

Oracle GoldenGate 11g
Implementer's guide

Design, install, and configure high-performance data
replication solutions using Oracle GoldenGate

John P. Jeffries

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

https://www.packtpub.com/authors/profiles/john-p-jeffries

Oracle GoldenGate 11g
Implementer's guide
Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2011

Production Reference: 1150211

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849682-00-8

www.packtpub.com

Cover Image by David Guettirrez (bilbaorocker@yahoo.co.uk)

Credits

Author
John P. Jeffries

Reviewers
ShuXuan Nie

Anirudh Pucha

Gavin Soorma

Development Editor
Maitreya Bhakal

Technical Editor
Neha Damle

Indexer
Rekha Nair

Editorial Team Leader
Vinodhan Nair

Project Team Leader
Lata Basantani

Project Coordinator
Vishal Bodwani

Proofreader
Aaron Nash

Graphics
Geetanjali Sawant

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

https://www.packtpub.com/authors/profiles/john-p-jeffries

Foreword

Oracle GoldenGate is a product that covers many use cases in the business of data
replication. It is not only useful for classical distributed databases, it is also useful
for High Availability Architectures and especially for Data Warehouse and Decision
Support Systems. Thus, the variety of techniques and methods spreads from
unidirectional environments for query offloading/reporting to bidirectional or Peer-
to-Peer architectures in an active-active fashion. Besides this, Oracle GoldenGate is
not only available for heterogeneous Oracle-to-Oracle databases, but it also scales in
heterogeneous non Oracle database environments which is also one topic in the Data
Warehouse business. The flexibility of the product is amazing and the functionality
manages a wide spectrum such as filtering, performing transformations, event
handling, and many other options.

I am happy that John Jeffries summarized the main topics of Oracle Golden Gate
in this book. Both parts, configuration & implementation as well as monitoring
and performance tuning/troubleshooting, is described for developers and
administrators. The book does start from a common architectural overview, shows
up standard implementation steps, and explains how to manage the distributed
environment.

John Jeffries has been an expert of Oracle databases for years. Besides the knowledge
of distributed databases, his skills cover a wide area of the Oracle core technology.
So, he is not only able to discuss the topics individually, but he also puts the
individual pieces together that rounds up the overall common architecture. This
work is very valuable as it is raised from a fundamental practical experience.

Volker Kuhr
Oracle Advanced Customer Support (ACS)
Team Leader for Distributed Databases

About the Author

John P. Jeffries has lived in the southeast of England for most of his life. Although
predominantly based in London, he has worked in many countries around the
world. He enjoys travel and is the Director of his own consultancy business: www.
spirotek.co.uk.

Originally from a development background, he has worked for a number of global
software companies including Oracle Corporation and Siebel Systems. His time at
Siebel was spent designing and developing ETL solutions for Data Warehouses,
ultimately enhancing the eBilling and Billing Analytics products with an Oracle
Warehouse Builder based API. He spent six years working in Oracle Consulting
in EMEA and Oracle Advanced Customer Services in the UK as a Senior Principal
Consultant, earning the internal title of "The UK's Data Replication Expert". Now
a freelance consultant, the author can be found onsite in many of the world's most
respected financial institutions in London, consulting on Oracle GoldenGate, Streams,
and Active Data Guard. With over 15 years of Oracle experience, and an OCP
since Oracle 8i, the author has extensive knowledge of Oracle databases, including
Enterprise Linux and RAC, coupled with the ability to design and build high
performance distributed database systems. He has trained internal and external clients
in Data Warehousing and Data Replication techniques, and continues to share his
knowledge and experience through his own website: www.oracle11ggotchas.com.

http://www.spirotek.co.uk
http://www.spirotek.co.uk
http://www.oracle11ggotchas.com

Thank you for purchasing my book, which would not have been
possible without the help and support from a number of key
individuals and organizations.

Firstly I wish to thank my wife, Wendy, for both her drive and
encouragement. Also the sacrifice that she has endured, putting
aside other commitments to support me in my accomplishment.

Secondly, I wish to thank my friend and colleague, Paul Vale for his
depth of knowledge of Oracle Streams. I worked closely with Paul
for two years on an extensive data replication project where our
shared knowledge and experience inspired me to write a book on
Oracle GoldenGate.

Finally, I wish to thank Packt Publishing for agreeing to work with
me and publish this book. Even now, I am astounded by the lack
of available technical material on GoldenGate; this being another
reason for writing. I trust you will find this book both interesting
and informative, helping you to successfully implement an Oracle
11g GoldenGate environment.

About the Reviewers

ShuXuan Nie is a software engineer specializing in SOA and Java technologies.

ShuXuan has more than nine years of experience in IT industry that includes SOA
technologies such as BPEL, ESB, SOAP, XML, and Enterprise Java technologies,
Eclipse plug-ins, and other areas such as C++ cross-platform development.

Since July 2010, Shuxuan has been working in Rubiconred and focusing on helping
customers solve their middleware problems.

Before joining Rubiconred, ShuXuan had been working in the Oracle Global
Customer Support team and focused on helping customers solve their SOA
integration problems.

Before joining Oracle, ShuXuan had been working in IBM China Software
Development Lab for four years as a staff software engineer, participating in several
complex products on IBM Lotus Workplace, Webshpere, and Eclipse platform;
and then joined the Australia Bureau of Meteorology Research Center, responsible
for implementation of Automated Thunderstorm Interactive Forecast System for
Aviation and Defence.

ShuXuan holds a MS in Computer Science from Beijing University of Aeronautics
and Astronautics.

Anirudh Pucha is a SOA and Cloud Computing Strategist working on Fusion
Middleware Integration products in Oracle Corporation. He has been working
in the SOA Integration space for over five years focusing on .NET, J2EE, Oracle
SOA Suite, BPEL, ESB, Adapters, BAM, Business Rules, BPM. He is one of the top
contributors in the Oracle SOA and BPEL Technology Forums. He is a certified
webMethods Developer and Oracle Certified Professional. He is an Ex-Microsoft
Student Ambassador and Platform Evangelist appointed by Microsoft Corporation.
He is the Asst.Manager of DNUGHS (DotNet Users Group of Hyd, supported
by Microsoft Corp). He is a INETA (International .NET Association) – APAC
Volunteer, The SPOKE member, Culminis member and a member of several
renowned NGOs. He is a speaker at various conferences, bar-camps, and a guest
lecturer for several universities and colleges. He is a native of Hyderabad (India),
certified Latin American Dancer, professional singer, dubbing artist, cricketer,
cartoonist, sculpturist, and a fashion model. He can be contacted on LinkedIn at
http://in.linkedin.com/in/anirudhpucha and his website at http://www.
anirudhpucha.tk/.

I am thankful to GOD, my mother – Smt. Pucha Annapurna, father
– Shri. Pucha Hanumanth Rao, cute nephew – Karthik Achintya and
niece – Pallavi Shriya.

Gavin Soorma is an Oracle Certified Master with over 17 years of experience. He
also is an Oracle Certified Professional (versions 7.3, 8i, 9i, 10g, and 11g) as well as an
Oracle Certified Expert in 10g RAC.

Gavin is a regular presenter at various Oracle conferences and seminars having
presented several papers at the IOUG, South African Oracle User's Group, Oracle
Open World, and the Australian Oracle User Group. Recently, at this year's
AUSOUG held in Melbourne and Perth he presented a paper on Oracle GoldenGate
titled 'Real Time Access to Real Time Information'.

He is currently employed as a Senior Principal Consultant for an Oracle solution
provider, OnCall DBA based in Perth, Western Australia. Prior to this, he held the
position of Senior Oracle DBA and Team Lead with Bank West in Perth. Before
migrating to Australia, Gavin worked for Emirates Airline Group IT in Dubai for
over 15 years where he held the position of Technical Team Manager, Databases.

He has also written a number of tutorials and notes on Oracle GoldenGate which can
be accessed via his personal blog website http://gavinsoorma.com.

http://in.linkedin.com/in/anirudhpucha
http://www.anirudhpucha.tk/
http://www.anirudhpucha.tk/

www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy & paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Getting Started 9

What is GoldenGate? 9
Oracle GoldenGate evolution 11
Oracle GoldenGate solutions 11
Oracle GoldenGate technology overview 13

The capture process (Extract) 13
Trail files 14
Data Pump 14
Server Collector 14
The Apply process (Replicat) 14
The Manager process 15
GGSCI 15
Process data flow 16

Oracle GoldenGate architecture 16
One-to-One 17
One-to-Many 18
Many-to-One 19
Cascading 20
Bi-directional (Active-Active) 21
Bi-directional (Active-Passive) 22

Supported platforms and databases 22
Oracle GoldenGate topology 24

Process topology 25
The rules 25
Position 26
Statistics 26

Design considerations 27
Choosing a solution 28

Table of Contents

[ii]

Network 28
Database schema 29

What to Replicate? 29
Object mapping and data selection 29
Initial Load 31
CSN co-ordination 31
Trail file format 31

Summary 32
Chapter 2: Installing and Preparing GoldenGate 33

Prerequisites 34
Downloading the software 34
Software requirements 35
Hardware requirements 36

Memory 36
CPU 36
Network 37
Disk 37

Software installation 37
Installing GoldenGate 38
The subdirectories 41

dirchk 41
dirdat 41
dirdef 42
dirpcs 42
dirprm 42
dirrpt 42
dirsql 42
dirtmp 43

Preparing the environment 43
Preparing the database for data replication 43

Enabling supplemental logging 43
Preparing the operating system 45

Creating the initial configuration 45
Creating the GoldenGate administrator 46
The Manager process 46
The Extract process 47

Creating and starting an Extract process 48
The Data Pump process 49
The Replicat process 50

Creating and starting a Replicat process 51
Configuration summary 52

Uninstalling GoldenGate from Linux/UNIX 52
Summary 53

Table of Contents

[iii]

Chapter 3: Design Considerations 55
Replication methods 56

Active-active 56
Active-passive 57
Cascading 58
Physical Standby 59

Networking 60
Surviving network outages 60

Redundant networks 60
Non-functional requirements (NFRs) 62

Latency 62
Availability 63
Backup and recovery 63

Hardware considerations 64
Computing architectures 64

Grid computing 65
Single server 65
Clusters 66

Machines 66
The x86-64 Linux Server 66
The Database Machine 67
Scaling up and out 67

Changed data management 68
Point in Time Recovery (PITR) 69

Oracle Recovery Manager (RMAN) 69
Flashback 69
SAN Snapshot 70

Summary 70
Chapter 4: Configuring Oracle GoldenGate 71

GoldenGate parameters 72
Configuring the Initial Load 74

Choosing a method 74
File to Replicat 75
File to database utility 77
Direct Load 78
Direct Bulk Load 80

Performing the Initial Load 81
Example architecture 81
File to Replicat method 82

Configuring Initial Data Capture 82
Configuring Initial Data Delivery 85

Configuring Change Data Capture 87
Configuring Change Delivery 89

Table of Contents

[iv]

Testing Change Data Capture and Delivery 92
Stopping GoldenGate processes 94
More about trail files 96

The trail 96
Trail file purging 96

Configuring the Manager process 97
Summary 97

Chapter 5: Configuration Options 99
Using BATCHSQL 99

SQL cache 100
Exceptions 101
When to use BATCHSQL 101

Data compression 102
Compressing the Data Stream 102

The COMPRESS option 103
Oracle table compression 104

Security features 105
Data encryption 105
Password encryption 108

Default method 108
Named method 109

Event Actions 110
Event Records 110

Bi-directional configuration options 112
Loop detection 113
Conflict detection 113
Conflict resolution 114
Oracle sequences 114
Oracle triggers 115

Heterogeneous environments 115
Specific options 116

Microsoft SQL Server 116
IBM DB2 116

The DEFGEN utility 116
DDL replication 117

The DDL parameter 117
Filtering 117
Mapping options 118

Initial setup 119
Known issues 121

Using DUMPDDL 122

Table of Contents

[v]

DDL OPTIONS 124
Summary 125

Chapter 6: Configuring GoldenGate for HA 127
GoldenGate on RAC 127

Shared storage 128
Automatic Storage Management Cluster File System (ACFS) 128
Database File System (DBFS) 128

Configuring Clusterware for GoldenGate 129
The Virtual IP 129
Creating a GoldenGate application 131

Increasing system resilience 135
GoldenGate on Exadata 135

Configuration 136
Creating the Extract process 136
Creating the Replicat process 138

Failover 138
Automatic failover 138
Manual failover 139

Relocating a service 139
Relocating a VIP 139

Summary 140
Chapter 7: Advanced Configuration 141

Mapping your data 142
Column mapping 142

Using the COLMAP option 143
The COLMATCH option 144
Using the DEFGEN utility 144

Data selection and filtering 148
The WHERE clause 148
The FILTER clause 149
Loop detection 150

Active-active 150
Cascade 151

Data transformation 151
Truncation and extraction 152
Concatenation 152
Substitution 152
Case changing 152
Numeric conversions 153
Date conversions 153

DDL support 154

Table of Contents

[vi]

The SQLEXEC parameter 155
Data lookups 155

Executing stored procedures 155
Executing SQL 156

Executing DML 157
Handling errors 157

Scheduling jobs 158
Using and defining macros 159
User tokens 160
User Exits 161

Calling C routines 161
Sample User Exits 162

Source files explained 162
Using logic in data replication 163
Licensing 165
Summary 166

Chapter 8: Managing Oracle GoldenGate 167
Command level security 168

The CMDSEC file 168
Trail file management 169
Managing process startup 170
Managing TCP/IP errors 171

The tcperrs file 171
Reporting and statistics 172

Monitoring errors 172
Monitoring latency 173

A bespoke solution to monitoring and reporting 174
Measuring throughput 181

Data throughput 181
Operation throughput 183

Summary 184
Chapter 9: Performance Tuning 185

Before tuning GoldenGate 186
Online redo 186
Large objects (LOBs) 187
Base lining 187

Balancing the load across parallel process groups 188
Considerations for using parallel process groups 189

Splitting large tables into row ranges across process groups 189
The RANGE function 189

Table of Contents

[vii]

Adding Replicats with @RANGE function 190
Configuring multiple parallel process groups 194

Source system configuration 195
Parallel process parameter files 195
Creating extract parallel process groups 196

Target system configuration 198
Parallel process parameter files 198
Creating Replicat parallel process groups 200
Improving Replicat throughput 201

New releases 202
DBFS enhancements 202
New redo log OCI API 203

Tuning the network 203
Linux TCP tuning 204
Configuring a Bequeath connection 205

Summary 207
Chapter 10: Troubleshooting GoldenGate 209

Troubleshooting tips 209
Replication not working? 210

The CHECKPARAMS parameter 211
Adjusting the start point 212

Altering Extract processes in RAC environments 213
Checking process checkpoints 213
Investigating network issues 215

TCP/IP 215
SQL*Net 216

Investigating Oracle errors 218
Exception handling 219

Creating an Exceptions handler 219
Viewing Exceptions 221

Before and after images 222
Handling Oracle Sequences 223
Using LOGDUMP 224

Opening files 225
Viewing the header record 226
Viewing the transaction record 228
Miscellaneous commands 229
Filtering records 231

Upgrading GoldenGate 231
Summary 232

Table of Contents

[viii]

Appendix A: GGSCI Commands 233
Appendix B: GoldenGate Installed Components 243
Appendix C: The Future of Oracle GoldenGate 247
Index 249

Preface
Data replication is an important part of any database system that is growing due to
today's demand for real-time reporting and regulatory requirements. GoldenGate has
recently become Oracle's strategic real-time data replication solution. Until now, very
little has been written about how to implement GoldenGate in a production enterprise
environment where performance, scalability, and data integrity are paramount.

Your days of dismay over the lack of documentation over Oracle GoldenGate
are over.

Welcome to Oracle GoldenGate 11g Implementer's guide— a comprehensive,
practical book that will deliver answers to your questions in a clear, concise style,
allowing you to progress effectively in a timeline-driven environment. Based on the
author's own experience, this long awaited GoldenGate administration book has
all that is required to install, design, configure, and tune data replication solutions
suited to every environment. Be the first to master GoldenGate's power and
flexibility by reading this unique hands-on implementation companion.

Computers need to send data from one system to another in a timely manner to
satisfy the ever-increasing need for speed. Regardless of whether you are a novice or
an expert – or someone in between – this book will guide you through all the steps
necessary to build a high-performance GoldenGate solution on Oracle11gR1. Expert
users can dive into key topic areas such as performance tuning or troubleshooting,
while novice users can step through the early installation and configuration chapters,
later progressing to the advanced chapters.

This book is more than an implementation guide. It offers detailed real-life examples,
encouraging additional thought and discussion by going beyond the manual.

With Oracle GoldenGate 11g Implementer's guide in hand, you'll be designing,
installing, and configuring high-performance solutions using GoldenGate within
minutes.

Preface

[2]

What this book covers
Chapter 1, Getting Started, provides an introduction to Oracle GoldenGate, inspiring
thought by describing the key components, processes, and considerations required to
build and implement a GoldenGate solution.

The topics covered the evolution of GoldenGate Software, including the architecture
behind the technology followed by the solutions GoldenGate can provide, coupled
with effective design.

Chapter 2, Installing and Preparing GoldenGate, walks you through the individual tasks
needed to complete an end-to-end GoldenGate installation, including the download
of the software through to creating a simple data replication environment.

Chapter 3, Design Considerations, addresses some of the issues that influence the
decision making process when designing a GoldenGate solution. These include
design considerations for both performance and high availability. Here you can
choose the appropriate hardware and topology to deliver a fast, robust and
scalable solution.

Chapter 4, Configuring Oracle GoldenGate, initially discusses the main GoldenGate
parameters, and provides a methodical approach to the configuration process,
stepping through each task to give the depth of information necessary to successfully
implement GoldenGate on Oracle 11g. By providing the building blocks, this chapter
forms the basis for more complex configurations.

Chapter 5, Configuration Options, looks at the available options that allow your
configuration to extend in functionality and performance. We start with performance
enhancements, later exploring the security features, including data compression
and encryption, and finally discussing the options available to implement DDL
replication.

Chapter 6, Configuring GoldenGate for HA teaches you how to configure Oracle
GoldenGate in a RAC environment and explores the various components that
effectively enable HA for data replication and integration.

Chapter 7, Advanced Configuration, gives you a deeper understanding of GoldenGate
configuration. By the time you are done with this chapter, you will be able to explore
and realize each parameter specification and further develop your GoldenGate
configuration.

Preface

[3]

Chapter 8, Managing Oracle GoldenGate, focuses on the management features
already built in to the GoldenGate Command Interpreter (GGSCI). We discuss and
implement a number of utilities, including tips and tricks that allow you to manage
your GoldenGate environment effectively at no extra cost. This includes a Perl script
that will format the text output from the GGSCI "INFO ALL" command so that the
data can be loaded into MS Excel for graphing and trend analysis.

Chapter 9, Performance Tuning, focuses on the main areas that lend themselves
to tuning, especially parallel processing and load balancing, enabling high data
throughput and very low latency. Performance enhancing new features that are
available in the next version of GoldenGate are also discussed and evaluated.

Chapter 10, Troubleshooting GoldenGate, provides a troubleshooting guide for Oracle
GoldenGate. We address some of the common issues faced by the implementer,
followed by a discussion of the tools and utilities available to help resolve them. This
includes the creation of an Exception Handler that automatically logs the details of a
failed transaction for further analysis and resolution.

This book has three appendices; their purpose is to provide a "quick reference" as well as
address any subjects and terminology not addressed in the previous chapters.

Appendix A, GGSCI Commands, provides a quick reference guide to all the available
GoldenGate Software Command Interface (GGSCI) commands.

Appendix B, GoldenGate Installed Components, lists the GoldenGate installed
components and their description.

Appendix C, The Future of Oracle GoldenGate, discusses Oracle's strategic approach to
data replication and integration. The latest release of GoldenGate including its sister
products are described along with links to official documentation and forums on the
Oracle website.

What you need for this book
As a minimum you will require the following elements to run the code featured
in this book. Starting with the hardware, you can configure a simple GoldenGate
solution on just one personal computer acting as a database server, running Oracle
or Redhat Enterprise Linux x86 version 5.2. This can be native Linux or Linux virtual
machine hosted on MS Windows XP.

Ideally, another PC is required as a client that supports terminal emulation software
for logging onto the database server, plus MS Excel for graphing and analysis
of statistics.

Preface

[4]

The following list provides the minimum hardware specification for each PC:

•	 1 x 2.5 GHz Dual Core Intel based 32 bit architecture CPU
•	 2 GB of physical memory
•	 250 GB hard disk drive for the database server
•	 150 GB hard disk drive for the MS Windows client
•	 1 x 100Mb/s Ethernet adapter

To implement a simple point to point data replication solution, you will need two
Oracle 11g Release 1 databases. Both source and target databases can reside on the
same machine. Please refer to the pre-installation requirements found on the Oracle
Website at the following link: http://download.oracle.com/docs/cd/B28359_01/
install.111/b32002/pre_install.htm

The following list provides the software requirements:

•	 Oracle or Redhat Enterprise Linux Server release 5.2 - 32-bit
•	 Oracle Server 11.1.0.6 on Oracle Enterprise Linux 5.0 32-bit, patched to

11.1.0.7 (this is required for the two Oracle databases, source & target)
•	 Oracle GoldenGate V10.4.0.x for Oracle 11g on Oracle Enterprise Linux 5.0

32-bit
•	 MS Windows XP 32-bit Professional Edition, Service Pack 3 with MS Excel

2007 installed
•	 Perl v5.8.8 (included with OEL/RHEL 5.2)
•	 PuTTY 0.56 for MS Windows XP (terminal emulation software that supports

SSH protocol)
•	 WinSCP Version 3.8.2 for MS Windows XP (file transfer software that

supports SFTP protocol)

Who this book is for
This book is for Solution Architects and Database Architects who wish to learn
about the functionality and efforts required in implementing a data replication,
migration or integration solution using GoldenGate. It is also designed for System
Administrators and Database Administrators who want to implement, or those
who have already implemented, GoldenGate and who want to explore its advanced
features. An intermediate understanding of Oracle database technology is assumed.

http://download.oracle.com/docs/cd/B28359_01/install.111/b32002/pre_install.htm
http://download.oracle.com/docs/cd/B28359_01/install.111/b32002/pre_install.htm

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

EXTRACT EPMP01
PASSTHRU
RMTHOST dbserver2, MGRPORT 7809
RMTTRAIL ./dirdat/ta
TABLE SRC.DEPT;
TABLE SRC.EMP;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

EXTRACT EPMP01
PASSTHRU
RMTHOST dbserver2, MGRPORT 7809
RMTTRAIL ./dirdat/ta
TABLE SRC.DEPT;
TABLE SRC.EMP;

Any command-line input or output is written as follows:

cd /home/oracle/ggs

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.packtpub.com/authors
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started
The objective of this chapter is to get you started using Oracle GoldenGate 10.4.
We will discuss the history and evolution of GoldenGate Software, its success in
the market and ultimate Oracle acquisition. You will become accustomed with the
concepts of data replication and how GoldenGate provides enterprise-wide solutions
to address the business requirements.

Although an introduction, this chapter is designed to inspire thought by drilling into
the key components, processes, and considerations required to build and implement
a GoldenGate solution.

In this chapter, we will discuss the following points surrounding GoldenGate:

•	 The evolution of GoldenGate software
•	 The technology and architecture
•	 The solutions offered by GoldenGate
•	 The architecture and topology of GoldenGate, plus design considerations
•	 The supported platform and database versions

Let's begin by learning what GoldenGate is and what you can expect from this book.

What is GoldenGate?
Oracle GoldenGate is Oracle's strategic solution for real time data integration.
GoldenGate software enables mission critical systems to have continuous availability
and access to real-time data. It offers a fast and robust solution for replicating
transactional data between operational and analytical systems.

Getting Started

[10]

Oracle GoldenGate captures, filters, routes, verifies, transforms, and delivers
transactional data in real-time, across Oracle and heterogeneous environments
with very low impact and preserved transaction integrity. The transaction data
management provides read consistency, maintaining referential integrity between
source and target systems.

This book aims to illustrate through example, providing the reader with solid
information and tips for implementing GoldenGate software in a
production environment.

In this book, we will not be making direct comparisons between Oracle GoldenGate
and Oracle Streams. At the time of writing, Oracle is leveraging the advantages of
GoldenGate by enhancing the product whilst continuing to fully support Streams.

As a competitor to Oracle GoldenGate, data replication products and solutions exist
from other software companies and vendors. These are mainly storage replication
solutions that provide fast point in time data restoration. The following is a list of the
most common solutions available today:

•	 EMC SRDF and EMC RecoverPoint
•	 IBM PPRC and Global Mirror (known together as IBM Copy Services)
•	 Hitachi TrueCopy
•	 Hewlett-Packard Continuous Access (HP CA)
•	 Symantec Veritas Volume Replicator (VVR)
•	 DataCore SANsymphony and SANmelody
•	 FalconStor Replication and Mirroring
•	 Compellent Remote Instant Replay

Data replication techniques have improved enormously over the past 10 years
and have always been a requirement in nearly every IT project in every industry.
Whether for Disaster Recovery (DR), High Availability (HA), Business Intelligence
(BI), or even regulatory reasons, the requirements and expected performance have
also increased, making the implementation of efficient and scalable data replication
solutions a welcome challenge.

http://en.wikipedia.org/wiki/SRDF
http://en.wikipedia.org/wiki/SRDF
http://en.wikipedia.org/wiki/Peer_to_Peer_Remote_Copy
http://en.wikipedia.org/wiki/Peer_to_Peer_Remote_Copy
http://en.wikipedia.org/wiki/Global_Mirror
http://en.wikipedia.org/wiki/Hitachi_TrueCopy
http://en.wikipedia.org/wiki/Hitachi_TrueCopy
http://en.wikipedia.org/wiki/Veritas_Software
http://en.wikipedia.org/wiki/Veritas_Software

Chapter 1

[11]

Oracle GoldenGate evolution
GoldenGate Software Inc was founded in 1995. Originating in San Francisco, the
company was named after the famous Golden Gate Bridge by its founders, Eric Fish
and Todd Davidson. The tried and tested product that emerged quickly became
very popular within the financial industry. Originally designed for the fault tolerant
Tandem computers, the resilient and fast data replication solution was in demand.
The banks initially used GoldenGate software in their ATM networks for sending
transactional data from high street machines to mainframe central computers. The
data integrity and guaranteed zero data loss is obviously paramount and plays a key
factor. The key architectural properties of the product are as follows:

•	 Data is sent in "real time" with sub-second speed.
•	 Supports heterogeneous environments across different database and

hardware types. "Transaction aware" —maintaining its read-consistent and
referential integrity between source and target systems.

•	 High performance with low impact; able to move large volumes of data very
efficiently while maintaining very low lag times and latency.

•	 Flexible modular architecture.
•	 Reliable and extremely resilient to failure and data loss. No single point of

failure or dependencies, and easy to recover.

Oracle Corporation acquired GoldenGate Software in September 2009. Today there
are more than 500 customers around the world using GoldenGate technology for
over 4000 solutions, realizing over $100 million in revenue for Oracle.

Oracle GoldenGate solutions
Oracle GoldenGate provides five data replication solutions:

1. High Availability
	° Live Standby for an immediate fail-over solution that can later

re-synchronize with your primary source.
	° Active-Active solutions for continuous availability and transaction

load distribution between two or more active systems.

2. Zero-Downtime Upgrades and Migrations
	° Eliminates downtime for upgrades and migrations.

Getting Started

[12]

3. Live Reporting
	° Feeding a reporting database so as not to burden the source

production systems with BI users or tools.

4. Operational Business Intelligence (BI)
	° Real-time data feeds to operational data stores or data warehouses,

directly or via Extract Transform and Load (ETL) tools.
5. Transactional Data Integration

	° Real-time data feeds to messaging systems for business activity
monitoring, business process monitoring, and complex
event processing.

	° Uses event-driven architecture and service-oriented
architecture (SOA).

The following diagram shows the basic architecture for the various solutions
available from GoldenGate software:

Chapter 1

[13]

We have discovered there are many solutions where GoldenGate can be applied.
Now we can dive into how GoldenGate works, the individual processes, and the
data flow that is adopted for all.

Oracle GoldenGate technology overview
Let's take a look at GoldenGate's fundamental building blocks; the Capture process,
Trail files, Data pump, Server collector, and Apply processes. In fact, the order in
which the processes are listed depicts the sequence of events for GoldenGate data
replication across distributed systems. A Manager process runs on both the source
and the target systems that "oversee" the processing and transmission of data.

All the individual processes are modular and can be easily decoupled or combined
to provide the best solution to meet the business requirements. It is normal practice
to configure multiple Capture and Apply processes to balance the load and enhance
performance. You can read more about this in Chapter 9, Performance Tuning.

Filtering and transformation of the data can be done at either the source by the
Capture or at the target by the Apply processes. This is achieved through parameter
files, and is explained in detail in Chapter 3, Configuring Oracle GoldenGate.

The capture process (Extract)
Oracle GoldenGate's capture process, known as Extract, obtains the necessary data
from the databases' transaction logs. For Oracle, these are the online redo logs that
contain all the data changes made in the database. GoldenGate does not require
access to the source database and only extracts the committed transactions from the
online redo logs. It can however, read archived redo logs to extract the data from
long running transactions, but more about that later in the book.

The Extract process will regularly checkpoint its read and write position, typically to
a file. The checkpoint data insures GoldenGate can recover its processes without data
loss in the case of failure.

The Extract process can have one the following statuses:

•	 STOPPED
•	 STARTING
•	 RUNNING
•	 ABENDED

Getting Started

[14]

The ABENDED status stems back to the Tandem computer, where processes either
stop (end normally) or abend (end abnormally). Abend is short for abnormal end.

Trail files
To replicate transactional data efficiently from one database to another, Oracle
GoldenGate converts the captured data into a Canonical Format which is written
to trail files, both on the source and the target system. The provision of source and
target trail files in the GoldenGates architecture eliminates any single point of failure
and ensures data integrity is maintained. A dedicated checkpoint process keeps track
of the data being written to the trails on both the source and target for fault tolerance.

It is possible to configure GoldenGate not to use trail files on the source system and
write data directly from the database's redo logs to the target server data collector.
In this case, the Extract process sends data in large blocks across a TCP/IP network
to the target system. However, this configuration is not recommended due to the
possibility of data loss occurring during unplanned system or network outages. Best
practice states, the use of local trail files would provide a history of transactions and
support the recovery of data for retransmission via a Data Pump.

Data Pump
When using trail files on the source system, known as a local trail, GoldenGate
requires an additional Extract process called Data Pump that sends data in large
blocks across a TCP/IP network to the target system. As previously sated, this is best
practice and should be adopted for all Extract configurations.

Server Collector
The Server Collector process runs on the target system and accepts data from the
source (Extract/Data Pump). Its job is to reassemble the data and write it to a
GoldenGate trail file, known as a remote trail.

The Apply process (Replicat)
The Apply process, known in GoldenGate as Replicat, is the final step in the data
delivery. It reads the trail file and applies it to the target database in the form of DML
(deletes, updates and inserts) or DDL*. (database structural changes). This can be
concurrent with the data capture or performed later.

The Replicat process will regularly checkpoint its read and write position, typically
to a file. The checkpoint data ensures that GoldenGate can recover its processes
without data loss in the case of failure.

Chapter 1

[15]

The Replicat process can have one of the following statuses:

•	 STOPPED
•	 STARTING
•	 RUNNING
•	 ABENDED

* DDL is only supported in unidirectional configurations and non-heterogeneous
(Oracle to Oracle) environments.

The Manager process
The Manager process runs on both source and target systems. Its job is to control
activities such as starting, monitoring, and restarting processes; allocating data
storage; and reporting errors and events. The Manager process must exist in any
GoldenGate implementation. However, there can be only one Manager process per
Changed Data Capture configuration on the source and target.

The Manager process can have either of the following statuses:

•	 STOPPED
•	 RUNNING

GGSCI
In addition to the processes previously described, Oracle GoldenGate 10.4 ships
with its own command line interface known as GoldenGate Software Command
Interface (GGSCI). This tool provides the administrator with a comprehensive set
of commands to create, configure, and monitor all GoldenGate processes. You will
become very familiar with GGSCI as you continue through this book.

Oracle GoldenGate 10.4 is command-line driven. However, there is a product called
Oracle GoldenGate Director that provides a GUI for configuration and management
of your GoldenGate environment.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Getting Started

[16]

Process data flow
The following diagram illustrates the GoldenGate processes and their dependencies.
The arrows largely depict replicated data flow (committed transactions), apart
from checkpoint data and configuration data. The Extract and Replicat processes
periodically checkpoint to a file for persistence. The parameter file provides the
configuration data. As described in the previous paragraphs, two options exist for
sending data from source to target; these are shown as broken arrows:

Having discovered all the processes required for GoldenGate to replicate data, let's
now dive a little deeper into the architecture and configurations.

Oracle GoldenGate architecture
So what makes GoldenGate different from other data replication products? The
quick answer is the architecture. GoldenGate can achieve heterogeneous and
homogeneous-real-time transactional Change Data Capture and integration
by decoupling itself from the database architecture. This in itself provides a
performance boost as well as flexibility through its modular components.

Chapter 1

[17]

A number of system architecture solutions are offered for data replication and
synchronization:

•	 One-to-one (source to target)
•	 One-to-many (one source to many targets)
•	 Many to one (hub and spoke)
•	 Cascading
•	 Bi-directional (active active)
•	 Bi-directional (active passive)

No one configuration is better than another. The one you choose is largely dependent
on your business requirements.

One-to-One
By far the simplest and most common configuration is the "source to target". Here
we are performing real-time or batch change data replication between two sites
in a unidirectional fashion. This could be, for example, between a primary and
standby site for Disaster Recovery (DR) or an OLTP to data warehouse for Business
Intelligence (BI) and OLAP.

One-to-One architecture provides a data replication solution that offers the
following key benefits:

•	 Live reporting
•	 Fastest possible recovery and switchover (when the target is synchronized

with the source)
•	 Backup site that can be used for reporting
•	 Supports DDL replication

Getting Started

[18]

Due to its simplicity, the One-to-One architecture is referred to many times in this
book to effectively demonstrate:

•	 Process configuration
•	 Data transformation
•	 Troubleshooting techniques
•	 Performance tuning tips and tricks

One-to-Many
Another popular GoldenGate configuration is the One-to-Many architecture. This
architecture lends itself perfectly to provide two solutions. One data replication feed
for reporting and one for backup and DR. The following example helps to illustrate
the method.

One-to-Many architecture provides a data replication solution that offers the
following key benefits:

•	 Dedicated site for Live reporting.
•	 Dedicated site for backup data from source database.
•	 Fastest possible recovery and switchover, when using a dedicated backup

site. It minimizes logical data corruption as the backup database is separate
from the read-write OLAP database.

Chapter 1

[19]

The One-to-Many architecture is very flexible, given that it provides two solutions
in one—a reporting and a standby database, both of which can have different
table structures.

Many-to-One
The Many-to-One configuration comes into play for peripheral sites updating a
central computer system representing a hub and spokes on a wheel. This scenario
is common in all industries, from retail outlets taking customer orders to high street
bank branches processing customer transactions. Ultimately, the data needs to make
it to the central database ASAP and cannot become lost or corrupted. GoldenGate's
architecture lends itself perfectly to this scenario, as seen in the next example. Here
we have three spoke sites sending data to the central hub site.

One important point to mention here is Conflict Handling. In a "hub and spoke"
configuration, with concurrent updates taking place, data conflicts are highly likely
to occur. Should the same database table row or field be updated by more than one
source, on the target the conflict must be handled by GoldenGate to allow either one
of the transactions to succeed or to fail all.

Getting Started

[20]

Another "hub and spoke" solution includes the One-to-Many configuration. A typical
example being the company head office sending data to its branches. Here, conflict
handling is less of an issue.

Cascading
The cascading architecture offers data replication at n sites, originating from a single
source. As the data flows from the originating source database, parts or all of it are
"dropped off" at each site in a cascading fashion until the final target is populated. In
the following example, we have one source (Site A) and three targets (Sites B, C and
D). Intermediate Sites B and C have both source and target trails, whereas Site A has
only a source and Site D only a target trail.

Chapter 1

[21]

What data to replicate is configured by using Filters in the GoldenGate parameter
files at each target site, making the Cascade architecture one of the most powerful,
yet complex configurations. Users at each site input data that can also be replicated
to the next site.

Bi-directional (Active-Active)
The following is an example of an active-active configuration, where Site A sends
changed data to Site B and vice versa. Again, Conflict Handling is an important
consideration. A conflict is likely to occur in a bi-directional environment, where the
same row or field is being updated at both sites. When the change is replicated, a
conflict occurs. This needs to be resolved by GoldenGate based on the business rules,
that is, should data from Site B overwrite Site A, or should both transactions fail?

Bi-directional (active-active) architecture provides a data replication solution that
offers the following key benefits:

•	 High availability
•	 Transaction load distribution
•	 Performance scalability

Another key element to include in your configuration is Loop Detection. We do not
want data changes going round in a loop, where Site A updates Site B, then Site B
updates Site A, and so on.

Do not be put off by the Bi-directional architecture. When configured correctly,
this architecture offers the most appropriate solution for global companies and
organizations, allowing users in two centers, both sides of the globe to share the
same system and data.

Getting Started

[22]

The active-active configuration is very different from the active-passive, which we
discuss in the following section.

Bi-directional (Active-Passive)
The following is an example of an active-passive configuration, sometimes called
"Live Standby", where Site A sends changed data to Site B only. You'll notice that the
path from Site B to Site A is "grayed-out", suggesting that the data replication path
can be re-enabled at short notice. This means that the GoldenGate processes exist and
are configured, but have not been started.

Bi-directional (active-passive) architecture provides a data replication solution that
offers the following key benefits:

•	 Both sites have database open read-write
•	 Fastest possible recovery and switchover
•	 Reverse direction data replication ready

The active-passive configuration lends itself to being a DR solution, supporting a
backup site should processes fail on the production site.

Supported platforms and databases
As this book is Oracle centric, below is a list of certified platforms and Oracle
databases that officially support GoldenGate 10.4. The full comprehensive list for
all certified platforms and databases is available at the My Oracle Support Website:
https://support.oracle.com. (formerly, Metalink).

Follow the steps below to obtain the official Oracle Certification Matrix:

https://support.oracle.com
https://support.oracle.com

Chapter 1

[23]

1. Log on to your My Oracle Support account and click on the Knowledge tab.
2. In the Search Product box near the top left of the page, type Oracle

GoldenGate and click on the magnifying glass icon.
3. In the next search box type "Certification Matrix" and click on the magnifying

glass icon to display the document ID 9762871.
Although GoldenGate supports earlier versions of Oracle, the following table lists
the platforms supported by GoldenGate for Oracle 11g:

Supported platforms for Oracle Database 11g

DB Version Architecture OS Version Platform
Oracle 11.1 64 AIX 5.3 IBM PowerPC
Oracle 11.1 32 AIX 5.3 IBM PowerPC
Oracle 11.1 64 AIX 6.1 IBM PowerPC
Oracle 11.1 / 11.2 64 HP-UX 11.23 HP Intel IA64
Oracle 11.1 / 11.2 64 HP-UX 11.31 HP Intel IA64
Oracle 11.1 / 11.2 64 RedHat AS 4 AMD/Intel x64
Oracle 11.1 / 11.2 32 RedHat AS 4 Intel x86
Oracle 11.1 / 11.2 64 RedHat AS 5 AMD/Intel x64
Oracle 11.1 / 11.2 64 Solaris 10 Sun SPARC
Oracle 11.1 / 11.2 64 Windows 2003 AMD/Intel x64

When downloading the GoldenGate software from Oracle Websites,
ensure you choose the correct GoldenGate version, supported platform,
architecture (32 or 64 bit) and database type and version.
For example, once unzipped and extracted, the following tar file installs
GoldenGate 10.4.0.19 for Oracle 11g on Redhat or Oracle Enterprise
Linux 32bit:
ggs_redhatAS50_x86_ora11g_32bit_v10.4.0.19_002.tar

Getting Started

[24]

The following is a list of certified non-Oracle databases that support Oracle
GoldenGate 10.4:

Supported non-Oracle databases
Database DB Version
IBM DB2 UDB 8.1
IBM DB2 UDB 8.2
IBM DB2 UDB 9.1 / 9.5
Microsoft SQL Server 2000
Microsoft SQL Server 2005
Microsoft SQL Server 2008 Delivery
MySQL 4.1
MySQL 5
Sybase ASE 12.5.4
Sybase ASE 15
Teradata V2R5
Teradata V2R6
SQL/MX 2.3
SQL/MP N/A
TimesTen 7.0.5
Enscribe N/A

Oracle GoldenGate is ideal for heterogeneous environments by replicating and
integrating data across differing vendor systems. Log-based Change Data Capture
(CDC) is supported for nearly all major database vendors. GoldenGate can also
integrate with JMS-based messaging systems to enable event driven architecture
(EDA) and to support service oriented architecture (SOA). Further, integration
support includes Extract Transformation and Load (ETL) products for OLAP and
Data Warehouse implementations.

Oracle Goldengate topology
The Oracle GoldenGate topology is a representation of the databases in a
GoldenGate environment, the GoldenGate components configured on each server,
and the flow of data between these components.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[25]

The flow of data in separate trails is read, written, validated and check-pointed
at each stage. GoldenGate is written in C and because it is native to the operating
system, can run extremely fast. The sending, receiving, and validation have very
little impact on the overall machine performance. Should performance become
an issue due to the sheer volumes of data being replicated, you may consider
configuring parallel Extract and/or Replicat processes.

Process topology
The following sections describe the process topology. Firstly discussing the rules that
you must adhere to when implementing GoldenGate, followed by the order in which
the processes must execute for end to end data replication.

The rules
When using parallel Extract and/or Replicat processes, ensure you keep related DDL
and DML together in the same process group to ensure data integrity. The topology
rules for configuring the processes are as follows:

•	 All objects that are relational to an object are processed by the same group as
the parent object

•	 All DDL and DML for any given database object are processed by the same
Extract group and by the same Replicat group

Should a referential constraint exist between tables, the child table with the foreign
key must be included in the same Extract and Replicat group as the parent table
having the primary key.

If an Extract group writes to multiple trails that are read by different Replicat groups,
the Extract process sends all of the DDL to all of the trails. It is therefore necessary to
configure each Replicat group to filter the DDL accordingly.

Getting Started

[26]

Position
The following tables show the position of each link in the process topology for the
two fundamental configuration types:

Change Data Capture and Delivery using a Data Pump
Start Component End Component Position
Extract Process Local Trail File 1
Local Trail File Data Pump 2
Data Pump Server Collector 3
Server Collector Remote Trail File 4
Remote Trail File Replicat Process 5

Change Data Capture and Delivery without using a Data Pump
Start Component End Component Position
Extract Process Server Collector 1
Server Collector Remote Trail File 2
Remote Trail File Replicat Process 3

Statistics
In terms of performance monitoring, the GGSCI tool provides real-time statistics
as well as comprehensive reports for each process configured in the GoldenGate
topology. In addition to reporting on demand, it is also possible to schedule reports
to be run. This can be particularly useful when performance tuning a process for a
given load and period.

The INFO ALL command provides a comprehensive overview of process status and
lag, whereas the STATS option gives more detail on the number of operations.
Both commands offer real-time reporting. This is demonstrated in the
following screen shots:

Chapter 1

[27]

From the screenshot you can see that the STATS command provides daily and
hourly cumulative statistics for a given process, including the overall total and the
latest real-time figures.

Design considerations
The first thing to consider and probably one of the most important steps in any IT
project is the design. If you get this wrong, your system will neither perform nor be
scalable, and ultimately the project will fail. The next project may be to address all
the design issues and start again from scratch! Not ideal.

So how do you design our GoldenGate implementation? Where do you start? What
is important in the design? There are obviously lots of questions, so let's try and
answer them.

Getting Started

[28]

Choosing a solution
You have already seen the different solutions GoldenGate has to offer at the
beginning of this chapter. You need to choose the most appropriate architecture
based on the business requirements. To do this it is necessary to first understand the
requirements of the system and what the system has to achieve. These requirements'
are both functional and non-functional. Examples of non-functional requirements are
performance and scalability.

To address the functional requirements you need to know:

•	 The overall system architecture and all of its components and interfaces. Ask
yourself the question "what data do we need to replicate and to where?"

For the non-functional requirements, you need to know:

•	 The maximum latency that is acceptable. Again, ask yourself the question
"how far behind the source can the target system(s) be?"

These are all important factors when considering a design. In the earlier section
"Oracle GoldenGate Topology" in this chapter, we mentioned the use of parallel
Extract and Replicate processes to increase data throughput. The number of parallel
trails is largely dependent on the hardware footprint. How many CPU cores do I
have? How much memory is available? Etc.

Network
Other areas to consider are the Network and Database Schema design. Starting
with the Network, this is fundamental to a data replication solution. If you have a
slow network, you will not be able to replicate high volumes of data in real-time.
Furthermore, should your network be unreliable, you need to consider the cost of
retransmission or transmitting a backlog of trail files. Redundant networks are very
important too and can help to alleviate this problem. If you can avoid the network
outage altogether by routing data over a backup network, it will save a number
of problems.

Chapter 1

[29]

Database schema
Database Schema design is another important consideration. Imagine a schema
where every table is related to nearly every other table, and the cascading referential
constraints are so complex, that it would be impossible to logically separate groups
of related tables for data extract. GoldenGate does provide a solution to this problem
by using the @RANGE function. However, this is not ideal. Apart from the complex
configuration, GoldenGate has to spend more CPU processing the configuration filters
and artificially "splitting" the data into a pre-defined number of trails. A good schema
design would be to ensure that logical separation exists between table groups, allowing
a simple, effective configuration that performs well. The number of table groups being
directly proportional to the number of Extract processes configured.

What to Replicate?
Another key decision in any GoldenGate implementation is what data to replicate.
There is little point replicating data that doesn't need to be, as this will cause
unnecessary additional overhead. Furthermore, if you decide that you need to
replicate everything, GoldenGate may not necessarily provide the best solution.
Other products such as Oracle 11g Active Data Guard may be more appropriate.
The forthcoming paragraphs talk not only about what to replicate but also how to
replicate, plus important functional and design considerations.

Object mapping and data selection
The power of GoldenGate comes into its own when you select what data you wish
to replicate, by using its inbuilt tools and functions. You may even wish to transform
the data before it hits the target. There are numerous options at your disposal, but
choosing the right combination is paramount.

The configuration of GoldenGate includes mapping of source objects to target
objects. Given the enormity of parameters and functions available, it is easy to over
complicate your GoldenGate Extract or Replicat process configuration through
redundant operations. Try to keep your configuration as simple as possible, choosing
the right parameter, option, or function for the job. Although it is possible to string
these together to achieve a powerful solution, this may cause significant additional
processing and performance will suffer as a result.

Getting Started

[30]

GoldenGate provides the ability to select or filter out data based on a variety of levels
and conditions. Typical data mapping and selection parameters are as follows:

•	 TABLE/MAP
	° Specifies the source and target objects to replicate. TABLE is used in

Extract and MAP in Replicat parameter files.

•	 WHERE
	° Similar to the SQL WHERE clause, the WHERE option included with

a TABLE or MAP parameter enables basic data filtering.

•	 FILTER
	° Provides complex data filtering. The FILTER option can be used with

a TABLE or MAP parameter.

•	 COLS/COLSEXCEPT
	° The COLS and COLSEXCEPT option allows columns to be mapped

or excluded when included with a TABLE or MAP parameter.

Before GoldenGate can extract data from the databases' online redo logs, the relevant
data needs to be written to its log files. A number of pre-requisites exist to ensure the
changed data can be replicated:

•	 Enable supplemental logging.
•	 Setting at database level overrides any NOLOGGING operations and ensures

all changed data is written to the redo logs.
•	 Forces the logging of the full before and after image for updates.
•	 Ensure each source table has a primary key.
•	 GoldenGate requires a primary key to uniquely identify a row.
•	 If the primary key does not exist on the source table, GoldenGate will create

its own unique identifier by concatenating all the table columns together.
This can be grossly inefficient given the volume of data that needs to be
extracted from the redo logs. Ideally, only the primary key plus the changed
data (before and after images in the case of an update statement) are
required.

It is also advisable to have a primary key defined on your target table(s) to ensure
fast lookup when the Replicat recreates and applies the DML statements against the
target database. This is particularly important for UPDATE and DELETE operations.

Chapter 1

[31]

Initial Load
Initial Load is the process of instantiating the objects on the source database,
synchronizing the target database objects with the source and providing the starting
point for data replication. The process enables "change synchronization" which keeps
track of ongoing transactional changes while the load is being applied. This allows
users to continue to change data on the source during the Initial Load process.

The Initial Load can be successfully conducted using the following:

•	 A database load utility such as import / export or data pump.
•	 An Extract process to write data to files in ASCII format. Replicat then

applies the files to the target tables.
•	 An Extract process to write data to files in ASCII format. SQL*Loader (direct

load) can be used to load the data into the target tables.
•	 An Extract process that communicates directly with the Replicat process

across TCP/IP without using a Collector process or files.

CSN co-ordination
An Oracle database uses the System Change Number (SCN) to keep track of
transactions. For every commit, a new SCN is assigned. The data changes including
primary key and SCN are written to the databases' online redo logs. Oracle requires
these logs for crash recovery, which allows the committed transactions to be
recovered (uncommitted transactions are rolled back). GoldenGate leverages this
mechanism by reading the online redo logs, extracting the data and storing the
SCN as a series of bytes. The Replicat process replays the data in SCN order when
applying data changes on the target database. The GoldenGate manuals refer to the
SCN as a CSN (Commit Sequence Number).

Trail file format
GoldenGate's Trail files are in Canonical Format. Backed by checkpoint files for
persistence, they store the changed data in a hierarchical form including metadata
definitions. The GoldenGate software includes a comprehensive utility named
Logdump that has a number of commands to search and view the internal file format.

Getting Started

[32]

Summary
This chapter has provided the foundation for the rest of the book. It covers the key
components of GoldenGate including processes, data flow, architecture, topology,
configuration, plus performance and design considerations.

We learn that good design reaches far beyond GoldenGate's architecture into the
database schema, allowing us to create an efficient and scalable data replication
model. We also discussed the importance of Conflict Handling in certain
configurations, plus network speed and resilience.

We have now gained a good understanding of what GoldenGate has to offer and are
keen to learn more. Some of the available solutions have been discussed inspiring
thought for real life implementations. This chapter has also touched upon inter-
process dependencies, trail file format and reporting statistics. The subsequent
chapters dive a little deeper, giving tangible examples for building enterprise-wide
production like environments.

The next chapter starts at the beginning of the GoldenGate implementation, the
installation. This includes preparing the environment as well as downloading and
unpacking the software.

Installing and Preparing
GoldenGate

Nowadays the DBA has Sys Admin skills and vice versa. For a successful
GoldenGate installation, you will need both, but don't let this put you off! This
chapter describes the process of downloading, installing, and configuring the
GoldenGate software, plus the pre-installation steps from the Operating System
and database preparation to confirming the software and hardware requirements.
Consideration has been made to the GoldenGate environment and the Oracle
database setup, including a configuration overview that allows you to swiftly get
up and running. The final section guides you through the de-installation of the
GoldenGate software.

This chapter will step you through the tasks needed to complete an end to end
GoldenGate installation in the order specified as follows:

1. Downloading the software from the Oracle Website.
2. Unpacking the installation zip file.
3. Preparing the source and target systems.
4. Installing the software on source and target systems.
5. Preparing the source database.
6. Configuring the Manager process on the source and target systems.
7. Configuring the Extract process on the source system.
8. Configuring the Data Pump process on the source system.
9. Configuring the Replicat process on the target system.
10. Starting the Extract process.
11. Starting the Data Pump process.
12. Starting the Replicat process.

Installing and Preparing GoldenGate

[34]

Prerequisites
Although the installation process may vary between platforms, for the purpose
of this book, the discussion topics and demonstrations will be based on Oracle
GoldenGate V10.4.0.x for Oracle 11g on Oracle Enterprise Linux 5.0 32-bit.

There are a number of prerequisites we need to be aware of before installing Oracle
GoldenGate 10.4. Let's take a look at these.

Downloading the software
At the time of writing, to obtain an evaluation copy of GoldenGate 10.4, we need to
log on to the Oracle eDelivery website:

http://edelivery.oracle.com

You will need to register and accept the license agreement before
you can download any software.

Oracle has placed GoldenGate in the Oracle Fusion Middleware family section,
under Business Intelligence. Here you will find Oracle GoldenGate for Oracle and
non-Oracle environments on a number of supported platforms.

For example, choose Linux x86 from the drop-down and select Oracle Media Pack
v2 for Linux x86. Then click the Continue button.

http://edelivery.oracle.com
http://edelivery.oracle.com

Chapter 2

[35]

On the next screen download Oracle GoldenGate V10.4.0.x for Oracle 11g on
RedHat 5.0 by clicking on the Download button.

A dialog box will appear allowing you to choose where to save the file on your local
file-system. The download time is small as the zipped installation file is just a
few megabytes.

It is also possible to download the Oracle GoldenGate documentation from the same
screen. The part number is V20521-01.

Software requirements
Starting with the operating system, Oracle Enterprise Linux (OEL) is the same as
Redhat Enterprise Linux (RHEL), essentially rebadged. OEL 5 and RHEL 5 both
use kernel version 2.6.18. Oracle and Redhat Support and Development teams
collaborate to produce bug fixes for future releases.

To view the version of Linux, execute the following command as the Oracle user:

$ cat /etc/redhat-release

Enterprise Linux Enterprise Linux Server release 5.2 (Carthage)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Installing and Preparing GoldenGate

[36]

The installation is a breeze. In fact it should only take a couple of minutes, by
unpacking the UNIX tar file found in V18429-01.zip that you downloaded earlier
from the Oracle Website. Configuring GoldenGate will take a bit longer, but we will
discuss that later in this chapter.

When installing GoldenGate on a clustered environment such as Oracle
Real Application Clusters (RAC), ensure the GoldenGate home or at least its
subdirectories are mounted on a shared filesystem. This allows the GoldenGate
processes to be started from any of the nodes and processing checkpoints to be
preserved across the cluster.

For Linux installations, there are no specific requirements for kernel parameter settings
or RPMs. Typically, GoldenGate is installed on a database server which has the
necessary kernel parameter settings and OS RPMs for Oracle. That said, you may wish
to adjust the network related kernel parameters to enhance performance. This topic is
discussed in detail in Chapter 9, Performance Tuning, section Tuning the Network.

Hardware requirements
The hardware requirements for GoldenGate include the size of the physical and
virtual memory, the number of CPUs and the available disk space.

Memory
The GoldenGate binaries only consume around 50MB of disk space; however, each
GoldenGate instance can support up to 300 concurrent Extract and Replicat processes
(inclusive). Each process consumes around 50MB of memory. So, if you plan on
using the maximum number of processes, you will need at least 16GB of physical
memory to support not only GoldenGate, but have enough system resources
available for the OS. If you have an Oracle Instance running on the same machine
(which is highly likely), additional memory will be required. Most modern day
enterprise specification database servers have at least 32GB of physical RAM.

CPU
Let's consider the CPU requirements. GoldenGate will use 1 CPU core per Extract
or Replicat process. However, having a large number of CPUs available is both
very expensive and not necessary, as GoldenGate will typically use only 5% of a
systems CPU resource. Modern Operating Systems can share available resources
very efficiently; the machine will not necessarily become CPU bound. It is important
however to size your requirements effectively, obtaining a balance between the
maximum possible number of concurrent processes and number of CPUs.

Chapter 2

[37]

Network
In your GoldenGate environment, you may find that CPU and memory are not the
performance bottlenecks. After all, modern CPUs can process data very quickly and
GoldenGate may actually be waiting to send data across the network. Therefore,
ensure you have a fast network between your source and target systems. If the
network between sites is a WAN, the bandwidth may not be available for high
performance data transfer. In this case, you could reduce the CPU requirement to
alleviate the network bottleneck.

GoldenGate requires a number of TCP/IP ports in which to operate. It is important
that your network firewall is allowed to pass traffic on these ports. One port is used
solely for communication between the Manager process and other GoldenGate
processes. This is normally set to port 7809 but can be changed. A range of other
ports are for local GoldenGate communications. These can be the default range
starting at port 7840 or a predefined range of up to 256 other ports.

Disk
The final hardware requirement is disk space. Firstly, the GoldenGate cache manager
uses the OS memory management functions, paging least-used information to disk and
allocating virtual memory (VM) on demand. This operation uses disk space, swapping
data out to temporary files in the dirtmp subdirectory. To calculate the required swap
space, obtain the value of PROCESS VM AVAIL FROM OS (min) from the Extract or
Replicat report files and multiply by the number of concurrent processes.

Secondly, an additional 40 MB of disk space is required for the working directories of
each GoldenGate instance, plus at least 1GB for the trail files.

Software installation
Having satisfied all the necessary prerequisities, you are now ready to install
the GoldenGate software. The next paragraphs offer a step-by-step guide to the
installation process.

Installing and Preparing GoldenGate

[38]

Installing GoldenGate
To use GoldenGate software you must install it on both source and target systems.
When installing GoldenGate on Linux or UNIX, it is highly recommended that the
software is installed by the Oracle user. To install, follow these simple steps:

1. Extract the Oracle GoldenGate Mediapack zipped file on a Windows system
by using WinZip or an equivalent file compression product. This produces a
UNIX tar file.

2. FTP the tar file in binary mode to the UNIX system (database server) and
directory where you want GoldenGate to be installed.

3. Log on using telnet or ssh client to the database server as the Oracle user.

Ensure you have your Oracle environment variables set correctly,
including LD_LIBRARY_PATH defined.
For example, if using bash or korn shell set the variable as follows:
export LD_LIBRARY_PATH=$ORACLE_HOME/lib

To make the environment variable setting persistent, define them in
the .bashrc (bash shell) or .profile (korn shell) files. An example
.bashrc file is shown next:

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions
ORACLE_SID=oltp
ORACLE_BASE=/opt/oracle
ORACLE_HOME=$ORACLE_BASE/app/product/11.1.0/db_1
LD_LIBRARY_PATH=$ORACLE_HOME/lib

PATH=$PATH:$ORACLE_HOME/bin:.

export ORACLE_SID ORACLE_BASE ORACLE_HOME PATH LD_
LIBRARY_PATH

4. Extract the tar file. The GoldenGate files are extracted into the current
working directory.
tar -xvof <filename>.tar

5. Change directories to the new GoldenGate directory.
cd ggs

Chapter 2

[39]

6. From the GoldenGate directory, run the GoldenGate Software Command
line Interpreter (GGSCI) program.
ggsci

7. In GGSCI, issue the CREATE SUBDIRS command to create the GoldenGate
working directories.
GGSCI (dbserver1) 1> CREATE SUBDIRS

8. Issue the following command to exit GGSCI:
GGSCI (dbserver1) 2> EXIT

Example:

[oracle@dbserver1 ~]$ cd ggs

[oracle@dbserver1 ggs]$ tar -xvof ggs_redhatAS50_x86_ora11g_32bit_
v10.4.0.19_002.tar

[oracle@dbserver1 ~]$ ggsci

Oracle GoldenGate Command Interpreter for Oracle

Version 10.4.0.19 Build 002

Linux, x86, 32bit (optimized), Oracle 11 on Sep 29 2009 08:50:50

Copyright (C) 1995, 2009, Oracle and/or its affiliates. All
rights reserved.

[oracle@dbserver1 ggs]$ ggsci

Oracle GoldenGate Command Interpreter for Oracle

Version 10.4.0.19 Build 002

Linux, x86, 32bit (optimized), Oracle 11 on Sep 29 2009 08:50:50

Copyright (C) 1995, 2009, Oracle and/or its affiliates. All
rights reserved.

GGSCI (dbserver1.mydomain.com) 1> create subdirs

Creating subdirectories under current directory /home/oracle/ggs

Parameter files /home/oracle/ggs/dirprm: created

Report files /home/oracle/ggs/dirrpt: created

Checkpoint files /home/oracle/ggs/dirchk: created

Process status files /home/oracle/ggs/dirpcs: created

SQL script files /home/oracle/ggs/dirsql: created

Installing and Preparing GoldenGate

[40]

Database definitions files /home/oracle/ggs/dirdef: created

Extract data files /home/oracle/ggs/dirdat: created

Temporary files /home/oracle/ggs/dirtmp: created

Veridata files /home/oracle/ggs/dirver: created

Veridata Lock files /home/oracle/ggs/dirver/lock:
created

Veridata Out-Of-Sync files /home/oracle/ggs/dirver/oos:
created

Veridata Out-Of-Sync XML files /home/oracle/ggs/dirver/oosxml:
created

Veridata Parameter files /home/oracle/ggs/dirver/params:
created

Veridata Report files /home/oracle/ggs/dirver/report:
created

Veridata Status files /home/oracle/ggs/dirver/status:
created

Veridata Trace files /home/oracle/ggs/dirver/trace:
created

Stdout files /home/oracle/ggs/dirout: created

GGSCI (dbserver1.mydomain.com) 2> exit

The GGSCI commands are not case sensitive, but do support wildcards (*)
where appropriate.

9. When using Oracle Automatic Storage Manager (ASM) as the storage
solution for your database, ensure you have a TNS entry configured for the
ASM instance in the tnsnames.ora file on the source database server.

The database server's tnsnames.ora file can be found in the following directory:

$ORACLE_HOME/network/admin

An example tnsnames.ora entry is shown next:

ASM =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbserver1)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SID = +ASM)
)
)

Chapter 2

[41]

The subdirectories
In step 7 of the installation, we create subdirectories beneath the GoldenGate home.
These are the default locations that can be moved, for example, to a Storage Area
Network (SAN). The subdirectory names and what specific files they contain are
described below.

dirchk
The dirchk subdirectory is the default location for checkpoint files created by
the Extract and Replicat processes that provide data persistence of read and write
operations. The file name format is <group name><sequence number>.<file
extension>.

A group is a processing group consisting of either an Extract or Replicat, its
parameter file, its checkpoint file, and any other files associated with the process. The
group name can be up to eight characters including non-alphanumeric.

The file extension is cpe for Extract checkpoint files or cpr for Replicat checkpoint files.

dirdat
The dirdat subdirectory is the default location for GoldenGate trail files and extract
files created by the Extract processes. These files are subsequently processed by
either a Replicat process or another application or utility.

The file name format for trail files is < prefix> <sequence number>

The prefix must be two alphanumeric characters specified during Extract or Replicat
creation. Typical prefix names are as follows:

•	 sa, sb, sc etc for the 1st, 2nd and 3rd trail files on the source
•	 ta, tb, tc etc for the 1st, 2nd and 3rd trail files on the target

A 6-digit sequential number is automatically appended to each file prefix for each
new trail file created.

The filename for extract files is user-defined name and has no sequence number.

This subdirectory can fill up very quickly during Extract processing.
The default size of trail files is 10M. Ensure that adequate space is
available in the filesystem to prevent the Extract process(es) from
abending. Processed trail files can be purged periodically as part of
the GoldenGate manager configuration.

Installing and Preparing GoldenGate

[42]

dirdef
The dirdef subdirectory is the default location for data definition files created by the
DEFGEN utility. These ASCII files contain source or target data definitions used in a
heterogeneous synchronization environment.

The file name format is user-defined and specified explicitly in the DEFGEN
parameter file. Typically the DEFGEN data file is called defs.dat.

dirpcs
The dirpcs subdirectory is the default location for process status files. These files
are only created while a process is running. The file shows the program and process
name, the port, and process ID.

The file name format is <group name>.<file extension>.

The file extension is pce for Extract, pcr for Replicat, or pcm for Manager processes.

dirprm
The dirprm subdirectory is the default location for GoldenGate parameter files
created by administrators configuring run-time parameters for GoldenGate process
groups or utilities. These ASCII files are generally edited through the GGSCI utility
but can be edited directly.

The file name format is <group name/user-defined name>.prm or mgr.prm.

dirrpt
The dirrpt subdirectory is the default location for report files created by Extract,
Replicat, and Manager processes. These ASCII files report statistical information
relating to a processing run. When a process abends the file is updated automatically.
However, to obtain process statistics "on the fly", the REPORT command must be
invoked from within the GGSCI tool.

The file name format is <group name><sequence number>.rpt.

dirsql
The dirsql subdirectory is the default location for SQL scripts.

Chapter 2

[43]

dirtmp
The dirtmp subdirectory is the default location for GoldenGate process temporary
files that "swap out" data related to large transactions that exceed the allocated
memory size. It is recommended that this subdirectory be created on its own disk to
reduce I/O contention.

Preparing the environment
Preparation is the key to just about any task. Get the preparation right and you will
be rewarded with the best results. This is also true for GoldenGate, where a number
of fundamental areas need to be prepared before the installation can take place.

Preparing the database for data replication
To successfully create, configure and start our Extract, Data Pump, and Replicat
processes, it's important to configure the source database. As described in Chapter
1, Getting Started, GoldenGate relies on the database's changed data to accomplish
data replication.

Enabling supplemental logging
In order to extract the committed transactions from the source Oracle database's
online redo logs, as a minimum the database must be configured for supplemental
logging on Primary Key columns. This can be enabled at database level using the
following DDL executed as SYSDBA:

[oracle@dbserver1 ggs]$ sqlplus '/as sysdba'

SQL> alter database add supplemental log data (primary key) columns;

Database altered

Initiate a log file switch to start supplemental logging:

SQL> alter system switch logfile;

System altered.

Installing and Preparing GoldenGate

[44]

The following SQL shows the result of enabling the supplemental logging:

SQL> select SUPPLEMENTAL_LOG_DATA_MIN, SUPPLEMENTAL_LOG_DATA_PK,
SUPPLEMENTAL_LOG_DATA_UI from v$database;

SUPPLEME SUP SUP

-------- --- ---

IMPLICIT YES NO

We now need to configure GoldenGate to add supplemental log data to the source
tables using GGSCI's ADD TRANDATA command. This is shown in the following
example for the SCOTT.DEPT and SCOTT.EMP tables:

[oracle@dbserver1 ggs]$ ggsci

GGSCI (dbserver1) 1> DBLOGIN USERID ggs_admin, PASSWORD ggs_admin

Successfully logged into database.

GGSCI (dbserver1) 2> ADD TRANDATA scott.DEPT

Logging of supplemental redo data enabled for table SCOTT.DEPT.

GGSCI (dbserver1) 3> ADD TRANDATA scott.EMP

Logging of supplemental redo data enabled for table SCOTT.EMP.

Every source table must have a Primary Key enabled else GoldenGate
will define all viable columns to represent uniqueness. This will
increase the volume of supplemental log data being written to the
redologs and subsequent trail files.

The source database is now ready for data replication!

If you have a lot of tables in your source schema that you wish to replicate, then you
could use SQL to generate the ADD TRANDATA statements. Log on to the source
database schema using SQL*Plus and execute the following commands:

SQL> set pages 0

SQL> select 'ADD TRANDATA SRC.'||tname from tab;

Chapter 2

[45]

Preparing the operating system
GoldenGate relies heavily on TCP/IP networking and therefore must be configured
correctly. In the earlier sections of this chapter, we configured a Data Pump process
that sends data across a TCP/IP network from the source to the target system. In the
Data Pump parameter file we specified a remote hostname, which must be resolved
to an IP address.

On Linux, the hosts file provides the mapping between host and IP address. For
example:

[oracle@dbserver1 ~]$ cat /etc/hosts

127.0.0.1 localhost.localdomain localhost

192.168.1.65 dbserver1

192.168.1.66 dbserver2

To edit the hosts file you must be the root (super) user.

In the case of a clustered environment, such as Oracle RAC, the hosts file must
contain the Virtual IP (VIP) address of the remote nodes.

Creating the initial configuration
This section describes the concept behind the configuration of GoldenGate and how to
set up data replication. The configuration examples are of a basic level and are based
on the Oracle Scott/Tiger schema. They do not necessarily represent a production
environment. Chapter 7, Advanced Configuration provides greater detail.

You may also wish to refer to the Oracle GoldenGate Reference Guide 10.4 to
support your understanding of commands and parameters.

The following steps create a simple GoldenGate unidirectional source-to-target
configuration, where data is replicated from the SRC schema in the OLTP database
on dbserver1, to the TGT schema in the OLAP database on dbserver2.

Installing and Preparing GoldenGate

[46]

Creating the GoldenGate administrator
Before any configuration can take place, we need to create a GoldenGate Administrator
user account on both source and target databases. This account provides access to the
database tables for GoldenGate configuration and runtime operations.

Log on to each database as SYSDBA and issue the following commands:

[oracle@dbserver1 ggs]$ sqlplus '/as sysdba'

SQL> create user ggs_admin identified by ggs_admin;

User created.

SQL> grant dba to ggs_admin;

Grant succeeded.

You will notice that the DBA Role has been granted to the GGS_ADMIN database user.
This is deliberate because of the high level of database access required. However,
the GoldenGate installation and setup guide lists the minimum individual roles and
privileges required against each process, which also command a high privilege.

For security reasons, it is important the GGS_ADMIN account is
not compromised and only used for GoldenGate administration
and operations.

The Manager process
GoldenGate configuration starts with the Manager process. The first parameter file to
create is the mgr.prm file. This file is implicitly created in the dirprms subdirectory
by typing the following command on the GGSCI command line:

GGSCI (dbserver1) 1> EDIT PARAM MGR

The EDIT command invokes your default editor. In the case of Linux, that will be
the vi editor. The following is a typical GoldenGate Manager configuration for the
source system, stored in the mgr.prm file. We will learn more about the Manager
process parameter file contents in the Chapter 4 , Configuring Oracle GoldenGate.

-- GoldenGate Manager parameter file

PORT 7809

PURGEOLDEXTRACTS ./dirdat/sa*, USECHECKPOINTS, MINKEEPHOURS 2

Chapter 2

[47]

A double hyphen (--) prefix allows comments to be placed in the GoldenGate
parameter files.

A period (.) depicts the GoldenGate home directory.

The Manager process must be configured on both source and target systems and
must be started before any other configuration tasks are performed in GGSCI.

GGSCI (dbserver1) 2> START MGR

Manager started.

You will also notice that the GGSCI tool (Linux) includes the following useful
information at the command prompt:

GGSCI (<hostname>) <command sequence number> >

The Extract process
The next parameter file to create is the Extract parameter file. Again, the file <group
name>.prm is implicitly created in the dirprm subdirectory by typing the following
command on the GGSCI command line. For example:

GGSCI (dbserver1) 3> EDIT PARAMS EOLTP01

The Extract process scans the database online or archived redo logs for committed
transactions. Should your source Oracle database be using Automatic Storage
Management (ASM) to store all its database files, GoldenGate will require access to
the ASM disk groups to scan the logs in the Flash Recovery Area (FRA). In this case,
the ASM SYS username and password will be required in the parameter file.

GoldenGate does not support OS authentication, which is the reason
for the password to be hardcoded in its Extract process parameter
files. However, this can be encrypted and is discussed in Chapter 5,
Configuration Options. ASM itself necessitates a SYS password file.

The basic configuration consists of:

•	 The Extract group name
•	 The Oracle Database System ID (ORACLE_SID)
•	 The source database GoldenGate username and password
•	 The source trail file path and prefix
•	 The ASM SYS username and password (if the database is using ASM)
•	 The source table names

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Installing and Preparing GoldenGate

[48]

The following code demonstrates the basic configuration required for the Extract
process. Our source system's Oracle System ID is OLTP, set by the SETENV
parameter. We also need to include the database user login information for the
GoldenGate administrator user; ggs_admin.

-- Change Data Capture parameter file to extract
-- OLTP table changes
--
EXTRACT EOLTP01
SETENV (ORACLE_SID=OLTP)
USERID ggs_admin, PASSWORD ggs_admin
EXTTRAIL ./dirdat/sa
TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD Password1
TABLE SRC.DEPT;
TABLE SRC.EMP;

Creating and starting an Extract process
Now that we have created an Extract parameter file, the next step is to add the
Extract to GoldenGate using GGSCI. The following example uses the Extract
parameter file (EOLTP01.prm) shown in paragraph titled "The Extract Process":

[oracle@dbserver1 ggs]$ ggsci

GGSCI (dbserver1) 1> add extract EOLTP01, tranlog, begin now, threads 1

EXTRACT added.

The previous GGSCI command string includes the TRANLOG keyword that tells
GoldenGate to extract data from the source database's online redologs. The BEGIN
NOW statement tells GoldenGate to start data replication immediately.

In a RAC environment, the THREADS parameter must be
set to the number of database instances. The default is 1 for
a single instance database.

The next step is to define the local trail for the Extract process. The GGSCI command
string below specifies a local trail having the prefix sa. Also, each trail file associated
with the EOLTP01 Extract process will be a maximum of 50MB in size:

GGSCI (dbserver1) 2> add exttrail ./dirdat/sa, extract EOLTP01,
megabytes 50

EXTTRAIL added.

Chapter 2

[49]

Before starting the Extract process, let's define its associated Data Pump process,
ensuring that the sa trail prefix is specified. The example below uses the Extract
parameter file EPMP01.prm shown in paragraph titled "The Data Pump Process":

GGSCI (dbserver1) 3> add extract EPMP01, exttrailsource ./dirdat/sa,
begin now

EXTRACT added.

Now that we have an Extract and Data Pump process defined and configured, we
can start them:

GGSCI (dbserver1) 4> start extract EOLTP01

Sending START request to MANAGER ...

EXTRACT EOLTP01 starting

GGSCI (dbserver1) 5> start EXTRACT EPMP01

Sending START request to MANAGER ...

EXTRACT EPMP01 starting

To view the status of the Extract process, use the following command:

GGSCI (dbserver1) 6> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

EXTRACT RUNNING EOLTP01 00:00:00 00:00:02

EXTRACT RUNNING EPMP01 00:00:00 00:00:00

The Data Pump process
If you plan to use a Data Pump process, which is highly recommended, you need to
create a Data Pump parameter file on the source system. Create the file <group name>.
prm by typing the following command on the GGSCI command line. For example:

GGSCI (dbserver1) 4> EDIT PARAMS EPMP01

Installing and Preparing GoldenGate

[50]

The Data Pump process is in essence an Extract process that sends changed data to
the target system. The basic configuration consists of:

•	 The Data Pump name
•	 The data processing option (PASSTHRU or NOPASSTHRU)
•	 The target hostname
•	 The target trail file path and prefix
•	 The Manager port TCP/IP port number
•	 The source table names

The following code demonstrates the basic configuration required for the Data Pump
process. We have chosen to use the PASSTHRU parameter ensuring that the data is
propagated to the target host without any manipulation.

-- Data Pump parameter file to read the local
-- trail of table changes
--
EXTRACT EPMP01
PASSTHRU
RMTHOST dbserver2, MGRPORT 7809
RMTTRAIL ./dirdat/ta
TABLE SRC.DEPT;
TABLE SRC.EMP;

The Replicat process
To use a Replicat process, you need to create a Replicat parameter file on the target
system. Create the file <group name>.prm by typing the following command on the
GGSCI command line. For example:

GGSCI (dbserver2) 1> EDIT PARAMS ROLAP01

The Replicat process reads the target trail files and converts the GoldenGate
messages to DML or DDL and applies the changes to the target database. The basic
configuration consists of:

•	 The Replicat group name
•	 The Oracle Database System ID (ORACLE_SID)
•	 The target database GoldenGate username and password
•	 The target trail file path and prefix
•	 The discarded data file (data records that suffer an error during apply)
•	 The mapping information between source table and target table

Chapter 2

[51]

The following code demonstrates the basic configuration required for the Replicat
process. Similar in structure to the Extract process, we have defined a process name,
the target database's Oracle System ID, which is OLAP, the GoldenGate user login
credentials and a discard file. We have also defined the mapping between source and
target tables.

-- Replicator parameter file to apply changes
-- to tables
--
REPLICAT ROLAP01
SETENV (ORACLE_SID=OLAP)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/rolap01.dsc, PURGE
MAP SRC.DEPT, TARGET TGT.DEPT;
MAP SRC.EMP, TARGET TGT.EMP;

Creating and starting a Replicat process
Perform the Replicat process creation on the target system. The example below
uses the Replicat parameter file ROLAP01.prm shown in paragraph titled
"The Replicat Process":

[oracle@dbserver2 ggs]$ ggsci

GGSCI (dbserver2) 1> add replicat ROLAP01, exttrail ./dirdat/ta

REPLICAT added.

Note that the above GGSCI command string includes the Replicat group name
ROLAP01 and the ta remote trail prefix as specified in the Data Pump parameter file
EPMP01.prm.

Now start the newly created Replicat process:

GGSCI (dbserver2) 2> start replicat ROLAP01

Sending START request to MANAGER ...

REPLICAT ROLAP01 starting

GGSCI (dbserver2) 3> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING ROLAP01 00:00:00 00:00:02

Installing and Preparing GoldenGate

[52]

Configuration summary
To summarize the configuration overview, the tables below describe the naming
convention and mapping between roles, file names, processes, hostnames, databases,
and schemas used in the configuration examples.

Role Process Process Group
Name

Parameter
Filename

Trail Filename
Prefix

Source /
Target

MGR MGR mgr.prm N/A

Source EXTRACT EOLTP01 eoltp01.prm sa
Source EXTRACT

(Data
Pump)

EPMP01 epmp01.prm sa (local)

ta (remote)

Target REPLICAT ROLAP01 rolap01.prm ta

Role Database Server
Hostname

Database Name Schema Name

Source dbserver1 OLTP SRC
Target dbserver2 OLAP TGT

Uninstalling GoldenGate from Linux/UNIX
Uninstalling the GoldenGate software is, as one would expect, the reverse of
installing it. The de-installation is as simple as the installation and can be done by
following the example below:

1. Log on to the database server (as oracle) where the GoldenGate software is
installed.

2. Change directory to the GoldenGate home:
cd /home/oracle/ggs

3. Start GGSCI:
ggsci

4. Stop all GoldenGate processes:
GGSCI (dbserver1) 1> stop EXTRACT *

Or:

GGSCI (dbserver1) 1> stop REPLICAT *

Chapter 2

[53]

Then:

GGSCI (dbserver1) 2> stop MGR

Manager process is required by other GGS processes.

Are you sure you want to stop it (y/n)? y

Sending STOP request to MANAGER ...

Request processed.

Manager stopped.

GGSCI (dbserver1) 3> exit

5. Change directory to the installation directory:
cd /home/oracle

6. Remove the GoldenGate files:
rm -rf ggs

7. Logon to the Oracle database as SYSDBA and drop the GoldenGate Admin
user. Include the CASCADE keyword:
sqlplus / as sysdba

SQL> drop user ggs_admin cascade;

User dropped.

Summary
This chapter has provided us with an introduction to the end to end process of
preparing the environment and installing the GoldenGate software. Although the
initial configuration is relatively simple compared to a production environment,
it has delivered the foundation, allowing us to build a working GoldenGate data
replication solution.

In the next chapter, we look at design considerations, which is probably the most
important step when implementing a GoldenGate solution..

Design Considerations
The most important step in any IT development project is the design. This must be the
first step as changes to the design at a later stage will cost time and money. Get the
design right and your system will continue to perform well as the user base increases.

At a high level, the design must include the following generic requirements:

•	 Hardware
•	 Software
•	 Network
•	 Storage
•	 Performance

All the above must be factored into the overall system architecture. So let's take a
look at some of the options and the key design issues.

In this chapter, we will discuss the following areas to help answer some of the
questions that influence the decision making process.

•	 Methods for replicating data: What do we want to achieve?
•	 Networking: How do we make our solution resilient to network outages?
•	 Performance and scalability: Will our solution support future non functional

requirements?
•	 Backup and recovery: Can we restore service quickly with no data loss?
•	 Hardware: What is the size of our budget? Do we need powerful servers?

Can we cluster lower spec machines?

Design Considerations

[56]

Replication methods
So you have a fast reliable network between your source and target sites. You also
have a schema design that is scalable and logically split. You now need to choose the
replication architecture; One to One, One to Many, active-active, active-passive, and
so on. This consideration may already be answered for you by the sheer fact of what
the system has to achieve. Let's take a look at some configuration options.

Active-active
Let's assume a multi-national computer hardware company has an office in London
and New York. Data entry clerks are employed at both sites inputting orders into an
Order Management System. There is also a procurement department that updates
the system inventory with volumes of stock and new products related to a US or
European market. European countries are managed by London, and the US States
are managed by New York. A requirement exists where the underlying database
systems must be kept in synchronisation. Should one of the systems fail, London
users can connect to New York and vice-versa allowing business to continue and
orders to be taken. Oracle GoldenGate's active-active architecture provides the best
solution to this requirement, ensuring that the database systems on both sides of the
pond are kept synchronised in case of failure.

Another feature the active-active configuration has to offer is the ability to load
balance operations. Rather than have effectively a DR site in both locations, the
European users could be allowed access to New York and London systems and vice-
versa. Should a site fail, then the DR solution could be quickly implemented.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[57]

Active-passive
The active-passive bi-directional configuration replicates data from an active primary
database to a full replica database. Sticking with the earlier example, the business
would need to decide which site is the primary where all users connect. For example,
in the event of a failure in London, the application could be configured to failover
to New York.

Depending on the failure scenario, another option is to start up the passive
configuration, effectively turning the active-passive configuration into active-active.

Design Considerations

[58]

Cascading
The Cascading GoldenGate topology offers a number of "drop-off" points that are
intermediate targets being populated from a single source. The question here is
"what data do I drop at which site?" Once this question has been answered by the
business, it is then a case of configuring filters in Replicat parameter files allowing
just the selected data to be replicated. All of the data is passed on to the next target
where it is filtered and applied again.

This type of configuration lends itself to a head office system updating its satellite
office systems in a round robin fashion. In this case, only the relevant data is
replicated at each target site. Another design, already discussed in Chapter 1, is the
Hub and Spoke solution, where all target sites are updated simultaneously. This is
a typical head office topology, but additional configuration and resources would be
required at the source site to ship the data in a timely manner. The CPU, network,
and file storage requirements must be sufficient to accommodate and send the data
to multiple targets.

Chapter 3

[59]

Physical Standby
A Physical Standby database is a robust Oracle DR solution managed by the Oracle
Data Guard product. The Physical Standby database is essentially a mirror copy of its
Primary, which lends itself perfectly for failover scenarios. However , it is not easy to
replicate data from the Physical Standby database, because it does not generate any
of its own redo. That said, it is possible to configure GoldenGate to read the archived
standby logs in Archive Log Only (ALO) mode. Despite being potentially slower, it
may be prudent to feed a downstream system on the DR site using this mechanism,
rather than having two data streams configured from the Primary database. This
reduces network bandwidth utilization, as shown in the following diagram:

Reducing network traffic is particularly important when there is considerable
distance between the primary and the DR site.

Design Considerations

[60]

Networking
The network should not be taken for granted. It is a fundamental component in data
replication and must be considered in the design process. Not only must it be fast, it
must be reliable. In the following paragraphs, we look at ways to make our network
resilient to faults and subsequent outages, in an effort to maintain zero downtime.

Surviving network outages
Probably one of your biggest fears in a replication environment is network failure.
Should the network fail, the source trail will fill as the transactions continue on
the source database, ultimately filling the filesystem to 100% utilization, causing
the Extract process to abend. Depending on the length of the outage, data in
the database's redologs may be overwritten causing you the additional task of
configuring GoldenGate to extract data from the database's archived logs. This is not
ideal as you already have the backlog of data in the trail files to ship to the target site
once the network is restored. Therefore, ensure there is sufficient disk space available
to accommodate data for the longest network outage during the busiest period.

Disks are relatively cheap nowadays. Providing ample space for your trail files will
help to reduce the recovery time from the network outage.

Redundant networks
One of the key components in your GoldenGate implementation is the network.
Without the ability to transfer data from the source to the target, it is rendered
useless. So, you not only need a fast network but one that will always be available.
This is where redundant networks come into play, offering speed and reliability.

NIC teaming
One method of achieving redundancy is Network Interface Card (NIC) teaming
or bonding. Here two or more Ethernet ports can be "coupled" to form a bonded
network supporting one IP address. The main goal of NIC teaming is to use two or
more Ethernet ports connected to two or more different access network switches thus
avoiding a single point of failure. The following diagram illustrates the redundant
features of NIC teaming:

Chapter 3

[61]

Linux (OEL/RHEL 4 and above) supports NIC teaming with no additional software
requirements. It is purely a matter of network configuration stored in text files in the
/etc/sysconfig/network-scripts directory. The following steps show how to
configure a server for NIC teaming:

1. First, you need to log on as root user and create a bond0 config file using the
vi text editor.
vi /etc/sysconfig/network-scripts/ifcfg-bond0

2. Append the following lines to it, replacing the IP address with your actual IP
address, then save file and exit to shell prompt:
DEVICE=bond0
IPADDR=192.168.1.20
NETWORK=192.168.1.0
NETMASK=255.255.255.0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes

3. Choose the Ethernet ports you wish to bond, and then open both
configurations in turn using the vi text editor, replacing ethn with the
respective port number.
vi /etc/sysconfig/network-scripts/ifcfg-eth2
vi /etc/sysconfig/network-scripts/ifcfg-eth4

4. Modify the configuration as follows:
DEVICE=ethn
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

Design Considerations

[62]

5. Save the files and exit to shell prompt.
6. To make sure the bonding module is loaded when the bonding interface

(bond0) is brought up, you need to modify the kernel modules configuration
file:
vi /etc/modprobe.conf

7. Append the following two lines to the file:
alias bond0 bonding
options bond0 mode=balance-alb miimon=100

8. Finally, load the bonding module and restart the network services:
modprobe bonding
service network restart

You now have a bonded network that will load balance when both physical
networks are available, providing additional bandwidth and enhanced performance.
Should one network fail, the available bandwidth will be halved, but the network
will still be available.

Non-functional requirements (NFRs)
Irrespective of the functional requirements, the design must also include the non-
functional requirements (NFR) in order to achieve the overall goal of delivering a
robust, high performance, and stable system.

Latency
One of the main NFRs is performance. How long does it take to replicate a
transaction from the source database to the target? This is known as end-to-end
latency that typically has a threshold that must not be breeched in order to satisfy the
specified NFR.

GoldenGate refers to latency as lag, which can be measured at different intervals in
the replication process. These are:

•	 Source to Extract: The time taken for a record to be processed by the Extract
compared to the commit timestamp on the database

•	 Replicat to Target: The time taken for the last record to be processed by the
Replicat compared to the record creation time in the trail file

A well designed system may encounter spikes in latency but it should never be
continuous or growing. Trying to tune GoldenGate when the design is poor is a
difficult situation to be in. For the system to perform well you may need to revisit
the design.

Chapter 3

[63]

Availability
Another important NFR is availability. Normally quoted as a percentage, the
system must be available for the specified length of time. An example NFR of 99.9%
availability equates to a downtime of 8.76 hours a year, which sounds quite a lot,
especially if it were to occur all at once.

Oracle's maximum availability architecture (MAA) offers enhanced availability
through products such as RAC and Dataguard. However, as we have previously
discussed, the network plays a major role in data replication. The NFR probably relates
to the whole system, so you need to be sure your design covers all components.

We look at configuring GoldenGate on Real Application Clusters (RAC) as a MAA
solution in the Chapter 6, Configuring GoldenGate for High Availability.

Backup and recovery
Equally important as the other NFRs is the recovery time. If you cannot recover
from a disaster your system will be unavailable or worse still, data will be lost.
GoldenGate prides itself on robustness, having proven to the industry that zero
downtime data migrations are possible whilst users are still online!

Of course, you need to backup your source and target databases regularly using a
product such as Oracle Recovery Manager (RMAN)—typically performing a full
backup once a week on a Sunday with incremental backups running each night over
a 7 day window, but this is not the full story. We need to consider backing up the
GoldenGate home and sub-directories that contain the trail files, checkpoint files, and
so on. Without these, GoldenGate could not recover from the last checkpoint and a
new initial load would be required. RMAN (11gR1) will not back up OS or
non-database files so either use UNIX shell commands or a third party product such
as Veritas NetBackup.

You may decide to place your GoldenGate sub-directories on shared storage such as
a Storage Area Network (SAN) where data resilience is automatically maintained.
This may be the best design solution given that the disks are shared and the available
speed of recovery. For example, restoring data from EMC SnapView.

The best recovery solution is the Disaster Recovery (DR) site, where you can quickly
switchover or failover to a backup system. GoldenGate may already be part of this
strategy, so ensure your DR solution is robust by scheduling regular backups as
previously discussed.

Design Considerations

[64]

The following example architecture diagram helps to illustrate the design:

Although a key area in the overall design B & R is sometimes overlooked. Oracle
provides a number of HA solutions that offer fast and reliable mechanisms to ensure
your data is not only backed up but always available. In this chapter, we have
already discussed Oracle RAC, Dataguard and RMAN, with GoldenGate we have a
fourth member of the MAA team.

Hardware considerations
Hardware is one of the most important components in the overall design. Without
the appropriate memory footprint, CPU power, network, or storage solution our
design will fail before the project even "gets off the ground". Another consideration
is how to arrange the hardware to obtain the best performance and scalability. Let's
take a look at a few options.

Computing architectures
The configuration and arrangement of hardware components is known as the system
architecture. This section concentrates on the common computer architectures
available and discusses their advantages and disadvantages for distributed database
network supporting a Web-based application.

The following diagram shows the typical hardware components required:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[65]

GoldenGate is deemed as middleware and normally runs on the database tier where
the software can access the database and it's online redo logs.

Grid computing
Nowadays, highly powerful servers can be procured preconfigured to the customer's
specification. One of the most cost effective is the x86 64 bit Linux server, which
offers high performance at a budget price. Should your system require more "horse
power", you just add more servers. This is known as Grid computing.

Grid computing offers multiple applications to share computing infrastructure,
resulting in greater flexibility, low cost, power efficiency, performance, scalability
and availability, all at the same time.

What does this mean for GoldenGate? As we know, GoldenGate runs a number of
local processes. Should we wish to synchronize data between more than one server
we would have to adopt a shared storage solution or maybe in-memory caching such
as Oracle Coherence. This all adds to the overall complexity of the design.

Single server
A single database and application server may also be a low cost option. However, it
is not scalable and will cost you a lot more having to upgrade the hardware as the
number of users increase. On the other hand, the single server option does provide
simplicity and can be easily configured and maintained. The choice in architecture is
largely dependent on the application, not just the cost!

Design Considerations

[66]

Clusters
There is nothing new about clustered environments; they have existed for years. DEC
VMS is a classic example. Clustered environments have proven their worth over the
years; for example, Oracle Real Application Clusters (RAC) has been around since
Oracle 9i and before that in Oracle 8 it was known as Oracle Parallel Server (OPS).
Today, RAC is one of the most common database architectures offering performance,
resilience, and scalability at a reasonable cost (depending on the number of nodes and
CPU cores). RAC does however demand shared storage, which may add to the cost.

As with Grid computing, GoldenGate requires shared storage in order to replicate
data from more than one thread or instance.

Machines
Although GoldenGate is multi-platform and supports heterogeneous databases, this
book focuses on Linux and Oracle. In a production environment, the database server
is typically a powerful machine costing thousands of dollars. However, the hardware
investment can be significantly reduced without compromising performance by using
the Linux x86-64 operating system on Intel based machines with 64 bit architecture.

The x86-64 Linux Server
The x86-64 Linux Server is essentially a PC having 64 bit Red Hat or Oracle
Enterprise Linux installed. Typically, a standard Linux business server delivered
from HP or Dell would have the following minimum hardware specification:

•	 4 Quad-Core Intel or AMD processors
•	 16 GB Memory
•	 2 x 500 GB Hard disks (possibly a mirrored pair)
•	 4 x Gigabit Ethernet Ports

Depending on the application, the hardware specification is more than adequate for
clustered or grid environments, but may not be sufficient as a single server. We must
also consider the different layers involved in a computer system, from the application
and middleware layers up to the database tier, which includes the storage.

How many servers are you going to allocate to each layer?

Good question. It is common to have more application servers than database servers
supporting the system. The application servers providing the "user experience"
offering the functionality and response times through load balancing and caching
technologies, ultimately querying, or modifying data in the database before
rendering and serving Web pages.

Chapter 3

[67]

The Database Machine
Since Oracle's acquisition of Sun Microsystems in January 2010, the corporation
has marketed the "Database Machine" and Exadata2. At the time of writing, the
minimum specification Database Machine (half rack) comprises of two database
servers having the following:

•	 2 Quad-Core Intel Xeon E5540 Processors
•	 72 GB Memory
•	 Disk Controller HBA with 512MB Battery Backed Write Cache
•	 4 x 146 GB SAS 10,000 RPM disks
•	 Dual-Port QDR InfiniBand Host Channel Adapter
•	 4 Embedded Gigabit Ethernet Ports

Plus the shared storage:

•	 3 x Sun Oracle Exadata Storage Servers with 12 x 600 GB 15,000 RPM SAS
disks or

•	 12 x 2 TB 7,200 RPM SATA disks
•	 Including 1.1 TB Exadata Smart Flash Cache

The Database Machine is purely supporting the database tier, uniquely designed for
Oracle databases, offering very high speed transactional processing capabilities with
Exadata V2 storage. This is undoubtedly the "Ferrari" of all database servers, which
has proved to be a highly successful product for Oracle. However, Ferrari's are not
cheap and nor are Oracle Sun Database Machines! Your design therefore needs to
balance the costs against acceptable performance and scalability.

Scaling up and out
Probably one of the most difficult decisions to make in your overall design is
whether to scale up or scale out. If you choose to scale up and use a single powerful
database server with expansion for additional CPU and memory, this may prove
to be a short term solution. Eventually, your application's performance will "hit the
buffers" where the database server has no more capacity to scale. To resolve this
problem by replacing the server with an even more powerful machine would incur
significant costs.

So is the answer to scale out? Not necessarily, scaling out is not without its problems.
Considering Oracle RAC as a clustered database solution, where multiple instances
hosted on multiple nodes all connect to the same database on shared storage, we
move into a world of global cache locking and waits.

Design Considerations

[68]

Consider a user connected to instance 1 on node A executing a query that causes a
full table scan against a long table having over 1 million rows. To try to reduce the
cost of I/O, Oracle will look at the global cache to see if the blocks reside in memory.
However, had a similar query been executed on a remote node, Oracle will transfer
the blocks across the interconnect network between the nodes which may be a slower
operation than scanning the underlying disk subsystem. For this reason and to reduce
the potential performance overhead, it is possible to configure a 2 node Oracle RAC
system in active-passive mode. Here, one instance takes the load while the other
instance becomes the redundant standby. But we are back to one node again!

The key is to find the right balance. For example, you would not want to overwhelm
your database servers with requests from an enormous array of application servers.
The application response time would suffer as the database becomes the bottleneck.
It is a case of tuning the system to achieve the best performance across the available
hardware. By all means leverage the advantages of Oracle RAC on low cost servers,
but make sure your application's SQL is optimized for the database. Look at schema
design, table partitioning, even instance partitioning where data can be grouped
across the nodes. An example of this would be countries. Users from the UK connect
to instance 1, French users to instance 2, German users to instance 3, and so on.

What is important for GoldenGate is the database redo logs. These need to be on
shared storage on fast disks and accessible to the Extract processes. It is an Oracle
best practice to place the database's online redo logs on fast disks that are striped and
mirrored (not RAID 5), because the database is constantly writing to them. RAID5 is
slower on write operations as it is not recommended for redo logs. Furthermore, if
the I/O is slow, the database performance will suffer as a result of the 'logfile sync'
wait event.

Changed data management
It's all very well replicating data in real-time between a source and target database,
but what if something disastrous happens to the source data; a user drops a table or
deletes important records or the data becomes corrupt? The answer maybe to build
a delay into the changed data delivery but this seems to defeat the object of fast data
replication. What can be done to manage the changed data, ensuring that only the
valid transactions succeed?

There are a number of solutions to this problem, none of which prevent user error or
data corruption. Let's now take a look at some of these, which are provided by the
Oracle database.

Chapter 3

[69]

Point in Time Recovery (PITR)
Since Oracle 10g, the database provides "flashback" technology allowing the
database, a table or even a transaction to be flashed back to a SCN or timestamp.
The Flashback technology provides a fast reliable recovery mechanism over the
traditional method of performing a point in time recovery.

Oracle Recovery Manager (RMAN)
RMAN supports PITR. However, the database would have to be mounted and not
open preventing users from connecting. Furthermore, the database would need to be
restored from a backup and then recovered to a specified SCN or timestamp. All this
takes time and is unacceptable, particularly with the database offline!

Flashback
A far quicker recovery method is the Oracle 11g Flashback technology. Here,
a dropped table can be recovered instantaneously from the Recycle Bin by one
command and with the database open. It is a similar story for individual for
transactions too. These can be backed out using the information provided from a
Flashback Transaction Query. The result of adopting these methods would also
generate redo that the GoldenGate Extract process would then write to the trail files
for onward replication. Therefore, no action is required on the target database.

Should you wish to flashback the whole database to a point in time before the error,
Flashback would need to have been enabled at database level. This operation causes
the database to generate flashback logs in addition to its redo logs, all of which are
written to the Flash Recovery Area (FRA). To recover from data loss or corruption
in a GoldenGate environment, it is important to perform the flashback on both
source and target databases. This is however, an off-line operation. The GoldenGate
Veridata product can be used to perform the data comparison following recovery.

To guard against human error, Flashback technology appears to provide the
solution, but what does this mean for GoldenGate? Simply alter your Extract process
to start replicating data from the specified timestamp.

For a bit of insurance and peace of mind, it's worth enabling
Flashback on your mission critical source and target databases,
making sure you factor in the additional storage requirements for
the FRA in your design.

Design Considerations

[70]

SAN Snapshot
SAN Snapshots provide an alternative solution to PITR. Typically, snaps are scheduled
every 30 minutes, capturing a "snapshot" of the data that will provide a restore
point. The beauty of the SAN Snapshot is its ability to snap all file types as an online
operation; database files, raw files, filesystems etc, which lends itself perfectly to a
GoldenGate environment. You no longer need to concern yourself with winding back
your database and your Extract process to a point in time, just restore the snap and
wind forward to just before the error by applying the database archived logs. The
GoldenGate trail and checkpoint files will remain in synchronization with the database
as if nothing ever happened. The only issue you may face is having to manually replay
any legitimate transactions that occurred after the error or corruption.

Summary
In this chapter, we revisited the GoldenGate topology, this time from a design
viewpoint. We discussed the different replication methods and architectures and the
hardware associated with each one. Functional and non-functional requirements were
evaluated against the cost of hardware resources, encouraging a mindful balance in the
overall design. Finally, we concentrated on Backup and Recovery options that are often
overlooked, but have huge importance in your GoldenGate implementation.

In the next chapter, we delve a little deeper into the configuration detail, discussing
the range and scope of available options and functions that make GoldenGate such a
powerful and feature-rich product.

Configuring Oracle
GoldenGate

Having installed Oracle GoldenGate 10.4, it must be configured in order to meet
all of your data replication, data migration, or upgrade requirements. Initially
discussing the main GoldenGate parameters, this chapter provides a methodical
approach to the configuration process, stepping through each task to give the
depth of information necessary to successfully implement GoldenGate on Oracle
11g. Helping to provide the building blocks, this chapter forms the basis for more
complex configurations

In this chapter, you will learn about the following:

•	 Choosing the appropriate Initial Load method to synchronize the source
database with the target

•	 Preparing and configuring the Initial Capture on the source system
•	 Configuring Change Data Capture on the source system
•	 Configuring Change Delivery on the target system

If you are a "command-line junkie" you will love this chapter, walking you through
the basic steps necessary to configure a One-to-One GoldenGate environment,
including data synchronization between the source and target databases.

Configuring Oracle GoldenGate

[72]

GoldenGate parameters
Parameters play a huge part in the configuration of GoldenGate. Every configurable
process is driven from an associated parameter file. We have already used a handful
in Chapter 2, Installing and Preparing GoldenGate, giving us a basic configuration
following a software install. Let's now look at the scope and application of the
GoldenGate parameters used in this chapter.

The following table groups the parameters and their descriptions by process type.
This is by no means an exhaustive list, just those parameters we will become familiar
with as we continue our journey through the book:

Process Parameter Name Parameter Description
MGR PORT The TCP/IP port number that the Manager

process uses for communication with other
processes.

MGR PURGEOLDEXTRACTS Enables purging of Extract and Replicat trail
files from associated trail locations.

MGR AUTOSTART Directs the Manager process to
automatically start Extract and Replicat
processes.

MGR AUTORESTART Directs the Manager process to
automatically restart Extract and Replicat
processes after failure.

EXTRACT EXTRACT Defines the name of the Extract process.
EXTRACT SOURCEISTABLE Defines the source as database table. Used in

Initial Load only.
EXTRACT RMTTASK Configures Extract to communicate directly

with Replicat over TCP/IP for direct load
Initial Load methods.

EXTRACT RMTFILE Defines the location and filename on the
remote system where the Extract process
writes its data. Used in Initial Load and
batch processing operations.

EXTRACT RMTTRAIL Configures Extract to write data to a
remote trail. Used in the Data Pump Extract
parameter file.

EXTRACT RMTHOST Defines the remote system's hostname. If a
hostname is used, it must resolve to an IP
address.

Chapter 4

[73]

Process Parameter Name Parameter Description
EXTRACT EXTFILE Defines the name and location for a file

used to temporarily store the data changes
written to by the Extract process. Used in
conjunction with SPECIALRUN for Initial
Load and batch processing operations.

EXTRACT MGRPORT Defines the Manager Port number.
EXTRACT/
REPLICAT

USERID Oracle database GGS Admin user ID.

EXTRACT/
REPLICAT

PASSWORD Oracle database GGS Admin user password.

EXTRACT/
REPLICAT

TABLE Defines the source (Extract) or target
(Replicat) table name.

EXTRACT/
REPLICAT

DISCARDFILE Defines the name and location of the process
discarded data file.

EXTRACT/
REPLICAT

SETENV Specifies the Oracle environment for
GoldenGate connection to the Oracle
database. For example, sets the ORACLE_
SID environment variable.

REPLICAT REPLICAT Defines the name of the Replicat process.
REPLICAT SPECIALRUN Indicates the Replicat is a "one-off" process,

typically an Initial Load. Use with END
RUNTIME parameter.

REPLICAT RUNTIME All unprocessed records with timestamps up
to the current point in time are processed;
otherwise the Replicat process is terminated.

REPLICAT ASSUMETARGETDEFS Declares the source tables are identical in
structure as the target tables.

REPLICAT HANDLECOLLISIONS Directs automatic resolution of duplicate
and missing-record errors when applying
data on the target database. This parameter
is generally only used for the Initial Load.

REPLICAT MAP Defines the mapping between source and
target tables. Can be used for column
mapping and transformations.

REPLICAT BULKLOAD Directs the Replicat to use the bulk load
method of Initial Load, writing data directly
to the SQL*Loader interface

We are now armed with the most common GoldenGate configuration parameters.
Let's now choose and create our "Initial Load" method.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring Oracle GoldenGate

[74]

Configuring the Initial Load
An Initial Load synchronizes the source and target databases, which is an important
first step in data replication. It extracts an entire copy of the source data set,
transforms it if necessary, and applies it to the target tables. Data replication can now
continue from this point.

One really cool feature is the ability for GoldenGate's "change synchronization" to
keep track of ongoing transactional changes while the initial load is being applied.
If configured, the Change Data Capture and Delivery concurrent process tracks the
incremental changes, which are then reconciled with the results of the Initial Load.

So why is the Initial Load so important? To answer this question, consider an UPDATE
statement. By its pure nature the row to be updated must exist on the target table
else the transaction will fail. This is also true for DELETE operations. To avoid the
ORA-01403 no data found error, synchronize your source and target databases
unless your target is configured as INSERT only, in which case DELETE and UPDATE
statements won't exist in your apply data stream.

Choosing a method
Various methods exist outside GoldenGate that perform data synchronization:

•	 Oracle Transportable Tablespaces
•	 Oracle import/export or Datapump
•	 Oracle Warehouse Builder or thirrd party ETL tool

We are going to configure Oracle GoldenGate's Initial Load to do this. The
advantages for using the GoldenGate method are as follows:

•	 No application downtime required
•	 No locking required on source tables
•	 The data is fetched in arrays of 1000 rows to improve performance
•	 Parallel processing can be configured using WHERE clauses or the @RANGE

function
•	 GoldenGate Change Delivery can handle collisions with initial load
•	 Heterogeneous environments are supported

Chapter 4

[75]

A number of Initial Load options exist, providing flexible load alternatives. These are
as follows:

•	 File to Replicat
	° A simple method that allows the Extract process to write to a file on

the target system that Replicat applies using SQL INSERT statements.

•	 File to database utility
	° Similar to the Direct Bulk Load method, the Extract process writes to

a file formatted for a DB bulk load utility, not just SQL*Loader. This
method supports Oracle, DB2, and SQL Server databases.

•	 Direct Load
	° The standard method of Initial Load and probably the most

flexible. The Extract process sends data from the source database
tables directly to the Replicat, which applies the data using SQL.
This method supports heterogeneous environments and data
transformations.

•	 Direct Bulk Load
	° The Replicat process uses Oracle SQL*Loader API, which offers

high data load performance, but with some datatype and security
limitations.

The following paragraphs and schematic diagrams explain these methods in
more detail.

File to Replicat
The Extract process writes to a file in universal format for the Replicat to load. This
is similar in essence to the "normal" GoldenGate method of data replication, used by
Change Data Capture (CDC).

Configuring Oracle GoldenGate

[76]

Extract parameters
The File to Replicat method uses the parameters SOURCEISTABLE and RMTFILE.

SOURCEISTABLE tells GoldenGate to extract data directly from the source database.
RMTFILE defines the name of the extract file on a remote system where the extracted
data is written. The PURGE option ensures any previously created extract file is
deleted before the operation starts.

EXTRACT <name>
SOURCEISTABLE
USERID ggs_admin@<source_database>, PASSWORD <password>
RMTHOST <target_hostname>, MGRPORT <port_number>RMTFILE ./
dirdat/<name>.dat, PURGE
TABLE <source_schema_name>.<table_name>;

Once the Initial Load parameter file is saved in the dirprm directory on the source
system, the Extract process can be invoked via the Linux command line, calling
its necessary configuration from the file. Note the inclusion of a report file in the
following command string example, ensuring the task execution results are logged:

$ extract paramfile dirprm/initload.prm reportfile dirrpt/initload.rpt

Replicat parameters
In addition to the SPECIALRUN parameter, EXTFILE defines the remote filename
and location that contains the data needed to synchronize the target database. This
method also allows for transformations to be included in the configuration, which
are defined in the Replicat parameter file.

REPLICAT <name>
SPECIALRUN
USERID ggs_admin@<target_database>, PASSWORD <password>
EXTFILE ./dirdat/<name>.dat
DISCARDFILE ./dirrpt/<name>.dsc, PURGE
ASSUMETARGETDEFS
HANDLECOLLISIONS
MAP <source_schema_name>.*, TARGET <target_schema_name>.*;
END RUNTIME

Chapter 4

[77]

File to database utility
The Extract process writes to ASCII files formatted for database utilities to load, such
as SQL*Loader. The SQL*Loader utility has been available since before Oracle 6,
when it was the primary method for data loading data. It's no surprise that Oracle
11g supports SQL*Loader; it is still used as part of the External table mechanism for
reading flat files. It can utilize SQL functions to manipulate the data being read from
the input file.

Extract parameters
The File to Database Utility method also uses the parameters SOURCEISTABLE and
RMTFILE with the additional parameter FORMATASCII.

FORMATASCII with the SQLLOADER option produces a fixed-length, ASCII-formatted
file. SQL*Loader control files are created dynamically on the target database to
load the data as part of the process. Other format parameters are FORMATXML and
FORMATSQL. The latter is compatible with SQL*Plus for inserting, updating, and
deleting data on the target database.

EXTRACT <name>
SOURCEISTABLE
USERID ggs_admin@<source_database>, PASSWORD <password>
RMTHOST <target_hostname>, MGRPORT <port_number>
RMTFILE ./dirdat/<name>.dat, PURGE
FORMATASCII, SQLLOADER
TABLE <source_schema>.<table_name>;

Configuring Oracle GoldenGate

[78]

Ensure that the FORMATASCII parameter is before the RMTFILE parameter, else it will
be ignored and a canonical format file will result. If you prefer a comma delimited
format file for loading via SQL*Loader manually, this can be achieved using the
DELIMITER option shown in the following example, with additional options to
suppress header information:

SOURCEISTABLE
USERID ggs_admin@oltp, PASSWORD ggs_admin
RMTHOST dbserver2, MGRPORT 7809
FORMATASCII, DELIMITER ',', NONAMES, NOHDRFIELDS, PLACEHOLDERS
RMTFILE ./dirdat/INITLOAD01.DAT, PURGE
TABLE HR.DEPARTMENTS;

This produces just the table data as shown in the following output:

10,'Administration',200,1700

20,'Marketing',201,1800

30,'Purchasing',114,1700

40,'Human Resources',203,2400

In comparison, using FORMATASCII, SQLLOADER produces the following:

IAN10 NAdministration N200 N1700

IAN20 NMarketing N201 N1800

IAN30 NPurchasing N114 N1700

IAN40 NHuman Resources N203 N2400

Replicat parameters
There are no Replicat parameters required, as the load is handled by SQL*Loader.

Direct Load
The Extract process writes directly to the Replicat which loads the data via SQL. A
batch process is started dynamically by the Manager process which does not require
the use of a Data Collector or Initial Load file. The Replicat converts the data stream
to SQL INSERT statements which are applied directly to the target database.

Chapter 4

[79]

Extract parameters
The Direct Load method uses the parameters SOURCEISTABLE and RMTTASK. RMTTASK
instructs the Manager process on the target system to start a Replicat process with
the group name specified in the GROUP clause. Ideally, the Extract Group name
should be different from the Replicat group name. I prefer to specify an "E" prefix for
Extracts and an "R" for Replicats.

EXTRACT <name>
SOURCEISTABLE
USERID ggs_admin@<source_database>, PASSWORD <password>
RMTHOST <remote_hostname>, MGRPORT <port_number>
RMTTASK REPLICAT, GROUP <name>
TABLE <source_schema>.*;

Replicat parameters
The parameter SPECIALRUN specifies a one-time batch process. Note that checkpoints
are not maintained. If the job fails it will need to be restarted. The advantage of using
a Replicat process to control the load, is its ability to perform data transformations.
These can be configured in the Replicat's parameter file and adopted in the Change
Delivery configuration.

REPLICAT <name>
SPECIALRUN
USERID ggs_admin@<target_database>, PASSWORD <password>
ASSUMETARGETDEFS
MAP <source_schema_name>.*, TARGET <target_schema_name>.*;END RUNTIME

Configuring Oracle GoldenGate

[80]

Direct Bulk Load
The Extract process writes directly to the Replicat process, which loads data using
the SQL*Loader API. This is the fastest method, sending data to the SQL*Loader
utility to load data as a Direct Path Bulk Load. A Direct Path operation bypasses the
SQL parser making data loading much quicker. LOB datatypes and data encryption
are not supported by SQL*Loader. In these cases, use the File to Replicat method of
Initial Load.

Extract parameters
The Direct Bulk Load method uses the parameters SOURCEISTABLE and RMTFILE. The
Initial Load is started by the Extract process on the source system. On the target, the
Replicat process will be started dynamically by the Manager process.

EXTRACT <name>
SOURCEISTABLE
USERID ggs_admin@<source_database>, PASSWORD <password>
RMTHOST <remote_hostname>, MGRPORT <port_number>
RMTTASK REPLICAT, GROUP <name>
TABLE <source_schema>.*;

Replicat parameters
In addition to the SPECIALRUN parameter, BULKLOAD distinguishes this process from
the normal Direct Load method.

Chapter 4

[81]

Like the File to Database Initial Load, this method does not require the manual
creation of an SQL*Loader control file, as this is generated automatically as part of
the API.

REPLICAT <name>
SPECIALRUN
BULKLOAD
USERID ggs_admin@<target_database>, PASSWORD <password>
ASSUMETARGETDEFS
MAP <source_schema_name>.*, TARGET <target_schema_name>.*;
END RUNTIME

Having chosen and configured an Initial Load method, it's time to enable the data
synchronization process. The next section describes how to perform the Initial Load
preparing GoldenGate for Change Data Capture and Delivery.

Performing the Initial Load
Let's now step through the necessary tasks required to perform an Initial Load
using the File to Replicat method. For small and simple data synchronization with no
transformations, this is the preferred solution.

Example architecture
This example assumes the target tables are truncated and are identical in structure to
the source tables. The configuration includes the following methods:

Initial Load: File to Replicat data synchronization

One-to-One: Change Data Capture and Delivery

Configuring Oracle GoldenGate

[82]

The system schematic diagram below illustrates the architecture and naming
convention used in this chapter's examples:

File to Replicat method
We will be using the File to Replicat method to perform our Initial Load, starting with
the Initial Data Capture configuration.

Configuring Initial Data Capture
The first step is to create the Initial Data Capture Extract parameter file for EMP and
DEPT tables that exist in the SRC schema of the OLTP source database. The SRC
schema is based on the Oracle example SCOTT/TIGER schema that is included with
the database.

1. Log on to the database server (as the oracle user).
2. Change directory to the GoldenGate home.

cd /home/oracle/ggs

3. Run GGSCI.
ggsci

4. Execute the following commands on the source system to create an Extract
named ELOAD01:
GGSCI (dbserver1) 1> EDIT PARAMS ELOAD01

SOURCEISTABLE

Chapter 4

[83]

USERID ggs_admin@oltp, PASSWORD ggs_admin

RMTHOST dbserver2, MGRPORT 7809

RMTFILE ./dirdat/INITLOAD01.DAT, PURGE

TABLE SRC.DEPT;

TABLE SRC.EMP;

GGSCI (dbserver1) 2> EXIT

The SOURCEISTABLE parameter is used in the Initial Data Capture telling the Extract
process to extract the data directly from the database tables. The data is then written
to a single data file on the remote system, in universal format that will later be read
by the Replicat process.

It is important to list your tables in referential order, that is, the
parent table before the child. Otherwise, the Replicat process will
abend to ORA-02291: integrity constraint violated.

1. You can start the initial load Extract directly from the Linux command line
using the following command:
extract paramfile dirprm/eload01.prm reportfile dirrpt/ELOAD01.rpt

2. To confirm the Extract process has started, we can use the following GGSCI
command:
GGSCI (dbserver1) 1> INFO EXTRACT ELOAD01

EXTRACT ENMHMSG Last Started 2010-06-19 17:10:01 Status
RUNNING

3. The report file generated for the Data Capture Extract process and can be
viewed using the following GGSCI command:
GGSCI (dbserver1) 2> VIEW REPORT ELOAD01

./dirrpt/ELOAD01.rpt

**

 Oracle GoldenGate Capture for Oracle

 Version 10.4.0.19 Build 002

 Linux, x86, 32bit (optimized), Oracle 11 on Sep 29 2009
08:57:20

Copyright (C) 1995, 2009, Oracle and/or its affiliates. All
rights reserved.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring Oracle GoldenGate

[84]

The following is a sample of a report produced by the Extract process which includes
the number of inserted records per table:

**

** Running with the following parameters **

**

SOURCEISTABLE

2010-06-19 17:10:02 GGS INFO 414 Wildcard resolution set to
IMMEDIATE because SOURCEISTABLE is used.

USERID ggs_admin@oltp, PASSWORD *********

RMTHOST dbserver2, MGRPORT 7809

RMTFILE ./dirdat/INITLOAD01.DAT, PURGE

TABLE SRC.DEPT;

Using the following key columns for source table SRC.DEPT: DEPTNO.

TABLE SRC.EMP;

2010-06-19 17:10:03 GGS INFO Z0-05M Output file ./dirdat/
INITLOAD01.DAT is using format RELEASE 10.4.

2010-06-19 17:10:08 GGS INFO 406 Socket buffer size set to 27985
(flush size 27985).

Processing table SRC.DEPT

Processing table SRC.EMP

**

* ** Run Time Statistics ** *

**

Report at 2010-06-19 17:10:08 (activity since 2010-06-19 17:10:03)

Output to ./dirdat/INITLOAD01.DAT:

From Table SRC.DEPT:

 # inserts: 4

 # updates: 0

 # deletes: 0

 # discards: 0

From Table SRC.EMP:

 # inserts: 14

Chapter 4

[85]

 # updates: 0

 # deletes: 0

 # discards: 0

Although not a huge amount of data, the example demonstrates the Initial Data
Capture Extract process, combining runtime statistics with environment settings and
configuration. All GoldenGate reports generated by the GGSCI tool share this format.
You will quickly become familiar with this when monitoring GoldenGate processes.

If the report shows NO errors and the data extract was successful, we can now
configure the Initial Data Delivery on the target system.

Configuring Initial Data Delivery
On our target system dbserver2, we now have 1 DAT file containing the Initial Load
data. The following steps load the data into the EMP and DEPT tables in the TGT
schema of the OLAP target database:

1. Log on to the database server (as Oracle).
2. Change directory to the GoldenGate home.

cd /home/oracle/ggs

3. Run GGSCI.
ggsci

4. Execute the following commands on the target system to create a Replicat
parameter file for the associated RLOAD01 process.

GGSCI (dbserver2) 1> EDIT PARAMS RLOAD01
REPLICAT RLOAD01
SPECIALRUN
ASSUMETARGETDEFS
HANDLECOLLISIONS
USERID ggs_admin@olap, PASSWORD ggs_admin
EXTFILE ./dirdat/INITLOAD01.DAT
DISCARDFILE ./dirrpt/RLOAD01.dsc, PURGE
MAP SRC.*, TARGET TGT.*;
END RUNTIME

The ASSUMETARGETDEFS parameter assumes the source and target tables are identical,
making column mapping declarations unnecessary. The Data Mapping section in
Chapter 7, Advanced Configuration, discusses the mapping requirements for non-
identical source and target tables using a definitions file.

Configuring Oracle GoldenGate

[86]

Another shortcut in the configuration is the use of Wildcards for the target tables.
There is little point painstakingly declaring every single table mapping in the
parameter file, when GoldenGate knows to load the whole data file.

The HANDLECOLLISIONS parameter tells the Replicat process to resolve duplicate and
missing-record errors when applying data on the target database. This parameter is
generally only used for the Initial Load.

As we delve deeper into GoldenGate commands, we will see that Wildcards are
supported in most cases—a very useful feature!

The DISCARDFILE parameter defines the discard file that contains the records that
fail to load. The PURGE option ensures the discard file is deleted each time the load
operation is repeated.

1. Staying with the GGSCI command line on the target system, add the special
run Replicat process and exit GGSCI:
GGSCI (dbserver2) 2> ADD REPLICAT RLOAD01, EXTFILE ./dirdat/
INITLOAD01.DAT

REPLICAT added.

GGSCI (dbserver2) 3> exit

2. Now execute the following command to perform the data load:
cd /home/oracle/ggs

replicat paramfile dirprm/rload01.prm reportfile dirrpt/RLOAD01.
rpt

3. Run GGSCI again and view the Replicat report for the Initial Load ensuring
there are no errors.
ggsci

GGSCI (dbserver2) 1> VIEW REPORT RLOAD01

Now that our Initial Load is complete and both source and target database schemas
are synchronized, we can enable data replication, which can be broken into two
distinct processes:

•	 Change Data Capture (CDC)
This includes the Extract and Data Pump process that extracts the data
changes from the redo logs and writes the changes to GoldenGate local and
remote Trail files.

Chapter 4

[87]

•	 Change Delivery
It is the Replicat process that reads the remote Trail and applies the data
natively to the target database.

Configuring Change Data Capture
Oracle recommends that Change Data Capture (CDC) is configured and started
before the Initial Load. This enables "change synchronization" to keep track of
ongoing transactional changes while the load is being applied—a very useful
feature when you cannot afford for your source system to be taken offline. In fact
GoldenGate can manage and combine the online transactional changes plus the
initial data extract with ease, ensuring no data loss or down-time.

So let's take a look at the steps required to configure and start CDC.

As stated in Chapter 1, the Extract process extracts only committed transactions from
the database's redologs. The first task, therefore, is to create the Extract process.

1. Log on to the source database server (as oracle).
2. Change directory to the GoldenGate home.

cd /home/oracle/ggs

3. Start GGSCI.
4. Execute the following commands on the source system to create a parameter

file for the Extract process named EOLTP01:
GGSCI (dbserver1) 1> EDIT PARAMS EOLTP01

EXTRACT EOLTP01

SETENV (ORACLE_SID=oltp)

USERID ggs_admin, PASSWORD ggs_admin

EXTTRAIL ./dirdat/sa

TABLE SRC.DEPT;

TABLE SRC.EMP;

The EXTRACT parameter defines the name of the Extract process.
The EXTTRAIL parameter defines the directory and file prefix for the trail
files.
Explicitly defining the ORACLE_SID using the SETENV parameter is an
alternative method of connection to the source database.

Configuring Oracle GoldenGate

[88]

5. Add the Extract process EOLTP01 using GGSCI:
GGSCI (dbserver1) 2> add extract EOLTP01, tranlog, begin now,
threads 1

EXTRACT added.

Specifying TRANLOG tells the Extract process to read the database's online redologs.
We have also requested that the CDC should begin now for the single instance
source database.

1. Now add the associated trail files for Extract EOLTP01.
GGSCI (dbserver1) 3> add exttrail ./dirdat/sa, extract EOLTP01,
megabytes 5

EXTRACT added.

The above GGSCI command will create a local trail, each trail file having a
maximum size of 5 Megabytes and file prefix "sa".

2. Let's configure a Data Pump Extract process named EPMP01, to send the
data to the remote system.
GGSCI (dbserver1) 4> EDIT PARAMS EPMP01

EXTRACT EPMP01

PASSTHRU

RMTHOST dbserver2, MGRPORT 7809

RMTTRAIL ./dirdat/ta

TABLE SRC.DEPT;

TABLE SRC.EMP;

The PASSTHRU parameter specifies that no transformations are to be made to the
extracted data. Therefore, no table definition lookup in the database is necessary and
the data is allowed to pass through from source to target.

Data Pump is an Extract process and therefore references source objects. Be sure to
include the source schema tables in its parameter file, else Data Pump will not send
the extracted data to the Replicat process.

1. Add the Data Pump process EPMP01 using GGSCI, associating it with the
newly created local source trail.
GGSCI (dbserver1) 5> add extract EPMP01, exttrailsource ./dirdat/
sa

EXTRACT added.

Chapter 4

[89]

2. Then add the remote trail from the source system using GGSCI.
GGSCI (dbserver1) 6> add rmttrail ./dirdat/ta, EXTRACT EPMP01,
megabytes 10

RMTTRAIL added.

The above GGSCI command will create a remote trail, each trail file having a
maximum size of 10 Megabytes and file prefix "ta".

3. Finally, we can now start our Extract processes as follows:
GGSCI (dbserver1) 7> start EXTRACT *

Sending START request to MANAGER ...

EXTRACT EOLTP01 starting

Sending START request to MANAGER ...

EXTRACT EPMP01 starting

4. Check the processes are running using the GGSCI command INFO ALL.
GGSCI (dbserver1) 8> INFO ALL

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

EXTRACT RUNNING EOLTP01 00:00:00 00:00:02

EXTRACT RUNNING EPMP01 00:00:00 00:00:00

Should a processes abend, a report file will automatically be generated. The
following example would display the error report for the EOLTP Extract process:

GGSCI (dbserver1) 9> view REPORT EOLTP01

With our data extract and propagation working, it's time to configure the delivery.
The next section walks through the necessary steps to create, configure, and start the
Replicat process.

Configuring Change Delivery
Change Delivery is the process of applying the transactions that contain the data
changes from the source database to the target database. As we know, this is the
responsibility of the Replicat process. The Replicat extracts the pure DML and DDL
from the remote trail files and applies them on the target database. This process can
often cause a bottleneck, depending on the volume of data being replicated. Oracle
recommends multiple Replicats to enable parallel processing to enhance performance.

For this example, we shall create just one Replicat named ROLAP01.

Configuring Oracle GoldenGate

[90]

Before we create and configure our Replicat process, we must first create a
Checkpoint table in the target database. The Checkpoint table keeps track of all the
GoldenGate checkpoints and sequences that support recovery following a shutdown
or failure.

Although a Checkpoint table is optional, Oracle highly recommends it over the
Checkpoint file as it enables the checkpoint to be included within Replicat's
transaction, ensuring complete recovery from all failure scenarios.

1. Log on to the target database server (as oracle).
2. Change directory to the GoldenGate home.

cd /home/oracle/ggs

3. Start GGSCI.
ggsci

Define the Checkpoint table in the GoldenGate global parameters file.

GGSCI (dbserver2) 1> EDIT PARAMS ./GLOBALS

CHECKPOINTTABLE ggs_admin.ggschkpt

Exit and Start GGSCI for the new configuration to take effect.

GGSCI (dbserver2) 2> EXIT

ggsci

GGSCI (dbserver2) 1>

Log on to the target database as the ggs_admin user from the GGSCI command line.

GGSCI (dbserver2) 2> dblogin userid ggs_admin, password ggs_admin

Successfully logged into database.

Create the Checkpoint table in the GGS_ADMIN schema.

GGSCI (dbserver2) 3> add checkpointtable

No checkpoint table specified, using GLOBALS specification (ggs_admin.
ggschkpt)...

Successfully created checkpoint table GGS_ADMIN.GGSCHKPT.

Now we can create the Replicat parameter file using GGSCI.

GGSCI (dbserver2) 4> EDIT PARAMS ROLAP01

REPLICAT ROLAP01
SETENV (ORACLE_SID=OLAP)

Chapter 4

[91]

USERID ggs_admin, PASSWORD ggs_admin
ASSUMETARGETDEFS
DISCARDFILE ./dirrpt/rolap01.dsc, PURGE
MAP SRC.DEPT, TGT.DEPT;
MAP SRC.EMP, TGT.EMP;

1. Add the Replicat using the following GGSCI command:
GGSCI (dbserver2) 5> add replicat ROLAP01, exttrail ./dirdat/ta

REPLICAT added.

The above GGSCI command will create a Replicat process named ROLAP01,
associating it with the trail file we defined in the Data Pump configuration,
having a file prefix "ta".

2. To complete the Change Delivery configuration, we can now start our
Replicat process as follows:
GGSCI (dbserver2) 6> start REPLICAT *

Sending START request to MANAGER ...

REPLICAT ROLAP01 starting

3. Check the processes are running.
GGSCI (dbserver2) 7> INFO ALL

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING ROLAP01 00:00:00 00:00:02

As mentioned previously in the Extract configuration, should a processes
abend, a report file will automatically be generated. The following example
would display the error report for the ROLAP01 Replicat process:

GGSCI (dbserver2) 8> view REPORT ROLAP01

With all configured processes running on both source and target systems, any data
changes made to the defined source tables will be captured and sent to the target.
Let's test it and see!

Configuring Oracle GoldenGate

[92]

Testing Change Data Capture and
Delivery
To test if the CDC is working we must make some data changes on our source
database and ensure that they are propagated to and applied on the target. The
following simple steps provide a basic test case that will confirm all is well:

1. On the source database server, start a SQL*Plus session and connect to the
OLTP database as the SRC user.
sqlplus SRC/SRC@OLTP

SQL>

2. Insert a new record into the DEPT table and commit the transaction.
SQL> INSERT INTO dept VALUES (50, 'TEST', 'LONDON');

1 row created.

SQL> COMMIT;

Commit complete.

Issuing a commit forces Oracle to write the transaction details to the
database's online redo logs. These are subsequently read by the Extract
process (EOLTP01) in real-time and written to the local trail. The transaction
in the local trail is read by the Data Pump process (EPMP01) that transfers
the data via TCP/IP to the remote trail. The Replicat process (ROLAP01)
reads the remote trail, converts the transaction data to DML and applies it to
the database.

3. On the target database server, start a SQL*Plus session and connect to the
OLAP database as the TGT user.
sqlplus TGT/TGT@OLAP

SQL>

4. Query the DEPT table to see if the new row exists.
SQL> SELECT * FROM dept WHERE deptno = 50;

 DEPTNO DNAME LOC
---------- -------------- -------------
 50 TEST LONDON

Chapter 4

[93]

The row exists! We have successfully configured and tested GoldenGate real-time
data replication.

We can generate and view a report for a given process by issuing the following
GGSCI commands:

SEND <PROCESS_TYPE> <PROCESS_GROUP_NAME>, REPORT

VIEW REPORT < PROCESS_GROUP_NAME>

The following example shows the runtime statistics section of the Replicat process
ROLAP01 report:

GGSCI (dbserver2) 1> send REPLICAT ROLAP01, report

Sending REPORT request to REPLICAT ROLAP01 …

Request processed.

GGSCI (dbserver2) 2> view report ROLAP01

**

* ** Run Time Statistics ** *

**

Last record for the last committed transaction is the following:

__

Trail name : ./dirdat/ta000001

Hdr-Ind : E (x45) Partition : . (x04)

UndoFlag : . (x00) BeforeAfter: A (x41)

RecLength : 38 (x0026) IO Time : 2010-06-26 20:25:49.000368

IOType : 5 (x05) OrigNode : 255 (xff)

TransInd : . (x03) FormatType : R (x52)

SyskeyLen : 0 (x00) Incomplete : . (x00)

AuditRBA : 78 AuditPos : 44639248

Continued : N (x00) RecCount : 1 (x01)

2010-06-26 20:25:49.000368 Insert Len 38 RBA 577

Name: SRC.DEPT

__

Reading ./dirdat/ta000001, current RBA 726, 1 records

Configuring Oracle GoldenGate

[94]

Report at 2010-06-26 20:26:44 (activity since 2010-06-26 20:25:58)

From Table SRC.DEPT to TGT.DEPT:

 # inserts: 1

 # updates: 0

 # deletes: 0

 # discards: 0

Sure enough, our one record insert is reported. From the runtime statistics we see the
SQL operation was an INSERT, which is an After image.

Stopping GoldenGate processes
We have seen how to start the Manager, Extract, and Replicat processes using
GGSCI commands. Let's take a look at stopping them. Issuing a stop command will
gracefully shutdown the GoldenGate processes.

1. Firstly check which processes are running.
GGSCI (dbserver1) 1> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

EXTRACT RUNNING EOLTP01 00:00:00 00:00:01

EXTRACT RUNNING EPMP01 00:00:00 00:00:02

2. Stop ALL processes, using a wildcard.
GGSCI (dbserver1) 2> stop *

Sending STOP request to EXTRACT EOLTP01 ...

Request processed.

Sending STOP request to EXTRACT EPMP01 ...

Request processed.

3. Check the processes again.
GGSCI (dbserver1) 3> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

EXTRACT STOPPED EOLTP01 00:00:00 00:00:01

EXTRACT STOPPED EPMP01 00:00:00 00:00:02

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[95]

4. Note that the Manager process is still running. This has to be stopped
explicitly.
GGSCI (dbserver1) 4> stop MGR

Manager process is required by other GGS processes.

Are you sure you want to stop it (y/n)? y

Sending STOP request to MANAGER ...

Request processed.

Manager stopped.

The GoldenGate support for wildcards is very useful and available in some
administrative GGSCI commands such as START, STOP, and INFO. Should a process
already be in a RUNNING or STOPPED state, the command will succeed, but a
warning message will be echoed to the screen. This is illustrated in the
following screenshot:

One of the main components of the CDC process is the Trail file. Let's take a look at
their role and how we can configure GoldenGate to manage them.

Configuring Oracle GoldenGate

[96]

More about trail files
Trail files are used by Extract and Replicat processes, and their primary role is for
data persistence. One could argue that writing files to what could be deemed as a
"staging area" is wasteful and suboptimal. That said, GoldenGate writes to trail files
in large blocks minimizing I/O. Furthermore, the architecture provides a guaranteed
no data loss solution that is not to be underestimated.

The trail
By default, trail files are in canonical format being unstructured with a header
record. Each record is of a variable record length containing the changed data. A trail
can contain numerous trail files each having a two-character prefix with a 6 digit
sequence number suffix.

An Extract process can write data to many trails. A Replicat can process data from
one trail. However, it is possible to configure multiple Replicat processes to handle
the workload.

Trail file purging
To "clean up" the processed trail files from a given trail to reduce disk space usage,
configure the Manager process to delete consumed trail files. Although it is possible
to add the PURGEOLDEXTRACTS parameter to Extract and Replicat parameter files, it is
recommended that the Manager process controls the deletion of trail files centrally,
thus preventing a process deleting files that are required by another process. The
example MGR.prm file below illustrates this:

GGSCI (dbserver1) 1> VIEW PARAMS MGR

-- GoldenGate Manager parameter file

PORT 7809

PURGEOLDEXTRACTS /ggs/dirdat/sa*, USECHECKPOINTS, MINKEEPHOURS 1

The USECHECKPOINT option tells the Manager not to delete trail files until the
checkpoint confirms the file as processed. This is based on the checkpoints of
both Extract and Replicat processes before purging. An additional option is the
MINKEEPHOURS which ensures the check pointed trail files are kept on disk for a
minimum period (in hours).

Chapter 4

[97]

Configuring the Manager process
In Chapter 2, Installing and Preparing GoldenGate, we discussed the PORT parameter
that is mandatory to the GoldenGate Manager process communication. In the
previous section we learnt how to set a retention period for trail files in the
Manager configuration. Let's take a look at some additional, highly useful Manager
parameters, AUTOSTART and AUTORESTART.

In the following example, AUTOSTART tells the Manager to start the Extract and
Replicat processes when the Manager process starts. AUTORESTART instructs the
Manager process to restart just the Extract process(es) after two minutes, should
the Extract process(es) fail. In this instance, the Manager will retry five times before
abending the processes.

AUTOSTART ER *
AUTORESTART EXTRACT *, WAITMINUTES 2, RETRIES 5

Summary
The examples given in this chapter are of the most basic form. However, they
illustrate the configuration process, providing a greater understanding of the
GoldenGate architecture.

We have learnt how to configure the Extract and Replicat processes for different load
methods from Initial Load to Change Data Capture and Delivery. We understand
the importance of data synchronization between a source and target database in a
replication environment. Also the starting point, known as "instantiation", which
defines the point in time where you wish to start data replication.

We have discovered that there are many parameters and options, together with the
available functions, offering enormous scope and flexibility. In the next chapter,
we look at the different configuration options available to GoldenGate, such as
data encryption, data compression, batch loading, and DDL replication, including
heterogeneous environments.

Configuration Options
This chapter is dedicated to the additional configuration options available in Oracle
GoldenGate 10.4. These are powerful options allowing your configuration to extend
in functionality and performance. We start with a performance enhancing option,
allowing SQL statements to be grouped and applied as a batch against a target
database. Later, we explore the security features, including data compression and
encryption, take a look at heterogeneous environments, and finally discuss the tools
available to monitor DDL replication.

This chapter explains the following configuration options:

•	 Batching SQL by operation type
•	 Understanding the GoldenGate SQL cache
•	 Data compression techniques
•	 Data and password encryption methods
•	 Triggering an action from an event
•	 Loop and conflict detection
•	 DDL replication

Using BATCHSQL
In default mode the Replicat process will apply SQL to the target database, one
statement at a time. This often causes a performance bottleneck where the Replicat
process cannot apply the changes quickly enough, compared to the rate at which the
Extract process delivers the data. Despite configuring additional Replicat processes,
performance may still be a problem.

Configuration Options

[100]

GoldenGate has addressed this issue through the use of the BATCHSQL Replicat
configuration parameter. As the name implies, BATCHSQL organizes similar SQLs
into batches and applies them all at once. The batches are assembled into arrays in a
memory queue on the target database server, ready to be applied.

Similar SQL statements would be those that perform a specific operation type (insert,
update, or delete) against the same target table, having the same column list. For
example, multiple inserts into table A would be in a different batch from inserts
into table B, as would updates on table A or B. Furthermore, referential constraints
are considered by GoldenGate where dependant transactions in different batches
are executed first, depicting the order in which batches are executed. Despite the
referential integrity constraints, BATCHSQL can increase Replicat performance
significantly.

SQL cache
The GoldenGate SQL cache is very similar in operation to the Oracle RDBMS Library
cache, where SQL statements are parsed and retained in memory for numerous
subsequent executions. In GoldenGate, SQL statements are processed by BATCHSQL
and also cached in memory. Similarly, each statement type is prepared once, cached,
and executed many times with different values. Old statements are recycled using
a least-recently-used algorithm, controlled by the MAXSQLSTATEMENTS parameter.
This Replicat parameter has a default and maximum size of 250, which is deemed
sufficient to store open cursors for both normal and BATCHSQL processing.

It is possible to manage the memory allocation further through Replicat parameters
that control the number of batches, the number of allowed operations, and the
maximum available memory per queue. The associated parameters are listed as
follows:

•	 BATCHESPERQUEUE: Specifies the maximum number of batches per queue. The
default is 50.

•	 BYTESPERQUEUE: Specifies the maximum number of bytes per queue. The
default is 20 MB.

•	 OPSPERBATCH: Specifies the maximum number of row operations per batch.
The default is 1200.

•	 OPSPERQUEUE: Specifies the maximum number of row operations a memory
queue containing multiple batches can contain. The default is also 1200.

When any of the above maximum values is reached, the batched transaction must
fire, releasing memory for new transactions to be queued.

Chapter 5

[101]

The following is an example extract from a Replicat parameter file. Here, BATCHSQL is
configured with optional parameters BATCHESPERQUEUE and OPSPERBATCH:

REPLICAT ROLAP01
SETENV (ORACLE_SID=OLAP)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/rolap01.dsc, PURGE
BATCHSQL BATCHESPERQUEUE 100, OPSPERBATCH 2000

Although the BATCHSQL optional parameters can be tuned, very
little gain in performance can result from adjusting these from
their default settings.

Exceptions
When using BATCHSQL, exceptions are handled automatically in two distinct ways.
Should an exception occur, the Replicat process rolls back the entire batch and
replays the transactions in "normal" mode within the transaction boundaries set by
the GROUPTRANSOPS parameter. If this fails, the Replicat replays the SQL transactions
in the order they occurred on the source database.

In addition, when using BATCHSQL with the BATCHERRORMODE parameter, exception
handling is enhanced. GoldenGate will automatically convert INSERT to UPDATE
statements that fail due to duplicate data errors, such as ORA-00001: "unique
constraint violated". Also, DELETE statements are ignored if the Primary Key for the
target table is not found, such as ORA 1403: "no data found" error.

Oracle Large Objects (LOBs) and rows greater than 25KB are not supported by
BATCHSQL. If found in a batch queue, they are treated as exceptions. In this case;
GoldenGate flushes the whole batch, the Replicat process replays the exceptions
in normal mode, and then resumes in batch mode. Therefore, ensure BATCHSQL is
disabled for LOB data to avoid the potential performance overhead.

When to use BATCHSQL
The highest performance gains are achieved with BATCHSQL working on high
throughput, but with very small transactions. Ideally, individual data changes of less
than 100 bytes per row. Oracle quote that up to 300 percent performance gains are
possible, but this is largely dependent on your application and hardware footprint.

BATCHSQL is supported for Initial Loads as well as Data Change Capture.

Configuration Options

[102]

If you find your Replicat processes are a bottleneck then it is worth configuring
BATCHSQL as it is self managed, able to fall back to normal mode, and above all
maintains data integrity.

Data compression
Oracle GoldenGate offers data compression at the network layer, enhancing data
transfer rates. Once configured in the Extract or Data Pump process parameter file,
the Server Collector process on the target machine automatically decompresses the
data before writing to the remote trail files.

Compressing the Data Stream
Depending on your data, the maximum compression ratio can exceed 5:1, which
will help transfer speeds on low bandwidth networks. However, additional CPU
utilization is possible when compared to no data compression, which is the default.

If compression is enabled, the following statistics are available in the Extract process
report, requested via the GGSCI SEND command with the GETTCPSTATS argument:

•	 Compression CPU time: The time in seconds the process used the CPU
resource.

•	 Compress time: The overall time the compression tool takes including waits
on CPU resource.

•	 Uncompressed bytes and compressed bytes: Includes detail on the amount
of compression taking place. It is worth using this metric to compare the
compression ratio with the compression rate (compressed bytes per second)
to determine if data compression is beneficial in terms of CPU resource
verses network throughput.

The following example shows TCP/IP statistics from the GGSCI command:

GGSCI (dbserver1) 1> send EXTRACT EPMP01, gettcpstats

Sending GETTCPSTATS request to EXTRACT EPMP01 ...

RMTTRAIL ./dirdat/ta000039, RBA 5845374

OK

Session Index 0

Stats started 2010/08/28 15:06:19.585484 0:21:01.819545

Local address 192.168.1.65:7100 Remote address 192.168.1.66:41502

Inbound Msgs 12186 Bytes 145496, 115 bytes/second

Outbound Msgs 12187 Bytes 22088920, 17516 bytes/second

Chapter 5

[103]

Recvs 24372

Sends 12187

Avg bytes per recv 5, per msg 11

Avg bytes per send 1812, per msg 1812

Recv Wait Time 22785734, per msg 1869, per recv 934

Send Wait Time 4199929, per msg 344, per send 344

Data compression is enabled

Compress CPU Time 0:00:00.000000

Compress time 0:00:05.027419, Threshold 512

Uncompressed bytes 296386887

Compressed bytes 22016692, 58958998 bytes/second

The COMPRESS option
The following example Data Pump process parameter file has the COMPRESS option
configured:

EXTRACT EPMP01
PASSTHRU
RMTHOST dbserver2, MGRPORT 7809, COMPRESS, COMPRESSTHRESHOLD 512
RMTTRAIL ./dirdat/ta

The additional associated COMPRESSTHRESHOLD parameter specifies the minimum
number of bytes in a block at which compression occurs.

The block size can be derived from the report generated by the following GGSCI
INFO command (in the "Write Checkpoint" section):

GGSCI (dbserver1) 1> INFO EPMP01, SHOWCH

..

Write Checkpoint #1

 GGS Log Trail

 Current Checkpoint (current write position):

 Sequence #: 28

 RBA: 8832166

 Timestamp: 2010-08-28 15:17:16.674431

 Extract Trail: ./dirdat/ta

Header:

Configuration Options

[104]

 Version = 2

 Record Source = A

 Type = 1

 # Input Checkpoints = 1

 # Output Checkpoints = 1

File Information:

 Block Size = 2048

 Max Blocks = 100

 Record Length = 2048

 Current Offset = 0

Configuration:

 Data Source = 0

 Transaction Integrity = 1

 Task Type = 0

Status:

 Start Time = 2010-08-28 15:06:14

 Last Update Time = 2010-08-28 15:17:16

 Stop Status = A

 Last Result = 400

The SHOWCH argument of the INFO command displays checkpoint information.

Oracle table compression
It's worth mentioning in this section that Oracle GoldenGate 10.4 does not support
data replication from compressed tables, partitions or tablespaces. Nor does it
support the use of Hybrid Columnar Compression, which is a new compression
technology featured in Oracle 11g Release 2 that utilizes Exadata storage. This is
because Oracle compresses data by eliminating duplicate values within a data-block.
Currently, GoldenGate cannot extract the duplicate data from the redo stream.

Chapter 5

[105]

Security features
GoldenGate offers the following security features to protect both data
and passwords:

•	 Data encryption
•	 Password encryption

In this section, you will learn what these encryption methods are and how to
configure them.

Data encryption
GoldenGate offers two data encryption options: Message encryption and Trail file
encryption.

Message encryption uses Blowfish, a symmetric 64-bit block cipher that encrypts the
individual messages sent over TCP/IP. The data is automatically decrypted by the
Server Collector process running on the target machine. The Server Collector process
is normally started automatically with default parameters on the remote system,
so on this occasion, we need to start this manually. Once configured, the Server
Collector process will start automatically in encrypted mode when you start the
Extract and Replicat. It dynamically chooses a port in the available range specified by
the Manager process parameters.

Trail file encryption uses 256 key byte substitution. The data record in the Trail or
Extract file is automatically decrypted by the Data Pump or Replicat process. For
completely secure data transmission, it is necessary to configure both Message and
Trail file encryption.

To enable data encryption in GoldenGate, we first need to generate keys. This is
achieved through the keygen Linux utility. The configuration steps are as follows.

1. Generate a key or multiple keys using the keygen Linux utility on both
source and target database servers. The following command creates a 128 bit
key. Blowfish accepts keys of lengths between 32 and 128 bits.
[oracle@dbserver1 ggs]$ keygen 128 1

0x2FC65F7E6339F70F466807493EA8C003

2. Create a file named ENCKEYS in the GoldenGate home on both servers using
a text editor such as vi and add the following text (including the newly
generated keys).
Encryption keys
Key name Key value

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuration Options

[106]

MessageKey1
0x2FC65F7E6339F70F466807493EA8C003

3. Copy the ENCKEYS file from the source to the target's GoldenGate home
directory.

4. Start GGSCI and add the ENCRYPT and KEYNAME parameters to RMTHOST in the
source Extract or Data Pump parameter file. For example:
RMTHOST dbserver2, MGRPORT 7809, ENCRYPT BLOWFISH, KEYNAME
MessageKey1

5. Obtain the existing port number for the Server Collector process on the target
machine.
[oracle@dbserver2 ggs]$ ps -ef | grep ora | grep server

oracle 3682 3583 0 15:31 ? 00:00:00 ./server -p 7843
-k -l /home/oracle/ggs/ggserr.log

6. From GGSCI on each server, stop the respective Extract and Replicat
processes.

7. On the target machine, configure a static Server Collector process and
manually start it as a background process using the port number obtained
in step 5.
oracle@dbserver2 ggs]$ server -p 7843 -ENCRYPT BLOWFISH –KEYNAME
MessageKey1 &

2010-08-30 17:30:06 GGS INFO 373 Oracle GoldenGate
Collector, port 7843: Listening for requests.

8. Now start the Extract and Replicat processes.
GGSCI (dbserver1) 1> start extract *

Sending START request to MANAGER ...

EXTRACT EOLTP01 starting

Sending START request to MANAGER ...

EXTRACT EPMP01 starting

GGSCI (dbserver2) 1> start replicat *

Sending START request to MANAGER ...

REPLICAT ROLAP01 starting

Chapter 5

[107]

9. Exit GGSCI on the target machine and check the Server Collector process.
[oracle@dbserver2 ggs]$ ps -ef | grep ora | grep server

oracle 4824 3583 0 17:30 ? 00:00:00 ./server -encrypt
BLOWFISH -keyname MESSAGEKEY1-p 7842 -k -l /home/oracle/ggs/
ggserr.log

10. Finally check the Extract and Replicat processes are running using the GGSCI
INFO ALL command.
GGSCI (dbserver2) 2> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING ROLAP01 00:00:00 00:00:04

The system event log is a good source of information for GoldenGate processes. The
following example shows details of the Data Pump process starting, including the
data encryption method:

[root@dbserver1 ~]# tail -f /var/log/messages

Sep 12 14:26:54 dbserver1 Oracle GoldenGate Capture for Oracle[3579]:
2010-09-12 14:26:54 GGS INFO 310 Oracle GoldenGate Capture for
Oracle, epmp01.prm: EXTRACT EPMP01 started.

Sep 12 14:26:54 dbserver1 Oracle GoldenGate Manager for Oracle[3396]:
2010-09-12 14:26:54 GGS INFO 301 Oracle GoldenGate Manager for
Oracle, mgr.prm: Command received from EXTRACT on host 192.168.1.65
(START SERVER CPU -1 PRI -1 PARAMS -encrypt BLOWFISH -keyname
MESSAGEKEY1).

Additional information regarding the starting and stopping of processes including
the Server Collector process is also written to the system event log, as shown in the
following example on the target machine:

[root@dbserver2 ~]# view /var/log/messages

Sep 12 14:26:09 dbserver2 Oracle GoldenGate Manager for Oracle[3396]:
2010-09-12 14:26:09 GGS INFO 302 Oracle GoldenGate Manager for
Oracle, mgr.prm: Manager started collector process (Port 7842).

Sep 12 14:26:09 dbserver2 Oracle GoldenGate Delivery for Oracle[3566]:
2010-09-12 14:26:09 GGS INFO 320 Oracle GoldenGate Delivery for
Oracle, rolap01.prm: REPLICAT ROLAP01 starting.

Sep 12 14:26:10 dbserver2 Oracle GoldenGate Collector[3567]: Waiting for
connection (started dynamically)

Configuration Options

[108]

Password encryption
In previous chapters that have shown example Extract and Replicat parameter
files, you may have noticed the database password entered as free text. Obviously,
this is a potential security risk, allowing unauthorized users to read the database
user password. It is possible to prevent access to the parameter files via the OS. For
example, by default GoldenGate creates parameter files in the dirprm subdirectory
with read-write permission for all users, as shown in the following example:

[oracle@ dbserver1 dirprm]$ ls -l

-rw-rw-rw- 1 oracle oinstall 214 Aug 28 14:43 defgen.prm

-rw-rw-rw- 1 oracle oinstall 158 Jun 19 17:09 eload01.prm

-rw-rw-rw- 1 oracle oinstall 242 Aug 28 14:28 eoltp01.prm

-rw-rw-rw- 1 oracle oinstall 254 Aug 28 15:22 epmp01.prm

-rw-rw-rw- 1 oracle oinstall 172 Jun 13 10:21 mgr.prm

-rw-rw-rw- 1 oracle oinstall 196 Jun 19 16:58 rload01.prm

-rw-rw-rw- 1 oracle oinstall 370 Aug 28 14:29 rolap01.prm

We can change this using the chmod Unix command, allowing only the Oracle user
read-write access.

[oracle@dbserver1 dirprm]$ chmod 600 *prm

[oracle@ dbserver1 dirprm]$ ls -l

total 64

-rw------- 1 oracle oinstall 214 Aug 28 14:43 defgen.prm

-rw------- 1 oracle oinstall 158 Jun 19 17:09 eload01.prm

-rw------- 1 oracle oinstall 242 Aug 28 14:28 eoltp01.prm

-rw------- 1 oracle oinstall 254 Aug 28 15:22 epmp01.prm

-rw------- 1 oracle oinstall 172 Jun 13 10:21 mgr.prm

-rw------- 1 oracle oinstall 196 Jun 19 16:58 rload01.prm

-rw------- 1 oracle oinstall 370 Aug 28 14:29 rolap01.prm

Default method
The alternative and preferred method would be to encrypt the database password in
each parameter file. This is configured as follows:

1. Start GGSCI and execute the following command:
GGSCI (dbserver1) 1> ENCRYPT PASSWORD ggs_admin

No key specified, using default key...

Encrypted password:
AACAAAAAAAAAAAJACGQGJBXFPCHBOJWASBUJOGBBBDKCEBMA

Chapter 5

[109]

2. Simply copy and paste the encrypted password into each Extract and
Replicat parameter file, for example:
USERID ggs_admin@oltp, PASSWORD
AACAAAAAAAAAAAJACGQGJBXFPCHBOJWASBUJOGBBBDKCEBMA, ENCRYPTKEY
DEFAULT

Named method
Another password encryption option is the named method. Here we supply a key
name to the ENCRYPTKEY argument, rather than using DEFAULT. The following steps
guide you through the configuration:

1. If not already done, generate a key or multiple keys using the keygen Linux
utility on both source and target database servers. The following command
creates two 128 bit keys:
[oracle@dbserver1 ggs]$ keygen 128 2

0x2FC65F7E6339F70F466807493EA8C003

0xA0BAA517FD66E44EC071F22CF66AFE68

2. Create a file named ENCKEYS in the GoldenGate home on the source server
using a text editor such as vi and add the following text (including the newly
generated keys):
Encryption keys
Key name Key value
Key1 0x2FC65F7E6339F70F466807493EA8C003
Key2 0xA0BAA517FD66E44EC071F22CF66AFE68

3. Copy the ENCKEYS file to the GoldenGate Home directory on the
remote server.

4. Start GGSCI and encrypt the database password using a named key you
created in step 2.
GGSCI (dbserver1) 1> ENCRYPT PASSWORD ggs_admin, ENCRYPTKEY Key1

Encrypted password:
AACAAAAAAAAAAAKAGEDHWCRJYGAAZDJEDAYIMEUGVEHEBGOC

5. If using ASM, repeat the same command for the SYS password using the
other named key you also created in step 2.
GGSCI (dbserver1) 2> ENCRYPT PASSWORD change_on_install,
ENCRYPTKEY Key2

Encrypted password: AACAAAAAAAAAAAIATDGCUDDFOITJSCRD

Configuration Options

[110]

6. Add the encrypted password for each key to your Extract parameter file on
the source machine and Replicat on the target. For example:
USERID ggs_admin@oltp, PASSWORD
AACAAAAAAAAAAAKAGEDHWCRJYGAAZDJEDAYIMEUGVEHEBGOC, ENCRYPTKEY Key1
TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD
AACAAAAAAAAAAAIATDGCUDDFOITJSCRD, ENCRYPTKEY Key2

Event Actions
It is important in any data replication environment to capture and manage events
such as Trail records containing specific data or operations, or maybe the occurrence
of a certain error. These are known as Event Markers.

GoldenGate provides a mechanism to perform an action on a given event or
condition, these are known as Event Actions and are triggered by Event Records. If
you are familiar with Oracle Streams, Event Actions are like Rules.

Event Records
An Event Record can be either a trail record that satisfies a condition evaluated by
a WHERE or FILTER clause, or a record written to an event table enabling an action to
occur. Typical actions are to write status information, report errors, ignore certain
records in a trail, invoke a Shell script, or perform an administrative task.

The following Replicat example helps to describe the function of capturing an
event and performing an action by logging DELETE operations made against the
CREDITCARD_ACCOUNTS_DIM table using the EVENTACTIONS parameter:

MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS_DIM;

TABLE SRC.CREDITCARD_ACCOUNTS, &
FILTER (@GETENV ("GGHEADER", "OPTYPE") = "DELETE"), &
EVENTACTIONS (LOG INFO);

By default, all logged information is written to the process' report file, the
GoldenGate error log, and to the system messages file.

The following example Report file shows the DELETE operation against the
CREDITCARD_ACCOUNTS table in the Run Time Statistics section.

**

* ** Run Time Statistics ** *

**

Chapter 5

[111]

Last record for the last committed transaction is the following:

__

Trail name : ./dirdat/ta000071

Hdr-Ind : E (x45) Partition : . (x04)

UndoFlag : . (x00) BeforeAfter: B (x42)

RecLength : 10 (x000a) IO Time : 2010-09-12 17:12:44.000490

IOType : 3 (x03) OrigNode : 255 (xff)

TransInd : . (x03) FormatType : R (x52)

SyskeyLen : 0 (x00) Incomplete : . (x00)

AuditRBA : 128 AuditPos : 46104080

Continued : N (x00) RecCount : 1 (x01)

2010-09-12 17:12:44.000490 Delete Len 10 RBA 10062

Name: SRC.CREDITCARD_ACCOUNTS

__

Reading ./dirdat/ta000071, current RBA 10198, 2 records

Report at 2010-09-12 17:13:31 (activity since 2010-09-12 16:28:31)

From Table SRC.CREDITCARD_ACCOUNTS to TGT.CREDITCARD_ACCOUNTS:

 # inserts: 0

 # updates: 0

 # deletes: 1

 # discards: 0

Note that the TABLE parameter is also used in the Replicat's
parameter file. This is a means of triggering an Event Action to be
executed by the Replicat when it encounters an Event Marker.

The next example shows the use of the IGNORE option that prevents certain records
from being extracted or replicated, which is particularly useful for filtering out
system type data. When used with the TRANSACTION option, the whole transaction
and not just the Event Record is ignored.

The following example extends the previous example by stopping the Event Record
itself from being replicated:

TABLE SRC.CREDITCARD_ACCOUNTS, &
FILTER (@GETENV ("GGHEADER", "OPTYPE") = "DELETE"), &
EVENTACTIONS (LOG INFO, IGNORE);

Configuration Options

[112]

Another Event Action could include triggering a database backup, an ETL process,
or even a DR switchover, based on an Event Marker in a Trail record. Such an Event
Marker could be a record inserted into a trigger table on the source database that
is subsequently written to the online redologs, extracted, and written to a Trail file
on the remote system. Here, the Replicat process reads the trail and detects the "key
word" in the data record, based on the FILTER clause and EVENTACTIONS parameter
configuration. Finally, it calls a Unix Shell script to start the batch process.

The key words in the following example are "START FULL BACKUP", which was
inserted into the JOB column of the SRC.TRIGGER_TABLE table to trigger the event:

MAP SRC.TRIGGER_TABLE, TARGET TGT. TRIGGER_TABLE, &
FILTER (ON INSERT, JOB = "START FULL BACKUP"), &
EVENTACTIONS (SHELL /home/oracle/scripts/run_rman_level0.sh);

On successful completion, the Shell command or script writes information to the
process report file and the GoldenGate error log.

Other EVENTACTIONS can be combined with the SHELL option, such as REPORT.
Specifying REPORT with EVENTACTIONS is the same as invoking the SEND REPLICAT
command on the GGSCI command line.

When developing a Shell script to be called by GoldenGate, ensure
that it returns a zero status on successful completion, otherwise the
Replicat process will abend.

Bi-directional configuration options
When implementing a bi-directional configuration, you must consider the following
areas to avoid data integrity issues. These are as follows:

•	 Loop detection
•	 Conflict detection
•	 Conflict resolution
•	 Replicating Oracle sequences
•	 Oracle triggers

Let's take a look at the first potential problem, data looping, and how to detect it.

Chapter 5

[113]

Loop detection
GoldenGate has built-in loop detection, which is configured through the
IGNOREREPLICATES and GETAPPLOPS parameters to prevent local transactions
from being replicated and causing endless loops. Another solution would be the
TRANLOGOPTIONS EXCLUDEUSER parameters in the Extract process configuration,
effectively blocking the GGS_ADMIN user on the target system (the user associated
with the Replicat process). However, loop detection is only half the battle in a bi-
directional environment. We must also consider conflict detection and resolution.

Truncate table operations cannot be detected by the loop detection
scheme. To combat this, ensure the GETTRUNCATES is ON in only one
direction, that is, source to target.

Loop detection is discussed in more detail in Chapter 7, Advanced Configuration.

Conflict detection
Conflicts occur in a bi-directional environment when the same row in a given table
is updated around the same time on both sites. GoldenGate does not have a built-in
conflict detector and must be hand crafted if you wish to address this issue.

Which transaction will succeed? Should they both fail? These are both valid questions
and must be answered before you go ahead and code your conflict handler.

GoldenGate is renowned for its low latency, which helps to alleviate any conflicts.
However, the best solution would be at the application level, segregating users at
the different locations, only allowing each group to update specific ranges of records
in tables and thus avoiding conflicts. This is sometimes not possible and conflict
detection and resolution must be employed.

The key to conflict detection is the before image in an UPDATE operation. As we
know, GoldenGate can store the before image and evaluate it against the existing
value in the target row. The following example shows the use of SQLEXEC, which is
used initially to obtain the existing value in the target table, and then compared to
the before image from the source table by the BEFORE and CHECK parameters of the
FILTER clause:

REPERROR (9999, EXCEPTION)
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS, &
SQLEXEC (ID CHECK_CONFLICT, ON UPDATE, BEFOREFILTER, &
QUERY "SELECT PAYMENT FROM TGT.CREDITCARD_PAYMENTS &
WHERE ID = :P1", &
PARAMS (P1 = ID)), &

Configuration Options

[114]

FILTER (ON UPDATE, BEFORE.PAYMENT <> CHECK.PAYMENT, &
RAISEERROR 9999);
INSERTALLRECORDS
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.EXCEPTIONS, EXCEPTIONSONLY, &
COLMAP (USEDEFAULTS, ERRTYPE = "Conflict Detected");

The BEFOREFILTER parameter of SQLEXEC allows the SQL to execute before the
FILTER statement, enabling the results to be used in the filter.

Conflict resolution
The method behind conflict detection and resolution is discussed in Chapter 10,
Troubleshooting GoldenGate in the "Exception Handling" section. Once you have a
mechanism to detect conflicts, you need to resolve them based on your business
rules. The following is a list of four possible options:

1. Apply the net difference instead of the after image.
2. Map the data to an exception table for manual resolution.
3. Apply the latest update from either source.
4. Discard the change.

All the above can be configured to execute automatically via GoldenGate parameter
files except option 2. This has to be manually determined quickly as subsequent
updates may also suffer conflicts. It is therefore good practice to have an Event Action
to alert the GoldenGate Administrator when an INSERT operation on the Exceptions
table occurs. This is shown in the following Replicat configuration example:

TABLE TGT.EXCEPTIONS, &
FILTER (@GETENV ("GGHEADER", "OPTYPE") = "INSERT"), &
EVENTACTIONS (SHELL /home/oracle/scripts/email_alert.sh);

Oracle sequences
GoldenGate does not support the replication of Oracle database sequence values
in a bi-directional configuration. The database sequences must generate values on
the target database independent to the source. Therefore, to ensure that the source
and target database sequence numbers are unique across the environment, it is best
practice to assign odd and even values to each.

Chapter 5

[115]

Oracle triggers
Another consideration in a bi-directional environment is Oracle triggers. Having
triggers firing on your primary source database may not be a problem, but when
the related transactions are applied to your target, where the same triggers are
enabled, data duplication may result. Furthermore, should the triggered transactions
on the target be replicated back to the source, you have a real problem, as the
IGNOREREPLICATES and EXCLUDEUSER parameter would not work in this case.

One solution would be to disable triggers on the target during replication. This
can be achieved through an SQLEXEC parameter statement that calls bespoke
stored procedures, initially disabling, then re-enabling the triggers. The individual
procedure calls are shown in the following example of a Replicat parameter file:

REPLICAT ROLAP01
SOURCEDEFS ./dirdef/oltp.def
SETENV (ORACLE_SID=OLAP)
USERID ggs_admin, PASSWORD
AACAAAAAAAAAAAJACGQGJBXFPCHBOJWASBUJOGBBBDKCEBMA, ENCRYPTKEY DEFAULT
DISCARDFILE ./dirrpt/rolap01.dsc, PURGE
SQLEXEC "call disable_triggers ()"
MAP SRC.CHECK_PAYMENTS, TARGET TGT.CHECK_PAYMENTS;
MAP SRC.CHECK_PAYMENTS_STATUS, TARGET TGT.CHECK_PAYMENTS_STATUS;
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS;
SQLEXEC "call enable_triggers ()"

Heterogeneous environments
Although not heavily discussed in this book, one of the main features of GoldenGate
is its support for heterogeneous databases. GoldenGate's decoupled architecture,
plus its trail file universal data format, enables heterogeneity. This is a main
selling feature for Oracle, as GoldenGate does not require additional gateways or
conversion software in order to extract and replicate data across environments.

DEFGEN is an essential step in the GoldenGate configuration of heterogeneous
environments. It provides the source definitions for the Replicat process to lookup.
Without these, GoldenGate cannot replicate data between non-identical tables.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuration Options

[116]

Specific options
So what specific configuration options are available to non-Oracle databases?

To help answer that question, the following paragraphs describe the options
available to the most common alternative database types.

Microsoft SQL Server
GoldenGate has the ability to capture data from native SQL Server backups, not just
the transaction logs. It can also coexist with Microsoft's SQL Server Replication too,
although SQL Server Replication components are not required.

One of the main features is the support for tables having no unique key. This is not
currently supported by SQL Server Replication. Other supported options are bi-
directional replication, computed columns, and identity columns.

IBM DB2
For DB2, GoldenGate supports the following options:

•	 Multi Dimensional Clustered Tables (MDC)
•	 Materialized Query Tables (MQT)
•	 Bi-directional replication
•	 Data compression on tablespaces

Data compression is not supported by GoldenGate for Oracle databases. This
is because of the way Oracle achieves the data compression through its unique
compression algorithm. The compressed data information is not written to the redo
logs and therefore cannot be extracted.

The DEFGEN utility
The DEFGEN utility creates a data definitions file for the tables in your source or
target database schema. It defines the column structure, datatypes, field length, and
offset. Originally designed for heterogeneous environments, DEFGEN provides an
easy method of map configuration between non-identical schemas.

An extension to DEFGEN utility is the DEF option of the MAP parameter. DEF enables
new table definitions to be added "on the fly" to a trail, based on a template created
by the DEFGEN utility. As long as the new target tables have identical definitions to
the table in the template, they can be added without having to rerun DEFGEN. Also
there is no need to stop and start the Replicat process, which is ideal when downtime
cannot be tolerated.

Chapter 5

[117]

DDL replication
GoldenGate supports the replication of all DDL commands operating at schema
level. By default DDL replication is enabled on the target (Replicat) for data integrity
and disabled on the source (Extract). Should you wish to perform DDL and DML
replication from your source database, the DDL part must be explicitly configured
through a single DDL parameter statement.

GoldenGate does not support DDL only replication. DDL replication
must accompany DML replication and is enabled or disabled via the
GETTRUNCATES and IGNORETRUNCATES parameters respectively.

The DDL parameter
DDL replication is configured and enabled on the Extract and Replicat process by
passing multiple options to the DDL parameter. Not only can DDL operations be
filtered for specific schemas and objects, but also operation types. The filtering is
essentially driven through both the MAP statement and the use of wildcards in the
configuration options.

Filtering
Starting with wildcards, the following DDL parameter statement would "catch all"
DDL from a source schema when placed in the Extract process' parameter file.

DDL INCLUDE OBJNAME "SRC.*"

Similarly, specific operation types can also be captured, but wildcards are not
supported here.

DDL INCLUDE OPTYPE CREATE

As well as INCLUDE, GoldenGate offers an EXCLUDE option, which is ideal for filtering
out specific schemas.

DDL INCLUDE ALL EXCLUDE "SCRATCH.*"

Certain GoldenGate parameters and options have priority over others. To take the
above statement as an example, we could achieve the same result using the following
configuration options of the TRANLOGOPTIONS parameter, which may be more
appropriate due to its global nature:

•	 EXCLUDEUSER (Extract)
•	 EXCLUDEUSERID (Replicat)

Configuration Options

[118]

TRANLOGOPTIONS EXCLUDEUSER scratch

To exclude DDL operations for a given schema, type, or object, we must have a
preceding INCLUDE option. However, in cases where DDL is performed on the target
database by another mechanism, and for GoldenGate to maintain its knowledge
of the source data dictionary, we can use the EXCLUDE ALL option of the DDL
parameter. This will ensure that all DDL operations are not replicated, but allow data
dictionary metadata to be sent to the target.

DDL EXCLUDE ALL

To prevent all DDL metadata being replicated, omit the DDL parameter from the
Extract process' configuration.

Mapping options
Now let's discuss mapping with DDL replication. The DDL parameter offers a MAPPED
or UNMAPPED option. This allows the DDL parameter to extend its configuration
options to those specified in the MAP parameter of a Replicat process. For example, the
following DDL operation creates an index on the CREDITCARD_HISTORY table in the
PROD schema, the DDL statement is replicated to the target database and applied to
the schema and object configured by the Replicat's MAP parameter.

CREATE INDEX prod.creditcard_history_idx ON TABLE prod.creditcard_
history(payment_date);

The following configuration exists on the source:

DDL INCLUDE MAPPED OBJNAME "PROD.*"
TABLE prod.*;

The following configuration exists on the target:

MAP prod.creditcard*, TARGET archive.creditcard*;

The CREATE INDEX statement is executed by the Replicat process on the target as the
following:

CREATE INDEX archive.creditcard_history_idx ON TABLE archive.creditcard_
history(payment_date);

The index is actually created on the CREDITCARD_HISTORY table in the
ARCHIVE schema!

The same behavior also applies to CREATE TABLE AS SELECT commands.

CREATE TABLE prod.creditcard_acct_bkup AS SELECT * FROM prod.creditcard_
accounts;

Chapter 5

[119]

The CREDITCARD_ACCT_BKUP table will be created in the ARCHIVE schema based on
the MAP parameter configuration. If you don't want this to occur, we can override the
MAP parameter using the UNMAPPED option.

DDL INCLUDE UNMAPPED OBJNAME "PROD.*"
TABLE prod.*;

It is possible to create complex filter options through the DDL parameter, including
the conversion of target names. The following example converts all object names
created on the source to the equivalent name, but with a prefix of hist_ on the
target.

MAP src.*, TARGET tgt.hist_*;

Initial setup
Before your GoldenGate installation can support DDL replication, two setup scripts
must be run in turn, as SYSDBA on the source database to install the necessary
software components. Firstly run marker_setup.sql and then ddl_setup.sql
found in the GoldenGate home.

The following example shows the setup process, the prompts, and responses:

SQL> @marker_setup.sql

Marker setup script

You will be prompted for the name of a schema for the GoldenGate database
objects.

NOTE: The schema must be created prior to running this script.

NOTE: Stop all DDL replication before starting this installation.

Enter GoldenGate schema name:GGS_ADMIN

Marker setup table script complete, running verification script...

Please enter the name of a schema for the GoldenGate database objects:

Setting schema name to GGS_ADMIN

MARKER TABLE

Configuration Options

[120]

OK

MARKER SEQUENCE

OK

Script complete.

SQL> @ddl_setup.sql

GoldenGate DDL Replication setup script

Verifying that current user has privileges to install DDL Replication...

You will be prompted for the name of a schema for the GoldenGate database
objects.

NOTE: The schema must be created prior to running this script.

NOTE: On Oracle 10g and up, system recycle bin must be disabled.

NOTE: Stop all DDL replication before starting this installation.

Enter GoldenGate schema name:GGS_ADMIN

You will be prompted for the mode of installation.

To install or reinstall DDL replication, enter INITIALSETUP

To upgrade DDL replication, enter NORMAL

Enter mode of installation:INITIALSETUP

Working, please wait ...

Spooling to file ddl_setup_spool.txt

Using GGS_ADMIN as a GoldenGate schema name, INITIALSETUP as a mode of
installation.

Working, please wait ...

RECYCLEBIN must be empty.

Chapter 5

[121]

This installation will purge RECYCLEBIN for all users.

To proceed, enter yes. To stop installation, enter no.

Enter yes or no:yes

DDL replication setup script complete, running verification script...

Please enter the name of a schema for the GoldenGate database objects:

Setting schema name to GGS_ADMIN

LOCATION OF DDL TRACE FILE

/opt/oracle/diag/rdbms/oltp/oltp/trace/ggs_ddl_trace.log

Analyzing installation status...

..

STATUS OF DDL REPLICATION

SUCCESSFUL installation of DDL Replication software components

Script complete.

Known issues
When enabling DDL replication on the source, be aware that the Recycle Bin
functionality in Oracle 10g and above must be disabled. This mechanism is not
supported by GoldenGate and will cause the following error (and solution) to be
written to the report file, when starting the Extract process:

2010-09-20 09:23:35 GGS ERROR 2003 RECYCLEBIN must be turned off.
For 10gr2 and up, set RECYCLEBIN in parameter file to OFF. For 10gr1,
set _RECYCLEBIN in parameter file to FALSE. Then restart database and
extract.

2010-09-20 09:23:35 GGS ERROR 190 PROCESS ABENDING.

Configuration Options

[122]

To disable the Recycle Bin, log on to the source database as SYSDBA and execute the
following command, then shutdown and startup.

SQL> alter system set recyclebin=off scope=spfile;

System altered.

SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> startup

ORACLE instance started.

Using DUMPDDL
The GoldenGate DDL solution for Oracle installs a trigger named GGS_DDL_
TRIGGER_BEFORE, owned by the SYS user. This trigger writes information about
the captured DDL operations into the GGS_MARKER and GGS_DDL_HIST tables. Data
stored in the GGS_DDL_HIST table is in proprietary format and can only be viewed
using the GGSCI DUMPDDL command.

The basic DUMPDDL command dumps data to the following tables that can be
subsequently queried through standard SQL. Each table has the SEQNO as its primary
key, making it is easy to reconcile the DDL operations against the Extract and
Replicat report files.

•	 GGS_DDL_OBJECTS

•	 GGS_DDL_COLUMNS

•	 GGS_DDL_LOG_GROUPS

•	 GGS_DDL_PARTITIONS

•	 GGS_DDL_PRIMARY_KEYS

To view historical DDL operation information on the screen, use the SHOW option of
the DUMPDDL command. Note that you must log in to the source database from GGSCI
for the command to succeed.

GGSCI (dbserver1) 1> dblogin userid ggs_admin@oltp, password ggs_admin

Successfully logged into database.

GGSCI (dbserver1) 2> DUMPDDL SHOW

Chapter 5

[123]

*** Dumping DDL Metadata for DDL sequence [1]...

Time of capture = Before DDL

Time of DDL operation = 2010-09-26 20:19:51

DDL operation (maybe partial) = [create table my_new_table (col1
number)]

Start SCN of DDL operation = 2530002

DDL operation type = CREATE

Object type = TABLE

DB Blocksize = 8192

Object owner = SRC

Object name = MY_NEW_TABLE

Object ID =

Base object owner = SRC

Base object name = MY_NEW_TABLE

Object valid = VALID

Log group exists = 0

Subpartition = NO

Partition = NO

Total number of columns = 0

Number of columns used = 0

Finished displaying metadata information (sequence number [1], DDL
history table [GGS_ADMIN.GGS_DDL_HIST]).

The output shows that supplemental logging is automatically added to the new table
upon creation; this is because DDLOPTIONS ADDTRANDATA is configured in the Extract
parameter file. DDLOPTIONS are discussed in the next section.

There are two limitations we need to be aware of when using DUMPDDL -
a) The DDL metadata written to the GGS_DDL_HIST table

relates to the"before" image of the DDL operation and
b) is restricted to 4000 bytes.

Configuration Options

[124]

DDL OPTIONS
As the name suggests, the DDLOPTIONS parameter controls additional options and
functionality for DDL replication. For example, we discussed the IGNOREAPPLOPS
and GETREPLICATES options in Chapter 4 that ignore local DML, but capture
Replicated DML. When configured as DDL options for Extract processes only, they
prove useful for Cascade environments.

DDLOPTIONS IGNOREAPPLOPS GETREPLICATES

Another useful option is ADDTRANDATA that automatically adds supplemental logging
to tables created on the source database. This option is also supported for ALTER
TABLE commands where the supplemental log data is updated accordingly. Be aware
that the ADD SUPPLEMENTAL LOGGING operation will not be replicated on the target
unless the GETREPLICATES option is configured.

DDLOPTIONS ADDTRANDATA

It is also worth configuring the REPORT option in your DDL options. This will allow
detail of replicated DDL operations to be written to the process' report file, when
generated by the SEND command. The following example extends the previous
configuration by including the REPORT option:

DDLOPTIONS ADDTRANDATA REPORT

DDL replication statistics:

 Operations: 3

 Mapped operations: 3

 Unmapped operations: 0

 Other operations: 0

 Excluded operations: 0

 Errors: 0

 Retried errors: 0

 Discarded errors: 0

 Ignored errors: 0

From the output we see the DDL operations are clearly visible in the runtime
statistics section of the report.

Chapter 5

[125]

Summary
Oracle GoldenGate 10.4 is a highly configurable product. Obtaining the optimal
configuration for your application may be a challenge, but you will be rewarded
with a robust, scalable, secure, and high performance data replication solution.
Furthermore, additional options allow you to build on the existing configuration
when the system requirements change with time.

Also in this chapter we discovered that the configuration options provide detailed
reporting and monitoring capabilities, enabling the automatic execution of a script to
alert the GoldenGate Administrator or maybe stop a process based on an event in the
source database's redo stream.

In the next chapter. Chapter 6, Configuring GoldenGate for HA is a natural progression
from this chapter, having an appreciation of design importance, configuration
options, and the potential of knowing what can be achieved when building
GoldenGate environments.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring GoldenGate for HA
High Availability (HA) has become an important factor in computer system design in
recent years. Systems can't afford to be down, not even for a minute, as they may be
mission critical, life supporting, regulatory, or the financial impact may be too great
to bear. Oracle has played a major role in developing a number of HA solutions, one
of which is Real Application Clusters (RAC). Oracle Streams is heavily integrated
with RAC out of the box and requires no additional configuration. This is not true for
GoldenGate, where the Manager process has to be made "RAC aware".

In this chapter, we learn how to configure GoldenGate in a RAC environment and
explore the various components that effectively enable HA for data replication
and integration.

This includes the following discussion points:

•	 Shared storage options
•	 Configuring clusterware for GoldenGate
•	 GoldenGate on Exadata
•	 Failover

We also touch upon the new features available in Oracle 11g Release 2, including the
Database Machine, that provides a "HA solution in a box".

GoldenGate on RAC
A number of architectural options are available to Oracle RAC, particularly
surrounding storage. Since Oracle 11g Release 2, these options have grown, making
it possible to configure the whole RAC environment using Oracle software, whereas
in earlier versions, third party clusterware and storage solutions had to be used. Let's
start by looking at the importance of shared storage.

Configuring GoldenGate for HA

[128]

Shared storage
The secret to RAC is "share everything" and this also applies to GoldenGate. RAC
relies on shared storage in order to support a single database having multiple
instances, residing on individual nodes. Therefore, as a minimum the GoldenGate
checkpoint and trail files must be on the shared storage so all Oracle instances can
"see" them. Should a node fail, a surviving node can "take the reins" and continue the
data replication without interruption.

Since Oracle 11g Release 2, in addition to ASM, the shared storage can be an ACFS
or a DBFS.

Automatic Storage Management Cluster File
System (ACFS)
ACFS is Oracle's multi-platform, scalable file system, and storage management
technology that extends ASM functionality to support files maintained outside of the
Oracle Database. This lends itself perfectly to supporting the required GoldenGate
files. However, any Oracle files that could be stored in regular ASM diskgroups are
not supported by ACFS. This includes the OCR and Voting files that are fundamental
to RAC.

Database File System (DBFS)
Another Oracle solution to the shared filesystem is DBFS, which creates a standard
file system interface on top of files and directories that are actually stored as
SecureFile LOBs in database tables. DBFS is similar to Network File System (NFS) in
that it provides a shared network file system that "looks like" a local file system.

On Linux, you need a DBFS client that has a mount interface that utilizes the
Filesystem in User Space (FUSE) kernel module, providing a file-system mount
point to access the files stored in the database.

This mechanism is also ideal for sharing GoldenGate files among the RAC nodes.
It also supports the Oracle Cluster Registry (OCR) and Voting files, plus
Oracle homes.

DBFS requires an Oracle Database 11gR2 (or higher) database. You can use DBFS to
store GoldenGate recovery related files for lower releases of the Oracle Database, but
you will need to create a separate Oracle Database 11gR2 (or higher) database to host
the file system.

Chapter 6

[129]

Configuring Clusterware for GoldenGate
Oracle Clusterware will ensure that GoldenGate can tolerate server failures by
moving processing to another available server in the cluster. It can support the
management of a third party application in a clustered environment. This capability
will be used to register and relocate the GoldenGate Manager process.

Once the GoldenGate software has been installed across the cluster and a script to
start, check, and stop GoldenGate has been written and placed on the shared storage
(so it is accessible to all nodes), the GoldenGate Manager process can be registered
in the cluster. Clusterware commands can then be used to create, register and set
privileges on the virtual IP address (VIP) and the GoldenGate application using
standard Oracle Clusterware commands.

The Virtual IP
The VIP is a key component of Oracle Clusterware that can dynamically relocate
the IP address to another server in the cluster, allowing connections to failover to
a surviving node. The VIP provides faster failovers compared to the TCP/IP time-
out based failovers on a server's actual IP address. On Linux this can take up to 30
minutes using the default kernel settings!

The prerequisites are as follows:

1. The VIP must be a fixed IP address on the public subnet.
2. The interconnect must use a private non-routable IP address, ideally over

Gigabit Ethernet.

Use a VIP to access the GoldenGate Manager process to isolate access to the Manager
process from the physical server. Remote data pump processes must also be
configured to use the VIP to contact the GoldenGate Manager.

Configuring GoldenGate for HA

[130]

The following diagram illustrates the RAC architecture for 2 nodes (rac1 and rac2)
supporting 2 Oracle instances (oltp1 and oltp2). The VIPs are 11.12.1.6 and 11.12.1.8
respectively, in this example:

The user community or application servers connect to either instance via the VIP and
a load balancing database service, that has been configured on the database and in
the client's SQL*Net tnsnames.ora file or JDBC connect string.

The following example shows a typical tnsnames entry for a load balancing
service. Load balancing is the default and does not need to be explicitly configured.
Hostnames can replace the IP addresses in the tnsnames.ora file as long as they are
mapped to the relevant VIP in the client's system hosts file.

OLTP =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 11.12.1.6)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = 11.12.1.8)(PORT = 1521))
)
 (CONNECT_DATA =

Chapter 6

[131]

 (SERVICE_NAME = oltp)
)
)

This is the recommended approach for scalability and performance and is known as
active-active. Another HA solution is the active-passive configuration, where users
connect to one instance only leaving the passive instance available for node failover.

The term active-active or active-passive in this context relates to 2-node
RAC environments and is not to be confused with the GoldenGate
topology of the same name.

On Linux systems, the database server hostname will typically have the following
format in the /etc/hosts file.

For Public VIP: <hostname>-vip

For Private Interconnect: <hostname>-pri

The following is an example hosts file for a RAC node:

127.0.0.1 localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6

#Virtual IP Public Address
11.12.1.6 rac1-vip rac1-vip
11.12.1.8 rac2-vip rac2-vip

#Private Address
192.168.1.33 rac1-pri rac1-pri
192.168.1.34 rac2-pri rac2-pri

Creating a GoldenGate application
The following steps guide you through the process of configuring GoldenGate on
RAC. This example is for an Oracle 11g Release 1 RAC environment:

1. Install GoldenGate as the Oracle user on each node in the cluster or on a
shared mount point that is visible from all nodes. If installing the GoldenGate
home on each node, ensure the checkpoint and trails files are on the shared
filesystem.

2. Ensure the GoldenGate Manager process is configured to use the
AUTOSTART and AUTORESTART parameters, allowing GoldenGate to
start the Extract and Replicat processes as soon as the Manager starts.

Configuring GoldenGate for HA

[132]

3. Configure a VIP for the GoldenGate application as the Oracle user from 1
node.
<CLUSTERWARE_HOME>/bin/crs_profile -create ggsvip \

-t application \

-a <CLUSTERWARE_HOME>/bin/usrvip \

-o oi=bond1,ov=11.12.1.6,on=255.255.255.0

CLUSTERWARE_HOME is the oracle home in which Oracle Clusterware
is installed. E.g. /u01/app/oracle/product/11.1.0/crs
ggsvip is the name of the application VIP that you will create.
oi=bond1 is the public interface in this example.
ov=11.12.1.6 is the virtual IP address in this example.
on=255.255.255.0 is the subnet mask. This should be the same subnet
mask for the public IP address.

4. Next, register the VIP in the Oracle Cluster Registry (OCR) as the Oracle
user.
<CLUSTERWARE_HOME>/bin/crs_register ggsvip

5. Set the ownership of the VIP to the root user who assigns the IP address.
Execute the following command as the root user:
<CLUSTERWARE_HOME>/bin/crs_setperm ggsvip -o root

6. Set read and execute permissions for the Oracle user. Execute the following
command as the root user:
<CLUSTERWARE_HOME>/bin/crs_setperm ggsvip -u user:oracle:r-x

7. As the Oracle user, start the VIP.
<CLUSTERWARE_HOME>/bin/crs_start ggsvip

8. To verify the the VIP is running, execute the following command then ping
the IP address from a different node in the cluster.
<CLUSTERWARE_HOME>/bin/crs_stat ggsvip –t

Name Type Target State Host

--

ggsvip application ONLINE ONLINE rac1

ping –c3 11.12.1.6

64 bytes from 11.12.1.6: icmp_seq=1 ttl=64 time=0.096 ms

Chapter 6

[133]

64 bytes from 11.12.1.6: icmp_seq=2 ttl=64 time=0.122 ms

64 bytes from 11.12.1.6: icmp_seq=3 ttl=64 time=0.141 ms

--- 11.12.1.6 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2000ms

rtt min/avg/max/mdev = 0.082/0.114/0.144/0.025 ms

9. Oracle Clusterware supports the use of "Action" scripts within its
configuration, allowing bespoke scripts to be executed automatically during
failover. Create a Linux shell script named ggs_action.sh that accepts 3
arguments: start, stop or check. Place the script in the <CLUSTERWARE_HOME>/
crs/public directory on each node or if you have installed GoldenGate on a
shared mount point, copy it there.

	° Ensure that start and stop: returns 0 if successful, 1 if
unsuccessful.

	° check: returns 0 if GoldenGate is running, 1 if it is not running.

10. As the Oracle user, make sure the script is executable.
chmod 754 ggs_action.sh

11. To check the GoldenGate processes are running, ensure the action script has
the following commands. The following example can be expanded to include
checks for Extract and Replicat processes:

	° First check the Linux process ID (PID) the GoldenGate Manager
process is configured to use.

GGS_HOME=/mnt/oracle/ggs # Oracle GoldenGate
home
pid=`cut -f8 ${GGS_HOME}/dirpcs/MGR.pcm`

	° Then, compare this value (in variable $pid) with the actual PID the
Manager process is using. The following example will return the
correct PID of the Manager process if it is running.

ps -e |grep ${pid} |grep mgr |cut -d " " -f2

12. The code to start and stop a GoldenGate process is simply a call to ggsci.
ggsci_command=$1
ggsci_output=`${GGS_HOME}/ggsci << EOF
${ggsci_command}
exit
EOF`

Configuring GoldenGate for HA

[134]

13. Create a profile for the GoldenGate application as the Oracle user from 1
node.
<CLUSTERWARE_HOME>/bin/crs_profile \

-create goldengate_app \

-t application \

-r ggsvip \

-a <CLUSTERWARE_HOME>/crs/public/ggs_action.sh \

-o ci=10

CLUSTERWARE_HOME is the Oracle home in which Oracle Clusterware
is installed. For example: /u01/app/oracle/product/11.1.0/crs
-create goldengate_app the application name is goldengate_app.
-r specifies the required resources that must be running for the
application to start. In this example, the dependency is the VIP ggsvip
must be running before Oracle GoldenGate starts.
-a specifies the action script. For example: <CLUSTERWARE_HOME>/crs/
public/ggs_action.sh

-o specifies options. In this example the only option is the Check Interval
which is set to 10 seconds.

14. Next, register the application in the Oracle Cluster Registry (OCR) as the
oracle user.
<CLUSTERWARE_HOME>/bin/crs_register goldengate_app

15. Now start the Goldengate application as the Oracle user.
<CLUSTERWARE_HOME>/bin/crs_start goldengate_app

16. Check that the application is running.
<CLUSTERWARE_HOME>/bin/crs_stat goldengate_app –t

Name Type Target State Host

--

goldengate_app application ONLINE ONLINE rac1

17. You can also stop GoldenGate from Oracle Clusterware by executing the
following command as the oracle user:
CLUSTERWARE_HOME/bin/crs_stop goldengate_app

Chapter 6

[135]

Oracle has published a White Paper on "Oracle GoldenGate high
availability with Oracle Clusterware". To view the Action script mentioned
in this chapter, refer to Appendices 1 and 2 of the document, which can be
downloaded in PDF format from the Oracle Website at the following URL:
http://www.oracle.com/technetwork/middleware/
goldengate/overview/ha-goldengate-whitepaper-128197.pdf

Increasing system resilience
Implementing Oracle RAC is a step toward high availability. For a RAC environment
to be totally resilient to outages, all single points of failure must be removed from
all elements. For example, the network infrastructure, storage solution, and power
supply. To facilitate this, the recommendation is as follows:

•	 Dual fibre channels to shared storage (SAN)
•	 RAID disk subsystem (striped and mirrored)
•	 Mirrored OCR and Voting disks
•	 Bonded network on high speed interconnect via two physically connected

switches
•	 Bonded network on public network (VIP) via two physically connected

switches
•	 Dual power supply to each node, switch, and storage solution via UPS

When using ASM as your storage manager, Oracle recommends configuring a
redundant diskgroup. However, if you have a RAID disk subsystem, you can
configure ASM to use external redundancy. It is also best practice to "stripe on stripe"
where ASM stripes the data across the LUNs, thus reducing I/O contention and
increasing performance.

GoldenGate on Exadata
Already mentioned in the previous chapter is the Oracle Sun Database Machine.
This purpose built machine features a number of Oracle 11gR2 database servers
configured for RAC offering highly parallel processing on Exadata storage and high
speed Infiniband network interfaces. The environment also supports GoldenGate,
enabling real-time data integration.

Configuring GoldenGate for HA

[136]

Depending on the machine size, the database servers and storage cells can be
configured in a number of ways to provide more than one RAC cluster. If your
source and target database reside in the same Database Machine, there is no need
to configure a Data Pump process. Data can be transmitted directly from Extract to
Replicat at very high speeds.

Configuration
Configuring GoldenGate on Exadata is a similar process to 11gR1 RAC environments
except we use DBFS as the shared mount point supporting the persistent
GoldenGate files.

The GoldenGate Manager must only run on one node in a RAC cluster. To prevent
Extract and Replicat processes being started concurrently, mount DBFS on a single
RAC node will deny access to the checkpoint files from other nodes. Ensure the
mount point detail is written to the node's /etc/fstab file.

For example:

/sbin/mount.dbfs#/@DBConnectString /mnt/oracle/dbfs fuse rw,user,
noauto 0 0

If the GoldenGate home is not on the shared storage, ensure that GoldenGate is
installed on each node in the cluster and that the parameter files exist in the local
subdirectories. Checkpoint and trail files must reside on the shared storage.

Parameter files may also reside on the shared storage. However, in this case the
Oracle environment variables must be set in the Oracle user profile on each node.
This removes the need to set the Oracle environment in the GoldenGate Extract and
Replicat parameter files. Furthermore, should you wish to make changes to your
GoldenGate configuration, this can be done in one place without having to copy
parameter files to each node.

Creating the Extract process
The following example steps you through the creation of an Extract process on the
source database using DBFS to store the trail files:

1. Ensure the DBFS file system is already mounted. As the root user create the
dirchk and dirdat GoldenGate subdirectories on top of the mount point (/
mnt/oracle/dbfs). For example:
mkdir /mnt/oracle/dbfs/ggs/dirchk

mkdir /mnt/oracle/dbfs/ggs/dirdat

Chapter 6

[137]

2. As root, grant the oracle user read-write privileges to the ggs directory.
chown –R oracle:oinstall /mnt/oracle/dbfs/ggs

3. As the oracle user, remove the GoldenGate subdirectories, dirchk and
dirdat, from the GoldenGate home on each node in the cluster.
rmdir $GGS_HOME/dirchk

rmdir $GGS_HOME/dirdat

4. Now create symbolic links to the newly created DBFS mount point
directories on each node in the cluster.
cd $GGS_HOME

ln –s /mnt/oracle/dbfs/ggs/dirchk dirchk

ln –s /mnt/oracle/dbfs/ggs/dirdat dirdat

5. Now that the DBFS mount point and GoldenGate subdirectories have been
created on the shared filesystem, we can create the Extract process. Firstly,
create an Extract parameter file using EDIT PARAMS command in ggsci.

The ASM connect details allow GoldenGate to access the
online redo logs for all database instances (threads). The sym-
links simplify the Extract parameter files by not having to
specify the full path to the shared trail file directory.

In the following example, Extract parameter file snippet, the Oracle SID is set
by the SETENV parameter. For local parameter files, ensure the Oracle SID is set
appropriately for the node you are configuring.

EXTRACT EOLTP01
SETENV (ORACLE_SID=OLTP1)
USERID ggs_admin, PASSWORD ggs_admin
EXTTRAIL ./dirdat/aa
TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD Password1

1. Then create the Extract process from GGSCI.
GGSCI (rac1) 1> add extract EOLTP01, tranlog, begin now, threads 4

EXTRACT added.

2. Finally create the EXTTRAIL from GGSCI.
GGSCI (rac1) 2> add exttrail ./dirdat/aa, extract EOLTP01,
megabytes 500

EXTTRAIL added.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring GoldenGate for HA

[138]

Creating the Replicat process
Now that the DBFS mount point and GoldenGate subdirectories have been created
on the shared filesystem, we can create the Replicat process.

1. Firstly, create a Replicat parameter file using EDIT PARAMS command in
GGSCI. The discard directory need not be on the shared DBFS filesystem as
the files are not required for GoldenGate process recovery.
REPLICAT ROLAP01
SETENV (ORACLE_SID=OLAP1)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/rolap01.dsc, PURGE

2. Now create the Replicat process. Note the Replicat uses the same EXTTRAIL
as the source.
GGSCI (dbolap1) 1> add replicat ROLAP01, exttrail ./dirdat/aa

REPLICAT added.

We have looked at some of the Oracle 11g Release 2 new features, including the
Exadata Database Machine. Now let's look at failover, ensuring availability.

Failover
By default VIPs and database services automatically failover to a surviving instance
in the case of a crash or node eviction. The VIP will automatically failback to its
"home" node once the failed database instance restarts. VIPs and database services
can also be manually relocated for maintenance reasons using the Oracle Server
Control utility's srvctl relocate command, allowing a node to be taken off-line
without affecting user connections to the database.

Automatic failover
What does this mean to the GoldenGate Manager process running on one node in a
clustered environment?

To help answer this question, Oracle Clusterware can also be installed on other
servers apart from the database servers to form a single cluster. For example, you
can use four database servers and two additional Oracle GoldenGate servers in the
single cluster. The Oracle Database would run on the four database servers and
GoldenGate would run on one of the two remaining servers, with failover to its
dedicated twin. Because the Goldengate Manager and Data Pump processes (if any)
are configured to use the VIP, the failover will be automatic.

Chapter 6

[139]

You may however, wish to install GoldenGate on every database server in a cluster
with no dedicated GoldenGate servers. In this configuration, the automatic failover
using the VIP is still supported.

Manual failover
The following sections discuss the various methods of manual failover.

Relocating a service
For maintenance reasons, it is sometimes necessary to relocate a database service
from one RAC instance to another. The following example shows how to relocate the
database service using srvctl:

srvctl status service -d OLTP -s ACTIVE_SRV

Service ACTIVE_SRV is running on instance(s) OLTP2

srvctl relocate service -d OLTP -s ACTIVE_SRV -i OLTP2 -t OLTP1

$ srvctl status service -d OLTP -s ACTIVE_SRV

Service ACTIVE_SRV is running on instance(s) OLTP1

Relocating a VIP
When GoldenGate is running, you may want to move GoldenGate to run on a
different server, again for maintenance reasons. The following Oracle Clusterware
command executed by the Oracle user allows you to do this. Use the crs_relocate
program with the force option to move the VIP as well.

<CLUSTERWARE_HOME>/bin/crs_relocate –f goldengate_app

Attempting to stop `goldengate_app` on member `rac2`

Stop of `goldengate_app` on member `rac2` succeeded.

Attempting to stop `ggatevip` on member `rac2`

Stop of `ggatevip` on member `rac2` succeeded.

Attempting to start `ggatevip` on member `rac1`

Start of `ggatevip` on member `rac1` succeeded.

Attempting to start `goldengate_app` on member `rac1`

Start of `goldengate_app` on member `rac1` succeeded.

This is exactly what happens automatically when a node crashes or gets evicted from
the cluster. The GoldenGate Manager process is restarted on a surviving node where
its configuration auto-starts the Extract and Replicat processes.

Configuring GoldenGate for HA

[140]

Summary
Oracle RAC is one of the most popular database configurations, first introduced
in Oracle 9i, superseding Oracle Parallel Server. GoldenGate has recently played a
major role in the Oracle 11g Release 2 RAC environment with the advent of Exadata
and the Database Machine. In fact both are commonly sold together to provide a
robust OLTP and OLAP solution in the same Oracle-Sun equipment rack.

In this chapter, we learnt how to configure GoldenGate on Oracle RAC, leveraging
HA through Clusterware configuration techniques, and explored the new shared
storage solutions available in Oracle 11g Release 2.

We discovered the importance of automatic relocation and startup of the GoldenGate
Manager and processes on the new instance to restore data replication to
downstream systems, all in the name of HA.

In the next chapter, we look at configuration in more detail - starting with data
mapping and filtering, and finally discussing data transformation and error
handling, all of which help to create a robust GoldenGate environment.

Advanced Configuration
In this chapter, you will gain a deeper understanding of GoldenGate configuration.
The topics covered in this chapter include data selection, mapping, and
transformation. One could argue that this sounds remarkably like Extract, Transform
and Load (ETL) in concept. One would be right. However, combining GoldenGate's
real-time Change Data Capture (CDC) with an ETL tool, known as Extract, Load
and Transform (ELT), decreases data latency and eliminates the need for batch
processing. This poses two questions:

1. How much data transformation should GoldenGate do?
2. Should the Replicat process load the production tables directly?

The answers to the above questions would decide whether or not an ETL tool is
required, thus illustrating the power of GoldenGate's advanced configuration.

This chapter discusses the following in detail:

•	 Data mapping at column level to deal with different source and target
table structures

•	 Data selection and filtering using a WHERE clause or FILTER statement
•	 Data replication loop detection and prevention
•	 Using data transformation functions
•	 Configuring GoldenGate to replicate DDL operations
•	 Including SQL in your mapping for data lookup
•	 Defining Macros and Tokens to automate events at runtime
•	 Calling external programs and routines

Advanced Configuration

[142]

The above tasks are all configurable through Extract or Replicat parameter
specification. By the time you are done with this chapter, you will be able to explore
and realize each parameter specification and further develop your GoldenGate
configuration.

Let's start by looking at data mapping.

Mapping your data
In Chapter 4, Configuring Oracle GoldenGate you performed data replication with
identical source and target tables. You'll remember that the GoldenGate Replicat
parameter ASSUMETARGETDEFS defines this. In the real world, it is unlikely that your
target tables will be exactly the same as the source, having some additional columns
or maybe different datatypes. You may even wish to transform the data, or omit
certain rows from being replicated.

With GoldenGate, it is possible to map and transform your column data using the
TABLE parameter in an Extract's configuration, or the MAP parameter for a Replicat.

Due to the length of some of the multi-line parameter statements,
an ampersand character (&) is required as a "continuation"
character at the end of each line.
When changing Extract or Replicat process parameters, be sure
to stop and start the process to allow the new configuration to be
read into memory. This requirement is not to be confused with zero
downtime migrations. Once you are happy that your GoldenGate
environment is configured appropriately, then you can start the
data transfer with no interruptions.
Should a process abend due to its new configuration, GoldenGate
will "replay" failed transactions on a successful restart, once the
configuration error is resolved.

Column mapping
So far we have discussed table mapping. Although part of the TABLE or MAP
statement, column mapping defined by the COLMAP option provides greater
flexibility. For example, we can add additional columns to target tables or maybe
change column names between source and target tables. Let's see how this can be
configured.

Chapter 7

[143]

Using the COLMAP option
Used without additional options, the TABLE parameter purely selects the tables for
replication from the source database schema. However, should you wish to explicitly
map source columns to target columns that have different names, you can include
the COLMAP option.

The COLMAP option can also be used with the MAP parameter for the Replicat
process, but both configurations are dependent on the source table definitions
file. This file is generated by the DEFGEN utility and must be referenced using the
SOUCREDEFS parameter.

Never use the COLMAP option in a Data Pump's configuration when
using the PASSTHRU parameter. The concept of PASSTHRU does not
allow any mapping or transformation.

The following example shows the use of the TABLE parameter with COLMAP option in
the Extract EOLTP01 parameter file:

TABLE SRC.SERVICECHARGE, TARGET TGT.SERVICECHARGE_DIM, &
COLMAP (USEDEFAULTS, &
ID = SERVICECHARGE_ID, &
MODIFIED_AT=TIMESTAMP);

The USEDEFAULTS option enables mapping of identical columns that have not been
explicitly mapped.

Source Table Target Table
ID

VERSION

EXTERNAL_KEY

SERVICE_AGREEMENT_ID

CHARGE_TYPE_ID

MODIFIED_AT

SERVICECHARGE_ID

VERSION

EXTERNAL_KEY

SERVICE_AGREEMENT_ID

CHARGE_TYPE_ID

TIMESTAMP

COLMAP also supports the use of GoldenGate functions to enhance data
transformation operations. This is discussed in the next section—Data Selection
and Filtering.

Advanced Configuration

[144]

The COLMATCH option
Another powerful mapping feature is the COLMATCH option. Defined in an Extract
or Replicat parameter file, it creates global rules for column mapping. Tables of a
similar structure but have different column names for the same sets of data are ideal
candidates for COLMATCH.

Similar to COLMAP, column names can be explicitly mapped, as shown in the
following example.

COLMATCH NAMES ID = SERVICECHARGE_ID

In addition, it is possible to configure a global column name prefix or suffix to be
ignored. The following example maps a target column having a _PK suffix to a source
column with the same name, such as COL1 to COL1_PK. The syntax in the parameter
file would be:

COLMATCH SUFFIX _PK

Use the RESET keyword after COLMATCH to turn off the global mapping rules for
subsequent tables defined in an Extract or Replicat parameter file.

Using the DEFGEN utility
The DEFGEN utility creates a data definitions file for the tables in your source or
target database schema. It defines the column structure, datatypes, field length, and
offset. Originally designed for heterogeneous environments, DEFGEN provides an
easy method of map configuration between non-identical schemas.

The following table shows the field descriptions for each column entry in the
DEFGEN data definitions file:

Column position Field description
 1 Name
 2 Data Type
 3 External Length
 4 Fetch Offset
 5 Scale
 6 Level
 7 Null
 8 Bump if Odd
 9 Internal Length
10 Binary Length

Chapter 7

[145]

Column position Field description
11 Table Length
12 Most Significant Data Type
13 Least Significant Data Type
14 High Precision
15 Low Precision
16 Elementary Item
17 Occurs
18 Key Column
19 Sub Data Type

To configure GoldenGate to use a data definitions file includes the following
main steps:

•	 Creating a parameter file for the DEFGEN utility
•	 Running the DEFGEN utility to generate the file
•	 Configuring the GoldenGate process to reference the definitions file

An example procedure for creating a source definitions file is described next:

1. Log on to the database server (as the Oracle user).
2. Change directory to the GoldenGate Home.

cd /home/oracle/ggs

3. Run GGSCI.
ggsci

4. Execute the following commands to create a DEFGEN parameters file:
GGSCI (dbserver1) 1> EDIT PARAMS DEFGEN

DEFSFILE ./dirdef/oltp.def

USERID ggs_admin@oltp, PASSWORD ggs_admin

TABLE SRC.CHECK_PAYMENTS;

TABLE SRC.CHECK_PAYMENTS_STATUS;

TABLE SRC.CREDITCARD_ACCOUNTS;

TABLE SRC.CREDITCARD_PAYMENTS;

5. Exit GGSCI.
GGSCI (dbserver1) 2> EXIT

Advanced Configuration

[146]

6. From the GoldenGate Home, run the DEFGEN utility on the Linux command
line to create the oltp.def file.
defgen paramfile dirprm/defgen.prm
**

 Oracle GoldenGate Table Definition Generator for Oracle

 Version 10.4.0.19 Build 002

 Linux, x86, 32bit (optimized), Oracle 11 on Sep 29 2009
08:55:42

Copyright (C) 1995, 2009, Oracle and/or its affiliates. All
rights reserved.

 Starting at 2010-07-11 12:22:12

**

Operating System Version:

Linux

Version #1 SMP Tue Jun 5 23:11:13 EDT 2007, Release 2.6.18-8.el5

Node: dbserver1

Machine: i686

 soft limit hard limit

Address Space Size : unlimited unlimited

Heap Size : unlimited unlimited

File Size : unlimited unlimited

CPU Time : unlimited unlimited

Process id: 8063

**

** Running with the following parameters
**

**

DEFSFILE ./dirdef/oltp.def

USERID ggs_admin@oltp, PASSWORD *********

TABLE SRC.CHECK_PAYMENTS;

Retrieving definition for SRC.CHECK_PAYMENTS

Chapter 7

[147]

TABLE SRC.CHECK_PAYMENTS_STATUS;

Retrieving definition for SRC.CHECK_PAYMENTS_STATUS

TABLE SRC.CREDITCARD_ACCOUNTS;

Retrieving definition for SRC.CREDITCARD_ACCOUNTS

TABLE SRC.CREDITCARD_PAYMENTS;

Retrieving definition for SRC.CREDITCARD_PAYMENTS

Definitions generated for 4 tables in ./dirdef/oltp.def

•	 As this example shows the DEFGEN parameter file creation on the source
system, ftp (in ASCII mode) dirdef/oltp.def file to the same location on the
target system

•	 On the target system, configure the Replicat process to reference the dirprm/
defoltp.prm file by including the SOURCEDEFS parameter specification as
shown in the following example:
GGSCI (dbserver2) 1> EDIT PARAMS ROLAP01

REPLICAT ROLAP01

SOURCEDEFS ./dirdef/oltp.def

SETENV (ORACLE_SID=OLAP)

USERID ggs_admin, PASSWORD ggs_admin

DISCARDFILE ./dirrpt/rolap01.dsc, PURGE

MAP SRC.CHECK_PAYMENTS, TARGET TGT.CHECK_PAYMENTS_DIM;
MAP SRC.CHECK_PAYMENTS_STATUS, TARGET TGT.CHECK_PAYMENTS_STATUS_
DIM;
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS_FACT;

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT;

The example also includes MAP statements. You will need to add the source tables to
your Extract and Data Pump parameter files to enable replication.

Even though the table structures may be identical, a source-definitions
file is required when the semantics of a source Oracle database are
configured as bytes and the target semantics are configured as characters.
Although it's possible to manually add new schema tables to the data
definitions file, it is not advisable as an error could potentially corrupt
the existing system generated configuration.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Advanced Configuration

[148]

Data selection and filtering
In addition to column mapping, GoldenGate offers two data filtering options:

•	 Complex
•	 Non-complex

Non-complex filtering is achieved through the WHERE clause in a TABLE (Extract) or
MAP (Replicat) statement, while complex data evaluations use the FILTER clause.
FILTER can select rows and columns for a given operation, whereas WHERE just
selects rows. FILTER can also use GoldenGate built-in functions.

The Extract and Replicat parameter files can be modified without stopping the
process. However, care should be taken to avoid syntax errors causing the process
to abend. Remember that once saved, the new configuration in the parameter file is
adopted immediately by the running process.

The WHERE clause
Configuring a WHERE clause is much like the WHERE clause in an SQL statement. In
this case we add it at the end of the TABLE or MAP statement. The following example
will filter out from the source trail, those records that have an amount greater than
1000 in the CREDITCARD_PAYMENTS table:

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT, &
WHERE (AMOUNT > 1000);

An extension to the above example would be the use of GoldenGate's built-in
conditional tests. These are @PRESENT, @ABSENT, and @NULL, and are the only
GoldenGate functions compatible with the WHERE clause.

The @PRESENT and @ABSENT functions test for the existence of columns in a data
record. The @NULL function tests for nulls in data only. When used in conjunction
with <> (not equals) the test is not null.

All GoldenGate functions are expressed with the "@" prefix in
parameter files.

The following example mapping succeeds if the AMOUNT column exists in the source
data record as long as it is not null:

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT, &
WHERE (AMOUNT = @PRESENT AND AMOUNT <> @NULL);

Chapter 7

[149]

Adding the @PRESENT function to the WHERE clause causes the record not to be
discarded when AMOUNT is absent.

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT, &
WHERE (AMOUNT = @PRESENT AND AMOUNT > 1000);

Arithmetic operators and floating-point datatypes are NOT
supported by the WHERE clause.

The FILTER clause
Having the ability to evaluate row data and column names for a given DML
operation; UPDATE, INSERT and DELETE, the FILTER clause is a very powerful feature.
To use the example from the previous section, adding the following FILTER clause
will allow UPDATE or DELETE operations only on the CREDITCARD_PAYMENTS target
table. It will also filter on records having AMOUNT greater than 1000.

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT, &
FILTER (ON UPDATE, ON DELETE, AMOUNT > 1000);

You may prefer to set the filter at the source, selecting only "updates and deletes" for
replication. The IGNORE keyword provides the inverse to ON.

TABLE SRC.CREDITCARD_PAYMENTS, FILTER (ON UPDATE, ON DELETE, AMOUNT >
1000);

Equally, the use of GoldenGate's global parameters; IGNOREUPDATES, IGNOREINSERTS
and IGNOREDELETES can be used before a list of TABLE or MAP statements to filter out
respective DML records. GETUPDATES, GETINSERTS and GETDELETES are the default,
they have to be explicitly declared in the Extract or Replicat's parameter file to reset
the previous configuration.

FILTER can use GoldenGate functions to provide complex data comparison and
evaluation. The following example demonstrates the @STRFIND function that
provides string comparison within the row data, selecting only records from the
CREDITCARD_PAYMENTS table having "JOHN" in the NAME column.

TABLE SRC.CREDITCARD_PAYMENTS, FILTER (@STRFIND(NAME, "JOHN")>0);

We can also perform calculations for FILTER to evaluate using the @COMPUTE
function. The following example selects data records from the CREDITCARD_ACCOUNT
table having a remaining credit balance of over 10,000:

TABLE SRC.CREDITCARD_ACCOUNTS, FILTER (@COMPUTE(CREDIT_LIMIT-CREDIT_
BALANCE) > 10000);

Advanced Configuration

[150]

It is also possible to filter data on a range of values, such as date or number. In
addition, GoldenGate provides a @RANGE function that can implicitly divide data for
parallel replication, maintaining data integrity. This is similar in concept to Oracle's
Hash algorithm for table partitioning.

The following example shows the use of FILTER with the @RANGE function to "split"
the source data for the BLOB_RECORDS table across three Replicats, based on the
Primary Key:

Replicat 1

MAP SRC.BLOB_RECORDS, TARGET TGT.BLOB_RECORDS, FILTER (@RANGE (1, 3,
ID));

Replicat 2

MAP SRC.BLOB_RECORDS, TARGET TGT.BLOB_RECORDS, FILTER (@RANGE (2, 3,
ID));

Replicat 3

MAP SRC.BLOB_RECORDS, TARGET TGT.BLOB_RECORDS, FILTER (@RANGE (3, 3,
ID));

When multiple filters are specified per TABLE or MAP statement, each one is executed
in turn until one fails. The failure of any filter results in a failure for all filters.

Loop detection
There are times when you need to detect and prevent data replication loops
occurring in your GoldenGate environment. We are going to look at the specific
configurations that prevent, and those that allow replicated data to be re-extracted
and propagated to a given target database.

Active-active
When configuring bi-directional data replication, known as active-active, you must
prevent data looping. Data looping can occur when a transaction is replicated on the
target database only to be extracted and propagated back to the source database. The
source database's replicat process applies the data and the loop continues endlessly.

GoldenGate includes parameters to tell the local Extract process to
ignore transactions created by the local Replicat process. These being the
IGNOREREPLICATES, GETREPLICATES, IGNOREAPPLOPS, and GETAPPLOPS parameters.

Chapter 7

[151]

To configure the Extract process to ignore Replicat operations but include application
data in the trail file, set IGNOREREPLICATES and GETAPPLOPS together in the Extract
parameter file as follows. For Oracle databases this is the default.

EXTRACT EOLTP01
SETENV (ORACLE_SID=OLTP)
USERID ggs_admin, PASSWORD ggs_admin
EXTTRAIL ./dirdat/sa
GETAPPLOPS
IGNOREREPLICATES
TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD Password1
TABLE SRC.CHECK_PAYMENTS;
TABLE SRC.CHECK_PAYMENTS_STATUS;
TABLE SRC.CREDITCARD_ACCOUNTS;
TABLE SRC.CREDITCARD_PAYMENTS;

Cascade
When configuring a GoldenGate cascade topology, it may be appropriate to replicate
the data from Replicat operations. For example, at an intermediate site where you
want the Extract process to capture all the operation data and pass it on to the next
system in the architecture.

In this case, configure the Extract process to include Replicat operations by
specifying GETREPLICATES and GETAPPLOPS in the Extract parameter file.

GETAPPLOPS must be configured to capture sequences that are replicated by Replicat.
A Replicat issues sequence updates in an autonomous transaction, so the sequence
update appears as if it is an application operation. GETAPPLOPS is the default.

Data transformation
Now that we understand data mapping, we can perform data transformation in
our GoldenGate configuration. Using the built-in string manipulation and number
conversion functions, with the COLMAP option, it is possible to achieve the most
common data transformations: truncation, concatenation, substitution, conversion,
and case changes. Note that the target column is always on the left in the COLMAP
statement.

Data transformation does come at a price though—performance. When conducting
complex or numerous simple transformations with high data volume and
throughput, latency will prevail. It may not be as significant a bottleneck as a serial
process, but the CPU consumption on the target system will increase.

Advanced Configuration

[152]

Truncation and extraction
Starting with truncation, Oracle performs implicit data type conversion between a
source and target column. However, should the target column scale be smaller than
its source, the data is truncated on the right.

GoldenGate offers the @SUBEXT function for string truncation and character extraction.
Although the function will extract any characters from a string based on begin and end
character positions, it lends itself to truncating the string to a certain length, as shown
in the following example. Here we are splitting the 12 digit telephone number from the
source table into AREA_CODE and PHONE_NO fields on the target:

MAP SRC. CREDITCARD_ACCOUNTS, TARGET TGT. CREDITCARD_ACCOUNTS, &COLMAP
(USEDEFAULTS, &
AREA_CODE = @STREXT(PHONE_NUMBER,1,5), &
PHONE_NO = @STREXT(PHONE_NUMBER,6,11));

Concatenation
The @STRCAT function provides string concatenation by joining two or more separate
strings together. In the following example, we concatenate the FIRST_NAME and
SURNAME fields from the source table into the NAME field on the target table:

MAP SRC. CREDITCARD_ACCOUNTS, TARGET TGT. CREDITCARD_ACCOUNTS, &
COLMAP (USEDEFAULTS, &
NAME = @STRCAT(FIRST_NAME," ",SURNAME));

Substitution
The @STRSUB function provides string substitution, allowing a pattern of characters
to be replaced with a new string. The following example converts the TITLE field
from the source table into an abbreviated form on the target:

MAP SRC. CREDITCARD_ACCOUNTS, TARGET TGT. CREDITCARD_ACCOUNTS, &
COLMAP (USEDEFAULTS, &
TITLE = @STRSUB(TITLE, "DOCTOR","DR","MISTER","MR"));

Case changing
Although you could use the @STRSUB function to perform case change
transformations, the preferred method is to use the @STRUP function. The following
example illustrates the function's simplicity:

Chapter 7

[153]

MAP SRC. CREDITCARD_ACCOUNTS, TARGET TGT. CREDITCARD_ACCOUNTS, &
COLMAP (USEDEFAULTS, &
TITLE = @STRUP(TITLE));

Numeric conversions
In addition to string manipulation, GoldenGate supports numeric conversions
through two functions.

The @NUMSTR function converts a string to a number for arithmetic calculations.
Similarly the @STRNUM converts a number to a string, but with the additional option of
padding characters. The following example will convert the CREDIT_BALANCE value
from the source table to a string, padded with zeros to a maximum of five characters:

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS, &
COLMAP (USEDEFAULTS, &
CREDIT_BALANCE = @STRNUM(CREDIT_BALANCE,RIGHTZERO, 5));

It is also possible to convert a binary string of 8 or less bytes to a number using the @
NUMBIN function.

Date conversions
Valid numeric strings can be converted into a number of different formats,
compatible with SQL. The default date format for GoldenGate is 'YYYY-MM-DD
HH:MI:SS', this being generated by the @DATENOW function.

To perform a conversion on a numeric string, use the @DATE function, choosing the
relevant format options, which are similar to SQL. The following example converts
the DATE_KEY column numeric values on the source to a date on the target:

MAP SRC. CREDITCARD_ACCOUNTS, TARGET TGT. CREDITCARD_ACCOUNTS, &
COLMAP (USEDEFAULTS, &
CREATED_AT = @DATE ("YYYY-MM-DD:HH:MI:SS", "YYYYMMDDHHMISS", DATE_KEY)
&);

The @DATENOW function can be used to populate a MODIFIED_AT column on the
target table.

MAP SRC. CREDITCARD_ACCOUNTS, TARGET TGT. CREDITCARD_ACCOUNTS, &
COLMAP (USEDEFAULTS, &
MODIFIED_AT = @DATENOW);

Advanced Configuration

[154]

DDL support
GoldenGate allows DDL replication for Oracle databases, which is important when
structural changes are made to your source tables. You would not want your Replicat
process to abend because it can no longer insert a record into the respective target
table. Before we can perform DDL replication, two setup scripts must be run in turn,
as SYSDBA on the source database to install the necessary software components;
setup.sql and then ddl_setup.sql both of which can be found in the GoldenGate
Home directory.

GoldenGate will replicate the majority of ALTER TABLE commands including
TRUNCATE. Commands that operate at database level, such as ALTER DATABASE and
ALTER SYSTEM are not supported.

The following table lists all supported DDL commands at object level:

Operation Object type
CREATE TABLE (includes AS SELECT)
ALTER INDEX
DROP TRIGGER
RENAME SEQUENCE
COMMENT ON TABLE MATERIALIZED VIEW
COMMENT ON COLUMN VIEW

FUNCTION
PACKAGE
PROCEDURE
SYNONYM

Permission Object type
GRANT TABLE
REVOKE SEQUENCE

MATERIALIZED VIEW

DDL replication must be explicitly defined for the Extract process in its parameter file.
By default, DDL replication is disabled for Extract and enabled for Replicat processes.

The following examples show the configuration options for the DDL parameter. Here
all DDL will be replicated for non-system schemas in the source database, except the
HR schema.

DDL INCLUDE ALL, EXCLUDE OBJNAME "hr.*"

Chapter 7

[155]

To enable DDL replication for the SRC schema:

DDL INCLUDE MAPPED "SRC.*"

It is also possible to filter on operation and object type. Let's exclude ALTER
operations:

DDL INCLUDE MAPPED "SRC.*", EXCLUDE OPTYPE ALTER

Or maybe exclude index creation on the target:

DDL INCLUDE MAPPED "SRC.*", EXCLUDE OPTYPE INDEX

Another related parameter in an Extract or Replicat parameter file is DDLOPTIONS.
Should you decide to replicate DDL operations, you can fine tune the delivery by
adding additional options. The following example for the Extract process enables
DDL replication for Replicat operations only:

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

The SQLEXEC parameter
Another powerful feature of GoldenGate is the SQLEXEC parameter. We will discuss
when and how to use it as a standalone statement, or in a TABLE or MAP statement
to fulfill your data transformation requirements. SQLEXEC is valid for Extract and
Replicat processes.

Data lookups
On the target database, the SQLEXEC parameter in a MAP statement allows external
calls to be made through an SQL interface that support s the execution of native SQL
and PL/SQL stored procedures. This option is typically invoked to perform database
lookups to obtain data required to resolve a mapping and can only be executed by
the GoldenGate (GGS_ADMIN) database user.

Executing stored procedures
The following example maps data from the CREDITCARD_ACCOUNT table to NEW_
ACCOUNT table. The Extract process executes the LOOKUP_ACCOUNT stored procedure
prior to executing the column map. This stored procedure has two parameters: an
IN and an OUT. The IN parameter accepts an Account Code and is named CODE_
IN_PARAM. The value returned by the stored procedure's OUT parameter is obtained
by the @GETVAL function and used in the COLMAP statement to populate the NEW_
ACCOUNT_NAME field.

Advanced Configuration

[156]

The SPNAME Replicat parameter specifies the name of the PL/SQL stored procedure,
while PARAMS specifies its parameters.

MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.NEW_ACCOUNT, &
SQLEXEC (SPNAME LOOKUP_ACCOUNT, &
PARAMS (CODE_IN_PARAM = ACCOUNT_CODE)), &
COLMAP (USEDEFAULTS, &
NEW_ACCOUNT_ID = ACCOUNT_ID, &
NEW_ACCOUNT_NAME = @GETVAL(LOOKUP_ACCOUNT.CODE_OUT_PARAM));

To pass values from a stored procedure or query as input to a FILTER or COLMAP
clause, we must specify the stored procedure name followed by the OUT
parameter name.

Executing SQL
It is also possible to perform the same "lookup" operation using SQL. The following
example illustrates this using the same logic and parameter names:

MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.NEW_ACCOUNT, &
SQLEXEC (ID LOOKUP_ACCOUNT, &
QUERY "SELECT ACCOUNT_NAME FROM ACCOUNT WHERE ACCOUNT_CODE = ,:CODE_
IN_PARAM", &
PARAMS (CODE_IN_PARAM = ACCOUNT_CODE)), &
COLMAP (NEW_ACCOUNT_ID = ACCOUNT_ID, &
NEW_ACCOUNT_NAME = @GETVAL (LOOKUP_ACCOUNT.CODE_OUT_PARAM));

:CODE_IN_PARAM becomes a bind variable as the input to the SQL query that drives
the lookup based on Account Code, while the CODE_OUT_PARAM remains as the OUT
parameter that populates the NEW_ACCOUNT_NAME field.

Since we have referenced the LOOKUP_ACCOUNT procedure in both examples, here is
the source code:

CREATE OR REPLACE PROCEDURE LOOKUP_ACCOUNT
 (CODE_IN_PARAM IN VARCHAR2, CODE_OUT_PARAM OUT VARCHAR2)
BEGIN
 SELECT ACCOUNT_NAME
 INTO CODE_OUT_PARAM
 FROM ACCOUNT
 WHERE ACCOUNT_CODE = CODE_IN_PARAM;
END;

Chapter 7

[157]

Executing DML
Rather than having GoldenGate apply the data changes to the target database, it is
possible to have SQLEXEC do this via INSERT, UPDATE, or DELETE commands. Using
SQLEXEC in standalone mode to execute DML against the target database necessitates
the DBOP keyword in the configuration to commit the changes, else the transaction
will rollback.

The following example calls the AUDIT_TXN procedure that inserts a record into an
audit table, keeping a history of GoldenGate transactions. On successful execution,
the DBOP keyword ensures the transaction is committed to the target database.

SQLEXEC (SPNAME audit_txn, &
PARAMS (hostname = @GETENV ("GGENVIRONMENT","HOSTNAME"), &
@GETENV("GGENVIRONMENT","OSUSERNAME"), &
@GETENV ("GGHEADER", "OPTYPE"), &
@GETENV("GGHEADER","COMMITTIMESTAMP"), &
@GETENV ("GGHEADER", "TABLENAME"), &
ALLPARAMS REQUIRED, ERROR REPORT, DBOP)

Note the use of the ALLPARAMS and REQUIRED keywords that
enforce that all parameters must be present or else the procedure
call will fail. Also, ERROR REPORT ensures all execution errors are
reported by GoldenGate to the process' discard file.

Let's take a closer look at error handling within an SQLEXEC procedure call.

Handling errors
When using SQLEXEC, database errors must be handled, otherwise GoldenGate will
abend the process regardless of the severity. Fortunately, this is made easy via the
ERROR option of the SQLEXEC parameter. For calls to stored procedures, the error
handling logic must be included in the procedure's PL/SQL EXCEPTION block to only
raise those errors that you want GoldenGate to handle.

The following options will help you decide what GoldenGate will do when a
database error is raised:

•	 IGNORE

	° GoldenGate does not handle any errors returned by the query or
stored procedure. This is the default.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Advanced Configuration

[158]

•	 REPORT

	° All errors returned by the query or stored procedure are reported to
the discard file. GoldenGate continues processing after reporting the
error.

•	 RAISE

	° Handles errors set by a REPERROR parameter specified in the process'
parameter file. However, GoldenGate continues processing other
stored procedures or queries.

•	 FINAL

	° Acts in the same manner as RAISE except that the error is processed
immediately.

•	 FATAL

	° GoldenGate abends the process immediately.

It is recommended to record the error to assist with troubleshooting. This is achieved
through the REPORT, RAISE and FINAL options. That said, should a process abend,
GoldenGate will always write the error to the process' report file.

Scheduling jobs
SQL and stored procedures can be executed from GoldenGate as one-off statements,
or scheduled to run periodically. Although you would probably leave any job
scheduling to the DBMS_SCHEDULER package in the Oracle 11g database, the following
examples show; a one-off SQL execution, a procedure call scheduled to run daily,
and another to run every 30 seconds from within the GoldenGate environment.

SQLEXEC "select sysdate from dual"

SQLEXEC "call etl_proc ()" EVERY 1 DAYS

SQLEXEC "call check_exceptions_table ()" EVERY 30 SECONDS

Note that SQLEXEC is a parameter and not a command. SQLEXEC
and its associated expressions must exist in a parameter file and
cannot be called directly from the GGSCI command prompt.
Also, SQL statements are expressed in double quotes with no
terminating semi-colon and are executed in the order they appear
after the DBLOGIN specification.

Chapter 7

[159]

Using and defining macros
As in many programmable software products, defining a macro allows for
automation of repetitive tasks. This can be very useful when configuring a
GoldenGate process. For example, trapping an exception for each MAP statement
in a Replicat parameter file is both necessary and repetitive. However, defining
the macro at the start of the parameter file allows the code to be called by an alias
multiple times in the configuration.

The following example code block defines the #exception_handler() macro in a
Replicat parameter file. All macros have a hash '#' character prefix in their name.

-- This starts the macro
MACRO #exception_handler
BEGIN
, TARGET ggs_admin.exceptions
, COLMAP (rep_name = "ROLAP01"
, table_name = @GETENV ("GGHEADER", "TABLENAME")
, errno = @GETENV ("LASTERR", "DBERRNUM")
, dberrmsg = @GETENV ("LASTERR", "DBERRMSG")
, optype = @GETENV ("LASTERR", "OPTYPE")
, errtype = @GETENV ("LASTERR", "ERRTYPE")
, logrba = @GETENV ("GGHEADER", "LOGRBA")
, logposition = @GETENV ("GGHEADER", "LOGPOSITION")
, committimestamp = @GETENV ("GGHEADER", "COMMITTIMESTAMP"))
, INSERTALLRECORDS
, EXCEPTIONSONLY ;
END;
-- This ends the macro

It populates a target table named EXCEPTIONS with all the necessary information it
derives from the GoldeGate environment via the @GETENV function. The macro can
then be called in each MAP statement as follows:

MAP SRC.CHECK_PAYMENTS, TARGET TGT.CHECK_PAYMENTS_DIM, REPERROR
(-1403, EXCEPTION);
MAP SRC.CHECK_PAYMENTS #exception_handler()
MAP SRC.CHECK_PAYMENTS_STATUS, TARGET TGT.CHECK_PAYMENTS_STATUS_DIM,
REPERROR (-1403, EXCEPTION);
MAP SRC.CHECK_PAYMENTS_STATUS #exception_handler()
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS_FACT,
REPERROR (-1403, EXCEPTION);
MAP SRC.CREDITCARD_ACCOUNTS #exception_handler()
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT,
REPERROR (-1403, EXCEPTION);
MAP SRC.CREDITCARD_PAYMENTS #exception_handler()

We will discuss exception handling in greater detail in Chapter 10, Troubleshooting
GoldenGate.

Advanced Configuration

[160]

It is also possible to invoke other macros from within a macro, pass external
parameters, and create macro libraries for all Manager, Extract, or Replicat parameter
files to reference. Expanding on the previous example, the following Replicat
parameter file references a macro library named excep_handler.mac stored in the
dirprm sub-directory under the GoldenGate Home. The #exceptions_handler()
macro can then be called multiple times without its definition existing in the same
parameter file. Furthermore, it's now shared code within the GoldenGate environment.

INCLUDE ./dirprm/excep_handler.mac
REPLICAT ROLAP01
SOURCEDEFS ./dirdef/oltp.def
SETENV (ORACLE_SID=OLAP)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/rolap01.dsc, PURGE
REPERROR (DEFAULT, EXCEPTION)
MAP SRC.CHECK_PAYMENTS, TARGET TGT.CHECK_PAYMENTS_DIM, REPERROR
(-1403, EXCEPTION);
MAP SRC.CHECK_PAYMENTS #exception_handler()
..

User tokens
User tokens are GoldenGate environment variables that are captured and stored in
the trail record for replication. They can be accessed via the @GETENV function which
we have already touched upon the @GETENV function in the previous section, Using
and Defining macros. You can use token data in column maps, stored procedures
called by SQLEXEC, and of course macros.

A vast array of user tokens exists, too many to list in this book. You can use the
TOKENS option of the Extract TABLE parameter to define a user token and associate it
with GoldenGate environment data. For example:

TABLE SRC.CREDITCARD_ACCOUNTS, &
TOKENS (TKN_OSUSER = @GETENV("GGENVIRONMENT","OSUSERNAME"), &
TKN_DBNAME = @GETENV ("DBENVIRONMENT","DBNAME"), &
TKN_HOSTNAME = @GETENV ("GGENVIRONMENT","HOSTNAME"), &
TKN_COMMITTIME = @GETENV("GGHEADER","COMMITTIMESTAMP") &
TKN_BEFOREAFTERIND = &
@GETENV(("GGHEADER","BEFOREAFTERINDICATOR"));

The defined user tokens can then be called within a MAP statement using the @
TOKEN function. User tokens are particularly useful for auditing data and trapping
exceptions. The following example populates a record in the target database TGT.
CREDITCARD_ACCOUNTS_FACT table having the four additional columns defined:
OSUSER, DBNAME, HOSTNAME, and TIMESTAMP.

Chapter 7

[161]

MAP SRC.CREDITCARD_ACCOUNTS, TARGET&&
TGT.CREDITCARD_ACCOUNTS_FACT &
COLMAP (USEDEFAULTS, &
OSUSER = @TOKEN ("TKN_OSUSER"), &
DBNAME = @TOKEN ("TKN_DBNAME"), &
HOSTNAME = @TOKEN ("TKN_HOSTNAME"), &
TIMESTAMP = @TOKEN ("TKN_COMMITTIME"), &
BEFOREAFTERIND = @TOKEN("TKN_BEFOREAFTERIND");

The BEFOREAFTERINDICATOR environment variable is particularly useful for
providing a status flag showing whether the data was from a before or after image
of an UPDATE or DELETE operation. By default, GoldenGate provides after images. To
enable before image extraction, the GETUPDATEBEFORES Extract parameter must be
used on the source database.

User Exits
If you find that your application requires arithmetic calculation or data
transformation beyond that provided by GoldenGate functions and SQLEXEC, it
is possible to invoke User Exits. These are user defined C or C++ function calls,
extending the capabilities of GoldenGate. Typical applications for user exits are
housekeeping tasks, data normalization, and conflict detection and handling.

Calling C routines
The user-defined functions may be called from either an Extract or Replicat process
via the CUSEREXIT parameter.

To use user exits, create a shared object in C and create a routine to be called from
Extract or Replicat.

The routine must accept the following parameters that provide the communication
between GoldenGate and your C program:

EXIT_CALL_TYPE

EXIT_CALL_RESULT

EXIT_PARAMS

Advanced Configuration

[162]

The following is an example C function header for cleanup_task, defining the
required parameters:

void cleanup_task (exit_call_type_def exit_call_type,
 exit_result_def *exit_call_result,
 exit_params_def *exit_params)

And here is an example call to the cleanuptask C library routine specified in the
Extract parameter file:

CUSEREXIT cleanup.so cleanup_task

In your C routine be sure to include the usrdecs.h library file that is located in the
GoldenGate install directory. Call the ERCALLBACK function from your C routine to
retrieve record and application context information.

Sample User Exits
GoldenGate provides a subdirectory named UserExitExamples beneath the
installation directory (GoldenGate Home) that contains a number of examples. The
source code and make files exist in the following subdirectories:

ls -l /home/oracle/ggs/UserExitExamples

drwxr-xr-x 2 oracle oinstall 4096 Sep 18 2009 ExitDemo

drwxr-xr-x 2 oracle oinstall 4096 Sep 18 2009 ExitDemo_lobs

drwxr-xr-x 2 oracle oinstall 4096 Sep 18 2009 ExitDemo_more_recs

drwxr-xr-x 2 oracle oinstall 4096 Sep 18 2009 ExitDemo_passthru

drwxr-xr-x 2 oracle oinstall 4096 Sep 18 2009 ExitDemo_pk_befores

Source files explained
The following table lists and describes the sample User Exit C programs that ship
with Oracle GoldenGate 10.4:

C Program Name Description
exitdemo.c Shows how to initialize the user exit, issue callbacks at

given exit points, and modify data.
exitdemo_passthru.c Shows how the PASSTHRU option of the CUSEREXIT

parameter can be used in an Extract Data Pump.
exitdemo_more_recs.c Shows an example of how to use the same input record

multiple times to generate several target records.
exitdemo_lob.c Shows an example of how to get read access to LOB data.

Chapter 7

[163]

C Program Name Description
exitdemo_pk_
befores.c

Shows how to access the before and after image portions of
a primary key update record, as well as the before images
of non primary key updates. Another method shows how
to get target row values with SQLEXEC in the Replicat
parameter file to provide the before image for conflict
detection.

All the User Exit examples are based on the GoldenGate demo tables that must be
created first by executing the following SQL scripts found in the GoldenGate
Home directory:

ls -1 /home/oracle/ggs/demo*create*sql

demo_more_ora_create.sql

demo_ora_create.sql

demo_ora_lob_create.sql

demo_ora_pk_befores_create.sql

Using logic in data replication
GoldenGate has a number of functions that enable the administrator to program
logic into the Extract and Replicat process configuration. These provide generic
functions found in all programming languages, such as; IF and CASE. In addition,
the @COLTEST function enables conditional calculations by testing for one or more
column conditions. This is typically used with the @IF function as shown in the
following example. Here the @COLTEST function tests the AMOUNT column in the
source data to see if it is "MISSING" or "INVALID". The @IF function returns a 0 if @
COLTEST returns TRUE and the value of AMOUNT if FALSE.

MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS_FACT, &
COLMAP (USEDEFAULTS, &
AMOUNT = @IF(@COLTEST(AMOUNT, MISSING, INVALID), 0, AMOUNT));

The target AMOUNT column is therefore set to 0 when the equivalent source is found to
be missing or invalid, or else a direct mapping occurs.

Advanced Configuration

[164]

The @CASE function tests a list of values for a match, and then returns a specified
value. If no match is found, @CASE can return a default value. There is no limit to
the number of cases to test, although if the list is very large a database lookup may
be more appropriate. The following example shows the simplicity of the @CASE
statement. Here the country name is returned from the country code.

MAP SRC.CREDITCARD_STATEMENT, TARGET TGT.CREDITCARD_STATEMENT_DIM, &
COLMAP (USEDEFAULTS, &
COUNTRY = @CASE(COUNTRY_CODE, "UK", "United Kingdom", "USA", "United
States of America"));

Other GoldenGate functions exist that perform tests: @EVAL and @VALONEOF.
Similar to @CASE, @VALONEOF compares a column or string to a list of values. The
difference being it evaluates more than one value against a single column or string.
In the following example, when used with @IF it returns "EUROPE" when TRUE and
"UNKNOWN" when FALSE:

MAP SRC.CREDITCARD_STATEMENT, TARGET TGT.CREDITCARD_STATEMENT_DIM, &
COLMAP (USEDEFAULTS, &
REGION = @IF(@VALONEOF(COUNTRY_CODE, "UK","E", "D"),"EUROPE",
"UNKNOWN"));

The @EVAL function evaluates a list of conditions and returns a specified value.
Optionally, if none are satisfied it returns a default value. There is no limit to the
number of evaluations you can list. However, it is best to list the most common at the
beginning to enhance performance.

The following example includes the BEFORE option that compares the before value
of the replicated source column to the current value of the target column. @EVAL will
return "PAID MORE", "PAID LESS", or "PAID SAME" depending on the evaluation.

MAP SRC. CREDITCARD_ PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS, &
COLMAP (USEDEFAULTS, &
STATUS = @EVAL(AMOUNT < BEFORE.AMOUNT, "PAID LESS", AMOUNT > BEFORE.
AMOUNT, "PAID MORE", AMOUNT = BEFORE.AMOUNT, "PAID SAME"));

The BEFORE option can be used with other GoldenGate functions including the WHERE
and FILTER clauses. However, in order for the before image to be written to the
trail and to be available, the GETUPDATEBEFORES parameter must be enabled in the
source database's Extract parameter file, or the target database's Replicat parameter
file, but not both. The GETUPDATEBEFORES parameter can be set globally for all
tables defined in the Extract or individually per table using GETUPDATEBEFORES and
IGNOREUPDATEBEFORES as seen in the following example:

EXTRACT EOLTP01
SETENV (ORACLE_SID=OLTP)

Chapter 7

[165]

USERID ggs_admin, PASSWORD ggs_admin
EXTTRAIL ./dirdat/sa
GETAPPLOPS
IGNOREREPLICATES
TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD Password1
GETUPDATEBEFORES
TABLE SRC.CHECK_PAYMENTS;
IGNOREUPDATEBEFORES
TABLE SRC.CHECK_PAYMENTS_STATUS;
TABLE SRC.CREDITCARD_ACCOUNTS;
TABLE SRC.CREDITCARD_PAYMENTS;

In the code examples given in this section, the parameter specification is
sometimes seen to wrap over multiple lines because of the width of the
page. In an actual parameter file, a multi-line parameter specifications
must contain an ampersand (&) character at the end of each line.
Parameter specifications are terminated with a semi-colon (;) character
and do not require an additional ampersand.

Licensing
At the time of writing this book, Oracle bundled their Active Data Guard DR
solution within the GoldenGate license, clearly expressing the close functionality
of both products. As a Disaster Recovery solution, a Physical Standby database
provides an exact copy of its Primary database, which is superlative. GoldenGate
however, can easily replace a Logical Standby solution, offering more than just
schema replication.

The Physical Standby element of Data Guard is quite different to GoldenGate's
Changed Data Capture and Delivery. Although both solutions have a target database
that is OPEN, the Standby database is READ ONLY and in "managed recovery mode".
This means that data changes are applied at block level via Oracle's Database
Recovery mechanism and not via SQL. The Primary and Physical Standby databases
can also be automatically switched or failed over as both databases are mirrored
copies sharing the same database name.

Advanced Configuration

[166]

Summary
This chapter has provided an overview of the advanced configuration options
that GoldenGate has to offer. We started with data selection using the WHERE and
FILTER clauses before moving onto data mapping, exploring the COLMAP option and
the DEFGEN utility. Finally, we discussed data transformation and the vast array of
functions and tools available.

We also discovered that should GoldenGate not provide a function or mapping
specific to our requirements, we can write our own in PL/SQL, C or C++. The
GoldenGate software provides the necessary call interface to stored procedures and
external routines.

In the next chapter, we learn how to measure and report on your GoldenGate
performance. Here, we will discover the on demand and automated procedures for
statistics gathering and process monitoring, enabling effective system management.

Managing Oracle GoldenGate
Managing a computer system can be a challenge, especially when there are multiple
sites and distributed databases. We need to keep a close eye on things, ensuring
that systems remain operational and efficient, checking that; the databases are open,
data replication is running with minimal lag, adequate space is available in both the
databases and file-systems, the list goes on.

Although Oracle offers a web-based product called Director, for managing and
configuring GoldenGate instances, this chapter focuses on the management features
already built in to the GoldenGate Command Interpreter (GGSCI). We will discuss and
implement a number of utilities, including tips and tricks that allow us to manage our
GoldenGate environment effectively at no extra cost. This includes the following:

•	 Command level security
•	 Trail File management
•	 Managing process startup
•	 Monitoring system health
•	 Managing TCP/IP errors
•	 Monitoring performance
•	 Gathering and reporting on statistics

Let's begin with Command level security.

Managing Oracle GoldenGate

[168]

Command level security
In the previous chapters, we discussed GoldenGate's Command Interpreter (GGSCI)
in detail, conveying many useful commands, some of which are information only
whilst others change or add to the configuration. This could be deemed as a security
risk, allowing users to misconfigure or even delete valid processes, potentially
breaking your GoldenGate environment.

To avoid this risk, GoldenGate has a security feature that protects your environment
at the command level. Here, users are restricted in the commands they can execute
from GGSCI.

The CMDSEC file
To enable Command Level Security, we must first create a CMDSEC file in the
GoldenGate home directory. This text file should be created by the user responsible
for the central administration of GoldenGate. It contains the security rules and
controls which users have access to certain GGSCI commands.

Open the file using a text editor and specify one rule per line in the following format:

<command name> <command object> <OS group> <OS user> <YES |NO>

The following shows an example CMDSEC file, allowing the ggs_user access to
STATUS and INFO commands on Extract and Replicat processes only, whilst the ggs_
admin user has full access to all commands for all objects. It is important to order
the configuration of entries from the most specific to the least specific (those with
wildcards), because rules are always processed from the top down.

-- Command Line Security File
INFO EXTRACT ggs_grp ggs_user YES
INFO REPLICAT ggs_grp ggs_user YES
STATUS EXTRACT ggs_grp ggs_user YES
STATUS REPLICAT ggs_grp ggs_user YES
* * ggs_grp ggs_user NO
* * ggs_grp ggs_admin YES

The administrator (Oracle) must grant read access to anyone allowed access to
GGSCI, but restrict write and purge access to everyone but the administrator. This is
achieved using the Linux command chmod. If no entry is made for a given user, that
user has full access to all GGSCI commands.

[oracle@dbserver1 ggs]$ chmod 644 CMDSEC

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[169]

Here we see the file permissions are read-write for the Oracle user, but read only for
groups and other users.

[oracle@dbserver1 ggs]$ ls -l CMDSEC

-rw-r--r-- 1 oracle oinstall 223 Nov 8 13:38 CMDSEC

When an attempt is made to execute a command that is not authorized, an
appropriate error is echoed to the screen. Note in the following example, that despite
the ggs_user user having been granted access to the INFO command, executing INFO
ALL is prohibited. This is because the grants to the INFO command are specified in
the CMDSEC file for Extract and Replicat only.

GGSCI (dbserver2) 1> info all

ERROR: Command not authorized for this user.

GGSCI (dbserver2) 2> info REPLICAT REPLCAT1

REPLICAT REPLCAT1 Last Started 2010-11-08 13:26 Status RUNNING

Checkpoint Lag 00:00:00 (updated 00:00:08 ago)

Log Read Checkpoint File ./dirdat/ta0000199

 2010-11-08 13:26:08.029660 RBA 580

GGSCI (dbserver2) 3> stop mgr

ERROR: Command not authorized for this user.

By now, you know how to secure your environment. Let's now look at how to
manage the daily volume of data being generated by GoldenGate Trail files.

Trail file management
In a busy database environment, redo data generation can increase significantly,
particularly with the required supplemental logging enabled on your source tables.
As we know, an Oracle database will "recycle" its redo logs in a round-robin fashion,
switching to the next log when full. GoldenGate scans the redo logs and writes its
own Trail files to the dirdat subdirectory. Although the Trail file data is typically a
quarter the size of its equivalent redo data, if left unmanaged, the volume of files in
dirdat can be significant. In the worst case, filling the filesystem to 100% utilized.
Obviously this is not ideal, so GoldenGate has provided an automated mechanism
for purging Trail files from this area.

Managing Oracle GoldenGate

[170]

This is achieved by configuring the PURGEOLDEXTRACTS parameter in the GoldenGate
Manager parameter file as follows:

-- GoldenGate Manager parameter file
PORT 7809
PURGEOLDEXTRACTS ./dirdat/sa*, USECHECKPOINTS, MINKEEPHOURS 1

The USECHECKPOINTS option preserves the Trail files in the dirdat subdirectory until
the last record in a file is check-pointed. This ensures that no files are deleted that are
still required for replication. Additionally, MINKEEPHOURS retains the check-pointed
Trail files for the specified number of hours.

Another option of the PURGEOLDEXTRACTS parameter is MINKEEPFILES that
allows GoldenGate to maintain a minimum number of Trail files over and above
the MINKEEPHOURS specified. This particular option is rarely used in production
environments. However, a warning is written to the GoldenGate error log as shown
in the following example:

2010-11-09 13:58:40 GGS WARNING 201 Oracle GoldenGate Manager
for Oracle, mgr.prm: PURGEOLDEXTRACTS ./dirdat/tb*, USECHECKPOINTS,
MINKEEPHOURS 1 (MINKEEPFILES option not used.).

It is important to configure Trail file management on both the source and the target
to ensure adequate free space is maintained in your local and remote file systems,
even at peak times.

The purging operation is written to the ggserr.log as an informational message, as
seen in the following example output:

2010-10-13 16:17:21 INFO OGG-00957 Oracle GoldenGate Manager for
Oracle, mgr.prm: Purged old extract file /u01/app/oracle/product/ggs/
dirdat/sa000020, applying UseCheckPoints purge rule: Oldest Chkpt Seqno
23 > 20.

Managing process startup
In a near real-time data replication environment, we don't want to incur high
latencies nor outages due to process failure. GoldenGate has a mechanism to
automatically restart Extract or Replicat processes should they fail. The AUTORESTART
parameter of the Manager process governs this and provides additional options on
retry attempts.

-- GoldenGate Manager parameter file
PORT 7809
AUTORESTART EXTRACT *, RETRIES 3, WAITMINUTES 1, RESETMINUTES 60

Chapter 8

[171]

In addition, the AUTOSTART parameter enables automatic start up of either the Extract
or Replicat processes when the Manager process starts. The following example
configuration is for the Extract processes:

AUTOSTART EXTRACT *

For Replicat processes:

AUTOSTART REPLICAT *

For both:

AUTOSTART ER *

Once manually stopped by executing the GGSCI STOP command, the Extract or
Replicat processes will not auto-start. This is important for planned
maintenance operations.

The Manager process report file MGR.rpt contains information regarding the
configuration and process startup and shutdown, including the TCP port number the
Server Collector process is using.

We have learnt the importance of configuring AUTORESTART to restart failed
processes following an error. Let's now take a closer look at the network layer and
understand how TCP/IP errors are handled by GoldenGate.

Managing TCP/IP errors
GoldenGate automatically handles TCP/IP network related errors. The actual
response, delay in responding and the maximum number or retries are configured in
a text parameter file named tcperrs. This file can be found in the GoldenGate home
directory.

Any errors occurring at the network layer are written to the GoldenGate log file
ggserr.log located in the GoldenGate Home directory. These errors are categorized
as WARNINGS.

The tcperrs file
The following is the default configuration held in the tcperrs file:

Error Response Delay (csecs) Max Retries

ECONNABORTED RETRY 1000 10
#ECONNREFUSED ABEND 0 0
ECONNREFUSED RETRY 1000 12

Managing Oracle GoldenGate

[172]

ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

In GoldenGate, the default response to errors is to abend the process suffering the
condition. This is not ideal for network errors, where a network glitch could stop a
process from running altogether. TCP/IP errors are handled separately, allowing
processes to retry a number of times before failing.

Reporting and statistics
An important part of any computer system is its ability to report and provide
statistics on the availability and performance. GoldenGate offers a number of options
to monitor status, latency, and throughput using its command line interface.

To monitor for errors and warnings, we must look beyond the GGSCI tool and into
the log files.

Monitoring errors
It is important to note that errors detected by GoldenGate are not automatically
alerted to Network Managers, SMS gateways, or Email servers. Therefore, the
GoldenGate administrator must proactively monitor the logs generated by
GoldenGate, the OS, and the Database. This includes the following file list (Linux):

•	 <GoldenGate_Home>/ggserr.log

	° Provides all GoldenGate INFO, WARNING, and ERROR messages

•	 /var/log/messages

	° Provides all Operating System INFO, WARNING, and ERROR
messages, including GoldenGate processes.

•	 $ORACLE_BASE/diag/rdbms/$ORACLE_SID/trace/alert_$ORACLE_SID.log

	° Provides all Oracle INFO, WARNING, and ORA- error messages
relating to the Oracle database instance.

Chapter 8

[173]

To access the system messages file /var/log/messages you must be
logged in as root, the Linux super user.

As a simple health check solution, run a tail against the ggserr.log to provide real-
time monitoring of system status. For example, the Linux command to achieve this is
as follows:

[oracle@dbserver2 ggs]$ tail -f ggserr.log | egrep 'WARNING|ERROR'

2010-10-29 17:12:38 ERROR OGG-00665 Oracle GoldenGate Delivery for
Oracle, replcat1.prm: OCI Error calling OCITransCommit (status = 3114-
ORA-03114: not connected to ORACLE), SQL<UPDATE "GGS_ADMIN"."GGSCHKPT"
SET last_update_ts = sysdate, seqno = :seqno, rba = :rba,
audit_ts = :audit_ts WHERE group_name = :group_name AND group_key
= :key>.

Simple Network Management Protocol (SNMP) Traps would need to
be developed and integrated with a Network Manager to enable automatic
GoldenGate error notification.

Monitoring latency
One of the key measurements in your GoldenGate environment is Lag. You will
want to know the time taken from a transaction being committed on the source
database to the time it is committed on the target. This gives an overall picture of
performance against each process.

Lag information can be measured automatically at intervals by adding the following
parameters to the Manager process parameter file:

LAGINFOMINUTES 0
LAGREPORTMINUTES 1

The Lag information is subsequently written to the GoldenGate error log every minute.
A value of zero for the LAGINFOMINUTES parameter forces an informational message to
be written to the log at the frequency specified by the LAGREPORTMINUTES parameter.

The following example shows the Lag and Checkpoint data for three
Replicat processes:

[oracle@dbserver2 ggs]$ tail -f ggserr.log

2010-11-09 13:50:01 GGS INFO 260 Oracle GoldenGate Manager for
Oracle, mgr.prm: Lag for REPLICAT REPLCAT1 is 00:00:00 (checkpoint
updated 00:00:23 ago).

Managing Oracle GoldenGate

[174]

2010-11-09 13:50:01 GGS INFO 260 Oracle GoldenGate Manager for
Oracle, mgr.prm: Lag for REPLICAT REPLCAT2 is 00:00:00 (checkpoint
updated 00:00:05 ago).

2010-11-09 13:50:01 GGS INFO 260 Oracle GoldenGate Manager for
Oracle, mgr.prm: Lag for REPLICAT REPLCAT3 is 00:00:00 (checkpoint
updated 00:00:05 ago).

Another option is to use the following GGSCI commands:

GGSCI (dbserver2) 1> LAG REPLICAT *

Or

GGSCI (dbserver2) 2> SEND REPLICAT *, GETLAG

Or

GGSCI (dbserver2) 3> INFO ALL

Lag reported by the LAG or SEND commands is more accurate than that reported by
INFO ALL, as the statistic is taken from the last record that was check-pointed, not the
current record that is being processed. However, in reality the difference is minimal.

A bespoke solution to monitoring and reporting
The INFO ALL command provides a complete summary of process status, lag, and
checkpoint times. Furthermore, to collect this information every minute would be
useful not only for monitoring purposes, but also for reporting.

The following two example scripts provide the necessary solution:

•	 info_all.sh

	° A Shell script () that, when scheduled via a crontab job, captures the
output of the GGSCI INFO ALL command periodically including a
timestamp of each execution.

•	 format_info.pl

	° A Perl script that formats the data from the Shell script into a pipe (|)
delimited text file.

Chapter 8

[175]

The code for the info_all.sh script is shown next:

#!/bin/sh

info_all.sh

export ORACLE_SID=OLAP

export ORACLE_BASE=/u01/app/oracle

export ORACLE_HOME=/u01/app/oracle/product/11.1.0/db_1

export GGS_HOME=/u01/app/oracle/product/ggs

export PATH=$PATH:$HOME/bin:$ORACLE_HOME/bin:/usr/local/bin:/bin

export LD_LIBRARY_PATH=$ORACLE_HOME/lib

echo

echo "##"

echo `date +%d/%m/%Y\ %k:%M:%S`

$GGS_HOME/ggsci <<EOF

info all

exit

EOF

The info_all.sh script can have its output redirected to a text file and scheduled to
execute every minute, as specified in the following crontab example entry:

* * * * * /home/oracle/ggs/ggs_scripts/info_all.sh >> /home/oracle/ggs/
output/info_all.txt 2>&1

An example of the output data is shown next:

###

12/10/2010 10:09:01

Oracle GoldenGate Command Interpreter for Oracle

Version 11.1.1.0.0 Build 078

Linux, x64, 64bit (optimized), Oracle 11 on Jul 28 2010 13:13:42

Copyright (C) 1995, 2010, Oracle and/or its affiliates. All rights
reserved.

GGSCI (dbserver2) 1>

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

Managing Oracle GoldenGate

[176]

REPLICAT RUNNING RTGTMSG1 00:00:07 00:00:01

REPLICAT RUNNING RTGTMSG2 00:00:07 00:00:00

REPLICAT RUNNING RTGTRNG1 00:00:00 00:00:00

REPLICAT RUNNING RTGTRNG2 00:00:00 00:00:00

REPLICAT RUNNING RTGTRNG3 00:00:06 00:00:00

REPLICAT RUNNING RTGTRNG4 00:00:06 00:00:00

Running a tail –f info_all.txt in a terminal session would provide us with an
up to date mechanism that monitors (in this case) the target system's GoldenGate
processes. To report on a full hour or more of running and to load the results into
Microsoft Excel for further analysis, we need to format the data appropriately.
Microsoft Excel is able to load text files that have their data contents delimited
by a special character, typically a comma. These text files are known as Comma
Separated Values (CSV) files. The example Perl script (format_info.pl) extracts
the timestamp from the data produced by the Shell script (info_all.sh) and
formats the text into delimited values. In the following example, a pipe (|) delimiter
character has been used to achieve this. The code for the format_info.pl script is
shown next:

#!/usr/bin/perl

format_info.pl
#
Script to format output from GoldenGate GGSCI INFO ALL
command into pipe delimited text

Author: John Jeffries

use strict;
use warnings;
read each line, tag with timestamp, pipe delimit each element and
print
our($timestamp) = "";
my(@lines) = ();
open (FILE,"<", "info_all.txt") or die "Could not read file: $!";
LINE: while(<FILE>)
 {
 my($line) = $_;
 chomp($line);

 if($line =~ m|^\d\d/\d\d/\d\d\d\d \d\d:\d\d:\d\d$|) # timestamp
line
 {
 $timestamp = $line;
 next LINE;

Chapter 8

[177]

 }
 elsif($_ =~ m/REPLICAT/)
 {
 print "$timestamp\|";
 $_ =~ s/\s+/\|/g;
 @lines = ($_);
 print "@lines\n";
 next LINE;
 }
 else
 {
 next LINE;
 }
 }

close (FILE);

The input file to the Perl script is info_all.txt, the output file is output.txt as is
invoked on the Linux command line as follows:

$./format_info.pl > output.txt

The output looks similar to the following:

12/10/2010 12:49:01|REPLICAT|RUNNING|RTGTMSG1|00:00:09|00:00:22|

12/10/2010 12:49:01|REPLICAT|RUNNING|RTGTMSG2|00:00:09|00:00:22|

12/10/2010 12:49:01|REPLICAT|RUNNING|RTGTRNG1|00:00:08|00:00:01|

12/10/2010 12:49:01|REPLICAT|RUNNING|RTGTRNG2|00:00:08|00:00:01|

12/10/2010 12:49:01|REPLICAT|RUNNING|RTGTRNG3|00:00:08|00:00:01|

12/10/2010 12:49:01|REPLICAT|RUNNING|RTGTRNG4|00:00:08|00:00:01|

Graphing the results using Microsoft Excel
Now it is possible to produce graphs from the output data against the date/time
(column 1 x-axis) and lag (column 5 y-axis) columns. The following steps walk
through the process of using the Microsoft Excel 2007 text import wizard to
achieve this:

Managing Oracle GoldenGate

[178]

1. From within Excel, open the pipe delimited text file (output.txt) as shown
in the following screenshot:

2. In step 1 of 3 shown in the wizard dialog box, select the Delimited radio
button and then click the Next button

Chapter 8

[179]

3. Type the pipe (|) character into the Other field and click the Next button.

4. Change the first column from General to Date format and click the
Finish button.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Managing Oracle GoldenGate

[180]

5. Now with the data loaded and presented in the spreadsheet, select the first
and the fifth columns before clicking on the 2-D Line graphing wizard to
generate the graph.

The following line graph was produced from the output data using the Microsoft
Excel 2007 Graphing Wizard:

Chapter 8

[181]

Although Oracle provides tools such as Oracle Management Pack, (formerly known
as GoldenGate Director) for monitoring and reporting, this simple solution satisfies
the requirement at no additional cost to your GoldenGate implementation.

Measuring throughput
Your lag figures may be good, but what about your throughput? In a replication
environment it is important to measure the amount of data replicated in a given
time period. After all, bandwidth is always quoted in Gigabits per second (Gbit/s).
Furthermore, the associated number and type of operation is also worth measuring
and reporting on, collectively giving us an overall understanding of our GoldenGate
environment performance.

Data throughput
To calculate the rate of throughput in GoldenGate, we can use the following
parameter to automatically append relevant statistics to the process' report file:

REPORTCOUNT EVERY 1 MINUTES, RATE

REPORTCOUNT can be used in your Extract or Replicat parameter file. The RATE option
provides additional performance statistics, calculating the total number of records
divided by the total time elapsed since the process started, including a delta statistic on
the number of records since the last report, divided by the time since the last report.

Here is example Extract report showing the RATE statistics for the 1 minute interval:

2010-10-13 11:24:58 INFO OGG-01026 Rolling over remote file ./
dirdat/na000060.

 9334116 records processed as of 2010-10-13 11:25:24 (rate
3728,delta 9352)

 9907789 records processed as of 2010-10-13 11:26:24 (rate
3865,delta 9543)

 10492064 records processed as of 2010-10-13 11:27:26 (rate
3997,delta 9518)

 10975243 records processed as of 2010-10-13 11:28:26 (rate
4088,delta 8052)

To measure throughput per second, minute, or hour, we have to calculate the
number of bytes transmitted over a given period. To achieve this, we must follow
these simple steps for each Extract or Replicat process during a sustained load:

1. Log on to the source or target database server as the Oracle user and invoke
GGSCI.

Managing Oracle GoldenGate

[182]

2. Execute the INFO ALL command to list the individual processes. Choose a
process to measure throughput on and obtain its runtime details.
GGSCI (dbserver2) 2> info RTGTRNG1, detail

REPLICAT RTGTRNG1 Last Started 2010-10-29 16:39 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:27 ago)
Log Read Checkpoint File ./dirdat/nb000001
 2010-10-29 17:07:15.993969 RBA 428715322

 Extract Source Begin End

 ./dirdat/nb000001 2010-10-29 16:37 2010-
10-29 17:07
 ./dirdat/nb000000 * Initialized * 2010-
10-29 16:37

3. Wait for one minute and execute the same command from GGSCI.
GGSCI (dbserver2) 3> !

info RTGTRNG1, detail

REPLICAT RTGTRNG1 Last Started 2010-10-29 16:39 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:07 ago)
Log Read Checkpoint File ./dirdat/nb000001
 2010-10-29 17:08:15.982789 RBA 485803675

4. Now calculate the throughput by subtracting the Relative Byte Address
(RBA) of the second command output from the first.
485803675 – 428715322 = 57088353 bytes / minute

5. Convert bytes per minute to megabytes per minute.
57088353/(1024*1024) = 54.55 MB/minute

6. Convert megabytes per minute to megabytes per hour.
54.55 * 60 = 3266.62 MB/hour

7. Finally, calculate the rate in gigabytes per hour.
3266.62/1024 = 3.19 GB/hour

This procedure provides an excellent mechanism to calculate the data throughput
accurately for each process and to quickly identify bottlenecks.

Chapter 8

[183]

Operation throughput
We know how to measure and report on lag and data throughput in our GoldenGate
environment. Let's now look at operation throughput. This is the total number of
insert, update, delete, and discard operations per second that have occurred during a
given period.

Thankfully, GoldenGate provides comprehensive statistics on operation throughput,
which are used for confirming processes are working as well as reporting volumes
and performance. This is achieved using the GGSCI STATS command against either
an Extract or Replicat process. The following command provides statistics on the
cumulative number of operations since process startup, including per day and per
hour. It also supports wildcards.

GGSCI (dbserver2) 1> stats replicat RTGTRNG1, totalsonly *, reportrate
sec

Another option of the STATS command is to report on the volume of operations over
a given period, on this occasion, against an Extract process and specific table.

GGSCI (dbserver1) 1> stats EXTRACT ESRCNMSG, totalsonly SRC.ORDERS

To have operation volumes written to a process report file on demand, execute the
GGSCI SEND command to create the report.

GGSCI (dbserver1) 2> send EXTRACT ESRCNMSG, report

Sending REPORT request to EXTRACT ESRCNMSG ...
Request processed.

The SEND command can be used with EVENTACTIONS to generate statistics on a
specific event. To read the latest report file use the VIEW command.

GGSCI (dbserver1) 3> view report ESRCNMSG

..

Output to ./dirdat/na:

From Table SRC.SESSIONS:

 # inserts: 2526

 # updates: 2526

 # deletes: 0

 # discards: 0

From Table SRC.USERS:

 # inserts: 0

 # updates: 7534

Managing Oracle GoldenGate

[184]

 # deletes: 0

 # discards: 0

From Table SRC.ORDERS:

 # inserts: 476897

 # updates: 240484

 # deletes: 0

 # discards: 0

..

In addition to viewing log files and using OS tools, the GoldenGate Command
Interpreter (GGSCI) provides a comprehensive set of commands for managing and
monitoring your GoldenGate instance.

Summary
Having installed, configured, and tuned your GoldenGate environment, this chapter
has taught you how to manage and monitor it. Using the GoldenGate Command
Interpreter you have learnt the commands and options that allow historic and real-
time reports and statistics to be viewed against individual and collective processes.
Thus providing the information necessary to fully support and manage your
GoldenGate environment.

This chapter has also provided bespoke scripts for leveraging your own techniques
to collect and subsequently graph statistics.

The next chapter is dedicated to performance tuning, where we learn how to use
all of the configuration options and techniques described in this book to enable and
maintain real-time data replication.

Performance Tuning
Performance tuning is one of the main aspects of any IT project. Many leave it
to the end and then realize that it is not possible to make the necessary changes
without significant additional investment or time constraints. Performance must
be considered at the beginning and throughout the lifetime of your project. Closely
coupled to the design, this chapter hones in on individual performance tuning
methods.

Oracle states that GoldenGate can achieve near real-time data replication. However,
out of the box, GoldenGate may not meet your performance requirements. Here we
focus on the main areas that lend themselves to tuning, especially parallel processing
and load balancing, enabling high data throughput and very low latency.

In this chapter, we learn the following:

•	 Balancing load across multiple processes
•	 Splitting large or transaction intensive tables across parallel process groups
•	 Adding additional Replicats to a process group
•	 Improving Replicat throughput by reducing commit delay
•	 Exploring the GoldenGate 11.1.1 new features
•	 Tuning the network

Let's start by taking a look at some of the considerations before we start tuning
Oracle GoldenGate.

Performance Tuning

[186]

Before tuning GoldenGate
There are a number of considerations we need to be aware of before we start the
tuning process. For one, we must consider the underlying system and its ability
to perform. Let's start by looking at the source of data that GoldenGate needs for
replication to work the online redo logs.

Online redo
Before we start tuning GoldenGate, we must look at both the source and target
databases and their ability to read/write data. Data replication is I/O intensive,
so fast disks are important, particularly for the online redo logs. Redo logs play
an important role in GoldenGate: they are constantly being written to by the
database and concurrently being read by the Extract process. Furthermore, adding
supplemental logging to a database can increase their size by a factor of 4!

Firstly, ensure that only the necessary amount of supplemental logging is enabled on
the database. In the case of GoldenGate, the logging of the Primary Key is all that is
required.

Next, take a look at the database wait events, in particular the ones that relate to
redo. For example, if you are seeing "Log File Sync" waits, this is an indicator that
either your disk writes are too slow or your application is committing too frequently,
or a combination of both. RAID5 is another common problem for redo log writes.
Ideally, these files should be placed on their own mirrored storage such as RAID1+0
(mirrored striped sets) or Flash disks. Many argue this to be a misconception with
modern high speed disk arrays, but some production systems are still known to be
suffering from redo I/O contention on RAID5.

An adequate number (and size) of redo groups must be configured to prevent
"checkpoint not complete" or "cannot allocate new log" warnings appearing in the
database instance alert log. This occurs when Oracle attempts to reuse a log file but
the checkpoint that would flush the blocks in the DB buffer cache to disk are still
required for crash recovery. The database must wait until that checkpoint completes
before the online redolog file can be reused, effectively stalling the database and any
redo generation.

Chapter 9

[187]

Large objects (LOBs)
Know your data. LOBs can be a problem in data replication by virtue of their size
and the ability to extract, transmit, and deliver the data from source to target. We
discussed LOBs in Chapter 5, Configuration Options, expressing the importance of not
using the BATCHSQL tuning parameter. Furthermore, tables containing LOB datatypes
should be isolated from regular data to use a dedicated Extract, Data Pump, and
Replicat process group to enhance throughput. Also ensure that the target table has
a primary key to avoid Full Table Scans (FTS), an Oracle GoldenGate best practice.
LOB INSERT operations can insert an empty (null) LOB into a row before updating
it with the data. This is because a LOB (depending on its size) can spread its data
across multiple Logical Change Records, resulting in multiple DML operations
required at the target database.

Base lining
Before we can start tuning, we must record our baseline. This will provide a
reference point to tune from. We can later look back at our baseline and calculate the
percentage improvement made from deploying new configurations.

An ideal baseline is to find the "breaking point" of your application requirements.
For example, the following questions must be answered:

1. What is the maximum acceptable end to end latency?
2. What are the maximum application transactions per second we must

accommodate?

To answer these questions we must start with a single threaded data replication
configuration having just one Extract, one Data Pump, and one Replicat process. This
will provide us with a worst case scenario in which to build improvements on.

Ideally, our data source should be the application itself, inserting, deleting, and
updating "real data" in the source database. However, simulated data with the
ability to provide throughput profiles will allow us to gauge performance accurately
Application vendors can normally provide SQL injector utilities that simulate the
user activity on the system.

Performance Tuning

[188]

Balancing the load across parallel
process groups
The GoldenGate documentation states "The most basic thing you can do to improve
GoldenGate's performance is to divide a large number of tables among parallel
processes and trails. For example, you can divide the load by schema".This statement
is true as the bottleneck is largely due to the serial nature of the Replicat process,
having to "replay" transactions in commit order. Although this can be a constraining
factor due to transaction dependency, increasing the number of Replicat processes
increases performance significantly. However, it is highly recommended to group
tables with referential constraints together per Replicat.

The number of parallel processes is typically greater on the target system compared
to the source. The number and ratio of processes will vary across applications and
environments. Each configuration should be thoroughly tested to determine the
optimal balance, but be careful not to over allocate, as each parallel process will
consume up to 55MB. Increasing the number of processes to an arbitrary value will
not necessarily improve performance, in fact it may be worse and you will waste
CPU and memory resources.

The following data flow diagram shows a load balancing configuration including
two Extract processes, three Data Pump, and five Replicats:

Chapter 9

[189]

Considerations for using parallel process
groups
To maintain data integrity, ensure to include tables with referential constraints
between one another in the same parallel process group. It's also worth considering
disabling referential constraints on the target database schema to allow child records to
be populated before their parents, thus increasing throughput. GoldenGate will always
commit transactions in the same order as the source, so data integrity is maintained.

Oracle best practice states no more than 3 Replicat processes should read the same
remote trail file. To avoid contention on Trail files, pair each Replicat with its own
Trail files and Extract process. Also, remember that it is easier to tune an Extract
process than a Replicat process, so concentrate on your source before moving your
focus to the target.

Splitting large tables into row ranges
across process groups
What if you have some large tables with a high data change rate within a source
schema and you cannot logically separate them from the remaining tables due to
referential constraints? GoldenGate provides a solution to this problem by "splitting"
the data within the same schema via the @RANGE function. The @RANGE function can
be used in the Data Pump and Replicat configuration to "split" the transaction data
across a number of parallel processes.

The Replicat process is typically the source of performance bottlenecks because, in
its normal mode of operation, it is a single-threaded process that applies operations
one at a time by using regular DML. Therefore, to leverage parallel operation and
enhance throughput, the more Replicats the better (dependant on the number of
CPUs and memory available on the target system).

The RANGE function
The way the @RANGE function works is it computes a hash value of the columns
specified in the input. If no columns are specified, it uses the table's primary key.
GoldenGate adjusts the total number of ranges to optimize the even distribution
across the number of ranges specified. This concept can be compared to Hash
Partitioning in Oracle tables as a means of dividing data.

With any division of data during replication, the integrity is paramount and will
have an effect on performance. Therefore, tables having a relationship with other
tables in the source schema must be included in the configuration. If all your source
schema tables are related, you must include all the tables!

Performance Tuning

[190]

Adding Replicats with @RANGE function
The @RANGE function accepts two numeric arguments, separated by a comma:

1. Range: The number assigned to a process group, where the first is 1 and the
second 2 and so on, up to the total number of ranges.

2. Total number of ranges: The total number of process groups you wish to
divide using the @RANGE function.

The following example includes three related tables in the source schema and walks
through the complete configuration from start to finish.

For this example, we have an existing Replicat process on the target machine
(dbserver2) named ROLAP01 that includes the following three tables:

•	 ORDERS

•	 ORDER_ITEMS

•	 PRODUCTS

We are going to divide the rows of the tables across two Replicat groups. The source
database schema name is SRC and target schema TGT. The following steps add a
new Replicat named ROLAP02 with the relevant configuration and adjusts Replicat
ROLAP01 parameters to suit.

Note that before conducting any changes stop the existing Replicat
processes and determine their Relative Byte Address (RBA) and Trail
file log sequence number. This is important information that we will use
to tell the new Replicat process from which point to start.

1. First check if the existing Replicat process is running:
GGSCI (dbserver2) 1> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING ROLAP01 00:00:00 00:00:02

2. Stop the existing Replicat process:
GGSCI (dbserver2) 2> stop REPLICAT ROLAP01

Sending STOP request to REPLICAT ROLAP01...

Request processed.

Chapter 9

[191]

3. Add the new Replicat process, using the existing trail file.
GGSCI (dbserver2) 3> add REPLICAT ROLAP02, exttrail ./dirdat/tb

REPLICAT added.

4. Now add the configuration by creating a new parameter file for ROLAP02.
GGSCI (dbserver2) 4> edit params ROLAP02

--

-- Example Replicator parameter file to apply changes

-- to target tables

--

REPLICAT ROLAP02

SOURCEDEFS ./dirdef/mydefs.def

SETENV (ORACLE_SID= OLAP)

USERID ggs_admin, PASSWORD ggs_admin

DISCARDFILE ./dirrpt/rolap02.dsc, PURGE

ALLOWDUPTARGETMAP

CHECKPOINTSECS 30

GROUPTRANSOPS 2000

MAP SRC.ORDERS, TARGET TGT.ORDERS, FILTER (@RANGE (1,2));

MAP SRC.ORDER_ITEMS, TARGET TGT.ORDER_ITEMS, FILTER (@RANGE
(1,2));

MAP SRC.PRODUCTS, TARGET TGT.PRODUCTS, FILTER (@RANGE (1,2));

5. Now edit the configuration of the existing Replicat process, and add the
@RANGE function to the FILTER clause of the MAP statement. Note the
inclusion of the GROUPTRANSOPS parameter to enhance performance by
increasing the number of operations allowed in a Replicat transaction.
GGSCI (dbserver2) 5> edit params ROLAP01

--

-- Example Replicator parameter file to apply changes

-- to target tables

--

REPLICAT ROLAP01

SOURCEDEFS ./dirdef/mydefs.def

SETENV (ORACLE_SID=OLAP)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Performance Tuning

[192]

USERID ggs_admin, PASSWORD ggs_admin

DISCARDFILE ./dirrpt/rolap01.dsc, PURGE

ALLOWDUPTARGETMAP

CHECKPOINTSECS 30

GROUPTRANSOPS 2000

MAP SRC.ORDERS, TARGET TGT.ORDERS, FILTER (@RANGE (2,2));

MAP SRC.ORDER_ITEMS, TARGET TGT.ORDER_ITEMS, FILTER (@RANGE
(2,2));

MAP SRC.PRODUCTS, TARGET TGT.PRODUCTS, FILTER (@RANGE (2,2));

6. Check that both the Replicat processes exist.
GGSCI (dbserver2) 6> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT STOPPED ROLAP01 00:00:00 00:10:35

REPLICAT STOPPED ROLAP02 00:00:00 00:12:25

7. Before starting both Replicat processes, obtain the log Sequence Number
(SEQNO) and Relative Byte Address (RBA) from the original trail file.
GGSCI (dbserver2) 7> info REPLICAT ROLAP01, detail

REPLICAT ROLAP01 Last Started 2010-04-01 15:35 Status STOPPED

Checkpoint Lag 00:00:00 (updated 00:12:43 ago)

Log Read Checkpoint File ./dirdat/tb000279 <- SEQNO

 2010-04-08 12:27:00.001016 RBA 43750979 <- RBA

 Extract Source Begin End

 ./dirdat/tb000279 2010-04-01 12:47 2010-04-08 12:27

 ./dirdat/tb000257 2010-04-01 04:30 2010-04-01 12:47

 ./dirdat/tb000255 2010-03-30 13:50 2010-04-01 04:30

 ./dirdat/tb000206 2010-03-30 13:50 First Record

 ./dirdat/tb000206 2010-03-30 04:30 2010-03-30 13:50

 ./dirdat/tb000184 2010-03-30 04:30 First Record

 ./dirdat/tb000184 2010-03-30 00:00 2010-03-30 04:30

 ./dirdat/tb000000 * Initialized * 2010-03-30 00:00

 ./dirdat/tb000000 * Initialized * First Record

Chapter 9

[193]

8. Adjust the new Replicat process ROLAP02 to adopt these values, so that the
process knows where to start from on startup.
GGSCI (dbserver2) 8> alter replicat ROLAP02, extseqno 279

REPLICAT altered.

GGSCI (dbserver2) 9> alter replicat ROLAP02, extrba 43750979

REPLICAT altered.

Failure to complete this step will result in either duplicate data or ORA-
00001 against the target schema, because GoldenGate will attempt to
replicate the data from the beginning of the initial trail file (./dirdat/
tb000000) if it exists, else the process will abend.

9. Start both Replicat processes. Note the use of the wildcard (*).
GGSCI (dbserver2) 10> start replicat ROLAP*

Sending START request to MANAGER ...

REPLICAT ROLAP01 starting

Sending START request to MANAGER ...

REPLICAT ROLAP02 starting

10. Check if both Replicat processes are running.
GGSCI (dbserver2) 11> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING ROLAP01 00:00:00 00:00:22

REPLICAT RUNNING ROLAP02 00:00:00 00:00:14

11. Check the detail of the new Replicat processes.
GGSCI (dbserver2) 12> info REPLICAT ROLAP02, detail

REPLICAT ROLAP02 Last Started 2010-04-08 14:18 Status RUNNING

Checkpoint Lag 00:00:00 (updated 00:00:06 ago)

Log Read Checkpoint File ./dirdat/tb000279

 First Record RBA 43750979

 Extract Source Begin End

Performance Tuning

[194]

 ./dirdat/tb000279 * Initialized * First Record

 ./dirdat/tb000279 * Initialized * First Record

 ./dirdat/tb000279 * Initialized * 2010-04-08 12:26

 ./dirdat/tb000279 * Initialized * First Record

12. Generate a report for the new Replicat process ROLAP02.
GGSCI (dbserver2) 13> send REPLICAT ROLAP02, report

Sending REPORT request to REPLICAT ROLAP02 ...

Request processed.

13. Now view the report to confirm the new Replicat process has started from
the specified start point. (RBA 43750979 and SEQNO 279). The following is
an extract from the report:
GGSCI (dbserver2) 14> view report ROLAP02

2010-04-08 14:20:18 GGS INFO 379 Positioning with begin
time: Apr 08, 2010 14:18:19 PM, starting record time: Apr 08, 2010

14:17:25 PM at extseqno 279, extrba 43750979.

Configuring multiple parallel process
groups
Taking the parallel concept one step further, we can not only add parallel process
groups at the target, but also at the source. The diagram at the start of this chapter
gives an overview configuration, showing multiple parallel processes from the Data
Pumps on the source, feeding data to dedicated Replicat processes, where the data is
"split" again into more parallel threads.

Based on the following diagram, we will be configuring multiple process groups from
scratch for 1 Extract process to enhance transaction throughput and reduce lag times:

Chapter 9

[195]

In the following configuration example, the source database name is OLTP and its
source schema name is SRC. The target database name is OLAP and its target schema
name is TGT.

Source system configuration
The following section specifies an example configuration for parallel data processing
that will be used to leverage the performance of the GoldenGate data capture and
routing process.

Parallel process parameter files
1. Place the following EXTRACT.prm file in the dirprm sub-directory of the

GoldenGate home on the source system:
-- EXTRACT1.prm
--
-- Change Capture parameter file to capture
-- SRC table changes
--
EXTRACT EXTRACT1
SETENV (ORACLE_SID=oltp)
USERID ggs_admin, PASSWORD ggs_admin
EXTTRAIL ./dirdat/sa
TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD Welcome
TABLE SRC.CREDITCARD_ACCOUNTS;
TABLE SRC.CREDITCARD_PAYMENTS;
TABLE SRC.CREDITCARD_PAYMENTS_HISTORY;
TABLE SRC.CREDITCARD_PAYMENTS_STATUS;

2. Place the following DATAPMP1.prm and DATAPMP2.prm files in the dirprm
sub-directory of the GoldenGate home on the source system:
-- DATAPMP1.prm
--
-- Data Pump parameter file to read the local
-- trail sa for SRC table changes and write to
-- remote trail ta
--
EXTRACT DATAPMP1
SETENV (ORACLE_SID=oltp)
USERID ggs_admin, PASSWORD ggs_admin
RMTHOST dbserver2, MGRPORT 7810
RMTTRAIL ./dirdat/ta
TABLE SRC.CREDITCARD_ACCOUNTS, FILTER (@RANGE (1,2));

Performance Tuning

[196]

TABLE SRC.CREDITCARD_PAYMENTS, FILTER (@RANGE (1,2));
TABLE SRC.CREDITCARD_PAYMENTS_HISTORY, FILTER (@RANGE (1,2));
TABLE SRC.CREDITCARD_PAYMENTS_STATUS, FILTER (@RANGE (1,2));

-- DATAPMP2.prm
--
-- Data Pump parameter file to read the local
-- trail sa for SRC table changes and write to
-- remote trail tb
--
EXTRACT DATAPMP2
SETENV (ORACLE_SID=oltp)
USERID ggs_admin, PASSWORD ggs_admin
RMTHOST dbserver2, MGRPORT 7810
RMTTRAIL ./dirdat/tb
TABLE SRC.CREDITCARD_ACCOUNTS, FILTER (@RANGE (2,2));
TABLE SRC.CREDITCARD_PAYMENTS, FILTER (@RANGE (2,2));
TABLE SRC.CREDITCARD_PAYMENTS_HISTORY, FILTER (@RANGE (2,2));
TABLE SRC.CREDITCARD_PAYMENTS_STATUS, FILTER (@RANGE (2,2));

Now that the Extract process parameter files have been created in the dirprm sub-
directory, we can create the associated Extract process groups.

Creating extract parallel process groups
1. Use the following Obey file to prepare and configure your source system for

multiple Data Pump process groups:
-- config_source.oby

-- Database Authentication Connection
DBLOGIN USERID ggs_admin@oltp, PASSWORD ggs_admin

-- Turning on Data Capture Changes on all Tables
ADD TRANDATA SRC.CREDITCARD_ACCOUNTS
ADD TRANDATA SRC.CREDITCARD_PAYMENTS
ADD TRANDATA SRC.CREDITCARD_PAYMENTS_HISTORY
ADD TRANDATA SRC.CREDITCARD_PAYMENTS_STATUS

-- Verify that supplemental log has been switched on
INFO TRANDATA SRC.CREDITCARD_ACCOUNTS
INFO TRANDATA SRC.CREDITCARD_PAYMENTS
INFO TRANDATA SRC.CREDITCARD_PAYMENTS_HISTORY
INFO TRANDATA SRC.CREDITCARD_PAYMENTS_STATUS

Chapter 9

[197]

-- Adding the extract group for the capture
ADD EXTRACT extract1, TRANLOG, BEGIN NOW

-- Defining the local trail files for capture
ADD EXTTRAIL ./dirdat/sa, EXTRACT extract1, MEGABYTES 500

-- Check status of all running processes
INFO ALL

-- Adding the extract group for the pump
ADD EXTRACT datapmp1, EXTTRAILSOURCE ./dirdat/sa

-- Defining the remote trail files for pump
ADD RMTTRAIL ./dirdat/ta, EXTRACT datapmp1, MEGABYTES 500

-- Adding the extract group for the pump
ADD EXTRACT datapmp2, EXTTRAILSOURCE ./dirdat/sb

-- Defining the remote trail files for pump
ADD RMTTRAIL ./dirdat/tb, EXTRACT datapmp2, MEGABYTES 500

-- Start extract and data pump processes
START EXTRACT *

-- Check status of all running processes
INFO ALL

2. Place the config_source.oby file in the dirprm sub-directory of the
GoldenGate home on the source system.

3. To execute the Obey file, call it from the GGSCI command line.
GGSCI (dbserver1) 1> obey ./dirprm/config_source.oby

4. Check if the Extract processes are running.
GGSCI (dbserver1) 93> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

EXTRACT RUNNING DATAPMP1 00:00:00 00:00:03

EXTRACT RUNNING DATAPMP2 00:00:00 00:00:02

EXTRACT RUNNING EXTRACT1 00:00:00 00:00:03

That concludes the source system configuration. From the example output, we can
see that the Extract processes have been started and are running. Let's now configure
the target system.

Performance Tuning

[198]

Target system configuration
The following section specifies an example configuration for parallel data processing
that will be used to leverage the performance of the GoldenGate data delivery
process.

Parallel process parameter files
1. Place the following REPLCAT1.prm, REPLCAT2.prm, REPLCAT3.prm and

REPLCAT4.prm files in the dirprm sub-directory of the GoldenGate home on
the target system:
-- REPLCAT1.prm
--
-- Replicator parameter file to read remote trail ta
-- and apply changes to TGT tables
--
REPLICAT REPLCAT1
SOURCEDEFS ./dirdef/oltp.def
SETENV (ORACLE_SID=olap)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/replcat1.dsc, PURGE
ALLOWDUPTARGETMAP
CHECKPOINTSECS 30
GROUPTRANSOPS 2000
BATCHSQL
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS,
FILTER (@RANGE (1,2));
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS,
FILTER (@RANGE (1,2));
MAP SRC.CREDITCARD_PAYMENTS_HISTORY, TARGET TGT.CREDITCARD_
PAYMENTS_HISTORY, FILTER (@RANGE (1,2));
MAP SRC.CREDITCARD_PAYMENTS_STATUS, TARGET TGT.CREDITCARD_
PAYMENTS_STATUS, FILTER (@RANGE (1,2));

-- REPLCAT2.prm
--
-- Replicator parameter file to read remote trail ta
-- and apply changes to TGT tables
--
REPLICAT REPLCAT2
SOURCEDEFS ./dirdef/oltp.def
SETENV (ORACLE_SID=olap)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/replcat2.dsc, PURGE

Chapter 9

[199]

ALLOWDUPTARGETMAP
CHECKPOINTSECS 30
GROUPTRANSOPS 2000
BATCHSQL
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS,
FILTER (@RANGE (2,2));
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS,
FILTER (@RANGE (2,2));
MAP SRC.CREDITCARD_PAYMENTS_HISTORY, TARGET TGT.CREDITCARD_
PAYMENTS_HISTORY, FILTER (@RANGE (2,2));
MAP SRC.CREDITCARD_PAYMENTS_STATUS, TARGET TGT.CREDITCARD_
PAYMENTS_STATUS, FILTER (@RANGE (2,2));

-- REPLCAT3.prm
--
-- Replicator parameter file to read remote trail tb
-- and apply changes to TGT tables
--
REPLICAT REPLCAT3
SOURCEDEFS ./dirdef/oltp.def
SETENV (ORACLE_SID=olap)
USERID ggs_admin, PASSWORD ggs_admin
DISCARDFILE ./dirrpt/replcat3.dsc, PURGE
ALLOWDUPTARGETMAP
CHECKPOINTSECS 30
GROUPTRANSOPS 2000
BATCHSQL
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS,
FILTER (@RANGE (1,2));
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS,
FILTER (@RANGE (1,2));
MAP SRC.CREDITCARD_PAYMENTS_HISTORY, TARGET TGT.CREDITCARD_
PAYMENTS_HISTORY, FILTER (@RANGE (1,2));
MAP SRC.CREDITCARD_PAYMENTS_STATUS, TARGET TGT.CREDITCARD_
PAYMENTS_STATUS, FILTER (@RANGE (1,2));

-- REPLCAT4.prm
--
-- Replicator parameter file to read remote trail tb
-- and apply changes to TGT tables
--
REPLICAT REPLCAT4
SOURCEDEFS ./dirdef/oltp.def
SETENV (ORACLE_SID=olap)
USERID ggs_admin, PASSWORD ggs_admin

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Performance Tuning

[200]

DISCARDFILE ./dirrpt/replcat4.dsc, PURGE
ALLOWDUPTARGETMAP
CHECKPOINTSECS 30
GROUPTRANSOPS 2000
BATCHSQL
MAP SRC.CREDITCARD_ACCOUNTS, TARGET TGT.CREDITCARD_ACCOUNTS,
FILTER (@RANGE (2,2));
MAP SRC.CREDITCARD_PAYMENTS, TARGET TGT.CREDITCARD_PAYMENTS,
FILTER (@RANGE (2,2));
MAP SRC.CREDITCARD_PAYMENTS_HISTORY, TARGET TGT.CREDITCARD_
PAYMENTS_HISTORY, FILTER (@RANGE (2,2));
MAP SRC.CREDITCARD_PAYMENTS_STATUS, TARGET TGT.CREDITCARD_
PAYMENTS_STATUS, FILTER (@RANGE (2,2));

Now that we have created the Replicat parameter files and placed them in the
dirprm sub-directory, we can create the associated Replicat process groups.

Creating Replicat parallel process groups
1. Use the following Obey file to prepare and configure your target system for

multiple Replicat process groups:
-- config_target.oby

-- Login to Database
dblogin userid ggs_admin@olap, password ggs_admin

-- Adds Checkpoint Table
add checkpointtable GGS_ADMIN.GGSCHKPT

-- Adding the replicat group for the delivery
ADD REPLICAT replcat1, EXTTRAIL ./dirdat/ta, CHECKPOINTTABLE GGS_
ADMIN.GGSCHKPT

-- Adding the replicat group for the delivery
ADD REPLICAT replcat2, EXTTRAIL ./dirdat/ta, CHECKPOINTTABLE GGS_
ADMIN.GGSCHKPT

-- Adding the replicat group for the delivery
ADD REPLICAT replcat3, EXTTRAIL ./dirdat/tb, CHECKPOINTTABLE GGS_
ADMIN.GGSCHKPT

-- Adding the replicat group for the delivery
ADD REPLICAT replcat4, EXTTRAIL ./dirdat/tb, CHECKPOINTTABLE GGS_
ADMIN.GGSCHKPT

Chapter 9

[201]

-- Starting the replicat groups
START REPLICAT *

-- Check status of all running processes
INFO ALL

2. Place the config_target.oby file in the dirprm sub-directory of the
GoldenGate home on the target system.

3. To execute the Obey file, call it from the GGSCI command line.
GGSCI (dbserver2) 1> obey ./dirprm/config_target.oby

4. Check if the Replicat processes are running.
GGSCI (dbserver2) 119> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING.

REPLICAT RUNNING REPLCAT1 00:00:00 00:00:06

REPLICAT RUNNING REPLCAT2 00:00:00 00:00:06

REPLICAT RUNNING REPLCAT3 00:00:00 00:00:06

REPLICAT RUNNING REPLCAT4 00:00:00 00:00:06

That concludes the target system configuration. From the example output, we can
see that the Replicat processes have been started and are running. You can now enjoy
high performance data replication from the OLTP to OLAP databases.

Improving Replicat throughput
Replicat performance can be further improved by altering the way GoldenGate
commits the transaction on the target database. By default, Oracle will wait
for a commit to succeed before allowing the session to continue. However, this
synchronous behavior can cause unnecessary delays when the workload is high.

To alleviate this bottleneck, we can configure our Replicat processes to commit
asynchronously at session level by including the following SQLEXEC statement in
each parameter file:

SQLEXEC "alter session set commit_wait = 'NOWAIT'";

Performance Tuning

[202]

Note that the specification of the NOWAIT allows a small window of vulnerability.
These are as follows:

•	 If the database instance crashes, causing the database to lose redo that was
buffered but not yet written to the online redo logs

•	 A file I/O problem prevents log writer from writing buffered redo to disk

Don't be alarmed; in both cases, GoldenGate will automatically "replay" the
uncommitted transactions which would be driven by the information stored in the
Checkpoint table, following database instance crash recovery.

New releases
At the time of writing this book, a new release of Oracle GoldenGate has become
available:

Version 11.1.1.0.0 Build 078 for Oracle 11gR2

This version runs on the Oracle Sun Exadata2 Database Machine (11.2.0.1), but is not
without some performance issues. A known bug causes slow write performance to a
Database file system (DBFS), which would typically be used to store the GoldenGate
persistent files in a RAC environment. During tests, the measured data pump write
rate (with no Replicat processes running) into DBFS was 1.5 to 1.7 MB/sec. For
comparison, the Data Pump write rate into a regular Linux file system on the same
server was in the 30 MB/sec range and simple writes using the Linux dd utility into
the same DBFS mount produced rates in the 30 to 50 MB/sec range.

Happily however, Oracle states this issue is fixed in the next release of GoldenGate:
Version 11.1.1.0.5 Build 003.

DBFS enhancements
When configuring DBFS, it is highly recommended to adopt the following options:

•	 Create a separate database instance running in NOARCHIVELOG mode to
support the DBFS.

•	 Create a DBFS tablespace in the dedicated Database, configured with
NOLOGGING

•	 Create a SecureFile LOB segment defined with NOCACHE NOLOGGING
•	 Create the file system with the PARTITION option

Chapter 9

[203]

•	 Mount the DBFS through /etc/fstab, using the following options:
	° rw,user,direct_io,allow_other,wallet,noauto,max_

threads=64

You may be concerned by having NOLOGGING set on your DBFS tablespace for
recovery reasons. Rest assured, because GoldenGate can "pick up" from where it left
off following a database crash, due to its check-pointing mechanism. GoldenGate
will only checkpoint its Replicat process once it has committed data to the target.
If you have had to conduct a point-in-time database recovery on your target,
GoldenGate can replay the transactions by altering the Replicat process using the
associated BEGIN option.

New redo log OCI API
A new option of the TRANLOGOPTIONS parameter is available in Oracle GoldenGate
version 11.1.1, called DBLOGREADER. This alleviates the need to access ASM directly
to read the redo logs. Now, via an OCI API, GoldenGate reads the redo and archived
logs from the DB server, increasing Extract performance over the former PL/SQL
API. There is, therefore, no need to specify the TRANLOGOPTIONS ASMUSER option
when specifying DBLOGREADER.

Throughputs of over 75GB per hour are achievable with the new ASM API.

Tuning the network
Another key area to focus on is the network. A poorly performing network will cause
high latencies and possible disconnections. One easy method to determine whether
your GoldenGate implementation is suffering from network delays is to check that
the process write checkpoints are increasing at the same rate. For example, if your
primary Extract process is check-pointing frequently when compared to the Data
Pump process, this indicates that the Data Pump process cannot write to the remote
trail quickly enough. So what can be done about it?

We can look at increasing data throughput by adjusting OS TCP socket buffers, TCP
packet sizes, transmission queue lengths, and so on. Let's take a look at some of the
common network tuning parameters and tools.

Performance Tuning

[204]

Linux TCP tuning
Like most operating systems, the default maximum kernel parameter settings for
networking are way too small. For example, Linux kernel 2.6 has a maximum TCP
buffer size of 256KB for both send and receive. During high throughput, you will
experience dropped packets when the buffer overflows. The protocol will retransmit
these, thus incurring a performance overhead.

Oracle recommends setting the following kernel parameters to at least 4MB. In fact
the Oracle 11g Universal Installer (OUI) pre-checks these before allowing the installer
to continue. These adjustments must be done on both the source and the target
database servers.

net.core.rmem_max=4194304
net.core.wmem_max=4194304

For Oracle GoldenGate, however, these setting may need to be increased further. To
set these parameters dynamically, edit the system control configuration file as the
root user. Then invoke the sysctl –p command to update the kernel as shown:

[root@dbserver1 ~]# vi /etc/sysctl.conf

net.core.rmem_max=8388608

net.core.wmem_max=8388608

[root@dbserver1 ~]# sysctl –p

Setting the TCP queue length to 5000 can also be beneficial for Gigabit Ethernet
Network Interface Controllers (NIC). For networks with more than a 50 ms round
trip time, a value of 5000-10000 is recommended. To increase the txqueuelen
parameter, run the following command as the root user, where eth2 is the name of
your NIC device:

[root@dbserver1 ~]# ifconfig eth2 txqueuelen 5000

It is also worth experimenting with NIC flow control and TCP Segmentation
Offload if performance is still an issue. Large Segment Offload (LSO) is a technique
for increasing outbound throughput of high-bandwidth network connections by
reducing the overhead on CPU. This technique is supported by most of today's NICs.

To check the current status of the NIC settings, execute the following commands
as root.

[root@ dbserver1 ~]# ethtool -a eth3
Pause parameters for eth2:
Autonegotiate: on
RX: on
TX: on

Chapter 9

[205]

[root@dbserver1 ~]# ethtool -k eth2

Offload parameters for eth2:

rx-checksumming: on

tx-checksumming: on

scatter-gather: off

tcp segmentation offload: off

udp fragmentation offload: off

generic segmentation offload: off

To enable TCP Segmentation Offload, execute the following command as root. The
setting is persistent across server reboots.

[root@dbserver1 ~]# ethtool -K eth2 tso on

Typically, the network between the source and target database servers is tuned first,
but the local TNS connection to the database or ASM instance is often overlooked. For
example, when using ASM as your storage solution, we can glean up to three times the
performance from an Extract process by using a Bequeath connection and not TCP.

Configuring a Bequeath connection
As the Extract process runs locally on the database server, we can exploit the
Bequeath connection, thus avoiding the database Listener altogether. TCP
connections are managed by the Listener, whereas BEQ connections access the
redo logs directly. It is possible to read up to 1MB per read operation from ASM.
When TNS is used, the TCP layer will "chop up" the data into packets incurring the
additional performance overhead.

The following steps describe how to configure a Bequeath connection to your ASM
instance that will be used by the GoldenGate Extract process.

1. Using a text editor, add a TNS entry, similar to the following example, for the
ASM instance, on your source database server:
vi $ORACLE_HOME/network/admin/tnsnames.ora file

ASM =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = BEQ)
 (PROGRAM = /u01/app/oracle/product/11.1.0/asm/bin/oracle)
 (ARGV0 = oracle+ASM1)
 (ARGS = '(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=BEQ)))')
 (ENVS = 'ORACLE_HOME=/u01/app/oracle/product/11.1.0/
asm,ORACLE_SID=+ASM1')

Performance Tuning

[206]

)
 (CONNECT_DATA =
 (SERVICE_NAME = +ASM)
 (INSTANCE_NAME = +ASM1)
)
)

2. Open a terminal session to the server as the Oracle user and log on to the
ASM instance using SQL*Plus with ASM TNS alias.
[oracle@dbserver1 ~]$ sqlplus sys/password@ASM as sysasm

3. Run the following query to identify the OS process ID.
SQL >select substr(s.sid,1,3) sid,substr(s.serial#,1,5) ser,

 2 substr(osuser,1,8) osuser,spid ospid,

 3 substr(status,1,3) stat,substr(command,1,3) com,

 4 substr(schemaname,1,10) schema,

 5 substr(type,1,3) typ

 6 from v$process p, v$SESSTAT t,v$sess_io i ,v$session s

 7 where i.sid=s.sid and p.addr=paddr(+) and s.sid=t.sid and

 8 t.statistic#=12

 9 and s.PROGRAM like '%sqlplus%';

SID SER OSUSER OSPID STAT COM SCHEMA TYP

------ ------ ---------- --------- --------- ----- -------- -----

483 24067 oracle 25322 ACT 3 SYS USE

4. Open a new terminal session to the same server and grep for the OS
PID identified by the above query. The output confirms we are using the
Bequeath connection to the +ASM1 instance.
[oracle@dbserver1 ~]$ ps -ef | grep 25322

oracle 25322 1 0 08:24 ? 00:00:00 oracle+ASM1
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=BEQ)))

5. Ensure you have the following parameter configured in your Extract
parameter file:

TRANLOGOPTIONS ASMUSER SYS@ASM, ASMPASSWORD Password

Chapter 9

[207]

Summary
Computer System functionality is only as good as its performance. We have all
experienced a slow user interface and given up waiting for a response, deferring
to a later time when the system is less busy. Although Oracle GoldenGate has a
reputation for being fast and efficient, we have learnt it may still require extensive
tuning depending on the requirements and data volumes involved. From parallel
processing configuration to tuning Linux kernel parameters, this chapter has
provided the approach that should be adopted when implementing GoldenGate on
Oracle 11g. We have also discussed the performance enhancements that are available
in the latest release of GoldenGate, including tips and tricks associated with them.

In the next Chapter 10, Troubleshooting GoldenGate we will learn how to interpret and
resolve some of the issues and errors raised from day to day operations as well as
from system monitoring. This includes automatic exception handling and
conflict resolution.

Troubleshooting GoldenGate
Troubleshooting is quite often the final chapter in most technical books, and for good
reason; we need to understand how a product works before we can fix it. That said,
readers with a sound knowledge of GoldenGate could dive into this chapter to find
the key point or action that they seek.

This chapter covers the following elements to troubleshoot Oracle GoldenGate 10.4:

•	 Investigating Oracle errors
•	 Investigating and resolving network issues
•	 Handling Exceptions to avoid process abends
•	 Conflict detection and resolution
•	 Handling Oracle Sequences
•	 Using the LOGDUMP utility
•	 Upgrading Oracle GoldenGate

Starting with the section "Troubleshooting tips" we will learn how to investigate and
resolve some of the common issues faced by the GoldenGate administrator.

Troubleshooting tips
So you have configured your GoldenGate environment, maybe in its simplest form,
having one source and one target database. But despite starting the Manager, Extract,
and Replicat processes, data is not being replicated.

The easiest way to determine that data replication is not working is to execute row
counts against a given source and its target table. Then drill into the GoldenGate
processes to obtain their status and statistics.

The following paragraphs provide the necessary troubleshooting tips to enable a
quick resolution to the most common issues.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Troubleshooting GoldenGate

[210]

Replication not working?
Start your troubleshooting at the source. We need to determine that the Extracts
are processing data before looking at the other components in the data stream. Two
methods exist to confirm throughput, which we have already discussed in Chapter 8,
Managing Oracle GoldenGate and Chapter 9, Performance Tuning. These are the GGSCI
SEND and STATS commands, demonstrated in the following examples:

GGSCI (dbserver1) 1> send EXTRACT EXTRACT1, report

Sending REPORT request to EXTRACT EXTRACT1 ...

Request processed.

GGSCI (dbserver1) 2> stats EXTRACT EXTRACT1, totalsonly *

Sending STATS request to EXTRACT EXTRACT1 ...

Both commands produce similar output. In the case of the STATS command, this is
real-time reporting at the command line giving totals per second. This is ideal for
confirming the row counts against one or more tables. In particular, look for the
"Latest statistics" section, running the same command again to confirm the totals
increment.

*** Latest statistics since 2010-10-28 15:54:09 ***

 Total inserts/second: 1115.05

 Total updates/second: 0.00

If all is well, the next place to look is the Data Pump process (assuming you have at
least one configured). Use the same commands as previously suggested, ensuring
you substitute the appropriate Extract name. You should STAT every Extract process
to confirm data movement. This command can cause performance hits during
processing at high data loads, but given that data replication is not working, this
shouldn't pose a problem.

If the Data Pumps are doing their thing, then we must check the Replicat processes.
Again use the STATS or SEND commands to generate reports to determine the
throughput. If the row counts are zero for all Replicat processes during a period of
load, then we need to investigate further.

The following example shows the output of the STATS command when no data has
been replicated since process startup:

GGSCI (dbserver2) 1> stats REPLICAT REPLCAT1, totalsonly *

Chapter 10

[211]

Sending STATS request to REPLICAT REPLCAT1 ...

No active replication maps.

Knowing where to start troubleshooting is often the key to resolving the underlying
problem. A good place to start is by looking at the GoldenGate process parameter
files to confirm correct syntax and configuration.

The CHECKPARAMS parameter
One area where GoldenGate is very sensitive is its parameter files. The correct
parameter syntax is crucial for the successful operation of a process. Happily
however, GoldenGate offers a special parameter designed to check the validity of a
parameter file. This is the CHECKPARAMS parameter, which you place at the beginning
of the parameter file. When starting the process, CHECKPARAMS checks the file and
provides a report, then stops the process without processing any data.

The following example goes through the procedure, finally confirming the validity of
the REPLCAT1 parameter file:

1. Log on to GGSCI and edit the required Replicat.
GGSCI (dbserver2) 1> edit params REPLCAT1

2. Insert the CHECKPARAMS parameter at the top of the parameter file.
3. Stop the Replicat process.

GGSCI (dbserver2) 2> stop REPLICAT REPLCAT1

Sending STOP request to REPLICAT REPLCAT1...

Request processed.

4. Start the Replicat process.
GGSCI (dbserver2) 3> start REPLICAT REPLCAT1

Sending START request to MANAGER ...

REPLICAT REPLCAT1 starting

5. Check the status of the Replicat process. Note that it is stopped.
GGSCI (dbserver2) 4> info REPLCAT1

REPLICAT REPLCAT1 Last Started 2010-09-27 15:05 Status
STOPPED

Checkpoint Lag 00:00:00 (updated 00:00:17 ago)

Log Read Checkpoint File ./dirdat/ta000931

 2010-09-27 15:05:24.642237 RBA 580

Troubleshooting GoldenGate

[212]

6. Now view the process report that gets automatically generated.
GGSCI (dbserver2) 5> view report REPLCAT1

7. At the very end of the report you will see the following text if the file
contents are valid:
Parameters processed successfully.

8. Should CHECKPARAMS find a syntax error, a message similar to the following
will be written to the process' report file. Note the error includes the name of
the unrecognized parameter.
2010-09-17 12:19:38 GGS ERROR 101 Unrecognized parameter:
WRONGPARAMETER. Parameter could be misspelled or unsupported.

2010-09-17 12:19:38 GGS ERROR 190 PROCESS ABENDING.

I have tested what CHECKPARAMS actually reports and it is not foolproof.
For example, a missing parenthesis or an additional space is not detected.

Adjusting the start point
So you have checked all the processes, but the Replicat's are still not processing
any data despite the syntax check and status of RUNNING. The answer to the
problem may be in the Trail files, that is, GoldenGate does not know where to begin
processing data from. This is relevant for Extract processes only, where we need to
tell each Extract from where to begin. The Data Pumps and Replicat processes will
follow suit and process the data sent to them.

There are two options for adjusting the starting point of a process. These are
as follows:

1. Providing a specific time or start immediately.
2. Providing a specific RBA and Sequence number.

The former option has a BEGIN NOW command which is often used for new
installations. Valid commands are as follows:

GGSCI (dbserver1) 1> ADD EXTRACT extract1, TRANLOG, BEGIN NOW

Or:

GGSCI (dbserver1) 2> ADD EXTRACT extract1, TRANLOG, BEGIN 2010-09-17
10:05

Chapter 10

[213]

Alternatively, you may wish to start your Extract process from the beginning of the
trail to "replay" transactions (if the files are still available). This is achieved through
the following GGSCI commands:

1. Stop the Extract process.
GGSCI (dbserver1) 4> STOP EXTRACT extract1

2. Now adjust the Extract process' Sequence number and RBA.
GGSCI (dbserver1) 5> ALTER EXTRACT extract1, EXTSEQNO 0, EXTRBA 0

3. Restart the Extract process.
GGSCI (dbserver1) 6> START EXTRACT extract1

Altering Extract processes in RAC environments
The following example shows the differences between altering an Extract process in
a RAC environment. Here, the THREAD option must be specified when altering the
starting position in a trail, unless a timestamp is used, affecting all RAC instances.

GGSCI (rac1) 1> stop ENMMSG1

Sending STOP request to EXTRACT ENMMSG1 ...
Request processed.

 GGSCI (rac1) 2> alter EXTRACT ENMMSG1, extseqno 15471, extrba 76288
ERROR: Only timestamps may be altered for checkpoints of all RAC
instances. Use THREAD option to alter position per thread..

GGSCI (rac1) 3> alter EXTRACT ENMMSG1, extseqno 15471, extrba 76288,
thread 1 EXTRACT altered.

GGSCI (rac1) 4> start ENMMSG1

Checking process checkpoints
To verify that a process is working, we can check whether it is check-pointing.
This is achieved by executing the GGSCI INFO command with the SHOWCH option.
The following example demonstrates this for a Replicat process that was started
up, having been stopped for 20 days. We see the check-point move from Sequence
number 3, RBA 32891 to Sequence number 4, RBA 580. The command also includes
the database checkpoint information stored in the GGS_ADMIN.GGSCHKPT table.

GGSCI (dbserver2) 1> info REPLICAT REPLCAT1, showch

REPLICAT REPLCAT1 Last Started 2010-11-20 15:45 Status RUNNING

Checkpoint Lag 00:00:00 (updated 00:00:01 ago)

Log Read Checkpoint File ./dirdat/ta000004

Troubleshooting GoldenGate

[214]

 2010-11-20 15:45:31.681837 RBA 580

Current Checkpoint Detail:

Read Checkpoint #1

 GGS Log Trail

 Startup Checkpoint (starting position in the data source):

 Sequence #: 3

 RBA: 32891

 Timestamp: 2010-11-09 13:49:05.000440

 Extract Trail: ./dirdat/ta

 Current Checkpoint (position of last record read in the data source):

 Sequence #: 4

 RBA: 580

 Timestamp: 2010-11-20 15:45:31.681837

 Extract Trail: ./dirdat/ta

Header:

 Version = 2

 Record Source = A

 Type = 1

 # Input Checkpoints = 1

 # Output Checkpoints = 0

File Information:

 Block Size = 2048

 Max Blocks = 100

 Record Length = 2048

 Current Offset = 0

Configuration:

 Data Source = 0

 Transaction Integrity = -1

 Task Type = 0

Database Checkpoint:

 Checkpoint table = GGS_ADMIN.GGSCHKPT

 Key = 528145677 (0x1f7add0d)

Chapter 10

[215]

 Create Time = 2010-10-17 16:17:47

Status:

 Start Time = 2010-11-20 15:45:31

 Last Update Time = 2010-11-20 15:46:01

 Stop Status = A

 Last Result = 400

As discussed in Chapter 9, Performance Tuning, understanding GoldenGate's check-
point mechanism is the key to evaluating network performance. Now let's look at
troubleshooting network issues.

Investigating network issues
GoldenGate is heavily dependent on a fast and reliable network between a
source and the target database—without this, data replication cannot take place.
Furthermore, if your network fails, the Extract, Data Pump, and Replicat processes
may not necessarily abend.

TCP/IP
By default, the GoldenGate Manager uses TCP port 7809 which starts a Collector
process on port 7840. As load on the Collector increases, the Manager can
dynamically spawn up to 256 additional processes running on dedicated ports,
which may or may not be open and available to the operating system.

One obvious check to confirm connectivity between hosts is to use the Linux ping
utility. However, ping uses the Internet Control Message Protocol (ICMP), which
can also be blocked by Firewalls, so to check that a TCP port is open and can pass
traffic use the telnet utility as follows:

telnet <target hostname> <port number>

Despite the Telnet daemon not running by default on Linux, you should still receive
the following message from the remote host confirming the requested port is open.
Otherwise, the command just hangs with no response.

[oracle@dbserver1 ggs]$ telnet dbserver2 7840

Trying 192.168.1.66...

Connected to dbserver2 (192.168.1.66).

Escape character is '^]'.

Troubleshooting GoldenGate

[216]

The Linux netstat command can also be used to verify connectivity between hosts.
The following example output shows the dynamic Collector processes establishing
connections on ports 7847 and 7848:

[oracle@dbserver1 ggs]$ netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address
State

tcp 0 0 dbserver1:ncube-lm dbserver2:19486
ESTABLISHED

tcp 6 0 dbserver1:37296 dbserver2:7848
ESTABLISHED

tcp 0 0 dbserver1:ncube-lm dbserver2:10099
ESTABLISHED

tcp 8 0 dbserver1:9462 dbserver2:7847
ESTABLISHED

tcp 0 0 dbserver1:7848 dbserver2:37296
ESTABLISHED

tcp 0 0 dbserver1:19486 dbserver2:ncube-lm
ESTABLISHED

tcp 0 0 dbserver1:10099 dbserver2:ncube-lm
ESTABLISHED

tcp 0 0 dbserver1:7847 dbserver2:9462
ESTABLISHED

SQL*Net
Although GoldenGate is decoupled from the Oracle database, it is still important
that successful connections to the source and target database via SQL*Net can be
achieved. A quick and easy test is to use the SQL*Plus utility using a TNS alias in the
connect string to confirm connectivity. A successful TNS connection is demonstrated
in the following example against the target database:

[oracle@dbserver2 ggs]$ sqlplus ggs_admin/ggs_admin@OLAP

SQL*Plus: Release 11.1.0.7.0 - Production on Sat Nov 20 16:26:43 2010

Copyright (c) 1982, 2008, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing
options

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[217]

SQL>

We may suffer the ORA-12541: TNS:no listener error. In this case, check the
database Listener is running and supporting services.

[oracle@dbserver2 ggs]$ lsnrctl status LISTENER

LSNRCTL for Linux: Version 11.1.0.7.0 - Production on 20-NOV-2010
16:30:51

Copyright (c) 1991, 2008, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=dbserver2)
(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 11.1.0.7.0 -
Production

Start Date 20-NOV-2010 15:43:32

Uptime 0 days 0 hr. 47 min. 19 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File /opt/oracle/app/product/11.1.0/db_1/network/
admin/listener.ora

Listener Log File /opt/oracle/diag/tnslsnr/dbserver2/listener/
alert/log.xml

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dbserver2)(PORT=1521)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Services Summary...

Service "OLAP" has 1 instance(s).

 Instance "OLAP", status READY, has 1 handler(s) for this service...

Service "OLAPXDB" has 1 instance(s).

 Instance "OLAP", status READY, has 1 handler(s) for this service...

Service "OLAP_XPT" has 1 instance(s).

 Instance "OLAP", status READY, has 1 handler(s) for this service...

The command completed successfully

Troubleshooting GoldenGate

[218]

That all looks fine, but we may still have a problem connecting. This may be due
to the TNS admin entry in the tnsnames.ora file, located in the $ORACLE_HOME/
network/admin directory. This file provides a "lookup" for SQL*Net connections.
To verify the OLAP entry is valid and can be successfully resolved, we can use the
tnsping utility.

[oracle@dbserver2 ggs]$ tnsping OLAP

TNS Ping Utility for Linux: Version 11.1.0.7.0 - Production on 20-NOV-
2010 16:43:07

Copyright (c) 1997, 2008, Oracle. All rights reserved.

Used parameter files:

Used TNSNAMES adapter to resolve the alias

Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST =
dbserver2)(PORT = 1521)) (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_
NAME = OLAP)))

OK (0 msec)

Of course, connectivity is one thing, but although it sounds simple, check the
source and target databases are open and the GGS_ADMIN schema can be accessed by
GoldenGate.

Investigating Oracle errors
Should an Oracle error cause the Manager, Extract, and Replicat process to abend,
their corresponding report files will contain the Oracle error number and message.

The following example shows an ORA-03113 error from a failed Replicat process:

2010-11-21 11:10:38 GGS ERROR 182 OCI Error executing single row
select (status = 3113-ORA-03113: end-of-file on communication channel

This is useful in determining the root cause, but maybe it doesn't provide enough
detail on how to progress the issue. Luckily help is at hand; every Oracle home
contains an error lookup utility, which nine times out of ten provides additional
information about the error and instruction in how to fix it. The utility is oerr,
located in the $ORACLE_HOME/bin directory on Linux versions.

oerr accepts two arguments, the error group name and the error number. So let's
execute oerr on the Linux command line and see what is says about ORA-03113.

[oracle@dbserver1 dirrpt]$ oerr ora 3113

03113, 00000, "end-of-file on communication channel"

// *Cause: The connection between Client and Server process was broken.

Chapter 10

[219]

// *Action: There was a communication error that requires further
investigation.

// First, check for network problems and review the SQL*Net
setup.

// Also, look in the alert.log file for any errors. Finally,
test to

// see whether the server process is dead and whether a trace
file

// was generated at failure time.

Perfect, that is just the right approach we should adopt to resolve the communication
problem in our GoldenGate environment.

Exception handling
GoldenGate does not provide a standard exceptions handler. By default, a Replicat
process will abend should any operational failure occur, and will rollback the
transaction to the last known checkpoint. This may not be ideal in a production
environment.

The HANDLECOLLISIONS and NOHANDLECOLLISIONS parameters can be used to control
whether or not a Replicat process tries to resolve duplicate record and missing record
errors, but should these errors be ignored?

The way to determine what error has occurred, by which Replicat, caused by what
data, is to create an Exceptions handler.

Creating an Exceptions handler
The following steps create an Exceptions handler that will trap and log the specified
Oracle error(s), but allow the Replicat to continue to process data:

1. The first step is to create an Exceptions table, as shown in the example DDL:
create table ggs_admin.exceptions
(rep_name varchar2(8)
, table_name varchar2(61)
, errno number
, dberrmsg varchar2(4000)
, optype varchar2(20)
, errtype varchar2(20)
, logrba number
, logposition number
, committimestamp timestamp

Troubleshooting GoldenGate

[220]

);

ALTER TABLE ggs_admin.exceptions ADD (
 CONSTRAINT PK_CTS
 PRIMARY KEY
 (logrba, logposition, committimestamp) USING INDEX PCTFREE 0
TABLESPACE MY_INDEXES);

The Exceptions table must be created in the GoldenGate Admin user schema.
It can log exception data for all Replicat processes.

2. Edit each Replicat process parameter file and add the exception handler
Macro code block.
[oracle@dbserver2 ggs]$ ggsci

GGSCI (dbserver2) 1> edit params RTARGET1
-- Start of the macro
MACRO #exception_handler
BEGIN
, TARGET ggs_admin.exceptions
, COLMAP (rep_name = "RTARGET1"
, table_name = @GETENV ("GGHEADER", "TABLENAME")
, errno = @GETENV ("LASTERR", "DBERRNUM")
, dberrmsg = @GETENV ("LASTERR", "DBERRMSG")
, optype = @GETENV ("LASTERR", "OPTYPE")
, errtype = @GETENV ("LASTERR", "ERRTYPE")
, logrba = @GETENV ("GGHEADER", "LOGRBA")
, logposition = @GETENV ("GGHEADER", "LOGPOSITION")
, committimestamp = @GETENV ("GGHEADER", "COMMITTIMESTAMP"))
, INSERTALLRECORDS
, EXCEPTIONSONLY;
END;
-- End of the macro

3. Remaining within the editor (vi), edit the MAP statements to include the call
to the Macro; #exception_handler(). Also, add the REPERROR parameter to
reference to the Oracle error(s) you wish to trap.
REPERROR (DEFAULT, EXCEPTION)
REPERROR (DEFAULT2, ABEND)
REPERROR (-1, EXCEPTION)
MAP SRC.ORDERS, TARGET TGT.ORDERS;
MAP SRC.ORDERS #exception_handler()
MAP SRC.ORDER_ITEMS, TARGET TGT.ORDER_ITEMS;
MAP SRC.ORDER_ITEMS #exception_handler()

Chapter 10

[221]

MAP SRC.PRODUCTS, TARGET TGT.PRODUCTS;

MAP SRC.PRODUCTS #exception_handler()

The REPERROR parameter controls how the Replicat process responds to errors when
executing the MAP statement.

The DEFAULT option sets a global response to all errors except those for which explicit
REPERROR statements are specified. For example, a MAP statement to trap ORA-
01403: "no data found" error would be configured as follows:

MAP SRC.ORDERS, TARGET TGT.ORDERS, REPERROR (-1403, EXCEPTION);

The DEFAULT2 option specifies a "catch all" action for any unanticipated Oracle
errors that may occur. In the example in step 3, the Replicat process will abend if a
unhandled exception occurs.

1. Now stop and start the Replicat process.
GGSCI (dbserver2) 3> stop REPLICAT RTARGET1

Sending STOP request to REPLICAT RTARGET1 ...

Request processed.

GGSCI (dbserver2) 4> start replicat RTARGET1

Sending START request to MANAGER ...

REPLICAT RTARGET1 starting

2. Check Replicat process is running.
GGSCI (dbserver2) 5> info all

Program Status Group Lag Time Since Chkpt

MANAGER RUNNING

REPLICAT RUNNING RTARGET1 00:00:00 00:00:22

3. Finally start your application and begin replicating data.

Viewing Exceptions
Having trapped Exceptions, we can view them by querying our newly created
GGS_ADMIN.EXCEPTIONS table. The information contained herein, is enough for the
GoldenGate administrator to make decisions on whether to ignore the error, or fix
and replay the failed transaction. Let's take a look at an example Exception.

Troubleshooting GoldenGate

[222]

The following is an example of the data collected following an ORA-00001: "unique
constraint violated" error:

SQL> select * from ggs_admin.exceptions where rownum <= 1;

REP_NAME TABLE_NAME ERRNO DBERRMSG

-------- ---------- ----- --------

RTARGET1 SRC.ORDERS 1 OCI Error ORA-00001: unique constraint (TGT.
PK_ORD) violated (status = 1), SQL

 <INSERT INTO "TGT"."ORDERS" ("ORDER_ID","CUST_
ID","PRODUCT_ID" ..

OPTYPE ERRTYPE LOGRBA LOGPOSITION COMMITTIMESTAMP

------ ------- ------ ----------- -------------------------

INSERT DB 988 171211460 02-APR-10 12.41.42.999468

Please note that the DBERRMSG column will store the error,
the error description, and the complete SQL up to 4000
bytes. So you can expect some truncation when large SQL
statements fail.

The ORA-00001 error is typical of data duplication, where a primary key already
exists in the target table. Be sure to synchronize your target database with your
source before starting GoldenGate Change Data Capture (CDC).

The ORA-01403 error is typical of a failed UPDATE or DELETE operation, where the
target row's primary key cannot be found; be sure to modify the Exception handler
to include the before and after images.

Before and after images
Before and after image information is valuable for exception handling as well as
conflict detection. INSERT operations only have an after image, whereas DELETE
operations only have a before image. UPDATE operations however, have both. Before
images contain data that existed before the column was updated. This information
can be captured as follows:

1. To enable the capture of Before and After images in the EXCEPTIONS table, we
must add a BEFOREAFTER column.
SQL> alter table GGS_ADMIN.EXCEPTIONS add BEFOREAFTER char(1);
Table altered.

Chapter 10

[223]

2. Then modify the Exceptions Handler Macro to include a call to the @GETENV
function, to obtain the necessary GoldenGate environment information.
beforeafter= @GETENV ("GGHEADER", "BEFOREAFTERINDICATOR")

This will give us either a "B" for a before image, or an "A" for an after image.
The actual data is visible in the SQL populated by the Macro in the DBERRMSG
column of the EXCEPTIONS table.

3. To make the Before image available in the Extract Trail, add the
GETUPDATEBEFORES parameter to the Extract process parameter file.

Conflict detection and resolution has previously been discussed in Chapter 5,
Configuration Options, which allows GoldenGate to automatically make decisions
when a conflict is detected.

Handling Oracle Sequences
Although GoldenGate supports the replication of Oracle Sequence values, there are
a number of issues we need to be aware of. For example, GoldenGate will support
replication using the following methods:

•	 Change Data Capture (CDC).
•	 Batch processing where checkpoints are not maintained. This is dependent

on the SPECIALRUN parameter exiting in the Replicat parameter file.
•	 But the following are not supported:

	° Initial loads where the source data is derived from the source tables
and not the redo logs, so the sequence values are not extracted.

	° Bi-directional environments. The database sequences must generate
values on the target database independent to the source. However, in
a cascade environment, GETAPPLOPS must be enabled on the Extract
to capture sequence values replicated by the Replicat process.

Sequence gaps often occur in an Oracle database, depending on the associated
sequence cache size and number of instances in a RAC environment. However, the
target values will always be greater than those of the source (for a positive sequence),
unless the NOCHECKSEQUENCEVALUE parameter is used.

Oracle recommends that the CHECKSEQUENCEVALUE parameter is enabled, (which
is the default) unless you are sure there will be no gaps in the sequence. However,
setting CHECKSEQUENCEVALUE does provide a performance hit, as GoldenGate has to
evaluate the sequence numbers.

Troubleshooting GoldenGate

[224]

Using LOGDUMP
LOGDUMP is a great utility and a real bonus to the Oracle GoldenGate software bundle.
Without LOGDUMP, we could not read a Trail file, which would make us blind to
troubleshooting data related issues.

LOGDUMP has a command line interface that allows you to open files, format the display,
and navigate through a file including filtering data. To invoke the utility, go to the
GoldenGate home directory and type "logdump", as shown in the following example.

[oracle@dbserver1 ggs]$./logdump

Oracle GoldenGate Log File Dump Utility

Version 10.4.0.19 Build 002

Copyright (C) 1995, 2009, Oracle and/or its affiliates. All rights
reserved.

Logdump 1 >ENV

Version : Linux, x86, 32bit (optimized) on Sep 29 2009
08:53:18

Current Directory : /u01/app/oracle/product/ggs

LogTrail : *Not Open*

Display RecLen : 140

Logtrail Filter : On

Trans History : 0 Transactions, Records 100, Bytes 100000

LargeBlock I/O : On, Blocksize 57344

Local System : LittleEndian

Logtrail Data : BigEndian/ASCII

Logtrail Headers : ASCII

Dump : ASCII

Timeoffset : LOCAL

Scan Notify Interval: 10000 records, Scrolling On

Logdump 2 >

As with the GGSCI utility, LOGDUMP increments the number at its command prompt
for each command entered. Even if you exit LOGDUMP, the number will increment
when you return. This is because LOGDUMP maintains a history of commands used.

Chapter 10

[225]

The preceding example shows the output of the ENV command, which is one of many
commands required to be productive with LOGDUMP. Firstly, we must tell LOGDUMP to
open a file, and then specify how much detail you require before scanning or filtering
data. However, should you get stuck there is always the HELP command to get you
back on track, which incidentally shows many undocumented commands.

Opening files
Let's start with the OPEN command. Before opening a file, we must choose one.
Execute the following Linux command from the GoldenGate home directory to list
the available files:

[oracle@dbserver1 ggs]$ ls -l dirdat

-rw-rw-rw- 1 oracle oinstall 3859 Jun 19 17:10 INITLOAD01.DAT

-rw-rw-rw- 1 oracle oinstall 68929 Nov 9 13:28 sa000004

-rw-rw-rw- 1 oracle oinstall 68929 Nov 9 13:32 sa000005

-rw-rw-rw- 1 oracle oinstall 68929 Nov 9 13:35 sa000006

Let's open local Trail file sa000004 from LOGDUMP.

Logdump 2 >open dirdat/sa000004

Current LogTrail is /u01/app/oracle/product/ggs/dirdat/sa000004

Before we can see the contents of the file, we must set up a view in LOGDUMP. The
following table of commands will provide the necessary details depending on
your requirements:

Command Description
FILEHEADER [on | off | detail] Controls whether or not the trail file header is

displayed and how much detail.
GHDR [on | off] Controls whether or not the record header is

displayed with each record.
DETAIL [on | off | data] Displays a list of columns that includes the column

ID, length, plus values in hex and ASCII. DATA
adds hex and ASCII data values to the column list.

USERTOKEN [detail] Displays the actual token data.
RECLEN [<# of bytes>] Controls how much of the record data is displayed

in characters.

Troubleshooting GoldenGate

[226]

So, working through the list, enable the file header detail, GDHR, user token detail,
and record length options.

Logdump 3 >fileheader detail

Logdump 4 >ghdr on

Logdump 6 >detail on

Logdump 7 >usertoken detail

Logdump 8 >reclen 128

Reclen set to 128

Viewing the header record
Now it's time to navigate our way through the file starting at position 0, the first
record in the file. This is the beginning of the header record:

Logdump 9 >pos 0

Reading forward from RBA 0

To view the header record we must step to the next Relative Byte Address (RBA).
This is easy using LOGDUMP; just type next or n.

2010/11/09 12:56:49.942.356 FileHeader Len 928 RBA 0

Name: *FileHeader*

 3000 01a2 3000 0008 4747 0d0a 544c 0a0d 3100 0002 | 0...0...GG..TL..1...

 0002 3200 0004 ffff fffd 3300 0008 02f1 bad1 bae9 | ..2.......3.........

Included in the header record is a wealth of information, given that we have enabled
a detailed view. The information is grouped by type with a list of related tokens,
shown in the following example output:

GroupID x30 '0' TrailInfo Info x00 Length 418

TokenID x30 '0' Signature Info x00 Length 8

TokenID x31 '1' Compatibility Info x00 Length 2

TokenID x32 '2' Charset Info x00 Length 4

TokenID x33 '3' CreationTime Info x00 Length 8

TokenID x34 '4' URI Info x00 Length 38

TokenID x36 '6' Filename Info x00 Length 19

TokenID x37 '7' MultiPart Info x00 Length 1

TokenID x38 '8' Seqno Info x00 Length 4

TokenID x39 '9' FileSize Info xff Length 8

TokenID x3a ':' FirstCSN Info x00 Length 129

Chapter 10

[227]

TokenID x3b ';' LastCSN Info xff Length 129

TokenID x3c '<' FirstIOTime Info x00 Length 8

TokenID x3d '=' LastIOTime Info xff Length 8

GroupID x31 '1' MachineInfo Info x00 Length 100

TokenID x30 '0' Sysname Info x00 Length 7

TokenID x31 '1' Nodename Info x00 Length 17

TokenID x32 '2' Release Info x00 Length 14

TokenID x33 '3' Version Info x00 Length 36

TokenID x34 '4' Hardware Info x00 Length 6

GroupID x32 '2' DatabaseInfo Info x00 Length 299

TokenID x30 '0' Vendor Info x00 Length 2

TokenID x31 '1' Name Info x00 Length 6

TokenID x32 '2' Instance Info x00 Length 6

TokenID x33 '3' Charset Info x00 Length 4

TokenID x34 '4' MajorVersion Info x00 Length 2

TokenID x35 '5' MinorVersion Info x00 Length 2

TokenID x36 '6' VerString Info x00 Length 225

TokenID x37 '7' ClientCharset Info x00 Length 4

TokenID x38 '8' ClientVerString Info x00 Length 12

GroupID x33 '3' ProducerInfo Info x00 Length 83

TokenID x30 '0' Name Info x00 Length 10

TokenID x31 '1' DataSource Info x00 Length 2

TokenID x32 '2' MajorVersion Info x00 Length 2

TokenID x33 '3' MinorVersion Info x00 Length 2

TokenID x34 '4' MaintLevel Info x00 Length 2

TokenID x35 '5' BugFixLevel Info x00 Length 2

TokenID x36 '6' BuildNumber Info x00 Length 2

TokenID x37 '7' VerString Info x00 Length 29

GroupID x34 '4' ContinunityInfo Info x00 Length 8

TokenID x30 '0' RecoveryMode Info x00 Length 4

Having learnt how to read the header record, we can now use LOGDUMP to view
the transaction records.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Troubleshooting GoldenGate

[228]

Viewing the transaction record
Typing next or n again steps through each record in the file. The following example
shows details of an INSERT operation against the SRC.USERS table, including the
actual data and record count. You could argue that each record would always have
a record count of 1. This is not true for LOBs, which are split into 2KB chunks when
written to a Trail file.

Logdump 19 >n

Hdr-Ind : E (x45) Partition : . (x04)

UndoFlag : . (x00) BeforeAfter: A (x41)

RecLength : 29 (x001d) IO Time : 2010/11/09 13:25:14.000.000

IOType : 5 (x05) OrigNode : 255 (xff)

TransInd : . (x00) FormatType : R (x52)

SyskeyLen : 0 (x00) Incomplete : . (x00)

AuditRBA : 138 AuditPos : 38737936

Continued : N (x00) RecCount : 1 (x01)

2010/11/09 13:25:14.000.000 Insert Len 29 RBA 999

Name: SRC.USERS

After Image: Partition 4 G
b

 0000 0007 0000 0003 5352 4300 0100 0500 0000 0159 |TEST.......Y

 0002 0005 0000 0001 4e |N

Column 0 (x0000), Len 7 (x0007)

Column 1 (x0001), Len 5 (x0005)

Column 2 (x0002), Len 5 (x0005)

The equivalent transaction record in the remote Trail file is identical to that found in
the local Trail file, and is identifiable by the same Audit Position number.

Let's query the USERS table in the SRC schema to see the actual record that we are
viewing in LOGDUMP.

SQL> select * from SRC.USERS

 2 where USER_ID = 'TEST';

USER_ID REGISTERED ASSIGNED

-------- ----------- ---------

TEST Y N

Chapter 10

[229]

Each record in the Trail file contains the following information:

•	 The operation type, such as an insert, update, or delete
•	 The transaction indicator (TransInd): 00 beginning, 01 middle, 02 end or 03

whole of transaction
•	 The before or after indicator (BeforeAfter) for update operations
•	 The commit timestamp
•	 The time that the change was written to the GoldenGate file
•	 The type of database operation
•	 The length of the record
•	 The Relative Byte Address (RBA) within the GoldenGate file
•	 The schema and table name

The transaction record provides ample information to help you troubleshoot data
related issues. For example, the before image of an UPDATE or DELETE operation
would prove very useful in determining the reason for an ORA-01403: no data
found error.

Miscellaneous commands
The miscellaneous commands are useful for displaying additional information, and
are listed in the following table:

Command Description
HISTORY List previous commands
RECORD Display audit record
SKIP [<count>] Skip down <count> records
SFH Scans for the file header record
ENV Displays GoldenGate environment details
COUNT [detail] Count the records in the file
EXIT Exits LOGDUMP

This example highlights the power of the COUNT command:

Logdump 34 >count

LogTrail u01/app/oracle/product/ggs/dirdat/sa000004 has 602 records

Total Data Bytes 15703

 Avg Bytes/Record 26

Troubleshooting GoldenGate

[230]

Delete 280

Insert 320

RestartOK 1

Others 1

Before Images 280

After Images 321

Average of 17 Transactions

 Bytes/Trans 2623

 Records/Trans ... 35

 Files/Trans 1

 Partition 0

RestartOK 1

After Images 1

FileHeader Partition 0

Total Data Bytes 928

 Avg Bytes/Record 928

Others 1

SRC.USERS Partition 4

Total Data Bytes 14775

 Avg Bytes/Record 24

Delete 280

Insert 320

Before Images 280

After Images 320

You are now familiar with the miscellaneous LOGDUMP commands, which are
commonly used for searching and counting records as well as displaying command
history and environment information.

Chapter 10

[231]

Filtering records
You can do some pretty fancy stuff with LOGDUMP filtering. A whole suite of
commands are set aside for this. We can filter on just about anything that exists in the
Trail file, such as process name, RBA, record length, record type, even a string!

The following example shows the required syntax to filter on DELETE operations.
Note that LOGDUMP reports how many records have been excluded by the filter.

Logdump 52 >filter include iotype delete

Logdump 53 >n

2010/11/09 13:31:40.000.000 Delete Len 17 RBA 5863

Name: SRC.USERS

Before Image: Partition 4 G
b

 0000 000d 0000 0009 414e 4f4e 594d 4f55 53 |ANONYMOUS

Filtering suppressed 42 records

Upgrading GoldenGate
Should you be unfortunate enough to hit a bug in your GoldenGate environment,
Oracle Support may suggest an upgrade to the latest release. Upgrading an
Oracle database can be both complex and risky, and requires careful planning and
downtime. However, GoldenGate upgrades are simple in comparison. We need
to follow the following short steps to achieve a successful upgrade from Oracle
GoldenGate for Linux x86-64 bit version 10.4.0.19 Build 002 to Version 11.1.1.0.0
build 78.

1. Log on to the database server as Oracle, start a GGSCI session and stop all
Extract and Replicat processes.
GGSCI (dbserver1) 1> stop *

2. Now stop the Manager process.
GGSCI (dbserver1) 2> stop mgr

Manager process is required by other GGS processes.

Are you sure you want to stop it (y/n)? y

3. Exit GGSCI and copy the patch file to the GoldenGate home directory and
unzip it.
[oracle@dbserver1 ggs]$ unzip p10146318_11110_Linux-x86-64.zip

Troubleshooting GoldenGate

[232]

4. Now extract the archive from the resultant tar file.
[oracle@dbserver1 ggs]$ tar xvf ggs_Linux_x64_ora11g_64bit_
v11_1_1_0_5_003.tar

5. Log in to GGSCI and start the Manager process.
GGSCI (dbserver1) 1> start mgr

6. Start the Extract and Replicat processes if not already started.
GGSCI (dbserver1) 2> start *

7. Ensure all processes are running and that's it!

Summary
Whether you are a novice or an experienced DBA, you will be drawn to this chapter
time and again. Troubleshooting is an everyday task for many IT professionals,
but no one can master every eventuality. This chapter has captured some of
the most common failure scenarios offering help and guidance to a successful
resolution. From using LOGDUMP to drill into the GoldenGate Trail files, to automatic
exception handling, we have learnt the importance of a methodical approach to
troubleshooting.

At the time of writing, Oracle GoldenGate 11.1.1 Build 078 has been released. This
chapter has shown us the ease with which to upgrade our GoldenGate environment,
providing us with the ability to address the constant demand for enhanced
performance and new features.

This chapter concludes the book, Oracle GoldenGate 11g Implementer's Guide. More
than an implementation guide, it offers detailed real-life examples, encouraging
additional thought and discussion by going beyond the manual. From installation
to troubleshooting, it has taught you how to build, configure, and tune GoldenGate
effectively in Oracle 11g environments.

GGSCI Commands
In the world of IT, writing a book takes at least a year, in which time technology has
moved on and in some cases the contents can be out of date. Therefore, the objective
of this appendix is two fold:

•	 To act as a quick reference guide to all the available GoldenGate Software
Command Interface (GGSCI) commands, including the GoldenGate
installed components

•	 To catch any subjects and terminology not addressed in the previous
chapters

Some say that since the Oracle acquisition of GoldenGate, the product has changed
its name. This is indeed true; GoldenGate Software (GGS) is now known as Oracle
GoldenGate (OGG). No surprise there. However this is not true for the GoldenGate
Command Interpreter; it is still called GGSCI and not OGGCI, even in the latest
version of GoldenGate!

GGSCI Commands

[234]

The following table lists and describes the available GGSCI commands, arranged by
command group:

Command
Group

Command Description

MANAGER INFO MANAGER Displays the Manager process status
information.
For example:
INFO MGR

Or
INFO MANAGER

MANAGER REFRESH MANAGER Updates the Manager process configuration
without stopping and starting. Valid for all
configuration parameters except PORT.
For example:
REFRESH MGR

Or
REFRESH MANAGER

MANAGER SEND MANAGER Obtains addition status information when used
with the following options:
CHILDSTATUS [DEBUG]

GETPORTINFO [DETAIL]

GETPURGEOLDEXTRACTS

For example:
SEND MANAGER CHILDSTATUS DEBUG

SEND MANAGER GETPORTINFO DETAIL

SEND MANAGER GETPURGEOLDEXTRACTS

MANAGER START MANAGER Starts the Manager process. The command
supports wildcards.
For example:

•	 START MGR

Or
•	 START MANAGER

MANAGER STATUS MANAGER Same as INFO command.

Appendix A

[235]

Command
Group

Command Description

MANAGER STOP MANAGER Stops the Manager process. The command
supports wildcards.
For example:

•	 STOP MGR

Or
•	 STOP MANAGER

EXTRACT ADD EXTRACT Creates a new Extract group.
For example:
ADD EXTRACT EOLTP01, TRANLOG,
BEGIN NOW, THREADS 1

EXTRACT ALTER EXTRACT Alters an existing Extract group.
For example:
ALTER EXTRACT EOLTP01, EXTSEQNO
556, EXTRBA 775531

EXTRACT CLEANUP EXTRACT Deletes the run history for the specified
Extract group. The Extract process must first
be stopped. When used with the SAVE option,
the command will delete all except the last
specified number of records. The command
supports wildcards.
For example:
CLEANUP EXTRACT *, SAVE 3

EXTRACT DELETE EXTRACT Deletes an Extract group. The Extract process
must first be stopped. When used with an
exclamation mark, the command will delete
all Extract groups associated with a wildcard
without prompting for confirmation.
For example:

DELETE EXTRACT E* !

EXTRACT INFO EXTRACT Displays status summary for an Extract
process. The DETAIL option provides
more information. The command supports
wildcards.
For example:

INFO E*, DETAIL

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

GGSCI Commands

[236]

Command
Group

Command Description

EXTRACT KILL EXTRACT Kills an Extract process. Use when the process
cannot be stopped gracefully.
For example:
KILL EXTRACT EOLTP01

EXTRACT LAG EXTRACT Displays the lag time between the Extract
process and the data source. The command
supports wildcards.
For example:
LAG EXTRACT *

EXTRACT SEND EXTRACT Sends requests to the Extract process, such as;
ad-hoc report generation and statistics. The
command can also be used to force the Extract
process to be rolled over to next trail file.
For example:
SEND EXTRACT EOLTP01, REPORT

SEND EXTRACT EOLTP01, ROLLOVER

EXTRACT VIEW REPORT Allows process reports generated by the SEND
command to be viewed.
For example:
VIEW REPORT EOLTP01

EXTRACT START EXTRACT Starts the Extract process. The command
supports wildcards.
For example:
START EXTRACT *

EXTRACT STATS EXTRACT Displays Extract process statistics.
For example:
STATS EXTRACT EOLTP01, TOTALSONLY
SRC.ORDERS

EXTRACT STATUS EXTRACT Provides basic Extract process state. The
command supports wildcards.
For example:
STATUS EXTRACT E*

EXTRACT STOP EXTRACT Stops the Extract process. The command
supports wildcards.
For example:
STOP EXTRACT *

Appendix A

[237]

Command
Group

Command Description

REPLICAT ADD REPLICAT Creates a new Replicat group.
For example:
ADD REPLICAT ROLAP01, EXTTRAIL ./
dirdat/ta

REPLICAT ALTER REPLICAT Alters an existing Replicat group.
For example:
ALTER REPLICAT ROLAP01, BEGIN
2010-09-07 10:00:00

REPLICAT CLEANUP REPLICAT Deletes the run history for the specified Extract
group. The Replicat process must first be
stopped. When used with the SAVE option,
the command will delete all except the last
specified number of records. The command
supports wildcards.
For example:
CLEANUP REPLICAT *, SAVE 3

REPLICAT DELETE REPLICAT Deletes an Extract group. The Replicat process
must first be stopped. When used with an
exclamation mark, the command will delete
all Replicat groups associated with a wildcard
without prompting for confirmation.
For example:
DELETE REPLICAT R* !

REPLICAT INFO REPLICAT Displays status summary for a Replicat
process. The DETAIL option provides
more information. The command supports
wildcards.
For example:
INFO R*, DETAIL

REPLICAT KILL REPLICAT Kills a Replicat process. Use when the process
cannot be stopped gracefully.
For example:
KILL REPLICAT ROLAP01

REPLICAT LAG REPLICAT Displays the lag time between the Replicat
process and the data source. The command
supports wildcards.
For example:
LAG REPLICAT *

GGSCI Commands

[238]

Command
Group

Command Description

REPLICAT SEND REPLICAT Sends requests to the Replicat process, such as
adhoc report generation and statistics.
For example:
SEND REPLICAT ROLAP01, REPORT

REPLICAT VIEW REPORT Allows process reports generated by the SEND
command to be viewed.
For example:
VIEW REPORT ROLAP01

REPLICAT START REPLICAT Starts the Replicat process. The command
supports wildcards.
For example:
START REPLICAT *

REPLICAT STATS REPLICAT Displays Replicat process statistics.
For example:
STATS REPLICAT ROLAP01, TOTALSONLY
*, REPORTRATE SEC

REPLICAT STATUS REPLICAT Provides basic Replicat process state. The
command supports wildcards.
For example:
STATUS REPLICAT R*

REPLICAT STOP REPLICAT Stops the Replicat process. The command
supports wildcards.
For example:
STOP REPLICAT *

TRAIL ADD EXTTRAIL Creates a local trail for an Extract group.
For example:
ADD EXTTRAIL ./dirdat/sa, EXTRACT
EOLTP01, MEGABYTES 50

TRAIL ADD RMTTRAIL Creates a remote trail for an Extract or Data
pump group.
For example:
ADD RMTTRAIL ./dirdat/ta, EXTRACT
EPMP01, MEGABYTES 50

Appendix A

[239]

Command
Group

Command Description

TRAIL ALTER EXTTRAIL Allows the trail file size to be altered. The
Extract process must be restarted for the
changes to take effect.
For example:
ALTER EXTTRAIL ./dirdat/sa, EXTRACT
EOLTP01, MEGABYTES 500

TRAIL ALTER RMTTRAIL Allows the trail file size to be altered. The
Extract process must be restarted for the
changes to take effect.
For example:
ALTER RMTTRAIL ./dirdat/ta, EXTRACT
EPMP01, MEGABYTES 100

TRAIL DELETE EXTTRAIL Deletes the local trail.
For example:
DELETE EXTTRAIL ./dirdat/sa

TRAIL DELETE RMTTRAIL Deletes the remote trail.
For example:
DELETE RMTTRAIL ./dirdat/ta

TRAIL INFO EXTTRAIL Provides information on the local trail status.
The command supports wildcards.
For example:
INFO EXTTRAIL *

TRAIL INFO RMTTRAIL Provides information on the remote trail status.
The command supports wildcards.
For example:
INFO RMTTRAIL *

PARAMS EDIT PARAMS Allows a process' parameter file to be edited.
The command invokes the default editor, such
as vi.
For example:
EDIT PARAMS EOLTP01

PARAMS SET EDITOR Changes the default editor.
For example:
SET EDITOR VI

GGSCI Commands

[240]

Command
Group

Command Description

PARAMS VIEW PARAMS Allows a process' parameter file to be viewed.
For example:
VIEW PARAMS EOLTP01

DATABASE DBLOGIN Provides access to the database with username
and password.
For example:
DBLOGIN USERID ggs_admin@OLTP,
PASSWORD Password01

DATABASE ENCRYPT
PASSWORD

Allows the database password to be encrypted
in the parameter file. Since Oracle 11g, the
password is case sensitive.
For example:
ENCRYPT PASSWORD Password01

DATABASE LIST TABLES Lists tables in a database schema. The
command supports wildcards. The command
must follow a successful DBLOGIN.
For example:
LIST TABLES SRC.*

TRANDATA ADD TRANDATA Adds supplemental logging to a database
table, necessary for transactional changes to be
written to the redo logs. The command must
follow a successful DBLOGIN.
For example:
ADD TRANDATA SRC.ORDERS

TRANDATA DELETE TRANDATA Stops the supplemental logging on a database
table. The command supports wildcards and
must follow a successful DBLOGIN.
For example:
DELETE TRANDATA SRC.*

TRANDATA INFO TRANDATA Provides supplemental logging status on
a database table. The command supports
wildcards and must follow a successful
DBLOGIN.
For example:
INFO TRANDATA SRC.*

Appendix A

[241]

Command
Group

Command Description

CHECKPOINT ADD
CHECKPOINTTABLE

Adds a Checkpoint table on the target
database. The command must follow a
successful DBLOGIN.
For example:
ADD CHECKPOINT TABLE GGS_ADMIN.
GGSCHKPT

CHECKPOINT CLEANUP
CHECKPOINTTABLE

Removes obsolete checkpoint records from the
Checkpoint table. Use when Replicat groups
are deleted or Trail files are removed. The
command must follow a successful DBLOGIN.
For example:
CLEANUP CHECKPOINTTABLE GGS_ADMIN.
GGSCHKPT

CHECKPOINT DELETE
CHECKPOINTTABLE

Deletes the Checkpoint table from the
database. The command must follow a
successful DBLOGIN.
For example:
DELETE CHECKPOINTTABLE GGS_ADMIN.
GGSCHKPT

CHECKPOINT INFO
CHECKPOINTTABLE

Displays the existence and creation date of the
Checkpoint table. The command must follow a
successful DBLOGIN.
For example:
INFO CHECKPOINTTABLE GGS_ADMIN.
GGSCHKPT

MISC ! Runs the last executed command.
For example:
!

MISC CREATE SUBDIRS Creates the GoldenGate subdirectories.
For example:
CREATE SUBDIRS

MISC FC Display, edit, and execute the last command.
For example:
FC

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

GGSCI Commands

[242]

Command
Group

Command Description

MISC HELP Provides help on command syntax.
For example:
HELP

MISC HISTORY Lists a history of GGSCI commands used.
For example:
HISTORY

MISC INFO ALL Displays a summary of the configured
processes.
For example:
INFO ALL

MISC OBEY Invokes a GGSCI command script.
For example:
OBEY dirprm/config.oby

MISC SHELL Allows OS commands to be executed from
GGSCI
For example:
SHELL ls –l dirdat

MISC SHOW Shows environment information.
For example:
SHOW

MISC VERSIONS Displays version of OS and database.
For example:
VERSIONS

MISC VIEW GGSEVT Displays the contents of the GoldenGate event
log
For example:
VIEW GGSEVT

GoldenGate Installed
Components

GoldenGate is architecturally a simple product with relatively few installed
components. This is one of the main reasons for its performance and flexibility. Let's
take a look at the software bundle that is installed on both the source and target
database servers.

The following table of files and directories make up the "GoldenGate Home":

Sub-directories Description
dirchk Stores GoldenGate checkpoint files
dirdat Stores GoldenGate trail files
dirdef Stores GoldenGate definition mapping files
dirout Stores GoldenGate output files
dirpcs Stores GoldenGate process files
dirprm Stores GoldenGate process parameter files
dirrpt Stores GoldenGate process report files
dirsql Stores GoldenGate user defined SQL files
dirtmp Stores GoldenGate temporary files
dirver Stores GoldenGate Veridata files
UserExitExamples Stores GoldenGate User Exit example files

GoldenGate Installed Components

[244]

SQL Filename Description
chkpt_ora_create.sql Creates the Goldengate checkpoint table
ddl_cleartrace.sql Clears GoldenGate DDL Replication Trace file
ddl_ddl2file.sql Saves DDL from marker table to a file
ddl_disable.sql Disables GoldenGate DDL Replication trigger
ddl_enable.sql Enables GoldenGate DDL Replication trigger
ddl_nopurgeRecyclebin.sql Allows the use of the Oracle database recyclebin

functionality
ddl_ora10.sql Support script for version specific Oracle10g logic
ddl_ora10upCommon.sql Support script for version specific Oracle10g and 11g

common logic
ddl_ora11.sql Support script for version specific Oracle11g logic
ddl_ora9.sql Support script for version specific Oracle9i logic
ddl_pin.sql Pins GoldenGate DDL Replication packages in

memory (Shared Pool)
ddl_purgeRecyclebin.sql Purges the Oracle database recyclebin
ddl_remove.sql Removes GoldenGate DDL Replication trigger and

package
ddl_session1.sql Support script for proceeding with DDL installation

in case of other sessions active
ddl_session.sql Support script for proceeding with DDL installation

in case of other sessions active
ddl_setup.sql Installation script for GoldenGate DDL Replication

trigger and package
ddl_status.sql Obtain status of GoldenGate DDL Replication

Installation
ddl_staymetadata_off.sql Turns OFF STAYMETADATA
ddl_staymetadata_on.sql Turn ON STAYMETADATA
ddl_tracelevel.sql Sets Tracing Level for GoldenGate DDL Replication

trigger
ddl_trace_off.sql Turns OFF Trace DDL execution
ddl_trace_on.sql Turns ON Trace DDL execution for use with TKPROF
demo_more_ora_create.sql Demonstration SQL
demo_more_ora_insert.sql Demonstration SQL
demo_ora_create.sql Demonstration SQL
demo_ora_insert.sql Demonstration SQL
demo_ora_lob_create.sql Demonstration SQL
demo_ora_misc.sql Demonstration SQL

Appendix B

[245]

SQL Filename Description
demo_ora_pk_befores_create.
sql

Demonstration SQL

demo_ora_pk_befores_insert.
sql

Demonstration SQL

demo_ora_pk_befores_
updates.sql

Demonstration SQL

marker_remove.sql Removal script for GoldenGate Marker table
marker_setup.sql Installation script for GoldenGate Marker table
marker_status.sql Obtains status GoldenGate Marker Installation
params.sql Customizable parameters for GoldenGate
role_setup.sql Installation script for GoldenGate Security Role

TPL Filename Description
bcpfmt.tpl Template file used specify the BCP version
db2cntl.tpl DB2 Control File Template
ddl_access.tpl Template file used by DEFGEN to determine how

Tandem types are defined in MS Access
ddl_db2_os390.tpl Template file used by DEFGEN to determine how

Tandem types are defined in MS Access
ddl_db2.tpl Template file used by DEFGEN to determine how

Tandem types are defined in DB2
ddl_informix.tpl Template file used by DEFGEN to determine how

Tandem types are defined in Informix
ddl_mss.tpl Template file used by DEFGEN to determine how

Tandem types are defined in MS SQL Server
ddl_mysql.tpl Template file used by DEFGEN to determine how

Tandem types are defined in MySQL
ddl_nssql.tpl Template file used by DEFGEN to determine how to

convert Tandem Enscribe DDL to NS SQL DDL
ddl_oracle.tpl Template file used by DEFGEN to determine how

Tandem types are defined in Oracle
ddl_sqlmx.tpl Template file used by DEFGEN to determine how to

convert Tandem Enscribe DDL to NS SQL/MX DDL
ddl_sybase.tpl Template file used by DEFGEN to determine how

Tandem types are defined in Sybase
ddl_tandem.tpl Template file used by DEFGEN to determine how to

convert Tandem Enscribe DDL to NS SQL DDL
sqlldr.tpl SQLLDR Control File Template

GoldenGate Installed Components

[246]

Text Filename Description
bcrypt.txt Copyright/License agreement file
freeBSD.txt Copyright file/License agreement
help.txt GoldenGate help file for GGSCI
libxml2.txt Copyright/License agreement file
notices.txt Notices
zlib.txt Copyright/License agreement file

Executable Filename Description
cobgen Source definition generator utility for Cobol
convchk Oracle GoldenGate checkpoint conversion utility for

newer versions
ddlcob DDL generator for Cobol
ddlgen DDL generator utility
defgen Source table definitions generator utility
emsclnt Program to send messages to an Event Management

System
extract GoldenGate Extract process program
ggsci GoldenGate Command Line Interpreter
keygen Encryption key generator utility
logdump Log Dump utility
mgr GoldenGate Manager process program
replicat GoldenGate Replicat process program
reverse A utility that reverses the order of transactional

operations
server GoldenGate Collector process program

User Created Filename Description
ENCKEYS Stores encryption keys generated by the keygen

utility
GLOBALS Stores global parameters for the GoldenGate instance

The Future of Oracle
GoldenGate

At the time of writing, a new version of Oracle GoldenGate was released; version
11.1.1. This is being marketed by Oracle as 11g to bring the product in line with their
11g product suite. The new version is mentioned in Chapter 9, Performance Tuning due
to its performance enhancing new features. However, another mention allows other
benefits to be realized.

Oracle GoldenGate 11g now falls into the Oracle Data Integration product line along
with Oracle Data Integrator (ODI), Oracle Veridata, and Oracle Management Pack
for GoldenGate. When coupled with GoldenGate 11g, ODI provides fast, efficient,
loading, and transformation of data into a data warehouse through its Extract Load
and Transform (ELT) technology.

In addition, Oracle GoldenGate 11g includes the following enhancements:

•	 Certified for operational reporting solutions on Oracle Applications such as
Oracle E-Business Suite, Oracle PeopleSoft, and Oracle JD Edwards

•	 Certified with the Oracle Exadata 2 Database Machine

The Oracle GoldenGate certification matrix can be found on the
Oracle website at the following address:
http://www.oracle.com/technetwork/middleware/
goldengate/downloads/index.html.

•	 When coupled with ODI, it provides integration with Oracle JDeveloper and
Oracle Enterprise Manager

•	 Support for Oracle TimesTen in-memory databases

http://www.oracle.com/us/products/database/exadata/index.html
http://www.oracle.com/us/products/tools/019657.htm
http://www.oracle.com/us/products/enterprise-manager/index.html
http://www.oracle.com/us/products/enterprise-manager/index.html
http://www.oracle.com/us/products/database/timesten/index.html

The Future of Oracle GoldenGate

[248]

Although not a new product, Veridata is a new member of the Oracle Data
Integration product suite. It is a high-speed data comparison solution that identifies
and reports on data discrepancies between heterogeneous databases. The product’s
operation is transparent to the live business processes, allowing comparisons to be
run during peak times whilst incurring minimal overhead.

Oracle Management Pack for GoldenGate is another product under the Oracle Data
Integration umbrella. Already mentioned in Chapter 8, Managing Oracle GoldenGate,
it is essentially GoldenGate Director, a web-based client application for centrally
managing GoldenGate instances. It provides real-time monitoring including
automatic alert notifications, as well as managing deployments in GoldenGate
environments. Like Oracle Veridata, Oracle Management Pack for GoldenGate runs
transparently, with little to no impact to live systems.

Oracle GoldenGate documentation and the Data Replication forum can be found on
the Oracle Website at the following respective addresses:

•	 http://www.oracle.com/technetwork/middleware/goldengate/
documentation/index.html

•	 http://forums.oracle.com/forums/forum.jspa?forumID=69

As the need to store and report on data increases, the demand for data integration
and replication tools will continue to increase. Oracle’s continued development of
GoldenGate will prove very interesting over the next few years, as they strive to
maintain high performance against high data volumes and transaction rates.

http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html
http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html
http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html

Index
Symbols
@CASE function 164
@COLTEST function 163
@EVAL function

using 164
@GETENV function 223
@IF function 163
@RANGE function 29

about 189
Replicats, adding 190-194

@STRCAT function 152
@SUBEXT function 152

A
ACFS 128
ADD CHECKPOINTTABLE command 241
ADD EXTRACT command 235
ADD EXTTRAIL command 238
ADD REPLICAT command 237
ADD RMTTRAIL command 238
ADD TRANDATA command 240
ALO 59
ALTER EXTRACT command 235
ALTER EXTTRAIL command 239
ALTER REPLICATcommand 237
ALTER RMTTRAIL command 239
architecture, GoldenGate

about 16
Bi-directional (active-active), benefits 21
Bi-directional (active-passive) 22
Bi-directional (active-passive), benefits 22
cascading 20
Many-to-One 19
One-to-Many 18, 19

One-to-One, benefits 17, 18
Archive Log Only. See ALO
ASSUMETARGETDEFS, GoldenGate pa-

rameters 73
ASSUMETARGETDEFS parameter 85
Automatic Storage Management Cluster File

System. See ACFS
AUTORESTART, GoldenGate parameters

72
AUTOSTART, GoldenGate parameters 72

B
BATCHESPERQUEUE parameter 100
BATCHSQL

exceptions 101
SQL cache 100
using 99, 100
using, situations 101

BEFOREFILTER parameter 114
BEFORE option 164
BEGIN NOW command 212
bi-directional configuration, options

conflict detection 113
conflict resolution 114
loop detection 113
Oracle sequences 114
Oracle triggers 115

BULKLOAD, GoldenGate parameters 73
Business Intelligence (BI) 17
BYTESPERQUEUE parameter 100

C
CDC

about 24, 75
configuring 87, 88

[250]

testing 92, 94
Change Data Capture. See CDC
changed data management

about 68
PITR 69

Change Delivery
configuring 89, 91
testing 92, 94

CHECKPARAMS parameter 211
CHECKSEQUENCEVALUE parameter 223
CLEANUP CHECKPOINTTABLE command

241
CLEANUP EXTRACT command 235
CLEANUP REPLICAT command 237
Clusterware configuration, for GoldenGate

about 129
application, creating 131-134
prerequisites 129
Virtual IP 129-131

CLUSTERWARE_HOME 134
COLMAP option 143
column mapping

COLMAP option, using 143
COLMATCH option 144
DEFGEN utility, using 144-147

Command level security
about 168
CMDSEC file 168, 169

Comma Separated Values. See CSV
COMPRESS option 103, 104
COMPRESSTHRESHOLD parameter 103
computer architecture

clusters 66
grid computing 65
single server 65

COUNT command 229
CREATE SUBDIRS command 241
CSV 176

D
data

Oracle table compression 104
data throughput, measuring

operation throughput 183, 184
rate, calculating 181, 182

Database File System. See DBFS
data compression

about 102
COMPRESS option 103, 104
Data Stream, compressing 102

data filtering, GoldenGate
active-active 150, 151
cascade topology 151
complex 148
FILTER clause 149, 150
loop, detecting 150
non-complex 148
WHERE clause 148, 149

data lookups, SQLEXEC parameter
about 155
SQL, executing 156
stored procedures, executing 155

data mapping
about 142
COLS/COLSEXCEPT 30
column mapping 142
FILTER 30
pre-requisites 30
TABLE/MAP 30
WHERE 30

Data Pump process
about 50
configuration 50

data replication
CSN co-ordination 31
data selection 29, 30
Initial Load 31
logic, using 163, 165
object mapping 29, 30
selecting 29
Trail file format 31

Data Replication forum, URL 248
Data Stream, compressing

about 102
Compression CPU time 102
Compress time 102
Uncompressed bytes 102

data transformations
about 151
case changes 152
concatenation 152
data conversion 153
extraction 152
numeric conversion 153
substitution 152

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[251]

truncation 152
DBFS 128
DBLOGIN command 240
DDL parameter

filtering 117
mapping options 118

DDL replication
about 117
DDL OPTIONS parameter 124
DDL parameter 117
initial setup 119-121

DDL support 154
DEFGEN utility

about 115
field description 144
using 144

DELETE CHECKPOINTTABLE command
241

DELETE EXTRACT command 235
DELETE EXTTRAIL command 239
DELETE REPLICAT command 237
DELETE RMTTRAIL command 239
DELETE TRANDATA command 240
design considerations, GoldenGate

Database Schema 29
network 28
solution, implementing 28

DETAIL [on | off | data] command 225
dircps subdirectory 42
dirdef subdirectory 42
Direct Bulk Load method

about 80
extract parameters 80
replicat parameters 80, 81

Direct Load method
about 78, 79
extract parameters 79
replicat parameters 79

dirprm subdirectory 42
dirrpt subdirectory 42
dirsql subdirectory 42
dirtmp subdirectory 43
Disaster Recovery (DR) 17, 63
DISCARDFILE, GoldenGate parameters 73,

86
DUMPDDL command 122

E
EDIT PARAMS command 137, 239
ENCRYPT PASSWORD command 240
environment, preparing

about 43
database preparation, for data replication

43
operating system, preparing 45
supplemental logging, enabling 43, 44

error
data throughput, measuring 181
file list 172
latency, monitoring 173
monitoring 172
reporting 172

ETL 12
Event Actions

Event Record 110-112
Event Markers 110
examples, User Exits

exitdemo.c 162
exitdemo_lob.c 162
exitdemo_more_recs.c 162
exitdemo_passthru.c 162
exitdemo_pk_befores.c 163

exception handler
after images 222, 223
before images 222, 223
creating 219, 221
viewing 221

EXCLUDE ALL option 118
executable filename, GoldenGate

cobgen 246
convchk 246
ddlcob 246
ddlgen 246
defgen 246
emsclnt 246
extract 246
ggsci 246
keygen 246
logdump 246
mgr 246
replicat 246
reverse 246
server 246

EXTFILE, GoldenGate parameters 73

[252]

EXTRACT, GoldenGate parameters 72, 87
Extract process

configuration 47
creating 48
starting 48

Extract Transform and Load. See ETL
EXTTRAIL parameter 87

F
failover

about 138
automatic failover 138
manual failover 139

FC command 241
FILEHEADER [on | off | detail] command

225
Filesystem in User Space. See FUSE
File to database utility method

about 77
extract parameters 77, 78
replicat parameters 78

File to Replicat method
about 75
extract parameters 76
Initial Data Capture, configuring 82-85
Initial Data Delivery, configuring 86
replicat parameters 76

FUSE 128

G
GETUPDATEBEFORES parameter 223
GGS 233
GGSCI

about 15, 102, 233
design considerations 27

GGSCI commands
ADD CHECKPOINTTABLE 241
ADD EXTRACT 235
ADD EXTTRAIL 238
ADD REPLICAT 237
ADD RMTTRAIL 238
ADD TRANDATA 240
ALTER EXTRACT 235
ALTER EXTTRAIL 239
ALTER REPLICAT 237
ALTER RMTTRAIL 239

CLEANUP CHECKPOINTTABLE 241
CLEANUP EXTRACT 235
CLEANUP REPLICAT 237
CREATE SUBDIRS 241
DBLOGIN 240
DELETE CHECKPOINTTABLE 241
DELETE EXTRACT 235
DELETE EXTTRAIL 239
DELETE REPLICAT 237
DELETE RMTTRAIL 239
DELETE TRANDATA 240
EDIT PARAMS 239
ENCRYPT PASSWORD 240
FC 241
HELP 242
HISTORY 242
INFO ALL 242
INFO CHECKPOINTTABLE 241
INFO EXTRACT 235
INFO EXTTRAIL 239
INFO MANAGER 234
INFO REPLICAT 237
INFO RMTTRAIL 239
INFO TRANDATA 240
KILL EXTRACT 236
LAG EXTRACT 236
LAG REPLICAT 237
LIST TABLES 240
OBEY 242
REFRESH MANAGER 234
SEND EXTRACT 236
SEND MANAGER 234
SEND REPLICAT 238
SET EDITOR 239
SHELL 242
SHOW 242
START EXTRACT 236
START MANAGER 234
START REPLICAT 238
STATS EXTRACT 236
STATS REPLICAT 238
STATUS EXTRACT 236
STATUS MANAGER 234
STATUS REPLICAT 238
STOP EXTRACT 236
STOP MANAGER 235
STOP REPLICAT 238
VERSIONS 242

[253]

VIEW PARAMS 240
VIEW REPORT 236, 238

GGSCI DUMPDDL command 122
GGSCI INFO command 103
GGSCI SEND command 102
GHDR [on | off] command 225
GoldenGate

about 9
architecture 16
basic architecture, solution 12
column mapping 142
configuring, for using data definitions 145
data replication solutions 11, 12
DDL support 154
evolution 11
exception handling 219
executable filename 246
failover 138
installation 33
key architectural properties 11
method, advantages 74
on Exadata 135
on RAC 127
parameters 72
process, stopping 94, 95
security features 105
software installation 37
solutions 10
SQL filename 244, 245
sub-directories 243
technology overview 13
text filename 246
topology 24
TPL filename 245
troubleshooting 209
uninstalling, from Linux/UNIX 52, 53
upgrading 231, 232
user created filename 246
utilities 167
versions 202

GoldenGate installation. See also installa-
tion, GoldenGate

GoldenGate installation, prerequisites 34
GoldenGate, on Exadata

about 135
configuring 136
Extract process, creating 136, 137
Replicat process, creating 138

GoldenGate, on RAC
about 127
Clusterware configuration, for GoldenGate

129
shared storage 128
system resilience, increasing 135

GoldenGate pre-tuning process
about 186
base lining 187
LOBs 187
online redo 186

GoldenGate Software. See GGS
GoldenGate Software Command Interface.

See GGSCI

H
HA 127
HANDLECOLLISIONS, GoldenGate pa-

rameters 73, 86
hardware considerations

about 64
hardware components, diagram 65
machines 66

hardware requirements, GoldenGate instal-
lation

about 36
CPU 36
disk 37
memory 36
network 37

HELP command 242
heterogeneous environments

DEFGEN utility 116
IBM DB2 116
Microsoft SQL Server 116
specific options 116

High Availability. See HA
high level design

requirements 55
HISTORY command 242

I
ICMP 215
INFO ALL command 26, 174, 182, 242
INFO CHECKPOINTTABLE command 241
INFO EXTRACT command 235

[254]

INFO EXTTRAIL command 239
INFO MANAGER command 234
INFO REPLICAT command 237
INFO RMTTRAIL command 239
INFO TRANDATA command 240
initial configuration, creating

about 45
Data Pump process 49
Extract process 47
Extract process, configuration 47
Extract process, creating 48
Extract process, starting 48
GoldenGate administrator, creating 46
Manager process 46
Replicat process 50
Replicat process, configuration 50, 51
Replicat process, creating 51
Replicat process, starting 51
summarizing 52

Initial Load
configuring 74
performing 81

Initial Load configuration
Direct Bulk Load 80
Direct Load method 78
File to database utility method 77
File to Replicat method 75
importance 74
method, choosing 74

Initial Load, performing
example architecture 81
File to Replicat method 82

initial setup, DDL replication
DUMPDDL, using 122, 123
known issues 121

installation, GoldenGate
about 33
prerequisites 34

Internet Control Message Protocol. See
ICMP

K
KILL REPLICAT command 237

L
LAG EXTRACT command 236

LAG REPLICAT command 237
Large Segment Offload. See LSO
large table into row ranges, splitting

@RANGE function 189
about 189

latency, monitoring
about 173
format_info.pl script 175
info_all.sh script 174
Lag and Checkpoint data 173
result graphing, Microsoft Excel used

177-181
licensing 165
Linux/UNIX

GoldenGate, uninstalling from 52
LIST TABLES command 240
LOBs 101
LOGDUMP command, using

about 224, 225, 230
files, opening 225, 226
header record, viewing 226
miscellaneous commands 230
records, filtering 231
transaction record, viewing 228

logic, data replication
using 163

LSO 204

M
machines, hardware considerations

about 66
Database Machine 67
database redo logs, importance 68
scaling out 67
scaling up 67
servers, allocating 66
x86-64 Linux Server 66

macros
defining 159, 160
using 159, 160

Manager process
about 46
configuring 97

manual failover
service, relocating 139
VIP, relocating 139

[255]

MAP, GoldenGate parameters 73
MGRPORT, GoldenGate parameters 73
multiple parallel process groups configura-

tion
about 194
Source system configuration 195
target system configuration 198

N
netstat command 216
networking

about 60
network outages, surviving 60
NIC teaming 60-62
redundant networks 60

Network Interface Card. See NIC
network tuning

about 203
Bequeath connection, configuring 205, 206
Linux TCP tuning 204, 205

NFRs
about 62
availability 63
backup 63
example architecture 64
latency 62
recovery 63

NIC 60
NOCHECKSEQUENCEVALUE parameter

223
Non-functional requirements. See NRFs
non-Oracle databases, list 24

O
OBEY command 242
OCR 128
OGG 233
OPEN command 225
OPS 66
OPSPERBATCH parameter 100
OPSPERQUEUE parameter 100
ORA-01403

 no data found error 229
Oracle Certification Matrix

obtaining 22
Oracle Cluster Registry. See OCR

Oracle Database 11g
supported platforms 23

Oracle GoldenGate. See OGG
Oracle GoldenGate 10.4. See GoldenGate
Oracle GoldenGate 11g

enhancements 247
Oracle GoldenGate certification matrix

URL 247
Oracle GoldenGate documentation

URL 248
Oracle Large Objects. See LOBs
Oracle Parallel Server. See OPS
Oracle Sequences

handling 223
LOGDUMP, using 224, 225

OUT parameter 156

P
parallel process groups

load, balancing 188
using, considerations 189

parameters, GoldenGate
about 72
ASSUMETARGETDEFS 73
AUTORESTART 72
AUTOSTART 72
BULKLOAD 73
DISCARDFILE 73
EXTFILE 73
EXTRACT 72
HANDLECOLLISIONS 73
MAP 73
MGRPORT 73
PASSWORD 73
PORT 72
PURGEOLDEXTRACTS 72
REPLICAT 73
RMTFILE 72
RMTHOST 72
RMTTASK 72
RMTTRAIL 72
RUNTIME 73
SETENV 73
SOURCEISTABLE 72
SPECIALRUN 73
TABLE 73
USERID 73

[256]

PASSTHRU parameter 88
password encryption, security features

default method 108, 109
name method 109, 110

PASSWORD, GoldenGate parameters 73
performance tuning 185
PITR

about 69
Flashback Transaction Query 69
Oracle Recovery Manager (RMAN) 69
SAN Snapshots 70

PL/SQL EXCEPTION block 157
Point in Time Recovery. See PITR
PORT, GoldenGate parameters 72
PORT parameter 97
prerequisites, GoldenGate installation

about 34
hardware requirements 36
software, downloading 34, 35
software requirements 35, 36

process startup, managing 170
process topology, GoldenGate

Change Data Capture and Delivery, Data
Pump used 26

Change Data Capture and Delivery, no
Data Pump used 26

position 26
rules 25
statistics 26, 27

PROCESS VM AVAIL FROM OS 37
PURGEOLDEXTRACTS, GoldenGate

parameters 72, 96

R
RAC

about 127
GoldenGate 127

RBA 190
Real Application Clusters. See RAC
RECLEN [<# of bytes>] command 225
REFRESH MANAGER command 234
Relative Byte Address. See RBA
REPERROR parameter 221
REPLICAT, GoldenGate parameters 73
replication methods

about 56
active-active 56

active-passive 57
cascading 58
Physical Standby database 59

Replicat process
about 50
configuration 51
creating 51
starting 51

RMTFILE, GoldenGate parameters 72
RMTFILE parameter 78
RMTHOST, GoldenGate parameters 72
RMTTASK, GoldenGate parameters 72
RMTTRAIL, GoldenGate parameters 72
RUNTIME, GoldenGate parameters 73

S
SAN 63
security features

about 105
data encryption 105, 107

SEND command 124
SEND EXTRACT command 236
SEND MANAGER command 234
SEND REPLICAT command 112, 238
SET EDITOR command 239
SETENV, GoldenGate parameters 73
SETENV parameter 137
shared storage

about 128
ACFS 128
DBFS 128

SHELL command 242
SHOW command 242
Simple Network Management Protocol. See

SNMP
SNMP 173
software installation, GoldenGate

about 37
GoldenGate, installing 38-40
subdirectories 41

SOURCEISTABLE, GoldenGate parameters
about 72
Initial Data Delivery, configuring 83

Source system configuration
extract parallel process groups, creating

196, 197
parallel process parameter files 195, 196

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[257]

SPECIALRUN, GoldenGate parameters
73, 223

SQLEXEC parameter 115
about 155
data lookups 155
DML, executing 157
errors, handling 157
FATAL option 158
FINAL option 158
IGNORE option 157
jobs, scheduling 158
RAISE option 158
REPORT option 158

SQL filename, GoldenGate
chkpt_ora_create.sql 244
ddl_cleartrace.sql 244
ddl_ddl2file.sql 244
ddl_disable.sql 244
ddl_enable.sql 244
ddl_nopurgeRecyclebin.sql 244
ddl_ora9.sql 244
ddl_ora10.sql 244
ddl_ora10upCommon.sql 244
ddl_ora11.sql 244
ddl_pin.sql 244
ddl_purgeRecyclebin.sql 244
ddl_remove.sql 244
ddl_session1.sql 244
ddl_session.sql 244
ddl_setup.sql 244
ddl_status.sql 244
ddl_staymetadata_off.sql 244
ddl_staymetadata_on.sql 244
ddl_tracelevel.sql 244
ddl_trace_off.sql 244
ddl_trace_on.sql 244
demo_more_ora_create.sql 244
demo_more_ora_insert.sql 244
demo_ora_create.sql 244
demo_ora_insert.sql 244
demo_ora_lob_create.sql 244
demo_ora_misc.sql 244
demo_ora_pk_befores_create.sql 245
demo_ora_pk_befores_insert.sql 245
demo_ora_pk_befores_updates.sql 245
marker_remove.sql 245
marker_setup.sql 245
marker_status.sql 245

params.sql 245
role_setup.sql 245

SQL*Net 218
srvctl relocate command 138
START EXTRACT command 236
START MANAGER command 234
START REPLICAT command 238
STATS EXTRACT command 236
STATS REPLICAT command 238
STATUS EXTRACTcommand 236
STATUS MANAGER command 234
STATUS REPLICAT command 238
STOP EXTRACT command 236
STOP MANAGER command 235
STOP REPLICAT command 238
Storage Area Network. See SAN
sub-directories, GoldenGate

dirchk 243
dirdat 243
dirdef 243
dirout 243
dirpcs 243
dirprm 243
dirrpt 243
dirsql 243
dirtmp 243
dirver 243
UserExitExamples 243

subdirectories, software installation
about 41
dirdat 41
dirdef 42
dirpcs 42
dirprm 42
dirrpt 42
dirsql 42
dirtmp 43

sysctl -p command 204

T
TABLE, GoldenGate parameters 73, 142
target system configuration

about 198
parallel process parameter files 198, 199
Replicat parallel process groups, creating

200
Replicat throughput, improving 201

[258]

TCP/IP errors
about 171
tcperrs file 171

technology, GoldenGate
Apply process 14
Apply process, statuses 15
data pump 14
Extract process 13
Extract process, statuses 13
GGSCI 15
Manager process 15
Manager process, statuses 15
overview 13
process data flow 16
Server Collector process 14
Trail files 14

text filename, GoldenGate
bcrypt.txt 246
freeBSD.txt 246
help.txt 246
libxml2.txt 246
notices.txt 246
zlib.txt 246

topology, GoldenGate
about 25
process topology 25

TPL filename, GoldenGate
bcpfmt.tpl 245
db2cntl.tpl 245
ddl_access.tpl 245
ddl_db2_os390.tpl 245
ddl_db2.tpl 245
ddl_informix.tpl 245
ddl_mss.tpl 245
ddl_mysql.tpl 245
ddl_nssql.tpl 245
ddl_oracle.tpl 245
ddl_sqlmx.tpl 245
ddl_sybase.tpl 245
ddl_tandem.tpl 245
sqlldr.tpl 245

Trail file management 169
trail files

about 96
purging 96
trail 96

TRANLOGOPTIONS parameter 117 203
troubleshooting, GoldenGate used

about 209
CHECKPARAMS parameter 211
Extract processes, altering 213
network issues, investigating 215
network issues, SQL*Net 216, 217
network issues, TCP/IP 215
Oracle errors, investigating 218
process checkpoints, checking 213, 214
replication 210
Start Point, adjusting 212
tips 209

U
USECHECKPOINT option 96
USEDEFAULTS option 143
user created filename, GoldenGate

ENCKEYS 246
GLOBALS 246

User Exits
about 161
C routines, calling 161
examples 162

USERID, GoldenGate parameters 73
USERTOKEN [detail] command 225
user tokens 160

V
Veridata 248
VERSIONS command 242
VIEW command 183
VIEW GGSEVT command 242
VIEW PARAMS command 240
VIEW REPORT command 236, 238

W
WHERE clause, data filtering 148, 149
WinZip 38

X
x86-64 Linux Server 66

Z
Zero-Downtime Upgrade and Migration 11
zlib.txt file 246

Thank you for buying
Oracle GoldenGate 11g Implementer’s guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle 11g Streams
Implementer's Guide
ISBN: 978-1-847199-70-6 Paperback: 352 pages

Design, implement, and maintain a distributed
environment with Oracle Streams

1. Implement Oracle Streams to manage and
coordinate the resources, information, and
functions of a distributed system

2. Get to grips with in-depth explanations of the
components that make up Oracle Streams, and
how they work together

3. Learn design considerations that help identify
and avoid Oracle Streams obstacles – before
you get caught in them

Oracle Database
11g – Underground Advice for
Database Administrators
ISBN: 978-1-849680-00-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g
database implementations

1. A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2. Real-world reflections from an experienced
DBA—what novice DBAs should really know

3. Implement Oracle's Maximum Availability
Architecture with expert guidance

4. Extensive information on providing high
availability for Grid Control

Please check www.PacktPub.com for information on our titles

Oracle Warehouse Builder 11g:
Getting Started
ISBN: 978-1-847195-74-6 Paperback: 368 pages

Extract, Transform, and Load data to build a
dynamic, operational data warehouse

1. Build a working data warehouse from scratch
with Oracle Warehouse Builder.

2. Cover techniques in Extracting, Transforming,
and Loading data into your data warehouse.

3. Learn about the design of a data warehouse
by using a multi-dimensional design with an
underlying relational star schema.

Oracle 10g/11g Data and
Database Management Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your
daily database tasks

1. Optimize time-consuming tasks efficiently
using the Oracle database utilities

2. Perform data loads on the fly and replace the
functionality of the old export and import
utilities using Data Pump or SQL*Loader

3. Boost database defenses with Oracle Wallet
Manager and Security

4. A handbook with lots of practical content with
real-life scenarios

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	What is GoldenGate?
	Oracle GoldenGate evolution
	Oracle GoldenGate solutions
	Oracle GoldenGate technology overview
	The capture process (Extract)
	Trail files
	Data Pump
	Server Collector
	The Apply process (Replicat)
	The Manager process
	GGSCI
	Process data flow

	Oracle GoldenGate architecture
	One-to-One
	One-to-Many
	Many-to-One
	Cascading
	Bi-directional (Active-Active)
	Bi-directional (Active-Passive)

	Supported platforms and databases
	Oracle Goldengate topology
	Process topology
	The rules
	Position
	Statistics

	Design considerations
	Choosing a solution
	Network
	Database schema

	What to Replicate?
	Object mapping and data selection
	Initial Load
	CSN co-ordination
	Trail file format

	Summary

	Chapter 2: Installing and Preparing GoldenGate
	Prerequisites
	Downloading the software
	Software requirements
	Hardware requirements
	Memory
	CPU
	Network
	Disk

	Software installation
	Installing GoldenGate
	The subdirectories
	dirchk
	dirdat
	dirdef
	dirpcs
	dirprm
	dirrpt
	dirsql
	dirtmp

	Preparing the environment
	Preparing the database for data replication
	Enabling supplemental logging

	Preparing the operating system

	Creating the initial configuration
	Creating the GoldenGate administrator
	The Manager process
	The Extract process
	Creating and starting an Extract process

	The Data Pump process
	The Replicat process
	Creating and starting a Replicat process

	Configuration summary

	Uninstalling GoldenGate from Linux/UNIX
	Summary

	Chapter 3: Design Considerations
	Replication methods
	Active-active
	Active-passive
	Cascading
	Physical Standby

	Networking
	Surviving network outages
	Redundant networks

	Non-functional requirements (NFRs)
	Latency
	Availability
	Backup and recovery

	Hardware considerations
	Computing architectures
	Grid computing
	Single server
	Clusters

	Machines
	The x86-64 Linux Server
	The Database Machine
	Scaling up and out

	Changed data management
	Point in Time Recovery (PITR)
	Oracle Recovery Manager (RMAN)
	Flashback
	SAN Snapshot

	Summary

	Chapter 4: Configuring Oracle GoldenGate
	GoldenGate parameters
	Configuring the Initial Load
	Choosing a method
	File to Replicat
	File to database utility
	Direct Load
	Direct Bulk Load

	Performing the Initial Load
	Example architecture
	File to Replicat method
	Configuring Initial Data Capture
	Configuring Initial Data Delivery

	Configuring Change Data Capture
	Configuring Change Delivery
	Testing Change Data Capture and Delivery
	Stopping GoldenGate processes
	More about trail files
	The trail
	Trail file purging

	Configuring the Manager process
	Summary

	Chapter 5: Configuration Options
	Using BATCHSQL
	SQL cache
	Exceptions
	When to use BATCHSQL

	Data compression
	Compressing the Data Stream
	The COMPRESS option

	Oracle table compression

	Security features
	Data encryption
	Password encryption
	Default method
	Named method

	Event Actions
	Event Records

	Bi-directional configuration options
	Loop detection
	Conflict detection
	Conflict resolution
	Oracle sequences
	Oracle triggers

	Heterogeneous environments
	Specific options
	Microsoft SQL Server
	IBM DB2

	The DEFGEN utility

	DDL replication
	The DDL parameter
	Filtering
	Mapping options

	Initial setup
	Known issues

	Using DUMPDDL
	DDL OPTIONS

	Summary

	Chapter 6: Configuring GoldenGate for HA
	GoldenGate on RAC
	Shared storage
	Automatic Storage Management Cluster File System (ACFS)
	Database File System (DBFS)

	Configuring Clusterware for GoldenGate
	The Virtual IP
	Creating a GoldenGate application

	Increasing system resilience

	GoldenGate on Exadata
	Configuration
	Creating the Extract process
	Creating the Replicat process

	Failover
	Automatic failover
	Manual failover
	Relocating a service
	Relocating a VIP

	Summary

	Chapter 7: Advanced Configuration
	Mapping your data
	Column mapping
	Using the COLMAP option
	The COLMATCH option
	Using the DEFGEN utility

	Data selection and filtering
	The WHERE clause
	The FILTER clause
	Loop detection
	Active-active
	Cascade

	Data transformation
	Truncation and extraction
	Concatenation
	Substitution
	Case changing
	Numeric conversions
	Date conversions

	DDL support
	The SQLEXEC parameter
	Data lookups
	Executing stored procedures
	Executing SQL

	Executing DML
	Handling errors

	Scheduling jobs

	Using and defining macros
	User tokens
	User Exits
	Calling C routines
	Sample User Exits
	Source files explained

	Using logic in data replication
	Licensing
	Summary

	Chapter 8: Managing Oracle GoldenGate
	Command level security
	The CMDSEC file

	Trail file management
	Managing process startup
	Managing TCP/IP errors
	The tcperrs file

	Reporting and statistics
	Monitoring errors
	Monitoring latency
	A bespoke solution to monitoring and reporting

	Measuring throughput
	Data throughput
	Operation throughput

	Summary

	Chapter 9: Performance Tuning
	Before tuning GoldenGate
	Online redo
	Large objects (LOBs)
	Base lining

	Balancing the load across parallel process groups
	Considerations for using parallel process groups

	Splitting large tables into row ranges across process groups
	The RANGE function
	Adding Replicats with @RANGE function

	Configuring multiple parallel process groups
	Source system configuration
	Parallel process parameter files
	Creating extract parallel process groups

	Target system configuration
	Parallel process parameter files
	Creating Replicat parallel process groups
	Improving Replicat throughput

	New releases
	DBFS enhancements
	New redo log OCI API

	Tuning the network
	Linux TCP tuning
	Configuring a Bequeath connection

	Summary

	Chapter 10: Troubleshooting GoldenGate
	Troubleshooting tips
	Replication not working?
	The CHECKPARAMS parameter

	Adjusting the start point
	Altering Extract processes in RAC environments

	Checking process checkpoints
	Investigating network issues
	TCP/IP
	SQL*Net

	Investigating Oracle errors

	Exception handling
	Creating an Exceptions handler
	Viewing Exceptions
	Before and after images

	Handling Oracle Sequences
	Using LOGDUMP
	Opening files
	Viewing the header record
	Viewing the transaction record
	Miscellaneous commands
	Filtering records

	Upgrading GoldenGate
	Summary

	Appendix A: GGSCI Commands
	Appendix B: GoldenGate Installed Components
	Appendix C: The Future of Oracle GoldenGate
	Index

