

Theory of Computer Science

Second Part

Ali Shakiba ali.shakiba@vru.ac.ir

Department of Computer Science Vali-e-Asr University of Rafsanjan

Fall 2016

▲□▶ ▲□▶ ▲ = ▶ ▲ = ● ● ● ●

1/10

Composition

Let f be a function of k variables and let g_1, \ldots, g_k be functions of n variables. Let

$$h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n)).$$

The *h* is said to be obtained from *f* and g_1, \ldots, g_k by *composition*.

23 / 27

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Composition of (Partially) Computable Functions

Theorem 1.1. If *h* is obtained from the (partially) computable functions f, g_1, \ldots, g_k by composition, then h is (partially) computable.

Proof. The following program computes *h*:

 $Z_1 \leftarrow g_1(X_1, \dots, X_n)$ $Z_k \leftarrow g_k(X_1, \dots, X_n)$ $Y \leftarrow f(Z_1, \dots, Z_k)$

If f, g_1, \ldots, g_k are total, so is h.

More Recursion

$$h(x_1,...,x_n,0) = f(x_1,...,x_n) h(x_1,...,x_n,t+1) = g(t,h(x_1,...,x_n,t),x_1,...,x_n),$$

where f is a total function of n variables, and g is a total function of n + 2 variables. Function h of n + 1 variable is said to be obtained from g by *primitive recursion*, or simply *recursion*, from fand g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

27 / 27

More Recursion of Computable Functions

Theorem 2.2. If h is obtained from g as in the previous slide and let g be computable. Then then h is also computable.

Proof. The following program computes $h(x_1, \ldots, x_n, x_{n+1})$:

$$[A] \quad \begin{array}{l} Y \leftarrow f(x_1, \dots, x_n) \\ \text{IF } X_{n+1} = 0 \text{ GOTO } E \\ Y \leftarrow g(Z, Y, X_1, \dots, X_n) \\ Z \leftarrow Z + 1 \\ X_{n+1} \leftarrow X_{n+1} - 1 \\ \text{GOTO } A \end{array}$$

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Initial Functions

The following functions are called *initial functions*:

$$egin{array}{rll} s(x) &=& x+1, \ n(x) &=& 0, \ u_i^n(x_1,\ldots,x_n) &=& x_i, & 1\leq i\leq n. \end{array}$$

Note: Function u_i^n is called the *projection function*. For example, $u_3^4(x_1, x_2, x_3, x_4) = x_3$.

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Primitive Recursively Closed (PRC)

A class of total functions \mathscr{C} is called a *PRC* class if

- ► the initial functions belong to *C*,
- ► a function obtained from functions belonging to 𝒞 by either composition or recursion also belongs to 𝒞.

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

9 / 50

Computable Functions are Primitive Recursively Closed

Theorem 3.1. The class of computable functions is a PRC class.

Proof. We have shown computable functions are closed under composition and recursion (Theorem 1.1 & 2.2). We need only verify the initial functions are computable. They are computed by the following programs.

$$|s(x) = x + 1| Y \leftarrow X + 1;$$

the empty program;

 $u_i^n(x_1,\ldots,x_n) \mid Y \leftarrow X_i.$

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions

A function is called *primitive recursive* if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

10/50

Primitive Recursive Functions

A function is called *primitive recursive* if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

Note that, by the above definition and the definition of Primitive Recursively Closed (PRC), it follows that:

Corollary 3.2. The class of primitive recursive function is a PRC class.

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions & PRC Classes

Theorem 3.3. A function is primitive recursive if and only if it belongs to every PRC class.

Proof. (\Leftarrow) If a function belongs to every PRC class, then by Corollary 3.2, it belongs to the class of primitive recursive functions.

(\Rightarrow) If f is primitive recursive, then there is a list of functions f_1, f_2, \ldots, f_n such that $f_n = f$ and for each $f_i, 1 \le i < n$, either

- *f_i* is an initial function, or
- *f_i* can be obtained from the preceding functions in the list by composition or recursion.

However, the initial functions belong to any PRC class \mathscr{C} . Furthermore, all functions obtained from functions in \mathscr{C} by composition or recursion also belong to \mathscr{C} . It follows that each function $f_1, f_2, \ldots, f_n = f$ in the above list is in \mathscr{C} . Preliminaries (1) Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

シ へ で 12 / 50

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable. *Proof.* By Theorem 3.4, every primitive recursive function belongs to the PRC class of computable functions so is computable.

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable. *Proof.* By Theorem 3.4, every primitive recursive function belongs to the PRC class of computable functions so is computable.

- If a function f is shown to be primitive recursive, by the above Corollary, f can be expressed as a program in language \mathscr{S} .
- Not only we know there is program in *S* for *f*, by Theorem 3.1 (1.1 & 2.2), we also know how to write this program.
- Furthermore, the program so written will always terminate.

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Primitive Recursive Functions Are Computable

Corollary 3.4. Every primitive recursive function is computable. *Proof.* By Theorem 3.4, every primitive recursive function belongs to the PRC class of computable functions so is computable.

- If a function f is shown to be primitive recursive, by the above Corollary, f can be expressed as a program in language \mathscr{S} .
- Not only we know there is program in *S* for *f*, by Theorem 3.1 (1.1 & 2.2), we also know how to write this program.

Furthermore, the program so written will always terminate. However, if a function f is computable (that is, it is total and expressible in \mathscr{S}), it is not necessarily that f is primitive recursive. (A counter example will be shown later in this course.)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Function f(x, y) = x + y Is Primitive Recursive

Function f can be defined by the recursion equations:

$$f(x,0) = x,$$

 $f(x,y+1) = f(x,y)+1.$

The above can be rewritten as

$$f(x,0) = u_1^1(x),$$

 $f(x,y+1) = g(y,f(x,y),x),$

where

$$g(x_1, x_2, x_3) = s(u_2^3(x_1, x_2, x_3)).$$

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Function $h(x, y) = x \cdot y$ Is Primitive Recursive

Function h can be defined by the recursion equations:

$$h(x,0) = 0,$$

 $h(x,y+1) = h(x,y) + x.$

The above can be rewritten as

$$h(x,0) = n(x),$$

 $h(x,y+1) = g(y,h(x,y),x),$

where

$$g(x_1, x_2, x_3) = f(u_2^3(x_1, x_2, x_3), u_3^3(x_1, x_2, x_3)),$$

$$f(x, y) = x + y.$$

・ロト・< 三ト・< 三ト・< 三・< への

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♪ ��

15/50

Function h(x) = x! Is Primitive Recursive

Function h(x) can be defined by

h(0) = 1,h(t+1) = g(t, h(t)),

where

$$g(x_1,x_2)=s(x_1)\cdot x_2.$$

Note that g is primitive recursive because

$$g(x_1, x_2) = s(u_1^2(x_1, x_2)) \cdot u_2^2(x_1, x_2).$$

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

16/50

Function $power(x, y) = x^y$ Is Primitive Recursive

Function *power* can be defined by

$$power(x, 0) = 1,$$

 $power(x, y + 1) = power(x, y) \cdot x.$

Note that these equations assign the value 1 to the "indeterminate" 0^0 .

The above definition can be further rewritten into

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

17/50

The Predecessor Function Is Primitive Recursive

The predecessor function pred(x) is defined as follows:

$$pred(x) = \begin{cases} x - 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Note that function *pred* corresponds to the instruction $X \leftarrow X - 1$ in programming language \mathscr{S} .

The above definition can be further rewritten into

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Function x - y Is Primitive Recursive

Function $\dot{x-y}$ is defined as follows:

$$x - y = \begin{cases} x - y & \text{if } x \ge y \\ 0 & \text{if } x < y. \end{cases}$$

Note that function x - y is different from function x - y, which is undefined if x < y. In particular, x - y is total while x - y is not.

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

18 / 50

Function $\dot{x-y}$ Is Primitive Recursive

Function $\dot{x-y}$ is defined as follows:

$$\dot{x-y} = \begin{cases} x-y & \text{if } x \ge y \\ 0 & \text{if } x < y. \end{cases}$$

Note that function x - y is different from function x - y, which is undefined if x < y. In particular, x - y is total while x - y is not.

Function $\dot{x-y}$ is primitive recursive because

$$\begin{array}{rcl} x \dot{-} 0 & = & x, \\ \dot{x -} (t + 1) & = & \textit{pred}(x \dot{-} t). \end{array}$$

The above definition can be further rewritten into

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7)Pairing Functions and Gödel Numbers (3.9)

Function |x - y| Is Primitive Recursive

Function |x - y| can be defined as follows:

$$|x-y| = (x - y) + (y - x)$$

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Function |x - y| Is Primitive Recursive

Function |x - y| can be defined as follows:

$$|x - y| = (x - y) + (y - x)$$

It is primitive recursive because the above definition can be further rewritten into

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7)Pairing Functions and Gödel Numbers (3.9)

Is Function $\alpha(x)$ below Primitive Recursive?

Function $\alpha(x)$ is defined as:

$$\alpha(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0. \end{cases}$$

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7)Pairing Functions and Gödel Numbers (3.9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

20 / 50

Is Function $\alpha(x)$ below Primitive Recursive?

Function $\alpha(x)$ is defined as:

$$\alpha(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0. \end{cases}$$

It is primitive recursive because

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

x = y Is Primitive Recursive

Is the function d(x, y) below primitive recursive?

$$d(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで 21 / 50

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ④ ◆ ○

21 / 50

x = y Is Primitive Recursive

Is the function d(x, y) below primitive recursive?

$$d(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

It is because $d(x, y) = \alpha(|x - y|)$.

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Is $x \leq y$ Primitive Recursive?

・・ 22 / 50

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7)Pairing Functions and Gödel Numbers (3.9)

Is $x \leq y$ Primitive Recursive?

It is primitive recursive because $x \leq y = \alpha(x - y)$.

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

23 / 50

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let \mathscr{C} be a PRC class. If P, Q are predicates that belong to \mathscr{C} , then so are $\sim P$, $P \lor Q$, and P & Q.

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

23 / 50

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let \mathscr{C} be a PRC class. If P, Q are predicates that belong to \mathscr{C} , then so are $\sim P$, $P \lor Q$, and P & Q.

Proof. We define $\sim P$, $P \lor Q$, and P & Q as follows:

$$\sim P = \alpha(P)$$

$$P \& Q = P \cdot Q$$

$$P \lor Q = \sim (\sim P \& \sim Q)$$

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursively Closed

Theorem 5.1. Let \mathscr{C} be a PRC class. If P, Q are predicates that belong to \mathscr{C} , then so are $\sim P$, $P \lor Q$, and P&Q.

Proof. We define $\sim P$, $P \lor Q$, and P & Q as follows:

$$\sim P = \alpha(P)$$

$$P \& Q = P \cdot Q$$

$$P \lor Q = \sim (\sim P \& \sim Q)$$

We conclude that $\sim P$, $P \lor Q$, and P & Q all belong to \mathscr{C} .

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

24 / 50

Logic Connectives Are Primitive Recursive and Computable

Corollary 5.2. If *P*, *Q* are primitive recursive predicates, then so are $\sim P$, $P \lor Q$, and P & Q.

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Logic Connectives Are Primitive Recursive and Computable

Corollary 5.2. If *P*, *Q* are primitive recursive predicates, then so are $\sim P$, $P \lor Q$, and P & Q.

Corollary 5.3. If *P*, *Q* are computable predicates, then so are $\sim P$, $P \lor Q$, and P & Q.

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Is x < y Primitive Recursive?

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 < の < () 25 / 50

Programs and Computable Functions (2) Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7)Pairing Functions and Gödel Numbers (3.9)

Is x < y Primitive Recursive?

It is primitive recursive because

 $x < y \Leftrightarrow \sim (y \leq x).$

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Definition by Cases

Theorem 5.4. Let \mathscr{C} be a PRC class. Let functions g, h and predicate P belong to \mathscr{C} . Let function

$$f(x_1,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } P(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{otherwise.} \end{cases}$$

Then f belongs to \mathscr{C} .

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Definition by Cases

Theorem 5.4. Let \mathscr{C} be a PRC class. Let functions g, h and predicate P belong to \mathscr{C} . Let function

$$f(x_1,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } P(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{otherwise.} \end{cases}$$

Then f belongs to \mathscr{C} .

Proof. Function f belongs to \mathscr{C} because

$$f(x_1,\ldots,x_n) = g(x_1,\ldots,x_n) \cdot P(x_1,\ldots,x_n) + h(x_1,\ldots,x_n) \cdot \alpha(P(x_1,\ldots,x_n)).$$

26 / 50

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Preliminaries (1) Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Definition by Cases, More

Corollary 5.5. Let \mathscr{C} be a PRC class. Let n-ary functions g_1, \ldots, g_m, h and predicates P_1, \ldots, P_m belong to \mathscr{C} , and let

 $P_i(x_1,...,x_n) \& P_j(x_1,...,x_n) = 0$

for all $1 \leq i \leq j \leq m$ and all x_1, \ldots, x_n . If

$$f(x_1, \dots, x_n) = \begin{cases} g_1(x_1, \dots, x_n) & \text{if } P_1(x_1, \dots, x_n) \\ \vdots & \vdots \\ g_m(x_1, \dots, x_n) & \text{if } P_m(x_1, \dots, x_n) \\ h(x_1, \dots, x_n) & \text{otherwise.} \end{cases}$$

then f also belongs to \mathscr{C} .

Preliminaries (1) Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

27 / 50

Definition by Cases, More

Corollary 5.5. Let \mathscr{C} be a PRC class. Let n-ary functions g_1, \ldots, g_m, h and predicates P_1, \ldots, P_m belong to \mathscr{C} , and let

 $P_i(x_1,...,x_n) \& P_j(x_1,...,x_n) = 0$

for all $1 \leq i \leq j \leq m$ and all x_1, \ldots, x_n . If

$$f(x_1, \dots, x_n) = \begin{cases} g_1(x_1, \dots, x_n) & \text{if } P_1(x_1, \dots, x_n) \\ \vdots & \vdots \\ g_m(x_1, \dots, x_n) & \text{if } P_m(x_1, \dots, x_n) \\ h(x_1, \dots, x_n) & \text{otherwise.} \end{cases}$$

then f also belongs to \mathscr{C} .

Proof. Proved by a mathematical induction on m.

Preliminaries (1) Programs and Computable Functions (2) Primitive Recursive Functions (3) Primitive Recursive Functions (3) PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Iterated Operations

Theorem 6.1. Let \mathscr{C} be a PRC class. If function $f(t, x_1, \ldots, x_n)$ belongs to \mathscr{C} , then so do the functions g and h

$$g(y, x_1, \dots, x_n) = \sum_{t=0}^{y} f(t, x_1, \dots, x_n)$$
$$h(y, x_1, \dots, x_n) = \prod_{t=0}^{y} f(t, x_1, \dots, x_n)$$

Preliminaries (1) Programs and Computable Functions (2) Primitive Recursive Functions (3) Primitive Recursive Functions (3)

Iterated Operations

Theorem 6.1. Let \mathscr{C} be a PRC class. If function $f(t, x_1, \ldots, x_n)$ belongs to \mathscr{C} , then so do the functions g and h

$$g(y, x_1, ..., x_n) = \sum_{t=0}^{y} f(t, x_1, ..., x_n)$$
$$h(y, x_1, ..., x_n) = \prod_{t=0}^{y} f(t, x_1, ..., x_n)$$

Proof. Functions g and h each can be recursively defined as

$$g(0, x_1, \dots, x_n) = f(0, x_1, \dots, x_n),$$

$$g(t+1, x_1, \dots, x_n) = g(t, x_1, \dots, x_n) + f(t+1, x_1, \dots, x_n),$$

$$h(0, x_1, \dots, x_n) = f(0, x_1, \dots, x_n),$$

$$h(t+1, x_1, \dots, x_n) = h(t, x_1, \dots, x_n) \cdot f(t+1, x_1, \dots, x_n).$$

28 / 50

Programs and Computable Functions (2)

Primitive Recursive Functions (3)

PRC Classes (3.3) Some Primitive Recursive Functions/Predicates (3.4, 3.5) Iterated Operations and Bounded Quantifiers (3.6) Minimalization (3.7) Pairing Functions and Gödel Numbers (3.9)

Iterated Operations, More

Corollary 6.2. Let \mathscr{C} be a PRC class. If function $f(t, x_1, \ldots, x_n)$ belongs to \mathscr{C} , then so do the functions

$$g(y, x_1, \ldots, x_n) = \sum_{t=1}^{y} f(t, x_1, \ldots, x_n)$$

and

$$h(y, x_1, \ldots, x_n) = \prod_{t=1}^{y} f(t, x_1, \ldots, x_n).$$

In the above, we assume that

$$g(0, x_1, \dots, x_n) = 0,$$

 $h(0, x_1, \dots, x_n) = 1.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

29 / 50