

1/10

TCS - Part 2

Theory of Computer Science
Second Part

Ali Shakiba
ali.shakiba@vru.ac.ir

Department of Computer Science
Vali-e-Asr University of Rafsanjan

Fall 2016

Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

Composition

Let f be a function of k variables and let g1, . . . , gk be functions of
n variables. Let

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

The h is said to be obtained from f and g1, . . . , gk by composition.

22 / 27

Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

Composition of (Partially) Computable Functions

Theorem 1.1. If h is obtained from the (partially) computable
functions f , g1, . . . , gk by composition, then h is (partially)
computable.

Proof. The following program computes h:

Z1 ← g1(X1, . . . ,Xn)
. . .
Zk ← gk(X1, . . . ,Xn)
Y ← f (Z1, . . . ,Zk)

If f , g1, . . . , gk are total, so is h. 2

23 / 27

Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

More Recursion

h(x1, . . . , xn, 0) = f (x1, . . . , xn)

h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn),

where f is a total function of n variables, and g is a total function
of n + 2 variables. Function h of n + 1 variable is said to be
obtained from g by primitive recursion, or simply recursion, from f
and g .

26 / 27

Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Composition (3.1)
Recursion (3.2)

More Recursion of Computable Functions

Theorem 2.2. If h is obtained from g as in the previous slide and
let g be computable. Then then h is also computable.

Proof. The following program computes h(x1, . . . , xn, xn+1):

Y ← f (x1, . . . , xn)
[A] IF Xn+1 = 0 GOTO E

Y ← g(Z ,Y ,X1, . . . ,Xn)
Z ← Z + 1
Xn+1 ← Xn+1 − 1
GOTO A

2

27 / 27

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Initial Functions

The following functions are called initial functions:

s(x) = x + 1,

n(x) = 0,

un
i (x1, . . . , xn) = xi , 1 ≤ i ≤ n.

Note: Function un
i is called the projection function. For example,

u4
3(x1, x2, x3, x4) = x3.

7 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursively Closed (PRC)

A class of total functions C is called a PRC class if

I the initial functions belong to C ,

I a function obtained from functions belonging to C by either
composition or recursion also belongs to C .

8 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Computable Functions are Primitive Recursively Closed

Theorem 3.1. The class of computable functions is a PRC class.

Proof. We have shown computable functions are closed under
composition and recursion (Theorem 1.1 & 2.2). We need only
verify the initial functions are computable. They are computed by
the following programs.

s(x) = x + 1 Y ← X + 1;

n(x) the empty program;

un
i (x1, . . . , xn) Y ← Xi .

2

9 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions

A function is called primitive recursive if it can be obtained from
the initial functions by a finite number of applications of
composition and recursion.

Note that, by the above definition and the definition of Primitive
Recursively Closed (PRC), it follows that:

Corollary 3.2. The class of primitive recursive function is a PRC
class.

10 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions

A function is called primitive recursive if it can be obtained from
the initial functions by a finite number of applications of
composition and recursion.

Note that, by the above definition and the definition of Primitive
Recursively Closed (PRC), it follows that:

Corollary 3.2. The class of primitive recursive function is a PRC
class.

10 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions & PRC Classes
Theorem 3.3. A function is primitive recursive if and only if it
belongs to every PRC class.
Proof. (⇐) If a function belongs to every PRC class, then by
Corollary 3.2, it belongs to the class of primitive recursive
functions.
(⇒) If f is primitive recursive, then there is a list of functions
f1, f2, . . . , fn such that fn = f and for each fi , 1 ≤ i < n, either

I fi is an initial function, or

I fi can be obtained from the preceding functions in the list by
composition or recursion.

However, the initial functions belong to any PRC class C .
Furthermore, all functions obtained from functions in C by
composition or recursion also belong to C . It follows that each
function f1, f2, . . . , fn = f in the above list is in C . 2

11 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable.
Proof. By Theorem 3.4, every primitive recursive function belongs
to the PRC class of computable functions so is computable. 2

Note that,

I If a function f is shown to be primitive recursive, by the above
Corollary, f can be expressed as a program in language S .

I Not only we know there is program in S for f , by Theorem
3.1 (1.1 & 2.2), we also know how to write this program.

I Furthermore, the program so written will always terminate.

However, if a function f is computable (that is, it is total and
expressible in S), it is not necessarily that f is primitive recursive.
(A counter example will be shown later in this course.)

12 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable.
Proof. By Theorem 3.4, every primitive recursive function belongs
to the PRC class of computable functions so is computable. 2

Note that,

I If a function f is shown to be primitive recursive, by the above
Corollary, f can be expressed as a program in language S .

I Not only we know there is program in S for f , by Theorem
3.1 (1.1 & 2.2), we also know how to write this program.

I Furthermore, the program so written will always terminate.

However, if a function f is computable (that is, it is total and
expressible in S), it is not necessarily that f is primitive recursive.
(A counter example will be shown later in this course.)

12 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable.
Proof. By Theorem 3.4, every primitive recursive function belongs
to the PRC class of computable functions so is computable. 2

Note that,

I If a function f is shown to be primitive recursive, by the above
Corollary, f can be expressed as a program in language S .

I Not only we know there is program in S for f , by Theorem
3.1 (1.1 & 2.2), we also know how to write this program.

I Furthermore, the program so written will always terminate.

However, if a function f is computable (that is, it is total and
expressible in S), it is not necessarily that f is primitive recursive.
(A counter example will be shown later in this course.)

12 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function f (x , y) = x + y Is Primitive Recursive

Function f can be defined by the recursion equations:

f (x , 0) = x ,

f (x , y + 1) = f (x , y) + 1.

The above can be rewritten as

f (x , 0) = u1
1(x),

f (x , y + 1) = g(y , f (x , y), x),

where
g(x1, x2, x3) = s(u3

2(x1, x2, x3)).

13 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function h(x , y) = x · y Is Primitive Recursive
Function h can be defined by the recursion equations:

h(x , 0) = 0,

h(x , y + 1) = h(x , y) + x .

The above can be rewritten as

h(x , 0) = n(x),

h(x , y + 1) = g(y , h(x , y), x),

where

g(x1, x2, x3) = f (u3
2(x1, x2, x3), u3

3(x1, x2, x3)),

f (x , y) = x + y .

14 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function h(x) = x! Is Primitive Recursive

Function h(x) can be defined by

h(0) = 1,

h(t + 1) = g(t, h(t)),

where
g(x1, x2) = s(x1) · x2.

Note that g is primitive recursive because

g(x1, x2) = s(u2
1(x1, x2)) · u2

2(x1, x2).

15 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function power(x , y) = xy Is Primitive Recursive

Function power can be defined by

power(x , 0) = 1,

power(x , y + 1) = power(x , y) · x .

Note that these equations assign the value 1 to the
“indeterminate” 00.

The above definition can be further rewritten into

16 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

The Predecessor Function Is Primitive Recursive

The predecessor function pred(x) is defined as follows:

pred(x) =

{
x − 1 if x 6= 0
0 if x = 0.

Note that function pred corresponds to the instruction X ← X − 1
in programming language S .

The above definition can be further rewritten into

17 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function x−̇y Is Primitive Recursive

Function x−̇y is defined as follows:

x−̇y =

{
x − y if x ≥ y
0 if x < y .

Note that function x−̇y is different from function x − y , which is
undefined if x < y . In particular, x−̇y is total while x − y is not.

Function x−̇y is primitive recursive because

x−̇0 = x ,

x−̇(t + 1) = pred(x−̇t).

The above definition can be further rewritten into

18 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function x−̇y Is Primitive Recursive

Function x−̇y is defined as follows:

x−̇y =

{
x − y if x ≥ y
0 if x < y .

Note that function x−̇y is different from function x − y , which is
undefined if x < y . In particular, x−̇y is total while x − y is not.

Function x−̇y is primitive recursive because

x−̇0 = x ,

x−̇(t + 1) = pred(x−̇t).

The above definition can be further rewritten into

18 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function |x − y | Is Primitive Recursive

Function |x − y | can be defined as follows:

|x − y | = (x−̇y) + (y−̇x)

It is primitive recursive because the above definition can be further
rewritten into

19 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Function |x − y | Is Primitive Recursive

Function |x − y | can be defined as follows:

|x − y | = (x−̇y) + (y−̇x)

It is primitive recursive because the above definition can be further
rewritten into

19 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is Function α(x) below Primitive Recursive?

Function α(x) is defined as:

α(x) =

{
1 if x = 0
0 if x 6= 0.

It is primitive recursive because

20 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is Function α(x) below Primitive Recursive?

Function α(x) is defined as:

α(x) =

{
1 if x = 0
0 if x 6= 0.

It is primitive recursive because

20 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

x = y Is Primitive Recursive

Is the function d(x , y) below primitive recursive?

d(x , y) =

{
1 if x = y
0 if x 6= y

It is because d(x , y) = α(|x − y |).

21 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

x = y Is Primitive Recursive

Is the function d(x , y) below primitive recursive?

d(x , y) =

{
1 if x = y
0 if x 6= y

It is because d(x , y) = α(|x − y |).

21 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is x ≤ y Primitive Recursive?

It is primitive recursive because x ≤ y = α(x−̇y).

22 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is x ≤ y Primitive Recursive?

It is primitive recursive because x ≤ y = α(x−̇y).

22 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let C be a PRC class. If P, Q are predicates that
belong to C , then so are ∼ P, P ∨ Q, and P&Q.

Proof. We define ∼ P, P ∨ Q, and P&Q as follows:

∼ P = α(P)

P & Q = P · Q
P ∨ Q = ∼ (∼ P & ∼ Q)

We conclude that ∼ P, P ∨ Q, and P&Q all belong to C . 2

23 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let C be a PRC class. If P, Q are predicates that
belong to C , then so are ∼ P, P ∨ Q, and P&Q.

Proof. We define ∼ P, P ∨ Q, and P&Q as follows:

∼ P = α(P)

P & Q = P · Q
P ∨ Q = ∼ (∼ P & ∼ Q)

We conclude that ∼ P, P ∨ Q, and P&Q all belong to C . 2

23 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let C be a PRC class. If P, Q are predicates that
belong to C , then so are ∼ P, P ∨ Q, and P&Q.

Proof. We define ∼ P, P ∨ Q, and P&Q as follows:

∼ P = α(P)

P & Q = P · Q
P ∨ Q = ∼ (∼ P & ∼ Q)

We conclude that ∼ P, P ∨ Q, and P&Q all belong to C . 2

23 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursive and Computable

Corollary 5.2. If P, Q are primitive recursive predicates, then so
are ∼ P, P ∨ Q, and P&Q.

Corollary 5.3. If P, Q are computable predicates, then so are
∼ P, P ∨ Q, and P&Q.

24 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursive and Computable

Corollary 5.2. If P, Q are primitive recursive predicates, then so
are ∼ P, P ∨ Q, and P&Q.

Corollary 5.3. If P, Q are computable predicates, then so are
∼ P, P ∨ Q, and P&Q.

24 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is x < y Primitive Recursive?

It is primitive recursive because

x < y ⇔ ∼ (y ≤ x).

25 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Is x < y Primitive Recursive?

It is primitive recursive because

x < y ⇔ ∼ (y ≤ x).

25 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Definition by Cases

Theorem 5.4. Let C be a PRC class. Let functions g , h and
predicate P belong to C . Let function

f (x1, . . . , xn) =

{
g(x1, . . . , xn) if P(x1, . . . , xn)
h(x1, . . . , xn) otherwise.

Then f belongs to C .

Proof. Function f belongs to C because

f (x1, . . . , xn) = g(x1, . . . , xn) · P(x1, . . . , xn)

+ h(x1, . . . , xn) · α(P(x1, . . . , xn)).

2

26 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Definition by Cases

Theorem 5.4. Let C be a PRC class. Let functions g , h and
predicate P belong to C . Let function

f (x1, . . . , xn) =

{
g(x1, . . . , xn) if P(x1, . . . , xn)
h(x1, . . . , xn) otherwise.

Then f belongs to C .

Proof. Function f belongs to C because

f (x1, . . . , xn) = g(x1, . . . , xn) · P(x1, . . . , xn)

+ h(x1, . . . , xn) · α(P(x1, . . . , xn)).

2

26 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Definition by Cases, More
Corollary 5.5. Let C be a PRC class. Let n-ary functions
g1, . . . , gm, h and predicates P1, . . . ,Pm belong to C , and let

Pi (x1, . . . , xn) & Pj(x1, . . . , xn) = 0

for all 1 ≤ i ≤ j ≤ m and all x1, . . . , xn. If

f (x1, . . . , xn) =





g1(x1, . . . , xn) if P1(x1, . . . , xn)
...

...
gm(x1, . . . , xn) if Pm(x1, . . . , xn)
h(x1, . . . , xn) otherwise.

then f also belongs to C .

Proof. Proved by a mathematical induction on m. 2

27 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Definition by Cases, More
Corollary 5.5. Let C be a PRC class. Let n-ary functions
g1, . . . , gm, h and predicates P1, . . . ,Pm belong to C , and let

Pi (x1, . . . , xn) & Pj(x1, . . . , xn) = 0

for all 1 ≤ i ≤ j ≤ m and all x1, . . . , xn. If

f (x1, . . . , xn) =





g1(x1, . . . , xn) if P1(x1, . . . , xn)
...

...
gm(x1, . . . , xn) if Pm(x1, . . . , xn)
h(x1, . . . , xn) otherwise.

then f also belongs to C .

Proof. Proved by a mathematical induction on m. 2

27 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Iterated Operations
Theorem 6.1. Let C be a PRC class. If function f (t, x1, . . . , xn)
belongs to C , then so do the functions g and h

g(y , x1, . . . , xn) =

y∑

t=0

f (t, x1, . . . , xn)

h(y , x1, . . . , xn) =

y∏

t=0

f (t, x1, . . . , xn)

Proof. Functions g and h each can be recursively defined as

g(0, x1, . . . , xn) = f (0, x1, . . . , xn),

g(t + 1, x1, . . . , xn) = g(t, x1, . . . , xn) + f (t + 1, x1, . . . , xn),

h(0, x1, . . . , xn) = f (0, x1, . . . , xn),

h(t + 1, x1, . . . , xn) = h(t, x1, . . . , xn) · f (t + 1, x1, . . . , xn).

2

28 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Iterated Operations
Theorem 6.1. Let C be a PRC class. If function f (t, x1, . . . , xn)
belongs to C , then so do the functions g and h

g(y , x1, . . . , xn) =

y∑

t=0

f (t, x1, . . . , xn)

h(y , x1, . . . , xn) =

y∏

t=0

f (t, x1, . . . , xn)

Proof. Functions g and h each can be recursively defined as

g(0, x1, . . . , xn) = f (0, x1, . . . , xn),

g(t + 1, x1, . . . , xn) = g(t, x1, . . . , xn) + f (t + 1, x1, . . . , xn),

h(0, x1, . . . , xn) = f (0, x1, . . . , xn),

h(t + 1, x1, . . . , xn) = h(t, x1, . . . , xn) · f (t + 1, x1, . . . , xn).

2
28 / 50

Preliminaries (1)
Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3)
Some Primitive Recursive Functions/Predicates (3.4, 3.5)
Iterated Operations and Bounded Quantifiers (3.6)
Minimalization (3.7)
Pairing Functions and Gödel Numbers (3.9)

Iterated Operations, More
Corollary 6.2. Let C be a PRC class. If function f (t, x1, . . . , xn)
belongs to C , then so do the functions

g(y , x1, . . . , xn) =

y∑

t=1

f (t, x1, . . . , xn)

and

h(y , x1, . . . , xn) =

y∏

t=1

f (t, x1, . . . , xn).

In the above, we assume that

g(0, x1, . . . , xn) = 0,

h(0, x1, . . . , xn) = 1.

29 / 50

