted by [1]), and is assigned PID 1748. If you start a program and forget the &
character, you can still put it in the background by first typing Ctrl-Z to stop it:

^Z
[1]+ Stopped firefox

Then, issue the bg command to restart the job in the background:

$ bg
[1]+ /usr/bin/firefox &

When you exit from a shell with jobs in the background, those processes may die.
The utility nohup can be used to protect the background processes from the hangup
signal (SIGHUP) that it might otherwise receive when the shell dies. This can be
used to simulate the detached behavior of a system daemon.

Putting interactive programs in the background can be quite useful. Suppose you’re
logged into a remote Linux system, running Emacs in text mode. Rather than exit
from the editor when you need to drop back to the shell, you can simply press
Ctrl-Z. This stops Emacs, puts it in the background, and returns you to a command
prompt. When you are finished, you resume your Emacs session with the fg com-
mand, which puts your stopped job back into the foreground.

Background jobs and their status can be listed by issuing the jobs command. Stopped
jobs can be brought to the foreground with the fg command and optionally placed
into the background with the Ctrl-Z and bg sequence.

kill

118 | Chapter 6: GNU and Unix Commands (Topic 103)

bg

Syntax
bg [jobspec]

Description
Place jobspec in the background, as if it had been started with &. If jobspec is not present, then
the shell’s notion of the current job is used, as indicated by the plus sign (+) in output from the
jobs command. Using this command on a job that is stopped will allow it to run in the
background.

fg

Syntax
fg [jobspec]

Description
This command places the specified job in the foreground, making it the current job. If job
spec is not present, the shell’s notion of the current job is used.

jobs

Syntax
jobs [options] [jobspecs]

Description
List the active jobs. The optional jobspecs argument restricts output to information about those
jobs.

Frequently used option

-l
Also list PIDs.

nohup

Syntax
nohup [options] [command] [args...]

Description
Run a command immune to hangups, with output to a non-TTY terminal.

nohup

Chapter 6: GNU and Unix Commands (Topic 103) | 119

GNU/Unix
Com

m
ands

Example 1
Run the command /opt/bin/myscript.sh in the background, with standard output and standard
error redirected to nohup.out:

$ nohup /opt/bin/myscript.sh &
[1] 12611

On the Exam
Be sure to know how to display background jobs and how to switch among them.

Objective 6: Modify Process Execution Priorities
Part of Linux’s flexibility is to let users and administrators prioritize process execu-
tion. This feature is handy when you have a high-load machine and want to make
sure special processes (like yours!) get more rights to use system resources than
others. It also is useful if you have a process that’s gone haywire and you want to
debug the problem prior to killing it. On the flip side, you can bury nonessential
processes, giving them the lowest priority so they don’t ever conflict with other
processes.

Generally, on a day-to-day basis, you don’t need to worry about execution priority,
because the kernel handles it automatically. Each process’s priority level is con-
stantly and dynamically raised and lowered by the kernel according to a number of
parameters, such as how much system time it has already consumed and its status
(perhaps waiting for I/O; such processes are favored by the kernel). Linux gives you
the ability to bias the kernel’s priority algorithm, favoring certain processes over
others.

The priority of a process can be determined by examining the PRI column in the
results produced from issuing either the top or ps -l commands. The values displayed
are relative; the higher the priority number, the more CPU time the kernel offers to
the process. The kernel does this by managing a queue of processes. Those with high
priority are given more time, and those with low priority are given less time. On a
heavily loaded system, a process with a very low priority may appear stalled.

nice
One of the parameters used by the kernel to assign process priority is supplied by
the user and is called a nice number. The nice command* is used to assign a priority
number to the process. It is so named because it normally causes programs to execute
with lower priority levels than their default. Thus, the process is being “nice” to
other processes on the system by yielding CPU time. With this scheme, more “nice-
ness” implies a lower priority, and less niceness implies a higher priority.

By default, user processes are created with a nice number of zero. Positive numbers
lower the priority relative to other processes, and negative numbers raise it. For

* Some shells, not including bash, have a built-in nice command.

120 | Chapter 6: GNU and Unix Commands (Topic 103)

example, if you have a long-running utility and don’t want to impact interactive
performance, a positive nice number will lower the job’s priority and improve in-
teractive performance.

Nice numbers range from –20 to +19. Any user can start a process with a positive
nice number, but only the superuser (root) can lower a process’s nice number and
thus raise its priority. Remember, the lower the nice number, the higher the priority
to the CPU.

nice

Syntax
nice [-n adjustment] [command]
nice [-adjustment] [command]

Description
The nice command alters another process’s nice number at start time. For normal users, adjust
ment is an integer from 1 to 19. If you’re the superuser, the adjustment range is from –20 to 19.
If an adjustment number is not specified, the process’s nice number defaults to 10. The
command consists of any command that you might enter on the command line, including all
options, arguments, redirections, and the background character &.

If both adjustment and command are omitted, nice displays the current scheduling priority, which
is inherited.

Example 1
The following command starts a program in the background with reduced priority, using the
default nice number of 10:

$ nice somecmd -opt1 -opt2 arg1 arg2 &

Example 2
As superuser, you can start programs with elevated priority. These equivalent commands start
the vi editor with a higher priority, which may be necessary for administrative purposes if the
system is exceptionally slow:

nice --10 vi /etc/hosts.deny
nice -n -10 vi /etc/hosts.deny

Note the double dash (--10) in the first form. The first dash indicates that an option follows,
whereas the second dash indicates a negative number.

Be careful when using nice on interactive programs such as editors, word processors, or brows-
ers. Assigning a program a positive nice number will most likely result in sluggish performance.
Remember, the higher the positive number, the lower the resulting priority level.

For that reason, you should try not to assign positive nice numbers to foreground jobs on your
terminal. If the system gets busy, your terminal could hang awaiting CPU time, which has been
sacrificed by nice.

nice

Chapter 6: GNU and Unix Commands (Topic 103) | 121

GNU/Unix
Com

m
ands

Changing nice numbers on running processes
The nice command works to change the nice number for new processes only at the time that
they’re started. To modify a running program, use the renice command.

renice

Syntax
renice [+|-]nicenumber [option] targets

Description
Alter the nicenumber to set the scheduling priority of one or more running target processes. By
default, renice assumes that the targets are numeric PIDs. One or more options may also be
used to interpret targets as processes owned by specific users.

Frequently used options

-u
Interpret targets as usernames, affecting all processes owned by those users.

-p
Interpret targets as PIDs (the default).

Examples
This command will lower the priority of the process with PID 501 by increasing its nice number
to the maximum:

$ renice 20 501

The following command can be used to increase the priority of all of user adamh’s processes as
well as the process with PID 501:

renice -10 -u adamh -p 501

In this command, -10 indicates a nice value of negative 10, thus giving PID 501 a higher priority
on the system. A dash isn’t used for the nice value, because the dash could be confused for an
option, such as -u.

On the Exam
Be sure to know the range and meaning of nice numbers and how to change them
for new and existing processes. Also note that nice and renice specify their numbers
differently. With nice, a leading dash can indicate a nice number (e.g., -10), in-
cluding a negative one with a second dash (e.g., --10). On the other hand, renice
does not need the dash.

You can renice processes interactively using top’s text interface by using the single-keystroke
r command. You will be prompted for the PID of the process whose nice number you wish to
change and for the new nice number. If you are the superuser, you can enter negative values.
The new nice number will be displayed by top in the column labeled NI for the process you
specify.

renice

122 | Chapter 6: GNU and Unix Commands (Topic 103)

Objective 7: Search Text Files Using Regular Expressions
Linux offers many tools for system administrators to use for processing text. Many,
such as sed, awk, and perl, are capable of automatically editing multiple files, pro-
viding you with a wide range of text-processing capability. To harness that capabil-
ity, you need to be able to define and delineate specific text segments from within
files, text streams, and string variables. Once the text you’re after is identified, you
can use one of these tools or languages to do useful things to it.

These tools and others understand a loosely defined pattern language. The language
and the patterns themselves are collectively called regular expressions (often abbre-
viated just regexp or regex). Regular expressions are similar in concept to file globs,
but many more special characters exist for regular expressions, extending the utility
and capability of tools that understand them.

Two tools that are important for the LPIC Level 1 exams and that make use of regular
expressions are grep and sed. These tools are useful for text searches. There are many
other tools that make use of regular expressions, including the awk, Perl, and Python
languages and other utilities, but you don’t need to be concerned with them for the
purpose of the LPIC Level 1 exams.

Regular expressions are the topic of entire books, such as Mastering Regular Expres
sions (O’Reilly). Exam 101 requires the use of simple regular expressions and related
tools, specifically to perform searches from text sources. This section covers only
the basics of regular expressions, but it goes without saying that their power warrants
a full understanding. Digging deeper into the regular expression world is highly
recommended in your quest to become an accomplished Linux system administra-
tor.

Regular Expression Syntax
It would not be unreasonable to assume that some specification defines how regular
expressions are constructed. Unfortunately, there isn’t one. Regular expressions
have been incorporated as a feature in a number of tools over the years, with varying
degrees of consistency and completeness. The result is a cart-before-the-horse sce-
nario, in which utilities and languages have defined their own flavor of regular ex-
pression syntax, each with its own extensions and idiosyncrasies. Formally defining
the regular expression syntax came later, as did efforts to make it more consistent.
Regular expressions are defined by arranging strings of text, or patterns. Those pat-
terns are composed of two types of characters, literals (plain text or literal text) and
metacharacters.

Like the special file globbing characters, regular expression metacharacters take on
a special meaning in the context of the tool in which they’re used. There are a few
metacharacters that are generally thought of to be among the “extended set” of
metacharacters, specifically those introduced into egrep after grep was created.

The egrep command on Linux systems is simply a wrapper that runs grep -E, in-
forming grep to use its extended regular expression capabilities instead of the basic
ones. Examples of metacharacters include the ̂ symbol, which means “the beginning

Objective 7: Search Text Files Using Regular Expressions | 123

GNU/Unix
Com

m
ands

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

of a line,” and the $ symbol, which means “the end of a line.” A complete listing of
metacharacters follows in Tables 6-8 through 6-11.

The backslash character (\) turns off (escapes) the special mean-
ing of the character that follows, turning metacharacters into
literals. For nonmetacharacters, it often turns on some special
meaning.

Table 6-8. Regular expression position anchors

Regular
expression

Description

^ Match at the beginning of a line. This interpretation makes sense only when the ^ character is at the
lefthand side of the regex.

$ Match at the end of a line. This interpretation makes sense only when the $ character is at the righthand
side of the regex.

\<\> Match word boundaries. Word boundaries are defined as whitespace, the start of line, the end of line,
or punctuation marks. The backslashes are required and enable this interpretation of < and >.

Table 6-9. Regular expression POSIX character classes

Character class Description

[:alnum:] Alphanumeric [a-zA-Z0-9]

[:alpha:] Alphabetic [a-zA-Z]

[:blank:] Spaces or Tabs

[:cntrl:] Control characters

[:digit:] Numeric digits [0-9]

[:graph:] Any visible characters

[:lower:] Lowercase [a-z]

[:print:] Noncontrol characters

[:punct:] Punctuation characters

[:space:] Whitespace

[:upper:] Uppercase [A-Z]

[:xdigit:] Hex digits [0-9a-fA-F]

Table 6-10. Regular expression character sets

Regular expression Description

[abc][a-z] Single-character groups and ranges. In the first form, match any single character from among
the enclosed characters a, b, or c. In the second form, match any single character from among
the range of characters bounded by a and z (POSIX character classes can also be used, so [a-
z] can be replaced with [[:lower:]]). The brackets are for grouping only and are not
matched themselves.

124 | Chapter 6: GNU and Unix Commands (Topic 103)

Regular expression Description

[^abc][^a-z] Inverse match. Match any single character not among the enclosed characters a, b, and c or in
the range a-z. Be careful not to confuse this inversion with the anchor character ^, described
earlier.

. Match any single character except a newline.

Table 6-11. Regular expression modifiers

Basic regular
expression

Extended
regular expres-
sion (egrep)

Description

* * Match an unknown number (zero or more) of the single character (or single-
character regex) that precedes it.

\? ? Match zero or one instance of the preceding regex.

\+ + Match one or more instances of the preceding regex.

\{n,m\} {n,m} Match a range of occurrences of the single character or regex that precedes
this construct. \{n\} matches n occurrences, \{n,\} matches at least n
occurrences, and \{n,m\} matches any number of occurrences from n to m,
inclusively.

\| | Alternation. Match either the regex specified before or after the vertical bar.

\(regex\) (regex) Grouping. Matches regex, but it can be modified as a whole and used in back-
references. (\1 expands to the contents of the first \(\), and so on, up to \9.)

It is often helpful to consider regular expressions as their own language, where literal
text acts as words and phrases. The “grammar” of the language is defined by the use
of metacharacters. The two are combined according to specific rules (which, as
mentioned earlier, may differ slightly among various tools) to communicate ideas
and get real work done. When you construct regular expressions, you use meta-
characters and literals to specify three basic ideas about your input text:

Position anchors
A position anchor is used to specify the position of one or more character sets
in relation to the entire line of text (such as the beginning of a line).

Character sets
A character set matches text. It could be a series of literals, metacharacters that
match individual or multiple characters, or combinations of these.

Quantity modifiers
Quantity modifiers follow a character set and indicate the number of times the
set should be repeated.

Using grep
A long time ago, as the idea of regular expressions was catching on, the line editor
ed contained a command to display lines of a file being edited that matched a given
regular expression. The command is:

g/regular expression/p

Objective 7: Search Text Files Using Regular Expressions | 125

GNU/Unix
Com

m
ands

That is, “on a global basis, print the current line when a match for regular expres
sion is found,” or more simply, “global regular expression print.” This function was
so useful that it was made into a standalone utility named, appropriately, grep. Later,
the regular expression grammar of grep was expanded in a new command called
egrep (for “extended grep”). You’ll find both commands on your Linux system today,
and they differ slightly in the way they handle regular expressions. For the purposes
of Exam 101, we’ll stick with grep, which can also make use of the “extended” regular
expressions when used with the -E option. You will find some form of grep on just
about every Unix or Unix-like system available.

grep

Syntax
grep [options] regex [files]

Description
Search files or standard input for lines containing a match to regular expression regex. By
default, matching lines will be displayed and nonmatching lines will not be displayed. When
multiple files are specified, grep displays the filename as a prefix to the output lines (use the
-h option to suppress filename prefixes).

Frequently used options

-c
Display only a count of matched lines, but not the lines themselves.

-h
Display matched lines, but do not include filenames for multiple file input.

-i
Ignore uppercase and lowercase distinctions, allowing abc to match both abc and ABC.

-n
Display matched lines prefixed with their line numbers. When used with multiple files,
both the filename and line number are prefixed.

-v
Print all lines that do not match regex. This is an important and useful option. You’ll want
to use regular expressions not only to select information but also to eliminate information.
Using -v inverts the output this way.

-E
Interpret regex as an extended regular expression. This makes grep behave as if it were
egrep.

Examples
Since regular expressions can contain both metacharacters and literals, grep can be used with
an entirely literal regex. For example, to find all lines in file1 that contain either Linux or
linux, you could use grep like this:

$ grep -i linux file1

grep

126 | Chapter 6: GNU and Unix Commands (Topic 103)

In this example, the regex is simply linux. The uppercase L in Linux will match since the com-
mand-line option -i was specified. This is fine for literal expressions that are common. However,
in situations in which regex includes regular expression metacharacters that are also shell special
characters (such as $ or *), the regex must be quoted to prevent shell expansion and pass the
metacharacters on to grep.

As a simplistic example of this, suppose you have files in your local directory named abc,
abc1, and abc2. When combined with bash’s echo built-in command, the abc* wildcard ex-
pression lists all files that begin with abc, as follows:

$ echo abc*
abc abc1 abc2

Now, suppose that these files contain lines with the strings abc, abcc, abccc, and so on, and you
wish to use grep to find them. You can use the shell wildcard expression abc* to expand to all
the files that start with abc as displayed with echo in the previous example, and you’d use an
identical regular expression abc* to find all occurrences of lines containing abc, abcc, abccc, etc.
Without using quotes to prevent shell expansion, the command would be:

$ grep abc* abc*

After shell expansion, this yields:

grep abc abc1 abc2 abc abc1 abc2 no!

This is not what you intended! grep would search for the literal expression abc, because it appears
as the first command argument. Instead, quote the regular expression with single or double
quotes to protect it (the difference between single quotes and double quotes on the command
line is subtle and is explained later in this section):

$ grep 'abc*' abc*

or:

$ grep "abc*" abc*

After expansion, both examples yield the same results:

grep abc* abc abc1 abc2

Now this is what you’re after. The three files abc, abc1, and abc2 will be searched for the regular
expression abc*. It is good to stay in the habit of quoting regular expressions on the command
line to avoid these problems; they won’t be at all obvious, because the shell expansion is invisible
to you unless you use the echo command.

On the Exam
The use of grep and its options is common. You should be familiar with what each
option does, as well as the concept of piping the results of other commands into
grep for matching.

Using sed
sed, the stream editor, is a powerful filtering program found on nearly every Unix
system. The sed utility is usually used either to automate repetitive editing tasks or
to process text in pipes of Unix commands (see “Objective 4: Use Streams, Pipes,
and Redirects,” earlier in this chapter). The scripts that sed executes can be single
commands or more complex lists of editing instructions.

grep

Chapter 6: GNU and Unix Commands (Topic 103) | 127

GNU/Unix
Com

m
ands

sed

Syntax
sed [options] 'command1' [files]
sed [options] -e 'command1' [-e 'command2'...] [files]
sed [options] -f script [files]

Description
The first form invokes sed with a one-line command1. The second form invokes sed with two (or
more) commands. Note that in this case the -e parameter is required for each command speci-
fied. The commands are specified in quotes to prevent the shell from interpreting and expanding
them. The last form instructs sed to take editing commands from file script (which does not
need to be executable). In all cases, if files are not specified, input is taken from standard input.
If multiple files are specified, the edited output of each successive file is concatenated.

Frequently used options

-e cmd
The -e option specifies that the next argument (cmd) is a sed command (or a series of
commands). When specifying only one string of commands, the -e is optional.

-f file
file is a sed script.

-g
Treat all substitutions as global.

The sed utility operates on text through the use of addresses and editing commands. The address
is used to locate lines of text to be operated on, and editing commands modify text. During
operation, each line (that is, text separated by newline characters) of input to sed is processed
individually and without regard to adjacent lines. If multiple editing commands are to be used
(through the use of a script file or multiple -e options), they are all applied in order to each line
before moving on to the next line.

Addressing
Addresses in sed locate lines of text to which commands will be applied. The addresses can be:

• A line number (note that sed counts lines continuously across multiple input files). The
symbol $ can be used to indicate the last line of input. A range of line numbers can be
given by separating the starting and ending lines with a comma (start,end). So, for ex-
ample, the address for all input would be 1,$.

• A regular expression delimited by forward slashes (/regex/).

• A line number with an interval. The form is n~s, where n is the starting line number and
s is the step, or interval, to apply. For example, to match every odd line in the input, the
address specification would be 1~2 (start at line 1 and match every two lines thereafter).
This feature is a GNU extension to sed.

If no address is given, commands are applied to all input lines by default. Any address may be
followed by the ! character, applying commands to lines that do not match the address.

sed

128 | Chapter 6: GNU and Unix Commands (Topic 103)

Commands
The sed command immediately follows the address specification if present. Commands gener-
ally consist of a single letter or symbol, unless they have arguments. Following are some basic
sed editing commands to get you started.

d
Delete lines.

s
Make substitutions. This is a very popular sed command. The syntax is as follows:

s/pattern/replacement/[flags]

The following flags can be specified for the s command:

g
Replace all instances of pattern, not just the first.

n
Replace nth instance of pattern; the default is 1.

p
Print the line if a successful substitution is done. Generally used with the -n
command-line option.

w file
Print the line to file if a successful substitution is done.

y
Translate characters. This command works in a fashion similar to the tr command,
described earlier.

Example 1
Delete lines 3 through 5 of file1:

$ sed '3,5d' file1

Example 2
Delete lines of file1 that contain a # at the beginning of the line:

$ sed '/^#/d' file1

Example 3
Translate characters:

y/abc/xyz/

Every instance of a is translated to x, b to y, and c to z.

Example 4
Write the @ symbol for all empty lines in file1 (that is, lines with only a newline character but
nothing more):

$ sed 's/^$/@/' file1

sed

Chapter 6: GNU and Unix Commands (Topic 103) | 129

GNU/Unix
Com

m
ands

Example 5
Remove all double quotation marks from all lines in file1:

$ sed 's/"//g' file1

Example 6
Using sed commands from external file sedcmds, replace the third and fourth double quotation
marks with (and) on lines 1 through 10 in file1. Make no changes from line 11 to the end of
the file. Script file sedcmds contains:

1,10{
s/"/(/3
s/"/)/4
}

The command is executed using the -f option:

$ sed -f sedcmds file1

This example employs the positional flag for the s (substitute) command. The first of the two
commands substitutes (for the third double-quote character. The next command substi-
tutes) for the fourth double-quote character. Note, however, that the position count is inter-
preted independently for each subsequent command in the script. This is important because
each command operates on the results of the commands preceding it. In this example, since
the third double quote has been replaced with (, it is no longer counted as a double quote by
the second command. Thus, the second command will operate on the fifth double quote char-
acter in the original file1. If the input line starts out with the following:

""""""

after the first command, which operates on the third double quote, the result is this:

""("""

At this point, the numbering of the double-quote characters has changed, and the fourth double
quote in the line is now the fifth character. Thus, after the second command executes, the output
is as follows:

""(")"

As you can see, creating scripts with sed requires that the sequential nature of the command
execution be kept in mind.

If you find yourself making repetitive changes to many files on a regular basis, a sed script is
probably warranted. Many more commands are available in sed than are listed here.

Examples
Now that the gory details are out of the way, here are some examples of simple
regular expression usage that you may find useful.

Anchors

Description
Anchors are used to describe position information. Table 6-8, shown earlier, lists anchor
characters.

Anchors

130 | Chapter 6: GNU and Unix Commands (Topic 103)

Example 1
Display all lines from file1 where the string Linux appears at the start of the line:

$ grep '^Linux' file1

Example 2
Display lines in file1 where the last character is an x:

$ grep 'x$' file1

Display the number of empty lines in file1 by finding lines with nothing between the beginning
and the end:

$ grep -c '^$' file1

Display all lines from file1 containing only the word null by itself:

$ grep '^null$' file1

Groups and ranges

Description
Characters can be placed into groups and ranges to make regular expressions more efficient, as
shown in Table 6-10, previously.

Example 1
Display all lines from file1 containing Linux, linux, TurboLinux, and so on:

$ grep '[Ll]inux' file1

Example 2
Display all lines from file1 that contain three adjacent digits:

$ grep '[0-9][0-9][0-9]' file1

Example 3
Display all lines from file1 beginning with any single character other than a digit:

$ grep '^[^0-9]' file1

Example 4
Display all lines from file1 that contain the whole word Linux or linux, but not LinuxOS or
TurboLinux:

$ grep '\<[Ll]inux\>' file1

Example 5
Display all lines from file1 with five or more characters on a line (excluding the newline
character):

$ grep '.....' file1

Groups and ranges

Chapter 6: GNU and Unix Commands (Topic 103) | 131

GNU/Unix
Com

m
ands

Example 6
Display all nonblank lines from file1 (i.e., that have at least one character):

$ grep '.' file1

Example 7
Display all lines from file1 that contain a period (normally a metacharacter) using an escape:

$ grep '\.' file1

Modifiers

Description
Modifiers change the meaning of other characters in a regular expression. Table 6-11, shown
previously, lists these modifiers.

Example 1
Display all lines from file1 that contain ab, abc, abcc, abccc, and so on:

$ grep 'abc*' file1

Example 2
Display all lines from file1 that contain abc, abcc, abccc, and so on, but not ab:

$ grep 'abcc*' file1

Example 3
Display all lines from file1 that contain two or more adjacent digits:

$ grep '[0-9][0-9][0-9]*' file1

or:

$ grep '[0-9]\{2,\}' file1

Example 4
Display lines from file1 that contain file (because ? can match zero occurrences), file1, or
file2:

$ grep 'file[12]\?' file1

Example 5
Display all lines from file1 containing at least one digit:

$ grep '[0-9]\+' file1

Example 6
Display all lines from file1 that contain 111, 1111, or 11111 on a line by itself:

$ grep '^1\{3,5\}$' file1

Modifiers

132 | Chapter 6: GNU and Unix Commands (Topic 103)

Example 7
Display all lines from file1 that contain any three-, four-, or five-digit number:

$ grep '\<[0-9]\{3,5\}\>' file1

Example 8
Display all lines from file1 that contain Happy, happy, Sad, sad, Angry, or angry:

$ grep -E '[Hh]appy|[Ss]ad|[Aa]ngry' file1

Example 9
Display all lines of file that contain any repeated sequence of abc (abcabc, abcabcabc, and so on):

$ grep '\(abc\)\{2,\}' file

You may find it useful to employ the GNU option --color to grep when working with regular
expressions. It prints the section of the string that matched your regular expression in a different
color, so you can see exactly what grep was looking for.

Basic regular expression patterns

Example 1
Match any letter:

[A-Za-z]

Example 2
Match any symbol (not a letter or digit):

[^0-9A-Za-z]

Example 3
Match an uppercase letter, followed by zero or more lowercase letters:

[A-Z][a-z]*

Example 4
Match a U.S. Social Security Number (123-45-6789) by specifying groups of three, two, and
four digits separated by dashes:

[0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}

Example 5
Match a dollar amount, using an escaped dollar sign, zero or more spaces or digits, an escaped
period, and two more digits:

\$[0-9]*\.[0-9]\{2\}

Basic regular expression patterns

Chapter 6: GNU and Unix Commands (Topic 103) | 133

GNU/Unix
Com

m
ands

Example 6
Match the month of June and its abbreviation, Jun. The question mark matches zero or one
instance of the e:

June\?

On the Exam
Make certain you are clear about the difference between file globbing and the use
of regular expressions.

Using regular expressions as addresses in sed
These examples are commands you would issue to sed. For example, the commands could take
the place of command1 in this usage:

$ sed [options] 'command1'[files]

These commands could also appear in a standalone sed script.

Example 1
Delete blank lines:

/^$/d

Example 2
Delete any line that doesn’t contain #keepme:

/#keepme/!d

Example 3
Delete lines containing only whitespace (spaces or Tabs). In this example, Tab means the single
Tab character and is preceded by a single space:

/^[Tab]*$/d

Because GNU sed also supports character classes, this example could be written as follows:

/^[[:blank:]]*$/d

Example 4
Delete lines beginning with periods or pound signs:

/^[\.#]/d

Example 5
Substitute a single space for any number of spaces wherever they occur on the line:

s/ */ /g

or:

s/ \{2,\}/ /g

Using regular expressions as addresses
in sed

134 | Chapter 6: GNU and Unix Commands (Topic 103)

Example 6
Substitute def for abc from line 11 to 20, wherever it occurs on the line:

11,20s/abc/def/g

Example 7
Translate the characters a, b, and c to the @ character from line 11 to 20, wherever they occur
on the line:

11,20y/abc/@@@/

Objective 8: Perform Basic File Editing Operations Using vi
vi is perhaps the most ubiquitous text editor available on Linux systems. Since most
system administration tasks eventually require editing text files, being able to work
effectively in vi is essential.

This Objective concentrates on a subset of vi functionality. Learning the vi and Vim
Editors (O’Reilly) is an indispensable reference for anyone interested in learning
more about vi and the enhancements available in its various implementations. There
is also a large amount of documentation available at http://vimdoc.sourceforge.net
and http://www.vim.org for the popular vi implementation Vim, most of which is
applicable to any version of vi.

Invoking vi
To start vi, simply execute it. You will be editing a temporary file. To directly edit
one or more files, give the names of the files on the command line:

$ vi file1.txt file2.txt

You are presented with a main window showing the contents of file1.txt, or if the
specified files don’t already exist, a blank screen with tilde (~) characters running
the length of the left column (they indicate areas of the screen containing no text,
not even blank lines).

vi Basics
The vi editor has two modes of operation: command or insert. In command mode,
vi allows you to navigate around your file and enter commands. To enter new text,
put vi into insert mode. In command mode, the keyboard keys are interpreted as
vi commands instead of text. The convenience of being able to manipulate the editor
without moving your hands from the keyboard is considered one of vi’s strengths.

Commands are brief, case-sensitive combinations of one or more letters. For exam-
ple, to switch from command to insert mode, press the “i” key. To terminate insert
mode, press the Escape key (Esc), which puts you back in command mode.

Almost any command can be prefixed with a number to repeat the command that
number of times. For example, r will replace the character at the current cursor

Objective 8: Perform Basic File Editing Operations Using vi | 135

GNU/Unix
Com

m
ands

http://oreilly.com/catalog/9780596529833
http://oreilly.com/catalog/9780596529833
http://vimdoc.sourceforge.net
http://www.vim.org

position. To replace exactly 10 characters, use 10r. Commonly used vi commands
are listed in Table 6-12.

Table 6-12. vi commands

Key command Description

h or left arrow Move left one character.

j or down arrow Move down one line.

k or up arrow Move up one line.

l or right arrow Move right one character.

H Move to the top of the screen.

L Move to the bottom of the screen.

G Move to the end of the file.

w Move forward one word.

b Move backward one word.

0 (zero) Move to the beginning of the current line.

^ Move to the first nonwhitespace character on the current line.

$ Move to the end of the current line.

Ctrl-B Move up (back) one screen.

Ctrl-F Move down (forward) one screen.

i Insert at the current cursor position.

I Insert at the beginning of the current line.

a Append after the current cursor position.

A Append to the end of the current line.

o Start a new line after the current line.

O Start a new line before the current line.

r Replace the character at the current cursor position.

R Start replacing (overwriting) at the current cursor position.

x Delete the character at the current cursor position.

X Delete the character immediately before (to the left) of the current cursor position.

s Delete the character at the current cursor position and go into insert mode. (This is the equivalent of
the combination xi.)

S Delete the contents of the current line and go into insert mode.

dX Given a movement command X, cut (delete) the appropriate number of characters, words, or lines
from the current cursor position.

dd Cut the entire current line.

D Cut from the current cursor position to the end of the line. (This is equivalent to d$.)

cX Given a movement command X, cut the appropriate number of characters, words, or lines from the
current cursor position and go into insert mode.

cc Cut the entire current line and go into insert mode.

136 | Chapter 6: GNU and Unix Commands (Topic 103)

Key command Description

C Cut from the current cursor position to the end of the line and enter insert mode. (This is equivalent
to c$.)

yX Given a movement command X, copy (yanka) the appropriate number of characters, words, or lines
from the current cursor position.

yy or Y Copy the entire current line.

p Paste after the current cursor position.

P Paste before the current cursor position.

. Repeat the last command.

u Undo the last command.b

/regex Search forward for regex.

?regex Search backward for regex.

n Find the next match.

N Find the previous match. (In other words, repeat the last search in the opposite direction.)

:n Next file; when multiple files are specified for editing, this command loads the next file. Force this
action (if the current file has unsaved changes) with :n!.

:e file Load file in place of the current file. Force this action with :e! file.

:r file Insert the contents of file after the current cursor position.

:q Quit without saving changes. Force this action with :q!.

:w file Write the current buffer to file. To append to an existing file, use :w >>file. Force the write
(when possible, such as when running as root) with :w! file.

:wq Write the file contents and quit. Force this action with :wq!.

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ Write the file contents (if changed) and quit.

:! command Execute command in a subshell.
a Emacs users should be careful not to confuse the vi definition of yank (copy) with that of Emacs (paste).
b Many of the popular vi implementations support multilevel undo. Vim breaks compatibility with traditional vi by making a

repeated u perform another level of undo. Nvi uses . after u to do multilevel undo and, like traditional vi, uses a repeated
u to redo (undo the undo, so to speak). This can cause some confusion when moving between Linux distributions that have
different default implementations of vi.

Keep in mind that this is not a complete list, but it is not neces-
sary to know every vi command to use it effectively. In fact, even
after using vi as your only editor for years, you may find yourself
using only a small subset of the available commands.

There is a pattern in vi’s keyboard commands that makes them easier to remember.
For every lowercase character that has some action assigned to it, the same uppercase
character usually has some related action assigned to it. As an example, i and I both
put vi in insert mode, at the current cursor position and at the beginning of the line,
respectively.

Objective 8: Perform Basic File Editing Operations Using vi | 137

GNU/Unix
Com

m
ands

On the Exam
You’ll need to be familiar with vi’s command and insert modes, how to switch
between them, and how to perform basic navigation and editing tasks.

138 | Chapter 6: GNU and Unix Commands (Topic 103)

7
Devices, Linux Filesystems, and

the Filesystem Hierarchy
Standard (Topic 104)

Filesystem management is among the most critical activities that you must perform
to maintain a stable Linux system. In simple situations, after a successful installation,
you may never have a problem or need to manage filesystem specifics. However,
understanding how to configure and maintain Linux filesystems is essential to safely
manage your system and to pass Exam 101. This section contains the following
Objectives:

Objective 1: Create Partitions and Filesystems
This Objective states that an LPIC 1 candidate should be able to configure disk
partitions and create filesystems on media such as hard disks. It also includes
using various mkfs commands to set up filesystems such as ext2, ext3, reiserfs,
vfat, and xfs, in addition to managing swap partitions. Weight: 2.

Objective 2: Maintain the Integrity of Filesystems
A candidate should be able to verify the integrity of filesystems, monitor free
space and inodes, and repair simple filesystem problems. This Objective in-
cludes the commands required to maintain a standard filesystem as well as the
extra data associated with a journaling filesystem. Weight: 2.

Objective 3: Control Filesystem Mounting and Unmounting
Candidates should be able to manually mount and unmount filesystems, con-
figure filesystem mounting on system boot, and configure user-mountable re-
movable filesystems such as flash drives, floppies, and CDs. Weight: 3.

Objective 4: Set and View Disk Quotas
This Objective includes managing disk quotas for system users. You should be
able to set up a disk quota for a filesystem, edit, check, and generate user quota
reports. Weight: 1.

139

Objective 5: Manage File Permissions and Ownership
Candidates should be able to control file access through file permissions. This
Objective includes access permissions on regular and special files as well as
directories. Also included are access modes such as suid, sgid, and the sticky
bit. You should also be aware of the use of the group field to grant file access to
workgroups, the immutable flag, and the default file creation mode. Weight: 3.

Objective 6: Create and Change Hard and Symbolic Links
Candidates should be able to create and manage hard and symbolic links to a
file. This Objective includes the ability to create and identify links, copy files
through links, and use linked files to support system administration tasks.
Weight: 2.

Objective 7: Find System Files and Place Files in the Correct Location
This Objective states that candidates should be thoroughly familiar with the
FHS, including typical file locations and directory classifications. This includes
the ability to find files and commands on a Linux System. Weight: 2.

Objective 1: Create Partitions and Filesystems
The term filesystem refers to two different things. First, it can mean the way files and
directories are physically structured on a disk or other storage medium. Linux sup-
ports many different filesystems (in this sense of the word), including ext2 and
ext3, the nonjournaled and journaled (respectively) native filesystems; msdos or
vfat, the native MS-DOS and Windows (respectively) filesystems; JFS, a filesystem
used on OS/2 and AIX; XFS, the native IRIX filesystem; and many, many others.

In the second sense of the word, it refers to the structure and contents of some storage
medium. To view the contents of a filesystem (in this sense of the word) on a Linux
system, the device must be mounted, or attached to the hierarchical directory struc-
ture on the system. Much of the strength and flexibility of Linux (and Unix) comes
from the ability to mount any filesystem that it supports, whether that filesystem is
somewhere remote on the network or on a locally attached disk, anywhere in its
directory structure, in a way that is completely transparent to users. For example,
the files under /usr will work equally well whether they are on a disk attached to the
system or mounted from a master server. Even the / (root) filesystem can be located
on a distant server if the system is properly configured.

Disk Drives Under Linux
Linux supports many types of disk devices and formats. Any SCSI or IDE hard disk
will work with Linux, as will floppy disks, CD-ROMs, CD-Rs, USB flash drives, and
other types of removable media. These media can contain the standard Linux ext2
filesystem, FAT, FAT32, NTFS, as well as other filesystem types. This flexibility
makes Linux coexist nicely with other operating systems on multiboot systems.

The most commonly found hard disks on PCs are IDE drives. These disks feature a
relatively simple system interface, and most of the “smarts” of the disk are onboard
the disk itself. The IDE standard allows disk manufacturers to sell their product at

140 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

a very competitive price, expanding their markets to more consumers and limited-
budget commercial customers.

A single IDE interface is capable of attaching two disk drives to a system. One device
is named master and the other is the slave. Most PCs have a primary and secon-
dary IDE interface. Together, these interfaces allow up to four devices (primary
master, primary slave, secondary master, and secondary slave).

Also used on PCs are SCSI drives. SCSI is an older standard for connecting periph-
erals; however, modern SCSI versions are quite fast and flexible. Typically, SCSI
devices are used for their increased speed and reliability in large-scale and high-end
server environments. With the increased speeds, however, come increased prices—
often two to five times the price of their IDE counterparts.

Compared to IDE, SCSI offers excellent performance, lower CPU utilization, and a
much more flexible connection scheme capable of handling up to 15 devices on a
single bus. These conveniences allow SCSI systems to grow as space requirements
increase without major hardware reconfiguration.

A third option available on motherboards in recent years is the Serial ATA (SATA)
interface. SATA is basically a newer version of the IDE standard, and allows for much
faster communication between the controller and the physical disk. The Linux ker-
nel currently uses the SCSI emulation layer to support SATA hard drives, so from a
device standpoint, SATA disks are treated the same way as SCSI disks. It’s also
important to note that some Linux distributions are configured to use the SCSI
emulation layer for IDE disks as well, so you may be referring to your disks via the
SCSI naming conventions even if you have IDE or SATA disks.

Hard disk devices

By default, Linux defines IDE device files as follows:

/dev/hda
Primary master IDE (often the hard disk)

/dev/hdb
Primary slave IDE

/dev/hdc
Secondary master IDE (often a CD-ROM)

/dev/hdd
Secondary slave IDE

SCSI device files (or any devices using the SCSI emulation layer) are similar, except
that there is no four-device limitation:

/dev/sda
First SCSI drive

/dev/sdb
Second SCSI drive

/dev/sdc
Third SCSI drive (and so on)

Objective 1: Create Partitions and Filesystems | 141

Devices, Filesys-
tem

s, FHS

Under Linux, a typical PC with a single hard disk on the primary IDE interface and
a single CD-ROM on the secondary IDE interface would have disk drive /dev/hda
and CD-ROM /dev/hdc.

On the Exam
You should be prepared to identify IDE and SCSI devices based on their device
filenames.

Disk partitions

Almost every operating system supports a system for dividing a disk into logical
devices, called partitions. Other terms for the same basic concept are slices and logical
volumes, although logical volumes generally also imply the ability to span physical
disks. Linux supports several different partitioning formats, but by default it uses
the MS-DOS format. The MS-DOS partition table allows for up to four primary
partitions. One of these four primary partitions can be replaced with an extended
partition, which can contain up to 12 logical partitions, for a total of 15 possible
usable partitions (16 if you count the extended partition “container,” but it is not
usable for data).

The type of partition (as well as the type of device) affects the name of the device
Linux uses to access the partition.

Primary partitions
This type of partition contains a filesystem. If all four primary partitions exist
on an IDE drive, they are numbered as follows:

• /dev/hda1

• /dev/hda2

• /dev/hda3

• /dev/hda4

One of these primary partitions may be marked active, in which case the PC
BIOS will be able to select it for boot.

Extended partitions
An extended partition is a variant of the primary partition but cannot contain
a filesystem. Instead, it contains logical partitions. Only one extended partition
may exist on a single physical disk. For example, the partitions on a disk with
one primary partition and the sole extended partition might be numbered as
follows:

• /dev/hda1 (primary)

• /dev/hda2 (extended)

Logical partitions
Logical partitions exist within the extended partition. Logical partitions are
numbered from 5 to 16. The partitions on a disk with one primary partition,
one extended partition, and four logical partitions might be numbered as
follows:

142 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

• /dev/hda1 (primary)

• /dev/hda2 (extended)

• /dev/hda5 (logical)

• /dev/hda6 (logical)

• /dev/hda7 (logical)

• /dev/hda8 (logical)

If the partitions were made on a SCSI or SATA drive, the hda would be replaced
by sda, for example, /dev/sda2.

On the Exam
Be sure that you understand how partition numbering works. In particular, pay
attention to the differences in numbering between primary, extended, and logical
partitions.

The root filesystem and mount points

As a Linux system boots, the first filesystem that becomes available is the top level,
or root filesystem, denoted with a single forward slash. The root filesystem /, also
known as the root directory, shouldn’t be confused with the root superuser account
or the superuser’s home directory, /root. The distinct directories / and /root are un-
related and are not required to share the same filesystem. In a simple installation,
the root filesystem could contain nearly everything on the system. However, such
an arrangement could lead to system failure if the root filesystem fills to capacity.
Instead, multiple partitions are typically defined, each containing one of the direc-
tories under /. As the Linux kernel boots, the partitions are mounted to the root
filesystem, and together create a single unified filesystem (see “Objective 3: Control
Filesystem Mounting and Unmounting” on page 161 for a discussion about mount-
ing). Everything on the system that is not stored in a mounted partition is stored
locally in the / (root) partition. The mounted filesystems are placed on separate
partitions and possibly multiple disk drives.

The choice of which directories are placed into separate partitions is both a personal
and technical decision. Here are some guidelines for individual partitions:

/ (the root directory)
Since the only filesystem mounted at the start of the boot process is /, certain
directories must be part of it to be available for the boot process. These include:

/bin and /sbin
Contains required system binary programs

/dev
Contains device files

/etc
Contains configuration information used on boot

/lib
Contains shared libraries

Objective 1: Create Partitions and Filesystems | 143

Devices, Filesys-
tem

s, FHS

These directories are always part of the single / partition. See the description of
the FHS in “Objective 7: Find System Files and Place Files in the Correct Lo-
cation” on page 192 for more on the requirements for the root filesystem.

/boot
This directory holds static files used by the boot loader, including kernel images.
On systems where kernel development activity occurs regularly, making /boot
a separate partition eliminates the possibility that / will fill with kernel images
and associated files during development.

/home
User files are usually placed in a separate partition. This is often the largest
partition on the system and may be located on a separate physical disk or disk
array.

/tmp
This directory is often a separate partition used to prevent temporary files from
filling the root filesystem. By default, all users have read/write access to files
they create in /tmp.

/var
Logfiles are stored here. This is similar to the situation with /tmp, where user
files can fill any available space if something goes wrong or if the files are not
cleaned periodically.

/usr
This directory holds a hierarchy of directories containing user commands,
source code, and documentation. It is often quite large, making it a good can-
didate for its own partition. Because much of the information stored un-
der /usr is static, some users prefer that it be mounted as read-only, making it
impossible to corrupt.

In addition to the preceding six partitions listed, a swap partition is also necessary
for a Linux system to enable virtual memory. For information on determining the
size of a swap partition, see Chapter 5.

Using these guidelines at installation time, the disk partitions for an IDE-based sys-
tem with two physical disks (40 GB and 200 GB) on the primary IDE controller
might look as described in Table 7-1.

Table 7-1. An example partitioning scheme

Partition Type Mounted filesystem Size

/dev/hda1 Primary /boot 1 GB

/dev/hda2 Primary / 5 GB

/dev/hda3 Extended - -

/dev/hda5 Logical /usr 10 GB

/dev/hda6 Logical /var 10 GB

/dev/hda7 Logical /opt 10 GB

/dev/hda8 Logical /tmp 2 GB

144 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Partition Type Mounted filesystem Size

/dev/hda4 Primary (swap partition) 2 GB

/dev/hdb1 Primary /home 200 GB

Once a disk is partitioned, it can be difficult or risky to change the partition sizes.
Commercial and open source tools are available for this task, but a full backup is
recommended prior to their use.

If you are resizing your partitions, you may want to investigate
setting up your system using Logical Volume Manager (LVM).
LVM is currently not covered on the LPI exams, but its use is
quickly growing. For more information, read the LVM-
HOWTO at the Linux Documentation Project.

Managing partitions

Linux has two basic options for partitioning disk drives. The fdisk command is a
text-based program that is easy to use and exists on every Linux distribution. It is
also required for Exam 101. Another option you may wish to explore after mastering
fdisk is cfdisk, which is still a text-mode program but uses the curses system to pro-
duce a GUI-style display.

fdisk

Syntax
fdisk [device]

Description
Manipulate or display the partition table for device using a command-driven interactive text
interface. device is a physical disk such as /dev/hda, not a partition such as /dev/hda1. If omitted,
device defaults to /dev/hda. Interactive commands to fdisk are a single letter followed by a
carriage return. The commands do not take arguments, but instead start an interactive dialog.
Commands that operate on a partition will request the partition number, which is an integer.
For primary and extended partitions, the partition number is from 1 to 4. For logical partitions,
which are available only when the extended partition already exists to contain them, the par-
tition number is from 5 to 16.

When making changes to the partition table, fdisk accumulates changes without writing them
to the disk, until it receives the write command.

Frequently used commands

a
Toggle the bootable flag on/off for a primary partition.

fdisk

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 145

Devices, Filesys-
tem

s, FHS

http://www.tldp.org
http://www.tldp.org

d
Delete a partition. You are prompted for the partition number to delete. If you delete a
logical partition when higher-numbered logical partitions exist, the partition numbers are
decremented to keep logical partition numbers contiguous.

l
List the known partition types. A table of partition types is printed.

m
Display the brief help menu for these commands.

n
Add a new partition. You are prompted for the partition type (primary, extended, or log-
ical). For primary and extended partitions, you are asked for the partition number (1–4).
For logical partitions, the next logical partition number is selected automatically. You are
then prompted for the starting disk cylinder for the partition and are offered the next free
cylinder as a default. Finally, you are prompted for the last cylinder or a size, such as
+300M. By default, new partitions are assigned as Linux ext2, type 83. To create another
partition type, such as a swap partition, first create the partition with the n command, and
then change the type with the t command.

Note that fdisk displays options for extended and primary
partition types if an extended partition does not yet exist.
If the extended partition already exists, fdisk displays op-
tions for logical and primary partition types.

p
Display the partition table as it exists in memory. This depiction will differ from the actual
partition table on disk if changes have not been saved.

q
Quit without saving changes.

t
Change a partition’s system ID. This is a hex number that indicates the type of filesystem
the partition is to contain. Linux ext2 partitions are type 83, and Linux swap partitions
are type 82.

w
Write (save) the partition table to disk and exit. No changes are saved until the w command
is issued.

Example 1
Display the existing partition table on /dev/hda without making any changes:

fdisk /dev/hda
Command (m for help): p
Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 * 1 250 2008093+ 83 Linux
/dev/hda2 251 280 240975 82 Linux swap
/dev/hda3 281 1027 6000277+ 5 Extended
/dev/hda5 281 293 104391 83 Linux

fdisk

146 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

/dev/hda6 294 306 104391 83 Linux
/dev/hda7 307 319 104391 83 Linux
Command (m for help): q
#

In this configuration, /dev/hda has two primary partitions, /dev/hda1, which is bootable,
and /dev/hda2, which is the swap partition. The disk also has an extended partition /dev/hda3,
which contains three logical partitions, /dev/hda5, /dev/hda6, and /dev/hda7. All other primary
and logical partitions are Linux ext2 partitions.

Example 2
Starting with a blank partition table, create a bootable primary partition of 300 MB on /dev/
hda1, the extended partition on /dev/hda2 containing the remainder of the disk, a logical par-
tition of 200 MB on /dev/hda5, a logical swap partition of 128 MB on /dev/hda6, and a logical
partition on /dev/hda7 occupying the remainder of the extended partition:

fdisk /dev/hda
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)p
Partition number (1-4): 1
First cylinder (1-1027, default 1): Enter
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1027, default 1027): +300M
Command (m for help): a
Partition number (1-4): 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)e
Partition number (1-4): 2
First cylinder (40-1027, default 40): Enter
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027, default 1027): Enter
Using default value 1027
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)l
First cylinder (40-1027, default 40): Enter
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027, default 1027): +200M
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)l
First cylinder (79-1027, default 79): Enter
Using default value 79
Last cylinder or +size or +sizeM or +sizeK (79-1027, default 1027): +128M
Command (m for help): t
Partition number (1-6): 6
Hex code (type L to list codes): 82
Changed system type of partition 6 to 82 (Linux swap)
Command (m for help): n

fdisk

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 147

Devices, Filesys-
tem

s, FHS

Command action
 l logical (5 or over)
 p primary partition (1-4)l
First cylinder (118-1027, default 118): Enter
Using default value 118
Last cylinder or +size or +sizeM or +sizeK (118-1027, default 1027): Enter
Using default value 1027
Command (m for help): p
Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 * 1 39 313236 83 Linux
/dev/hda2 40 1027 7936110 5 Extended
/dev/hda5 40 65 208813+ 82 Linux swap
/dev/hda6 66 82 136521 83 Linux
/dev/hda7 83 1027 7590681 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
#

Note the use of defaults for the partition start cylinders and for end cylinder selections, indicated
by Enter in this example. Other partition sizes are specified in megabytes using responses such
as +128M.

If you are attempting to create partitions for other operating
systems with the Linux fdisk utility, you could run into a few
problems. As a rule, it is safest to prepare the partitions for an
operating system using the native tools of that operating system.

As you might expect, using fdisk on a working system can be
dangerous, because one errant w command can render your disk
useless. Use extreme caution when working with the partition
table of a working system, and be sure you know exactly what
you intend to do and how to do it.

On the Exam
You should understand disk partitions and the process of creating them using
fdisk.

Creating filesystems

Once a disk is partitioned, filesystems may be created in those partitions using the
mkfs utility. mkfs is a frontend program for filesystem-specific creation tools such
as mkfs.ext2 and mkfs.msdos, which are in turn linked to mke2fs and mkdosfs, re-
spectively. mkfs offers a unified frontend, while the links provide convenient names.
The choice of which executable to call is up to you.

fdisk

148 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

mkfs

Syntax
mkfs [-t fstype] [fs_options] device

Description
Make a filesystem of type fstype on device. If fstype is omitted, ext2 is used by default. When
called by mkfs, these programs are passed any fs_options included on the command line. It is
common to see references to commands such as mkfs.ext2, mkfs.ext4, or mkfs.xfs. These are all
aliases for mkfs, specifying a specific kind of filesystem you wish to create.

Frequently used options

-c
Check device for bad blocks before building the filesystem.

-L label
Set the volume label for the filesystem (ext-based filesystems only).

-n label
Set the 11-character volume label for the filesystem (mkdosfs only).

-q
Uses mkfs in quiet mode, resulting in very little output.

-v
Used to enter verbose mode.

-j
Create an ext3 journal file (mkfs.ext2 only). Using -t ext3 or running mkfs.ext3 has the
same effect as using the -j option.

Example 1
Using defaults, quietly create an ext2 partition on /dev/hda3:

mkfs -q /dev/hda3
mke2fs 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
#

Example 2
Create an ext2 filesystem labeled rootfs on existing partition /dev/hda3, checking for bad blocks
and with full verbose output:

mkfs -t ext2 -L rootfs -cv /dev/hda3
mke2fs 1.27 (8-Mar-2002)
Filesystem label=rootfs
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
26208 inodes, 104422 blocks
5221 blocks (5.00%) reserved for the super user
First data block=1
13 block groups
8192 blocks per group, 8192 fragments per group

mkfs

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 149

Devices, Filesys-
tem

s, FHS

2016 inodes per group
Superblock backups stored on blocks:
 8193, 16385, 24577, 32769, 40961, 49153,
 57345, 65537, 73729, 81921, 90113, 98305
Running command: badblocks -b 1024 -s /dev/hda3 104422
Checking for bad blocks (read-only test): done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Additional options are available in the mke2fs and mkdosfs programs, which may be needed to
fine-tune specific filesystem parameters for special situations. In most cases, the default pa-
rameters are appropriate and adequate.

Creating swap partitions

Swap partitions are necessary if you want your Linux system to have access to virtual
memory. Virtual memory is a section of the hard disk designated for use as memory
when the main system memory (the RAM) is all in use. The common formula for
determining the amount of swap space you need has usually been twice the amount
of RAM your system has. Although swap is not required by Linux, at least 128 MB
is recommended for some spooling functions. On the other hand, memory-intensive
applications may recommend much more, based on variables such as the number
of users, database tables/sizes, or other application configuration guidelines. It is
important to know what the system will be used for when considering swap space.

The command to create a swap partition is mkswap. This command prepares a par-
tition for use as Linux swap space and is needed if you plan to fully configure a disk
from scratch. It is also required if you need to add an additional swap partition.

mkswap

Syntax
mkswap device

Description
Prepare a partition for use as swap space. This command can also set up swap space in a file on
another filesystem.

Example
On an existing partition, which should be set to type 82 (Linux swap), ready swap space:

mkswap /dev/hda5
Setting up swapspace version 1, size = 139792384 bytes
#

mkswap

150 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Running any of the filesystem creation programs is, like fdisk,
potentially dangerous. All data in any previously existing file-
systems in the specified partition will be deleted. Since mkfs
does not warn you prior to creating the filesystem, be certain
that you are operating on the correct partition.

On the Exam
The exam is likely to contain general questions about using mkfs and mkswap,
although details such as inode allocation are beyond the scope of the LPIC Level
1 exams.

Objective 2: Maintain the Integrity of Filesystems
Over the course of time, active filesystems can develop problems, such as:

• A filesystem fills to capacity, causing programs or perhaps the entire system to
fail.

• A filesystem is corrupted, perhaps due to a power failure or system crash.

• A filesystem runs out of inodes, meaning that new filesystem objects cannot be
created.

Carefully monitoring and checking Linux filesystems on a regular basis can help
prevent and correct these types of problems.

Monitoring Free Disk Space and Inodes
A read/write filesystem isn’t much good if it grows to the point where it won’t accept
any more files. This could happen if the filesystem fills to capacity or runs out of
inodes.

Inodes are the data structures within filesystems that describe files on disk. Every
filesystem contains a finite number of inodes, set when the filesystem is created. This
number is also the maximum number of files that the filesystem can accommodate.
Because filesystems are created with a huge number of inodes, you’ll probably never
create as many files as it would take to run out of inodes. However, it is possible to
run out of inodes if a partition contains many small files.

It is important to prevent space and inode shortages from occurring on system par-
titions. The df command gives you the information you need on the status of both
disk space utilization and inode utilization.

df

Syntax
df [options] [file [file...]]

df

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 151

Devices, Filesys-
tem

s, FHS

Description
Display overall disk utilization information for mounted filesystems on file. Usually, file is a
device file for a partition, such as /dev/hda1. The file may also be the mount point or any file
beneath the mount point. If file is omitted, information for mounted filesystems on all devices
in /etc/fstab are displayed.

Frequently used options

-h
Displays results in a human-readable format, including suffixes such as M (megabytes) and
G (gigabytes).

-i
Displays information on remaining inodes rather than the default disk space information.

Example 1
Check disk space utilization on all filesystems:

df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 387M 56M 311M 15% /
/dev/sda5 296M 5.2M 276M 2% /boot
/dev/sda9 1.9G 406M 1.4G 22% /home
/dev/sda6 53M 12M 39M 23% /root
/dev/sda10 99M 104k 93M 0% /tmp
/dev/sda8 972M 507M 414M 55% /usr
/dev/sda7 296M 9.3M 272M 3% /var

This example shows that of the seven filesystems mounted by default, none exceeds 55 percent
capacity.

Example 2
Check the same filesystems for inode utilization:

df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/sda1 102800 7062 95738 7% /
/dev/sda5 78312 29 78283 0% /boot
/dev/sda9 514000 934 513066 0% /home
/dev/sda6 14056 641 13415 5% /root
/dev/sda10 26104 60 26044 0% /tmp
/dev/sda8 257040 36700 220340 14% /usr
/dev/sda7 78312 269 78043 0% /var

Among these partitions, the largest consumption of inodes is a mere 14 percent. It is clear that
none of the filesystems is anywhere near consuming the maximum number of inodes available.
Note that the /usr partition (with 14 percent of inodes used) has used 55 percent of the disk
space. With utilization like this, the /usr volume will most likely fill to capacity long before the
inodes are exhausted.

Example 3
Quickly determine which partition the current working directory (represented simply by a single
dot) is located:

df

152 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

df .
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 102800 7062 95738 7% /

When a filesystem is nearing capacity, files may simply be deleted to make additional space
available. However, in the rare case in which an inode shortage occurs, the filesystem must be
recreated with a larger number of inodes unless a significant number of files can be deleted.

Monitoring Disk Usage
Have you ever found yourself wondering, “Where did all the disk space go?” Some
operating systems make answering this question surprisingly difficult using only
native tools. On Linux, the du command can help display disk utilization informa-
tion on a per-directory basis and perhaps answer that question. du recursively ex-
amines directories and reports detailed or summarized information on the amount
of space consumed.

du

Syntax
du [options] [directories]

Description
Display disk utilization information for directories. If directories are omitted, the current
working directory is searched.

Frequently used options

-a
Shows all files, not just directories.

-c
Produces a grand total for all listed items.

-h
Displays results in a human-readable format, including suffixes such as M (megabytes) and
G (gigabytes).

-s
Prints a summary for each of the directories specified, instead of totals for each
subdirectory found recursively.

-S
Excludes subdirectories from counts and totals, limiting totals to directories.

Example 1
Examine disk utilization in /etc/rc.d:

du /etc/rc.d
882 /etc/rc.d/init.d
1 /etc/rc.d/rc0.d
1 /etc/rc.d/rc1.d

du

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 153

Devices, Filesys-
tem

s, FHS

1 /etc/rc.d/rc2.d
1 /etc/rc.d/rc3.d
1 /etc/rc.d/rc4.d
1 /etc/rc.d/rc5.d
1 /etc/rc.d/rc6.d
904 /etc/rc.d

Example 2
Display utilization by files in /etc, including subdirectories beneath it:

du -s /etc
13002 /etc

Example 3
Display utilization by files in /etc, but not in subdirectories beneath it:

du -Ss /etc
1732 /etc

Example 4
Show a summary of all subdirectories under /home, with human-readable output:

du -csh /home/*
42k /home/bsmith
1.5M /home/httpd
9.5M /home/jdean
42k /home/jdoe
12k /home/lost+found
1.0k /home/samba
11M total

This result shows that 11 MB of total disk space is used.

Example 5
Show the same summary, but sort the results to display in order of largest to smallest disk
utilization:

du -cs /home/* | sort -nr
11386 total
9772 jdean
1517 httpd
42 jdoe
42 bsmith
12 lost+found
1 samba

This result shows that user jdean is consuming the largest amount of space. Note that the
human-readable format does not sort in this way, since sort is unaware of the human-readable
size specifications.

Modifying a Filesystem
There are many cases where an administrator might want to make changes to an
existing filesystem. For example, if the purpose of a particular filesystem changes,

du

154 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

the volume label should be changed to match. This and many other ext2 filesystem
settings can be viewed and modified using the tune2fs command.

tune2fs

Syntax
tune2fs [options] device

Description
Modify tunable parameters on the ext2 or ext3 filesystem on device.

Frequently used options

-l device
List the tunable parameters on device.

-c n
Set the maximum mount count to n. When the filesystem has been mounted this many
times, the kernel will warn that the filesystem has exceeded the maximum mount count
when the filesystem is mounted, and e2fsck will automatically check the filesystem. See
the discussion of e2fsck in the next section, “Checking and Repairing Filesys-
tems” on page 157.

Setting this value to 0 tells the kernel and e2fsck to ignore the mount count.

-i n
Set the maximum time between two filesystem checks to n. If n is a number or is followed
by d, the value is in days. A value followed by w specifies weeks. A value followed by m
specifies months.

The time since the last filesystem check is compared to this value by the kernel and e2fsck
-p, much like the maximum mount count. A value of 0 disables this check.

-L label
Sets the volume label of the filesystem to label. The volume label can also be set with the
e2label command.

-j
Adds an ext3 journal file to the filesystem and sets the has_journal feature flag.

-m n
Sets the reserved block percentage to n. By default, ext2 filesystems reserve 5 percent of
the total number of available blocks for the root user. This means that if a filesystem is
more than 95 percent full, only root can write to it. (It also means that df will report the
filesystem as 100 percent full when it is really only 95 percent full.)

On very large filesystems, or filesystems where only user data will be written, the reserved
block percentage can be safely reduced to make more of the filesystem available for writing
by regular users.

-r n
Sets the number of reserved blocks to n. This is similar to the -m option, except it specifies
a number instead of a percentage.

tune2fs

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 155

Devices, Filesys-
tem

s, FHS

Example 1
List the contents of the superblock on /dev/sda1:

tune2fs -l /dev/sda1
tune2fs 1.41.4 (27-Jan-2009)
Filesystem volume name: /boot
Last mounted on: <not available>
Filesystem UUID: 35f8a3e0-9257-4b71-913d-407bef4eeb90
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal ext_attr resize_inode \
 dir_index filetype needs_recovery sparse_super
Filesystem flags: signed_directory_hash
Default mount options: user_xattr acl
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 50200
Block count: 200780
Reserved block count: 10039
Free blocks: 158854
Free inodes: 50152
First block: 1
Block size: 1024
Fragment size: 1024
Reserved GDT blocks: 256
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 2008
Inode blocks per group: 251
Filesystem created: Mon Dec 15 14:43:58 2008
Last mount time: Fri Jul 24 10:25:08 2009
Last write time: Fri Jul 24 10:25:08 2009
Mount count: 23
Maximum mount count: 20
Last checked: Mon Dec 15 14:43:58 2008
Check interval: 31536000 (12 months, 5 days)
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal inode: 8
Default directory hash: half_md4
Directory Hash Seed: 92b218b8-9e1f-4aab-b481-08bec3ea2946
Journal backup: inode blocks

Example 2
Turn off the maximum mount count and check interval tests on /dev/sda1:

tune2fs -i 0 -c 0 /dev/sda1
tune2fs 1.41.4 (27-Jan-2009)
Setting maximal mount count to -1
Setting interval between checks to 0 seconds

tune2fs

156 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

xfs_info

Syntax
xfs_info device

Description
XFS is a filesystem type that was originally designed for use on the IRIX operating system. It
has been ported to Linux and is a popular choice among Linux users for its large filesystem
capacity and robust feature set. The xfs_info program will print out information about the XFS
partition.

Examples
Create an XFS filesystem on /dev/sdb1:

mkfs.xfs –q /dev/sdb1

Query the filesystem for information:

xfs_info /dev/sdb1
meta-data=/dev/sdb1 isize=256 agcount=4, agsize=490108 blks
 = sectsz=512 attr=2
data = bsize=4096 blocks=1960432, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0
log =internal bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=0
realtime =none extsz=4096 blocks=0, rtextents=0

Checking and Repairing Filesystems
No matter how stable, computers do fail, even due to something as simple as a power
cable being accidentally unplugged. Unfortunately, such an interruption can make
a mess of a filesystem. If a disk write operation is aborted before it completes, the
data in transit could be lost, and the portions of the disk that were allocated for it
are left marked as used. In addition, filesystem writes are cached in memory, and a
power loss or other crash prevents the kernel from synchronizing the cache with the
disk. Both of these scenarios lead to inconsistencies in the filesystem and must be
corrected to ensure reliable operation.

Filesystems are checked with fsck. Like mkfs, fsck is a frontend to filesystem-specific
utilities, including fsck.ext2, which is a link to the e2fsck program. (See its manpage
for detailed information.)

e2fsck can also check ext3 filesystems. When it finds an ext3
filesystem that was not cleanly unmounted, it first commits the
journal, then checks the filesystem as it normally would with
ext2.

Part of the information written on disk to describe a filesystem is known as the
superblock, written in block 1 of the partition. If this area of the disk is corrupted,

xfs_info

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 157

Devices, Filesys-
tem

s, FHS

the filesystem is inaccessible. Because the superblock is so important, copies of it
are made in the filesystem at regular intervals, by default every 8192 blocks. The first
superblock copy is located at block 8193, the second copy is at block 16385, and so
on. As you’ll see, fsck can use the information in the superblock copies to restore
the main superblock.

fsck

Syntax
fsck [options] [-t type] [fs-options] filesystems

Description
Check filesystems for errors and optionally correct them. By default, fsck assumes the ext2
filesystem type and runs interactively, pausing to ask for permission before applying fixes.

Frequently used options for fsck

-A
Run checks on all filesystems specified in /etc/fstab. This option is intended for use at boot
time, before filesystems are mounted.

-N
Don’t execute, but show what would be done.

-t type
Specify the type of filesystem to check; the default is ext2. The value of type determines
which filesystem-specific checker is called.

Frequently used options for e2fsck

-b superblock
Use an alternative copy of the superblock. In interactive mode, e2fsck automatically uses
alternative superblocks. Typically, you’ll try -b 8193 in noninteractive mode to restore a
bad superblock.

-c
Check for bad blocks.

-f
Force a check, even if the filesystem looks clean.

-p
Automatically repair the filesystem without prompting.

-y
Answers “yes” to all interactive prompts, allowing e2fsck to be used noninteractively.

Example 1
Check the ext3 filesystem on /dev/sda1, which is not mounted:

fsck /dev/sda1
fsck 1.41.4 (27-Jan-2009)

fsck

158 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

e2fsck 1.41.4 (27-Jan-2009)
/boot: clean, 48/50200 files, 41926/200780 blocks

The partition was clean, so fsck didn’t really check it.

Example 2
Force a check:

fsck -f /dev/sda1
fsck 1.41.4 (27-Jan-2009)
e2fsck 1.41.4 (27-Jan-2009)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/boot: 48/50200 files (22.9% non-contiguous), 41926/200780 blocks

Example 3
Force another check, this time with verbose output:

fsck -fv /dev/sda1
fsck 1.41.4 (27-Jan-2009)
e2fsck 1.41.4 (27-Jan-2009)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

 48 inodes used (0.10%)
 11 non-contiguous files (22.9%)
 0 non-contiguous directories (0.0%)
 # of inodes with ind/dind/tind blocks: 22/12/0
 41926 blocks used (20.88%)
 0 bad blocks
 0 large files

 32 regular files
 6 directories
 0 character device files
 0 block device files
 0 fifos
 0 links
 1 symbolic link (1 fast symbolic link)
 0 sockets

 39 files

Example 4
Allow fsck to automatically perform all repairs on a damaged filesystem by specifying the -y
option to run the command automatically:

fsck -y /dev/sda1
fsck 1.41.4 (27-Jan-2009)

fsck

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 159

Devices, Filesys-
tem

s, FHS

e2fsck 1.41.4 (27-Jan-2009)
Couldn't find ext2 superblock, trying backup blocks...
/dev/sda1 was not cleanly unmounted, check forced.
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
Block bitmap differences: +1 +2 +3 +4
Fix? yes
Inode bitmap differences: +1 +2 +3 +4 +5 +6
Fix? yes
/dev/sda1: ***** FILE SYSTEM WAS MODIFIED *****
/dev/sda1: 1011/34136 files (0.1% non-contiguous), 4360/136521 blocks

When Linux boots, the kernel performs a check of all filesystems in /etc/fstab using the -A option
to fsck (unless the /etc/fstab entry contains the noauto option). Any filesystems that were not
cleanly unmounted are checked. If that check finds any significant errors, the system drops into
single-user mode so you can run fsck manually. Unfortunately, unless you have detailed knowl-
edge of the inner workings of the filesystem, there’s little you can do other than to have fsck
perform all of the repairs. As a result, it is common to use the -y option and hope for the best.

In some cases, a filesystem may be beyond repair or may even trigger a bug in e2fsck. In these
(thankfully very rare) situations, there are a few commands that can help an ext2 filesystem
wizard debug the problem. These commands are e2image, dumpe2fs, and debugfs. For more
information on these tools, read their appropriate manpages.

xfs_metadump

Syntax
xfs_metadump [options] device

Description
xfs_metadump is a debugging tool that copies the metadata from an XFS filesystem to a file.
This is useful as a debugging tool when you suspect filesystem problems, or as a backup tool.
Images created by xfs_metadump can be restored to a filesystem using the command
xfs_mdrestore.

Frequently used options

-e
Stops the dump on a read error. Normally, it will ignore read errors and copy all the
metadata that is accessible.

-g
Shows dump progress.

-w
Prints warnings of inconsistent metadata to stderr. Bad metadata is still copied.

xfs_metadump

160 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

On the Exam
Familiarity with du, df, and fsck is important. Be sure you understand the differ-
ences between the commands and when each is used.

Objective 3: Control Filesystem Mounting and Unmounting
As discussed in “Objective 1: Create Partitions and Filesystems” on page 140, the
Linux directory hierarchy is usually made up of multiple partitions, each joined to
the root filesystem. Filesystems on removable media, such as CD-ROMs, USB flash
drives, and floppy disks, are joined in the same way, but usually on a temporary
basis. Each of these separate filesystems is mounted to the parent filesystem as a
directory (or mount point) in the unified hierarchy.

Directories intended as mount points usually don’t contain files or other directories.
Instead, they’re just empty directories created solely to mount a filesystem. If a di-
rectory that already contains files is used as a mount point, its files are obscured and
unavailable until the filesystem is unmounted. Typical mount points include the
directories /usr, /home, /var, and others.

Managing the Filesystem Table
Since the Linux filesystem hierarchy is spread across separate partitions and/or mul-
tiple drives, it is necessary to automatically mount those filesystems at boot time. In
addition, removable media and filesystems on remote NFS servers may be used reg-
ularly with recurring mount properties. All of this information is recorded in
the /etc/fstab file. Filesystems defined in this file are checked and mounted when the
system boots. Entries in this file are consulted for default information when users
wish to mount removable media.

The /etc/fstab file (see Example 7-1) is plain text and consists of lines with six fields:

Device
This field specifies the device file of the partition holding the filesystem (for
example, /dev/hda1). This may either be the device name (like /dev/hda1), the
UUID of the device (like UUID=35f8a3e0-9257-4b71-913d-407bef4eeb90), or
the partition label (like LABEL=/boot).

Mount point
This field specifies the directory on which the filesystem is to be mounted. For
example, if /dev/hda1 contains the root filesystem, it is mounted at /. The root
filesystem will contain additional directories intended as mount points for other
filesystems. For example, /boot may be an empty directory intended to mount
the filesystem that contains kernel images and other information required at
boot time.

Filesystem type
Next, the type of filesystem is specified. These may include ext2 filesystems,
swap, nfs, iso9660 (CD-ROM), and others.

Objective 3: Control Filesystem Mounting and Unmounting | 161

Devices, Filesys-
tem

s, FHS

Mount options
This field contains a comma-separated list of options. Some options are specific
to particular filesystem types. Options are described later in this Objective.

Dump frequency
The dump program, a standard Unix backup utility, will consult /etc/fstab for
information on how often to dump each filesystem. This field holds an integer,
usually set to 1 for native Linux filesystems such as ext2, and to 0 for others.

Pass number for fsck
This field is used by the fsck utility when the -A option is specified, usually at
boot time. It is a flag that may contain only the values 0, 1, or 2.

• A 1 should be entered for the root filesystem and instructs fsck to check that
filesystem first.

• A 2 instructs fsck to check corresponding filesystems after those with a 1.

• A 0 instructs fsck not to check the filesystem.

Example 7-1. Sample /etc/fstab file

/dev/sda1 / ext2 defaults 1 1
/dev/sda5 /boot ext2 defaults 1 2
/dev/sda9 /home ext2 defaults 1 2
/dev/sda6 /root ext2 defaults 1 2
/dev/sda10 /tmp ext2 defaults 1 2
/dev/sda8 /usr ext2 defaults 1 2
/dev/sda7 /var ext2 defaults 1 2
/dev/sda11 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto,users 0 0
/dev/hdc /mnt/cdrom iso9660 noauto,ro,users 0 0
/dev/hdd /mnt/zip vfat noauto,users 0 0
fs1:/share /fs1 nfs defaults 0 0

The fstab in Example 7-1 depicts a system with a single SCSI disk, /dev/sda. The first
partition, /dev/sda1, contains an ext2 root filesystem. Partition /dev/sda11 is swap.
Partitions /dev/sda5 through /dev/sda10 contain ext2 filesystems
for /boot, /home, /root, /tmp, /usr, and /var, respectively. All of the local ext2 parti-
tions are to be checked by fsck and dumped. Entries for the floppy disk (/dev/fd0),
CD-ROM (/dev/hdc), and IDE Zip drive (/dev/hdd) hold appropriate mount proper-
ties, making manual mounting of these devices simple. Finally, this example shows
a remote NFS mount of directory /share of system fs1. It is mounted locally at /fs1.

The /etc/fstab file is automatically created when Linux is installed and is based on
the partitioning and mount point configuration specified. This file can be changed
at any time to add devices and options, tailoring the filesystem to meet your specific
needs.

On the Exam
You should memorize the functions of each column in /etc/fstab and be prepared
to answer questions on each.

162 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Mounting Filesystems
Filesystems are mounted using the mount command. At boot time, those filesystems
with a nonzero pass number in /etc/fstab are checked and automatically mounted.
Later, you can run mount manually to add other filesystems to the filesystem
hierarchy.

mount

Syntax
mount [options] device
mount [options] directory
mount [options] device directory

Description
Used to mount filesystems into the filesystem hierarchy. The first and second forms con-
sult /etc/fstab and mount the filesystem located on device or intended to be attached to direc
tory, respectively. In both cases, information necessary to complete the mount operation is
taken from /etc/fstab. The third form is independent of /etc/fstab and mounts the filesystem on
device at mount point directory.

The mount command accepts two kinds of options: command-line and mount. The command-
line options provide general direction for the mount command. The mount options are used to
specify additional information about the device being mounted.

Command-line options

-a
Mounts all of the partitions specified in /etc/fstab, except those with the noauto option.

-h
Displays help on the mount command.

-o mount_options
Specifies mount options on the command line.

-r
Mounts the filesystem as read-only.

-t fstype
Specifies that the filesystem to be mounted is of type fstype. This option is typically used
interactively when no entry for the mount exists in /etc/fstab.

-v
Sets verbose mode.

-w
Mounts the filesystem in read/write mode.

Mount options
A number of parameters are available as options for mounting filesystems. These options may
be specified in /etc/fstab or as arguments of the -o command-line mount argument. These options
modify the way mount configures the mounted filesystem. Some of the options can provide

mount

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 163

Devices, Filesys-
tem

s, FHS

added security by controlling some operations on the filesystem. Others protect the filesystem
from damage. Here is a partial list:

async
Establishes asynchronous I/O to the mounted filesystem. The opposite is sync.

auto
Enables a mount specification in /etc/fstab to be processed with the -a command-line op-
tion, as needed at boot time. The opposite is noauto.

defaults
Implies rw, suid, dev, exec, auto, nouser, and async. It is commonly found on /etc/fstab
entries for ext2 and ext3 mount points.

dev
Interprets character or block special devices on the filesystem.

exec
Enables the execution of programs contained on the mounted partition. The opposite is
noexec.

noauto
Prohibits automatic mounting with the -a option. This is usually specified for removable
media.

noexec
Prohibits the execution of executable programs, a potential security measure.

nosuid
Disables the effect of suid or sgid bits on executable files.

nouser
Forbids nonroot users from mounting and unmounting the filesystem. See user and
users for the opposite effect.

ro
Equivalent to specifying the command-line option -r.

rw
Equivalent to specifying the command-line option -w.

suid
Enables the effect of suid and sgid bits on executable files.

sync
Establishes synchronous I/O to the mounted filesystem. The opposite is async.

user
Allows an ordinary user to mount the filesystem but prohibits other ordinary users from
unmounting it. This is useful for removable media that an individual requires control over.
See also users.

users
Allows any user to mount and unmount the filesystem.

Note that the user and users options make the mount and umount commands available to non-
root users. This may be important for some systems where end users must have the ability to
mount removable media.

mount

164 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

The prevalence of removable media such as USB flash drives has caused the majority of Linux
distributions to be configured by default to mount these devices automatically when they are
plugged into a USB port. These devices are usually mounted under the directory /media and are
given a directory name that matches the label name of the partition. For example, if the partition
on my USB flash drive is labeled “USBDISK”, it will be automatically mounted under the di-
rectory /media/USBDISK when I plug it into a USB slot. Although the device is mounted auto-
matically, there is no way to unmount it automatically, and you must be careful of potential
data loss if you remove a device like this before Linux is done writing data to it. The umount
command (described later in this chapter) is required in order to detach this device from the
filesystem, flush all pending disk writes, and allow it to be safely removed. Most Linux distri-
butions also have some sort of GUI tool to handle the unmounting of removable media.

Filesystem types
When mounting a filesystem, the filesystem type should be specified either by using the -t option
to mount or in the third field in /etc/fstab. (If -t is omitted or auto is specified, the kernel will
attempt to probe for the filesystem type. This can be convenient for removable media, where
the filesystem type may not always be the same or even known.) Linux can mount a variety of
filesystems. The following are some of the more popular ones:

ext2
The standard Linux filesystem.

ext3
A journaling filesystem that is backward-compatible with ext2.

msdos
The MS-DOS FAT filesystem, limited to “8.3” filenames (eight characters, a dot, and a
three-character extension).

vfat
Virtual FAT, used instead of msdos when long filenames must be preserved. For example,
you may wish to have access to Windows partitions on systems configured to boot both
Linux and Windows.

ntfs
The native MS Windows partition since Windows 2000.

iso9660
The CD-ROM format.

nfs
Remote servers.

swap
Swap partitions.

proc
This type represents the proc filesystem, which is not really a filesystem at all. The virtual
files found in this virtual filesystem provide a window into the kernel. It is usually mounted
on /proc.

Example 1
Display filesystems currently mounted on the system:

mount
/dev/sda1 on / type ext2 (rw)

mount

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 165

Devices, Filesys-
tem

s, FHS

none on /proc type proc (rw)
/dev/sda5 on /boot type ext2 (rw)
/dev/sda9 on /home type ext2 (rw)
/dev/sda6 on /root type ext2 (rw)
/dev/sda10 on /tmp type ext2 (rw)
/dev/sda8 on /usr type ext2 (rw)
/dev/sda7 on /var type ext2 (rw)
none on /dev/pts type devpts (rw,mode=0622)
/dev/hdd on /mnt/zip type vfat (rw,noexec,nosuid,nodev)

In this example, you can see that most of the filesystems specified in the /etc/fstab from Exam-
ple 7-1 are already mounted.

Example 2
Mount the IDE CD-ROM device found on /dev/hdc to the existing directory /mnt/cdrom (read-
only, of course):

mount -rt iso9660 /dev/hdc /mnt/cdrom

Note that without the -r option, you will receive a warning but still get appropriate results:

mount -t iso9660 /dev/hdc /mnt/cdrom
mount: block device /dev/hdc is write-protected,
mounting read-only

Another option would be to add the following to /etc/fstab:

/dev/hdc /mnt/cdrom iso9660 ro 0 0

Then the device can be mounted with just mount /mnt/cdrom.

Example 3
Mount an MS-DOS floppy in the first floppy disk drive /dev/fd0 (A: in MS-DOS) to the existing
directory /mnt/floppy:

mount -t msdos /dev/fd0 /mnt/floppy

Example 4
The filesystems mounted at /home and /opt have been unmounted for some kind of maintenance
and are now remounted using the -a option:

mount -av
mount: /dev/hda5 already mounted on /root
mount: /dev/hda9 already mounted on /usr
mount: /dev/hda7 already mounted on /var
mount: none already mounted on /proc
mount: none already mounted on /dev/pts
/dev/hda10 on /home type ext2 (rw)
/dev/hda8 on /opt type ext2 (rw)

Note that mount should work silently without the -v option. It also safely skips filesystems that
have been previously mounted.

Unmounting Filesystems
Filesystems can be unmounted using the umount command. When a filesystem is
unmounted, the buffers of the filesystem are synchronized with the actual contents

mount

166 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

on disk and the filesystem is made unavailable, freeing the mount point. If the file-
system is busy, umount yields an error. This will happen, for example, when the
filesystem contains open files or when a process has a working directory within the
filesystem. Other less obvious errors can occur when removable media are ex-
changed without being unmounted first.

umount

Syntax
umount [options] device
umount [options] directory

Description
Unmount the filesystem on device or mounted on directory.

-a
Unmounts all of the filesystems described in /etc/mtab. This file is maintained by the
mount and umount commands and contains an up-to-date list of mounted filesystems.
This option is typically used at shutdown time.

-t fstype
Unmounts only filesystems of type fstype.

Example 1
Unmount the CD-ROM mounted on /dev/hdc at /mnt/cdrom:

umount /mnt/cdrom

or:

umount /dev/hdc

Example 2
Unmount all NFS filesystems:

umount -at nfs

On the Exam
Be sure that you understand how to use mount and mount points and how /etc/
fstab is used when mounting files.

Objective 4: Set and View Disk Quotas
Managing disk space can be a difficult problem. The available space is a finite re-
source and is often consumed at an alarming rate, turning today’s carefully sized
filesystem into tomorrow’s expansion requirement. On multiuser systems—no mat-
ter how big the filesystem—users will find a way to fill it. The last thing you want
is for a filesystem to fill to capacity too early. One way to prevent this from happening

Objective 4: Set and View Disk Quotas | 167

Devices, Filesys-
tem

s, FHS

is to enforce disk quotas, which allow you to assign a limit to the amount of space
individual users or groups have on a filesystem.

A typical quota size is usually much smaller than the filesystem it is configured on,
thus preventing the user or group from consuming too much space. Quotas can be
configured for each filesystem mentioned in /etc/fstab, though they are usually ap-
plied only where multiple end users store files (e.g., /home/username). There is no
need for a quota on /usr, for example, since end users cannot store files there. Quotas
may be configured for individual users listed in /etc/passwd and for groups listed
in /etc/group.

Quota Limits
Each filesystem has up to five types of quota limits that can be enforced on it. These
limits are specified in disk blocks, usually 1,024 bytes each:

Per-user hard limit
The hard limit is the maximum amount of space an individual user can have on
the system. Once the user reaches his quota limit, he won’t be allowed to write
files to the disk.

Per-user soft limit
Each user is free to store data on the filesystem until reaching her soft limit. The
soft limit implements a sort of warning zone, instructing the user to clean up
while still allowing her to work. When the amount of data exceeds this limit
but does not exceed the hard limit, a message is printed on the user’s terminal,
indicating that her quota has been exceeded; however, the write operation will
succeed.

Per-group hard limit
This is the final limit set for a group by the quota system. Once this limit has
been reached, none of the users within that group will be allowed to write files
to the disk—even if the user’s individual limits are not exceeded.

Per-group soft limit
This limit behaves in the same way as a user’s soft limit but is enforced based
on group ownership instead of individual ownership.

Grace period
Once a soft limit is reached, the user or group enters the grace period. After the
grace period expires, the soft limit becomes a hard limit until enough files are
deleted to eliminate the over-quota situation. The grace period may be specified
for any number of months, weeks, days, hours, minutes, or seconds. A typical
value is seven days.

These limits are set using the edquota command, detailed in the next section.

168 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

When a disk write exceeds a hard limit or an expired soft limit,
only part of the write operation will complete, leaving a trun-
cated and probably useless file. The messages reported to the
user when a quota is exceeded may be lost if the shell he is using
is hidden (for example, if the user is writing to the disk through
an SMB share from a Windows system). This could confuse the
user because the error message generated by the application in-
dicates that the disk is full or write-protected.

Quota Commands
Linux offers a host of commands to manage, display, and report on filesystem
quotas. Some of the setup required to initially enable quotas is done manually and
without specific quota commands, a process that is covered in the next section.

quota

Syntax
quota [-u] [options] user
quota -g [options] group

Description
Displays quota limits on user or group. The -u option is the default. Only the superuser may
use the -u flag and user to view the limits of other users. Other users can use the -g flag and
group to view only the limits of groups of which they are members, provided that the
quota.group files are readable by them.

Frequently used options

-q
Sets quiet mode, which shows only over-quota situations.

-v
Enables verbose mode to display quotas even if no storage space is allocated.

Example 1
As root, examine all quotas for user jdoe:

quota -uv jdoe
Disk quotas for user jdoe (uid 500):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 9456 10000 10200 32 0 0
/dev/hda1 23 0 0 17 0 0

This example shows that jdoe is barely within her soft limit of 10,000 blocks, with a corre-
sponding hard limit of 10,200 blocks on /dev/sda9, and has no quota on /dev/hda1. The entry
for /dev/hda1 is displayed in response to the -v option. No values are shown for the grace periods,
because the soft limit has not been exceeded.

quota

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 169

Devices, Filesys-
tem

s, FHS

Example 2
As user jdoe, examine quotas for the finance group, of which he is a member:

$ quota -gv finance
Disk quotas for group finance (gid 501):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 1000* 990 1000 6days 34 3980 4000
/dev/hda1 0 0 0 0 0 0

Here, the finance group has exceeded its meager soft limit of 990 blocks and has come up against
its hard limit of 1,000 blocks. (The write operation that wrote the 1,000th block was probably
incomplete.) The original grace period in this example was set to seven days and has six days
remaining, meaning that one day has elapsed since the soft limit was exceeded.

quotaon

Syntax
quotaon [options] [filesystems]
quotaon [options] -a

Description
Enable previously configured disk quotas on one or more filesystems.

Frequently used options

-a
Turns quotas on for all filesystems in /etc/fstab that are marked read-write with quotas.
This is normally used automatically at boot time to enable quotas.

-g
Turns on group quotas. This option is not necessary when using the -a option, which
includes both user and group quotas.

-u
Turns on user quotas; this is the default.

-v
Enables verbose mode to display a message for each filesystem where quotas are turned on.

Example 1
Turn on all quotas as defined in /etc/fstab:

quotaon -av
/dev/sda9: group quotas turned on
/dev/sda9: user quotas turned on
/dev/hda1: group quotas turned on
/dev/hda1: user quotas turned on

Example 2
Turn on user quotas only on the /home filesystem:

quotaon -gv /home
/dev/sda9: group quotas turned on

quotaon

170 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

quotaoff

Syntax
quotaoff [options] [filesystems]
quotaoff [options] -a

Description
Disables disk quotas on one or more filesystems.

Frequently used options

-a
Turns quotas off for all filesystems in /etc/fstab.

-g
Turns off group quotas. This option is not necessary when using the -a option, which
includes both user and group quotas.

-u
Turns off user quotas; this is the default.

-v
Enables verbose mode to display a message for each filesystem where quotas are turned off.

Example
Turn off all quotas:

quotaoff -av
/dev/sda9: group quotas turned off
/dev/sda9: user quotas turned off
/dev/hda1: group quotas turned off
/dev/hda1: user quotas turned off

quotacheck

Syntax
quotacheck [options] filesystems
quotacheck [options] -a

Description
Examine filesystems and compile quota databases. This command is not specifically called out
in the LPI Objectives for Exam 101, but is an important component of the Linux quota system.
You should run the quotacheck -a command on a regular basis (perhaps weekly) via cron.

Frequently used options

-a
Checks all of the quotas for the filesystems mentioned in /etc/fstab. Both user and group
quotas are checked as indicated by the usrquota and grpquota options.

quotacheck

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 171

Devices, Filesys-
tem

s, FHS

-g group
Compiles information only on group.

-u user
Compiles information only on user; this is the default action. However, if the -g option is
specified, then this option also should be specified when both group and user quotas are
to be processed.

-v
Enables verbose mode to display information about what the program is doing. This op-
tion shows activity by displaying a spinning character in the terminal. This is nice but
could be a problem if you are logged in over a slow modem link.

Example 1
Initialize all quota files:

quotaoff -a
quotacheck -aguv
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group
Scanning /dev/hda1 [/mnt/hd] done
Checked 3534 directories and 72673 files
Using quotafile /mnt/hd/quota.user
Using quotafile /mnt/hd/quota.group
quotaon -a

By turning off quotas during the update, the quota database files are updated.

Example 2
With quotas active, update the user quotas in memory for /home:

quotacheck -v /home
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Updating in-core user quotas

edquota

Syntax
edquota [-p proto-user] [options] names
edquota [options] -t

Description
Modify user or group quotas. This interactive command uses a text editor to configure quota
parameters for users or groups. The vi editor is used by default unless either the EDITOR or
VISUAL environment variables are set to another editor, such as emacs. When the command is
issued, the editor is launched with a temporary file containing quota settings. When the tem-
porary file is saved and the editor is terminated, the changes are saved in the quota databases.

edquota

172 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

In the first form, a space-separated list of users or groups specified in names is modified. If proto-
user is specified with the -p option, quotas of that user or group are copied and used for
names and no editor is launched. In the second form with the -t option, the soft limit settings
are edited interactively for each filesystem.

Frequently used options

-g
Modify group quotas. If -g is specified, all names are assumed to be groups and not users,
even if -u is also specified.

-p proto-user
Duplicate the quotas of the prototypical user or group proto-user for each user or group
specified. This is the normal mechanism used to initialize quotas for multiple users or
groups at the same time.

-t
Modify soft limits. Time units of sec(onds), min(utes), hour(s), day(s), week(s), and
month(s) are understood.

-u
Modify user quotas. This is the default action. This option is ignored if -g is also specified.

The following examples use the vi editor. The contents of the
edit buffer, not program output, are shown after each example.

Example 1
Modify the user quotas for jdoe:

edquota -u jdoe
Quotas for user jdoe:
/dev/sda9: blocks in use: 87, limits (soft = 99900, hard = 100000)
 inodes in use: 84, limits (soft = 0, hard = 0)
/dev/hda1: blocks in use: 0, limits (soft = 0, hard = 0)
 inodes in use: 0, limits (soft = 0, hard = 0)
~
~
"/tmp/EdP.auHTZJ0" 5 lines, 241 characters

Here, jdoe has been allocated a soft limit of 99,900 blocks (which on a default Linux ext2 or
ext3 filesystem with a 4k block size means 390 MB), a hard limit of 100,000 blocks (only 400
KB higher than the soft limit), and no limit on the number of files on /dev/sda9. She has no limits
on /dev/hda1.

Example 2
Modify soft limits for users on all filesystems:

edquota -tu
Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for users:
/dev/sda9: block grace period: 7 days,
 file grace period: 3 days

edquota

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 173

Devices, Filesys-
tem

s, FHS

/dev/hda1: block grace period: 7 days,
 file grace period: 3 days
~
~
"/tmp/EdP.aiTShJB" 5 lines, 249 characters

Here, the user grace periods have been set to seven days for blocks (disk space) and three days
for files (inodes).

repquota

Syntax
repquota [options] filesystems
repquota -a [options]

Description
Used to report on the status of quotas. In the first form, repquota displays a summary report on
the quotas for the given filesystems on a per-user or per-group basis. In the second form, the
-a option causes a summary for all filesystems with quotas to be displayed. This command fails
for nonroot users unless the quota database files are world-readable. The current number of
files and the amount of space utilized are printed for each user, along with any quotas created
with edquota.

Frequently used options

-a
Report on all of the quotas for the read-write filesystems mentioned in /etc/fstab. Both user
and group quotas are reported as indicated by the usrquota and grpquota options.

-g
Report quotas for groups.

-u
Report quotas for users; this is the default action.

-v
Enable verbose mode, which adds a descriptive header to the output.

Example
Report user quotas for /home:

repquota -v /home
*** Report for user quotas on /dev/sda9 (/home)
 Block limits File limits
User used soft hard grace used soft hard grace
root -- 418941 0 0 269 0 0
328 -- 1411 0 0 20 0 0
jdean -- 9818 99900 100000 334 0 0
u1 -- 44 0 0 43 0 0
u2 -- 44 0 0 43 0 0
u3 -- 127 155 300 124 0 0
jdoe -- 87 99900 100000 84 0 0
bsmith -- 42 1990 2000 41 0 0

repquota

174 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Enabling Quotas
To use quotas, they must first be enabled. Quota support must also be compiled
into the kernel. In the unlikely event that your kernel does not contain quota support,
you will need to recompile the kernel. This is not a difficult process, but unfortu-
nately it is not completely straightforward either. To clarify the procedure, this sec-
tion provides a brief tutorial on how to enable user and group quotas for a filesystem
on /dev/sda9 mounted under /home. Note that you may enable user quotas only,
group quotas only, or both, as your needs dictate.

1. Set options in /etc/fstab. On the line containing the /home filesystem, add the
usrquota and grpquota options to the existing default option, like this:

/dev/sda9 /home ext2 defaults,usrquota,grpquota 1 2

These options tell quota configuration utilities which partitions should be man-
aged when the utilities reference /etc/fstab.

2. Create the quota.user and quota.group files at the top of the /home filesystem
and set their protection bits for root access only:

touch /home/quota.user /home/quota.group
chmod 600 /home/quota.user /home/quota.group

These two files are the databases for user and group quotas. Each filesystem
with quotas uses its own quota databases. When quotas are enabled, these files
will contain binary data (that is, they’re not text files). Note that if you want
end users to be able to examine quotas on groups to which they belong,
quota.group will need a protection mode of 644 instead of 600.

3. Run quotacheck to initialize the databases:

quotacheck -avug
Scanning /dev/sda9 [/home] done
Checked 236 directories and 695 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group

4. Then, verify that your quota database files have been initialized by noting that
they are no longer of size zero (here they are 16,192 bytes each):

ls -al /home/quota.*
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.group
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.user

5. Run quotaon to enable the quota system:

quotaon -a

6. Verify that your system’s initialization script (/etc/rc.d/rc.sysinit or similar) will
turn on quotas when your system boots. Something along these lines is appro-
priate, although your system may be very different:

if [-x /sbin/quotacheck]; then
 echo "Checking quotas."
 /sbin/quotacheck -avug
 echo " Done."
fi

repquota

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 175

Devices, Filesys-
tem

s, FHS

if [-x /sbin/quotaon]; then
 echo "Turning on quotas."
 /sbin/quotaon -avug
fi

7. Add a command script to a system crontab directory (such as the directory /etc/
crontab.weekly) to execute quotacheck on a routine basis. An executable script
file like the following will work:

#!/bin/bash
exec /sbin/quotacheck -avug

If you prefer, you could instead put /sbin/quotacheck in root’s crontab file (using
the crontab -e command) for weekly execution, like this:

run quotacheck weekly
0 3 * * 0 /sbin/quotacheck -avug

At this point, the /home filesystem is ready to accept quotas on a per-user and per-
group basis, enforce them, and report on them.

On the Exam
A general understanding of quotas is necessary for the exam. In particular, you
should know the function of each command. Also remember that quotas are set
on a per-filesystem basis.

Objective 5: Manage File Permissions and Ownership
Filesystem security is a fundamental requirement for any multiuser operating sys-
tem. The system’s files, such as the kernel, configuration files, and programs, must
be protected from accidents and tampering by unauthorized people. Users’ files
must be protected from modification by other users and sometimes must be kept
completely private. In general, a form of access control must be implemented to allow
secure operations.

Linux Access Control
Native Linux filesystem access control is implemented using a set of properties,
maintained separately for each file. These properties are collectively called the access
mode, or simply the mode, of the file. The mode is a part of the file’s inode, the
information retained in the filesystem that describes the file. A file’s mode controls
access by these three classes of users:

User
The user who owns the file

Group
The group that owns the file

Other
All other users on the system

176 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Like the mode, user and group ownership properties are a part of the inode, and
both are assigned when a file is created. Usually, the owner is the user who created
the file. The file’s group is usually set to its creator’s default group. Group ownership
adds flexibility in situations in which a team shares files. The “other” users are those
who aren’t members of the file’s group and are not the file’s owner. For each of these
three user classes, the access mode defines three types of permissions, which apply
differently for files and directories. The permissions are listed in Table 7-2.

Table 7-2. File permissions

Permission Mnemonic File permission Directory permission

Read r Examine the contents of the file. List directory contents.

Write w Write to or change the file. Create and remove files in the directory.

Execute x Run the file as a program. Access (cd into) the directory.

These three permissions apply to the three different classes of users: user, group, and
other. Each has read, write, and execute permissions, as shown in Figure 7-1.

Figure 7-1. Access mode bits

All of the permissions are binary (either granted or not granted) and are thought of
as single binary bits in the access mode. When displayed by commands such as ls,
the permissions use the mnemonic in Table 7-2 for the true state and a hyphen for
the false state. To represent only the read permission, for example, r-- would be
used. Read and execute together, typical for directories, would be denoted r-x. These
notations are usually offered in sets of three, such as:

rw-rw-r--

A file with this setting would give read/write permission to the user and group, and
read-only permission to everyone else.

In addition to the nine bits for user, group, and other, the access mode contains
three more bits, which control special attributes for executable files and directories:

SUID
The SUID property is for executable files only and has no effect on directories.
Normally the user who launches a program owns the resulting process. How-
ever, if an executable file has its SUID bit set, the file’s owner owns the resulting

Objective 5: Manage File Permissions and Ownership | 177

Devices, Filesys-
tem

s, FHS

process, no matter who launched it. When SUID is used, the file’s owner is
usually root. This offers anyone temporary root access for the duration of the
command. An example of an SUID program is passwd. This command needs
special access to manipulate the shadow password file (/etc/shadow), and runs
as user root.

Using the SUID bit in cases like passwd enhances security by allowing access to
secure functions without giving away the root password. On the other hand,
SUID can be a security risk if access is granted unwisely. For example, consider
a situation where /bin/vi was set to SUID mode. Any user would be able to edit
any file on the system!

SGID
The SGID property works the same way as SUID for executable files, setting
the process group owner to the file’s group. In addition, the SGID property has
a special effect on directories. When SGID is set on a directory, new files created
within that directory are assigned the same group ownership as the directory
itself. For example, if directory /home/fin has the group finance and has SGID
enabled, then all files under /home/fin are created with group ownership of
finance, regardless of the creator’s group. This is an important attribute for
teams, ensuring that shared files all have the same group ownership.

Sticky
At one time, the sticky bit applied to executable programs, flagging the system
to keep an image of the program in memory after the program finished running.
This capability increased performance for subsequent uses by eliminating the
programs’ load phase, and was applied to programs that were large or were run
frequently. Modern virtual memory techniques have made this use unnecessary,
and under Linux there is no need to use the sticky bit on executable programs.

When applied to a directory, the sticky bit offers additional security for files
within the directory. Regardless of file permissions, the only users who can
rename or delete the files from a directory with the sticky bit set are the file
owner, the directory owner, and root. When used in a team environment, the
sticky bit allows groups to create and modify files but allows only file owners
the privilege of deleting or renaming them. The /tmp directory on Linux systems
usually has the sticky bit set, to allow any user to write to it, but allow only the
file owner to delete files or directories.

Like the other access controls, these special properties are binary and are considered
bits in the access mode.

The mode bits

The special, user, group, and other permissions can be represented in a string of 12
binary bits, as shown in Figure 7-2.

It is common to refer to these bits in four sets of three, translated into four octal
(base-8) digits. The first octal digit represents the special permissions SUID, SGID,
and sticky. The other three represent the read, write, and execute permissions, re-
spectively, in each of the user, group, and other user classes. Octal notation is used

178 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

as shorthand for binary strings such as the access mode, and each group of three bits
has 23 = 8 possible values, listed in Table 7-3.

The read permission by itself is r--, which can be thought of as binary 100, or octal
4. Adding the write permission yields rw-, or binary 110, which is octal 6. Fig-
ure 7-2 shows how to total bit values into the octal equivalents. Memorizing, or even
writing, the binary-to-octal equivalents may be easier on the exam than adding bit
values. Use the technique that works best for you.

Table 7-3. Octal numbers

Octal value Binary equivalent

0 000

1 001

2 010

3 011

4 100

5 101

Figure 7-2. Changing permission bits to an octal number

Objective 5: Manage File Permissions and Ownership | 179

Devices, Filesys-
tem

s, FHS

Octal value Binary equivalent

6 110

7 111

To turn the mode bits 110111101001 into an octal representation, first separate them
into chunks of three bits: 110, 111, 101, and 001. The first group, representing the
special permissions, is 110. This can be thought of as 4 + 2 + 0 = 6. The second
group, representing user permissions, is 111, or 4 + 2 + 1 = 7. The third group,
representing group permissions, is 101, or 4 + 0 + 1 = 5. The last group, representing
other permissions, is 001, or 0 + 0 + 1 = 1. The mode string for this example can
then be written as the octal 6751.

This is the form used to display the file mode in the output from the stat command.
Here, the octal access mode for the mount command is 4755:

stat /bin/mount
 File: `/bin/mount'
 Size: 69100 Blocks: 144 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 14671934 Links: 1
Access: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2009-08-07 15:40:29.000000000 -0500
Modify: 2009-06-01 06:17:46.000000000 -0500
Change: 2009-06-29 14:37:58.000000000 -0500

The special permissions are represented in this example by octal 4, or binary 100,
indicating that the SUID permission is set (-rws). The user permission is octal 7, or
binary 111, indicating read, write, and execute for the file’s owner (in this case,
root). Both the group and other permissions are set to octal 5, or binary 101, indi-
cating read and execute, but not write.

The mode string

As mentioned earlier, the user, group, and other permissions are often spelled out
in symbolic mode descriptions such as rwxr-xr-x. This notation is found in the out-
put of the ls -l and stat commands. As you can see in the access mode for mount, this
scheme is modified slightly in the presence of special permissions. Instead of adding
three more bits to the left of rwxr-xr-x, the SUID permission is indicated in the string
by changing the user execute position from x to s. SGID permission is handled the
same way. The sticky permission is indicated by replacing x in the other execute
position with T. For example, an executable program with mode 6755 would have
the following equivalent symbolic mode:

rwsr-sr-x

A directory with mode 1774 would have this equivalent string:

rwxr-xr-T

While this layering of special permissions may appear to obscure the underlying
execute permissions, it makes sense. The special permissions are relatively rare in
the filesystem, so depicting the three extra bits would waste space on your terminal
or terminal window. When the executable bits are set, the setuid and setgid bits are

180 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

represented with s. When the executable bits are not set, the setuid and setgid bits
are represented with S. Similarly, the sticky bit is represented with either t or T.

Setting Access Modes
New files are created with a default access mode to automatically set the permission
levels. Regardless of your default umask, access modes on existing files can be
changed or modified at will.

New files

When new files are created, the protection bits are set according to the user’s default
setting. That default is established using the umask command, probably in a startup
script. This command accepts only one argument, which is a three-digit octal string
that masks the user, group, and other permission bits for newly created files and
directories. Without a value, umask reports the current value:

$ umask
0022

When provided with an integer, umask sets the value for the current shell:

$ umask 2
$ umask
0002

A umask of 22 can be rewritten as 022, or as 000010010 in binary.

The process of creating the initial mode for newly created files begins with a raw
initial mode string, as defined in Table 7-4.

Table 7-4. Initial access modes

Form For files For directories

Symbolic rw-rw-rw- rwxrwxrwx

Binary 110110110 111111111

Octal 6 6 6 7 7 7

The special bits are always turned off and are not masked by the umask. When a file
is created, the umask is subtracted from 666; for directories, it is subtracted from
777. This calculation yields the effective protection mode for the file or directory.
For example, a umask of 22 (022) is applied to a new file, masking the write per-
mission for group and other user classes:

 110 110 110
- 000 010 010

 110 100 100

This is the same as mode 644, or rw-r--r--.

Objective 5: Manage File Permissions and Ownership | 181

Devices, Filesys-
tem

s, FHS

Using the same mask on a directory yields a similar result:

 111 111 111
- 000 010 010

 111 101 101

This is the same as mode 755, or rwxr-xr-x, which is appropriate for directories. A
umask of 002 or 022 is typical, although if you wish to ensure maximum privacy, a
umask of 077 blocks all access except for the superuser. To set a custom umask,
enter the umask command in a startup script, such as ~/.bash_profile. Here’s an
example of the umask in action:

$ umask 27
$ touch afile
$ mkdir adir
$ ls -ld adir afile
drwxr-x--- 2 jdean jdean 1024 Jan 2 20:31 adir
-rw-r----- 1 jdean jdean 0 Jan 2 20:31 afile

In this case, the umask of 27 makes the file afile read-only to members of the group
and disallows access to the file to all others.

As you can see in the output of the previous example, ls adds an extra letter at the
beginning of the mode string for the adir directory. This symbol indicates the type
of file being listed and is not part of the access mode. The letter d indicates a directory,
a - indicates a file, the letter l indicates a symbolic link, a b indicates a block device
(such as a disk), and a c indicates a character device (such as a terminal).

Changing access modes

Access modes can be changed with the chmod command, which accepts either oc-
tal or symbolic access mode specifications. Octal bits, as shown in the previous sec-
tion, are specified explicitly. However, some people prefer to use symbolic forms
because they usually modify an existing mode instead of completely replacing it.
Symbolic mode specifications have three parts, made up of individual characters, as
shown in Table 7-5.

Table 7-5. Symbolic modes for the chmod command

Category Mode Description

User class u User

 g Group

 o Other

 a All classes

Operation - Take away permission

 + Add permission

 = Set permission exactly

Permissions r Read permission

 w Write permission

182 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Category Mode Description

 x Execute permission

 X Execute permission for directories and files with another execute permission, but not plain files

 s SUID or SGID permissions

 t Sticky bit

The individual user class characters and permissions characters may be grouped to
form compound expressions, such as ug for user and group combined or rw for read
and write. Here are some examples of symbolic mode specifications:

u+x
Add execute permission for the user.

go-w
Remove write permission from group and other classes.

o+t
Set the sticky bit.

a=rw
Set read and write, but not execute, permissions for everyone.

a+X
Give everyone execute permission for directories and for those files with any
existing execute permission.

The chmod command is used to modify the mode.

chmod

Syntax
chmod [options] symbolic_mode[,symbolic_mode]...files
chmod [options] octal_mode files
chmod [options] --reference=rfile files

Description
Modify the access mode on files. In the first form, use one or more comma-separated sym
bolic_mode specifications to modify files. In the second form, use an octal_mode to modify
files. In the third form, use the mode of rfile as a template to be applied to files.

Frequently used options

-c
Like verbose mode, but report only changes.

-R
Use recursive mode, descending through directory hierarchies under files and making
modifications throughout.

-v
Use verbose behavior, reporting actions for all files.

chmod

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 183

Devices, Filesys-
tem

s, FHS

Example 1
Set the mode for a file to rw-r--r--, using an octal specification:

$ chmod 644 afile
$ ls -l afile
-rw-r--r-- 1 jdean jdean 0 Jan 2 20:31 afile

Example 2
Set the same permission using a symbolic specification, using the verbose option:

$ chmod -v u=rw,go=r afile
mode of afile retained as 0644 (rw-r--r--)

Example 3
Recursively remove all permissions for other on a directory:

$ chmod -R -v o-rwx adir
mode of adir retained as 0770 (rwxrwx---)
mode of adir/file1 changed to 0660 (rw-rw----)
mode of adir/file2 changed to 0660 (rw-rw----)
mode of adir/file3 changed to 0660 (rw-rw----)
mode of adir/file4 changed to 0660 (rw-rw----)
mode of adir/dir1 changed to 0770 (rwxrwx---)
mode of adir/dir1/file6 changed to 0660 (rw-rw----)
mode of adir/dir1/file5 changed to 0660 (rw-rw----)
mode of adir/dir2 changed to 0770 (rwxrwx---)

Example 4
Set the sticky bit on a directory:

$ chmod -v +t adir
mode of adir changed to 1770 (rwxrwx--T)

Modification of ownership parameters may become necessary when moving files, setting up
workgroups, or working in a user’s directory as root. This is accomplished using the chown
command, which can change user and group ownership, and the chgrp command for modifying
group ownership.

chown

Syntax
chown [options] user-owner files
chown [options] user-owner. files
chown [options] user-owner.group-owner files
chown [options] .group-owner files
chown [options] --reference=rfile files

Description
Used to change the owner and/or group of files to user-owner and/or group-owner. In the first
form, user-owner is made the owner of files and the group is not affected. In the second form
(note the trailing dot on user-owner), the user-owner is made the owner of files, and the group
of the files is changed to user-owner’s default group. In the third form, both user-owner and

chown

184 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

group-owner are assigned to files. In the fourth form, only the group-owner is assigned to
files, and the user is not affected. In the fifth form, the owner and group of rfile is used as a
template and applied to files. Only the superuser may change file ownership, but group own-
ership may be set by anyone belonging to the target group-owner.

Note that historically BSD systems have used the user.group
syntax, but SysV-based systems have used user:group (: instead
of .). Older versions of GNU chown accepted only the BSD syn-
tax, but recent versions support both.

Frequently used options

-c
Like verbose mode, but report only changes.

-R
Use recursive mode, descending through directory hierarchies under files and making
modifications throughout.

-v
Use verbose behavior, reporting actions for all files.

Example 1
As root, set the user owner of a file:

chown -v jdoe afile
owner of afile changed to jdoe

Example 2
As root, set the user and group owner of a file:

chown -v jdoe.sales afile
owner of afile changed to jdoe.sales

chgrp

Syntax
chgrp [options] group-owner files
chgrp [options] --reference=rfile files

Description
Change the group owner of files to group-owner. In the first form, set the group-owner of
files. In the second form, the group of rfile is used as a template and applied to files. Options
and usage are the same as that of chown.

Example 1
Recursively change the group owner of the entire sales directory:

chgrp -Rv sales sales
changed group of 'sales' to sales

chgrp

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 185

Devices, Filesys-
tem

s, FHS

changed group of 'sales/file1' to sales
changed group of 'sales/file2' to sales
...

Setting Up a Workgroup Directory
The steps you may use to create a useful workgroup directory for a small team of
people are briefly described here. The goals of the directory are as follows:

• The workgroup is to be called sales and has members jdoe, bsmith, and jbrown.

• The directory is /home/sales.

• Only the creators of files in /home/sales should be able to delete them.

• Members shouldn’t worry about file ownership, and all group members require
full access to files.

• Nonmembers should have no access to any of the files.

The following steps will satisfy the goals:

1. Create the new group:

groupadd sales

2. Add the existing users to the group:

usermod –a -G sales jdoe
usermod –a -G sales bsmith
usermod –a -G sales jbrown

3. Create a directory for the group:

mkdir /home/sales

4. Set the ownership of the new directory:

chgrp sales /home/sales

5. Protect the directory from others:

chmod 770 /home/sales

6. Set the SGID bit to ensure that the sales group will own all new files. Also set
the sticky bit to protect files from deletion by nonowners:

chmod g+s,o+t /home/sales

7. Test it:

su - jdoe
$ cd /home/sales
$ touch afile
$ ls -l afile
-rw-rw-r-- 1 jdoe sales 0 Jan 3 02:44 afile
$ exit
su - bsmith
cd /home/sales
rm afile
rm: cannot unlink 'afile': Operation not permitted

chgrp

186 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

After the ls command, we see that the group ownership is correctly set to sales. After
the rm command, we see that bsmith cannot delete afile, which was created by
jdoe. We also note that although afile has mode 664, the directory containing it has
mode 770, preventing other users from reading the file.

On the Exam
For the exam, you should be prepared to answer questions on file and directory
permissions in both symbolic and numeric (octal) forms. You should also be able
to translate between the two forms given an example.

Objective 6: Create and Change Hard and Symbolic Links
Often it is useful to have access to a file in multiple locations in a filesystem. To avoid
creating multiple copies of the file, use a link. Links don’t take up very much space,
as they only add a bit of metadata to the filesystem, so they’re much more efficient
than using separate copies.

There are two types of links used on Linux:

Symbolic links
A symbolic link is simply a pointer to another filename. When Linux opens a
symbolic link, it reads the pointer and then finds the intended file that contains
the actual data. Symbolic links can point to other filesystems, both local and
remote, and they can point to directories. The ls -l command clearly lists them
as links by displaying a special “l” (a lowercase L) in column one, and they have
no file protections of their own (the actual file’s permissions are used instead).

A symbolic link can point to a filename that does not actually exist. Such a
symbolic link is said to be broken or stale.

Hard links
A hard link is not really a link at all; it is simply another directory entry for an
existing file. The two directory entries have different names but point to the
same inode and thus to the same actual data, ownership, permissions, and so
on. In fact, when you delete a file, you are only removing a directory entry (in
other words, one hard link to the file). As long as any directory entries remain,
the file’s inode is not actually deleted. In fact, a file is not deleted until its link
count drops to zero (and the file is no longer open for reading or writing).

Hard links have two important limitations. First, because all of the links to a
file point to the same inode, any hard links must by definition reside on the
same filesystem. Second, hard links cannot point to directories. However, hard
links take no disk space beyond an additional directory entry.

Objective 6: Create and Change Hard and Symbolic Links | 187

Devices, Filesys-
tem

s, FHS

Why Links?
To see an example of the use of links in practice, consider the directories in /etc/
rc.d on a typical RPM-based system:

drwxr-xr-x 2 root root 1024 Dec 15 23:05 init.d
-rwxr-xr-x 1 root root 2722 Apr 15 1999 rc
-rwxr-xr-x 1 root root 693 Aug 17 1998 rc.local
-rwxr-xr-x 1 root root 9822 Apr 13 1999 rc.sysinit
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc0.d
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc1.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc2.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc3.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc4.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc5.d
drwxr-xr-x 2 root root 1024 Dec 14 23:37 rc6.d

Inside init.d are scripts to start and stop many of the services on your system, such
as httpd, crond, and syslogd. Some of these files are to be executed with a start ar-
gument, while others are run with a stop argument, depending on the runlevel of
your system. To determine just which files are run and what argument they receive,
a scheme of additional directories has been devised. These directories are named
rc0.d through rc6.d, one for each runlevel (see Chapter 4 for a complete description
of this scheme). Each of the runlevel-specific directories contains several links, each
with a name that helps determine the configuration of services on your system. For
example, rc3.d contains the following links, among many others:

S30syslog -> ../init.d/syslog
S40crond -> ../init.d/crond
S85httpd -> ../init.d/httpd

All of these links point back to the scripts in init.d as indicated by the arrows (->)
after the script name. If these links were copies of the scripts, editing would be
required for all of the runlevel-specific versions of the same script just to make a
single change. Instead, links allow us to:

• Make changes to the original file once. References to the links will yield the
updated contents as long as the filename doesn’t change.

• Avoid wasting disk space by having multiple copies of the same file in different
places for “convenience.”

As another example, consider the directory for the kernel
source, /lib/modules/kernel_version/build:

build -> /usr/src/linux-2.4.18

Makefiles and other automated tools for building third-party kernel modules can
refer to /lib/modules/`uname –r`/build, but in reality they refer-
ence /usr/src/linux-2.4.18. If a new kernel is added, say, version 2.4.20, its source
would be placed into an appropriately named directory and the build link in the new
modules directory would be set, as follows:

build -> /usr/src/linux-2.4.20

188 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Now the appropriate directory can be selected simply by changing the link. No files
need to be moved or deleted. Once created, links are normal directory entries, which
may be copied, renamed, deleted, and backed up.

Symbolic and hard links are created with the ln command.

ln

Syntax
ln [options] file link
ln [options] files directory

Description
Create links between files. In the first form, a new link is created to point to file, which must
already exist. In the second form, links are created in directory for all files specified.

Hard links are created unless the -s option is specified.

Frequently used options

-f
Overwrite (force) existing links or existing files in the destination directory.

-i
Prompt interactively before overwriting destination files.

-s
Create a symbolic link rather than a hard link.

Example 1
Note that the Bourne shell (sh) on a Linux system is a symbolic link to bash:

$ ls -l /bin/bash /bin/sh
-rwxr-xr-x 1 root root 626028 Feb 11 07:34 /bin/bash
lrwxrwxrwx 1 root root 4 Feb 23 10:24 /bin/sh -> bash

Example 2
Create a file named myfile, a symbolic link to that file named myslink, and a hard link to that
file named myhlink, and then examine them:

$ touch myfile
$ ln -s myfile myslink
$ ln myfile myhlink
$ ls -l my*
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myfile
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myhlink
lrwxrwxrwx 1 jdoe jdoe 6 Jan 3 13:21 myslink -> myfile

Using the stat command on my* demonstrates that myfile and myhlink both ultimately reference
the same inode (the inode numbers are the same) and indicates the number of hard links to the
file:

stat my*
File: 'myfile'
 Size: 0 Blocks: 0 IO Block: 4096 Regular File

ln

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 189

Devices, Filesys-
tem

s, FHS

Device: 3a05h/14853d Inode: 1212467 Links: 2
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-15 21:36:33.000000000 -0600
Modify: 2009-03-15 21:36:33.000000000 -0600
Change: 2009-03-15 21:36:33.000000000 -0600
 File: 'myhlink'
 Size: 0 Blocks: 0 IO Block: 4096 Regular File
Device: 3a05h/14853d Inode: 1212467 Links: 2
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-15 21:36:33.000000000 -0600
Modify: 2009-03-15 21:36:33.000000000 -0600
Change: 2009-03-15 21:36:33.000000000 -0600
 File: 'myslink' -> 'myfile'
 Size: 6 Blocks: 0 IO Block: 4096 Symbolic Link
Device: 3a05h/14853d Inode: 1213365 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-15 21:36:33.000000000 -0600
Modify: 2009-03-15 21:36:33.000000000 -0600
Change: 2009-03-15 21:36:33.000000000 -0600

Note that the symbolic link has an inode of its own, which can also be displayed using the -i
option to ls:

ls -li my*
1212467 -rw-r--r-- 2 root root 0 Mar 15 21:36 myfile
1212467 -rw-r--r-- 2 root root 0 Mar 15 21:36 myhlink
1213365 lrwxrwxrwx 1 root root 6 Mar 15 21:36 myslink -> myfile

Here you can see that the directory entries for myfile and myhlink both point to inode 1212467,
while the directory entry for myslink points to inode 1213365. That inode contains the symbolic
link to myfile.

As another example, consider the two filesystems in Figure 7-3. The root partition on /dev/
sda1 holds a file intended as an example bash startup file, located in /etc/bashrc_user. On the
same filesystem, the root user has elected to use /etc/bashrc_user. Not wanting to maintain both
files individually, root has created a hard link, /root/.bashrc, to the example file.

Both of the directory entries, /etc/bashrc_user and /root/.bashrc, point to the same text data in
the same file, described by the same inode, on /dev/sda1. User jdoe has also elected to link to
the example file. However, since his home directory is located in /home on /dev/sda9, jdoe cannot
use a hard link to the file on /dev/sda1. Instead, he created a symbolic link, /home/
jdoe/.bashrc, which points to a small file on /dev/sda9. This contains the pointer to directory
entry /etc/bashrc_user, which finally points at the text. The result for root and jdoe is identical,
though the two styles of links implement the reference in completely different ways.

Preserving links
Programs such as tar and cp contain options that control whether symbolic links are followed
during operation. In the case of a tar backup, this may be important if you have multiple links
to large files, because you would get many redundant backups of the same data.

When a symbolic link is encountered with cp, the contents of the file to which the link points
are copied, unless the -d option is specified. This “no dereference” operator causes cp to copy
the links themselves instead. For example, consider a directory dir1 containing a symbolic link,
which is recursively copied to other directories with and without the -d option:

Preserving links

190 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

ls -l dir1
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Dec 12 17:12 file2
cp -r dir1 dir2
ls -l dir2
total 3117
-rw-r--r-- 1 root root 3164160 Jan 4 02:43 file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2
cp -rd dir1 dir3
ls -l dir3
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2

Directory dir2 has a copy of the entire file1, which is large, probably wasting disk space. Di-
rectory dir3, created with cp -rd, is the same as dir1 (including the symbolic link) and takes very
little space.

Figure 7-3. Hard and symbolic links

Preserving links

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 191

Devices, Filesys-
tem

s, FHS

Finding links to a file
Finding the file pointed to by a symbolic link is simple. The ls -l command displays a convenient
pointer notation, indicating just where links are pointing:

lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1

Going the other way and finding symbolic links to a file is less obvious but is still relatively easy.
The -lname option to the find utility locates them for you by searching for symbolic links
containing the original filename. Here, the entire local filesystem is searched for myfile, turning
up three symbolic links:

find / -lname myfile
/home/world/rootsfile
/home/finance/hisfile
/root/myslink

Remember that symbolic links could be anywhere, which includes a remote system (if you’re
sharing files), so you may not be able to locate them all. (See “Objective 3: Perform Basic File
Management” on page 91, for additional information on the find command).

Since hard links aren’t really links but duplicate directory entries, you can locate them by
searching directory entries for the inode, which is identical in all the links. Unlike symbolic
links, you are guaranteed to find all of the links since hard links cannot cross filesystem boun-
daries. First, identify the inode you’re interested in, as well as the filesystem that contains the
links:

df file1
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda9 1981000 451115 1427473 24% /home
ls -i file
90469 file1file1 is on the /home filesystem, and its inode
number is 90469. Next, find is used with the -inum
option to locate all instances of inode 90469:
find /home -inum 90469
/home/world/file1
/home/finance/file1
/home/jdoe/private/.myfile1

This example turns up three links to file1, including one that user jdoe appears to be hiding!

On the Exam
You should be prepared to identify the differences between hard and symbolic
links, when each is used, and their limitations.

Objective 7: Find System Files and Place Files in the Correct
Location
In 1993, the Linux community formed a project to provide a standardized filesystem
layout for all general-purpose distributions of Linux. The intent of this standardi-
zation was to provide advice on how to reduce the proliferation of proprietary Linux
filesystem layouts and their possible contribution to market fragmentation.

Finding links to a file

192 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

The project released a document describing the Linux Filesystem Standard, usually
abbreviated FSSTND, in 1994. The following year, the group began to reduce Linux-
specific content and to refine the standard to include other Unix or Unix-like oper-
ating systems. As the FSSTND attracted broader appeal, it was renamed the
Filesystem Hierarchy Standard. Although the FHS is not a requirement of Linux
developers and distributors, the Linux community understands the importance of
standards, and all major distributions support the standard.

The full FHS specification is available at http://www.pathname
.com/fhs/. The information in this chapter is consistent with
version 2.3 of the specification.

Datatypes
To frame its recommendations, the FHS defines two categories of data use, each
with two opposing subtypes:

Data sharing
This category defines the scope of data use in a networked environment:

Sharable
Sharable data can be used by multiple host systems on a network. Sharable
files contain general-purpose information, without ties to any specific host.
Examples include user data files, executable program files, and system
documentation.

Nonsharable
Data is not sharable when linked to a specific host, such as a unique con-
figuration file.

Data modification
This category specifies how data changes:

Variable
Data is considered variable when changed by natural, frequent processes.
Examples include user files and system logfiles, such as /var/log/messages.

Static
Static data is left alone for the most part, remaining the same from day to
day or even year to year. Examples include binary programs such as ls and
bash, which change only when the system administrator performs an
upgrade.

Some directories in the Linux filesystem are intended to hold specific types of data.
For example, the executable files in /usr are rarely changed, and thus could be defined
as static because they are needed by all users on a network. Before disks were as large
as they are today, the files commonly found in /usr were often mounted from remote
servers to preserve local disk space. Thus, in addition to being static, /usr is said to
be sharable. Keeping files organized with respect to these attributes can simplify file
sharing, system administration, and backup complexity, as well as reduce storage

Objective 7: Find System Files and Place Files in the Correct Location | 193

Devices, Filesys-
tem

s, FHS

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

requirements. The FHS arranges the preceding data categories into a 2 × 2 matrix,
as shown with a few example directories in Table 7-6.

Table 7-6. FHS datatypes

 Sharable Nonsharable

Static /usr

/usr/local

/etc

/boot

Variable /var/mail

/home

/var/log

/proc

On many networks, /usr and /usr/local are mounted by individual workstations from
an NFS server. This can save a considerable amount of local storage on the work-
stations. More importantly, placing these directories on another system can make
upgrades and additions much simpler. These directories are usually shared as read-
only filesystems because they are never modified by most end users. The /var/mail
and /home directories, on the other hand, are shared but must be changed regularly
by users. The /etc and /boot directories contain files that are static in the sense that
only the administrator changes them, but sharing them is not necessary or advised,
because they are local configuration files. The /var/log and /proc directories are very
dynamic but also of local interest only.

The root Filesystem
The FHS offers a significant level of detail describing the exact locations of files,
using rationale derived from the static/variable and sharable/nonsharable defini-
tions. However, knowledge of the location of every file is not necessary or required
for Exam 101. This section discusses the major portions of the FHS directory hier-
archy overall, with specific example files offered as illustrations.

Although the FHS is a defining document for the Linux filesys-
tem, it does not follow that all directories described in the FHS
will be present in all Linux installations. Some directory loca-
tions cited in the FHS are package-dependent or open to cus-
tomization by the vendor.

The root filesystem is located at the top of the entire directory hierarchy. The FHS
defines these goals for the root filesystem:

• It must contain utilities and files sufficient to boot the operating system, in-
cluding the ability to mount other filesystems. This includes utilities, device
files, configuration, boot loader information, and other essential start-up data.

• It should contain the utilities needed by the system administrator to repair or
restore a damaged system.

194 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

• It should be relatively small. Small partitions are less likely to be corrupted due
to a system crash or power failure than large ones are. In addition, the root
partition should contain nonsharable data to maximize the remaining disk
space for sharable data.

• Software should not create files or directories in the root filesystem.

Although a Linux system with everything in a single root partition may be created,
doing so would not meet these goals. Instead, the root filesystem should contain
only essential system directories, along with mount points for other filesystems.
Essential root filesystem directories include:

/bin
The /bin directory contains executable system commands such as cp, date, ln,
ls, mkdir, and more. These commands are deemed essential to system admin-
istration in case of a problem.

/dev
Device files, necessary for accessing disks and other devices, are stored
in /dev. Examples include disk partitions, such as hda1, and terminals, such as
tty1. Devices must be present at boot time for proper mounting and configu-
ration. The exception to this rule is systems using devfs, which is a relatively
recent addition to the Linux kernel that makes /dev a virtual filesystem, much
like /proc, where device-special files are created by the kernel when drivers reg-
ister devices. Use of devfs is currently not covered by the Level 1 Objectives.

/etc
The /etc directory contains configuration information unique to the system and
is required for boot time. No binary executable programs are stored here. Prior
practice in various versions of Unix had administrative executable programs
stored in /etc. These have been moved to /sbin under the FHS. Example files
include passwd, hosts, and login.defs.

/lib
The /lib directory contains shared libraries and kernel modules, both essential
for system initialization.

/mnt
This directory is provided for the local system administrator’s use. Generally,
it is empty except for some mount points for temporary partitions, including
cdrom and floppy.

/root
The recommended default (but optional) home directory for the superuser
is /root. Although it is not absolutely essential for /root to be on the root file-
system, it is customary and convenient, because doing so keeps root’s config-
uration files available for system maintenance or recovery.

/sbin
Essential utilities used for system administration are stored in /sbin. Examples
include fdisk, fsck, and mkfs.

Objective 7: Find System Files and Place Files in the Correct Location | 195

Devices, Filesys-
tem

s, FHS

The remaining top-level directories in the root filesystem are considered nonessential
for emergency procedures:

/boot
The /boot directory contains files for the boot loader (such as LILO or GRUB).
Because it is typically small, it can be left in the root filesystem. However, it is
often separated to keep the boot loader files within the first 1,024 cylinders of
a physical disk.

/home
The /home filesystem contains home directories for system users. This is usually
a separate filesystem and is often the largest variable filesystem in the hierarchy.

/opt
The /opt directory is intended for the installation of software other than that
packaged with the operating system. This is often the location selected by third-
party software vendors for their products.

/tmp
The /tmp directory is for the storage of temporary files. The FHS recommends
(but does not require) that its contents are deleted upon every system boot.

/usr
The /usr filesystem contains a significant hierarchy of executable programs
deemed nonessential for emergency procedures. It is usually contained in a
separate partition. It contains sharable, read-only data, and is often mounted
locally read-only and shared via NFS read-only. /usr is described in detail in the
next section.

/var
Like /usr, the /var filesystem contains a large hierarchy and is usually contained
in a separate partition. It holds data that varies over time, such as logs, mail,
and spools.

The /usr filesystem

The /usr filesystem hierarchy contains system utilities and programs that do not
appear in the root partition. For example, user programs such as less and tail are
found in /usr/bin. /usr/sbin contains system administration commands such as ad-
duser and traceroute, and a number of daemons needed only on a normally operating
system. No host-specific or variable data is stored in /usr. Also disallowed is the
placement of directories directly under /usr for large software packages. An excep-
tion to this rule is made for X11, which has a strong precedent for this location.

The following subdirectories may be found under /usr:

/usr/X11R6
This directory contains files for XFree86. Because X is deployed directly
under /usr on many Unix systems, X breaks the rule that usually prohibits a
custom /usr directory for a software package.

196 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

/usr/bin
The /usr/bin directory is the primary location for user commands that are not
considered essential for emergency system maintenance (and thus are stored
here rather than in /bin).

/usr/include
/usr/include is the standard location for include or header files, used for C and
C++ programming.

/usr/lib
This directory contains shared libraries that support various programs. FHS
also allows the creation of software-specific directories here. For example, /usr/
lib/perl5 contains the standard library of Perl modules that implement pro-
gramming functions in that language.

/usr/local
/usr/local is the top level of another hierarchy of binary files, intended for use
by the system administrator. It contains subdirectories much like /usr itself,
such as /bin, /include, /lib, and /sbin. After a fresh Linux installation, this direc-
tory contains no files but may contain an empty directory hierarchy. Example
items that may be found here are locally created documents in /usr/local/doc
or /usr/local/man, and executable scripts and binary utilities provided by the
system administrator in /usr/local/bin.

/usr/sbin
The /usr/sbin directory is the primary location for system administration com-
mands that are not considered essential for emergency system maintenance (and
thus are stored here rather than in /sbin).

/usr/share
/usr/share contains a hierarchy of datafiles that are independent of, and thus
can be shared among, various hardware architectures and operating system
versions. This is in sharp contrast to architecture-dependent files such as those
in /usr/bin. For example, in an enterprise that uses both i386- and Alpha-based
Linux systems, /usr/share could be offered to all systems via NFS. However,
since the two processors are not binary-compatible, /usr/bin would have two
NFS shares, one for each architecture.

The information stored in /usr/share is static data, such as the GNU info system
files, dictionary files, and support files for software packages.

/usr/src
/usr/src is an optional directory on all modern glibc-based systems. On older
libc4- and libc5-based systems, /usr/src/linux was expected to contain a copy of
the kernel source, or at least the directories include/asm and include/linux for
kernel header files.

On glibc-based systems, nothing should refer to the /usr/src/linux directory. In
fact, leaving kernel source at that location is generally regarded as a bad practice,
since it has the potential to confuse old software.

Objective 7: Find System Files and Place Files in the Correct Location | 197

Devices, Filesys-
tem

s, FHS

The /var filesystem

The /var filesystem contains data such as printer spools and logfiles that vary over
time. Since variable data is always changing and growing, /var is usually contained
in a separate partition to prevent the root partition from filling. The following sub-
directories can be found under /var:

/var/account
Some systems maintain process accounting data in this directory.

/var/cache
/var/cache is intended for use by programs for the temporary storage of inter-
mediate data, such as the results of lengthy computations. Programs using this
directory must be capable of regenerating the cached information at any time,
which allows the system administrator to delete files as needed. Because it holds
transient data, /var/cache never has to be backed up.

/var/crash
This optional directory holds crash dumps for systems that support that feature.

/var/games
This optional directory is used to store state information, user score data, and
other transient items.

/var/lock
Lock files, used by applications to signal their existence to other processes, are
stored here. Lock files usually contain no data.

/var/log
The /var/log directory is the main repository for system logfiles, such as those
created by the syslog system. For example, the default system logfile is /var/log/
messages.

/var/mail
This is the system mailbox, with mail files for each user. /var/mail is a replace-
ment for /var/spool/mail and aligns FHS with many other Unix implementa-
tions. You may find that your Linux distribution still uses /var/spool/mail.

/var/opt
This directory is defined as a location for temporary files of programs stored
in /opt.

/var/run
/var/run contains various files describing the present state of the system. All
such files may be deleted at system boot time. This is the default location for
PID files, which contain the PIDs of the processes for which they are named.
For example, if the Apache web server, httpd, is running as process number
534, /var/run/httpd.pid will contain that number:

cat /var/run/httpd.pid
534

Such files are needed by utilities that must be able to find a PID for a running
process. Also located here is the utmp file, used by commands such as who and
last to display logged-in users.

198 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

/var/spool
The /var/spool directory contains information that is queued for processing.
Examples include print queues, outgoing mail, and crontab files.

/var/state
The /var/state directory is intended to contain information that helps applica-
tions preserve state across multiple invocations or multiple instances.

/var/tmp
As with /tmp in the root filesystem, /var/tmp is used for storage of temporary
files. Unlike /tmp, the files in /var/tmp are expected to survive across multiple
system boots. The information found in /var/tmp could be considered more
persistent than information in /tmp.

Although it is not specified this way in the FHS, some distributions use /var/
tmp as a more secure temporary directory for use by root.

/var/yp
This optional directory contains the database files of the Network Information
Service (NIS), if implemented. NIS was formerly known as yellow pages (not to
be confused with the big yellow book).

This directory shouldn’t be confused with /var/nis, which is used by NIS+.
Oddly, /var/nis is mentioned in a footnote in FHS 2.3, but it does not have an
entry in the specification.

Linux annex

Since FHS migrated away from being a Linux-only document and expanded to cover
other operating systems, information specific to any one operating system was
moved to an annex. The only annex listed in v2.3 of FHS is the Linux annex, which
mentions a few guidelines and makes allowances for the placement of additional
program files in /sbin. The Linux annex also mentions and supports the use of
the /proc filesystem for the processing of kernel, memory, and process information.

Where’s that binary?

Compiled executable files, called binary files, or just binaries, can be located in a
number of places in an FHS-compliant filesystem. However, it’s easy to become a
little confused over why a particular executable file is placed where it is in the FHS.
This is particularly true for bin and sbin directories, which appear in multiple loca-
tions. Table 7-7 lists these directories and shows how each is used.

Table 7-7. Binary file locations

Type of file User commands System administration commands

Vendor-supplied, essential (root filesystem) /bin /sbin

Vendor-supplied, nonessential (/usr filesystem) /usr/bin /usr/sbin

Locally supplied, nonessential (/usr filesystem) /usr/local/bin /usr/local/sbin

Objective 7: Find System Files and Place Files in the Correct Location | 199

Devices, Filesys-
tem

s, FHS

Locating Files
FHS offers the Linux community an excellent resource that assures consistency
across distributions and other operating systems. In practice, however, file location
problems can be frustrating, and the need arises to find files in the system quickly.
These file location tools are required for Exam 101: which, find, locate, whereis, and
type.

which uses the PATH variable to locate executable files. find searches specified areas
in the filesystem. whereis searches in a small subset of common directories. locate
offers a quick alternative to find for filename searches and is suited for locating files
that are not moved around in the filesystem. Without a fresh database to search,
locate is not suitable for files recently created or renamed.

which

Syntax
which command

Description
Determine the location of command and display the full pathname of the executable program that
the shell would launch to execute it. which searches only the user’s path.

Example
Determine the shell that would be started by entering the tcsh command:

which tcsh
/bin/tcsh

which is small and does only one thing: determines what executable program will be found and
called by the shell. Such a search is particularly useful if you’re having trouble with the setup
of your PATH environment variable or if you are creating a new version of an existing utility and
want to be certain you’re executing the experimental version.

find

Syntax
find paths expression

Description
Locate files that match an expression starting at paths and continuing recursively. The find
command has a rich set of expression directives for locating just about anything in the
filesystem.

Example
To find files by name located in the /usr directory hierarchy that might have something to do
with the csh shell or its variants, you might use the -name filename directive:

which

200 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

find /usr -name "*csh*"
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c

Some of these results are clearly related to csh or to tcsh, whereas others are questionable. In
addition, this command may take a while because find must traverse the entire /usr hierarchy,
examining each filename for a match. This example demonstrates that if filename wildcards are
used, the entire string must be quoted to prevent expansion by the shell prior to launching find.

find is among the most useful commands in the Linux administrator’s toolkit and has a variety
of useful options. find is handy in certain cases. For example:

• You need to limit a search to a particular location in the filesystem.

• You must search for an attribute other than the filename.

• Files you are searching for were recently created or renamed, in which case locate may not
be appropriate.

Refer to Chapter 6, for additional information on the find command.

On the Exam
You should have a general understanding of find. Remember that by default,
find prints matching directory entries to the screen. However, detailed knowledge
of find options and usage are beyond the scope of LPIC Level 1 exams.

locate

Syntax
locate patterns

Description
Locate files whose names match one or more patterns by searching an index of files previously
created.

Example
Locate files by name in the entire directory hierarchy that might have something to do with the
csh shell or its variants:

locate csh
/home/jdean/.tcshrc
/root/.cshrc
/root/.tcshrc
/usr/bin/sun-message.csh

locate

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 201

Devices, Filesys-
tem

s, FHS

/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/FAQ
/usr/doc/tcsh-6.08.00/NewThings
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/tcsh-6.08.00/eight-bit.txt
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c
/etc/csh.cshrc
/etc/profile.d/kde.csh
/etc/profile.d/mc.csh
/bin/csh
/bin/tcsh

The locate command must have a recent database to search, and that database must be updated
periodically to incorporate changes in the filesystem. If the database is stale, using locate yields
a warning:

locate tcsh
locate: warning: database /var/lib/slocate/slocate.db' is more \
 than 8 days old

updatedb

Syntax
updatedb [options]

Description
Refresh (or create) the slocate database in /var/lib/slocate/slocate.db.

Option

-e directories
Exclude a comma-separated list of directories from the database.

Example
Refresh the slocate database, excluding files in temporary locations:

updatedb -e "/tmp,/var/tmp,/usr/tmp,/afs,/net,/proc"

updatedb is typically executed periodically via cron.

Additional options
Some Linux distributions (Debian, for example) come with a version of updatedb that accepts
additional options that can be specified on the command line:

--netpaths=‘path1 path2 ... ’
Add network paths to the search list.

updatedb

202 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

--prunepaths=‘path1 path2 ... ’
Eliminate paths from the search list.

--prunefs=‘filesystems ... ’
Eliminate entire types of filesystems, such as NFS.

These options modify the behavior of updatedb on some Linux systems by prohibiting the
parsing of certain filesystem locations and by adding others. There are a few more of these
options than those listed here, but these three are special in that they can also be specified
through the use of environment variables set prior to updatedb execution. The variables are
NETPATHS, PRUNEPATHS, and PRUNEFS. These variables and the options to updatedb are discussed
here because this Objective makes specific mention of updatedb.conf, a sort of control file for
updatedb. Despite its name, updatedb.conf isn’t really a configuration file, but rather a fragment
of a Bourne shell script that sets these environment variables. Example 7-2 shows a sample
updatedb.conf file.

Example 7-2. Sample updatedb.conf file

This file sets environment variables used by updatedb
filesystems which are pruned from updatedb database:
PRUNEFS="NFS nfs afs proc smbfs autofs auto iso9660"
export PRUNEFS
paths which are pruned from updatedb database:
PRUNEPATHS="/tmp /usr/tmp /var/tmp /afs /amd /alex"
export PRUNEPATHS
netpaths which are added:
NETPATHS="/mnt/fs3"
export NETPATHS

In this example, the PRUNEFS and PRUNEPATHS variables cause updatedb to ignore types of filesys-
tems and particular paths, respectively. NETPATHS is used to add network paths from remote
directory /mnt/fs3.

updatedb.conf doesn’t directly control updatedb, but eliminates the need for lengthy options on
the updatedb command line, which can make crontab files a bit cleaner.

On the Exam
Remember that updatedb does not require configuration to execute. On systems
that provide for configuration, updatedb.conf can specify a few extra options to
updatedb by way of environment variables.

whereis

Syntax
whereis [options] filename

Description
whereis locates source/binary and manuals sections for specified files.

whereis

Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 203

Devices, Filesys-
tem

s, FHS

Example
whereis ls
ls: /bin/ls /usr/share/man/man1p/ls.1p.gz /usr/share/man/man1/ls.1.gz

type

Syntax
type [options] filename

Description
type is not actually a separate program, but a built-in part of the bash shell. type will tell you
how a filename would be interpreted if used as a command name.

Example
type ls
ls is aliased to `ls --color=auto'
type grep
grep is hashed (/bin/grep)
type foo
-bash: type: foo: not found

On the Exam
You must be familiar with the FHS concept and the contents of its major direc-
tories. Be careful about the differences between (and reasons for) /bin and /sbin,
root filesystem and /usr filesystem, and locally supplied commands. Also practice
with various file location techniques and be able to differentiate among them.

type

204 | Chapter 7: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104)

8
Exam 101 Review Questions and

Exercises

This section presents review questions to highlight important concepts and hands-
on exercises that you can use to gain experience with the topics covered on the LPI
101 Exam. The exercises can be particularly useful if you’re not accustomed to rou-
tine Linux administration and should help you better prepare for the exam. To
complete the exercises, you’ll need a working Linux system that is not in production
use. You might also find it useful to have a pen and paper handy to write down your
responses as you work your way through the review questions and exercises.

System Architecture (Topic 101)

Review Questions
1. Describe the boot process on a PC, and identify the order in which control

passes as a system boots.

2. Name three files in the /proc filesystem that contain information on system
resource allocations.

3. Which of the following SCSI interfaces has the fastest data transfer rates:
SCSI-1, SCSI-2, Ultra SCSI, or Fast-Wide SCSI?

4. What is the naming convention in /dev for the different hard disk interfaces?

5. What command is used to obtain USB information on a Linux system?

6. What driver is used for USB hard drives?

7. What is your default runlevel? How can you tell?

205

Exercises
1. Boot your PC and enter the BIOS configuration utility. Determine how to

change the boot order and how to enable and disable peripherals built into the
motherboard.

2. Examine the enabled serial and parallel ports. Can you manually configure the
interrupts and I/O ports assigned to them?

3. Examine your modem and sound external interfaces on your PC. Are the devices
built into your motherboard or independent expansion cards?

4. If you have a SCSI controller, reboot your PC and enter the SCSI BIOS. What
device number is selected, if any, for boot? How are the controller’s onboard
terminators configured? What data rate is the controller configured for?

5. If you have a RAID controller, reboot your PC and enter the RAID BIOS. What
options do you have to configure RAID on your system?

6. Examine the kernel’s interrupt assignments by executing cat /proc/interrupts.
Are your devices reported correctly? Are any devices sharing interrupts?

7. Review output from cat /proc/dma and cat /proc/ioports.

8. Create a list of all installed PCI devices using lspci. Note the devices built into
your motherboard.

9. Run lsmod and match the loaded kernel modules with hardware in your system.

10. Connect a USB device (mouse, printer, etc.) to your system. Run lsmod to verify
that the appropriate driver loaded.

11. Run the dmesg command and go through the hardware your kernel recognized
at boot time.

12. Reboot the system and modify the grub boot line to boot into single-user mode.

13. At the root prompt, type kill 1. What happens? Why?

Linux Installation and Package Management (Topic 102)

Review Questions
1. Why is the /var directory usually located in a partition of its own?

2. As a system administrator for a network with many workstations and a central
NFS file server, how can you safely share /usr with your users while still main-
taining control of its contents?

3. What is the recommended size for a swap partition, as a function of the memory
in a system?

4. Describe how to create a tar archive and how its contents are extracted.

5. In general terms, describe the procedure used to compile and install free or open
source software from source code.

6. What is a shared library? How can you determine what library dependencies
exist in a compiled executable?

206 | Chapter 8: Exam 101 Review Questions and Exercises

7. How does your system know where to look for shared libraries?

8. Briefly describe the major functional modes of rpm.

9. How do you add additional repositories to yum?

10. What are the reasons to choose LILO over GRUB as a boot loader, or vice versa?

11. Why might a Debian Linux administrator use dpkg -iG instead of simply dpkg
-i to install a package?

Exercises
1. In a shell, examine your disk layout using fdisk. For example:

fdisk /dev/sda
Command (m for help): p
Disk /dev/sda: 200.0 GB, 200049647616 bytes
255 heads, 63 sectors/track, 24321 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x0003bf13

 Device Boot Start End Blocks Id System
/dev/sda1 * 1 25 200781 83 Linux
/dev/sda2 26 89 514080 82 Linux swap / Solaris
/dev/sda3 90 24321 194643540 83 Linux

Is the entire disk consumed by the existing filesystems?

2. Examine how system directories are mapped to disk partitions on your system.
Are /var and /tmp in their own partitions? Is /boot in its own partition within
cylinder 1024? Is the root filesystem relatively small?

3. Download a tarball (from http://sourceforge.net, for example), and install it on
your system with the following steps:

a. Unpack it using tar -xzvf file (or tar –xjvf file if it is compressed with bzip2).

b. Configure it with ./configure.

c. Build the software using make as directed in the documentation.

d. Install the software using the instructions provided.

Were there any difficulties with this procedure?

4. Use ldd to examine library dependencies of executable programs on your sys-
tem. For example:

ldd `which gcc`
 linux-gate.so.1 => (0x00110000)
 libc.so.6 => /lib/libc.so.6 (0x00682000)
 /lib/ld-linux.so.2 (0x00663000)

5. Using a system that utilizes dpkg, obtain a list of all packages installed under
dpkg management with dpkg -l | less. Find a package in the list that looks un-
familiar, and query information about the package using dpkg -s pkg_name.

6. Using a system that utilizes RPM, obtain a list of all packages installed under
RPM management with rpm -qa | less. Find a package in the list that looks
unfamiliar, and query information about the package using rpm -qi pkg_name.

Linux Installation and Package Management (Topic 102) | 207

Exam
 101 Review

http://sourceforge.net

7. Using a system that utilizes RPM, obtain a list of all available packages that you
can install from the currently configured repositories with yum list available |
less.

GNU and Unix Commands (Topic 103)

Review Questions
1. Describe the difference between shell variables and environment variables.

2. Compare and contrast built-in and explicitly defined commands and those
found in $PATH.

3. After a lengthy session of file manipulation on the command line, what
will !ls produce?

4. What files does bash read when you log in?

5. Explain the notion of pipes as they refer to shell capabilities, and illustrate using
an example of two or more filter programs.

6. Explain the -p option to cp and give an example of why it is necessary.

7. Give two examples of files matched by the wildcard ??[!1-5].

8. Name the three standard I/O streams and their functions.

9. Give an example of the redirection operator, >, and describe how the outcome
would be different using the >> operator.

10. What process is the parent of all system processes? Give both the PID and the
program name.

11. Name three common utilities used for process monitoring.

12. What happens to a typical daemon when it receives SIGHUP? How would the
behavior be different if it received SIGKILL?

13. Compare and contrast background and foreground jobs, and state the syntax
to put a command in the background on the command line.

14. What two classifications of characters make up regular expressions?

15. How are the regular expressions [A-Z]* and ^[A-Z]*$ different?

16. What is the difference between executing :q versus :q! in vi?

17. What does it mean to put vi into command mode?

Exercises
1. Start a bash shell in a console or terminal window and enter the following

commands:

$ MYVAR1="Happy"
$ MYVAR2="Birthday"
$ export MYVAR1
$ bash
$ echo $MYVAR1 $MYVAR2

208 | Chapter 8: Exam 101 Review Questions and Exercises

$ exit
$ echo $MYVAR1 $MYVAR2

a. Was the behavior of the two echo commands identical?

b. If so, why? If not, why not?

c. What happened immediately after the bash command?

d. Which variable is an environment variable?

2. Continuing the previous exercise, press the up arrow until you see the last
echo command. Press the up arrow again.

a. What do you see?

b. Why wasn’t it the exit command?

c. Press the up arrow again so that the export command is displayed. Add a
space and MYVAR2 so that the line now looks like this:

$ export MYVAR1 MYVAR2

What happens when you enter this command?

3. Still continuing the previous exercise, enter the command !echo. Does anything
change as a result of the revised export command?

4. The file command is used to examine a file’s contents and displays the file type.
Explain the result of using file as follows:

$ cd / ; file `ls | head -10`

5. Execute this command on your system:

$ cut -d: -f1 /etc/passwd | fmt -w 20 | head -1

a. What was displayed?

b. How many lines of output did you see? Why?

c. What was the width of the output? Why?

6. Execute the following sed substitution command and explain why it might be
used on /etc/passwd:

$ sed 's/:[^:]*:/:---:/' /etc/passwd | less

7. Execute this command:

$ cd /sbin ; ls -li e2fsck fsck.ext2

a. What is the significance of the first field of the output?

b. Why is it identical for both listings?

c. Why are the file sizes identical?

8. Execute the following command sequence and explain the result at each step
(this example assumes that cp is not aliased to cp -i, which is a common default
alias):

$ cd
$ cp /etc/skel .
$ cp -r /etc/skel .

GNU and Unix Commands (Topic 103) | 209

Exam
 101 Review

$ cp -rfv /etc/skel .
$ cp -rfvp /etc/skel .

9. Remove the directory created in the previous exercise, using rmdir and/or rm.
Which command can complete the task in a single step?

10. Explain when the wildcard {htm,html} might be useful.

11. Give an example of how the wildcard *.[Tt][Xx][Tt] could be used with di-
rectory listings.

12. What can be said about filenames matched by the *.? wildcard?

13. Experiment with redirecting the output of ls as follows:

$ cp /etc/skel . 2> info.txt

a. How is the terminal output different than that observed in Exercise 8?

b. What is written to info.txt ?

14. Experiment with ps, pstree, and top to monitor active processes on your system.
Include top’s interactive commands.

15. If you have Apache running, use ps (and perhaps grep) to identify the httpd
process and its PID, which is owned by root. Send that process the HUP signal
as follows:

$ kill -SIGHUP pid

Using tail, examine the Apache error log (the location of your logfile may differ):

$ tail /var/log/httpd/error_log

What was the effect of HUP on Apache?

16. While running X, start some interactive processes in the background and ex-
periment with using jobs, bg, and fg. For example:

$ firefox &
$ xterm &
$ emacs &
$ jobs
$ fg 1
$ fg 2...

Were you able to bring each of the jobs to the foreground successfully?

17. This exercise starts a process, using various methods to view and modify the
process execution priority:

Start an editing session in the background using nice:

$ nice vi &

Observe that the process was nice’d using ps:

$ ps -u

Check it again using top:

$ top -i

210 | Chapter 8: Exam 101 Review Questions and Exercises

Within top, renice the vi process using the r command and observe the effect
on priority.

Exit top and use renice to set the nice value back to zero.

18. Use a simple regular expression with grep to find bash users in /etc/passwd.

19. Examine the difference between grep and egrep by issuing the following
commands:

$ grep ".+:x:.+:/bin/bash$" /etc/passwd
$ egrep ".+:x:.+:/bin/bash$" /etc/passwd

How is the output of these commands different? Why?

20. Determine the number of empty lines in /etc/inittab.

21. Use vi to create a text file. Enter insert mode with i and insert text. Quit insert
mode with Esc and move around using h, j, k, and l, then re-enter insert mode
and add more text. End the session with ZZ. cat the file. Is it as expected?

Devices, Linux Filesystems, and the Filesystem Hierarchy
Standard (Topic 104)

Review Questions
1. What are the three types of disk partitions found on a Linux system? Which

type can contain other partitions, and which type does it contain?

2. Name the directories that must be within the / partition.

3. Describe the differences between physical disks, partitions, and filesystems.

4. What is a journaling filesystem and how does it differ from a nonjournaling
filesystem?

5. What is a swap partition used for? Why not just use swap files?

6. What kind of output will df -h yield?

7. Describe a common situation that is likely to cause the automatic use of fsck on
the next system boot.

8. Name the fields in /etc/fstab.

9. Give the command to mount a CD-ROM drive on the secondary master IDE
device, assuming that /etc/fstab does not contain a line for the device.

10. If the ro option is used in /etc/fstab for /usr, what limitation is placed on that
filesystem?

11. Compare and contrast hard and soft quota limits.

12. Name the symbolic permission that is equivalent to 0754.

13. Describe a situation that requires the SUID permission. What ramifications
does this permission imply?

14. How do you determine what binaries on your system have the SUID bit set?

15. Compare and contrast the differences between hard and symbolic links.

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 211

Exam
 101 Review

16. Name the document to which Linux directory assignments should conform.

17. Compare and contrast the differences between the locate and find commands.

Exercises
1. As root, run fdisk on your main hard drive and enter the p command to print

the partition table. Examine your system’s configuration and make sure you
understand everything you see. Enter the l command and review the many
partition types Linux can accommodate. Enter the q command to quit without
saving changes.

2. If you have available disk space, use fdisk to create a new ext3 partition, and
then format it with mkfs. Pay close attention to the output from mkfs.

3. Use a pager to examine /var/log/messages and search for entries made by fsck.
Did it find any problems?

4. If you created a new partition in the previous exercises, check it with fsck and
observe the output:

$ fsck -f /dev/partition

5. Check on the status of filesystems using df:

$ df -h

a. How does the -h flag assist you with interpreting the results?

b. Are any of your filesystems nearly full?

c. Which are underutilized?

6. As root, get a top-level view of disk usage by user using du:

$ du -s /home/*

Are there any surprises?

7. How could you use sort to make the output from the previous exercise more
useful?

8. Review /etc/fstab. Be sure you can name all six fields and their order as well as
describe their function.

9. Examine the output of the mount command without options. Compare the
output with the contents of /etc/fstab.

10. If you created a new partition in the previous exercises, mount it on /mnt/new
or some other location of your choosing:

$ mkdir /mnt/new
$ mount /dev/partition /mnt/new
$ df /mnt/new

a. Did the filesystem mount correctly? Can you store files on it?

Next, unmount it:

$ umount /dev/partition /mnt/new

212 | Chapter 8: Exam 101 Review Questions and Exercises

Add a line to /etc/fstab for the new partition:

/dev/partition /mnt/new ext3 defaults 1 2

11. Test the quotas by setting them low for a particular user, and then start adding
files as that user until the quota is exceeded. What is the observable conse-
quence of exceeding the quota?

12. Practice converting these file modes from octal to symbolic form:

a. 0777

b. 0754

c. 0666

d. 1700

e. 7777

13. Practice converting these file modes from symbolic to octal form. You can as-
sume that x bits are set under SUID, SGID, and sticky bits:

a. -rwxr-xr-x

b. -r--r--r--

c. -rwsrwsrwx

d. -rw-rw---t

e. -rws-w--w-

14. Create temporary files and use chmod with both symbolic and numeric mode
modifications. Include SUID, SGID, and sticky bits.

15. As root, create temporary files and use chown to modify user ownership and
group ownership.

16. Use chgrp to modify group ownership on the temporary files created in the
previous exercise.

17. Create a temporary file and links as follows:

$ touch a_file
$ ln -s a_file an_slink
$ ln a_file an_hlink

Now verify that the file and the hard link indeed share an inode and that the
symbolic link points to the original file:

$ ls -li a_file an_slink an_hlink

18. Review the latest version of the FHS at http://www.pathname.com/fhs/.

19. Examine your filesystem. Does it match the FHS? If you find discrepancies, is
it clear why they don’t?

20. Use which to check on the location of executable files.

21. Use find to search for bash:

$ find / -name bash

Now use locate for the same file:

$ locate bash

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 104) | 213

Exam
 101 Review

http://www.pathname.com/fhs/

How are the results different? Describe a context in which each command would
be useful.

22. Update your locate database using updatedb. Note the amount of time this
command takes and the resources it consumes on your system.

214 | Chapter 8: Exam 101 Review Questions and Exercises

9
Exam 101 Practice Test

This chapter will give you an idea of what kinds of questions you can expect to see
on the LPI 101 test. All questions are either multiple-choice single answer, multiple-
choice multiple answer, or fill in the blank.

The questions are not designed to trick you; they are designed to test your knowledge
of the Linux operating system.

As of April 1, 2009, the exam weights for each LPI exam have been standardized to
60 weights. This means that if an Objective has a weight of 2, there will be 2 questions
on the test about items under that Objective.

The answers for these sample questions are at the end of the chapter.

Questions
1. What kind of hardware is represented by the device name /dev/hda?

a. Sound Card

b. Modem

c. IDE Hard Drive

d. SCSI Hard Drive

e. SATA Hard Drive

2. What file should you query to determine whether there is an IRQ conflict on
your system?

a. /proc/ioports

b. /proc/interrupts

c. /proc/cpuinfo

d. /proc/meminfo

e. /proc/irqstatus

215

3. Which of the following are arguments you can pass to the kernel at boot time
to tell it to start in runlevel 1 (single-user mode)?

a. one

b. 1

c. safe

d. single

e. user

4. Which process is referred to as the “mother of all processes” and always has
PID 1?

a. mother

b. admin

c. administrator

d. init

e. bios

5. Which logfile should you examine for information about the hardware that the
kernel initialized at boot time?

a. /var/log/syslog

b. /var/log/messages

c. /var/log/lastlog

d. /var/log/wtmp

e. /var/log/cron

6. If you want to change your system’s default boot device from the hard drive to
the CD-ROM drive, where would you make that configuration change?

a. The file /boot/grub/grub.conf

b. The file /etc/lilo.conf

c. An argument passed to the kernel at boot time

d. The BIOS

e. The file /etc/inittab

7. What command line would reboot a running Linux system immediately, forcing
an fsck of every drive on reboot?

a. /sbin/shutdown –r –F now

b. /sbin/shutdown –h –F now

c. /sbin/shutdown

d. /sbin/shutdown –r –f now

e. /sbin/shutdown –t –f

8. Which of the following are valid ways to interactively switch a running system
to runlevel 3?

a. chrunlevel 3

216 | Chapter 9: Exam 101 Practice Test

b. runlevel 3

c. init 3

d. telinit 3

e. init -3

9. If you have created your own script that you wish to run every time your system
boots, but it must run after all other processes have completed, where is the
best place to reference it?

a. /etc/inittab

b. /etc/rc.d/rc.sysinit

c. A symlink beginning with S in /etc/rc.d/rc5.d/

d. /etc/rc.d/rc.local

e. A symlink beginning with K in /etc/rc.d/rc5.d/

10. Which command is used to display the current mounted partitions, their mount
points, and the available free space on each?

a. du

b. df

c. fdisk

d. fsck

e. mount

11. Which partition is designed to hold data that changes often and is writable by
all users?

a. /var

b. /home

c. /tmp

d. /opt

e. /sys

12. What does MBR stand for?

a. Main Booting Runlevel

b. Main Block Record

c. Master Boot Record

d. Master Block Record

e. Master Boot Resource

13. Which of the following lines in /boot/grub/grub.conf would tell GRUB to use
the first partition of the first hard drive as the root partition?

a. root (hd0,0)

b. boot (hd0,0)

c. root (hd1,1)

d. boot (hd1,1)

Questions | 217

Exam
 101 Practice

Test

e. root (hd1,0)

14. What file contains a list of directories that are searched to find shared libraries
when a binary program is executed?

a. /etc/loader.conf

b. /etc/library/conf

c. /etc/ld.so.cache

d. /etc/ld.so.conf

e. /etc/ld.conf

15. For distributions that use the Debian package management system, what com-
mand will download and update all installed packages to the latest available
version?

a. apt-get install

b. apt-cache update

c. apt-get update

d. apt-cache install

e. dpkg –i

16. If I download a .deb package (package.deb) and wish to install it, what’s the best
command to use?

a. dpkg –i package.deb

b. apt-get install package.deb

c. apt install package.deb

d. dpkg package.deb

e. None of the above

17. For distributions that use the Red Hat package management system, what
command will list all packages currently installed?

a. rpm –qa

b. rpm –i

c. rpm –Uvh

d. rpm –list

e. rpm –all

18. For distributions that use the Red Hat package management system, what
command will download and update all installed packages to the latest available
version?

a. yum update

b. yum install

c. yum config

d. yum list available

e. yum download

218 | Chapter 9: Exam 101 Practice Test

19. What option(s) to rpm will instruct rpm to run a verification check on all pack-
ages installed on the system?

a. rpm –verify –all

b. rpm –Va

c. rpm –qa

d. rpm –check

e. rpm –c

20. What command is used to display a list of directories the shell will search in to
find a command that has been entered?

a. show $MYPATH

b. echo $PATH

c. echo $MYPATH

d. setenv

e. set $PATH

21. Which file(s) does the bash shell read at login to set environment variables?

a. /etc/bashrc

b. ~/.bashrc

c. ~/.bash_profile

d. All of the above

e. None of the above

22. What commands can be used to view a list of the last commands typed into the
shell?

a. history

b. <Ctrl-R>

c. <up arrow>

d. All of the above

e. None of the above

23. If my current directory is /opt and I wish to run the command /opt/runme, what
command(s) could I type (assuming /opt is not in your $PATH)?

a. /opt/runme

b. ./runme

c. runme

d. opt/runme

e. ~/runme

24. Which of the following commands will redirect the standard output of /bin/ls
to /dev/null, while allowing standard error to display on the screen?

a. /bin/ls > /dev/null 2> /dev/screen

b. /bin/ls 1> /dev/null

Questions | 219

Exam
 101 Practice

Test

c. /bin/ls > /dev/null

d. /bin/ls > /dev/null 2>&1

e. /bin/ls 2> /dev/null 1>&2

25. Which of the following command(s) will display the first 5 lines of the file /etc/
passwd?

a. cat -5 /etc/passwd

b. more -5 /etc/passwd

c. head -5 /etc/passwd

d. cat /etc/passwd | head -5

e. cat /etc/passwd | more -5

26. Which commands can be used to perform a search and replace on a file or a
text stream?

a. sed

b. tr

c. search

d. cat

e. more

27. What command(s) can be used to copy data to and from raw devices, bypassing
the filesystem?

a. cp

b. tar

c. dd

d. mv

e. sed

28. What option can be passed to /bin/ls to display every file in a directory that ends
in .txt?

a. ls +.txt

b. ls *.txt

c. ls * txt

d. ls [txt]

e. ls *txt*

29. What option can be passed to /bin/ls to display every file that starts with the
letters a, b, or c?

a. ls abc*

b. ls a*b*c*

c. ls ^abc

d. ls [abc]+

e. ls [abc]*

220 | Chapter 9: Exam 101 Practice Test

30. Which file extensions are common for files or directories that have been con-
catenated with tar and then compressed with bzip2?

a. .tar.bz2

b. .tbz2

c. .tbz

d. All of the above

e. None of the above

31. What device should you redirect output to if you do not want to see it or save it?

a. /dev/zero

b. /dev/nothing

c. /dev/empty

d. /dev/null

e. /dev/bitbucket

32. Which of the following commands would list the contents of the direc-
tory /tmp, store that list in the file /root/tmp.txt, and display the list a screen at
a time?

a. ls –l /tmp | tee /root/tmp.txt | more

b. ls –l /tmp | xargs /root/tmp.txt | more

c. ls –l /tmp | more | tee /root/tmp.txt

d. tee /root/tmp.txt | ls –l /tmp | more

e. more /tmp | tee /root/tmp.txt

33. What character is used after a command line to indicate that the command
should run in the background and return shell control to the user?

a. *

b. +

c. &

d. –

e. .

34. What command is used at the beginning of a command line to detach the proc-
ess from a terminal, allowing it to continue running after the user has logged
out?

a. hangup

b. detach

c. nohup

d. background

e. bg

Questions | 221

Exam
 101 Practice

Test

35. What command will display a full-screen, updated list of all running processes?

a. kill

b. ps

c. list

d. top

e. free

36. If a running process is not responding to a standard terminate signal from
the /bin/kill command, what option can you pass to force the process to termi-
nate immediately?

a. kill -1

b. kill --HUP

c. kill --stop

d. kill -9

e. kill --now

37. What command can be used to kill processes by name, rather than process ID?

a. killproc

b. killname

c. killall

d. kill –name

e. killpath

38. Which command line would start the program /usr/bin/top with the highest
priority possible?

a. nice --20 /usr/bin/top

b. nice 20 /usr/bin/top

c. nice 19 /usr/bin/top

d. nice -20 /usr/bin/top

e. None of the above

39. Which command is used to modify the priority of a process already running?

a. nice

b. renice

c. priority

d. chage

e. ps

40. Which command(s) would display every line in /tmp/file.txt that begins with
the letter h and ends with the letter t?

a. grep "^h.+t$" /tmp/file.txt

b. grep –E "^h.+t$" /tmp/file.txt

c. grep –E "$h.+t^" /tmp/file.txt

222 | Chapter 9: Exam 101 Practice Test

d. grep –E "$ht^" /tmp/file.txt

e. grep –E "^h.*t$" /tmp/file.txt

41. Which command(s) would display every line in /tmp/file.txt that contains at
least one letter of the alphabet?

a. grep " [a-zA-Z] " /tmp/file.txt

b. grep " [:alpha:] " /tmp/file.txt

c. grep " [:letters:] " /tmp/file.txt

d. grep " (a-zA-Z) " /tmp/file.txt

e. None of the above

42. In the vi editor, what command sequence given in command mode will make
a copy of the current line?

a. yyp

b. cp

c. yp

d. ccp

e. None of the above

43. In the vi editor, what command sequence given in command mode will save the
current file and quit the editor?

a. :qw

b. :wq

c. :WQ

d. :pq

e. None of the above

44. In the vi editor, what command sequence given in command mode will quit a
file without saving, even if changes have been made?

a. :q

b. :q1

c. :q!

d. :w

e. :w!

45. Which of the following are examples of journaling filesystems?

a. ext2

b. ext3

c. xfs

d. reiserfs

e. vfat

Questions | 223

Exam
 101 Practice

Test

46. What command will create an ext3 partition on the first partition of the first
SCSI hard drive?

a. mkfs –t ext3 /dev/sda1

b. fdisk –t ext3 /dev/sda1

c. fsck –t ext3 /dev/sda1

d. mkfs –s ext3 /dev/hda1

e. mkfs –t ext3 /dev/hda1

47. What command is used to convert an existing ext2 partition (/dev/sda1) to an
ext3 (journaled) partition?

a. tune2fs –j /dev/sda1

b. dumpe2fs –j /dev/sda1

c. fsck –j /dev/sda1

d. mkfs.ext2 –j /dev/sda1

e. None of the above

48. What command is used to display the number of free inodes on an ext2 or ext3
partition?

a. tune2fs

b. dumpe2fs

c. showe2fs

d. fsck

e. fdisk

49. Which file defines what partitions are mounted at boot time?

a. /etc/partitions

b. /etc/mount

c. /etc/mtab

d. /etc/fstab

e. /etc/filesystems

50. Which command will mount all partitions of type nfs defined in /etc/fstab?

a. mount –a –t nfs

b. mount –a nfs –t

c. mount –nfs

d. mountall –nfs

e. None of the above

51. If you would like to give a normal (nonroot) user the ability to mount a device,
what option should you define for that device in /etc/fstab?

a. mountable

b. noroot

c. user

224 | Chapter 9: Exam 101 Practice Test

d. ok

e. mount

52. Which option to chmod would assign read/write permission to the file owner,
read-only permission to the group owner, and read-only permission to everyone
else?

a. chmod 644 file.txt

b. chmod 755 file.txt

c. chmod 466 file.txt

d. chmod 777 file.txt

e. None of the above

53. Which option to umask would set my default file permissions such that files are
created with these permissions: user has read/write, group has read/write, and
everyone else has read only?

a. umask 002

b. umask 022

c. umask 200

d. umask 220

e. umask 775

54. Which command can be used to quickly tell you if an executable command is
in any directory defined in your $PATH environment variable?

a. find

b. locate

c. which

d. who

e. what

55. Which directory, according to the Filesystem Hierarchy Standard, is designed
to hold essential system binaries?

a. /sbin

b. /bin

c. /usr/bin

d. /opt/bin

e. /usr/local/bin

56. According to the Filesystem Hierarchy Standard, what directory (or directories)
must hold the system kernel?

a. /boot

b. /

c. /opt

d. /sbin

e. /kernel

Questions | 225

Exam
 101 Practice

Test

57. What command is used to maintain the filesystem index that the com-
mand /usr/bin/locate searches?

a. update

b. updatelocate

c. locate –update

d. updatedb

e. update -db

Answers
1. c. IDE Hard Drive

2. b. /proc/interrupts

3. b. 1 AND d. single. Both answers are correct.

4. d. init

5. b. /var/log/messages. This is the default logfile that syslogd saves to.

6. d. The BIOS

7. a. /sbin/shutdown –r –F now. This may seem like a small detail to have to re-
member, but this is an important command, and you should have its options
memorized, particularly the difference between –F (force fsck on reboot) and
–f (skip fsck on reboot).

8. c. init 3 AND d. telinit 3. Both answers are correct.

9. a. A symlink beginning with S in /etc/rc.d/rc5.d/ AND b. /etc/rc.d/rc.local. Both
answers are correct. Note that most distributions have an /etc/rc.d/rc.local file
that runs after the default runlevel scripts are run.

10. b. df

11. c. /tmp. If the question was just about a partition where data changed often,
that would be both /tmp and /var. But /tmp is the only partition that needs to
be writable by all users.

12. c. Master Boot Record

13. a. root (hd0,0). GRUB (the Grand Unified Boot Loader) starts counting drives
and partitions at 0, so the first partition on the first drive is 0,0.

14. d. /etc/ld.so.conf. When modifications are made to this file, the command /sbin/
ldconfig must be run.

15. c. apt-get update

16. a. dpkg –i package.deb

17. a. rpm –qa

18. a. yum update

19. a. rpm –verify –all AND b. rpm –Va. Both of these commands are equivalent.

20. b. echo $PATH

21. d. All of the above. Remember that the ~ key indicates a user’s home directory.

226 | Chapter 9: Exam 101 Practice Test

22. d. All of the above. The history command will list the last commands run (how
many commands are listed is configurable), <Ctrl-R> will allow you to search
the history by keyword, and <up arrow> cycles through the last command typed
in the order in which they were typed.

23. a. /opt/runme AND b. ./runme

24. b. /bin/ls 1> /dev/null AND c. /bin/ls > /dev/null. The syntax > and 1> are equiv-
alent. If you don’t redirect STDERR, it will display to the screen by default.

25. c. head -5 /etc/passwd AND d. cat /etc/passwd | head -5

26. a. sed AND b. tr

27. b. tar AND c. dd. The tar command is often used to talk directly to tape devices
(tar –xvf /dev/st0), and dd can be used to make copies of devices. For example,
to create a raw image of a 1.44 MB floppy disk, use dd if=/dev/fd0 of=/tmp/
floppy.img

28. c. ls *.txt. Remember that the syntax for file globbing is different from the syntax
for regular expressions. In particular, the behavior of the asterisk (*) is vastly
different between the two.

29. e. ls [abc]*. Another file globbing example.

30. d. All of the above. Since file extensions are not really necessary in the Linux
world, there isn’t one single standard that covers them all. However, tar.bz2,
tbz2, and .tbz are all examples of file extensions you might see to indicate that
a file is tarred and bzipped.

31. d. /dev/null. Also referred to as the “bit bucket.”

32. a. ls –l /tmp | tee /root/tmp.txt | more. It’s important to remember the order of
commands when you are piping multiple commands together, especially when
the tee command is involved.

33. c. &

34. c. nohup. The nohup command is usually paired with & to put a process in the
background and detach it from the current terminal. For example, nohup /opt/
long_process.sh & would start the command /opt/long_process.sh and allow me
to log out while the process remains running.

35. d. top. There are many ways to view processes on a machine, but the top com-
mand is probably one of the most useful commands, giving you sort ability and
process interaction capability.

36. d. kill -9. Note that this might not kill a process that is waiting on disk I/O or
some other kind of blocking, noninterruptible process.

37. c. killall

38. a. nice --20 /usr/bin/top. This is a tricky one. First, you have to remember that
priority values range from -20 (highest priority) to 19 (lowest priority). So if I
want to pass the highest priority to a process, I have to pass -20. However,
options to commands start with the - (dash) character, so I need to make sure
I type 2 dashes, the first to indicate that the next argument is an option, and the
second to indicate that I’m passing a negative number to the nice command.

Answers | 227

Exam
 101 Practice

Test

39. b. renice

40. e. grep –E "^h.*t$" /tmp/file.txt. This command literally means, “Search for the
extended regular expression that matches h as the first character, followed by
zero or more of any other character, and having t as the last character.” The
–E option is required because the presence of the .* makes this an extended
regular expression. The answer in a. is close, but the syntax .+ means “match
1 or more characters of any kind.” The regular expression in a. would not match
the line “ht”, whereas the regular expression in e. would.

41. a. grep " [a-zA-Z] " /tmp/file.txt AND b. grep " [:alpha:] " /tmp/file.txt. Become
familiar with the sets that are defined with the syntax [:setname:]; they are very
useful in advanced regular expressions. You can see a complete list of them in
the manpage for grep.

42. a. yyp. An easy way to remember this: Yank-Yank-Put.

43. b. :wq. The colon brings up the command entry line at the bottom of the vi
screen, w stands for write, and q stands for quit.

44. c. :q!. The vi editor has many, many commands, but if you become familiar
with a few dozen, you’ll be able to accomplish 99 percent of what you will
commonly need to accomplish in vi.

45. b. ext3 AND c. xfs AND d. reiserfs. Ext3 is ext2 with journaling support added.
Vfat is a Microsoft filesystem.

46. a. mkfs –t ext3 /dev/sda1. The command mkfs.ext3 is equivalent to mkfs –t ext3.

47. a. tune2fs –j /dev/sda1. Technically, the command listed in d. (mkfs.ext2 –j /dev/
sda1) will create an ext3 partition on /dev/sda1, but it will destroy whatever
partition is there in the process.

48. b. dumpe2fs

49. d. /etc/fstab

50. a. mount –a –t nfs

51. c. user

52. a. chmod 644 file.txt

53. b. umask 022

54. c. which

55. a. /sbin

56. a. /boot AND b. /. Both directories are correct. Most Linux distributions will
store the kernel in /boot; the presence of a kernel in / is deprecated.

57. d. updatedb

228 | Chapter 9: Exam 101 Practice Test

10
Exam 101 Highlighter’s Index

System Architecture

Objective 101.1: Determine and Configure Hardware Settings

PC BIOS

• The BIOS is the PC’s firmware.

• The BIOS sets date and time for on-board clock, storage device configuration,
and so on, via menus.

Resource assignments

• Interrupts (IRQs) allow peripherals to interrupt the CPU.

• I/O addresses are locations in the processor’s memory map for hardware
devices.

• Useful files to query for hardware information: /proc/interrupts, /proc/io-
ports, /proc/cpuinfo, /proc/devices.

• Useful commands to run for hardware information: /sbin/lspci, /sbin/lsusb.

• DMA allows certain devices to work directly with memory, freeing the processor
(see Table 10-1).

Table 10-1. Common device settings

Device I/O address IRQ DMA

ttyS0 (COM1) 3f8 4 NA

ttyS1 (COM2) 2f8 3 NA

ttyS2 (COM3) 3e8 4 NA

ttyS3 (COM4) 2e8 3 NA

lp0 (LPT1) 378-37f 7 3 (if configured in the BIOS)

229

Device I/O address IRQ DMA

lp1 (LPT2) 278-27f 5 NA

fd0, fd1 (floppies 1 and 2) 3f0-3f7 6 2

Objective 101.2: Boot the System

Boot order

• Power on → BIOS → Boot Loader → Kernel → init → startup services → shell

Information

• The command dmesg can be used to view the output of the boot process.

• The init process is always PID 1 and is the parent of all other processes.

Objective 101.3: Change Runlevels and Shut Down or Reboot System

Runlevels

• Defaults are defined in Table 10-2.

Table 10-2. Default Runlevels

Runlevel Description

0 Halt

1 Single-user mode

2 Multiuser, without NFS

3 Full multiuser mode, without X

4 Unused

5 Full multiuser mode, with X

6 Reboot

• Runlevels can be changed on-the-fly with init <runlevel> or telinit <runlevel>.

• The default runlevel is stored in the file /etc/inittab.

• The init process will run the scripts in /etc/rc.d/rcX.d (where X is your default
runlevel) in order, sending a “stop” parameter to scripts that start with K and
a “start” parameter to scripts that start with S.

Linux Installation and Package Management

Objective 102.1: Design Hard Disk Layout
• Keep / small by distributing larger parts of the directory tree to other filesystems.

• Separate a small /boot partition below cylinder 1024 for kernels.

• Separate /var into its own partition to prevent runaway logs from filling /.

230 | Chapter 10: Exam 101 Highlighter’s Index

• Separate /tmp.

• Separate /usr if it is to be shared read-only among other systems via NFS.

• Set swap size to be somewhere between one and two times the size of main
memory.

/proc

• The /proc filesystem includes information on interrupts, I/O ports, and DMA
in /proc/interrupts, /proc/ioports, and /proc/dma.

Objective 102.2: Install a Boot Manager

LILO

• LILO has historically been the default Linux boot loader.

• LILO consists of the lilo command, which installs the boot loader, and the boot
loader itself.

• LILO is configured using /etc/lilo.conf.

• Any modification to the /etc/lilo.conf file requires the lilo command to be rerun.

GRUB

• GRUB can boot Linux as well as most other PC-based operating systems.

• GRUB relies on various files in the /boot/grub directory to support reading from
various types of filesystems.

• GRUB is configured using /boot/grub/menu.lst (or /boot/grub/grub.conf on some
distributions).

• GRUB can be configured to present a text or graphical menu interface and also
has a command-line interface.

• Modifications to the GRUB configuration files do not require the grub com-
mand to be re-run (unlike LILO).

Objective 102.3: Manage Shared Libraries

Concepts

• System libraries provide many of the functions required by a program.

• A program that contains executable code from libraries is statically linked
because it stands alone and contains all necessary code to execute.

• Since static linking leads to larger executable files and more resource consump-
tion, system libraries can be shared among many executing programs at the
same time.

Linux Installation and Package Management | 231

Exam
 101 High-

lighter’s Index

Commands

• A program that contains references to external, shared libraries is dynamically
linked at runtime by the dynamic linker, ld.so.

• New locations for shared libraries can be added to the LD_LIBRARY_PATH variable.
As an alternative, the locations can be added to /etc/ld.so.conf, which lists library
file directories. After this, you must run /sbin/ldconfig to translate this file into
the binary index /etc/ld.so.cache.

Objective 102.4: Use Debian Package Management

Commands

• dpkg automates the installation and maintenance of software packages and of-
fers a number of options.

• dselect uses a text-based interactive menu to select (or deselect) packages for
installation.

• alien can convert packages to and from the RPM and Debian package format.

• apt-get is a powerful tool that interfaces with online repositories of Debian
packages to install and upgrade packages by name and resolves each package’s
dependencies automatically.

Objective 102.5: Use Red Hat Package Manager (RPM)

Concepts

• RPM automates the installation and maintenance of software packages.

• Package dependencies are defined but not resolved automatically.

• -i, -e, -U, -v, -h, --nodeps, and --force are common options.

• The yum command is a frontend to RPM, interacting with online software re-
positories to download and install software automatically.

• The command yum update will search for updates to installed packages, down-
load them, resolve dependencies, and install them automatically.

GNU and Unix Commands

Objective 103.1: Work on the Command Line

The interactive shell and shell variables

• A shell provides the command prompt and interprets commands.

• A shell variable holds a value that is accessible to shell programs.

• PATH is a shell variable that contains a listing of directories that hold executable
programs.

232 | Chapter 10: Exam 101 Highlighter’s Index

• Commands must be bash built-ins, found in the PATH, or explicitly defined in
order to succeed.

• When shell variables are exported, they become part of the environment.

Entering commands

• Commands are comprised of a valid command, with or without one or more
options and arguments, followed by a carriage return.

• Interactive commands can include looping structures more often used in shell
scripts.

Command history, editing, and substitution

• Shell sessions can be viewed as a conversation. History, expansion, and editing
make that dialog more productive.

• Commands can be reissued, modified, and edited. Examples are shown in Ta-
ble 10-3.

• Command substitution allows the result of a command to be placed into a shell
variable.

Table 10-3. Shell expansion, editing, and substitution examples

History type Examples

Expansion !!

 !n

 ^string1^string2

Editing Ctrl-P, previous line

 Ctrl-K, kill to end of line

 Ctrl-Y, paste (yank) text

Substitution VAR=$(command) or VAR='command'

Recursive execution

• Many commands contain either a -r or -R option for recursive execution
through a directory hierarchy.

• The find command is inherently recursive, and is intended to descend through
directories looking for files with certain attributes or executing commands.

Objective 103.2: Process Text Streams Using Filters

The commands

The following programs modify or manipulate text from files and standard input:

cat [file]
Print file to standard output.

GNU and Unix Commands | 233

Exam
 101 High-

lighter’s Index

cut [files]
Cut out selected columns or fields from one or more files.

expand [files]
Convert Tabs to spaces in files.

fmt [files]
Format text in files to a specified width by filling lines and removing newline
characters.

head [files]
Print the first few lines of files.

join file1 file2
Print a line for each pair of input lines, one each from file1 and file2, that have
identical join fields.

nl [files]
Number the lines of files, which are concatenated in the output.

od [files]
Dump files in octal, hexadecimal, ASCII, and other formats.

paste files
Paste together corresponding lines of one or more files into vertical columns.

pr [file]
Convert a text file into a paginated, columnar version, with headers and page
fills.

sort [file]
Sort lines in file alphabetically, numerically, or other ways.

split [infile] [outfile]
Split infile into a specified number of line groups; the output will go into a
succession of files: outfileaa, outfileab, and so on.

tac [file]
Print file to standard output in reverse line order.

tail [files]
Print the last few lines of one or more files.

tr [string1 [string2]]
Translate characters by mapping from string1 to the corresponding character
in string2.

unexpand [files]
Convert spaces to Tabs in files.

uniq [files]
Display only unique lines in files that are already sorted.

wc [files]
Print counts of characters, words, and lines for files.

234 | Chapter 10: Exam 101 Highlighter’s Index

The stream editor, sed

sed is a popular text-filtering program found on every Unix system. It has the fol-
lowing syntax:

sed command [files]
sed -e command1 [-e command2] [files]
sed -f script [files]

Execute sed commands, or those found in script, on standard input or files.

Objective 103.3: Perform Basic File Management

Concepts

• Filesystem creation prepares a disk device (or partition) for use. Linux usually
uses the native ext3 (third extended) journaling filesystem, but it supports many
other filesystem types. You can see a list of all the filesystems Linux supports
by using the “l” option under the fdisk command.

• The Linux filesystem is arranged into a hierarchical structure anchored at the
root directory, or /. Beneath this is a tree of directories and files.

• Identification information for a filesystem object is stored in its inode (index
node), which holds location, modification, and security information. Filesys-
tems are created with a finite number of inodes.

File and directory management commands

The following commands are essential for the management of files and directories:

bzip2 [options] [pattern]
Create or uncompress an archive with the bzip2 algorithm.

cp file1 file2

cp files directory
Copy file1 to file2, or copy files to directory.

cpio[options] [files]
Create or extract a binary archive, containing either files or a recursive set of
files and directories.

dd [options] [files]
Copy and convert files. The dd command can also copy data from raw devices,
bypassing the filesystem layer.

file [file]
Determine the type of file by performing a number of tests.

find [directory] [options] [pattern]
Search through directory looking for objects that match pattern.

gunzip [options] [file]
Uncompress an archive created with gzip.

gzip [options] [pattern]
Create a compressed archive containing files and directories that match pattern.

GNU and Unix Commands | 235

Exam
 101 High-

lighter’s Index

ls [options] [pattern]
List the contents of a directory, or list only files that match [pattern].

mkdir directories
Create one or more directories.

mv source target
Move or rename files and directories.

rm files
Delete one or more files from the filesystem. When used recursively (with the
-r option), rm also removes directories.

rmdir directories
Delete directories, which must be empty.

tar [options] [files]
Create or extract a Tape Archive, containing either files or a recursive set of files
and directories.

touch files
Change the access and/or modification times of files by default to the present
time.

File-naming wildcards

Wildcards (also called file globs) allow the specification of many files at once. A list
of commonly used wildcards can be found in Table 10-4.

Table 10-4. File-naming wildcards

Wildcard Function

* Match zero or more characters.

? Match exactly one character.

[characters] Match any single character from among characters listed between brackets.

[!characters] Match any single character other than characters listed between brackets.

[a-z] Match any single character from among the range of characters listed between
brackets.

[!a-z] Match any single character from among the characters not in the range listed
between brackets.

{frag1,frag2,frag3,...} Brace expansion: create strings frag1, frag2, and frag3, etc., such that
file_{one,two,three} yields file_one, file_two, and
file_three.

236 | Chapter 10: Exam 101 Highlighter’s Index

Objective 103.4: Use Streams, Pipes, and Redirects

Concepts

• A central concept for Linux and Unix systems is that everything is a file.

• Many system devices are represented in the filesystem using a device file, such
as /dev/ttyS0 for a serial port.

Standard I/O

• The shell provides the standard I/O capability, offering three default file de-
scriptors to running programs:

— Standard input (STDIN) is a text input stream, by default attached to the
keyboard.

— Standard output (STDOUT) is an output stream for normal program output.
By default, this is the screen.

— Standard error (STDERR) is an output stream meant for error messages. By
default, this is the screen.

Pipes and redirection

• It is possible to tie the output of one program to the input of another. This is
known as a pipe and is created by joining commands using the pipe symbol (|).

• Pipes are a special form of redirection, which allows you to manage the origin
of input streams and the destination of output streams. Redirection syntax for
various shells differs slightly. See Table 10-5 for examples of common redirec-
tion operators.

Table 10-5. Common redirection operators

Redirection function Syntax for bash

Send STDOUT to file. $ cmd > file

 $ cmd 1> file

Send STDERR to file. $ cmd 2> file

Send both STDOUT and STDERR to file. $ cmd > file 2>&1

 $ cmd > file 2> file

Receive STDIN from file. $ cmd < file

Append STDOUT to file. $ cmd >> file

 $ cmd 1>> file

Append STDERR to file. $ cmd 2>> file

Append both STDOUT and STDERR to file. $ cmd >> file 2>&1

Pipe STDOUT from cmd1 to cmd2. $ cmd1 | cmd2

Pipe STDOUT and STDERR from cmd1 to cmd2. $ cmd1 2>&1 | cmd2

Pipe STDOUT from cmd1 to cmd2 while simultaneously writing it to
file1 using tee.

$ cmd1 | tee file1 | cmd2

GNU and Unix Commands | 237

Exam
 101 High-

lighter’s Index

Objective 103.5: Create, Monitor, and Kill Processes

Concepts

• Processes have:

— A lifetime

— A PID

— A UID

— A GID

— A parent process

— An environment

— A current working directory

Monitoring commands

ps
Generate a one-time snapshot of the current processes on standard output.

pstree
Display a hierarchical list of processes in a tree format.

top
Generate a continuous, formatted, real-time process activity display on a ter-
minal or in a terminal window.

Signaling processes

• Processes listen for signals sent by the kernel or users using the kill command:

kill -sigspec [pids]

Send sigspec to pids.

• The killall command is used to send signals to processes by program name
instead of PID.

• Common kill signals are listed in Table 10-6.

Table 10-6. Common signals

Signal Number Meaning

HUP 1 Hangup, reread configuration.

INT 2 Interrupt, stop running.

KILL 9 Exit immediately.

TERM 15 Terminate nicely.

TSTP 18 Stop executing.

238 | Chapter 10: Exam 101 Highlighter’s Index

Shell job control

Shells can run processes in the background, where they execute on their own, or in
the foreground, attached to a terminal. Each process handled in this way is known
as a job. Jobs are manipulated using job control commands:

bg [jobspec]
Place jobspec in the background as if it had been started with &.

fg [jobspec]
Place jobspec in the foreground, making it the current job.

jobs [jobspecs]
List jobspecs on standard output.

nohup [command] &
Execute command, detach it from the terminal, and allow it to continue running
after the user logs out.

Objective 103.6: Modify Process Execution Priorities

Concepts

• A process’s execution priority is managed by the kernel.

• You can bias the execution priority by specifying a nice number in the range of
–20 to +19 (default is 0).

• Positive nice numbers reduce priority; negative nice numbers increase priority
and are reserved for the superuser.

Commands

nice -adjustment [command]
Apply nice number adjustment to the process created to run command.

renice [+|-]nicenumber targets
Alter the nicenumber, and thus the scheduling priority, of one or more running
target processes.

Objective 103.7: Search Text Files Using Regular Expressions

Concepts

• Regular expressions are used to match text. The term is used to describe the
loosely defined text-matching language as well as the patterns themselves. A
regular expression is often called a regex or a regexp.

• Regular expressions are made up of metacharacters (with special meaning) and
literals (everything that is not a metacharacter).

• The backslash character (\) turns off (escapes) the special meaning of the char-
acter that follows, turning metacharacters into literals. For nonmetacharacters,
it often turns on some special meaning.

GNU and Unix Commands | 239

Exam
 101 High-

lighter’s Index

Position anchors

The operators in Table 10-7 match line position.

Table 10-7. Regular expression position anchors

Regular expression Description

^ Match the beginning of a line.

$ Match the end of a line.

\<
\>

Match word boundaries. Word boundaries are defined as whitespace, start of a line, end of a line,
or punctuation marks. The backslashes are required and enable this interpretation of < and >.

Character sets

The operators in Table 10-8 match text.

Table 10-8. Regular expression character sets

Regular expression Description

[abc]
[a-z]

Match any single character from among listed characters (abc) or from among the characters
comprising a range (a–z).

[^abc]
[^a-z]

Match any single character not among listed characters or ranges.

. Match any single character except a newline.

Modifiers

The operators in Table 10-9 modify the way other operators are interpreted.

Table 10-9. Regular expression modifiers

Basic regular
expression

Extended
regular
expression Description

* * Match zero or more of the character that precedes it.

\? ? Match zero or one instance of the preceding regex.

\+ + Match one or more instances of the preceding regex.

\{n,m\} {n,m} Match a range of occurrences of the single character or regex that precedes
this construct. \{n\} matches n occurrences, \{n,\} matches at least n
occurrences, and \{n,m\} matches any number of occurrences between n
and m, inclusively.

\| | Match the character or expression to the left or right of the vertical bar.

\(regex\) (regex) Matches regex, but it can be modified as a whole and used in back-references.
(\1 expands to the contents of the first \(\) and so on up to \9.)

240 | Chapter 10: Exam 101 Highlighter’s Index

Commands

• Many commands support the regular expression syntax, but the most com-
monly used is the command grep, which is designed to display lines from a file
or files matching a given regular expression.

• There are multiple ways to call grep to change its behavior:

grep
Treat the pattern as a basic regular expression.

egrep
Treat the pattern as an extended regular expression. Same as grep –E.

fgrep
Treat the pattern as a list of fixed strings, any of which may be matched.
Same as grep –F.

Objective 103.8: Perform Basic File Editing Operations Using vi

Subcommands

• Start vi with vi file1 [file2 [...]]. See Table 10-10.

Table 10-10. Basic vi editing commands

Command Description

Esc Exit insert mode and put the editor into command mode.

h or left
arrow

Move left one character.

j or down
arrow

Move down one line.

k or up arrow Move up one line.

l or right
arrow

Move right one character.

H Move to the top of the screen.

L Move to the bottom of the screen.

G Move to the end of the file.

W Move forward one word.

B Move backward one word.

0 (zero) Move to the beginning of the current line.

^ Move to the first nonwhitespace character on the current line.

$ Move to the end of the current line.

Ctrl-B Move up (back) one screen.

Ctrl-F Move down (forward) one screen.

i Insert at the current cursor position.

I Insert at the beginning of the current line.

GNU and Unix Commands | 241

Exam
 101 High-

lighter’s Index

Command Description

a Append after the current cursor position.

A Append to the end of the current line.

o Start a new line after the current line.

O Start a new line before the current line.

r Replace the character at the current cursor position.

R Start replacing (overwriting) at the current cursor position.

x Delete the character at the current cursor position.

X Delete the character immediately before (to the left) of the current cursor position.

s Delete the character at the current cursor position and go into insert mode. (This is the equivalent
of the combination xi.)

S Delete the contents of the current line and go into insert mode.

dX Given a movement command X, cut (delete) the appropriate number of characters, words, or
lines from the current cursor position.

dd Cut the entire current line.

D Cut from the current cursor position to the end of the line. (This is equivalent to d$.)

cX Given a movement command X, cut the appropriate number of characters, words, or lines from
the current cursor position and go into insert mode.

cc Cut the entire current line and go into insert mode.

C Cut from the current cursor position to the end of the line and enter insert mode. (This is
equivalent to c$.)

yX Given a movement command X, copy (yank) the appropriate number of characters, words, or
lines from the current cursor position.

yy or Y Copy the entire current line.

p Paste after the current cursor position.

P Paste before the current cursor position.

. Repeat the last command.

u Undo the last command.

/regex Search forward for regex.

?regex Search backward for regex.

n Find the next match.

N Find the previous match. (In other words, repeat the last search in the opposite direction.)

:n Next file; when multiple files are specified for editing, this command loads the next file. Force
this action (if the current file has unsaved changes) with :n!.

:e file Load file in place of the current file. Force this action with :e! file.

:r file Insert the contents of file after the current cursor position.

:q Quit without saving changes. Force this action with :q!.

:w file Write the current buffer to file. To append to an existing file, use :w >>file. Force the
write (when possible, such as when running as root) with :w! file.

:wq Write the file contents and quit. Force this action with :wq!.

242 | Chapter 10: Exam 101 Highlighter’s Index

Command Description

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ Write the file contents (if changed) and quit.

:! command Execute command in a subshell.

Devices, Linux Filesystems, and the Filesystem Hierarchy
Standard

Objective 104.1: Create Partitions and Filesystems

Disk drives and partitions

• IDE disks are known as /dev/hda, /dev/hdb, /dev/hdc, /dev/hdd, and so on.

• Any disks using the SCSI emulation layer are known as /dev/sda, /dev/sdb, /dev/
sdc, and so on. These include SCSI disks, SATA disks, and, in newer kernels,
IDE disks.

• Three types of partitions:

Primary
Filesystem container. At least one must exist, and up to four can exist on
a single physical disk. They are identified with numbers 1 to 4, such
as /dev/hda1, /dev/hda2, and so on.

Extended
A variant of a primary partition, but it cannot contain a filesystem. Instead,
it contains one or more logical partitions. Only one extended partition may
exist, and it takes one of the four possible spots for primary partitions.

Logical
Created within the extended partition. From 1 to 12 logical partitions may
be created. They are numbered from 5 to 16, such as /dev/hda5, /dev/
hda6, and so on.

• Up to 15 partitions with filesystems may exist on a single physical disk.

Filesystems

• The Linux kernel supports many different kinds of filesystems:

ext3
The third extended filesystem. A journaling filesystem, this has been the
default for most Linux distributions since the early 2000s.

ext2
The second extended filesystem. This was the initial default Linux filesys-
tem. ext3 is basically ext2 with journaling support.

xfs
Journaling filesystem created by Silicon Graphics for IRIX and ported to
Linux.

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard | 243

Exam
 101 High-

lighter’s Index

reiserfs
This was the first journaling filesystem introduced in the standard Linux
kernel.

vfat
A Microsoft Windows filesystem for Windows 95, 98, and ME systems.

The root filesystem and mount points

• The top of the filesystem tree is occupied by the root filesystem. Other filesys-
tems are mounted under it, creating a unified filesystem.

• /etc, /lib, /bin, /sbin, and /dev must be part of the root filesystem.

Partition and filesystem management commands

The following commands are commonly used to repair and manage filesystems:

fdisk [device]
Manipulate or display the partition table for device using a command-driven
interactive text interface. device is a physical disk such as /dev/hda, not a par-
tition such as /dev/hda1.

mkfs device
Make a filesystem on device, which must be a partition.

mkswap device
Prepare a partition for use as swap space.

Objective 104.2: Maintain the Integrity of Filesystems

Filesystem commands

df [directories]
Display overall disk utilization information for mounted filesystems on
directories.

du [directories]
Display disk utilization information for directories.

fsck filesystems
Check filesystems for errors and optionally correct them.

dumpe2fs filesystem
Display the detailed information about the ext2 or ext3 filesystem at filesystem.

tune2fs filesystem
Modify filesystem variables for the ext2 or ext3 filesystem at filesystem.

Objective 104.3: Control Filesystem Mounting and Unmounting

Managing the filesystem table

• /etc/fstab contains mount information for filesystems. Each line contains a single
filesystem entry made up of six fields, shown in Table 10-11.

244 | Chapter 10: Exam 101 Highlighter’s Index

• The /media directory is often used by distributions as a place to automount
hotplug devices, such as USB drives.

Table 10-11. Fields found in the /etc/fstab file

Entry Description

Device The device file for the partition holding the filesystem.

Mount point The directory upon which the filesystem is to be mounted.

Filesystem type A filesystem type, such as ext3.

Mount options A comma-separated list.

Dump frequency For use with dump.

Pass number for fsck Used at boot time.

Mounting and unmounting

The following commands are used to mount and unmount filesystems:

mount device

mount directory

mount device directory
Mount filesystems onto the hierarchy. The first and second forms con-
sult /etc/fstab for additional information.

umount device

umount directory
Unmount the filesystem on device or mount it on directory.

Filesystem types

Common filesystem types compatible with Linux include:

ext2
The standard Linux filesystem.

ext3
A journaling filesystem that is backward-compatible with ext2.

iso9660
The standard CD-ROM format.

vfat
The Microsoft Windows FAT filesystem.

nfs
Remote servers.

proc
A system abstraction for access to kernel parameters.

swap
Swap partitions.

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard | 245

Exam
 101 High-

lighter’s Index

Objective 104.4: Set and View Disk Quotas

Quota types

Per-user hard
The maximum size for an individual.

Per-user soft
A warning threshold.

Per-group hard
The maximum size for a group.

Per-group soft
A warning threshold.

Grace period
A time restriction on the soft limit.

Commands

quota user

quota -g group
Display quota limits on user or group.

quotaon [filesystems]
Enable previously configured disk quotas on one or more filesystems.

quotaoff [filesystems]
Disable disk quotas on one or more filesystems.

quotacheck [filesystems]
Examine filesystems and compile quota databases. Usually run via cron.

edquota names
Modify user or group quotas by spawning a text editor.

repquota filesystems
Display a summary report of quota status for filesystems, or use -a for all
filesystems.

Enabling quotas requires usrquota and/or grpquota options
in /etc/fstab, creation of quota.user and quota.group files at the
top of the filesystem, a quotacheck, and a quotaon.

Objective 104.5: Manage File Permissions and Ownership

Access control

• Access control is implemented using a set of properties called the access mode,
stored in the inode. Three classes of user are defined:

246 | Chapter 10: Exam 101 Highlighter’s Index

User
The user who owns the file.

Group
The group that owns the file.

Other
All other users on the system.

• Three permissions are either granted or not granted to each class of user:

Read (r)
Allows access to file contents and listing of directory contents.

Write (w)
Allows writing a file or creating files in a directory.

Execute (x)
Allows execution of a file and ability to read/write files in a directory.

• These comprise nine bits in the mode User rwx, Group rwx, and Other rwx.

• Three additional mode bits are defined:

SUID
To grant processes the rights of an executable file’s owner.

SGID
To grant processes the rights of an executable file’s group.

Sticky bit
Prohibits file deletion by nonowners.

• These 12-mode bits are often referred to in octal notation as well as with mne-
monic constructs.

• Mode bits are displayed using such commands as ls and stat.

Setting access modes

• New files receive initial access mode as described by the umask.

• The umask strips specified bits from the initial mode settings. Typical umasks
are 002 and 022.

• Existing file modes are changed using chmod with either symbolic or octal mode
specifications:

— Symbolic:

[ugoa][-+=][rwxXst]

— Octal bits:

user r, w, x, group r, w, x, other r, w, x
rwxrwxrwx = 111111111 = 777
rwxr-xr-- = 111101100 = 751

chmod uses the following syntax:

chmod mode files
Modify the access mode on files using a symbolic or octal mode.

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard | 247

Exam
 101 High-

lighter’s Index

Commands for file ownership

chown user-owner.group-owner files
Change the owner and/or group of files to user-owner and/or group-owner.

chgrp group-owner files
Change the group ownership of files to group-owner.

chgrp functionality is included in chown.

Objective 104.6: Create and Change Hard and Symbolic Links

Concepts

• A link is a pseudonym for another file.

• Links take up very little space in the filesystem.

• A symbolic link is a tiny file that contains a pointer to another file. Symbolic
links can span filesystems.

• A hard link is a copy of a file’s directory entry. Both directory entries point to
the same inode and thus the same data, ownership, and permissions.

ln

ln has the following syntax:

ln file link

ln files directory

Create link to file or in directory for all files. Symbolic links are created with the
-s option.

Objective 104.7: Find System Files and Place Files in the Correct Location

File Hierarchy Standard (FHS)

• The FHS is used by Linux distributions to standardize filesystem layout. It de-
fines two categories of data use, each with opposing subtypes:

Data sharing
Sharable data can be used by multiple host systems on a network. Non-
sharable data is unique to one particular host system.

Data modification
Variable data is changed continually by naturally occurring (i.e., frequent)
processes. Static data is left alone, remaining unchanged over extended
periods of time.

• The FHS seeks to define the filesystem contents in these terms and locate in-
formation accordingly.

248 | Chapter 10: Exam 101 Highlighter’s Index

The directory hierarchy

• The root filesystem (/):

— Must contain utilities and files sufficient to boot the operating system, in-
cluding the ability to mount other filesystems.

— Should contain the utilities needed by the system administrator to repair or
restore a damaged system.

— Should be relatively small.

• /usr contains system utilities and programs that do not appear in the / (root)
filesystem. It includes directories such as bin, lib, local, and src.

• /var contains varying data such as printer spools and logfiles, including direc-
tories such as log, mail, and spool.

Locating files

• Various methods can be used to locate files in the filesystem:

which command
Determine the location of command and display the full pathname of the
executable program that the shell would launch to execute it.

find paths expression
Search for files that match expression, starting at paths and continuing
recursively.

locate patterns
Locate files whose names match one or more patterns by searching an
index of files previously created.

updatedb
Refresh (or create) the slocate database, usually via cron.

whatis keywords

apropos keywords
Search the whatis database for keywords. whatis finds only exact matches,
whereas apropos finds partial word matches.

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard | 249

Exam
 101 High-

lighter’s Index

11
Exam 102 Overview

LPI Exam 102 is the second of two exams required for the LPI’s Level 1 certification
(officially referred to as LPIC 1). This exam tests your knowledge on 6 of the 10
major Topic areas specified for LPIC Level 1. Each section details certain Objectives,
which are described here and on the LPI website.

Each Topic contains a series of Objectives covering specific areas of expertise. Each
of these Objectives is assigned a numeric weight, which acts as an indicator of the
importance of the Objective. Weights run between 1 and 8, with higher numbers
indicating more importance. An Objective carrying a weight of 1 can be considered
relatively unimportant and isn’t likely to be covered in much depth on the exam.
Objectives with larger weights are sure to be covered on the exam, so you should
study these Topics closely. The weights of the Objectives are provided at the begin-
ning of each Topic section.

Exam Topics are numbered using the topic.objective notation (e.g., 101.1, 101.2,
102.1). The 100 series topics represent LPI Level 1 certification topics, which are
unique to all levels of LPI exams (e.g., 101, 102, 201, 202, etc.). The objective number
represents the objectives that are associated with the Topic area (e.g., 1, 2, 3, 4, and
so on).

The Level 1 Topics are distributed between the two exams to create tests of similar
length and difficulty without subject matter overlap. As a result, there’s no require-
ment or advantage to taking the exams in sequence, the only caveat being that you
cannot be awarded an LPIC 2 or higher certifications until you pass the requirements
for the lower level certification.

The Topics for Exam 102 are listed in Table 11-1.

Table 11-1. LPI Topics for Exam 102

Name
Number of
objectives Description

Shells, Scripting, and
Data Management

3 Covers the shell and its startup files and writing bash scripts, querying da-
tabases, and manipulating data using basic SQL commands.

251

http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_102_detailed_objectives

Name
Number of
objectives Description

User Interfaces and
Desktops

3 The X-based Objectives cover only subjects that every Level 1 sysadmin is
expected to encounter. Some of these tasks include installing and configuring
X11, setting up a display manager such as XDM, GDM, or KDM, and installing
and understanding basic accessibility tools.

Administrative Tasks 3 Covers all of the basic administrative tasks done by a junior level Linux
sysadmin, including managing users and groups, user environment varia-
bles, job scheduling, and data backup.

Essential System
Services

4 Covers administering system services that must be configured, including
maintaining system time, system logs, basic understanding of mail transfer
agents, and managing printing.

Networking
Fundamentals

3 Explores TCP/IP, network interfaces, DHCP, and client-side DNS; includes
troubleshooting commands.

Security 3 Covers security issues such as SUID issues, ssh client use, GPG for data en-
cryption, and user limits.

Exam 102 lasts a maximum of 90 minutes and contains exactly 60 questions. The
exam is administered using a custom application on a PC in a private room with no
notes or other reference material. The majority of the exam is made up of multiple-
choice single-answer questions. These questions have only one correct answer and
are answered using radio buttons. A few of the questions present a scenario needing
administrative action. Others seek the appropriate commands for performing a par-
ticular task or for proof of understanding of a particular concept. Some people may
get an exam with an additional 20 items. These items are used to test new questions
and don’t count as part of the score. An additional 30 minutes is provided in this
case, and there is no indication of which items are unscored.

The exam also includes a few multiple-choice multiple-answer questions, which are
answered using checkboxes. These questions can have multiple correct responses,
each of which must be checked. These are probably the most difficult type of ques-
tion to answer because the possibility of multiple answers increases the likelihood
of mistakes. An incorrect response on any one of the possible answers causes you
to miss the entire question.

The exam also has some fill-in-the-blank questions. These questions provide a one-
line text area input box for you to fill in your answer. These questions check your
knowledge of concepts such as important files, commands, or well-known facts that
you are expected to know.

252 | Chapter 11: Exam 102 Overview

12
Exam 102 Study Guide

The second part of this book contains a section for each of the six Topics found on
Exam 102 for LPIC Level 1 certification. Each of the following tables details the
Objectives described for the corresponding Topic on the LPI website.

Exam Preparation
LPI Exam 102 is thorough, but if you have a solid foundation in Linux concepts as
described here, you should find it straightforward. If you’ve already taken Exam
101, you’ll find that Exam 102 covers a broader range of Linux administration skills.
Included are user interfaces, printing, documentation, shells and scripting, admin-
istrative tasks, networking fundamentals, system services, and security. Exam 102
is quite specific on some Topics, such as network applications (for example, Send-
mail), but you won’t come across questions intended to trick you, and you’re
unlikely to find questions that you feel are ambiguous.

For clarity, this material is presented in the same order as the LPI Topics and Ob-
jectives. To assist you with your preparation, Table 12-1 through 12-9 provide a
complete listing of the Topics and Objectives for Exam 102. Because of changes
made during test development, the final Objectives are not always in exact numerical
order. After you complete your study of each Objective, simply check it off here to
measure and organize your progress.

Table 12-1. Shells, Scripting, and Data Management (Topic 105)

Objective Weight Description

1 4 Customize and Use the Shell Environment

2 4 Customize or Write Simple Scripts

3 2 SQL Data Management

253

http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_102_detailed_objectives

Table 12-2. The X Window System (Topic 106)

Objective Weight Description

1 2 Install and Configure X11

2 2 Set Up a Display Manager

3 1 Accessibility

Table 12-3. Administrative Tasks (Topic 107)

Objective Weight Description

1 5 Manage User and Group Accounts and Related System Files

2 4 Automate System Administration Tasks by Scheduling Jobs

3 3 Localization and Internationalization

Table 12-4. Essential System Services (Topic 108)

Objective Weight Description

1 3 Maintain System Time

2 2 System Logging

3 3 Mail Transfer Agent (MTA) Basics

4 2 Manage Printers and Printing

Table 12-5. Networking Fundamentals (Topic 109)

Objective Weight Description

1 4 Fundamentals of Internet Protocols

2 4 Basic Network Configuration

3 4 Basic Network Troubleshooting

4 2 Configuring Client Side DNS

Table 12-6. Security (Topic 110)

Objective Weight Description

1 3 Perform Security Administration Tasks

2 3 Set Up Host Security

3 3 Securing Data with Encryption

254 | Chapter 12: Exam 102 Study Guide

13
Shells, Scripting, and Data

Management (Topic 105)

Depending upon the computing environments you’re used to, the concepts of shells
and shell programs (usually called scripts) may be a little foreign. On Linux systems,
the shell is a full programming environment that can be scripted or used interactively.

This chapter covers Topic 105 and its three Objectives:

Objective 1: Customize and Use the Shell Environment
This Objective covers your shell and basic scripting concepts, including envi-
ronment variables, functions, and script files that control the login environ-
ment. Weight: 4.

Objective 2: Customize or Write Simple Scripts
Customization of the many scripts found on a Linux system is important for its
management and automation. Topics for this Objective include shell syntax,
checking the status of executed programs, and issues surrounding the properties
of script files. Weight: 4.

Objective 3: SQL Data Management
This objective covers the basic use of SQL databases to store and query data.
Topics for this Objective include communicating with a SQL database, basic
queries, basic database concepts, and the relationship between data and tables.
Weight: 2.

It is important for Linux administrators to become comfortable with at least one
shell and its programming language. This can be an area of some concern to those
used to graphics-only environments, where the use of a command interpreter is not
a daily activity. As you’ll see, becoming adept at working with your favorite shell
will allow you to customize many trivial tasks and become a more efficient system
administrator.

255

Objective 1: Customize and Use the Shell Environment
This Objective could be considered a brief “getting started with shells” overview
because it details many of the basic concepts necessary to utilize the shell environ-
ment on Linux. These concepts are fundamental and very important for system
administrators working on Linux systems. If you’re new to shells and shell scripting,
take heart. You can think of it as a combination of computer interaction (conversa-
tion) and computer programming (automation). It is nothing more than that, but
the result is far more than this simplicity implies. If you’re an old hand with shell
programming, you may want to skip ahead to brush up on some of the particulars
necessary for Exam 102.

If you’ve never taken a computer programming course before, don’t be too discour-
aged. Shell programming is mostly automating repetitive tasks. Your shell scripts
can conceivably become relatively complicated programs in their own right, but shell
scripting does not have the learning curve of a “conventional” programming lan-
guage such as C or C++.

An Overview of Shells
A shell is a fundamental and important part of your Linux computing environment.
Shells are user programs not unlike other text-based programs and utilities. They
offer a rich, customizable interface to your system. Some of the main items provided
by your shell are:

An interactive textual user interface to the operating system
In this role, the shell is a command interpreter and display portal to the system.
It offers you a communications channel to the kernel and is often thought of as
the “shell around the kernel.” That’s where the name shell originates and is a
good metaphor for conceptualizing how shells fit into the overall Linux picture.

An operating environment
Shells set up an environment for the execution of other programs, which affects
the way some of them behave. This environment consists of any number of
environment variables, each of which describes one particular environment
property by defining a name=value pair. Other features such as aliases enhance
your operating environment by offering shorthand notations for commonly
used commands.

A facility for launching and managing commands and programs
Shells are used not only by users but also by the system to launch programs and
support those programs with an operating environment.

A programming language
Shells offer their own programming languages. At its simplest, this feature al-
lows user commands to be assembled into useful sequences. At the other end
of the spectrum, complete programs can be written in shell languages, with loop
control, variables, and all of the capabilities of Linux’s rich set of operating
system commands.

256 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

All of the shells share some common concepts:

• They are all distinct from the kernel and run as user programs.

• Each shell can be customized by tuning the shell’s operating environment.

• Shells are run for both interactive use by end users and noninteractive use by
the system.

• A shell can be run from within another shell, enabling you to try a shell other
than your default shell. To do this, you simply start the other shell from the
command line of your current shell. In fact, this happens constantly on your
system as scripts are executed and programs are launched. The new shell does
not replace the shell that launched it; instead, the new shell is a process running
with the original shell as a parent process. When you terminate the child shell,
you go back to the original one.

• Shells use a series of configuration files in order to establish their operating
environment.

• Shells pass on environment variables to child processes.

The Bash Shell
bash is the GNU Project implementation of the standard Unix shell sh. Since the
original sh was the “Bourne shell,” bash is the “Bourne again shell”. As the bash
home page says:

Bash is an sh-compatible shell that incorporates useful features from the Korn
shell (ksh) and C shell (csh). It is intended to conform to the IEEE POSIX
P1003.2/ISO 9945.2 Shell and Tools standard. It offers functional improve-
ments over sh for both programming and interactive use.

While there are a number of shells available to choose from on a Linux system,
bash is very popular and powerful, and it is the default shell for new accounts. Bash
has become popular enough that it is available on many other Unix flavors as well,
including Sun’s Solaris and Hewlett-Packard’s HP/UX. Exam 102 concentrates on
its use and configuration. The next few sections deal with common shell concepts,
but the examples are specific to bash.

Shells and environment variables

Many programs running under Linux require information about you and your per-
sonal preferences to operate sensibly. Although you could manually provide this
information to each program you run, much of the information you’d convey would
be redundant because you’d be telling every command you enter the same ancillary
information at each invocation. For example, you’d need to tell your paging program
about the size and nature of your terminal or terminal window each time you use it.
You would also need to give fully qualified directory names for the programs you run.

Rather than force users to include so much detail to issue commands, the shell han-
dles much of this information for you automatically. You’ve already seen that the
shell creates an operating environment for you. That environment is made up of a

Objective 1: Customize and Use the Shell Environment | 257

Shells, Scripting,
Data M

anagem
ent

http://www.gnu.org/software/bash
http://www.gnu.org/software/bash

series of variables, each of which has a value that is used by programs and other
shells. The two types of variables used by most shells are:

Environment variables
These variables can be thought of as global variables because they are passed
on to all processes started by the shell, including other shells. This means that
child processes inherit the environment. By convention, environment variables
are given uppercase names. bash doesn’t require the case convention; it is just
intended for clarity to humans. However, variable names are case-sensitive.
Your shell maintains many environment variables, including the following
examples:

PATH
A colon-delimited list of directories through which the shell looks for ex-
ecutable programs as you enter them on the command line. All of the
directories that contain programs that you’ll want to execute are stored
together in the PATH environment variable. Your shell looks through this
list in sequence, from left to right, searching for each command you enter.
Your PATH may differ from the PATHs of other users on your system because
you may use programs found in different locations or you may have a local
directory with your own custom programs that need to be available. The
PATH variable can become quite long as more and more directories are
added.

HOME
Your home directory, such as /home/adamh.

USERNAME
Your username.

TERM
The type of terminal or terminal window you are running. This variable is
likely to have a value such as xterm or xterm-color. If you are running on
a physical VT100 (or compatible) terminal, TERM is set to vt100.

Shell variables
These variables can be thought of as local because they are specific only to the
current shell. Child processes do not inherit them. Some shell variables are
automatically set by the shell and are available for use in shell scripts. By con-
vention, shell variables are given lowercase names.

To create a new bash shell variable, simply enter a name=value pair on the command
line:

pi=3.14159

To see that this value is now assigned to the local variable pi, use the echo command
to display its contents:

echo $pi
3.14159

The dollar sign preceding the variable name indicates that the name will be replaced
with the variable’s value. Without the dollar sign, echo would just return the text

258 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

that was typed, which in this case is the variable name pi. At this point, pi is a local
variable and is not available to child shells or programs. To make it available to other
shells or programs, the variable must be exported to the environment:

export pi

Aliases

Among the features missing from sh was the ability to easily make new commands
or modify existing commands. bash has the ability to set an alias for commonly used
commands or sequences of commands. For example, if you habitually call for the
older pager more but actually prefer less, an alias can be handy to get the desired
behavior, regardless of the command you use:

$ alias more='less'

This has the effect of intercepting any command entries for more, substituting less.
The revised command is passed along to the shell’s command interpreter.

Another common use for an alias is to modify a command slightly so that its default
behavior is more to your liking. Many people, particularly when operating with
superuser privileges, will use this alias:

$ alias cp='cp -i'

With this alias in effect, the use of the cp (copy) command becomes safer, because
with the -i option always enforced by the alias, cp prompts you for approval before
overwriting a file of the same name. Additional options you enter on the command
line are appended to the end of the new command, such that cp -p becomes cp -i
-p, and so on.

If the righthand side of the aliased command is bigger than a single word or if it
contains multiple commands (separated by semicolons, bash’s command termina-
tor), you probably need to enclose it in single quotation marks to get your point
across. For example, suppose you wished to use a single alias to pair two simple
commands:

$ alias lsps=ls -l; ps

Your current bash process will interpret this command not as a single alias but as
two separate commands. First the alias lsps will be created for ls -l, and then a ps
command will be added for immediate execution. What you really want is:

$ alias lsps='ls -l; ps'

Now, entering the command lsps will be aliased to ls -l; ps, and will correctly generate
ls output immediately followed by ps output, as this example shows:

$ lsps
total 1253
drwx------ 5 root root 1024 May 27 17:15 dir1
drwxr-xr-x 3 root root 1024 May 27 22:41 dir2
-rw-r--r-- 1 root root 23344 May 27 22:44 file1
drwxr-xr-x 2 root root 12288 May 25 16:13 dir3
 PID TTY TIME CMD

Objective 1: Customize and Use the Shell Environment | 259

Shells, Scripting,
Data M

anagem
ent

 892 ttyp0 00:00:00 bash
 1388 ttyp0 00:00:00 ps

Admittedly, this isn’t a very useful command, but it is built upon in the next section.

After adding aliases, it may become easy to confuse which commands are aliases or
native. To list the aliases defined for your current shell, simply enter the alias com-
mand by itself. This results in a listing of all the aliases currently in place:

$ alias
alias cp='cp -i'
alias lsps='ls -l;ps'
alias mv='mv -i'
alias rm='rm -i'

Note that aliases are local to your shell and are not passed down to programs or to
other shells. You’ll see how to ensure that your aliases are always available in the
section “Configuration files” on page 261.

Aliases are mainly used for simple command replacement. The shell inserts your
aliased text in place of your alias name before interpreting the command. Aliases
don’t offer logical constructs and are limited to a few simple variable replacements.
Aliases can also get messy when the use of complicated quoting is necessary, usually
to prevent the shell from interpreting characters in your alias.

Functions

In addition to aliases, bash also offers functions. They work in much the same way
as aliases, in that some function name of your choosing is assigned to a more complex
construction. However, in this case that construction is a small program rather than
a simple command substitution. Functions have a simple syntax:

[function] name () { command-list; }

This declaration defines a function called name. function is optional, and the paren-
theses after name are required if function is omitted. The body of the function is the
command-list between the curly brackets ({ and }). This list is a series of commands,
separated by semicolons or by newlines. The series of commands is executed when-
ever name is specified as a command. The simple lsps alias shown earlier could be
implemented as a function like this:

$ lsps () { ls -l; ps; }

Using this new function as a command yields exactly the same result the alias did.
However, if you implement this command as a function, parameters can be added
to the command. Here is a new version of the same function, this time entered on
multiple lines (which eliminates the need for semicolons within the function):

$ lsps () {
> ls -l $1
> ps aux | grep `/bin/basename $1`
> }

The > characters come from bash during interactive entry, indicating that bash is
awaiting additional function commands or the } character, which terminates the

260 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

function definition (this is called the secondary shell prompt). This new function
allows us to enter a single argument to the function, which is inserted everywhere
$1 is found in the function. These arguments are called positional parameters because
each one’s number denotes its position in the argument list. This example uses only
one positional parameter, but there can be many, and the number of parameters is
stored for your use in a special variable $#.

The command implemented in the previous example function now prints to
STDOUT a directory listing and process status for any program given as an argu-
ment. For example, if the Apache web server is running, the command:

$ lsps /usr/sbin/httpd

yields a directory listing for /usr/sbin/httpd and also displays all currently running
processes that match httpd:

-rwxr-xr-x 1 root root 317072 2010-01-22 14:31 /usr/sbin/httpd
root 1882 0.0 1.5 22664 8088 ? Ss Aug10 0:14 /usr/sbin/httpd
apache 20869 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20870 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20872 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20874 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20875 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20876 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20877 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20878 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd

Configuration files

It’s a good assumption that every Linux user will want to define a few aliases, func-
tions, and environment variables to suit his or her needs. However, it’s undesirable
to manually enter them upon each login or for each new invocation of bash. To set
up these things automatically, bash uses a number of configuration files to set its
operating environment when it starts. Some of these files are used only upon initial
login, whereas others are executed for each instance of bash you start, including at
login time. Some of these configuration files are system-wide files for all users to use,
whereas others reside in your home directory for your use alone.

bash configuration files important to Exam 102 are listed in Table 13-1.

Table 13-1. bash configuration files

File Description

/etc/profile This is the system-wide initialization file executed during login. It usually contains environment
variables, including an initial PATH, and startup programs.

/etc/bashrc This is another system-wide initialization file that may be executed by a user’s .bashrc for each bash
shell launched. It usually contains functions and aliases.

~/.bash_profile If this file exists, it is executed automatically after /etc/profile during login.

~/.bash_login If .bash_profile doesn’t exist, this file is executed automatically during login.

~/.profile If neither .bash_profile nor .bash_login exists, this file is executed automatically during login. Note
that this is the original Bourne shell configuration file.

Objective 1: Customize and Use the Shell Environment | 261

Shells, Scripting,
Data M

anagem
ent

File Description

~/.bashrc This file is executed automatically when bash starts. This includes login, as well as subsequent
interactive and noninteractive invocations of bash.

~/.bash_logout This file is executed automatically during logout.

~/.inputrc This file contains optional key bindings and variables that affect how bash responds to keystrokes. By
default, bash is configured to respond like the Emacs editor.

The syntax ~ (the tilde) refers to the current user’s “home di-
rectory” (usually /home/username). Although this shortcut may
not represent much of a savings in typing, some Linux config-
urations may place users’ directories in various and sometimes
nonobvious places in the filesystem. Using the tilde syntax re-
duces the need for you to know exactly where a user’s home
directory is located.

In practice, users will generally (and often unknowingly) use the system-wide /etc/
profile configuration file to start. In addition, they’ll often have three personal files
in their home directory: ~/.bash_profile, ~/.bashrc, and ~/.bash_logout. The local files
are optional, and bash does not mind if one or all of them are not available in your
directory.

Each of these configuration files consists entirely of plain text. They are typically
simple, often containing just a few commands to be executed in sequence to prepare
the shell environment for the user. Since they are evaluated by bash as lines of pro-
gram code, they are said to be sourced, or interpreted, when bash executes them.

Like most programming languages, shell programs allow the use of comments. Most
shells, including bash, consider everything immediately following the hash mark
(#) on a single line to be a comment. An important exception is the $# variable, which
has nothing to do with comments but contains the number of positional parameters
passed to a function. Comments can span an entire line or share a line by following
program code. All of your shell scripts and configuration files should use comments
liberally.

Files sourced at login time are created mainly to establish default settings. These
settings include such things as where to search for programs requested by the user
(the PATH) and creation of shortcut names for commonly used tasks (aliases and
functions). After login, files sourced by each subsequent shell invocation won’t ex-
plicitly need to do these things again, because they inherit the environment estab-
lished by the login shell. Regardless, it isn’t unusual to see a user’s .bashrc file filled
with all of their personal customizations. It also doesn’t hurt anything, provided
the .bashrc file is small and quick to execute.

Although it is not necessary to have detailed knowledge of every item in your shell
configuration files, Exam 102 requires that you understand them and that you can
edit them to modify their behavior and your resulting operating environment. The
following examples are typical of those found on Linux systems and are annotated
with comments. Example 13-1 shows a typical Linux systemwide profile. This file

262 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

is executed by every user’s bash process at login time. A few environment variables
and other parameters are set in it.

Example 13-1. An example system-wide bash profile

#!/bin/bash
/etc/profile

pathmunge ()
{
 if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 fi
}

ksh workaround
if [-z "$EUID" -a -x /usr/bin/id]; then
 EUID=`id -u`
 UID=`id -ru`
fi

Path manipulation
if ["$EUID" = "0"]; then
 pathmunge /sbin
 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
fi

No core files by default
ulimit -S -c 0 > /dev/null 2>&1

if [-x /usr/bin/id]; then
 USER="`id -un`"
 LOGNAME=$USER
 MAIL="/var/spool/mail/$USER"
fi

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then
 INPUTRC=/etc/inputrc
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

for i in /etc/profile.d/*.sh ; do
 if [-r "$i"]; then
 . $i
 fi
done

Objective 1: Customize and Use the Shell Environment | 263

Shells, Scripting,
Data M

anagem
ent

unset i
unset pathmunge

Example 13-2 shows a system-wide .bashrc file. This file is not executed by default
when bash starts. Instead, it is optionally executed by users’ local .bashrc files.

Example 13-2. An example system-wide .bashrc file

/etc/bashrc
System wide functions and aliases
Environment stuff goes in /etc/profile

By default, we want this to get set.
Even for non-interactive, non-login shells.
if [$UID -gt 99] && ["`id -gn`" = "`id -un`"]; then
 umask 002
else
 umask 022
fi

are we an interactive shell?
if ["$PS1"]; then
 case $TERM in
 xterm*)
 if [-e /etc/sysconfig/bash-prompt-xterm]; then
 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm
 else
 PROMPT_COMMAND='echo -ne "\033]0;${USER}@${HOSTNAME%%.*}:\
 ${PWD/#$HOME/~}"; echo -ne "\007"'
 fi
 ;;
 screen)
 if [-e /etc/sysconfig/bash-prompt-screen]; then
 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-screen
 else
 PROMPT_COMMAND='echo -ne "\033_${USER}@${HOSTNAME%%.*}:\
 ${PWD/#$HOME/~}"; echo -ne "\033\\"'
 fi
 ;;
 *)
 [-e /etc/sysconfig/bash-prompt-default] && PROMPT_COMMAND=\
 /etc/sysconfig/bash-prompt-default
 ;;
 esac
 # Turn on checkwinsize
 shopt -s checkwinsize
 ["$PS1" = "\\s-\\v\\\$ "] && PS1="[\u@\h \W]\\$ "
fi

if ! shopt -q login_shell ; then # We're not a login shell
 # Need to redefine pathmunge, it gets undefined at the end of /etc/profile
 pathmunge () {
 if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else

264 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

 PATH=$1:$PATH
 fi
 fi
 }

 for i in /etc/profile.d/*.sh; do
 if [-r "$i"]; then
 . $i
 fi
 done
 unset i
 unset pathmunge
fi
vim:ts=4:sw=4
alias more='less' # prefer the "less" pager
alias lsps='ls -l;ps' # a dubious command

Example 13-3 shows an example user’s local .bash_profile. Note that this file sources
the user’s .bashrc file (which in turn sources the system-wide /etc/bashrc), and then
goes on to local customizations.

Example 13-3. An example user’s .bash_profile file

.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/bin
export PATH
unset USERNAME

Example 13-4 shows an individual’s .bashrc file.

Example 13-4. An example user’s .bashrc file

.bashrc

User specific aliases and functions

alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi
lsps() { # Define a personal function
 ls -l $1
 ps aux | grep `/bin/basename $1`
}

Objective 1: Customize and Use the Shell Environment | 265

Shells, Scripting,
Data M

anagem
ent

Example 13-5 shows a short, simple, and not uncommon .bash_logout file. Probably
the most likely command to find in a logout file is the clear command. Including a
clear in your logout file is a nice way of being certain that whatever you were doing
just before you log out won’t linger on the screen for the next user to ponder. This
file is intended to execute commands for a logout from a text session, such as a
system console or terminal. In a GUI environment where logout and login are han-
dled by a GUI program, .bash_logout might not be of much value.

Example 13-5. A simple .bash_logout file

.bash_logout
This file is executed when a user logs out of the system
/usr/bin/clear # Clear the screen
/usr/games/fortune # Print a random adage

On the Exam
Make certain that you understand the difference between execution at login and
execution at shell invocation, as well as which of the startup files serves each of
those purposes.

.inputrc

Among the many enhancements added to bash is the ability to perform as if your
history of commands is the buffer of an editor. That is, your command history is
available to you, and you may cut, paste, and even search among command lines
entered previously. This powerful capability can significantly reduce typing and in-
crease accuracy. By default, bash is configured to emulate the Emacs editor, but a
vi editing interface is also available.

The portion of bash that handles this function, and in fact handles all of the line
input during interactive use, is known as readline. Readline may be customized by
putting commands into an initialization file, which by default is in your home di-
rectory and called .inputrc. For example, to configure bash to use vi-style editing
keys, add this line to .inputrc:

set editing-mode vi

You may also set the INPUTRC variable to the name of another
file if you prefer. On your system, this variable may be set
to /etc/initrc by default, which would override any settings you
put into a local .initrc. To use your own file, you must first ex-
plicitly place the command unset INPUTRC in your .bash_profile.

The default editing facilities enabled in bash are extensive and are beyond the scope
of this section and Exam 102. However, you need to understand the concepts of
adding your own custom key bindings to the .inputrc file and how they can help
automate common keystrokes unique to your daily routine for the test.

266 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

For example, suppose you often use top to watch your system’s activity (top is a
useful process-monitoring utility that is described in Chapter 6):

$ top -Ssd1

If you do this often enough, you’ll get tired of typing the command over and over
and will eventually want an alias for it. To create the alias, simply alias this command
to top:

$ alias top='/usr/bin/top -Ssd1'

Better yet, you can use .inputrc to create a key binding that will enter it for you.
Here’s how the .inputrc file would look if you were to bind your top command to
the key sequence Ctrl-T:

my .inputrc file
Control-t: "top -Ssd1 \C-m"

The lefthand side of the second line indicates the key combination you wish to use
(Ctrl-T). The righthand side indicates what you wish to bind to that key sequence.
In this case, bash outputs top -Ssd1 and a carriage return, denoted here by \C-m
(Ctrl-M), when Control-T is pressed.

Through modifications of your local configuration files, you can customize your
environment and automate many of your daily tasks. You may also override system-
wide settings in your personal files simply by setting variables, aliases, and functions.

On the Exam
You won’t need to have detailed knowledge of this key-binding syntax, but be
aware of the .inputrc file and the kinds of things it enables bash to do.

Objective 2: Customize or Write Simple Scripts
You’ve seen how the use of bash configuration files, aliases, functions, variables, and
key bindings can customize and make interaction with your Linux system efficient.
The next step in your relationship with the shell is to use its natural programming
capability, or scripting language. The scripting language of the original Bourne shell
is found throughout a Linux system, and bash is fully compatible with it. This section
covers essential bash scripting language concepts as required for Exam 102.

In order to have a full appreciation of shell scripting on Linux, it’s important to look
at your Linux system as a collection of unique and powerful tools. Each of the com-
mands available on your Linux system, along with those you create yourself, has
some special capability, and by combining them, you are able to have a productive
and maintainable environment.

Script Files
Just as the configuration files discussed in the last section are plain text files, so are
the scripts for your shell. In addition, unlike compiled languages such as C or Pascal,

Objective 2: Customize or Write Simple Scripts | 267

Shells, Scripting,
Data M

anagem
ent

no compilation of a shell program is necessary before it is executed. You can use any
editor to create script files, and you’ll find that many scripts you write are portable
from Linux to other Unix systems.

Creating a simple bash script

The simplest scripts are those that string together some basic commands and per-
haps do something useful with the output. Of course, this can be done with a simple
alias or function, but eventually you’ll have a requirement that exceeds a one-line
request, and a shell script is the natural solution. Aliases and functions have already
been used to create a rudimentary new command, lsps. Now let’s look at a shell
script (Example 13-6) that accomplishes the same thing.

Example 13-6. The lsps script

A basic lsps command script for bash
ls -l $1
ps -aux | grep `/bin/basename $1`

As you can see, the commands used in this simple script are identical to those used
in the alias and in the function created earlier. To make use of this new file, instruct
your currently running bash shell to source it, giving it an option for the $1 positional
parameter:

$ source ./lsps /usr/sbin/httpd

If you have /usr/sbin/httpd running, you should receive output similar to that found
previously for the alias. By replacing the word source with a single dot, you can create
an alternate shorthand notation to tell bash to source a file, as follows:

$. ./lsps /usr/sbin/httpd

Another way to invoke a script is to start a new invocation of bash and tell that
process to source the file. To do this, simply start bash and pass the script name and
argument to it:

$ /bin/bash ./lsps /usr/sbin/httpd

This last example gives us the same result; however, it is significantly different from
the alias, the function, or the sourcing of the lsps file. In this particular case, a new
invocation of bash was started to execute the commands in the script. This is im-
portant, because the environment in which the commands are running is distinct
from the environment in which the user is typing. This is described in more detail
later in this section.

The ./ syntax indicates that the file you’re referring to is in the
current working directory. For security reasons, it is not advis-
able to add . to a user’s $PATH variable. Instead, either type the
relative path to the command (./lsps) or the full path (/usr/bin/
lsps).

268 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

Thus far, a shell script has been created and invoked in a variety of ways, but it hasn’t
been made into a command. A script really becomes useful when it can be called by
name like any other command.

Executable files

On a Linux system, programs are said to be executable if they have content that can
be run by the processor (native execution) or by another program such as a shell
(interpreted execution). However, in order to be eligible for execution when called
at the command line, the files must have attributes that indicate to the shell that they
are executable. To make a file executable, it must have at least one of its executable
bits set. To turn the example script from a plain text file into an executable program,
that bit must be set using the chmod command:

$ chmod a+x lsps

More information on chmod can be found in Chapter 7.

Once this is done, the script is executable by its owner, group members, and every-
one else on the system. At this point, running the new command from the bash
prompt yields the familiar output:

$./lsps /usr/sbin/httpd

When lsps is called by name, the commands in the script are interpreted and executed
by the bash shell. However, this isn’t ultimately what is desired. In many cases, users
will be running some other shell interactively but will still want to program in
bash. Programmers also use other scripting languages such as Perl or Python. To
have the scripts interpreted correctly, the system must be told which program should
interpret the commands in the scripts.

Shebang!

Many kinds of script files are found on a Linux system, and each interpreted language
comes with a unique and specific command structure. There needs to be a way to
tell Linux which interpreter to use for each script. This is accomplished by using a
special line at the top of the script naming the appropriate interpreter. Linux exam-
ines this line and launches the specified interpreter program, which then reads the
rest of the file. The special line must begin with #!, a construct often called she-
bang, often thought of as being short for Sharp (#) Bang (!). For bash, the shebang
line is:

#!/bin/bash

This command explicitly states that the program named bash can be found in
the /bin directory and designates bash to be the interpreter for the script. You’ll also
see other types of lines on script files, including:

#!/bin/sh
The Bourne shell

#!/bin/csh
The C-shell

Objective 2: Customize or Write Simple Scripts | 269

Shells, Scripting,
Data M

anagem
ent

#!/bin/tcsh
The enhanced C-shell

#!/bin/sed
The stream editor

#!/usr/bin/awk
The awk programming language

#!/usr/bin/perl
The Perl programming language

Each of these lines specifies a unique command interpreter for the script lines that
follow. (bash is fully backward-compatible with sh; sh is just a link to bash on Linux
systems.). Note that the full paths given here are the default; some distributions
might have slight differences. For example, Perl is often in /bin/perl or even /usr/local/
bin/perl.

On the Exam
An incorrectly stated shebang line can cause the wrong interpreter to attempt to
execute commands in a script.

The shell script’s environment

When running a script with #!/bin/bash, a new invocation of bash with its own
environment is started to execute the script’s commands as the parent shell waits.
Exported variables in the parent shell are copied into the child’s environment; the
child shell executes the appropriate shell configuration files (such as .bash_profile).
Because configuration files will be run, additional shell variables may be set and
environment variables may be overwritten. If you are depending upon a variable in
your shell script, be sure that it is either set by the shell configuration files or exported
into the environment for your use, but not both.

Another important concept regarding your shell’s environment is known as
unidirectional or one-way inheritance. Although your current shell’s environment is
passed into a shell script, that environment is not passed back to the original shell
when your program terminates. This means that changes made to variables during
the execution of your script are not preserved when the script exits. Instead, the
values in the parent shell’s variables are the same as they were before the script
executed. This is a basic Unix construct; inheritance goes from parent process to
child process, and not the other way around.

On the Exam
It is important to remember how variables are set, how they are inherited, and that
they are inherited only from parent process to child process.

270 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

Location, ownership, and permissions

The ability to run any executable program, including a script, under Linux depends
in part upon its location in the filesystem. Either the user must explicitly specify the
location of the file to run or it must be located in a directory known by the shell to
contain executables. Such directories are listed in the PATH environment variable. For
example, the shells on a Linux system (including bash) are located in /bin. This
directory is usually in the PATH, because you’re likely to run programs that are stored
there. When you create shell programs or other utilities of your own, you may want
to keep them together and add the location to your own PATH. If you maintain your
own bin directory, you might add the following line to your .bash_profile:

PATH=$PATH:$HOME/bin

This statement modifies your path to include your /home/username/bin directory. If
you add personal scripts and programs to this directory, bash finds them
automatically.

Execute permissions (covered in the section “Objective 5: Manage File Permissions
and Ownership” on page 176) also affect your ability to run a script. Since scripts
are just text files, execute permission must be granted to them before they are con-
sidered executable, as shown earlier.

You may wish to limit access to the file from other users with the following:

$ chmod 700 ~/bin/lsps

This prevents anyone but the owner from making changes to the script.

The issue of file ownership is dovetailed with making a script executable. By default,
you own all of the files you create. However, if you are the system administrator,
you’ll often be working as the superuser and will be creating files with username
root as well. It is important to assign the correct ownership and permission to scripts
to ensure that they are secured.

SUID and SGID rights

On rare occasions, it may become necessary to allow a user to run a program under
the name of a different user. This is usually associated with programs run by non-
privileged users that need special privileges to execute correctly. Linux offers two
such rights: SUID and SGID.

When an executable file is granted the SUID right, processes created to execute it
are owned by the user who owns the file instead of the user who launched the pro-
gram. This is a security enhancement, in that the delegation of a privileged task or
ability does not imply that the superuser password must be widely known. On the
other hand, any process whose file is owned by root and that has the SUID set will
run as root for everyone. This could represent an opportunity to break the security
of a system if the file itself is easy to attack (as a script is). For this reason, Linux
systems will ignore SUID and SGID attributes for script files. Setting SUID and SGID
attributes is detailed in “Objective 5: Manage File Permissions and Owner-
ship” on page 176.

Objective 2: Customize or Write Simple Scripts | 271

Shells, Scripting,
Data M

anagem
ent

On the Exam
Be sure to think through any questions that require you to determine a user’s right
to execute a file. Consider location, ownership, execute permissions, and SUID/
SGID rights together.

Basic Bash Scripts
Now that some of the requirements for creating and using executable scripts are
established, some of the features that make them so powerful can be introduced.
This section contains basic information needed to customize and create new bash
scripts.

Return values

As shell scripts execute, it is important to confirm that their constituent commands
complete successfully. Most commands offer a return value to the shell when they
terminate. This value is a simple integer and has a meaning specific to the program
you’re using. Almost all programs return the value 0 when they are successful and
return a nonzero value when a problem is encountered. The value is stored in the
special bash variable $?, which can be tested in your scripts to check for successful
command execution. This variable is reset for every command executed by the shell,
so you must test it immediately after execution of the command you’re verifying. As
a simple example, try using the cat program on a nonexistent file:

$ cat bogus_file
cat: bogus_file: No such file or directory

Then immediately examine the status variable twice:

$ echo $?
1
$ echo $?
0

The first echo yielded 1 (failure) because the cat program failed to find the file you
specified. The second echo yielded 0 (success) because the first echo command suc-
ceeded. A good script makes use of these status flags to exit gracefully in case of
errors.

If it sounds backward to equate zero with success and nonzero with failure, consider
how these results are used in practice:

Error detection
Scripts that check for errors include if-then code to evaluate a command’s
return status:

command
if (failure_returned) ; then
 ...error recovery code...
fi

272 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

In a bash script, failure_returned is examining the value of the $? variable,
which contains the result of the command’s execution.

Error classification
Since commands can fail for multiple reasons, many return more than one fail-
ure code. For example, grep returns 0 if matches are found and 1 if no matches
are found; it returns 2 if there is a problem with the search pattern or input files.
Scripts may need to respond differently to various error conditions.

On the Exam
Make certain you understand the meaning of return values in general and that they
are stored in the $? variable.

File tests

During the execution of a shell script, specific information about a file—such as
whether it exists, is writable, is a directory or a file, and so on—may sometimes be
required. In bash, the built-in command test performs this function. (There is also
a standalone executable version of test available in /usr/bin for non-bash shells.)
test has two general forms:

test expression
In this form, test and an expression are explicitly stated.

[expression]
In this form, test isn’t mentioned; instead, the expression is enclosed inside
brackets.

The expression can be formed to look for such things as empty files, the existence
of files, the existence of directories, equality of strings, and others. (See the more
complete list with their operators in section, “Abbreviated bash command refer-
ence” on page 274. The bash manpage also details all the test options that are
available.)

When used in a script’s if or while statement, the brackets ([and]) may appear to
be grouping the test logically. In reality, [is simply another form of the test com-
mand, which requires the trailing]. A side effect of this bit of trickery is that the
spaces around [and] are mandatory, a detail that is sure to get you into trouble
eventually.

Command substitution

bash offers a handy ability to do command substitution with the $(command) or
`command` syntax. Wherever $(command) is found, its output is substituted prior to
interpretation by the shell. For example, to set a variable to the number of lines in
your .bashrc file, you could use wc -l:

$ RCSIZE=$(wc -l ~/.bashrc)

Objective 2: Customize or Write Simple Scripts | 273

Shells, Scripting,
Data M

anagem
ent

Another form of command substitution encloses command in backquotes or
backticks (`):

$ RCSIZE=`wc -l ~/.bashrc`

The result is the same, except that the backquote syntax allows the backslash char-
acter to escape the dollar symbol ($), the backquote (`), and another backslash (\).
The $(command) syntax avoids this nuance by treating all characters between the
parentheses literally.

Mailing from scripts

The scripts you write will often be rummaging around your system at night when
you’re asleep or at least while you’re not watching. Since you’re too busy to check
on every script’s progress, a script will sometimes need to send some mail to you or
another administrator. This is particularly important when something big goes
wrong or when something important depends on the script’s outcome. Sending mail
is as simple as piping into the mail command:

echo "Backup failure 5" | mail -s "Backup failed" root

The -s option indicates that a quoted subject for the email follows. The recipient
could be yourself, root, or if your system is configured correctly, any Internet email
address. If you need to send a logfile, redirect the input of mail from that file:

mail -s "subject" recipient < log_file

or:

cat log_file | mail -s "subject" recipient

Sending email from scripts is easy and makes tracking status easier than reviewing
logfiles every day. On the downside, having an inbox full of “success” messages can
be a nuisance too, so many scripts are written so that mail is sent only in response
to an important event, such as a fatal error.

Abbreviated bash command reference

This section lists some of the important bash built-in commands used when writing
scripts. Please note that not all of the bash commands are listed here; for a complete
overview of the bash shell, see Learning the bash Shell by Cameron Newham (O’Re-
illy).

break

Syntax
break [n]

Description
Exit from the innermost (most deeply nested) for, while, or until loop or from the n innermost
levels of the loop.

break

274 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

http://oreilly.com/catalog/9780596009656/

case

Syntax
case string in
 pattern1)
 commands1
 ;;
 pattern2)
 commands2
 ;;
 ...
esac

Description
Choose string from among a series of possible patterns. These patterns use the same form as
file globs (wildcards). If string matches pattern pattern1, perform the subsequent commands1.
If string matches pattern2, perform commands2. Proceed down the list of patterns until one is
found. To catch all remaining strings, use *) at the end.

continue

Syntax
continue [n]

Description
Skip remaining commands in a for, while, or until loop, resuming with the next iteration of
the loop (or skipping n loops).

echo

Syntax
echo [options] [string]

Description
Write string to standard output, terminated by a newline. If no string is supplied, echo only a
newline. Some Linux distributions have a version of echo at /bin/echo. If that is the case, the
built-in bash version of echo will usually take precedence.

Frequently used options

-e
Enable interpretation of escape characters.

-n
Suppress the trailing newline in the output.

echo

Chapter 13: Shells, Scripting, and Data Management (Topic 105) | 275

Shells, Scripting,
Data M

anagem
ent

Useful special characters

\a
Sound an audible alert.

\b
Insert a backspace.

\c
Suppress the trailing newline (same as -n).

\f
Form feed.

exit

Syntax
exit [n]

Description
Exit a shell script with status n. The value for n can be 0 (success) or nonzero (failure). If n is
not given, the exit status is that of the most recent command.

Example
if ! test -f somefile
then
 echo "Error: Missing file somefile"
 exit 1
fi

for

Syntax
for x in list
do
 commands
done

Description
Assign each word in list to x in turn and execute commands. If list is omitted, it is assumed that
positional parameters from the command line, which are stored in $@, are to be used.

Example
for filename in bigfile* ; do
 echo "Compressing $filename"
 gzip $filename
done

exit

276 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

function

Syntax
function name
{
 commands
}

Description
Define function name. Positional parameters ($1, $2, ...) can be used within commands.

Example
function myfunc
{
 echo "parameter is $1"
}
myfunc 1
parameter is 1
myfunc two
parameter is two

getopts

Syntax
getopts string name [args]

Description
Process command-line arguments (or args, if specified) and check for legal options. The
getopts is used in shell script loops and is intended to ensure standard syntax for command-line
options. The string contains the option letters to be recognized by getopts when running the
script. Valid options are processed in turn and stored in the shell variable name. If an option
letter is followed by a colon, the option must be followed by one or more arguments when the
command is entered by the user.

if

Syntax
if expression1
then
 commands1
elif expression2
then
 commands2
else
 commands
fi

if

Chapter 13: Shells, Scripting, and Data Management (Topic 105) | 277

Shells, Scripting,
Data M

anagem
ent

Description
The if command is used to define a conditional statement. There are three possible formats for
using the if command:

if-then-fi
if-then-else-fi
if-then-elif-then-...fi

kill

Syntax
kill [options] IDs

Description
Send signals to each specified process or job ID, which you must own unless you are a privileged
user. The default signal sent with the kill command is TERM, instructing processes to shut down.

Options

-l
List the signal names.

-s signal or -signal
Specify the signal number or name.

read

Syntax
read [options] variable1 [variable2...]

Description
Read one line of standard input, and assign each word to the corresponding variable, with all
remaining words assigned to the last variable.

Example
echo -n "Enter last-name, age, height, and weight > "
read lastname everythingelse
echo $lastname
echo $everythingelese

The name entered is placed in variable $lastname; all of the other values, including the spaces
between them, are placed in $everythingelse.

kill

278 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

return

Syntax
return [n]

Description
This command is used inside a function definition to exit the function with status n. If n is
omitted, the exit status of the previously executed command is returned.

seq

Syntax
seq [OPTION]... LAST
seq [OPTION]... FIRST LAST
seq [OPTION]... FIRST INCREMENT LAST

Description
Print a sequence of numbers. This is useful in for and while loops.

Frequently used options

-w
Equalize the output’s width by padding with leading zeros.

-f or --format=FORMAT
Use the printf-style floating-point FORMAT.

Example
year=$(date +%Y) # get current year
for month in $(seq -w 1 12)
{
 monthname=$(date -d "${year}-${month}-01" +%B)
 echo "Month $month is $monthname"
}
Month 01 is January
Month 02 is February
Month 03 is March
Month 04 is April
Month 05 is May
Month 06 is June
Month 07 is July
Month 08 is August
Month 09 is September
Month 10 is October
Month 11 is November
Month 12 is December

seq

Chapter 13: Shells, Scripting, and Data Management (Topic 105) | 279

Shells, Scripting,
Data M

anagem
ent

shift

Syntax
shift [n]

Description
Shift positional parameters down n elements. If n is omitted, the default is 1, so $2 becomes $1,
$3 becomes $2, and so on.

source

Syntax
source file [arguments]
. file [arguments]

Description
Read and execute lines in file. The file does not need to be executable but must be in a
directory listed in PATH. The dot syntax is equivalent to stating source.

test

Syntax
test expression
[expression]

Description
Evaluate the conditional expression and return a status of 0 (true) or 1 (false). The first form
explicitly calls out the test command. The second form implies the test command. The spaces
around expression are required in the second form. expression is constructed using options.
Some Linux distributions have a version of test at /usr/bin/test. If that is the case, the built-in
bash version of test will usually take precedence.

Frequently used options

-d file
True if file exists and is a directory

-e file
True if file exists

-f file
True if file exists and is a regular file

-L file
True if file exists and is a symbolic link

-n string
True if the length of string is nonzero

shift

280 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

-r file
True if file exists and is readable

-s file
True if file exists and has a size greater than zero

-w file
True if file exists and is writable

-x file
True if file exists and is executable

-z string
True if the length of string is zero

file1 -ot file2
True if file1 is older than file2

string1 = string2
True if the strings are equal

string1 != string2
True if the strings are not equal

Example
To determine if a file exists and is readable, use the -r option:

if test -r file
then
 echo "file exists"
fi

Using the [] form instead, the same test looks like this:

if [-r file]
then
 echo "file exists"
fi

until

Syntax
until
 test-commands
do
 commands
done

Description
Execute test-commands (usually a test command), and if the exit status is nonzero (that is, the
test fails), perform commands and repeat. Opposite of while.

until

Chapter 13: Shells, Scripting, and Data Management (Topic 105) | 281

Shells, Scripting,
Data M

anagem
ent

while

Syntax
while
 test-commands
do
 commands
done

Description
Execute test-commands (usually a test command), and if the exit status is nonzero (that is, the
test fails), perform commands and repeat. Opposite of until.

Example
Example 13-7 shows a typical script from a Linux system. This example is /etc/rc.d/init.d/
sendmail, which is the script that starts and stops Sendmail. This script demonstrates many of
the built-in commands referenced in the last section.

Example 13-7. Sample sendmail startup script

#!/bin/bash
#
sendmail This shell script takes care of starting and stopping
sendmail.
#
chkconfig: 2345 80 30
description: Sendmail is a Mail Transport Agent, which is the program \
that moves mail from one machine to another.
processname: sendmail
config: /etc/mail/sendmail.cf
pidfile: /var/run/sendmail.pid

Source function library.
. /etc/rc.d/init.d/functions

Source networking configuration.
[-f /etc/sysconfig/network] && . /etc/sysconfig/network

Source sendmail configureation.
if [-f /etc/sysconfig/sendmail] ; then
 . /etc/sysconfig/sendmail
else
 DAEMON=no
 QUEUE=1h
fi
[-z "$SMQUEUE"] && SMQUEUE="$QUEUE"
[-z "$SMQUEUE"] && SMQUEUE=1h

Check that networking is up.
["${NETWORKING}" = "no"] && exit 0

[-f /usr/sbin/sendmail] || exit 0

while

282 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

RETVAL=0
prog="sendmail"

start() {
 # Start daemons.

 echo -n $"Starting $prog: "
 if test -x /usr/bin/make -a -f /etc/mail/Makefile ; then
 make all -C /etc/mail -s > /dev/null
 else
 for i in virtusertable access domaintable mailertable ; do
 if [-f /etc/mail/$i] ; then
 makemap hash /etc/mail/$i < /etc/mail/$i
 fi
 done
 fi
 /usr/bin/newaliases > /dev/null 2>&1
 daemon /usr/sbin/sendmail $(["x$DAEMON" = xyes] && echo -bd) \
 $([-n "$QUEUE"] && echo -q$QUEUE) $SENDMAIL_OPTARG
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch /var/lock/subsys/sendmail

 if ! test -f /var/run/sm-client.pid ; then
 echo -n $"Starting sm-client: "
 touch /var/run/sm-client.pid
 chown smmsp:smmsp /var/run/sm-client.pid
 if [-x /usr/sbin/selinuxenabled] && /usr/sbin/selinuxenabled; then
 /sbin/restorecon /var/run/sm-client.pid
 fi
 daemon --check sm-client /usr/sbin/sendmail -L sm-msp-queue -Ac \
 -q$SMQUEUE $SENDMAIL_OPTARG
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch /var/lock/subsys/sm-client
 fi

 return $RETVAL
}

reload() {
 # Stop daemons.
 echo -n $"reloading $prog: "
 /usr/bin/newaliases > /dev/null 2>&1
 if [-x /usr/bin/make -a -f /etc/mail/Makefile]; then
 make all -C /etc/mail -s > /dev/null
 else
 for i in virtusertable access domaintable mailertable ; do
 if [-f /etc/mail/$i] ; then
 makemap hash /etc/mail/$i < /etc/mail/$i
 fi
 done
 fi
 daemon /usr/sbin/sendmail $(["x$DAEMON" = xyes] && echo -bd) \
 $([-n "$QUEUE"] && echo -q$QUEUE)
 RETVAL=$?

while

Chapter 13: Shells, Scripting, and Data Management (Topic 105) | 283

Shells, Scripting,
Data M

anagem
ent

 killproc sendmail -HUP
 RETVAL=$?
 echo
 if [$RETVAL -eq 0 -a -f /var/run/sm-client.pid]; then
 echo -n $"reloading sm-client: "
 killproc sm-client -HUP
 RETVAL=$?
 echo
 fi
 return $RETVAL
}

stop() {
 # Stop daemons.
 if test -f /var/run/sm-client.pid ; then
 echo -n $"Shutting down sm-client: "
 killproc sm-client
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f /var/run/sm-client.pid
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/sm-client
 fi
 echo -n $"Shutting down $prog: "
 killproc sendmail
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/sendmail
 return $RETVAL
}

See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 reload)
 reload
 RETVAL=$?
 ;;
 restart)
 stop
 start
 RETVAL=$?
 ;;
 condrestart)
 if [-f /var/lock/subsys/sendmail]; then
 stop
 start
 RETVAL=$?
 fi
 ;;
 status)
 status sendmail

while

284 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

 RETVAL=$?
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|condrestart|status}"
 exit 1
esac

exit $RETVAL

On the Exam
You should be familiar with a script’s general structure, as well as the use of she-
bang, test, if statements and their syntax (including the trailing fi), return values,
exit values, and so on.

Objective 3: SQL Data Management
Up until this point, we have focused on data and code stored in text files, the standard
method of data storage in the Unix world. This has worked well for many years.
However, limitations of this format have required that Linux system administrators
become familiar with basic database concepts. Specifically, the Structured Query
Language (SQL) syntax that is shared among most database systems is an important
tool to have in your sysadmin arsenal.

There are many SQL database options available in the Linux world. Arguably, the
most popular are MySQL, PostgreSQL, and SQLite. Like the flamewars that often
arise around the merits of various text editors (vi versus emacs being the historical
Unix equivalent of the Hatfields versus the McCoys), the choice of a SQL database
tends to bring out very strong feelings in Linux users. Due to its popularity among
many database-backed open source projects, MySQL tends to be the SQL database
that is most often seen on Linux systems (although the smaller footprint and rich
API set of SQLite are making it a more popular choice every day). PostgreSQL is
often touted as the only “real” Relational Database Management System (RDBMS)
in the list of popular databases, and although that technically may be true, the ubiq-
uity of MySQL means that PostgreSQL, at least for now, will continue to play a
supporting role in the Linux database world.

For the sake of simplicity, this section will use MySQL as an example. However, the
SQL commands given here should work across the majority of SQL databases.

Accessing a MySQL Server
MySQL is popular enough that it is distributed by default with most modern Linux
distributions. Like many client-server applications, MySQL is usually distributed as
multiple packages. Most often this means there are separate packages for the server
binaries and the client binaries, although there may also be a third package that
includes “common” code. Be sure to familiarize yourself with your distribution’s
package management system so you can effectively determine what software is

Objective 3: SQL Data Management | 285

Shells, Scripting,
Data M

anagem
ent

installed on your system. Refer to Chapter 5 for more information on the common
Linux package managers.

Assuming that the MySQL server package is installed, the server is started the same
way that most Linux services are started:

/etc/rc.d/init.d/mysqld start
Starting MySQL: [OK]

You should now have a running mysqld process, listening on TCP port 3306 by
default. You can verify both of these with the ps and netstat commands, respectively:

ps aux | grep -i mysqld
root 1865 0.0 0.2 4656 1132 pts/0 S 22:20 0:00 /bin/sh \
 /usr/bin/mysqld_safe --datadir=/var/lib/mysql \
 --socket=/var/lib/mysql/mysql.sock --log-error=\
 /var/log/mysqld.log --pidfile=\
 /var/run/mysqld/mysqld.pid
mysql 1989 0.3 3.6 161508 19012 pts/0 Sl 22:20 0:00 \
 /usr/libexec/mysqld --basedir=/usr --datadir=\
 /var/lib/mysql --user=mysql --pid-file=\
 /var/run/mysqld/mysqld.pid --skipexternal-locking \
 --socket=/var/lib/mysql/mysql.sock
netstat -anp | grep "LISTEN" | grep "mysqld"
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN \
 1989/mysqld

By default, communication with the MySQL server takes place over the TCP port
that the server listens on (normally tcp/3306). This communication can be either
through the mysql command-line client program, a programming language such as
PHP or Perl, or a GUI application. A number of useful GUI applications are available
as free downloads from http://dev.mysql.com/downloads/gui-tools. This section will
focus on using the mysql command-line program, both interactively and in shell
scripts.

To access the MySQL server, use the mysql command-line program:

mysql –uroot –p –hlocalhost
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14
Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The options passed on the command line are:

-u
Username to connect as. This is not the same as the Linux username; MySQL
uses its own username and password combinations. They are often similar to
the Linux usernames (root, for example), but they bear no relation to them.

286 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

http://dev.mysql.com/downloads/gui-tools

-p
Prompt for the password. The password can also be given on the command
line, but this is considered insecure and is not recommended.

-h
What hostname (or IP address) to connect to. Useful if you are connecting to
another server on your network. It is not recommended that you connect to
MySQL servers over an unsecured network (such as the Internet) without using
SSL or some other form of encryption. MySQL offers some basic SSL options,
but that level of security is outside the scope of what will appear on the LPI 102
exam.

Now that we have successfully connected to our database, it’s time to review basic
database concepts.

Database Overview
A full understanding of database management recommendations and design meth-
odology is outside the scope of this book and outside the scope of the LPI 102 exam.
However, you will need to know the basics of storing data in a MySQL table, man-
aging that data (adding, updating, and deleting), and performing relatively complex
queries on that data.

A MySQL server instance allows the creation and access of multiple databases si-
multaneously. The MySQL server actually creates a directory in the filesystem for
each new database created. Each database may contain many tables, the layout of
which is set upon initial table creation, but can be modified later. Although there
are many options and pros and cons regarding database formats and storage engines,
for the purposes of the LPI 102 exam we will assume the default storage engine
(MyISAM) and concern ourselves more with table layout and querying. For more
information on storage engines and other advanced MySQL topics, visit http://dev
.mysql.com/doc/.

A table is made up of a number of columns, each given a certain datatype that defines
what data may be stored in this column. Table 13-2 describes some of the more
common MySQL datatypes.

Table 13-2. Common MySQL datatypes

Datatype Description

INTEGER A normal-size integer. The signed range is –2147483648 to 2147483647. The unsigned range is 0 to
4294967295.

FLOAT A floating-point number.

BOOLEAN Stored as a single character integer. A value of zero is considered false. Nonzero values are considered true.

DATE A date in the range of ‘1000-01-01’ to ‘9999-12-31’. Dates are displayed as YYYY-MM-DD by default.

DATETIME A date and time combination in the range of ‘1000-01-01 00:00:00’ to ‘9999-12-31 23:59:59’.

CHAR A fixed-length string in the range of 0–255 characters.

VARCHAR A variable-length string. Before MySQL 5.0.3, the maximum length of a VARCHAR was 255 characters. Since
5.0.3, the maximum length is 65535.

Objective 3: SQL Data Management | 287

Shells, Scripting,
Data M

anagem
ent

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Datatype Description

BLOB A binary format with a maximum size of 65535 bytes.

TEXT A text format with a maximum size of 65535 characters.

Why are datatypes important? Wouldn’t it be easier if we had only two datatypes,
ASCII and binary? It is important to specify datatypes because MySQL queries are
datatype-aware. For example, if I want to create a query that says, “Give me all the
records earlier than a certain date,” I can use the less-than operator (<) on a column
that has a datatype of DATE. MySQL will know that less-than in this case means
“on a date earlier than the one given.” This would be much more difficult to ac-
complish if we did not have strongly defined datatypes.

Let’s start with an example table and walk through the creation steps. For our ex-
ample, we will create a database called community. In this database, our first table
will be families, which will store names and birthdates for the members of a family:

mysql –uroot –p –hlocalhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 53
Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database community;
Query OK, 1 row affected (0.02 sec)

mysql> use community;
Database changed
mysql> CREATE TABLE families (
 -> id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 -> father_name VARCHAR(100),
 -> father_dob DATE,
 -> mother_name VARCHAR(100),
 -> mother_dob DATE,
 -> number_of_children INTEGER UNSIGNED,
 -> child1_name VARCHAR(100),
 -> child1_dob DATE,
 -> child2_name VARCHAR(100),
 -> child2_dob DATE,
 -> child3_name VARCHAR(100),
 -> child3_dob DATE,
 -> notes TEXT,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.05 sec)

The CREATE TABLE command is used to create a table in an existing database.
Each column of the table is named and given a datatype. In addition, options can
be given to columns to change their behavior. For example, we gave the id column
the option AUTO_INCREMENT. This means that MySQL will automatically in-
crement this integer value for every row added to the table. This is a common practice
and ensures that every row will be unique, because even if all the other columns have

288 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

the same data, the id field will always be different. This is enforced by the line “PRI-
MARY KEY (id)”. By naming the id field as the primary key, we’re instructing
MySQL to enforce the uniqueness of this value for each row. This means that if we
tried to add a row of data that included an id value that already existed, MySQL
would display an error and the data would not be added.

The other fields added are names, which we defined as a varchar with an upper limit
of 100 characters (more than enough to hold a first name, middle name and last
name), dates of birth (denoted by the DATE datatype), and a notes field, which we
defined as type TEXT.

To add data to this table, we use the INSERT command:

mysql> INSERT into families
-> (father_name, father_dob, mother_name, mother_dob,
-> number_of_children, child1_name, child1_dob,
-> child2_name, child2_dob, notes)
-> VALUES
-> ("Joe Smith", "1970-04-01", "Jan Smith", "1970-05-10",
-> "2", "Jimmy Smith","2000-08-10", "Janey Smith",
-> "2002-12-12", "This is the smith family
-> of Chicago, IL");
Query OK, 1 row affected, 0 warnings (0.02 sec)

Notice that we did not insert data into every column of the table. By identifying the
fields we wished to use and then the values for each, we’re able to insert exactly the
data we wish into the table. To view the data we just added, use the SELECT
command:

mysql> SELECT id, father_name, mother_name, number_of_children from families;
+----+-------------+-------------+--------------------+
| id | father_name | mother_name | number_of_children |
+----+-------------+-------------+--------------------+
| 1 | Joe Smith | Jan Smith | 2 |
+----+-------------+-------------+--------------------+
1 row in set (0.00 sec)

In this case, we instructed the SELECT statement to show us only the columns id,
father_name, mother_name, and number_of_children. If we had wished to see all of
the columns, the command would have been SELECT * from families.

Notice that the id column has a value of 1. We did not insert this value; it was set
by the MySQL server when we inserted our first record. Subsequent inserts will
continue to increment this number. Let’s add one more row of data:

mysql> INSERT into families set
 -> father_name = "Ken Anderson",
 -> father_dob = "1971-06-06",
 -> mother_name = "Mary Anderson",
 -> mother_dob = "1971-01-29",
 -> number_of_children = "3",
 -> child1_name = "Shawn Anderson",
 -> child1_dob = "1999-10-17",
 -> child2_name = "Kyle Anderson",
 -> child2_dob = "2001-10-12",
 -> child3_name="Lillie Anderson",

Objective 3: SQL Data Management | 289

Shells, Scripting,
Data M

anagem
ent

 -> child3_dob = "2004-11-12",
 -> notes = "This is the Anderson family of Omaha, NE";
Query OK, 1 row affected (0.02 sec)

In this example, we accomplished the same goal as our original INSERT statement,
but we used an alternate syntax.

Now repeat our SELECT query to verify that the table contains two rows:

mysql> SELECT id, father_name, mother_name, number_of_children from families;
+----+--------------+---------------+--------------------+
| id | father_name | mother_name | number_of_children |
+----+--------------+---------------+--------------------+
| 1 | Joe Smith | Jan Smith | 2 |
| 2 | Ken Anderson | Mary Anderson | 3 |
+----+--------------+---------------+--------------------+
2 rows in set (0.01 sec)

Now that we know how to add data to our table, the next step is modifying existing
data. In our initial insert, we didn’t capitalize the last name “smith” in the notes
column. Use the UPDATE command with a WHERE clause to correct this:

mysql> UPDATE families set
 -> notes = "This is the Smith family of Chicago, IL"
 -> WHERE id = "1";
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The UPDATE command is used to modify values in rows that already exist. In order
to identify what rows to modify (assuming you don’t want to update all rows in the
table), you need to give a WHERE clause that uniquely identifies the rows you wish
to modify. In this instance, we took advantage of the fact that the id field is unique
among rows to ensure that our modification affected only the row we wanted it to
affect. Use the SELECT command again to verify our change took place:

mysql> select id, notes from families;
+----+--+
| id | notes |
+----+--+
| 1 | This is the Smith family of Chicago, IL |
| 2 | This is the Anderson family of Omaha, NE |
+----+--+
2 rows in set (0.00 sec)

To remove data from the table, the DELETE command is used. The syntax is similar
to the UPDATE command:

mysql> delete from families where id = "2";
Query OK, 1 row affected (0.03 sec)

mysql> select id, notes from families;
+----+---+
| id | notes |
+----+---+
| 1 | This is the Smith family of Chicago, IL |
+----+---+
1 row in set (0.00 sec)

290 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

The SELECT command shows us that we’re back to one record in the table.

It is possible to alter the layout of a table after it has been created. You can either
modify the datatype of an existing column or add/delete columns from the table. Be
careful when you modify a datatype on a column that already contains data because
you run the risk of losing your data! For example, if you change a column from
varchar(255) to char(1), you will lose all but the first character of any data you had
in that column.

The ALTER TABLE command is used to modify a table after it has been created.
Let’s add two new columns to our table to track the city and state where the families
live:

mysql> ALTER TABLE families
 -> ADD COLUMN city VARCHAR(100) AFTER notes,
 -> ADD COLUMN state CHAR(2) AFTER city;
Query OK, 1 row affected (0.00 sec)
Records: 1 Duplicates: 0 Warnings: 0

Reinsert our second family that we previously deleted:

mysql> insert into families set father_name = "Ken Anderson",
-> father_dob = "1971-06-06", mother_name = "Mary Anderson",
-> mother_dob = "1971-01-29", number_of_children = "3", child1_name =
-> "Shawn Anderson", child1_dob = "1999-10-17", child2_name =
-> "Kyle Anderson", child2_dob = "2001-10-12", child3_name=
-> "Lillie Anderson", child3_dob = "2004-11-12", notes =
-> "This is the Anderson family of Omaha, NE";

Use UPDATE to add city and state values:

mysql> update families set city = "Chicago", state = "IL" where id = "1";
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> update families set city = "Omaha", state = "NE" where id = "3";
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> select id, city, state, notes from families;
+----+---------+-------+--+
| id | city | state | notes |
+----+---------+-------+--+
| 1 | Chicago | IL | This is the Smith family of Chicago, IL |
| 3 | Omaha | NE | This is the Anderson family of Omaha, NE |
+----+---------+-------+--+
2 rows in set (0.00 sec)

Notice that the Anderson family is now id “3” instead of “2”. ID 2 was removed by
our DELETE command. The autoupdate option of MySQL will never use the num-
ber 2 again in this column.

Objective 3: SQL Data Management | 291

Shells, Scripting,
Data M

anagem
ent

Aggregate Functions
Aggregate functions allow you to group queried data in meaningful ways. SQL da-
tabases are more than just simple data stores; the complex functionality of SQL
allows you to extract meaningful data very easily.

A common aggregate function is GROUP BY. This function allows you to perform
operations on groups of data. Let’s add some more data to our example database
and see what options GROUP BY gives us.

mysql> insert into families set father_name = "Adam White",
-> father_dob = "1969-06-08", mother_name = "Tina White",
-> mother_dob = "1969-01-30", number_of_children = "1",
-> child1_name = "Ed White", child1_dob = "1998-11-17",
-> notes = "This is the White family of Bellevue, NE",
-> city = "Bellevue", state = "NE";
Query OK, 1 row affected, 0 warnings (0.00 sec)
mysql> insert into families set father_name = "Bill Carpenter",
-> father_dob = "1968-06-01", mother_name = "Linda Carpenter",
-> mother_dob = "1970-02-30", number_of_children = "4",
-> child1_name = "Joe Carpenter", child1_dob = "1998-12-17",
-> child2_name = "Bob Carpenter", child2_dob = "1996-01-01",
-> child3_name = "Luke Carpenter", child3_dob = "2004-08-08",
-> notes = "This is the Carpenter family of Lincoln, NE",
-> city = "Lincoln", state = "NE";
Query OK, 1 row affected, 0 warnings (0.00 sec)

mysql> select id, father_name, city, state from families;
+----+----------------+----------+-------+
| id | father_name | city | state |
+----+----------------+----------+-------+
1	Joe Smith	Chicago	IL
3	Ken Anderson	Omaha	NE
4	Adam White	Bellevue	NE
5	Bill Carpenter	Lincoln	NE
+----+----------------+----------+-------+
4 rows in set (0.01 sec)

mysql> select count(state),state from families GROUP BY state;
+--------------+-------+
| count(state) | state |
+--------------+-------+
| 1 | IL |
| 3 | NE |
+--------------+-------+
2 rows in set (0.00 sec)

We’ve added two new families, so our table now contains four rows. The last query
is an example of using the GROUP BY syntax. We asked MySQL, “How many
different states are represented in our table?” You also could have achieved the same
result with a combination of the mysql command-line program and some shell
scripting knowledge:

echo "select state from families" |\
> mysql –s –uroot –ppassword –hlocalhost community |\

292 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

> sort | uniq –c
 1 IL
 3 NE

If you are more familiar with the Linux command-line text processing tools, you can
oftentimes depend on them to parse the data that a SQL query will return. As you
can see from this example, the mysql command-line program can process queries
on standard input and return results on standard output. The -s option tells mysql
to be “silent,” meaning not to return any column names and only return data, which
is usually what you want if you’re going to be passing the results to another program
for processing.

Another option MySQL gives you for outputting data is the ORDER BY function.
This simply changes the sort order of the results. Let’s sort our families by the father’s
date of birth, from youngest to oldest:

mysql> select id,father_name,father_dob from families ORDER BY father_dob asc;
+----+----------------+------------+
| id | father_name | father_dob |
+----+----------------+------------+
5	Bill Carpenter	1968-06-01
4	Adam White	1969-06-08
1	Joe Smith	1970-04-01
3	Ken Anderson	1971-06-06
+----+----------------+------------+
4 rows in set (0.00 sec)

MySQL understands that the father_dob column is type DATE and sorts accord-
ingly. The modifiers to ORDER BY can be asc (ascending) or desc (descending).

Multitable Queries
The final concept to describe in our basic SQL overview is that of JOIN. So far, we
have concerned ourselves with querying only one table. This is fine for simple data
storage requirements, but as data complexity grows, so does the need for multiple
tables. As long as there is a relationship between data elements in the tables, the
table values can be JOINed in a query.

To see an example of this, we need to create another table that has a relationship
with the first table. We will use this second table to store pet information for each
family.

mysql> CREATE TABLE pets (
 -> id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 -> family_id INTEGER UNSIGNED NOT NULL,
 -> type VARCHAR(45) NOT NULL,
 -> name VARCHAR(45) NOT NULL,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.02 sec)

mysql> show tables;
+---------------------+
| Tables_in_community |

Objective 3: SQL Data Management | 293

Shells, Scripting,
Data M

anagem
ent

+---------------------+
| families |
| pets |
+---------------------+
2 rows in set (0.00 sec)

mysql> describe pets;
+-----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
family_id	int(10) unsigned	NO			
type	varchar(45)	NO			
name	varchar(45)	NO			
+-----------+------------------+------+-----+---------+----------------+
4 rows in set (0.02 sec)

mysql> insert into pets (family_id,type,name) VALUES ("1","dog","Max");
Query OK, 1 row affected (0.01 sec)

mysql> insert into pets (family_id,type,name) VALUES ("3","cat","Paws");
Query OK, 1 row affected (0.01 sec)

mysql> insert into pets (family_id,type,name) VALUES ("4","cat","Muffy");
Query OK, 1 row affected (0.01 sec)

mysql> insert into pets (family_id,type,name) VALUES ("4","dog","Rover");
Query OK, 1 row affected (0.00 sec)

The important column in this second table is family_id. We need to ensure that as
we add data to this table, we associate the data with the correct ID from the fami-
lies table. This expresses the relationship between the families and their pets, and
allows us to query against them. We have added four pets to our table: family ID
#1 (the Smiths) have a dog named Max, family ID #3 (the Andersons) have a cat
named Paws, and family ID #4 (the Whites) have a cat named Muffy and a dog
named Rover. Here is a simple example of a join that queries values from both tables:

mysql> select a.id, a.father_name, a.mother_name, b.type, b.name
from families a, pets b where a.id = b.family_id;
+----+--------------+---------------+------+-------+
| id | father_name | mother_name | type | name |
+----+--------------+---------------+------+-------+
1	Joe Smith	Jan Smith	dog	Max
3	Ken Anderson	Mary Anderson	cat	Paws
4	Adam White	Tina White	cat	Muffy
4	Adam White	Tina White	dog	Rover
+----+--------------+---------------+------+-------+
4 rows in set (0.02 sec)

This syntax is slightly different from our previous SELECT statements. First, notice
that we have to qualify the column names with a table identifier. In this case, we’re
using a and b. After the FROM statement, we are aliasing the families table as a and
the pets table as b. This is common shorthand that makes our SQL statements
shorter; otherwise, we’d have to use families.id, families.father_name, etc. Finally,
the WHERE clause of a.id = b.family_id expresses the relationship between the

294 | Chapter 13: Shells, Scripting, and Data Management (Topic 105)

tables. This ensures that we know which pet belongs to which family. As you can
see, the family_id column is not a primary key, because it does not need to be unique.
Families can have multiple pets, as the White family does in our example.

Although this SELECT statement did not actually use the JOIN syntax, it is an ex-
ample of the simplest kind of join. Notice that we are missing a family from our
results, however: the Carpenter family does not have any pets, so our SELECT
statement did not select them. If we want families to display in the output even if
they do not have pets, we need to use the LEFT JOIN syntax. This is functionally
very similar to the previous join of two tables, but it differs in two important ways:
the syntax is quite a bit different, and because special consideration is given to the
table on the LEFT, each item present in the left table will display in the results, even
if there is not a match with the other joined table. Compare the output of this LEFT
JOIN statement with the previous join output:

mysql> select families.id, families.father_name, families.mother_name,
 -> pets.type, pets.name from families
 -> LEFT JOIN pets on families.id = pets.family_id;
+----+----------------+-----------------+------+-------+
| id | father_name | mother_name | type | name |
+----+----------------+-----------------+------+-------+
1	Joe Smith	Jan Smith	dog	Max
3	Ken Anderson	Mary Anderson	cat	Paws
4	Adam White	Tina White	cat	Muffy
4	Adam White	Tina White	dog	Rover
5	Bill Carpenter	Linda Carpenter	NULL	NULL
+----+----------------+-----------------+------+-------+
5 rows in set (0.01 sec)

The Carpenter family now appears in the query results, but with NULL values for
type and name, since they did not have a corresponding record in the pets table. We
used the more detailed SELECT syntax in this example, keeping the full table names
instead of aliasing them with a and b but the queries are the same; the aliasing is just
for readability.

On the Exam
SQL can be a complicated subject, but the LPI 102 exam will test you only on the
basic syntax of adding and querying data. Make sure you are familiar with the
common elements of INSERT and SELECT statements, and can describe the var-
ious datatypes available in MySQL.

Objective 3: SQL Data Management | 295

Shells, Scripting,
Data M

anagem
ent

14
The X Window System (Topic 106)

Unix has a long history that predates the popular demand for a graphical user in-
terface (GUI). However, a GUI is an essential part of running desktop systems today,
and the standard GUI on Linux systems is the X Window System, or more simply,
X. Originally developed at MIT and Digital Equipment Corporation, X’s Version 11
Release 7 is the version most commonly seen in Linux distributions. This version is
more commonly referred to as X11R7.4, or just X11. X is a complete windowing
GUI and is distributable under license without cost. The implementation of X for
Linux is X.Org Foundation, which is available for multiple computer architectures
and is released under the GNU Public License. This section covers the following
three Objectives on X.Org Foundation for LPI Exam 102:

Objective 1: Install and Configure X11
An LPIC 1 candidate should be able to configure and install X and an X font
server. This Objective includes verifying that the video card and monitor are
supported by an X server as well as customizing and tuning X for the video card
and monitor. It also includes installing an X font server, installing fonts, and
configuring X to use the font server (which may require manually editing /etc/
X11/xorg.conf). Weight: 2.

Objective 2: Set Up a Display Manager
This Objective states a candidate should be able to set up and customize a
display manager. This includes turning the display manager on or off and
changing the display manager greetings. It also includes changing default bit-
planes for the display manager and configuring display managers for use by X
stations. This Objective covers the display managers: X Display Manager
(xdm), Gnome Display Manager (gdm), and KDE Display Manager (kdm).
Weight: 2.

Objective 3: Accessibility
Demonstrate knowledge and awareness of accessibility technologies. This ob-
jective requires the candidate to be familiar with the various technologies and
how they may be configured in the X Window System. Topics include keyboard

297

http://www.x.org

shortcuts, controlling visual settings and themes, and assistive technologies.
Weight: 1.

An Overview of X
X is implemented using a client/server model. X servers and clients can be located
on the same computer or separated across a network, so that computation is handled
separately from display rendering. While X servers manage hardware, they do not
define the look of the display, and they offer no tools to manipulate clients. The X
server is responsible for rendering various shapes and colors on screen. Examples of
X Servers include:

• Software from X.Org, which controls your Linux PC’s video cardX.Org soft-
ware on a separate networked system, displaying output from a program run-
ning on your system

• Other networked Unix systems running their own X server software

• X implementations for other operating systems, such as Microsoft Windows

• An X Terminal, which is a hardware device with no computational ability of its
own, built solely for display purposes

X clients are user programs, such as spreadsheets or CAD tools, which display
graphical output. Examples of X clients are:

• A browser, such as Firefox or Opera

• A mail program, such as Evolution or Kmail

• Office applications, such as OpenOffice, Gnumeric, or AbiWord

• A terminal emulator, such as xterm, running within an X window

A special client program called a window manager is responsible for these functions
and provides windows, window sizing, open and close buttons, and so forth. The
window manager controls the other clients running under an X server. Multiple
window managers are available for the X Window System, allowing you to choose
an interface style that suits your needs and personal taste.

A few complete graphical desktop environments are also available. These packages
can include a window manager and additional applications that work together to
create a complete, unified working environment. Most Linux distributions ship with
either the KDE or GNOME, or both, along with a number of standalone window
managers. There is no standard window manager or environment for Linux. The
selection is entirely up to the user.

Objective 1: Install and Configure X11
Most Linux distributions install and automatically configure X.Org, freeing users
from much of its installation and configuration. However, Exam 102 requires spe-
cific knowledge of some of the underpinnings of X configuration.

298 | Chapter 14: The X Window System (Topic 106)

Be careful about installing an X server on a system that already
has X installed. A backup should be made prior to the
installation.

Selecting and Configuring an X Server
X.Org is the standard X Window System implementation for most distributions of
Linux. X.Org is released and maintained by X.Org Foundation, which is a nonprofit
community of developers and documentation writers. The X11 environment from
X.Org is based on the code developed by XFree86, which was used as the X Windows
implementation in many Linux distributions. Freedesktop.org is a collaborative
project to develop software for X Window System computers. Get distribution files
for X.Org at http://freedesktop.org.

The X.Org project provides support for an amazing array of graphics hardware. This
outcome is possible partly due to cooperation by manufacturers through public re-
lease of graphics device documentation and driver software, and partly due to the
tenacity of the X.Org developers. Fortunately, many manufacturers who were his-
torically uninterested in offering technical information to the X.Org project have
become cooperative. The result is that most recent video hardware is well-supported
by X.Org.

Supported video hardware

To avoid problems, it is important to verify XFree86 compatibility with your hard-
ware prior to installation. At the very least, you should be aware of these items:

Your X.Org version
As with any software, improvements in X.Org are made over time, particularly
in support for hardware devices. You should choose a version of X.Org that
offers a good balance between the video support and stability you require. To
determine which version of X you’re running, simply issue the following
command:

$ X -version
X.org X Server 1.6.1.901 (1.6.2 RC1)
Release Date 2009-5-8
X Protocol Version 11, Revision 0

The video chipset
X.Org video drivers are written for graphics chipsets, not the video cards on
which they’re installed. Multiple video cards from a variety of manufacturers
can carry the same chipset, making those cards nearly identical in function. You
must verify that the chipset on your video card is supported by X.Org to use
advanced graphics features. Supported chipsets are listed on the X.Org wiki.

Monitor type
X.Org can be configured to handle just about any monitor, particularly the
newer and very flexible multisync monitors sold today, which can handle preset
configurations provided in the X.Org Foundation configuration utilities.

Objective 1: Install and Configure X11 | 299

The X W
indow

System

http://www.freedesktop.org/wiki/
http://freedesktop.org

However, if you have a nonstandard monitor, you need to know some param-
eters describing its capabilities before configuring X, including your monitor’s
horizontal sync frequency (in kHz), vertical refresh frequency (in Hz), and res-
olution (in pixels). These items can usually be found in your monitor’s docu-
mentation, but since most monitors conform to standard display settings such
as XGA (1024 × 768 pixels at 60 Hz vertical refresh), you should be able to use
a preset configuration.

Installing X.Org

It is rare that you’ll actually need to install X.Org by hand, as X.Org is typically
installed during initial system installation for systems that plan to use X. Most Linux
distributions include X.Org packages on the installation media so you can install
them from there using your distribution’s choice of package managers.

Some applications might require that you install a new release or development ver-
sion of X.Org that is not available as a package. In these cases, you can download
the source files or precompiled binaries from X.Org mirror websites. Refer to Chap-
ter 5 for more information on installing applications from packages or source files.

Configuring an X server and the xorg.conf file

X.Org configuration differs slightly among versions and among Linux distributions,
but essentially involves the creation of the xorg.conf file customized for your system.
The file is created during the system install as devices are automatically detected and
configured. Typically there is no further need for modification to the file, as it will
be managed by the system. The X server uses this configuration file when it starts
to set such things as keyboard and mouse selections, installed fonts, and screen
resolutions.

Example 14-1 contains an xorg.conf file. (Note that the xorg.conf file shown contains
example settings and is not intended for use on your system.)

Example 14-1. A sample xorg.conf file for XFree86 v3.3.3

/etc/X11/xorg.conf (xorg X Window System server configuration file)
This file was generated by dexconf, the Debian X Configuration tool, using
values from the debconf database.
Edit this file with caution, and see the /etc/X11/xorg.conf manual page.
(Type "man /etc/X11/xorg.conf" at the shell prompt.)
#
This file is automatically updated on xserver-xorg package upgrades *only*
if it has not been modified since the last upgrade of the xserver-xorg
package.
#
If you have edited this file but would like it to be automatically updated
again, run the following command:
sudo dpkg-reconfigure -phigh xserver-xorg

Section "Files"
FontPath "/usr/share/X11/fonts/misc"
FontPath "/usr/share/X11/fonts/cyrillic"
FontPath "/usr/share/X11/fonts/100dpi/:unscaled"

300 | Chapter 14: The X Window System (Topic 106)

http://www.x.org

FontPath "/usr/share/X11/fonts/75dpi/:unscaled"
FontPath "/usr/share/X11/fonts/Type1"
FontPath "/usr/share/X11/fonts/100dpi"
FontPath "/usr/share/X11/fonts/75dpi"
FontPath "/usr/share/fonts/X11/misc"
path to defoma fonts
FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType"
EndSection

Section "Module"
Load "i2c"
Load "bitmap"
Load "ddc"
Load "dri"
Load "extmod"
Load "freetype"
Load "glx"
Load "int10"
Load "type1"
Load "vbe"
EndSection

Section "InputDevice"
Identifier "Generic Keyboard"
Driver "kbd"
Option "CoreKeyboard"
Option "XkbRules" "xorg"
Option "XkbModel" "pc105"
Option "XkbLayout" "us"
Option "XkbOptions" "lv3:ralt_switch"
EndSection

Section "InputDevice"
Identifier "Configured Mouse"
Driver "mouse"
Option "CorePointer"
Option "Device" "/dev/input/mice"
Option "Protocol" "ExplorerPS/2"
Option "ZAxisMapping" "4 5"
Option "Emulate3Buttons" "true"
EndSection

Section "InputDevice"
Driver "wacom"
Identifier "stylus"
Option "Device" "/dev/wacom" # Change to
/dev/input/event
for USB
Option "Type" "stylus"
Option "ForceDevice" "ISDV4" # Tablet PC ONLY
EndSection

Section "InputDevice"
Driver "wacom"
Identifier "eraser"
Option "Device" "/dev/wacom" # Change to

Objective 1: Install and Configure X11 | 301

The X W
indow

System

/dev/input/event
for USB
Option "Type" "eraser"
Option "ForceDevice" "ISDV4" # Tablet PC ONLY
EndSection

Section "InputDevice"
Driver "wacom"
Identifier "cursor"
Option "Device" "/dev/wacom" # Change to
/dev/input/event
for USB
Option "Type" "cursor"
Option "ForceDevice" "ISDV4" # Tablet PC ONLY
EndSection

Section "Device"
Identifier "VMWare Inc [VMware SVGA II] PCI Display Adapter"
Driver "vmware"
BusID "PCI:0:15:0"
EndSection

Section "Monitor"
Identifier "Generic Monitor"
Option "DPMS"
HorizSync 28-51
VertRefresh 43-60
EndSection

Section "Screen"
Identifier "Default Screen"
Device "VMWare Inc [VMware SVGA II] PCI Display Adapter"
Monitor "Generic Monitor"
DefaultDepth 24
SubSection "Display"
Depth 1
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 4
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 8
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 15
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 16
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 24

302 | Chapter 14: The X Window System (Topic 106)

Modes "1024x768" "800x600" "640x480"
EndSubSection
EndSection

Section "ServerLayout"
Identifier "Default Layout"
Screen "Default Screen"
InputDevice "Generic Keyboard"
InputDevice "Configured Mouse"
InputDevice "stylus" "SendCoreEvents"
InputDevice "cursor" "SendCoreEvents"
InputDevice "eraser" "SendCoreEvents"
EndSection

Section "DRI"
Mode 0666
EndSection

Distribution-specific tools

Various Linux distributors provide their own configuration utilities. For example,
system-config-display is distributed by Red Hat Software. It is an X-based GUI tool
that can probe graphics chipsets and features. In Red Hat Fedora 10, the xorg.conf
file was dropped. Instead, the operating system detects system components and
configures the X system accordingly every time the system boots. If you need to
configure a system component manually, you first need to create the xorg.conf file.
This can be accomplished using different tools, such as the system-config-display
package if it is installed. This can be run interactively as root from the command
line, or it may be run from the display command in the System → Admi-
nistration → Display menu. In either case, the graphical interactive control for video
driver and monitor selection will open. You can install the system-config-display
package using a package controller such as yum. Refer to Chapter 5 for more infor-
mation about installing packages. To run the system-config-display package from
the terminal, type the following:

system-config-display

The alternative is to manually create and edit the xorg.conf file. This may be done
using the xorg –configure command, which will create a basic new xorg.conf file
using information that is autodetected from the system. The file will be created in
the local directory.

Example 14-2 shows the creation of the xorg.conf file using the –configure option in
Fedora Linux.

Example 14-2. Creating the xorg.conf file in Fedora Linux

Xorg -configure
X.Org X Server 1.6.1.901 (1.6.2 RC 1)
Release Date: 2009-5-8
X Protocol Version 11, Revision 0
Build Operating System: Linux 2.6.18-128.1.6.el5 i686
Current Operating System: Linux Suffolk 2.6.29.6-213.fc11.i686.PAE #1 \
SMP Tue Jul 7 20:59:29 EDT 2009 i686

Objective 1: Install and Configure X11 | 303

The X W
indow

System

Kernel command line: ro root=/dev/mapper/vg_suffolk-lv_root rhgb quiet
Build Date: 18 May 2009 02:47:59PM
Build ID: xorg-x11-server 1.6.1.901-1.fc11
Before reporting problems, check http://wiki.x.org
to make sure that you have the latest version.
Markers: (--) probed, (**) from config file, (==) default setting,
(++) from command line, (!!) notice, (II) informational,
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.
(==) Log file: "/var/log/Xorg.1.log", Time: Wed Aug 12 06:32:31 2009
List of video drivers:
glint
nv
vmware
voodoo
radeon
mach64
geode
sisusb
intel
s3virge
siliconmotion
ati
mga
amd
savage
ast
v4l
i128
neomagic
sis
r128
dummy
rendition
nouveau
ztv
trident
tdfx
cirrus
i740
openchrome
apm
fbdev
vesa
(++) Using config file: "/root/xorg.conf.new"

Xorg detected your mouse at device /dev/input/mice.
Please check your config if the mouse is still not
operational, as by default Xorg tries to autodetect
the protocol.

Your xorg.conf file is /root/xorg.conf.new

To test the server, run 'X -config /root/xorg.conf.new'

304 | Chapter 14: The X Window System (Topic 106)

The resulting xorg.conf.new file will need to be modified and then copied to the /etc/
X11/ directory so it can be used the next time the system starts:

cp /root/xorg.conf.new /etc/X11/xorg.conf

The default location for the xorg.conf file is in /etc/X11. The file contains a number
of sections, listed next, that describe various parameters of devices attached to the
system. The sections may be in any order.

Files
This section is used to specify the default font path and the path to the RGB
database. Using the FontPath "path" directive multiple times creates a list of
directories that the X server will search for fonts. The RGB database is an equiv-
alence table of numeric red/green/blue color values with names. Here’s a short
excerpt of the RGB database:

255 228 196 bisque
255 218 185 peach puff
255 218 185 PeachPuff
255 222 173 navajo white

Hundreds of these names are defined and may be used in the configuration of
X applications where color names are required.

ServerFlags
This section allows customization of X server options such as the handling of
hotkeys.

InputDevice
This section may be used multiple times in the configuration file, depending on
the types of devices connected to the system. Normally it will appear at least
twice: once for the keyboard and again for the mouse.

Monitor
Multiple Monitor sections are used to define the specifications of monitors and
a list of the video modes they can handle.

Device
Multiple Device sections are used to define the video hardware (cards) installed.

Screen
The Screen section ties together a Device with a corresponding Monitor and
includes some configuration settings for them.

ServerLayout
This section ties together a Screen with one or more InputDevices. Multiple
ServerLayout sections may be used for multiheaded configurations (i.e., systems
with more than one monitor).

Objective 1: Install and Configure X11 | 305

The X W
indow

System

On the Exam
You don’t need to memorize details about xorg.conf, but it is an important file,
and your familiarity with it will be tested. In particular, be aware of what each of
the sections does for the X server, and remember that the Screen section ties to-
gether a Device and a Monitor.

X Fonts
X.Org is distributed with a collection of fonts for most basic purposes, including
text displays in terminal windows and browsers. For many users, the default fonts
are adequate, but others may prefer to add additional fonts to their system. A variety
of fonts are available, both free and commercially, from many sources, such as
Adobe. Some very creative fonts are created by individuals and distributed on the
Internet (a search should return some useful links to a query such as “X.org fonts”).

X.Org makes fonts that it finds in the font path available to client programs. A basic
font path is compiled into the X server, but you can specify your own font path using
the FontPath directive in the Files section of xorg.conf. The simple syntax is:

FontPath "path"

For example:

Section "Files"
FontPath "/usr/share/X11/fonts/misc"
FontPath "/usr/share/X11/fonts/cyrillic"
FontPath "/usr/share/X11/fonts/100dpi/:unscaled"
FontPath "/usr/share/X11/fonts/75dpi/:unscaled"
FontPath "/usr/share/X11/fonts/Type1"
FontPath "/usr/share/X11/fonts/100dpi"
FontPath "/usr/share/X11/fonts/75dpi"
FontPath "/usr/share/fonts/X11/misc"
path to defoma fonts
FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType"
EndSection

This group of FontPath directives creates a font path consisting of eight directories,
all under /usr/share/X11/fonts. When X starts, it parses these font directories and
includes their contents in the list of fonts available during the X session.

Installing fonts

Adding new fonts is straightforward. (For this brief discussion, we assume that we’re
working with Type 1 fonts. Other types, such as TrueType fonts, may require ad-
ditional configuration, depending on your version of XFree86.) First, a suitable di-
rectory should be created for the new fonts, such as /usr/share/X11/fonts/local
or /usr/local/fonts. You may wish to separate your own fonts from the default X.Org
directories to protect them during upgrades. After the fonts are installed in the new
directory, the mkfontdir utility is run to catalog the new fonts in the new directory.
New entries are added to the xorg.conf file to include the path for new fonts. For
example:

306 | Chapter 14: The X Window System (Topic 106)

FontPath "/usr/local/fonts"

At this point, the X server can be restarted to recognize the new fonts, or the fonts
can be dynamically added using the xset command:

xset fp+ /usr/local/fonts

xset is beyond the scope of the LPIC Level 1 exams.

On the Exam
Be sure you understand how the X font path is created and how to extend it to
include additional directories. Knowledge of the internal details of font files is not
necessary.

The X font server

On a network with multiple workstations, managing fonts manually for each system
can be time consuming. To simplify this problem, the administrator can install all
of the desired fonts on a single system and then run xfs, the X fonts server, on that
system. On a local system, xfs off-loads the work of rendering fonts from the X server,
which means the X server can do other tasks while fonts are being rendered. This is
especially noticeable on slower systems or systems without a Floating Point Unit
(FPU).

The X font server is a small daemon that sends fonts to clients on both local and
remote systems. Some Linux distributions use xfs exclusively, without a list of di-
rectories in the manually created font path. To include xfs in your system’s font path,
add a FontPath directive like this:

Section "Files"
 RgbPath "/usr/share/X11/fonts/rgb"
 FontPath "unix/:-1"
EndSection

If you install xfs from a package from your distribution, it is probably automatically
configured to start at boot time and run continually, serving fonts to local and remote
client programs. To start xfs manually, simply enter the xfs command. For security
purposes, you may wish to run xfs as a nonroot user. xfs is configured using its
configuration file, /etc/X11/fs/config.

On the Exam
Fonts are administered primarily through the local machine, reducing network
services that need to be enabled on the remote server. Coverage here is for aware-
ness that fonts may be administered remotely via xfs.

Objective 1: Install and Configure X11 | 307

The X W
indow

System

Controlling X Applications with .Xresources
The X Window System also has many built-in customization features. Many X
applications are programmed with a variety of resources, which are configuration
settings that can be externally manipulated. Rather than have a configuration utility
built into each application, applications can be written to examine the contents of
a file in the user’s home directory. The .Xresources file contains a line for each con-
figured resource in the following form:

program*resource: value

This line can be translated as follows:

• program is the name of a configurable program, such as emacs or xterm.

• resource is one of the configurable settings allowed by the program, such as
colors.

• value is the setting to apply to the resource.

For example, the following is an excerpt from .Xresources that configures colors for
an xterm:

xterm*background: Black
xterm*foreground: Wheat
xterm*cursorColor: Orchid
xterm*reverseVideo: false

On the Exam
You should be aware of X resources and the function of the .Xresources file. In
particular, you should understand that X applications will look in
the .Xresources file for settings. You should also be able to construct a resource
setting given a particular example, but you do not need to be able to generate a
configuration file from scratch.

Objective 2: Set Up a Display Manager
The display manager is the tool to manage X sessions on physical displays both
locally and across the network. Part of its job is to handle user authentication
through a graphical login screen, which replaces the familiar text-mode login. There
are three primary display managers implemented with Linux: xdm, kdm, and gdm.

Configuring xdm
The X display manager (xdm) is a program that allows for a graphical session to
begin on an X server.

xdm is distributed as part of X.Org and is configured by a series of files located
in /etc/X11/xdm. These files include:

Xaccess
This file controls inbound requests from remote hosts.

308 | Chapter 14: The X Window System (Topic 106)

Xresources
This file is similar to .Xresources, discussed earlier. It holds configuration in-
formation for some xdm resources, including the graphical login screen. This
file can be edited to modify the appearance of the xdm login screen.

Xservers
This file associates the X display names (:0, :1, ...) with either the local X server
software or a foreign display, such as an X terminal.

Xsession
This file contains the script xdm launches after a successful login. It usually
looks for .Xsession in the user’s home directory and executes the commands
found there. If such a file doesn’t exist, Xsession starts a default window man-
ager (or environment) and applications.

Xsetup_0
This file is a script started before the graphical login screen. It often includes
commands to set colors, display graphics, or run other programs. This script is
executed as root.

xdm-config
This file associates xdm configuration resources with the other files in this list.
It usually isn’t necessary to make changes in this file unless an expert adminis-
trator plans to customize xdm configuration.

Running xdm manually

xdm uses the X server to run on your local display. Therefore, you must have a
working X configuration prior to using a display manager. Then, to start xdm, simply
enter it as root:

xdm

xdm launches the X server and displays the graphical login, and you can log in as
usual. xdm then starts your graphical environment. After you log out, xdm resets
and again displays the login screen.

Most Linux distributions enable virtual consoles. You can switch among them using
the key combinations Ctrl-Alt-F1, Ctrl-Alt-F2, and so on. (The Ctrl is required only
when switching from an X console to a text or other X console.) Typically, the first
six consoles are set up as text-mode screens, and X launches on console 7 (Ctrl-Alt-
F7) or the first TTY not running mingetty or some other getty process. This means
that, as with startx, your original text-mode console remains unchanged after you
manually start xdm. Therefore, you must log out of your text-mode console if you
plan to leave the system unattended with xdm running manually.

If you want to stop xdm, you first must be sure that all of the X sessions under its
management are logged out. Otherwise, they’ll die when xdm exits and you could
lose data. Simply stop the xdm process using kill or killall from a text console:

killall xdm

Objective 2: Set Up a Display Manager | 309

The X W
indow

System

Of course, xdm isn’t very useful for your local system if you must always start it
manually. That’s why most Linux distributions include a boot-time option to start
xdm for you, eliminating the text-mode login completely.

Running xdm automatically

For Linux systems using the System V–style initialization, a runlevel is usually re-
served for login under xdm. This line at the bottom of /etc/inittab instructs init to
start xdm for runlevel 5:

Run xdm in runlevel 5
x:5:respawn:/usr/X11R6/bin/xdm -nodaemon

Using this configuration, when the system enters runlevel 5, xdm starts and presents
the graphical login as before. See Chapter 4 for more information on runlevels.

It’s also possible to automatically start xdm simply by adding it to the end of an
initialization script, such as rc.local. This method offers less control over xdm but
may be adequate for some situations and for Linux distributions that don’t offer
runlevels.

Basic xdm customization

You may wish to personalize the look of xdm for your system. The look of the
graphical login screen can be altered by manipulating the resources in /etc/X11/xdm/
Xresources. (Note that Xresources uses ! to start comments.) For example, the fol-
lowing excerpt shows settings to control the greeting (Welcome to Linux on
smp-pc), other prompts, and colors:

! Xresources file
xlogin*borderWidth: 10
xlogin*greeting: Welcome to Linux on CLIENTHOST
xlogin*namePrompt: Login:\040
xlogin*fail: Login incorrect - try again!
xlogin*failColor: red
xlogin*Foreground: Yellow
xlogin*Background: MidnightBlue

You can also include command-line options to the X server in /etc/X11/xdm/
Xservers if you wish to override those found in /etc/X11/xorg.conf. For example, to
change the default color depth, add the -bpp (bits per pixel) option for the local
display:

Xservers file
:0 local /usr/X11R6/bin/X -bpp 24

To include additional X programs or settings on the graphical login screen, put them
in /etc/X11/xdm/Xsetup_0. In this example, the background color of the X display
is set to a solid color (in hexadecimal form), and a clock is added at the lower-
righthand corner of the screen:

#!/bin/sh
Xsetup
/usr/X11R6/bin/xsetroot -solid "#356390"
/usr/X11R6/bin/xclock -digital -update 1 -geometry -5-5 &

310 | Chapter 14: The X Window System (Topic 106)

Note that in this example, xsetroot exits immediately after it sets the color, allowing
the Xsetup_0 script to continue. xclock, however, does not exit and must be put into
the background using an & at the end of the command line. If such commands are
not placed into the background, the Xsetup_0 script hangs, and the login display
does not appear.

X Terminals
X terminals are a breed of low-cost display devices for X. They are usually diskless
systems that implement an X server and drive a monitor. Such devices can be con-
figured to access a remote host to find an xdm daemon or will broadcast to the entire
network looking for a “willing host” to offer xdm services. The selected system will
run an X session across the network with the X terminal as the target display. With
this setup, a large number of relatively inexpensive X terminals can make use of a
few high-powered host systems to run graphical clients.

xdm for X terminals

To use an X terminal with your host, xdm must first be running on the host machine.
The host listens for inbound connections from the X terminals using XDMCP, the
xdm Control Protocol (the default port for xdmcp is 177). When a request is received,
xdm responds with the same graphical login screen that’s used on the local system.
The difference is that the X server is implemented in the X terminal hardware, not
in the XFree86 software on the xdm host, and all of the graphics information is
transmitted over the network.

On the Exam
You should be aware of the configuration files for xdm, how they are used, and
where they are located. In particular, remember that the Xresources file controls
graphical login properties. Also remember that xdm can be started using a special
runlevel and that xdm must be running for X terminals to connect via XDMCP.

You can configure access to your system’s xdm daemon in the /etc/X11/xdm/
Xaccess file. This file is a simple list of hosts that are to be restricted or enabled. To
enable a host, simply enter its name. To restrict a host, enter its name with an ex-
clamation point (!) before it. The * wildcard is also allowed to handle groups of
devices.

The following example allows access to all X terminals on the local domain but
prohibits access from xterm1 on an outside domain:

*.example.com
!xterm1.anotherexample.com

Configuring KDM
KDM is built off the XDM design and is responsible for the graphical login screen
that handles user authentication to the system and starts a user session. The KDM
is the display manager for the KDE desktop environment.

Objective 2: Set Up a Display Manager | 311

The X W
indow

System

KDM is distributed by KDE.org and is configured by a series of files located in /etc/
X11/kdm. To see the version that is available for install, use the package manager to
find this information and to install the package:

yum info kdm
Loaded plugins: refresh-packagekit
Available Packages
Name : kdm
Arch : i586
Version : 4.2.4
Release : 5.fc11
Size : 1.5 M
Repo : updates
Summary : The KDE login manager
URL : http://www.kde.org/
License : GPLv2
Description: KDM provides the graphical login screen, shown shortly after boot
 : up, log out, and when user switching.

Use the yum package manager to install the KDM interface.

yum install kdm
Loaded plugins: refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package kdm.i586 0:4.2.4-5.fc11 set to be updated
--> Processing Dependency: kdelibs4(x86-32) >= 4.2.4 for package: \
 kdm-4.2.4-5.fc11.i586
--> Processing Dependency: kde-settings-kdm for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkdeui.so.5 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkio.so.5 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libknewstuff2.so.4 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkde3support.so.4 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkdecore.so.5 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libqimageblitz.so.4 for package: kdm-4.2.4-5.fc11.i586
--> Running transaction check
---> Package kde-settings-kdm.noarch 0:4.2-10.20090430svn.fc11 set to be updated
--> Processing Dependency: kde4-macros(api) = 2 for package: kde-settings-kdm-4.2-
10.20090430svn.fc11.noarch
--> Processing Dependency: leonidas-kde-theme for package: kde-settings-kdm-4.2-
10.20090430svn.fc11.noarch
--> Processing Dependency: xterm for package: \
 kde-settings-kdm-4.2-10.20090430svn.fc11.noarch
--> Processing Dependency: xorg-x11-xdm for package: kde-settings-kdm-4.2-
10.20090430svn.fc11.noarch
---> Package kdelibs.i586 6:4.2.4-6.fc11 set to be updated
--> Processing Dependency: soprano(x86-32) >= 2.2 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: strigi-libs(x86-32) >= 0.6.3 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libsoprano.so.4 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: kde-settings for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libsopranoclient.so.1 for package: \

312 | Chapter 14: The X Window System (Topic 106)

 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libstreams.so.0 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: kdelibs-common for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libstreamanalyzer.so.0 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
---> Package qimageblitz.i586 0:0.0.4-0.5.svn706674.fc11 set to be updated
--> Running transaction check
---> Package kde-filesystem.noarch 0:4-25.fc11 set to be updated
---> Package kde-settings.noarch 0:4.2-10.20090430svn.fc11 set to be updated
--> Processing Dependency: oxygen-icon-theme for package: kde-settings-4.2-
10.20090430svn.fc11.noarch
---> Package kdelibs-common.i586 6:4.2.4-6.fc11 set to be updated
---> Package leonidas-kde-theme.noarch 0:11.0.1-1.fc11 set to be updated
--> Processing Dependency: leonidas-backgrounds-kdm >= 11.0.0-1 \
 for package: leonidas-kde-theme-11.0.1-1.fc11.noarch
---> Package soprano.i586 0:2.2.3-1.fc11 set to be updated
--> Processing Dependency: libclucene.so.0 for package: \
 soprano-2.2.3-1.fc11.i586
---> Package strigi-libs.i586 0:0.6.5-2.fc11 set to be updated
--> Processing Dependency: libexiv2.so.5 for package: \
 strigi-libs-0.6.5-2.fc11.i586
---> Package xorg-x11-xdm.i586 1:1.1.6-10.fc11 set to be updated
---> Package xterm.i586 0:242-3.fc11 set to be updated
--> Running transaction check
---> Package clucene-core.i586 0:0.9.21-3.fc11 set to be updated
---> Package exiv2-libs.i586 0:0.18.2-2.fc11 set to be updated
---> Package leonidas-backgrounds-kdm.noarch 0:11.0.0-1.fc11 \
 set to be updated
---> Package oxygen-icon-theme.noarch 0:4.2.2-1.fc11 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

===
 Package Arch Version Repository Size
===
Installing:
 kdm i586 4.2.4-5.fc11 updates 1.5 M
Installing for dependencies:
 clucene-core i586 0.9.21-3.fc11 fedora 350 k
 exiv2-libs i586 0.18.2-2.fc11 updates 889 k
 kde-filesystem noarch 4-25.fc11 fedora 22 k
 kde-settings noarch 4.2-10.20090430svn.fc11 fedora 38 k
 kde-settings-kdm noarch 4.2-10.20090430svn.fc11 fedora 25 k
 kdelibs i586 6:4.2.4-6.fc11 updates 14 M
 kdelibs-common i586 6:4.2.4-6.fc11 updates 367 k
 leonidas-backgrounds-kdm noarch 11.0.0-1.fc11 fedora 4.6 M
 leonidas-kde-theme noarch 11.0.1-1.fc11 fedora 1.1 M
 oxygen-icon-theme noarch 4.2.2-1.fc11 fedora 15 M
 qimageblitz i586 0.0.4-0.5.svn706674.fc11 fedora 59 k
 soprano i586 2.2.3-1.fc11 fedora 692 k
 strigi-libs i586 0.6.5-2.fc11 updates 476 k
 xorg-x11-xdm i586 1:1.1.6-10.fc11 updates 139 k
 xterm i586 242-3.fc11 fedora 368 k

Objective 2: Set Up a Display Manager | 313

The X W
indow

System

Transaction Summary
===
Install 16 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 39 M
Is this ok [y/N]:

This installation will also install the KDE window manager. Once this has been
installed, you can select the session you wish to boot into at startup using the session
menu. The main configuration file to control the way the KDM operates is called
kdmrc, which is located in /etc/kde/kdm. The following is an example of the contents
of this file:

KDM master configuration file
#
Definition: the greeter is the login dialog, i.e., the part of KDM
which the user sees.
#
You can configure every X-display individually.
Every display has a display name, which consists of a host name
(which is empty for local displays specified in {Static|Reserve}Servers),
a colon, and a display number. Additionally, a display belongs to a
display class (which can be ignored in most cases; the control center
does not support this feature at all).
Sections with display-specific settings have the formal syntax
"[X-" host [":" number ["_" class]] "-" sub-section "]"
You can use the "*" wildcard for host, number, and class. You may omit
trailing components; they are assumed to be "*" then.
The host part may be a domain specification like ".inf.tu-dresden.de".
It may also be "+", which means non-empty, i.e. remote displays only.
From which section a setting is actually taken is determined by these
rules:

Configuring GDM
GDM is the window manager for the GNOME desktop environment. GNOME is
the default graphical desktop environment for Fedora and Ubuntu. The GDM win-
dow manager will be loaded automatically during the graphical installation of these
operating systems. If you need to install the GNOME environment and the GDM
manager, you can use the package manager by issuing a command similar to:

yum groupinstall "GNOME Desktop Environment"

The main configuration file for GDM is either gdm.conf or custom.conf, depending
on the distribution of Linux. The configuration file will be located in etc/gdm/
gdm.conf. This file contains sections for configuring the way the login process op-
erates, the session environments, and the look and feel of the manager or “greeter”
that the user is presented with at the initial login screen. The file is heavily com-
mented for each section of the sections. The following is an example of this config-
uration file’s contents:

314 | Chapter 14: The X Window System (Topic 106)

For full reference documentation see the GNOME help browser under
GNOME|System category. You can also find the docs in HTML form on
http://www.gnome.org/projects/gdm/
#
NOTE: Some values are commented out, but show their default values. Lines
that begin with "#" are considered comments.
#
Have fun!

[daemon]
Automatic login, if true the first local screen will automatically logged
in as user as set with AutomaticLogin key.
AutomaticLoginEnable=false
AutomaticLogin=

Timed login, useful for kiosks. Log in a certain user after a certain
amount of time.
TimedLoginEnable=false
TimedLogin=
TimedLoginDelay=30

The GDM configuration program that is run from the login screen, you
should probably leave this alone.
#Configurator=/usr/sbin/gdmsetup --disable-sound --disable-crash-dialog

The chooser program. Must output the chosen host on stdout, probably you
should leave this alone.
#Chooser=/usr/lib/gdm/gdmchooser

The greeter for local (non-xdmcp) logins. Change gdmlogin to gdmgreeter
to get the new graphical greeter.
Greeter=/usr/lib/gdm/gdmgreeter

The greeter for xdmcp logins, usually you want a less graphically
intensive greeter here so it's better to leave this with gdmlogin
#RemoteGreeter=/usr/lib/gdm/gdmlogin

Switching display managers

More than one desktop environment may be run on the Linux system at any time.
If both the KDE and GNOME environments are installed, you may switch between
them during the graphical login by selecting the environment from the session menu.
Both the KDM and GDM managers will have the session menu available at startup.
It is possible to run only one of the display managers, but you can change which
display manager is presented during startup. In order to change from the default
GDM manager, you will need to update the /etc/sysconfig/desktop file by editing the
following:

desktop= "kde"
displaymanager= "kdm"

Another way to switch between the KDM and GDM managers is to install the
switchdesk tool using a package manager and then execute the application. switch-
desk allows users to simply switch between various desktop environments installed

Objective 2: Set Up a Display Manager | 315

The X W
indow

System

on the system. Not all display managers are supported; however, it does support
KDE and GNOME:

$ switchdesk kde
Red Hat Linux switchdesk 4.0
Copyright (C) 1999-2004 Red Hat, Inc
Redistributable under the terms of the GNU General Public License
Desktop now set up to run KDE.

On the Exam
Remember that you may run more than one desktop environment at a time with
Linux. You will need to know how you can switch environments and possibly
make either the KDM or GDM the default window manager.

Objective 3: Accessibility
There are a wide range of physical disabilities that can impair a user’s ability to
interact with computers and applications. Most of the Linux distributions come with
some assistive technology tools built in for visually and physically challenged users.
One of the earliest tools was Emacspeak (currently at version 31), a free screen reader
that allows users to interact independently with the computer. It is available for most
versions of Linux. The Emacspeak desktop works with a variety of applications,
including browsers.

Screen readers are software applications that provide translation of the information
on the computer screen to an audio output format. The translation is passed to the
speech synthesizer, and the words are spoken out loud. Currently, fully functional
screen readers are available for Linux only in console mode. The following are some
of the most common screen readers:

Emacspeak
This tool is classified as a screen reader, but the creator calls it an “audio desk-
top.” It is an excellent nongraphical, text-based interface for users who are vis-
ually impaired. This application can be used as a screen reader in conjunction
with a hardware synthesizer or IBM ViaVoice® Run-time text-to-speech
application.

Jupiter Speech System
An older screen reader for Linux in console mode. This package also includes
the ability to read logfiles of an interactive session and contains customizable
speech commands.

Speakup
A screen review package for the Linux operating system. It requires a hardware
speech synthesizer such as the DecTalk Express. It allows computer interaction
by verbal commands, in addition to synthesized voice feedback from the
console.

316 | Chapter 14: The X Window System (Topic 106)

Orca
A screen reader designed to work with applications and toolkits that support
the assistive technology service provider interface (AT-SPI). This includes the
GNOME desktop and its applications, OpenOffice, Firefox, and the Java plat-
form. Orca may be enabled under the system/preferences menu from the
GNOME environment. Orca includes support for assistive tools for speech,
Braille, and screen magnification.

Here are some other products that serve as screen magnifiers, which enable users
who are partially blind to view selected areas of the screen, similar to using a mag-
nifying glass:

SVGATextmode
This product enlarges or reduces the font size for users who prefer to work in
console mode. The normal text screen that Linux provides is 80 characters
across and 25 vertically. After SVGATextmode is installed, the text can be dis-
played much larger, for example, 50 characters across and 15 vertically. The
program does not offer the ability to zoom in and out, but the user can resize
when necessary. Do not run try to run SVGATextmode from an X Windows
terminal; you must be in console mode for the display to function properly.

Xzoom
A screen magnifier that allows the user to magnify, rotate, or mirror a portion
of the screen.

Some additional applications that may be used to support Braille devices in con-
junction with the computer include:

BrLTTY
Supports parallel port and USB Braille displays and provides access to the Linux
console. It drives the terminal and provides complete screen review capabilities.
It is available at http://dave.mielke.cc/brltty/.

Blind + Linux = BLINUX
Provides documentation, downloads, and a mailing list that focus on users who
are blind. Information and software packages are available at
http://leb.net/blinux.

The Linux operating system also has built-in features that allow for additional key-
board configuration. In some of the X Windows desktops, these settings can be
changed from the preferences menu. An application developed for X Windows
called AccessX provides a graphical user interface for configuring all of the following
AccessX keyboard settings:

StickyKeys
Enables the user to lock modifier keys (for example, Ctrl and Shift), allowing
single-finger operations in place of multiple key combinations.

MouseKeys
Provides alternative keyboard sequences for cursor movement and mouse but-
ton operations.

Objective 3: Accessibility | 317

The X W
indow

System

http://dave.mielke.cc/brltty/
http://leb.net/blinux

SlowKeys
This setting requires the user to hold the key down for a specified period of time
before the keystroke is accepted. This prevents keystrokes that are pressed ac-
cidentally from being sent.

ToggleKeys
Sounds an audio alert that warns the user that a keystroke created a locking
state for keys, such as Caps Lock and Num Lock.

RepeatKeys
Allows a user with limited coordination additional time to release keys before
multiple key sequences are sent to the application.

BounceKeys or Delay Keys
These settings have a delay between keystrokes. This function can help prevent
the system from accepting unintentional keystrokes.

Onscreen keyboards enable a user to select keys using a pointing device, such as a
mouse, trackball, or touch pad, and can be used in place of a standard keyboard.

GTkeyboard
An onscreen, graphical keyboard that can be downloaded at http://opop.nols
.com/gtkeyboard.html.

GNOME Onscreen Keyboard (GOK)
An onscreen, graphical keyboard that enables users to control their computers
without relying on a standard keyboard or mouse. More information is available
at http://www.gok.ca.

Remember that most Linux distributions will have some form of assistive technology
built into the GUI, accessible through system settings or preferences. Most of these
include at least the ability to modify mouse and keyboard actions and to add a screen
reader or magnification. Some, as with GNOME and the Orca project, will have
more support, including the ability to add an onscreen keyboard.

On the Exam
You should be aware of the various assistive technology tools that are available
for use in Linux. Many of the tools may be installed already in the operating system
and just need to be enabled from the system settings or preferences menu. More
information about assistive technology for Linux users may be found at Ability
Net Gate.

318 | Chapter 14: The X Window System (Topic 106)

http://opop.nols.com/gtkeyboard.html
http://opop.nols.com/gtkeyboard.html
http://www.gok.ca
http://abilitynet.wetpaint.com
http://abilitynet.wetpaint.com

15
Administrative Tasks (Topic 107)

As a system administrator in a multiuser environment, much of your activity is
related to users and their system accounts, the automation of routine tasks, and
internationalization. This chapter covers these administrative aspects of Linux as
required for Exam 102. This chapter has three Objectives:

Objective 1: Manage User and Group Accounts and Related System Files
Candidates should be able to add, remove, suspend, and change user accounts.
Tasks to adding and removing groups, and changing user/group info in pass-
word/group databases. This Objective also includes creating special-purpose
and limited accounts. Weight: 5.

Objective 2: Automate System Administration Tasks by Scheduling Jobs
Candidates should be able to use cron or anacron to run jobs at regular intervals
and to use at to run jobs at a specific time. Tasks include managing cron and
at jobs and configuring user access to cron and at services. Weight. 4.

Objective 3: Localization and Internationalization
Candidates should be able to localize a system in a language other than English.
Additionally, candidates should understand why LANG=C is useful when
scripting. Weight: 3.

Objective 1: Manage User and Group Accounts and Related
System Files
Whether on a corporate server or personal desktop machine, managing user ac-
counts is an important aspect of running a Linux system. The root, or superuser,
account is established when you first install Linux. Unlike single-user systems (such
as MS-DOS), multiuser systems require the notion of an owner for files, processes,
and other system objects. An owner may be a human system user or a system service,
such as a web server. Each of these owners is differentiated from others by a unique
user account, which is assigned to it by the system administrator.

319

User Accounts and the Password File
When a new user account is added to a Linux system, an entry is added to a list of
users in the password file, which is stored in /etc/passwd. This file gets its name from
its original use, which was to store user information, including an encrypted form
of the user’s password. The password file is in plain text and is readable by everyone
on the system. Each line in the password file contains information for a single user
account, with fields separated by colons, as illustrated in Figure 15-1.

Figure 15-1. Sample lines from a password file

Each line in the file contains information for a single system account and includes
the following pieces of information in colon-separated fields:

Username
The first field on a line is a unique username for the person or service using the
account.

Password
Each username has an associated password. The password stored in this field
is in a hashed (unreadable and unrecoverable) form. Despite the hash, for se-
curity reasons, most systems now store user passwords in a separate /etc/
shadow file that has restricted permissions. If the password is not included, its
field is filled by the letter x, which indicates that the shadow password system
is in use.

User ID
Each username requires a unique user identifier, or UID. The UID is simply a
nonnegative integer. The root account is assigned the UID of 0, which gives it
global privilege on the system. By convention, the UID values from 0 to 99 are
reserved for administrative use; those over 99 are for regular system users. It’s
not unusual for new system accounts to start at 500.

Group ID
Each username has a default group identifier, or GID. The GID is also a non-
negative integer. Groups are a way of allowing users to share files through
mutual group membership. Group numbers and their associated names are
specified in the /etc/group file. The GID stored for each user in /etc/passwd is its
default group ID, though a user may belong to many groups.

Full name (or other comment)
The user’s full name or other information is stored as plain text. This field may
contain spaces.

320 | Chapter 15: Administrative Tasks (Topic 107)

Home directory
The home directory is the default directory in the filesystem for the user’s ac-
count. If a new account is meant for a person, a home directory will probably
be created in the filesystem with standard configuration files that the user may
then personalize. The full path to that home directory is listed here.

Default shell
This field specifies the default shell for the user or service, which is the shell that
runs when the user logs in or opens a shell window. In most cases, the shell will
be /bin/bash, but it can be any shell, or even another executable program. (Non-
shell entries may be seen in the case of some services that should own files but
never log in interactively. You may see the shell field filled with /bin/false, a small
program that does nothing but yield an error and terminate. This ensures that
a service account is secured from login.)

Looking back at Figure 15-1, the first line shows the definition of the root account
with UID and GID of 0, a name of root, a home directory of /root, and a default shell
of /bin/bash. The second line shows a standard user account for Jeff Dean, with UID
and GID of 500. The home directory is /home/jdean, and the default shell is /bin/tcsh.

More detailed information about /etc/passwd can be found in Chapter 22.

Groups and the Group File
In addition to ownership by individual system users, filesystem objects have separate
ownership settings for groups of users. This group ownership allows an additional
level of user-specific access control beyond that of a file’s individual owner. Groups
are similar to users in their administration and are defined in the file /etc/group. Like
the passwd file, the group file contains colon-separated fields:

Group name
Each group must have a unique name.

Group password
Just as user accounts have passwords, groups can have passwords for their
membership. If the password field is empty, the group does not require a
password.

Group ID
Each group requires a unique GID. Like a UID, a GID is a nonnegative integer.

Group member list
The last field is a list of group members by username, separated by commas.

Together, these pieces of information define a group; colons separate the fields. Here
are a few sample lines from a group file:

root:x:0:root
pppusers:x:230:jdean,jdoe
finance:x:300:jdean,jdoe,bsmith
jdean:x:500:
jdoe:x:501:
bsmith:x:502:

Objective 1: Manage User and Group Accounts and Related System Files | 321

Adm
inistrative
Tasks

In this example, both jdean and jdoe are members of the pppusers group (GID 230),
and jdean, jdoe, and bsmith are all members of the finance group (GID 300). The
remaining groups, root, jdean, jdoe, and bsmith, are single-user groups. These groups
are not intended for multiple users and do not contain additional members. For
security purposes, it is common to create new users with their own personal single-
user group. Doing this enhances security because new files and directories will not
have group privileges for other users. (Although the GID of these single-user groups
may match the UID of the user for which they’re created, there is no direct relation-
ship between the UID and GID.)

The Shadow Password and Shadow Group Systems
Encrypted passwords must be secure from all users on the system, while leaving the
remainder of the information in /etc/passwd world-readable. To do this, the encryp-
ted password is moved to a new file that shadows the password file line for line. The
file is aptly called /etc/shadow and is generally said to contain shadow passwords.
Here are a couple of example lines from a shadow file:

root:1oxEaSzzdXZESTGTU:10927:0:99999:7:-1:-1:134538444
jdean:1IviLopPn461z47J:10927:0:99999:7::11688:134538412

The first two fields contain the username and the encrypted passwords. The re-
maining fields contain optional additional information on password aging
information.

Group passwords and shadow groups

Just as user accounts listed in /etc/passwd are protected by encrypted passwords,
groups listed in /etc/group can also be protected by passwords. A group password
can be used to allow access to a group by a user account that is not actually a member
of the group. Account users can use the newgrp command to change their default
group and enter the group password. If the password is correct, the account is
granted the group privileges, just as a group member would be.

The group definition file, like the password file, is readable by everyone on the sys-
tem. If group passwords are stored there, a dictionary attack could be made against
them. To protect against such attacks, passwords in /etc/group can be shadowed.
The protected passwords are stored in /etc/gshadow, which is readable only by
root. Here are a few sample lines from a gshadow file:

root:::root
pppusers:!::
finance:0cf7ipLtpSBGg::
jdean:!::
jdoe:!::
bsmith:!::

In this example, the groups pppusers, jdean, jdoe, and bsmith do not have group
passwords, as indicated by the ! in the password field. The finance group is the only
one with a password, which is hashed.

More detailed information about shadow passwords can be found in Chapter 22.

322 | Chapter 15: Administrative Tasks (Topic 107)

On the Exam
A major contrast between passwd/group and shadow/gshadow is the permissions
on the files. The standard files are readable by everyone on the system, but the
shadow files are readable only by root, which protects encrypted passwords from
theft and possible cracking.

User and Group Management Commands
Although possible, it is rarely necessary (or advised) to manipulate the account and
group definition files manually with a text editor. Instead, a family of convenient
administrative commands is available for managing accounts, groups, password
shadowing, group shadowing, and password aging. Password aging (rules governing
change intervals and automated expiration of passwords) is not an explicit Objective
for the LPIC Level 1 Exams.

useradd

Syntax
useradd [options] user

Description
Create the account user on the system. Both system defaults and specified options define how
the account is configured. All system account files are updated as required. An initial password
must subsequently be set for new users using the passwd command. It is the user’s responsibility
to go back and change that password when he first logs into the system.

Frequently used options

-c comment
Define the comment field, probably the user’s name.

-d homedir
Use homedir as the user’s home directory.

-m
Create and populate the home directory.

-s shell
Use shell as the default for the account.

-D
List (and optionally change) system default values.

Example
Add a new user, bsmith, with all default settings:

useradd bsmith

useradd

Chapter 15: Administrative Tasks (Topic 107) | 323

Adm
inistrative
Tasks

Add a new user, jdoe, with a name, default home directory, and the tcsh shell:

useradd -mc "Jane Doe" -s /bin/tcsh jdoe

usermod

Syntax
usermod [options] user

Description
Modify an existing user account. The usermod command accepts many of the same options
useradd does.

Frequently used options

-L
Lock the password, disabling the account.

-U
Unlock the user’s password, enabling the user to once again log in to the system.

Examples
Change jdoe’s name in the comment field:

usermod -c "Jane Deer-Doe" jdoe

Lock the password for bsmith:

usermod -L bsmith

userdel

Syntax
userdel [-r] user

Description
Delete an existing user account. When combined with the -r option, the user’s home directory
is deleted. Note that completely deleting accounts may lead to confusion when files owned by
the deleted user remain in other system directories. For this reason, it is common to disable an
account rather than delete it. Accounts can be disabled using the chage, usermod, and passwd
commands.

Example
Delete the user bsmith, including the home directory:

userdel -r bsmith

usermod

324 | Chapter 15: Administrative Tasks (Topic 107)

groupadd

Syntax
groupadd group

Description
Add group to the system. In the rare case that a group password is desired on group, it must be
added using the gpasswd command after the group is created.

groupmod

Syntax
groupmod [option] group

Description
Modify the parameters of group.

Option

-n name
Change the name of the group to name.

groupdel

Syntax
groupdel group

Description
Delete group from the system. Deleting groups can lead to the same confusion in the filesystem
as described previously for deleting a user (see userdel).

passwd

Syntax
passwd [options] username

Description
Interactively set the password for username. The password cannot be entered on the command
line.

Option

-l
Available only to the superuser, this option locks the password for the account.

passwd

Chapter 15: Administrative Tasks (Topic 107) | 325

Adm
inistrative
Tasks

gpasswd

Syntax
gpasswd groupname

Description
Interactively set the group password for groupname. The password cannot be entered on the
command line.

Objective 2: Automate System Administration Tasks by
Scheduling Jobs
There is a surprising amount of housekeeping that must be done to keep a complex
operating system such as Linux running smoothly. Logfile rotation, cleanup of tem-
porary files and directories, system database rebuilds, backups, and other tasks
should be done routinely. Clearly such mundane things should be automated by the
system, freeing weary system administrators for more interesting work. Fortunately,
any system task that can be accomplished without real-time human intervention can
be automated on Linux using the cron and at facilities. Both have the ability to
execute system commands, which may start any executable program or script, at
selectable times. Further, cron and at can execute these commands on behalf of any
authorized system user. cron is intended mainly for regularly scheduled recurring
activities, and at is most useful for scheduling single commands for execution in the
future.

Using cron
The cron facility consists of two programs. (There is no individual program called
cron, which is the overall name given to the facility. If you execute man cron, how-
ever, you will see the manpage for crond.)

crond
This is the cron daemon, which is the process that executes your instructions.
It starts at system initialization time and runs in the background thereafter.

crontab
This is the cron table manipulation program. This program gives you access to
your cron table or crontab file. Each authorized user may have his own cron-
tab file to run commands and processes on a regular basis.

The cron daemon wakes up every minute and examines all crontab files, executing
any commands scheduled for that time.

User crontab files

To use the cron facility, users do not need to interact directly with the crond daemon.
Instead, each system user has access to the cron facility through her crontab file.

gpasswd

326 | Chapter 15: Administrative Tasks (Topic 107)

These files are stored together in a single directory (usually /var/spool/cron) and are
created and maintained using the crontab utility.

crontab

Syntax
crontab [options]

Description
View or edit crontab files.

Frequently used options

-e
Interactively edit the crontab file. Unless otherwise specified in either the EDITOR or
VISUAL environment variables, the editor is vi.

-l
Display the contents of the crontab file.

-r
Remove the crontab file.

-u user
Operate on user’s crontab file instead of your own. Only root can edit or delete the cron-
tab files of other users.

Example
Display the crontab file for user jdoe:

crontab -l -u jdoe

Edit your own crontab file:

$ crontab -e

crontab files use a flexible format to specify times for command execution. Each line contains
six fields:

minute hour day month dayofweek command

These fields are specified as follows:

• Minute (0 through 59)

• Hour (0 through 23)

• Day of the month (1 through 31)

• Month (1 through 12 or jan through dec)

• Day of the week (0 through 7—where 0 or 7 is Sunday—or sun through sat)

• Command (any valid command, including spaces and standard Bourne shell syntax)

For example, to execute myprogram once per day at 6:15 a.m., use this crontab entry:

run myprogram at 6:15am
15 6 * * * myprogram

crontab

Chapter 15: Administrative Tasks (Topic 107) | 327

Adm
inistrative
Tasks

Lines that begin with the pound sign (#) are comment lines and are ignored by crond. Comments
must begin on a new line and may not appear within commands. The asterisks in this crontab
are placeholders and match any date or time for the field where they’re found. Here, they in-
dicate that myprogram should execute at 6:15 a.m. on all days of the month, every month, all
days of the week.

Each of the time specifications may be single, list (1,3,5), or range (1-5 or wed-fri) entries or
combinations thereof. To modify the previous example to execute at 6:15 and 18:15 on the 1st
and 15th of the month, use:

run myprogram at 6:15am and 6:15pm on the 1st and 15th
15 6,18 1,15 * * myprogram

As you can see, the time specifications are very flexible.

Because the cron daemon evaluates each crontab entry when it wakes up each minute, it is not
necessary to restart or reinitialize crond when crontab entries are changed or new files are
created.

System crontab files

In addition to crontab files owned by individual users, crond also looks for the system
crontab files /etc/crontab and files in the directory /etc/cron.d. The format for these
system crontabs differs slightly from user crontabs. System crontabs have an addi-
tional field for a username between the time specifications and the command. For
example:

/etc/crontab
run myprogram at 6:15am as root
15 6 * * * root myprogram

In this example, myprogram will be executed by cron as the root user.

System crontab files located in /etc/cron.d are of the same form as /etc/crontab, in-
cluding the extra user field. These files are usually associated with some package or
service that includes a system crontab. Allowing a collection of files in /etc/cron.d
allows software installation and upgrade procedures to keep the cron configuration
up-to-date on an individual package basis. In most cases, however, you won’t need
to change the crontab files in /etc/cron.d.

On the Exam
Memorize the sequence of time/date fields used in crontab files.

On most Linux distributions, /etc/crontab contains some standard content to enable
the execution of programs and scripts on the minute, hour, week, and month. These
arrangements allow you to simply drop executable files into the appropriate direc-
tory (such as /etc/cron.hourly), where they are executed automatically. This elimi-
nates cron configuration altogether for many tasks and avoids cluttering the root
crontab file with common commands.

crontab

328 | Chapter 15: Administrative Tasks (Topic 107)

Using at
The cron system is intended for the execution of commands on a regular, periodic
schedule. When you need to simply delay execution of a command or a group of
commands to some other time in the future, you should use at. The at facility accepts
commands from standard input or from a file.

at

Syntax
at [-f file] time
at [options]

Description
In the first form, enter commands to the at queue for execution at time. at allows fairly complex
time specifications. It accepts times of the form HH:MM to run a job at a specific time of day. (If
that time is already past, the next day is assumed.) You may also specify midnight, noon, or
teatime (4 p.m.), and you suffix a time of day with AM or PM for running in the morning or evening.
You can also say what day the job will be run by giving a date in month-day form, with the year
being optional, or by giving a date in MMDDYY, MM/DD/YY, or DD.MM.YY form. The date specification
must follow the time-of-day specification. You can also give times such as now + count time-
units, where time-units can be minutes, hours, days, or weeks. You can tell at to run the job
today by suffixing the time with today, and you can tell it to run the job tomorrow by suffixing
the time with tomorrow.

If -f file is given, commands are taken from the file; otherwise, at will prompt the user for
commands.

In the second form, list or delete jobs from the at queue.

Frequently used options

-d job1 [, job2, ...]
Delete jobs from the at queue by number (same as the atrm command).

-l
List items in the at queue (same as the atq command).

Example1
Run myprogram once at 6:15 p.m. tomorrow:

$ at 6:15pm tomorrow
at> myprogram
at> ^D

In the previous code listing, ^D indicates that the user typed Ctrl-D on the keyboard, sending
the end-of-file character to terminate the at command.

Example2
Run commands that are listed in the file command_list at 9 p.m. two days from now:

$ at -f command_list 9pm + 2 days

at

Chapter 15: Administrative Tasks (Topic 107) | 329

Adm
inistrative
Tasks

List items in the at queue (root sees all users’ entries):

$ at -l

Remove job number 5 from the at queue:

$ at -d 5

Using at to schedule jobs for delayed execution, such as while you’re asleep or on vacation, is
simple and doesn’t require creation of a recurring cron entry.

Controlling User Access to cron and at
In most cases, it is safe to allow users to use the cron and at facilities. However, if
your circumstances dictate that one or more users should be prohibited from using
these services, two simple authorization files exist for each:

• cron.allow, cron.deny

• at.allow, at.deny

These files are simply lists of account names. If the allow file exists, only those users
listed in the allow file may use the service. If the allow file does not exist but the
deny file does, only those users not listed in the deny file may use the service. For
cron, if neither file exists, all users have access to cron. For at, if neither file exists,
only root has access to at. An empty at.deny file allows access to all users and is the
default.

Objective 3: Localization and Internationalization
In computing, internationalization and localization are means of adapting computer
software to different languages and regional differences. Internationalization is the
process of designing a software application so that it can be adapted to various
languages and regions without engineering changes. Localization is the process of
adapting internationalized software for a specific region or language by adding
locale-specific components and translating text.

The terms are frequently abbreviated to the numeronyms i18n (where 18 stands for
the number of letters between the first “i” and last “n” in internationalization, a
usage coined at Digital Equipment Corporation in the 1970s or 1980s) and L10n
respectively, due to the length of the words. The capital “L” in L10n helps to dis-
tinguish it from the lowercase “i” in i18n.

Since open source software can generally be freely modified and redistributed, it is
more amenable to internationalization. The KDE project, for example, has been
translated into over 100 languages.

The time zone under Linux is set by a symbolic link from /etc/localtime to a file in
the /usr/share/zoneinfo directory that corresponds to your specific time zone. Gen-
erally this is defined during the installation process in order to provide the correct
information to the system. However, manually running the command tzconfig can
also do the job, and you won’t have to remember the path to the time zones.

330 | Chapter 15: Administrative Tasks (Topic 107)

The tzselect program is a menu-based script that asks the user for information about
the current location, and then sends the resulting time zone description to standard
output. The output is suitable as a value for the TZ environment variable:

$ tzselect

Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.

 1) Africa

 2) Americas

 3) Antarctica

 4) Arctic Ocean

 5) Asia

 6) Atlantic Ocean

 7) Australia

 8) Europe

 9) Indian Ocean

10) Pacific Ocean

11) none - I want to specify the time zone using the Posix TZ format.

#?

The date command can be used to print the current Coordinated Universal Time
(UTC):

$ date -u

and also to show the time zone abbreviation:

$ date +%Z
CET

A locale is a set of information that most programs use for determining country- and
language-specific settings. The following environment variables are used to store
locale settings:

LANG
Defines all locale settings at once, while allowing further individual customi-
zation via the LC_* settings described next.

LC_COLLATE
Defines alphabetical ordering of strings. This affects the output of sorted di-
rectory listings, for example.

Objective 3: Localization and Internationalization | 331

Adm
inistrative
Tasks

LC_CTYPE
Defines the character-handling properties for the system. This determines
which characters are seen as alphabetic, numeric, and so on. This also deter-
mines the character set used, if applicable.

LC_MESSAGES
This defines the programs’ localizations for applications that use a message-
based localization scheme. This includes the majority of GNU programs.

LC_MONETARY
Defines currency units and the formatting of currency type numeric values.

LC_NUMERIC
Defines formatting of numeric values that aren’t monetary. This affects things
such as the thousands separator and decimal separator.

LC_TIME
Defines the formatting of dates and times.

LC_PAPER
Defines the default paper size.

LC_ALL
A special variable for overriding all other settings.

The locale utility writes information about the current locale environment, or all
public locales, to the standard output. For the purposes of this section, a public
locale is one provided by the implementation that is accessible to the application.
Issuing the locale command without any flags will output the current configuration:

$ locale
LANG=
LC_CTYPE="POSIX"
LC_NUMERIC="POSIX"
LC_TIME="POSIX"
LC_COLLATE="POSIX"
LC_MONETARY="POSIX"
LC_MESSAGES="POSIX"
LC_PAPER="POSIX"
LC_NAME="POSIX"
LC_ADDRESS="POSIX"
LC_TELEPHONE="POSIX"
LC_MEASUREMENT="POSIX"
LC_IDENTIFICATION="POSIX"
LC_ALL=

The C locale, also known as the POSIX locale, is the POSIX system default locale
for all POSIX-compliant systems.

The iconv utility converts the encoding of characters in a file from one codeset to
another and writes the results to standard output.

The following example converts the contents of the file in.txt from the ISO/IEC
6937:1994 standard codeset to the ISO/IEC 8859-1:1998 standard codeset, and
stores the results in the file out.txt:

$ iconv -f IS6937 -t IS8859 in.txt > out.txt

332 | Chapter 15: Administrative Tasks (Topic 107)

16
Essential System Services
(Topics 108.1 and 108.2)

As a system administrator in a multiuser environment, much of your activity is re-
lated to maintaining various system services. These services include accurate system
time and logging of system events. The following two Objectives are covered in this
chapter:

Objective 1: Maintain System Time
Candidates should be able to properly maintain the system time and synchron-
ize the clock over NTP. Tasks include setting the system date and time, setting
the hardware clock to the correct time in UTC, configuring the correct time
zone for the system, and configuring the system to correct clock drift to match
the NTP clock. Weight: 3.

Objective 2: System Logging
Candidates should be able to configure system logs. This Objective includes
managing the type and level of information logged, manually scanning logfiles
for notable activity, monitoring logfiles, arranging for automatic rotation and
archiving of logs, and tracking down problems noted in logs. Weight: 2.

Objective 1: Maintain System Time
An accurate system clock is important on a Linux system for a variety of reasons.
Log entries need to be accurate so you can accurately determine what system events
occurred. Programs such as make and anacron require accurate modification times
on files. Network file sharing (such as NFS) requires both client and server to keep
accurate time so file operations are kept in sync.

The most popular way to keep accurate time on an Internet-connected Linux system
is to use the Network Time Protocol (NTP) and the NTP software package from
http://www.ntp.org.

333

http://www.ntp.org

NTP Concepts
NTP is used to set and synchronize the internal clocks of network-connected sys-
tems. When properly configured, systems running the NTP daemon can be
synchronized within a few milliseconds (or better), even over relatively slow WAN
connections.

The NTP daemon also supports synchronization with an external time source, such
as a GPS receiver. Systems directly connected to an external time source (and prop-
erly configured) are the most accurate, so they are designated stratum 1 servers.
Systems synchronizing to stratum 1 servers are designated stratum 2, and so on,
down to stratum 15.

The NTP software package has support for cryptographic key-
based authentication, although setting this up is outside the
scope of the LPI Level 1 Exams and will not be covered here.

The NTP Software Package Components
The NTP software package consists of several programs, including the NTP daemon
and a number of programs used to configure and query NTP servers. The more
commonly used programs from the package are listed here.

ntpd

Syntax
ntpd [options]

Description
ntpd is the heart of the NTP software package. It performs the following functions:

• Synchronizes the PC clock with remote NTP servers

• Allows synchronization from other NTP clients

• Adjusts (skews) the rate of the kernel’s clock tick so that it tracks time accurately

• Reads time synchronization data from hardware time sources such as GPS receivers

Frequently used options

-c file
This option tells ntpd to use file as its configuration file instead of the default /etc/
ntpd.conf.

-g
This option will let ntpd start on a system with a clock that is off by more than the panic
threshold (1,000 seconds by default).

ntpd

334 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

-n
Normally ntpd runs as a daemon, in the background. This option disables that behavior.

-q
This option tells ntpd to exit after setting the time once.

-N
When this option is specified, ntpd attempts to run at the highest priority possible.

ntpd is configured using the file /etc/ntp.conf. The file is fully documented in a series of files
linked to from the ntpd documentation, found in the software distribution or at http://www.eecis
.udel.edu/~mills/ntp/html/ntpd.html.

The most important configuration options are restrict, which is used to implement access
controls, and server, which is used to direct ntpd to an NTP server. Another often-used con-
figuration option (not mentioned in the sample ntp.conf in Example 16-1) is peer, which is used
much like server, but implies that the system is both a client and a server. A peer is usually a
system that is nearby on the network, but uses different time sources than the local system.

Example 16-1. Sample /etc/ntp.conf

Prohibit general access to this service.
restrict default ignore

Permit all access over the loopback interface. This could
be tightened as well, but to do so would affect some of
the administrative functions.
restrict 127.0.0.1

-- CLIENT NETWORK -------
Permit systems on this network to synchronize with this
time service. Do not permit those systems to modify the
configuration of this service. Also, do not use those
systems as peers for synchronization.
restrict 192.168.1.0 mask 255.255.255.0 notrust nomodify notrap

--- OUR TIMESERVERS -----
Permit time synchronization with our time source, but do not
permit the source to query or modify the service on this system.

time.nist.gov
restrict 192.43.244.18 mask 255.255.255.255 nomodify notrap noquery
server 192.43.244.18

time-b.nist.gov
restrict 129.6.15.29 mask 255.255.255.255 nomodify notrap noquery
server 129.6.15.29

--- GENERAL CONFIGURATION ---
#
Undisciplined Local Clock. This is a fake driver intended for backup
and when no outside source of synchronized time is available.
#
server 127.127.1.0 # local clock
fudge 127.127.1.0 stratum 10

#

ntpd

Chapter 16: Essential System Services (Topics 108.1 and 108.2) | 335

Essential System
Services

http://www.eecis.udel.edu/~mills/ntp/html/ntpd.html
http://www.eecis.udel.edu/~mills/ntp/html/ntpd.html

Drift file. Put this in a directory which the daemon can write to.
No symbolic links allowed, either, since the daemon updates the file
by creating a temporary in the same directory and then renaming
it to the file.
#
driftfile /etc/ntp/drift
broadcastdelay 0.008

Example
Normally ntpd consistently adjusts the time, depending on how far out-of-sync the server is
from the stratum source, to the correct time. To force the system time to the right time (for
example, when occasionally setting the correct time from cron), use the following:

ntpd -g -n -q

Why are IP addresses used in the configuration file instead of fully qualified domain names?
The answer is security. System time is an extremely important service, and as a system admin-
istrator, you must always be very careful trusting data you are receiving from an outside system.
When you query a time server, you need to make sure that you’re querying the correct time
server. If you are querying a fully qualified domain name instead of an IP address, you are
potentially vulnerable to a domain name poisoning attack. If someone has compromised the
DNS server of the time server in question, they could be relaying your request to any system on
the Internet. By querying directly to an IP address, you are eliminating the possibility of this
kind of spoofing.

ntpdate

Syntax
ntpdate [options] server [server [...]]

Description
ntpdate is used to set the time of the local system to match a remote NTP host.

The maintainers of the ntp code intend to drop ntpdate in the future since ntpd can perform
essentially the same function when used with the -q option.

Frequently used options

-b
Using this option, the system time is set instead of being slowly adjusted, no matter how
far off the local time is.

-d
This option enables debugging mode. ntpdate goes through the motions and prints de-
bugging information, but does not actually set the local clock.

-p n
Use this option to specify the number of samples (where n is from 1 to 8) to get from each
server. The default is 4.

-q
This option causes ntpdate to query the servers listed on the command line without actually
setting the clock.

ntpdate

336 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

-s
This option causes all output from ntpdate to be logged via syslog instead of being printed
to stdout.

-t n
This option sets the timeout for a response from any server to n seconds. n may be frac-
tional, in which case it will be rounded to the nearest 0.2 second. The default value is 1
second.

-u
Normally ntpdate uses a privileged port (123/tcp) as the source port for outgoing packets.
Some firewalls block outgoing packets from privileged ports, so with this option,
ntpdate uses an unprivileged port above 1024/tcp.

-v
This option makes ntpdate more verbose.

-B
Using this option, the system time is slowly adjusted to the proper time, even if the local
time is off by more than 128 ms. (Normally the time is forcibly set if it is off by more than
128 ms.)

If the time is off by very much, it can take a very long time to set it with this option.

Example
Quietly sync the local clock with two stratum 1 NTP servers:

ntpdate -s time.nist.gov time-b.nist.gov

ntpq

Syntax
ntpq [options] [host]

Description
ntpq is the standard NTP query program. It is used to send NTP control messages to host (or
localhost if no host is specified), which can be used to check the status of ntpd on host or change
its configuration.

The commands that can be used with ntpq are documented in the NTP software documentation
included with the distribution and at http://www.eecis.udel.edu/~mills/ntp/html/ntpq.html.

Frequently used options

-c command
Execute command as if it were given interactively.

-i
Enter interactive mode. This is the default.

-n
Suppress reverse DNS lookups. Addresses are printed instead of hostnames.

ntpq

Chapter 16: Essential System Services (Topics 108.1 and 108.2) | 337

Essential System
Services

http://www.eecis.udel.edu/~mills/ntp/html/ntpq.html

-p
Query the server for a list of peers. This is equivalent to the peers interactive command or
-c peers on the command line.

Example
Print the list of peers known to the server by IP address:

ntpq -p –n pool.ntp.org

or:

ntpq -c peers –n pool.ntp.org

or:

ntpq –n pool.ntp.org
ntpq> peers
 remote refid st t when poll reach delay offset jitter
==
*64.90.182.55 .ACTS. 1 u - 1024 377 2.983 3.253 0.014
+209.51.161.238 .CDMA. 1 u - 1024 377 2.456 -2.795 0.096
-128.118.25.3 147.84.59.145 2 u - 1024 377 18.476 -2.586 0.446
+67.128.71.75 172.21.0.13 2 u - 1024 377 8.195 -2.626 0.194
-66.250.45.2 192.5.41.40 2 u - 1024 377 8.119 -6.491 0.421
ntpq>

The system pool.ntp.org is a pointer to a collection of systems that have volunteered to be
publicly available time servers. Round robin DNS is used to share the request load among these
servers. This kind of setup is usually sufficient for end users, but in a corporate environment,
it’s usually advisable to query a stratum 2 time server from a designated server on your network,
and then have your other servers query that server. More information on pooling is available at
http://support.ntp.org/bin/view/Servers/WebHome.

ntpdc

Syntax
ntpdc [options] [host]

Description
ntpdc is much like ntpq, except that it supports some extended commands. For this reason, it
is likely to work only when talking to ntpd from the same version of the NTP software package.

For the most part, the command-line options it supports are the same as those of ntpq. Full
documentation for ntpdc can be found in the NTP software distribution or at http://www.eecis
.udel.edu/~mills/ntp/html/ntpdc.html.

ntpdc

338 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

http://support.ntp.org/bin/view/Servers/WebHome
http://www.eecis.udel.edu/~mills/ntp/html/ntpdc.html
http://www.eecis.udel.edu/~mills/ntp/html/ntpdc.html

ntptrace

Syntax
ntptrace [options] server [server [...]]

Description
Traces a chain of NTP servers back to the primary source.

Frequently used options

-n
Turn off reverse DNS lookups.

Examples
To see where the local system is synchronizing its lock to, run ntptrace with no options:

$ /usr/sbin/ntptrace
localhost: stratum 4, offset 0.000109, synch distance 0.16133
ntp1.example.net: stratum 3, offset 0.004605, synch distance 0.06682
ntp-1.example.edu: stratum 2, offset 0.001702, synch distance 0.01241
stratum1.example.edu: *Timeout*

In this example, the stratum 1 server is not directly accessible.

ntptrace can also be used on any arbitrary NTP server, assuming it is accessible. This example
queries two publicly accessible stratum 2 NTP servers:

$ /usr/sbin/ntptrace ntp0.cornell.edu
cudns.cit.cornell.edu: stratum 2, offset -0.004214, synch distance 0.03455
dtc-truetime.ntp.aol.com: stratum 1, offset -0.005957, synch distance
0.00000, refid 'ACTS'
$ /usr/sbin/ntptrace ntp-2.mcs.anl.gov
mcs.anl.gov: stratum 2, offset -0.004515, synch distance 0.06354
clepsydra.dec.com: stratum 1, offset 0.002045, \
 synch distance 0.00107, refid 'GPS'

The Hardware Clock
Computer motherboards all contain a small battery that is used to power the hard-
ware clock. This ensures that the computer can successfully keep track of the time
even when it is powered off. In Linux, you can configure this hardware clock and
synchronize your system clock to it (or vice versa). The importance of the hardware
clock has been somewhat minimized with the widespread use of NTP and easily
available, reliable time servers. However, for systems that aren’t always connected
to the Internet, an accurate hardware clock is an important thing to have. Syncing
a hardware clock is also required when working with old hardware that suffers from
time issues, such as BIOSes that are not Y2K-aware.

Hardware clocks can suffer from the same drifts that system clocks experience,
causing them to slowly lose (or gain) time over a certain period. The hwclock com-
mand is used in Linux to control the hardware clock.

ntptrace

Chapter 16: Essential System Services (Topics 108.1 and 108.2) | 339

Essential System
Services

hwclock

Syntax
hwclock –-show
hwclock --systohc
hwclock –-hctosys
hwclock --adjust
hwclock --version

Description
Query and/or set the hardware clock.

Examples
Query the system’s hardware clock:

/sbin/hwclock --show
Sat 12 Sep 2009 12:49:43 PM CDT -0.216537 seconds

Set the hardware clock to the current value of the system clock:

/sbin/hwclock –-systohc

All time values in the hardware clock are stored as the number of seconds since January 1, 1970.
This number is then converted to the output format desired. Time is represented as either
Coordinated Universal Time (UTC) or local time. UTC is a universal time standard that is the
same across all time zones. Local time is simply UTC combined with either a positive or negative
offset to reflect the current time zone. For example, in the United States, the Central Time Zone
is actually UTC-6 (six hours behind Coordinated Universal Time).

As a system administrator, you have the option of setting your hardware clock to either UTC
or your own local time. Some administrators prefer to use UTC for this, and then reflect their
current time zone in the system software. The hwclock command allows you to indicate how
your hardware clock is set. Compare the output of these two commands:

/sbin/hwclock –show --localtime
Sat Sep 12 13:33:35 2009 -0.766111 seconds
/sbin/hwclock –-show --utc
Sat Sep 12 08:33:37 2009 -0.048881 seconds

Telling hwclock that our hardware clock was set to UTC time resulted in a different answer
when we asked to show the time.

Time Zones
As stated previously, a time zone is just a positive or negative value combined with
UTC. Once you set the time zone on a Linux system, applications will honor that
positive or negative offset when they need to use a timestamp. The time zone on a
Linux system is identified by the file /etc/localtime. This can be either a data file itself
or a symbolic link to a data file in the directory /usr/share/zoneinfo.

/usr/share/zoneinfo contains files that represent every time zone. In order to set the
time zone on your Linux system, you must either copy one of these files to /etc/
localtime or create a symbolic link from /etc/localtime to one of these files. For

hwclock

340 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

example, if your system is in the United States in the Central time zone, your /etc/
localtime file would look like this:

$ ls –l /etc/localtime
lrwxrwxrwx 1 root root 30 Sep 12 13:56 \
 /etc/localtime -> /usr/share/zoneinfo/US/Central

On the Exam
Make sure you understand the difference between system time and the hardware
clock, and the importance of keeping good system time. Also remember the dif-
ference between local time and UTC, and how it affects the time configuration on
your Linux system.

Objective 2: System Logging
Many events occur on your Linux system that should be logged for administrative
purposes. Linux uses the syslogd service to display and record messages describing
these events. This system allows finely controlled logging of messages from the ker-
nel as well as processes running on your system and remote systems. Messages can
be placed on the console display, in logfiles, and on the text screens of users logged
into the system.

What are the advantages of the syslogd service over applications maintaining their
own logfiles?

• All logfiles are centralized, either in one directory or on one server.

• The client/server nature of syslogd allows for machines to log events to a cen-
tralized log server for easier monitoring and reporting.

• Syslogd allows multiple processes to write to the same logfile, while avoiding
file-locking issues.

There are a number of different applications available for Linux that implement the
syslogd functionality and offer additional functionality. Some examples are rsyslog
(native database logging support) and syslog-ng (regular expression matching). For
the purposes of the LPI exam, we cover only the basic syslogd server.

Configuring syslogd
The behavior of syslogd is controlled by its configuration file, /etc/syslog.conf. This
text file contains lines indicating what is to be logged and where. Each line contains
directives in this form:

facility.level action

The directives are defined as follows:

facility
This represents the creator of the message (that is, the kernel or a process) and
is one of the following: auth (the facility security is equivalent to auth, but its

Objective 2: System Logging | 341

Essential System
Services

use is deprecated), authpriv, cron, daemon, kern, lpr, mail, mark (the mark facility
is meant for syslogd’s internal use only), news, syslog, user, uucp, or local0
through local7. The use of these facility designators allows you to control the
destination of messages based on their origin. Facilities local0 through
local7 are for any use you may wish to assign to them in your own programs
and scripts. It’s possible that your distribution has assigned one or more of the
local facilities already. Check your configuration before using a local facility.

level
Specifies a severity threshold beyond which messages are logged, and is one of
the following (from lowest to highest severity): debug, info, notice, warning (or
warn), err (or error), crit, alert, or emerg (or panic). (warn, error, and panic
are all deprecated, but you might see them on older systems.) There is also a
special level called none that will disable a facility. The level defines the amount
of detail recorded in the logfile. A single period separates the facility from the
level, and together they comprise the message selector. The asterisk (*) can be
used to describe all facilities or all levels.

action
The action directive is arguably misnamed. It represents the destination for
messages that correspond to a given selector (facility.level). The action can
be a filename (including the full pathname), a hostname preceded by the @ sign,
or a comma-separated list of users or an asterisk (this means all logged-in users
will receive the logged line on their consoles).

For example, if you wanted to create a separate logfile for activity reported by the
scripts you write, you might include a line like this in /etc/syslog.conf:

Define a new log file for the local5 facility
local5.* /var/log/local5

You could then use the logger utility to write messages to the facility from your shell
script (syslogd must be restarted or signaled to reinitialize before the new logfile is
created):

$ logger -p local5.info "Script terminated normally"

The message “Script terminated normally” would be placed into /var/log/local5,
along with a timestamp and the hostname that sent the message. Example 16-2
contains an example /etc/syslog.conf file.

Example 16-2. Sample /etc/syslog.conf file

Log everything except mail & authpriv of level info
or higher to messages.
*.info;mail.none;authpriv.none /var/log/messages
The authpriv file has restricted access.
authpriv.* /var/log/secure
Log all the mail messages in one place.
mail.* /var/log/maillog
Everybody gets emergency messages.
*.emerg *
Save boot messages also to boot.log
local7.* /var/log/boot.log

342 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

If you examine this syslog.conf file, you’ll see that nearly all system messages are sent
to the /var/log/messages file via the *.info message selector. In this case, the asterisk
directs syslogd to send messages from all facilities except mail and authpriv, which
are excluded using the special none level. The /var/log/messages file is the default
system message destination, and you will consult it frequently for information on
processes running (or failing to run) and other events on your system. In this exam-
ple, the low severity level of info is used for the messages file, which logs all but
debugging messages. On heavily loaded servers, this may result in an unwieldy file
size due to message volume. Depending upon your available disk space, you may
choose to save less information by raising the level for the messages file.

The syslogd server keeps the file handles open for all files defined in /etc/
syslog.conf. This means that the only process that can write to these files is syslogd.
Do not configure your programs to write directly to these files! Instead, call a pro-
gram such as logger, or use one of the many syslog API interfaces available for your
language of choice.

The syslog service is actually made up of two processes, syslogd and klogd. Syslogd
is used to log events from user process, whereas klogd is used to log events from
kernel processes. They work in tandem and use the same configuration file, so you
really just need to make sure they are both running:

$ ps ax | egrep -i "(syslogd|klogd)"
2078 ? Ss 0:04 syslogd -m 0
2081 ? Ss 0:00 klogd -x

Client/Server Logging
Syslogd also has the ability to log messages across the network. If a syslogd process
is started with the -r option, it will listen on the network for incoming syslogd mes-
sages. By default, syslogd uses UDP port 514 for this communication. A common
practice is to set up one master logging server that receives all syslogd messages from
all clients. On the client side, you would configure the local syslogd service to log
events locally, and to log everything to the master logging server. This would be
accomplished by adding the following line to the example syslog.conf file shown in
Example 16-2:

. @10.0.0.1

This means that messages matching all facilities and levels should be sent to the IP
address 10.0.0.1.

You can determine whether a syslogd server is listening for remote log entries by
running netstat:

netstat -anp | grep -i ":514"
udp 0 0 0.0.0.0:514 0.0.0.0:* 26645/syslogd

Logfile Rotation
Most distributions will install a default syslog configuration for you, including log-
ging to messages and other logfiles in /var/log. To prevent any of these files from

Objective 2: System Logging | 343

Essential System
Services

growing unattended to extreme sizes, a logfile rotation scheme should be installed
as well. The cron system issues commands on a regular basis (usually once per day)
to establish new logfiles; the old files are renamed with numeric suffixes. With this
kind of rotation, yesterday’s /var/log/messages file becomes today’s /var/log/
messages.1, and a new /var/log/messages file is created. The rotation is configured
with a maximum number of files to keep, and the oldest logfiles are deleted when
the rotation is run.

The utility that establishes the rotation is logrotate. This privileged command is
configured using one or more files, which are specified as arguments to the logro-
tate command. These configuration files can contain directives to include other files
as well. The default configuration file is /etc/logrotate.conf. Example 16-3 depicts a
sample logrotate.conf file.

Example 16-3. Sample /etc/logrotate.conf file

global options
rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4
send errors to root
errors root
create new (empty) log files after rotating old ones
create
compress log files
compress
specific files
/var/log/wtmp {
 monthly
 create 0664 root utmp
 rotate 1
}
/var/log/messages {
 postrotate
 /usr/bin/killall -HUP syslogd
 endscript
}

This example specifies rotations for two files, /var/log/wtmp and /var/log/messages.
Your configuration will be much more complete, automatically rotating all logfiles
on your system. A complete understanding of logrotate configuration is not neces-
sary for LPIC Level 1 Exams, but you must be familiar with the concepts involved.
See the logrotate manpages for more information.

Examining Logfiles
You can learn a lot about the activity of your system by reviewing the logfiles it
creates. At times, it will be necessary to debug problems using logged information.
Since most of the logfiles are plain text, it is very easy to review their contents with
tools such as tail, less, and grep.

344 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

Syslogd stores the messages it creates with the following information, separated by
(but also including) spaces:

• Date/time

• Origin hostname

• Message sender (such as kernel, sendmail, or a username)

• Message text

Typical messages will look like this:

Aug 3 18:45:16 moya kernel: Partition check:
Aug 3 18:45:16 moya kernel: sda: sda1 sda2 sda3 < sda5 sda6 sda7 \
 sda8 sda9 sda10 > sda4
Aug 3 18:45:16 moya kernel: SCSI device sdb: 195369520 512-byte \
 hdwr sectors (100029 MB)
Aug 3 18:45:16 moya kernel: sdb: sdb1
Aug 3 18:45:16 moya kernel: Journalled Block Device driver loaded
Aug 3 18:45:16 moya kernel: kjournald starting. Commit interval 5 seconds
Aug 3 18:45:16 moya kernel: EXT3-fs: mounted filesystem with ordered data
 mode.
Aug 3 18:45:16 moya kernel: Freeing unused kernel memory: 116k freed
Aug 3 18:45:16 moya kernel: Adding Swap: 1044216k swap-space (priority -1)

In this case, moya is the hostname, and the messages are coming from the kernel. At
any time, you can review the entire contents of your logfiles using less:

less /var/log/messages

You can then page through the file. This is a good way to become familiar with the
types of messages you’ll see on your system. To actively monitor the output to your
messages file, you could use tail:

tail -f /var/log/messages

This might be useful, for example, to watch system activity as an Internet connection
is established via modem. To look specifically for messages regarding your mouse,
you might use grep:

grep '[Mm]ouse' /var/log/messages
Dec 8 00:15:28 smp kernel: Detected PS/2 Mouse Port.
Dec 8 10:55:02 smp gpm: Shutting down gpm mouse services:

Often, if you are using grep to look for a particular item you expect to find in /var/
log/messages, you will need to search all of the rotated files with a wildcard. For
example, to look for all messages from sendmail, you can issue a command like this:

grep 'sendmail:' /var/log/messages*

Or, if you’ve enabled compression for the rotated logfiles:

zgrep 'sendmail:' /var/log/messages*

When you note problems in logfiles, look at the hostname and sender of the message
first, and then the message text. In many cases, you will be able to determine what
is wrong from the message. Sometimes the messages are only clues, so a broader
review of your logs may be necessary. In this case, it may be helpful to temporarily

Objective 2: System Logging | 345

Essential System
Services

turn on more messaging by using the debug level in /etc/syslog.conf to help yield
additional information that can lead you to the problem.

On the Exam
If you’re not yet familiar with syslogd, spend some time with it, modifying /etc/
syslog.conf and directing messages to various files. An understanding of syslogd is
critical because so many programs depend on it. It is also the first place to look
when troubleshooting problems you are having with your system.

346 | Chapter 16: Essential System Services (Topics 108.1 and 108.2)

17
Mail Transfer Agent (MTA) Basics

(Topic 108.3)

Mail Transfer Agents (MTAs) are a crucial part of an Internet-enabled system. The
delivery and sending of email has been a key part of the Internet since its inception.
For the LPI 102 exam, you must be familiar with the common MTAs available on
modern Linux distributions, and some basic configuration of each. MTAs are com-
plicated programs, but the LPI 102 exam will only question you on the basics.

This chapter covers Objective 3 of Topic 108:

Objective 3: Mail Transfer Agent (MTA) Basics
Candidates should be aware of the commonly available MTA programs and be
able to perform basic forward and alias configuration on a client host. Other
configuration files are not covered. Weight: 3.

Objective 3: Mail Transfer Agent (MTA) Basics
The four main MTAs commonly available on Linux systems are sendmail, postfix,
qmail, and exim. Each has its own differences, mainly with regard to the format of
configuration files. Each MTA performs the basic functions of a mail transfer agent:
the sending and receiving of Internet mail.

Sendmail
Sendmail was one of the first MTAs used on Unix systems. It was derived from
the original program “delivermail,” which shipped with an early version of BSD
Unix in 1979. Sendmail has grown over the years into quite a complicated pro-
gram—as evidenced by the O’Reilly book sendmail, Fourth Edition, which
weighs in at a whopping 1,312 pages—and is often quite challenging to con-
figure correctly. That fact, combined with the history of security vulnerabilities
that have plagued sendmail over the years, has caused its popularity to decrease
over the last decade. Although most major Linux distributions provide a pack-
age for sendmail, none of them currently ship with sendmail as the default MTA.

347

http://oreilly.com/catalog/9780596510299/

Postfix
Postfix was originally designed in the late 1990s as a more secure alternative to
sendmail. It shares many of the same configuration options as sendmail, but
does not share any code. At the time of this writing, postfix is currently very
popular in the Linux world, and is the default MTA shipped with the most
popular Linux distributions.

Qmail
In response to the increasing number of security incidents involving MTAs,
qmail was developed in the mid 1990s to be as secure as a mail transfer agent
can be. Qmail is small, efficient, and secure, making it a popular choice for
resource-strapped systems. However, qmail has not been actively developed
since 1997, and its lack of support for modern options such as IPv6 has limited
its usefulness. Qmail still enjoys an active following, but is not commonly seen
on newer Linux distributions.

Exim
Exim is another example of an MTA that was developed in direct response to
the security issues with sendmail. For this reason, it is essentially a drop-in
replacement for sendmail. It is designed to be a general-purpose mailer for Unix-
like systems, and is widely used in relatively high-volume environments. It was
originally written in 1995 and still enjoys active development to this day. Exim
is currently the default MTA for the Debian GNU/Linux distribution.

Configuration of Sendmail
The overall configuration of sendmail is beyond the scope of this book and the LPI
102 test. We will instead focus on email address aliasing and mail forwarding, in
addition to monitoring logfiles and basic troubleshooting.

Sendmail is a monolithic tool, with a single binary handling the sending and receiving
of Internet email. For the purposes of this chapter, we will assume Simple Mail
Transport Protocol (SMTP) email, but sendmail supports many other types of mail
relaying.

By default, sendmail will listen for an incoming SMTP connection (on TCP port 25).
When a connection is received, sendmail starts the SMTP conversation and accepts
the email. It checks addresses and domains for validity, honors aliasing and mail
forwards, and then hands the mail off to a local delivery agent for local processing.
Sendmail logs all activity through the syslog service, which is normally configured
to store mail-related logs in the file /var/log/maillog. Here is an example of verifying
a sendmail instance and sending a test mail.

netstat -anpl --tcp | grep sendmail
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN \
 1847/sendmail: accepting connections
ls -l /var/spool/mail/adamh
-rw-rw---- 1 adamh mail 0 2009-04-24 01:23 /var/spool/mail/adamh
echo "This is a test email" | mail adamh
ls -l /var/spool/mail/adamh
-rw-rw---- 1 adamh mail 689 2010-02-07 13:21 /var/spool/mail/adamh
tail /var/log/maillog

348 | Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3)

Feb 7 13:22:42 server sendmail[5387]: o17JMgbM005387: from=root, \
size=32, class=0, nrcpts=1, msgid=<201002071922.o17JMgbM005387\
@server>, relay=root@localhost
Feb 7 13:22:42 server sendmail[5388]: o17JMghc005388: \
from=<root@server>, size=353, class=0,nrcpts=1, \
msgid=<201002071922.o17JMgbM005387@server>, proto=ESMTP, \
daemon=MTA, relay=server [127.0.0.1]
Feb 7 13:22:42 server sendmail[5387]: o17JMgbM005387: to=adamh, \
ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, \
pri=30032, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent \
(o17JMghc005388 Message accepted for delivery)
Feb 7 13:22:42 server sendmail[5389]: o17JMghc005388: \
to=<adamh@server>, ctladdr=<root@server> (0/0), \
delay=00:00:00, xdelay=00:00:00, mailer=local, pri=30607, \
dsn=2.0.0, stat=Sent
cat /var/spool/mail/adamh
From root@server Sun Feb 7 13:22:42 2010
Return-Path: <root@server>
Received: from server (server [127.0.0.1])
 by server (8.14.2/8.14.2) with ESMTP id o17JMghc005388
 for <adamh@server>; Sun, 7 Feb 2010 13:22:42 -0600
Received: (from root@localhost)
 by server (8.14.2/8.14.2/Submit) id o17JMgbM005387
 for adamh; Sun, 7 Feb 2010 13:22:42 -0600
Date: Sun, 7 Feb 2010 13:22:42 -0600
From: root <root@server>
Message-Id: <201002071922.o17JMgbM005387@server>
To: adamh@server

This is a test email

In this example, we verified that sendmail was listening on TCP port 25, and we
used the standard Linux command mail to send an email address through sendmail.
Sendmail saves mail to /var/spool/mail/$username by default, so we saw the size
of /var/spool/mail/adamh increase from 0 bytes to 689 bytes. Viewing this file shows
us the mail header information that sendmail stores in this file, which is in “mbox”
format. Finally, we saw what mail logging looks like by examining the file /var/log/
maillog.

The mail command can be used to both send mail and read mail that is stored in
mbox format. The easiest way to send mail is by piping it to the mail command, as
shown in the previous example. The mail command has many other options, and is
a useful command to have in your arsenal. This command is not sendmail-specific,
and is designed to work with any standards-compliant MTA.

mail

Syntax
mail [options]

mail

Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3) | 349

M
TA Basics

Description
A mail processing system that can be used to both send and read Internet mail.

Example
Start mail in interactive mode to read your mail:

mail
Send an email from the command line:
mail -s "This is the subject" -c "root" adamh
Hello
.
Cc: root

This example shows some command-line options of mail, specifically the ability to indicate a
subject and Cc: list. In this example, the body of the message was given interactively, ending
with a “.” on a line by itself. You could also cat an existing file and redirect STDOUT to the
mail program to make this noninteractive:

echo "Message body" > /tmp/body.msg
cat /tmp/body.msg | mail –s "This is the subject" –c "root" adamh

This email was delivered successfully because there was a user account named adamh on this
system. What if we want to create aliases for this user so he can get email to the same inbox via
a number of different email addresses? Sendmail handles aliasing with the file /etc/aliases:

cat /etc/aliases
#
Aliases in this file will NOT be expanded in the header from
Mail, but WILL be visible over networks or from /bin/mail.
#
>>>>>>>>>> The program "newaliases" must be run after
>> NOTE >> this file is updated for any changes to
>>>>>>>>>> show through to sendmail.
#

Basic system aliases -- these MUST be present.
mailer-daemon: postmaster
postmaster: root

General redirections for pseudo accounts.
bin: root
daemon: root
adm: root
lp: root

User maintained aliases
adam: adamh
adam.haeder: adamh
haeder: adamh

The lines in this file take the format “alias: user account”. After you make modifications to this
file, you must run the command newaliases as root. The newaliases command will take the /etc/
aliases file and convert it to a hashed Berkeley DB file. This is a standard method of configuration
for sendmail; changes are made to text-based configuration files, and are then converted to
Berkeley DB files for quicker parsing. Emails that are sent to adam, adam.haeder, or haeder will
all be delivered to the user adamh.

mail

350 | Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3)

What if you want to forward all emails sent to a specific user account to another account, either
on the same system or to a different email address? The easiest way to accomplish this is with
the file ~/.forward. This is simply a text file that lives in a user’s home directory and contains
one or more email addresses to forward all mail to. These can be either local addresses (user-
names) or complete Internet email addresses (user@hostname.com). The advantage of the
~/.forward file is that the user can maintain it himself, whereas the /etc/aliases file must be
maintained by the root user.

Mail queuing

Description
Sendmail is an intelligent mail agent, and it tries to deliver mail even when failures occur. For
example, if a user attempts to send email to user@hostname.com, and the mail server for host-
name.com is turned off, sendmail will be unable to make a connection to TCP port 25 on the
mail server for hostname.com and consequently won’t be able to deliver the mail. Instead of
giving up, sendmail will place the email in a queue and attempt redelivery. The default action
of sendmail is to attempt redelivery of queued mail every 4 hours for 5 days before giving up
and sending a “Delivery Failure” notification to the original sender. Queued mail is stored in
the directory /var/spool/mqueue and is managed by the program mailq.

mailq

Syntax
mailq [options]

Description

Displays the items in the mail queue.

Example

Attempt to send mail to a host that is not currently accepting email:

echo "Failure Test" | mail user@unknown.com

View the mail queue
mailq
o1591AmX005615 7182 Fri Feb 5 03:01 MAILER-DAEMON
 8BITMIME (Deferred: Connection refused by unknown.com.)
 <user@unknown.com>

This mail will remain in the queue for a default time of 5 days, with retry attempts every 4 hours.
You can force sendmail to attempt a resend of every item in the mail queue with the command
sendmail –q –v.

Configuration of Postfix
Postfix was created as a replacement for sendmail, and therefore it maintains a
mostly “sendmail-compatible” interface. In most cases, postfix can act as a drop-in
replacement for sendmail, and scripts that had called sendmail directly with various
command-line options will continue to work. Postfix accomplishes this by including
with its distribution a program called /usr/sbin/sendmail, which exists to act as a

Mail queuing

Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3) | 351

M
TA Basics

“bridge” between calls to sendmail and the postfix utility. Because of this, many of
the commands you are used to in sendmail will work with postfix:

which sendmail
/usr/sbin/sendmail
for file in /usr/sbin/sendmail /usr/bin/mailq /usr/bin/newaliases; { echo -n
"$file: " && rpm -q --whatprovides ${file}; }
/usr/sbin/sendmail: postfix-2.3.2-32
/usr/bin/mailq: postfix-2.3.2-32
/usr/bin/newaliases: postfix-2.3.2-32

The postfix system is made up of a number of different applications, as opposed to
the monolithic nature of sendmail. The main program is /usr/lib/postfix/master,
which is the daemon that listens on TCP port 25 for incoming SMTP connections
and accepts mail. Other applications are listed in Table 17-1. These applications live
in /usr/lib/postfix/ unless otherwise indicated.

Table 17-1. Postfix programs

Program
name Description

anvil Maintains statistics about client connection counts or client request rates. This information can be used
to defend against clients that hammer a server with either too many simultaneous sessions or too
many successive requests within a configurable time interval (hence the name “anvil”). Run by the
Postfix master server.

bounce Maintains per-message log files with delivery status information. Run by the Postfix master server.

cleanup Processes inbound mail, inserts it into the incoming mail queue, and informs the queue manager of
its arrival.

discard Processes delivery requests from the queue manager that should be discarded.

error Processes delivery requests from the queue manager that should be logged as errors.

flush Maintains a record of deferred mail by destination.

lmtp Implements the SMTP and LMTP mail delivery protocols to deliver mail.

local Processes delivery requests from the queue manager that should be delivered locally.

pickup Moves mail from the maildrop directory to the cleanup process.

pipe Handles delivery of mail to an external command.

proxymap Handles lookup tables between the postfix programs.

qmgr Waits for incoming mail from the master server and hands it to the delivery process.

qmqpd Daemon for the “Quick Mail Queueing Protocol.” Designed to be a centralized mail queue for a number
of hosts. This prevents having to run a full-blown mail server on each and every host.

scache Maintains a shared multisession cache that can be used by the different postfix programs.

showq Emulates the sendmail mailq command.

smtp Alias for lmtp.

smtpd The actual process that handles incoming mail. Can be run as a standalone process instead of being
called by the master program.

spawn Postfix version of inetd.

tlsmgr Handles caching of TLS connections.

Mail queuing

352 | Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3)

Program
name Description

trivial-rewrite Handles address rewriting and domain resolving before mail is delivered.

verify Email address verification.

virtual Handles virtual domain name mail hosting.

/usr/bin/new-
aliases

Backward-compatible with the sendmail newaliases command. Converts the text file /etc/aliases into
a binary file that is parsable by postfix.

Configuration of Qmail
Qmail is similar to postfix in that it was designed as a sendmail replacement and is
a collection of smaller programs instead of one large one. The design goal behind
Qmail is security, so often the smaller programs will run as lower-privileged users.
Some of the more common Qmail programs are listed in Table 17-2.

Table 17-2. Qmail programs

Program name Description

tcpserver Listens for incoming TCP connections and hands them off to the appropriate program. Similar to
inetd or xinetd.

qmail-smtpd Handles incoming email.

qmail-inject Injects outgoing email into the mail queue.

qmail-send Delivers mail messages currently in the queue.

qmail-queue Formats mail correctly and places it in the queue for delivery.

qmail-lspawn Invokes qmail-local to handle local delivery.

qmail-rspawn Invokes qmail-remote to handle remote delivery.

qmail-local Delivers email locally.

qmail-remote Delivers email remotely.

qmail-qmqpd Receives mail via the Quick Mail Queueing Protocol and invokes qmail-queue to put mail in the
outgoing queue.

qmail-qstat Summarizes the current contents of the mail queue.

qmail-qread Lists messages and recipients of emails in the outgoing queue.

qmail-tcpto Lists hosts that have timed out on mail delivery attempts.

qmail-tcpok Clears the host timeout list.

qmail-showctl Analyzes the current qmail configuration files and explains the setup.

qmail-start A wrapper program that starts qmail-send, qmail-lspawn, qmail-rspawn, and qmail-clean with the
appropriate user IDs so mail delivery can happen.

Qmail also handles sendmail compatibility in ways similar to postfix. Qmail comes
with the program /var/qmail/bin/sendmail, which is designed to take the same
command-line options that sendmail takes and pass them to qmail. The program
dot-forward is used to read a user’s .forward file, and the program fastforward will

Mail queuing

Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3) | 353

M
TA Basics

read the sendmail /etc/aliases file. More information on qmail can be found at the
author’s site.

Configuration of Exim
Exim, like postfix and qmail, was designed to be a sendmail replacement. Therefore,
it has helper programs and supports command-line options to enable a smooth
transition from sendmail. Exim is monolithic like sendmail, in that the exim program
handles the acceptance of email on TCP port 25 and the delivery of mail. There are
a number of helper programs that come with exim, however. Some of the more
common ones are listed in Table 17-3.

Table 17-3. Exim programs

Program name Description

/usr/bin/mailq.exim Drop-in replacement for sendmail’s mailq command.

/usr/bin/newaliases.exim Drop-in replacement for sendmail’s newaliases command.

/usr/bin/runq.exim Alias for /usr/sbin/exim. Running this command is the same as running exim –q. This forces
a single run through the mail queue, attempting a resend on every item.

/usr/lib/sendmail.exim Handles sendmail command-line options and passes them to exim.

/usr/sbin/exim The main exim binary, this process listens on TCP port 25 for incoming SMTP connections
and hands incoming mail to the local delivery agent.

/usr/sbin/eximstats Generates statistics from exim mainlog or syslog files.

/usr/sbin/exiwhat Describes what the exim process is currently doing.

/usr/sbin/exinext Gives specific information about retry efforts for an email address.

/usr/sbin/exipick Displays individual messages from the exim mail queue.

/usr/sbin/exiqgrep Searches for strings in the mail queue.

/usr/sbin/exiqsumm Summarizes the current contents of the mail queue.

On the Exam
It is not necessary to know the detailed configuration options of each MTA for the
LPI 102 exam. You need to understand the basic purpose of an MTA and know
how to handle aliasing and email forwarding. You should also be familiar with the
sendmail-compatibility commands included with qmail, postfix, and exim.

Mail queuing

354 | Chapter 17: Mail Transfer Agent (MTA) Basics (Topic 108.3)

http://cr.yp.to/qmail.html

18
Manage Printers and Printing

(Topic 108.4)

Chapter 18 contains the final Objective in Topic 108:

Objective 4: Manage Printers and Printing
Candidates should be able to manage print queues and user print jobs using
CUPS and the LPD compatibility interface. Weight: 2.

Objective 4: Manage Printers and Printing
As long as the paperless office remains a myth, printing will be an important aspect
of the computing experience. Even if you don’t deal with it on a daily basis, as a
system administrator printing will inevitably be an important part of your job.

This topic also covers the setup, administration, and use of the Common Unix Pro-
tocol (CUPS) and the Line Printer Daemon (LPD) legacy interface (lpr, lprm, lpq,
etc.). Although they are not covered in the current LPI Objectives, this chapter also
includes an introduction to other printing systems that may be used on Linux
systems.

In the current LPI exams, this objective weight was changed, the content shrank
from three objectives to one, and the objective was moved to the Essential System
Services topic. Bear in mind that CUPS is the main thing to know here, but CUPS’s
compatibility with the legacy LPD protocol are also required.

An Overview of Printing
The various printing implementations available for Linux systems have a basic ar-
chitecture in common. In every printing system, a central daemon (or service) re-
ceives print jobs, via either a user command (such as lpr) or the network. The print
job is then processed through input filters if necessary, and sent to either a local
printer or another printing daemon.

355

Printing documents is a slow and error-prone process. Printers accept data in small
amounts. They are prone to run out of paper, jam, and go offline for other reasons.
Printers also must accept requests from multiple system users. As a result, by design,
the end user is isolated from printing functions on most computer systems. This
isolation comes in the form of a print queue, which holds print requests until the
printer is ready for them. It also manages the order in which print jobs are processed.
Feeding print jobs to printers is often called spooling, and the program that manages
the print queues is sometimes called a spooler. It can also be called a scheduler.

BSD and System V Interfaces
Historically, there have been two competing printing implementations on Unix sys-
tems, one invented for BSD Unix and another for System V (SysV) Unix. Although
the implementations are similar, they have completely different commands. The
BSD printing commands include lpd, lpr, lprm, and lpc. The System V printing com-
mands include lp, enable, disable, cancel, lpstat, and lpadmin. On System V-based
systems, the lpadmin command manages print queues. There is no equivalent to it
on BSD-based systems, other than to simply edit /etc/printcap. Other than lpad-
min, there is a one-to-one relationship between BSD and System V printing com-
mands. However, the internal details, such as files used, vary considerably.

Older Linux distributions tended to use a port of the BSD lpd code (and related
commands). Due to various security issues with the BSD code (mostly the overuse
of the root account through SUID executables), current distributions have largely
dropped the BSD code in favor of CUPS.

LPRng
LPRng is a complete rewrite of the BSD utilities. It is designed to be portable and
secure. Unlike the BSD utilities, the client programs do not need to run SUID. The
server (still called lpd) is a complete implementation of the RFC 1179 Line Printer
Daemon Protocol. It also includes lp and lpstat commands for System V
compatibility.

Although LPRng is a complete rewrite, configuration is still mostly the same as for
the BSD utilities. It still uses /etc/printcap (described later in this chapter). It also has
two additional configuration files: /etc/lpd.conf, which controls details of LPRng’s
lpd, and /etc/lpd.perms, which configures access controls for lpd.

Sometimes it’s necessary to integrate the printing server into a heterogeneous infra-
structure, such as to serve systems using the LPD legacy protocol. The embedded
package cups-lpd is the CUPS Line Printer Daemon (LPD) mini-server supporting
these legacy client systems. cups-lpd does not act as a standalone network daemon,
but instead operates using the Internet inetd or xinetd super-server.

The LPD server will listen on the default port specified in the /etc/services file:

printer 515/tcp spooler # line printer spooler
printer 515/udp spooler # line printer spooler

LPRng is available from http://www.lprng.com.

356 | Chapter 18: Manage Printers and Printing (Topic 108.4)

http://www.lprng.com

CUPS
CUPS is a more recent printing system that was initially designed to support the
Internet Printing Protocol (IPP) but has evolved into a drop-in replacement for both
the BSD and System V utilities, including client replacements for RFC 1179 (lpd
protocol) support.

Although it retains backward compatibility with older printing systems, the internal
details of CUPS are significantly different. The server component cupsd handles
queuing, and includes a web server for configuration and management. Nearly ev-
erything can be configured through the web interface or the included lpadmin com-
mand. The various configuration files in the /etc/cups directory rarely need to be
edited by hand.

The CUPS web interface, shown in Figure 18-1, is available on the machine at http://
localhost:631.

Figure 18-1. CUPS management web interface

In order to implement or troubleshoot a printing system, it’s very important to un-
derstand the data flow and the steps taken on the server and client side. In the case
of CUPS, these are:

1. A print job is generated by an application locally on the client side.

2. The print job is sent to the print server specified by the protocol selected for
that queue (e.g., IPP or CIFS).

3. On the CUPS server, the spooler process cupsd fetches the data stream and saves
it in the print spool directory. The default directory is /var/spool/cups.

An Overview of Printing | 357

M
anage Printers
and Printing

4. If an input filter is specified in the configuration, CUPS will pass the job to it.
In any case, after any filtering, the job is sent to the backend. Many filters create
formats for particular printers from generic input, such as PostScript or a PDF.

5. The backend sends the printer-specific data to the printer.

6. Once the job is completed, cupsd removes the respective files from the spool
directory, depending on the retention time configured.

CUPS is available from http://www.cups.org.

CUPS printing overview

On Linux, the CUPS printing system consists of the following elements:

cupsd
This daemon is started at boot time and runs continuously, listening for print
requests directed at multiple printers. When a job is submitted to a print queue,
cupsd handles jobs on that queue. The copy exits when the queue is emptied.

/etc/cups/cupsd.conf
This file configures the cupsd daemon. It is normally located in the /etc/cups
directory.

Each line in the file can be a configuration directive, a blank line, or a comment.
The configuration directives are intentionally similar to those used by the pop-
ular Apache web server software.

/etc/cups/printers.conf
This file defines available local printers. It is generated automatically by cupsd
when printers are added, deleted, or changed. This file shouldn’t be changed
manually.

/etc/printcap
This file is still present on the system to allow older printing applications that
rely on it to keep functioning. Under CUPS, the file is automatically generated
by cupsd from the /etc/cups/printers.conf file. All changes to the file are lost if
the CUPS service is restarted.

lp
The lp (line print) program submits both files and information piped to its
standard input to print queues.

lpq
This program queries and displays the status and contents of print queues.

lprm
This program removes print jobs from print queues.

lpadmin
This program configures printer and class queues provided by CUPS. It can also
be used to set the server default printer or class.

lpc
Nowadays, lpc provides limited control over printer and class queues provided
by CUPS. It can also be used to query the state of queues. The command lpad-
min should be used instead.

358 | Chapter 18: Manage Printers and Printing (Topic 108.4)

http://www.cups.org

Spool directories
The cupsd daemon uses /var/spool/cups for the spooling of data awaiting
printing.

Print jobs
Each print request submitted is spooled to a queue and assigned a unique num-
ber. The print jobs can be examined and manipulated as needed.

Other files are also used by particular parts of the system, such as input filters.

CUPS backends

Several backends are available for CUPS: parallel, serial, SCSI, and USB ports, as
well as network backends that operate via the Internet Printing Protocol (HTTP,
HTTPS, and IPP), JetDirect (AppSocket port 9100), Line Printer Daemon (LPD),
CIFS (which used to be called SMB) protocols, and more. PDF generators are also
available. These backends usually live in the directory /usr/lib/cups/backend, and can
be compiled programs or scripts written in any scripting language, such as Perl or
Python.

The backend is always the last program executed for processing a print job. Ta-
ble 18-1 lists the most popular backends.

Table 18-1. Backend processors under CUPS

Backend URI syntax Example URI

Parallel parallel:/dev/lpnumber parallel:/dev/lp0

USB usb://make/model?
serial= number

usb://vendor/printer
%201000?serial=A1B2C3

ipp ipp://host/printers/
queue

ipp://host/printers/
printer1000

LPD lpd://host/queue lpd://host/printer

socket socket://host:port socket://ip:9100

CIFS (Common Internet Filesystem,
the protocol Microsoft Windows-
based systems use for file and printer
communication across a network)

see the smbspool(8) manpage smb://user:password@work
group/host/share

CUPS filters

The core of the CUPS filtering system is based on Ghostscript, part of the GNU
project. It consults PPD files, which are an industry standard for representing printer
capabilities (two-sided printing, four-to-a-page, etc.).

For PostScript printers, the PPD file contains the printer-specific options (and noth-
ing else) together with the corresponding PostScript code snippets that must be sent
to the PostScript interpreter in order to activate a certain option.

For non-PostScript printers, the PPD file contains additional information about
which printer driver program to use and the options available for the particular

An Overview of Printing | 359

M
anage Printers
and Printing

driver. If several drivers can be used for a given printer, several PPD files are found
on the system.

Depending on the printer-specific options set for a certain print job (e.g., -o Page
Size=A4), the filter system reads the suitable PostScript code snippets (the so-called
“PostScript invocation values”) from the PPD file and inserts them in the PostScript
data stream.

The original data has a MIME type determined by configuration options in /etc/cups/
mime.types. If the type is not application/postscript, the data is converted to Post-
Script according to the /etc/cups/mime.convs configuration file. For example, text/
plain is converted to PostScript with the /usr/lib/cups/filter/texttops program.

These filter files are usually found in the directory /usr/lib/cups/filter and, like CUPS
backends, can be compiled code or shell scripts.

Managing CUPS print queues

As a system administrator, you’ll likely be asked to manage and manipulate printer
more often. On Linux, the lp, lpq, lpstat, lprm, and lpadmin commands are your
tools. Other tools include lpoptions, accept, reject, and cancel.

lp

Syntax
lp [-E] [-U username] [-c] [-d destination[/instance]]
 [-h hostname[:port]] [-m]
 [-n num-copies] [-o option[=value]] [-q priority] [-s] [-t title]
 [-H handling] [-P page-list] [--] [file(s)]

Description
lp submits files for printing or alters a pending job.

Options

--
Prints from standard input.

-d destination
Prints files to the named printer.

-o "name=value [name=value ...]”
Sets one or more job options.

Example 1
Print a double-sided legal document to a printer called “foo”:

$ lp -d foo -o media=legal -o sides=two-sided-long-edge filename

lp

360 | Chapter 18: Manage Printers and Printing (Topic 108.4)

Example 2
Print an image across four pages:

$ lp -d bar -o scaling=200 filename

Example 3
Print a text file with 12 characters per inch, 8 lines per inch, and a 1-inch left margin:

lp -d bar -o cpi=12 -o lpi=8 -o page-left=72 filename

cancel

Syntax
cancel [-E] [-U username] [-a] [-h hostname[:port]] [-u username] [id]
 [destination
] [destination-id]

Description
cancel removes the specified print jobs from the queue.

Options

-a
Cancels all jobs on the named destination, or all jobs on all destinations if no destination
is provided.

lpstat

Syntax
lpstat [-E] [-U username] [-h hostname[:port]] [-l] [-W which-jobs]
 [-a [destination(s)]] [-c [class(es)]] [-d]
 [-o [destination(s)]]
 [-p [printer(s)]] [-r] [-R] [-s] [-t] [-u [user(s)]]
 [-v [printer(s)]]

Description
lpstat displays status information about the current classes, jobs, and printers. When run with
no arguments, it lists jobs queued by the current user.

Options

-a [printer(s)]
Shows the accepting state of printer queues. If no printers are specified, shows all printers.

-t
Shows all status information. This option is very useful for troubleshooting.

lpstat

Chapter 18: Manage Printers and Printing (Topic 108.4) | 361

M
anage Printers
and Printing

lpadmin

Syntax
lpadmin [-E] [-U username] [-h server[:port]] -d destination
lpadmin [-E] [-U username] [-h server[:port]] -p printer option(s)
lpadmin [-E] [-U username] [-h server[:port]] -x destination

Description
lpadmin configures printer and class queues provided by CUPS. It can also be used to set the
server default printer or class.

Options

-m model
Sets a standard System V interface script or PPD file from the model directory.

-v device-uri
Sets the device URI attribute of the printer queue. If device-uri is a filename, it is auto-
matically converted to the form file:///file/name. Use the lpinfo(8) command for a list
of supported device URIs and schemes.

-E
Enables the printer and accepts jobs; this is the same as running the accept and cupsena-
ble programs for a specific printer.

lpq

Syntax
lpq [options] [users] [job#s]

Description
Query a print queue. If numeric job#s are included, only those jobs are listed. If users are listed,
only jobs submitted by those users are listed.

Options

-l
Long output format. This option results in a multiline display for each print job.

-P name
This specifies the print queue name. In the absence of -P, the default printer is queried.

Example 1
Examine active jobs:

$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active root 193 filter 9443 bytes
1st root 194 resume.txt 11024 bytes
2nd root 196 (standard input) 18998 bytes

lpadmin

362 | Chapter 18: Manage Printers and Printing (Topic 108.4)

Here, filter is currently being printed. resume.txt is up next, followed by the 18,998 bytes of
data piped into lpr’s standard input.

Example 2
Examine those same jobs using the long format:

$ lpq -l
lp is ready and printing
root: active [job 193AsJRzIt]
 filter 9443 bytes
root: 1st [job 194AMj9lo9]
 resume.txt 11024 bytes
root: 2nd [job 196A6rUGu5]
 (standard input) 18998 bytes

Example 3
Examine queue lp, which turns out to be empty:

$ lpq -Plp
no entries

Example 4
Examine jobs owned by bsmith:

$ lpq bsmith
Rank Owner Job Files Total Size
7th bsmith 202 .bash_history 1263 bytes
9th bsmith 204 .bash_profile 5676 bytes

Using the job numbers reported by lpq, any user may remove her own print jobs from the queue,
or the superuser may remove any job.

lprm

Syntax
lprm [-Pname] [users] [job#s]
lprm -ly

Description
Remove jobs from a print queue. In the first form, remove jobs from queue name or from the
default queue if -P is omitted. If users or jobs are specified, only those jobs will be removed. In
the second form, all of a normal user’s jobs will be omitted; for the superuser, the queue will
be emptied.

Example 1
As a normal user, remove all of your print jobs:

$ lprm -

lprm

Chapter 18: Manage Printers and Printing (Topic 108.4) | 363

M
anage Printers
and Printing

Example 2
As the superuser, remove all jobs from queue ps:

lprm -Pps -

You may occasionally be surprised to see a no entries response from lpq, despite observing
that the printer is dutifully printing a document. In such cases, the spool has probably been
emptied into the printer’s buffer memory, and the result is that the job is no longer under the
control of the printing system. To kill such jobs, you need to use the printer’s controls to stop
and delete the job from memory.

lpr

Syntax
lpr [options] [files]

Description
Send files or standard input to a print queue. A copy of the input source is placed in the spool
directory under /var/spool/lpr until the print job is complete.

Frequently used options

-#number
Send number copies of the print job to the printer.

-s
Instead of copying a file to the print spooling area, make a symbolic link to the file, thereby
eliminating transfer time and storage requirements in /var/spool/lpr. This can relieve load
on the daemon’s system for very large files.

-Pname
Specify the print queue name. In the absence of -P, the default printer is queried.

Example 1
Print the file /etc/fstab on the default print queue:

lpr /etc/fstab

Example 2
Print a manpage by piping to lpr’s standard input:

man -t 5 printcap | lpr

Example 3
Disable a print queue:

lpc disable lp

Then, attempt to print three copies of a file to the disabled queue as superuser:

lpr -#3 /etc/fstab

lpr

364 | Chapter 18: Manage Printers and Printing (Topic 108.4)

This succeeds, despite the disabled printer queue. Now try as a regular user:

$ lpr -#3 ~/resume.txt
lpr: Printer queue is disabled

As expected, normal users can’t print to the disabled queue.

On the Exam
You must be familiar with lp and its use with both files and standard input. Also
remember that lp doesn’t send data to the printer but to the printer daemon
(cupsd on Linux), which handles sending it to the printer backend and then to the
printer.

Troubleshooting General Printing Problems
Logfiles are the first, and sometimes the best, guide to solving problems with print-
ing. Many people still make the basic mistake of forgetting to check logfiles. These
files are rotated, so that you can find recent events in the main file and older events
in gzipped backup files. If you need even more detail, change the LogLevel line
in /etc/cups/cupsd.conf to the value debug. It will dump loads of extra information
into the logfiles for subsequent print operations.

You should also know about the cups-config command, which has some options
that show you information about the current state of the system.

The Error Logfile
Recent errors and related information can be found in /var/log/cups/error_log. This
file lists messages from the scheduler, which includes both errors and warnings. You
can view detailed and real-time information about data transferring, filtering, etc.
Sample messages generated by one typical job are:

I [16/Nov/2009:11:19:07 +0100] [Job 102] Adding start banner page "none".
I [16/Nov/2009:11:19:07 +0100] [Job 102] Adding end banner page "none".
I [16/Nov/2009:11:19:07 +0100] [Job 102] File of type application/postscript
queued by "brunop".
I [16/Nov/2009:11:19:07 +0100] [Job 102] Queued on "PDF" by "brunop".
I [16/Nov/2009:11:19:07 +0100] [Job 102] Started filter
/usr/libexec/cups/filter/pstops (PID 18223)
I [16/Nov/2009:11:19:07 +0100] [Job 102] Started backend
/usr/libexec/cups/backend/cups-pdf (PID 18224)
I [16/Nov/2009:11:19:07 +0100] [Job 102] Completed successfully.
I [16/Nov/2009:11:20:17 +0100] [Job ???] Request file type is
application/postscript.
I [16/Nov/2009:11:20:17 +0100] [Job 103] Adding start banner page "none".
I [16/Nov/2009:11:20:17 +0100] [Job 103] Adding end banner page "none".
I [16/Nov/2009:11:20:17 +0100] [Job 103] File of type application/postscript
queued by "brunop".
I [16/Nov/2009:11:20:17 +0100] [Job 103] Queued on "PDF" by "brunop".
I [16/Nov/2009:11:20:17 +0100] [Job 103] Started filter
/usr/libexec/cups/filter/pstops (PID 18340)

Troubleshooting General Printing Problems | 365

M
anage Printers
and Printing

I [16/Nov/2009:11:20:17 +0100] [Job 103] Started backend
/usr/libexec/cups/backend/cups-pdf (PID 18341)
I [16/Nov/2009:11:20:17 +0100] [Job 103] Completed successfully.

The I that starts each line stands for “information.” In this case, no errors or warn-
ings were generated.

The Page Logfile
This logfile can be found in /var/log/cups/page_log. It keeps information from each
page sent to a printer. Each line contains the following information (when
applicable):

printer user job-id date-time page-number num-copies job-billing \
job-originating-host-name jobname media sides

A sample excerpt follows:

Photosmart_C4500 brunop 86 [31/Oct/2009:12:48:36 +0100] 1 1 - localhost
Photosmart_C4500 brunop 86 [31/Oct/2009:12:48:52 +0100] 2 1 - localhost
adamp23 brunop 87 [02/Nov/2009:13:40:33 +0100] 1 1 - localhost
adamp23 brunop 87 [02/Nov/2009:13:40:33 +0100] 2 1 - localhost
adamp23 brunop 88 [09/Nov/2009:09:31:11 +0100] 1 1 – localhost
PDF root 100 [16/Nov/2009:11:11:52 +0100] 1 1 - localhost
PDF brunop 101 [16/Nov/2009:11:16:38 +0100] 1 1 - localhost

The Access Logfile
This file can be found in /var/log/cups/access_log. It lists each HTTP resource ac-
cessed by a web browser or client. Each line is in an extended version of the so-called
“Common Log Format” used by many web servers and web reporting tools. A sam-
ple follows (lines broken to fit the page of this book):

localhost - - [16/Nov/2009:17:28:29 +0100] "POST / HTTP/1.1" 200 138 \
 CUPS-Get-Default successful-ok
localhost - - [16/Nov/2009:17:28:29 +0100] "POST / HTTP/1.1" 200 552 \
 CUPS-Get-Printers successful-ok
localhost - root [16/Nov/2009:17:28:29 +0100] "GET /printers HTTP/1.1" \
 200 11258 - -
localhost - root [16/Nov/2009:17:28:29 +0100] "GET \
 /images/button-search.gif HTTP/1.1" 200 332 - -
localhost - root [16/Nov/2009:17:28:29 +0100] "GET \
 /images/button-clear.gif HTTP/1.1" 200 279 - -

Using the cups-config Utility for Debugging
The cups-config utility has several parameters that can be handy while troubleshoot-
ing. The options are described in Table 18-2.

366 | Chapter 18: Manage Printers and Printing (Topic 108.4)

Table 18-2. Options to cups-config

Option Description

--cflags Displays the necessary compiler options.

--datadir Displays the default CUPS data directory.

--help Displays the program usage message.

--ldflags Displays the necessary linker options.

--libs Displays the necessary libraries to link to.

--serverbin Displays the default CUPS binary directory, where filters and backends are stored.

--serverroot Displays the default CUPS configuration file directory.

On the Exam
Be familiar with the CUPS logfiles, and how to interpret them to troubleshoot
printing issues.

Troubleshooting General Printing Problems | 367

M
anage Printers
and Printing

19
Networking Fundamentals

(Topic 109.1)

Although it is not necessary for you to be a networking expert to pass the LPIC Level
1 Exams, you must be familiar with networking, network-related vocabulary, and
basic Linux networking configuration. This chapter introduces fundamental net-
working and troubleshooting concepts specifically included in the exams. However,
it is not a complete introductory treatment, and you are encouraged to review ad-
ditional material for more depth. This chapter covers this Objective:

Objective 1: Fundamentals of Internet Protocols
Candidates should demonstrate a proper understanding of network fundamen-
tals. This Objective includes the understanding of IP addresses, network masks,
and what they mean (i.e., determine a network and broadcast address for a host
based on its subnet mask in dotted quad or abbreviated notation, or determine
the network address, broadcast address, and netmask when given an IP address
and number of bits). It also covers the understanding of the network classes and
classless subnets (CIDR) and the reserved addresses for private network use.
IPv6 is also discussed, along with how this addresses some of the limitations of
IPv4. It includes the understanding of the function and application of a default
route. It also includes the understanding of basic Internet protocols (IP, ICMP,
TCP, UDP) and the more common TCP and UDP ports (20, 21, 23, 25, 53, 80,
110, 119, 139, 143, 161). Weight: 4.

Objective 1: Fundamentals of Internet Protocols
The TCP/IP suite of protocols was adopted as a military standard in 1983 and has
since become the world standard for network communications on the Internet and
on many LANs, replacing proprietary protocols in many cases. This section covers
TCP/IP basics cited by the LPI Objectives.

369

Network Addressing
For several years IPv4 has been the standard method for assigning a unique address
that identifies the host on the network and the Internet. The 32-bit IP address, also
referred to as a dotted quad, is composed of four 8-bit fields divided by a period.
These fields identify first the network and then the host for a device on the network.
IPv4 provides 4.29 billion addresses.

The IP address 192.168.1.150 and the binary equivalent would be:

11000000 10101000 00000001 10010110

IPv4 addresses are categorized into classes to provide structure. There are five clas-
sifications of networks defined by IP addresses. Table 19-1 identifies the address
ranges for the classes that are primarily used.

Table 19-1. IPv4 address ranges by class

Address class IP address range

Class A 0.0.0.0 to 127.255.255.255

Class B 128.0.0.0 to 191.255.255.255

Class C 192.0.0.0 to 223.255.255.255

Class D 224.0.0.0 to 239.255.255.255

Class E 240.0.0.0 to 247.255.255.255

Every device on a network or connected to the Internet needs a unique IP address,
including printers and fax machines; consequently, the supply of available IP ad-
dresses will run out eventually. There have been many technologies developed to
reduce the exhaustion of available IP addresses, including network address transla-
tion (NAT), Classless Inter-Domain Routing (CIDR), and IPv6.

Private IP addresses and NAT

One of the early attempts of handling the exhaustion of IP addresses was the im-
plementation of private IP addresses. Private IP addresses are not globally assigned,
which means that different organizations may use the same private IP addresses.
Private IP addresses are not routable, and therefore they are not accessible across
the Internet. Organizations using private IP address internally for network connec-
tivity use a process called network address translation (NAT) gateway or a proxy
server to provide connectivity to the Internet. Each IP address class has a range of
IP addresses that are reserved as private addresses. Table 19-2 lists the ranges for
private IP addresses.

Table 19-2. IPv4 private network address ranges

Class Private IP address range

Class A 10.0.0.0 to 10.255.255.255

Class B 172.16.0.0 to 172.31.255.255

Class C 192.168.0.0. to 192.168.255.255

370 | Chapter 19: Networking Fundamentals (Topic 109.1)

Classless Inter-Domain Routing (CIDR)

In the 1990s it became apparent that the exhaustion of the IPv4 addresses would be
reached in a few years with the ever-growing expansion of Internet technology. The
move was made away from assigning IP addresses based on classes to a method that
uses ranges of address. IPv4 addresses are now specified using the CIDR notation
that specifies subnet masks. The CIDR notation uses the format address/prefix.

The prefix designates the number of bits that will be used by the subnet mask. Let’s
say we have a range of IP addresses consisting of 206.24.94.105 and a subnet mask
of 255.255.255.0. We would note this address using CIDR as:

206.24.94.105/24

Using the CIDR notation allows for custom subnet masks to be created without
tying them to the limitations of classes.

Internet Protocol Version 6 (IPv6)

The Internet Engineer Task Force (IETF) defined IPv6 in 1995. While IPv4 still has
the majority of addressing, all network operating systems and hardware device
manufacturers support IPv6. IPv6 increases the size of IP addresses from 32 bits to
128 bits, or 16 octets. This increases the possible number of available addresses to
a maximum of 2128, or 3.42 × 1038, unique addresses. With the large number of
available IPv6 addresses, it is not necessary to implement addressing conservation
methods such as NAT and CIDR. This will help reduce the administration overhead
of managing addresses.

The IPv6 address is composed of hexadecimal digits representing 4-bit sections sep-
arated by a colon. The addresses are represented by the format
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx. An example of the preferred format for
IPv6 addresses would look like the following:

2130:0000:0000:0000:0003:0040:150c:235b

IPv6 may be abbreviated by removing the leading zeros from the address, so if applied
to the previous example, the address could appear as follows:

2130:0:0:0:3:40:150c:235b

Another shorthand version of the IPv6 address uses double-colon notation, wherein
address sections that consist of a series of zeros may be replaced with a double colon.
In the instance of the IPv6 address 2130:0000:0000:0000:0003:0040:150c:235b, it
could be shortened to:

2130::3:40:150c:235b

IPv6 address several disadvantages of IPv4 addressing, including:

Limited addresses
As mentioned previously, IPv4 has only about 109 available addresses, and this
supply is expected to be exhausted in the near future. IPv6 has a much larger
addressing capability with 1038 addresses.

Objective 1: Fundamentals of Internet Protocols | 371

Network
Fundam

entals

Security
IPsec was designed to be integrated into IPv6 addressing and is mandated to be
used with the protocol, whereas IPv4 treats it as an optional function. Encryp-
tion processes are also mandated to be included into IPv6 addressing.

Configuration
IPv6 devices will autoconfigure themselves when connected to an IPv6-routed
network. This process is a cleaner version of the IPv4 DHCP process discussed
later in this chapter. The autoconfiguration functionality also improves ad-
dressing assignments of mobile devices because these devices are assigned to a
“home” address where it remains always reachable. When the mobile device is
at home, it connects using the home address. When the mobile device is not at
home, a home agent, typically a router, will relay messages between the mobile
device and the nodes it is communicating with.

Performance
IPv6 headers have been modified to fixed widths to work with high-speed rout-
ers, increasing speed and performance when moving data packets across Inter-
net backbones.

On the Exam
Prepare to discuss the difference between public and private IP addresses on the
Internet. Also be able to discuss the major differences between IPv4 and IPv6
addressing.

Masks
The early specification of the IP recognized that it would be necessary to divide one’s
given allotment of IP addresses into manageable subnetworks. Such division allows
for distributed management, added security (fewer hosts can potentially snoop net-
work traffic), and the use of multiple networking technologies (Ethernet, Token
Ring, ATM, etc.). IP also enables convenient partitioning of the physical portions of
a network across physical and geographical boundaries. To provide the capability
to locally define networks, IP addresses are considered as having two distinct parts:
the part that specifies a subnet and the one that specifies a network interface. (Re-
member that IP addresses are assigned to network interfaces, not host computers,
which can have multiple interfaces. For this discussion, however, we assume a one-
to-one relationship between hosts and interfaces.) The boundary between the net-
work and host portions of an IP address is delineated by a subnet mask, required by
the TCP/IP configuration of any network interface. Like the IP address, the subnet
mask is simply a 32-bit number specified in four 8-bit segments using dotted quad
decimal notation. The familiar class A, B, and C networks have these subnet masks:

Class A: 255.0.0.0 (binary 11111111.00000000.00000000.00000000)
8-bit network address and 24-bit host address

372 | Chapter 19: Networking Fundamentals (Topic 109.1)

Class B: 255.255.0.0 (binary 11111111.11111111.00000000.00000000)
16-bit network address and 16-bit host address

Class C: 255.255.255.0 (binary 11111111.11111111.11111111.00000000)
24-bit network address and 8-bit host address

When logically AND’d with an IP address, the bits set to 0 in the subnet mask obscure
the host portion of the address. The remaining bits represent the network address.
For example, a host on a class C network might have an IP address of 192.168.1.127.
Applying the class C subnet mask 255.255.255.0, the network address of the subnet
would be 192.168.1.0, and the host address would be 127, as depicted in Figure 19-1.

Figure 19-1. Host interface address calculation

Although it is typical to use the predefined classes (A, B, and C), the boundary can
be moved left or right in the IP address, allowing for fewer or more subnets, respec-
tively. For example, if a single additional bit were added to the class C subnet mask,
its IP address would be:

255.255.255.128 (binary 11111111.11111111.11111111.10000000)
25-bit network address and 7-bit host address

With such a subnet defined on an existing class C network such as 192.168.1.0, the
256-bit range is split into two subnets, each with 7 host bits. The first of the two
subnets begins at 192.168.1.0 (the subnet address) and continues through
192.168.1.127 (the subnet broadcast address). The second subnet runs from
192.168.1.128 through 192.168.1.255. Each of the two subnets can accommodate
126 hosts. To extend this example, consider two additional bits:

255.255.255.192 (binary 11111111.11111111.11111111.11000000)
26-bit network address and 6-bit host address

When applied to a class C network, four subnets are created, each with 6 host bits.
Just as before, the first subnet begins at 192.168.1.0 but continues only through
192.168.1.63. The next subnet runs from 192.168.1.64 through 192.168.1.127, and
so on. Each of the four subnets can accommodate 62 hosts. Table 19-3 shows more
detail on class C subnets, considering only the host portion of the address.

Objective 1: Fundamentals of Internet Protocols | 373

Network
Fundam

entals

Table 19-3. Class C IP subnet detail

Subnet
mask

Number
of subnets

Network
address

Broadcast
address

Minimum
IP address

Maximum
IP address

Number
of hosts

Total
hosts

128 2 0 127 1 126 126

 128 255 129 254 126 252

192 4 0 63 1 62 62

 64 127 65 126 62

 128 191 129 190 62

 192 255 193 254 62 248

224 8 0 31 1 30 30

 32 63 33 62 30

 64 95 65 94 30

 96 127 97 126 30

 128 159 129 158 30

 160 191 161 190 30

 192 223 193 222 30

 224 255 225 254 30 240

On the Exam
Be prepared to define network and host addresses when provided an IP address
and a subnet mask. Practice with a few subnet sizes within at least one classifica-
tion (A, B, or C). Also, because the use of decimal notation can cloud human
interpretation of IP addresses and masks, be ready to do binary-to-decimal con-
version on address numbers.

As you can see, as the number of subnets increases, the total number of hosts that
can be deployed within the original class C address range reduces. This is due to the
loss of both broadcast addresses and network addresses to the additional subnets.

Protocols
TCP/IP is a suite of Internet protocols, including the Transmission Control Protocol
(TCP), Internet Protocol (IP), User Datagram Protocol (UDP), and Internet Control
Message Protocol (ICMP), among others. Some protocols use handshaking (the ex-
change of control information among communicating systems) to establish and
maintain a connection. Such a protocol is said to be connection-oriented and relia-
ble, because the protocol itself is responsible for handling transmission errors, lost
packets, and packet arrival order. A protocol that does not exchange control infor-
mation is said to be connectionless and unreliable. In this context, “unreliable”
simply means that the protocol doesn’t handle transmission problems itself; they
must be corrected in the application or system libraries. Connectionless protocols
are simpler and have fewer overheads than connection-oriented protocols. TCP/IP

374 | Chapter 19: Networking Fundamentals (Topic 109.1)

is a stack of protocols because protocols are built in a hierarchy of layers. Low-level
protocols are used by higher-level protocols on adjacent layers of the protocol stack:

TCP
TCP is a connection-oriented transport agent used by applications to establish
a network connection. TCP transports information across networks by hand-
shaking and retransmitting information as needed in response to errors on the
network. TCP guarantees packet arrival and provides for the correct ordering
of received packets. TCP is used by many network services, including FTP,
Telnet, and SMTP. By using TCP, these applications don’t need to establish
their own error-checking mechanisms, thus making their design simpler and
easier to manage.

IP
IP can be thought of as the fundamental building block of the Internet. IP, which
is connectionless, defines datagrams (the basic unit of transmission), establishes
the addressing scheme (the IP address), and provides for the routing of data-
grams between networks. IP is said to provide a datagram delivery service. Other
higher-level protocols use IP as an underlying carrier.

UDP
UDP is a connectionless transport agent. It provides application programs direct
access to IP, allowing them to exchange information with a minimum of pro-
tocol overhead. On the other hand, because UDP offers no assurance that
packets arrive at destinations as intended, software must manage transmission
errors and other problems such as missing and incorrectly ordered packets.
UDP is used by applications such as DNS and NFS.

ICMP
ICMP is a connectionless transport agent that is used to exchange control in-
formation among networked systems. It uses IP datagrams for the following
control, error-reporting, and informational functions:

Flow control
Sometimes inbound traffic becomes too heavy for a receiving system to
process. In such cases, the receiving system can send a message via ICMP
to the source instructing it to temporarily stop sending datagrams.

Detecting unreachable destinations
Various parts of network infrastructure are capable of detecting that a net-
work destination is unreachable. In this case, ICMP messages are sent to
the requesting system.

Redirecting routes
ICMP is used among network components to instruct a sender to use a
different gateway.

Checking remote hosts
Hosts can transmit echo messages via ICMP to verify that a remote system’s
Internet Protocol is functioning. If so, the original message is returned. This
is implemented in the ping command.

Objective 1: Fundamentals of Internet Protocols | 375

Network
Fundam

entals

PPP
Point-to-Point Protocol (PPP) is used for TCP/IP dial-up network access via
modem.

On the Exam
You will need a general understanding of the control messages sent via ICMP. In
particular, note that ICMP does not transmit data and that it is used by ping.

Services
When an inbound network request is made, such as that from a web browser or FTP
client, it is sent to the IP address of the server. In addition, the request carries inside
it a port number (or just port), which is a 16-bit value placed near the beginning of
a network packet. The port number defines the type of server software that should
respond to the request. For example, by default, web browsers send requests
encoded for port 80. Web servers “listen” to port 80 and respond to incoming re-
quests. The encoded port can be considered part of the address of a request. While
the IP address specifies a particular interface (or host), the port specifies a specific
service available on that host. Many port numbers are predefined, and the list is
expanded as needed to accommodate new technologies. The official list of port
number assignments is managed by the Internet Assigned Numbers Authority
(IANA). The ports known by your system are listed in /etc/services.

Port numbers 1 through 1023 are often referred to as privileged ports because the
services that use them often run with superuser authority. Many of these, such as
ports used for FTP (21), Telnet (23), and HTTP (80), are often referred to as well-
known ports because they are standards. Port numbers from 1024 through 65535
(the maximum) are unprivileged ports and can be used by applications run by ordi-
nary system users.

During the initial contact, the client includes a local (randomly selected) unprivi-
leged port on the client machine for the server to use when responding to the request.
Client-to-server communications use the well-known port, and the server-to-client
communications use the randomly selected port. This Objective requires you to be
familiar with the privileged port numbers detailed in Table 19-4.

Table 19-4. Common privileged port numbers

Port number Assigned use Description

20 and 21 FTP data FTP
control

When an FTP session is opened, the binary or ASCII data flows to the server using
port 20, while control information flows on port 21. During use, both ports are
managed by an FTP daemon, such as vftpd.

23 Telnet server Inbound Telnet requests are sent to server port 23 and processed by telnetd.

25 SMTP server This port is used by mail transfer agents (MTAs), such as Sendmail.

53 DNS server Used by the Domain Name System (DNS) server, named.

376 | Chapter 19: Networking Fundamentals (Topic 109.1)

Port number Assigned use Description

67 BOOTP/DHCP
server

Hands out IP addresses to workstations dynamically.

68 BOOTP/DHCP
client

The client side for BOOTP/DHCP.

80 HTTP server Web servers, such as Apache (httpd), usually listen in on this port.

110 POP3 The Post Office Protocol (POP) is used by mail client programs to transfer mail from
a server.

119 NNTP server This port is used by news servers for Usenet news.

139 NetBIOS Reserved for Microsoft’s LAN Manager.

143 IMAP An alternate to POP3, Internet Message Access Protocol (IMAP) is another type of
mail protocol.

161 SNMP Agents running on monitored systems use this port for access to the Simple Network
Management Protocol (SNMP).

This list is a tiny fraction of the many well-known ports, but it may be necessary for
you to know those in the list both by name and by number.

On the Exam
You should commit the list of ports in Table 19-4 to memory so you can recognize
a type of network connection solely by its port number. Your exam is likely to
have at least one question on how a specific port is used.

Utilities
The following popular applications, although not strictly a part of TCP/IP, are usu-
ally provided along with a TCP/IP implementation.

dig

Syntax
dig hostname

Description
dig obtains information from DNS servers. Note that additional command-line arguments and
options are available for dig but are beyond the scope of Exam 102.

Example
$ dig redhat.com
; <<>> DiG 9.3.2 <<>> redhat.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41163

dig

Chapter 19: Networking Fundamentals (Topic 109.1) | 377

Network
Fundam

entals

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;redhat.com. IN A

;; ANSWER SECTION:
redhat.com. 60 IN A 209.132.177.50

;; Query time: 43 msec
;; SERVER: 68.87.68.166#53(68.87.68.166)
;; WHEN: Fri Sep 18 06:28:08 2009
;; MSG SIZE rcvd: 44

ftp

Syntax
ftp [options] host
...interactive commands...

Description
Establish an interactive FTP connection with host to transfer binary or text files. FTP creates
an interactive dialog and allows for two-way file transfer. The dialog includes username/pass-
word authentication, user commands, and server responses.

Frequently used options

-i
Turn off interactive prompting during multiple file transfers (also see the prompt command
in the next list).

-v
Set verbose mode; display server responses and transfer statistics.

Frequently used commands

ascii, binary
Establish the transfer mode for files. ASCII mode is provided to correctly transfer text
among computer architectures where character encoding differs.

get file
Receive a single file from the server.

mget files
Receive multiple files from the server. files can be specified using normal file glob
patterns.

ls [files]
Obtain a directory listing from the server, optionally listing files.

put file
Send a single file to the server.

mput files
Send multiple files to the server.

ftp

378 | Chapter 19: Networking Fundamentals (Topic 109.1)

prompt
Toggle on and off interactive prompting during mget and mput (also see the -i option in
the previous list).

pwd
Print the working remote directory.

quit, exit
Cleanly terminate the FTP session.

Example 1
Get a file from machine smp:

$ ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): jdean
331 Password required for jdean.
Password:<password here>
230 User jdean logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls myfile
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-r--r-- 1 jdean jdean 29 Jan 24 01:28 myfile
226 Transfer complete.
ftp> binary
200 Type set to I.
ftp> get myfile
local: myfile remote: myfile
200 PORT command successful.
150 Opening BINARY mode data connection for myfile
(29 bytes).
226 Transfer complete.
29 bytes received in 0.000176 secs (1.6e+02 Kbytes/sec)
ftp> quit
221-You have transferred 29 bytes in 1 files.
221-Total traffic for this session was 773 bytes in 3 transfers.
221-Thank you for using the FTP service on smp.
221 Goodbye.

Example 2
Many FTP servers are set up to receive requests from nonauthenticated users. Such public access
is said to be anonymous. Anonymous FTP is established just like any other FTP connection,
except that anonymous is used as the username. An email address is commonly used as a password
to let the system owner know who is transferring files:

ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): anonymous
331 Guest login OK, send your complete e-mail address as password.

ftp

Chapter 19: Networking Fundamentals (Topic 109.1) | 379

Network
Fundam

entals

Password: me@mydomain.com
230 Guest login OK, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> <commands follow...>

ping

Syntax
ping hostname

Description
The ping command is used to send an ICMP echo request to a host and report on how long it
takes to receive a corresponding ICMP echo reply. Much as sonar systems send a pulse (or
“ping”) to a target and measure transit time, ping sends a network packet to test the availability
of a network node. This technique is often used as a basic debugging technique when network
problems arise.

Frequently used options

-c count
Send and receive count packets.

-q
Quiet output. Display only summary lines when ping starts and finishes.

Example
Ping a remote host and terminate using Ctrl-C after five packets are transmitted:

$ ping lpi.org
PING lpi.org (24.215.7.162) 56(84) bytes of data.
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=1 ttl=52 time=68.2 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=2 ttl=52 time=65.8 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=3 ttl=52 time=63.2 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=4 ttl=52 time=65.8 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=5 ttl=52 time=65.8 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=6 ttl=52 time=63.6 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=7 ttl=52 time=56.8 ms

--- lpi.org ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6016ms
rtt min/avg/max/mdev = 56.894/64.230/68.202/3.374 ms

telnet

Syntax
telnet [host] [port]

ping

380 | Chapter 19: Networking Fundamentals (Topic 109.1)

Description
Establish a connection to a host (either a system name or IP address) using port. If a specific
port is omitted, the default port of 23 is assumed. If host is omitted, telnet goes into an interactive
mode similar to FTP.

traceroute

Syntax
traceroute hostname

Description
Attempt to display the route over which packets must travel to reach a destination hostname. It
is included here because it is mentioned in this Objective, but Objective 3 also requires
traceroute. See Chapter 21 for more information.

whois

Syntax
whois target[@server]

Description
Pronounced, “who is,” whois is a query/response protocol used to determine information about
Internet resources. The information returned includes contact information, domain names, IP
addresses, and DNS servers. Note that many websites are available for whois searches as well,
particularly for checking on domain name availability.

Example
$ whois lpi.org
NOTICE: Access to .ORG WHOIS information is provided to assist persons in
determining the contents of a domain name registration record in the
Public Interest Registry registry database. The data in this record is provided
by Public Interest Registry for informational purposes only, and Public Interest
Registry does not guarantee its accuracy. This service is intended only for
query-based access. You agree that you will use this data only for lawful
purposes and that, under no circumstances will you use this data to:
(a) allow, enable, or otherwise support the transmission by e-mail, telephone,
or facsimile of mass unsolicited, commercial advertising or solicitations to
entities other than the data recipient's own existing customers; or (b) enable
high volume, automated, electronic processes that send queries or data to
the systems of Registry Operator or any ICANN-Accredited Registrar,
except as reasonably necessary to register domain names or modify existing
registrations. All rights reserved. Public Interest Registry reserves the right
to modify these terms at any time. By submitting this query, you agree
to abide by this policy.

Domain ID:D3725290-LROR
Domain Name:LPI.ORG
Created On:18-Feb-1999 05:00:00 UTC

whois

Chapter 19: Networking Fundamentals (Topic 109.1) | 381

Network
Fundam

entals

Last Updated On:31-Oct-2008 17:00:45 UTC
Expiration Date:18-Feb-2011 05:00:00 UTC
Sponsoring Registrar:Tucows Inc. (R11-LROR)
Status:CLIENT TRANSFER PROHIBITED
Status:CLIENT UPDATE PROHIBITED
Registrant ID:tuIqxUrdqeRMHH1m
Registrant Name:DNS Admin
Registrant Organization:Linux Professional Institute Inc.
Registrant Street1:161 Bay Street, 27th Floor
Registrant Street2:
Registrant Street3:
Registrant City:Toronto
Registrant State/Province:ON
Registrant Postal Code:M5J2S1
Registrant Country:CA
Registrant Phone:+1.9163576625
Registrant Phone Ext.:
Registrant FAX:
Registrant FAX Ext.:
Registrant Email:dns@lpi.org
Admin ID:tujWL5NRmQ4MqjwW
Admin Name:DNS Admin
Admin Organization:Linux Professional Institute Inc.
Admin Street1:161 Bay Street, 27th Floor
Admin Street2:
Admin Street3:
Admin City:Toronto
Admin State/Province:ON
Admin Postal Code:M5J2S1
Admin Country:CA
Admin Phone:+1.9163576625
Admin Phone Ext.:
Admin FAX:
Admin FAX Ext.:
Admin Email:dns@lpi.org
Tech ID:tursNOD6OBDmUsSl
Tech Name:DNS Admin
Tech Organization:Linux Professional Institute Inc.
Tech Street1:161 Bay Street, 27th Floor
Tech Street2:
Tech Street3:
Tech City:Toronto
Tech State/Province:ON
Tech Postal Code:M5J2S1
Tech Country:CA
Tech Phone:+1.9163576625
Tech Phone Ext.:
Tech FAX:
Tech FAX Ext.:
Tech Email:dns@lpi.org
Name Server:NS.STARNIX.COM
Name Server:SERVER1.MOONGROUP.COM

whois

382 | Chapter 19: Networking Fundamentals (Topic 109.1)

20
Basic Network Configuration

(Topics 109.2 and 109.4)

A Linux system that is not connected to a network is a rare sight. Configuring a
system for network access is one of the first things done within the normal installa-
tion process. This chapter covers the following Objectives:

Objective 2: Basic Network Configuration
Candidates should be able to view, change, and verify configuration settings
and operational status for various network interfaces. This Objective includes
manual and automatic configuration of interfaces and routing tables. This
would include steps to add, start, stop, restart, delete, or reconfigure network
interfaces by modifying the appropriate configuration files. It also means to
change, view, or configure the routing table and to correct an improperly set
default route manually. Candidates should be able to configure Linux as a
DHCP client and a TCP/IP host and to debug problems associated with the
network configuration. Weight: 4.

Objective 4: Configuring Client Side DNS
Candidates should be able to configure DNS on a client host. Weight: 2.

Objective 2: Basic Network Configuration and Objective 4:
Configuring Client Side DNS
Linux distributions offer various automation and startup techniques for networks,
but most of the essential commands and concepts are not distribution-dependent.
The exam tests fundamental concepts and their relationships to one another as well
as to system problems. These Objectives cover the configuration of IPv4 TCP/IP on
common network interfaces, such as Ethernet.

383

On the Exam
One of the reasons Linux is so popular as a server operating system is its ability
to operate on many different kinds of networks utilizing many different kinds of
interfaces. Protocols such as AppleTalk, IPX, and even NetBEUI are available to
Linux machines, as well as interfaces such as Token Ring, FDDI, and many others.
However, the LPI exams focus on the TCP/IP protocol on Ethernet interfaces, so
in-depth knowledge of the other networking options is not necessary in order to
become LPI certified.

Network Interfaces
A computer must contain at least one network interface to be considered part of a
network. The network interface provides a communications link between the com-
puter and external network hardware. This could mean typical network adapters
such as Ethernet or Token Ring, point-to-point dial-up connections, parallel ports,
wireless, or other networking forms.

Configuration files

The following files contain important information about your system’s network
configuration:

/etc/hosts
This file contains simple mappings between IP addresses and names and is used
for name resolution. For very small private networks, /etc/hosts may be sufficient
for basic name resolution. For example, this file associates the local address
192.168.1.30 with the system smp and also with smp.mydomain.com:

127.0.0.1 localhost localhost.localdomain
192.168.1.1 gate
192.168.1.30 smp smp.mydomain.com

/etc/nsswitch.conf
This file controls the sources used by various system library lookup functions,
such as name resolution. It allows the administrator to configure the use of
traditional local files (/etc/hosts, /etc/passwd), an NIS server, or DNS.
nsswitch.conf directly affects network configuration (among other things) by
controlling how hostnames and other network parameters are resolved. For
example, this fragment shows that local files are used for password, shadow
password, group, and hostname resolution; for hostnames, DNS is used if a
search of local files doesn’t yield a result:

passwd: files nisplus nis
shadow: files nisplus nis
group: files nisplus nis
hosts: files dns nisplus nis

For more information, view the manpage with man 5 nsswitch. The
nsswitch.conf file supersedes host.conf. In the majority of setups, this file does
not need to be modified, as the defaults are usually sufficient.

384 | Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4)

/etc/host.conf
This file controls name resolution sources for pre-glibc2 systems. It should
contain:

order hosts,bind
multi on

This configuration has the resolver checking /etc/hosts first for name resolution,
then DNS. multi on enables multiple IP addresses for hosts. Newer Linux sys-
tem libraries use /etc/nsswitch.conf instead of /etc/host.conf.

/etc/resolv.conf
This file controls the client-side portions of the DNS system, which is imple-
mented in system library functions used by all programs to resolve system
names. In particular, /etc/resolv.conf specifies the IP addresses of DNS servers.
For example:

nameserver 192.168.1.5
nameserver 192.168.250.2

Additional parameters are also available. For more information, view the man-
page with man 5 resolver.

/etc/networks
Like /etc/hosts, this file sets up equivalence between addresses and names, but
here the addresses represent entire networks (and thus must be valid network
addresses, ending in 0). The result is that you can use a symbolic name to refer
to a network just as you would a specific host. This may be convenient (though
not required) in NFS or routing configuration, for example, and will be shown
in commands such as netstat. For example:

loopback 127.0.0.0
mylan 192.168.1.0

It’s not unusual for /etc/networks to be left blank.

You’ll notice most of the previous configuration files concern themselves with map-
ping an IP address to aliases or names. This is not required for most network-enabled
applications to work, as the operating system and network-enabled applications are
really only concerned with the IP address for this level of data communication. The
name lookups are there for us humans, who find it easier to remember names rather
than numbers. Here is an example of what is going on “behind the scenes” when a
web browser requests a web page from a remote server:

1. A user types http://www.oreilly.com into the browser address bar and hits Enter.

2. The system needs to resolve this hostname to an IP address in order to make
the request. The file /etc/nsswitch.conf (/etc/host.conf in pre-glibc2 systems) is
consulted to determine what subsystems to ask and in what order to resolve
this hostname. The default entry for hosts in /etc/nsswitch.conf is usually:

hosts: files dns

This tells the system to first look in files (/etc/hosts) and then query DNS.

Objective 2: Basic Network Configuration and Objective 4: Configuring Client Side DNS | 385

Basic Network
Configuration

3. If there is an entry in the file /etc/hosts for www.oreilly.com, that IP address will
be used to make this HTTP request. If not, then the second option is to query
DNS.

4. The file /etc/resolv.conf is consulted to determine the primary DNS to query. A
DNS request is made to the primary DNS server. If a response is received (in
the form of an IP address), that IP address is used to make the HTTP request.
If a response is not received (either because the DNS server did not have an
entry for that hostname or the DNS server did not respond to the request), then
the next name server listed in /etc/resolv.conf is queried. This process repeats
until all name servers have been queried.

5. If all attempts at name resolution fail, the web browser will return an error.

As you can see, something as simple to the end user as typing a hostname into a web
browser requires a number of steps behind the scenes. It’s important to understand
these steps and the order in which they occur for troubleshooting situations. It’s an
all too common occurrence for an end user to report, “The network is down!” when
it’s really just a matter of a bad entry in /etc/hosts or a misconfigured DNS server.

On the Exam
Be familiar with all the files listed in this section; each contains specific information
important for network setup. Watch for questions on /etc/host.conf, which is not
used in newer glibc2 libraries.

Configuration commands

The commands listed in this section are used to establish, monitor, and troubleshoot
a network configuration under Linux.

ifconfig

Syntax
ifconfig interface parameters

Description
Configure network interfaces. ifconfig is used to create and configure network interfaces and
their parameters, usually at boot time. Without parameters, the interface and its configuration
are displayed. If interface is also omitted, a list of all active interfaces and their configurations
is displayed.

Frequently used parameters

address
The interface’s IP address.

netmask mask
The interface’s subnet mask.

ifconfig

386 | Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4)

up
Activate an interface (implied if address is specified).

down
Shut down the interface.

Example 1
Display all interfaces:

ifconfig
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1521805 errors:37 dropped:0 overruns:0 frame:37
 TX packets:715468 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:366567 errors:0 dropped:0 overruns:0 frame:0
 TX packets:366567 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Example 2
Shut down eth0:

ifconfig eth0 down
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1521901 errors:37 dropped:0 overruns:0 frame:37
 TX packets:715476 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00

Note in the emphasized line the lack of the UP indicator, which is present in Example 1. The
missing UP indicates that the interface is down.

Example 3
Configure eth0 from scratch:

ifconfig eth0 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.25

Although this is a perfectly valid command, network interfaces on Linux are rarely configured
directly this way from the command line. It is much more common to store the network con-
figuration options in a configuration file (often in the directory /etc/sysconfig/network-scripts)
and use a script file in /etc/init.d to control the network interfaces. For example, on RPM-based
systems such as CentOS, RedHat, or Fedora Linux, the configuration settings for eth0 are stored
in /etc/sysconfig/network-scripts/ifcfg-eth0 and the status of the network interfaces is changed
by calling the script /etc/init.d/network. The command ifconfig is most often used with no ar-
guments to list information about the available network interfaces. However, it is useful to
know this syntax, especially when you’re working with different Linux distributions that store
network configurations in different places.

ifconfig

Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4) | 387

Basic Network
Configuration

ping

Syntax
ping [options] destination

Description
Send an ICMP ECHO_REQUEST datagram to destination, expecting an ICMP ECHO_RESPONSE.
ping is frequently used to test basic network connectivity. See Chapter 19 for a more complete
description.

route

Syntax
route [options]
route add [options and keywords] target
route del [options and keywords] target

Description
In the first form, display the IP routing table. In the second and third forms, respectively, add
or delete routes to target from the table. target can be a numeric IP address, a resolvable name,
or the keyword default. The route program is typically used to establish static routes to specific
networks or hosts (such as the default gateway) after an interface is configured. On systems
acting as routers, a potentially complex routing scheme can be established initially, but this is
beyond the scope of the LPIC Level 1 Exams.

Frequently used options and keywords

-h
Display a usage message.

-n
Numeric mode; don’t resolve hostnames.

-v
Verbose output.

-C
Display the kernel routing cache.

-F
Display the kernel routing table (the default behavior without add or delete keywords).

-host
Specify that target is a single host. Mutually exclusive with -net.

-net
Specify that target is a network. Mutually exclusive with -host.

gw gateway
IP packets for target are routed through the gateway, which must be reachable.

ping

388 | Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4)

netmask mask
Specify the mask of the route to be added. Often, the netmask is not required, because it
can be determined to be class A, B, or C, depending on the target address.

When used to display routes, the following routing table columns are printed:

Destination
The destination network or host.

Gateway
The gateway address. If no gateway is set for the route, an asterisk (*) is displayed by
default.

Genmask
The netmask for the destination. 255.255.255.255 is used for a host, and 0.0.0.0 is used
for the default route.

Route status flags

! Reject route.
D Dynamically installed by daemon or redirect.
G Use gateway.
H Target is a host.
M Modified from routing daemon or redirect.
R Reinstate route for dynamic routing.
U Route is up.

Metric
The distance in hops to the target.

Ref
Number of references to this route. This is displayed for compatibility with other route
commands, but is not used in the Linux kernel.

Use
A count of lookups for the route. Depending on the use of -F and -C, the Use is either route
cache misses (-F) or hits (-C).

Iface
The interface to which packets for this route are sent.

Example 1
Display the current routing table for a workstation:

route
Kernel IP routing table
Destination Gateway Genmask Flags Met Ref Use Iface
192.168.1.30 * 255.255.255.255 UH 0 0 0 eth0
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
10.0.0.0 - 255.0.0.0 ! 0 - 0 -
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default gate 0.0.0.0 UG 0 0 0 eth0

In this example, the route to the local host 192.168.1.30 uses interface eth0. Note the mask
255.255.255.255 is used for host routes. The route to the local subnet 192.168.1.0 (with cor-
responding class C mask 255.255.255.0) is also through eth0. The route to 10.0.0.0 is rejected,
as indicated by the ! flag. The class A loopback network route uses device lo. The last route

route

Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4) | 389

Basic Network
Configuration

shows the default gateway route, which is used when no others match. This default uses eth0
to send data to router gate. The mask 0.0.0.0 is used for the default route.

Example 2
Display the current routing cache; the Metric (M) and Reference (R) columns are abbreviated
here:

route -C
Kernel IP routing cache
Source Destination Gateway Flg M R Use Iface
smp 192.168.1.255 192.168.1.255 bl 0 0 1 eth0
192.168.1.102 192.168.1.255 192.168.1.255 ibl 0 0 0 lo
192.168.1.102 smp smp il 0 0 1 lo
192.168.1.50 smp smp il 0 0 224 lo
smp 192.168.1.102 192.168.1.102 0 1 0 eth0
smp ns1.mynet.com gate 0 0 2 eth0
smp 192.168.1.50 192.168.1.50 0 1 0 eth0
localhost localhost localhost l 0 0 15 lo
ns1.mynet.com smp smp l 0 0 6 lo
smp ns1.mynet.com gate 0 0 6 eth0

Example 3
Add the default gateway 192.168.1.1 via eth0:

route add default gw 192.168.1.1 eth0

DHCP
The Dynamic Host Configuration Protocol (DHCP) is a protocol extension of the
BOOTP protocol, which provides automated IP address assignment (among other
things) to client systems on a network. It handles IP address allocation in one of
three ways:

Dynamic allocation
In this scheme, a DHCP server maintains a preset list of IP addresses designated
by the system administrator. IP addresses are assigned as clients request an
address from the available addresses in the pool. The address can be used, or
leased, for a limited period of time. The client must continually renegotiate the
lease with the server to maintain use of the address beyond the allotted period.
When the lease expires, the IP address is placed back into the pool for use by
other requesting clients and a new IP address is assigned.

Manual allocation
The system administrator may wish to designate specific IP addresses to specific
network interfaces (for example, to an Ethernet MAC address) while still using
DHCP to deliver the address to the client. This allows the convenience of au-
tomated address setup and assures the same address each time.

Automatic allocation
This method assigns a permanent address to a client. Typically DHCP is used
to assign a temporary address (either dynamically or statically assigned) to a
client, but a DHCP server can allow an infinite lease time.

route

390 | Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4)

DHCP can be configured to assign not only the IP address to the client but also such
things as name servers, gateways, and architecture-specific parameters. Here’s an
overview of how it works:

1. A DHCP client sends a broadcast message to the network to discover a DHCP
server.

2. One or more DHCP servers respond to the request via their own broadcast
messages, offering an IP address to the client.

3. The client chooses one of the servers and broadcasts an acknowledgment, re-
questing the chosen server’s identity.

4. The selected server logs the connection with the client and responds with an
acknowledgment and possibly additional information. All of the other servers
do nothing, because the client declined their offer.

Subnets and relays

Because DHCP communications are initiated using broadcasts, they are normally
confined to a single subnet. To accommodate DHCP clients and servers separated
by one or more routers, a DHCP relay system can be established on subnets without
DHCP servers. A relay system listens for DHCP client broadcasts, forwards them to
a DHCP server on another subnet, and returns DHCP traffic back to the client. This
configuration can centralize DHCP management in a large routed environment.

Leases

As already mentioned, when a client receives a dynamically assigned IP address from
a DHCP server, the address is said to be leased for a finite duration. The length of a
DHCP lease is configurable by the system administrator and typically lasts for one
or more days. Shorter leases allow for faster turnover of addresses and are useful
when the number of available addresses is small or when many transient systems
(such as laptops) are being served. Longer leases reduce DHCP activity, thus reduc-
ing broadcast traffic on the network.

When a lease expires without being renegotiated by the client, it as assumed that
the client system is unavailable, and the address is put back into the free pool of
addresses. A lease may also be terminated by a client that no longer needs the IP
address, in which case it is released. When this occurs, the DHCP server immediately
places the IP address back in the free pool.

dhcpd

The DHCP server process is called dhcpd. It is typically started at boot time and
listens for incoming DHCP request broadcasts. dhcpd can serve multiple subnets via
multiple interfaces, serving a different pool of IP addresses to each.

dhcpd is configured using the text configuration file /etc/dhcpd.conf, which contains
one or more subnet declarations. These are text lines of the following form:

subnet network-address netmask subnet-mask {
 parameter...
 parameter...

route

Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4) | 391

Basic Network
Configuration

 ...
}

Each subnet declaration encloses parameters for each subnet between curly braces.
Parameters include one or more ranges of IP addresses to serve, lease times, and
optional items such as gateways (routers), DNS servers, and so forth. Each parameter
line is terminated with a semicolon. For example:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.200 192.168.1.204;
 default-lease-time 600;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.25;
}

In this example, the private class C network 192.168.1.0 is served five IP addresses,
200 through 204. The default DHCP lease is 600 seconds (10 minutes). Options are
also set for the subnet mask, broadcast address, router (or gateway), and DNS server.
For full information on dhcpd.conf, see related manpages for dhcpd(8) and
dhcpd.conf(5).

The preceding option lines are not required to create a minimal DHCP setup that
simply serves IP addresses. Details on the daemon follow.

dhcpd

Syntax
dhcpd [options] [interface [...]]

Description
Launch the DHCP server daemon. dhcpd requires that both its configuration file (/etc/
dhcpd.conf) and its lease logfile (which by default is /var/state/dhcp/dhcpd.leases, although many
distributions use /var/lib/dhcp/dhcpd.leases) exist. The daemon puts itself in the background
and returns control to the calling shell.

Frequently used options

-cf config-file
Use config-file instead of the default /etc/dhcpd.conf.

-lf lease-file
Use lease-file instead of the default to store lease information.

-q
Use quiet mode. This option suppresses the default copyright message, keeping logfiles a
little cleaner.

interface
By default, dhcpd will attempt to listen for requests on every network interface that is
configured up. It can be limited to specific network interfaces by including one or more
interface names on the command line.

dhcpd

392 | Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4)

A full and detailed description of the configuration file syntax can be found in the dhcpd.conf
manpage. When dhcpd runs, it sends output, including information on each transaction, to
syslogd. For example, this series of four log entries in /var/log/messages shows a successful ex-
change between dhcpd and a requesting DHCP client:

Apr 24 02:27:00 rh62 dhcpd: DHCPDISCOVER
 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:00 rh62 dhcpd: DHCPOFFER
 on 192.168.1.200 to 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPREQUEST
 for 192.168.1.200 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPACK
on 192.168.1.200 to 00:60:97:93:f6:8a via eth0

On the Exam
For the LPI Level 1 Exams, you should be familiar with both the manual and
automatic network interface configuration, and how interfaces can be started,
stopped, and configured.

A Standard Linux Network Configuration
A very common setup for a Linux system is to have a single Ethernet interface and
be a member of a network, as either a client, a server, or both. Here are the network
settings that must be configured in order for a Linux system to communicate via
TCP/IP over an Ethernet network:

• A compatible Ethernet card must be installed and recognized by the kernel. See
information about the commands lsmod, lspci, and dmesg in previous chapters
for more information about hardware troubleshooting.

• An IP address and subnet mask must be assigned to the Ethernet interface
(eth0). These can be assigned manually (static values saved in a configuration
file) or assigned from a DHCP server on the local subnet. On RPM-based sys-
tems such as CentOS, Red Hat, and Fedora Linux, the network configuration
file is /etc/sysconfig/network-scripts/ifcfg-eth0. Values from this file are read by
the startup script /etc/init.d/network, which in turn calls the command ifconfig
with the appropriate values.

• In order to communicate with other subnets, a default gateway route must be
configured. This is the IP address of the device on the local network that will
send your packets on to other networks. This may be a dedicated device, such
as a router, or it may be a general-purpose computer (with multiple Ethernet
cards) running routing software. A lower-end PC running Linux is often a good
choice for a router in this instance. The default gateway route is defined in the
file /etc/sysconfig/network. This value is read by the startup script /etc/init.d/
network, which in turn calls the route command to set this as the default gateway
route.

dhcpd

Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4) | 393

Basic Network
Configuration

• Finally, a default nameserver should be configured so applications can success-
fully resolve hostnames to IP addresses. As stated previously, this is defined in
the file /etc/resolv.conf.

If all of these settings are in place, your Linux system should be able to communicate
successfully with other computers over a TCP/IP network.

dhcpd

394 | Chapter 20: Basic Network Configuration (Topics 109.2 and 109.4)

21
Basic Network Troubleshooting

(Topic 109.3)

Even the simplest of network installations will at times require troubleshooting.
Every Linux system administrator needs to understand not only where to start the
troubleshooting process but also what tools are available to aid in this endeavor.
This chapter covers the following Objective:

Objective 3: Basic Network Troubleshooting
Candidates should be able to perform basic troubleshooting steps in diagnosing
network connectivity issues and configuration. This Objective includes tools
that show information about local computer configuration and the testing
communication with computers on local network and remote connections.
Some of these tools may also be used for network configuration, as discussed
in the previous Objective. Candidates should be able to view, change, and verify
configuration settings and operational status for various network interfaces.
Weight: 4.

Objective 3: Basic Network Troubleshooting
One important part of an administrator’s role is troubleshooting connectivity issues
and tracking down sources of problems. Many of the tools introduced earlier in this
book may also be used as troubleshooting tools to assist in this process. This ob-
jective revisits some of these commands and discusses how they may be used as
diagnostic resources in addition to configuration resources.

ping

Syntax
ping [options] destination

395

Description
Send an ICMP ECHO_REQUEST datagram to destination, expecting an ICMP ECHO_RESPONSE.
ping is frequently used to test basic network connectivity. See “Objective 1: Fundamentals of
Internet Protocols” on page 369 for a more complete description.

host

Syntax
host [options] name [server]

Description
Look up the system with IP address or name on the DNS server.

Frequently used options

-l
List the entire domain, dumping all hosts registered on the DNS server (this can be very
long).

-v
Set verbose mode to view output.

Example 1
$ host oreilly.com
oreilly.com has address 208.201.239.37
oreilly.com has address 208.201.239.36

Example 2
$ host -v oreilly.com
Trying "oreilly.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60189
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN A

;; ANSWER SECTION:
oreilly.com. 877 IN A 208.201.239.100
oreilly.com. 877 IN A 208.201.239.101

Received 61 bytes from 192.168.1.220#53 in 0 ms
Trying "oreilly.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1045
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN AAAA

;; AUTHORITY SECTION:
oreilly.com. 3577 IN SOA nsautha.oreilly.com. \
 nic-tc.oreilly.com. 86 600 1800 604800

host

396 | Chapter 21: Basic Network Troubleshooting (Topic 109.3)

Received 80 bytes from 192.168.1.220#53 in 0 ms
Trying "oreilly.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18547
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:
;oreilly.com. IN MX

;; ANSWER SECTION:
oreilly.com. 3577 IN MX 20 smtp1.oreilly.com.
oreilly.com. 3577 IN MX 20 smtp2.oreilly.com.

;; ADDITIONAL SECTION:
smtp1.oreilly.com. 3577 IN A 209.204.146.22
smtp2.oreilly.com. 3577 IN A 216.204.211.22

Received 105 bytes from 192.168.1.220#53 in 0 ms

traceroute

Syntax
traceroute [options] destination

Description
Display the route that packets take to reach destination, showing intermediate gateways (rout-
ers). There is no direct way to make this determination, so traceroute uses a trick to obtain as
much information as it can. By using the time-to-live (TTL) field in the IP header, traceroute
stimulates error responses from gateways. The time-to-live field specifies the maximum number
of gateway hops until the packet should expire. That number is decremented at each gateway
hop, with the result that all packets will die at some point and stop roaming the Internet. To
get the first gateway in the route, traceroute sets the time-to-live parameter to 1. The first gateway
in the route to destination decrements the counter, and finding a zero result, reports an ICMP
TIME_EXCEEDED message back to the sending host. The second gateway is identified by setting
the initial time-to-live value to 2, and so on. This continues until a PORT_UNREACHABLE message
is returned, indicating that the host has been contacted. To account for the potential for multiple
gateways at any one hop count, each probe is sent three times.

The display consists of lines showing each gateway, numbered for the initial time-to-live value.
If no response is seen from a particular gateway, an asterisk is printed. This happens for gateways
that don’t return “time exceeded” messages, or do return them but set a very low time-to-live
on the response. Transit times for each probe are also printed.

Frequently used options

-f ttl
Set the initial probe’s time-to-live value to ttl, instead of 1.

-n
Display numeric addresses instead of names.

-v
Use verbose mode.

traceroute

Chapter 21: Basic Network Troubleshooting (Topic 109.3) | 397

Basic Network
Troubleshooting

-w secs
Set the timeout on returned ICMP packets to secs, instead of 5.

Example
$ traceroute lpi.org
traceroute to lpi.org (24.215.7.162), 30 hops max, 40 byte packets
1 96.64.11.1 (96.64.11.1) 12.689 ms 5.018 ms 9.861 ms
2 ge-1-28-ur01.east.tn.knox.comcast.net (68.85.206.181) \
 8.712 ms * 10.868 ms
3 te-8-1-ar01.bluelight.tn.knox.comcast.net (68.86.136.30) \
 15.109 ms 6.932 ms 24.996 ms
4 * te-0-8-0-4-crs01.b0atlanta.ga.atlanta.comcast.net (68.85.232.97) \
 41.966 ms 51.914 ms
5 pos-1-4-0-0-cr01.atlanta.ga.ibone.comcast.net (68.86.90.121) \
 38.775 ms 26.511 ms 32.650 ms
6 68.86.86.86 (68.86.86.86) 41.428 ms 40.369 ms 46.387 ms
7 75.149.230.74 (75.149.230.74) 56.789 ms 29.051 ms 28.835 ms
8 xe-5-3-0.chi10.ip4.tinet.net (89.149.185.37) 84.556 ms \
 123.707 ms 123.579 ms
9 peer1-gw.ip4.tinet.net (77.67.71.22) 70.550 ms 39.203 ms 39.795 ms
10 oc48-po1-0.tor-1yg-cor-1.peer1.net (216.187.114.142) \
 52.049 ms 80.272 ms 68.667 ms
11 10ge.xe-0-0-0.tor-151f-cor-1.peer1.net (216.187.114.134) \
 67.809 ms 45.667 ms 45.157 ms
12 oc48-po7-0.tor-151f-dis-1.peer1.net (216.187.114.149) \
 97.586 ms 48.451 ms 45.559 ms
13 peer1-tor-gw.colosseum (66.199.142.250) \
 56.156 ms 93.090 ms 78.800 ms
14 core-main.mountaincable.net (24.215.3.185) \
 59.369 ms 52.889 ms 111.326 ms
15 24.215.7.110 (24.215.7.110) 50.487 ms 114.975 ms 44.655 ms
16 clark.lpi.org (24.215.7.162) 54.705 ms 84.838 ms 46.562 ms

In this example, there are 15 hops to http://www.lpi.org, reached with a time-to-live value of 16.
All three probes of all time-to-live counts are successful.

netstat

Syntax
netstat [options]

Description
Depending on options, netstat displays network connections, routing tables, interface statistics,
masqueraded connections, and multicast memberships. Much of this is beyond the scope of
the LPIC Level 1 Exams, but you must be aware of the command and its basic use.

Frequently used options

-c
Continuous operation. This option yields a netstat display every second until interrupted
with Ctrl-C.

netstat

398 | Chapter 21: Basic Network Troubleshooting (Topic 109.3)

http://www.lpi.org

-i
Display a list of interfaces.

-n
Numeric mode. Display addresses instead of host, port, and usernames.

-p
Programs mode. Display the process ID (PID) and process name.

-r
Routing mode. Display the routing table in the format of the route command.

-v
Verbose mode.

Examples
Display the interfaces table and statistics (the example output is truncated):

netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK
eth0 1500 0 1518801 37 0 0 713297
lo 3924 0 365816 0 0 0 365816

To show all current connections without resolving hostnames and protocol names:

netstat -an --tcp
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:34031 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 1 0 10.41.81.148:59667 10.41.0.47:3268 CLOSE_WAIT
tcp 0 0 10.41.81.148:45449 64.4.34.61:1863 ESTABLISHED
tcp 0 0 10.41.81.148:53284 10.41.0.32:143 ESTABLISHED
tcp 0 0 10.41.81.148:33722 10.41.0.38:22 ESTABLISHED
tcp 0 0 10.41.81.148:42261 74.125.77.83:443 ESTABLISHED
tcp 0 0 10.41.81.148:54879 83.85.96.153:3490 ESTABLISHED
tcp 0 0 10.41.81.148:42262 74.125.77.83:443 ESTABLISHED
tcp 0 0 10.41.81.148:34054 195.86.128.44:22 ESTABLISHED
tcp 0 0 10.41.81.148:46150 212.100.160.43:5222 ESTABLISHED
tcp 0 0 :::6000 :::* LISTEN
udp 0 0 127.0.0.1:46958 0.0.0.0:*
udp 0 0 0.0.0.0:34031 0.0.0.0:*
udp 0 0 0.0.0.0:631 0.0.0.0:*

To show the PID and name of the process to which each socket belongs, to identify what could
be causing a problem:

$ netstat -p

(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address \
 State PID/Program name

netstat

Chapter 21: Basic Network Troubleshooting (Topic 109.3) | 399

Basic Network
Troubleshooting

tcp 0 0 server01.domain.:60032 ew-in-f18.1e100.n:https \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:40343 messaging.n:xmpp-client \
 ESTABLISHED 4680/pidgin
tcp 0 0 server01.domain.:53533 srdc-mail-01 :imap \
 ESTABLISHED 4679/evolution
tcp 0 0 server01.domain.:40292 195.86.25.214:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:60209 ew-in-f147.1e100.n:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:60031 ew-in-f18.1e100.n:https \
 TIME_WAIT -
tcp 0 0 server01.domain.:55647 ew-in-f83.1e100.n:https \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:35718 ew-in-f102.1e100.n:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:57265 sn1msg2010707.phx.:1863 \
 TIME_WAIT - netstat
tcp 0 0 server01.domain.:58931 195.86.25.214:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:47146 backup2. :ssh \
 ESTABLISHED 5113/ssh
tcp 0 0 server01.domain.:52707 g199040.upc-g.chel:4130 \
 ESTABLISHED 4682/skype
tcp 0 0 server01.domain.:56608 bay5-terminal.bay5:1863 \
 ESTABLISHED 4680/pidgin
tcp 1 0 server01.domain.:51980 server02 :3268 \
 CLOSE_WAIT 4709/evolution-data
tcp 0 0 server01.domain.:36070 195.86.25.214:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:60212 ew-in-f147.1e100.n:http \
 ESTABLISHED 4698/firefox-bin

On the Exam
While the creation of complete network management scripts from scratch is be-
yond the scope of the LPIC Level 1 Exams, you must be familiar with these com-
mands individually, their functions, how they are used, and when to use them.
For example, you must be familiar with route and its use in establishing routes to
the loopback device, the localhost, and the gateway machine, and the creation of
the default gateway route. A general understanding of the routing table display is
also required. Questions may ask you to determine the cause of a network problem
based on the routing configuration (such as a missing default route).

Common Manual Network Interface Tasks
Network interfaces are established in the kernel at boot time by probing Ethernet
hardware. As a result, these interfaces always exist unless the hardware or kernel
module is removed. The interfaces are transient and exist only when they are in use.

400 | Chapter 21: Basic Network Troubleshooting (Topic 109.3)

To list interface parameters, use ifconfig with the interface name:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1857128 errors:46 dropped:0 overruns:0 frame:46
 TX packets:871709 errors:0 dropped:0 overruns:0 carrier:0
 collisions:2557 txqueuelen:100
 Interrupt:10 Base address:0xef00

If you run ifconfig without any parameters, it displays all active interfaces, including
the loopback interface lo and perhaps a PPP interface if a modem is dialed into a
service provider or a wireless interface such as ath0 if you have an active wireless card.

To shut down a network interface that is currently running, simply use ifconfig with
the down keyword:

ifconfig eth0 down

When the interface goes down, any routes associated with it are removed from the
routing table. For a typical system with a single Ethernet interface, this means that
the routes to both the interface and the default gateway will be lost. Therefore, to
start a previously configured network interface, ifconfig is used with up, followed by
the necessary route commands. For example:

ifconfig eth0 up
route add -host 192.168.1.30 eth0
route add default gw 192.168.1.1 eth0

To reconfigure interface parameters, follow those same procedures and include the
changes. For example, to change to a different IP address, the address is specified
when bringing up the interface and adding the interface route:

ifconfig eth0 down
ifconfig eth0 192.168.1.60 up
route add -host 192.168.1.60 eth0
route add default gw 192.168.1.1 eth0

Your distribution probably supplies scripts to handle some of these chores. For ex-
ample, Red Hat systems come with scripts such as ifup and ifdown, which handle
all the details necessary to get an interface and its routes up and running, based on
configuration files in /etc/sysconfig/network-scripts/.

On the Exam
Be prepared to answer questions on the use of ifconfig and route for basic interface
manipulation. Also remember that scripts that use these commands, both man-
ually and automatically, are usually available at boot time.

| 401

Basic Network
Troubleshooting

dig
dig is the most complete and powerful DNS utility and is available in most Unix/
Linux systems. The tool will use the default nameservers defined in the resolv.conf
file:

dig www.oreilly.com

; <<>> DiG 9.4.3-P1 <<>> www.oreilly.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17863
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.oreilly.com. IN A

;; ANSWER SECTION:
www.oreilly.com. 161 IN CNAME oreilly.com.
oreilly.com. 448 IN A 100.201.239.100
oreilly.com. 448 IN A 100.201.239.101

;; Query time: 4 msec
;; SERVER: 100.100.0.43#53(100.100.0.43)
;; WHEN: Mon Dec 14 14:48:55 2009
;; MSG SIZE rcvd: 79

Sometimes it’s also useful to query nameservers other than the default. This can be
done without changing the default address in resolv.conf, by using @ plus the name-
server’s IP address:

dig @10.20.10.10 www.oreilly.com

; <<>> DiG 9.4.3-P1 <<>> www.oreilly.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17863
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.oreilly.com. IN A

;; ANSWER SECTION:
www.oreilly.com. 161 IN CNAME oreilly.com.
oreilly.com. 448 IN A 100.201.239.100
oreilly.com. 448 IN A 100.201.239.101

;; Query time: 4 msec
;; SERVER: 10.20.10.10#53(10.20.10.10)
;; WHEN: Mon Dec 14 14:48:55 2009
;; MSG SIZE rcvd: 79

If PTR (reverse) records are missing, this can affect many network services that rely
on these records, such as SSH. PTR records provide a way to map an IP address back
to a fully qualified domain name. All reverse lookups should be configured when

402 | Chapter 21: Basic Network Troubleshooting (Topic 109.3)

adding new addresses or changing addresses on the server. dig can be used to validate
the presence of the PTR records:

dig –x 208.201.239.100

; <<>> DiG 9.4.3-P1 <<>> -x 208.201.239.100
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28685
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;100.239.201.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
100.239.201.208.in-addr.arpa. 3600 IN PTR oreilly.com.

;; Query time: 298 msec
;; SERVER: 10.20.10.10#53(10.20.10.10)
;; WHEN: Mon Dec 14 15:01:01 2009
;; MSG SIZE rcvd: 71

The mail exchange (MX) record for a domain defines the server that accepts SMTP
email for that domain. To search for the MX records for a specific domain, use:

dig mx www.oreilly.com

; <<>> DiG 9.4.3-P1 <<>> mx oreilly.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31415
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN MX

;; ANSWER SECTION:
oreilly.com. 3600 IN MX 20 smtp10.oreilly.com.
oreilly.com. 3600 IN MX 20 smtp20.oreilly.com.

;; Query time: 153 msec
;; SERVER: 10.20.10.10#53(10.20.10.10)
;; WHEN: Mon Dec 14 15:08:19 2009
;; MSG SIZE rcvd: 73

On the Exam
Be familiar with the basics of the dig syntax and how it’s used to query DNS
information.

| 403

Basic Network
Troubleshooting

22
Security (Topic 110.1)

A system is only as secure as the administrator. Although some operating systems
may claim better security than others, this is always the “out-of-the-box” type of
security. Any system, no matter how secure initially, can become insecure if poorly
maintained. It is the responsibility of the system administrator to take an active hand
in security, and address both active and passive threats. As with most things, the
first step is knowledge. Understanding how your system works and what tools are
available is fundamental to securing your system. This chapter covers the first Ob-
jective of Topic 110:

Objective 1: Perform Security Administration Tasks
Candidates should know how to review system configuration to ensure host
security in accordance with local security policies. This includes topics such as
SUID/SGID bits, password aging and good password policy, discovery tools
such as nmap, netstat, and lsof, limiting user actions, and giving select users
elevated privileges. Weight: 3.

Objective 1: Perform Security Administration Tasks
Since everything in Linux is a file, filesystem level security is a core concept that must
be understood and implemented properly. The standard Unix security model (which
most Linux file systems adopt) is a relatively simple permissions-based model, but
it is sufficient for most permissions needs. For more information on the details of
the Unix permissions-based security model, refer to the section “Changing access
modes” on page 182.

When a user executes a program in Linux, that program is spawned as a subprocess
(or subshell) of the user’s current shell. This subprocess is known as a child
process, and is defined in depth in the section “Objective 5: Create, Monitor, and
Kill Processes” on page 107. From a security standpoint, the important thing to
remember about child processes is that they inherit the security context of the parent
process. So if the user adam executes a program, that program will have access to
the same files and directories that the user adam normally has (no more, and no less).

405

However, this is not always a desirable situation. One of the criticisms of the
standard Linux security model is that it is not fine-grained enough, i.e., you’re either
a regular user with little or no privileges, or you are the superuser (root) with all
privileges. Often, we want the ability to elevate certain users to superuser status for
short periods of time, or to execute certain commands, or we want certain com-
mands themselves to execute with elevated privileges, regardless of who executes
them. There are ways to handle all of these situations in Linux: SUID and SGID bits,
and the commands sudo and su.

“Changing access modes” on page 182 describes the different security modes that
are available to files in Linux. These are normally read, write, or execute. One of the
“special” modes available is s. When the mode s is assigned to owner permissions
on an executable file, we say that file has the SUID (or SetUID) bit set. When the
mode s is assigned to group permissions on an executable file, we say that file has
the SGID (or SetGID) bit set.

SUID means that no matter the security context of the parent process running the
executable, the executable will run with the security context of the owner of the
executable file. This is most commonly used to give regular users the ability to run
programs that require root access without actually giving them access to the root
account. So if an executable file has the SUID bit set and the file is owned by root,
then no matter who executes that file, the resulting process will have root-level
permissions.

An example of this is the ping command. ping is used to send ICMP packets to hosts
on a network and report back on replies. It is primarily a network testing tool, and
is a standard part of every operating system that supports TCP/IP. Ping needs the
ability to open a raw network socket in order to do its job, and that kind of low-level
access is reserved for the root user. However, it’s such a useful and ubiquitous tool,
it’s common to want to make it available to all users on a system. So in many Linux
distributions, ping has the SUID bit set by default. Any user that runs the ping com-
mand will run it in the security context of the root user.

Here is what a directory entry for ping looks like:

$ ls -l /bin/ping
-rwsr-xr-x 1 root root 42360 2008-09-26 01:02 /bin/ping

The s in the user section of the file security setting means that the SUID bit is set.

SGID works in the same way, but for group ownership instead of user ownership.

The (In)Security of SUID
Although SUID is a useful option when it comes to delegating roles to nonroot users,
its potential security vulnerabilities should not be overlooked. A program marked
with the SUID bit and owned by root will run as root. Everything that that program
is able to do will be done as the root user. This has large implications for the overall
security of a system. Think of this example: vi is a common editor that is found on
most Linux systems. If /bin/vi is SUID, every user who edits any file with vi will have
the privileges of the root user, meaning that any user could edit any file on the system.

406 | Chapter 22: Security (Topic 110.1)

This is the kind of thing that makes SUID so potentially dangerous. There is a sit-
uation worse than being able to edit any file as root: spawning a subshell from an
SUID program. We can use vi as our example here again. The editor vi allows you
to issue a command to spawn a subshell while you are in the editor. We know that
a child process inherits the security context of the parent process. So if vi is SUID
and it spawns an interactive shell child process, that interactive shell has a security
context of root. So the simple act of making /bin/vi SUID has given all users on the
system an easy way to access an interactive shell prompt as the root user, completely
undermining all other security protocols that might be in place.

Because of this potentially dangerous situation, a good system administrator must
be aware of what programs on his system have the SUID and/or SGID bit set. The
find command (described in depth in Chapter 6) has an option to search for files
based on their permissions. Here is an example:

find /bin -perm -4000 -type f
/bin/mount
/bin/su
/bin/ping
/bin/ping6
/bin/umount
/bin/fusermount

The -perm -4000 option to find says, “Only display files that have the SUID bit set.”
The number 4000 is the octal representation of the security mode for a file. Reading
from right to left, the first 0 is for “other” permissions, the next 0 is for “group” the
third 0 is for “owner,” and the 4 represents SUID. An equivalent way to write this
using symbolic modes instead of the octal representation is -perm –u=s, as in “find
all files that have the ‘s’ bit set in the user mode section.”

It is important to understand why some programs have the SUID bit set. Some pro-
grams (such as ping) are not required by the operating system, and it is therefore safe
to remove the SUID bit from them. Some programs (such as passwd) need to be
SUID to ensure they function correctly on the operating system (if you remove the
SUID bit from the passwd command, then users cannot change their own pass-
words). If the SUID bit is not required in your situation, remove it:

ls -l /bin/ping
-rwsr-xr-x 1 root root 42360 2008-09-26 01:02 /bin/ping
chmod -s /bin/ping
ls -l /bin/ping
-rwxr-xr-x 1 root root 42360 2008-09-26 01:02 /bin/ping
#

Now only the superuser will be able to use the ping command.

In addition to the SUID and SGID bit, the commands su and sudo can be used to
elevate the privileges of a regular user.

Objective 1: Perform Security Administration Tasks | 407

Security

su

Syntax
su [OPTION]... [-] [USER [ARG]...]

Description
The su command (short for substitute user) allows you to run a shell with substitute user and
group IDs. It is most commonly used to allow a normal user to “become” the root user (assuming
they know the root password). It is also used by the root user to “become” a regular user.

Frequently used options

-
Make the shell that is spawned a login shell (i.e., process .bash_profile and set appropriate
login environment variables, such as $PATH)

-cCOMMAND
Pass a single command to the shell, useful for one-line commands that need to be run as
root.

Examples
A normal user becoming root:

$ whoami
adam
$ su -
Password: <root password given here>
whoami
root

Running a command as the root user:

$ wc -l /etc/shadow
wc: /etc/shadow: Permission denied
$ su -c wc -l "/etc/shadow"
Password: <root password given here>
48 /etc/shadow

Root becoming a regular user:

whoami
root
su – adam
$ whoami
adam

The - (or -l) option to su determines whether or not the new shell is a login shell. The most
obvious impact of this decision is the $PATH variable. The most common usage of su is for a
regular user to become the root user, to enable that user to run a command or perform a task
that only root can do. By default, the $PATH environment variable contains different directories
for the root user than for regular users. Specifically, the directories /sbin and /usr/sbin store
binary programs that only the superuser should run. Regular users can read these directories,
but it doesn’t make sense to have those directories in a regular user’s $PATH, because they will
never need to use them.

su

408 | Chapter 22: Security (Topic 110.1)

If a regular user uses the command su to become root, the $PATH environment variable does
not change, because this is not a login shell. This means that the directories /sbin and /usr/
sbin are not in that user’s $PATH. This is often a source of confusion for new system adminis-
trators. Note the following example:

$ whoami
adam
$ su
Password: <root password given here>
fdisk –l /dev/sda
bash: fdisk: command not found
which fdisk
/usr/bin/which: no fdisk in
(/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/adam/bin)
exit
$ su –
Password: <root password given here>
fdisk –l /dev/sda
Disk /dev/sda: 200.0 GB, 200049647616 bytes
....etc....
which fdisk
/sbin/fdisk
echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:\
/sbin:/bin:/usr/sbin:/usr/bin:/root/bin

Initially, the fdisk command by itself did not work because it was not in the $PATH variable.
Once the user returned to her user shell and used su to become root, the $PATH environment
variable then contained the /sbin and /usr/sbin directories, so fdisk was found.

sudo

Syntax
sudo [OPTION]... [-a auth_type] [-c class] [-p prompt] [-u username]

Description
sudo (substitute user do) allows a permitted user to execute a command as the superuser or
another user, as specified in the /etc/sudoers file.

Frequently used options

-b
Run the given command in the background.

-uUSERNAME
Attempt to run the command as user USERNAME instead of root.

The sudo command lives somewhere between SUID and su. sudo is used when you want to give
certain users (or groups of users) access to run certain commands with elevated privileges (usu-
ally as root). Sudo is extremely useful for a number of reasons:

• You don’t have to hand out the root password to people just so they can run a few
commands.

• It logs every command (completed and attempted).

sudo

Chapter 22: Security (Topic 110.1) | 409

Security

• In the /etc/sudoers file, you can limit its use by user account, by group, by machine, or by
pathname.

• The design of /etc/sudoers is such that you can replicate it across multiple systems without
modification of the file.

The /etc/sudoers configuration file is a standard text file (like most other Linux configuration
files), but the syntax for the rules that define the behavior of sudo is formatted in Extended
Backus-Naur Form (EBNF), which is a way to describe the grammar of a language. This is
relatively unique to the Linux configuration file world, so your /etc/sudoers file will look quite
a bit different than other configuration files you are used to. Because of the security implications
of sudo, and the somewhat challenging format of the file itself, it is recommended that the
command visudo be used to edit /etc/sudoers instead of editing the file directly. visudo will not
only make a backup copy of the /etc/sudoers file for editing (replacing the previous version
of /etc/sudoers when the backup copy is saved), but it also does syntax checking of the format
of the file, warning you if the syntax is incorrect. If you prefer an editor other than vi, just make
sure your $EDITOR environment variable contains the path to your preferred editor, and
visudo will invoke that editor instead of vi.

On the Exam
The configuration options available in /etc/sudoers can be very complicated. You
will not be required to answer questions about every possible option on the LPI
exams. You should know what sudo is for and some example command-line usage,
and have a general idea of what the /etc/sudoers file should look like.

Example 1
A simple /etc/sudoers file:

Format is:
user MACHINE=COMMANDS
#
The COMMANDS section may have other options added to it.
#
Defaults requiretty,passwd_timeout=10
Allows members of the users group to mount and unmount the cdrom as root
%users ALL=/sbin/mount /mnt/cdrom, /sbin/umount /mnt/cdrom
Allow the user adam to run the dumpe2fs command on any locally attached
disk using scsi emulation (/dev/sd*) on the computer 'fileserv',
don't prompt for a password
adam fileserv=NOPASSWD: /sbin/dumpe2fs /dev/sd*

The NOPASSWD option will allow the user adam to run the dumpe2fs command without being
prompted for a password. Normally, sudo will prompt a user for his password (not the root
password! If the user knew the root password, he wouldn’t need sudo, would he?). Once the
user’s password is given correctly, sudo will cache the password and not ask again for a default
of five minutes (configurable in the /etc/sudoers file). Setting the NOPASSWD option allows the
sudo command to be called from cron and other noninteractive, scripted situations.

The detailed logging that sudo offers by default is another reason why it is so popular. It is a
common scenario to have multiple people acting as system administrators in a corporate envi-
ronment. If all of these people log in as root to perform maintenance, there is no way to tell
exactly which user was logged in as root and ran what command at a certain time. sudo handles
this for you. It is good practice to use sudo to run superuser commands when you are in a shared
administrator environment.

sudo

410 | Chapter 22: Security (Topic 110.1)

Example 2
A sample log line from sudo:

Dec 4 15:07:20 fileserv sudo: adam : TTY=pts/0 ; PWD=/sbin ; USER=root ; \
COMMAND=/sbin/dumpe2fs /dev/sda3

By default, sudo uses the syslog service to log all events. Depending upon your syslog configu-
ration, these events will probably be logged to either /var/log/messages or /var/log/secure.

sudo will also log instances when a user attempts to run a command and is denied, shown next.

Example 3
Sudo denying access to user joe, who tried to run sudo /bin/ls /tmp:

Dec 4 15:27:29 fileserv sudo: joe : user NOT in sudoers ; TTY=pts/0 ; \
PWD=/home/joe ; USER=root ; COMMAND=/bin/ls /tmp

Other important things to remember about sudo:

• Be sure you are giving the exact path to applications in the /etc/sudoers file. The visudo
command will give you an error if you try to use relative path names.

• Be aware of commands that spawn subshells! This is the same issue that was discussed
earlier with regards to SUID programs and subshells. A subshell (or child process) will
always inherit the security context of the parent process. So if you have a line in /etc/
sudoers that looks like this:

adam ALL=NOPASSWD: /bin/vi

then the user “adam” will be able to run /bin/vi as root. By typing !bash in a vi session,
adam will have an interactive shell as root. If you are in a situation where you need to let
non-root users edit protected files, use the command sudoedit (an alias to “sudo –e”). This
tells sudo that a file needs to be edited. The sudo command will make a temporary copy
of the file and open an editor in the security context of the user (not root). Once the
temporary file is saved, sudo will copy the temporarily file over the original file. This by-
passes the root subshell dilemma.

• The file /etc/sudoers can be a little daunting at first, but remember it was designed to allow
you to have one copy of /etc/sudoers work across multiple servers. If this is not your sit-
uation, you can follow the simple examples above to create and maintain an /etc/sudoers
file that is a little easier to read.

User IDs and Passwords
Users in the Unix world are most commonly referred to by their usernames, but that
is not how the underlying operating system sees them. Every user on a system is
assigned a user ID (UID) that uniquely identifies that user. UIDs are integers ranging
from 0 to 65535. UID 0 is reserved for the superuser (commonly named root, but
the name can in fact be anything, as long as the UID is 0). Convention dictates that
“system” users (user accounts that represent system processes, not actual human
beings) have UIDs below 100.

Because everything in Unix is a file, the file security permissions are of utmost im-
portance. The owner and group owner of a file is stored in the inode (index node)
at the filesystem level. This is stored as the UID integer, not as the username. To see

sudo

Chapter 22: Security (Topic 110.1) | 411

Security

an example of this, do a long directory listing on a directory where some files are
owned by users that no longer exist on the system:

cd /var/spool/mail/
ls -l
total 1295140
-rw-rw---- 1 adamh mail 0 Jan 6 11:04 adamh
-rw-rw---- 1 alex mail 86311334 Jan 8 06:27 alex
-rw-rw---- 1 2047 mail 0 Dec 2 2006 alice
-rw-rw---- 1 2003 mail 1600945 Jan 7 2009 bob
-rw-rw---- 1 2080 mail 95086 Sep 9 2008 carol

In this example, we are looking in the directory /var/spool/mail, where the mail spool
files for each user are stored, with filenames corresponding to user account names.
The files adamh and alex are owned by users adamh and alex, respectively, whereas
the file alice is owned by UID 2047, bob is owned by 2003, and carol is owned by
2080. This reflects the fact that ownership is stored in the inode by integer (the UID).
In this case, the users alice, bob, and carol no longer have accounts on the system,
but these files still reflect that they are owned by these (now unassigned) UIDs. The
ls command will display the username instead of the UID by default in a long di-
rectory listing (unless the -n option is passed to ls) because we human beings are
better at remembering names than numbers. If ls is able to resolve a UID to a user-
name, it will display the username; if not, it displays the UID.

The file /etc/passwd acts as the source for username-to-UID mapping (unless a system
such as NIS is in use, which is not covered on LPI 102). This file is the source for all
user accounts on the system, and contains not only username information, but also
other information about the user account, such as that user’s home directory and
default shell. The following is an example section from /etc/passwd:

more /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
adamh:x:500:504:Adam Haeder:/home/adamh:/bin/bash

Each colon-delimited line represents one user account. Table 22-1 defines these
fields.

Table 22-1. Fields in /etc/passwd

Field
position

Name Description

1 Username A human-readable name, 1–32 characters in length. Only letters, numbers, underscores,
and dashes are allowed.

2 Password Formerly stored a user’s encrypted password string. If shadow passwords are in use,
this field always contains the placeholder x. (Shadow passwords are covered in more
depth later in this chapter.)

3 User ID (UID) The integer from 0–65535 that identifies a user.

4 Group ID (GID) The integer from 0–65535 that identifies the user’s primary group membership.

sudo

412 | Chapter 22: Security (Topic 110.1)

Field
position

Name Description

5 Comments Textual information about a user. This field usually contains a user’s full name or possibly
his phone number. Referred to as the GECOS field for historical reasons (early Unix
machines used a General Electric Comprehensive Operating Supervisor machine for
printing, so this field was created to store a Unix user’s GECOS identity).

6 Home
directory

The absolute path to the directory the user will be in upon successful login. This directory
commonly is owned by that user.

7 Default shell The program that runs when the user logs in. When this program is exited, the user is
logged out of the system. This is usually an interactive shell program (such as /bin/
bash) but it can be another executable program as well.

Let’s take a look at the user adamh from our previous example:

adamh:x:500:504:Adam Haeder:/home/adamh:/bin/bash

Field 3 tells us that the UID for adamh is 500, and field 4 tells us that the GID for
adamh is 504. Many Linux distributions will start “normal” user UIDs at 500, re-
serving UIDs from 1–499 for system accounts. Field 5 tells us that his full name is
Adam Haeder, field 6 says his home directory is /home/adamh, and finally, field 7
says that when he successfully logs in, the program /bin/bash will be executed.

/etc/passwd is a text file, and therefore it can be edited like any other text file. How-
ever, that is a bad practice to get into because a syntax error in this file can prevent
users (even root) from logging into the system. A much better way to maintain
the /etc/passwd file is with the command /usr/sbin/usermod.

usermod

Syntax
chage [OPTIONS] [USERNAME]

Description
usermod is used to maintain the settings for accounts in /etc/passwd and /etc/group (and, by
extension, /etc/shadow and /etc/gshadow).

Frequently used options

-c COMMENT
Set or change the value of the Comment field (field 5).

-d HOMEDIRECTORY
Set or change the value of the user’s home directory (field 6).

-g GROUPID
Set the primary GID (group ID) of the user.

-G comma-delimited GROUPID(S)
Set the supplementary group ID(s) for a user.

usermod

Chapter 22: Security (Topic 110.1) | 413

Security

-l USERNAME
Change the username to USERNAME.

-s SHELL
Change the user’s shell to SHELL.

Shadow Passwords
Why is there an x in the password field (field 2) of the previous example? When Unix
was originally designed, the /etc/passwd file stored a user’s encrypted password string
in field 2 of /etc/passwd. The password was encrypted using an algorithm known as
a one-way hash (the crypt algorithm), meaning that while it was trivial to convert a
string to a hashed value, it was mathematically difficult (i.e., it would take an ex-
tremely long time) to convert the hashed value back to the original string. This is a
common function of algorithms used in the security world, especially for things such
as passwords. If you can’t determine the original password when you only know the
hashed value, then we don’t have to worry about the security around the hashed
value itself, because it is too difficult mathematically to derive the password from
the hashed value. So this hashed value can be stored in a world-readable file such
as /etc/passwd without compromising the security of the system.

If it’s very difficult to derive a password from its hashed value, how does the system
know I’m typing in the right password when I log in? The login process on a Linux
system follows these steps:

1. Prompt user for a username and password.

2. Look in /etc/passwd to see whether the user account exists.

3. If it does, encrypt the string given as the password using the crypt algorithm.

4. Compare the encrypted string given by the user with the encrypted string stored
in field 2 of the /etc/passwd entry for that username. If they match, then the user
gave the correct password, and she is allowed to log in. If they did not match,
present an error and ask the user for the password again.

In this way, a Linux system is able to determine whether a user provided the correct
password without having to “recover” the original password from the encrypted
string.

Although this solution is effective, it does pose security risks. By storing the encryp-
ted string in the world-readable /etc/passwd file, any user on the system has access
to every other user’s encrypted password. It may be extremely difficult for a user to
mathematically derive the original password from the encrypted string, but she can
use the same crypt algorithm to encrypt random strings and compare the resultant
encrypted string with the encrypted strings for other users (following the same
process that the login program uses). If the user is patient enough and tries enough
combinations of letters and numbers, she could eventually find a string that, after
encryption, exactly matches the encrypted string for a user account. This is called a
brute force attack, because the user is forced to try every possible combination of
potential passwords to determine which one is correct.

usermod

414 | Chapter 22: Security (Topic 110.1)

If this seems like a daunting and time-consuming task, that’s because it is. Or at least
it was, if we’re talking about the computing power that was available to the average
user in the 1960s through the 1980s. However, as the 1980s turned into the 1990s,
and computers not only got much faster but also much cheaper, the average user
had access to relatively powerful computational machines that could encrypt strings
and compare them against other encrypted strings at the rate of thousands (or hun-
dreds of thousands) per second. This posed a problem for the system administrators
of the day; the encrypted hash was stored in a world-readable file (/etc/passwd), and
every user could now copy this file, take it back to their personal computers, and
run brute force attacks against it.

The solution to this was to move the encrypted password string to a file that is not
world-readable. Thus the concept of shadow passwords was born, and the file /etc/
shadow was created. This file contains not only the encrypted password but also
other user account fields that are important (such as password age and account
expiration dates), without requiring a modification to the format of /etc/password.
Plus, only the root user can read /etc/shadow, preventing brute force attacks by nor-
mal users.

The /etc/shadow file is colon-delimited, like /etc/passwd, and contains the fields de-
scribed in Table 22-2.

Table 22-2. Fields in /etc/shadow

Field
position

Name Description

1 Username Must match a username in /etc/passwd.

2 Password Encrypted password string. Other special options here are:

• ! or null: This account has no password.

• *: Account is disabled.

• !<encrypted password>: Account is locked.

• !!: Password has never been set.

3 Last Changed The number of days (since January 1, 1970) since the password was last changed.

4 Minimum The number of days before a user may change his password. A value of 0 means the
user may change his password at any time.

5 Maximum The number of days a user can keep the same password. After this limit is reached, the
user must change his password. Usually set to 99999 if password changes are not
required.

6 Warn The number of days before password expiration that a user starts to receive warnings.

7 Inactive The number of days after password expiration that an account is automatically disabled.

8 Expire A number indicating when the account will be disabled. This is represented as the
number of days since January 1, 1970.

9 Reserved Reserved for possible future use.

usermod

Chapter 22: Security (Topic 110.1) | 415

Security

Here is the section of /etc/shadow that corresponds to the section of /etc/passwd listed
previously:

root:$1$8jp/RdHb$D1x/6Xr2.puE0NX3nIgdX/:14617:0:99999:7:::
bin:*:13993:0:99999:7:::
daemon:*:13993:0:99999:7:::
adm:*:13993:0:99999:7:::
lp:*:13993:0:99999:7:::
adamh:1IqH21LHP$BJPha9o6/XoOsSoJfWLfZ0:14617:0:99999:7:::

These are actual encrypted password strings. Break out your
favorite brute-force password-cracking program and see if you
can figure out the passwords.

We can see from this file that the root account has a password, the password was
last changed 14,617 days after January 1, 1970, this user can change her password
at any time, she does not have to change her password until 99,999 days after January
1, 1970, and if her password is ever set to expire, she will start getting notices 7 days
before the actual expiration.

You can use the date command to determine the actual dates those integer values
represent:

echo "The password for the root account was last changed \
on `date -d "1970/01/01 +14617 days"`"
The password for the root account was last changed \
on Fri Jan 8 00:00:00 CST 2010
echo "The password for the bin account was last changed \
on `date -d "1970/01/01 +13993 days"`"
The password for the bin account was last changed \
on Thu Apr 24 00:00:00 CDT 2008

The accounts for bin, daemon, adm, and lp are all examples of system accounts.
These accounts are never meant to have interactive logins; they exist to run system
processes and to maintain ownership of files. The * in the encrypted password fields
means that these accounts are disabled from logging in interactively.

Although this file is a text file and can be edited directly to modify these values, the
command /usr/bin/chage should be used to maintain the password aging settings for
accounts.

chage

Syntax
chage [OPTIONS] [USERNAME]

Description
chage (change aging) is used to maintain the password aging limits on a user account.

chage

416 | Chapter 22: Security (Topic 110.1)

Frequently used options

-d LASTDAY
Set the number of days (since January 1, 1970) when the password was last changed.

-E EXPIREDATE
Set a user account to expire on a certain date.

-I INACTIVEDAYS
How many days of inactivity after a password has expired must pass before the account
is locked.

-l
Show password aging information for an account. A nonprivileged user can run this to
view his password aging status.

-m MINDAYS
Set the minimum number of days between password changes.

-M MAXDAYS
Set the maximum number of days a password is valid.

-W WARNDAYS
The number of days before the password expiration that the system will start warning the
user.

Examples
View the password aging information for the root user:

chage -l root
Last password change : Jan 08, 2010
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7

Force a user to change his password on the next login:

chage -d 0 adamh
chage -l adamh
Last password change : password must be changed
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7

Now when the user adamh next logs in, he will see:

login as: adamh
adamh@server's password: <current password>
You are required to change your password immediately (root enforced)
Last login: Fri Jan 8 14:50:42 2010 from 10.0.0.112
WARNING: Your password has expired.
You must change your password now and login again!
Changing password for user adamh.

chage

Chapter 22: Security (Topic 110.1) | 417

Security

Changing password for adamh.
(current) UNIX password: <current password>
New UNIX password: <new password>
Retype new UNIX password: <new password>

On the Exam
The chage command can be a little confusing. Take the time to learn its different
options and practice configuring different password aging settings on a test Linux
system. It is likely that you will encounter questions about the syntax of the
chage command on the LPI exams.

Setting Limits on Users
So far, the security concerns we have discussed regarding a Linux system have all
revolved around the filesystem. Since everything in Linux is a file, this makes sense.
However, security isn’t solely concerned with which user can access what resource
at what time. Security must also take into consideration the sharing of resources
among users (both system and human users). A good security administrator will
ensure that no insecure SUID or SGID binaries exist on his system that could give a
normal user root access. But what measures are in place to ensure that a normal user
doesn’t run so many processes that a server is ground to a halt? What exists to make
sure a user doesn’t open so many network sockets that no memory is available to
allocate to new connections? At first these might seem like capacity planning issues,
but when we are dealing with systems that reside in a hostile environment (such as
the Internet), they become the responsibility of the security administrator.

The Linux kernel has the ability to control many limits on what users can and can’t
do. These limits are defined in the file /etc/security/limits.conf and are viewed or
modified interactively by the ulimit command. ulimit is a command built into the
bash shell, so it does not exist as a separate binary on a Linux system.

ulimit

Syntax
ulimit [OPTIONS] limit

Description
Provides control over the resources available to the shell and to processes started by it, on
systems that allow such control.

Frequently used options

-a
Report all current limits.

-u NUMBER
The maximum number of processes available to a single user.

ulimit

418 | Chapter 22: Security (Topic 110.1)

-x NUMBER
The maximum number of file locks.

-v NUMBER
The maximum amount of memory available to the shell, in kilobytes.

-H
Indicates that a hard limit is being specified.

-S
Indicates that a soft limit is being specified.

Example
View the current limits for a user:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 8192
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 8192
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Limits are defined on Linux as being either hard or soft limits. A hard limit is set by the superuser
for a user or group of users and cannot be exceeded. A soft limit is also set by the superuser,
but it may be temporarily overridden by a user if the need arises (by the user calling the ulimit
command). For example, a user may have a soft limit of 100 on the maximum number of open
files, with a hard limit of 1,000. If the user is running a short-term process that needs to open
200 files, they can temporarily increase her limit in order for that program to run. That increase
lasts only for the life of the user’s shell. Hard and soft limits are set up by the superuser for all
users in the file /etc/security/limits.conf.

The file limits.conf takes four values, space- or Tab-delimited, on each line:

<domain> <type> <item> <value>

Table 22-3 describes the options for entries in limits.conf.

Table 22-3. Options in /etc/security/limits.conf

Field name Possible values

Domain • Username

• Group name, prefixed by @

• * to indicate the default

Type • hard

• soft

ulimit

Chapter 22: Security (Topic 110.1) | 419

Security

Field name Possible values

Item • core (limits the core file size, set in KB)

• data (maximum data size in KB)

• fsize (maximum file size in KB)

• memlock (maximum locked-in-memory address space in KB)

• nofile (maximum number of open files)

• rss (maximum resident set size in KB)

• stack (maximum stack size in KB)

• cpu (maximum CPU time in minutes)

• nproc (maximum number of processes

• as (address space limit in KB)

• maxlogins (maximum number of logins for this user)

• maxsyslogins (maximum number of logins on the system)

• priority (the priority with which to run the user process)

• locks (maximum number of file locks the user can hold)

• sigpending (maximum number of pending signals)

• msgqueue (maximum memory used by POSIX message queues in bytes)

• nice (maximum nice priority allowed)

• rtprio (maximum real-time priority)

Value Integer

Here are some example lines from a limits.conf file:

user adamh cannot create a file larger than 200 MB
adamh hard fsize 204800
user adamh cannot create a file larger than 100 MB
unless he increases his own ulimit value
adamh soft fsize 102400
don't create core files for any user unless they
change this ulimit value for themselves
* soft core 0
limit all users in the group 'students' to no more
than 20 processes running at once
@student hard nproc 20
limit all users in the group 'faculty' to no more
than 20 processes running at once, but allow
them to increase their own limit temporarily
@faculty soft nproc 20

Let’s see ulimit in action with the user adamh, given the example limits.conf file just shown.
First, prove that user adamh cannot create a file larger than 102400 blocks (100 MB, assuming
we’re dealing with blocks that are each 1 KB in size):

$ whoami
adamh
$ ulimit –a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0

ulimit

420 | Chapter 22: Security (Topic 110.1)

file size (blocks, -f) 102400
pending signals (-i) 8192
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 8192
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$ dd if=/dev/zero of=largefile bs=1M count=200
File size limit exceeded
$ ls -lh largefile
-rwxrwxrwx 1 root root 100M 2010-01-08 16:09 largefile

The dd command used in this example is attempting to create a 200 MB file by copying the
contents of /dev/zero (a special device that returns zero-valued bytes to all read requests) to the
file largefile. It is doing this by attempting to copy 200 1-megabyte segments. After dd has
reached 100 MB, the copy is aborted and the error “File size limit exceeded” appears. An ls of
the file shows that user adamh was allowed to create a 100 MB file, but no larger. Now
adamh will use ulimit to increase his file size limit to 200 MB and try the command again:

$ ulimit -f 204800
$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) 204800
pending signals (-i) 8192
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 8192
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$ dd if=/dev/zero of=largefile bs=1M count=200
200+0 records in
200+0 records out
209715200 bytes (210 MB) copied, 13.0589 s, 16.1 MB/s
$ ls -lh largefile
-rwxrwxrwx 1 root root 200M 2010-01-08 16:14 largefile

This time, the dd command completed without an error, and adamh was allowed to create a
200 MB file. However, if he tries to use ulimit to increase the limit beyond the hard limit, he is
denied:

$ ulimit -f 204801
-bash: ulimit: file size: cannot modify limit: Operation not permitted

ulimit

Chapter 22: Security (Topic 110.1) | 421

Security

On the Exam
Setting limits for users is an often-overlooked activity, but it will appear on the
LPI exam. Be familiar with the format of the /etc/security/limits.conf file and some
of the more common options for ulimit. Also be sure to understand the difference
between hard and soft limits and how those differences affect a user’s ability to
use system resources.

Querying System Services
Previous chapters have discussed the importance of the /bin/ps command. It is vitally
important that a system administrator knows exactly what processes are running on
her machine and why. The first step toward maintaining a secure system is knowl-
edge about that system. However, in this age of always-connected systems, under-
standing processes by themselves is not enough; you must also understand how they
interact across the network. This can be accomplished with these Linux utilities:
netstat, nmap, and lsof.

netstat

Description
The command /bin/netstat is a generic, all-purpose network information tool. It will give you
information about network connections, routing tables, interface statistics, and many other
low-level details of your current network configuration. From a security standpoint, one of the
most useful options of netstat is its ability to tell you what network ports are currently “open”
on your system, what network connections exist, and what state those connections are in.
netstat was defined, with examples, in Chapter 21. Here are few more examples, focusing on
the security-related information provided by netstat.

Examples
Show protocol statistics. This is an example from a moderately busy public web server that has
been up for 41 days:

netstat -s
Ip:
 996714394 total packets received
 0 forwarded
 0 incoming packets discarded
 996354233 incoming packets delivered
 743668424 requests sent out
Icmp:
 308127 ICMP messages received
 488 input ICMP message failed.
 ICMP input histogram:
 destination unreachable: 669
 timeout in transit: 2
 redirects: 277573
 echo requests: 29877
 echo replies: 6

netstat

422 | Chapter 22: Security (Topic 110.1)

 48625 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:
 destination unreachable: 18748
 echo replies: 29877
Tcp:
 4092366 active connection openings
 6613024 passive connection openings
 28785 failed connection attempts
 479914 connection resets received
 46 connections established
 995776060 segments received
 742269993 segments send out
 1026415 segments retransmitted
 7056 bad segments received.
 135994 resets sent
Udp:
 30804 packets received
 18657 packets to unknown port received.
 0 packet receive errors
 323385 packets sent
TcpExt:
 77483 invalid SYN cookies received
 22981 resets received for embryonic SYN_RECV sockets
 ArpFilter: 0
 6555736 TCP sockets finished time wait in fast timer
 2463 time wait sockets recycled by time stamp
 1004 packets rejects in established connections because of timestamp
 17501900 delayed acks sent
 24177 delayed acks further delayed because of locked socket
 Quick ack mode was activated 92779 times
 16609 times the listen queue of a socket overflowed
 16609 SYNs to LISTEN sockets ignored
 465508199 packets directly queued to recvmsg prequeue.
 2188914674 packets directly received from backlog
 1015042059 packets directly received from prequeue
 414843326 packets header predicted
 421778135 packets header predicted and directly queued to user
 TCPPureAcks: 52593173
 TCPHPAcks: 313477583
 TCPRenoRecovery: 3251
 TCPSackRecovery: 109485
 TCPSACKReneging: 219
 TCPFACKReorder: 409
 TCPSACKReorder: 61
 TCPRenoReorder: 287
 TCPTSReorder: 1367
 TCPFullUndo: 1433
 TCPPartialUndo: 5607
 TCPDSACKUndo: 75787
 TCPLossUndo: 60128
 TCPLoss: 93645
 TCPLostRetransmit: 31
 TCPRenoFailures: 1693
 TCPSackFailures: 44900
 TCPLossFailures: 10718

netstat

Chapter 22: Security (Topic 110.1) | 423

Security

 TCPFastRetrans: 182057
 TCPForwardRetrans: 21100
 TCPSlowStartRetrans: 167274
 TCPTimeouts: 428080
 TCPRenoRecoveryFail: 2148
 TCPSackRecoveryFail: 19641
 TCPSchedulerFailed: 107692
 TCPRcvCollapsed: 0
 TCPDSACKOldSent: 89093
 TCPDSACKOfoSent: 1003
 TCPDSACKRecv: 165272
 TCPDSACKOfoRecv: 521
 TCPAbortOnSyn: 0
 TCPAbortOnData: 11898
 TCPAbortOnClose: 2165
 TCPAbortOnMemory: 0
 TCPAbortOnTimeout: 11617
 TCPAbortOnLinger: 0
 TCPAbortFailed: 0
 TCPMemoryPressures: 0

Display all the active TCP connections:

netstat --tcp -n
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.23.11:80 209.34.195.194:4898 SYN_RECV
tcp 0 0 192.168.23.11:80 71.126.90.107:50254 SYN_RECV
tcp 0 0 192.168.23.11:769 192.168.23.10:2049 ESTABLISHED
tcp 0 0 192.168.23.11:992 192.168.23.10:2049 ESTABLISHED
tcp 0 0 192.168.23.11:80 66.199.0.164:32211 TIME_WAIT
tcp 0 0 192.168.23.11:80 68.13.184.187:3249 ESTABLISHED
tcp 0 0 192.168.23.11:80 68.13.85.103:2972 TIME_WAIT
tcp 0 0 192.168.23.11:80 70.165.111.157:14068 TIME_WAIT
tcp 0 0 192.168.23.11:80 68.110.27.241:32808 TIME_WAIT
tcp 0 0 192.168.23.11:80 71.199.119.34:49469 TIME_WAIT
<output truncated>

This output shows us that there are a number of connections to TCP port 80 on our server
(192.168.23.11). These connections are from many different hosts, as is typical with a busy web
server. One of the interesting things about a report like this is the “State” information. A TCP
connection goes through a number of different states as the connection is requested and created,
data is transmitted, and the connection is completed and closed. From a security standpoint,
it’s a good idea to be familiar with the different states a TCP connection will be in. Some high-
profile denial of service attacks in the past have taken advantage of the relatively long timeout
values in TCP connections to completely exhaust the kernel memory of a system, by making
thousands of TCP connections but never completing the response, and thus causing the system
under attack to hold these thousands of TCP connections open until they finally time out. If
you see a lot of connections in the “TIME_WAIT” state for long periods, you may be the victim
of such an attack. To modify the default value, edit the file /proc/sys/net/ipv4/tcp_fin_timeout.
For more information on the /proc filesystem and how to use it to tune your running system,
refer to the text file Documentation/filesystems/proc.txt in your Linux kernel source.

Table 22-4 displays the different states a TCP connection goes through.

netstat

424 | Chapter 22: Security (Topic 110.1)

Table 22-4. States of a TCP connection

State name Description

CLOSED The connection is closed.

LISTEN Listening for an incoming connection.

SYN_RCVD SYN stands for SYNCHRONIZE, used to initiate and establish a connection. Named for the synchronization
of sequence numbers that takes place throughout a TCP connection. This state indicates the connection
is receiving packets.

SYN_SENT This state indicates the connection is sending packets.

ESTABLISHED In this state, the TCP three-way handshake has been completed, and a TCP connection is now established.

FIN_WAIT_1 FIN stands for FINISH, meaning that one of the devices wants to terminate the connection.

FIN_WAIT_2 After one end receives an acknowledgement (ACK) of a FIN, it goes into state FIN_WAIT_2.

CLOSING The connection is in the process of closing.

CLOSE_WAIT The state a connection is in after sending an ACK in response to an initial FIN.

LAST_ACK One end of the connection is in the process of sending a FIN.

TIME_WAIT After a TCP connection is closed, the kernel will keep the connection around in TIME_WAIT state, waiting
for any delayed duplicate packets. This prevents another socket from using this same port and receiving
data meant for an old connection.

On the Exam
netstat is an important tool that you will encounter often in your Linux career.
Become familiar with the more common command-line options, and understand
when it is appropriate to use the netstat command, because you will see a number
of references to it on the LPI exams.

nmap

Syntax
nmap [scan type] [options] (target specifications)

Description
nmap (the network mapper) is a very powerful port-scanning tool. Its primary purpose is to
scan a remote host (or entire subnet) and report back what TCP or UDP ports are open on each
system. However, this powerful tool can do much more, including OS fingerprinting and vul-
nerability scanning.

Frequently used options

-sP
Don’t port scan; just report what hosts respond to a ping request. This is commonly called
a ping sweep. See the later examples.

-n
Don’t do DNS resolution.

nmap

Chapter 22: Security (Topic 110.1) | 425

Security

-sS
Perform a TCP SYN scan (the default).

-sU
Perform a UDP scan.

-p port_range
Scan only the specified ports.

-sV
Perform a service or version scan on open ports. This is useful when attempting to deter-
mine what software is running on the remote machine.

-O
Attempt to determine the operating system of the system being scanned.

Example 1
Perform a “standard” TCP scan on a remote system:

nmap 192.168.1.220

Starting Nmap 5.00 (http://nmap.org) at 2010-01-14 21:11 CST
Interesting ports on server.domain.com (192.168.1.220):
Not shown: 979 closed ports
PORT STATE SERVICE
42/tcp open nameserver
53/tcp open domain
80/tcp open http
88/tcp open kerberos-sec
135/tcp open msrpc
139/tcp open netbios-ssn
389/tcp open ldap
445/tcp open microsoft-ds
464/tcp open kpasswd5
593/tcp open http-rpc-epmap
636/tcp open ldapssl
1025/tcp open NFS-or-IIS
1029/tcp open ms-lsa
1084/tcp open ansoft-lm-2
1090/tcp open unknown
1094/tcp open unknown
1121/tcp open unknown
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
3389/tcp open ms-term-serv
10000/tcp open snet-sensor-mgmt
MAC Address: 00:07:E9:82:6B:D8 (Intel)

Nmap done: 1 IP address (1 host up) scanned in 1.39 seconds

nmap performs its work relatively quickly, and lets us know that of the 1,700 or so common
ports that were scanned, 21 ports were found open that nmap considers “interesting.” If you
want to scan every possible open TCP port (from 1 to 65535), give the –p option:

nmap -p 1-65535 192.168.1.220

Starting Nmap 5.00 (http://nmap.org) at 2010-01-14 21:15 CST

nmap

426 | Chapter 22: Security (Topic 110.1)

Interesting ports on server.domain.com (192.168.1.220):
Not shown: 65512 closed ports
PORT STATE SERVICE
42/tcp open nameserver
53/tcp open domain
80/tcp open http
88/tcp open kerberos-sec
135/tcp open msrpc
139/tcp open netbios-ssn
389/tcp open ldap
445/tcp open microsoft-ds
464/tcp open kpasswd5
593/tcp open http-rpc-epmap
636/tcp open ldapssl
1025/tcp open NFS-or-IIS
1029/tcp open ms-lsa
1084/tcp open ansoft-lm-2
1090/tcp open unknown
1094/tcp open unknown
1121/tcp open unknown
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
3389/tcp open ms-term-serv
4601/tcp open unknown
9675/tcp open unknown
10000/tcp open snet-sensor-mgmt
MAC Address: 00:07:E9:82:6B:D8 (Intel)

Nmap done: 1 IP address (1 host up) scanned in 17.80 seconds

This scan took a little bit longer, but it showed us an additional three open TCP ports that the
default scan did not show.

Example 2
Attempt to perform an “OS fingerprint” on a remote system:

nmap -O 192.168.1.220

Starting Nmap 5.00 (http://nmap.org) at 2010-01-14 21:18 CST
Interesting ports on server.domain.com (192.168.1.220):
Not shown: 979 closed ports
PORT STATE SERVICE
42/tcp open nameserver
<...output truncated...>
10000/tcp open snet-sensor-mgmt
MAC Address: 00:07:E9:82:6B:D8 (Intel)
Device type: general purpose
Running: Microsoft Windows 2003
OS details: Microsoft Windows Server 2003 SP1 or SP2
Network Distance: 1 hop

OS detection performed. Please report any incorrect results \
at http://nmap.org/submit/.

nmap

Chapter 22: Security (Topic 110.1) | 427

Security

nmap performs some interesting manipulations of the standard TCP connection states in an
attempt to guess what operating system the scanned host is running. For more information,
visit the nmap site.

Example 3
Discover what hosts are “up” on a subnet (or at least which ones are responding to ping). This
example was run on a different machine, so the version of nmap and the IP subnet are different
from the previous example:

nmap -sP 10.0.0.0/24

Starting Nmap 4.52 (http://insecure.org) at 2010-01-14 21:21 CST
Host 10.0.0.1 appears to be up.
Host 10.0.0.100 appears to be up.
MAC Address: 00:1B:EA:F2:C4:70 (Nintendo Co.)
Host 10.0.0.101 appears to be up.
MAC Address: 00:21:00:9E:45:15 (Unknown)
Host 10.0.0.102 appears to be up.
MAC Address: 00:21:00:72:54:4A (Unknown)
Host 10.0.0.103 appears to be up.
MAC Address: 00:21:85:C2:2D:A5 (Unknown)
Host 10.0.0.104 appears to be up.
MAC Address: 00:19:21:27:8E:83 (Elitegroup Computer System Co.)
Host 10.0.0.106 appears to be up.
MAC Address: 00:14:22:61:E3:D9 (Dell)
Host router (10.0.0.210) appears to be up.
MAC Address: 00:12:17:30:B4:9C (Cisco-Linksys)
Nmap done: 256 IP addresses (8 hosts up) scanned in 4.928 seconds

lsof

Syntax
lsof [options] [names]

Description
lsof lists open files. Since everything in Linux is a file, this tool can tell you a fantastic amount
of information about your running system. It is primarily used to tell what processes have what
files open, but it can also be used to view TCP and UDP connection information, among other
things.

Frequently used options

-c x
Only show files that are open by processes whose executable starts with the character(s)
specified by x.

-i x
Instead of showing open files, show sockets whose Internet address is x. If x is not specified,
show all IP connections. This is functionally equivalent to netstat –anp.

-u username
Show only the files that username has open.

lsof

428 | Chapter 22: Security (Topic 110.1)

http://insecure.org

-P
Do not convert port numbers to port names (for example, show 25 instead of smtp).

Example 1
The lsof command is often used to determine what processes have files open on removable
media so they can be terminated, allowing the media to be unmounted:

pwd
/public
umount /public
umount: /public: device is busy
lsof | grep "/public"
smbd 17728 adamh cwd DIR 8,65 8192 5 /public
bash 21712 root cwd DIR 8,65 8192 5 /public
lsof 21841 root cwd DIR 8,65 8192 5 /public
grep 21842 root cwd DIR 8,65 8192 5 /public
lsof 21843 root cwd DIR 8,65 8192 5 /public

This shows us that the smbd process (controlled by user adamh) and a bash, lsof, and grep
process all have the file handle for the directory /public open. Now we’ll change directories and
run lsof again:

cd /
lsof | grep "/public"
smbd 17728 adamh cwd DIR 8,65 8192 5 /public

We see now that only smdb has a file open on the /public directory.

Example 2
In this example, we’ll see how lsof can be used to determine what connections exist between a
machine and a remote host. Our machine in this case has an IP address of 10.0.0.1 and is running
the Samba daemon (smbd). The remote machine at 10.0.0.104 is connected to the Samba
daemon:

lsof -P -i@10.0.0.104
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
smbd 1329 root 5u IPv4 252713 TCP 10.0.0.1:139->\
 10.0.0.104:1568 (ESTABLISHED)

The machine at 10.0.0.104 is connected to TCP port 139 on 10.0.0.1, and is communicating
with the processes named smbd, which has a PID of 1329.

On the Exam
The lsof command is an important tool for any good system administrator to have
in his arsenal. Be prepared to answer questions about its general usage, and be
familiar with common options, including viewing socket information and files
open by process name and username.

lsof

Chapter 22: Security (Topic 110.1) | 429

Security

23
Set Up Host Security (Topic 110.2)

This chapter describes the practical steps one needs to take to begin to secure a Linux
system. The important thing to remember regarding security is that it is a process,
not a destination. Maintaining a secure system is a job that is never complete. This
chapter covers the second objective of Topic 110:

Objective 2: Set Up Host Security
Candidates should know how to set up a basic level of host security. Weight: 3.

Objective 2: Set Up Host Security
As mentioned previously, the key to good host security is knowledge. A good system
administrator knows at all times what is happening on systems he manages, and has
processes in place to tell him when things stray from the norm.

Previous chapters have covered the topics of shadow passwords, knowledge of
the /proc filesystem, maintaining startup services in /etc/rc.d, and other areas of host-
based security. This chapter will finish this topic by discussing the inetd and
xinetd services, and their role in system security.

The Super-Server
Modern Linux systems are often asked to perform many functions. Because of the
broad appeal of Linux, its use is in everything from firewalls to set-top boxes. Because
of this, there are many network services that are commonly seen on a Linux system.
These services oftentimes do not see constant use, but need to be active and available
when the need arises. Some examples of these important but often seldom used
services are ftp, finger, telnet, imap, and pop3.

You may notice that these examples all represent network services that are consid-
ered relatively “old” (at least in terms of modern day computing). This is essentially
true. Years ago, when hardware was more expensive and harder to come by, the
amount of system resources, especially memory, that each process consumed was
of great importance. The problem was that administrators wanted to consolidate a

431

lot of their network services on one Linux machine, but were running into memory
limitations. The solution was to come up with a listening service, or “super-server,”
that handled incoming connections and started the correct networking service to
handle them. Thus the inetd service was born.

The inetd service has two important characteristics: It is a single process that can
listen on multiple ports for incoming connections, starting the appropriate service
when a connection comes in and connecting the inbound connection with the
service. Also, inetd supports a sophisticated security scheme for allowing and disal-
lowing access to these “simpler” networking services, many of which don’t have
advanced access controls built into them. So the creation of inetd solved two prob-
lems: limited memory was conserved, and administrators gained a finer level of
control over what systems or networks could access their services.

inetd syntax

The main configuration file for inetd is /etc/inetd.conf. An example looks like this:

#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
#time stream tcp nowait root internal
#time dgram udp wait root internal
#
These are standard services.
#
ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
#
Shell, login, exec, comsat and talk are BSD protocols.
#
#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
#login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#talk dgram udp wait root /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait root /usr/sbin/tcpd in.ntalkd
#dtalk stream tcp wait nobody /usr/sbin/tcpd in.dtalkd
#
Pop and imap mail services et al
#
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd
#
The Internet UUCP service.
#
#uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/uucico -l
#

432 | Chapter 23: Set Up Host Security (Topic 110.2)

Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers." Do not uncomment
this unless you *need* it.
#
#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd
#bootps dgram udp wait root /usr/sbin/tcpd bootpd
#
Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.
#
#finger stream tcp nowait root /usr/sbin/tcpd in.fingerd
#cfinger stream tcp nowait root /usr/sbin/tcpd in.cfingerd
#systat stream tcp nowait guest /usr/sbin/tcpd /bin/ps -auwwx
#netstat stream tcp nowait guest /usr/sbin/tcpd /bin/netstat -f inet
#
Authentication
#
#auth stream tcp nowait nobody /usr/sbin/in.identd in.identd -l -e -o
#
End of inetd.conf

Like most Linux configuration files, a line starting with a # symbol denotes a com-
ment. In this example, only the ftp, telnet, and imap services are active. Each line of
the file describes a unique service and is made up of seven sections, described in
Table 23-1.

Table 23-1. Fields in /etc/inetd.conf

Field
position

Name Description

1 Service
name

The name of the service, which must correspond to a name in the file /etc/services. This
determines what port inetd will listen on for requests to this service.

2 Socket type One of stream, dgram, raw, or seqpacket. TCP services use stream, whereas UDP services
use dgram.

3 Protocol One of the following:

• tcp,tcp4 = TCP IPv4

• udp,udp4 = UDP IPv4

• tcp6 = TCP IPv6

• udp6 = UDP IPv6

• tcp46 = Both TCP IPv4 and v6

• udp46 = Both UDP IPv4 and v6

4 Connection
options

{wait|nowait}[/max-child[/max-connections-per-ip-per-
minute[/max-child-per-ip]]]

The wait or nowait option defines how inted handles the incoming connection. If
wait is indicated, inetd will hand off multiple incoming requests to a single daemon,
whereas nowait means that inetd should start a new server process for each incoming
connection.

/max-child limits the amount of connections that will be accepted at one time.

Objective 2: Set Up Host Security | 433

Set Up Host Security

Field
position

Name Description

/max-connections-per-ip-per-minute and /max-child-per-ip are op-
tional limits you can place on this resource, to prevent abuse and denial of service attacks.

5 User What user account the service should start as.

6 Server Full path to the service that inetd should start.

7 Server
options

Command-line arguments (if any) that should be passed to the server.

Using this table as a guide, if we want to enable the imap service in our inetd con-
figuration but limit imap to a maximum of 10 concurrent connections and prevent
more than 5 concurrent connections from a single IP address, the line would look
like this:

imap stream tcp nowait/10/0/5 root /usr/sbin/tcpd imapd

Notice that we’re not actually starting the imapd service, but instead the server /usr/
sbin/tcpd with an argument of imapd. This is the TCP_WRAPPERS service, which
is described later in this chapter.

The real advantage of inetd comes into play only when you have many services en-
abled, thus maximizing the amount of memory you are saving by not running all of
these little-used services all the time, listening for connections.

xinetd

The original inetd service is seldom seen in more recent Linux distributions. It has
been replaced with xinetd, the Extended Internet Daemon. xinetd improves upon
the original goals of inetd by increasing the logging and access control ability around
the managed services, in addition to adding defense mechanisms to protect against
attacks, such as port scanners or denial of service.

The xinetd configuration file is /etc/xinetd.conf, but most services are configured as
individual files in the directory /etc/xinetd.d. This makes adding and removing
services much easier for a distribution’s package management utility. The /etc/xi-
netd.conf file contains global configuration options, as seen in this example:

This is the master xinetd configuration file. Settings in the
default section will be inherited by all service configurations
unless explicitly overridden in the service configuration. See
xinetd.conf in the man pages for a more detailed explanation of
these attributes.

defaults
{
The next two items are intended to be a quick access place to
temporarily enable or disable services.
#
enabled =
disabled =

Define general logging characteristics.

434 | Chapter 23: Set Up Host Security (Topic 110.2)

 log_type = SYSLOG daemon info
 log_on_failure = HOST
 log_on_success = PID HOST DURATION EXIT

Define access restriction defaults
#
no_access =
only_from =
max_load = 0
 cps = 50 10
 instances = 50
 per_source = 10

Address and networking defaults
#
bind =
mdns = yes
 v6only = no

setup environmental attributes
#
passenv =
 groups = yes
 umask = 002

Generally, banners are not used. This sets up their global defaults
#
banner =
banner_fail =
banner_success =
}

includedir /etc/xinetd.d

As you can see, xinetd offers some more advanced configuration options, such as
cps (connections per second) and the ability to set the umask for files created by the
managed services. Here is the example imap configuration file at /etc/xinetd.d/imap:

service imap
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/imapd
 log_on_success += HOST DURATION
 log_on_failure += HOST
 disable = no
}

Table 23-2 describes the different popular configuration options available in these
service files. For a complete list of options, consult the manpage for xinetd.conf.

Objective 2: Set Up Host Security | 435

Set Up Host Security

Table 23-2. Popular fields in /etc/xinetd.d/servicename

Field name Description

id Name of the service.

flags Common flags are:

• NORETRY = Don’t retry in case of a service failure.

• KEEPALIVE = Set the keepalive flag on the TCP socket.

• SENSOR = Don’t run a service; just listen on this port and log all attempts to access.

• IPv4 = Use IPv4 only.

• IPv6 = Use IPv6 only.

disable Boolean option determining whether this service is on.

socket_type • stream

• dgram

• raw

• seqpacket

protocol Must be a valid protocol listed in /etc/protocols.

wait Normally, TCP services have wait set to ‘no’, whereas UDP services have wait set to ‘yes’.

user Username the service runs as.

group Group the service runs as.

instances The number of services that can run at once. The default is no limit.

nice Server priority (nice value).

server Full path to the server program that will run.

server_args Command-line arguments passed to the server.

only_from Allows you to restrict access by IP address, network, or hostname.

no_access Deny access from this IP address, network, or hostname.

access_times Determines what hours of the day this service is available, in the form HH:MM – HH:MM.

log_type Options are SYSLOG or FILE.

log_on_success What variables will be logged on a successful connection.

log_on_failure What variables will be logged on a failed connection.

port What port xinetd should listen on for this service.

bind What IP address xinetd should listen on. Useful for multihomed machines.

per_source Maximum number of connections from a single IP address.

max_load After the one-minute load average of the machine reaches this amount, stop accepting con-
nections until the load goes below this number.

Once the disable = no option is set in our /etc/xinetd.d/imap file and the xinetd service
is restarted, we can use the netstat command to verify that xinetd is ready for in-
coming imap connections:

netstat --tcp -anp | grep ":143"
tcp 0 0 :::143 :::* LISTEN 15959/xinetd

436 | Chapter 23: Set Up Host Security (Topic 110.2)

Security with TCP_WRAPPERS
With the original inetd service, the servers that were managed rarely had any ad-
vanced access control options of their own. These services were often remnants of
the early days of the Internet, when systems were a little more trusted than they are
today. Examples of these mostly deprecated services are finger, echo, daytime, tel-
net, shell, exec, and talk, to name a few. xinetd added some more advanced controls,
but both inetd and xinetd are able to utilize the TCP_WRAPPER service to aid in
access control.

In order to utilize TCP_WRAPPERS, inetd needs to call the user-space pro-
gram /usr/bin/tcpd with an argument of the desired service, in order to “wrap” that
service in the access control. This is not necessary with xinetd, as the xinetd binary
has TCP_WRAPPERS support built-in, by nature of its link with the libwrap library.
You can see this with the /usr/bin/ldd command:

ldd /usr/sbin/xinetd
 linux-gate.so.1 => (0x0012d000)
 libselinux.so.1 => /lib/libselinux.so.1 (0x0012e000)
 libwrap.so.0 => /lib/libwrap.so.0 (0x00149000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00151000)
 libm.so.6 => /lib/libm.so.6 (0x0016a000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x00193000)
 libc.so.6 => /lib/libc.so.6 (0x001c5000)
 libdl.so.2 => /lib/libdl.so.2 (0x0031e000)
 /lib/ld-linux.so.2 (0x00110000)

Other services also have native TCP_WRAPPERS support by nature of their links
to libwrap.so, including /usr/sbin/sshd and /usr/sbin/sendmail. You can run a simple
shell script to determine what binaries in /usr/sbin/ are linked against libwrap.so:

cd /usr/sbin
for file in *
> {
> if [-f $file]; then
> result=`ldd $file | grep -c libwrap`
> if ["$result" -gt "0"]; then
> echo "/usr/sbin/$file is linked to libwrap.so"
> fi
> fi
> }
/usr/sbin/exportfs is linked to libwrap.so
/usr/sbin/gdm-binary is linked to libwrap.so
/usr/sbin/mailstats is linked to libwrap.so
/usr/sbin/makemap is linked to libwrap.so
/usr/sbin/praliases is linked to libwrap.so
/usr/sbin/rpcinfo is linked to libwrap.so
/usr/sbin/rpc.mountd is linked to libwrap.so
/usr/sbin/rpc.rquotad is linked to libwrap.so
/usr/sbin/sendmail is linked to libwrap.so
/usr/sbin/sendmail.sendmail is linked to libwrap.so
/usr/sbin/smrsh is linked to libwrap.so
/usr/sbin/snmpd is linked to libwrap.so
/usr/sbin/snmptrapd is linked to libwrap.so
/usr/sbin/sshd is linked to libwrap.so

Objective 2: Set Up Host Security | 437

Set Up Host Security

/usr/sbin/stunnel is linked to libwrap.so
/usr/sbin/vsftpd is linked to libwrap.so
/usr/sbin/xinetd is linked to libwrap.so

Configuration

TCP_WRAPPERS is configured in two files, /etc/hosts.allow and /etc/hosts.deny.
These files contain rules that govern either all services or individual services. Like a
firewall, it is usually good practice to adopt either a “block everything, only open
what you need” mentality or an “open everything, block only what you don’t need”
mentality when it comes to TCP_WRAPPERS. Here is an example of a sample con-
figuration that blocks everything by default, but opens up access for a few services:

more /etc/hosts.deny
ALL: ALL

more /etc/hosts.allow
sshd: ALL EXCEPT 192.168.1.10
vsftpd: 192.168.1.0/24 EXCEPT 192.168.1.10

The TCP_WRAPPERS files are read in real time by the servers that support them,
so changes made to these files go into effect immediately. The example configuration
denies all access by default, and then opens it up specifically for the sshd and
vsftpd services. Users from everywhere except the system 192.168.1.10 are allowed
to connect to the sshd service, and all users on the 192.168.1.0/24 network, except
for 192.168.1.10, are allowed to connect to vsftpd.

Let’s assume that we have xinetd configured and running, with the imap configura-
tion as listed earlier. In addition, the /etc/hosts.deny and /etc/hosts.allow files are the
same as our example. Our server system has an IP address of 10.0.0.1, and our client
system has an IP address of 10.0.0.112. When an attempt is made to connect to the
imap server on 10.0.0.1 from 10.0.0.112, the connection times out. We can see the
details in /var/log/messages on the server:

tail /var/log/messages
Jan 26 15:22:42 server xinetd[15959]: xinetd Version 2.3.14 started with \
libwrap loadavg labelednetworking options compiled in.
Jan 26 15:22:42 server xinetd[15959]: Started working: 1 available service
Jan 26 15:23:23 server xinetd[15959]: START: imap pid=15975 \
from=::ffff:10.0.0.112
Jan 26 15:23:28 server xinetd[15959]: EXIT: imap status=1 pid=15975 \
duration=5(sec)
Jan 26 15:26:30 server xinetd[15959]: START: imap pid=16035 \
from=::ffff:10.0.0.112
Jan 26 15:26:30 server xinetd[16035]: libwrap refused connection to \
imap (libwrap=imapd) from ::ffff:10.0.0.112
Jan 26 15:26:30 server xinetd[16035]: FAIL: imap libwrap \
from=::ffff:10.0.0.112
Jan 26 15:26:30 server xinetd[15959]: EXIT: imap status=0 \
pid=16035 duration=0(sec)

438 | Chapter 23: Set Up Host Security (Topic 110.2)

We can see from the syslog messages that our attempt to connect to imapd was
denied. In order to enable this access, we need to add the following line to /etc/
hosts.allow:

imapd: ALL

or, if we want to limit it somewhat:

imapd: 10.0.0.0/24

After this change, we try our imap connection from the client again, and we get a
connection. Logfiles on the server show our success:

tail /var/log/messages
Jan 26 15:34:37 fileserv xinetd[15959]: START: imap pid=16083 \
from=::ffff:10.0.0.112
Jan 26 15:34:42 fileserv xinetd[15959]: EXIT: imap status=1 \
pid=16083 duration=5(sec)

Remember that you need to do more than simply configure /etc/hosts.deny and /etc/
hosts.allow to secure your system. Many popular applications, such as the Apache
web server, do not link against libwrap.so, so they do not honor the entries you place
in these configuration files.

Also, it is more and more common on network-enabled Linux machines (especially
those connected directly to the Internet) to not run inetd or xinetd at all. If there are
services that need to be run, such as imapd or ftpd, they are often run as standalone
daemons, largely because the lack of necessary memory in a server is not as much
of a concern as it was years ago, and many of these newer services have built-in access
controls that rival the ability of TCP_WRAPPERS. So if you are in doubt about
whether or not you need a service that is handled by xinetd, you are probably safe
to disable it, rather than having to worry about securing a service that might not be
necessary.

On the Exam
Although the inetd service has largely been replaced by xinetd, be familiar with the
syntax of the inetd.conf file, because there is a good chance you will encounter
questions about it on the LPI exams. The syntax of the /etc/hosts.deny and /etc/
hosts.allow files also will be a focus.

Objective 2: Set Up Host Security | 439

Set Up Host Security

24
Securing Data with Encryption

(Topic 110.3)

This Topic focuses on the methods used to secure Linux servers and workstations.
Securing servers includes two basics steps: communicating between servers in a se-
cure way, and then encrypting data on the servers themselves. The LPI knows that
SSH is the most common method for communicating securely between servers.
Therefore, the topic is covered fairly extensively on the exam and in this chapter.

SSH is used for many more purposes than simply communicating across insecure
networks; it is used throughout the industry to configure remote systems and tunnel
all sorts of traffic, from X Windows to email and FTP.

The second part of securing a server—making sure that stored data is properly
encrypted—can be handled in myriad ways. However, the LPI recognizes that GNU
Privacy Guard (GPG) has become the standard. Before we take a deep look at how
SSH and GPG work, make sure that you understand this LPI Objective’s description
perfectly:

Objective 3: Securing Data with Encryption
The candidate should be able to use public key techniques to secure data and
communication. The key knowledge areas are:

• Perform basic OpenSSH 2 client configuration and usage.

• Understand the role of OpenSSH 2 server host keys.

• Perform basic GnuPG configuration and usage.

• Understand SSH port tunnels (including X11 tunnels).

Following is the list of the used files, terms, and utilities:

• ssh

• ssh-keygen

• ssh-agent

• ssh-add

441

• ~/.ssh/id_rsa and id_rsa.pub

• ~/.ssh/id_dsa and id_dsa.pub

• /etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_rsa_key.pub

• /etc/ssh/ssh_host_dsa_key and /etc/ssh/ssh_host_dsa_key.pub

• ~/.ssh/authorized_keys and ~/.ssh/authorized_keys2

• /etc/ssh_known_hosts

• gpg

• ~/.gnupg/*

Objective 3: Securing Data With Encryption
As you can see from this Objective, you need to know more than how to issue a
couple of commands on a remote system. You also have to understand how to con-
figure systems for public key encryption and how to use common SSH and encryp-
tion commands, including GPG.

Using Secure Shell (SSH)
SSH, also known as Secure Shell, is a replacement for the obsolete telnet command
and rsh/rlogin/rcp suite. The primary use for SSH is to conduct encrypted shell ses-
sions to remote hosts. However, it can also be used to copy files and to tunnel other
protocols.

SSH is a server/client protocol offering sshd as the server and the ssh and scp com-
mands as the client. The client connects to the server, they establish an encrypted
session, and then the server demands authentication before finally logging in the
client.

The ssh command can be used either to execute a single command and return to the
local terminal, or to establish a remote session that acts and feels just like logging
into the remote system. In this regard, ssh acts like the obsolete rsh command; used
to log in, ssh acts like rlogin and telnet.

The scp command copies files and directories to or from a remote system, acting like
the obsolete rcp command.

In addition to simple login sessions and file copying, SSH can also provide trans-
parent port forwarding, and as an extension of this, X authentication and forward-
ing. When you have an SSH session, you can start an X client on the remote machine,
and the X Window System protocol will travel encrypted over your connection and
display on your local machine without the need for settings such as DISPLAY=foo:0
or the xhost or xauth commands.

The implementation of SSH generally used on Linux systems is OpenSSH.

442 | Chapter 24: Securing Data with Encryption (Topic 110.3)

http://www.openssh.com

Installation and Configuration
OpenSSH may or may not be installed on your system by default. When the SSH
server (sshd) runs for the first time, it generates a host key for your machine. This
key will serve to authenticate your host in subsequent SSH sessions. Then you will
typically want to create SSH authentication keys for your own personal account, as
well as the root account. After that, as the administrator you should review the
configuration of sshd, to see that you are comfortable with it.

The standard place for the central configuration of OpenSSH is the /etc/ssh directory.
Here you will find the server configuration in sshd_config and default client config-
uration in ssh_config. Here are some highlights from the server configuration as
installed on Debian:

What ports, IPs and protocols we listen for
Port 22
Protocol 2

Port 22 is the standard port for the SSH protocol. Version 2 of the protocol is the
most secure, whereas version 1 has some flaws that were hard to overcome. It is
recommended to accept only version 2 now. To support both versions, put 2, 1 on
the Protocol line of the configuration file.

On the Exam
SSH uses TCP port 22. Be prepared to know the preferred version of SSH (2) as
well. The second version of SSH is preferable, because version 1 has long been
known to have a weak encryption algorithm that has been broken.

Example /etc/ssh/sshd_config file
Authentication:
PermitRootLogin yes

PubkeyAuthentication yes

rhosts authentication should not be used
RhostsAuthentication no
Don't read the user's ~/.rhosts and ~/.shosts files
IgnoreRhosts yes
For this to work you will also need host keys in /etc/ssh_known_hosts
(for protocol version 2)
HostbasedAuthentication no

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication yes

OpenSSH ignores the host operating system setting for permitting root logins on
nonconsole terminals. Instead, OpenSSH has its own setting in PermitRootLogin.
The PubkeyAuthentication setting allows or denies login authentication based purely
on public-key cryptography. You can trust this as far as you can trust the host on

Using Secure Shell (SSH) | 443

Securing Data with
Encryption

which the private parts of those keys are stored (unless they are protected by pass-
phrases, in which case you can trust them a bit further).

IgnoreRhosts allows or denies the old-fashioned—and very insecure—rhosts au-
thentication, used by the rsh/rlogin/rcp suite. This way of authenticating connections
is not only insecure, but also made obsolete by public-key authentication. If you
combine rhosts authentication with public-key authentication of the connecting
host, on the other hand, it’s immediately a lot more secure—but host keys cannot
be protected by passphrases. Use of the rhosts authentication is still not recommen-
ded, but in some settings it is appropriate, and HostbasedAuthentication enables it.

PasswordAuthentication allows or denies authentication by the old-fashioned pass-
words read and stored by rhosts authentication. This requires that your users exer-
cise good password maintenance, as with all other password-based authentication
schemes.

X11Forwarding yes

If X11 forwarding is enabled on the server and your client requests it (using the -X
option), the client and server will forward traffic from a port on the server side to
your DISPLAY. The server sets the remote DISPLAY to the local port that sshd uses to
transfer X Window System traffic to your local screen, as well as to accept input
from your local devices. To secure this forwarding activity, the server will install an
xauth authentication token that it will enforce for all new connections. This port
forwarding and extra authentication, which we’ll return to, makes OpenSSH a very
versatile remote terminal program.

DSA and RSA Overview
The Digital Signature Algorithm (DSA) is an open standard used for creating digital
signatures based on public key encryption. DSA is used in many different applica-
tions, including SSH and GPG, because it is an open standard and not subject to
traditional copyright. The Rivest, Shamir, Adleman (RSA) algorithm is the first al-
gorithm widely used to create digital signatures, but it is subject to copyright re-
strictions that some developers find onerous.

You will find that SSH uses RSA by default, whereas GPG uses DSA. As with many
algorithms, you can specify various bit lengths; 1024 and 2048 are common lengths,
but given the increase in processor speeds that permit ever-faster brute force attacks,
2048 is currently considered the minimal length to provide acceptable security.

Generating and Using Keys
In most cases, you will want to generate SSH keys for your own accounts and perhaps
your root account. Use ssh-keygen for this. A reference for the needed commands
appears at the end of this section (the short of it is: run ssh-keygen -t dsa and press
the Enter key at all the prompts). This key allows password-less remote logins, as
long as PubkeyAuthentication is enabled in the server configuration file.

444 | Chapter 24: Securing Data with Encryption (Topic 110.3)

In ~/.ssh/id_dsa.pub you can find the public key you’ve generated through ssh-key-
gen. You need to transport this key to the remote machine. Because it’s a public key,
it does not need to be secure. On the remote machine, put the key at the end of
~/.ssh/authorized_keys2. Once the key is in that file, all users who have the private-
key counterpart will be able to log in to that remote account without a password.

Enabling bulk logins on multiple hosts for multiple users

Sometimes it makes sense to let users log into other machines without having to set
up authentication themselves. The easiest way to do this is to create and modify all
the files on one machine, as described in the following procedure, and then use
tar and ssh in a pipe to transfer them to the other hosts.

1. Enable HostbasedAuthentication in /etc/ssh/sshd_config configuration files on
all hosts.

On the Exam
The exam may ask you about the HostbasedAuthentication feature and its
purpose. Make sure that you know its purpose, as well as the exact location
of the /etc/ssh/sshd_config file.

2. Your client configuration is in /etc/ssh/ssh_config. All hosts should have Hostba
sedAuthentication yes set there, and if they have a PreferredAuthentications
statement, it should list hostbased first. The hosts’ private keys should be read-
able only by root (otherwise, the key would not be all that secret). Exactly what
is needed to get SSH access to the keys depends on the version. If your SSH
package includes an executable called ssh-keysign, it must be SUID root (it may
not be installed that way, so you must check this manually) and must provide
the signing service that proves the host’s identity in the key exchange. If the
package does not contain ssh-keysign, make sure the ssh executable is SUID root
through chmod u+s /usr/bin/ssh.

3. On each host, create /etc/ssh/shosts.equiv. This file defines the hosts with equiv-
alent security levels. In these files, enter the hostnames of all the hosts as they
appear in reverse lookups.

4. On each host, create /etc/ssh/ssh_known_hosts. This file must contain the host
keys of all the hosts involved, under the names you used in the previous item.
The easiest way to do this is to connect to all the hosts using the right names.
After doing that, the user account that made the connections will have all the
correct entries in its ~/.ssh/known_hosts file. Simply transfer the entries to the
system file.

After the previous steps are carried out on all the hosts, all ordinary users should be
able to use ssh back and forth between all the nodes with no other authentication.
However, this is not true for the root user; she still needs user key or password
authentication. Trusting a remote root is far more serious than trusting a mundane
remote user.

DSA and RSA Overview | 445

Securing Data with
Encryption

Using the RSA algorithm

The RSA algorithm has become the de facto standard used in SSH and is employed
by default, although it is possible to use additional algorithms. When it comes time
to save the key you generate using RSA, you can use any name you wish. However,
most people stick to the defaults:

~/.ssh/id_rsa
The name of the file that contains the private key. This file should be readable
and writable only by the owner and no one else. If anyone else were to obtain
a copy of this file, he would be able to decipher all communications encrypted
by your copy of SSH.

~/.id_rsa.pub
The name of the file that contains the public key. You can give this key to anyone
you wish. Individuals will import this key into their keychains. Once a user
imports this key, they can decipher encrypted text or files that you send to them.

ssh-keygen

Syntax
ssh-keygen [-b bits] -t type
ssh-keygen -p [-t type]
ssh-keygen -q -t rsa1 -f /etc/ssh/ssh_host_key -C '' -N ''
ssh-keygen -q -t rsa -f /etc/ssh/ssh_host_rsa_key -C '' -N ''
ssh-keygen -q -t dsa -f /etc/ssh/ssh_host_dsa_key -C '' -N ''

Description
ssh-keygen generates keys to identify hosts or users in the SSH protocol, versions 1 and 2.

The first form creates a key. For version 1 of the protocol, the type should be rsa1. For version
2, it can be either rsa or dsa. The -b option sets the number of bits in the keys: 512 is the
minimum, and 1024 bits is the default. In general, you can use as many bits as you like. During
key generation, you will be asked to give a passphrase. A passphrase is different from a password
in that it is a phrase, not simply a word, and is expected to be long. If a key pair has a passphrase
associated with it, you will be expected to provide that passphrase interactively every time you
need to access that key pair. If this is undesirable (for example, if you have unattended processes
accessing the key pair), you don’t want to provide a passphrase.

The second form is used to change your passphrase.

The three last forms are used to generate the three different kinds of host keys. The first is for
version 1 of the protocol; the two others are for version 2. The -f option sets the output filename;
if you omit the option, you will be prompted for the name. The -C option sets a comment on
the key, and -N sets the passphrase.

Example
Generate a private key and then change its passphrase:

$ ssh-keygen -t dsa -b 2048
Generating public/private dsa key pair. Enter file in which to save the key
(/home/janl/.ssh/id_dsa): <Press the Enter key>

ssh-keygen

446 | Chapter 24: Securing Data with Encryption (Topic 110.3)

Created directory '/home/janl/.ssh'.Enter passphrase \
 (empty for no passphrase): passphrase
Enter same passphrase again: passphrase
Your identification has been saved in /home/janl/.ssh/id_dsa.
Your public key has been saved in /home/janl/.ssh/id_dsa.pub.
The key fingerprint is:
c2:be:20:4a:17:2e:3f:b2:73:46:5c:00:ef:38:ca:03 janl@debian
$ ssh-keygen -p -t dsa
Enter file in which the key is (/home/janl/.ssh/id_dsa): <Press the Enter key>
Enter old passphrase: passphrase
Key has comment '/home/janl/.ssh/id_dsa'
Enter new passphrase (empty for no passphrase): passphrase
Enter same passphrase again: passphrase
Your identification has been saved with the new passphrase.

The Server Public and Private Key
When SSH first starts after installation, it will create a key pair, namely /etc/ssh/
ssh_host_rsa_key and /etc/ssh/ssh_host_rsa_key.pub, assuming that the server is us-
ing the default RSA algorithm. This public key always has a .pub ending, and resides
in the /etc/ssh/ directory. The SSH server on your system uses this file to authenticate
itself to anyone who logs on. The ssh-keygen command can be used to view the
contents of the public key file:

$ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub
1024 98:2g:h8:k9:de:9f:fg:90:34:v3:35:3j:26:24:26:7k ssh_host_rsa_key.pub

If the server is using the DSA algorithm, the key names will be as follows:

• /etc/ssh/ssh_host_dsa_key

• /etc/ssh/ssh_host_dsa_key.pub

On the Exam
Make sure that you know the syntax for the -t option of ssh-keygen. Make sure
that you understand the differences in filenames created between specifying the
dsa and the default rsa arguments to the -t option.

ssh-agent
ssh-agent makes it practical to use passphrases on your private keys. The principle
is to use ssh-agent to add your keys to a background agent on the system that will
hold them in escrow. You give your passphrase only once, when you add the key.
The agent will give the keys out to other processes owned by you that request the
keys. You should be aware that the root user can also request the keys without your
noticing, so you must trust the root user.

The process is quite simple; start the agent, and then add the passphrase you used
to create the key:

$ eval `ssh-agent`
Agent pid 11487

ssh-keygen

Chapter 24: Securing Data with Encryption (Topic 110.3) | 447

Securing Data with
Encryption

$ ssh-add
Enter passphrase for /home/janl/.ssh/id_dsa: passphrase
Identity added: /home/janl/.ssh/id_dsa (/home/janl/.ssh/id_dsa)

By default, all your keys will be added. If several of your keys have the same pass-
phrase, they will all be added without further questions. If they have different pass-
phrases, ssh-add will be prompted for them. If you include a file on the ssh-add
command line, the key in that file will be added and the command will not prompt
for keys.

ssh-agent works by setting two environment variables: SSH_AUTH_SOCK, which names
the socket on which to communicate with the agent, and SSH_AGENT_PID, which
makes it easy to kill the agent. That is also why the PID (process ID) shows up in
the previous listing. The agent emits a shell script that, when evaluated, sets those
variables correctly.

Since using passphrases makes remote logins immeasurably more convenient, it may
be a good idea to make it simple for your users to use passphrases by starting ssh-
agent whenever they log in. However, the users’ .bashrc or .login scripts are not a
good place for the command, nor is the system /etc/profile, because you don’t need
the command to run every time a new terminal is started. A good place to put it is
in the system-wide Xsession scripts. Exactly which script is used to start an X session
depends on which distribution and which desktop people use (KDE, GNOME,
classical X, their own custom session). But on Debian-based and Red Hat-based
systems, there are standard ways to do it.

On Debian-based systems, if you put use-ssh-agent on a line by itself in /etc/X11/
xdm/xdm.options, anyone who later logs in with the X Window System will cause
the script /etc/X11/Xsession.d/90xfree86-common_ssh-agent to run. It is reproduced
here for convenience:

STARTSSH=
SSHAGENT=/usr/bin/ssh-agent
SSHAGENTARGS=

if grep -qs ^use-ssh-agent "$OPTIONFILE"; then
 if [-x "$SSHAGENT" -a -z "$SSH_AUTH_SOCK" -a -z "$SSH2_AUTH_SOCK"]; then
 STARTSSH=yes
 if [-f /usr/bin/ssh-add1] && cmp -s $SSHAGENT /usr/bin/ssh-agent2; then
 # use ssh-agent2's ssh-agent1 compatibility mode
 SSHAGENTARGS=-1
 fi
 fi
fi

if [-n "$STARTSSH"]; then
 REALSTARTUP="$SSHAGENT $SSHAGENTARGS $REALSTARTUP"
fi

This script first looks for the system-wide use-ssh-agent setting, then very carefully
checks whether any of the ssh-agent-related variables are set already, because if they
are set, an agent should already be running. Finally, it redefines REALSTARTUP so that

ssh-keygen

448 | Chapter 24: Securing Data with Encryption (Topic 110.3)

the agent will be started later in the Debian scripts. The script could just as well have
run eval 'ssh-agent' directly.

On Red Hat–based systems, you can accomplish the same effect by adding the
preceding script to /etc/X11/xinit/xinitrc.d, but it should be changed to run the agent
directly, as Red Hat–based systems do not set up all the environment variables that
Debian-based systems do. In most versions of Linux, the agent is started
automatically. This includes, for example, all recent versions of Ubuntu and other
Debian-based systems.

But none of these automated systems adds any keys to the agent. That means that
users will still be prompted for a passphrase. Users can run ssh-add (perhaps in
their .bashrc files) and enter their passphrases once into a shell terminal each time
X starts.

It may be a good idea to doctor the automated X setup further with an ssh-add
command. If run without a terminal, ssh-add pops up a graphical passphrase input
box.

On the Exam
You may be asked to provide the proper syntax for making sure ssh-agent is run-
ning (which is eval `ssh-agent`). Also be ready to show how to use ssh-add after
the user has generated a key.

Other SSH Tricks
OpenSSH respects TCP wrapper configurations, described in Chapter 23.

sshd, like the Linux login program, denies logins when the file /etc/nologin exists.
When remotely maintaining hosts in a way that may disrupt user activities, you
should create this file with a helpful explanation of what is happening. This will stop
all nonroot logins by any method, so you can do your maintenance undisturbed.
The file is usually created by the shutdown command as well, to keep users from
logging in while the machine is shutting down. The file is removed after a complete
boot:

cat >/etc/nologin

If there is any reason to suspect that your maintenance work can disconnect you or
break the login mechanism, you should keep multiple login sessions open while
doing the work. Test logging in again before closing them. Otherwise, doing a tiny
PAM change that breaks all authentication could force you to reboot the machine
into single-user mode to recover.

Consider scheduling an at or cron job to remove /etc/nologin at a particular time, in
the event you log yourself out. Such a job can be handy when restarting sshd from
a remote location as well.

ssh-keygen

Chapter 24: Securing Data with Encryption (Topic 110.3) | 449

Securing Data with
Encryption

SSH Port Forwarding
ssh has the ability to forward arbitrary IP-based protocols. The syntax is given next.

ssh -R|L

Syntax
ssh -R|L port:host:host_port [user@]hostname [command]

Description
When the main option is -L, ssh redirects traffic from the local port port to the remote machine
and port given by host:host_port. The host is resolved by the resolver on the host you connect
to. For security reasons, it binds only to the localhost address, not to any ethernet or other
interfaces you may have.

When a program connects to the localhost port, the connection is forwarded to the remote side.
A very useful application for this is to forward local ports to your company’s mail server so you
can send email as if you were at the office. All you have to do then is configure your email client
to connect to the right port on localhost. This is shown by the example in the following section.

When using -R, the reverse happens. The port port of the remote host’s localhost interface is
bound to the local machine, and connections to it will be forwarded to the local machine given
by host:host_port.

Example
Log into login.example.com. Then, forward connections that come into localhost port 2525 to
port 25 on mail.example.com, which would otherwise reject relaying for you. The reason for
binding to port 2525 is that you need to be root to bind to port 25:

$ ssh -L 2525:mail.example.com:25 login.example.com

Configuring OpenSSH
This section explains how to acquire, compile, install, and configure OpenSSH for
Linux, so that you can use it in place of telnet, rsh, and rlogin.

In the unlikely event that your Linux distribution does not include OpenSSH, it is
available at http://www.openssh.com/portable.html and at many mirror sites around
the world. It is a simple matter to compile and install OpenSSH if you have gcc,
make, and the necessary libraries and header files installed. The OpenSSH build uses
autoconf (the usual configure, make, and so on) like most other free software/open
source projects.

To enable login from remote systems using OpenSSH, you must start sshd, which
may be done simply by issuing the following command:

sshd

Note that you do not need to put this command in the background, as it handles
this detail itself. Once the sshd daemon is running, you may connect from another
SSH-equipped system:

ssh mysecurehost

ssh -R|L

450 | Chapter 24: Securing Data with Encryption (Topic 110.3)

http://www.openssh.com/portable.html

The default configuration should be adequate for basic use of SSH.

On the Exam
SSH is an involved and highly configurable piece of software, and detailed knowl-
edge of its setup is not required. However, SSH is an important part of the security
landscape. Be aware that all communications using SSH are encrypted using pub-
lic/private key encryption, which means that plain-text passwords are not exposed
by SSH and are therefore unlikely to be compromised.

Configuring and Using GNU Privacy Guard (GPG)
This book isn’t the place for a full GPG tutorial. However, the LPI 102 exam requires
you to understand how to use the standard GPG command to:

• Generate a key pair

• Import (i.e., add) a public key to a GPG keyring

• Sign keys

• List keys

• Export both a public and private key

• Encrypt and decrypt a file

You will also be expected to troubleshoot a standard implementation, which means
that you’ll need to understand the files in the ~/.gnupg/ directory.

Generating a Key Pair
Following is an example of the sequence necessary for generating a key pair in GPG:

$ gpg --gen-key
pg (GnuPG) 1.2.1; Copyright (C) 2008 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

gpg: keyring '/home/james/.gnupg/secring.gpg' created
gpg: keyring '/home/james/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection? 5
What keysize do you want? (1024) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months

Configuring and Using GNU Privacy Guard (GPG) | 451

Securing Data with
Encryption

 <n>y = key expires in n years
Key is valid for? (0) 3y
Key expires at Fri Sep 18 00:23:00 2009 CET
Is this correct (y/n)? y

You need a User-ID to identify your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:
 "James Stanger (James Stanger) <stangernet@comcast.net>"
Real name: James Stanger
Email address: stangernet@comcast.net
Comment: <nothing>
You selected this USER-ID:
 "James Stanger <stangernet@comcast.net>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
Enter passphrase: <passphrase>
Repeat passphrase: <passphrase>

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
..+++++
+++++
public and secret key created and signed.
key marked as ultimately trusted.

pub 2048R/97DAFDB2 2004-01-12 James Stanger <stangernet@comcast.net>
Key fingerprint = 85B2 0933 AC51 430B 3A38 D673 3437 9CAC 97DA FDB2

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a secondary key for this purpose.

Notice that you have several options when you first issue the gpg --gen-key
command:

DSA and ElGamal
A DSA key pair is created for making signatures to sign files, and an ElGamal
key pair is created to encrypt files.

DSA sign only
A faster method, but only creates a key pair that can sign files.

RSA sign only
Same as option 2 but uses RSA encryption instead of DSA.

On the Exam
You will only need to know about option 1, DSA and ElGamal. You will not be
expected to know how to use GPG with email applications, such as Mozilla
Thunderbird.

452 | Chapter 24: Securing Data with Encryption (Topic 110.3)

Importing a Public Key to a GPG Keyring
The GPG public key repository is called a “keyring.” The keyring contains your
private key (or multiple private keys), plus all of the public keys of individuals you
wish to communicate with. To add a public key to your keyring, you generally obtain
a text file that contains the public key. If, for example, the file were named
andy_oram_oreilly.asc, you would issue the following command:

$ gpg --import andy_oram_oreilly.asc

Signing Keys
Before you can safely use an imported key, you need to sign it. To do so, issue the
following command from your terminal:

$ gpg --edit-key username

If, for example, you wished to sign the key within the andy_oram_oreilly.asc file,
you would need to obtain the username of that key. Let’s assume that the username
is Andyo. You would then issue the following command:

$ gpg --edit-key "Andyo"

You will then be asked if you wish to really sign the key. As your reply, you need to
provide the password for your private key. Once you do this, GPG will sign the key
you have just imported.

Listing Keys
Once you have imported keys, you can then list all of them by using the --list-keys
option:

$ gpg --list-keys

This command lists both your private key (you usually have only one, but you can
have as many as you like) as well as the public keys you have imported. An example
of output from the command on a keyring that contains keys for James Stanger and
Andy Oram would appear as follows:

/home/james/.gnupg/pubring.gpg

pub 2048g/CC7877gh 2009-09-11 James (Stanger) <stangernet@comcast.net>
sub 2048g/89G5B4KM 2009-09-11

pub 2048D/4g37NJ27 2009-12-09 Andyo (Oram) <andyo@oreilly.com>
sub 2048D/4g37GK38 2009-12-09

The pub defines the DSA master signing key, and the sub defines the ElGamal en-
cryption subkey.

If you wish to list just the private keys, or what GPG calls “secret keys,” use the
--list-secret-keys option. To list just the public keys, use the --list-public-keys option.

Configuring and Using GNU Privacy Guard (GPG) | 453

Securing Data with
Encryption

Export both a Public and Private Key
Exporting your private key is useful because you will want to create a backup should
your system somehow become unavailable or experience a problem. To create a
backup of all keys to a single file, issue the following command:

$ gpg --export -o gpg_backup_file

If, for example, your username were James Stanger, the following command would
export only your private key to a file named private.key:

$ gpg --export-secret-key -a "James Stanger" -o private.key

To export your public key, you would issue the following command:

$ gpg -- export-public-key -a "James Stanger" -o stanger.pub

Encrypting a File
Now suppose that you wish to encrypt a file named chapter24.odt so that only the
user named Andy Oram can use it. You would issue the following command:

$ gpg -e -u "James Stanger" -r "Andy Oram" chapter24.odt

The resulting file would be called chapter24.odt.gpg.

Once Andy receives this file, he would issue the following command:

$ gpg -d chapter24.odt.gpg

He would then be able to read the file using OpenOffice.

Troubleshooting Files in the ~/.gnupg/ Directory
The LPI exam also expects you to identify the files in the ~/.gnupg directory, mainly
because you may need to troubleshoot an installation or obtain a private key. Fol-
lowing is a listing of the files found in a typical GPG implementation, regardless of
Linux distribution:

gpg.conf
Allows you to create default settings for GPG, including a preferred key server.
A key server contains the public keys of any user who wishes to upload her keys.

pubring.gpg
Contains the public keys that you have imported.

random_seed
A text file containing settings that enable GPG to create random numbers more
quickly and easily.

secring.gpg
Contains the private key that determines your identity.

trustdb.gpg
The trust database, which contains the information concerning the trust values
you have assigned to various public keys. A user may set variable levels of trust

454 | Chapter 24: Securing Data with Encryption (Topic 110.3)

to public keys in his key ring. More information on trust can be found in the
GPG documentation.

On the Exam
Make sure that you understand how to import a public key and export both public
and private keys.

Configuring and Using GNU Privacy Guard (GPG) | 455

Securing Data with
Encryption

http://www.gnupg.org/gph/en/manual.html

25
Exam 102 Review Questions and

Exercises

This chapter presents review questions to highlight important concepts and hands-
on exercises that you can use to gain experience with the Topics covered on the LPI
Exam 102. The exercises can be particularly useful if you’re not accustomed to more
advanced Linux administration, and they should help you better prepare for the
exam. To complete the exercises, you need a working Linux system that is not in
production use. You might also find it useful to have a pen and paper handy to write
down your responses as you work your way through the review questions and
exercises.

Shells, Scripting, and Data Management (Topic 105)

Review Questions
1. Why is it dangerous to have “.” (the current working directory) in your $PATH

variable?

2. What characteristic of a bash variable changes when the variable is exported?

3. What configuration files will bash read when a shell is started?

4. Describe the concept of shell aliases.

5. When is a shell function more suitable than a shell alias?

6. Describe the function of /etc/profile.

7. What must the author of a new script file do to the file’s mode in order to make
it executable?

8. How does the shell determine what interpreter to execute when starting a script?

9. How can a shell script use return values of the commands it executes?

10. What are some common open source databases available on Linux systems?

457

11. Describe the common MySQL datatypes and when they are appropriate to use.

12. What is the difference between a join and a left join in a SQL query?

Exercises
1. Using bash, enter the export command and the set command. Which set of

variables is a subset of the other? What is the difference between the variables
reported by export and those reported by set? Finally, enter which export. Where
is the export command located?

2. Examine /etc/profile. How is the default umask set? What customizations are
done in the file for system users?

3. Create a simple bash script using the #!/bin/bash syntax, set the executable
mode bits, and execute the shell. If it runs correctly, add errors to see the diag-
nostic messages. Have the script report both exported and nonexported varia-
bles. Verify that the nonexported variables do not survive the startup of the new
shell.

4. Create some bash aliases in your current shell. Start a new shell by running the
command bash in your current shell. Do your aliases work in this child shell?
Why or why not?

5. Create a MySQL table structure that could be used to store the fields in the
file /etc/passwd. Write a shell script to parse this file, one line at a time, and call
the mysql command-line program to insert the users defined in /etc/passwd into
your table. Once this is complete, write a SQL query to list all usernames that
have a shell of /bin/bash.

The X Window System (Topic 106)

Review questions
1. What is the main X Windows configuration file?

2. What are the troubleshooting steps you need to take when X Windows won’t
start?

3. How can you switch between desktop environments (for example, running
KDE instead of Gnome)?

4. What are some common functions that can be used to assist visually impaired
users with using X Windows?

5. What file would you edit to make an application run every time you log into X
Windows?

Exercises
1. Boot your system into runlevel 3. Log in as root and type the command /usr/

bin/startx. Exit X Windows and examine the logfile /var/log/Xorg.0.log. What
specific things does this file tell you about your graphical environment? From

458 | Chapter 25: Exam 102 Review Questions and Exercises

this file, can you determine what video card you have and what resolutions it
supports?

2. Exit X Windows and use the /sbin/init command to change your system to run-
level 5. Once X Windows starts, hit the key combination Ctrl-Alt-backspace.
What happens to X Windows? Why does this happen?

Administrative Tasks (Topic 107)

Review questions
1. What would happen to a user account if the default shell were changed

to /bin/false?

2. When a new account is created with useradd -m, what files are used to populate
the new home directory?

3. Compare and contrast the execution of /etc/profile and /etc/bashrc.

4. Compare and contrast cron and at.

5. Is there a cron command?

6. Describe the format of a crontab file, describing each of the six fields.

7. What does an asterisk mean in crontab fields 1 through 5?

Exercises
1. Add a user with useradd, including a new home directory populated with files

from /etc/skel.

2. Add a group with groupadd.

3. Use usermod to add your new user to the new group.

4. Set the new user’s password using passwd.

5. Log into the new account, and use newgrp to change to the new group.

6. Delete the new group and user (including home directory) using groupdel and
userdel.

7. Examine the contents of /etc/skel. How similar are they to your own home
directory?

8. Review the contents of /etc/profile and /etc/bashrc.

9. Add an entry in your personal crontab file to perform a task, such as sending
you an email message. Confirm that the action occurs as expected. Experiment
with the five time specifiers.

10. Schedule a command in the future with at. How is at different from cron?

Administrative Tasks (Topic 107) | 459

Exam
 102 Review

Essential System Services (Topic 108)

Review Questions
1. Why is accurate time important on a Linux system? What options exist to keep

time in sync?

2. Describe the difference between system time and the hardware clock.

3. How is time stored on a Linux system? How is the time zone used to modify
this value?

4. What two things does the syslogd server use to categorize log entries? What are
the limitations of this format?

5. Give some examples of what kinds of messages you would expect to see in /var/
log/messages.

6. What does lpd do to handle incoming print jobs destined for empty print
queues?

7. Describe the kinds of information included in /etc/printcap.

8. What is the function of a print filter?

9. What does the -P option specify to the print commands?

10. When is it useful to pipe into the standard input of lpr instead of simply using
a filename as an argument?

11. How is the Ghostscript program used in printing to a non-PostScript printer?

12. What filter is used on a Linux system to print to remote printers on Windows
clients?

13. What are the common Mail Transport Agents (MTAs) used on Linux systems?
Give a brief description of each.

14. What command would you use to view the contents of the mail queue on a
system running sendmail? What command would you use to force a resend of
that queue?

15. What is the easiest way to forward all email coming into an account to another
email address?

16. What file is used to maintain email aliases for local users? Describe the main-
tenance procedure for this file.

Exercises
1. Run the date command on your system. Is your system clock accurate? Run the

command ntpd –gnq. Did you system time change? By how much?

2. Add this line:

. /var/log/everything

to /etc/syslog.conf and restart syslog. Now run tail –f /var/log/everything. What
kinds of things do you see? How often are events written to this log?

460 | Chapter 25: Exam 102 Review Questions and Exercises

3. Add the local5 facility to your configuration. Use logger to write to your new
logfile, and verify its contents. Compare your log entries with those in /var/log/
messages.

4. Examine /etc/logrotate.conf. What happens after /var/log/messages is rotated?

5. On a system with an existing printer, examine /etc/printcap. Which print filter
is used for the printer? Which queue or queues are directed at the printer?

6. Check the printer status with lpq -P printer and lpc status. Print to the queue
using lpr -P printer file.

7. Examine /var/spool/lpd for the spool directory of your print queue. Examine the
files you find there.

8. Determine what MTA is installed on your system. Is it listening on TCP port
25? How can you tell?

9. Type the command telnet localhost 25. What do you see?

10. Type the command echo “test” | mail root. Now type tail /var/log/maillog. Was
your mail delivered? How can you tell?

Networking Fundamentals (Topic 109)

Review Questions
1. Describe how the subnet mask affects the maximum number of hosts that can

be put on a TCP/IP network.

2. Name the three default address classes and the subnet masks associated with
them.

3. Identify the IPv4 private address ranges.

4. What are some advantages IPv6 has over IPv4?

5. The UDP protocol is said to be connectionless. Describe this concept and its
consequences for applications that use UDP.

6. What is a TCP port? Give some examples of common TCP ports and the ap-
plications and protocols that use them.

7. What user command is frequently used to send ICMP messages to remote hosts
to verify those hosts’ connectivity?

8. Describe the contents and use of /etc/hosts.

9. In what configuration file are DNS servers listed? What is intended if the local
loopback address is included there on a workstation?

10. Name two modes of the netstat command and the program’s output in each
case.

11. Describe why the route command is needed for a single interface on a nonrout-
ing workstation.

12. How does traceroute determine the identities of intermediate gateways?

13. Describe the advantages and consequences of implementing DHCP.

Networking Fundamentals (Topic 109) | 461

Exam
 102 Review

Exercises
1. Examine your system’s TCP/IP configuration using ifconfig eth0 or a similar

command for your network interface. Are you using DHCP? What type of sub-
net are you running with? Is it a class A, B, or C address? Are you using a private
address? Experiment with taking the interface offline using ifconfig eth0 down
and ifconfig eth0 up.

2. Examine the contents of /etc/services. How many protocols do you recognize?

3. Use the dig command to locate information from DNS servers about a domain
name.

4. Examine your /etc/hosts file. How much name resolution is accomplished in this
file manually?

5. Examine your /etc/resolv.conf file. How many DNS servers do you have
available?

6. Execute netstat -r. How many routes are reported? What are the routes to the
local network and interface for?

7. Use traceroute to examine the route to a favorite website.

Security (Topic 110)

Review Questions
1. What daemon is associated with the control files /etc/hosts.allow and /etc/

hosts.deny?

2. In general terms, describe a method to locate SUID programs in the local file-
system. Why might an administrator do this routinely?

3. What is the danger of making /bin/vi SUID?

4. Why should a user run ssh instead of telnet?

5. Describe shadow passwords and the file where the passwords are stored. Why
don’t we store encrypted password strings in /etc/passwd anymore?

6. How can the tool /usr/sbin/lsof help you identify potential security issues?

7. What is the difference between a hard limit and a soft limit, with regard to the
ulimit command?

8. Why is it advisable to use sudo rather than su in an environment with multiple
administrators?

9. What kinds of things can you ascertain about a remote system with the nmap
command?

10. Describe the process of key-based authentication between systems using ssh.

11. What is the difference between a public and a private key? What are they used
for?

12. Describe how to encrypt a file with gpg.

462 | Chapter 25: Exam 102 Review Questions and Exercises

Exercises
1. Use find as described in Chapter 22 to locate SUID files. Is the list larger than

you expected? Are the entries on your list justifiably SUID programs?

2. Create an entry in /etc/sudoers that lets your user account run any command as
root. Run some commands through sudo and watch the file /var/log/messages.
What entries do you see? How would this be useful in a multiadministrator
environment?

3. Look at the file /etc/shadow. What user accounts do not have passwords? Why
don’t they?

4. Experiment with the chage command to set the password age for your account.

5. Run ulimit –a. What default limits are set? What would be some useful limits
to place on users?

6. Run netstat --tcp –anp | grep LISTEN. What processes on your system are lis-
tening on TCP ports? If you were to harden this system, how would you change
this configuration?

7. Run nmap localhost. Does this output match what you saw from the previous
netstat command? Why or why not?

8. If you have xinetd installed, go to the /etc/xinetd.d directory and determine what
services are enabled.

9. Run ssh-keygen –t dsa. What files were created in ~/.ssh? What are the permis-
sions on those files?

On the Exam
Practice, practice, practice! The best way to get familiar with Linux is by interacting
with a working Linux system. Become familiar with the command line and how
to read logfiles. Nothing is hidden from you in Linux; if you know where to look,
simple tools such as cat, ls, and grep will tell you everything you need to know
about your system. Spend as much time as you can working hands-on with a Linux
system before you take the LPI 102 exam.

Security (Topic 110) | 463

Exam
 102 Review

26
Exam 102 Practice Test

This chapter will give you an idea of what kinds of questions you can expect to see
on the LPI 102 test. All questions are either multiple-choice single answer, multiple-
choice multiple answer, or fill in the blank.

The questions are not designed to trick you; they are designed to test your knowledge
of the Linux operating system.

As of April 1, 2009, all exam weights for LPI exams have been standardized to 60
weights.

Regardless of weight totals, each exam score is between 200 and 800. A passing score
is 500. However, the number of correct questions required to achieve a score of 500
varies with the overall difficulty of the specific exam that is taken.

The number of questions on the exam is also tied to the total of the weights of the
Objectives on the exam. With a total weight count of 60, the exam will have 60
questions. For each weighting, there will be one question. For example, if an Ob-
jective has a weight of 4, there will be 4 questions on the exam related to the objective.

The answers for these sample questions are at the end of this chapter.

Questions
1. What environment variable holds the list of all directories that are searched by

the shell when you type a command name?

a. $LIST

b. $VIEW

c. $PATH

d. $ENV

e. None of the above

465

2. In the bash shell, entering the !! command has the same effect as which one of
the following (assuming bash is in emacs mode)?

a. Ctrl-P and Enter

b. Ctrl-N and Enter

c. Ctrl-U and Enter

d. !-2

e. !2

3. Name the command that displays pages from the online user’s manual and
command reference.

4. Which of the following commands displays the comments from a bash script?
Select all that apply.

a. find “^#” /etc/rc.d/rc.local

b. sed ‘/^#/ !d’ /etc/init.d/httpd

c. grep ^# /etc/init.d/httpd

d. grep ^# /etc/passwd

e. locate “^#” /etc/skel/.bashrc

5. Which one of the following answers creates an environment variable VAR1,
present in the environment of a bash child process?

a. VAR1="fail" ; export VAR1

b. VAR1="fail" \ export VAR1

c. VAR1="fail"

d. set VAR1="fail" ; enable VAR1

e. export VAR1 \ VAR1="fail"

6. What SQL command is used to modify data present in a table?

a. INSERT

b. WHERE

c. UPDATE

d. OVERWRITE

e. JOIN

7. What output will the following command generate: seq -s";" -w 1 10

a. 01;02;03;04;05;06;07;08;09;10

b. 1;2;3;4;5;6;7;8;9;10

c. 1;10

d. 01;02;03;04;05;06;07;08;09;010

e. None of the above

466 | Chapter 26: Exam 102 Practice Test

8. Adam wants to protect himself from inadvertently overwriting files when copy-
ing them, so he wants to alias cp to prevent overwrite. How should he go about
this? Select one.

a. Put alias cp='cp -i' in ~/.bashrc

b. Put alias cp='cp -i' in ~/.bash_profile

c. Put alias cp='cp -p' in ~/.bashrc

d. Put alias cp='cp -p' in ~/.bash_profile

e. Put alias cp = 'cp -I' in ~/.bashrc

9. Consider the following script, stored in a file with proper modes for execution:

#!/bin/bash
for $v1 in a1 a2
do
echo $v1
done

Which one of the following best represents the output produced on a terminal
by this script?

a. in

a1

a2

b. a1

a2

c. $v1

$v1

$v1

d. No output is produced, but the script executes correctly.

e. No output is produced, because the script has an error.

10. Monica consults the /etc/passwd file expecting to find encrypted passwords for
all of the users on her system. She sees the following:

jdoe:x:500:500::/home/jdoe:/bin/bash
bsmith:x:501:501::/home/bsmith:/bin/tcsh

Which of the following is true? Select one.

a. Accounts jdoe and bsmith have no passwords.

b. Accounts jdoe and bsmith are disabled.

c. The passwords are in /etc/passwd-.

d. The passwords are in /etc/shadow.

e. The passwords are in /etc/shadow-.

11. What is the main configuration file for X Windows?

a. /etc/xorg.conf

b. /etc/x11.conf

Questions | 467

Exam
 102 Practice

Test

c. /etc/X11/x11.conf

d. /etc/X11/xorg.conf

e. None of the above

12. What file in the user’s home directory will an X Windows application look to
for configuration settings such as color and video mode?

a. ~/.xinitrc

b. ~/.xconfig

c. ~/.Xresources

d. ~/.xorg.conf

e. ~/.bashrc

13. What is the protocol XDMCP used for?

a. Remote logging of X Windows events.

b. Remote control of a running X Windows display.

c. Graphical login support for the local host.

d. Graphical login support for remote hosts on the network.

e. None of the above.

14. Which of the following are not commonly used display managers for X Win-
dows? Choose two.

a. xdm

b. gdm

c. kdm

d. xfce

e. X11

15. Emacspeak is:

a. A popular text editor for Linux.

b. A window manager.

c. An assistive technology that handles screen reading for a number of console
applications.

d. An assistive technology that provides a user with an on-screen keyboard.

e. None of the above.

16. Which one of the following outcomes results from the following command?

chmod g+s /home/software

a. The SUID bit will be set for /home/software.

b. The SGID bit will be set for /home/software, preventing access by those not
a member of the software group.

c. The SGID bit will be set for /home/software, to keep group membership of
the directory consistent for all files created.

468 | Chapter 26: Exam 102 Practice Test

d. The sticky bit will be set for /home/software.

e. The sticky bit will be applied to all files in /home/software.

17. Which one of these files determines how messages are stored using syslogd?

a. /etc/sysconfig/logger.conf

b. /etc/syslog.conf

c. /etc/syslogd.conf

d. /etc/conf.syslog

e. /etc/conf.syslogd

18. Which MTA was designed specifically with security in mind?

a. Sendmail

b. Postfix

c. Qmail

d. Exim

e. None of the above

19. Where are mail logs usually stored in a standard syslog setup?

a. /var/log/messages

b. /var/log/secure

c. /var/log/dmesg

d. /var/log/maillog

e. /var/maillog

20. How many hosts can exist on a subnet with mask 255.255.255.128? Select one.

a. 512

b. 256

c. 128

d. 127

e. 126

21. For an Internet workstation with a single network interface, what routes must
be added to interface eth0 after it is initialized? Select one.

a. None

b. Interface

c. Interface and default gateway

d. Interface, local network, and default gateway

22. On a Linux server, what service is most likely “listening” on port 25? Select one.

a. Apache

b. SSHd

c. Postfix

Questions | 469

Exam
 102 Practice

Test

d. Samba

e. FTP

23. Which one of these protocols is a Layer 4 connection-oriented protocol? Select
one.

a. TCP

b. IP

c. UDP

d. ICMP

24. Which command will display information about Ethernet interface eth0? Select
one.

a. cat /proc/eth/0

b. ifconfig eth0

c. ipconfig eth0

d. ipconfig /dev/eth0

e. cat /etc/eth0.conf

25. What does the printcap entry sd indicate? Select one.

a. The system default printer

b. A printer’s spool directory

c. A device file for the printer

d. A location where errors are stored

e. The printer driver

26. Which of the following is a valid entry in /etc/fstab for a remote NFS mount
from server fs1? Select one.

a. fs1:/proc /mnt/fs1 nfs defaults 9 9

b. /mnt/fs1 fs1:/proc nfs defaults 0 0

c. fs1:/home /mnt/fs1 nfs defaults 0 0

d. /mnt/fs1 fs1:/home nfs defaults 0 0

e. /home:fs1 /mnt/fs1 nfs defaults 0 0

27. Which network protocol is used by SSH and FTP? Select one.

a. ICMP

b. UDP

c. TCP

d. DHCP

e. PPP

28. Which of the following programs will display DNS information for a host?
Choose all that apply.

a. host

b. nslookup

470 | Chapter 26: Exam 102 Practice Test

c. nsstat

d. dig

e. ping

29. Which of the following statements regarding the ICMP protocol is not true?
Select one.

a. ICMP is connectionless.

b. ICMP provides network flow control.

c. ICMP is also known as UDP.

d. ICMP is used by ping.

30. What server daemon resolves domain names to IP addresses for requesting
hosts?

31. What function does a print filter serve? Select one.

a. It collates output from multiple users.

b. It translates various data formats into a page description language.

c. It rejects print requests from unauthorized users.

d. It rejects print requests from unauthorized hosts.

e. It analyzes print data and directs print requests to the appropriate lpd.

32. Consider the following excerpt from the file /etc/resolv.conf on a Linux
workstation:

nameserver 127.0.0.1
nameserver 192.168.1.5
nameserver 192.168.250.2

What can be said about this configuration? Select one.

a. Two DNS servers on the public network are being used for resolution.

b. One DNS server on the local network is being used for resolution.

c. The configuration contains errors that will prevent the resolver from
functioning.

d. A caching-only nameserver is the first nameserver queried.

e. The resolver library will consult nameserver 192.168.250.2 first.

33. Name the file that contains simple mappings between IP addresses and system
names.

34. What program can be used to interactively change the behavior of a print queue?
Select one.

a. lpd

b. lpr

c. lpq

d. lprm

e. lpc

Questions | 471

Exam
 102 Practice

Test

35. What program will display a list of each hop across the network to a specified
destination? Select one.

a. tracert

b. rttrace

c. traceroute

d. routetrace

e. init

36. What is the system-wide bash configuration file called? Include the entire path.

37. How can a nonprivileged user configure sendmail to forward mail to another
account? Select one.

a. She can add a new entry in /etc/aliases.

b. She can create a .forward file containing the new address.

c. She can create an .alias file containing the new address.

d. She can create a sendmail.cf file containing the new address.

e. She cannot forward mail without assistance from the administrator.

38. How does a process indicate to the controlling shell that it has exited with an
error condition? Select one.

a. It prints an error message to stderr.

b. It prints an error message to stdout.

c. It sets an exit code with a zero value.

d. It sets an exit code with a nonzero value.

e. It causes a segmentation fault.

39. Consider the following trivial script called myscript:

#!/bin/bash
echo "Hello"
echo $myvar

Also consider this command sequence and result:

set myvar='World'
./myscript
Hello

The script ran without error but didn’t echo World. Why not? Select one.

a. The syntax of the set command is incorrect.

b. The script executes in a new shell, and myvar wasn’t exported.

c. The #!/bin/bash syntax is incorrect.

d. The $myvar syntax is incorrect.

e. The script is sourced by the current shell, and myvar is available only to new
shells.

40. Consider the following line from /etc/passwd:

adamh:x:500:1000:Adam Haeder:/home/adamh:/bin/bash

472 | Chapter 26: Exam 102 Practice Test

What does the number 1000 mean?

a. User adamh has a UID of 1000.

b. The primary group that adamh belongs to is group 1000.

c. User adamh was the 1000th user created on this system

d. The password for adamh expires in 1000 days.

e. The secondary group that adamh belongs to is group 1000.

Answers
1. c. $PATH

2. a. The !! command history expansion executes the previous command. Enter-
ing the Ctrl-P keystroke uses the Emacs key-binding bash to move up one line
in the history; pressing Enter executes that command.

3. The man command displays manpages.

4. b AND c. find and locate do not search the contents of files. /etc/passwd is not
a script.

5. a. The variable must be set and exported. The semicolon separates the two
commands.

6. c. UPDATE

7. a. 01;02;03;04;05;06;07;08;09;10. The -w option to seq instructs it to pad with
zeros.

8. a. cp should be aliased to the interactive mode with the -i option
in .bashrc. .bash_profile normally doesn’t include aliases.

9. e. The script has an error and will not produce the expected output. In a for
statement, the loop variable does not have the dollar sign. Changing line 2 to
for v1 in a1 a2 will correct the error and produce the output in answer b.

10. d. The shadow password system has been implemented, placing all passwords
in /etc/shadow as denoted by the x following the username.

11. d. /etc/X11/xorg.conf

12. c. ~/.Xresources

13. d. Graphical login support for remote hosts on the network

14. d. xfce and e. X11.

15. c. An assistive technology that handles screen reading for a number of console
applications

16. c. The g indicates that we’re operating on the group privilege, and the +s indi-
cates that we should add the “set id” bit, which means that the SGID property
will be applied.

17. b. /etc/syslog.conf

18. c. Qmail

19. d. /var/log/maillog

Answers | 473

Exam
 102 Practice

Test

20. e. With the top bit of the last byte set in the subnet mask (.128), there are 7 bits
left. 27 is 128, less the network address and broadcast address, leaving 126
addresses for hosts.

21. d. Routes to the interface and the network are required to exchange information
on the local LAN. To access the Internet or other nonlocal networks, a default
gateway is also necessary.

22. c. As defined in /etc/services, port 25 is the SMTP port, often monitored by
postfix.

23. a. TCP. UDP is also a Layer 4 protocol, but it is connectionless.

24. b. The ifconfig command is used to configure and display interface information.
ipconfig is a Windows utility.

25. b. The spool directory directive looks like this:

sd=/var/spool/lpd/lp

26. c. Answer a attempts to mount the /proc filesystem. Answers b, d, and e have
incorrect syntax.

27. c. Both Telnet and FTP are connection-oriented and use TCP for reliable
connections.

28. a, b, d, AND e.

29. c. Although both ICMP and UDP are connectionless, they are different
protocols.

30. The DNS daemon is named. It is included in a package called BIND.

31. b. A print server translates formats, such as PostScript to PCL.

32. d. The presence of the localhost address 127.0.0.1 indicates that named is run-
ning. Since the system is a workstation, it’s safe to assume that it is not serving
DNS to a wider community.

33. /etc/hosts.

34. e. lpc is the line printer control program.

35. c. traceroute. tracert is a Windows utility with the same function as traceroute.

36. The file is /etc/profile.

37. b. The .forward file is placed in the home directory containing a single line with
the target email address.

38. d. Zero exit values usually indicate success.

39. b. Instead of using set, the command should have been:

export myvar='World'

This gives the myvar variable to the new shell.

40. b. The primary group that adamh belongs to is group 1000.

474 | Chapter 26: Exam 102 Practice Test

27
Exam 102 Highlighter’s Index

Shells, Scripting, and Data Management

Objective 105.1: Customize and Use the Shell Environment
• A shell presents an interactive Textual User Interface, an operating environ-

ment, a facility for launching programs, and a programming language.

• Shells can generally be divided into those derived from the Bourne shell, sh
(including bash), and the C-shells, such as tcsh.

• Shells are distinct from the kernel and run as user programs.

• Shells can be customized by manipulating variables.

• Shells use configuration files at startup.

• Shells pass environment variables to child processes, including other shells.

Bash

• bash is a descendant of sh.

• Shell variables are known only to the local shell and are not passed on to other
processes.

• Environment variables are passed on to other processes.

• A shell variable is made an environment variable when it is exported.

• This sets a shell variable:

PI=3.14

• This turns it into an environment variable:

export PI

• This definition does both at the same time:

export PI=3.14

475

• Shell aliases conveniently create new commands or modify existing commands:

alias more='less'

• Functions are defined for and called in scripts. This line creates a function
named lsps:

lsps () { ls -l; ps; }

• bash configuration files control the shell’s behavior. Table 13-1 contains a list
of these files.

Objective 105.2: Customize or Write Simple Scripts
• Scripts are executable text files containing commands.

• Scripts must have appropriate execution bits set in the file mode.

• Scripts may define the command interpreter using the syntax #!/bin/bash on
the first line.

Environment

• A script that starts using #!/bin/bash operates in a new invocation of the shell.
This shell first executes standard system and user startup scripts. It also inherits
exported variables from the parent shell.

• Like binary programs, scripts can offer a return value after execution.

• Scripts use file tests to examine and check for specific information on files.

• Scripts can use command substitution to utilize the result of an external
command.

• Scripts often send email to notify administrators of errors or status.

• Refer to Chapter 13 for details on bash commands.

Objective 105.3: SQL Data Management
• Common MySQL datatypes are integer, float, boolean, date, timestamp, date-

time, char, varchar, blob, and text.

• The SQL syntax for creating a table with one varchar column and one auto-
increment integer column (which is also the primary key) is:

CREATE TABLE test (id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, \
column1 varchar(255), PRIMARY KEY (id));

• INSERT is used to insert data into a table, UPDATE is used to modify a data
value in an existing table row, and SELECT is used to display values from a table.

• ALTER TABLE is used to add/remove columns to a table, or modify a datatype.

• A LEFT JOIN is used when we want to display items from two or more tables
connected by a relationship, where each item present in the left table will display
in the results, even if there is not a match with the other table being joined.

476 | Chapter 27: Exam 102 Highlighter’s Index

The X Window System

Objective 106.1: Install and Configure X11
• X.Org is the most popular X Windows implementation on Linux, replacing

XFree86.

• Window managers handle the functions of creating and managing windows
and things such as minimization, maximization, and screen placement.

• Desktop environments are collections of common desktop programs that work
together to create a unified desktop experience. These will include applications
such as window managers, file managers, launch bars, screensavers, and session
managers. The two most common desktop environments are Gnome and KDE.

• The main configuration file for X.Org is /etc/X11/xorg.conf.

• X Windows can be configured to either read fonts from a local directory or
access a font server, such as xfs, running either on the local machine or on
another machine on the network.

Objective 106.2: Set Up a Display Manager
• Display managers are GUI programs that handle the user login process. They

are most often invoked when a Linux system enters runlevel 5. Common display
managers are xdm, gdm, and kdm. They can all be configured to support remote
graphical logins from other terminals through the XDMCP protocol.

Objective 106.3: Accessibility
• Many applications exist to assist with accessibility in Linux, including Emac-

speak, Orca, and BLINUX. In addition to these separate applications, most
desktop environments support assistive technologies such as StickyKeys,
MouseKeys, and RepeatKeys. On-screen keyboards are also a commonly used
assistive technology.

Administrative Tasks

Objective 107.1: Manage User and Group Accounts and Related System
Files

passwd and group

• User account information is stored in /etc/passwd.

• Each line in /etc/passwd contains a username, password, UID, GID, user’s name,
home directory, and default shell.

• Group information is stored in /etc/group.

Administrative Tasks | 477

Exam
 102 High-

lighter’s Index

• Each line in /etc/group contains a group name, group password, GID, and group
member list.

• passwd and group are world-readable.

Shadow files

• To prevent users from obtaining encrypted passwords from passwd and
group, shadow files are implemented.

• Encrypted passwords are moved to a new file, which is readable only by root.

• The shadow file for /etc/passwd is /etc/shadow.

• The shadow file for /etc/group is /etc/gshadow.

User and group management commands

The following commands are commonly used for manual user and group
management:

useradd user
Create the account user.

usermod user
Modify the user account.

userdel user
Delete the user account.

groupadd group
Add group.

groupmod group
Modify the parameters of group.

groupdel group
Delete group.

passwd username
Interactively set the password for username.

chage user
Modify password aging and expiration settings for user.

Objective 107.2: Automate System Administration Tasks by Scheduling
Jobs

• Both cron and at can be used to schedule jobs in the future.

• Scheduled jobs can be any executable program or script.

Using cron

• The cron facility consists of crond, the cron daemon, and crontab files containing
job-scheduling information.

• cron is intended for the execution of commands on a periodic basis.

478 | Chapter 27: Exam 102 Highlighter’s Index

• crond examines all crontab files every minute.

• Each system user has access to cron through a personal crontab file.

• The crontab command allows the crontab file to be viewed and, with the –e
option, edited.

• Entries in the crontab file are in the form of:

minute hour day month dayofweek command

• Asterisks in any of the time fields match all possible values.

• In addition to personal crontab files, the system has its own crontab files in /etc/
crontab, as well as files in /etc/cron.d.

Using at

• The at facility, shown here, is for setting up one-time future command
execution:

at time
Enter an interactive session with at, where commands may be entered.
time is of the form hh:mm, midnight, noon, and so on.

• The atd daemon must be running in order for at commands to be processed.

User access

• Access to cron can be controlled using lists of users in cron.allow and cron.deny.

• Access to at can be controlled using lists of users in at.allow and at.deny.

Objective 107.3: Localization and Internationalization
• The suite of programs that comes with the Network Time Protocol (NTP) allow

you to keep your system and hardware clocks in sync with accurate time servers
over the Internet.

• ntpd –q will update a system clock against an NTP server and then exit.

• Hardware clocks are configured to reflect either local time or Universal Coor-
dinated Time (UTC) plus a time zone offset. The command hwclock can be used
to manipulate a hardware clock from within Linux.

• The file /etc/localtime should be a symbolic link to the time zone configuration
file appropriate for your locale. For example, in the central United States:

ls –l /etc/localtime
lrwxrwxrwx 1 root root 30 Sep 12 13:56 /etc/localtime \
 -> /usr/share/zoneinfo/US/Central

• The command tzselect can be used to change your system’s time zone.

Administrative Tasks | 479

Exam
 102 High-

lighter’s Index

Essential System Services

Objective 108.1: Maintain System Time
• Refer to the previous section on localization and internationalization.

Objective 108.2: System Logging

Syslog

• The syslog system displays and records messages describing system events.

• The syslog program is made up of two processes: syslogd, which logs user-level
events, and klogd, which logs kernel events.

• Messages can be placed on the console, in logfiles, and on the text screens of
users.

• Syslog is configured by /etc/syslog.conf in the form facility.level action:

facility
The creator of the message, selected from among auth, authpriv, cron,
daemon, kern, lpr, mail, mark, news, syslog, user, or local0 through local7.

level
Specifies a severity threshold beyond which messages are logged and is one
of (from lowest to highest severity) debug, info, notice, warning, err, crit,
alert, or emerg. The special level none disables a facility.

action
The destination for messages that correspond to a given selector. It can be
a filename, @hostname, a comma-separated list of users, or an asterisk
(meaning all logged-in users).

• Together, facility.levels comprise the message selector.

• Most syslog messages go to /var/log/messages.

Logfile rotation

• Most system logfiles are rotated to expire old information and prevent disks
from filling up.

• logrotate accomplishes log rotation and is configured using /etc/logrotate.conf.

Examining logfiles

• Files in /var/log (such as messages) and elsewhere can be examined using utilities
such as tail, less, and grep.

• Information in syslogd logfiles includes date, time, origin hostname, message
sender, and descriptive text.

• To debug problems using logfile information, first look at the hostname and
sender, and then at the message text.

480 | Chapter 27: Exam 102 Highlighter’s Index

Objective 108.3: Mail Transfer Agent (MTA) Basics
• The most common MTAs on Linux are sendmail, postfix, qmail, and exim.

• sendmail, being the oldest MTA, has influenced current MTAs greatly. The
other three popular MTAs all have sendmail “compatibility programs” to ena-
ble them to act as drop-in replacements for sendmail.

• The file /etc/aliases stores aliases for inbound mail addresses; it can redirect mail
to one or more users.

• Whenever /etc/aliases is modified, newaliases must be executed.

• Each user can forward his own mail using a .forward file, containing the for-
warding email address, in his home directory.

• Outbound mail that is trapped due to a network or other problem will remain
queued; it can be examined using the mailq command.

Objective 108.4: Manage Printers and Printing

CUPS

• The Common Unix Printing System (CUPS) is the current standard for printing
on Linux.

• The cupsd daemon handles print spooling. Configuration files are stored in /etc/
cups/, and configuration usually happens through a web interface accessed
through http://localhost:631/.

• CUPS maintains backward compatibility with lpd.

• CUPS supports printer configuration in the file /etc/printcap for backward
compatibility.

Legacy printing (lpd)

• Printers are assigned to queues, which are managed by lpd, the print daemon.
lpd listens for inbound print requests, forking a copy of itself for each active
print queue.

• lpr submits jobs to print queues.

• lpq queries and displays queue status.

• lprm allows jobs to be removed from print queues.

• lpc allows root to administer queues; it has both interactive and command-line
forms.

• Filters translate data formats into a printer definition language.

• Spool directories hold spooled job data.

/etc/printcap

• New printer definitions are added to /etc/printcap:

lp|ljet:\
 :sd=/var/spool/lpd/lp:\

Essential System Services | 481

Exam
 102 High-

lighter’s Index

http://localhost:631/

 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/lp/filter:
 :lf=/var/spool/lpd/lp/log:

The lines in this example are defined as follows:

lp|ljet:\
This parameter defines two alternate names for the printer, lp or ljet.

sd=spool_directory
This parameter specifies the spool directory, under /var/spool/lpd.

mx=max_size
The maximum size of a print job in blocks. Setting this to #0 indicates no
limit.

sh
Suppress header pages. Placing this attribute in printcap sets it, eliminating
the headers.

lp=printer_device
The local printer device, such as a parallel port.

if=input_filter
The input filter to be used. See “CUPS filters” on page 359 for additional
information.

lf=log_file
The file where error messages are logged.

Networking Fundamentals

Objective 109.1: Fundamentals of Internet Protocols

Addressing and masks

• An address mask separates the network portion from the host portion of the
32-bit IP address.

• Class A addresses have 8 bits of network address and 24 bits of host address.

• Class B addresses have 16 bits of network address and 16 bits of host address.

• Class C addresses have 24 bits of network address and 8 bits of host address.

• Subnets can be defined using the defined “class” schemes or using a locally
defined split of network/host bits.

• The all-zero and all-ones addresses are reserved on all subnets for the network
and broadcast addresses, respectively. This implies that the maximum number
of hosts on a network with n bits in the host portion of the address is 2n–2. For
example, a class C network has 8 bits in the host portion. Therefore, it can have
a maximum of 28–2=254 hosts.

482 | Chapter 27: Exam 102 Highlighter’s Index

Protocols

TCP/IP is a name representing a larger suite of network protocols. Some network
protocols maintain a constant connection, whereas others do not.

IP
The Internet Protocol is the fundamental building block of the Internet. It is
used by other protocols.

ICMP
This connectionless messaging protocol uses IP. It is used for flow control, de-
tection of unreachable destinations, redirecting routes, and checking remote
hosts (the ping utility).

UDP
The User Datagram Protocol is a connectionless transport agent. It is used by
applications such as DNS and NFS.

TCP
The Transmission Control Protocol is a connection-oriented transport agent.
It is used by applications such as FTP and Telnet.

PPP
The Point-to-Point Protocol is used over serial lines, including modems.

TCP/IP services

• Inbound network requests to a host include a port number.

• Ports are assigned to specific programs. Definitions are stored in /etc/services.

• Ports 1–1023 are privileged ports, owned by superuser processes.

TCP/IP utilities

• ftp implements the File Transfer Protocol client for the exchange of files to and
from remote hosts.

• The ssh client program implements a secure shell session to a remote host.

• A web browser, such as Firefox, implements an http connection to a remote
http server.

• ping sends ICMP echo requests to a remote host to verify functionality.

• dig obtains information from DNS servers.

• traceroute attempts to display the route over which packets must travel to a
remote host.

• fwhois queries a whois database to determine the owner of a domain or IP
address.

Objective 109.2: Basic Network Configuration
• The ifconfig command is used to both view information about an interface in

addition to changing the network configuration of an interface.

Networking Fundamentals | 483

Exam
 102 High-

lighter’s Index

• The program dhclient will query the local network for IP addressing information
over dhcp and use this information to configure the settings for an interface.

• The command route will display the path that packets will take when they leave
the system. It is also used to manually add routes.

Objective 109.3: Basic Network Troubleshooting
• Interfaces are configured through a number of configuration files.

• /etc/hostname contains the assigned hostname for the system.

• /etc/networks sets up equivalence between addresses and names for entire
networks.

• The host command returns DNS information.

• The hostname, domainname, and dnsdomainname commands set or display the
current host, domain, or node name.

• The netstat command displays network connections, routing tables, interface
statistics, masquerade connections, and multicast memberships.

Objective 109.4: Configuring Client Side DNS
• /etc/hosts contains static mappings between IP addresses and names.

• /etc/nsswitch.conf directs system library functions to specific nameserver meth-
ods such as local files, DNS, and NIS.

• /etc/host.conf controls name resolution for older libraries.

• /etc/host.conf is rarely used and is replaced by /etc/nsswitch.conf.

• /etc/resolv.conf contains information to direct the resolver to DNS servers.

Security

Objective 110.1: Perform Security Administration Tasks
• find can perform searches for file attributes such as SUID using the -perm option.

• The chage command is used to maintain password aging on user accounts.

• The nmap program can be used to port scan local or remote systems for open
ports.

• The sudo command is used to give elevated privileges to a defined set of users
for a limited command set. The configuration file is /etc/sudoers.

• The ulimit command is used to view and modify limits placed on users. The
superuser maintains user limits in the file /etc/security/limits.conf.

• Hard limits are limits that users cannot exceed, whereas soft limits are limits
that users can exceed temporarily by calling the ulimit program.

484 | Chapter 27: Exam 102 Highlighter’s Index

Objective 110.2: Set Up Host Security

TCP wrappers

• Configuring TCP wrappers (tcpd) using /etc/hosts.allow and /etc/hosts.deny can
enhance security for daemons controlled by inetd or xinetd.

• tcpd is often configured to deny access to all systems for all services (a blanket
deny), and then specific systems are specified for legitimate access to services
(limited allow).

• tcpd logs using syslog, commonly to /var/log/secure.

Shadow passwords

• Enabling the use of shadow passwords can enhance local security by making
encrypted passwords harder to steal.

• The use of shadow passwords causes the removal of password information from
the publicly readable passwd file and places it in shadow, readable only by root.

• A similar system is implemented for shadow groups, using the gshadow file.

Objective 110.3: Securing Data with Encryption
• The best way to communicate securely between two Linux systems is via SSH.

SSH can be run either as a command line, opening up a shell into another sys-
tem, or as a wrapper around other TCP-based applications.

• SSH supports multiple authentication schemes, including standard username/
password and public/private key authentication.

• The command ssh-keygen –t dsa will create a public/private keypair. The keys
are stored as ~/.ssh/id_dsa (private key) and ~/.ssh/id_dsa.pub (public key).

• Placing a copy of your public key in the file ~/.ssh/authorized_keys2 on a remote
machine will allow you to perform passwordless, key-based authentication with
that machine.

• The command gpg --gen-key will create a public/private key pair to use with the
Gnu Privacy Guard (GPG). These keys will be stored in ~/.gnupg/.

• To encrypt a file with another user’s public key, you must:

— Import the user’s public key into your keyring: gpg --import bobskey.asc

— Use that key to encrypt a file: gpg –e –u “My Name” –r “Bobs Name” /tmp/
filename.txt

Security | 485

Exam
 102 High-

lighter’s Index

Index

Symbols
! (bang) no match, 128
(hash mark) root shell prompt, xvi, 64
$ (dollar sign) command substitution,

273
$ (dollar sign) user prompt, xvi, 64, 124
$# variable, 262
$? variable, 273
* (asterisk) regex modifier, 125
+ (plus) regex modifier, 125
- single dash character, 68, 71
-- double dash character, 68, 110, 121
. (period) shortcut, 98, 125
/etc directory, 21
< redirection operator, 105
> redirection operator, 104
>> redirection operator, 104
? (question mark) regex modifier, 125
\ (backslash) escape, 124
\<\> match word boundaries, 124
^ caret, 124
| vertical line, 125
~ (tilde) shortcut, 98, 135, 262

A
access control, 176–181, 246, 437–439
access logfile, 366

access mode, 176, 180–185
access time, changing, 100
accessibility, 316–318, 477
action directive, 342
addresses

IP allocation, 390–393
masks, 482
network, 370–372
in sed, 128, 134

administrative tasks, 319–332, 459, 477
Advanced Package Tool (APT), 50
aggregate functions, 292–293
aliases, 256, 259, 267, 350, 476
alien, 52
anacron, 319
anchors, 130
annex, 199
Apache web server, 26
APT (Advanced Package Tool), 50
apt-get, 50
archives, creating/extracting, 94
arguments, 68, 261
ASCII mode, 378
at facility, 326, 329, 479
authentication rhosts, 444
automate sysadmin tasks by scheduling

jobs, 326–330, 478
automatic allocation, 390

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

487

mailto:index@oreilly.com

B
backends, 359
background, 118, 120
backup schemes, 37
bash (Bourne-Again Shell)

basic scripts, 272–274
built-in commands, 274–285
configuration files, 261, 475
overview, 257–267
shared libraries, 44
shell variables, 65
standard I/O redirections for, 105

.bashrc file, 262, 264
Basic Input/Output System (BIOS), 7–10
basic network configuration, 383–394
basic network troubleshooting, 395–403
basic regular expression patterns, 133
bg command, 119
/bin directory, 195
/bin versus /sbin, 204
binary, 378
binary files, 199
BIOS (Basic Input/Output System), 7–10
BLINUX, 317
block devices, backing up, 95
/boot directory, 21, 196
boot loader, 39
boot manager, 33, 38–43, 231
boot time

entering BIOS at, 8
kernel parameters, 21
messages, 23

bootable media types, 8, 36
booting

the system, 21–24, 230
from USB device, 36

BOOTP protocol, 390
BounceKeys, 318
Bourne, Stephen, 65
Bourne-Again Shell (see bash)
break command, 274
BrLTTY, 317
brute force attacks, 414
BSD and System V interfaces, 356
BSD syntax, 185
bulk logins, 445
Burrows-Wheeler block sorting, 92

bzip2 command, 92, 235

C
C-shells, 475
cancel command, 361
case command, 275
case, changing, 88
cat command, 78
chage, 416–418, 484
character sets, 125
check-updates command, 60
checking remote hosts, 375
chgrp command, 185
child processes, 107, 405
chipset, video, 299
chmod command, 74, 182
chown command, 184
CIDR (classless inter-domain routing),

371
class drivers, 11
classes, user, 177
classless inter-domain routing (CIDR),

371
clear command, 266
client side DNS, 383–394, 484
client/server logging, 343
clock, 8, 334–339
coldplugging, 20
command history and editing, 71–75
command line, 63, 64–77, 92, 232
command separator, 71
command substitution, 72, 273, 476
commands

recursive, 233
sequencing, 71
user and group management, 323–326

comments, 262
common code, 285
compressing files, 92, 97
concatenation, 78
configuration files, 39, 257, 384–386
configuring client side DNS, 383–394,

484
continue command, 275
control characters, 88
control mounting and unmounting of

filesystems, 139, 161–167, 244
Coordinated Universal Time (UTC), 340

488 | Index

cp command, 74, 93, 190, 235
cpio command, 94, 235
create and change hard and symbolic links,

140, 187–192, 248
create partitions and filesystems, 139,

140–151, 243
create, monitor, and kill processes, 64,

107–120, 238
cron facility, 319, 326–330, 344, 449, 478
crond, 326, 478
crontab, 326, 478
cryptography, public-key, 443
Ctrl-C, 115
Ctrl-Z, 115, 118
CUPS, 357–365, 481
cups-config utility, 366
cupsd, 358
current working directory, 108
curses system, 145
customize and use the shell environment,

256–267, 475
customize or write simple scripts, 267–

285, 476
cut command, 78

D
D-Bus, 20
daemons, 26
data modification, 193
data sharing, 193
databases, 287–291
datagram delivery service, 375
datatypes, 287
date settings, 8
dd command, 36, 37, 95, 235, 421
Debian package management, 33, 46–52,

232
Debian-based systems, 26, 46–52
debugging, 366
default file descriptors, 102
default gateway, 390
default runlevel, 28
default shell, 321
DelayKeys, 318
dereference, 190
design a hard disk layout, 33, 34–38, 230
desktop environments, 298
destination, file versus directory, 94

detecting unreachable destinations, 375
determine and configure hardware

settings, 7–20, 229
/dev directory, 22, 195
device drivers, 11
device files, 102, 140
device management definitions, 20
df command, 151, 161
DHCP (Dynamic Host Configuration

Protocol), 390–393
dhcpd command, 391–393
dig command, 377, 402–403, 483
Digital Signature Algorithm (DSA), 444–

450
directories, 91

creating, 98
moving/renaming, 99
removing, 99
root filesystem, 143, 194–199

disk drives
interfaces, 141
under Linux, 140
parameters, 8
partitioning, 33, 34, 145, 243

disk quotas, 139, 167–174, 246
disk space, 34, 151
diskless workstations, 8
display managers, 297, 308–316, 477
distribution-specific tools, 303–305
dmesg command, 23
dnsdomainname command, 484
domain names, 336
domainname command, 484
dot-forward command, 353
dotted quad, 369
dpkg command, 27, 47
drives (see disk drives)
DSA (Digital Signature Algorithm), 444–

450
dselect, 51
du command, 153, 161
dump frequency, 162
dumps, 23, 82, 160
dynamic allocation, 390
Dynamic Host Configuration Protocol

(DHCP), 390–393
dynamically linked programs, 44

Index | 489

E
e2fsck command, 157
echo command, 65, 127, 275
editing commands, 128
edquota command, 172
egrep command, 123
EHCI (Enhanced Host Controller

Interface), 10
Emacspeak, 316
email, 347–354
emulation layer, SCSI, 141
encryption, 454
Enhanced Host Controller Interface

(EHCI), 10
env command, 67
environment variables, 66, 108, 256, 257,

331, 475
environment, shell, 256–267, 270, 475,

476
erase command, 61
error detection/classification, 272
error logfile, 365
essential system services, 333–346, 355–

367, 460, 480
/etc directory, 26, 162, 167, 195
Exam 101

format, 2
highlighter’s index, 229–249
objectives/topics, 1, 5
physical setting, 2
practice test, 215–228
preparation for, 5
review and exercises, 205–214

Exam 102
format, 251, 252
highlighter’s index, 475–485
objectives/topics, 253
physical setting, 252
practice test, 465–474
preparation for, 253
review and exercises, 457–463

exam preparation, 5
executable files, 269
execute command line instructions, 63,

64–77, 232
execute permissions, 177
exim, 348, 354

exit command, 276, 379
expand command, 79
export command, 67
exporting keys, 454
extended partitions, 142, 243

F
facility directive, 341
fastforward command, 353
fdisk command, 145
fg command, 119
FHS (Filesystem Hierarchy Standard),

193–199, 204, 211
file command, 96, 235
file descriptors, 102
file globbing, 97, 100–102, 123, 134, 236
file management, 63, 91–102, 235
file tests, 273
file-naming wildcards, 100–102
files, 91

appending to, 104
creating, 104
deleting, 99
editing using vi/vim, 64, 241
locating, 200

Filesystem Hierarchy Standard (FHS),
193–199, 204, 211

filesystems
checking and repairing, 157–161
creating, 148
defined, 140
disk quotas, 139, 167–174, 246
hard links, 187
inodes, 92, 151
layouts, 35, 192, 248
managing the table, 161
modifying, 154
mounting/unmounting, 163–167, 244
objects, 91–100
review questions/exercises, 211
symbolic links, 187
tests of, 96
types of, 165

filters
CUPS, 359, 363
printer, 358, 481
text stream, 63, 77, 127, 233, 235

490 | Index

find command, 74, 96, 192, 200, 235,
484

find system files and place files in the
correct location, 140, 192–204,
248

FireWire drivers, 12
floppy disks, 8, 42
flow control, 375
fmt command, 79
font installation, 306
font path, 306
for command, 276
foreground, 118
free command, 114
freshen mode, 54
fsck command, 158, 161
FSSTND (Linux Filesystem Standard),

193
ftp command, 378, 483
fully qualified domain names, 336
function command, 277
functions, 260
fundamentals of internet protocols, 369–

382, 482
fwhois command, 483

G
Gateway, 389
GDM, 314
Genmask, 389
get command, 378
getopts command, 277
Ghostscript, 359
global variables, 258
globbing, 100–102, 123, 134, 236
GNOME, 314
GNOME onscreen keyboard (GOK), 318
GNU and Unix commands

command line, 64–77
create, monitor, and kill processes,

107–120
highlighter’s index, 232
modify process execution priorities,

120
perform basic file editing operations

using vi/vim, 64
perform basic file management, 91–

102

process text streams using filters, 77–
91

review questions/exercises, 208–214
search text files using regular

expressions, 123–135
streams, pipes, and redirects, 102–107

GNU Privacy Guard (GPG), 451–455
GOK (GNOME onscreen keyboard), 318
gpasswd command, 326
GPG (GNU Privacy Guard), 451–455
grace period, 168
grep command, 105, 123, 125–127, 131–

133
group accounts, 319–326
group ID (GID), 108
group quota limits, 168
groupadd command, 325
groupdel command, 325
groupmod command, 325
groups and ranges, 131
GRUB, 25, 41–43
GTkeyboard, 318
GUI versus command-line tools, 92
gunzip command, 97, 235
gzip command, 97, 235

H
handshaking, 374
hard disk devices

GRUB, 25, 41–43
IDE, 140
SCSI, 141

hard disk layout, 33, 34–38
hard limits, 168, 419
hard links, 187
hardware

adding, 12
determining and configuring settings,

7–20
reporting, 12–14

hardware clock, 339
head command, 80
HID (human interface device), 11
hierarchy, 91
highlighter’s index

Exam 101, 229–249
Exam 102, 475–485

history command, 72

Index | 491

history expansion, 72
/home directory, 196
host command, 396, 484
host controller drivers, 11
host interface address calculation, 373
host security, 431–439, 485
HostbasedAuthentication, 445
hostname command, 484
hotplug devices, USB, 12
hotplugging, 20
http, 483
httpd, 27, 60, 117
Huffman coding, 92
human interface device (HID), 11
hwclock command, 339

I
i.Link drivers, 12
I/O addresses, 229
ICMP, 375, 483
iconv command, 332
IDE device files, 140, 142
IEEE 1394, 12
if command, 278
Iface, 389
ifconfig command, 386, 483
inetd, 432–434, 439, 485
info command, 60
inheritance, 262, 270
init command, 25, 29
init process, 24, 26, 108, 110
init.d, 188
inodes, 92, 104, 151, 189, 235
InputDevice, 305
.inputrc, 266
insmod command, 15
install command, 60
installation, 33

fonts, 306
install/upgrade mode, 54
X11, 298–308, 477
with yum, 60

interactive shell, 65–71
internal clock, 8, 334–339
internationalization, 330–332, 479
Internet Printing Protocol (IPP), 357
Internet Protocol Version 6 (IPv6), 371
IP (Internet Protocol), 372, 375, 483

IP address allocation, 390–393
IPv6 (Internet Protocol Version 6), 371
IrDA, 11

J
job control, 118
jobs command, 118, 119
jobs, scheduling, 326–330
join command, 80
join fields, 80
Jupiter speech system, 316

K
KDM, 311–314
kernel

launching, 38
module configuration, 22–24
USB support in, 11

kernel parameters, 21
key bindings, 72
key generation, 446
key pairs, 446, 451
key server, 454
keyboard settings, 317
keyring, 453
keys, public/private, 454, 485
kill command, 108, 116, 278
killall command, 117
killproc command, 117
KNNname, 27

L
language test, 96
launching the Linux kernel, 38
layers, 375
ldconfig command, 45
ldd command, 44
Learning the bash Shell (Newham), 274
Learning the vi and Vim Editors (Robbins

et al.), 135
leases, DHCP, 391
legacy printing, 481
level directive, 342
/lib directory, 195
libraries, 33, 44–46, 231
lifetime, 107
lilo command, 40

492 | Index

LILO Linux Loader, 8, 22, 39, 41
links

finding, 192
hard and symbolic, 140, 187–192, 248
multiple objects, 92
preserving, 190
shared libraries, 45

Linux, xiii
Linux installation and package

management, 33, 206, 230
Linux Loader (LILO), 8, 22, 39, 41
Linux Professional Institute (LPI), xiii
Linux Professional Institute Certification

(LPIC), xiv
list command, 59
listing keys, 453
literals, 123
ln command, 189
local variables, 258
locale utility, 332
localization and internationalization, 330–

332, 479
locate command, 201
location, ownership, and permissions,

271
logfiles, 343–346, 365, 480
logging

DHCP server daemon, 392
syslog, 24, 480

logical pages, 81
logical partitions, 142, 243
Logical Volume Manager, 145
logical volumes, 142
logrotate utility, 344
lowercase, 88
lp, 358, 365
lp command, 360
lpadmin, 358
lpadmin command, 362
lpc, 358
LPI, xiii
LPI Exam 101 (see Exam 101)
LPI Exam 102 (see Exam 102)
LPIC, xiv
lpq command, 358, 362
lpr command, 364
lprm command, 358, 363
LPRng, 356

lpstat command, 361
ls command, 68, 74, 187, 192, 236, 378
lsdev command, 13
lsmod, 13, 15
lsof command, 428
lspci command, 14
lsusb command, 10
LVM (Logical Volume Manager), 145

M
magic tests, 96
mail command, 105, 274, 349–351
mail queuing, 351
mail transfer agent (MTA) basics, 347–

354, 481
mailing from scripts, 274
mailq command, 351
maintain system time, 333–339, 480
maintain the integrity of filesystems, 139,

151–161, 244
make utility, 100
man command, 75–77
management

Debian-based, 33, 46–52, 232
disk quotas, 139, 167–174, 246
file permissions and ownership, 140,

176–187, 246
partitions, 145
printers and printing, 355–367, 481
shared libraries, 33, 44–46, 231
users and group accounts, 319–326,

477
manager, boot, 33, 38–43, 231
manpages, 75–77
manpath, 77
manual allocation, 390
manual BIOS configuration, 8
map installer, 39
masks, 372–374, 482
master boot record (MBR), 36
master devices, 141
Mastering Regular Expressions, 123
MBR (master boot record), 36
message-bus, 20
messages file rotation, 343
Meta key, 73
metacharacters, 74, 123, 239
mget command, 378

Index | 493

mkdir command, 98, 236
mkfs command, 149
mkswap command, 150
/mnt directory, 195
mode, 176, 180–185
mode bits, 178
mode strings, 180
modification time, changing, 100
modifiers, 132
modify process execution priorities, 64,

120–122, 239
modinfo command, 17
modprobe command, 18–20
modularity, 22
modules, manipulating, 14–20
modules.conf, 22
monitoring disk space, 151
monitors, 299, 305
mount command, 163–167, 180
mount points, 35, 143, 161, 167
mounting, 35, 140, 143, 161
MouseKeys, 317
mput command, 378
msdos filesystem module, 16
multiple-line commands, 70
multitable queries, 293–295
multiuser systems, 319
mv command, 99, 236
MySQL server, 285

N
name resolution, 384
netmask mask, 389
netstat command, 398–400, 422–425,

484
network addressing, 370–372
network configuration, 383–394, 483
network interfaces, 372, 384–386, 400–

403, 484
Network Time Protocol (NTP), 334–339
network troubleshooting, 395–403, 484
networking fundamentals, 369–382

highlighter’s index, 482
review and exercises, 461
standard Linux configuration, 393

Newham, Cameron, 274
newline characters, removing, 79
nice numbers, 120, 239

nice/renice commands, 120–122
nl command, 81
nmap command, 425–439, 484
nohup command, 118, 120
non-printable characters, 89
nonsharable data, 193
ntpd command, 334–336
ntpdate command, 336
ntpdc command, 338
ntpq command, 337
ntptrace command, 339

O
object types, 91
objectives, exam, xiv
objects

filesystem, 91–100
shared, 45

octal notation, 178, 247
od command, 82
OHCI (Open Host Controller Interface),

10
one-way inheritance, 270
Open Host Controller Interface (OHCI),

10
OpenSSH, 449, 450
/opt directory, 196
options, 68
Orca, 317
OS fingerprints, 425, 427
output redirection operators, 105
overwrite, forcing, 94
ownership, managing, 176–187, 271, 319

P
packages, Debian, 33, 46–52, 47, 232
page logfile, 366
parent process ID (PPID), 108
parent/child relationship, 108, 110
partitioning, 33, 34, 145, 243
partitions

defined, 142
extended, 142, 243
guidelines, 38
numbering of, 143
resizing, 145

pass number, 162

494 | Index

passwd command, 325
password file, 320
password, shadow, 322, 414–418
paste command, 83
patterns, 123
PCMCIA driver information, 22
PDF generators, 359
Pearson VUE, xiv
peer, 335, 338
perform basic file editing operations using

vi/vim, 64, 241
perform basic file management, 63, 91–

102, 235
perform security administration tasks,

405–429, 484
permissions

default setting, 181
list of, 177
managing file, 176–187, 246, 271
symbolic and numeric, 187
workgroup directory, 186

PID (Process ID), 108, 110
ping command, 375, 380, 388, 396, 406,

483
ping sweep, 425
pipeline, 104
pipes, 103
pooling, 338
port numbers, 376
position anchors, 125
positional parameters, 261
POSIX character classes, 124
postfix, 348, 351–353
PostScript printers, 359
PPD files, 359
PPP, 376, 483
pr command, 84
practice tests

Exam 101, 215–228
Exam 102, 465–474

prefix, 371
primary IDE interface, 142
primary partitions, 142, 243
printing

overview, 355–367
print jobs, 360
queues, 356, 359, 360
troubleshooting, 365

priorities, 120–122
private IP addresses, 370
private key, 447, 453–454
privileged ports, 376, 483
/proc filesystem, 8–10
process execution priorities, 64, 120–122,

239
process ID (PID), 108
process lifetime, 107
process monitoring, 108–115
process text streams using filters, 63, 77–

91, 233
processes, 107
profiles, 262
prompt, 64, 379
protocols, 374–376, 483
ps command, 69, 109, 117
PS1, 65
pstree command, 110
public key, 445, 447, 453–454
public-key cryptography, 443
put command, 378
pwd, 379

Q
qmail, 348, 353
quantity modifiers, 125
query mode, 55–57
querying system services, 422–429
quit, 379
quotacheck command, 171
quotaoff command, 171
quotaon command, 170
quotas

enabling, 175
limits, 168

R
ramfs, 20
rc.local, 27
read command, 278
read permissions, 177
readline, 266
reboot system, 24
recursive copying, 93
recursive execution, 74, 233
recursive remove, 100

Index | 495

Red Hat Certified Engineer, xiii
Red Hat-based systems, 26, 303
redirection, 104, 237, 375
redirection operators, 105
regular expressions (regex), 123–125, 133,

239
relays, 391
remote hosts, 375
remove command, 61
renice command, 122
RepeatKeys, 318
repquota command, 174
return command, 279
return values, 272
review questions, 205–214, 457–463
RHCE program, xiii
rhosts authentication, 444
rm command, 74, 99, 187, 236
rmdir command, 100, 236
rmmod command, 16
root directory, 92, 143, 195
root filesystem, 143, 194–199
round robin DNS, 338
route, 484
route command, 388–390
route status flags, 389
RPM (Red Hat) and YUM package

manager, 34, 52–61, 232
rpm command, 27, 53–61
RSA algorithm, 446
runlevel command, 28
runlevels, 24–31
Running Linux (Dalheimer & Welsh), 33

S
/sbin directory, 195
scheduler, 356
scheduling jobs, 326–330
screen readers, 316
Screen section, 305
script files, 255, 267–272, 475
scripting and data management, 457
scripting language, 267
SCSI device files, 141
search text files using regular expressions,

64, 123–135, 239
secondary IDE interface, 141, 142
sections, man, 76

Secure Shell (SSH), 442–451, 483
securing data with encryption, 441–455,

485
security administration tasks, 405–429,

484
querying system services, 422–429
setting limits on users, 418–422
shadow passwords, 414–418
SUID, 406–411
user IDs and passwords, 411–414

security, host, 431, 485
sed (stream editor), 123, 127–130, 134
sendmail, 347–353
sendmail (Costales), 347
seq command, 279
sequence number, 27
server key pair, 447
server motherboard BIOS, 8
ServerFlags, 305
ServerLayout, 305
services, 376
set and view disk quotas, 167–174
set command, 67
set up a display manager, 477
set up host security, 431–439, 485
SGID, 178, 271
shadow password and groups, 322, 414–

418, 485
sharable data, 193
shared libraries, 33, 44–46, 231
shared library dependencies, 44
shebang, 269
shell, 233

(see also bash (Bourne-Again Shell))
defined, 65
environment, 256–267, 475
job control, 118
scripts, 269
sessions, 233
variables, 65–71, 258

shells, scripting and data management,
457

shift command, 280
shutdown command, 26, 29–31
SIGHUP signal, 27
signal handling code, 117
signaling active processes, 115–120, 238
signing keys, 453

496 | Index

single-user mode, 25
slave devices, 141
slices, 78, 142
SlowKeys, 318
SNNname, 27
soft limits, 168, 419
sort command, 69, 85, 154
source command, 280
space character, 79, 89
space, swap, 37, 150
Speakup, 316
special permissions, 178, 180
split command, 86
spooling, 356, 359
SQL data management, 285–295, 476
SSH (Secure Shell), 442–451, 483
ssh port forwarding, 450
ssh-agent, 447–449
ssh-keygen, 446
sshd command, 438, 442, 449
stacks, 375
standard I/O, 102
start processes, 38
“stat” system call, 96
static data, 193
static linking, 231
sticky bit, 178
StickyKeys, 317
stratum 1/2 servers, 334
stream editor (sed), 127–130
streams, pipes, and redirects, 64, 102–

107
streams, text, 77–91
subdirectory trees, 100
subnet mask, 372–374
subnets and relays, 369, 391–393, 482
subprocesses, 108
sudo command, 409–411, 484
SUID, 177, 271, 406–411
super-servers, 431–436
superblock, 35, 157
superuser, 195, 271, 319, 419
SVGATextmode, 317
swap partitions, 144, 150
swap space, 37, 150
switchdesk tool, 315
switching display managers, 315
symbolic links, 140, 187, 190, 248

sysfs, 20
syslog system, 24
syslogd, 341–343
system architecture, 7–20, 205, 229
system initialization, 26
System V interfaces, 356
systems

logging, 24, 341–346, 480
partitioning, 38
role of, 37

T
Tab characters, 79, 89
tac command, 87
tail command, 87
tar command, 190, 236
TCP, 375, 483
TCP wrappers, 437–439, 449
TCP/IP, 369, 374, 483
tcpd command, 485
tcsh command, 200, 475
tee command, 106
telinit command, 29
telnet command, 381
terminating processes, 117
test command, 280
text streams, 77, 104
Thomson Prometric, xiv
tilde, 98, 135, 262
time settings, 8
time zones, 340
timestamps, 100
/tmp directory, 196
ToggleKeys, 318
top command, 112–113, 117, 122
touch command, 100, 236
tr command, 88
traceroute command, 381, 397, 483
troubleshooting

basic network, 395–403
in ~/.gnupg directory, 454
printing, 365
using configuration commands, 366,

386, 451
tune2fs command, 155
type command, 204

Index | 497

U
UDP, 375, 483
UHCI (Universal Host Controller

Interface), 10
ulimit command, 418–422, 484
umask command, 181
umount command, 165, 166
uncompressing files, 92, 97
unexpand command, 89
unidirectional inheritance, 270
uninstall mode, 55
uniq command, 89
Universal Host Controller Interface

(UHCI), 10
Universal Serial Bus (USB), 10–12, 36,

165
Unix System V, 26
unmounting, 166
unprivileged ports, 376
unreachable destinations, 375
unset command, 67
until command, 281
updatedb command, 202
updates, checking for, 60
upgrade mode, 54
uppercase, 88
uptime command, 114
URLs

assistive technology, 318
bash home page, 257
BrLITTY, 317
CUP, 358
FHS specification, 193
Freedesktop, 299
GPG, 455
GRUB, 43
implementation of X, 297
Linux Documentation Project, 145
Linux Professional Institute, xiv
LPI Objectives detailed, 5, 251
LPRng, 356
LVM-HOWTO, 145
Network Time Protocol (NTP), 333
nmap site, 428
NTP documentation, 338
onscreen graphical keyboard, 318
OpenSSH, 442

Pearson VUE, xiv
pooling, 338
qmail, 353
tarball example, 207
Thomson Prometric, xiv
Vim documentation, 135
X.Org mirror websites, 300

USB (Universal Serial Bus), 10–12, 36,
165

use Debian package management, 33, 46–
52, 232

use RPM (Red Hat) and YUM package
manager, 34, 52–61, 232

use streams, pipes, and redirects, 64, 102–
107, 237

user access, 330, 418
user accounts, 319
user ID (UID), 108, 411–414
user quota limits, 168
user.group versus user:group syntax, 185
useradd command, 323
userdel command, 324
usermod command, 324, 413
username, 92, 271, 325, 411
users, classes of, 177
/usr directory, 196
UTC (Coordinated Universal Time), 340
utilities, 377–382

V
/var directory, 24, 196, 198
variable data, 193
variables

environment, 108, 257
shell, 65–71, 258

verify mode, 58
vi editor, 121, 135
video chipset, 299
video hardware, 299
virtual consoles, 309
virtual memory, 37

W
warning_message, 30
wc command, 90
websites (see URLs)
well-known ports, 376

498 | Index

whereis command, 203
which command, 200
while command, 282
whitespace characters, 89
whois, 381
wildcards, 100–102, 236, 311
window managers, 298
work on the command line, 63, 64–77, 92,

232
workgroup directory, 186
write permissions, 177

X
X display manager (xdm), 308–311
X fonts, 306
X Server, selecting and configuring, 299–

305
X terminals, 298, 311
X Window System, 24

accessibility, 316–318
install and configure, 298–308
overview, 298
set up a display manager, 308–316
SSH session, 442

X Window system
highlighter’s index, 477
review and exercises, 458

X.Org, 299–305
Xaccess file, 308
xargs command, 106
xauth authentication, 442, 444
xdm (X display manager), 308–311
xdm-config file, 309
XFree86, 299, 306
xfs_info command, 157
xfs_metadump command, 160
xinetd command, 434–436, 485
xorg.conf, 300–303
.Xresources, 308
Xresources file, 309
Xservers file, 309
Xsession file, 309
Xsetup_0 file, 309
Xzoom, 317

Y
YUM (Yellowdog Updater Modified), 58–

61

Z
zombies, 117

Index | 499

About the Authors
As the Vice President of Information Technology for the AIM Institute, Adam
Haeder’s responsibilities include management of the IT department and all related
technology ventures. He has been the lead instructor in AIM’s Cisco Regional Net-
working Academy and is the Vice President of the Omaha Linux Users Group. Adam
has written books about the IT job market and Linux certification. He serves on the
technology advisory councils of Omaha Public Schools, Millard Public Schools, the
University of Nebraska Lincoln and Omaha campuses, and the Linux Professional
Institute. Adam has a Bachelor of Science degree in Computer Science from the
University of South Dakota.

Stephen Addison Schneiter is currently the Certification Specialist with Certifica-
tion Partners, LLC, having been with the company since 2005. Previously, Stephen
was a tenured faculty member at the Tennessee Technology Center in Harriman for
nine years. Stephen’s wide range of expertise includes web-focused customer service,
teaching post-secondary students, working with instructors one-on-one, network
management and security issues working with Microsoft Windows and Linux, and
website development. Stephen is an effective and talented instructor internationally,
and his attributes have led to his participation in numerous national conference
presentations and the coordination of the 2007 and 2008 Certified Internet Web
Professional (CIW) National Conferences. Stephen serves on the advisory boards of
several academic institutions and lives with his wife and daughter on their small
farm in east Tennessee.

Bruno Gomes Pessanha has been a collaborating translator for the Linux Profes-
sional Institute since 2002. He also worked as a consulting analyst for a Brazilian
government petroleum enterprise, covering Linux migration and initiatives and ad-
ministering high-end performance projects, high-availability clusters, and mission-
critical services. He currently lives with his family in Amsterdam.

James Stanger has been involved with Linux since 1995, and has worked closely
with the Linux Professional Institute (LPI) since its inception in 1999. He is Chair
of the LPI Advisory Council, where he helps the LPI coordinate input from corpo-
rations and the open source community. James has a unique understanding of LPI’s
certification exams, as he is an expert in both the certification industry and in Gnu/
Linux, networking, and security.

Colophon
The animal on the cover of LPI Linux Certification in a Nutshell is a bull, an adult
male animal of the species Bos primigenius.

Cattle were domesticated early in human history, perhaps more than 8,000 years
ago. They are used as work animals, as well as to produce meat, milk, leather, man-
ure, and fuel. Their longstanding economic importance is evident in the etymological
relationship of the word “cattle” to “chattel” and “capital.” The world cattle pop-
ulation is approximately 1.3 billion.

Cattle are ruminants, meaning that they regurgitate and rechew their food as cud.
They spend six hours a day eating and another eight chewing. They may drink 25
to 50 gallons of water a day and produce 15 to 20 gallons of saliva.

The animals are significant in many cultural traditions. The Minotaur, half bull and
half man, guards the labyrinth in Greek myth. The constellation Taurus represents
a bull, and an ox (the term for cattle used as draft animals) appears in the Chinese
zodiac. Cattle are considered sacred in Hinduism, and in Masai myth, all the cattle
on earth are believed to be a gift to the Masai people from their god. Bullfighting
and the running of the bulls continue to be strongly identified with Spanish culture,
as is bull riding in American rodeos.

Though cattle ranching and cowboys are strongly associated with the history of the
western United States, domesticated cattle are not native to the Americas. Spanish
strains of cattle brought by Columbus and the conquistadores interbred with English
strains brought by the pilgrims and other early settlers in the United States, giving
rise to some of the iconic American breeds.

The cover image is an original illustration created by Lorrie LeJeune. The cover font
is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

