IMPROVING ENERGY EFFICIENCY IN COOLING TOWER DESIGN

51-

- > 39% of total energy use*
- > 70% of electricity consumption*
- > HVAC accounts for 40-60% of the energy used in US commercial & residential buildings**

* source Gulf news June 2005 and Statistics provided by USGBC's LEED for Product Manufacturers presentation, ©2005 **Statistics provided by US Department of Energy: Buildings info and components

- > Utilize water cooled chiller design
- > Optimize the chiller performance
- > Minimize the chiller operation
- > Optimize the cooling tower efficiency
 - ASHRAE 90.1
 - ASHRAE 189.1
 - Proper tower selection
 - Proper tower operation

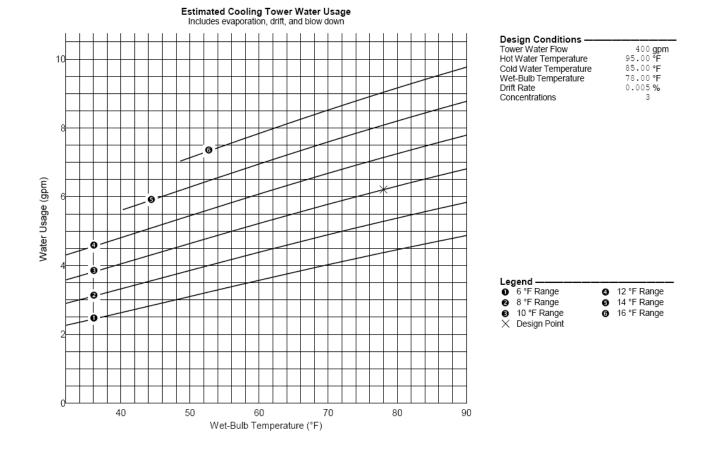
Step 1: Utilize Water Cooled Systems

Water vs. Air Cooled Systems

- > Lower condensing temperatures
- > 1.5 to 3 times greater COP than air cooled
- > 30 to 50% potential energy savings
- > By far the largest opportunity to reduce energy usage

When Are Air Cooled Systems Appropriate?

> Below 300 tons


- California Title 24 allows 100% air cooled systems under 300 tons
- Payback favors dry cooled below ~200 to 300 tons
- Various ASHRAE studies
- However, water cooled systems still more efficient
- > Limited water availability
 - Water usage is frequently over-estimated

Step 1: Utilize Water Cooled Systems

Water Usage Curves

Information provided from UPDATE Sizing and Selection Software from SPX Cooling Technologies

SPX

Step 1: Utilize Water Cooled Systems

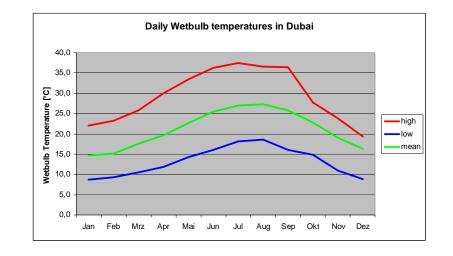
Water Saving Strategies

- > Hybrid wet/dry cooling tower
 - NCWD
 - Utilizes sensible and latent cooling
- > Increase cycles of concentration
- > Make-up water alternatives

Step 1: Utilize Water Cooled Systems

No Water?

> Must use a dry system



Step 2: Optimize Chiller Condenser Temperature and Range

Optimize Chiller Performance

- > 2 vs. 3 GPM per ton
- > Design cold water temperatures as low as possible
 - Efficiency improves 1 to 3% for every 1°

Optimize Chiller Performance

- > 7° F approach temps are typical (=3,89° C)
- > 5° F is feasible and reasonably common (=2,78° C)
 - Lower chiller operating cost
- > Approach temp is proportional to capacity
 - Example: Reducing the approach temp from 7° F to 5° F equates to 29% increase in required tower capa<u>citv</u>

Step 3: Optimize Cooling Tower Efficiency

ASHRAE Standard 90.1 (2004)

- > Meet the minimum base case 90.1 for the entire building
 - CTI certified 38.2 GPM/hp for axial fan open cooling towers (=11,6 m³/h/kW)
 - CTI certified 20 GPM/hp for centrifugal fan open cooling towers (=6,1 m³/h/kW)

ASHRAE Standard 90.1 (2010)

- > Looking to achieve 30% energy savings over previous version
- > Part of ASHRAE's goal to achieve market-viable net-zero energy buildings by 2030
- > Efficiencies defined for Evaporative Fluid Coolers
- Centrifugal fans will have same requirements as axial fans

Axial vs. Centrifugal Fans

- > Axial fans are two times more efficient than centrifugal
- > Centrifugal-forced draft towers still viable:
 - Indoors
 - Ducting
 - Replacements

56

Increase 90.1 Efficiency Requirement

> Increase 90.1 efficiency requirement

- Double the minimum efficiency from 38.2 to 76.4
- Does not always increase the tower cost
- > UPDATE sizing & selection software
 - http://qtcapps.ct.spx.com

,	Actions	Model	Cells	Status	Fan Motor Output BHp	Total Fan Motor Output BHp	Capacity	Cost Ratio	ASHRAE 90.1 Perf. gpm/Hp	Fan Energy Cost \$	Pump Energy Cost \$	dBA Single Cell
♦	4 🖓 📐	NC8301E1	1	<u>*</u>	10.0	10.0	98.4%	0.99	60.6	855	184.3	78
ه و	ે 🚯 🖓 📐 ભૂલ	NC8301EL1	1		10.0	10.0	100.2%	1.00	61.8	838	184.3	75
\$ 0	s 4 8 🏷 📐 o <u>v</u> e	NC8302DL1	1	🗸 ன	7.5	7.5	110.4%	1.00	90.7	573	184.3	72

Step 4: Operate Cooling Towers Efficiently

Energy Efficient Operation

- > Using Variable Frequency Drives
 - Method of control
 - Example: 10 cell cooling tower (100hp/cell) 1000 hp total at 50% heat load
 - Operating with 5 cells on full speed = 500 hp
 - Controlling 10 cells together (ramping all fans up and down together by VFD) = 125 hp to meet the same duty.

Energy Efficient Operation

- > Using Variable Frequency Drives cont.
- > Crossflow towers are ideal varying flow rates throughout the year
 - Readily handles multiple flow rates through the use of basin dams

Step 5: Responsible Cooling

Proper Water Management

- > Develop and implement a water management plan for the cooling tower
- > Improve water efficiency by installing and/or maintaining a conductivity meter and automatic controls to adjust bleed rate and maintain proper concentration

Proper Water Management

- > Have a measured program in place that verifies make-up water quantities used from non-potable sources
- > Acoustics reduce sound levels
 - Attenuation, Low Noise and Ultra-Low Noise Fans

Questions?

