
This article was downloaded by: [Cumhuriyet University]
On: 10 January 2015, At: 01:18
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Engineering Optimization
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/geno20

An improved particle swarm optimizer
for mechanical design optimization
problems
S. He , E. Prempain & Q. H. Wu
a Department of Electrical Engineering and Electronics , The
University of Liverpool , Liverpool, L69 3GJ, UK
Published online: 25 Jan 2007.

To cite this article: S. He , E. Prempain & Q. H. Wu (2004) An improved particle swarm optimizer
for mechanical design optimization problems, Engineering Optimization, 36:5, 585-605, DOI:
10.1080/03052150410001704854

To link to this article: http://dx.doi.org/10.1080/03052150410001704854

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

Downloaded from http://www.elearnica.ir

http://www.tandfonline.com/loi/geno20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03052150410001704854
http://dx.doi.org/10.1080/03052150410001704854
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Engineering Optimization
Vol. 36, No. 5, October 2004, 585–605

AN IMPROVED PARTICLE SWARM OPTIMIZER FOR
MECHANICAL DESIGN OPTIMIZATION PROBLEMS

S. HE, E. PREMPAIN and Q. H. WU∗

Department of Electrical Engineering and Electronics, The University of Liverpool,
Liverpool L69 3GJ, UK

(Received 10 September 2003; Revised 12 January 2004; In final form 24 March 2004)

This paper presents an improved particle swarm optimizer (PSO) for solving mechanical design optimization prob-
lems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables.
A constraint handling method called the ‘fly-back mechanism’ is introduced to maintain a feasible population. The
standard PSO algorithm is also extended to handle mixed variables using a simple scheme. Five benchmark problems
commonly used in the literature of engineering optimization and nonlinear programming are successfully solved by the
proposed algorithm. The proposed algorithm is easy to implement, and the results and the convergence performance
of the proposed algorithm are better than other techniques.

Keywords: Evolutionary algorithms; Particle swarm optimization; Constrained optimization; Mechanical design

1 INTRODUCTION

In the past few decades, many optimization algorithms have been applied to solve mechanical
design optimization problems. Among them, evolutionary algorithms (EAs) such as genetic
algorithms (GAs), evolutionary programming (EP) and evolution strategies (ES) are attractive
because they do not apply mathematical assumptions to the optimization problems and have
better global search abilities over conventional optimization algorithms [1]. Many successful
applications of EAs have been reported to solve engineering problems such as power system
dispatch [2, 3] and mechanical optimal design problems [4, 5]. Recently a new EA called parti-
cle swarm optimization (PSO) has been proposed [6]. PSO is a population-based optimization
algorithm which was inspired by the social behaviour of animals such as fish schooling and
birds flocking. Similar to other EAs, it can solve a variety of hard optimization problems but
with a faster convergence rate [7]. Another advantage is that it requires only few parameters
to be tuned making it attractive from an implementation viewpoint.

Most mechanical optimal design problems are hard to solve for both conventional opti-
mization algorithms and EAs, because they involve problem-specific constraints. To handle
these constraints, many different approaches have been proposed. The most common approach
in the EA community is to make use of penalty functions. However, the major drawback of

∗ Corresponding author. E-mail: qhwu@liv.ac.uk

Engineering Optimization
ISSN 0305-215X print; ISSN 1029-0273 online c© 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/03052150410001704854

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

586 S. HE et al.

using penalty functions is that they require additional tuning parameters. In particular, the
penalty coefficients have to be fine tuned in order to balance the objective and penalty func-
tions. Inappropriate penalty coefficients will make the optimization problem intractable [8, 9].
Other approaches to handle constraints, according to Ref. [10], include rejection of infeasi-
ble individuals, maintaining a feasible population, repair of infeasible individuals, separation
of individuals and constraints, replacement of individuals by their repaired versions and use
of decoders. Standard PSO is usually applied to solve unconstrained optimization problems.
In this paper, the standard PSO algorithm is extended to solve constrained mechanical design
optimization problems using methods which preserve a feasible population.

Mechanical optimal design problems may contain integer, discrete and continuous vari-
ables, which are referred to as mixed-variable nonlinear optimization problems. To solve them,
Sandgren [11] and Hajela and Shih [12] have proposed nonlinear branch and bound algorithms
based on integer programming. Cao and Wu developed mixed-variable evolutionary program-
ming (MVEP) [4] with different mutation operators associated with different types of variables.
Deb and Goyal [5] presented a combined genetic search technique (GeneAS) which combined
binary and real-coded GAs to handle mixed variables. Originally PSO was proposed to handle
continuous optimization problems. Recently, PSO had been applied to Integer Programming
by Parsopoulos and Vrahatis [13] by simply truncating the real values to integers, which does
not affect significantly the search performance. In this paper, the standard PSO is extended to
handle mixed-variable nonlinear optimization problems more effectively.

This paper is organized as follows: Section 2 introduces the formulation of mechanical
design optimization problems. The standard PSO is presented in Section 3. Section 4 proposes
a modified version of the PSO algorithm to handle constraints with mixed variables. The
proposed PSO has been tested on five examples which are commonly used in the mechanical
design optimization literature. Experimental results and discussions are given in Section 5.
The paper is concluded in Section 6.

2 FORMULATION OF MECHANICAL DESIGN OPTIMIZATION PROBLEMS

Mechanical design optimization problems can be formulated as a nonlinear programming
(NLP) problem. Unlike generic NLP problems which only contain continuous or integer vari-
ables, mechanical design optimizations usually involve continuous, binary, discrete and integer
variables. The binary variables are usually involved in the formulation of the design problem
to select alternative options. The discrete variables are used to represent standardization con-
straints such as the diameters of standard sized bolts. Integer variables usually occur when the
numbers of objects are design variables, such as the number of gear teeth. Considering the
mixed variables, the formulation can be expressed as follows:

min f (X) (1)

subject to:

hi(X) = 0 i = 1, 2, . . . , m

gi(X) ≥ 0 i = m + 1, . . . , p

where f (X) is the scalar objective function, hi(X) and gi(X) are the equality and inequality
constraints, respectively.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 587

The variables vector X ∈ R
N represents a set of design variables which can be written as:

X =




XC

XB

XI

XD


 = [xC

1 , . . . , xC
nC

, xB
1 , . . . , xB

nB
, xI

1, . . . , x
I
nI

, xD
1 , . . . , xD

nD
]T

where

xCl
i ≤ xC

i ≤ xCu
i , i = 1, 2, . . . , nC (2)

xB
i ∈ {xBl

i , xBu
i }, i = 1, 2, . . . , nB

xIl
i ≤ xI

i ≤ xIu
i , i = 1, 2, . . . , nI

xDl
i ≤ xD

i ≤ xDu
i , i = 1, 2, . . . , nD

where XC ∈ R
nC , XB ∈ R

nB , XI ∈ R
nI and XD ∈ R

nD denote feasible subsets of comprising
continuous, binary, integer and discrete variables, respectively. xCl

i , xBl
i , xIl

i and xDl
i are the

lower bounds of the ith variables of XC, XB, XI and XD, respectively. xCu
i , xZu

i , xIu
i and xDu

i

are the upper bounds of the ith variables of XC, XB, XI and XD, respectively. nC, nB, nI and
nD are the numbers of continuous, binary, integer and discrete variables, respectively. The total
number of variables is N = nC + nB + nI + nD.

3 PARTICLE SWARM OPTIMIZER

The PSO is a population-based optimization algorithm. Its population is called a swarm and
each individual is called a particle. Each particle flies through the problem space to search for
optima. The ith particle at iteration k has the following two attributes:

1) A current position in an N -dimensional search space which represents a potential solution:
Xk

i = (xk
i,1, . . . , x

k
i,n, . . . , x

k
i,N), where xk

i,n ∈ [ln, un] is the nth dimensional variable, 1 ≤
n ≤ N, ln and un are the lower and upper bounds for the nth dimension, respectively.

2) A current velocity V k
i = (vk

i,1, . . . , v
k
i,n, . . . , v

k
i,N), which controls its fly speed and direction.

V k
i is restricted to a maximum velocity V k

max = (vk
max,1, . . . , v

k
max,n, . . . , v

k
max,N).

At each iteration, the swarm is updated by the following equations:

V k+1
i = ωV k

i + c1r1(P
k
i − Xk

i) + c2r2(P
k
g − Xk

i) (3)

Xk+1
i = Xk

i + V k+1
i (4)

where Pi is the best previous position of the ith particle (also known as pbest) and Pg is the
global best position among all the particles in the swarm (also known as gbest). They are given
by the following equations:

Pi =
{

Pi : f (Xi) ≥ Pi

Xi : f (Xi) < Pi

(5)

Pg ∈ {P0, P1, . . . , PM}|f (Pg) = min(f (P0), f (P1), . . . , f (PM)) (6)

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

588 S. HE et al.

where f is the objective function, M is the total number of particles, r1 and r2 are the
elements generated from two uniform random sequences on the interval [0, 1]: r1 ∼ U(0, 1);
r2 ∼ U(0, 1) and ω is an inertia weight [14] which is typically chosen in the range of [0,1].
A larger inertia weight facilitates global exploration and a smaller inertia weight tends to facili-
tate local exploration to fine-tune the current search area [15]. Therefore the inertia weight ω is
critical for the PSO’s convergence behaviour. A suitable value for the inertia weight ω usually
provides balance between global and local exploration abilities and consequently results in a
better optimum solution. Initially, the inertia weight was kept constant. However, Ref. [16]
indicated that it is better to initially set the inertia to a large value, in order to promote global
exploration of the search space, and gradually decrease it to get more refined solutions. c1 and
c2 are acceleration constants [16] which also control how far a particle will move in a single
iteration. The maximum velocity Vmax is set to be half of the length of the search space in one
dimension.

4 IMPROVED PARTICLE SWARM OPTIMIZER

As mentioned in the introduction, the difficulties in using EAs to solve mechanical optimization
problems come from problem-specific constraints and mixed variables. Little work has been
done for solving constrained mixed-variable optimization problems with PSO. In this section,
PSO techniques to handle mixed variables and constraints are proposed.

4.1 Mixed-Variable Handling Methods

Originally, most of the EAs were proposed to handle continuous variables. In the last decade,
GAs [17] and ESs [18] and EPs [4] have been extended to handle mixed variables.

In its basic form, the PSO can only handle continuous variables. To handle integer variables,
simply truncating the real values to integers to calculate fitness value will not effect the search
performance significantly [13]. The truncation is only performed in evaluating the fitness
function. That is, the swarm will ‘fly’ in a continuous search space regardless of the variable
type. Binary variables, since they can be regarded as integer variables within the range of [0, 1],
are not considered separately.

For discrete variables of the ith particle Xi , the most straightforward way is to use the
indices of the set of discrete variables with nD elements:

XD
i = [xD

i,1, . . . , x
D
i,nD

]

For particle i, the index value j of the discrete variable xD
i,j is then optimized instead of the

discrete value of the variable directly. In the population, the indices of the discrete variables of
the ith particle should be the float point variables before truncation. That is, j ∈ [1, nD + 1),
nD is the number of discrete variables. Hence, the fitness function of the ith particle Xi can be
expressed as follows:

f (Xi) i = 1, . . . , M (7)

where

Xi =




xi,j : xi,j ∈ XC
i j = 1, . . . , nC

INT(xi,j): xi,j ∈ XI
i ∪ XB

i j = 1, . . . , nI + nB

xi,INT(j): xi,INT(j) ∈ XD
i j ∈ [1, nD + 1)

(8)

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 589

where XC
i ∈ R

nC , XB
i ∈ R

nB , XI
i ∈ R

nI and XD
i ∈ R

nD denote the feasible subsets of contin-
uous, binary, integer and discrete variables of particle Xi , respectively. INT(x) denotes the
greatest integer less than the real value x.

4.2 Constraint Handling Methods

EAs are heuristic optimization techniques which have been successfully applied to various opti-
mization problems. However, they are not able to handle constrained optimization problems
directly [19]. In the past few years, much work has been done to improve EAs performance to
deal with constrained optimization problems. Penalty functions are commonly used to incorpo-
rate constraints into the fitness function. Other techniques developed to handle the constraints,
reported in Refs. [4] and [10], include rejection of infeasible individuals, maintaining a feasible
population, repair of infeasible individuals, and multi-objective optimization techniques.

PSO algorithms have been applied to constrained optimization problems. EI-Gallad
et al. [20] proposed a constraint handling technique based on maintaining a feasible population.
However, our experimental results indicate that such a technique will lower the efficiency
of the standard PSO. Their technique reset the infeasible particles to their previous best
positions pbest which will sometimes prevent the search reaching a global minimum. Hu
and Eberhart [21] also proposed a constraint handling technique based on preserving a feasible
population. The algorithm starts from a feasible initial population. During the search process,
only feasible particles are counted when calculating the value of the previous best position
pbest and global best position gbest. Parsopoulos and Vrahatis [22] incorporated a non-
stationary multi-stage assignment penalty function into PSO. In their paper, a set of six
benchmark functions were tested. However some of their solutions are not feasible. Other
attempts include applying a multi-objective optimization technique to handle constraints [23].

In this study, the technique of maintaining a feasible population is investigated. The tech-
nique starts from a feasible initial population. A closed set of operators is used to maintain the
feasibility of the solutions. Therefore, the subsequent solutions generated at each iteration are
also feasible. Algorithms based on this technique are much more reliable than those based on a
penalty approach [10]. For mechanical design problems, reliability is crucial since most of the
constraints need to be satisfied. The concept of maintaining a feasible population is suitable
for incorporation into the standard PSO algorithm for solving mechanical design problems.

For the PSO algorithm, the intuitive idea to maintain a feasible population is for a particle
to fly back to its previous position when it is outside the feasible region. This is the so called
‘fly-back mechanism’. Since the population is initialized in the feasible region, flying back
to a previous position will guarantee the solution to be feasible. From our experience, the
global minima of mechanical optimal design problems are usually close to the boundaries of
the feasible space, as shown in Figure 1. Flying back to its previous position when a particle

FIGURE 1 Global minimum in the feasible space.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

590 S. HE et al.

FIGURE 2 Xi at iteration k would fly outside the feasible search space.

violates the constraints will allow a new search closer to the boundaries. Figures 2 and 3
illustrate the search process of the ‘fly-back mechanism’. In Figure 2, the ith particle would fly
into the infeasible search space at the kth iteration. At the next iteration as shown in Figure 3,
this particle is set back to its previous position Xk−1

i and starts a new search. Assuming that
the global best particle Pg stays in the same position, the direction of the new velocity V k+1

i

will still point to the boundary but closer to Pg . Since Pg is inside the feasible space and ωV k
i

is smaller than V k
i , the chance of particle Xi flying outside the boundaries at the next iteration

will be decreased. This property makes the particles more likely to explore the feasible search
space near the boundaries. Therefore, such a ‘fly-back mechanism’ is suitable for mechanical
design problems. Moreover, our experimental results show that this technique can find better
minima with fewer iterations compared with other techniques.

FIGURE 3 Xi flies back to its previous position and starts a new search.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 591

TABLE I Pseudo code for the improved PSO algorithm.

Set k = 1;
Randomly initialize positions and velocities of all particles;

FOR (each particle i in the initial population)
WHILE (the constraints are violated)

Randomly re-initialize current particle Xi

END WHILE
END FOR
WHILE (the termination conditions are not met)

FOR (each particle i in the swarm)
Check feasibility: Check the feasibility of the current particle. If Xk

i

is outside the feasible region, then reset Xk
i to the

previous position Xk−1
i ;

Calculate fitness: Calculate the fitness value f (Xk
i) of current particle

using Eq. (8);
Update pbest: Compare the fitness value of pbest with f (Xk

i). If
f (Xk

i) is better than the fitness value of pbest, then
set pbest to the current position Xk

i ;
Update gbest: Find the global best position of the swarm. If the

f (Xk
i) is better than the fitness value of gbest, then

gbest is set to the position of the current particle
Xk

i ;
Update velocities: Calculate velocities V k

i using Eq. (3);
Update positions: Calculate positions Xk

i using Eq. (4);
END FOR
Set k = k + 1;

END WHILE

4.3 Improved Particle Swarm Optimizer Algorithm

Regarding the proposed constraint handling technique described in Section 4.2, the improved
PSO requires a feasible initial population to guarantee that the solutions of successive gen-
erations are feasible. To do so, an extra loop at the beginning of the algorithm is required to
keep randomly re-initializing infeasible particles to ensure that they stay inside the feasible
search space. Our experience indicates that this simple method is sufficiently good for most
mechanical design problems since their feasible search spaces are usually large and feasible
particles can be easily generated. Small size populations are preferred to minimize the time to
find a feasible initial population.

The improved PSO algorithm is given in Table I.

5 NUMERICAL EXAMPLES

In this section, five numerical examples have been used to test our new PSO algorithm. The
first example is a classical benchmark problem in nonlinear constrained optimization. Four
other examples are taken from the mechanical design optimization literature [24]. All these
problems have linear and nonlinear constraints and have been investigated by various EAs or
traditional techniques.

For all problems a population of 30 individuals is used. Although a time decreasing inertia
weight was suggested to be better than a fixed one [16], the experimental results suggested
that for these five examples, a fixed inertia weight ω = 0.8 can produce better results. The
default value of acceleration constants c1, c2 typically are set to 2.0. However with a setting
of c1 = c2 = 0.5 better results were obtained. For each problem, 100 independent runs were

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

592 S. HE et al.

carried out. The proposed algorithm was implemented in MATLAB 6.5 and executed on a
Pentium 4, 2-GHz machine.

5.1 Example 1: Himmelblau’s Function

This problem, proposed by Himmelblau [25], is a common benchmark function for nonlinear
constrained optimization problems. We adopted this problem to test our PSO algorithm which
has an improved constraint handling capability. The problem, which has five design variables
and six nonlinear constraints, is as follows:

Minimize

f (X) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (9)

subject to:

0 ≤ g1(X) ≤ 92 (10)

90 ≤ g2(X) ≤ 110 (11)

20 ≤ g3(X) ≤ 25 (12)

where

g1(X) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 (13)

g2(X) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 (14)

g3(X) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 (15)

and

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45, 27 ≤ x4 ≤ 45 and 27 ≤ x5 ≤ 45

Himmelblau [25] used the generalized reduced gradient (GRG) method to solve this prob-
lem. This problem was also tackled by Gen and Cheng [26] using a GA based on both local
and global references. Runarsson andYao [27] proposed an ES with stochastic ranking to solve
this problem.

For Himmelblau’s function, all the results obtained from the methods mentioned above
are listed in Table II and are compared against those obtained with the proposed PSO. Other
researchers have also proposed different approaches to solve this problem and produced good
results. For example, Koziel and Michalewicz [28] proposed a new approach to solve this
problems based on incorporating a homomorphous mapping between an n-dimensional cube
and a feasible search space. The best result they obtained was −30664.5. Parsopoulos and
Vrahatis [22] reported a best result of −31528.289, which is not feasible. The best solution
reported by Hu and Eberhart [21] was −30665.5. Since the design variables were not included
in their papers, we could not list their solutions in Table II.

The maximum number of generations, used in the proposed PSO, was 3000 with 90,000
function evaluations. The average execution time required for finding a feasible initial popu-
lation and 90,000 function evaluations was 36.5 s of CPU time. From Table II it can be seen
that the proposed PSO has found the same optimum. The mean value for 100 independent runs
is −30643.989 with a standard deviation of 70.043, which is worse than the mean value of
30665.539 reported by Runarsson and Yao [27]. However, it is worth mentioning that the

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 593

TABLE II Optimal solution of Himmelblau’s function.

Best solution found
Design
variables PSO Runarsson [27] GRG [25] Gen [26]

x1 78.0000 78.0000 78.6200 81.490
x2 33.0000 33.0000 33.4400 34.0900
x3 29.995256025682 29.995256025682 31.0700 31.2400
x4 45.0000 45.0000 44.1800 42.2000
x5 36.775812905789 36.775812905788 35.2200 34.3700
g1(X) 92.0000 92.0000 91.7927 91.7819
g2(X) 98.8405 98.8405 98.8929 99.3188
g3(X) 20.0000 20.0000 20.1316 20.0604
f (X) −30665.539 −30665.539 −30373.949 −30183.576

number of function evaluations of their stochastic ranking technique was 350,000. The pro-
posed PSO has a much faster performance.

5.2 Example 2: Spring Design

In this section we will investigate two cases of a compression spring design problem. They
both have three design variables: the wire diameter d = x1 , the mean coil diameter D = x2

and the number of active coils N = x3 as shown in Figure 4. The data type of design variables,
objective function and constraints of these two cases are different.

FIGURE 4 Spring design.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

594 S. HE et al.

5.2.1 Case 1

Case 1 is a real-world optimization problem which involves discrete, integer and continuous
design variables. It is aimed at minimizing the volume of a compression spring under static
loading. The three design variables are mixed: D is continuous, N is an integer and d is a
discrete variable having 42 possible value as shown in Table III. The problem is formulated as
follows:

Minimize

f (X) = π2x2x
2
1 (x3 + 2)

4
(16)

subject to:

g1(X) = 8Cf Fmaxx2

πx3
1

− S ≤ 0 (17)

g2(X) = lf − lmax ≤ 0 (18)

g3(X) = dmin − x1 ≤ 0 (19)

g4(X) = x2 − Dmax ≤ 0 (20)

g5(X) = 3.0 − x2

x1
≤ 0 (21)

g6(X) = σp − σpm ≤ 0 (22)

g7(X) = σp + (Fmax − Fp)

K
+ 1.05(x3 + 2)x1 − lf ≤ 0 (23)

g8(X) = σw − (Fmax − Fp)

K
≤ 0 (24)

where

Cf = 4(x2/x1) − 1

4(x2/x1) − 4
+ 0.615x1

x2
(25)

K = Gx4
1

8x3x
3
2

(26)

σp = Fp

K
(27)

lf = Fmax

K
+ 1.05(x3 + 2)x1 (28)

TABLE III Possible spring steel wire diameters.

Wire diameters (in.)

0.009 0.0095 0.0104 0.0118 0.0128 0.0132 0.014
0.015 0.0162 0.0173 0.018 0.020 0.023 0.025
0.028 0.032 0.035 0.041 0.047 0.054 0.063
0.072 0.080 0.092 0.105 0.120 0.135 0.148
0.162 0.177 0.192 0.207 0.225 0.244 0.263
0.283 0.307 0.331 0.362 0.394 0.4375 0.500

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 595

Other specifications are: the maximum work load Fmax = 1000.0 lb; the maximum free
length lmax = 14.0 in.; the minimum wire diameter dmin = 0.2 in.; the allowable maximum
shear stress S = 189000.0 psi; the maximum outside diameter of the spring Dmax = 3.0 in.;
the preload compression force Fp = 300.0 lp; the allowable maximum deflection under preload
σpm = 6.0 in.; the deflection from preload position to maximum load position σw = 1.25 in.;
the shear modulus of the material G = 11.5 × 106 psi;

The design variables are limited as follows:

0.2 ≤ x1 ≤ 1, 0.6 ≤ x2 ≤ 3, 1 ≤ x3 ≤ 70

This problem was investigated by Sandgren [11]. Deb and Goyal [5] applied genetic adaptive
search (GeneAS) to solve this problem. Other attempts included a mixed-variable differential
evolution (DE) algorithm [29].

The maximum number of generations, used in the proposed PSO, was fixed to 500 with
15,000 function evaluations. The best solution for 100 runs is listed and it is compared to the
results obtained by the other techniques mentioned above, which are listed in Table IV. It can be
seen that PSO found the same global optimum as DE. It is worth mentioning that the maximum
number of generations of DE was 650, corresponding to 26,000 function evaluations [29].

The mean value for the 100 runs performed was 2.738024 with a standard deviation of
0.107061. The average time required for a single run was 5.8 s of CPU time.

5.2.2 Case 2

This problem was first investigated by Belegundu [30] and Arora [31] and aims to minimize
the weight of a tension/compression spring. All three design variables are continuous. There
are four constraints which relate to minimum deflection, shear stress, surge frequency, and
limits on outside diameter and design variables [31]. The mathematical model of the problem
can be expressed as follows:

Minimize

f (X) = (x3 + 2)x2x
2
1 (29)

TABLE IV Optimal solution of spring design for Case 1.

Best solution found
Design
variables PSO Sandgren [11] GeneAS [5] DE [29]

x1(d) 0.283 0.283 0.283 0.283
x2(D) 1.223041010 1.180701 1.226 1.223041010
x3(N) 9 10 9 9
g1(X) −1008.8114 −54309 −713.510 −1008.8114
g2(X) −8.9456 −8.8187 −8.933 −8.9456
g3(X) −0.083 −0.08298 −0.083 −0.083
g4(X) −1.777 −1.8193 −1.491 −1.777
g5(X) −1.3217 −1.1723 −1.337 −1.3217
g6(X) −5.4643 −5.4643 −5.461 −5.4643
g7(X) 0.0000 0.0000 0.0000 0.0000
g8(X) 0.0000 0.0000 −0.009 0.0000
f (X) 2.65856 2.7995 2.665 2.65856

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

596 S. HE et al.

subject to:

g1(X) = 1 − x3
2x3

71785x4
1

≤ 0 (30)

g2(X) = 4x2
2 − x1x2

12566(x2x
3
1 − x4

1)
+ 1

5108x2
1

− 1 ≤ 0 (31)

g3(X) = 1 − 140.45x1

x2
2x3

≤ 0 (32)

g4(X) = x2 + x1

1.5
− 1 ≤ 0 (33)

The boundaries of the design variables are as follows:

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

Arora [31] proposed an optimization technique called constraint correction at constant cost
to deal with this problem. Coello Coello [32] investigated this problem with a GA with a
self-adaptive penalty approach to handle constraints. This problem was also tackled by Ray
and Liew using an EA inspired by a formal society and the civilization model [33].

The maximum number of generation was 500 corresponding to 15,000 fitness function
evaluations. The average execution time required for a single run was 5.2 s of CPU time.
Table V lists the best solutions for 100 runs of our PSO and the techniques mentioned above.
From Table V, it can be noticed that Arora’s technique is not applicable because the first
constraint is violated. It can also be seen that our proposed approach was able to find the best
solution.

The mean value for the 100 runs performed was 0.01270233 with a standard deviation of
4.124390 × 10−5. Ray and Liew [33] reported a mean from 50 runs of 0.012922669 which is
worse than that obtained by our proposed technique. The number of fitness function evaluations
of Ray’s algorithm was 25,167.

5.3 Example 3: Pressure Vessel Design

The pressure vessel design problem, shown in Figure 5, was introduced by Sandgren [11].
The objective of this problem is to minimize the total cost of materials, forming and welding of

TABLE V Optimal solution of spring design for Case 2.

Best solution found
Design
variables PSO Ray [33] SAPA [32] Arora [31]

x1(d) 0.05169040 0.0521602 0.051480 0.053396
x2(D) 0.35674999 0.36815870 0.351661 0.399180
x3(N) 11.28712599 10.64844226 11.632201 9.185400
g1(X) −0.00000449 −0.00000001 −0.002080 0.000019
g2(X) 0.00000000 −0.00000000 −0.000110 −0.000018
g3(X) −4.05382661 −4.075805 −4.026318 −4.123832
g4(X) −0.72770641 −0.71978739 −4.02638 −0.698283
f (X) 0.0126652812 0.0126692493 0.0127047834 0.0127302737

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 597

FIGURE 5 Pressure vessel design.

the pressure vessel. There are four design variables: the shell thickness Ts = x1, the thickness of
the head Th = x2, the inner radius R = x3 and the length of the cylindrical section of the vessel
L = x4. Ts and Th are discrete values which are integer multiples 0.0625 in., in accordance
with the available thickness of rolled steel plates; R and L are continuous. The optimization
problem can be expressed as follows:

Minimize

f (X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (34)

subject to:

g1(X) = 0.0193x3 − x1 ≤ 0 (35)

g2(X) = 0.00954x3 − x2 ≤ 0 (36)

g3(X) = 1,296,000 − πx2
3x4 − 4

3
πx3

3 ≤ 0 (37)

g4(X) = x4 − 240 ≤ 0 (38)

where the design variables have to be in the following ranges:

0.0625 ≤ x1 ≤ 6.1875, 0.0625 ≤ x2 ≤ 6.1875, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

This problem was dealt with by Coello Coello [34] using GA with a dominance-based tour-
nament selection scheme (GADTS) to handle constraints. This problem was also investigated
previously by Deb using GeneAS [35]. It has also been tackled by Cao and Wu [4] using
MVEP.

The maximum number of generations of the proposed PSO was set to 1000, corresponding
to 30,000 fitness function evaluations. The algorithm undertook 100 runs and the best result
is listed in Table VI. The average CPU time required was 8.2 s for a single run. Table VI also
lists the best results produced by the other methods. Clearly, the new PSO gives better results
than the other techniques.

The mean fitness value was f (x) = 6289.92881 with a standard deviation of 305.78, which
is worse than the mean value of 6177.253268 produced by GADTS [34]. However, it is worth
mentioning that the number of fitness function evaluations of GADTS was 80,000.

5.4 Example 4: Welded Beam Design

As shown in Figure 6, a rectangular beam is designed as a cantilever beam to carry a certain
load with minimum overall cost of fabrication. The problem involves four design variables: the

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

598 S. HE et al.

TABLE VI Optimal solution of pressure vessel design.

Best solution found
Design
variables PSO GADTS [34] GeneAS [35] MVEP [4]

x1(Ts) 0.81250000 0.8125 0.9345 1.000
x2(Th) 0.43750000 0.4375 0.5000 0.625
x3(R) 42.09844560 40.097398 48.3290 51.1958
x4(L) 176.63659584 176.654047 112.6790 90.7821
g1(X) 0.00000000 −0.000020 −0.004750 −0.0119
g2(X) −0.03588083 −0.035891 −0.038941 −0.1366
g3(X) 0.00000000 −27.886075 −3652.876838 −13584.5631
g4(X) −63.36340416 −63.345953 −127.321000 −149.2179
f (X) 6059.7143 6059.946341 6410.3811 7108.6160

thickness of the weld h = x1, the length of the welded joint l = x2, the width of the beam t = x3

and the thickness of the beam b = x4. The values of x1 and x2 are coded with integer multiples
of 0.0065. There are seven constraints, which involve shear stress (τ), bending stress in the
beam (σ), buckling load on the bar (Pc), deflection of the beam (δ) and side constraints [24].
The welded beam problem is stated as follows:

Minimize

f (X) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (39)

subject to:

g1(X) = τ(X) − τmax ≤ 0 (40)

g2(X) = σ(X) − σmax ≤ 0 (41)

g3(X) = x1 − x4 ≤ 0 (42)

FIGURE 6 Welded beam design.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 599

g4(X) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5 ≤ 0 (43)

g5(X) = 0.125 − x1 ≤ 0 (44)

g6(X) = δ(X) − δmax ≤ 0 (45)

g7(X) = P − Pc(X) ≤ 0 (46)

where

τ(X) =
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2 (47)

τ ′ = P√
2x1x2

(48)

τ ′′ = MR

J
, M = P

(
L + x2

2

)
(49)

R =
√

x2
2

4
+

(
x1 + x3

2

)2

(50)

J = 2

{
x1x2√

2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

(51)

δ(X) = 4PL3

Ex3
3x4

, σ (X) = 6PL

x4x
2
3

(52)

Pc(X) =
4.013

√
(EGx2

3x6
4)/36

L2

(
1 − x3

2L

√
E

4G

)
(53)

P = 6000 lb, L = 14 in., E = 30 × 106 psi, G = 12 × 106 psi (54)

τmax = 13,600 psi, σmax = 30,000 psi, δmax = 0.25 in. (55)

The ranges for the design variables are given as follows:

0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2.0.

This problem was investigated by Ragsdell and Phillips [36] using geometric programming.
Deb [37] proposed a simple GA with binary representation and a traditional penalty function
to solve this problem. The best-known result was also obtained by Deb using real parameter
GA [38]. Ray and Liew tackled this problem using a society and civilization algorithm [33].

The best solution for 100 runs of the proposed PSO and those produced by the methods
mentioned above are listed in Table VII. However, we could not list the best-known result
of 2.38119 in this table, because the design variables were not presented in Ref. [38]. We
can see that the new PSO algorithm provides even better results, which were obtained with
the maximum number of generations set to 1000 and the total number of fitness function
evaluations performed set to 30,000. The average CPU time required for one execution of the
proposed algorithm was 10.2 s.

The mean value of the objective function obtained from 100 runs was 2.381932, with a
standard deviation 5.239371 × 10−3. The number of fitness function evaluations of Deb’s
technique was 40,080.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

600 S. HE et al.

TABLE VII Optimal solution of welded beam design.

Best solution found
Design
variables PSO Ray [33] Ragsdell [36] Deb [37]

x1(h) 0.24436898 0.244438276 0.2455 0.2489
x2(l) 6.21751974 6.237967234 6.1960 6.1730
x3(t) 8.29147139 8.288576143 8.2730 8.1789
x4(b) 0.24436898 0.244566182 0.2455 0.2533
g1(X) −5741.17693313 −5760.11047125 −5743.826517 −5758.603777
g2(X) −0.00000067 −3.24542756 −4.71509720 −255.576901
g3(X) 0.00000000 −0.00012790 0.00000000 −0.004400
g4(X) −3.02295458 −3.02005520 −3.02028858 −2.982866
g5(X) −0.11936898 −0.11943827 −0.12050000 −0.123900
g6(X) −0.23424083 −0.23423703 −0.23420813 −0.234160
g7(X) −0.00030900 −13.07930496 −74.27685602 −618.81849251
f (X) 2.3809565827 2.3854347 2.385937 2.433116

5.5 Example 5: Hydrostatic Thrust Bearing Design

The thrust bearing design problem was proposed by Siddall [39]. This problem aims to
minimize power loss associated with the bearing shown in Figure 7 while satisfying sev-
eral constraints. Four design variables are used: the bearing step radius R, recess radius R0, oil
viscosity µ and flow rate Q. There are seven constraints which limit load-carrying capacity,
inlet oil pressure, oil temperature rise, oil film thickness and some physical requirements. The
optimization problem can be formulated as follows:

Minimize

F(X) = QP0

0.7
+ Ef (56)

FIGURE 7 Thrust bearing design.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 601

subject to:

g1(X) = W − Ws ≤ 0 (57)

g2(X) = Pmax − P0 ≤ 0 (58)

g3(X) =
Tmax − P0 ≤ 0 (59)

g4(X) = h − hmin ≤ 0 (60)

g5(X) = R − R0 ≤ 0 (61)

g6(X) = 0.001 − γ

gP0

(
Q

2πRh

)
≤ 0 (62)

g7(X) = 5000 − W

π(R2 − R2
0)

≤ 0 (63)

where W is the load carrying capacity which is given by:

W = πP0

2

R2 − R2
0

ln(R/R0)
(64)

and P0 is the inlet pressure which can be defined as:

P0 = 6µQ

πh3
ln

R

R0
(65)

and Ef is the friction loss:

Ef = 9336QγC
T (66)

where γ = 0.0307 lb/in3 is the weight density of oil and specific heat of oil C = 0.5 Btu/lb ◦F.
And
T is the temperature which can be estimated by

T = 2(10P − 559.7) (67)

where

P = log10 log10(8.122 × 106µ + 0.8) − C1

n
(68)

and n and C1 are constants for a given oil. Table VIII gives n and C1 for various grades of oil.
In this example, SAE 20 grade oil is chosen. Therefore, n = 10.04 and C1 = −3.55. The film
thickness can be calculated from the friction loss Ef from following equation:

h =
(

2πN

60

)2 2πµ

Ef

(
R4

4
− R4

0

4

)
(69)

Other specification of design are: weight of generator, Ws = 101000 lb (45804.99 kg); max-
imum pressure available, Pmax = 1000 psi (6.89655 × 106 Pa); maximum temperature rise

Tmax = 50 ◦F (10 ◦C); minimum oil thickness hmin = 0.001 in. (0.00254 cm); g = 32.3 ×
12 = 386.4 in./seg2 (981.465 cm/seg2) and angular speed of shaft N = 750 RPM.

The following ranges were used for the design variables:

1.000 ≤ R ≤ 16.000, 1.000 ≤ R0 ≤ 16.000,

1.0 × 10−6 ≤ µ ≤ 16 × 10−6, 1.000 ≤ Q ≤ 16.000.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

602 S. HE et al.

TABLEVIII Values of n and C1
for various grades of oil.

Oil C1 n

SAE 5 10.85 −3.91
SAE 10 10.45 −3.72
SAE 20 10.04 −3.55
SAE 30 9.88 −3.48
SAE 40 9.83 −3.46
SAE 50 9.82 −3.44

This problem was tackled by Siddall [39] using ADRANS (Gall’s adaptive random search
with a penalty function). Deb and Goyal [5] used GeneAS to deal with this problem.
Coello Coello [40] proposed a novel constraint handling technique to solve this problem:
GASO, which treats constraints as objective functions and solves them with a multi-objective
technique.

It is worth noting that there are several discrepancies of units and design specifications
between Deb and Coello’s papers [5, 40] and Siddall’s book [39]. The first one is the absolute
temperature (◦F ◦Rankine) of ambient. Deb and Coello used 560.0 while Siddall used 559.7
in Eq. (67). In Siddall’s book, the fourth constraint (g4) and the sixth one (g6) are multiplied
by 108, and the fifth constraint and the third one are multiplied by 105 and 2000, respectively.
The unit of fitness value from Deb and Coello’s papers is foot-pounds per second while Siddall
used inches-pounds per second. Due to these differences, we adopted two experiments: Case
1 and Case 2, with different units and design specifications. The results are compared against
those of Deb and Coello and Siddall, respectively. Each experiment was performed 100 runs.
The best solutions for Case 1 and for Deb and Coello’s papers are listed in Table IX. The best
solutions for Case 2 and Siddall’s book are listed in Table X.

The maximum numbers of generations for both cases were set to 3000 with 90,000 evalua-
tions of the fitness function. The average execution time required for both cases were 52.7 and
48.8 s of CPU time, respectively. The average fitness value from the proposed PSO for Case 1
is 1757.376840 with a standard deviation of 316.851024 which is better than most of the best
results reported by other techniques depicted in Table IX. The average fitness value for Case 2

TABLE IX Optimal solution of thrust bearing design for Case 1, Coello and Deb’s papers.

Best solution found
Design
variables PSO GASO [40] GeneAS [5] BGA [5]

x1(R) 5.956868685 6.271 6.778 7.7077
x2(R0) 5.389175395 12.901 6.234 6.549
x3(µ) × 10−6 5.40213310 5.605 6.096 6.619
x4 (Q) 2.30154678 2.938 3.809 4.849
g1(X) 22.01094912 2126.86734 8329.7681 1440.6013
g2(X) 0.00000000 68.0396 177.3527 297.1495
g3(X) 0.58406092 3.705191 10.684543 17.353800
g4(X) 0.00033480 0.000559 0.000652 0.000891
g5(X) 0.56769329 0.666000 0.544000 0.528000
g6(X) 0.00083138 0.000805 0.000717 0.000624
g7(X) 7.61684431 849.718683 83.618221 467.686527
f (X) 1632.2149 1950.2860 2161.4215 2296.2119

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 603

TABLE X Optimal solution of thrust bearing design for Case 2 and
Siddall’s book.

Best solution found
Design
variables PSO Siddall [39]

x1(R) 5.956048839021 7.1550805
x2(R0) 5.388766560465 6.6886822
x3(µ) × 10−6 6.001637904878 8.3207655
x4 (Q) 2.778703032216 9.1684614
g1(X) 0.00000074 71.040915
g2(X) 0.00234129 328.27277
g3(X) 17605.54663647 68912.380
g4(X) 47175.71419475 144524.15
g5(X) 56728.22785557 46639.822
g6(X) 79777.35289299 17724.808
g7(X) 4.54730416 17.287484
f (X) 20374.684 29221.321

is 22874.674800 with a standard deviation of 3140.292915, which is better than the best result
reported by Siddall [39].

In order to further illustrate the superiority of our algorithm, both in terms of accuracy and
convergence rate, Case 1 of Example 5 is used to compare the proposed algorithm with the
modified PSO algorithm of El-Gallad et al. [20] and a standard PSO with a static penalty given
in Ref. [41]. The average solutions of the three algorithms were obtained after 100 runs where
the maximum generation was set to 3000. The major drawback of Ref. [41] is that the static
penalty coefficient rg requires to be fine tuned in order to generate an acceptable result. For
El-Gallad’s PSO and the standard PSO, the average solutions were 1877.195620 and
2939.070620, respectively, which are worse than the average result of 1757.37684 found by
the proposed algorithm. The search processes of these three algorithms are shown in Figure 8.
Clearly, from this figure one can see that our algorithm converges more quickly than the
algorithms given in Refs. [20, 41].

FIGURE 8 Search processes of three algorithms for thrust bearing design Case 1.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

604 S. HE et al.

6 CONCLUSIONS

In this paper, the standard PSO algorithm has been extended to handle mixed variables and
constraints. The proposed method is relatively simple and easy to implement. A ‘fly-back
mechanism’is proposed to preserve feasible individuals. Compared to other constraint handling
techniques based on penalty functions, this method is simpler, faster and provides more reliable
solutions without any violation of the constraints.

The proposed PSO algorithm has been applied to solve a mathematical benchmark function
and four mechanical design optimization problems. The numerical results obtained by the
proposed algorithm are better than or equal to other existing methods. Moreover, for most of
our numerical examples, the PSO algorithm with ‘fly-back mechanism’converges to the global
minima within a few hundred iterations and its computational time is far less than the other
PSO algorithms.

A drawback of the proposed PSO is that the constraint handling method requires a fea-
sible initial population. For some problems, finding a feasible solution is NP-hard [42], and
even impossible for the problems with conflicting constraints. Future work should extend the
proposed PSO to tackle the initial population problem.

Acknowledgement

The authors would like to acknowledge Dr. Carlos Coello for his helpful discussions.

References

[1] Coello Coello, C. A. (2002) Theoretical and numerical constraint-handling techniques used with evolution-
ary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering,
191(11–12), 1245–1287.

[2] Wu, Q. H., Cao,Y. J. and Wen, J.Y. (1998) Optimal reactive power dispatch using an adaptive genetic algorithm.
Electrical Power and Energy Systems, 20(8), 563–569.

[3] Wu, Q. H. and Ma, J. T. (1995) Power system optimal reactive power dispatch using evolutionary programming.
IEEE Transactions on Power Systems, 10(3), 1243–1249.

[4] Cao, Y. J. and Wu, Q. H. (1999) A mixed variable evolutionary programming for optimisation of mechanical
design. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communica-
tions, 7(2), 77–82.

[5] Deb, K. and Goyal, M. (1997) Optimizing engineering designs using a combined genetic search. In: Seventh
International Conference on Genetic Algorithms, Ed. I. T. Back, pp. 512–528.

[6] Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. IEEE International Conference on Neural
Networks, Vol. 4, IEEE Press, pp. 1942–1948.

[7] Kennedy, J. and Eberhart, R. C. (2001) Swarm Intelligence. Morgan Kaufmann Publishers.
[8] Davis, L. (1987) Genetic Algorithms and Simulated Annealing. Pitman, London.
[9] Le Riche, R. G., Knopf-Lenoir, C. and Haftka, R. T. (1995) A segregated genetic algorithm for constrained

structural optimization. In: Sixth International Conference on Genetic Algorithms, University of Pittsburgh,
Morgan Kaufmann, pp. 558–565.

[10] Michalewicz, Z. and Schoenauer, M. (1996) Evolutionary algorithms for constrained parameter optimization
problems. Evolutionary Computation, 4(1), 1–32.

[11] Sandgren, E. (1990) Nonlinear integer and discrete programming in mechanical design optimization. Journal of
Mechanical Design, 112, 223–229.

[12] Hajela, P. and Shih, C. (1989) Multiobjective optimum design in mixed-integer and discrete design variable
problems. AIAA Journal, 28(4), 670–675.

[13] Parsopoulos, K. E. and Vrahatis, M. N. (2002) Recent approaches to global optimization problems through
particle swarm optimization. Natural Computing, 1, 235–306.

[14] Shi, Y. and Eberhart, R. C. (1997) A modified particle swarm optimiser. Proc. IEEE Inc. Conf. on Evolutionary
Computation, pp. 303–308.

[15] Shi,Y. and Eberhart, R. C. (1998) Parameter selection in particle swarm optimization. Evolutionary Programming
VII (1998), Lecture Notes in Computer Science 1447, Springer, pp. 591–600.

[16] Eberhart, R. C. and Shi, Y. (2001) Particle swarm optimization: developments, applications and resources. Proc.
IEEE Int. Conf. on Evolutionary Computation, pp. 81–86.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

PARTICLE SWARM OPTIMIZER 605

[17] Chen, J. L. and Tsao, Y. C. (1993) Optimal design of machine elements using genetic algorithms. Journal of the
Chinese Society of Mechanical Engineering, 12(2), 193–199.

[18] Thierauf, G. and Cai, J. (1997) Evolution strategies – parallelisation and application in engineering optimization.
In: Parallel and Distributed Processing for Computational Mechanics, Ed. B. H. V. Topping, Saxe-Coburg
Publications.

[19] Tahk, M. and Sun, B. C. (2000) Co-evolutionary augmented Lagrangian methods for constrained optimization.
IEEE Transactions on Evolutionary Computation, 4(2), 114–124.

[20] El-Gallad, A. I., El-Hawary, M. E. and Sallam, A. A. (2001) Swarming of intelligent particle for solving the non-
linear constrainted optimization problem. International Journal of Engineering Intelligent Systems for Electrical
Engineering and Communications, 9(3), 155–163.

[21] Hu, X. and Eberhart, R. C. (2002) Solving constrained nonlinear optimization problems with particle swarm
optimization. Sixth World Multiconference on Systemics, Cybernetics and Informatics 2002 (SCI 2002). Orlando,
USA.

[22] Parsopoulos, K. and Vrahatis, M. N. (2002) Particle swarm optimization method for constrained optimiza-
tion problems. In: Intelligent Technologies – Theory and Applications: New Trends in Intelligent Technologies,
Frontiers in Artificial Intelligence and Applications, Vol. 76, Ed. V. Sincak, J. Vascak, IOS Press, pp. 214–220.

[23] Ray, T. and Liew, K. M. (2002) A swarm metaphor for multiobjective design optimization. Engineering Opti-
mization, 32(2), 141–153.

[24] Rao, S. S. (1996) Engineering Optimization. John Wiley and Sons.
[25] Himmelblau, D. M. (1972) Applied Nonlinear Programming. McGraw-Hill, New York.
[26] Gen, M. and Cheng, R. (1997) Genetic Algorithms and Engineering Design. John Wiley and Sons.
[27] Runarsson, T. P. and Yao, X. (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans-

actions on Evolutionary Computation, 4(3), 284–294.
[28] Koziel, S. and Michalewicz, Z. (1999) Evolutionary algorithms, homomorphous mappings, and constrained

parameter optimization. Evolutionary Computation, 7(1), 19–44.
[29] Lampinen, J. and Zelinka, I. (1999) Mixed integer-discrete-continuous optimization by differential evolution.

In: Proceedings of the 5th International Conference on Soft Computing, pp. 71–76.
[30] Belegundu, A. D. (1982) A study of mathematical programming methods for structural optimization. Technical

report, University of Iowa.
[31] Arora, J. S. (1989) Introduction to Optimun Design. McGraw-Hill, New York.
[32] Coello Coello, C. A. (2000) Use of a self-adaptive penalty approach for engineering optimization problems.

Computers in Industry, 41(2), 113–127.
[33] Ray, T. and Liew, K. M. (2003) Society and civilization: An optimization algorithm based on the simulation of

social behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396.
[34] Coello Coello, C. A. and Mezura Montes, E. (2001) Use of dominance-based tournament selection to han-

dle constraints in genetic algorithms. In: Intelligent Engineering Systems through Artificial Neural Networks
(ANNIE’2001), Vol. 11, ASME Press, St. Louis, Missouri, pp. 177–182.

[35] Deb, K. (1997) Geneas: a robust optimal design technique for mechanical component design. In: Evolutionary
Algorithms in Engineering Applications, Ed. D. Dasgupta and Z. Michalewicz, Springer-Verlag, pp. 497–514.

[36] Ragsdell, K. M. and Phillips, D. T. (1976) Optimal design of a class of welded structures using geometric
programming. ASME Journal of Engineering for Industries, 98(3), 1021–1025.

[37] Deb, K. (1991) Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015.
[38] Deb, K. (2000) An efficient constraint handling method for genetic algorithms. Computer Methods Applied

Mechanics and Engineering, 186(2–4), 311–338.
[39] Siddall, J. N. (1982) Optimal Engineering Design. Marcel Dekker.
[40] Coello Coello, C. A. (2000) Treating constraints as objectives for single-objective evolutionary optimization.

Eng. Optimization, 32(3), 275–308.
[41] Fiacco, A. V. and McCormick, G. P. (1968) Nonlinear Programming: Sequential Unconstrained Minimization

Techniques. Wiley, New-York.
[42] Smith,A. E. and Coit, D.W. (1997) Constraint handling techniques – penalty functions. Handbook of Evolutionary

Computation, Ed. T. Back, D. B. Fogel and Z. Michalewicz, Oxford University Press and Institute of Physics
Publishing.

D
ow

nl
oa

de
d

by
 [

C
um

hu
ri

ye
t U

ni
ve

rs
ity

]
at

 0
1:

18
 1

0
Ja

nu
ar

y
20

15

