Energy Methods

CHAPTER OBJECTIVES

In this chapter, we will show how to spply energy methods to solve
problems invelving deflection. The chapter begins with & discussion of
work and strain energy, followed by a development of the principle of
conservation of energy. Using this principle, the stress and deflection
of a member are determined when the member is subjected to
impact. The method of virtual work and Castigliano's theorem are
then developed, and these methods are used to determine the
displacement and slope st points on structursl members and
mechanical elements.

14.1 External Work and Strain Energy

The dellection of joints on a truss or points on a beam or shafl can be
determined vsing energy methods. Before developing any of these
methods: however, we will first define the work cansed by an external
force and couple moment and show how [o express this work in terms of
a body’s strain energy, The formulations to be presented here and in the
next section will provide the basis for applying the work and energy
methods that follow throughout the chapter,
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Work of a Force. In mechanics a force does work when it
undergoes a displacement dx that is in the same direction as the toree, The
work dome is a scalar, defined as dU. = Fdx If the total displacement is
A, the work becomes

A
[, = / Fdx (14-1)
il

Tu show how to apply this equation. we will calealate the work done
by an axial force applied to the end of the bar shown in Fig, 14-1a. As the
magnitude of the force is gradually increased from zero to some limiting
value F = P, the final displacement of the end of the bar becomes A, [T
the material behaves in a4 Iinear-elastic manner, then the force will be
ditectly proportional to the displacement: that 5. F = (PiAlx
Substituting into Eq. 14-1 and integrating from 0 to A, we get

P4 (14-2)

Therelore, as the force 15 gradually applied to the bar, its magnitude
builds from #ero to some value P, and consequently, the work done is
equal to the overage force magnimde, P72 tmes the total displacement
A. We can represent this graphically as the light-blue shaded area of the
triangle in Fig. 14-1¢

Suppose, however, that P is already applied to the bar and that anoter
force P is now applied, so that the end of the bar is displaced further by
an amount &°, Fig. 14-1h. The work done by P' is equal (o the pray
shaded triangular area, but now the work done by P when the bar
undergoes this further displacement is

U, = PA! (14-3)

Here the work represents the dark-blue shaded rectangulor area in
Fig. 14—1c. In this case P does not change its magnitude, since the bar’s
displacement A" 15 cavsed onlv by P, Therefore, work here is simply the
force magnitude P rimes the displacement A'.
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Work of a Couple Moment. A couple moment M does work
when it undergoes an angular displacement a4 along its line of action,
The work is defined as dUf. = M dé, Fg, 14-2, If the total angolar
displacement is @ rad, the work becomes

]
= f.HdH (144)
L]

As in the case of force, if the couple moment is applied to a body
having linear elastic matenal behavior, such that its magnitude is
increased gradually from zero at # = 0 to M at #, then the work is

£, =M (14-5)

However, if the couple moment is already applied tw the body and other
loadings further rotate the body by an amount &', then the work is

L= Me

Strain Enargy. When loads are applied to a body, they will deform
the material, Provided no energy is lost in the form of heat, the external
work done by the loads will be converted into internal work called sfrain
energy. This energy. which is always positive, is stored in the body and is
caused by the action of either normal or shear siress

Normal Stress. If the volume element shown in Fig. 14-3 is subjected
to the normal siress o.. then the force created on the element’s
top and bottom faces is dF. = o.dA = o_dx dy. If this force is
applied gradually to the element, like the force P discussed previously,
its magnitude is mereased from zero o dF., while the element
undergoes an elongation d A . = €. dz. The work done by o F. is therefore
dll, = LdF. dA. = Yo, dx dy]e. dz. Since the volume of the element
15 dV = dx dy dz, we have

dt, %u,.,. dv (14-6)

Motice that Jdi; is alwaery positive, even if o . 15 compressive, since . and
e. will always be in the same direction.

Im general then. if the body is subjected only to a uniaxial normd stress
er, the strain energy in the body is then

U, Sav (14-T)
JP =

bt |

Fig. 14-2
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Alsoif the material behaves in a linear-elastic manner, then Hooke's law
applies, and we can express the strain energy i terms of the normal
siTess as

v, = F%uv (14-8)

Shear Stress. A strain-energy expression similar to that for normal
siress can also be established for the material when it is subjected
to shear stress. Consider the volume element shown in Fig. 14-4. Here
the shear stress causes the element to deform such that only the shear
force o F = ridx dv), acting on the top face of the element, is displaced
ydz relative to the bottom face. The verical facer only rotate, and
therefore the shear forces on these faces do no work. Hence, the strain
Fig. 144 energy stored in the element is

du, %hmr dy}ly dz
or since oV = dx dvd;
Lt %T}rtﬂ-" [14-4]
The strain energy stored in the body is therefore
U, I{%‘"w (14-10)

Like the case for normal strain energy. shear strain energy is always
positive since 7 and y are always in the same direction. If the material is
linear elastic, then, applying Hooke's law, y = 7/, we can express the
straim etergy in terms of the shear stress as

o

U= fa
Jv 20

i 1411}
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In the next section, we will use Eqs 14-8 and 14-11 to obtain formal
expressions for the sirain energy stored m members subjected 1o several
tvpes of loads Once this is done we will then be able o develop the
etiergy methods necessary o determing the displacement and slope at
porints on a body.

Multiaxial Stress. The previous development may be expanded to
determime the strain energy in a body when it is subjected to a general
state of stress, Figo 14-50 The strain energies associated with each of
the normal and shear stress components can be obtained from Egs. 14-6
and 14-9. Since energy is a scalar. the total strain energy in the body is
therefore

11 | 1
= [[E"FJ’ET T E'rv“-—r A Erl"_—f_-
1

I I
+ E'-r_l.":"n L Erl':‘:"_rr 7 ETT:T.T.'] dVv (14-12)
The strains can be eliminated by using the generalized form of Hooke's
law given by Egs 1018 and 1019 After substituting and combining
terms, we have

; ] = 5 4 "
I"r| = j[frail + .y 4 T :I = rEI:I'-"-L'-'|-| + AT jiF + IT._II'I:II

| %l:n_f o e Tl:l]]dv (14-13)

If omly the principal siresses oy, @, oy act on the element, Fig. 14-50,
this equation redoces (o a simpler form, name|v.

i 3 4 : "
L= \[[ﬁ{f}'l_ + o+ .ur_;'l|- = ‘E[rﬁr_r_r + iy + ::rprﬂ}.’ﬂ-" (14-14)

This equation was used in Sec, 1.7 as a basis for developing the
maxmmum-distoriion-enerey theory,
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14.2 Elastic Strain Energy for Various
Types of Loading

Using the equations for elastic stram energy developed in the previous
section. we will now formulate the strain energy stored in a member
when it is subjected o an axial load, bending moment, transverse shear,
and torsional moment. Examples will be given to show how to calculate
the strain enerzy in members subjected 1o each of these lnadings.

Axial Load. Consider a bar of variable vet slightly tapered cross
section, Fig. 14-6. The imrernal axtal force at a section located a distance x

froom one end s N, 11 the eross-secthional area at this seclion 15 A, then the

e normal stress on the section is ¢ = N/ A. Applving Eq. 14-8. we have
~_ 8
K N ' 6T Ed hr"
: u,=j ‘dv=f =dV
; T viE vaEA
e If we choose an element or differential slice having a volume

dV = Adx, the general formula for the strain energy in the bar is
therefore

L am
= 1 415
L ‘4 IAEFI [ 14-15)

For the more common case of a prismatic bar of constant cross-
sectional area A, length L. and constant axial lead N, Fig 14-7,
Eqg. 14-15, when mitegrated, gives

/g o

L b
N UJ AT

(14-16)

i Maotice that the bar's elastic strain enecgy will fncreaye if the length of

the bar is increased. or if the modulus of elasticity or cross-sectional area
is decreased. For example, an aluminum rod [E, = 10{107) ksi] will
store approximately three times as much energy as a steel rod
|Ey = 290107) ksi] having the same size and subjected to the same load,
However, dowbling the cross-sectional area of a rod will decrease s
ability 1o store energy by ome-half The following example illustrates
this puint numerically,
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EXAMPLE |14.9

One of the two high-strength steel bolts A and B shown in Fig. 14-58is
to be chosen to support a sudden tensile loading. For the choice it is
necessary to determine the greatest amount of elastic strain energy
that each bolt can absorb. Bolt A has a diameter of 00875 in. for 2 m,
of its length and & roor (or smallest) diameter of 0731 in, within the
(1.25-in. threaded region. Bolt & has "upset” threads, such that the
diameter throughout its 2.25-in. length can be taken as (1731 in. In
both cases, neglect the extra material that makes up the threads. Take
E. = 29(1F) ksi, oy = 44 ksi.

(731 in

T35l n

Fig. 144
SOLUTION

Bolt A. If the bolt is subjected o its maximum tension, the
maximum stress of oy = 44 ksi will occur within the 0.25-in. region.
This tension force 15

L7301 im.
P =0y A = 8 kq[r(ﬁ) } = 18.47 kip

S

Applving Eq. 14-16 to each remon af the balt, we have

NL
Ui= 2345
L (1847 kip)*(2in.) (1847 kip) {0125 in.)
 2w(0R75 m 22900 ksi] 2l (00731 in 20290 1) ksl
= (.0231 in. - kip Ans.

Bolt B. Here the bolt is assumed to have a uniform diameter of
11.731 . throughout its 2.25-in. length, Also, from the caleulation above,
it can support a maximum tension foree of P, = 1847 kip. Thus,

_ NL (18.47 kip)'(2.25 in.)
T 2AE 20731 in 2R [29(10°) ksi]

MNOTE: By comparison, bolt B can absoth 36% more elastic energy
than bolt A, because it has a smaller cross section along its shank.

i

= (L0315 in.+kip Anx
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Bending Moment. Since a bending moment applied to a straight
prismatic member develops nermal siress in the member, we can use
Eyg. 14-8 to determine the strain energy stored in the member due
to bending. For example, consider the axisvmmeliric beam shown in
Fig 14-9 Here the internal moment is M, and the normal stress acting on
the arbitrary element a distance v from the neutral axis is o = My/[. If
the volume of the element is d1° = oA dx. where dA is the area of its
exposed face and dx is its length, the elastic strain energy in the beam is

i’ L/ Myy?
L= —al = _—— il d
" NIE [-:!F( i } e

ur

r T 5
[ = f af S ( / v dA ) dx
0 2EF 1

Realizing that the area integral represents the moment of inertia of the
area about the neutral axis, the final result can be written as

L .l
;= f ‘E;::‘ (14-I7)
[T

To evaluate the strain energy, therefore, we must first express the
internal moment as & function of its position @ along the beam, and then
perform the imtegration over the beam's entire length.* The following
examples illustrate this procedure.

Fig. 14-1

*Hecall that the flexure formuoln. as used here, cin ilso be nsed with justifishle acca ey
o dietermmme the steess e slightly tapensd beams. {(See Sec. 6.4 50 a0 e general sende J
in Eq. [4-17 may alzo hove o be expressed as o funciion of v
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EXAMPLE |14.2

Determine the elastic strain energy due to bending of the cantilevered
beam in Fig. 14104, £V s constant

EERRTEERRERE

[ L

Fig. 14-10

SOLUTION

The internal moment in the beam is determined by establishing the x

coordinate with origin at the left side. The left segment of the beam is e
shown in Fig Ld—108. We have

L+ EMyq =1k M+ u-x(' ) =10 | I

Aopplyving Eq. 14-17 vields

s [*- M dx _ /‘* [—wi /2] dx _ :,;- frf ”
S AEL I 2ET 2EL fn

w3
L= 0ET Ant

1T

We can also obtain the strain energy using an x coordinate having
its origin at the rght side of the beam and extending positive to the
left, Fig. 1411k In this case,

: : i
[TEMui=1 —M - |1=.=:(%;] + wliz} — H,‘_I_ =1}
wil® x
M= —T + wilxy — II'(T)

Applving Eq. 14-17, we obtain the same result as before; however,
mare caloulations arg mvolved in this case

]
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EXAMPLE | 14.3

P Determine the bending strain energy in region AB of the beam
l shown i Fig 14-11a. ET 15 constant.
1

A B k-

— e SOLUTION

| A free-body diagram of the beam is shown in Fig: 14-114. To abtain
the answer we can express the miemal moment m terms of any one

i) af the indicated three *2” coordinates and then apply Eq. 14-17,

P Each of these solutions will now be considered.

=1 = L From the free-body diagram of the section in
Fig. 14-11¢, we have

A E Tr )
I7 _'1 p '] I |+ }...'H_-.li (: .'“'| $ P.‘I| {l
Ly =3 .
|_| o |1'i|' == _F.[]

! oo [Mdx  [fU(PuYden P =
T ZER Oy mEF T BH .

(b}
f=x.=L Usmg the free-body diagram of the section n

A
|1 J“u Fig. 14-11d gives
X
+ XMy =1 My + 2P(x;) — Flxs + Ly=1
:W_l FI-.I.Q L:I

i) s f,w? de /“ [Plas— L)  dxs _ PL2
T T A - AE] T

( T ¥ L =xy=2L From the free-body diagram in Fig. 14-11&, we have
i

.,-,'l' ! |
|'- | (+EMpy. = 0O My 4 2P(xy — Ly = Plxs) = ()
= My = P(xs—2L)

"M Py — 21 dxa 253
1 L= / SE _[ — L = Fd Ay,
i !

v 2ET 2E] aE]
L |
M ( 1 L2 i

L -j

NOTE: This and the previous example indicate that the strain
energy for the beam can be found using any suitable x coordinate. [t is
o only necessary to integrate uver the range of the coordinate where the
internal energy s to be determined. Here the choice of & provides

fe) the simplest solution,

1y

Fig. 14-11
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Transverse Shear. The strain energy due 1o shear stress in a beam
element can be determined by applving Eq. 14-11. Here we will consider
the beam to be posmatic and to have an axis of svmmetry about the v
axis as shown in Fig. 1412, If the internal shear at the section xis V, then
the shedr stress acting on the volume element of matecial, having an area
i and length dr.is ¢ = O/ T Subsntuting infto Eq. 14-11. the strain v
enerey for shear becomes

/ v /%(%} dA dx
U= ﬂ ( f —lm)

The integral in parentheses can be simplified if we define the form factor
for shear as

Fig. 14-12

f i E,M (14-18)
& il

Substituting into the above equation, we get

2GA

L, = (1411}

The form factor defined by Eq. 14-18 is a dimensionless number that
15 umigue for each specilic cross-sectional area. For example, il the beam b
has a rectangular cross section of width b and height &, Fig. 14-13, then

t =t
dA = hdy
|

I = Ehh’

(k12Y = v\ 7h N 2o
0=ya=(r+ P Df- )45 -»)

Substituting these terms into Eq. 14-18, we get

bil M e f
f.= TR g T = _'|") by = E { 14-201)
(bl | Sonz A

Fi, 14-13

The fonmn factor for other sections can be determined in a similar manner,
Unee obtained, this factor is substituted into Eqg. 14-19 and the strain
energy for transverse shear can then be evaluated,
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EXAMPLE | 14.4

Determine the strain energy in the cantilevered beam due to shear
if the beam has a square cross section and is subjected to a uniform
distributed load w, Fig, 14-14g. EF and & are constant.

o L ] i L L |
14 Ba l) M
| r |

J ¥
al {hy
Fig. 14-14
SOLUTION
From the ree-body diagram of an arbitrary section, Fig. 14-146, we have
+18F, =0 -V —wx=20
v e

Since the cross section 15 square, the form factor £, = - {Eq. 14207
and therefore BEq. 14-1% becomes

() fr'%':‘"'-f}"*’-‘ 3w frr.‘.u't
L1 a 2G A SGAJy ~

WL

SCA

NOTE: Using the results of Example 142 with A = @, | = Sa', the
ratio of shear to bending strain energy is

uar

(L), = Ans

(Udn  wiLS40E(La') 3

(L),  wlL5Gr z(a)TE
L) G

Since G = Ef2{1 + v) and » = 3 (Scc. 10.6), then as an wpper

hound. E = 35, 5o that
[, m _I[i'}:
(0 g

It can be seen that this ratio will increase as I decreases. However,
evien fur very short beams. where, sav. I = 5a, the contribution due to
shear strain energy is only 8% of the bending strain energy. For this
reason, the shear strain enerey stored in beams 15 usually neplected in
enginecring analysis
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Torsional Moment. To determine the internal strain eneray in a
circular shaft or tube due to an applied torsional moment, we must apply
Eq. 14-11. Consider the slightly tapered shaft in Fig. 14-15, A section of
the shalt taken a distance x from one end is subjected to an internal
torgue T The shear stress distribution that canses this forgle varies
linearly from the center of the shaft. On the arbitrary element of area
dA and length dx, the stress is + = Tp/J. The strain energy stored in the
shaft 1= thus

r | T;J': i T?
U= 1-EGdF = [E(T} dA dx j, ﬁ(-{;ﬂ' rfﬂ)th’

Since the area integral represents the polar moment of inertia J tor the
shaft at the section, the final result can be written as

peif T 14-21)
' AGT :

The most commaon case occurs when the shaft (or tube) has a constant
cross-sectional area and the applied torgue 15 constant, Fig 1416,
Integration of Eq. 14-21 then gives

L

U= oG7

(14-22)

From this equation we may conclude that, like an axiallv loaded member,
the energy-absorbing capacity of a torsiomally loaded shaft is decreased by
imereasing the diameter of the shaft, since this increases J.

Important Points

* A force does work when it moves through a displacemens. When
a force is applied to a body and itz magnitude is increased
gradually from zeto to F,the work 80 = (F/2)A, whereas if the
force is constant when the displacement occurs then IV = FA.

& A coniple morment does work when it displaces theough A rodation.

= Stratn energy is caused by the internal work of the normal and
shear siresses. 1118 always a posimve quantity.

* The strain energy can be related to the resultant internal loadings
N V.M, and T,

" As the beam becomes longer. the strain eénergy dug to bending
becomes much larger than the strain energy due to shear. For this
reason, the shear strain energy in beams can generally be neglecred.

The fullowing example illustrates how to determing the strain energy
in a circelar shaft due to a torsional loading

Fig. 14-15

Fig. 14-16

Tar
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EXAMPLE | 14.5

The tubular shaft in Fig. 14-17a is fixed at the wall and subjected to
two torgues as shown. Determine the strain energy stored in the shaft
due to this loading. ¢ = 75 GPa.

fil

Fig. 14-17

SOLUTION

Using the method of sections, the internal torgue is first determined
within the two regions of the shaft wherne it is constant, Fig. 14-17h.
Although these torgues (40N-m and 1SN-m) are in opposite
difections, this will be of no conSeguence in defermimng the stran
energy. since the torque is squared in Eq. 14-22. In other words, the
sirain energy Is always positive. The polar moment of inertia for the
shaft is

7= 21008 m)* — (0.063m)] = 36.30(10°*) m!

Applving Eq. 14-22, we have
Vgl &
267
(40N +m ¥ (0L750 m) (15 N +m ) (0,300 m)
2[7500°) N/me 3630010 %) m? i 2A75010% N/ w7 3630000 % ym*
= 733 ] Ansg

U,
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. PROBLEMS

14-1. A matenal is subjected to a general state of plane
stress. Express the strain encrgy density in terms of the
clastic constants E. 7 and » and the stress components o,
iy, anid T,

i,

Pruh, 14=1

18-, The strein-energy density must be the same whether
the state of stress is represented by o, oy, and 1, or
by the principal stresses o andd e, This being the case,
equate the strnh:—cucrg}l expressions for each of these twa
cases and show that €5 = E]2(1 + »]].

14=3, Determine the struin coergy in the stepped
rodl  assembly.  Portion AR §5 steel and BC s
hrass. Fy, = 100 GPa, E, = 200 GPa. [yl = 410 MPa,
LTyl = 250 MPa.

1k mm

Proh, 14-=3

“1d=4, Determing the torsional stram energy i the A<360
slgd| el The shaf kas a diameater of S mm.

Frob. 144

o14-5. Determine the strain encrgy in the rod assembly
Portion AB is steel, #C i5 brass and O is aluminom.
Ee =200 GPa. Ky, = 1N GPa. aml Ey = 731 GPa.

20 mm

IEM

Hru T
HHImm Ak mm L]IH: mm=

'roh. 14-5

14-6. 1 P = 60 KN, determine the total straim energy
stored in the truss. Each member hag 8 éross-sectional area
of 2.5(10") mm® and is mads of A-36 steel,

14-=T. Determine the maximum (orce Poand  the
vurresponding maximum total strain energy stored in the
truss without causing any of the members o have
permangnt deformation, Esch member has the cross-
sectional ares of 2.5 10% mm?® and is made of A-36 s1eol

A

Frols. 14—
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A14-B.  Determine the torsonal siribn encegy in the A-36
pieel shafl. The shaft has a radius of 30 mm,

Prot. 14-8

149, Determine the lorsicnal strain enecgy in the A-36
steel shalt The shaft has o radius of 40 mm.

ek 14-4

14=10. Determine the torsional straim encrgy stored in the
tapared rod when it is subjeeted 1o the torgque T, The rod is
made of material having 8 modulus of rigidity of 7.

Prob, 14=10

14-11. The shaf assembly s fised at O The hollow
segment B has an inner radies of 20 mm and outer radios
ol 4l mm, while the solid segment AR has & radius of
20 mm, Determine the torsional strain ehergy stored in the
shaft, The shaft i3 made of 2004-T6 aluminwm allow, The
coupling at & is rigid.

Proh. 14-11

*14-12 Congider the thin-walled tube of Fig 5-28. Lsz
the formula for shear stress, 7., = T/20A,,, Eq, 5-18. and
ihe peneral equation of shear sirain energy, Eqg. 14-11, 1o
ahow that the twist of the tubke iF given by Eqg. 5201,
Hine Equate the work done by the torgue T o the strain
energy in the tube, determned [rom imlegrating the sirmn
energy fora differential element, Fig. 144, over the volume
of material.

s14-13, Detormine the ratio of shearing strain encray 1o
honadimg strain enerey Tor the rectangulaor caniilever beam
when il is subjected to the loading shown. The beam is made
of material having 8 modulus of elasticity of £ and Poisson’s
ratic of a

N
J [

Section a - @

Prob. 14-13
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14-14. Delermine the bending straim-cncrgy in the heam o 1417, Determing the bending strain encray in the A-26
due to the loading shown, ET 15 constant. steel beam, = 99,2 {1(F) mm*,

;
]

v m
Proh. 14-14

Prob, 14-17

. . ) l4=18. Dwtormine thie bending strain cnergy in the A-36
14-15, Determine the bending strain cnergy in the beam.
EX s constant.

stee] heam due 1o the distributed load, § = 122 (107 mm?,

15 kN 'm
¥ ¥ _
l AT
¥ ]

i
H I T ,
_él. y { -

L | i TR Prob. 14-18
4 I 2 4
Prob. 14-15

l4-1%. Determine the strain cocrgy i the forizomial

curved bar dise to orsion, There s a veriical Torce P acting
al its end. JEF I8 eonstant,
“ld=16, Determime the bending strain energy m the A-<30

structural steel W X 12 beam, Odbtain the answer wsing
the coordinates {a) &) and xy, and (b xrp amd xy

é kap

. |—.ul
—

Prob. 141

r

Proh, 14-1%
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A14-20.  Determne the bending strain encigy m the beam
and the axial strain energy in each of the two rods The
beam is made of 2014-Th sluminem and hes & square cross
seetion S0 mm by 50 mim. The rods are made of A-36 steel
and have a circular eross section with a 20-mm diameter

Mrob, 14-20

sld=21. The pipe lies o the Borzomal plane, If @ is
subjected Lo 8 vertical force ™ at its end, determine the
strein encrpy due 1o bending and torsion. Express the
resalis i terms of the crozs-sectional properies fand S, ond
the material properiies Fand G

Prob., 14-21

14-22. The beam shown is tapered aslong s width, 11 a
frce P is applied 1o its end, determine the straim energy in
the beam and compare this result with that of a beam thit
has a constant rectenpgular cross section of width b and
hicight k.

Prob, 14-22

14-23, Determinge the bending siraiy encrpy in the
centilevered beam duee o a8 oniform load w. Solve the
problem teo ways, (2) Apply Eg. 1417, (k) The load w dx
Acting on a sepment dy of the beam 18 digplaced a distunes §
where v = wi—x + 4l%x — ILY/(24ET), the equation of
the elastic curve. Hence the inlemal strain enerpy in the
differential segment dy of the beam 18 equad to the external
work, Le., di/; = ${w dx){—v). Inlegrate this equation 1o
obtain the total straim energy in the beam. £F s constant

w ile

| ..
'.1 . } 1

di—|| i
I

Proh. 14-23

*14-24. Determine the bending straim encrgy in the
simply supported beam due to a uniform load . Solve the
problem two waye (4) Apply Eq. 14-17. (k) The load w dx
acting on the scament o of the beam is displeced a distance
v, where y = wi—x? + 21.2% = L'x)/[24ET}, the equation
oof the elastic curve Hence the internal strein encegy in the
differential scgment dy ol the beam is equal to the external
work, Le., dlf, = ${w dx){—v). Ineprate this equation to
pbtain the tolal strain energy in the beam. EX is constant.

il

[ "

X LJT

L

Proh. 14-24




14.3 Conssrvanan of Eneagy 733

14.3 Conservation of Energy

All gnergy methods used m mechanics are based on a balance of eneray,
often relerred to as the conservation of energy, In this chapler, only
mechanical energy will be considered in the energy balance; that is the
energy developed by heat, chemical reactions, and electromagnetic
effects will be neglected. As a result, if a loading is applied slowly to a
body. then physically the external loads tend to deform the body so that
the loads do externial work U, as they are displaced. This external work
om the body is transformed into aternal work or stram energy U which
is stored in the body. Furthermore, when the loads are removed, the
strain energy restores the body back to s original undeformed position,
provided the material’s elastic mit 15 not exceeded. The conservation of
energy for the body can therefore be stated mathematically as

L, = f14-23]

We will now show three examples of how this equation can be applied
to determine the displacement of a point on a deformable member or
structure. As the first example. consider the truss in Fig. 14-18 subjected
to the load P Provided P is applied gradually, the external work done
by P is determined from Eq. 14-2, that is £/, = 2 PA, where A is the
vertical displacement of the truss at the joimt where P is applied.
Assuming that P develops an axial force MW in a particular member, the
strain energy stored in this member is determined from Eq. 14-16, that is,
L, = N'L{ZAE. Summing the sirain energies for all the members of the
truss, we can write Eq. 1423 as

1 NL
—PA = 14-24
2 E' TAE : )

Once the internal forces (N in all the members of the truss are
determined and the terms on the right caleulated, it is then possible to
determineg the unknown displacement 4.

Fig. 14-18
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As a second example, consider finding the vertical displacement A
inder the load P acting on the beam in Fig 14149 Again, the external
work s L, = LPA_ In this case the strain energy is the result of internal
shear and moment loadings caused by P In particular, the contribution
of strain energy due to shear is generally neglecred in most beam
deflection problems unless the beam is short and supporis a very large
load, (See Example 14.4.) Consequently, the beam’s straim enerey will be
determined only by the internal bending moment A, and therefore,
using B, 14-17, BEg. 1423 can be wrnilten svmbolically as

[
= l Logo [(22, (14-25)
! — e — 2  2E1 3
Fig. 14=1%

Once M 15 expressed as a function of position x and the mtegral s
evaluated, A can then be determined.

As a last example, we will consider a beam loaded by a couple moment
M, as shown im Fie [4-20. This moment cavses the rotational
displacement # at the point of application of the couple moment, Since
the couple moment only does work when it roseres, using Eg. 14-5, the
external work s U, = i—_.ld’"!!. Therefore Eq. 14-23 becomes

i Lw?
:'H-'IH =\/“‘ EEI'II (14-2a1

=

Here the strain energy is the result of the internal bending moment
M caused by application of the couple moment My, Once M has been
cxpressed as a function of x and the sirain energy evaluated, then #
which measures the slope of the elastic curve cin be determined

In each of the above examples, it should be noted that apphcation of
Eq. 14-23 is quite limited, because only a single external force or couple
moment must act on the member or structure. Also, the displacement
can only be calculated at the point and in the direction of the external
force or couple moment. If more than one external force or couple
momen! were apphed, then the external work of each loading would
involve its associated wunknown displacement. As a result, off these
unknown displacements could not be determined, since only the single
Eqg. 14-23 is available for the solution. Although application of the
conservation of enerey as described here has these restnctions, it does
serve s an introduction to more general energy methods, which we will
consider throughou! the rest of this chapier
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EXAMPLE |14.6

The three-bar truss in Fig. 14-21a is subjected to a horizontal force of
5 kip. If the cross-sectional area of each member is (.20 in-, determine
the harizontal displacement at point B. E = 29(10°) ksi,

i)

= 5 kip

21
i 5 kip
- ﬁ L L
Nyp = 204 kip
] (]
Fig. 14-21
SOLUTION

We can apply the conservation of energy to solve this problem
because only a single external force acts on the truss and the required
displacement happens 1o be in the seme direction as the [orce,
Furthermuore. the reactive forces on the truss do no work since they
are nol displaced.

L'sing the method of joints. the force in each member is determined
as shown on the free-body diagrams of the pins at B and C, Fig. 14214,

Applving Eq. 14-24, we have

N?L

|
278 = Z9aF
oy (289kip(2ft) (=577 kip)'(4 ft})
2 BEpHAg = —— o+ SAE
3 kip)'(3.46 fi)
2AE
4732 kip-h
M= e

Maotice that since W i squared, o does not matter il a particular
member 15 in lension or compression. Substituting i the numencal
data for A and E and salving, we get

4732 kip-fi{12 in. /)
(0.2 in7 }[29( 10"} kip/in"|
0.0979 in, — Anx

s
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EXAMPLE | 14.7

r The cantilevered beam in Fig. 14-22a has a rectangular cross section
and is subjected to a load P at its end. Determine the displacement of
Bt the load. EV is constant
i | z SOLUTION
) The internal shear and moment in the beam as a function of x are
determined using the method of sections. Fig. 14-224,
4 When applying Eq. 14-23 we will consider the strain energy due to
i both shear and bending. Using Egs 14-1Y and 14-17, we have
M=—F1 i al Loyl
'_’_"l?——r T /‘ [V dx j .1.1 dx
I:-I'I} 2 (v 2‘:'1"1. ] IJE’
Fig, 14-22 = /IL{E][ — /IJ. (CPajide_apd  #C (1
=4 ™ 208 ¢ IRT  BGA R

The first term on the right side of this eguation represents the strain
encrgy due to shear, while the second is the strain energy due to
bending. As stated m Example 14.4, for most beams the shear stram
erergy is much smaller than the bending stram enedey. To show when
this is the case for the beam in Figure 14-22q, we require

3FL PL
5G4 6E!
3 PL = PE?
SGhR)  eE[ S0
3 212
5G - ER
Since E = M5 (see Example 14.4), then

09 = {%)1

Henee if L is relatively long compared with h, the beam becomes
slender and the shear strain energy can be neglected. In other words,
the shear strain criergy becomes important only for shors, degp beam,
For example. beams for which L = 5k have appromimately 28 times
more bending strain energy than shear strain energy, so neglecting the
shear sirain energy represents an error of about 3.6% . With this in
mind, Eqg. | can be simphified to

1 Fl?
3 A =6l
s that
i
A= ke Ans

~ 3El
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Sropiews

s14-25, Determine the horzontal displecement of joimt A *14-28. Dictermine the horpsontal displacement of joint £
Each bur 13 mide of A-36 steel amd has a -cross-sectional AE is constant
area of 1.5 in~

Thkip oA

| (I [

Proh. 14-28

Prob. 14-25 «14-29, The cantilevered beam is subjected 1o o couple

moment My applied ot (18 end. Determine the slope of the
beam at B, EY = constant

Proby, 14=29

14-26, Determine the horizontal displicement of joint
AR is constant.

14=-30, Determine the vertical displacement of point C of
the simply supported G061-T6 aluminuwm beam, Consider
both shearng and bending strain cncrgy.

Proli, 14-26

14-27. Determine the vertical displacement of joint € AE 1Kt bap
i= constant.

35 11 515

Proh, 14-27 Sectione — o Proh. 1d=3i)
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14-11. Detormine the slope at the end B of the A-26 steel
beam, T = 800107 mm®,

ty kMo
A l
T L)
_ﬁ Sl
14
I Km I

Froh. 14=31

*14=32. Determine 1he deflection of the beam at 18 center
civsed by ghear, The shear maodulus is G

f—

|L_=|
=

| |

N

Prols. 14-32

ald=33, The A-36 s1eel bars are pin connected at B and C
IT they each have a diameter of 30 mm, detdrmine the slope

at E,

Xl Mm
H

M. O

Prob. 14-33

1

1 =
I—] m

14-34. The A-36 steel bars are pin eonnected at & If
gach has a mgquare eross section, determine the vertical
displacement &t H.

HiK [
:lr.
A i) C n H
: ) Ezin
& . - W
| H i =4 fit—= 10 i |

Proh. 14=-34

14-35. Determne the displicement of point 8 on the
A-36 atee] heam. T o= BO{IO™) mm?

_‘illl.l'd
A L o
| E e
! im | 3m I

Proh. 14-35

+14=36. The rod has & circular cross section with a moment
of inertia 1. 10 & vertical foree T is applied a1 A, deferming
the vertical displacement at this point. Only consider the
strain energy die o bending. The muodulus of clasticty is E

Proh. 14-36




o14=37.  The lowd P cewses the open coils of the spring to
make an angle & with ihe horizontal when the spring is
stretched. Show that (or this position this causes a torgue
T = PRcos#and o bending moment M = PR &in & at the
cross section: Use these resulis to deierming the maximum
normal stress in the material

14-38, The coiled spring has n coils and 15 made from &
material having & shear modulus € Determine the streteh
ol the spring when it is subjected o the load P Assume that
the coils are close 1o cach other so thal # = 0" and the
dellection is cased entirely by the torsional stress in the cotl,

.Ir

o
Probs. 14-37/38

1434, The pipe essembly s fxed @t A Determine
the vertical displecement of end C of the assembly. The
pipe has an inngr diameter of 40 mm and outer diamater
of Al mm end is made of A-36 steel. Negleot the shearing
SLFaln coergy.

Prob. 14-39

14.3 Consemvaion o Enescy 739

*14-40, The rod has & crcular cross section with g polar
moment of incriia J and moment of inertia I IF a verical
force P is applicd at A, determine the vertical displacement
@1 this point. Consider the strain energy due to bending iand
torsion, The material constanis are F and &,

Prob. 1440

sld=d1, Determine the vertical displecement of eod & of
the rame, Consider only bending strain encrgy. The frame
15 made using two A-36 steel WABL = 68 wide-llange
seclions

| Im |
i)
Y
kM
Proh. 141
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:‘!l-m:l

Fig. 14-23

This crash bamer is designed 0 ahsorb
e ImpAC] STy ol Mg v hcles

Throughout this text we have considered all loadings to be applied to a
body in a gradusl manner, such that when they reach a maximum value the
hody remains static. Some [padings, however, are dvnamic; that is they
vary with time. A typical example would be cansed by the collision of
objects. This is called an impact loading. Specifically, impact oceurs when
oné object strikes another. such that large forees are developed berween
the objects during a very short period of time,

If we assume no energy s lost donng mmpact, due to heat, sound or
localized plastic deformations. then we can study the mechanics of impact
wsing the conservation of energy. To show how this is done, we will first
analyze the moton of a simple block-and-spring svstem as shown in
Fig 14-23. When the block is released from rest, it falls a distance h,
striking the spring and compressing it a distance 4., before momentarily
coming to rest. If we neglect the mass of the spring and assume that the
spring responds elasaoally, then the conservation of energy requires that
the energy of the falling block be transformed into stored (siram} encray
m the spring; or in other words, the work done by the bleck’s weight,
falling fi + Ap,y. 05 equal to the work needed to displace the end of the
spring by an amount 4, . Since the foree in a spring is related to A, by
the equation F = kA, where & is the spring stiffness, then applying the
conservation of energy and Eq, 14-2, we have

i, =L
|
!F'Flllu | -Iim_.u] :'rkﬁnu:]-'lmulr
Pl
Wik + Apay) = kg, (14-27)

. W, (WY _
Ili"'m.m. = T‘imu: = l-( i J'h =1{)

This guadratic equation may be solved for 4 The maximum rool is

i

b= A

nEs -

If the weight W is supported statically by the spring. then the top
displacement of the spring s 4, = Wik, Using this simplification,
the above equation becomes

":!"lu.u = ‘iul W r-'-‘hr]: L :I-J':!-‘.f!

|
A = ﬂ.,1|:1 +yf1+ z(;—‘ﬂ (14-28)
4l

ar
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Once A, 15 calculated, the maximum force applied to the spring can
be determined [rom

Ful-\l\.l = kﬂ‘rnln. :14_'2":]

[t should be realized. however, that this force and associated
displacement oceur only at an instani. Provided the block does not
rebound off the spring, it will continue to wvibrate until the motion
dampens oul and the block assumes the static position, A, Note also
that if the block 1= held just above the spring, fi = (0, and released, then,
from Eq. 14-28. the maximum displacement of the block is

Ana, = 24,

In other words, when the block is released from the top of the spring
{a dynamic load), the displacement is hvice what it would be if it were set
on the spring {a static load).

Using a similar amalysis, it i5 also possible (o0 determine the maximum
displacement of the end of the spring if the block is sliding on a smooth
horizontal surface with a known velocity v just before it collides with the
spring, Fig. 14-24. Here the block’s kKinetic energy.s -I—.{FV,-rg]uq. will he
transformed into stored energy in the spring. Hence. i

U.o=1u
 F - O e
L) - o
|Wr°
lﬂ'TI1.'I:l = \'lllg_ji.— l:-l-ll_an:l Allul
Since the static displacement at the wop of the spring cawsed by the Fig. 14-24
welght Wresting on it is A, = W/k. then
A
| £
Ajx = "'-'I‘T (1431}

Thie resules of this simplified analysis can be used to determing both the
approximate deflection and the stress developed in a deformable member
when it is subjected to impact. To do this we must make the necessary
assumptions regarding the collision, so that the behavior of the colliding
bodies is similar to the response of the block-and-spring models discussed
above. Hence we will consider the moving body to be mgid like the block
and the stationary body to be deformable like the sprng. Also it is assumed
that the material behaves in a linear-elastic manner. When collision oceurs,
the bodies remain in contact until the elastic body reaches its maximum
deformation. and during the motion the inertia or mass of the elastic body is
neglected. Realize that each of these assumptions will lead to a conservitive
estimate of both the maximum stress and deflection of the elastic body. Tn
other words, their values will be larger than those that actually oecur.

=Hocall [resm phz,‘unh thni Kinehe CRETEY & Tenargy of mashon. ™ For the irnnslnison of o
hody il b determened from 2o, where oeis the body's mass e = W g
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A few examples of when this theory can be applied are shown in
_I Fig 14-25. Here a block of known weight is dropped onto a post and a
beam, causimg them to deform a maximum amount Ay, The energy of
i the falling block is transformed momentarily into axial strain energy in
the post and bending strain energy in the beam.* In order to determine
the deformation Aqp,,. we could use the same approach as for the
block-spring system. and that is to wrte the conservation-of-energy
equation for the block and post or block and beam, and then solve for
Auw- However, we can also solve these problems i a more direct
miinner by modeling the post and beam by an eguivalent spring. For
example. if a force P displaces the top of the post A = PL/AE. then a
spring having a stiffness & = AE/L would be displaced the same amount
by P, that is, A = P/k. In a similar manner, from Appendix C, a force P
applied to the center of a simply supported beam displaces the center
A = PLY/4REI, and therefore an equivalent spring would have a
stiffness of & = 4BET/T Ttis not necessary, however, to actually find the
pquivalent spring stiffness to apply Eq. 14-28 or 14-300 All thar is needed
g | to determine the dynamic displacement, A . is to caleulate the staric
displacement, 4, due to the weight £, = W ol the block restime on the

h member,
| Omce A, 5 determined, the maximum dynamic foree can then be

—

:‘:"IIH'I

The members of this crash guard moust be
desigmed toresist a prescrbed impact loadimg

=—_-@_L_.—,“"idl caleulated from Pg, = kA, - If we consider P, to be an equivaleni

wa stanic load then the maximum siress in the member can be determined
using statics and the theory of mechanics of materials. Recall that this
stress acts only for an fmsfant. In reality, vibrational waves pass through
the material, and the stress in the post or the beam, for example. does not
remain constanl.

The ratio of the equivalent static load P, to the static load P, = W
is called the fmpact factar, n. Since Po,, = kA, and Py = kA, then
from Eq. 14-28, we can express it as

A
n—l+-|,||'|+1(ﬁ) {14-32)

This factor represents the magnification of a statically applied load so
that it can be treated dvnamically. Using Eq. 14-32, i can be caleulated

Fig, 14-25

inorder 1o arrest the motion of a rail car for any member that has a limear relationship between load and

deflection. For a complicated svstem of connected members, however,
impact factors are determined from experience and experimental
testing. Onee n is determined. the dvnamic stress and deflection at the
point of impact are easily found from the static stress oy and static
deflection A, caused by the load W, that 15 o, = nry and
ﬂ'ﬂlll'l = "ﬁ“'

*BITHIN cnergy dui 1o shenr is ne _p_l-l:r'lt-.rJ fiar rensons discissed m I'.s;:rrr;ﬁln: 144
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Important Points

® Impact oceurs when a large foree is developed between two
ubjects which sirike one another during a short perod of time.

* We can analyze the effects of impact by assuming the moving
body is rigid, the material of the stationary body is linear elasiic,
no energy 15 lost dunag colhsion, the bodies remam in contact
during collision, and the inertia of the elastic body is neglected.

® The dyvnamic load on & body can be determined by multiplying
the static load by an inpact factor

EXAMPLE |14.8

The aluminum pipe shown in Fig. 14-26 is used to support a load of
150 kip, Determine the maximum displacement at the top of the pipe
if the load is (a) applied gradually, and (b} applied by suddenly
releasing it from the top of the pipe when A =10 Take
E, = 107 107) ksi and assume that the aluminum behaves elastically,

1 150 kips
SOLUTION

Part (a). When the load is applied gradually, the work done by the
weight is transformed into elasiic strain energy in the pipe. Applying
the conservation of energy, we have

32

1 WAL
EW&“ 1AE MY T PUROE bl |
2 Wil 3 150 kipi 12 in. )
"OAE a3 ) - (25 P00 kipfin®
= [1LO2083 in, = (0.0208 m, Anx 12in.
Part (b). Here Eqg. 14-28 can be applied. with & = (. Hence, :
[ R i

By = ﬁ‘,l:l + "-.|'|| + 2(;—;)} '
= 1A, = 2{0L02083 m.) Fig. 14-26
= (L4117 in. Anx

Hence, the displacemant of the weight when applied dynamically s
fwice as great as when the load s applied statically. In other words, the
impact factor is o = 2, Eq. 14-32
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EXAMPLE | 14.9

P The A-36 steel beam shown in Fig. 14-27a is.a W10 % 39. Determine
".'1"7“,. the maximum bending stress in the beam and the beam’s maximum
¥ J li=2in deflection if the weight W = 150 kip is dropped from a height /i = 2 i,

(e ita the beam. Ey = 29(10°7) ksi.
e | "’E'['. SOLUTION |
L | s

We will apply Eq. 14-28. First, however. we muost calculate A,;. Using

14 = the table in Appendix . and the data in Appendix B for the
properties of a W10 x 34, we have

. - (130 kip)( 16 )12 in./ft)
Y 48E] 481290 10°) ksi] (209 in™)

_ / ' 2in. :
LY - P — e {3,420 im, 1
003645 IL'I..[] "|‘|' {ﬂ.[l_‘lﬁw i JJ (0,420 im. Asex

The equivalent static load that causes this displacement is therefore
JRET 4B{29(10°) ksi) (209 in*)

= 1 A3AY in

{0420 in.) = 173 kip

P s 1 s 1
v (lﬁ L (16 fr)” (12 in/fty
e i The internal moment caused by this load is maximum at the center
'-—‘IT —T# of the beam, such that by the method of sections, Fia. 14-27h,
) Mupp = Panl/4. Applving the flexure formula to determine the
bending stress. we have
M U o Mar  Pule VIE b
;o ST TR TSN
2[29{ 107} kip/in®] (0420 in.)(9.92 in./2
= |2IG) Kipjio ] = ]1I.“ in./2) = 19T ksi Ans
(16 ft)- (12 in.fft)
SOLUTION I

It is also possible to obtain the dymamic or maximum deflection
Ay From first princples. The external work of the falling weight
W is U, = W(h+ A,,) Since the beam deflects Ay, and
P = 4BETA /1. then

b =1,
| { 4BETA
WiHE+ Bi) = E(Tm) i
[ 48[29010°) kip/in |20 in* | |
2 (16 1312 in /Y .
20.55A%,, = 150480, = 300 =0
Sulving and choosimg the positive oot vields
& e = 04200 0, Ang

(150 Kip)(2in. + Apu) =




A railroad car that is assumed to be rigid and has a mass of 8 Mg is
moving forward at a speed of v = 02 m/fs when it strikes a steel
200-mm by 200-mm post at A, Fig 14-28q. [t the post is fixed to the
pround at C, determine the maximum horizontal displacement of its
top B due to the impact. Take E,; = 200 GPa

SOLUTION

Here the kinetic energy of the railroad car is rransformed into internal
bending stram energy only lor region AC of the post. (Region BA 15
not subjected fo an intermal loading ) Assuming that point A s
displaced { A 41y, then the force P, that caises this displacement
can be determined from the table in Appendiy O We have

— EE”'&.{}mnr
.

il

.= %“”': = llElmu':"i".‘-':'r"ﬂl‘:

s 2
L o HEEET 5 I.'.u::l:L'_i'f
E""r G E II?.“_ lz""h"llﬁmu: (4 s = "||'I T

Substituting in the numerical data wields

TR0 10 ) k(D2 H1.5m)
iy SRR A CLOIT i ey i

N 3[200(10°) N/m?| (0.2 m) ]

Wsing B, 1, the foree Py, 18 therefore

3[200(10%) Nfm*]| (0.2 m)] (0.01162 m)

= = 2754 kN
mia ( % ]_1.

With reference to Fig. 14-280, segment AF of the post remains
straighl. To determine the maximum displacement at B, we must [irsl
determime the slope at A, Using the appropriate Tormula Irom the
table in Appendix C todetermine ¢, wie have

2 754 1Y N (1.5 m)P
i quL.iE == ) ' { ] = {L.0O1162 rad

2ET 2200010%) N/m?[L(0.2 m)*]

t#,

The maximum displacement at B is thus

':‘ﬁ'ﬂ:lm:u = iﬂ'-i}rult F H.'I‘T'.H'I
= 11.62mm + (001162 rad) {107y mm = 23.2mm = Anx

144  |s=act Loabing 745

EXAMPLE |14.70

o= .2 m s

Ul mm

2 mm
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Slprosews

1442 A baris 4 m long and has & diameter of 30 mm. 0§t
15 to be used to sbsorh epergy in lension from an impact
Ipiding, determine the tolal smount of clastic encrgy that
can  absorb 0if (a) it s made of seel for which
E,, = 2 GPa, oy = 8 MPa, and {b) it is made [rom an
aluminum wlloy for which E,; = T GPa, oy = 405 MPu,

l4=43. Determine the dismeater of 4 red brass CRIEN bar
that is 8 [t lomg if il i5 1o be wsed to absarh 800 {k-1h of
encrgy m tenston rom an impact loading Mo vielding oceurs,

“I3—44. A stcel cable having a diameter of 4.4 in. wraps
over a drum and is used (o lower an elevator having a weight
of 3 Ih. The elevator is 150 [ helow ihe drom and is
descending al the constant rele of 2 (175 when the drum
suddenty siops. Determine the maximum stress developed in
the cahle when this sceurs. E, = 2901007 ksi, oy = 50 ksi,

-

50 i

Proh. 1444

sld=45, The composite alominum bar b5 made from two
segments having diameters of 5 mm and 1 mm. Determine
the meximum axial stress developed i the bar if the 5-ka
collar s dropped from o height of & = 1 mm,
Eq = 70/ GPa, ry = 410 MPa.

1nem

S mm

Prod. 1445

l4=46. The composite aluminum bar is made from two
segments having diameters ol 3 mm and 10 mm. Determine
the maximum beight & from which the 5-kg collar should
b drospped 5o that it produces a maximom axial stress inthe
bar ol oo, = 300 MPa, £, = 70 GPa, oy = 410 MPa

5 mim
T

Sbhmm

1w —

Prof, |4-46




14-47, The 5-ke block is truveling with the speed of
i=d mis just before it strikes the S061-TH aluminum
slepped cvlinder. Determine the maximum normal stress
developed mn the cylinder

“l4-48. Determine the maximum specd @ of the 5-kg
block withouwl causing the A0S1-T6 aluminum stepped
cvhnder 1o vield afier i1 i strnek by the block,

Probs. 1447748

w1449 The steel beam AR acts o stop the oncoming
riailrond car, which has a mass of M Mg and 5 coastng
towards it &l ¢ = 0.5 m/s, Determine the maximum siress
developed in the beam if it is stiack al s center by the
car. The beam 15 simply supported and only hicizontal
forees occur at A and B Assume that ihe railroad ecar
and the supporting framework for the beam remams rgd.
Alzo, compute the maximum  Jdeflection of the beam,
F. = 0 GPa.ry = 250 MPa.

= 5mfs

2Eimm
A 2011 mm jh—
e —
minA ]
I'm T

]Im

:

i

Prob. 14-49

14530, The aluminum bar assembly 15 made from o
segments having  diameters of 40 mm oand 2 mm

Dicterming the maximum axial stress developed in the bar il

the H-kg coller is dropped from a height of & = |50 mm
Take By = T GPa, oy = 4/4) MPa

144 Is2act Loabing IE: ¥

14-51.  The ahominum bar assembly js made from two
sepments  having  diameters of 40 mm and 20 mm,
Determine the maximum height & from which the &l-kg
collar cun be dropped so that 1 will pol cause the bar o
vield, Take £, = 70 GPa, ay = 410 MPa,

mml|
T
|

2tk mim |

LLE m

N ——t

A

Peals. 14-50/51

“14-5%.  The -l weight is falling at 3 1/ &6 the instant it
i5 2 [t above the spring and post assembly, Determine the
maximum stress in the post if the spring has a stiffness of
k = 2000 kip/in. The post has & diameter of 3 in. end &
modolus of clasticity of E = 680010} ksi. Assume the
malerial will not vield

J:ml :

Pral. 14-52
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«14-53, The 30-kp block s dropped from i = &0 mm
onte the bronze CHAT0 fube, Determine the minimum
lemeth T the tubse can have without causing the tube to vield,

14-54. The 50-kg block s dropped from i = & mm
onto the brones CEAIO0 wibe, TF L= 900 mm, determing
the meximum normal stress developed in the tube

A min
2 mm |
fi = flLl mm
Reclinn i = a "
. b

i

Frobs 14-53/54

14-55. The steel chisel has a dismeter of (K5 0. and a
femgth of 10000 1 s strack by o bammer that weighs 3 b, and
at the instant of impact it is moving at 12 /5 Determine
the maximum compressive stress i the chisel, assuming
that 80% of the impacting encrgy poes into the chisel,
E. = 20{ 1) ksi, oy = 100 ksi.

“Im:';—n_\\___.-;

{

e,

Mrob. 14-55

“14-56. The sack of cecment has & weight of 90 (B IF i1 s
droprped from rest at a height of & = 4 1t onto the center of
the W1l = 3% structural steel A-36 beam, determine the
miximuom bending stress developed in the beam due to the
impact, Also, what is the impact lactor?

#1457, The sack ol cement has & weight of 90 |h
Determme the maximum height & from o which 18 cen be
dropped from rest omo the center of the WD < 39
structural steel A-30 beam so that the maximum bending
stress due to impact does nol exceed 30 ks

i
e
| 121t 1261 |

Probs 14=-56557

14-58. The tupboal has & weight of 120 (00 Ib and is
traveling forward at 2 1t /s when it strikes the 12-in.-<ismeter
fendor past AR uxed o protece i bridge pier, T8 the post 8
made from treated while sproce and is assumed fixed gt the
river bed, delermine the maximum horzontal distance
the top of the post will move dee 1o the impact, Assume
the tughozt is rigid and neglect the effect of the water.

Proh. 14-58




14-59, Thc wide-flenge beam has a length of 28, & depth
e, wnd a constant EX Determine the maximum height &
@l which a weight W can be dropped on ils end without
cxccoding 4 maximum clastic slress o oy M the boam.

[lw

Prof. 14-54

“14=tl). The S0-Eg block © i= dropped from ii= 1.5 m
onto the simply supported beam, If the beam is an A-260
stgg] WIMI X 45 wide-flangs section, delerming the
maximum bending stress developed in the beam.

sld=61. Determine the maximuom height & from which the
Sk block O can be dropped withoot causing vielding in
the A-36 steel WAL =< 39 wide flange section when the
block strikes the heam

| 4 m | 2m |

Frohs, 14001

14-62, The diver weighs 1540 b and, while holding himseli
rigicd, strikes the end of a wooden diving board (f = 0} with
a downward velogity of 4 /s Determing the maximum
bending stress developed in the board. The board has a
thickness of 1.5 i, und width of 1.5 0. E, = LE(10") ksi,
ry = 8 ksi

144 Is=act Loabing 749

14-61,  The diver welghs 150 b o, while holding himself
rigicd, strikes the end of the wooden diving board,
Delermine the maxomum height & fronm which he can jump
vt Uhe board so that the maximum ending steess in the
waoond does notl exceed & ksi, The board has a thickness of
L5 in. and width of L3 1t £, = 18(10F] ksi

T e
— = —_—

L

= —

Profm. 14-62163

=l4=64. The weight of 175 [y is dropped from a beight of
4 [t from the top of the A-36 stecl beam. Determine the
maximum deflection and maximum stress in the beam if the
supparting springs al A and B each bave a stiffness of
& = Sl Ib/in, The beam is 3 in. thick and 4 in, wide.

»14-65. The weight of 175 lbis dropped from a height of
40t frevm the 1op of the A-36stee] beam. Determing the load
factor we il the supporting springs at A snd & cach have a
stiffness of & = 3000 Ibvin. The beam is 3 in. thick and 4 in
wide,

& | = &

LR | Kl |

Probs 14-nd/hs
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14-66, Block © of mass 5 kg i deopped from heglhit
h=09m onte the spring of stiffiness &£ = 150 kN/m
mounted on the end 8 of the 8061-1% eluminum cantilever
beam. Determing the maximom: bending stress developed
in the heam

14-67. Dectemune the maximum height & from which
20k e hicck Ccan he dropped without causing the S61-Th
aluminum cantilever heam o vield The spring mounted on
the end B of the beam has a stiffness of & = 150 kN/m.

'
: Ta

i’

1lII.l min

‘ir-.llnn -l

| im
Probs 14-06/67

*14-68. The 2004-TH aluminum bar A8 can slide freely
alony the guides mounted on the Agid crash barmer. I the
ratlear of mass 1 Mg & raveling with a speed of
o= 1.5 mfs, determine the maximum bending siress
developed in the bar. The springs at A and & have & stilfness
ol £ = 15 MN/m

#1460, The 2014-T6 sluminum bar AB can slide [reely
along the puides mounted on the ngd crash barrer,
Deetermine the maximum speed » the 10-Mp railear without
causing the bar to yvield when it is struck by Uhe railear. The
springs al A and B have o stilfness of & = 15 MN/m.

X mm

14-70. The simply supported W0 = 15 strocturel A-36
steel beam lies in the horizontal plane and acs as a shock
ahsorber for the 3i0-1b block which is traveling iowand it at
5 s Determine the maximum deflection of the beam and
the maximum stross in the beam during the impact. The
spring has & stiffnees of & = 1000 |1y/in.

121

n=5Mm

—_—

v
[
12
.
Mrob, 14-T0

14=-TL. The car bumper B omade of polyearbonate-
polvbutylene terephthalate. I £ = 2.0 GPa, determine the
tsimnnm dellection amd maximem stress i the bumper of o
serikes the rigid post when the car is coasting at v = (L75 m/'s,
The car has a mass of L&I1 Mg and the bumper can
he considered simply supported on wo spring sappors
connected to the rigid frame of the car For the bumper
take = 300 0") mm?, = 73 mm, o= 30 MPa and
k=15MN/m.

¥ A

Froh. 14-71
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*14.5 Principle of Virtual Work

The principle of virtual work was developed by John Bermnoulli in 1717,
and like other energy methods of analysis, it is based on the conservation
ol encrgy. Although the principle of virtual work has many applications
in mechamcs, in this text we will use it to obtain the displacement and
slope ata puint on a deformable body.

To do this, we will consider the body to be of arbitrary shape as shown
in Fig. 14-29%. and to be subjected to the “real loads™ Py, P>, and Py, [t is
assumed that these loads cause no movement of the supports; however,
in general they can strain the material fevomd Lhe elastic limit. Suppose
that it i5 nevessary [0 determine the displacement A of point A on the
body. Since there 8 no force acting at #, then A will ot be mcluded as an
external “work term™ in the equation when the conservation of energy
principle is applied to the body. In order to get around this linitation, we
will place an imagirary or “virtual” force P* om the body at point A. such
that P acts in the sarne direction as &, Furthermore, this load is applied 1o
the body before the real loads are applied. Fig. 14-2%9. For convenience,
whicli will be made elear later, we will choose P o have a “unit”
magmitude; that is. P = 1. It is to be emphasized that the term “virrual™
i5 used to deseribe this load because it is imaginary and does not actually
exist as part of the real loading,

This external virtual load, however, does ereate an imternal virtual load
noin a representative element or fiber of the bodyv, as shown in
Fig 14-2%a As expected, P and o can be related by the equations of
eguilibrium. Also. because of P* and u. the body and the element will
cach undergo & virinal {imaginary) displacement, although we will fear be

P

=1

Applicatson of sietwal umr load Agpplicatien of real loads
B {hi

Fig. 14-20
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concerned with their magnitudes. Onee the virtual load is applied and
then the body is subjected to the real loads Py, P. and P4, point A will be
displaced a real amount A, which causes the element to be displaced dl.,
Fig. 14-295. As a result, the external virtual force P and internal virtual
load u “ride along™ or are displaced by A and oL, respectively.
Consequently these loads perform exiernal virmal work 1+ 4 on the
body and mternal virtual work u-d L on the element. Considering onldy
the conservation of virfal energy, he external virtual work is then egual
to the internal virtual work done on all the elements of the body,
Therefore, we cont wrile the virtual-work eqoation as

virtual loadings

I-f{ = Errdjl (14-34)

real displacements
Here

F' = 1 = external virtual umit load acting in the direction of 4
s = inrernal virtual load acting on the element
A = external displacement caused by the real loads

dl. = mternal displacement of the element in the direction of u,
caused by the real loads

By choosing P' = 1, it can be scen that the solution for A follows
directly, since A = En dL.

TR

Applicatiion of virtwul wnii
coaple momen|

{a)

#prllll:l:mnhrrli renl lnads
I

Fig. 143
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In a siolar manner, if the angular displacement or slope of the
tangent at a point on the body is to be determined at A, Fig 14300, then
a virtial conple momerns MU, having a “unit” magnitude, is applied al the
point. Fig 14300 As a resulr, this couple moment causes a virtwal load
ig in one of the elements of the body. Assuming the real loads P, Py, Py
deform the element an amount JL. the angular displacement # can be
found trom the virtual-work egquation

virtual loadings

1-8= Zuydl (14-35)

real displacements

Here

M = 1 = external virtoal unit conple moment acting in the

direction of &

uy = internal virtual load acting on an element

# = external angular displacement in radians caused
by the real loads

dl = internal displacement of the element in the direction
of my, caused by the real loads

This method for applving the primciple of virtual work 15 often referred
b as the method of virtual forces, since a virtu force 18 applied, resulting
in a determination of an external real displacemment. The equation of
virtwal work in this case represents a statement of cornpaiibiliny
requirerients for the body. Although it is not important here. realize that
we can also apply the prinaple of virtual work as a mettod of virtal
disprlacenents, In this case, virmea! displacements are imposed on the body
when the body 15 subjected to recd loadings. This method can be used o
determine the external reactive force on the body or an unknown internal
loading. When it is used in this manner, the equation of virtual work is a
statement of the equilthrien reqgriiresments for the body. =

Internal Virtual Work. The terms on the right side of Egs. 14-34
and 14-35 represent the internal virtual work developed in the body. The
real internal displacements JdL in these terms can be produced in several
different ways, For example, these displacements may result from
peomeinc fabrication errors, from a change in lemperiture, or more
commonly from stress In particular, no restriction has been placed on
the magmitude of the external loading, so the stress may be large enough
tin cause yielding or even strain hardening of the material.

whee Engineering Mecfunnee Sfcy, [2th editin, BC Hibbeler, Prentice Hall, [ne
RN
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Deformation Strain Internal
cansed by ERCrEY virtual work
. L
Al load N {% oy % i
Shear | VAT
| 2GA y iEA

i 4
Bendimg mament A AR mld
[ e

L
Torssonal momeni J T ir
_{IEJ' iy [GJ' ifn

If we assume that the material behavior is linear elastic and the stress
does not exceed the proportional limit, we can then formulate the
expressions for internal virtual work caused by stress using the equations
of elastic strain energy developed in Sec. 14.2. They are listed in the
center column of Table 14-1. Recall that each of these expressions
assumes that the intermal loading N, V. M, or T was applied gradually
from zero to its full value. As a result, the work done by these resultants
is shown in these expressions as one-half the product of the mternal
loading and its displacement. In the case of the virtual-force method,
however, the “full™ virtual imtemal loading is applied before the real
loads cause displacements, and therefore the work of the virtual loading
it smiply the product of the virtual load and s real displacement.
Referring to these internal virtual loadings (u) by the corresponding
lowercase symbaols i, v, i, and £, the virtual work due to axial load. shear,
bending moment, and torsional moment is listed in the right-hand
column of Table 14-1. Using these results, the virtual-work equation for
a body subjected 1o a general loading can therefore be written as

i M " Fal T
[« A I[EJ_I: I .[ﬁdl | | Ga dx | Hd.’: (14-3a)

In the fillowing sections we will apply the above equation to problems
myvolving the displacement of joints on trusses, and poimts on beams and
mechanical elements We will also include o discussion of how to handle
the effects of fabrication errors and differential temperature. For
application it is important that a consistent set of units be used for all the
terms For example, if the real loads are expressed in kilonewtons and the
body's dimensions are in meters, a 1-kW virtoal foree or 1-kW - m virioal
couple should be applied to the body. By doing sa a coalculated
displacement A will be in meters, and a caleulated slope will be in radians.
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*14.6 Method of Virtual Forces
Applied to Trusses

Inm this section, we will applv the method of virual forces to determing
the displacement of a truss joint To illustrate the principles, the vertical
displacement of joint A of the truss shown in Fig, 14-316 will be
determined. To do this, we must place a virtual unit force at this joint,
Fig. 14-31a. so that when the real loads P and P> are applied o the truss,
they cause the external virtual work | - A, The internal virtual work n cach
member is A L_Since each member has a constant cross-sectional area A,
and n and N are constant throughout the member’s length. then from
Table 141, the internal virtual work for each member is
“nN nNL

T

i AAE AE

Therefore, the wirteal-work equation for the entire fruss is

NL
1+4 = E".-’l.E' (14-37)

Here

| = external virtual unit load acting on the truss joint in the
direction of &

i
Il

joimt displacement caused by the real loads on the truss

mo= internal virtual force in a truss member caused by the external
virtual unit load

N = mternal foree in & truss member caused by the real loads

. = length of a member
A = cross-sectional area of a member
E = modulus of elasticity of a member

Al - AL

rlnr
g ig— |
i F Ll
Y .= F—

Appdicatson ol varbua] it vl Application of real |owids
1] (]
Fig, 14-3
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Temperature Change. Truss members can change their length
due to & change in temperature. If o i5 the coefficient of thermal
gxpansion for a member and AT is the change in temperature, the
change in length of @ memberis AL = o ATL [Eq. 4-4). Hence, we can
determine the displacement of a selected truss joint due o this
temperaiire change from Eq. 14-34, written as

1-A = Zne ATL {14-38)

Here

| = external virtual unit load acting on the truss joint in the
direction of &
jomt displacement caused by the remperature change

n = mternal virtual force in 8 truss member caused by the external
wartual wmit load

o = cocfficient of thermal expansion of material

AT = change in temperature of member
L = length of member

Fabrication Errors. Occasionally errors in fabricating the lengths
ol the members of & truss may aceur, 1 this happens, the displacement 4
in @ parficular direction of a truss joml rom s expected position can be
derermined from direct application of Eq. 14-34 written as

1-A=2EnAL (14-39)

Here
| external virtual unit load acting on the truss joint in the
direction of 4
A = jont displacement cavsed by the fabrication ervors

i = miernal virtual force i a (russ member caused by the external
virtual wmt load

AL

difference in length of the member from ils intended length
caused by a fabrication error

A combination of the right-hand sides of Egs. 14-37 through 14-39
will be necessary if external loads act on the truss and some of the
members undergo a temperature change or have been fabricated with
the wromg dimensions.
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Procedure for Analysis

The following procedure provides a method that may be used to
determine the displacement of any joint on a truss using the method
af virtual forces:

Virtual Forces n.

* Place the virtual unit load on the truss at the joint where the
displacement 15 o be determined. The load should be directed
alimg the line of action of the displacement.

® With the unit load so placed and all the real loads rermoved from
the truss, calcolate the internal w force in ezch truss membet.
Assume that tensile forces are positive and compressive forces
Are negative.

Real Farces N.

®* Determine the N forces in each member, These forces are caused
only by the real loads acting on the truss. Again, assume that
tensile forces are positive and compressive forces are nepative.

Virtual-Woark Equation.

& Apply the equatiom of vintual work o determine the desired
displacement. It is important to retain the alaebraic sign for each
of the corresponding n and N forces when substituting these
terms into the equation.

® If the resultant sum EpNL/AE is positive, the displacement A is
in the same direction as the virtual unit load. If a negative value
results, A is opposite to the virtual unit load.

* When applving 1-A = Znx ATL an increase in lenperature,
AT, will be positive; whereas a decrease in temperature will be
FEEEIVE,

® Forl-A = En AL when a fabrication error calses an increase
in the length of a member, AL is positive, whereas a decrease in
length is negative,

& When applving this method, attention should be paid o the wnits
of each numerical gquantity. Notice, however, that the virtual unit
load can be assigned any arbitrary unit: pounds. kips, newtons,
etc., since the n forees will have these vame units, and as a result,
the units for both the virtual unit load and the n forces will cancel
[rom both sides of the equation,
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EXAMPLE | 14.11

Determine the vertical displacement of joint C of the steel truss shown
in Fig. 1432 The cross-sectional area of cach memberis A = 400 mm-
and £, = 20 GPFa

A

160 kB

el e
Real [orees

el

Fig. 14-32

KD kM

Virtual [orees

ih
SOLUTION

Virtual Forces n.  Since the vertical displacement ar joint C is 10 be
determined, ondy a vertical 1-EN virtual Ioad is placed at jomt O and
the force in each member 1= calculmed vsing the method of joints The
results of this analysis are shown in Fig. 14-320, Using owr Sign
convention, positive numbers indicate tensile forces and negative
numbers indicate compressive forces.

Real Forces N. The applied load of 100 kN causes forces in the
members that are also calculated uvsing the method of joints The
results of this analysis are shown in Fig. 14-32¢.

Virtual-Work Equation. Arranging the data in tabular form, we have

Member n it L nhiL
Al 1 ot L1111 - 1
R 1 1414 1RIK L
AL 1.414 - fd].4 282K 5657
Ly 1 2K Fs ALk

T ORS T kN m

Thus,

aNL Y65 7kN -m
Ik”'-‘ir. = E AE = AE

Aubstituting the numencal values for A and £, we have
B 965.7 kN -m
© o [400(10°") m7] 200¢ LO°) kN /m°

Ay = 001207 m = 121 mm Adx

1 kN - Ay
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EXAMPLE [ 14.12

759

Determine the horizontal displacement of the roller at B of the truss
showmn in Fig, 14330, Due to radiant heating, member A 8 15 subjected
b am dnerease n temperatune of AT = +60°C, and this member has
been fabrcated 5 mm too short, The members are made of steel, for
which o, = 12{10 ")/°C and E,; = 200 GPa. The cross-sectional area
of each member is 250 mm?”.

{af

SOLUTION

Virtual Forces n. A horizontal 1-kN virtual load is applied
the truss at joint &, and the forces in each member are calculated,
Fig 14330

Real Forces N. Since the 4 forces in members AC and HC are zero, Yl furees
the & forces in these members do mat have to be determined. Why?

For completeness, though, the entire “real” force analysis is shown in (b}

Fig. 14-33¢

Virtual-Work Equation. The luads temperature, and the fabrication
error all affect the displacement of point B, therefore, Eqs. 14-37,
14—38, and 14-3% mnst be combined, which gives

A JEE3T k™
1kN-Ap, = % T; + na ATL + TnAl
R (1SS kN)(—12kN)(4m}
[2500 10°%) m=J[2000 107) kN /m”]
+ 00+ 0+ (= 1155 kN)[12( 10 )/°C]{(60°C) {4 m)
+ {—1.155 KN} —(L003 m) RNt
Ay, = 000125 m (e)

4 3
1.25mm A Neg:de00
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Slprosews

#*14-T2. Determine the horizontal displacement of joint 8
on the lwo-member frame. Esch A-36 steel member has a
cross-sectional area of 2 in’,

HiMI [
X

Proh, 14-72

14T, Derermine the horizontal displacement of poing &
y
Each A-36 steel member has a cross-sectional area of 2 in-,

14-T4. Dwetermine the vertical displacement of point B

Each A-36 geel member has o cross-secional area of
Ll
2in~

Prote 14=T374

14-T5. Determine the vertical displacement ol joint © on
the truss. Each A-30 sicel member bas a cross-scctional area
of A = N mm’,

“14-76. Determine the virieal displacement of joint I on
the truss. Each A-3 sicel member his a cross-scciional grca
of A = 300 mm=,

Probs 14-7576

«14-TT. Determine the vertical displacement of point B,
Each A-36 steel member bas o cross-sectional area of
457n"

14-78. Determine the vertical displacement of point E.
Eacl A-3A sieel member has a cross-sectional area of
4.5in"

Probs 14-T7/7TH
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14T, Detlermine the honzonial displacement of jomt B
of the truss Each A-30 steel member has @ eross-seetional
grea of 400 mm®.

“14-80. Delermine the vertical displacement of joint O of
the Truss Eil_-:;h A-3h stecl member has a eross-sectional arca
of 400 mm*®,

5 kM

Prohs. 14-T9/R0

sld-81, Determing the vertical displacement of point A.
Each A-36 steel member has a eross-sectional ares of
400 mm®

14-82, Determine the svertical displacement of poant 8,
Each A-3 sicr]l member hes a cross-sectionzal ares of
400 mm®

Probs. 14-K1/R2

14-8%, Determine the vertical displacement of joint O,
Each A« stegl member has a cross-sectional area of
45 in%.

“14-84. Dietermine the vertical displacement of joini f.
Each A- stec]l member has a cross-sectional aren of
4.5 [

A kip #kip fi kip

Probs. 14-£3/E4

s |4-B5, Determing the vertical displacement of joint

C. The truss i made from A-36 steel bars having a
. . &

erofgs seclional mrea of 150 mm*

14=86. Deternune the vertical displecement of jomt
. The vuss 5 made from A-36 steel bars having a
cross-seciional area of 150 mm®,

Prots. 14-85/R6
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*14.7 Method of Virtual Forces
Applied to Beams

In this section we will apply the method of virtual forces to determine
the displacement and slope at a point on a beam. To illustrate the
principles. the vertical displacement & of point A on the beam shown in
Fip 14-34h will be determined, To do this we must place a vertical unit
load at this point, Fig. 14-34a, so that when the “real” distributed load w
is applied to the beam it will cavse the miermal virtual work 1+ A,
Because the load causes both a shear Vand moment W within the beam.
wi must actually consider the internal virtual work due to both of these
loadings. In Example 14.7. however, it was shown that beam deflections
due to shear are negligible compared with those cavsed by bending,
particularly if the beam is long and slender, Since this type of beam is
masl often used in practice, we will only consider the virlual stram
energy due to bedding, Table 14-1. Hence, the real load causes the
element dx (o deform so its sides rotate by an angle df = (M/E@ )dx,
which causes internal virtual work m dé. Applying Eq. 14-34, the virtual-
work equation for the entire beam. we have

I
Ir:!h=f SO (14401}
]

El

Here

| = external virtual umt load acting on the beam m the direction
of A

4 = displacement caused by the real loads acting on the beam

i o= internal virtual moment in the beam. expressed as a function
of v and cansed by the external virtual unit load

M = internal moment in the beam; expressed as a function of x and
caused by the real loads

E = modulus of elasticity of the material

I = moment ol inertia of the cross-sectional arca about the neutral
axis

In a similar manner, if the slope # of the tangent at a point on the
beam’s elasnc curve is to be determined. a virtual onit couple moment
must be applied at the point, and the corresponding internal virtual
mamenl mg has to be determined. If we apply Eq. 14-35 far this case and
neglect the effect of shear deformations, we have

E

fﬂ.uj“

it = il 4}
|-t [: T (1441}
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Virual loads
{n)

Fig. 14-34

When applyving these eguations, Keep in mind that the integrals on the
right side represent the amount of virtiual bending strain energy that is
stoved in the beam. If concentrated forces or couple moments act on the
beam or the distributed load is discontinuous, a single integration canmal
be performed across the beam’s enfire leneth. Instead, separate x
coordinates must be chosen within regions that have no discontinwity of
Ioading. Also, it is not necessary that each x have the same origin; however,
the x selected for deternuning the real moment W in a particular region
musl be the sare 1 as that selected for determinmyg the virtial moment m
or frig within the same region. For example, consider the beam shown in
Fig. 14-35. In order to determine the displacement at D, we can use x; to
determine the strain energy in region AH, 1 for repion BC, 13 for region
DE and x; [or region DC. In anv case, each x coordinate shotld be
selected so that both M and m (or mg ) can easily be formuolated,

LTnlike beams, as discussed herd, some members may alsa be
subjected to significant virtual strain energy caused by axial load, shear,
and torsional moment. When this is the case_we muost include in the above
eauations the energy terms for these loadings as formulated in Eq. 1436,

Feal ksods
1ad]

= A

SR
ﬁ"'-_'ﬂ

[

i

Wirtuil losd
{1l

|'—-l- 1 |_ B~

Fig. 14-35

& rb -

-

| ol | | T 1
Real loads

]
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Procedure for Analysis

The following procedure provides a method that may be vsed to
determine the displacement and slope at a pommt on the elastic curve
of & beam using the method of virtual forces

Virtual Moments m ar my.

® Place a virta! unit load on the beam at the point and directed
along the line of action of the desired displacement.

® [fthe slope is to be determined. place a virtual it couple moment
at the point.

® Esiablish appropriate x coordinates that are valid within regions
of the beam where there is no discontinuity of both real and
virtual Joad.

* With the virtual load in place, and all the real loads remioved from
the beam. calculate the internal moment m or nig as a function of
each x coordinate.

® Assume that m or mg acts in the positive direction according to
the established beam sign convention for positive moment,

Fig. 6-3.

Real Maments.

® Dlsing the seme x coordinates as those established for moor myg.
determine the internal moments M caused by the real loads

& Rince posilive moor m; wWas assumed o act in the conventional
“positive direction.” it is important that positive M acts in this same
direction. This is necessarv since positive or negative [nternal
virtwal work depends on the directional sense of both the virtual
load, defimed by =mr or =iy, and displacement, caused by = M

Virtual-Work Equation.

= Applv the equation of virtual work to determine the desired
displacement A or slope #. It is important to retain the algebraic
sign of each integral caleulated within its specified region.

® If the algebraic sum of all the integrals for the entire beam is
positive, A or # is in the same direction as the virtual umit load or
virtual unit couple moment. [t a negative value results, & or # 15
oppasite to the virtual unit lead or couple moment,
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EXAMPLE | 14.93

Determine the displacement of point B on the beam shown in
Fiz. 14-36a, ETis constant

| | il i
! #
P — PE=0

WVirtual boads Beal loads
ih) (el

Fig. 14-3a

SOLUTION

Virtual Moment m. The vertical displacement of point B is
vbtamned by placing a virtoal onit load at B, Fig. 14360 By inspection,
there are oo discontinuities of loading on the beam for hoth the real
and virtual loads, Thus, a sikgle ¥ coordinate can be used to determine
the virtual strain energy. This coordinate will be selected with its
origin at B, 5o that the reactions at A do not have to be determined in
order to find the internal moments o and M. Using the method of
sections, the intermal moment g is shown in Fig 14-360.

Real Moment M. [lsing the same v coordinate, the mtemal moment
M s shown in Fig. 14-36c.

Virtual-Werk Equation. The vertical displacement at & is thus

I =
n M [—1x){—wx/2) dx
| = gt =
e ,[E‘I s [ El

wi?
Ay = RET Anx
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EXAMPLE

Determine the slope at point 8 of the beam shown in Fig, 14-37a. E/
is constant.

* N ——————
8 2 ] F—x—

C g (f

=] () e (e
] — (n_tl |

Virtual loads
it

Real bond
leh
Fig. 14-37

SOLUTION

Virtual Mements m,. The slope at B is determined by placing a
virtual unit couple moment at B, Fig, 14-370 Two a coordimates must
be selected in order o determine the total virtual siram energy in the
bedam. Coordimate x; accounts for the stram energy Within segment
AB_and coordinate x, accounts for the strain energy in segment BC.
Using the method of sections the internal moments py within each of
these segments are shown in Fig, 14-376

Real Moments M. Using the samie coordinates x) and x, (Why'),
the internal moments M are shown in Fig 14-37¢

Virtual-Werk Equation. The slope at B is thus

M
;.HH= [”IEI d."

[f-'-‘raf Pr,) dx & j'“ll: Pl(L/2) + 23]} dxa

El El

1Pt
fy = Hf:} Anx

The negattve sigh indicates that fy is appostte 1o the direction of the
virtual couple moment shown in Fig. 14-370.
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T&7

Sropiews

14-87. Determine the displacement at paint © T s
constant,

PR
Prote, 14-87

14-BB. The beam @& made of southern pine for which
E, = 13 (iPa. Determine the displacement at A

15 kN
4EN/'m

LE Lt L]

I LAm I im

Proh. 1488

o14=89, Determine the displacement at C of the A-36
steel heam, I = T0(10F) mm*,

149 Determine the slope at A of the A-36 sieel beam.
[ = T 10"} mm®

14-91,  Determine the slope at B of the A-36 stee| beam
f = T ") mm®.

T kM /m

| | =
I Him 1 im [

Frohs, 14-Ra/mHWW1

1442, Determune the displacement at B of the 15in-
diameter A-36 siecl shaft,

o 14-83, Determine the slope of the | S-in-diameter A-36
rteel shafl sl the bearing suppor AA.

’\I “"H.‘
[ ,_ ~

1200 i 32k

Probs, 14-92003

14, The beam is made of Douglas fir. Determine the
slope a1 C
B kN

L5 m !

Proh. 14494 1240 mem

14-95,  Thi beam 15 made of oak, Tor which £, = 11 G
Determing the slope and displacement &t A

2Ul mm

el
HHEl mrnil

4 kM fm

Profh. 14-145
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a14-m6, Determine the displecement af point C, ET is
comsiant,

#1497, Determine the slope al point £ ES is constant,

14-98. Delermine the slope st point A, £ 15 constani.

|

'._'I C

Prots, 14-96/4T/8

149, Determine the slope at poim A of the simply
supporied Douglas fir beam.

*I4=100. Dictermine the displacement at O of the simply
supporied Douglas (ir beam

kN
LA EMm 1

—y
ﬂ L5 mm
1]

Section @ - a

Probs. §4-055 100

sld=100. Derermane the stope of end © of the overhang
beam, ET is comstan

14-102. Determine the displecement ol point £ of the
overhang beam. F s constant.

: n—|. e i
i

i
(] o

Prohs. 14-101/102

14103 Determine the displacement of end O of 1he
ewerhang Dowglas Tir beam,

14104, Determine the slope &t A of the overheng while
spruce beam.

Ful-ln
T
I 1.
R
Secrinm - w

Mrobs 14-103/104

«14=105. Deermine the displacemem ar point & The
moment of inertia of the center portion £F of the shaft is
2, whereax the end segmemis AR ind GO have 4 moment
of inertia 1. The modulus of elasticity for the material is E

Proh. 14-105

14-106. Determune the displacement of the shaft at © £f
i85 constant

14-107, Detarmine the slope of the shaft g1 the bearing
support A £ is conslant.

fod [ o

1=~

Mrobs. 14-10af1407
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“14=108.  Determne the slope and dsplecement of ead O
of the cantilevered beam. The heam is made of a materal
having a modulus of clasticity of £, The moments of
inertin [or sepments AN and BC of the beam are 27 ansd I,
respectivily

Frob. 14-108

sld=100,  Derermine the slope at A of the A-36 sieel
W2OHD = 46 simply supporied beam,

14-110. Delermine the displacement at point O of the
A-36 steel W2 = 46 simply supported beam,

1Z kM /m

3m im

Probs. 14=14110

14-111.  The simply supporied besm having a siguere cross
section i subjected o & uniflorm load w. Determine the
maximum deflection ol the beam caused only by bending,
and caused by bending and shear. Teke E = 34,

ki

AR R IREIN
[ 2, O

|' I i

1=

Prob. 14-111

Sl4-112, The frame 55 made from wo segments, cach
of length Loamd Nexwral stiffness EX 10 it is subjected
i the wnilorm distniboted load detcrmine the vertical
displacement of point O Consuder only the effect of
hencding.

s14-113, The frame is made from two scgments, cech
of lenoth L and Oexural stiliness EF oot is subjecicd 1o
the wmform distributed load, determine the horigontal
displacement of point B. Consider only the eflect of
bending.

™

A

Profs. 14112113

14=114. Detcrmine the vertical displacement of point A
on the angle bracket due o the concentrated foree P, The
bracket is fixed connected to its sopport. £ & constant
Consider only the effea of bending

Prob. 14-114




770 CHapiEa 14 Eneagy MeETHODS

14-115. Beam AR has o square cross section of 100 mm by
1 mim. Bar OO0 haz a diameter of 10 mm 15 both members
are made of A-36 sicel detormineg the vertical displacement
off proant B dide te the loadimg of 10 KN

#14-116. Beam AR has a square eross section of 106 mm
by 100 mm. Bar 6 has g diameter of 10 mm. I both
members are made of A-36 sicel. determine the slope at A
due 1o the loading of 1 EN

i

L=
|
|

Probs 14-115/116

14-117. Bar ABC has a rectangular eress section of
A mm by 1O mm. Altached rod YA bas g diwmeter
of 2 mm. If both mombers are made of A-36 steel,
determme the vertieal displacement of poiat O due b the
lording. Consider only the effect of beading in ABC and
axial force in DA,

14-118. Bar ABC has a rectangular cross sechion of
30 mm by 100 mom. Attached rod DA has a digmeter
of 20 mm. If both members are made of A-36 siecl,
determine the slope a1 A due o the loading. Consider only
the effeet of bending in ABC and axial foree in D,

[]I.’{Hl 1t
=

LA i
A

—3m

Probs. 14=117/118

14-119, Deternne the vertical displiscemaent of ot
The frame is made using A-36 stee] WIS 2 45 members,
Consider only the effccts of bending,

*14-120. Determine the hormeontel displacecment of end
R, The frame 5 made using A-36 stee] WIS X 45
members Consider only the elfects of bending.

1% kM fm

Probs. 14-1197120

sld=121. Derermne the dsplacement at point & ET Is
CinELan|

Frob. 14-121

14-122. Deiermine the slope st £ £ is constanl

n: ’
R
o
L

Proh. 14-122
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*14.8 _C;stigliann's Theorem

In 1879, Alberto Castigliano, an [talian railroad engineer, published a
baok in which he outlined a method for determining the displacement
and slope at a point in a body. This method, which 15 referred to as
Castigliano's second theorem, applies only to bodies that have constant
temperature and material with linearelastic behavior, [If the
displacement at a point is to be determined, the theorem states that the
displacement is equal to the first partial derivative of the strain energy in
the body with respect to a foroe acting @t the point and i the direction of
displacement. In a similar manner, the slope of the langen! at a point ina
body 15 equal to the first partial derivative of the strain energy in the
body with respect ta a couple moment acting at the point and in the
direction of the slope angle.

To derive Castigliano’s second theorem, eonsider a body of any
arbitrary shape, which is subjected to a senies of n forces Py, Pa, . P,
Fig. 14-38. According 1o the conservation of energy, the external work
done by these forces is equal o the internal strain enecgy stored in the
body. However, the external work 15 8 function of the external loads.
U, = X {Pdx. Eq 14-1, 50 the internal work is also a function of the
external loads, Thus.

U, =U,= f{P,, Ps... .. P) (14-42)

Mow, if any one of the external forces. sav £, is increased by a differential
amount dF;, the internal work will also be inereased, such that the strain
energy becomes

atl
£, + dts; = t; 4 :?Iﬂ'ﬁ (14-43)
L

Fig. 14-38
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This value. however, will not depend on the sequence in which the »
forces are applied (o the body. For example, we could apply dP; 1o the
body first, then apply the loads P, Py, . Py, In this case, 4P would
cause the body to displace a differential amount dA | in the direction of
diPf;. By Eq. 14-2 (If, = _l,P_, A}, the increment of stram energy would
be f;.l’f',d.-_‘..,. This guantity, however, is a second-order differential and

may be neglected Further application of the loads Py, PP, P, causes
dP; to move through the displacement 4, so that now the strain energy
becomes

U; + dU, = U, + dP; A, (14—44)

Here, as abowve, LY, is the internal strain enerey in the body, caused by
the loads P, Py, ..., P, and dP A, 15 the additianal sirain encrgy
caused by dP;.

In summary, Eq. 1443 represents the strain energy in the body

determined by first applying the loads P, P>, . _ ., P,. then dP;
Eq. 14-44 represents the strain energy determined by first applying dP,
and then the loads Py, P, ., P,. Since these two equations must be

eijual, we require

(i
bt ) 445
/ l.-l P_I c I k. :I

which proves the theorem; i.e., the displacement 4, in the direction
of B is equal to the first partial derivative of the sirain energy with
s ect to P,

Castigliani’s second theorem, Eqg. 1445, is a statement regarding the
body's compatibiliey requirements, since it is a condition related o
displacement. Also, the above derivation reguires that only conservative
forces be considered for the analysis, These forees can be applied in any
order, and furthermore, they do work that 15 mdependent of the path
and therefore create no energy loss. As long as the material has
linear-elastic behavior. the applied forces will be conservative and the
theorem is valid. Castigliano’s first theorem is similar to his second
theorem: however. it relates the load P; to the partial derivative of the
sirain energy with respect to the cormesponding displacement, that is,
F; = ali/na . The prool is similar to that given above. This theorem is
anather way of expressing the equilifirien regquivements Tor the body:
however, it has limited application and therefore it will not be
discusaed here.
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*14.9 Castigliano’s Theorem
Applied to Trusses

Since a truss member is only subjected to an axial load. the stram energy
for the member is given by Eq. 14-16.U7; = N-L/2AE. Substituting this
equation into Eq. 1445 and omitting the subscript £ we have

LN N°L
A= 2AE

It is generally easier to perform the ditterentiation prior to summation,
Adsa, L, A, and E are constant for a given member, and therelore we can

wrile
ANy L
= N('—)— 14-46
2NF ) AE S
Here
& = displacement of the fruss joint
F = an external force of wrable miaeniiede apphed to the truss

joint in the direction of A

N = internal axial force in a member caused by bath force P
and the actual loads on the truss

—
Il

length of a member

cross-sectional area of a member

-
Il

E = modulus of elasticity of the material

By comparison, Eg. 1446 s similar to that used for the method of
virtual forces, Eq. 14=37 {1+ 4 = ZuNL/AE). except that 1 is replaced
by 4N /AP These terms, v and aN /AP, are the same, since they represent
the change of the member’s axial force with respect to the load P or, in
ather words, the axial force per unit load.
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Procedure for Analysis

The following procedure provides a method that may be used to determine the displacement of any joint on
i truss using Castighiana’s second theorem.

External Force P

® Place a force P on the truss at the joint where the displacement is to be determined. This force is assumed
tor have a vartable magnitde and should be directed along the line of action of the displacement,

Imtermal Forces M

® Determine the force & in sach member in terms of both the actual (numerncal) loads and the (vamahle)
force P Assume that tensile forces are positive and compressive forces are negative.

* Find the respective partial derivative aN /9P for cach member.

* Afier N and aN /4P have been determined, assign P its numenical value if it has actually replaced a real
force on the truss. Otherwise, set P equal to zern,

Castigliana's Second Theorem.

* Apply Castigliano’s second theorem to determine the desired displacement A. It is important to retain
the algebraic signs for corresponding values of N and aN /AP when substituting these terms into the
equalion.

# I the resoltant sum ZN(aN APV AE 15 positive, 4 15 in the same direction as F. I a negative value
results. A is opposite to P

EXAMPLE | 14.15

. c Determing the vertical displacement of joint © of the steel truss

'I;l [l —[ shown m Fig. 14392 The cross-sectional area of sach member is

A = 400 mm’, and E,; = 200 GPa.

External Force P. A vertical force I is applied to the truss at joint
o ami—g C, since this is where the vertical displacement is to be determined,
kN Fig 14-395,

A l SOLUTION
A

i)

Fig. 18-30
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|II
kN + 1 O 4,5-
-—
/ o 1414KN + 1414 1 1414 kN
4 \ 45 a5
4 4 ILETR 3 i
- KN+ 1 4 A 1M kN
kM - P R
L kM + Y N
10 kM + P Jo0 kN
{hi {eh

Fig. 14=3% (coni.)

Internal Forces N.  The reactions at the truss supports A and D are
calculated and the results are shown m Fig. 14396, Using the method
of joints, the N forces in each member are determined, Fig. 14-3%¢°
For convenience. these results along with their partial derivatives
AN /AP are histed in tabular firm. Note that since P does not actually
exist as a real load on the truss, we require P = (),

-'fl"-.l' |'|."|||
Member i T AP = 0] L Nf_ﬁ)t
AR — 1k i — 1 4 {l
"o 14].4 il 1414 2.R28 1l
Al —(1414 + 1414/ —1414 —141.4 2ETR 565.7
ch i+ P 1 2 2 i

E 0657 kN-m

Castigliano’s Second Theorem. Applving Eq. 14-46. we have

ANy L QA5 7T kN -m
8, = EN( S0 )= =
H apl AE AE
substituting the numencal values for A and £, we get
. 9557 kMN+m
[400¢ 10 ") m7] 2000107} kN /m”

(LO1207 m 12.1 mm Ans

Ap

This solution should be compared with thar of Example 1411, using
the virtual-work method.

“1t mny ba more conveient toourabyre the rooss with pest the [0-kM load on i, then
analvee the Eriss with the P load on G The tesalis cain then be sumined algebraeally (o
give the W forces,
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Slprosews

14-123. Solve Prob 14-72 wsing Castigliano’s theorem.

*14-124. Solve Prob. 1473 using Castiglianos theorem,

o]4=125, Salve Prob, 14-T5 using Castighano's theorem,

14-126.  Solve Prob. [4-T6 wsing Castigliana’s theorem,
14-127. Soplve Prob 14-77 using Castigliano’s theorem.

“14=128. Solve Prob. 14-78 wsing Castglhano’s theorem,

s]4-120, Solve Prob. 14-T9 using Castiizhiano's theorem,
14=130. Solve Prob. [4-80 gsing Castigliano's theorem,
=131, Soclve Prob [4-3] wsing Castigliano's theorem,
*14-132, Solve Prob, 14-82 uning Castiglianos theorem,
»14=133, Solve Prob, 1453 using Castiglano's theorem,

14=134. Solve Prob. 14-84 using Castigliano's theorem,

*14.10 Castigliano's Theorem
Applied to Beams

The imternal strain energy for a beam is caused by both bending and
shear, However, as pointed out in Example 14.7, if the beam is long and
slender, the strain energy due to shear can be neglected compared with
that of bending. Assuming this to be the case, the intermal strain energy
for a beam js given by U, = [M” dx/2EI, Eq. 14-17. Omirting the
subseript {. Castiglano's second theorem, A, = al! JaP,, becomes

A L M dx
ﬂlrilﬂ :F—‘F

Rather than squaring the expression for internal moment. integrating,
and then taking the partial derivative, it is generally easier to differentiate
prior to integration. Provided E and Fare constant, we have

ol

aM N dx

R e 7 oldiait el 447
% A“(HP)EI ()
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Here
A = displacement of the point caused by the real loads acting on the
beam

F = an external force of varable magnitide applied to the beam at
the point and in the direction of A

M = internal moment in the beam, expressed as a funetion of x and
caused by both the force P and the actual loads on the beam

E = modulus of elasticiey of the marerial

= moment of inertia of cross-sectional area abouwt the neviral axis

If the slope of the tangent # at a point on the elastic curve is to be
determined, the partial derivative of the internal moment M with
respect o an external conple momend M acting ar the point must be
found, For this case,

I .
M )t.f.t
= M — 1448
' f (.mr El e

The above equations are similar to those used for the method of
virtual furces. Egs. 14— and 1441, except m and my replace M jfaP
and AM faM’, respectively.

In addition, if axial load, shear, and torsion cause significant strain
energy within the member, then the effects of all these loadings should
be included when applying Castighiana’s theorem. To do this we must
wse the stram-energy functions developed m Sec. 142, along with their
associated partial derivatives The result is

r o MLy A : I .
Cn(EL [ (i T
A o (i'.'P AE L ¥ II‘F(JP }G..-'I i il I’{ a :IE.F - T 1]’_!){;! [] —4 1

The method of applying this general formulation is similar to that used
to apply Egs 1447 and (448,
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Procedure for Analysis

The following procedure provides a method that may be vsed to
apply Castglhiano's second theorem.

External Force P or Couple Moment M'.

® Place a force P on the beam at the point and directed along the
line of action of the desired displacement.

® If the slope of the tangent is to be determined at the pomi, place
a couple muoment M° at the pont.

* Assaume that both P and M’ have a vanable magnitude.

Internal Moments M.

® Establish appropriate x coordinates that are valid within regions
of the beam where there is no discontinuity of force. distributed
lead, or couple moment.

* Determine the mternal moments M as a function of x, the actual
(numerncal) loads, and P or M7, and then find the parrial
derivatives aM G P or dMjiaM”® for each coordinate

* After M and aM AP or aM/aM' have been determined, assign P
o MT its numerical value if it has actually replaced a real foree or
couple moment. Otherwise, set P or M° equal to 2ero.

Castigliano’s Second Thearem.

* Apply Eq. 1447 or 1448 to determine the desired displacement
A or A It s important 1o retim the algebraic signs for
earresponding values of M and aM /AP or aM /oM,

& [If the resultant sum of all the definite integrals is positive. & or #
15 in the same direction as P or M, Il a negative value resulls, A
or i is opposite o P or M°.
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EXAMPLE | 14.16

Determine the displacement of point B on the beam shown in
Fig, 1d=dir, ET is constant

[

W L1

r ¥ ¥ ¥ ¥ L 3
i A I A
!
| ; —— |
| : ! |
{al Fiat
Fig. 1444

SOLUTION Py
External Force PP A vertical force P is placed on the beam at B as %—|
shown in Fig, 14406
Internal Moments M. A single & coordinate is needed for the ' )”
solution, since there are no discontinuities of loading between A and —
B Using the method of sections, Fig, 1440, the intermal moment and I— b——

its partial derivative are determined as follows:

EMpa=0 M +wx(3) + Py =0

H.'I:
e Px
AP B
Setting P = 0 gives
—wx M
M = > and e

Castigliano’s Second Theorem. Applving Eq, 14-47, we have

Lo faM dx b w2 —x) dx
ﬁﬂ=‘/"‘.w|zﬁ)ﬁ= 1: 7

wit
= Arx

RET

The similarty between this solution and that of the virtwal-work
method, Example 14.13. should be noted.
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EXAMPLE

P Determine the slope at point B of the beam shown in Fig, 14-4la. E}
" is constant.
T ——————— |
]
& i - | SOLUTION
i (a} ] External Couple Moment M'. Since the slope at point B is 1o be

l, determined, an external couple moment M’ is placed on the beam at

: this point. Fig. [4-41h.
& %d
| Iy ” & |-, Internal Mements M. Two coordinates. & and x,. must be used to

o completely deseribe the internal momenis within the beam since
p there is a discontinuity, M', at B, As shown in Fig 14415, x| ranges

from A to B and x; ranges from & 1o O Using the method of sections,

Fig 1441, the internal moments and the partial derivatives for x,

¥
Ay (T | and x- are determined as follows:

=% -
p +EMu.=0; M, =—Px, 1_MI =
Vi e l )
a ; L AM-
|'|I'}(T| .;} | ﬁl }.MH'{ o IH: M P(E : I:)- " :
b8 L |
el - Castigliano's Second Theorem. Setting M' = (I and applying

Fig. 14-41 Eq. 1448, we have
P jlw(ﬂ)[g_f _ /“-"Jt—Px;]rnmx:_ . ['-'3—F[{Lf:] Txil)dsyy  3pL o
LR Ao WO L T R = Er ” El SE! ;

Note the similarity between this solution and that of Example 14.14.

Srosiems

14-135. Solve Prob 14-87 using Castigliano’s theorem. 14-141.  Solve Prob. 1497 using Castigliano’s thecrem.
*14-136. Solve Prob, 1488 using Castighano's theorem, 14-142. Solve Prob, 1498 using Castigheno's Lheorem,
#14=137, Solve Prob 14-9%0 using Castighiane's theorem, 14=141, Solve Prob, 14-112 wsing Castigliano’s theorem,
14-138.  Solve Prob, 14-92 using Castigliana's theorem. =l4-144. Solve Prob, 14-1 14 using Castigliano’s theorem,
l4-13.  Solve Prob. 14-93 using Castigliano’s theerem. #14-145. Solve Prob. 14-121 using Castiglisnn's theorem.

“14-140. Solve Prob, 1490 using Castighanos theorem,




. CHAPTER REVIEW

When a foree (couple moment ) bets ona deformahle
body it will do external work when it displaces
(Fotates), Thee imternal stresses produced o the
hady: abso undergo displacemeant, therchy ereating
clastic strain encrgy thal is stored in the material
The conservition of cncray stites that the extemal
wark done by the loading is equal to the internal
clastic strain encrgy produced by the stresses in

the bodwy.

CHaTER REviEw

U, =4,
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The conservation of cocrgy can be used 1o solve
problems involving clastic impact, which assumcs
the moving body i= rigid and all the strein encrgy is

an impact factor a, which is 4 retio of the dynamic
load to the statle load 1t is used to determine the
mitsimum siress and displacement of the body il
the point of impact.

stofed o the stationary body, This leads 1o use of

mas

L=

mr = iy

The pringiple of virtual work can be wsed o
determine the displacement of & joint on a truss
of The slope and the displeagement of poimis on
g beam. It requires placing an external virtoal
unit force (virtual unit couple moment) at the
pvint where the displacement {rotatien) 18 1o be
determined. The externel wvirtusl work thal is
produced by the external loading is then equated
ter the intermal virtuek stroin energy in the struciure,

:-H-aﬁ

: mig M
ET

Castigliana’s second theorem can also be used to
determine the displacement of & joint on & truss or
the sloge and the displacement al o paind on a Beam
Here a variahle force P {couple momen '-FJ:I is
111EI.I:|.d af the point where the displacement {!Inpl:}
ig tn be determined. The internal Iuadmg is then
determined as a function ol ™( '.{ Jand its partial
derivative with respect to P(M') is determined.
Castigliano's second theorem is then spplied 1o
obiain the desired displacement (rotdtion).

i
E V(HF) AE

I
|H-'iI
A l(u “F)

.
f"
1

uu‘l-:' n'.'L
u'l-f'
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| |REVIEW PROBLEMS

14-146. Dietermine the bending strain encrgy in the heam
due to the loading shown. EY is constant

|
# 1 N 1 5 !

Proh. 14-146

14-147. The 20-kg block B is dropped from a height
h =1 montoend Cof the A-36 steel W2HH = 36 overhang
beam, I the spring ot B has a stiffness & = 200 kN/m;
determine the maximum bending stress developed in the
beam.

“14=148. Delcrmine the maximom height & from which
the 20-kp block T} can be dropped without causing the
A-F6 steel W20 = 36 overhang beam to vield The spring
al & has a stiffness & = 200 kN/m,

%

I dm I

Probes, 141471148

eld=149. The L2 sieel bolt has & diameter of 1225 in,, and
the link AH has a rectangular cross section that is 0.5 in.
wiele by (02 i thick, Determing the stiaim energy in the link
AR due to bending, and in the boli due 1o axial force. The
bolt i= tightened so thet it has a tension of 350 [h. Neglect
the hole o ihe link.

Praske. 14-14%

14150, Determune the vertical displacement of joint A,
Each bar is made of A-36 steel and hag a cross-sectional
arca of 6K mm-, Lise the conservation of encrgy.

b
3

Froh. 14=1510




14-151. Delermine the totel strain encrey in the A-36
stee!| mssembly, Consider the axinl strain enerey o the two
{l.5-in-~diameter rods and the bending strain encrgy in the
berm for which F = 434 in'

SR | ‘

I 10 I 4 ,

Pral. 14-151

#14=152. Determine the vertcal displacement of jome £
For cach member A = 40 mm®, E = 200 GPa. Use the
method of virtual work.

«14-153, Solve Prob. 14-152 using Castiglianc's theorem

a
45 kN

Probs. 14-152153

Beview ProsLEMS 783

14-154, The cantilevered beam i3 subjected (o a couple
moment My applicd at its end, Determine the slope of the
bcam al B E! 5 constant, Use the method of virtul
wisrh,

I4-155  Solve Probe 14-154 psing Castigliano’s theorem

Proba [4-1547155

*14-15%6, Determine the displacement of point B on the
gluminum beam. £, = 10.6{ 1071 ksi. Use the conservation
of eneirey,

g lin a
3 kip g
l ITI lin
fim
i [
- H‘I _cir_
| 1261 I 1211 |

Proh. 14-156

14-15T7. A 20-1b weight is dropped [fom a height of 4
onlie the end of & cantilevered A-36 stecl beani. 1 the beam
i Wi = 5, determine the maximom siress developed in
the heam

- |
12 fi {

Prab. 14-157




