CONCEPTS, TECHNIQUES, TRICKS & TRAPS /‘o/%'
(-0

L)

Building Embedded

O N i "h
N ‘\ \! ! ".?
NN
SN
SN

\"_\I\'ll d
N

\
\)
X

W
N
N

SR

S\

AN

B,
| 4 'i
<y

KARIM YAGHMOUR,

JON MASTERS,
GILAD BEN-YOSSEF
& PHILIPPE GERUM

9

Linux

CONCEPTS, TECHNIQUES, TRICKS, AND TRAPS

BUILDING EMBEDDED LINUX SYSTEMS

Although many companies use Linux for embedded
systems in everything from cell phones to car ABS
systems and water-filtration plants, there are surpris-
ingly few sources of information for creating,
installing, and testing the Linux kernel and related tools.
Building Embedded Linux Systems is an in-depth guide to con-

structing these systems. You not only get the basic principles,
but you also learn how to configure, set up, and use more than
40 different open source and free software packages.

This second edition, updated for the latest version of the Linux

kernel, features previously undocumented procedures to help you:

* Build your own GNU development toolchain
 Select, configure, build, and install a target-specific kernel
= Create a complete target root filesystem
 Set up, manipulate, and use solid-state storage devices
« Install and configure a bootloader for your target
* Cross-compile a slew of utilities and packages
* Debug your embedded system using numerous tools and
techniques
» Use the uClibe, BusyBox, U-Boot, OpenSSH, thttpd, tftp,
strace, and gdb packages
» Exploit real-time features with Xenomai or the RT kernel
patch
This second edition teaches you how to build operating system
components, simplifying the daunting task of maintaining com-
plete control of your embedded systems.

O’REILLY"

www.oreilly.com

US $49.99 CAN $49.99
ISBN: 978-0-596-52968-0

9
I e

7805967529680

Safari”

Books Online

“[This book] makes no
assumptions as to the
tools you have at band or
the scope of your project.
All that is required ... is
an Internet connection to
download the necessary
packages, browse specific
online documentation,
and benefit from other
developers’ experiences, das
well as share your own.

Besides giving the greatest
degree of freedom and
control over your design,
this approach is closest

to that followed by the
pioneers who bave specr-
beaded the way for
Linux’s use in embedded

systems.”
—From the Preface

WWW.esys.ir

azesh Sabz Hoonam

" Free online edition
for 45 days with
purchase of this book.
Details on last page.

@ WWW.esys.ir
azesh Sabz Hoonam

Building Embedded Linux Systems

Other Linux resources from 0'Reilly

Related titles

Linux Books
Resource Center

O'REILLY*

ONLamp.com

LINUX « APACHE » MYSQL « PHP » PYTHON » PERL

Conferences

O'REILLY NETWORK
Safari
Bookshelf.

Designing Embedded Programming Embedded
Hardware Systems

Linux Device Drivers Running Linux

Linux in a Nutshell Understanding the Linux

Linux Network Adminis- Kernel

trator’s Guide

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL, and either Perl, Python, or PHP.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

SECOND EDITION

Building Embedded Linux Systems

Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and
Philippe Gerum

O’REILLY"

Beijing - Cambridge - Farnham - KdIn - Sebastopol + Taipei - Tokyo

Building Embedded Linux Systems, Second Edition
by Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum

Copyright © 2008 Karim Yaghmour and Jon Masters. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: joe Wizda
Production Editor: Loranah Dimant Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: Loranah Dimant llustrator: Jessamyn Read
Printing History:

April 2003: First Edition.

August 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building Embedded Linux Systems, the image of a windmill, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52968-0
(M]
1218037492

http://safari.oreilly.com

Table of Contents

WWw.esys.ir

azesh Sabz Hoonam

Prefaceoviiuniiiii iX
T Introductionoovvvnniiiii i e 1
Definitions 2

Real Life and Embedded Linux Systems 5
Design and Implementation Methodology 27

D . 7 T (o 1] 1 -]) € 33
Types of Hosts 33
Types of Host/Target Development Setups 39
Types of Host/Target Debug Setups 41
Generic Architecture of an Embedded Linux System 43
System Startup 47
Types of Boot Configurations 48
System Memory Layout 51

3. Hardware SUPPOrtiniiiii ittt it i 55
Processor Architectures 56
Buses and Interfaces 64

I/0 72
Storage 79
General-Purpose Networking 81
Industrial-Grade Networking 83
System Monitoring 85

4. DevelopmentToolsccuvriiiiiiii ittt ieieieeeeieeaenanaan, 87
A Practical Project Workspace 89
GNU Cross-Platform Development Toolchain 91

C Library Alternatives 115

Java 129

Perl 131
Python 134

Other Programming Languages 135

Eclipse: An Integrated Development Environment 135

Terminal Emulators 147

5. Kernel Considerationscooiiiiiiiiiiiiiiiiiiiiii i 155

Selecting a Kernel 156

Configuring the Kernel 161

Compiling the Kernel 165

Installing the Kernel 167

In the Field 169

6. RootFilesystemContentcooiviiiiiiiiiiiiiiiiiiiiiiiiiiiiieens 173

Basic Root Filesystem Structure 173

Libraries 177

Kernel Modules 183

Kernel Images 183

Device Files 184

Main System Applications 193

Custom Applications 201

System Initialization 201

7. Storage Device Manipulationcoiiiiiiiiiiiiiiii i i 209

MTD-Supported Devices 209

Disk Devices 231

To Swap or Not To Swap 234

8. RootFilesystemSetupcovuviiiiiiiiiiii i i 235

Filesystem Types for Embedded Devices 235
Writing a Filesystem Image to Flash Using an NFS-Mounted Root Filesystem

254

Placing a Disk Filesystem on a RAM Disk 254

Rootfs and Initramfs 255

Choosing a Filesystem’s Type and Layout 258

Handling Software Upgrades 261

9. SettingUptheBootloadercccvviiiiiiiiiiiiiii it 273

Embedded Bootloaders 274

Server Setup for Network Boot 278

Using the U-Boot Bootloader 285

10. Setting Up Networking Servicescoovviiiiiiiiiiiiiiiiiinnnnennnns 301

Network Settings 302

vi | Table of Contents

1.

12.

13.

14.

Busybox

Dynamic Configuration Through DHCP
The Internet Super-Server

Remote Administration with SNMP
Network Login Through Telnet

Secure Communication with SSH
Serving Web Content Through HTTP
Provisioning

Debugging Toolscovvviniiiiiiiiiiiiiii e,

Eclipse

Debugging Applications with gdb
Tracing

Performance Analysis

Memory Debugging

A Word on Hardware Tools

Introduction to Real-TimeLinuxcoovvvvvneinennnnn..

What Is Real-Time Processing?

Should Your Linux Be Real-Time?

Common Real-Time Kernel Requirements

Some Typical Users of Real-Time Computing Technology
The Linux Paths to Real-Time

The Xenomai Real-Time Systemcovvvvvininnnnn.

Porting Traditional RTOS Applications to Linux
The Xenomai Architecture

How Xenomai Works

The Real-Time Driver Model

Xenomai, Chameleon by Design

TheRTPAtch ..oovvvrii ittt i it ittt iiiieneeneennes

Interrupts As Threads

Priority Inheritance

Configuring the Kernel with the RT Patch
High-Resolution Timers

The Latency Tracer

Conclusion

ooo

303
303
305
309
312
314
317
321

.............. 325

326
328
333
336
344
348

............. 351

351
352
356
358
360

.............. 365

366
368
375
379
385

.............. 387

388
398
401
407
410
417

Table of Contents | vii

Preface

)

AARY,
7

A0

%:[”

Sl

When the author of this book’s first edition, Karim Yaghmour, first suggested using
Linux in an embedded system back in 1997 while working for a hardware manufacturer,
his suggestion was met with a certain degree of skepticism and surprise. Today, Linux
is either in use already or is being actively considered for most embedded systems.
Indeed, many industry giants and government agencies are increasingly relying on
Linux for their embedded software needs.

This book was very well received in its first edition, but a number of advances in the
Linux kernel and accompanying tools since the book’s appearance make Linux even
more attractive. Foremost among these are a number of real-time extensions and com-
panion environments, some of which are discussed in the last three chapters of this
edition.

Also, since the first edition of this book, enthusiastic open source and free software
programmers have simplified the building and installation of GNU/Linux components
(we use “GNU” here to acknowledge the centrality of tools from this free software
project in creating functional Linux systems). This second edition therefore introduces
you to a world of wonderful high-level tools, including Eclipse and various tools that
“build the build tools” for embedded Linux systems. But we preserve much of the low-
level information for those who need it, and to help you understand what the helper
tools are doing behind the scenes.

In keeping with the explosions of progress on various parts of Linux and accompanying
tools, it’s useful to get a variety of expert perspectives on topics in embedded and real-
time Linux. Therefore, for the second edition of this book the authors are joined by a
number of key participants in the GNU/Linux community, including those doing ker-
nel development or creating related projects.

Focus on Self-Sufficiency

The widespread interest and enthusiasm generated by Linux’s successful use in a num-
ber of embedded applications has led to the creation of a plethora of articles, websites,
companies, and documents all pertaining to “embedded Linux.” Yet, beyond the flashy
announcements, the magazine articles, and the hundreds of projects and products that
claim to ease Linux’s use in embedded systems, professional developers seeking a useful
guide are still looking for answers to fundamental questions regarding the basic meth-
ods and techniques required to build embedded systems based on the Linux kernel.

Much of the documentation currently available relies heavily on the use of a number
of prepackaged, ready-to-use cross-platform development tools and target binaries. Yet
other documents cover only one very precise aspect of running Linux on an embedded
target.

The first edition of this book was a radical departure from the existing documentation
in that, other than your desire to use Linux, it makes no assumptions as to the tools
you have at hand or the scope of your project. All that is required for this book is an
Internet connection to download the necessary packages, browse specific online doc-
umentation, and benefit from other developers’ experiences, as well as share your own,
through project mailing lists. You still need a development host and documentation
regarding your target’s hardware, but the explanations we outline do not require the
purchasing of any product or service from any vendor.

Besides giving the greatest degree of freedom and control over your design, this ap-
proach is closest to that followed by the pioneers who have spearheaded the way for
Linux’s use in embedded systems. In essence, these pioneers have pulled on Linux to
fit their applications by stripping it down and customizing it to their purposes. Linux’s
penetration of the embedded world contrasts, therefore, with the approach followed
by many software vendors to push their products into new fields of applications. As an
embedded system developer, you are likely to find Linux much easier to pull toward
your design than to adapt the products being pushed by vendors to that same design.

This book’s approach is to allow you to pull Linux toward your design by providing
all the details and discussing many of the corner cases encountered when using Linux
in embedded systems. Although it is not possible to claim that this book covers all
embedded designs, the resources provided here allow you to easily obtain the rest of
the information required for you to customize and use Linux in your embedded system.

In writing this book, our intent was to bring the embedded system developers who use
open source and free software in their designs closer to the developers who create and
maintain these open source and free software packages. Though a lot of mainstream
embedded system developers—many of whom are high-caliber programmers—rely on
third-party offerings for their embedded Linux needs, there is a clear opportunity for
them to contribute to the open source and free software projects on which they rely.

x | Preface

Ultimately, this sort of dynamic will ensure that Linux continues to be the best oper-
ating system choice for embedded systems.

Audience for This Book

This book is intended first and foremost for the experienced embedded system designer
who wishes to use Linux in a current or future project. Such a reader is expected to be
familiar with all the techniques and technologies used in developing embedded systems,
such as cross-compiling, BDM or JTAG debugging, and the implications of dealing
with immature or incomplete hardware. If you are such a reader, you may want to skip
some of the background material about embedded system development presented early
in some sections. There are, however, many early sections (particularly in Chapter 2)
that you will need to read, because they cover the special implications of using the
Linux kernel in an embedded system.

This book is also intended for the beginning embedded system developer who would
like to become familiar with the tools and techniques used in developing embedded
systems based on Linux. This book is not an introduction to embedded systems, how-
ever, and you may need to research some of the issues discussed here in an introductory
textbook.

If you are a power user or a system administrator already familiar with Linux, this book
should help you produce highly customized Linux installations. If you find that distri-
butions install too many packages for your liking, for example, and would like to build
your own custom distribution from scratch, many parts of this book should come in
handy, particularly Chapter 6.

Finally, this book should be helpful to a programmer or a Linux enthusiast who wants
to understand how Linux systems are built and operated. Though the material in this
book does not cover how general-purpose distributions are created, many of the tech-
niques covered here apply, to a certain extent, as much to general purpose distributions
as they do to creating customized embedded Linux installations.

Scope and Background Information

To make the best of Linux’s capabilities in embedded systems, you need background
in all of the following topics (which are treated distinctly in many books):

Embedded systems
You need to be familiar with the development, programming, and debugging of
embedded systems in general, from both the software and hardware perspectives.

Unix system administration
Youneed to be able to tend to various system administration tasks such as hardware
configuration, system setup, maintenance, and using shell scripts to automate
tasks.

Preface | xi

Linux device drivers
You need to know how to develop and debug various kinds of Linux device drivers.

Linux kernel internals
You need to understand as much as possible how the kernel operates.

GNU software development tools
You need to be able to make efficient use of the GNU tools. This includes under-
standing many of the options and utilities often considered to be “arcane.”

We assume that you are familiar with at least the basic concepts of each topic. On the
other hand, you don’t need to know how to create Linux device drivers to read this
book, for example, or know everything about embedded system development. As you
read through this book and progress in your use of Linux in embedded systems, you
will likely feel the need to obtain more information regarding certain aspects of Linux’s
use.

Though this book discusses only the use of Linux in embedded systems, part of this
discussion can certainly be useful to developers who intend to use one of the BSD
variants in their embedded system. Many of the explanations included here will, how-
ever, need to be reinterpreted in light of the differences between BSD and Linux.

Organization of the Material

There are four major parts to this book. The first part is composed of Chapters 1
through 3. These chapters cover the preliminary background required for building any
sort of embedded Linux system. Though they describe no hands-on procedures, they
are essential to understand many aspects of building embedded Linux systems.

The second part spans Chapters 4 through 9. These important chapters lay out the
essential steps involved in building any embedded Linux system. Regardless of your
system’s purpose or functionality, these chapters are required reading.

The third part of the book, which ended the first edition, is made up of Chapters 10
and 11 and covers material that, athough very important, is not essential to building
embedded Linux systems.

The final part of the book, comprised of Chapters 12 through 14, is an in-depth dis-
cussion of real-time, including its different applications and when you should consider
the various implementations and varieties available. We are lucky and honored to have
chapters written by the implementors of the Xenomai cokernel and the RT patch to the
Linux kernel.

Chapter 1, Introduction, gives an in-depth introduction to the world of embedded Li-
nux. It lays out basic definitions and then introduces real-life issues about embedded
Linux systems, including a discussion of open source and free software licenses from
the embedded perspective. The chapter then introduces the example system used in
other parts of this book and the implementation method used throughout the book.

xii | Preface

Chapter 2, Basic Concepts, outlines the basic concepts that are common to building all
embedded Linux systems.

Chapter 3, Hardware Support, provides a thorough review of the embedded hardware
supported by Linux, and gives links to websites where the drivers and subsystems im-
plementing this support can be found. This chapter discusses processor architectures,
buses and interfaces, I/O, storage, general-purpose networking, industrial grade net-
working, and system monitoring.

Chapter 4, Development Tools, covers the installation and use of the various develop-
ment tools used in building embedded Linux systems. This includes a discussion of
Eclipse for embedded Linux development, and how to build and install the GNU tool-
chain components from scratch. It also includes sections discussing Java, Perl, Python,
and other languages, along with a section about the various terminal emulators that
can be used to interact with an embedded target.

Chapter 5, Kernel Considerations, discusses the selection, configuration, cross-
compiling, installation, and use of the Linux kernel in an embedded system.

Chapter 6, Root Filesystem Content, updated for the second edition by Michael
Opdenacker, explains how to build a root filesystem using the components introduced
earlier in the book, including the installation of the C library and the creation of the
appropriate /dev entries. More importantly, this chapter covers the installation and use
of BusyBox, embutils, and System V init.

Chapter 7, Storage Device Manipulation, updated for the second edition by kernel
developer David Woodhouse, covers the intricacies of manipulating and setting up
storage devices for embedded Linux systems. The chapter’s emphasis is on solid-state
storage devices, such as native flash and DiskOnChip devices, and the MTD subsystem.

Chapter 8, Root Filesystem Setup, explains how to set up the root filesystem created in
Chapter 6 for the embedded system’s storage device. This includes the creation of
filesystem images (based on JFFS2, CRAMES, or other specialized filesystems), and the
use of disk-style filesystems over NFTL.

Chapter 9, Setting Up the Bootloader, discusses the various bootloaders available for
use in each embedded Linux architecture. Special emphasis is put on the use of GRUB
with DiskOnChip devices and U-Boot. Network booting using BOOTP/DHCP, TFTP,
and NFS is also covered.

Chapter 10, Setting Up Networking Services, focuses on the configuration, installation,
and use of software packages that offer networking services, such as SNMP, SSH, and
HTTP.

Chapter 11, Debugging Tools, updated for the second edition by Michael Boerner, cov-
ers the main debugging issues encountered in developing software for embedded Linux
systems. This includes the use of gdb in a cross-platform development environment,
Eclipse, tracing, performance analysis, and memory debugging.

Preface | xiii

Chapter 12, Introduction to Real-Time Linux, explains the value of real-time and offers
a candid discussion of when you need various real-time features, along with an intro-
duction to the various ways you can achieve real-time behaviors using Linux. This
chapter was written by the founder and maintainer of the Xenomai Real-Time System,
Philippe Gerum.

Chapter 13, The Xenomai Real-Time System, also written by Philippe Gerum, offers a
high-level view of how Xenomai achieves real-time goals and how it can be useful in
conjunction with embedded Linux.

Chapter 14, The RT Patch, performs a similar function for the RT patch to the Linux
kernel, explaining how to enable its features. The chapter was written by Steven Ros-
tedt, a key developer on the patch.

Although Chapters 7 through 9 are independent, note that their content is highly
interrelated. For example, setting up the target’s storage device, as discussed in Chap-
ter 7, requires a basic knowledge about the target filesystem organization as discussed
in Chapter 8, and vice versa. So, too, does setting up storage devices require a basic
knowledge of bootloader setup and operation as discussed in Chapter 9, and vice versa.
We therefore recommend that you read Chapters 7 through 9 in one breath a first time
before carrying out the instructions in any of them. When setting up your target there-
after, you will nevertheless follow the same sequence of operations outlined in these
chapters.

Hardware Used in This Book

Asyou’ll see in Chapter 3, Linux supports a very wide range of hardware. For this book,
we’ve used a number of embedded systems to test the various procedures. Some of
these systems, such as the OpenMoko-based NEO 1973, are commercial products
available in the mainstream market. We included these intentionally, to demonstrate
that any willing reader can find the materials to support learning how to build embed-
ded Linux systems. You can, of course, still use an old x86 PC for experimenting, but
you are likely to miss much of the fun, given the resemblance between such systems
and most development hosts.

To illustrate the range of target architectures on which Linux can be used, we varied
the target hardware we used in the examples between chapters. Though some chapters
are based on different architectures, the commands given in each chapter apply readily
to other architectures as well. If, for instance, an example in a chapter relies on the
arm-linux-gcc command, which is the gcc compiler for ARM, the same example would
work for a PPC target by using the powerpc-linux-gcc command instead. Whenever
more than one architecture is listed for a chapter, the main architecture discussed is
the first one listed. The example commands in Chapter 5, for instance, are mainly
centered around PowerPC, but there are also a few references to ARM commands.

xiv | Preface

Unless specific instructions are given to the contrary, the host’s architecture is always
different from the target’s. In Chapter 4, for example, we used a PPC host to build tools
for an x86 target. The same instructions could, nevertheless, be carried out on a SPARC
or an $/390 with little or no modification. Note that most of the content of the early
chapters is architecture- independent, so there is no need to provide any architecture-
specific commands.

Software Versions

The central software on which an embedded Linux system depends, of course, is the
Linux kernel. This book concentrates on version 2.6 of the Linux kernel, and 2.6.22 in
particular. Changes to the kernel will probably have only a benign effect on the infor-
mation in the book. That is, new releases will probably support more hardware than
Chapter 3 lists. But the essential tasks described in this book are unlikely to change.

In addition, this book discusses the configuration, installation, and use of over 40 dif-
ferent open source and free software packages. Each package is maintained independ-
ently and is developed at a different pace. Because these packages change over time, it
is likely that the package versions covered in this book may be outdated by the time
you read it. In an effort to minimize the effect of software updates on the text, we have
kept the text as version-independent as possible. The overall structure of the book and
the internal structure of each chapter, for example, are unlikely to vary regardless of
the various software changes. Also, many packages covered in this book have been
around for quite some time, so they are unlikely to change in any substantial way. For
instance, the commands to install, set up, and use the different components of the GNU
development toolchain, which is used throughout this book, have been relatively con-
stant for a number of years and are unlikely to change in any substantial way in the
future. This statement applies equally to most other software packages discussed.

Typographical Conventions

The following is a list of typographical conventions used in this book:

Constant width
Used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

Constant width bold
Used to indicate user input.

Italic
Used for file and directory names, program and command names, command-line
options, URLs, and for emphasizing new terms.

Preface | xv

W

\
A)
.

qs
(R

This icon indicates a tip, suggestion, or general note.

“Q
(182

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Embedded Linux Systems, by Kar-
im Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum. Copyright 2008
Karim Yaghmour and Jon Masters, 978-0-596-52968-0.”

Contact Information

Please address comments and questions concerning this book to the publisher:

O’Reilly Media.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596529680
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

xvi | Preface

http://www.oreilly.com/catalog/9780596529680

http://www.oreilly.com
The authors also have a site for this book at:

http://www.embeddedlinuxbook.org/

Safari® Books Online
Saf When you see a Safari® Books Online icon on the cover of your favorite
aiari technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Acknowledgments for the First Edition

E quindi uscimmo a riveder le stelle.” It is with these words that Dante ends Inferno, the
first part of his Divine Comedy. Though it would be misleading to suggest that writing
this book wasn’t enjoyable, Dante’s narrative clearly expresses the feeling of finishing
a first iteration of the book you now hold in your hands. In particular, I have to admit
that it has been a challenging task to pick up the bits and pieces of information available
on the use of Linux in embedded systems, to complete this information in as much as
possible, and put everything back together in a single, straightforward manuscript that
provides a practical method for building embedded Linux systems. Fortunately, I was
aided in this task by very competent and willing people.

First and foremost, I would like to thank Andy Oram, my editor. Much like Virgil
assisted Dante in his venture, Andy shepherded me throughout the various stages of
writing this book. Among many other things, he patiently corrected my nonidiomatic
phrases, made sure that my text actually conveyed the meaning I meant for it to convey,
and relentlessly pointed out the sections where I wasn’t providing enough detail. The
text you are about to read is all the much better, as it has profited from Andy’s input.
By the same token, I would like to thank Ellen Siever, with whom I initially started
working on this book. Though our collaboration ended earlier than I wished it had,
many of the ideas that have made their way into this final version of the book have
profited from her constructive feedback.

[have been extremely fortunate to have an outstanding team of reviewers go over this
book, and am very grateful for the many hours they poured into reading, correcting,
and pointing out problems with various aspects of this book. The review team was

" “And from there we emerged to see the stars once more.”

Preface | xvii

http://www.oreilly.com
http://www.embeddedlinuxbook.org/
http://safari.oreilly.com

made up of Erik Andersen, Wolfgang Denk, Bill Gatliff, Russell King, Paul Kinzelman,
Alessandro Rubini, David Schleef, and David Woodhouse. I’d like to especially thank
Alessandro for his dogged pursuit of perfection. Any remaining errors you may find in
the following pages are without a doubt all mine.

Writing about the use of Linux in embedded systems requires having access to a slew
of different hardware. Given that embedded hardware is often expensive, I would like
to thank all the companies and individuals who have stepped forward to provide me
with the appropriate equipment. In particular, I would like to thank Stéphane Martin
of Kontron for providing a Teknor VIPer 806 board, Wolfgang Denk of DENX Software
Engineering for providing a TQ components TQM860L PPC board, and Steve Papa-
charalambous and Stuart Hughes of Zee2 for providing a uCdimm system.

[have found much of the incentive and thrust for writing this book from being a very
satisfied open source and free software user and contributor who has profited time and
again from the knowledge and the work produced by other members of this commun-
ity. For this, I have many people to thank. Primarily, I'd like to thank Michel Dagenais
for his trust, his guidance, and for giving me the chance to freely explore uncharted
terrain. My work on developing the Linux Trace Toolkit, as part of my masters degree
with Michel, got me more and more involved in the open source and free software
community. As part of this involvement, I have met a lot of remarkable individuals
whose insight and help I greatly appreciate. Lots of thanks to Jacques Gélinas, Richard
Stallman, Jim Norton, Steve Papacharalambous, Stuart Hughes, Paolo Mantegazza,
Pierre Cloutier, David Schleef, Wolfgang Denk, Philippe Gerum, Loic Dachary, Daniel
Phillips, and Alessandro Rubini.

Last, but certainly not least, I owe a debt of gratitude to Sonia for her exceptional
patience as [spent countless hours testing, writing, testing some more, and writing
even more. Her support and care have made this endeavor all the more easy to carry
out. La main invisible qui a écrit les espaces entre les lignes est la sienne et je lui en suis
profondément reconnaissant.t

Acknowledgments for the Second Edition

When Karim first mentioned updating Building Embedded Linux Systems, 1 could not
have imagined what a fun and wild ride it would be. I was in the final stages of moving
from the U.K. to the U.S. at the time, and life was pretty hectic for quite a while. Along
the way, some great friends and coauthors have helped to turn an idea into the reality
of the book that you are now reading. And we collectively hope that we have served to
increase the range of documentation available on embedded Linux.

T “The invisible hand that wrote the spaces between each line is hers, and I am profoundly grateful to her for
this.”

xviii | Preface

First and foremost, I would like to thank my friend Karim Yaghmour for letting me run
amock with his original manuscript, Andy Oram for his patient advice and editorial
wizardry, and Isabel Kunkle for assisting Andy in putting up with a bunch of authors
with busy schedules. T would also like to thank Marlowe Shaeffer and the team at
O’Reilly for their steadfast attention to detail, especially near the end of the project.

[would like to thank my coauthors for stepping up to the plate and helping to see this
project through: Michael Boerner, Michael Opdenacker, Steven Rostedt, Gilad Ben-
Yossef (CTO, Codefidence Ltd.), Phillipe Gerum, and David Woodhouse. I've known
most of you for many years, even if we only get to meet once a year at the Linux Sym-
posium, and I am grateful that you have helped to improve the overall quality of this
book. In a similar vain, I am grateful to the review comments from Tim Rikers, Vince
Skahan, and Mark VandenBrink, as well as the many others I have occasionally spoken
with about this book. But all that said, any remaining mistakes and technical omissions
are entirely my responsibility, though we hope there are few.

Embedded Linux would mean nothing without the hard work of many thousands of
people all over the world. Some of those people have gotten involved in the first or
second editions of this book, while there are many, many more people out there helping
to make Linux the most valuable and viable choice for embedded developers. It would
be tricky to even attempt to list these people by name, and so I would like to instead
offer my most sincere thanks to everyone concerned—I’d also like to encourage readers
to thank those who provide the upstream for their development projects. Please do also
encourage your employers and customers to do the same through whatever means you
feel is most appropriate.

[would like to thank my friends and family for their never-ending support of my many
pursuits and random craziness. My mum and dad rarely see me these days (I live 3,000
miles away in another country, on an awkward time delay) but have always been the
best parents you could wish for, in spite of their son turning out to be a “traitor’s dog”
(thanks, dad, for your whimsical historical insight right there!) who joined the Amer-
icans. My sister Hannah and brother-in-law Joe Wrigley (another Red Hatter!) have
always been amazing, as has my youngest sister Holly. My grandmother keeps me
informed of family goings on with her letters, which I always look forward to reading
far away from a computer.

Many friends contributed to the overall success of this project without even realizing
it. They include Deepak Saxena, Hussein Jodiyawalla, Bill Weinberg, Alison Cornish,
Grace Mackell, Andrew Schliep, Ginger Diercks, Kristin Mattera and James Saunders,
Karen Hopkins, Andrew Hutton, and Emilie Moreau (and also Denali and Nihao),
Madeleine and Chris Ball, Tim Burke, Lon Hohberger, Chris Lumens, Jon Crowe, Ra-
chel Cox, Catherine Nolan, Toby Jaffey (and Sara and Milly), David Brailsford, Jeff and
Nicole Stern, Catherine Davis, Mary-Kay and Luke Jensen, Philippe De Swert, Matt
Domsch, Grant Likely (of Secret Lab), Hetal Patel, Mark Lord, Chris Saul, Dan Scrase,
and David Zeuthen. A special thanks to Sven-Thorsten Dietrich and Aaron Nielson for
their like-minded craziness at just the right moments.

Preface | xix

Finally, I am very grateful to my good friend David Brailsford of the University of Not-
tingham, and to Malcolm Buckingham and Jamie McKendry of Oxford Instruments
for believing in me and letting me experiment with Linux and superconducting mag-
nets, and to lan Graham of MontaVista UK Ltd. for the opportunity to work on some
great projects during my time there. I also owe Andrew Hutton and Craig Ross of
Steamballoon (and organizers of Linux Symposium) thanks for their support of my
embedded endeavors over the years. I would especially like to thank Gary Lamb (Global
Engineering Services—our embedded team), Clark Williams, and Tim Burke of Red
Hat, Inc. for their continued support, as well as all of my friends at Red Hat and at
other great Linux companies.

—]Jon Masters, Cambridge, Massachusetts

xx | Preface

CHAPTER 1
Introduction

Linux was first released into an unsuspecting world in the summer of 1991. Initially
the spare-time hobby of a Finnish computer scientist by the name of Linus Torvalds,
Linux was at first accessible only in software source code form to those with enough
expertise to build and install it. Early enthusiasts (most also developers themselves by
necessity) exploited the growth of the Internet in the early 1990s as a means to build
online communities and drive development forward. These communities helped to
build the first Linux software distributions, containing all the software components
needed to install and use a Linux system without requiring users to be technical experts.

Over the next decade, Linux grew into the mature Unix-like operating system it is today.
Linux now powers anything and everything from the smallest handheld gadget to the
largest supercomputing cluster, and a nearly infinite range of different devices in be-
tween. Examples of the wide range of Linux use abound all around: digital TV receivers
and recorders such as TiVo, cell phones from big names like Motorola, Hollywood’s
huge Linux “render farms” (used to generate many of the recent CGI movies we have
seen), and household name websites such as Google. In addition, a growing number
of multinational corporations have successfully built businesses selling Linux
software.

In many ways, Linux came along at the right moment in time. But it owes a lot of its
success to the work of projects that came before it. Without the hard work of Richard
Stallman and the Free Software Foundation (FSF) over the decade prior to Linux ar-
riving on the scene, many of the tools needed to actually build and use a Linux system
would not exist. The FSF produced the GNU C Compiler (GCC) and many of the other
tools and utilities necessary for building your own embedded Linux systems from
scratch, or at least from pre-built collections of these tools that are supplied by third-
party vendors. Software maintained by the Free Software Foundation comprises a col-
lection known as GNU, for “GNU’s Not UNIX,” also known (to some) as the GNU
system. This stemmed from the FSF’s stated goal to produce a free Unix-like system.

Embedded systems running Linux are the focus of this book. In many ways, these are
even more ubiquitous than their workstation and server counterparts—mostly due to
the sheer volume of devices and consumer gadgets that rely upon Linux for their
operation. The embedded space is constantly growing with time. It includes obvious
examples, such as cellular telephones, MP3 players, and a host of digital home enter-
tainment devices, but also less-obvious examples, such as bank ATMs, printers, cars,
traffic signals, medical equipment, technical diagnostic equipment, and many, many
more. Essentially, anything with a microprocessor that is not considered a “computer”
but performs some kind of function using computing is a form of embedded system.

If you are reading this book, you probably have a basic idea why one would want to
run an embedded system using Linux. Whether because of its flexibility, its robustness,
its price tag, the community developing it, or the large number of vendors supporting
it, there are many reasons for choosing to build an embedded system with Linux and
many ways to carry out the task. This chapter provides the background for the material
presented in the rest of the book by discussing definitions, real-life issues, generic em-
bedded Linux systems architecture, and methodology. This chapter sets the stage for
later chapters, which will build upon concepts introduced here.

Definitions

The words “Linux,” “embedded Linux,” and “real-time Linux” are often used with
little reference to what is actually being designated with such terminology. Sometimes,
the designations may mean something very precise, whereas other times, a broad range
or a category of application is meant. In this section, you will learn what the use of
these terms can mean in a variety of different situations—starting with the many mean-
ings of “Linux.”

What Is Linux?

Technically speaking, Linux refers only to an operating system kernel originally written
by Linus Torvalds. The Linux kernel provides a variety of core system facilities required
for any system based upon Linux to operate correctly. Application software relies upon
specific features of the Linux kernel, such as its handling of hardware devices and its
provision of a variety of fundamental abstractions, such as virtual memory, tasks
(known to users as processes), sockets, files, and the like. The Linux kernel is typically
started by a bootloader or system firmware, but once it is running, it is never shut down
(although the device itself might temporarily enter a low-powered suspended state).
You will learn more about the Linux kernel in Chapter 5.

These days, the term “Linux” has become somewhat overloaded in everyday commu-
nication. In large part, this is due to its growing popularity—people might not know
what an operating system kernel is or does, but they will have perhaps heard of the
term Linux. In fact, Linux is often used interchangeably in reference to the Linux kernel

2 | Chapter1: Introduction

itself, a Linux system, or an entire prebuilt (or source) software distribution built upon
the Linux kernel and related software. Such widely varying usage can lead to difficulties
when providing technical explanations. For example, if you were to say, “Linux pro-
vides TCP/IP networking,” do you mean the TCP/IP stack implementation in the Linux
kernel itself, or the TCP/IP utilities provided by a Linux distribution using the Linux
kernel, or all of the above?

The broadness of the usage of the term has led to calls for a greater distinction between
uses of the term “Linux.” For example, Richard Stallman and the Free Software Foun-
dation often prefix “GNU/” (as in “GNU/Linux”) in order to refer to a complete system
running a Linux kernel and a wide variety of GNU software. But even terms such as
these can be misleading—it’s theoretically possible to build a complete Linux-based
system without GNU software (albeit with great difficulty), and most practical Linux
systems make use of a variety of both GNU and non-GNU software. Despite the con-
fusion, as more people continue to hear of Linux, the trend is toward a generalization
of the term as a reference to a complete system or distribution, running both GNU and
non-GNU software on a Linux kernel. If a friend mentions that her development team
is using Linux, she probably means a complete system, not a kernel.

A Linux system may be custom built, as you’ll see later, or it can be based on an already
available distribution. Despite a growth in both the availability of Linux distributions
targeted at embedded use, and their use in embedded Linux devices, your friend’s
development team may well have custom built their own system from scratch (for rea-
sons explained later in this book). Conversely, when an end user says she runs Linux
on the desktop, she most likely means that she installed one of the various distributions,
such as Red Hat Enterprise Linux (RHEL), SuSE Linux Enterprise Server (SLES),
Ubuntu Linux, or Debian GNU/Linux. The end user’s running Linux system is as much
a Linux system as that of your friend’s, but apart from the kernel, their systems most
likely have very different purposes, are built from very different software packages, and
run very different applications.

When people use the term Linux in everyday conversation, they usually are referring
to a Linux distribution, such as those just mentioned. Linux distributions vary in pur-
pose, size, and price, but they share a common goal: to provide the user with a pre-
packaged, shrinkwrapped set of files and an installation procedure to get the kernel
and various overlaid software installed on a certain type of hardware for a certain pur-
pose. In the embedded space, a variety of embedded Linux distributions are available,
such as those from MontaVista, Wind River, Timesys, Denx, and other specialist ven-
dors. These specialist embedded Linux distributions are generally not targeted at ge-
neric desktop, workstation, or server use like their “mainstream” counterparts. This
means that they typically won’t include software that is not suited for embedded use.

Beginning with the next chapter and throughout the remainder of this book, we will
frequently avoid referring to the word “Linux” on its own. Instead, we will generally
refer directly to the object of discussion, so rather than talking about the “Linux kernel,”
the “Linux system,” and the “Linux distribution,” we will generally refer only to the

Definitions | 3

“kernel,” the “system,” and the “distribution,” respectively. In each of these circum-
stances, “Linux” is obviously implied. We will use the term “Linux,” where appropri-
ate, to designate the broad range of software and resources surrounding the kernel.

What Is Embedded Linux?

Embedded Linux typically refers to a complete system, or in the context of an embedded
Linux vendor, to a distribution targeted at embedded devices. Although the term “em-
bedded” is often also used in kernel discussions (especially between developers who
have “embedded concerns”—words often used in the community), there is no special
form of the Linux kernel targeted at embedded applications. Instead, the same Linux
kernel source code is intended to be built for the widest range of devices, workstations,
and servers imaginable, although obviously it is possible to configure a variety of op-
tional features according to the intended use of the kernel. For example, it is unlikely
that your embedded device will feature 128 processors and terrabytes of memory, and
so it is possible to configure out support for certain features typically found only on
larger Linux systems. Chapter 5 covers the kernel in much greater detail, including
where to get source code, embedded concerns, and how to build it yourself.

In the context of embedded development, you will typically encounter embedded Linux
systems—devices that use the Linux kernel and a variety of other software—and em-
bedded Linux distributions—a prepackaged set of applications tailored for embedded
systems and development tools to build a complete system. It is the latter that you are
paying for when you go to an embedded Linux vendor. They provide development tools
such as cross-compilers, debuggers, project management software, boot image build-
ers, and so on. A growing number of vendors have chosen to integrate much of this
functionality into customized plug-ins for their own versions of the community-
developed Eclipse graphical IDE framework, which you will learn more about later in
this book.

Whether you use a vendor is entirely up to you—few of the examples mentioned in
this book will make any assumption as to your reliance or otherwise on a Linux vendor.
In fact, much of this book is intended to equip you to build your own tools and tailored
Linux distributions. This helps both those who want to use vendor supplied tools and
those who do not. Understanding is key in either case, since greater understanding will
help you to get more done faster. The bottom line is, of course, about time and resour-
ces. Even though this book will help you, should you wish to go it alone, you may
choose to buy into an embedded Linux vendor as a way to reduce your product time
to market (and to have someone to yell at if things don’t work out according to plan).

This book exclusively discusses embedded Linux systems, and therefore there is no
need to keep repeating “embedded Linux” in every name. In general, we will refer to
the host system used for developing the embedded Linux system as the “host system,”
or “host” for short. The target, which will be the embedded Linux system, will be
referred to as the “target system,” or “target.” Distributions providing development

4 | Chapter1: Introduction

frameworks will be referred to as “development distributions” or something similar.
This kind of nomenclature should be familiar to anyone who has experience working
with embedded systems.” Distributions that provide tailored software packages will be
referred to as “target distributions.”

What Is Real-Time Linux?

Initially, “Real-Time Linux” uniquely designated the RTLinux project released in 1996
by Michael Barabanov under Victor Yodaiken’s supervision. The original goal of the
project was to provide a mechanism for deterministic response times under a Linux
environment. Later, the project was expanded to support much more than the originally
intended applications, and today supports a variety of non-embedded uses, such as
real-time stock market trading systems and other “enterprise” applications. RTLinux
was sold to Wind River in early 2007.

Today, there are several other big name real-time projects for Linux, including one that
is aiming to add real-time support to the official Linux kernel. You will learn much
more about these projects in the latter chapters of this book (Chapter 12 onward),
including coverage of some of the innovative concepts and development ideas being
worked on. Of course, by the time you read this book much of this technology may be
even more commonplace than it is now, especially once real-time capabilities are avail-
able in every kind of Linux system installed from here to Timbuktu.

Real Life and Embedded Linux Systems

What types of embedded systems are built with Linux? Why do people choose Linux?
What issues are specific to the use of Linux in embedded systems? How many people
actually use Linux in their embedded systems? How do they use it? All these questions
and many more come to mind when pondering the use of Linux in an embedded system.
Finding satisfactory answers to the fundamental questions is an important part of
building the system. This isn’t just a general statement. These answers will help you
convince management, assist you in marketing your product, and most of all, enable
you to evaluate whether your initial expectations have been met.

Types of Embedded Linux Systems

We could use the traditional segments of embedded systems such as aerospace, auto-
motive systems, consumer electronics, telecom, and so on to outline the types of em-
bedded Linux systems, but this would provide no additional information in regard to
the systems being designated, because embedded Linux systems may be similarly
structured regardless of the market segment. Rather, let us instead classify embedded

" It would be tempting to call these “host distributions,” but as you’ll see later, some developers choose to
develop directly on their target, hence the preference for “development distributions.”

Real Life and Embedded Linux Systems | 5

systems by the criteria that will provide actual information about the structure of the
system: size, time constraints, networkability, and degree of intended user interaction
with the final system. The following sections cover each of these issues in more depth.

Size

The size of an embedded Linux system is determined by a number of different factors.
First, there is physical size. Some systems can be fairly large, like the ones built out of
clusters, whereas others are fairly small, like the Linux wristwatches that have been
built in partnership with IBM. The physical size of an embedded system is often an
important determination of the hardware capabilities of that system (the size of the
physical components inside the finished device) and so secondly comes the size of the
components with the machine. These are very significant to embedded Linux devel-
opers and include the speed of the CPU, the size of the RAM, and the size of the per-
manent storage (which might be a hard disk, butis often a flash device—currently either
NOR or NAND, according to use).

In terms of size, we will use three broad categories of systems: small, medium, and
large. Small systems are characterized by a low-powered CPU with a minimum of 4 MB
of ROM (normally NOR or even NAND Flash rather than a real ROM) and between
8 and 16 MB of RAM. This isn’t to say Linux won’t run in smaller memory spaces, but
it will take you some effort to do so for very little gain, given the current memory market.
If you come from an embedded systems background, you may find that you could do
much more using something other than Linux in such a small system, especially if
you’re looking at “deeply embedded” options. Remember to factor in the speed at
which you could deploy Linux, though. You don’t need to reinvent the wheel, like you
might well end up doing for a “deeply embedded” design running without any kind of
real operating system underneath.

Medium-size systems are characterized by a medium-powered CPU with 32 MB or
more of ROM (almost always NOR flash, or even NAND Flash on some systems able
to execute code from block-addressable NAND FLASH memory devices) and 64—128
MB of RAM. Most consumer-oriented devices built with Linux belong to this category,
including various PDAs (for example, the Nokia Internet Tablets), MP3 players, en-
tertainment systems, and network appliances. Some of these devices may include sec-
ondary storage in the form of NAND Flash (as much as 4 GB NAND Flash parts are
available at the time of this writing; much larger size arrays are possible by combining
more than one part, and we have seen systems using over 32 GB of NAND, even at the
time that we are writing this), removable memory cards, or even conventional hard
drives. These types of devices have sufficient horsepower and storage to handle a variety
of small tasks, or they can serve a single purpose that requires a lot of resources.

Large systems are characterized by a powerful CPU or collection of CPUs combined
with large amounts of RAM and permanent storage. Usually these systems are used in
environments that require large amounts of calculations to carry out certain tasks. Large
telecom switches and flight simulators are prime examples of such systems, as are

6 | Chapter1: Introduction

government research systems, defense projects, and many other applications that you
would be unlikely to read about. Typically, such systems are not bound by costs or
resources. Their design requirements are primarily based on functionality, while cost,
size, and complexity remain secondary issues.

In case you were wondering, Linux doesn’t run on any processor with a memory ar-
chitecture below 32 bits (certainly there’s no 8-bit microcontroller support!). This rules
out quite a number of processors traditionally used in embedded systems. Fortunately
though, with the passage of time, increasing numbers of embedded designs are able to
take advantage of Linux as processors become much more powerful (and integrate
increasing functionality), RAM and Flash prices fall, and other costs diminish. These
days, it often makes less economic sense to deploy a new 8051 microcontroller design
where for a small (but not insignificant) additional cost one can have all the power of
a full Linux system—especially true when using ucLinux-supported devices. The de-
creasing cost of System-On-Chip (SoC) parts combining CPU/peripheral functionality
into a single device is rapidly changing the cost metrics for designers of new systems.
Sure, you don’t need a 32-bit microprocessor in that microwave oven, but if it’s no
more expensive to use one, and have a built-in web server that can remotely update
itself with new features, why not?

16-Bit Linux?

Strictly speaking, the previous statement regarding Linux’s inability to run on any pro-
cessor below 32 bits is not entirely true. There have been Linux ports to a number of
odd processors. The Embeddable Linux Kernel Subset (ELKS) project found at http://
elks.sourceforge.net/, for example, was aimed at running Linux on 16-bit processors,
such as the Intel 8086 and 286. It has seen several attempts at revival over the past few
years, and even may well work for some users by the time you read this edition, but it
is really strictly a research project at this point—you won’t see a vendor offering support
for Linux on an 80286. The point here is that if you choose to use Linux on a processor
lower than 32 bits, it is absolutely certain that you will be on your own. Even if you get
the kernel to boot, the range of applications is limited.

Time constraints

There are two types of time constraints for embedded systems: stringent and mild.
Stringent time constraints require that the system react in a predefined time frame;
otherwise, ca tastrophic events happen. Take for instance a factory where workers have
to handle materials being cut by large equipment. As a safety precaution, optical de-
tectors are placed around the blades to detect the presence of the specially colored
gloves used by the workers. When the system is alerted that a worker’s hand is in
danger, it must stop the blades immediately. It can’t wait for some disk I/O operation
involving reading data in from a Linux swap device (for example, swapping back in the
memory storing safety management task code) or for some running task to relinquish
the CPU. This system has stringent time requirements; it is a hard real-time system. If

Real Life and Embedded Linux Systems | 7

http://elks.sourceforge.net/
http://elks.sourceforge.net/

it doesn’t respond, somebody might lose an arm. Device failure modes don’t get much
more painful than that.

Streaming audio systems and consumer devices such as MP3 players and cell phones
would also qualify as having stringent requirements, because any transient lagging in
audio is usually perceived as bothersome by the users, and failure to contact a cellular
tower within a certain time will result in an active call being dropped. Yet, these latter
systems would mostly qualify as having soft real-time requirements, because the failure
of the application to perform in a timely fashion all the time isn’t catastrophic, as it
would be for a hard real-time system. In other words, although infrequent failures will
be tolerated—a call being dropped once in a while is an annoying frustration users
already live with—the system should be designed to have stringent time requirements.
Soft real-time requirements are often the target of embedded Linux vendors that don’t
want the (potential) liability of guaranteeing hard real-time but are confident in the
abilities of their product to provide, for example, reliable cell phone base-band GSM
call management capabilities.

Mild time constraints vary a lot in requirements, but they generally apply to systems
where timely responsiveness isn’t necessarily critical. If an automated teller takes 10
more seconds to complete a transaction, it’s generally not problematic (of course, at
some point, the user is going to give up on the system and assume it’s never going to
respond). The same is true for a PDA that takes a certain number of seconds to start
an application. The extra time may make the system seem slow, but it won’t affect the
end result. Nonetheless, it’s important that the system make the user aware that it is,
in fact, doing something with this time and hasn’t gone out for lunch. Nothing is more
frustrating than not knowing whether a system is still working or has crashed.

Networkability

Networkability defines whether a system can be connected to a network. Nowadays,
we can expect everything to be accessible through the network, even the refrigerator,
toaster, and coffee machine (indeed, a disturbing number of coffee machines can now
download new coffee-making recipes online). This, in turn, places special requirements
on the systems being built. One factor pushing people to choose Linux as an embedded
OS is its proven networking capabilities. Falling prices and standardization of net-
working components are accelerating this trend. Most Linux devices have one form or
another of network capability, be it wired or wireless in nature. The Nokia N770, N800,
and N810 Internet Tablets are great examples of embedded Linux devices, complete
with 802.11g wireless networking and much more, while the One Laptop Per Child
(OLPC) project uses Linux and builds self-assembling, self-managing WiFi mesh net-
works using 802.11n on the fly.

Networking issues are discussed in detail in Chapter 10.

8 | Chapter1: Introduction

User interaction

The degree of user interaction varies greatly from one system to another. Some systems,
such as PDAs and the Nokia Internet Tablet devices mentioned earlier, are centered
around user interaction, whereas others, such as industrial process control systems,
might only have LEDs and buttons for interaction (or perhaps even no apparent I/O of
any kind). Some other systems have no user interface whatsoever. For example, certain
components of an autopilot system in a modern airplane may take care of controlling
the wing ailerons but have no direct interaction with the human pilots (something you
probably don’t want to consider next time you’re flying).

Reasons for Choosing Linux

There are a wide range of motivations for choosing Linux over a traditional embedded
OS. Many of these are shared by those in the desktop, server, and enterprise spaces,
while others are more unique to the use of Linux in embedded devices.

Quality and reliability of code

Quality and reliability are subjective measures of the level of confidence in the code
that comprises software such as the kernel and the applications that are provided by
distributions. Although an exact definition of “quality code” would be hard to agree
upon, there are properties many programmers come to expect from such code:

Modularity and structure
Each separate functionality should be found in a separate module, and the file
layout of the project should reflect this. Within each module, complex function-
ality is subdivided in an adequate number of independent functions. These (sim-
pler) functions are used in combination to achieve the same complex end result.

Readability
The code should be readable and (more or less) easy to fix for those who understand
its internals.

Extensibility
Adding features to the code should be fairly straightforward. If structural or logical
modifications are needed, they should be easy to identify.

Configurability
It should be possible to select which features from the code should be part of the
final application. This selection should be easy to carry out.

The properties expected from reliable code are the following:

Predictability
Upon execution, the program’s behavior is supposed to be within a defined frame-
work and should not become erratic. Any internal state machine should be con-
sistent in its function, including its error handling.

Real Life and Embedded Linux Systems | 9

Error recovery
In case a problematic situation occurs, it is expected that the program will take
steps to recover cleanly from the problem condition and then alert the proper
authorities (perhaps a system administrator or the owner of the device running the
software in question) with a meaningful diagnostic message.

Longevity
The program will run unassisted for long periods of time and will conserve its
integrity, regardless of the situations it encounters. The program cannot fail simply
because a system logfile became too big (something one of the authors of this book
admits to having once learned the hard way).

Most programmers agree that the Linux kernel and other projects used in a Linux
system fit this description of quality and reliability. The reason is the open source
development model (see upcoming note), which invites many parties to contribute to
projects, identify existing problems, debate possible solutions, and fix problems effec-
tively. Poor design choices are made from time to time, but the nature of the develop-
ment model and the involvement of “many eyeballs” serve to more quickly identify and
correct such mistakes.

These days you can reasonably expect to run Linux for years unattended without prob-
lems, and people have effectively done so. You can also select which system compo-
nents you want to install and which you would like to avoid. With the kernel, too, you
can select which features you would like during build configuration. As a testament to
the quality of the code that makes up the various Linux components, you can follow
the various mailing lists and see how quickly problems are pointed out by the individ-
uals maintaining the various components of the software or how quickly features are
added. Few other OSes provide this level of quality and reliability.

W N

Strictly speaking, there is no such thing as the “Open Source” develop-
ment model, or even “Free Software” development model. “Open
s source” and “Free Software” correspond to a set of licenses under which
" various software packages can be distributed. Nevertheless, it remains
that software packages distributed under “Open Source” and “Free
Software” licenses very often follow a similar development model. This
development model has been explained by Eric Raymond in his seminal
book, The Cathedral and the Bazaar (O’Reilly).

Availability of code

Code availability relates to the fact that Linux’s source code and all build tools are
available without any access restrictions. The most important Linux components, in-
cluding the kernel itself, are distributed under the GNU General Public License (GPL).
Access to these components’ source code is therefore compulsory (at least to those users
who have purchased any system running GPL-based software, and they have the right
to redistribute once they obtain the source in any case). Other components are

10 | Chapter1: Introduction

distributed under similar licenses. Some of these licenses, such as the BSD license, for
instance, permit redistribution of binaries without the original source code or the re-
distribution of binaries based on modified sources without requiring publication of the
modifications. Nonetheless, the code for the majority of projects that contribute to the
makeup of Linux is readily available without restriction.

When source access problems arise, the open source and free software community seeks
to replace the “faulty” software with an open source version that provides similar
capabilities. This contrasts with traditional embedded OSes, where the source code
isn’t available or must be purchased for very large sums of money. The advantages of
having the code available are the possibility of fixing the code without exterior help
and the capability of digging into the code to understand its operation. Fixes for security
weaknesses and performance bottlenecks, for example, are often very quickly available
once the problem has been publicized. With traditional embedded OSes, you have to
contact the vendor, alert it of the problem, and await a fix. Most of the time, people
simply find workarounds instead of waiting for fixes. For sufficiently large projects,
managers even resort to purchasing access to the code to alleviate outside dependencies.
Again, this lack of dependence upon any one external entity adds to the value of Linux.

Code availability has implications for standardization and commoditization of com-
ponents, too. Since it is possible to build Linux systems based entirely upon software
for which source is available, there is a lot to be gained from adopting standardized
embedded software platforms. As an example, consider the growing numbers of cell
phone manufacturers who are working together on common reference software plat-
forms, to avoid re-inventing the same for each new project that comes along (bear in
mind that the cell phone market is incredibly volatile, and that a single design might
last a year or two if it’s very, very popular). The OpenMoko project is one such effort:
a standard Linux-based cell phone platform that allows vendors to concentrate on their
other value-adds rather than on the base platform.

Hardware support

Broad hardware support means that Linux supports different types of hardware plat-
forms and devices. Although a number of vendors still do not provide Linux drivers,
considerable progress has been made and more is expected. Because a large number of
drivers are maintained by the Linux community itself, you can confidently use hardware
components without fear that the vendor may one day discontinue driver support for
that product line. Broad hardware support also means that, at the time of this writing,
Linux runs on dozens of different hardware architectures. Again, no other OS provides
this level of portability. Given a CPU and a hardware platform based/built upon it, you
can reasonably expect that Linux runs on it or that someone else has gone through a
similar porting process and can assist you in your efforts. You can also expect that the
software you write on one Linux architecture can be easily ported to another architec-
ture Linux runs on. There are even device drivers that run on different hardware
architectures transparently.

Real Life and Embedded Linux Systems | 11

Communication protocol and software standards

Linux also provides broad communication protocol and software standards support,
as you’ll see throughout this book. This makes it easy to integrate Linux within existing
frameworks and port legacy software to Linux. As such, one can easily integrate a Linux
system within an existing Windows network and expect it to serve clients through
Samba (using Active Directory or NT-style Primary Domain Controller capabilities),
while clients see little difference between it and an NT/Windows 2000 server. You can
also use a Linux box to practice amateur radio by building this feature into the kernel,
interface with a Bluetooth-enabled cell phone, or roam transparently between a variety
of WiFi networks. The OLPC project uses a Linux-based device supporting the latest
WIiFi mesh networking (yet to be formally standardized at the time of this writing) to
enable its laptop units to form self-assembling mesh networks on the fly.

Linux is also Unix-like, and as such, you can easily port traditional Unix programs to
it. In fact, many applications currently bundled with the various distributions were first
built and run on commercial Unixes and were later ported to Linux. This includes
almost all of the fundamental software provided by the FSF. These days, a lot more
software is written for Linux, but it’s still designed with portability in mind—even
portability to non-Unix systems, such as those from Microsoft, thanks to compatibility
libraries such as Cygwin. Traditional embedded OSes are often very limited when it
comes to application portability, providing support only for a limited subset of the
protocols and software standards available that were considered relevant at the time
the OS was conceived.

Available tools

The variety of tools existing for Linux make it very versatile. If you think of an appli-
cation you need, chances are others already felt the need for it. It is also likely that
someone took the time to write the tool and make it available on the Internet. This is
what Linus Torvalds did, after all. You can visit the popular websites Freshmeat (http://
www.freshmeat.net) and SourceForge (http://www.sourceforge.net) and browse around
to see the variety of tools available. Failing that, there’s always Google.

Community support

Community support is perhaps one of the biggest strengths of Linux. This is where the
spirit of the free software and open source community can be felt most. As with appli-
cation needs, it is likely that someone has encountered the same problems as you in
similar circumstances. Often, this person will gladly share his solution with you, pro-
vided you ask. The development and support mailing lists are the best place to find this
community support, and the level of expertise found there often surpasses what can be
found through expensive support phone calls with proprietary OS vendors. Usually,
when you call a technical support line, you never get to talk to the engineers who built
the software you are using. With Linux, an email to the appropriate mailing list will
often get you straight to the person who wrote the software. Pointing out a bug and

12 | Chapter1: Introduction

http://www.freshmeat.net
http://www.freshmeat.net
http://www.sourceforge.net

obtaining a fix or suggestions is thereafter a rapid process. As many programmers ex-
perience, seldom is a justified plea for help ignored, provided the sender takes the care
to search through the archives to ensure that her question hasn’t already been answered.

Licensing

Licensing enables programmers to do with Linux what they could only dream of doing
with proprietary software. In essence, you can use, modify, and redistribute the soft-
ware with only the restriction of providing the same rights to your recipients. This,
though, is a simplification of the various licenses used with Linux (GPL, LGPL, BSD,
MPL, etc.) and does not imply that you lose control of the copyrights and patents
embodied in the software you generate. These considerations will be discussed later in
this chapter in “Copyright and Patent Issues.” Nonetheless, the degree of liberty avail-
able is actually quite large.

Vendor independence

Vendor independence means that you do not need to rely on any sole vendor to get
Linux or to use it. Furthermore, if you are displeased with a vendor, you can switch,
because the licenses under which Linux is distributed provide you the same rights as
the vendors. Some vendors, though, provide additional software in their distributions
that isn’t open source, and you might not be able to receive service for this type of
software from other vendors. Such issues must be taken into account when choosing
distribution. Mostly, though, you can do with Linux as you could do with a car. Since
the hood isn’t welded shut, as it is with proprietary software, you can decide to get
service from a mechanic other than the one provided by the dealership where you
purchased it.

Cost

The cost of Linux is a result of open source licensing and is different from what can be
found with traditional embedded OSes. There are three components of software cost
in building a traditional embedded system: initial development setup, additional tools,
and runtime royalties. The initial development setup cost comprises the purchase of
development licenses from the OS vendor. Often, these licenses are purchased for a
given number of “seats,” one for each developer. In addition, you may find the tools
provided with this basic development package to be insufficient and may want to pur-
chase additional tools from the vendor. This is another cost. Finally, when you deploy
your system, the vendor will ask for a per-unit royalty. This may be minimal or large,
depending on the type of device you produce and the quantities produced. Some mobile
phone manufacturers, for instance, choose to implement their own OSes to avoid pay-
ing any royalties. This makes sense for them, given the number of units sold and the
associated profit margins.

With Linux, this cost model is turned on its head. Most development tools and OS
components are available free of charge, and the licenses under which they are typically

Real Life and Embedded Linux Systems | 13

distributed prevent the collection of any royalties on these core components. Most
developers, though, may not want to go chasing down the various software tools and
components and figure out which versions are compatible and which aren’t. Most de-
velopers prefer to use a packaged distribution. This involves purchasing the distribu-
tion, or it may involve a simple download. In this scenario, vendors provide support
for their distribution for a fee and offer services for porting their distributions to new
architectures and developing new drivers, also for a fee. Vendors make their money
through provision of these services, as well as through additional proprietary software
packaged with their distributions. Some vendors do now have a variant of the per-unit
royalty (usually termed a “shared risk,” or similar approach), but it is not strictly the
same as for those proprietary embedded OSes mentioned before—there’s always a way
to use Linux without paying a runtime fee.

Players in the Embedded Linux Scene

Unlike proprietary OSes, Linux is not controlled by a single authority who dictates its
future, its philosophy, and its adoption of one technology or another. These issues and
others are taken care of by a broad ensemble of players with different but complemen-
tary vocations and goals.

Free software and open source community

The free software and open source community is the basis of all Linux development
and is the most important player in the embedded Linux arena. It is made up of all of
the developers who enhance, maintain, and support the various software components
that make up a Linux system. There is no central authority within this group (though
there are obvious figureheads). Rather, there is a loosely tied group of independent
individuals, each with his specialty. These folks can be found discussing technical issues
on the mailing lists concerning them or at gatherings such as the [Ottawa] Linux Sym-
posium. It would be hard to characterize these individuals as a homogeneous group,
because they come from different backgrounds and have different affiliations. Mostly,
though, they care a great deal about the technical quality of the software they produce.
The quality and reliability of Linux, as discussed earlier, are a result of this level of care.

Note that, although many of these developers are affiliated with a given company, their
involvement typically goes beyond company lines. They may move from one company
to another, but the core developers will always maintain their involvement, no matter
who is currently paying their salary. Throughout this book, we will describe quite a
few components that are used in Linux systems. Each maintainer of or contributor to
the components described herein is considered a player in the free software and open
source community.

14 | Chapter1: Introduction

Industry

Having recognized the potential of Linux in the embedded market, many companies
have moved to embrace and promote Linux in this area. Industry players are important
because they are the ones pushing Linux as an end-user product. Often, they are the
first to receive feedback from those end users. Although postings on the various mailing
lists can tell the developer how the software is being used, not all users participate in
those mailing lists. Vendors must therefore strike an equilibrium between assisting their
users and helping in the development of the various projects making up Linux, without
falling into the trap of wanting to divert development to their own ends. In this regard,
many vendors have successfully positioned themselves in the embedded Linux market.

Here are some of the better known vendors.

The vendors listed here are mentioned for discussion purposes only.
Neither the authors nor the publisher have evaluated the services pro-
s vided by any of these vendors for the purposes of this book, and there-
fore this list should not be interpreted as any form of endorsement.

MontaVista

Founded by Jim Ready, an embedded industry veteran, and named after a part of
the town in which he lived at the time, MontaVista has positioned itself as a leader
in the embedded Linux market through its products, services, and promotion of
Linux in industrial applications. It produces a variety of products bearing the
MontaVista name, including “Professional,” “Carrier Grade,” and “Mobile” var-
ients. MontaVista has contributed to some open source projects, including
scheduler enhancements and real-time extensions to the kernel, ViewML, Micro-
windows, and Linux Trace Toolkit (LTT). A little late converting from the 2.4
kernel over to the 2.6 kernel, MontaVista made up for this by being the first em-
bedded vendor to ship a product featuring the real-time patches to the Linux kernel
(this isn’t RTLinux; see Chapter 14). It also makes various claims about capability,
and have recently seen considerable success in the cell phone marketplace, espe-
cially with Motorola basing entire product families on their MontaVista
MobiLinux product.

MontaVista has suffered a little from being the poster child of the embedded Linux
revolution. It has seen a number of engineers splinter off and create smaller con-
sultancies—Embedded Alley is one classic example, founded by a number of ex-
tremely knowledgeable ex-MontaVista folks—and changes in corporate direction
as they decide where the market will take them. MontaVista does not maintain a
public repository of its community code contributions (obviously it has developers
who work on upstream projects), but it does have the http:/source.mvista.com/
website with some public-facing information about projects, such as its real-time
initiatives. The primary MontaVista website lives at http://www.mvista.com/.

Real Life and Embedded Linux Systems | 15

http://source.mvista.com/
http://www.mvista.com/

Wind River

A relatively latecomer to the embedded Linux scene, Wind River has a long history
as author of the proprietary vxworks real-time OS. And this means it has a large
customer base behind it, ranging from set top box vendors, to automotive com-
panies, to “deeply embedded” applications (some very small-scale systems that
Linux isn’t suited for), to Mars rover robots launched by NASA. After a number
of years testing the waters, Wind River finally decided to take the plunge and re-
leased an Eclipse-based development product supporting either vxworks or Linux
as a target (a great migration tool for existing vxworks developers). The Wind River
Linux Center includes various downloads and information, including more detail
on its commitment to “Device Software Optimization” (DSO), a term it recently
helped to coin. Generally, this is a reference to embedded operating systems such
as Linux being more than just the sum of their (Free Software) components, and
instead systems that need careful tuning and knowledge to make them useful in a
given embedded product.

Wind recently acquired the technology of RTLinux from FSM Labs, and so it is
expected to have a number of real-time Linux product offerings by the time you
read this. You can find out more about Wind River at http://www.windriver.com/.

LynuxWorks
This used to be known as Lynx Real-Time Systems and is another one of the tra-
ditional embedded OS vendors. Contrary to other traditional embedded OS pro-
viders, Lynx decided to embrace Linux early and changed its name to reflect its
decision. That, combined with the later acquisition of BSDi by Wind Rivert and
QNX’s decision to make its OS available for free download, indicated that open
source in general, and Linux in particular, were making serious inroads in the
embedded arena. That said, LynuxWorks still develops, distributes, and supports
Lynx OS. In fact, LynuxWorks promotes a twofold solution. According to Lynux-
Works, programmers needing hard real-time performance should continue to use
Lynx, and those who want open source solutions should use BlueCat, its embedded
Linux distribution (indeed, they have drawn some criticism for using anti-GPL-like
tactics to advocate the use of Lynx OS over Linux in the past). LynuxWorks has
even modified its Lynx OS to enable unmodified Linux binaries to run as-is. The
fact that LynuxWorks was already a successful embedded OS vendor and that it
adopted Linux early confirms the importance of the move toward open source
OSes in the embedded market.
Timesys

Timesys has shifted away from producing a single one-size-fits-all embedded Linux
distribution toward a software service model (DSO-like), specializing in custom-
built, web-based, cross-compiled packages meeting a range of requirements. Its
LinuxLink subscription service is aimed at providing a simple online experience

T 'Wind River has since changed its mind, and its relationship with BSD seems to be a thing of the past.

16 | Chapter1: Introduction

http://www.windriver.com/

for customizing a selection of required software, having it build automatically for
a wide range of targets, and providing a package that can be used on a target device.
It claims that it can remove the uncertainty and the hassle of figuring out patches,
versions, and dependencies by scripting and automating the process of building
custom distributions on the fly. You can find out more at http://www.timesys.com/.

There are also a vast number of smaller players (and more all the time) who provide a
variety of services around open source and free software for embedded device appli-
cation. In fact, many open source and free software contributions are made by indi-
viduals who are either independent or work for small-size vendors. As such, the services
provided by such small players are often on a par or sometimes surpass those provided
by larger players. For example, Wolfgang Denk’s DENX software is a small consultancy
based outside of Munich, Germany, yet almost everyone in the embedded Linux space
has heard of Wolfgang, his Das U-Boot firmware, or the extensive documentation pro-
vided as part of his company’s free Embedded Linux Development Kit (ELDK). Thanks
in part to the first edition of this book, vast numbers of embedded Linux developers
also know of Karim Yaghmour and his Opersys consultancy.

Resources

Most developers connect to the embedded Linux world through various resource sites
and publications. It is through these sites and publications that the Linux development
community, industry, and organizations publicize their work and learn about the work
of the other players. In essence, the resource sites and publications are the meeting
place for all the people concerned with embedded Linux. Two resources stand out:
LinuxDevices.com and magazines such as Linux Journal.

LinuxDevices.com was founded on Halloween day* 1999 by Rick Lehrbaum (related
to one of the MontaVista founders). LinuxDevices.com features news items, articles,
polls, forums, and many other links pertaining to embedded Linux. Many key
announcements regarding embedded Linux are made on this site, and it contains an
archive of actively maintained articles regarding embedded Linux. Though its vocation
is clearly commercial, we definitely recommend taking a peek at the site once in a while
to keep yourself up-to-date with the latest in embedded Linux (and with their weekly
email newsletter, it’s easy to do this). Among other things, LinuxDevices.com was in-
strumental in launching the Embedded Linux Consortium.

As part of the growing interest in the use of Linux in embedded systems, the Embedded
Linux Journal (EL]) was launched by Specialized System Consultants, owners of Linux
Journal (L)), in January 2001 with the aim of serving the embedded Linux community,
but was later discontinued. Though EL] is no longer published as a separate magazine,
it was instrumental in encouraging other Linux magazines to get involved. Several

¥ The date was selected purposely in symbolic commemoration of the infamous Halloween Documents
uncovered by Eric Raymond. If you are not familiar with these documents and their meaning, have a look at
http://www.opensource.org/halloween/.

Real Life and Embedded Linux Systems | 17

http://www.timesys.com/
http://www.opensource.org/halloween/

Linux magazines now run embedded features on a regular basis. Indeed, one of the
authors of this book was responsible for such a column for a number of years and still
writes articles on occasion.

Copyright and Patent Issues

You may ask: what about using Linux in my design? Isn’t Linux distributed under some
crazy license that may endanger the copyrights and patents of my company? What are
all those licenses anyway? Is there more than one license to take care of? Are we allowed
to distribute binary-only kernel modules to protect our IP? What about all these articles
I read in the press, some even calling Linux’s license a “virus”?

These questions and many more have probably crossed your mind. You have probably
even discussed some of these issues with your coworkers. The issues can be confusing
and can come back to haunt you if they aren’t dealt with properly. We don’t say this
to scare you. The issues are real, but there are known ways to use Linux without any
fear of any sort of licensing contamination. With all the explanations provided next, it
is important to keep in mind that this isn’t legal counsel and we are not qualified law-
yers. If you have any doubts about your specific project, consult your company attor-
neys—that’s what they’re there for. Seriously, you want to figure this out now so that
it’s nota problem for you later; with a little understanding and forethought, it won’t be.

Textbook GPL

For most components making up a Linux system, there are two licenses involved, the
GPL and the LGPL, introduced earlier. Both licenses are available from the FSF’s web-
site at http://www.gnu.org/licenses/ and should be included with any package distrib-
uted under the terms of these licenses.S The GPL is mainly used for applications,
whereas the LGPL is mainly used for libraries. The kernel, the binary utilities, the gcc
compiler, and the gdb debugger are all licensed under the GPL. The C library and the
GTK widget toolkit, on the other hand, are licensed under the LGPL.

Some programs may be licensed under BSD, Mozilla, or another, but the GPL and LGPL
are the main licenses used, but regardless of which one you use, common sense should
prevail. Make sure you know the licenses under which the components you use fall and
understand their implications. Also make sure you understand the “compatibility” of
the licenses for different components that you may wish to use within the same project.
Your attorney will be able to advise.

The GPL provides rights and imposes obligations very different from what may be
found in typical software licenses. In essence, the GPL is meant to provide a higher
degree of freedom to developers and users, enabling them to use, modify, and distribute

§ The licenses are often stored in a file called COPYING, for the GPL, and a file called COPYING.LIB, for the
LGPL. Copies of these files are likely to have been installed somewhere on your disk by your distribution.

18 | Chapter1: Introduction

http://www.gnu.org/licenses/

software with few restrictions. It also makes provisions to ensure that these rights are
not abrogated or hijacked in any fashion. To do so, the GPL stipulates the following:

* You may make as many copies of the program as you like, as long as you keep the
license and copyright intact.

* Software licensed under the GPL comes with no warranty whatsoever, unless it is
offered by the distributor.

* You can charge for the act of copying and for warranty protection.

* You can distribute binary copies of the program, as long as you accompany them
with the source code used to create the binaries, often referred to as the “original”
source code.l

* You cannot place further restrictions on your recipients than what is specified by
the GPL and the software’s original authors.

* You can modify the program and redistribute your modifications as long as you
provide to your recipients the same rights you received. In effect, any code that
modifies or includes GPL code, or any portion of a GPL’d program, cannot be
distributed outside your organization under any license other than the GPL. This
is the clause some PR folks refer to as being “virus”-like. Keep in mind, though,
that this restriction concerns source code only. Packaging the unmodified software
for the purpose of running it, as you’ll see, is not subject to this provision.

As you can see, the GPL protects authors’ copyrights while providing freedom of use.
This is fairly well accepted. The application of the modification and distribution clau-
ses, on the other hand, generates a fair amount of confusion. To ¢, two issues must be
explained: running GPL software and modifying GPL software. Running the software
is usually the reason why the original authors wrote it. The authors of gcc, for example,
wrote it for compiling software. As such, the software compiled by an unmodified gcc
is not covered by the GPL, since the person compiling the program is only running gcc.
In fact, you can compile proprietary software with gcc, and people have been doing
this for years, without any fear of GPL “contamination.” Modifying the software, in
contrast, creates a derived work that is based on the original software, and is therefore
subject to the licensing of that original software. If you take the gcc compiler and modify
it to compile a new programming language of your vintage, for example, your new
compiler is a derived work and all modifications you make cannot be distributed out-
side your organization under the terms of any license other than the GPL.

Most anti-GPL speeches or writings play on the confusion between running and mod-
ifying GPL software, to give the audience an impression that any software in contact
with GPL software is under threat of GPL “contamination.” This is not the case.

I The specific wording of the GPL to designate this code is the following: “The source code for a work means
the preferred form of the work for making modifications to it.” Delivering binaries of an obfuscated version
of the original source code to try circumventing the GPL is a trick that has been tried before, and it doesn’t
work.

Real Life and Embedded Linux Systems | 19

There is a clear difference between running and modifying software. As a developer,
you can safeguard yourself from any trouble by asking yourself whether you are simply
running the software as it is supposed to be run or modifying the software for your own
ends. As a developer, you should be fairly capable of making out the difference.

Note that the copyright law makes no difference between static and dynamic linking.
Even if your proprietary application is integrated to the GPL software during runtime
through dynamic linking, that doesn’t exclude it from falling under the GPL. A derived
work combining GPL software and non-GPL software through any form of linking still
cannot be distributed under any license other than the GPL. If you package gcc as a
dynamic linking library and write your new compiler using this library, you will still be
restricted from distributing your new compiler under any license other than the GPL.
Some people have attempted to work around dynamic linking restrictions through
cunning use of pipes, Unix IPC sockets, and other IPC/RPC protocols to integrate GPL
software with their non-GPL product. Depending upon how it is done, such use might
be acceptable, but it’s probably not worth the trouble to try working around the GPL
in this fashion within your own projects.

Whereas the GPL doesn’t allow you to include parts of the program in your own pro-
gram unless your program is distributed under the terms of the GPL, the LGPL allows
you to use unmodified portions of the LGPL program in your program without any
problem. If you modify the LGPL program, though, you fall under the same restrictions
as the GPL and cannot distribute your modifications outside your organization under
any license other than the LGPL. Linking a proprietary application, statically or dy-
namically, with the C library, which is distributed under the LGPL, is perfectly accept-
able. If you modify the Clibrary, on the other hand, you are prohibited from distributing
all modifications (to the library itself) under any license other than the LGPL.

W
w5 When you distribute a proprietary application that is linked against
.“:‘ LGPL software, you must allow for this LGPL software to be replaced.
T WU Ifyou are dynamically linking against a library, for example, this is fairly
" simple, because the recipient of your software need only modify the
library to which your application is linked at startup. If you are statically
linking against LGPL software, however, you must also provide your
recipient with the object code of your application before it was linked

so that she can substitute the LGPL software.

Much like the running versus modifying GPL software discussion earlier, there is a clear
difference between linking against LGPL software and modifying LGPL software. You
are free to distribute your software under any license when it is linked against an LGPL
library. You are not allowed to distribute any modifications to an LGPL library under
any license other than LGPL.

20 | Chapter1: Introduction

Pending issues

Up to now, we have discussed only textbook application of the GPL and LGPL. Some
areas of application are, unfortunately, less clearly defined. What about applications
that run using the Linux kernel? Aren’t they being linked, in a way, to the kernel’s own
code? And what about binary kernel modules, which are even more deeply integrated
to the kernel? Do they fall under the GPL? What about including GPL software in my
embedded system?

Let us start with the last question. Including a GPL application in your embedded
system is actually a textbook case of the GPL. Remember that you are allowed to re-
distribute binary copies of any GPL software as long as your recipients receive the
original source code. Distributing GPL software in an embedded system is a form of
binary distribution and is allowed, granted you respect the other provisions of the GPL
regarding running and modifying GPL software.

Some proprietary software vendors have tried to cast doubts about the use of GPL
software in embedded systems by claiming that the level of coupling found in embedded
systems makes it hard to differentiate between applications and, hence, between what
falls under GPL and what doesn’t. This is untrue. As we shall see in Chapters 6 and
8, there are known ways to package embedded Linux systems that uphold modularity
and the separation of software components.

To avoid any confusion regarding the use of user applications with the Linux kernel,
Linus Torvalds has added a preamble to the GPL found with the kernel’s source code.
This preamble stipulates that user applications running on the kernel are not subject
to the GPL. This means that you can run any sort of application on the Linux kernel
without fear of GPL “contamination.” A great number of vendors provide user appli-
cations that run on Linux and remain proprietary, including Oracle, IBM, and Adobe.

The area where things have been historically unclear is binary-only kernel modules.
Modules are software components that can be dynamically loaded and unloaded to
add functionality to the kernel. While they are mainly used for device drivers, they can
and have been used for other purposes (for example, for new filesystems, crypto library
support for cryptographic storage, and a whole multitude of other purposes). Many
components of the kernel can actually be built as loadable modules to reduce the kernel
image’s size. When needed, the various modules can be loaded during runtime (as
discussed in Chapter 5).

Although this was intended as a facilitating and customizing architecture, many ven-
dors and projects have come to use modules to provide capabilities to the kernel while
retaining control over the source code or distributing it under licenses different from
the GPL. Some hardware manufacturers, for instance, provide closed-source binary-
only module drivers to their users. This enables the use of the hardware with Linux
without requiring the vendor to provide details regarding the operation of its device.
This is especially true (in the consumer space) when it comes to graphics cards featuring
high-end 3D capabilities. In the embedded space, binary modules can range from

Real Life and Embedded Linux Systems | 21

NAND Flash drivers, to codec support modules, to almost anything else you can think
of that someone might consider a valuable piece of intellectual property that they wish
to prevent being distributed under the GPL. The authors of this book have seen it all
—and so has the Linux community.

The problem is that once a module is loaded in the kernel, it effectively becomes part
of the kernel’s address space and is highly coupled to it because of the functions it
invokes and the services it provides to the kernel. Because the kernel is itself under the
GPL, many contend that modules cannot be distributed under any other license than
the GPL because the resulting kernel is a derived work. Others contend that binary-
only modules are allowed as long as they use the standard services exported to modules
by the kernel. In fact, in response to this logic, the kernel community created wrapped
macros EXPORT_SYMBOL, EXPORT_SYMBOL_GPL, and EXPORT_SYM-
BOL_GPLFUTURE. The idea behind these is that over time, new symbols (kernel
functions and data structures) will be exported to the rest of the kernel via one of the
GPL macros and thus all symbols will ultimately transition toward being explicitly GPL-
only.

For modules already under the GPL, this is obviously a non-issue, but for non-GPL
modules, this is a serious issue. Linus has said more than once that he allows binary-
only modules as long as it can be shown that the functionality implemented is not
Linux-specific (for example, porting a pre-existing graphics driver from Windows to
Linux just to make it available for use on Linux systems). Others, however, including
Alan Cox and other leading members of the Linux kernel community, have come to
question his ability to allow or disallow such modules, because not all the code in the
kernel is copyrighted by him. Still others contend that because binary modules have
been tolerated for so long, they are part of standard practice.

There is also the case of binary-only modules that use no kernel API whatsoever. The
RTAIand RTLinux real-time tasks inserted in the kernel are prime examples. Although
it could be argued that these modules are a class of their own and should be treated
differently, they are still linked into kernel space and fall under the same rules as ordi-
nary modules, whichever you think them to be.

At the time of this writing, the legal status of binary-only modules has not been tested
in court, but there is a growing consensus amongst the Linux kernel community that
they are illegal and should not be tolerated. More than one attempt has been made to
ban them outright (through technological measures), but the developers involved poin-
ted out that such a technological restriction would make the kernel community no
better than those advocating other DRM solutions, which Linux users generally abhor.
This issue won’t go away any time soon. In fact, it generally comes up on a semi-annual
basis when it appears for a brief moment that binary modules will finally be killed off,
before the issue dies down once again. To save a great deal of headache, you are advised
to consider strongly whether you really need to have binary kernel modules in the first
place. Consult your legal counsel if you are in any way unsure of how to proceed; we
can’t tell you what the law says (only how the community will react to you).

22 | Chapter1: Introduction

One final issue of concern to many is the GPL version 3, which is in the early stages of
adoption at the time of this writing. Version 3 updates the previous GPL version 2 from
more than a decade ago and includes (ominous-sounding) provisions concerning pat-
ents and intellectual property. The goal is, apparently, squarely aimed at embedded
developers in an effort to prevent GPL circumvention by means of patent or DRM.
Indeed, the phrase “anti-TiVoization” has been applied (TiVo is a set-top box running
a modified Linux kernel that uses cryptographic hashes in order to prevent users from
replacing the software with their own customized versions). To Richard Stallman, the
use of GPL software is undermined whenever an embedded developer introduces cryp-
tographic or DRM measures that effectively prevent users from changing the system,
even if the source code is available—a kind of loophole in version 2 that needs some
closure. Of course, many are very unhappy at the prospect of making the GPL more
militant in this fashion, and a large number of projects have already stated they have
no intention of making the switch to version 3. This includes the Linux kernel (which,
like many projects, could not convert anyway as it has too many contributors who
would need to agree, some of whom have died in the interim). Other projects, such as
BusyBox, have expressed discontentment.

We can’t advise you on how version 3 of the GPL might affect your own efforts, but
we do recommend, again, that you consult with your company attorney (or your ven-
dor) if you are unsure about its impact.

RTLinux patent

Perhaps one of the most restrictive and controversial licenses you will encounter in
deploying Linux in an embedded system is the license to the RTLinux patent held by
Victor Yodaiken, the RTLinux project leader. The patent covers the addition of real-
time support to general-purpose operating systems as implemented by RTLinux. This
patent was recently acquired as part of the Wind River’s purchase of RTLinux tech-
nology. At the time of this writing, its use and enforcement in the future is unclear.

Although many have questioned the patent’s viability, given prior art, and Victor’s
handling of the issue, it remains that both the patent and the license are currently legally
valid, at least in the United States, and have to be accounted for. The U.S. Patent Num-
ber for the RTLinux patent is 5,995,745, and you can obtain a copy of it through the
appropriate channels. You can read more about the impact of the RTLinux patent on
real-time Linux efforts and how they have changed direction in Chapter 12.

A Word on Distributions

Wouldn'’t it be simpler and faster to use a distribution instead of setting up your own
development environment and building the whole target system from scratch? What’s
the best distribution? Unfortunately, there are no straightforward answers to these
questions. There are, however, some aspects of distribution use that might help you
find answers to these and similar questions.

Real Life and Embedded Linux Systems | 23

To use or not to use

First and foremost, you should be aware that it isn’t necessary to use any form of dis-
tribution to build an embedded Linux system. In fact, all the necessary software pack-
ages are readily available for download on the Internet, and it is these same packages
that distribution providers download and package for you to use. This approach pro-
vides you with the highest level of control over and understanding of the packages you
use and their interactions. Apart from this being the most thorough approach and the
one used within this book, it is also the most time-consuming, as you have to take the
time to find matching package versions and then set up each package one by one while
ensuring that you meet package interaction requirements.

Therefore, if you need a high degree of control over the content of your system, the “do
it yourself” method may be best. If, however, like most people, you need the project
ready yesterday or if you do not want to have to maintain your own packages, you
should seriously consider using both a development and a target distribution. In that
case, you will need to choose the development and target distributions most appropri-
ate for you.

How to choose a distribution

Every embedded Linux distribution has its own benefits, so it is difficult to make gen-
eralizations about the best one to use for your application. Depending on your project,
you may also have other criteria not discussed in this book. In any case, if you choose
commercial distributions, make sure you insist upon an evaluation and that you have
clear answers to your questions from the distribution vendor before you make any
subsequent purchasing decision. Know what kind of support is available to you, what
the terms of use and the various licenses are, and how this will affect you. Several
vendors (including MontaVista) have developed “shared risk” approaches where you
can get discounts in return for subsequent payments. These are not termed royalties
per se, but they have some similarities. Know what you are getting yourself into before
you commit to anything.

Asin any situation, if you ask broad questions, you will get broad answers. Use detailed
questions and expect detailed answers. For example, don’t ask whether the Linux ker-
nel you are getting supports real-time applications; instead ask for precise figures, and
understand what exactly is being guaranteed to you ahead of time. Make yourself a
shopping list of features (and packages) that you would like to see from your chosen
distribution and ask to know precisely what is being provided. Do you need to pay
more to get additional packages and features? Unclear answers to precise questions are
usually a sign that something is amiss. If the vendor (that is trying to do a sale) is unable
to answer your questions before you buy the product, do you really expect it to be any
different afterward?

24 | Chapter1: Introduction

Should you instead choose an open source distribution,# make sure you have as much
information as possible about it. The difference between choosing an open source dis-
tribution and a commercial distribution is the way you obtain answers to your questions
about the distribution. Whereas the commercial distribution vendor will provide you
with answers to your questions about its product, you may have to look for the answers
to those same questions about an open source distribution on your own.

An initial factor in the choice of a development or target distribution is the license or
licenses involved. Some commercial distributions are partly open source and distribute
value-added packages under conventional software licenses that prohibit copying and
impose royalties (a form of targeted lock-in). Make sure the distribution clearly states
the licenses governing the usage of the value-added software and their applicability. If
unsure, ask. Don’tleave licensing issues unclear. This will only serve to cause you undue
pain should you ever decide to migrate away to a different embedded Linux
distribution.

One thing that distinguishes commercial distributions from open source distributions
is the support provided by the vendor. Whereas the vendor supplying a commercial
distribution almost always provides support for its own distribution, the open source
community supplying an open source distribution does not necessarily provide the
same level of support that would be expected from a commercial vendor. This does not
preclude some vendors from providing commercial support for open source distribu-
tions. Through serving different customers with different needs in the embedded field,
the various vendors build a unique knowledge about the distributions they support and
the problems clients might encounter during their use, and are therefore best placed to
help you efficiently. Mainly, though, these vendors are the ones that keep up with the
latest and greatest in Linux and are therefore the best source of information regarding
possible bugs and interoperability problems that may show up.

Reputation can also come into play when choosing a distribution, but it has to be used
wisely, as a lot of information circulating may be presented as fact but instead be mere
interpretation. If you’ve heard something about one distribution or another, take the
time to verify the validity of the information. In the case of a commercial distribution,
contact the vendor. Chances are it knows where this information comes from and, most
importantly, the rational explanation for it. This verification process, though, isn’t
specific to embedded Linux distributions, but what is specific is the reputation com-
mercial distributions build when their vendors contribute to the open source com-
munity. A vendor that gives back by providing more open source software or by
financing development shows that it is in contact with the open source community and
therefore understands how the changes and developments of the various open source
projects will affect its future products and, ultimately, its clients. In short, this is a
critical link and a testament to the vendor’s understanding of the dynamics involved

An open source distribution is one that is maintained by the open source community, such as Debian.
Inherently, such distributions do not contain any proprietary software.

Real Life and Embedded Linux Systems | 25

in the development of the software it provides you. In the case of open source distri-
butions, this criterion is already met, as the distribution itself is an open source
contribution.

Another precious tool that commercial distributions might have to offer is documen-
tation. In this day and age where everything is ever-changing, up-to-date and accurate
documentation is a rare commodity. The documentation for the majority of open
source projects is often out-of-date, if available at all. Linus Torvalds’s words ring true
here: “Use the source, Luke,” meaning that if you need to understand the software you
should read the source code. Yet not everyone can invest the amount of time necessary
to achieve this level of mastery, hence the need for appropriate documentation. Because
the open source developers prefer to invest more time in writing code than in writing
documentation, it is up to the distribution vendors to provide appropriately packaged
documentation with their distributions. When evaluating a distribution, make sure to
know the type and extent of accompanying documentation. Although there is less
documentation for open source distributions in comparison with commercial distri-
butions, some open source distributions are remarkably well documented.

Given the complexity of some aspects of development and target setup, the installation
of a development and/or target distribution can be difficult. In this regard, you may be
looking for easy-to-install distributions. Although this is legitimate, keep in mind that
once you've installed the distributions, you should not need to reinstall them afterward.
Notice also that installation does not really apply for a target distribution as it was
defined earlier, because target distributions are used to facilitate the generation of target
setups and don’t have what is conventionally known as an “installation” process. The
three things you should look for in the installation process of a distribution are clear
explanations (whether textually during the installation, in a manual, or both), config-
urability, and automation. Configurability is a measure of how much control you have
over the packages being installed, whereas automation is the ability to automate the
process using files containing the selected configuration options.

With some CPU models and boards being broadly adopted for embedded systems
development, commercial distribution vendors have come to provide prepackaged de-
velopment and/or target distributions specifically tailored for those popular CPU mod-
els and boards. If you intend to use a specific CPU model or board, you may want to
look for a distribution that is already tested for your setup.

What to avoid doing with a distribution

There is one main course of action to avoid when using a distribution: using the dis-
tribution in a way that makes you dependent solely on this same distribution for all
future development. Remember that one of the main reasons to use Linux is that you
aren’t subject to anyone’s will or market decisions. If your development relies only on
proprietary tools and methods of the distribution you chose, you risk being locked into
continuous use of that same distribution for all future development. This does not
mean, though, that you shouldn’t use commercial distributions with value-added

26 | Chapter1: Introduction

software that cannot be found on other distributions. It only means that you should
have a backup plan to achieve the same results with different tools from different dis-
tributions, just in case. Many embedded vendors have already standardized on devel-
opment tools such as Eclipse—with each vendor adding slightly different “value-add”
plug-ins—and use of such tools should serve to minimize the disruption to your engi-
neering efforts if you ever have to switch to a different Eclipse-based tool.

Design and Implementation Methodology

Designing and implementing an embedded Linux system can be carried outin a defined
manner. The process includes many tasks, some of which may be carried out in parallel,
thereby reducing overall development time. Some tasks can even be omitted if a dis-
tribution is being used. Regardless of the actual tools or methodology you use, Chap-
ter 2 is required reading for all tasks involved in building an embedded Linux system.

Creating a Target Linux System

A target Linux system is created by configuring and bundling together the appropriate
system components. Programming and development aspects are a separate subject, and
they are discussed later in this chapter.

There are four main steps to creating a target Linux system:

1. Determine system components.
2. Configure and build the kernel.
3. Build the root filesystem.

4. Set up boot software and configuration.

Determining system components is like making a shopping list before you go to the
grocery store. It is easy to go without a shopping list and wonder at all the choices you
have, as many do with Linux. This may result in “featurism,” whereby your system will
have lots and lots of features but won’t necessarily fulfill its primary purpose. Therefore,
before you go looking at all the latest Linux gizmos, sit down and write a list of what
you need. We find that this approach helps in focusing development and avoids dis-
tractions like “Look, honey, they actually have salami ice cream!” This doesn’t mean
that you shouldn’t change your list if you see something pertinent; it is just a warning
about the quantity of software available for Linux and the inherent abundance of
choices.

Chapter 3 discusses the hardware components that can be found as part of an embed-
ded Linux system. It should provide you with enough background and maybe even
ideas of what hardware you can find in an embedded Linux system. As Linux and
surrounding software are ever-evolving targets, use this and further research on the Net
to find out which design requirements Linux meets. In turn, this will provide you with

Design and Implementation Methodology | 27

a list of items you need to develop in order to complete your system. This step of
development is the only one that cannot be paralleled with other tasks. Determining
system requirements and Linux’s compliance to these requirements has to be comple-
ted before any other step.

Because of the evolving nature of Linux, you may feel the need to get the latest and
greatest pieces of software for your design. Avoid doing this, as new software often
needs testing and may require upgrades to other software because of the dependencies
involved between packages. Hence, you may find yourself locked in a frantic race to
keep up with the plethora of updates. Instead, fix the bugs with the current software
you have and keep track of other advances so that the next generation projects you
design can profit from these advances. If you have an important reason to upgrade a
software component, carefully analyze the consequences of such an upgrade on the rest
of your system before actually carrying it out. You may also want to try the upgrade on
a test system before applying it to your main system.

Having determined which features are pertinent to your design, you can select a kernel
version and relevant configuration. Chapter 5 covers the configuration and build proc-
ess of the kernel. Unlike other pieces of software, you may want to keep updating your
kernel to the latest stable version throughout your project’s development, up until the
beta stage. Though keeping the kernel version stable throughout the development cycle
may seem simple, you might find yourself trying to fix bugs that have been fixed in
more recent kernels. Keeping yourself up-to-date with recent kernel developments, as
we discuss in Chapter 5, will help you decide whether updating to the most recent
kernel is best for you. Also, you may want to try newer kernels and roll back to older
ones if you encounter any serious problems. Note that using kernels that are too old
may cut you off from community support, since contributors can rarely afford to keep
answering questions about old bugs.

While we do encourage you to keep up-to-date, it is worth mentioning major changes
to the kernel, the kind that happen every few years. Consider how the 2.4 series kernel
remains in use in embedded designs even after the 2.6 kernel has long since proven
itself. This isn’t an accident; it happened because engineers became comfortable with
the 2.4 kernel and felt no need to make the switch for their existing products and
embedded designs. This doesn’t mean you should use the 2.4 kernel in your new design,
but it does mean that you should carefully consider the impact of major version changes
of any software—including the Linux kernel. It’s one thing to upgrade from kernel
2.6.20t0 2.6.21, but quite another to migrate from one major release to the next. Treat
that kind of transition as you would any other major software component upgrade,
especially if you have a series of product-specific modifications to forward port over to
the newer kernel when you make the transition.

Regardless of whether you decide to follow kernel updates, we suggest you keep the
kernel configuration constant throughout the project. This will avoid completed parts
from breaking in the course of development. This involves studying the configuration
options closely, though, in light of system requirements. Although this task can be

28 | Chapter1: Introduction

conducted in parallel with other tasks, it is important that developers involved in the
project be aware of the possible configuration options and agree with the options
chosen.

Once configuration is determined, it is time to build the kernel. Building the kernel
involves many steps and generates more than just a kernel image. Although the gener-
ated components are not necessary for some of the other development aspects of the
project, the other project components tend to become more and more dependent on
the availability of the kernel components as the project advances. It is therefore pref-
erable to have the kernel components fully configured and built as early as possible,
and kept up-to-date throughout the project.

In parallel to handling the kernel issues, you can start building the root filesystem of
the embedded system, as explained in Chapter 6. The root filesystem of an embedded
Linux system is similar to the one you find on a workstation or server running Linux,
except that it contains only the minimal set of applications, libraries, and related files
needed to run the system. Note that you should not have to remove any of the com-
ponents you previously chose at this stage to obtain a properly sized root filesystem.
In fact, if you have to do so, you probably did not determine system components ade-
quately. Remember that this earlier stage should include an analysis of all system re-
quirements, including the root filesystem size. You should therefore have as accurate
an estimate as possible of the size of each component you selected during the first step
of creating the target system.

If you are unable to predetermine the complete list of components you will need in your
embedded system and would rather build your target root filesystem iteratively by
adding the tools and libraries you need as you go along, then do so, but do not treat
the result as your final root filesystem. Instead, use the iterative method to explore
building root filesystems, and then apply your experience to building a clean root
filesystem for your target system. The reason behind this is that the trial-and-error
nature of the iterative method makes its completion time nondeterministic. The struc-
tured approach may require more forethought, but its results are known and can be
the basis for additional planning.

Setting up and configuring the storage devices and the bootloader software are the
remaining tasks in creating a target Linux system. Chapters 7, 8, and 9 discuss these
issues in full. It is during these steps that the different components of the target system
come together: the bootloader, the root filesystem, and the kernel. As booting is highly
dependent on the architecture, different bootloaders are involved. Within a single ar-
chitecture there are also variations in the degree of debugging and monitoring provided
by the bootloaders. The methodology to package and boot a system is fairly similar
among the different architectures, but varies according to the permanent storage device
from which the system is booted and which bootloader is used. Booting a system from
native flash, for instance, is different than booting a system from a SATA disk device
or CompactFlash device, and is even more different than booting from a network server.

Design and Implementation Methodology | 29

Setting Up and Using Development Tools

Software development for embedded systems is different from software development
for the workstation or server environments. Mainly, the target environment is often
dissimilar to the host on which the development is conducted. Hence the need for a
host/target setup whereby the developer develops his software on the host and down-
loads it onto the target for testing. There are two aspects to this setup: development
and debugging. Such a setup, however, does not preclude you from using Linux’s multi-
architecture advantage to test your target’s applications on your host with little or no
modification. Though not all applications can be tested in this way, testing target
applications on the host will generally save you a lot of time.

Embedded development is discussed in Chapter 4. Prior to testing any code on the
target system, it is necessary to establish a host/target connection. This will be the
umbilical cord by which the developer will be able to interact with the target system to
verify whether the applications he develops function as prescribed. As the applications
cannot typically run on bare hardware, there will have to be a functional embedded
Linux system on the target hardware. Since it is often impossible to wait for the final
target setup to be completed to test target applications, you can use a development
target setup. The latter will be packaged much more loosely and will not have to respect
the size requirements imposed on the final package. Hence, the development root
filesystem may include many more applications and libraries than will be found in the
final root filesystem. This also allows different and larger types of permanent storage
devices during development.

Obtaining such a setup necessitates compiling the target applications and libraries. This
is achieved by configuring or building the various compiler and binary utilities for cross-
development. Using these utilities, you can build applications for the target and there-
fore build the development target setup used for further development. With this done,
you can use various integrated development environments (IDEs) to ease development
of the project components, and use other tools such as CVS, Subversion, and GIT to
coordinate work among developers.

Given the horsepower found on some embedded systems, some developers even choose
to carry out all development directly on the target system. In this setup, the compiler
and related tools all run on the target. This, in effect, combines host and target in a
single machine and resembles a conventional workstation application development.
The main advantage of such a configuration is that you avoid the hassle of setting up
a host/target environment.

Whatever development setup you choose, you will need to debug and poke at your
software in many ways. You can do this with the debugging tools covered in Chap-
ter 11. For simple debugging operations, you may choose to use ad hoc methods such
as printing values using printf(). Some problems require more insight into the runtime
operations of the software being debugged; this may be provided by symbolic
debugging. gdb is the most common general-purpose debugger for Linux, but symbolic

30 | Chapter1: Introduction

debugging on embedded systems may be more elaborate. It could involve such things
as remote serial debugging, kernel debugging, and BDM and JTAG debugging tools.
But even symbolic debugging may be inadequate in some situations. When system calls
made by an application are problematic or when synchronization problems need to be
solved, it is better to use tracing tools such as strace and LTT. For performance prob-
lems, there are other tools more adapted to the task, such as gprof and gcov. When all
else fails, you may even need to understand kernel crashes.

Developing for the Embedded

One of the main advantages of using Linux as an embedded OS is that the code devel-
oped for Linux should run identically on an embedded target and on a workstation,
right? Well, not quite. Although it is true that you can expect your Linux workstation
code to build and run the same on an embedded Linux system, embedded system
operations and requirements differ greatly from workstation or server environments.
Whereas you can expect errors to kill an application on a workstation, for instance,
leaving the responsibility to the user to restart the application, you can’t afford to have
this sort of behavior in an embedded system. Neither can you allow applications to
gobble up resources without end or behave in an untimely manner.” Therefore, even
though the APIs and OS used may be identical, there are fundamental differences in
programming philosophies.

Networking

Networking enables an embedded system to interact with and be accessible to the
outside world. In an embedded Linux environment, you have to choose networking
hardware, networking protocols, and the services to offer while accounting for network
security. Chapter 10 covers the setup and use of networking services such as HTTP,
Telnet, SSH, and/or SNMP. One interesting feature in a network-enabled embedded
system is the possibility of remote updating, whereby it is possible to update the system
via a network link without on-site intervention. (This is covered in Chapter 8.)

" Normal Linux workstation and server applications should not gobble up resources either. In fact, the most
important applications used on Linux servers are noteworthy for their stability, which is one reason Linux
is so successful as a server operating system.

Design and Implementation Methodology | 31

CHAPTER 2
Basic Concepts

As we saw in the previous chapter, there is a rich variety of embedded Linux systems.
And as time moves forward, this diversity is increasing as new markets open up, be it
for the millions of Linux-based cell phones sold every year, or for experimental amateur
rockets with precise real-time requirements. In spite of such a variety, there are
nevertheless a few key characteristics that apply uniformly to most embedded Linux
systems. The purpose of this chapter s to present you with the basic concepts and issues
that you are likely to encounter when developing any sort of embedded Linux system.

Many of the subjects introduced here will be discussed in far greater detail in other
chapters. They are covered here briefly to give you an understanding of how the system
forms a cohesive whole, and to avoid so-called undeclared forward references (a pro-
gramming term for using something before it has been fully defined). The chapter starts
with a discussion of the types of hosts most commonly used for developing embedded
Linux systems, the types of host/target development setups, and the types of host/target
debug setups. These sections are meant to help you select the best environment for
developing embedded Linux systems or, if the environment is already specified, un-
derstand how your particular setup will influence the rest of your development effort.
We will then present details of the structure commonly found in most embedded Linux
systems, and the generic architecture of an embedded Linux system, explaining system
startup, types of boot configuration, and the typical system memory layout, in addition
to other related items.

If you are already broadly familiar with embedded systems concepts, you need only
skim this chapter for Linux-specific issues. In such cases, you will want to pay particular
attention to the latter parts of the chapter.

Types of Hosts

In the next chapter, we will cover the hardware most commonly found in modern
embedded Linux targets. But although the target hardware is very important to your
overall design, each possible target system can be developed using a wide variety of

33

host systems. In the following section, we will discuss the types of hosts most commonly
used, their particulars, and how easy it is to develop embedded Linux systems using
them.

Linux Workstation

This is the most common type of development host for embedded Linux systems. It is
also the one that we recommend you use if you are not already constrained by the use
of a particular development environment. The reasoning behind this is simple: to gain
experience with Linux, there really is no substitute for actually using a Linux system
for your own development. Using Linux on a day-to-day basis, you will also become
familiar with diagnosing and solving certain problems that may similarly affect your
target embedded Linux system later on.”

A standard PCis your most likely Linux workstation. Do not forget, though, that Linux
runs on a variety of hardware and you are not limited to using a PC-like system. Several

of this book’s authors, for example, regularly use PowerPC-based Linux systems for
their embedded work.

You may use any of the standard Linux distributions on your host system. These in-
clude, but are by no means limited to, the following:

Debian GNU/Linux (http://www.debian.org)
A popular community-supported and developed Linux distribution, maintained
by an international team of developers and supported under the umbrella of the
“Software In The Public Interest” registered charity organization. Debian prides
itself on its high standards, but it is occasionally known to be a little more difficult
to install and to use for the novice user. It is not released on any kind of predictable
schedule.

Fedora (http://www.fedoraproject.org)

A modern day continuation of the famous “Red Hat Linux,” which no longer exists,
despite many references to the now long since obsolete Red Hat Linux 9.0 that
persist on the Internet. Fedora is developed internationally, but has traditionally
had a strong affiliation with the company Red Hat, which uses Fedora as the base
when creating its Red Hat Enterprise Linux distribution. Fedora is typically re-
leased on a 6-9 month semipredictable schedule. It has an unstable release, known
as “rawhide,” which is updated on a daily basis as individual components of the
distribution undergo modification.

OpenSusE (http://www.opensuse.org)
If Fedora is the modern day continuation of Red Hat Linux, OpenSuSE is the same
for what was once simply known as SuSE. After Novell acquired SuSE and began

" One of the authors learned the hard way about system logfiles filling up system disks—first on a production
server in a corporate environment, then on a target embedded Linux system. This was sufficient experience
to eventually predesign future systems with limited space set aside for ever-expanding logfiles.

34 | Chapter2: BasicConcepts

http://www.debian.org
http://www.fedoraproject.org
http://www.opensuse.org

releasing SuSE Linux Enterprise Server (SLES), OpenSuSE became the new
incubator for future technology. It is released on a similar schedule to Fedora, and
it also has an unstable release, known as “Factory,” that is updated on a daily basis.

Red Hat Enterprise Linux (RHEL) (http://lwww.redhat.com)

This is a commercial distribution from Red Hat and a direct descendant of the Red
Hat Linux line. It is released on an 18-month schedule and is supported for many
years following its release. Support is in the form of a subscription model, although
several others have successfully repackaged RHEL into “free” Enterprise Linux
distributions (which come with no support, but are virtually binary-identical to
the official product) after removing all appropriate trademarks. Such practice is
possible thanks to the open source licenses under which most software is distrib-
uted.

SuSE Linux Enterprise Server (SLES) (http://www.suse.com)

This is a commercial distribution from Novell, which also produces SLED (SuSE
Linux Enterprise Desktop) and a variety of other products. One of these products
is an enterprise real-time product that makes use of the RT patchset discussed in
this book (in the case of Novell, this is intended for mission-critical trading and
similar situations, rather than for embedded use—a testament to the generic use-
fulness and reusability of such technology). SLES is released on a basis similar to
Red Hat Enterprise Linux and competes with it directly.

Ubuntu Linux (http://www.ubuntulinux.org)

This is a derivative of Debian GNU/Linux, but intended more for mass market use
and released under a more predictable 6-12 month schedule. It is backed by Can-
onical, a company formed by billionaire Mark Shuttleworth, who became rich
through a company he built that relied heavily upon Debian for its IT infrastruc-
ture. Anumber of popular PC makers are now considering supplying, or are already
supplying, PCs with Ubuntu Linux preinstalled, in addition to the other afore-
mentioned commercial Linux distributions.

Yellow Dog Linux (http://www.terrasoftsolutions.com)
This is a Red Hat Linux derivative for PowerPC systems, such as those from IBM
(based on POWER/OpenPOWER/PowerPC processors) and formerly those from
Apple Computer. Although not as common, it stands here as an example of a Linux
distribution intended specifically for non-PC architectures in the first instance, and
as an example of how you need not always choose one of the “big three” (Red Hat,
Novell, Canonical) for your Linux needs.

There are numerous other Linux distributions available, for example, Slackware
(famous for being one of the early Linux distributions still in widespread use), Gentoo
(source-based, intended for optimized performance, but not for novice users—despite
what you may hear to the contrary on this topic!), and even more obscure distributions,
such as Rock Linux and Tom’s Root Boot (a minimal Linux, with modern-day deriv-
atives). The authors have used all of these, and many more, in the course of their Linux
careers. And one thing is for sure: there will be many more, so don’t get too fixated on

Types of Hosts | 35

http://www.redhat.com
http://www.suse.com
http://www.ubuntulinux.org
http://www.terrasoftsolutions.com

one Linux distribution. Concern yourself more with understanding commonalities,
such as the RPM package format (used extensively, though not universally).

The Linux marketplace continues to evolve over time. In the first edition of this book,
the author made no reference to Ubuntu, or to Canonical, because neither existed.t

Today, it’s hard to go anywhere without hearing about Canonical at the same time as
the other two big players. And it is almost certain that there will be new players, new
transitions, and new concerns that will arise following the publication of this edition.
If you are really interested in keeping abreast of changes in the distribution space, you
are encouraged to read distrowatch.com on a semiregular basis. There you will find
major announcements, popularity statistics, and a wide variety of other useful infor-
mation. Throughout this book, we will assume you are running a common distribution,
and although we are certainly not going to recommend any one distribution for your
development efforts, we do nonetheless recommend that those inexperienced with Li-
nux choose one of the aforementioned mainstream distributions over a more obscure
and less easily supported one. At least for your first project!

B
o)

Although we’ve made an effort to keep this text independent of host
distribution, the instructions in this book are slightly tilted toward Red
N
o5 Hat—type distributions—after all, those are what we use on a daily basis
" ourselves. You may therefore need to make minor modifications to a
few commands, depending on the distribution installed on your host.
Wherever possible, distribution-dependent commands are presented.

Of course, the latest and fastest hardware is every engineer’s dream. Having the fastest
machine around will certainly help you with your work, but you can still use a relatively
mild-powered machine with appropriate RAM for this type of development. Remember
that Linux is very good at making the best of the available hardware, and given a choice
between a faster processor or more RAM, you will generally want to opt for more RAM.
A fast processor is useless if your machine is spending its time constantly thrashing the
disks as it attempts to swap programs and data into and out of main memory. It is,
nonetheless, appropriate to set some minimum constraints upon what is a reasonable
development platform, especially for those who must convince their management what
to buy!

Generally speaking, you will want to ensure that any PC-based development platform
has the following:

* Atleast 1 to 2 GB of RAM. More than 4 GB starts to become self-limiting, in that
you can likely retain the entire Linux desktop, applications, and most of the Linux
source code you are compiling in the host system’s built-in kernel buffers (the “page

T For that matter, at the time of the first edition, none of the other Linux distributions in our list existed in the
form that they now do. During that period, Red Hat still actively developed Red Hat Linux, whereas Novell
and SuSE were distinct organizations (the former later purchased the latter).

36 | Chapter2: Basic Concepts

cache”) at this point. Opt for more RAM only if you frequently perform many
kernel compilation sequences, build many applications in parallel, or will share
one central development machine resource with other programmers.

* Atleast a 2 GHz CPU. More than two dual-core CPUs is currently considered to
be on the high end.

* As much disk space as you can reasonably get away with.

A bit more about the last item: no matter what development work you are doing, one
thing you can always use plenty of is disk space. Fortunately, storage is cheap. As of
this writing, 500 GB (and even 1 TB) disks are not that uncommon (a far cry from the
“2 to 3 GB” recommendation from the first edition of this book!), and larger capacities
are likely to be available by the time you read this. 500 GB should be an order of
magnitude more than enough for your needs, but with such a large amount of space
available at such modest prices, you will be able to keep many redundant copies of your
work, as you experiment with scratch builds or try out ideas. (Of course, you should
additionally plan to back this up somewhere else, but that should be obvious.)

You are encouraged to consider RAID on any serious Linux development system. Linux
has long since had great support for RAID1, RAID0+1, and RAIDS5 (using RAIDO is
never advisable), and modern Linux distributions won’t even require you to configure
this for yourself. They’ll take care of it during installation, just as long as you let them
know you desire a RAID array configuration. Using RAID (especially RATD 1—effec-
tively doubling your disk use with a redundant copy of all data) can often result in much
faster disk access, since many possible disks can be used for any given read and will
usually increase reliability.

For further information about the different Linux distributions, as well as their re-
quirements, and the kinds of hardware best suited to your environment, consult the
individual distribution websites, distrowatch.com, this book’s website (http://www.em
beddedlinuxbook.org/), and a weekly dose of LinuxDevices.com articles.

Unix Workstation

Depending on your circumstances, you may be required to use a traditional Unix
workstation, although you are strongly encouraged not to do this if Linux is available.
Solaris workstations, for instance, are very common among telecommunication solu-
tions developers. Although the use of such workstations is much less common than the
use of Linux workstations for developing embedded Linux systems, it is still feasible.
In fact, modern Solaris (and OpenSolaris) systems include a large amount of prebuilt
GNU software, such as gcc, that can make your life easier.

Because Linux itself is very much like Unix, most of what applies to Linux also applies
to Unix and other Unix-like systems, such as the various BSD flavors (OpenBSD,
FreeBSD, and so on). This is especially true when it comes to the GNU development
toolchain, since the main GNU tools—such as the compiler, the C library, and the

Types of Hosts | 37

http://www.embeddedlinuxbook.org/
http://www.embeddedlinuxbook.org/

binary utilities (more commonly known as binutils)—were developed and used on tra-
ditional Unix systems before Linux even existed. Although most of the recommenda-
tions given earlier for Linux systems will relate to traditional Unix systems, you are
nonetheless strongly recommended to use a Linux system. The day has long since
passed when you should encounter any significant resistance from your corporate IT/
IS department about using a Linux system in place of a traditional Unix one.

Windows (Vista, XP, 2000, NT, 98, etc.) Workstation

In the early 1990s, embedded system development shifted toward Microsoft Windows
workstations. This was largely due to the growth in graphical development tools avail-
able, which came just in time for a surge in demand for a shortened time-to-market on
embedded projects. Many developers have since become used to working on this plat-
form and many new developers have been initiated to embedded systems development
on it. For these and other reasons, some developers would like to continue using Win-
dows workstations to develop, ironically, embedded Linux systems.

Although we are encouraging you to use Linux for your development whenever possi-
ble, and in spite of the existence of cross-platform GUI development tools (such as
Eclipse), we are nonetheless aware of the growing need for software tools that exist
only for Windows. This includes a number of vendor-specific tools, such as debuggers,
hardware FPGA/PROM/Flash programmers, and the like. We know that not all
developers will want to retain two development systems—Linux for straightforward
program development and Windows for the use of third-party Windows-only tools—
and will opt to base themselves on Windows. But the beauty here is that you are free
to use Windows on your host system if that is what you want to do. In fact, several of
the authors have successfully developed shipping products using Windows host com-
puters and embedded Linux targets.

At first glance, it would seem that the main problem in using Windows to develop
programs for embedded Linux targets is the (seeming) lack of the GNU development
toolchain. This is actually not a problem, because Red Hat provides the Cygwin envi-
ronment, which is the Windows-compatible GNU toolchain. Many people have used
it to build cross-platform tools for Linux, including a number of third parties. For
example, Xilinx bases its development tools upon a modified Cygwin (formerly “Xyg-
win”), which allows it to produce tools for both Linux and Windows systems. You can
find out more about Cygwin online at http://www.cygwin.com.

Ifyou opt to use an embedded Linux development environment from one of the popular
embedded Linux vendors, they will additionally be able to supply you with a version
of their (invariably Eclipse-based) graphical tools and development environment run-
ning on Windows.

38 | Chapter2: BasicConcepts

http://www.cygwin.com

Host Target
*Bootloader
*Cross-platform 1 *Kernel
development

¢ *Root
environment filesystem

Figure 2-1. Host/target linked setup

Types of Host/Target Development Setups

Three different host/target architectures are available for the development of embedded
Linux systems: the linked setup, the removable storage setup, and the standalone setup.
Your actual setup may belong to more than one category or may even change categories
over time, depending on your requirements and development methodology.

Linked Setup

In this setup, the target and the host are permanently linked together using a physical
cable. This link is typically a serial cable or an Ethernet link. The main property of this
setup is that no physical hardware storage device is being transferred between the target
and the host. All transfers occur via the link. Figure 2-1 illustrates this setup.

As illustrated, the host contains the cross-platform development environment (dis-
cussed in Chapter 4), while the target contains an appropriate bootloader, a functional
kernel, and a minimal root filesystem.

Alternatively, the target can use remote components to facilitate development. The
kernel could, for instance, be available via trivial file transfer protocol (TFTP). The root
filesystem could also be NFS-mounted instead of being on storage media in the target.
Using an NFS-mounted root filesystem is actually perfect during development, because
it avoids having to constantly copy program modifications between the host and the
target, as we’ll see later in “Types of Boot Configurations.”

The linked setup is the most common. Obviously, the physical link can also be used
for debugging purposes. It is, however, more common to have another link for debug-
ging purposes, as we shall see later in “Types of Host/Target Debug Setups.” Many
embedded systems, for instance, provide both Ethernet and RS232 link capabilities. In
such a setup, the Ethernet link is used for downloading the executable, the kernel, the
root filesystem, and other large items that benefit from rapid data transfers between
the host and the target, while the RS232 link is used for debugging.

Many modern “legacy free” PC systems, as well as PowerPC-based systems, lack an
RS232 serial port. This is easily fixed by adding a USB serial dongle (a USB device that
provides a serial port via a serial-like emulation). Note that you should never use these
on the target if you plan to perform true serial console debugging.

Types of Host/Target Development Setups | 39

Host Target
*Cross-platform
development *Bootloader

environment
*Secondary bootloader
*Kernel
*Root filesystem

Figure 2-2. Host/target removable storage setup

Removable Storage Setup

In the removable setup, there are no direct physical links between the host and the
target. Instead, a storage device is written by the host, is then transferred into the target,
and is used to boot the device. Figure 2-2 illustrates this setup.

As with the previous setup, the host contains the cross-platform development envi-
ronment. The target, however, contains only a minimal bootloader. The rest of the
components are stored on a removable storage media, such as a CompactFlash IDE
device, MMC Card, or any other type of removable storage device (even floppies and
CD-ROM/DVDs have been used), which is programmed on the host and loaded by the
target’s minimal bootloader upon startup.

It is possible, in fact, for a target not to contain any form of persistent storage at all.
Instead of a fixed flash chip, for instance, the target could contain a socket where a
flash chip could be easily inserted and removed. The chip is then programmed by a
flash programmer on the host and inserted into the socket in the target for normal
operation.

This setup is mostly popular during the initial phases of embedded system develop-
ment. You may find it more practical to move on to a linked setup once the initial
development phase is over, so you can avoid the need to physically transfer a storage
device between the target and the host every time a change has to be made to the kernel
or the root filesystem.

Standalone Setup

Here, the target is a self-contained development system and includes all the required
software to boot, operate, and develop additional software. In essence, this setup is
similar to an actual workstation, except the underlying hardware is not a conventional
workstation but rather the embedded system itself. Figure 2-3 illustrates this setup.

In contrast to the other setups, this one does not require any cross-platform develop-
ment environment, since all development tools run in their native environments.
Furthermore, it does not require any transfer between the target and the host, because
all the required storage is local to the target.

40 | Chapter2: Basic Concepts

Target

*Bootloader

*Kernel

*Full root
filesystem

*Native
development
environment

Figure 2-3. Host/target standalone setup

This type of setup is quite popular with developers building high-end PC-based em-
bedded systems, such as high-availability systems, since they can use standard off-the-
shelf Linux distributions on the embedded system. Once development is done, they
then invest time in trimming down the distribution and customizing it for their
purposes.

Although this gets developers around having to build their own root filesystems and
configure the systems’ startup, it requires that they know the particular distribution
they are using inside out. Fortunately, this is made easier by various distributor efforts
to create flexibility over the last few years. For example, the Fedora Project is actively
working on allowing developers to create “custom spins” of Fedora, with only the
packages they want installed. Nevertheless, if you are interested in this approach, you
may want to take a look at Matthias Dalheimer and Matt Welsh’s Running Linux
(O’Reilly).

Note that a certain amount of flexibility exists in the definition of “standalone.” For
systems that will eventually need to function standalone, but nonetheless do include a
network port, a serial port, or a similar device, there is value gained in a mixed stand-
alone/linked setup. In such a setup, although the system is designed to function on a
standalone basis, you might include an option to boot across a network, to mount a
networked filesystem, or to use a serial connection for debugging purposes. The net-
worked filesystem might in such cases be significantly larger than the target filesystem
(which often resides on a very limited flash MTD of some kind). Thus, this filesystem
may include many more optional binaries useful only during development, documen-
tation, and updates to system software that can easily be copied over to, and tested on,
the target system during various debugging sessions.

Types of Host/Target Debug Setups

There are basically three types of interfaces that developers use to link a target to a host
for debugging: a serial line, a networking interface, and special debugging hardware.
Each debugging interface has its own benefits and applications. We will discuss the

Types of Host/Target Debug Setups | 41

detailed use of some of these interfaces in Chapter 11. This section will briefly review
the benefits and characteristics of each type.

Using a serial link is the simplest way to debug a target from a host, because serial
hardware is simple and is often found, in some form or another, in embedded systems.
There are two potential problems with using a serial link, however. First, the speed of
most serial links is rather limited. Second, if there’s only one serial port in the embedded
system or if the serial link is the embedded system’s only external interface, it becomes
impossible to simultaneously debug the system and interact with it using a terminal
emulator. The absence of terminal interaction is not a problem in some cases, however.
When debugging the startup of the kernel using a remote kernel debugger, for example,
no terminal emulator is required, since no shell actually runs on the target until the
kernel has finished booting.

W

o Although it can seem expensive to include additional serial hardware in
"‘:\ your system design, note that you needn’t include a full logical-level
T Qi8¢ conversion (such as one of the popular MAXIM-TTL logic level con-

version parts on the market), or even actually have an additional exter-
nally visible connector of any kind. All that it requires is a little logic in
your design for the serial UART itself and some pads on the board, to
which you can connect a logic level converter and external serial port
connector during your debug sessions. Many manufacturers choose this
option.

The use of a networking interface, such as TCP/IP over Ethernet, provides much higher
bandwidth than a serial link. Moreover, the target and the host can use many network-
ing connections over the same physical network link. Hence, you can continue to
interact with the target while debugging applications on it. You can also debug over a
networking link while interacting with the target using a terminal emulator over the
embedded system’s serial port. However, the use of a networking interface implies the
presence of a networking stack. Since the networking stack is found in the Linux kernel,
anetworking link cannot be easily used to debug the kernel itself (although, to a certain
extent, there are network diagnostics tools for the Linux kernel, such as kdump, which
are useful for remotely capturing a crash). In contrast, kernel debugging can be, and
often is, carried out over a serial link.

Both the use of a serial link and the use of a networking interface require some minimal
software that recognizes the possibly primitive I/O hardware on the target. In some
cases, such as when porting Linux to a new board or when debugging the kernel itself,
such software is not present. In those cases, it is necessary to use a debugging interface
that provides direct hardware control over the software. There are several ways to ach-
ieve this, but most are quite expensive.

Currently, the preferred way to obtain direct control over hardware for debugging pur-
poses is to use a BDM or JTAG interface. These interfaces rely on special BDM or JTAG

42 | Chapter2: Basic Concepts

functionality embedded in the CPU. By connecting a special debugger (such as the
BDI2000 family of popular debugger hardware devices, used by several of the authors
in products that have been shipped) to the JTAG or BDM pins of the CPU, you can
take complete control of its behavior. For this reason, JTAG and BDM are often used
when bringing up new embedded boards or debugging the Linux kernel on such boards.

Though the BDM and JTAG debuggers are much less expensive and much less com-
plicated in terms of their technical operation than in-circuit emulators (ICEs), they still
require the purchase of special hardware and software. Often, this software and hard-
ware are still relatively expensive because CPU manufacturers are not keen to share the
detailed information regarding the use of the JTAG and BDM interfaces included in
their products. Obtaining this information often involves establishing a trust relation-
ship with the manufacturer and signing stringent NDAs. Consequently, you should not
expect much change back from $1,000 U.S. (even on eBay) for a hardware debugging
tool of this kind.

Though it would probably be too expensive to equip each member of an engineering
team with her own BDM or JTAG debugger, we do highly recommend that you have
at least one such debugger available throughout your project for debugging the very
difficult problems that a serial or networking debugger cannot deal with appropriately,
especially if you are porting Linux to an entirely new hardware platform. (If it’s simply
based on a standard reference platform, you might get away without the hardware-base
debugger.) When selecting such a debugger, however, you may want to evaluate its
compatibility with the GNU development toolchain. Some BDM and JTAG debuggers,
for instance, require the use of specially modified gdb debuggers. A good BDM or JTAG
debugger should be able to deal transparently with the standard GNU development
toolchain, and the binary files generated using it.

Generic Architecture of an Embedded Linux System

Since Linux systems are made up of many components, let us take a look at the overall
architecture of a generic Linux system. This will enable us to set each component in
context and will help you understand the interaction between them and how to best
take advantage of their assembly. Figure 2-4 presents the architecture of a generic Linux
system with all the components involved. Although the figure abstracts to a high degree
the content of the kernel and the other components, the abstractions presented are
sufficient for this discussion. Notice that there is little difference in the following de-
scription between an embedded system and a workstation or server system, since Linux
systems are all structured the same at this level of abstraction. In the rest of the book,
however, emphasis will be on the details of the application of this architecture in em-
bedded systems.

Hardware must meet some broad characteristics to run a Linux system:

Generic Architecture of an Embedded Linux System | 43

Applications
Libraries

{ Linux kernel

High-level abstractions

File- Network
systems protocols

Low-level interfaces

Hardware

Figure 2-4. Architecture of a generic Linux system

* Linux normally requires at least a 32-bit CPU containing a memory management
unit (MMU).#

* A sufficient amount of RAM must be available to accommodate the system. Re-
quirements will be laid out in later chapters.

* Minimal I/O capabilities are required if any development is to be carried out on
the target with reasonable debugging facilities. This is also very important for any
later troubleshooting in the field.

* The kernel must be able to load a root filesystem through some form of permanent
storage, or access it over a network.

See “Types of Embedded Linux Systems” in Chapter 1 for a discussion of typical system
configurations.

Immediately above the hardware sits the kernel, the core component of the operating
system. Its purpose is to manage the hardware in a coherent manner while providing
familiar high-level abstractions to user-level software (such as the POSIX APIs and the
other de facto, industry-standard APIs against which applications are generally writ-
ten). As with other Unix-like kernels, Linux drives the devices, manages I/O access,
controls process scheduling, enforces memory sharing, handles the distribution of sig-
nals, and tends to other administrative tasks. It is expected that applications using the
APIs provided by a kernel will be portable among the various architectures supported
by this kernel with little or no changes. This is usually the case with Linux, as can be
seen by the body of applications uniformly available on all architectures it supports.

¥ As we'll see, the official Linux kernel includes the fruits of a project known as uClinux which runs on some
CPUs that aren’t equipped with full MMUs. However, the development of applications for Linux on such
processors differs sufficiently from standard Linux application development to require a separate discussion.
Because of this, plus a relative lack of widely available software for such systems, we do not cover the use of
Linux on MMU-less architectures.

44 | Chapter2: Basic Concepts

Within the kernel, two broad categories of layered services provide the functionality
required by applications. The low-level interfaces are specific to the hardware config-
uration on which the kernel runs and provide for the direct control of hardware re-
sources using a hardware-independent API. That s, handling registers or memory pages
will be done differently on a PowerPC system and on an ARM (Advanced RISC Ma-
chine) system (and perhaps even differently within the ARM and PowerPC families),
but will be accessible using a common API to higher-level components of the kernel,
with some rare exceptions. Typically, low-level services handle CPU-specific opera-
tions, architecture-specific memory operations, and basic interfaces to devices. These
are then abstracted to higher level code through headers, macros, and wrapper
functions.

Above the low-level services provided by the kernel, higher-level components provide
the abstractions common to all Unix systems, including processes, files, sockets, and
signals. Since the low-level APIs provided by the kernel are common among different
architectures, the code implementing the higher-level abstractions is almost constant,
regardless of the underlying architecture. There are some rare exceptions, as stated
earlier, where the higher-level kernel code will include special cases or different func-
tions for certain architectures.

Between these two levels of abstraction, the kernel sometimes needs what could be
called interpretation components to understand and interact with structured data com-
ing from or going to certain devices. Filesystem types and networking protocols are
prime examples of sources of structured data the kernel needs to understand and in-
teract with in order to provide access to data going to and coming from these sources.

Disk devices have been and still are the main storage media for computerized data. And
in the embedded world, flash-based devices tend to provide the same functionality—
even using compatible interfaces, in many cases. Yet disk devices, and all other storage
devices for that matter, themselves contain little structure. Their content may be
addressable by referencing the appropriate sector of a cylinder on a certain disk (or the
erase block number of the NAND flash, logical block number of the CompactFlash,
etc.), but this level of organization is quite insufficient to accommodate the ever-
changing content of files and directories. File-level access is achieved using a special
organization of the data on the disk where file and directory information is stored in a
particular fashion so that it can be recognized when it is read again. This is what file-
systems are all about.

During the evolution of operating systems, many different incompatible filesystems
have seen the light of day. To accommodate these existing filesystems as well as new
ones in development, the kernel has a number of filesystem engines that can recognize
a particular disk structure and retrieve or add files and directories from this structure.
The engines all provide the same API to the upper layers of the kernel through the Linux
Virtual File System (VFS) abstraction so that accesses to the various filesystems are
identical even though accesses to the lower-layer services vary according to the structure
of the filesystem. The same API is provided to the virtual filesystem layer of the kernel

Generic Architecture of an Embedded Linux System | 45

by, for instance, the FAT filesystem and the ext3 filesystems, but the operations the
filesystems conduct on the block device driver differ according to the respective struc-
tures used by FAT and ext3 to store data on disk (which are very different indeed!).

W

In fact, disk vendors are increasingly heading toward higher level ab-
straction, even at the “hardware” level. By the time you read this, it is
quite possible that disk devices will be on the market that deal solely
with logical extents—chunks of data (“files”), streams, and similar in-
formation—rather than the old-fashioned sector-based approach with
which you may be familiar. Linux will, at that point, use these new
capabilities within the modern “extent”-based filesystems to store large
amounts of data much more efficiently than ever before, with even less
logic needed within the kernel itself for controlling the disk. Nonethe-
less, this is tangential to the current topic of conversation.

oy

During its normal operation, the kernel requires at least one properly structured file-
system, the root filesystem. From this filesystem, the kernel loads the first application
to run on the system. It also normally relies upon this filesystem for certain further
operations, such as loading modules and providing each process with a working di-
rectory (though these activities might take place on other filesystems mounted within
the tree that begins with the root filesystem). The root filesystem may be either stored
and operated on from a real hardware storage device, or loaded into RAM during system
startup and operated on from there. As we’ll see later, the former is becoming much
more popular than the latter with the advent of facilities such as the JFFS2, YAFFS2,
LogFS, and other journaled flash filesystems.

You might expect that right above the kernel you would find the regular applications
and utilities making up and running on the operating system. Yet the services exported
by the kernel are often unfit to be used directly by applications. Instead, applications
rely on libraries and special system daemons to provide familiar APIs and abstract
services that interact with the kernel on the application’s behalf to obtain the desired
functionality. The main library used by most Linux applications is the GNU C library,
glibc. For embedded Linux systems, substitutes to this library can be used (as we’ll see
later) to compensate for the GNU C library’s main deficiency: its size. Other than the
C library, libraries such as Qt, XML, or MD5 provide various utility and functionality
APIs serving all sorts of purposes. Meanwhile, important system processes (“daemons”)
provide services exploited by applications. For instance, the udev device filesystem
manager manages devices in /dev, such as when USB storage devices are added to and
removed from the system.

Libraries are typically linked dynamically with applications. That is, they are not part
of the application’s binary, but are rather loaded into the application’s memory space
during application startup. This allows many applications to use the same instance of
a library instead of each having its own copy. The C library found on a system’s

46 | Chapter2: Basic Concepts

filesystem, for instance, is loaded only once in the system RAM, and this same copy is
usually shared among all applications that use this library.

But in some situations involving embedded systems, static linking, whereby libraries
are part of the application’s binary, is preferred to dynamic linking. When only part of
a library is used by one or two applications, for example, static linking helps avoid the
need to store the entire library on the embedded system’s storage device. This issue
becomes even more complex when linking proprietary applications with certain libra-
ries covered only by a strict GPL license rather than the LGPL. Licensing issues were
discussed in Chapter 1—for further information, consult your attorney.

System Startup

Three main software components participate in system startup: the bootloader, the
kernel, and the init process. The bootloader is the first software to run upon startup
and is highly dependent on the target’s hardware. As we’ll see in Chapter 9, many
bootloaders are available for Linux. The bootloader performs low-level hardware ini-
tialization and then jumps to the kernel’s startup code.

The early kernel startup code differs greatly between architectures and conducts initi-
alization of its own before setting up a proper environment for the running of C code.
Once this is done, the kernel jumps to the architecture-independent start_kernel()
function, which initializes the high-level kernel functionality, mounts the root filesys-
tem, and starts the init process. As part of the higher-level kernel initialization, various
callbacks are made into platform-specific code, which varies by supported architecture.
For example, some PowerPC systems take this opportunity to set up special memory
mappings and mimimal versions of serial diagnostic functions, prior to the kernel
bringing its usual memory and device management functionality online. This is useful
mainly for debugging.

We will not cover the details of the kernel’s internal startup and initialization, because
they have already been covered in detail in Linux Device Drivers by Jonathan Corbet
et al. (O’Reilly). Also, Appendix A of Daniel Bovet and Marco Cesati’s Understanding
the Linux Kernel (O’Reilly) provides a lengthy description of the startup of PC-based
systems from the initial power-on to the execution of the init process. That discussion
covers the kernel’s internal startup for the x86, which is similar in concept to that used
on otherarchitectures, although the specifics do actually vary quite considerably. When
it comes down to it, you will learn more about this in reading through the code, ex-
perimenting, performing your own kernel ports, and keeping up with the Linux kernel
mailing lists than you will from any (quickly outdated) book.

The rest of the system startup is conducted in user space by the init program found on
the root filesystem. We will discuss the setup and configuration of the init process in
Chapter 6.

System Startup | 47

Types of Boot Configurations

The type of boot configuration chosen for a system greatly influences the selection of
a bootloader, its configuration, and the type of software and hardware found in the
host. A network boot configuration, for example, requires that the host provide some
types of network services to the target. In designing your system, you first need to
identify the boot configurations you are likely to use during development and in the
final product. Then, you need to choose a bootloader or a set of bootloaders that will
cater to the different types of boot setups you are likely to use. Not all bootloaders, for
example, can boot kernels from disk devices. In the following discussion, we will cover
the possible boot configurations. Let us start, nevertheless, by reviewing some boot
basics.

All CPUs fetch their first instruction from an address preassigned by their manufacturer
(occasionally with some design flexibility between a few alternative addresses—deter-
mined by strapping lines on the CPU). Any system built using a CPU has one form or
another of a solid-state storage device at that location. Traditionally, the storage device
was a masked ROM, but flash chips are increasingly the norm today. The software on
this storage device is responsible for bootstrapping the system. The level of sophisti-
cation of the boot software and the extent to which it is subsequently used as part of
the system’s operation greatly depend on the type of system involved.

Masked ROMs continue to be used when devices are produced in very
large quantities. Consumer gaming devices such as consoles, for exam-
ple, often use masked ROMs.

Some higher-end FPGA platforms running Linux don’t even use regular
memory at all. They create special block RAM devices with “hard-
wired” jump instructions at the regular CPU reset vector, designed to
force it to jump to bootloader code preloaded into RAM by the same
special hardware device that also loaded the FPGA configuration itself.
Such an approach is extremely popular in designs based upon the Xilinx
Virtex family of FPGAs. In this case, a mere five hardcoded PowerPC
instructions are all that are required to be “hard-wired” into synthetic
block RAM at the reset vector, sufficient to jump into a preloaded
bootloader.

On most workstations and servers, the boot software is responsible only for loading
the operating system from disk and for providing basic hardware configuration options
to the operator. In contrast, there are very few agreed upon purposes, if any, for boot
software in embedded systems, because of the diversity in purposes of embedded
applications. Sometimes, the boot software will run throughout the system’s lifetime.
The boot software may also be a simple monitor that loads the rest of the system soft-
ware. Such monitors can then provide enhanced debugging and upgrading facilities.

48 | Chapter2: Basic Concepts

Boot parameters

(Kernel (Root filesystem

Bootloader

Figure 2-5. Typical solid-state storage device layout

The boot software may even load additional bootloaders, as is often the case with x86
PCs.

Embedded Linux systems are as diverse as their non-Linux counterparts. They are
characterized, nevertheless, by the requirement to load a Linux kernel and its designa-
ted root filesystem. How these are loaded and operated largely depends on the system’s
requirements and sometimes on the state of its development, as described earlier in
“Types of Host/Target Development Setups.”

There are three different setups used to bootstrap an embedded Linux system: the solid-
state storage media setup, the disk setup, and the network setup. Each setup has its
own typical configurations and uses. The following subsections will discuss each setup
in detail.

In Chapter 9, we will discuss the setup and configuration of specific bootloaders for
each applicable setup.

Solid-State Storage Media

In this setup, a solid-state storage device holds the initial bootloader, its configuration
parameters, the kernel, and the root filesystem. Although the development of an em-
bedded Linux system may use other boot setups, depending on the development stage,
most production systems contain a solid-state storage media to hold all the system’s
components. Figure 2-5 shows the most common layout of a solid-state storage device
with all the system components.

No memory addresses are shown in Figure 2-5, because the ranges vary greatly. Intui-
tively, you may think that addresses are lower on the left and grow toward the right.
However, there are cases where it is the inverse, and the bootloader is at the top of the
storage device address range instead of the bottom. For this reason, many flash devices
are provided in both top- and bottom-boot configurations. Depending on the config-
uration, the flash region where the bootloader is found often has special protection
mechanisms to avoid damage to the bootloader if a memory write goes astray. In top-
boot flash devices, this protected region is located at the top of the device’s address
range, whereas in bottom-boot flash devices, it is located in the bottom of the device’s
address range.

Types of Boot Configurations | 49

Although Figure 2-5 shows the storage device separated into four different parts, it may
contain fewer parts. The boot parameters may be contained within the space reserved
for the bootloader. The kernel may also be on the root filesystem (as is the case in
popular devices, such as the OLPC “$100 laptop,” which uses an OpenFirmware
filesystem-aware bootloader). This, however, requires that the bootloader be able to
read the root filesystem. Also, the kernel and the root filesystem could be packaged as
asingle image thatis uncompressed in RAM before being used (in fact, 2.6 Linux kernels
make this process particularly easy, if desired).

Depending on the capabilities provided by your bootloader, there may even be other
possible configurations, each with its advantages and disadvantages. Usually, a setup
can be categorized along a set of four criteria: flash memory use, RAM use, ease of
upgrading, and bootup time.

Boot storage media are initially programmed using a device programmer—for example,
in mass-produced devices on a large yield production line—or the CPU’s integrated
debug capabilities, such as JTAG or BDM. Once the device is initially programmed, it
can be reprogrammed by the system designer using the bootloader, if it provides this
capability, or using Linux’s MTD subsystem (MTD stands for “memory technology
device”). The system may also contain software that enables the user to easily update
the storage device. We will discuss the programming of solid-state storage media in
Chapter 7.

Disk

This is the setup you are probably most familiar with because of its widespread use in
workstations and servers. Here, the kernel and the root filesystem are located on a disk
device. The initial bootloader (which is normally resource constrained; for example,
PC-based systems require that it fit into a 512-byte “boot sector”) either loads a larger
and more powerful secondary bootloader from the disk or fetches the kernel itself di-
rectly from the disk. One of the filesystems on the disk is then used as the root
filesystem.

During development, this setup is particularly attractive if you would like to have a
large number of kernel and root filesystem configurations for testing. If you plan to
develop your embedded system using a customized mainstream distribution, for in-
stance, this setup is convenient. If you are using a hard disk or a device mimicking a
hard disk, such as CompactFlash, in your production system, this boot setup is prob-
ably the best choice.

Because this is a well-known and well-documented scheme, we will discuss it only
briefly in Chapter 9. You will be able to find a wealth of documentation on this process
from various Linux vendors, as well as from online resources.

50 | Chapter2: BasicConcepts

Network

In this setup, either the root filesystem or both the kernel and the root filesystem are
loaded via a network link. In the first case, the kernel resides on solid-state storage
media or a disk, and the root filesystem is mounted via NFS. In the second case, only
the bootloader (perhaps a very minimal bootloader, with just enough support to load
a kernel image over a local network connection) resides on a local storage media. The
kernel is then downloaded via TFTP, and the root filesystem is mounted via NFS. To
automate the location of the TFTP server, the bootloader may also use BOOTP/DHCP.
In that case, the target does not need any preset IP addresses to find either the TFTP
server or the NFS server.

This setup is ideal in early stages of development or during debugging because it enables
the developer to share data and software rapidly between his workstation and the target
without having to reprogram the target. Software updates can then be compiled on the
host and tested immediately on the target. In contrast, few production systems use this
setup, because it requires the presence of a server. In the case of the control systems
described in Chapter 1, however, this setup actually can be used for some of the devices,
because the SYSM module already provides network services.

Obviously, this setup involves configuring the server to provide the appropriate net-
work services. We discuss the configuration of these network services in Chapter 9.

System Memory Layout

To best use the available resources, it is important to understand the system’s memory
layout, and the differences between the physical address space and the kernel’s virtual
address space.§ Most importantly, many hardware peripherals are accessible within
the system’s physical address space, but have restricted access or are completely “in-
visible” in the virtual address space.

To best illustrate the difference between virtual and physical address spaces, let’s take
a look at an example. The venerable HP iPAQ remains popular with some embedded
Linux enthusiasts, and is now cheaply available on eBay. Since its memory layout is
fairly typical of many devices available, we’ll use it as an example in Figure 2-6.

The physical map of a system is usually available with the technical literature accom-
panying your hardware. In the case of the iPAQ, the SA-1110 Developer’s Manual is
available on Intel’s website.

The physical map is important because it provides you with information on how to
configure the kernel and how to develop custom drivers. During the kernel’s configu-
ration, for instance, you may need to specify the location of the flash devices in your

§ What we call here a “virtual address” is known in x86 jargon as a “logical address” and can have other names
on other architectures.

System Memory Layout | 51

Physical memory map Virtual memory map
i OxFFFF FFFF OxFFFF FFFF

0xC200 0000
0xC000 0000

Kernel

4 0xC000 0000
System RAM / /

LCD and DMA registers =~ 0x8C00 0000 User-space stack l A
Memory and 0x8800 0000
expansion registers I
System control 0x84000000 : 0x8000 0000
module registers /
Peripheral control 0x80000000 : :
module registers
0x4C000000 :
0x48000000 : Gbrari
iPAQ internal registers 0x40000000 : II Ji::es 0x4000 0000
PONC 0x20000000 ©
w/ o0t000000 P A
_____________________________ 0x00040000 : : eati 0x0200 0000
 fasfiegen 5 oooooo0o0 | ¢ APPICAONTERE B 0000 0000

Bootloader

\S stem flash

Figure 2-6. Physical and virtual memory maps for the Compaq iPAQ,

system. During development, you may also need to write a driver for a memory-mapped
peripheral. You will also need to provide your bootloader with information regarding
the components it has to load. For these reasons, it is good practice to take the time to
establish your system’s physical memory map before starting software development.

On the iPAQ, the flash storage is divided in two. The first part contains the bootloader
and starts at the lowest memory address available. Given the bootloader’s size, this
region is rather small. The rest of the flash storage space is occupied by the system’s
root filesystem, which in the case of Familiar is a JFFS2 filesystem. In this case, the
kernel is actually on the root filesystem. This is possible because the bootloader has
enough understanding of JFFS2 to find the kernel on the filesystem.

Upon startup, the bootloader reads the kernel from the root filesystem into the system’s
RAM and jumps to the kernel’s start routines. From there on, the rest of the system
startup is carried out by Linux.

Once Linux is running,!l the programs use virtual addresses. In contrast to the physical
memory map, the layout of the virtual memory map is of secondary importance for
kernel configuration or device driver development. For device driver development, for

I' As mentioned near the beginning of this chapter, we assume you are using MMU-equipped hardware.

52 | Chapter2: BasicConcepts

instance, it is sufficient to know that some information is located in kernel space and
other information in user space, and that appropriate functions must be used to prop-
erly exchange data between the two.

The virtual memory layout is mostly important in helping you understand and debug
your applications. As you can see in Figure 2-6, the kernel occupies a quarter of the
virtual address space, starting from address 0xC0000000. This region is also known as
“kernel space.” The rest of the address space is occupied by application-specific text,
data, and library mappings. This is also known as “user space.” Whereas the kernel is
always located above the 0xC0000000 mark for all applications, the applications’
memory maps may differ even on the same system.

To reconstruct a process of the virtual memory map, you need to look at the maps file
in the process’s pid entry in the /proc filesystem. For more details on how to get this
information, see Understanding the Linux Kernel.

System Memory Layout | 53

CHAPTER 3
Hardware Support

Having covered the basics of embedded Linux systems, including generic system
architecture, we will now discuss the embedded hardware Linux supports. First, we’ll
cover the processor architectures Linux supports that are commonly used in embedded
systems. Next, we will cover the various hardware components involved, such as buses,
/O, storage, general-purpose networking, industrial-grade networking, and system
monitoring. Although we will include many different components, we have omitted
those not typically used in embedded configurations.

Note that the following discussion will not attempt to analyze the pros and cons of one
hardware component or another. Hardware development is moving forward far too
quickly for us to be in the business of doing such things. Use this chapter, instead, as
a starting point for your research in either identifying the components to include in
your system or judging the amount of effort needed to get Linux to run on the hardware
you have already chosen.

A Word of Caution on the Use of Proprietary Device Drivers

Please note that the following sections will not cover the software made available by
the various hardware vendors to support their hardware (unless that software has been
made available through the upstream open source community). We will cover only
hardware supported by the open source and free software communities. Some vendors
may provide closed-source drivers for their hardware. If you intend to use such hard-
ware, keep in mind that you will have no support from the open source and free software
development community, members of which can be very vocal in their dislike of pro-
prietary drivers. You will have to refer to the component vendor directly for any prob-
lems related to or caused by their closed-source drivers. Open source and free software
developers have repeatedly refused to help anyone that has problems when using
closed-source drivers, so please do not be under any false expectation that your case
will be handled any differently.

55

Processor Architectures

Linux runs on a large and ever-growing number of machine architectures, but not all
these architectures are actually used in embedded configurations, as already men-
tioned. A quick look at the arch subdirectory of the Linux kernel sources shows 24
architectures supported in the official kernel at the time of this writing, with others
maintained by developers in separate development trees, possibly making it into a fu-
ture release of the official kernel. Of those 24 architectures, we will cover 8 that are
used in embedded Linux systems (in alphabetical order): ARM, AVR32, Intel x86,
M32R, MIPS, Motorola 68000, PowerPC, and Super-H. The following discussion will
look at each of these architectures in terms of the support provided by Linux to the
CPUs belonging to that architecture and the boards built around those CPUs. It will
also cover the intricacies of Linux’s support as well as some of the possible caveats.

MMU-Less Linux Systems Running uClinux

In addition to the eight architectures mentioned previously, Linux also runs on
uClinux-based systems—such as those based on the Blackfin from Analog Devices—
and the Microblaze soft-synthesizable IP core from Xilinx used in a growing number
of newer FPGA-based devices running Linux. These systems don’t feature a traditional
MMU (memory management unit), a defining characteristic of modern Unix-like sys-
tems and the hardware support for the operating system concept of virtual memory
abstraction. These processors are typically intended as an alternative to older 8-bit
microcontrollers in low-cost devices where cost sensitivity or FPGA fabric gate utiliza-
tion still precludes use of a processor with an MMU. uClinux-based systems have in-
cluded commercial printing solutions, home entertainment devices, and the original
iPodLinux port. (Modern iPhones and iPods are based around more powerful ARM
processors that include a full MMU and so eventually will be able to run the official
Linux kernel, once the port is complete.) uClinux is feature complete and is supported
in the official Linux kernel.

We will not cover the MMU-less architectures supported by uClinux in this chapter
(even though such support has now been integrated into the official 2.6 series Linux
kernel) because this book is primarily concerned with 32-bit (and higher) systems fea-
turing a full MMU, but also because more and more processors that you are likely to
encounter are now able to have an MMU. Few new architectures are being seriously
considered that don’t provide at least a basic MMU (and many are also now beginning
to feature complete virtualization technologies—even in the embedded space). The
bottom line: if you are interested in learning more about uClinux, we suggest that you
first read this section, and then investigate one of the texts available on that subject, or
consult http://www.uclinux.org.

56 | Chapter3: Hardware Support

http://www.uclinux.org

ARM

ARM, which stands for Advanced RISC Machine, is a family of processors maintained
and promoted by ARM Holdings Ltd. In contrast to other chip manufacturers such as
IBM, Freescale, and Intel, ARM Holdings does not manufacture its own processors.
Instead, it designs complete CPU cores for its customers based on the ARM core,
charges customers licensing fees on the design, and lets them manufacture the chip
wherever they see fit. This offers various advantages to the parties involved, but it does
create a certain confusion to the developer approaching this architecture for the first
time, as there is no central producer of ARM chips. There is, though, one unifying
characteristic that is important to remember: all ARM processors share the same ARM
instruction set, which makes all variants supporting a particular revision of the ARM
instruction set fully software compatible.

This doesn’t mean that all ARM CPUs and boards can be programmed and set up in
the same way, only that the assembly language and resulting binary codes are identical
for all ARM processors meeting a certain revision of the architecture. Revisions of the
architecture in current use include ARMv4T (introduced the Thumb instruction set),
ARMVSTE (the basis for “Xscale” parts), ARMv6 (TI-OMAP-based devices from No-
kia, and the like, as well as the ARMv6KZ-based Apple iPhone), and ARMv7. Each of
these architectural revisions enhances features within a “family” of ARM processors—
ARM7TDMI, ARMOE, Xscale, ARM11, and so on. Naming gets slightly more complex
in reality, because revisions of the architecture include letters or “flags” indicating add-
ing features. For example, the ARMv4T introduced a condensed version of the in-
struction set (“Thumb”) that aims to use less memory for instruction storage, while
maintaining an adequate level of performance. There are also ARM processors with
enhanced DSP performance (“E”), Java bytecode support (“]”), virtualization capabil-
ities, and a growing number of other flags.

Currently, ARM CPUs are manufactured by Marvell (formerly Intel, under the “Xscale”
brand), Toshiba, Samsung, and many others. The ARM architecture is very popular in
many fields of application, from cell phones and PDAs to networking equipment, and
there are hundreds of vendors providing products and services around it. It is highly
likely that, as you read this, you are surrounded by devices featuring at least one (if not
several) ARM cores.

At the time of this writing, Linux supports 40 distinct ARM CPUs, and a total of 1,832
different machine types. Given the quantity and variety of information involved, as well
as the pace with which ARM Linux is developing, we refer you to the complete and up-
to-date list of ARM systems supported and their details at http://www.arm.linux.org.uk/
developer/machines. Suffice it to say that Linux supports most mainstream CPUs and
boards, such as the Texas Instruments OMAP CPUs used by Nokia in its well-known
Linux Internet Tablets, and the IXP network processors used in many different net-
working devices. In case you need it, there is a way to add support for new hardware,
although it is highly likely that support for your development reference board is already

Processor Architectures | 57

http://www.arm.linux.org.uk/developer/machines
http://www.arm.linux.org.uk/developer/machines

in the ARM Linux tree. Generally, for any information regarding the Linux ARM port,
consult the project’s website at http://www.arm.linux.org.uk.

For information regarding the ARM architecture itself and its instruction set, consult
the ARM Architecture Reference Manual edited by David Seal (Addison-Wesley), and
Steve Furber’s ARM System-on-Chip Architecture (Addison-Wesley), as well as the ma-
terials available on the ARM website at http://www.arm.com.

AVR32

AVR32 is a newcomer to the industry (2006). It is a 32-bit microprocessor architecture
designed by the Atmel corporation, which also produces the AVR 8-bit microcontroller
devices used in deeply embedded situations. Although AVR32 and AVR are similar in
name, they are unrelated except for sharing the same original design center. AVR32
comprises several subarchitectures and can additionally support the usual DSP and
Java acceleration instructions one has come to expect from recent embedded process-
ors. AVR32 provides for several modes of CPU operation; both fixed width 16-bit
instructions and “extended” 32-bit instructions are supported. In some ways, the con-
densed format 16-bit width instructions are similar in purpose to the ARM Thumb
instruction set mentioned in the previous section. Both processors compress instruction
memory usage without losing the benefit of being a 32-bit device, although it has been
suggested that AVR32 is actually more efficient in terms of code density (memory foot-
print used by code, etc.) and overall performance. AVR32 is exclusively used in Atmel’s
own products at the time of this writing.

The initial port of Linux to AVR32 was announced in a posting to the Linux Kernel
Mailing List in early 2006. At the time of this writing, a single machine type (at32ap)
is supported in the official Linux kernel, as well as several development boards. For
more information about AVR32 Linux, refer to the website at http://avr32linux.org, as
well as the community-maintained http://www.avrfreaks.net.

Intel x86

The x86 family starts with the 386 introduced by Intel in 1985 and goes on to include
all the descendants of this processor, including the 486, the Pentium family, the Net-
Burst (P6), Xeon, Core, and Core 2, along with compatible processors by other vendors
such as National Semiconductor and AMD (which first popularized the x86_64 64-bit
extensions of the x86 over Intel’s redesigned Itanium, often simply called the “Itanic”
by Linux developers for its lack of widespread adoption outside of a few niche markets).
Intel remains, though, the main reference in regards to the x86 family and is still the
largest distributor of processors of this family. Lately, a new trend is to group traditional
PC functionality with a CPU core from one of the 386 family processors to form a
System-on-Chip (SoC). AMD Geode family, which AMD bought from National
Semiconductor, is a prime example of this trend; it is used in the OLPC’s first generation
XO laptop. There are many more SoCs on the market.

58 | Chapter3: Hardware Support

http://www.arm.linux.org.uk
http://www.arm.com
http://avr32linux.org
http://www.avrfreaks.net

Although x86 is the most popular and most publicized platform to run Linux, it rep-
resents a small fraction of the traditional embedded systems market. In most cases,
designers prefer ARM, MIPS, and PowerPC processors to 1386 for reasons of complex-
ity, power utilization (though this is changing), and overall cost.

Thatsaid, i386 remains the most widely used and tested Linux platform. Thus, it profits
from the largest base of software available for Linux. Many applications and add-ons
start their lives on the 1386 before being ported to the other architectures supported by
Linux. The kernel itself was in fact written for the 1386 first before being ported to any
other architecture. After many years of high-profile resistance from Linus Torvalds, the
x86 architecture also finally has its own built-in debugger within the official Linux
kernel, as opposed to the debugger being an intrusive add-on.

Since most, if not all, 1386 embedded systems are very similar, or identical to the work-
station and server counterparts in terms of functionality and programmability, the ker-
nel makes little or no difference between the various x86 CPUs and related boards.
When needed, a few #ifdef statements are used to accommodate the peculiarities of a
certain CPU or board, but these are rare.

One exception to this is Voyager support. Voyager is a long defunct platform that
ordinarily would have also long since ceased to be supported by mainstream Linux,
were it not for the efforts of one man. James Bottomley (Linux SCSI maintainer and
Voyager enthusiast) continues to keep this venerable platform alive. He even rewrote
various parts of the low-level x86 architectural support code to handle Voyager’s var-
ious oddities. Never say that Linux kernel engineers aren’t enthusiastic, determined,
or a even a little quirky from time to time.

The i386-based PC architecture is the most widely documented architecture around.
There are several books and online documents in many languages discussing the intri-
cacies of this architecture, in addition to the documents available from the various
processor vendors, some of which are very complete. To get an idea of the scope of the
existing documentation, try searching for “pc architecture” in the book section of
Amazon.com.

It would be hard to recommend a single source of information regarding the 1386 and
PC architecture. Intel Architecture Software Developer’s Manual, Volume 1: Basic
Architecture, Volume 2: Instruction Set Reference, and Volume 3: System Programming
Guide, published by Intel, are traditional sources of information about how to program
the 1386s and are quite rich, albeit limited to Intel’s products. The availability of these
documents may vary. At some point, hardcopies were not available from Intel’s
literature center. During that time, however, the documents were available in PDF
format online. At the time of this writing, the manuals are available in electronic PDF
downloadable form from Intel’s literature center.

Processor Architectures | 59

M32R

M32Risanotherrecent (2003) 32-bit microprocessor architecture, designed by Renesas
Technology and implemented both in silicon and as an FPGA synthesized soft-logic
core. Unlike many other FPGA-based systems running Linux, the M32R actually
implements a full MMU and can therefore run a stock Linux kernel without using
uClinux’s user space utilities. M32R has been used in a variety of applications, ranging
from consumer electronics devices such as PDAs, cameras, and the like to engine con-
trol units. The Linux port supports nearly a dozen platforms based upon M32R.

For further information about the port, refer to the website at http://www.linux-
m32r.org.

MIPS

MIPS is the brain child of John Hennessey—mostly known by computer science stu-
dents all over the world for his books on computer architecture written with David
Patterson—and is the result of the Stanford Microprocessor without Interlocked Pipeline
Stages project (MIPS). MIPS is famed for once having been the basis of the workstations
and servers sold by SGI and of gaming consoles such as Nintendo’s 64-bit (N64) system
and the Sony Playstations 1 and 2. It was also used in the Series 2 TiVo and in countless
other consumer electronics devices. The company steering this processor, MIPS Tech-
nologies Inc., licenses CPU cores to third parties much like ARM. Unlike ARM, how-
ever, there are in fact many instruction set implementations, which differ from each
other to various degrees. 32-bit MIPS implementations are available from manufactur-
ers such as IDT, Toshiba, RMI (Alchemy), NXP (formerly Philips), and LSI. 64-bit
implementations are available from IDT, LSI, NEC, NXP (formerly Philips), Broadcom,
and Toshiba. There is also a growing market for synthesizable MIPS IP cores for use in
soft-logic FPGA devices, and the like. Just as with ARM, we can only touch the surface
of what is available based upon MIPS.

The initial port of Linux to MIPS was mainly done to support MIPS-based workstations,
although these are now largely defunct (there aren’t any MIPS workstations being made
any more). Eventually, the port also came to include development boards and embed-
ded systems that were based on MIPS. To accommodate the various CPUs and systems
built around them, the layout of the MIPS portion of the kernel is divided into direc-
tories based on the type of system the kernel will run on. Similarly, kernel configuration
for a given MIPS system is mainly influenced by the type of board being used. The actual
type of MIPS chip on the board is much less important than the type of environment
in which it is placed (the specifics of the board itself).

Support for Linux on MIPS is more limited than for other architectures such as the Intel
x86 or the PowerPC. In fact, few of the main distributions have actually been ported
to MIPS. When available, commercial vendor support for MIPS is mostly limited to
embedded architectures. Nevertheless, there is a Debian port to both big- and

60 | Chapter3: Hardware Support

http://www.linux-m32r.org
http://www.linux-m32r.org

little-endian MIPS, several community embedded distributions can target MIPS, and
embedded Linux vendors such as MontaVista actively support MIPS, too. Also, many
PDA and development board manufacturers actively support Linux ports on their own
MIPS-based hardware. As with some other ports, MIPS lacks a few of the things you
might have come to expect from using a desktop Linux environment on an Intel-like
x86 system, but it is sufficient for many embedded Linux needs.

For more information regarding the MIPS port of Linux in general, take a look at the
official home of the Linux MIPS port at http://www.linux-mips.org. The website con-
tains a list of supported systems, documentation, links, and other useful resources.
Because MIPS is divided into multiple platforms, you will need to refer to the data
provided by your system’s manufacturer to evaluate or implement Linux support. One
general resource that is recommended on MIPS Technologies Inc.’s own website is See
MIPS Run by Dominic Sweetman (Morgan Kaufmann Publishers). You can also get
PDFs on MIPS’s website. MIPS provides 32- and 64-bit editions of its MIPS Architecture
for Programmers three-volume series, made up of Volume I: Introduction to the MIPS
Architecture, Volume II: The MIPS Instruction Set, and Volume III: The MIPS Privileged
Resource Architecture.

Motorola 68000

The Motorola 68000 family is known in Linux jargon as m68k. The MMU-equipped
varieties have been supported under Linux for quite some time, and the MMU-less
varieties have been supported starting with the 2.6 kernel.

m68k came in second only to the Intel x86 as a popular 1980s architecture. Apart from
being used in many mainstream systems by Atari, Apple, and Amiga, and in popular
workstation systems by HP, Sun, and Apollo, the m68k was also a platform of choice
for embedded systems development. Recently, though, interest has drifted away from
the m68k to newer architectures, such as ARM, MIPS, SH, and PowerPC, for embedded
systems design. Nonetheless, from time to time new boards appear that are based upon
this venerable architecture.

Linux supports many systems based on m68k, starting with the mainstream and work-
station systems already mentioned and including VME systems from Motorola and
BVM. Because these systems are completely different, the kernel tree is built to accom-
modate the variations and facilitate the addition of other m68k-based systems. Each
system has its own set of specific modules to interface with the hardware. An example
of this is the interrupt vector tables and related handling functions. Each system has a
different way of dealing with these, and the kernel source reflects this difference by
having a different set of functions to deal with interrupt setup and handling for each
type of system.

Since the MMU versions of m68k are seldom used nowadays in new, cutting-edge
designs, they lag behind in terms of software support. There is, for instance, no real
Java support (but this may change due to the open sourcing of Sun’s Java Virtual

Processor Architectures | 61

http://www.linux-mips.org

Machine), nor is the processor architecture listed among supported architectures for
some other user-level applications. For up-to-date information regarding the port, the
supported hardware, and related resources, refer to the m68k Linux port home page
at http://www.linux-m68k.org. One distribution that has done a lot work for m68k is
Debian, so check out its documentation and mailing lists if you plan to deploy an m68k
Linux system.

Since there is no standard m68k-based platform such as the PC for the Intel x86, there
is no single reference covering all m68k-based systems. There are, however, many text-
books and online resources that discuss the traditional use of the m68k and its pro-
gramming. Motorola provides the 68000 Family Programmer’s Reference Manual and
the M68000 8-/16-/32-Bit Microprocessors User’s Manual free through its literature
center. Other, more elaborate, texts that include examples and applications can be
found by searching for “68000” on any online bookstore.

PowerPC

PowerPC (PPC) architecture was the result of a collaboration between Apple, IBM, and
Motorola (now Freescale)—the “AIM alliance.” It inherited ideas from work done by
the three firms, especially IBM’s Performance Optimization With Enhanced RISC
(POWER) architecture, which still exists and is heavily used as a 64-bit workhorse in
IBM’s many server offerings. PowerPC is mostly known for its original use in Apple’s
Macs, but there are other PowerPC-based workstations from IBM and other vendors,
as well as many PowerPC-based embedded systems. The popular TiVo system, for
instance, was based on an embedded PowerPC processor, for which TiVo actually did
the original work required to get Linux running on such PowerPC variants. This was
not a trivial task, since the embedded variants can be quite different at the OS level—
including a replacement of the regular virtual memory implementation with a special
soft-programmable one that requires the kernel to do much more work.

Along with 1386 and ARM, the PowerPC is the best supported architecture in Linux,
which is partly evident from the large number of PPC CPUs and systems on which
Linux runs. Although itis clear that PowerPC Linux has benefited from some big players
being behind it, it has also been successful because of a small but very dedicated number
of core PowerPC developers. Several of these (for example, Benjamin Herrenschmidt)
work for IBM. But others, notably Tom Rini and Matt Porter (along with others from
Embedded Alley) got into PowerPC as a sideline, personal interest and wound up
working at embedded Linux companies like MontaVista. Obviously, no description of
PowerPC Linux support would be complete without mentioning its maintainer, Paul
Mackerras, who originally started the “pmac” (Powermac, i.e. Apple) development
back in the last century and who now maintains overall coordination of Linux PowerPC
development, both 32- and 64-bit.

Thanks in part to sponsorship, bounties, and other, related development efforts of IBM
(and other players), a great number of applications that run on the Intel x86 are available

62 | Chapter3: Hardware Support

http://www.linux-m68k.org

for PowerPC, including Java. The PPC Linux community is active in many areas of
development ranging from workstation to embedded systems. The main PPC Linux
site is http://penguinppc.org. Community members maintain it; is not affiliated with any
particular vendor. It contains valuable documentation and links and should be con-
sidered the starting point for any Linux development on PPC.

A number of distributions support PowerPC, some exclusively. Yellow Dog Linux, for
example, provides Linux only for PowerPC machines. There are also traditional main-
stream distributions that provide support for PowerPC as part of their support for other
architectures. These include Debian, OpenSuSE, Fedora, and Ubuntu. Note that
PowerPC is often considered a “secondary” (community-maintained) architecture.

If you intend to use PowerPC in your embedded application and want to be in touch
with other folks using this architecture in their systems, be sure to subscribe to the very
active linuxppc-embedded list. Most problems are recurring, so there is probably some-
one on that list who has had your problem before. If not, many people will be interested
in seeing your problem solved, as they may encounter it, too. The list is hosted on
linuxppc.org, which also hosts many other PPC-related lists.

SuperH

In an effort to enhance its 8- and 16-bit H8 line of microcontrollers, Hitachi introduced
the SuperH (SH) line of processors in the early 1990s. These manipulate 32-bit data
internally and offer various external bus widths. Later, Hitachi formed SuperH Inc.
(now Renesas Technology) with STMicroelectronics (formerly SGS-Thomson
Microelectronics). Renesas licenses and steers development of the SuperH much the
same way ARM Holdings Ltd. does for ARM and MIPS Technologies Inc. does for
MIPS. The early implementations of the SuperH, such as the SH-1, SH-2, and their
variants, did not have an MMU. Starting with the SH-3, however, all SuperH processors
include an MMU. The SuperH is used within Hitachi’s own products, in many con-
sumer-oriented embedded systems such as PDAs, and in some older game consoles,
too.

Because the early SuperH (SH) processors did not include MMUs, Linux does not
support them. Currently, Linux supports some SH-3, SH-4, and SH-5 systems, but not
all, because these chips have many variations with various capabilities. Support for the
SuperH outside the kernel is rather limited for the moment. There is no support for
Java, for instance. The architecture does have a kernel debugger. A few distributions
provide SH support, such as MontaVista and Debian, whereas others such as Fedora
have been recompiled successfully by community developers from time to time, but
not on a permanent basis. A complete list of all supported versions of SuperH, along
with links to distributions and the like, is available on the Linux SuperH community
maintained website at http://www.linux-sh.org.

As there is no standard SH architecture, you will need to refer to your hardware’s
documentation for details about the layout and functionality of the specific hardware

Processor Architectures | 63

http://penguinppc.org
http://www.linux-sh.org

devices available in any reference board design. There are, nonetheless, manuals that
describe the operations and instruction sets of the various processors.

Buses and Interfaces

The buses and interfaces are the fabric that connects the CPU to the peripherals on the
system. Each bus and interface has its own intricacies, and the level of support Linux
provides them varies accordingly. A rundown follows of some of the many different
buses and interfaces found in typical embedded systems, and the level of support Linux
provides them. Linux supports many other buses, and we couldn’t hope to cover all of
them in the space of just one chapter. Some of these other buses are used in older
systems, are workstation- or server-centric, or are just a little too quirky to go into here.
In addition, some buses are proprietary to a specific system vendor, or are not yet heavily
adopted. We won’t discuss buses that lack widespread adoption, nor will we cover so-
called third generation buses such as HyperTransport in any detail, since they are
usually used only semitransparently as a CPU-level root bus. But we will mention In-
finiBand (and the OpenlB stack in particular).

If you’re designing a new embedded system from scratch, you might have no enumera-
ble, higher-level bus structure for certain devices. Instead, these may sit solely within
the CPU’s memory map as memory-mapped devices. Linux provides explicit support
for just this kind of embedded situation, through the use of “platform devices.” This
abstraction allows the kernel to support devices that it cannot simply enumerate when
it scans the available bus topology during bootup. Such devices are detected either
through the use of special platform-specific code or may be mentioned in the system
bootloader/kernel interface—for example, the flattened device tree passed between the
bootloader and the kernel on PowerPC platforms.

For additional information about buses and device support, refer to Linux Device Driv-
ers by Jonathan Corbet et al. (O’Reilly).

PCI/PCI-X/PCle

The Peripheral Component Interconnect (PCI) bus, managed by the PCI Special In-
terest Group (PCI-SIG), is the most popular bus currently available. Designed as a
replacement for the legacy Intel PC ISA bus, PCI is now available in two forms: the
traditional parallel slot form factor using 120 (32-bit PCI) or 184 (64-bit PCI-X) I/O
lines, and the newer (and also potentially much faster) PCI Express (commonly called
PCle or PCI-E) packet-switched serial implementation as used in most recent designs.
Whether conventional PCI, 64-bit PCI-X, or serial PCI-Express, PCI remains software
compatible between the different implementations, because the physical interconnect
used underneath is generally abstracted by the standard itself. Linux support is very
good indeed, but for those times when special support quirks are needed, Linux offers
PCI “quirks” too.

64 | Chapter3: Hardware Support

PCI requires software support in order for it to be used by device drivers. The first part
of this support is required to initialize and configure the PCI devices upon bootup
(called PCI enumeration). On PC systems, this is traditionally done by the BIOS, and
if the BIOS has carried out the initialization, the kernel will browse the BIOS’s table to
retrieve the PCI information. However, the kernel is capable of carrying out the initi-
alization and configuration itself. In both cases, the kernel provides an API to device
drivers, so they can access information regarding the devices on the PCI bus and act on
these devices. There are also a number of user tools for manipulating PCI devices (for
example, Ispci lists all PCI buses and devices). In short, the level of support for PCI in
Linux is fairly complete and mature.

Linux Device Drivers provides very good insight into PCI development in Linux and
how the PCI bus operates in general. PCI System Architecture by Tom Shanely and Don
Anderson (Addison-Wesley) gives in-depth information on the PCI bus for software
developers. Of course, you can always get the official PCI specification from the PCI-
SIG. Official specifications, however, tend to make very dry reading material. Finally,
there is the Linux PCI-HOWTO, available from the Linux Documentation Project
(LDP) at http://'www.tldp.org, which discusses the caveats of using certain PCI devices
with Linux and the support Linux provides to PCI devices in general.

ExpressCard (Replaces PCMCIA's PC Card)

Modern laptop and embedded devices replace the legacy PC Card first standardized by
the Personal Computer Memory Card International Association (PCMCIA) with a
higher speed standard based upon more recent technology, known as ExpressCard.
Like the PC Card before it, ExpressCard is intended to allow for easy addition of internal
peripheral devices to embedded devices in situations where, perhaps, using another
bus such as USB is not desirable or practical. This can be true for laptops, where a given
device should be added permanently without needing to constantly attach and detach
it as the laptop is used or put away for safe storage. Unlike PC Card (which is based
around its own unique bus design), ExpressCard simply provides both PCI-Express
and USB 2.0 through a convenient interface card format. ExpressCard supports two
form factors: ExpressCard/34 (34 mm wide) and ExpressCard/54 (54 mm wide, sup-
ports also the ExpressCard/34). Both are used depending upon device application re-
quirements.

Since ExpressCard is functionally an implementation of both the PCI-Express and USB
2.0 standards (themselves well supported by Linux), ExpressCard already has good
Linux support, and a growing number of systems are beginning to deploy it. Of course,
at the same time, the legacy PCMCIA PC Card interface, which provides a modified
form of 32-bit, 33 MHz PCI known as CardBus, continues to be used in some designs.
Linux support for CardBus is (and has been for a long time) extremely good, in spite
of the standard’s various quirks and complexities. The Linux PCMCIA and hotplug
mechanisms underwent a complete overhaul during the development of the 2.6 series

Buses and Interfaces | 65

http://www.tldp.org

Linux kernel, and they continue to evolve. Still, we hope your designs won’t need to
make use of legacy PCMCIA.

There is extensive documentation available concerning the use and implementation of
PCMCIA in the 2.6 series Linux kernel at http://kernel.org/pub/linux/utils/kernel/
pemcia/pemcia.html. For more modern ExpressCard systems, your first point of call as
far as Linux is concerned should be the reference documentation on USB 2.0 or PCI-
Express, depending upon which ExpressCard devices you plan to use.

PC/104, PC/104-Plus, PCI-104, and PCl/104-Express

Although many embedded devices today make use of regular desktop and server buses
such as PCI and PCI Express, certain applications demand that they be hosted in a more
robust form. This is the raison d’etre for the PC/104 embedded computer standard. PC/
104 defines a form factor for stackable computer processor boards (and other boards)
and serves a similar purpose in the space of industrial-grade computing to that of the
ATX (and its variants) in the consumer and enterprise computing environment. In
addition to being a different size, PC/104 systems have differing electrical and me-
chanical tolerances intended to enhance extensibility and increase ruggedness. There
are several forms of PC/104 depending upon whether a PCI or PCI-Express bus is
provided for use by other components within the stack. These forms of the standard
are commonly known as PCI/104 and PCI/104-Express, and are managed by the PC/
104 Consortium. The original plain PCI/104 and PCI/104-Plus are seldom seen in new
designs, because they rely upon the long since defunct ISA bus used in the original Intel
PC.

Since the PCI/104 and PCI/104-Express standards both implement standard Linux-
supported buses such as PCI and PCI-Express, devices built using the PC/104 form
factor are supported by Linux. This does not, of course, mean that a given device will
have a driver available, nor does it mean that you may not encounter problems, only
that the potential for good support of your hardware is in place so long as the other
necessary driver components are available.

66 | Chapter3: Hardware Support

http://kernel.org/pub/linux/utils/kernel/pcmcia/pcmcia.html
http://kernel.org/pub/linux/utils/kernel/pcmcia/pcmcia.html

CompactPCl/CompactPCle

The CompactPCI specification was initiated by Ziatech and developed by members of
the PCI Industrial Computer Manufacturer’s Group (PICMG), which oversees the
specification and promotes the use of CompactPCIl. The CompactPCI specification
provides an open and versatile platform for high-performance, high-availability appli-
cations. Its success is largely based on the technical choices its designers made. First,
they chose to reuse the Eurocard form-factor popularized by older standards, such as
VME. Second, they chose to make the bus PCl-compatible, hence enabling
CompactPCI board manufacturers to reuse low-cost PCI chips already available in the
mainstream market.

Technically, the CompactPCI bus is electrically identical to the PCI bus. Instead of
using slot connections, as found in most workstations and servers, pin connectors are
used to connect the vertically loaded CompactPCI boards to the CompactPCI back-
plane. As with PCI, CompactPCI requires a single bus master.” Consequently, Com-
pactPClI requires the permanent presence of a board in the system slot. It is this board
that arbitrates the CompactPCI backplane, just as a PCI chipset arbitrates a PCI bus in
a workstation or a server.

In addition, the CompactPCI specification allows for the implementation of the hot
swap specification, which describes methods and procedures for runtime insertion and
removal of CompactPCI boards. This specification defines three levels of hot swapping.
Each level implies a set of hardware and software capabilities. Here are the available
levels and their requirements:

Basic hot swap
This hot swap level involves console intervention by the system operator. When a
new card is inserted, she must manually inform the OS to power it up and then
configure and inform the software of its presence. To remove a card, she must tell
the OS that the board is about to be removed. The OS must then stop the tasks
that are interacting with the board and inform the board to shut down.

Full hot swap
In contrast to basic hot swap, full hot swap does not require console intervention
by the operator. Instead, the operator flips a microswitch attached to the card
injector/ejector to notify the OS of the impending removal. The OS then performs
the necessary operations to isolate the board and tell it to shut down. Finally, the
OS lights an LED to notify the operator that the board can now be removed. On
insertion, the OS receives an insertion signal and carries out the inverse operations.

" The term “bus master” can mean different things in different contexts. In this particular instance, “bus
master” designates the device that sets up and configures the PCI bus. There can be only one such device on
a PCI bus, though more than one may actually be able to access the memory regions exported by other PCI
devices.

Buses and Interfaces | 67

High availability

In this level, CompactPCI boards are under complete software control. A hot swap
controller software manages the state of all the boards in the system and can se-
lectively reverse these individual boards according to the system’s state. If a board
fails, for example, the controller can shut it down and power up a duplicate board
that is present within the same chassis for this very purpose. This hot swap level
is called “high availability,” because it is mostly useful in what are known as high-
availability applications,T such as telecommunications, where downtime must be
minimal.

In addition to the regular CompactPCI standard, which is widely used, an ongoing
standardization effort is leading up to the adoption of CompactPCle, a PCI-Express
variant of CompactPCI. CompactPCle provides many of the same features as Com-
pactPCl, including hot swap and high availability, while also offering increased
throughput and other benefits of the more modern PCI-Express.

Linux accommodates various levels of the CompactPCI standard, including hotplug-
ging, depending upon which tools are installed on your target embedded device. Several
of the embedded Linux vendors have also developed enhancements (especially via the
Carrier Grade Linux specification efforts) that allow for more complete control over
the high availability aspects of CompactPCI. Further information about the Carrier
Grade Linux specification and the level to which a given distribution supports the
standard is available at http://www.linuxfoundation.org/en/Carrier_Grade_Linux.

SCSI/iSCsl

Shugart Associates introduced the Small Computer Systems Interface (SCSI), which
eventually evolved into a series of standards developed and maintained by a series of
standard bodies, including ANSIL, ITIC, NCITS, and T10. Although mainly thought of
as a high-throughput interface for hard drives for high-end workstations and servers,
SCSlLis a both a general software interface and a set of electrical specifications that can
be used to connect various hardware peripherals. Only a small segment of embedded
systems ever use SCSI devices, though. These systems are typically high-end embedded
systems, such as ones providing an interface into NAS (network attached storage), and
usually implement iSCSI, where the SCSI protocol is used over regular TCP/IP rather
than as a traditional electrical bus within a machine.

Linux support for SCSI is extensive and well maintained, while iSCSI support varies
depending upon whether you wish to implement an initiator (client), target (device),
or both. Discussion of the kernel’s SCSI device drivers architecture can be found on the

T To avoid any confusion, we will refer to this hot swap level as “high availability hot swap level” and will
continue to use the “high-availability” adjective to refer to applications and systems that need to provide a
high level of availability, regardless of whether they use CompactPCI or implement the “high availability hot
swap level.”

68 | Chapter3: Hardware Support

http://www.linuxfoundation.org/en/Carrier_Grade_Linux

Linux SCSI mailing list (linux-scsi) at http://vger.kernel.org. The Open-iSCSI project
provides a full implementation of an iSCSI Initiator for modern Linux kernels at http:/
www.open-iscsi.org. For iSCSI Target support, several open source projects are under
development, as well as at least one proprietary implementation. You would be well
advised to refer to the Open-iSCSI project as a starting point when implementing a
Linux iSCSI target.

UsB

The Universal Serial Bus (USB) was developed and is maintained by a group of com-
panies that form the USB Implementers Forum (USB-IF). Initially developed to replace
such fragmented and slow connection interfaces as the parallel and serial ports tradi-
tionally used to connect peripherals to PCs, USB has rapidly established itself as the
interface of choice for peripherals, because of its low cost, ease of use, and high-speed
throughput. Although mostly a mainstream device-oriented bus, USB is increasingly
appearing in hardware used in embedded systems, such as SBCs and SoCs from several
manufacturers, especially now that the USB On-The-Go (OTG) chipsets featuring both
client and device side support in a single chipset are available to system manufacturers.

USB devices are connected in a tree-like fashion. The root is called the root hub and is
usually the main board to which all USB devices and nonroot hubs are connected. The
root hub is in charge of all the devices connected to it, directly or through secondary
hubs. A limitation of this is that computers cannot be linked in any form of networking
using direct USB cabling.¥

Support within Linux for USB devices is very good, especially as a result of the ongoing
efforts of developers such as Greg Kroah-Hartman (Greg K-H) who is trying to actively
engage device vendors in supporting as many devices as possible. As with other hard-
ware components, many Linux drivers have instead been developed in spite of their
manufacturers’ unwillingness to provide the relevant specifications. The main compo-
nent of Linux’s USB support is provided by the USB stack in the kernel. The kernel also
includes drivers for the USB devices supported by Linux. User tools are available to
manage USB devices and they, along with a complete list of supported devices, are
available through the Linux USB project website at http://www.linux-usb.org.

Linux Device Drivers provides guidelines on how to write Linux USB drivers. There are
a number of books that discuss USB, which you can find at the various online book-
stores. However, the consensus among developers and online book critics seems to
indicate that the best place to start, as well as the best reference, is the original USB
specification available online from the USB-IF.

¥ Some manufacturers actually provide a form of host-to-host link via USB, but the standard was not intended
to accommodate this type of setup. There are also USB network adapters, including Ethernet adapters, that
can be used to connect the computers to a common network.

Buses and Interfaces | 69

http://vger.kernel.org
http://www.open-iscsi.org
http://www.open-iscsi.org
http://www.linux-usb.org

IEEE1394 (FireWire)

FireWire is a trademark owned by Apple for a technology they designed in the late
1980s and early 1990s. They later submitted their work to the IEEE and it formed the
basis of what eventually became IEEE standard 1394. Much like USB, IEEE1394 ena-
bles devices to be connected using simple and inexpensive hardware interfaces. Because
of their similarities, IEEE1394 and USB often used to be considered together, although
it seems that USB has won the popularity contest over time, perhaps also due to the
licensing terms involved in using Firewire. Even Apple is now shipping systems without
Firewire support, in favor of using high-speed USB 2.0 instead.

In contrast to USB, IEEE1394 connections do not require a root node. Rather, con-
nections can be made either in a daisy-chain fashion or using an IEEE1394 hub. Also,
unlike SCSI, connections do not need any termination. It is also possible to connect
two or more computers directly using an IEEE1394 link, which isn’t really possible
with USB. To take advantage of this capability, there is even an Internet RFC (Request
For Comment, a form of Internet “standard”) specifying how to implement IP over
IEEE1394.

Linux’s support for IEEE1394 used to be buggy and was certainly incomplete in com-
parison with other operating systems. [IEEE1394 support was completely rewritten in
the 2.6 series Linux kernel and is now widely considered to be very good. For further
information, visit http://www.linux1394.org.

InfiniBand

InfiniBand is a high-performance switched fabric interface created as a result of merging
two competing designs: Future I/O (HP, and IBM) and Next Generation I/O (Intel,
Microsoft, and Sun). It is built upon a number (ranging from 1-12 or more) of high-
speed, point-to-point and bidirectional serial links, and in some ways is similar to other
newer buses such as PCI Express. Maximum data throughput ranges from 2 Gigabits
to 96 Gigabits for a 12X (12 bonded serial links) Quad Data Rate (QDR) configuration.
Two of InfiniBand’s main selling points are its very low end-to-end latency (around 1
microsecond) and its support for performance enhancing optimizations such as RDMA
(Remote DMA). These features have encouraged InifiniBand adoption for high-
performance computing, especially in supercomputers.

Linux support for InfiniBand comes thanks to Open Fabrics Alliance (OFA), an in-
dustry consortium created to address the lack of a standard InfiniBand API. OFA
maintains the OpenlIB InfiniBand Driver Stack that is shipped with a growing number
of Linux distributions. Visit http://www.openfabrics.org for more information.

70 | Chapter3: Hardware Support

http://www.linux1394.org
http://www.openfabrics.org

GPIB

The General-Purpose Interface Bus (GPIB) has its roots in HP’s HP-IB bus, which was
born at the end of the 1960s and is still being used in engineering and scientific appli-
cations. In the process of maturing, GPIB became the IEEE488 standard and was revised
as late as 1992. Many devices that are used for data acquisition and analysis are, in fact,
equipped with a GPIB interface. With the advent of mainstream hardware in this field
of application, many GPIB hardware adapters have been made available for such hard-
ware and for PCs in particular.

GPIB devices are connected together using a shielded cable that may have stackable
connectors at both ends. Connectors are “stackable” in the sense that a connector on
one end of a cable has the appropriate hardware interface to allow for another connector
to be attached to it, which itself allows another connector to be attached. If, for instance,
a cable is used to connect a computer to device A, the connector attached to A can be
used to attach the connector of another cable going from A to device B.

Linux support for GPIB is available thanks to the Linux GPIB kernel driver and library
maintained at http://linux-gpib.sourceforge.net. The maintainer has stated that he
doesn’t currently have any plans to add new features beyond ensuring that the existing
library continues to build and run against recent kernels. The package currently pro-
vides kernel drivers, a user space library compatible with National Instrument’s own
GPIB library, and language bindings for Perl and Python. The package supports hard-
ware from HP, Keithley, National Instruments, and other manufacturers. The complete
list of supported hardware is included in the devices.txt file found in the package’s
sources and on the project’s website.

12C

Initially introduced by Philips (now NXP) to enable communication between compo-
nents inside TV sets, the Inter-Integrated Circuit (I?C) bus can be found in many em-
bedded devices of all sizes and purposes. As with other similar small-scale buses such
as SPI and MicroWire, I2C is a simple serial bus that enables the exchange of limited
amounts of data among the IC components of an embedded system. There is a broad
range of 1?C-capable devices on the market, including LCD drivers, EEPROMs, and
DSPs. Because of its simplicity and its hardware requirements, I>?C can be implemented
in both software and hardware.

Connecting devices using I>C requires only two wires, the serial clock line (SCL) with
the clock signal and the serial data line (SDA) with the data. All devices on an I>C bus
are connected using the same wire pair. The device initiating a transaction on the bus
becomes the bus master and communicates with slaves using an addressing scheme.
Although I>C supports multiple masters, most implementations have only one master.

Buses and Interfaces | 71

http://linux-gpib.sourceforge.net

The main kernel tree includes support for I?C, a number of devices that use I>’C, and
the related System Management Bus (SMBus). Due to the heavy use of I*C by hardware
monitoring sensor devices, the I?C support pages are hosted on the Linux hardware
monitoring project website at http://www2.Im-sensors.org. The site includes a number
of links, documentation, and the most recent I*C development code. Most importantly,
it contains a list of the I>C devices supported, along with the appropriate driver to use
for each device.

Apart from the documentation included with the kernel about I>’C and the links and
documentation available on the hardware sensors website, information regarding the
bus and related specification can be obtained from Philips’s website at http://
www.nxp.com/products/interface_control/i2c.

1/0

Input and output (I/O) are central to the role of any computerized device. As with other
OSes, Linux supports a wide range of I/O devices. The following does not pretend to
be a complete run-down of all of them. For such a compilation, you may want to read
through the Hardware Compatibility HOWTO available from LDP. Instead, this
section will concentrate on the way the different types of I/O devices are supported by
Linux, either by the kernel or by user applications.

Some of the I/O devices discussed are supported in two forms by the kernel, first by a
native driver that handles the device’s direct connection to the system, and second
through the USB layer to which the device may be attached. There are, for instance,
PS/2 keyboards and (older) parallel port printers along with USB keyboards and USB
printers. Because USB has already been discussed earlier, and an in-depth discussion
of Linux’s USB stack would require a lengthy text of its own, we will cover only the
support Linux provides to the devices directly attached to the system. Note, however,
that USB drivers for similar devices tend to rely on the infrastructure already available
in Linux to support the native devices. A USB serial adapter driver, for example, relies
on the same facilities as the traditional serial driver, in addition to the USB stack.

Serial Port

The serial port is arguably every embedded system developer’s best friend (or her worst
enemy, depending on her past experience with this ubiquitous interface). Many em-
bedded systems are developed and debugged using an RS232 serial link between the
host and the target. Sometimes, PCBs are laid out to accommodate a serial port, but
only development versions of the boards ever include the actual connector, while pro-
duction systems are shipped without it. The simplicity of the RS232 interface has en-
couraged its widespread use and adoption, even though its bandwidth is rather limited
compared to other means of transmission. Note that there are other serial interfaces
besides RS232, some of which are less noise-sensitive and therefore more adapted to

72 | Chapter3: Hardware Support

http://www2.lm-sensors.org
http://www.nxp.com/products/interface_control/i2c
http://www.nxp.com/products/interface_control/i2c

industrial environments. The hardware serial protocol, however, isn’t as important as
the actual programming interface provided by the serial device’s hardware.

Since RS232 is a hardware interface, the kernel doesn’t need to support RS232 itself.
Rather, the kernel includes drivers to the chips that actually enact RS232 communica-
tion, Universal Asynchronous Receiver-Transmitters (UARTSs). UARTS vary from one
architecture to another, although some UARTS, such as the 16550(A), are used on more
than one architecture.

The main serial (UART) driver in the kernel is drivers/char/serial.c. Some architectures,
such as the SuperH, have other serial drivers to accommodate their hardware. Some
architecture-independent peripheral cards also provide serial interfaces. Nonetheless,
serial devices in Linux are uniformly accessed as terminal devices, as in Unix systems,
regardless of the underlying hardware and related drivers. The corresponding device
entries start with /dev/ttySO and can go up to /dev/ttyS191. In most cases, however, there
is only a handful of serial device entries in a system’s /dev directory.

Serial port basics, setup, and configuration are discussed in the Serial HOWTO avail-
able from the LDP. Programming the serial port in Linux is discussed in the Serial
Programming HOWTO from the LDP. Since serial port programming is actually
terminal programming, any good reference on Unix systems programming would be a
good start. Worthy of note is Richard Stevens and Stephen Rago’s Advanced Program-
ming in the UNIX Environment (Addison-Wesley), which is one of the most widely
recognized works on the subject of Unix systems programming, including terminal I/O.

Parallel Port

In comparison to the serial port, the parallel port is seldom an important part of an
embedded system. Unless the embedded system is actually a PC-style SBC, the parallel
port is, in fact, rarely even part of the system’s hardware. In some cases, it is used
because the embedded system has to drive a printer or some sort of external device,
but with the widespread adoption of USB and IEEE1394, this need has almost com-
pletely disappeared.

One area of embedded systems development where the parallel port fits quite nicely,
however, is simple multibit I/O. When debugging, for instance, you can easily attach
a set of LEDs to the parallel port’s pins and use those LEDs to indicate a position in
the code. The trick is to insert a set of parallel port output commands in different
portions of the code and to use the LEDs to identify the last position reached prior to
machine lockup. This is possible because the parallel port’s hardware keeps the last
value output to it unchanged regardless of the state of the rest of the system. Linux
Device Drivers provides a more detailed description of how to use the parallel port as
a simple I/O interface.

o | 73

Modem

Embedded systems that use a modem to call a data center are quite common. Alarm
systems, bank machines, and remote-monitoring hardware are all examples of embed-
ded systems that need to communicate with a central system to fulfill their primary
purposes. The goals are different, but many of these systems still use conventional
modems to interface with the POTS (plain old telephone system) to access a remote
host. Of course, there are higher speed devices with greater bandwidth available, but
since modems work in a wide variety of environments—including very remote locations
that don’t have the latest cellular or computer networks—don’t count them out any
time soon.

Modems in Linux are seen as serial ports, which is very much the same way they are
seen across a variety of operating systems, including Unix. As such, they are accessible
through the appropriate /dev serial device entry and are controlled by the same driver
as the native serial UARTS, regardless of whether they are internal or external. This
support, however, applies only to real modems.

Many newer “modem” devices are actually very low-cost circuits containing little more
technology than the most basic sound card. These so called WinModems contain only
the bare minimal hardware that make up a modem, and they are capable of providing
real modem services only because of software that runs on the operating system. As the
name implies, these modems are mainly targeted to systems running Windows. They
work fine with that operating system, because their vendors provide the appropriate
drivers. With Linux, however, they do not always work, because they don’t contain
real modem hardware and the kernel can’t use its serial driver to operate them without
additional support.

To provide support for these types of (handicapped) devices, a number of projects have
sprung up to develop the necessary software packages. A central authority on these
projects is the Linmodems website at http://www.linmodems.org. The site provides
documentation, news, and links to the various WinModem support projects. At the
time of this writing, however, there is no body of code that provides uniform support
for the various WinModems.

Real modem setup and operation are described in the Modem HOWTO from the LDP.
Linmodem setup and operation are described in the Linmodem HOWTO from the
LDP. Since modems are serial ports, the documentation previously mentioned for serial
ports also applies to modems.

Data Acquisition

Data acquisition (DAQ) is at the basis of any process automation system. Any modern
factory or scientific lab is filled with DAQ equipment linked, in one way or another, to
computers running data analysis software. Typically, as described earlier, the events
occurring in the real world are measured by means of transducers, which convert a

74 | Chapter3: Hardware Support

http://www.linmodems.org

physical phenomenon into an electrical value. These values are then sampled using
DAQ hardware and are thereafter accessible to software.

There is no standard interface in Unix, or any other operating system for that matter,
for interfacing with data acquisition hardware.§ Comedi, the Linux control and meas-
urement device interface, is the main package for interfacing with DAQ hardware.
Comedi is found at http://www.comedi.org and contains device drivers for a great num-
ber of DAQ boards. The complete list of boards supported is found in the Supported
hardware section of the website.

Along with providing drivers for DAQ hardware, the Comedi project includes Come-
dilib, a user space library that provides a unified API to interface with all DAQ hard-
ware, regardless of model or manufacturer. This is very useful, because it allows you
to develop the analysis software independently of the underlying hardware and avoid
being locked in to a particular vendor.

Similarly, Kcomedilib, a kernel module providing an API similar to Comedilib, provides
access to the DAQ hardware to other kernel modules, which could be real-time tasks.

No discussion about DAQ would be complete without covering some of the most well-
known commercial (proprietary) packages used along with it, such as LabVIEW, Mat-
lab, and Simulink. Given the popularity of Linux in this field, their respective vendors
have made all three packages available for Linux. Note, however, that a number of
packages are in development that aim to provide open source replacements for these
packages. Scilab and Octave, for instance, are Matlab replacements found at http:/
www.scilab.org and http://www.octave.org, respectively.

Documentation regarding the installation and configuration of Comedi can be found
on the project’s website along with examples. The site also includes a number of useful
links to other Linux DAQ-related sites. Documentation regarding the closed-source
packages can be found on their vendors’ websites.

Although we haven’t covered them, some DAQ hardware vendors do provide drivers
for their hardware, either in open source form or under a proprietary license. When
evaluating whether to use such drivers, it is important to ponder future vendor support
so that you don’t find yourself trapped with dead and unmaintained code. Even when
source is available under an open source or free software license, be sure to evaluate its
quality to ensure that you can actually maintain it if the vendor decides to drop its
support.

§$ DAQ hardware may actually take a number of forms. It can be an Ethernet-enabled device or PCI card, or
use some other type of connection. However, most DAQ devices used with workstations connect through
some standard interface such as ISA, PCI, or PCMCIA.

10 | 75

http://www.comedi.org
http://www.scilab
http://www.scilab
http://www.octave.org

Keyboard

Most embedded systems are not equipped with keyboards. Some may have a limited
input interface, but keyboards are usually considered a luxury found only on traditional
workstation and server configurations. In fact, the idea that an embedded system may
have a keyboard would be viewed as awkward by most traditional embedded system
designers. Nonetheless, recent breeds of web-enabled and consumer-oriented embed-
ded systems have some form of keyboard attached to them (or perhaps a Bluetooth-
based cordless keyboard for entering data, surfing the web, and similar purposes).

As with other Unix-like systems, communication with the user in Linux is done by
means of a terminal, in the Unix tty sense, where a keyboard is used for input and a
console for output. (This description is, of course, a simplification of the very complex
world of Unix terminal I/O, but it will suffice for the current discussion.) Hence, all
keyboard input is considered by the kernel as input to a terminal. The conversion from
the actual data inputted by the user to terminal input seen by the operating system may
involve many different layers of kernel drivers, but all keyboard input is eventually fed
to the terminal I/O driver.

There are other ways to provide input to a terminal, apart from the use of a physically
connected keyboard. Terminal input is also possible through remote login, serial-
linking between computers, and—in the case of PDAs and Tablets—handwriting rec-
ognition software or the dasher predictive text graphical input utility, optimized for
use by those with all manners of disabilities. In each case, program access to character
input requires terminal I/O programming.

Mouse

Embedded systems that have a user interface often offer some form of touch-based
interaction. Whether it be a bank terminal or a PDA, the input generated by the user’s
touch of a screen area is treated the same way as input from a conventional workstation
mouse. In this sense, many embedded systems have a “mouse.” In fact, there are many
more embedded systems that provide a mouse-like pointer interface than there are that
provide a keyboard interface.

Since traditional Unix terminals do not account for mouse input, information about
the pointer device’s input doesn’t follow the same path as data about keyboard activity.
Instead, the pointer device is seen on most Linux systems via the Input events layer
located under /dev/input. There are several different files within /dev/input from which
one can determine current state, including /dev/input/mice. The device can be polled
and read to obtain information regarding the pointer device’s movements and events.
Any programming that involves a pointer device would require an understanding of
the protocol used by the device. Fortunately, a number of libraries and environments
already implement this level of decoding, and easy-to-use APIs are provided to obtain
and react to pointer input.

76 | Chapter3: Hardware Support

Display

Blinking lights, LEDs, and alphanumeric LCDs are the traditional visual apparel of
embedded systems. With the growing incursion of embedded devices into many facets
of our daily lives, including service automation, there is a push to replace such
traditional display methods with visually rich interfaces. In other areas of embedded
systems deployment, such as factory automation, avionics, PDAs, and Web Tablets,
visually rich interfaces have been the norm for quite a while. With a visually rich
environment comes the (not unreasonable) user expectation that the device also be
easier to use, and have a range of graphical tools for configuration.

As mentioned earlier, traditional Unix systems provide output through terminal con-
soles. These are great if you’re living in the 1970s on a slow modem connection to a
central Unix server sitting some hundreds or even thousands of miles away from the
phosphorous green display in your darkened room, but not so useful if you’re interested
in creating the next multimillion user Web Tablet, cell phone, or many other kinds of
modern embedded Linux device. The standards behind Unix terminals have been up-
dated as recently as 1998 (still a decade ago, but surprisingly recent) but few modern
users are comfortable using a Unix terminal from the days of yore. Besides, such
interfaces are too rudimentary for today’s demands. If nothing else, consoles can output
only text, and even there can struggle with internationalization. Other more elaborate
interfaces are needed when building graphic interfaces, which may include some form
of windowing system.

With Linux there are many ways to control and program a display. Some of these
involve kernel support, but most rely mainly on code running in user space, which
enhances system stability and facilitates modularity. The most common way to provide
a graphical interface with Linux is, of course, the X Window System, but there are other
packages that may be preferable in certain circumstances. The X Window System pro-
vides only the basic graphical windowing environment, not the higher level libraries
and applications needed to create a visually rich user experience. For these, you will
want to look to the GNOME and QT projects that run on X, and embedded enviorn-
ments built upon their respective GUIs (QTopia, Maemo, etc.). Several popular
embedded Linux devices have implemented their own UI from scratch, but we don’t
recommend that you (needlessly) reinvent the wheel.

To find out more about the current state of the art in Linux graphics and windowing
systems, visit the Free Desktop Project at http://www.freedesktop.org.

Sound

Beep, Beep, Beep...that’s what Sputnik emitted and that’s pretty similar to what many
embedded systems still sound like. Even the very graphic-rich avionics and factory
automation systems don’t have more sound output, except maybe in terms of decibel
level.

o | 77

http://www.freedesktop.org

Sound-rich embedded systems are, however, becoming more and more popular with
the proliferation of consumer- and service-oriented devices. Consumer-oriented devi-
ces feature complex audio and video codec support—including MP3, Ogg Vorbis,
AAC, MPEG, MPEGH4, and H264—and demand good support for audio. Good support
means the capability to multiplex multiple audio streams out to the same device
simultaneously, real-time performance free from substantive (and highly annoying)
jitter, and other requirements.

Unix, however, was never designed to accommodate sound. Over the years, a number
of schemes appeared to provide support for sound devices. These include the legacy
Open Sound System (OSS) and the Advanced Linux Sound Architecture (ALSA) that
has replaced it. In addition, various other projects provide sound servers: software that
conceptually sits above the device interface and supports multiplexing, remote audio,
and other fancy capabilities that aren’t really the domain of the sound device driver
itself. Two popular sound server daemons in use today are PulseAudio (PA), which is
used on Fedora, and JACK, which is enjoyed by many high-end audio enthusiasts,
especially in combination with the real-time patches that we will discuss later in this
book. These higher level audio services either have their own API or (much more likely)
support the standard ALSA API either directly, or through the use of a software wrap-
per. In the case of PulseAudio, once you have the PA libraries installed in place of the
stock ALSA user libraries, applications will automatically use PA instead of ALSA,
without any need to modify the application source code.

For further information about Linux audio, refer to the ALSA project website at http://
www.alsa-project.org, as well as the websites for specific sound daemons that you are
looking at, such as PulseAudio and JACK.

Printer

As with many mainstream peripherals, printers don’t usually grace embedded systems.
There are, however, exceptions. An embedded web server that supports printing is an
example of an embedded system that needs an operating system with printer support.
Traditional embedded system developers would usually consider “embedded web
server” to be an oxymoron, but devices that provide these types of packaged services
are more and more common and involve development methods similar to those of more
constrained embedded devices. In addition, home routers, office print servers, and even
PDAs these days require some capability to talk to a remote printer, even if they don’t
directly support attaching a regular printer to a port on the embedded device itself.

Conventional Unix printer support is rather outdated in comparison to the support
provided by many other operating systems. This also used to be largely true of Linux
(one of the authors recalls many hours as a teenager spent configuring LPD and APS
MagicFilter to print Postscript) but fortunately, a lot has changed since. These days,
most Linux systems handle device configuration, printer management, and actual
printing itself through Common Unix Printing System (CUPS), the same printing

78 | Chapter3: Hardware Support

http://www.alsa-project.org
http://www.alsa-project.org

service Apple uses in its various shiny laptops and gadgets. CUPS is an extremely flex-
ible, modern alternative to the ancient Unix Ipd printer daemon. You can find out more
about CUPS at the CUPS project website at http://www.cups.org, whereas more generic
Linux printing issues and most of your documentation needs are addressed at the Linux
Printing website, http://www.linuxprinting.org. Unless, of course, you want to dig out
a copy of MagicFilter and while away the evening.

Storage

All embedded systems require at least one form of persistent storage to start even the
earliest stages of the boot process. Most systems, including embedded Linux systems,
continue to use this same initial storage device for the rest of their operation, either to
execute code or to access data. In comparison to traditional embedded software, how-
ever, Linux’s use imposes greater requirements on the embedded system’s storage
hardware, both in terms of size and organization.

The size requirements for embedded Linux were discussed in Chapter 1, and an over-
view of the typical storage device configurations in Chapter 2. We will discuss the actual
organization further in Chapters 7 and 8. For the moment, let’s take a look at the
persistent storage devices supported by Linux. In particular, we’ll discuss the level of
support provided for these devices and their typical use with Linux.

Memory Technology Devices

In Linux terminology, memory technology devices (MTDs) include memory devices
such as conventional ROM as well as modern NOR/NAND flash parts. Such devices
have their own capabilities, particularities, and limitations. For example, although
some flash parts can be directly memory mapped (NOR flash and ROM devices), they
still use special out-of-band mechanisms to handle rewriting and other actions. In the
case of NAND flash, there is no direct memory mapping, and the Linux kernel must
use bounce buffers (copy data from the flash into RAM) before it is able to access the
data contained within the flash. Hence, to program and use an MTD device in their
systems, embedded system developers traditionally have had to use tools and methods
specific to that type of device.

To avoid, as much as possible, having different tools for different technologies and to
provide common capabilities among the various technologies, the Linux kernel in-
cludes the MTD subsystem. This provides a unified and uniform layer that enables a
seamless combination of low-level MTD chip drivers with higher-level interfaces called
user modules. These user modules should not be confused with kernel modules or any
sort of user space software abstraction. The term “MTD user module” refers to software
modules within the kernel that enable access to the low-level MTD chip drivers by
providing recognizable interfaces and abstractions to the higher levels of the kernel or,
in some cases, to user space.

Storage | 79

http://www.cups.org
http://www.linuxprinting.org

In Chapter 7, we will continue our discussion of the MTD subsystem and will detail
the setup and configuration instructions for using MTD devices in your embedded
system.

PATA, SATA, and ATAPI (IDE)

The AT Attachment (ATA)!l was developed in 1986 by three companies: Imprimis,
Western Digital, and Compagq. It was initially used only by Compaq but eventually
became quite popular when Conner Peripherals began providing its IDE drives through
retail stores. By 1994, ATA was an ANSI standard. Different versions of the standard
have since been developed allowing faster transfer rates and enhanced capabilities.
Along the way, the ATA Packet Interface (ATAPI) was developed by CD-ROM man-
ufacturers with the help of Western Digital and Oak Technology. ATAPI allows access
to CD-ROM and tape devices through the ATA interface using SCSI-like command
packets. ATA exists in both parallel (PATA) and serial (SATA) forms. Today, a growing
number of systems use the newer, serial-based, SATA interface that supersedes (par-
allel) ATA.

In embedded Linux systems, IDE and most other types of disks are usually set up as in
a workstation or server. Typically, the disk holds the operating system bootloader, the
root filesystem, and possibly a swap partition. In contrast to most workstations and
servers, however, not all embedded system monitors and bootloaders are ATA-capable.
In fact, as we’ll see in Chapter 9, most bootloaders are not ATA/IDE-capable. If you
want to use an IDE disk in your system and an ATA-capable monitor or bootloader is
not present in your system’s flash, you need to have the kernel present in flash or in
ROM with the boot monitor so that it may be accessible at system startup. You then
have to configure your boot monitor to use this kernel on startup in order to have access
to the IDE disk. In this case, you can still configure your root filesystem and swap
partition to be on the IDE disk.

Linux’s support for the both the legacy PATA and newer SATA interfaces is quite ex-
tensive and mature. You are extremely unlikely to encounter fundamental problems in
getting a hard disk to work with Linux—but you might want to visit the Linux ATA
website anyway at hitp://linux-ata.org.

Non-MTD Flash-Based devices

In addition to the MTD flash-based devices we have previously discussed, a growing
number of embedded systems are making use of flash memory sticks, cards, and other
external peripherals that happen to contain flash memory but provide an alternative
interface to that flash. Examples of such devices include CompactFlash, Secure Digital
(SD, a replacement for older MMC), and all the popular USB sticks of various shapes,

I Although it is often referred to as “IDE,” which stands for Integrated Drive Electronics, “ATA” is the real
name of this interface.

80 | Chapter3: Hardware Support

http://linux-ata.org

sizes, and even colors. These flash devices all share one thing: they all come in a pre-
packaged form factor and are presented as a disk device upon which sits a regular
(FAT16 or FAT32) filesystem.

Linux support for these add-on flash devices is very good, and the kernel, for example,
has built-in generic USB storage drivers for this purpose.

General-Purpose Networking

An increasing number of embedded systems is attached to general-purpose networks.
These devices, although more constrained than other computerized systems in many
ways, are often expected to provide the very same network services found in many
modern servers. Fortunately, Linux lends itself quite well to general-purpose networks,
since it is often used in mainstream servers.

The following discussion will cover the networking hardware most commonly found
in embedded systems. Linux supports a much wider range than we will discuss, but
many of these networking interfaces are not typically used in embedded systems and
are therefore omitted. Also, as many of these networking interfaces have been exten-
sively covered elsewhere, we will limit the discussion to the topics relevant to embedded
Linux systems and will refer you to other sources for further information.

Network services will be discussed further in Chapter 10.

Ethernet

Initially developed at Xerox’s PARC research center in Palo Alto, California, Ethernet
is currently the most pervasive, best documented, and least expensive type of network-
ing available. Its speed has kept up with the competition, growing geometrically over
the decades. Given Ethernet’s popularity and the increasing demand for embedded
systems to be network enabled, many embedded development boards and production
systems have been shipping with Ethernet hardware.

Linux supports a slew of 10 and 100 Megabit Ethernet devices and chips. It also sup-
ports a few Gigabit and even 10 Gigabit Ethernet devices. The kernel build configura-
tion menu is probably the best place to start to see whether your particular hardware
is supported, as it contains the latest drivers list.# At this point, there is almost certainly
good Linux support for almost any network device you may be considering.

IrDA

The Infrared Data Association (IrDA) was established in 1993 by 50 companies with
the mandate to create and promote a standard for low-cost, interoperable, infrared data

#You may also want to use this list as the basis of your hardware design, as suggested earlier.

General-Purpose Networking | 81

interconnections. The first I'DA specification was released in 1994 and continues to
be maintained and developed by the association from which the specification takes its
name. Today, IrDA hardware and software can still be found in certain consumer
devices, although they have been largely displaced by other wireless communications
such as WiFi (IEEE802.11) and Bluetooth.

There are two main types of protocols within the IrDA specification: mandatory and
optional. A device must at least implement the mandatory protocols in order to be able
to interoperate properly with other IrDA devices. The mandatory protocols are the
physical signaling layer (IrPHY), the link access protocol (Ir'LAP), and the link man-
agement protocol (I'LMP). The last protocol also includes the Information Access
Service (IAS), which provides service discovery capabilities.

IrDA devices can exchange data at rates of up to 4 Mbps within a one meter range.
Unlike other wireless technologies, IrDA requires the devices involved in a communi-
cation to be directionally aligned (e.g., pointing a remote control device directly at the
target). An obvious advantage of such a scheme is the increased security resulting from
the requirement that IrDA users keep their devices pointing in each other’s direction
during the whole connection time: any intruder would have to be in direct view of the
users involved in the communication.

Linux supports all the mandatory IrDA protocols and many of the optional protocols.
In conjunction with the stack layers, you will need user space tools to operate Linux’s
IrDA capabilities. These tools are part of the IrDA Utils package, which is available,
along with many other IrDA-related resources, from the Linux-IrDA project website at
http:/firda.sourceforge.net.

IEEE 802.11A/B/G/N (Wireless)

The 802.11 working group was set up by the IEEE 802 committee in 1990. The first
802.11 standard was published in 1997 and has been maintained and updated since
then by the same group. The standard provides for wireless communication between
computers using the 2.4 GHz (802.11b) and 5 GHz (802.11a) frequencies. Today,
802.11 (commonly refered to as “WiFi”) is the wireless equivalent of Ethernet in terms
of widespread adoption and mainstream support. It comes in the backward-compatible
higher speed “G” form running at 54 Mbps (as opposed to the original 11 Mbps of
802.11B) and the new “N” form that can run up to 248 Mbps. Everything from PDAs,
cell phones, and cameras to industrial automation, vehicles, and more use WiFi tech-
nology extensively to connect to the outside world.

Linux has strong support for 802.11B, G, and N hardware, as well as the various en-
cryption standards used: WEP, WPA, and WPA2 are all well supported. And although
WiFinetwork configuration in Linux is similar to configuring any other network device,
additional graphical configuration tools such as the GNOME Project’s NetworkMan-
ager help to make life much easier. It is also worth noting that the entire Linux softmac

82 | Chapter3: Hardware Support

http://irda.sourceforge.net

stack was rewritten during the course of series 2.6 to make it much easier to support
the latest chipsets.

Bluetooth

Bluetooth was developed by Ericsson with help from Intel and was introduced in 1994.
Ericsson, IBM, Intel, Nokia, and Toshiba formed a Bluetooth SIG. Today, the SIG has
thousands of member companies, and a wide range of devices, such as PDAs and cell
phones, are already Bluetooth-enabled with many more on the way.

Bluetooth operates on the 2.4 GHz band and uses spread spectrum frequency hopping
to provide wireless connectivity to devices within the same piconet.” Some have called
ita “cable replacement” and others have called it “wireless USB.” In essence, it enables
seamless wireless communication between devices. Hence, Bluetooth devices do not
need any configuration to become part of a piconet. Rather, devices automatically
detect each other and advertise their services so that the other devices in the piconet
can in turn use these services.

The main Linux Bluetooth stack (the one present in the mainstream kernel source) is
BlueZ. BlueZ was originally written by Qualcomm and is now an open source project
available under the terms of the GPL from the project’s website at http://bluez.source
forge.net. The various BlueZ utilities are shipped in most Linux distributions, complete
with graphical configuration tools, and the like.

Industrial-Grade Networking

As with other computerized applications, industrial control and automation rely in-
creasingly on computerized networks. General-purpose networking or connectivity
solutions such as regular Ethernet are, however, ill-adapted to the harsh and demanding
environment (both electrically and otherwise) of industrial applications. Common
Ethernet, for instance, is too vulnerable to EMI (electromagnetic interference) and RFI
(radio frequency interference) to be used in many industrial environments with high
reliability. This doesn’t mean that Ethernet isn’t being used in the form of “Industrial
Ethernet,” but because it was never designed for such uses, many manufacturers still
choose to use one of the other available industrial networks instead.

Therefore, quite a few specialized, industrial-grade networking solutions have been
developed over the years. In addition to being more adapted to industrial environments,
these industrial networks, commonly known as fieldbuses, help reduce wiring, increase
modularity, provide diagnostics capabilities, enable self-configuration, and facilitate
the setup of enterprise-wide information systems.

" Piconets are wireless networks comprising Bluetooth devices. Since Bluetooth devices can belong to more
than one piconet, piconets can overlap.

Industrial-Grade Networking | 83

http://bluez.sourceforge.net
http://bluez.sourceforge.net

In the following sections, we will cover several industrial networks supported by Linux.

CAN

The Controller Area Network (CAN) is not only the most common fieldbus, but prob-
ably one of the most pervasive forms of networking ever used. CAN was introduced in
1986 by Robert Bosch GmbH. as a serial bus system for the automotive industry and
has since been put to use in many other industries. CAN’s development received early
contributions from engineers at Mercedes-Benz and Intel, which provided the first CAN
chip, the 82526. Today, more than 100 million new CAN devices are sold every year.
Application fields range from middle- to upper-class cars (allowing for the many dif-
ferent systems within the car to communicate effectively, and for diagnostics), to factory
automation networks.

CAN specifies a hardware interface and a communication mechanism. It is a multi-
master serial networking protocol with error detection capabilities, where message
identification is done through content rather than through identification of the receiver
node or the transmitter node. The CAN in Automation (CiA) group manages and
promotes CAN, which is subject to ISO standard 11898 published in 1993. It has been
supported in the official Linux kernel starting with release 2.6.25, which as of this
writing is a current release.

Since CAN is a low-level protocol, akin to Ethernet, many higher-level protocols have
been put forward to complete it, including protocols such as J1939, DeviceNet, Smart
Distributed System (SDS), and CANopen. J1939 was introduced and continues to be
maintained by the Society of Automotive Engineers (SAE) and is very popular in the
automotive industry, especially in diesel-powered applications. DeviceNet is another
popular CAN-based higher-level protocol and is managed by the Open DeviceNet
Vendor Association (ODVA). SDS was put forth by Honeywell and continues to be
promoted and managed by the same company. CANopen was introduced and is man-
aged by the same group that maintains CAN, the CiA. SDS has not been as popular as
DeviceNet and J1939, because it was never standardized, while J1939, DeviceNet, and
CANopen were.

For more information on CAN, CAN-related hardware, and CANopen, consult the
CiA’s website at http://'www.can-cia.org. For more information about Linux kernel
support of CAN, consult the documentation within the kernel itself.

Modbus

The Modbus Protocol was introduced by Modicon in 1978 as a simple way to transfer
control data between controllers and sensors using RS232 in a master-slave fashion.
Modicon was later acquired by Schneider Electric, which owns the Modbus trademark
and continues to steer the development of the protocol and its descendants.

84 | Chapter3: Hardware Support

http://www.can-cia.org

Since Modbus specifies a messaging structure, it is independent of the underlying
physical layer. There are two formats used to transmit information with Modbus: ASCII
and RTU. The first sends each byte as two ASCII characters, whereas the second sends
each byte as two 4-bit hexadecimal characters. Modbus is usually implemented on top
of a serial interface such as R$232, RS422, or RS485. In addition to Modbus, Schneider
specifies the Modbus TCP/IP protocol, which uses TCP/IP and Ethernet to transmit
Modbus messages.

Three open source projects provide Modbus capabilities to Linux:

jModbus
This project aims to provide a Java implementation of Modbus RTU, Modbus
ASCIL, and Modbus TCP/IP. It resides at http://jmodbus.sourceforge.net and is dis-
tributed with documentation and examples under a BSD-style license.

libmodbus
This is an active, up-to-date project that develops a C-based shared library for use
in applications. Several existing projects use it, and it has the usual array of online
Bazaar-based source versioning™ and the like. It is licensed under version 3.0 of the
GPL and is available at http://copyleft.free.friwordpress/index.php/libmodbus.

MAT LinuxPLC
This is the same automation project mentioned earlier in “I/O.” The MAT project
now contains code implementing Modbus RTU and Modbus TCP/IP in its CVS
repository. Although the source code is commented, there is little other
documentation.

For more information about Modbus, read the Modbus specifications, available at
http://www.modbus.org.

System Monitoring

Both hardware and software are prone to failure, sometimes drastically. Although the
occurrence of failures can be reduced through careful design and runtime testing, they
are sometimes unavoidable. It is the task of the embedded system designer to plan for
such a possibility and to provide means of recovery. Often, failure detection and
recovery is done by means of system monitoring hardware and software such as
watchdogs.

Linux supports two types of system monitoring facilities: watchdog timers and hard-
ware health monitoring. There are both hardware and software implementations of
watchdog timers, whereas health monitors always require appropriate hardware.
Watchdog timers depend on periodic reinitialization so as not to reboot the system. If
the system hangs, the timer eventually expires and causes a reboot. Hardware health

T Bazaar is a software configuration management tool originally used by the Ubuntu project, an implementation
and a fork of GNU Arch.

System Monitoring | 85

http://jmodbus.sourceforge.net
http://copyleft.free.fr/wordpress/index.php/libmodbus
http://www.modbus.org

monitors provide information regarding the system’s physical state. This information
can in turn be used to carry out appropriate actions to signal or solve actual physical
problems such as overheating or voltage irregularities.

The Linux kernel includes drivers for many watchdog timers. The complete list of sup-
ported watchdog devices can be found in the kernel build configuration menu in the
Watchdog Cards submenu. The list includes drivers for watchdog timer peripheral
cards, a software watchdog, and drivers for watchdog timers found in some CPUs such
as the MachZ and the SuperH. Although you may want to use the software watchdog
to avoid the cost of a real hardware watchdog, note that the software watchdog may
fail to reboot the system in some circumstances. Timer watchdogs are seen as /dev/
watchdog in Linux and have to be written to periodically to avoid system reboot. This
updating task is traditionally carried out by the watchdog daemon available from ftp://
metalab.unc.edu/pub/linux/system/daemons/watchdog. In an actual embedded system,
however, you may want to have the main application carry out the update instead of
using the watchdog daemon, since the latter may have no way of knowing whether the
main application has stopped functioning properly.

Finally, Linux supports quite a few hardware monitoring devices through the “Hard-
ware Monitoring by lm_sensors” project found at http://www.Im-sensors.org. The
project’s website contains a complete list of supported devices along with extensive
documentation on the installation and operation of the software. The Im_sensors
package available from the project’s website includes both device drivers and user-level
utilities to interface with the drivers. These utilities include sensord, a daemon that can
log sensor values and alert the system through the ALERT syslog level when an alarm
condition occurs. The site also provides links to external projects and resources related
to Im_sensors.

86 | Chapter3: Hardware Support

ftp://metalab.unc.edu/pub/linux/system/daemons/watchdog
ftp://metalab.unc.edu/pub/linux/system/daemons/watchdog
http://www.lm-sensors.org

CHAPTER 4
Development Tools

Embedded system developers, like other software developers, need compilers, linkers,
interpreters, integrated development environments (IDEs), and other such tools. The
embedded developer’s tools are different, however, in that they typically run on one
platform while building applications for another. This is why these tools are often called
cross-platform development tools, or cross-development tools for short.

Importance of a Dedicated Toolchain for Embedded Development

Even if you happen to be using the same architecture on both the development work-
station and target board (such as x86 or x86_64), we still recommend using a different
toolchain from the native one that comes with the Linux distribution you happen to
be running on the development workstation. Itis valuable to create a separate toolchain,
thus providing a controlled development environment isolated from the workstation
environment.

If you don’t create a separate toolchain for the target, opting instead to use the native
workstation toolchain, you might find your embedded application broken in subtle
(and sometime not so subtle) ways by any future upgrade of the workstation software.

Furthermore, you’ll be prohibited from rebuilding the toolchain with various certain
configuration choices that could result in tools that are better optimized for use in
embedded environments, such as an alternative C library.

It is therefore highly recommended that you use a custom cross-platform toolchain for
building Linux embedded systems, even if the workstation architecture happens to
match that of the target.

There are two ways to acquire the tools for embedded development: download the
source code freely available on the Internet and build them yourself, or get binary ver-
sions compiled by another person, company, or project.

87

As mentioned in “Reasons for Choosing Linux” in Chapter 1, several commercial ven-
dors distribute integrated embedded Linux packages, including development environ-
ments. Two such offerings are MontaVista DevRocket and Wind River WorkBench.
Some hardware and board vendors provide free compiled toolchains together with their
hardware offerings. In addition, several community projects provide compiled tool-
chains for download over the Web, such as the Denx ELDK package at http:/
www.denx.de/wiki/DULG/ELDK.

Typically, such offerings include a ready-to-use toolchain, an Eclipse-based IDE, and
sometimes proprietary “added value” plug-ins that extend Eclipse abilities and inte-
grate them with hardware debuggers that are part of the offerings. Eclipse-based tools
may allow configuration of the root filesystem and kernel within the Eclipse IDE, using
a Java GUI that integrates well with the rest of the Eclipse IDE. This sample of
enhancements gives you an idea of what prebuilt environments offer.

The value of an integrated, tested, and debugged toolchain and other development
tools should not be taken lightly. Although all the development tools needed to build
and develop for embedded Linux system are freely available, the tasks of integrating,
building, and testing require time and come with a learning curve for the newly initiated
embedded Linux developer. Thus, a prebuilt offering that fits your project’s require-
ments can save time and help you and your team focus on their number-one priority:
getting a successful product out the door.

As you might guess, however, using a prebuilt suite comes with the cost of locking you
into the chosen suite. If you build the suite yourself—or at least understand what goes
into the build process, which we will discuss in this chapter—you preserve your inde-
pendence. An understanding of the process may let you have the best of both worlds:
a ready-made and vendor-supported offering that saves time and manages risk, along
with the ability to switch from one vendor to another or even migrate to a self-supported
embedded Linux development environment.

This chapter, therefore, discusses the setup, configuration, and use of cross-platform
development tools. First, we will suggest a layout for a practical project workspace.
Then, we’ll discuss the GNU cross-platform development toolchain, the C library
alternatives, Java, Perl, Python, Ada, and other programming languages, IDEs, the GDB
debugger, profilers, bounds checkers, terminal emulation programs, and system
emulators.

Even if you opt to buy or download a ready-made toolchain, we recommend that you
go through this chapter to get acquainted with the various terms and options involved
in the process.

N
- Although debuggers, profilers, and bounds checkers may be be consid-
:‘:\ ered part of the development toolchain, these topics are large enough
* Qs to deserve their own chapter, and therefore are covered in Chapter 11.

88 | Chapter4: Development Tools

http://www.denx.de/wiki/DULG/ELDK
http://www.denx.de/wiki/DULG/ELDK

Throughout this chapter, we assume that you are using a Linux (or at least Unix-
derived) development workstation. As previously mentioned in “Windows (Vista, XP,
2000, NT, 98, etc.) Workstation” in Chapter 2, you run many of the procedures in this
chapter to produce a working toolchain on the Windows platform as well, using the
Cygwin compatibility library mentioned in Chapter 2. In addition, because Eclipse is
a Java-based application, it can be deployed on a Windows platform just as easily as
on Linux. It is worth noting, however, that some Cygwin-specific issues might com-
plicate the effort of following this chapter’s instructions, and so it is generally not rec-
ommended for developers taking their first steps with embedded Linux to use Cygwin.

A Practical Project Workspace

In the course of developing and customizing software for your target, you need to
organize various software packages and project components in a comprehensive and
easy-to-use directory structure. Table 4-1 shows a suggested directory layout that you
may find useful. Of course, there is nothing special about the specific layout presented
here and, in fact, some of the automated toolchain and root filesystem build tools we
are about to describe use a different layout. Feel free to use whatever works for you.
However, we will assume the layout shown in Table 4-1 in examples throughout the
rest of this book.

W
- The directory layout presented here is aimed to host third-party pack-
L) ages you download from the Net as part of your project. We recommend
LN N .
* 94 highly that you separate your own code from the third-party code used

to build the system, and we even go so far as to recommend that the two
types of code reside in different source control modules. This will min-
imize any confusion regarding the source’s ownership and licensing
status and will make it easy to comply fully with the requirements of
some of the open source packages we will use.

Table 4-1. Suggested project directory layout
Directory Content
bootldr The bootloader or bootloaders for your target

build-tools The packages and directories needed to build the cross-platform development toolchain

debug The debugging tools and all related packages

doc All the documentation you will need for your project

images The binary images of the bootloader, the kernel, and the root filesystem ready to be used on the target
kernel The different kernel versions you are evaluating for your target

project Your configuration files and settings for this project

rootfs The root filesystem as seen by the target’s kernel at runtime

sysapps The system applications required for your target

A Practical Project Workspace | 89

Directory Content
tmp Atemporary directory to experiment with and store transient files

tools The complete cross-platform development toolchain and C library

Of course, each of these directories contains many subdirectories. We will populate
the directories as we continue through the rest of the book.

The location of your project workspace is up to you, but we strongly encourage you
not to use a system-wide entry such as /usr or /usr/local. Instead, assume as a general
rule that the directory structure is being checked out of a source control system by each
member of your development group into his own home directory.

B
)

One common exception to this rule is the cross-platform development
toolchain and related files, which some system builders prefer to keep
s in a system-wide (or even network-wide) location, as rebuilding them
" from source is time consuming.

Should you work on a project that supports multiple systems, create a separate directory
layout for each component or board type.

For the example embedded control system, we will use the following layout:

$ 1s -1 ~/control-project

total 4

drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 control-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 dag-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 sysmgnt-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 user-interface

Since they all run on different targets, each control system component has a separate
entry in the control-project directory. Each entry has its own project workspace as de-
scribed previously. Here is the dag-module workspace, for example:

$ 1s -1 ~/control-project/daq-module

total 11

drwxr-Xxr-x 2 karim karim 1024 Mar 28 22:38 bootldr
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 build-tools
drwxr-Xxr-X 2 karim karim 1024 Mar 28 22:38 debug
drwxr-Xr-X 2 karim karim 1024 Mar 28 22:38 doc
drwxr-Xxr-X 2 karim karim 1024 Mar 28 22:38 images
drwxr-Xxr-X 2 karim karim 1024 Mar 28 22:38 kernel
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 project
drwxr-Xr-X 2 karim karim 1024 Mar 28 22:38 rootfs
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 sysapps
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 tmp
drwxr-XIr-X 2 karim karim 1024 Mar 28 22:38 tools

Because you may need to provide the paths of these directories to some of the utilities
you build and use, you may find it helpful to create a short script that sets appropriate
environment variables. Here is such a script called develdaq for the DAQ module:

90 | Chapter4: Development Tools

export PROJECT=daq-module
export PRIROOT=/home/karim/control-project/${PROJECT}
cd $PRIROOT

In addition to setting environment variables, this script moves you to the directory
containing the project. You can remove the cd command if you would prefer not to be
moved to the project directory right away. To execute this script in the current shell so
that the environment variables are immediately visible, type:

$. develdaq

Future explanations will rely on the existence of the PROJECT and PRIROOT environment
variables.

Because the distribution on your workstation has already installed many
“% of the same packages you will be building for your target, it is very im-

portant to clearly separate the two types of software. To ensure such
separation, we strongly encourage you not to carry out any of the in-
structions provided in the rest of this book while logged in as root, unless
we provide explicit instructions to the contrary. Among other things,
logging in as an unprivileged user will avoid any possible destruction of
the native GNU toolchain installed on your system and, most impor-
tantly, the Clibrary most of your applications rely on. Therefore, instead
of logging in as root, log in using a normal user account with no par-
ticular privileges.

GNU Cross-Platform Development Toolchain

A toolchain is a set of software tools needed to build computer software. Traditionally,
these include a linker, assembler, archiver, C (and other languages) compiler, and the
C library and headers. This last component, the C library and its headers, is a shared
code library that acts as a wrapper around the raw Linux kernel API, and it is used by
practically any application running in a Linux system.

Additional components in some toolchains include extra code libraries (such as the zlib
library, which provides compression services) and more supplementary tools such as
a debugger, profiler, and memory checker.

Last but not least, you might choose to work within an IDE that provides a frontend
for these tools, although an IDE is not traditionally counted as part of the toolchain
itself.

A cross-platform toolchain—or as it is commonly abbreviated, a cross toolchain—is
built to run on one development platform (most commonly x86) but build programs
that run on another platform, as is customary when developing for embedded systems.

“ All commands used in this book assume the use of the sh or bash shell, because these are the shells most
commonly used. If you use another shell, such as csh, you may need to modify some of the commands.

GNU Cross-Platform Development Toolchain | 91

The cross toolchain we will discuss in this chapter includes the binary utilities, such as
the Id linker, the gas assembler, gcc compilerthe ar archiver, the gcc compiler collection,
and either glibc or an alternative C library.

In addition, we will touch upon acquiring and building the GDB source-level symbolic
debugger, the Valgrind memory checker, and the Eclipse graphical integrated developer
environment.

Most of the components of the toolchain are part of the GNU project and can be
downloaded from the FSF’s FTP site, either at ftp://ftp.gnu.org/gnu or any of its mirrors.
The binutils package is in the binutils directory, the GCC package is in the gcc directory,
and the glibc package is in the glibc directory. For any components we discuss in this
chapter that are not part of the GNU project, we will describe their creators and how
to obtain them.

Note that all the targets discussed in Chapter 3 are supported by the GNU toolchain.

Introduction to Building a GNU Toolchain

Configuring and building an appropriate GNU toolchain is a complex and delicate
operation that requires a good understanding of the dependencies between the different
software packages and their respective roles, the status of different software packages
versions, and a lot of tedious work. The following section will provide a high-level walk-
through of the various components, terms, and choices involved in creating a cross
toolchain.

Terms and GNU configuration names

As our first step, we will introduce some terms describing the various systems that
participate in building and using a cross toolchain:

build
The build system is the one on which you build your toolchain.

host
The host system is the one on which you host your toolchain.

target
The target system is the one for which your cross toolchain will produce binaries.

92 | Chapter4: Development Tools

ftp://ftp.gnu.org/gnu

For standard, nonembedded uses, all three are the same (although some people down-
load binaries and don’t care what the build system is). In most embedded scenarios,
the build and the host will be the same machine—the workstation on which the de-
velopers work—whereas the target will be the embedded board for which you are de-
veloping an application.T

When you build software using the GNU configure and build system, as we do here
for the various toolchain components, you specify the build, host, and target systems
through names in GNU configuration files, which follow a standardized format:

cpu-manufacturer-kernel-os

The kernel component, being a later addition, is optional. In fact, triplets containing
only the cpu, manufacturer, and os are still quite common. The various components
specify:

cpu
The system’s chip architecture. Where both a big-endian and little-endian variant
exists, it is customary to denote the little-endian variant by appending el to the
architecture name.

manufacturer
A specific maker or family of boards using the aforementioned CPU. As this rarely
has any effect on the toolchain itself, it is not uncommon to specify an unknown
machine type or simply to omit the machine description altogether.

kernel
Used mainly for GNU/Linux systems, and even in that case it is sometimes omitted
for brevity.

os
The name of the operating system (or ABI) used on the system. Configuration
names may be used to describe all sorts of systems, including embedded systems
that do not run any operating system; in those cases, this field indicates the object
file format, such as Elf or COFF.

Some examples of possible host, target, or build triplets follow:

i386-pc-linux-gnu
A PC-style x86 Linux system

powerpc-8540-linux-gnu
A Freescale 8540 PowerQuickIII Linux system

T It’s so rare to use a different build system and host system that the situation has earned its own informal
name: a “Canadian Cross” toolchain. A Canadian Cross build is most frequently used when building
programs to run on a non-Unix system, such as DOS or Windows. It may be simpler to configure and build
on a Unix system than to support the non-Unix system’s configuration machinery. The unusual name springs
from the historical coincidence that Canada had three national political parties at the time developers wanted
to invent a name for this procedure.

GNU Cross-Platform Development Toolchain | 93

mips-unknown-linux

A big-endian MIPS Linux system from an unspecified manufacturer
mipsel-linux

A little-endian MIPS Linux system from an unspecified manufacturer
xscale-unknown-linux

An XScale (formely StrongARM) Linux system from an unspecified manufacturer

Typically, cross toolchain component names are prefixed with the target triplet. Thus,
for example, a cross-compiler for a Freescale 8541 PowerQuickIII Linux system will be
called powerpc-8540-linux-gnu-gcc (gcc being the executable name for the GNU Com-
piler Collection), whereas the linker for a little-endian MIPS Linux system might be
named mipsel-linux-1d, (Id being the executable name of the GNU linker).

Linux kernel headers

The first component required for building a toolchain is the set of the Linux kernel
headers. Because the Clibrary, which is part of the toolchain, is a wrapper that presents
a more palatable API to the application programmer for the raw Linux kernel system
calls, compiling the library requires a subset of the Linux kernel header files that de-
scribes the kernel API.

In theory, one should always build the toolchain using the Linux kernel headers from
the exact same Linux kernel version that will be used on the target. In practice, however,
this is rarely done. Because the ABI of the Linux kernel rarely changes (or more cor-
rectly, the parts of it described by the headers rarely changes), using the headers from
a different, but similar, kernel version is commonplace.

In Linux kernel releases prior to the 2.6 series, C library builds were based on a verbatim
copy of the headers found in the Linux kernel directories include/asm-architecture and
include/linux. Since the release of Linux 2.6, however, this is no longer supported, as
the kernel headers contain much code that is unsuitable for inclusion in user space
applications and can easily break the build of user programs, including the C library.
Instead, builds use a sanitized version of the Linux kernel headers, suitable for use by
user space code such as the C library. As of version 2.6.23 of the Linux kernel, the
kernel source is equipped with an automated Make target for building such a “sani-
tized” version of the Linux kernel headers.

W
\
- For earlier versions, you can use the external utility available at http://
ﬁ:\ headers.cross-Ifs.org to accomplish the same task.
SN a
05)

From the kernel source directory, simply issue the following commands, replacing
ppc with your architecture and headers/ with the path to the directory where you would
like the sanitized headers installed:

94 | Chapter4: Development Tools

http://headers.cross-lfs.org
http://headers.cross-lfs.org

$ make ARCH=ppc headers_check
$ make ARCH=ppc INSTALL_HDR_PATH=headers/ headers_instal;

Binutils

Another important component of the toolchain is the binutils package. This package
includes the utilities most often used to manipulate binary object files. The two most
important utilities in the package are the GNU assembler, as, and the linker, Id. Ta-
ble 4-2 contains the complete list of utilities found in the binutils package.

Table 4-2. Utilities found in the binutils package

Utility Use

as GNU assembler

Id GNU linker

gasp GNU assembler pre-processor

ar Creates and manipulates archive content
nmu Lists the symbols in an object file

objcopy Copies and translates object files
objdump Displays information about the content of object files
ranlib Generates an index to the content of an archive

readelf Displays information about an ELF format object file

size Lists the sizes of sections within an object file
strings Prints the strings of printable characters in object files
strip Strips symbols from object files

c+Hilt Converts low-level, mangled assembly labels resulting from overloaded C++ functions to their user-level names

addr2line Converts addresses into line numbers within original source files

W

o0 Although as supports many processor architectures, it does not neces-

sarily recognize the same syntax as other assemblers available for a given

Wls architecture. The syntax recognized by as is actually a machine-
" independent syntax inspired by BSD 4.2 assembly language.

The Clibrary

The standard C library most often used with current day Linux systems is thein GNU
C library, often abbreviated as glibc. glibc is a portable, high-performance C library
supporting all relevant standards (ISO C 99, POSIX.1c, POSIX.1j, POSIX.1d, Unix98,
and the Single Unix Specification). It also supports internationalization, sophisticated
name resolution, time zone information, and authentication through the use of the
NSS, the Name Service Switch, and PAM, the Pluggable Authentication Modules
architecture.

GNU Cross-Platform Development Toolchain | 95

The main website for the glibc development project, containing links to the develop-
ment source tree, bug database, and many resources, can be found at http:/
www.gnu.org/software/libc. A list of all platforms the library supports can be found at
http://www.gnu.org/software/libc/ports.html, and the library itself can be downloaded
from the mirrors found at http://ftp.gnu.org/gnu/glibc.

W

For recent glibc releases, supported architectures are separated into

those supported by the core maintainers (x86, PowerPC, SPARC,

W SuperH, and their 64-bit counterparts are currently the most interesting

" to embedded system developers) and those supported by volunteers
outside the main glibc core group (currently Arm and MIPS). Code for
the latter architectures is in a separate glibc-ports package, which can
be downloaded from the same location.

glibc is truly a robust, complete, and modern C library, and it can fit very well in many
system designs. Indeed, many embedded Linux systems, especially in the telephony
and networking market segments, are based on it. However, because it was never de-
signed to be used in an embedded system context, developers building embedded Linux
systems with more limited resources, such as consumer electronic devices, often find
its resource usage less compelling.

Being rich and full-featured, glibc is huge. To compound the problem for embedded
systems, it is not very modular: removing features is a cuambersome and sometimes even
impossible job. Additionally, glibc’s designers and implementors have traditionally
optimized for performance instead of resource use. For instance, they have optimized
for speedier operation at the expense of RAM utilization.

How much of a burden does the size of glibc impose? First of all, the various library
files in a minimal glibc take up as much as 2 MB of storage space. But this is by no
means the full extent of the problem. Keep in mind that almost every application is
compiled against the C library headers. So, the C library also affects the size of appli-
cation executable files and other libraries.

Executables built with alternative C libraries can be as little as one half the size as those
built with glibc, depending on the actual program code and the compiler version used.
Savings of 50 percent are quite rare, though; the difference varies widely and occasion-
ally executables end up just as large as they would with glibc.

A similar effect, although usually much less dramatic, can be seen on application run-
time RAM usage.

As a rule of thumb, glibc can be a good fit for projects with Flash storage sizes of 16
MB or more. If your project requires smaller RAM, however, you might want to con-
sider popular embedded alternatives such as uClibc and diet libc, which we will de-
scribe in the upcoming sections.

96 | Chapter4: Development Tools

http://www.gnu.org/software/libc
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc/ports.html
http://ftp.gnu.org/gnu/glibc

The first decision facing a builder of a new toolchain, therefore, is which C library to
use. Because the C library is a component in both the toolchain (both as part of the
compiler, for support of C++ and other languages, and in the form of library headers)
and the runtime image (the code library itself and the allocation code that is compiled
to use it), it is impossible to change this decision later without affecting the entire
system.

The threading library

Threads are a popular modern programming technique involving several independent,
asynchronous tasks residing in the same process address space. The Linux kernel, prior
to the 2.6 series, provided very little support for threads. To fill the gap, a few different
threading libraries were developed that implemented much of the required support in
user space with minimal kernel assistance. The most common was the LinuxThreads
library, which was an implementation of the POSIX Threads standard and was dis-
tributed as a glibc add-on until Linux version 2.5. LinuxThreads was a noble and useful
project, but it suffered from problems with scalability and adherence to standards, due
to limitations imposed by the weakness of support for threads in the Linux kernel at
that time. For example, both the getpid() system call and signal handling in LinuxTh-
reads are non-compliant vis-a-vis the POSIX standard, on account of kernel-imposed
limitations.

The release of the Linux 2.6 series was accompanied by a new thread implementation
called the New POSIX Threading Library (NPTL). NPTL relies on Linux kernel sup-
ports for threads. A key piece of the implementation, known as a fast user space mutex
(futex), provides a robust, POSIX-compliant threading implementation that scales up
to thousands of threads. NPTL is now the supported Linux threading library and is
distributed as part of recent versions of glibc.

For any new project making use of recent kernel versions and glibc releases, NPTL is
the threading library of choice. However, because all Linux kernel releases prior to
2.6.16 contain bugs affecting the threading library, and because it is not unheard of for
embedded system builders to base systems on older kernel and glibc releases (mainly
due to vendor support issues), LinuxThreads can still be a valid option, especially if
your system is only expected to make very limited use of threads.

You can also start off with LinuxThreads and migrate to NPTL, because both conform
(at least roughly) to the POSIX standard.

The confstr() function can be used to test which threading library im-
plemention is in use at runtime:
L)

#define XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>

int main(void)

{

GNU Cross-Platform Development Toolchain | 97

char name[128];

confstr (_CS_GNU_LIBPTHREAD VERSION, name, sizeof(name));
printf ("Pthreads lib is: %s\n", name);

return 0;

Component versions

The first step in building the toolchain is to select the version of each component you
will use: GCC, glibc, and binutils. Because these packages are maintained and released
independently, not all versions of one package will build properly when combined with
different versions of the other packages. You can try using the latest versions of each,
but this combination is not guaranteed to work either.

To select the appropriate versions, you have to test a combination tailored to your host
and target. You may be lucky and find a previously tested combination. If not, start
with the most recent stable version of each package and replace it with successively
older versions if it fails to build.

B

\

In some cases, the version with the highest version number may not have
had the time to be tested enough to be considered “stable.” At the time
wis glibc 2.3 was released, for example, it may have been a better choice to
" keep using glibc 2.2.5 until 2.3.1 became available.

At the time of this writing, for instance, the latest version of binutils is 2.18, the latest
version of GCC is 4.2.2, and the latest version of glibc is 2.7. Most often, binutils will
build successfully and you will not need to change it. Hence, let us assume that GCC
4.2.2 fails to build even though all the appropriate configuration flags have been pro-
vided. In that case, we would revert to GCC 4.2.1. If that failed, we would try 4.2, and
SO on.

You must understand, however, that you cannot go back like this indefinitely, because
the most recent package versions expect the other packages to provide certain capa-
bilities. You may, therefore, have to go back to older versions of packages that you
successfully built if the other packages down the line fail to build. Using the versions
just mentioned, for example, if we had to go back to glibc 2.6.0, it might be appropriate
to change back to GCC 4.1 and binutils 2.17, even if the most recent GCC and most
recent binutils may have compiled perfectly.

In addition, it is quite common to apply patches to some versions to get them to build
correctly for your target. The websites and mailing lists provided for each processor
architecture in Chapter 3 are good places to find such patches and package versions
suggestions.

98 | Chapter4: Development Tools

Locating Patches and Versions

The following are good places to look for patches and compatible version combinations
on the Internet:

e The Debian Linux distribution source packages (each package contains the patch-
es required for all the architectures supported by that package), available at http://
www.debian.org/distrib/packages.

* Cross Compiled Linux From Scratch, available online at http://cross-Ifs.org/view/
1.0.0.

* The CrossTool build matrix, available at: http://www.kegel.com/crosstool/cross
tool-0.43/buildlogs.

Many other combinations will work just as well. Feel free to try versions that are newer
than the ones presented on these websites. Use the same technique discussed earlier:
start with the latest versions and back up one version at a time as needed.

At worst, you will have to revert to the combinations described on the websites.

Whenever you discover a new version combination that compiles successfully, make
sure you test the resulting toolchain to ensure that it is indeed functional. Some version
combinations may compile successfully and still fail when used. Version 2.2.3 of glibc,
for example, builds successfully for a PPC target on an x86 host using GCC 2.95.3. The
resulting library is, nevertheless, broken and will cause a core dump when used on the
target. In that particular setup, you can obtain a functional C library by reverting to
glibc 2.2.1.

There are also cases where a version combination was found to work properly on certain
processors within a processor family while failing to work on other processors of the
same family. Versions of glibc earlier than 2.2, for example, worked fine for most PPC
processors, except those that were part of the MPC8xx series. The problem was that
glibc assumed 32-byte cache lines for all PPC processors, whereas the processors in the
MPC8xx series have 16-byte cache lines. Version 2.2 fixed this problem by assuming
16-byte cache lines for all PPC processors.

Additional build requirements

To build a cross-platform development toolchain, you will need a functional native
toolchain. Most mainstream distributions provide this toolchain as part of their pack-
ages. If it was not installed on your workstation or if you chose not to install it to save
space, you will need to install it at this point, using the procedure appropriate to your
distribution. With a Red Hat distribution, for instance, you will need to install the
appropriate RPM packages.

GNU Cross-Platform Development Toolchain | 99

http://www.debian.org/distrib/packages
http://www.debian.org/distrib/packages
http://cross-lfs.org/view/1.0.0
http://cross-lfs.org/view/1.0.0
http://www.kegel.com/crosstool/crosstool-0.43/buildlogs
http://www.kegel.com/crosstool/crosstool-0.43/buildlogs

Build overview

With the appropriate tools in place, let’s take a look at the procedure used to build the
toolchain. The five main steps involve setting up:

1. Linux headers

2. Binary utilities

3. The bootstrap compiler
4. The C library

5. The full compiler

The first thing that you probably noticed is that the compiler seems to be built twice.
This is normal and required, because some languages supported by GCC, such as C+
+, require glibc support. Hence, a bootstrap compiler is built with support for C only,
and a full compiler is built once the C library is available.

Although we listed the Linux headers as the first step, the headers will not be used until
the Clibrary setup. Hence, you could alter the steps and set up the Linux headers right
before the C library setup.

Each of the steps involves many iterations of its own. Nonetheless, the steps remain
similar in several ways. Most toolchain build steps involve carrying out the following
actions:

1. Unpack the package.

2. Configure the package for cross-platform development.
3. Build the package.

4. Install the package.

Some toolchain builds differ slightly from this sequence. The Linux headers, for in-
stance, do not require you to build or install the kernel, as we have already seen. Also,
because the compiler will have already been unpacked for the bootstrap compiler’s
setup, the full compiler setup does not require unpacking the GCC package again.

Workspace setup

According to the workspace directory layout suggested earlier, the toolchain will be
built in the ${PRJROOT}/build-tools directory, while the components built will be
installed in the ${PRJROOT]/tools directory. To this end, we need to define some ad-
ditional environment variables. They ease the build process and are based on the
environment variables already defined. Using the same example project as before, here
is the new develdaq script with the new variables:

export PROJECT=daqg-module

export PRIROOT=/home/gby/bels/control-project/${PROJECT}

export TARGET=powerpc-unknown-1linux

export HOST=1686-cross-linux-gnu
export PREFIX=${PRIROOT}/tools

100 | Chapter4: Development Tools

export TARGET PREFIX=${PREFIX}/${TARGET}
export PATH=${PREFIX}/bin:${PATH}
cd $PRIROOT

The TARGET variable defines the type of target for which your toolchain will be built. It
is expressed as a host/target/build triplet, as explained earlier.

The HOST variable defines the type of host on which the toolchain will run, namely your
workstation type. Note that we have slightly modified the host triplet and, instead of
using 1686-pc-1linux-gnu, actually use 1686-cross-1linux-gnu. The reason for this is that
it is possible and sometimes desirable to be able to build a cross toolchain for an x86-
based system, such as a PC104 platform. If that was done, the host and target triplets
could have been identical, which would have caused a regular toolchain to be created.
Although no such issue exists in our earlier example, because its toolchain runs on x86
but builds binaries for a PowerPC system, we still use this convention for good measure.

The PREFIX variable provides the component configuration scripts with a pointer to the
directory where you would like the target utilities to be installed. Conversely,
TARGET PREFIX is used for the installation of target-dependent header files and libraries.
To have access to the newly installed utilities, you also need to modify the PATH variable
to point to the directory where the binaries will be installed.

Some people prefer to set PREFIX to /ust/local. This installs the tools and libraries within
the /usr/local directory, where any user can access them. We don’t find this approach
useful for most situations, however, because even projects using the same target archi-
tecture may require different toolchain configurations.

If you need to set up a toolchain for an entire development team, instead of sharing
tools and libraries via the /usr/local directory, we recommend that you build the tool-
chain within a directory shared by all project members, such as a subdirectory of /opt
or a directory on a shared network.

If you choose to set PREFIX to /usr/local, you will also have to issue the commands shown
later while logged in as the superuser, with all the risks this entails. You could instead
set the permission bits of the /usr/local directory to allow yourself or your user group
to issue the commands without requiring root privileges.

Notice that TARGET _PREFIXissetto ${PREFIX}/${TARGET}, whichisa target-dependent
directory. Thus, successive installations of development toolchains for different targets

will place the libraries and header files of each installation in different subdirectories
of ${PREFIX}).

Regardless of the value you give to PREFIX, the ${PREFIX}/${TARGET} combination is
the configuration the GNU toolchain utilities expect to find during their configuration
and installation. Hence, we strongly suggest that you use this value for TARGET_PRE
FIX. The following explanations may require changes if you modify TARGET_PREFIX’s
value.

GNU Cross-Platform Development Toolchain | 101

Again, you can remove the cd command from the script if you would prefer not to move
directly to the project directory.

Resources

Before proceeding to the actual building of the toolchain, let’s look at some resources
you might find useful in case you run into problems during the build process.

First and foremost, each package comes with its own documentation. Although the
binutils package is the leanest in terms of installation documentation, it is also the least
likely to cause any problems. The GCC and glibc packages, however, are amply docu-
mented. Within the GCC package, you will find an FAQ file and an install directory
containing instructions about how to configure and install GCC. This includes an ex-
tensive explanation of the build configuration options. Similarly, the glibc package
contains FAQ and INSTALL files. The INSTALL file covers the build configuration
options and the installation process, and it provides recommendations for compilation
tool versions.

In addition, you may want to try using a general search engine such as Google to look
for reports by other developers who may have already encountered and solved problems
similar to yours. Often, this will be the most effective way to solve a build problem with
a GNU toolchain.

One extremely useful resource is the Cross-Compiled Linux From Scratch website
(http://trac.cross-Ifs.org), mentioned earlier. The combination of component versions
used in the example toolchain build in the following section has been taken mostly
from this resource.

Finally, you can check the crosgec mailing list, hosted by Red Hat, at http://sources.red
hat.com/ml/crossgcc. You will find this mailing list quite useful if you ever get stuck,
because many people on this list have a great deal of experience with the process of
building cross-platform development toolchains. Often, just searching or browsing the
archive will immediately help you locate answers to your questions.

Building the Toolchain

As must be obvious by now, building a cross toolchain is a delicate and complicated
process. It requires arcane knowledge concerning versions, patches, and tweaks of the
various toolchain components for various architectures—knowledge that is not only
scattered among many locations, but also changes from version to version of the com-
ponents. It is certainly not a task for the novice, or even intermediate, embedded Linux
system builder to tackle unassisted.

In fact, this is how Dan Kegel, the main author of Crosstool, described the process of
building a cross toolchain manually:

102 | Chapter4: Development Tools

http://trac.cross-lfs.org
http://sources.redhat.com/ml/crossgcc
http://sources.redhat.com/ml/crossgcc

“Buildinga [...] cross-toolchain for use in embedded systems development [is] a scary
prospect, requiring iron will, days if not weeks of effort, lots of Unix and Gnu lore, and
sometimes willingness to take dodgy shortcuts.”

Manually building a toolchain

If you are truly brave of heart or happen to have a lot of free time on your hands and
desire to learn the process of cross toolchain inside and out, the authors highly recom-
mend following the Cross Linux From Scratch project (hitp://trac.cross-Ifs.org) as a
reference. Otherwise, skip to the next section, where we will describe Crosstool, an
automated cross toolchain build system.

Version 1.0.0 of the Cross LFS guide, covering the x86, PPC, MIPS, and Sparc V8
architectures, is available at http://cross-Ifs.org/view/1.0.0.

The development branch of the guide—with more updated information
but possibly less reliable—can be found at http://cross-Ifs.org/view/svn.

Automated cross toolchain build systems

Although it is certainly possible and educational to build a toolchain using a step-by-
step manual process, it is not the recommended way to build one for a production
system. Instead, we recommend an automated cross toolchain build system, which has
the following advantages:

Reproducible
Because the build is done in an automated fashion, it can be exactly repeated should
that be necessary to update a component or fix an error. There is no danger of
accidentally omitting an important step.

Documented
Practically all automated cross toolchain build systems use some sort of configu-
ration file to document the build components, versions, and other choices related
to producing the toolchain. This configuration file becomes a form of “executable
documentation” for the toolchain and its build process.

Sharable
This advantage follows from the previous two. Because the cross toolchain build
process can be reproduced from a configuration file, you can publish the configu-
ration file to share with other developers.

Indeed, all automated cross toolchain build systems that we will cover come bun-
dled with several pretested components and version combinations that are known
to produce working toolchains for specific architectures. This enables novice and
intermediate embedded Linux system builders to build working toolchains easily,

GNU Cross-Platform Development Toolchain | 103

http://trac.cross-lfs.org)
http://cross-lfs.org/view/1.0.0
http://cross-lfs.org/view/svn

without needing to become experts on the states of various toolchain components
versions.

We’ll describe several automated cross toolchain build systems later in this section.

Crosstool

Crosstool is a set of scripts that build and test several versions of GCC and glibc for
most architectures supported by glibc. Crosstool will even download and patch the
original tarballs for you. The resulting script and associated patches, and the latest
version of the documentation, are available at http://kegel.com/crosstool.

It originated as a script by Bill Gatliff called crossgec, which Dan Kegel generalized and
hacked on until it took its current shape.

Crosstool comes with a set of patches for the toolchain components, which are required
to build cross toolchain combinations. It supports the Alpha, ARM, 686, ia64, MIPS,
PowerPC, PowerPC64, SH4, SPARC, SPARC64, s390, and x86_64 architectures. Sup-
ported software includes GCC versions gcc-2.95.3 through gee-4.0.0 and glibc versions
glibc-2.1.3 through glibc-2.3.5.

It is portable and can be used to build cross toolchains that run on Linux, Mac OS X,
Solaris, and Cygwin for building Linux binaries.

Grab the Crosstool archive and unpack it as follows:

$ cd $PRIROOT/tools-build/

$ wget http://kegel.com/crosstool/crosstool-0.43.tar.gz
$ tar -xzvf crosstool-0.43.tar.gz

$ cd crosstool-0.43

Crosstool is comprised of a couple of shell scripts and data files used by those scripts.
The following are the major scripts:

crosstool.sh
The main script, containing the logic to compile GCC and glibc.

getandpatch.sh
This script is in charge of downloading, unpacking, and patching the various tool-
chain components’ source packages.

crosstest.sh
This script can run the GCC and glibc regression tests remotely on your target
machine. It can be very useful to verify that the toolchain you have just created is
indeed working.

testhello.sh
This script tries to build a trivial “Hello World” program using the newly generated
toolchain as a sanity check.

104 | Chapter4: Development Tools

http://kegel.com/crosstool

mkdistcc.sh and mkdistcclinks.sh
These scripts contain Crosstool support for building DistCC-supported cross
toolchains.

W

DistCC achieves faster build times by distributing the build work
across a cluster of computers. It is outside the scope of this book,
%s but if you are interested, we recommend the DistCC website at
" http:/idistcc.samba.org.

demo-cpu.sh
Example scripts that serve as starting points. One exists for each supported archi-
tecture (e.g., demo-i686.sh).

demo.sh
A big demo file that runs all the architecture demo files. Used mainly for testing
Crosstool itself.

clean.sh
As the name implies, a script that cleans up a Crosstool working directory.

all.sh
The script that actually generates a toolchain; an example of its use appears later
in this section. It is a general control script that has the logic to invoke all other
scripts in order, according to the parameters supplied. Parameters include:

--nounpack
Instructs the script not to run getandpatch.sh. Useful for quickly restarting a

build.

--nobuild
Instruct the script not to run crosstool.sh. Useful for downloading the sources
for a later build or for running the regression tests.

--notest
Instructs the script not to run crosstest.sh, thus skipping the regression suite
tests.

These scripts are mostly architecture- and version-generic. The information pertaining
to different architectures and tool versions is stored in separate data files:

cpu.dat
One such file exists for each supported architecture (e.g., arm.dat) or specific CPU
(e.g., ppc-8540.dat). The file contains the information needed to configure Cross-
tool for a specific architecture. It sets the GNU target name and additional related
options.

gcc-version-glibc-version.dat
One such file exists for each combination of GCC and GLibc versions (e.g.,
gcc-3.4.0-glibe-2.3.2.dat). The file contains the information needed to configure

GNU Cross-Platform Development Toolchain | 105

http://distcc.samba.org

Crosstool for that combination. It sets the binutils, GCC, glibc versions, and related
options.

patches/program/*.patch
These are patch files required to properly build various components’ versions. The
program is the name of the program and version the patch is intended for. Each
patch file header contains comments about what it is for and has links to any
associated discussion.

Using Crosstool is very simple and straightforward: create a shell script to set up some
important shell variables and invoke the build script. For the purpose of the following
example, we’ll assume we named the file mytoolchain.sh.

Use one of the example scripts included with Crosstool as a starting
point and adapt it to your needs.
g

Here are the first lines of our script:

TARBALLS_DIR=download # where it will save source tarballs
RESULT_TOP=$PRIRO0T/tools/ # where it will install the tools
GCC_LANGUAGES="c,c++" # which languages it will make compilers for

To build the cross toolchain, create an architecture description file and a description
file for the GCC and glibc versions. Then invoke the build script.

For example, to build a toolchain based on gcc-3.4.0 and glibe-2.3.2 for 1686, add the
following line to the mytoolchain.sh script:
eval “cat i686.dat gcc-3.4.0-glibc-2.3.2.dat” sh all.sh --notest

Then execute the script:

$ sh mytoolchain.sh

At this point, the script will run for quite some time as it downloads each and every
toolchain component, patches them, configures them, and builds them.

When the script finishes, the new toolchain will be ready and you can run the newly
created compiler from $PRJROOT/tools/gcc-3.4.0-glibc-2.3.2/i686-unknown-linux-
gnu/bin/i686-unknown-linux-gnu-gcc. Of course, you might need to replace gcc-3.4.0-
glibc-2.3.2 and i686-unknown-linux-gnu with your actual GCC and glibc versions and
architecture.

Your toolchain is ready for use now, but the long pathname of its location is not very
convenient to use. As our last step, therefore, we will create a shortcut by making a soft
link from the tools directory to the bin directory of the toolchain:

$ 1n -s $PRIROOT/tools/gcc-3.4.0-glibc-2.3.2/i686-unknown-linux-gnu/bin \
$PRIROOT/tools/bin

106 | Chapter4: Development Tools

Henceforth, you can access the toolchain at PRJROOT/tools/bin/i686-unknown-linux-
gnu-gee, and if you have added this directory to your run path in your workspace setup
script, you can use simply 686-unknown-linux-gnu-gcc.

Ptxdist

Ptxdist is a build system for userlands started by the German company Pengutronix
e.K. Itis maintained as an open source project under a GPL, with the active participation
of Pengutronix, which also sells commercial support for it under the brand name OSE-
LAS. The project website can be found at http://www.pengutronix.de/software/ptxdist/
index_en.html.

Ptxdist overview. Much more then just an automated cross toolchain building frame-
work, Ptxdist can be considered “executable documentation.” It builds a cross
toolchain, then uses this toolchain to build a Linux kernel image and root filesystem
for the target, which it then packs as a binary image in one of many available formats.

In this section, however, we will cover Ptxdist just for use as an automated cross tool-
chain build system. Later in the chapter, we’ll use it as an automated build system for
an entire embedded Linux project.

The process for building a cross toolchain with Ptxdist has two phases. First, we’ll
download and install the core Ptxdist package and the Ptxdist patches packages. Then,
we’ll download an example Ptxdist project that can generate a few different cross tool-
chain variants.

Installing Ptxdist. First, grab the latest version of the project from its website and install
it. At the time of this writing, the latest version is 1.0.1:

$ wget http://www.pengutronix.de/software/ptxdist/download/v1.0/ptxdist-1.0.1.tgz
$ wget http://www.pengutronix.de/software/ptxdist/download/v1.0/ptxdist-1.0.1-
patches.tgz

Next, unpack the compressed tar archives and move to the project’s directory:

$ tar zxvf ptxdist-1.0.1.tgz
$ tar zxvf ptxdist-1.0.1-patches.tgz
$ cd ptxdist-1.0.1

Now, configure Ptxdist for use on your system, build it, and install it:

$./configure --prefix=$PRIROOT/build-tools/
$ make
$ make install

Setting up Ptxdist. After Ptxdist has been installed, you can set it up to build a toolchain.
Although the default configuration works quite well in most cases, local network and
security policies might require a good deal of configuration.

To set up your new Ptxdist installation, issue the following command:

$ ptxdist setup

GNU Cross-Platform Development Toolchain | 107

http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html

PTXdist v1.0.1 Configuration

|- PTXDIST Setup Menu

Figure 4-1. Ptxdist setup menu
It presents the Ptxdist setup menu, shown in Figure 4-1.

The setup menu allows you to configure many options. You can obtain information
regarding each option using the ? key. This displays a paragraph explaining how the
current option is used and provides its default values.

The following submenus are available:

Proxies
Set up HTTP and FTP proxy servers for Ptxdist to use when downloading source
packages from the Internet.

Project Searchpath
Choose a default project working directory. Set this to your project tools directory.

Source Directory
Choose a directory into which all source packages will be downloaded. Set this to
a subdirectory under your project build-tools directory.

Mirrors
Allows you to specify places to download Debian, GNU, and Xorg source packages.
Normally, there is no reason to change this, but if some source packages fail to
load due to an unavailable server, you may try to specify a different mirror for the
appropriate project.

108 | Chapter4: Development Tools

IPKG Repository
IPKG is a binary packaging format used in many Linux-based embedded system
distributions. Ptxdist can create a custom IPKG repository for you from the pack-
ages it builds. For a toolchain building project, leave this at the default value.

JAVA SDK
Ptxdist allows you to build some Java-based packages. This submenu can be used
to point to the relevant Java SDK required to build Java programs. You can leave
this as the default value for a toolchain building project.

W8

If the configuration menu did not show up, make sure that your exe-
cutable path is set correctly (for example, by running the development
98 environment setup script described earlier) and that your terminal has
" atleast 19 lines by 80 columns.

When you finish, choose the < Exit > button and press |Enter], and then choose the
< Yes > button to save your new configuration.

Creating a toolchain project. Ptxdist is organized around the concept of a project, a set of
configuration files and patches required to build a certain set of software. To start
building our cross toolchain using the Ptxdist framework, we’ll download an example
toolchain Ptxdist project from the Ptxdist website and uncompress the archive:

$ wget http://www.pengutronix.de/oselas/toolchain/download/OSELAS.Toolchain-1.1.1.tar.bz2
$ tar jxvf OSELAS.Toolchain-1.1.1.tar.bz2
$ cd OSELAS.Toolchain-1.1.1/

Now pick a sample toolchain to build from the included examples. Each toolchain
example is represented by a configuration file in the ptxconfigs directory:

$ 1s ptxconfigs/

arm-1136jfs-linux-gnueabi_gcc-4.1.2_glibc-2.5 linux-2.6.18.ptxconfig
armeb-xscale-linux-gnueabi_gcc-4.1.2 glibc-2.5 linux-2.6.18.ptxconfig
armeb-xscale-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.17.ptxconfig
arm-ep93xx-linux-gnueabi gcc-4.1.2_glibc-2.5 linux-2.6.18.ptxconfig
arm-iwmmx-linux-gnueabi gcc-4.1.2 glibc-2.5 linux-2.6.18.ptxconfig
arm-v4t_hardfloat-linux-gnu gcc-4.0.4 glibc-2.3.6 linux-2.6.18.ptxconfig
arm-v4t-linux-gnueabi gcc-4.1.2 glibc-2.5 linux-2.6.18.ptxconfig
arm-v4t-linux-gnu_gcc-4.0.4 glibc-2.3.6 linux-2.6.18.ptxconfig
arm-xscale_hardfloat-linux-gnu gcc-4.0.4 glibc-2.3.6 linux-2.6.17.ptxconfig
arm-xscale-linux-gnueabi gcc-4.1.2 glibc-2.5 linux-2.6.18.ptxconfig
arm-xscale-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.17.ptxconfig
1586-unknown-1inux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
1686-unknown-1inux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
mips-r6000-1inux-gnu_gcc-4.1.2_glibc-2.5 linux-2.6.18.ptxconfig
powerpc-603e-linux-gnu_gcc-4.1.2 glibc-2.5 linux-2.6.18.ptxconfig
powerpc64-970-1inux-gnu_gcc-4.1.2_glibc-2.5 linux-2.6.18.ptxconfig

To build one of the example toolchains, you need to tell Ptxdist which configuration
file you want to use and then tell it to build the toolchain according to the instructions
in the configuration file.

GNU Cross-Platform Development Toolchain | 109

As an example, let’s build a cross toolchain for the a ARM Xscale EABI, using GCC
4.1.2 and glibc 2.5 with kernel headers from version 2.6.18, including NPTL support.
The example file you will use will therefore be ptxconfigs/arm-xscale-linux-gnuea
bi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig.

Before you do so, however, you must make a small change in the example configuration
file in order to use it, because the example configuration files were generated using an
earlier version of the Ptxdist framework. The version number of that earlier version is
embedded in the configuration file, which will cause Ptxdist to fail with an error mes-
sage if you try to use the example configuration as is.

Luckily, the configuration files are simple text files. You can simply edit the configu-
ration file and update the version number to match the latest version you use. While
this can easily be done manually with a text editor, the following shell hackery does
the trick very well:
$ sed s/PTXCONF_CONFIGFILE_VERSION=.*/PTXCONF_CONFIGFILE_VERSION="1.0"/ \
ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig > \
ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig.tmp

$ mv ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig.tmp \
ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig

After running this command, instruct Ptxdist to use your “patched” configuration file
through the following command:

$ $PRIROOT/build-tools/bin/ptxdist select \
ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig

Now you can customize our chosen example toolchan project configuration. Issue the
following command:

$ ptxdist menuconfig
You will be presented with the Ptxdist toolchain project menu, shown in Figure 4-2.
The menu contains the following options and submenus:

Project Name
A textbox to enter a long name for the project. Useful if you are maintaining several
different Ptxdist toolchain projects.

glibc
This submenu allows you to specify the glibc version, any extra configuration op-
tions you might wish to pass to the package configuration script, a file list, a series
of patches to apply to the library source before the build, the minimum supported
kernel version, extra environment variables you might want to pass to the glibc
configuration script, which threading library to use (NPTL or LinuxThreads), and
whether the resulting glibc will support thread-local storage.

glibc-ports
This submenu lets you list a series of patches to apply to glibc from the glibc-ports
archive, which contains patches for glibc originating outside the glibc core team.

110 | Chapter4: Development Tools

v1l.8.1 Conf

(EEELAS,Toolchain—l,l,l] Project Name

Figure 4-2. Ptxdist toolchain menu

binutils
This submenu lets you pick which binutils package version to include in the tool-
chain built.

kernel
This submenu sets the kernel version and the configuration file for the Linux kernel
headers required to build the toolchain. It also lets you specify whether or not to
use sanitized headers. For more on kernel configuration, see “Configuring the Ker-
nel” in Chapter 5.

gcc (first stage)
This submenu lets you specify the GCC version to use for the first stage (bootstrap)
compiler, as well as a patch series file and extra options to provide to the GCC
configuration script.

gcc (second stage)
This submenu allows you to choose which programming languages the newly cre-
ated toolchain will support. The languages supported depend on the GCC version,
but all versions support C and C++.

GNU Cross-Platform Development Toolchain | 111

cross gdb
This checkbox can be checked to ask PTxdist to build a cross debugger as part of
the toolchain.

architecture
This drop-down box lets you specify the toolchain’s target architecture. Currently
ARM, MIPS, PowerPC, and x86 are supported.

toolchain target
This text box allows you to set your toolchain GNU configuration string (e.g.,
powerpc64-970-linux-gnu).

debuggable toolchain internals
This checkbox allows you to specify whether full debugging information should
be generated for the toolchain’s glibc and libstdc++ libraries. Selecting this check-
box lets you step into functions defined in these basic libraries, but it will make
your toolchain about 500 MB bigger. (It does not affect the target filesystem size,
though.)

misc
The misc submenu allows you to specify the version of Ptxdist that is compatible
with the current toolchain project, as well as set the filesystem prefixes into which
the generated filesystem will be installed. Set the first prefix to the tools directory
under the project root, and leave the second prefix field blank.

After you finish configuring these items, choose the < Exit > button and press Enter],
then choose the < Yes > button to save your configuration.

Building the toolchain. Finally, you are ready to let Ptxdist build your toolchain. In the
process, Ptxdist will automatically download, configure, patch, build, and install all
required components. To start the build process, issue the following command:

$ ptxdist go

B
\
- The build process can take from one to a few hours, depending on the
ﬁ:\ speed of your workstation and Internet connection.
SN a
05)

When the build finishes, the new toolchain will be ready in the tools/bin directory of
your project root.

Using the Toolchain

The steps in the previous sections should have created a fully functional cross-
development toolchain, which you can use much as you would a native GNU toolchain;
you just need to prepend the target name to every command. For instance, instead of

112 | Chapter4: Development Tools

invoking gcc and objdump for your target, you will need to invoke something such as
i386-linux-gcc and i386-linux-objdump.

A Makefile for the control daemon on the DAQ module follows, which provides a good
example of the cross-development toolchain’s use:

Tool names

CROSS_COMPILE = ${TARGET}-

AS = $(CROSS_COMPILE)as

AR = $(CROSS_COMPILE)ar

cc = $(CROSS_COMPILE)gcc

cpp = $(cC) -E

LD = $(CROSS_COMPILE)1d

NM = $(CROSS_COMPILE)nm
0BICOPY = $(CROSS_COMPILE)objcopy
0BIDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)ranlib
READELF = $(CROSS_COMPILE)readelf
SIZE = $(CROSS_COMPILE)size
STRINGS = $(CROSS_COMPILE)strings
STRIP = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF SIZE STRINGS \
STRIP

Build settings

CFLAGS = -02 -Wall
HEADER_OPS
LDFLAGS =

Installation variables

EXEC_NAME = command-daemon
INSTALL = install

INSTALL DIR = ${PRIRO0T}/rootfs/bin

Files needed for the build
0BJS = daemon.o

Make rules
all: daemon
$(CC) $(CFLAGS) $(HEADER_OPS) -c $<

daemon: ${0BJS}
$(CC) -0 $(EXEC_NAME) ${0BIS} $(LDFLAGS)

install: daemon
test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
$(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:
rm -f *.0 $(EXEC_NAME) core

distclean:

GNU Cross-Platform Development Toolchain | 113

m -f *~

rm -f *.0 $(EXEC_NAME) core
The first part of the Makefile specifies the names of the toolchain utilities we are using
to build the program. The name of every utility is prepended with the target’s name.
Hence, the value of CC will be i386-linux-gcc, the cross-compiler we built earlier. In
addition to defining the name of the utilities, we also export these values so that sub-
sequent Makefiles called by this Makefile will use the same names. Such a build archi-
tecture is quite common in large projects that have one main directory containing many
subdirectories.

The second part of the Makefile defines the build settings. CFLAGS provides the flags to
be used during the build of any C file.

As we saw in the previous section, the compiler is already using the correct path to the
target’s libraries. The linker flags variable, LDFLAGS, is therefore empty. If the compiler
wasn’t pointing to the correct libraries or was using the host’s libraries (which shouldn’t
happen if you followed the instructions provided earlier), you would have to tell the
compiler which libraries to use by setting the link flags as follows:

LDFLAGS = -nostdlib -L${TARGET_PREFIX}/1lib

If you wish to link your application statically, you need to add the -static option to
LDFLAGS. This generates an executable that does not rely on any shared library. But given
that the standard GNU C library is rather large, this will result in a very large binary.
A simple program that uses printf() to print “Hello World!”, for example, is less than
12 KB in size when linked dynamically and around 350 KB when linked statically, even
when stripped.

The variables in the installation section indicate what, where, and how to install the
resulting binary. In this case, the binary is being installed in the bin directory of the
target’s root filesystem.

In the case of the control daemon, we currently have only one file to build. Hence, the
program’s compilation requires only this single file, but had you used the -nostdlib
option in LDFLAGS (which you should not normally need to do) you would also need to
change the section describing the files required for the build and the rule for generating
the binary:

STARTUP_FILES = ${TARGET_PREFIX}/lib/crti.o \

${TARGET_PREFIX}/lib/Crti.O \
${PREFIX}/1lib/gcc-1ib/${TARGET}/2.95.3/crtbegin.o

END_FILES = ${PREFIX}/1ib/gcc-1ib/${TARGET}/2.95.3/crtend.o \
${TARGET_PREFIX}/lib/crtn.0

LIBS = -1c

0BJS = daemon.o

LINKED_FILES = ${STARTUP_FILES} ${OBJS} ${LIBS} ${END_FILES}

aéemon: ${0B1S}
$(CC) -o $(EXEC_NAME) ${LINKED FILES} $(LDFLAGS)

114 | Chapter4: Development Tools

The preceding Makefile excerpt adds five object files to the one it generates from our
own C file: crtl.o, crti.o, crtbegin.o, crtend.o, and crtn.o. These are special startup,
initialization, constructor, destructor, and finalization files, respectively, which are
usually automatically linked to your applications. It is through these files that your
application’s main() function is called, for example. Since we told the compiler not to
use standard linking in this case, we need to explicitly mention the files. If you disable
standard linking but forget to explicitly mention the files, the linker will complain about
a missing _start symbol and fail. The order in which the object files are provided to
the compiler is important because the GNU linker, which is automatically invoked by
the compiler to link the object files, is a one-pass linker.

The make rules themselves are very much the same ones you would find in a standard,
native Makefile. We added the install rule to automate the install process. You may
choose not to have such a rule but to copy the executable manually to the proper
directory.

With the Makefile and the source file in your local directory, all you need to do is type
make to build your program for your target. If you want to build your program for
native execution on your host to test your application, for example, you could use the
following command:

$ make CROSS_COMPILE=""

CLibrary Alternatives

Given the constraints and limitations of embedded systems, the size of the standard
GNU C library makes it an unlikely candidate for use on our target. Instead, we need
to look for a Clibrary that will have sufficient functionality while being relatively small.

Over time, a number of libraries have been implemented with these priorities in mind.
In this section, we will discuss the two most important C library alternatives: uClibc
and diet libc. For each library, we’ll provide background information, instructions on
how to build the library for your target, and instructions on how to build your appli-
cations using the library.

uClibc

The uClibc library originates from the uClinux project, which provides a Linux that
runs on processors lacking a memory management unit (MMU).¥ The library, however,
has since become a project of its own and supports a number of processors, including
ones that have an MMU. In fact, at the time of this writing, uClibc supports all the
processor architectures discussed in-depth in Chapter 3.

¥ Processors without MMUs are low-end, and Linux is increasingly used on embedded systems with MMUs.
With special treatment, it can run on MMU-less systems, with the drawback that several features will not
work (such as memory protection).

CLibrary Alternatives | 115

Although it does not rely on the GNU C library, uClibc provides most of the same
functionality. It is, of course, not as complete as the GNU library and does not attempt
to comply with all the standards with which the GNU library complies. Functions and
function features that are seldom used, for instance, are omitted from uClibc. Even so,
most applications that can be compiled against the GNU C library will also compile
and run using uClibe. To this end, uClibc developers focus on maintaining compati-
bility with C89, C99, and SUSv3.8 They regularly run extensive test suites to ensure
that uClibc conforms to these standards.

uClibc is available for download as a tar-gzipped or tar-bzip2’d archive or by using CVS
from the project’s website at http://uclibc.org. The library is distributed under the terms
of the LGPL. An FAQ is available on the project’s website, and you can subscribe to
the uClibc mailing list or browse the mailing list archive if you need help. In the fol-
lowing description, we will use version 0.9.29 of uClibc, but the explanation should
apply to subsequent versions as well. Versions earlier than 0.9.16 depended on a dif-
ferent configuration system and are not covered in the following discussion.

Buildroot

Because the C library is one of the major components of a toolchain, and uClibc is an
alternative C library for embedded Linux systems, using it requires building a custom
cross toolchain. Just as with glibc cross toolchains, the best way to build a uClibe-based
cross toolchain is to use an automated build framework to do the heavy lifting. The
uClibc distribution includes its own framework called Buildroot.

W

- Older versions of uClibc provided a wrapper around various toolchain
o components that allowed you to build applications against uClibc with-
T Qi out the need for a custom toolchain.

Alas, this approach has been discontinued, as the wrappers have proved
to introduce more complications than assistance.

Download Buildroot from the http://buildroot.uclibc.org website and extract the com-
pressed tar archive:

$ cd $PRIROOT/build-tools/

$ wget http://buildroot.uclibc.org/downloads/snapshots/buildroot-snapshot.tar.bz2
$ tar jxvf buildroot-snapshot.tar.gz

$ cd buildroot/

Run the configuration menu utility:

$ make menuconfig

You will be presented with Buildroot configuration menu, shown in Figure 4-3. As in
the Ptxdist menu, you can obtain information regarding each option using the ? key.

§ Single UNIX Specification, version 3.

116 | Chapter4: Development Tools

http://uclibc.org
http://buildroot.uclibc.org

.config - buildroot v@.16.8-svn Configuration

Buildroot Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=.
Highlighted letters are hotkeys. Pressing <Y> selectes a feature,
while <N> will exclude a feature. Press <Esc><Esc> to exit, <?> for
Help, </> for Search. Legend: [*] feature is selected [] feature is

Target Architecture (mipsel) --->
| Ml _Target Architecture Variant (mips 32r2) --->
Target ABI (EABRI) ---=
Target options ---=
Build eptions --->
Toolchain --->
Package Selection for the target --->
Target filesystem options --->
Kernel --->

< Exit > < Help >

Figure 4-3. uClibc Buildroot main menu

Indeed, both Ptxdist and Buildroot share the same configuration system, which uClibc,
the Linux kernel, and many other projects also use.

The Buildroot main menu includes the following options:

Target Architecture
Lets you choose the target architecture for which the cross toolchain creates
binaries.
Target Architecture Variant (optional)
Configures a subarchitecture or generation to build for, such as 386, 486, or 686
for the x86 family, if applicable.
Target ABI (MIPS only)
The target ABI option, which is offered only for the MIPS architecture, controls
which of three available Application Binary Interfaces to use. Most embedded sys-
tems builders are likely to choose the new embedded targeted API, called EABIL.
Target options
This submenu controls several settings of interest only to people using Buildroot
to build the entire root filesystems. They do not affect cross toolchain compilation.
Build options

This submenu allows you to set several different options concerning the cross
toolchain build process:

CLibrary Alternatives | 117

* The commands used to perform such tasks as retrieving files from FTP and
websites, checking out source code from Subversion and Git source control
repositories, and uncompressing Gzip and Bzip2 archives, as well as any special
command-line options to pass to the tar command. The defaults provided are
quite sensible and will work out of the box for most modern Linux systems.

* Mirrors and download locations for components such as the Linux kernel, GNU
software (such as GCC, binutils, and GDB packages), and a Debian project
mirror (used to fetch additional packages). Leaving the defaults is safe, but if
you happen to know the URL of a nearby mirror, you may save considerable
time by configuring it here.

* The directory into which the cross toolchain and header files will be installed.
Change this to the directory we have configured as $PRJROOT/tools/.

W N

Due to the way these configuration options are used, you cannot
actually use the $PRIROOT environment variable here and will
s have to enter its value.

* The nofpu suffix on the names of executables that support targets with no
hardware floating point.

* The custom prefix and suffix for build directories’ names to allow the building
of several architectures in a single location. Use of these options is not
recommended.

* An optional, custom GNU target suffix. You can use this to “brand” your cross
toolchain.

* A version of the strip utility. The traditional strip command is recommended,
rather then the newer sstrip.

* An option to configure the toolchain to use static libraries, rather then dynamic,
loadable ones. Not recommended for novice users.

* Several other options related to the use of Buildroot for building root filesystems,
which are not relevant for toolchains.

Toolchain
This submenu, shown in Figure 4-4, controls several key configuration options for
Buildroot-based toolchain builders:

* Select whether you wish to use an external toolchain or build a new one. Use
the default, called “Buildroot toolchain,” because you should have Buildroot
generate a toolchain and not rely on an externally supplied toolchain.

* Select a kernel headers version. Pick the version that most closely matches your
target kernel version.

* Choose a uClibc library version. Choosing one of the latest released versions
(rather than the daily snapshot) is recommended.

118 | Chapter4: Development Tools

Configure the location of the uClibc library configuration file. Leave it as the
default at the moment; we will describe how to customise uClibc configuration
in the next section.

Supportinternationalization (i18n). Not normally useful for embedded systems.
Pick a threading library implementation. NPTL is recommended.

Control whether to build the threading library with debug symbols. Most people
will want to say “Yes” here.

Setan option to support the GNU “program invocation name” extension, which
is used by some third-party programs (such as GNU tar) but not generally re-
quired. Choose “Yes” here.

Pick the version of the binutils package. Pick the most recent version offered.
Set additional options to pass when building the bintuils packages. Normally
this is left empty.

Pick the GCC compiler version. Older versions usually produce smaller code
but support fewer features and have known issues.

Enable your cross toolchain to use a custom sysroot, separate from the system’s.
[t is important to enable this option to separate the cross toolchain cleanly from
the native toolchain and libraries that might be installed on your workstation.

Implement exception handling using setjmp/longjmp, rather then the more
orthodox stack unwinding, to overcome issues with stack unwinding code.
Choose “No” unless exceptions do not work correctly.

Set additional options to pass during the GCC build. Leave this empty.
Configure whether to build C++, FORTRAN, and Objective-C compiler and
runtime support, in addition to C support.

Build and install a shared library version of libgcc, the GCC runtime code library.
Most people will choose “Yes” here.

Build a toolchain supporting the ccache compiler cache tool.
Set options for building and installing GDB, the GNU debugger, as part of the

toolchain. See additional discussion of GDB in “Building and Installing gdb
Components” in Chapter 11.

Support the FLT format, which is used with uClinux systems (Linux for systems
with no MMU support).

Choose whether to build and install sstrip (an enhanced version of the strip
utility for editing ELF binary sections). As this is a useful tool, it is recommended
that you set this option.

Choose whether to build and support libraries that support multiple target ABIs.
Not usually needed or recommended.

Support files larger then 2 GB. Enabling this will require more runtime
resources.

CLibrary Alternatives | 119

* Enable support for the IPv6 and RPC network protocols in the uClibc library.

* Support wide characters, or WCHAR, which is needed by some third-party
software packages.

* Select whether to include software floating-point emulation in the toolchain.
Useful for targets with no FPU, and preferred over using Linux-kernel-based
emulation on these systems for performance reasons.

* Choose whether to install some useful target binaries (such as the debugger
agent) in the toolchain directory.

* Configure additional options related to the use of Buildroot to generate root
filesystems.

Package Selection for the target
As the name implies, this submenu allows one to ask Buildroot to fetch, build, and
package additional software packages for the target filesystem using the cross tool-
chain. Although this is a very useful option, it is of not interest to us at this time.
Unmark all the options in this menu. The next chapter discusses building the target
filesystem.

Target filesystem options
This submenu allows you to configure how Buildroot will package the root file-
system it builds. As explained in the previous entry, you should unmark all the
options in this submenu at this time.

Kernel
This submenu allows you to configure a Linux kernel version and configuration
file to be automatically fetched and built by Buildroot using the cross toolchain.
As before, leave all options unmarked at this time.

When finished, choose the < Exit > button and press [Enter], then choose the < Yes >
button to save your configuration.

Next, run make to let Buildroot fetch, patch, configure, build, and install your new
uClibc-based cross toolchain:

$ make

N

This stage can take quite some time and requires a working Internet
connection.

The resulting toolchain will be installed in the $PRJROOT/tools/bin directory when the
build completes.

120 | Chapter4: Development Tools

.config - buildroot v@.16.6-svn Configuration

Toolchain
Arrow keys navigate the menu. <Enter> selects submenus ---=.
Highlighted letters are hotkeys. Pressing <Y> selectes a feature,
while <N> will exclude a feature. Press <Esc><Esc> to exit, <7> for
Help, </> for Search. Legend: [*] feature is selected [] feature is

| l§ Toolchain type (Buildroot toolchain)
--- Kernel Header Options

Kernel Headers (Latest Linux 2.6.22.x kernel headers) ---=
--- uClibc Options

uClibe € library Version (uClibc 8.9.29) --->
(toolchain/uClibc/uClibc-0.9.29.config) uClibc configuration file
[1 Enable locale/gettext/i18n support?

Thread library implementation (linuxthreads (stable/old)) --
[1 Thread library debugging
[1 Enable 'program invocation name' (NEW)

< Exit > < Help >

Figure 4-4. uClibc Buildroot toolchain menu

Customizing the uClibc configuration

The previous section used Buildroot to build a uClibc-based toolchain, using the default
uClibc options for our target architecture. These default options are very reasonable,
and it is recommended you stick with them, at least in your first attempt to build a
uClibc-based system.

Having said that, we recognize it is sometimes desirable to fine-tune and optimize cer-
tain options in the uClibc configuration itself. This can be done through Buildroot,
after it is configured using the procedure outlined in the previous section, by issuing
the following command:

$ make uclibc-menuconfig

You will be presented with the uClibc configuration menu, which includes the follow-
ing submenus and options:

* Target Architecture

* Target Architecture Features and Options

* General Library Settings

* Advanced Library Settings

* Networking Support

* String and Stdio Support

CLibrary Alternatives | 121

* Bigand Tall

* Library Installation Options

* Security Options

* uClibc Development/Debugging Options

Note that many options in the uClibe configuration menu (such as the architecture
type and installation path) will already be set according to your previous choices in the
Buildroot configuration menu.

Let us now take a look at the options found in each configuration submenu. As men-
tioned earlier, you can use the ? key to obtain more information about each option
from the configuration system. Because some options depend on the settings of other
options, some of the options listed here may not be displayed in your configuration.
While most options are binary choices (either enabled or disabled), others are text

fields.

The Target Architecture option designates the target architecture for which uClibe will
be built. The Buildroot configuration menu we described earlier set this option already.

The Target Architecture Features and Options submenu includes the following
options:

Target Processor Type
Which model of the specific architecture to optimize for.

Target file format
Which executable file format to use. For targets using an MMU, the option is preset
to ELF. For non-MMU-based targets, a choice of binary file types is available. For
a discussion of the various formats and their relative weak and strong points, see
http://lwww.linuxdevices.com/articles/AT3186625227.html.

Target CPU has a memory management unit (MMU)
Specifies whether the specified target CPU has an MMU. If you chose a specific
target model in the Target Processor Type option, this field may be preset for you.

Do you want to utilize the MMU?
Even when hardware supports an MMU, you might want to conserve RAM and
CPU cycles by not using it.

Enable floating-point number support
This option allows you to omit all floating-point number support from uClibc.
This will cause floating-point functions such as strtod() to be omitted from uClibc.
Other floating-point functions, such as printf() and scanf (), will still be included
in the library, but will not contain support for floating-point numbers.

Target CPU has a floating-point unit (FPU)
If your target CPU does not have a floating-point unit (FPU) or a kernel FPU em-
ulator, but you still wish to support floating-point functions, uClibc can be

122 | Chapter4: Development Tools

http://www.linuxdevices.com/articles/AT3186625227.html

compiled with soft floating-point support (using the -msoft-float option to the
GCC). Unsetting this option will turn this behavior on.

Enable full C99 math library support
If you want the uClibc math library to contain the full set of C99 math library
features, set this option. If you leave it unset, the math library will contain only the
math functions listed in the POSIX/IEEE 1003.1b-1993 standard, thus saving a
couple of tens of kilobytes from the library size, depending on your architecture.

Linux kernel header location
This field contains the kernel headers path and is preset by the Buildroot system.

The General Library Settings submenu includes the following options:

Generate position-independent code (PIC)
Build uClibc entirely as position-independent code, even the static parts (shared
library parts are always built as PIC code). This option is useful only if you want
to statically link uClibc inside a shared library, and is very rarely turned on.

Enable support for shared libraries
Unless you are building a static library only system, you should enable this option.

Only load shared libraries which can share their text segment
This option will prevent the shared library loader from loading shared libraries that
modify the program’s code section during the load in order to support relocations
(thus requiring additional memory for each user of the shared library). Such mod-
ifications normally take place when a shared library is been compiled without the -
fPIC or -fpic options, which enforce position-independent code.

Because building a shared library without position-independent code is rarely a
good idea, this option can trap build mistakes that would otherwise cause a need-
less waste of RAM.

Native ‘ldd’ support
Enables all the code needed to support the traditional Idd, which executes the
shared library loader to resolve all dependencies and then displays a list of shared
libraries that are required for an application to function. Disabling this option
makes uClibc’s shared library loader a little bit smaller, but makes debugging cer-
tain link problems harder.

Enable library loader cache (Id.so.conf)
Enable this to make use of /etc/ld.so.conf, the shared library loader cache configu-
ration file, to support nonstandard library paths, similar to the equivalent behavior
in glibc.

Enable library loader preload file (Id.so.preload)
Enable this to make use of /etc/ld.so.preload. This file contains a whitespace-
separated list of shared libraries to be loaded before the program. It also has an
equivalent in glibc.

CLibrary Alternatives | 123

Shared library loader naming prefix
Sets a custom prefix for all shared library loader files. Required only if you plan to
support glibc and uClibc on the same system, which should practically never hap-
pen in a production embedded system, so leaving the default is recommended.

Link ldconfig statically
Enable this option to statically link the ldconfig binary (thus making it a little bit
bigger), which is useful if you are trying to debug shared library linkage problems.
Otherwise, you might not be able to run the ldconfig tool, because it too is de-
pendent upon a shared library. If space requirements permit, you should enable
this option.

Enable ELF RUNPATH tag support
The ELF executable format supports a dynamic RPATH/RUNPATH tag that
allows it to dynamically override the default search path of shared libraries on an
executable-by-executable basis. Use of this feature is not very common, so disa-
bling support for it is a good way to lower the shared library’s loader size and the
load time of shared libraries.

Support global constructors and destructors
If you have no plan to use C++ or GNU extension constructor and destructor
attributes (using the attribute ((constructor)) and _attribute ((destruc
tor)) syntax), you can leave out support for them entirely, making each executable
in the system a little smaller.

POSIX threading support
Enabling this option adds support for POSIX threads, which will increase the size
of uClibc as well as have a slight impact on runtime performance, because locking
primitives will be added to protect internal critical uClibc data structures. Enable
this option unless you never plan to make use of threads.

Build pthreads debugging support
Enabling this option will build the libthread_db shared library, which is necessary
to debug multithreaded applications. Unless you never plan to debug multithrea-
ded code on your target, you should enable this option.

W N
GDB must also be built with uClibc to make multithreaded de-
'.Q.‘ . bugging possible.
0§

Use the older (stable) version of LinuxThreads
Currently, uClibc supports only the legacy (LinuxThreads) threading library,
although experimental support for NPTL is also available.

However, there are two versions of LinuxThreads supported by uClibc. The older
(stable) version has been in uClibc for quite a long time but hasn’t seen too many
updates other than bug fixes. The new version has not been tested much, and lacks

124 | Chapter4: Development Tools

ports for architectures glibc does not support (such as Blackfin and FRV), but is
based on the latest code from glibc, so it may be the only choice for the newer ports
(such as Alpha, AMD64, and HPPA).

Large file support
Enabling this option allows uCLibc to support files larger then 2 GB, at the expense
of a bigger footprint.

Malloc implementation
This submenu allows a choice between three malloc() implementations, ranging
from a simplistic implementation suitable for systems with smaller RAM and
allocations up to a standard implementation equivalent to the one found in glibc.

Malloc returns live pointer for malloc(0)
This option controls the behavior of malloc() when asked to return an allocation
of zero size. Enable this option for full glibc compatibility.

Dynamic atexit() support
Controls whether to support multiple dynamic atext() callbacks. Required for
proper C++ support.

Old (visible) atexit support
An outdated option included for backward compatibility with older releases of
uClibc. Leave unset.

Enable SuSv3 LEGACY functions and enable SuSv3 LEGACY macros
Enable support for defunct functions and macros (bcopy, bzero, bemp, index, and
rindex) that some software packages might still need.

Shadow password support
Enable support for keeping the user password in a shadow file, separate from the
master user database, for better security. This option is recommended.

Support for program_invocation_name and support for __progname
These options enable support for very rarely used aliases to the argv[0] argument
containing a program name. Some software packages (notably GNU tar and cor-
eutils) use these aliases to provide extra useful output. It is normally safe to leave
this option unset.

Supports only Unix 98 PTYs
Unsetting this option enables legacy support for non-Unix 98 PTYs. Unless you
are going to use older applications, it is safe to leave this set.

Assume that /dev/pts is a devpts or devfs filesystem
Enabling this option assumes that the devpts virtual filesystem is used to keep track
of pseudoterminal devices. This is normally true for modern Linux systems. But if
you choose this option, enable devpts support in the kernel configuration.

Various additional time related options
The last options in this menu control the handling of time and time zones in uClibc.
For full glibc compatibility and best performance, you should turn on all these
options.

CLibrary Alternatives | 125

The Advanced Library Settings submenu contains advanced options that allow expert
developers to tweak the sizes of various buffers used internally in uClibc.

The Networking Support submenu includes the following options:

IP version 6 support
Enables support for IPv6 in networking system calls.

Remote Procedure Call (RPC) support
Enables RPC support. Unless you plan to make use of NFS, it is safe to unset this
option.

Full RPC support
Full-featured RPC support. Not required for NFS. Unless you have a very specific
need for full RPC support, you can safely unset this option.

Reentrant RPC support
Provides reentrant versions of the RPC calls. Required for some programs (such as
exportfs).

Use netlink to query interfaces
Query network devices via the newer Netlink interface rather then the old ioctl
interface. Usually not recommended, as the newer Netlink interface requires a
larger footprint but can be turned on to resolve issues with newer network device
drivers that do not support the old interface.

Support res_close() (bsd-compat)
Turns on the BSD-compatible network API. Usually not required.

The String and Stdio Support submenu includes various options to tweak and configure
the behavior of functions related to strings and files. The major options are the follow-
ing:

Wide character support
Enables wide character support. This will make uClibc much larger. It is required
for locale support (the next option), so this option is recommended only if you
must support languages using characters greater than 8 bits in length.

Locale support
Turns on full ANSI/ISO C99 locale support (except for wesftime() and collating
items in regular expressions).

Enabling this option will make uClibc much larger; used with the default set of
supported locales (169 UTF-8 locales and 144 locales for other codesets) will en-
large uClibc by around 300 KB. Use this only if internationalization support at the
system library level is a must.

Include the errno message text in the library, Include the signum message text in the library
Enable these options to display verbose error messages and signal descriptions at
the cost of about 3.5 KB in uClubc library size. These options alter the displays
shown by strerror() and strsignal(). Recommended for most systems.

126 | Chapter4: Development Tools

Additional miscellaneous options and submenus allow you to change other, less critical
string and file handling in uClibc.

The Big and Tall submenu provides several options allowing you to drop rarely used
functionality from uClibc. As a general rule, the defaults are recommended.

The Library Installation Options submenu specifies several installation paths and pre-
fixes used by the uClibc installer. The Buildroot environment will have already chosen
the values of the options in this section; you shouldn’t change them.

The Security Options submenu provides options to turn on several security features,
allowing you to harden the uCLibc installation against security attacks at the cost of
runtime performance. It is safe to leave all these options unset.

The uClibc Development/Debugging Options submenu accesses some options that can
be useful when debugging uClibc and uClibe-based applications, such as debug sym-
bols for the library and runtime assertions in the uClibe library code for debugging
uClibc itself. You would not normally ship a finished product with these debug options
enabled, however.

After using the menus just described to adapt the uClibc configuration to your needs,
copy the .config file to toolchain/uClibc/uClibc.config or toolchain/uClibc/uClibe.config-
locale. The former is used if you haven’t selected locale support in the Buildroot con-
figuration, and the latter if you have selected it.

$ cp toolchain_build_arm/uClibc-0.9.29/.config toolchain/uClibc/uClibc.config
Now rebuild Buildroot:

$ make clean
$ make

Diet libc

The diet libc project was started and is maintained by Felix von Leitner. Its goals are
similar to uClibc. In contrast with uClibc, however, diet libc did not grow from previous
work on libraries but was written from scratch with an emphasis on minimizing size
and optimizing performance. Hence, diet libc compares quite favorably to glibc in terms
of footprint and speed. In comparison to uClibc, though, we have not noticed any
substantial difference.

Diet libc does not support all the processor architectures discussed in Chapter 3; it
supports the ARM, MIPS, x86, and PPC. Also, the authors of diet libc favor static linking
over dynamic linking. So, although diet libc can be used as a shared library on some
platforms, it is intended to be used as a static library.

One of the most important issues to keep in mind while evaluating diet libc is its li-
censing. In contrast to most other libraries, including uClibc, which are usually licensed
under the LGPL, diet libc is licensed under the terms of the GPL. As we explained in
Chapter 1, this means that by linking your code to diet libc, you make the resulting

CLibrary Alternatives | 127

binary a derived work and can distribute it only under the terms of the GPL. A com-
mercial license is available from the package’s main author if you wish to distribute
non-GPL code linked with diet libc.I If, however, you would prefer not to have to deal
with such licensing issues, you may want to use uClibc instead.

Diet libc is available for download both as a tar-bzip2’d archive or using CVS from the
project’s website at http://www.fefe.de/dietlibc/.# The package comes with an FAQ and
installation instructions. In the following examples, we will use version 0.21 of diet
libc, but the explanations should apply to other versions as well.

Library setup

As with uClibe, the first step to setting up diet libc is to download it into your
${PRJROOT}/build-tools directory. Here, too, you will build the library within the
package’s source directory and not in another directory, as was the case for the GNU
toolchain. No configuration is required for diet libc. Instead, you can proceed with the
build stage immediately.

Once the package is extracted, move into the diet libc directory for the setup:

$ cd ${PRIROOT}/build-tools/dietlibc-0.31
Before building the package for your target, build it for your host. This is necessary to

create the diet utility, which is required to build diet libc for the target and later to build
applications against diet libc:

$ make
In the setup used for this example, this command creates a bin-ppc directory containing
a PPC diet libc. You can now compile diet libc for your target:

$ make ARCH=1386 CR0SS=i386-linux-
You will see even more warnings than with the other packages, but you can ignore
them. Here, you must tell the Makefile both the architecture for which diet libc is built
and the prefix of the cross-platform development tools.
With the package now built, you can install it:

$ make ARCH=i386 DESTDIR=${PREFIX}/dietlibc prefix="" install
This installs diet libc components in ${PREFIX}/dietlibc. Again, as when building the
package for your target, you must specify the architecture. Also specify the install des-

tination using the DESTDIR variable, and reset the Makefile’s internal prefix variable,
which is different from the capital PREFIX environment variable.

I'Tt is not clear whether this license covers the contributions made to diet libc by developers other than the
main author.

Notice the final “/”. If you omit this slash, the web server will be unable to locate the web page.

128 | Chapter4: Development Tools

http://www.fefe.de/dietlibc/

Diet libc has now been installed in the proper directory. There is, however, one cor-
rection you may need to make to the installation. Because the example shown here
installed the x86 version of diet libc, it also installed the x86 version of the diet utility
in ${PREFIX}/dietlibc/bin. Since we intend to compile our applications on the host, we
need to overwrite this with the native diet utility we built earlier:

$ cp bin-ppc/diet ${PREFIX}/dietlibc/bin

Usage

In order to use diet libc, you must first modify your system PATH variable, and then
make use of a special diet libc wrapper when making calls to the various build tools.

First, change your path to include the directory containing the diet libc binary:
$ export PATH=${PREFIX}/dietlibc/bin:${PATH}

Again, you will also want to change your development environment script. For exam-
ple, the path line in our develdaq script becomes:

export PATH=${PREFIX}/bin:${PREFIX}/dietlibc/bin:${PATH}

Notice that we assume you won’t be using both uClibc and diet libc at the same time.
Hence, the path line has only diet libc added. If you would like to have both diet libc
and uClibc on your system during development, you need to add both paths.

To compile the control daemon with diet libc, use the following command line:
$ make CROSS_COMPILE="diet i386-linux-"

Because diet libc is mainly a static library, this will result in a statically linked binary
by default and you don’t need to add LDFLAGS="-static" to the command line. Using
the same “Hello World!” program as earlier, we obtained a 24 KB binary when linked
with diet libc.

Java

Since Sun introduced it in 1995, Java has become one of the most important program-
ming languages around. Today, it is found in every category of computerized systems,
including embedded systems. Although still not as popular as C in the embedded pro-
gramming world, it is nonetheless turning up in an ever-increasing number of designs.

As Sun has released most of the source of Java under the GPL version 2 license, with a
clause excusing code using the Java runtime classes from the requirement to be licensed
under the GPL, the Sun Java reference implementation is now (mostly) a true open
source project. It can be downloaded and compiled like any other open source program,
making it the most natural candidate for a Java runtime for an embedded Linux system.

Having said that, before Sun elected to release Java under an open source license, several
other open source Java packages were created, and some of them were successfully
used in embedded Linux systems.

Java | 129

In this chapter, we will briefly review some of these options and provide pointers to the
various projects’ websites.

W
\
- There also exist numerous commercial, proprietary Java VMs for Linux.
"‘:\ However, we will not cover them here.
S & s
'

{0

Sun Java Micro Edition

Sun Java Micro Edition, also known as J2ME, is a subset of the Java platform that aims
to provide a certified collection of Java APIs for the development of software for em-
bedded and mobile devices, mostly mobile phones.

As of December 2006, the Sun reference specification of J2ME is available from Sun
under the GNU GPL, under the PhoneME moniker from the Mobile and Embedded
community web page on the Sun website at:

http://community.java.net/mobileandembedded

The source code for the latest releases and prebuilt binaries for Linux x86 and ARM-
platforms are available at https://phoneme.dev.java.net/downloads_page.html#feature.
A very detailed guide for building a current MR2 release of phoneME is available at
https://[phoneme.dev.java.net/content/mr2/index_feature.html.

Because Sun PhoneME is the reference Java platform for mobile devices, it is most
compatible with the Java standard. However, it is not necessarily the one with the best
performance or smallest footprint. One can hope that, with its release under an open
source license, this might change in the future.

Non-Sun-Related Open Source Virtual Machines

Because Sun Java was released under an open source license only in late 2006, a number
of older projects exist that provide open source, fully functional JVMs without using
any of Sun’s source code. Since there isn’t any consensus on the feasibility of using any
of the various open source VMs as the main JVM in an embedded Linux project, we
will only mention the VMs briefly and will not provide any information regarding their
use. You are invited to look at each VM and follow the efforts of the individual teams.

The Kaffe Java Virtual Machine (http://www.kaffe.org) is based on KaffePro VM, a
product sold commercially by Transvirtual, Inc., and is a clean-room implementation
of the JVM." Although no new releases of the project have been made since July 2000,
and although this VM is not 100 percent compatible with Sun’s VM (according to the
project’s website), it is still the main open source alternative to Sun’s VM.

" That is, it was written from scratch without using any of Sun’s Java source code.

130 | Chapter4: Development Tools

http://community.java.net/mobileandembedded
https://phoneme.dev.java.net/downloads_page.html#feature
https://phoneme.dev.java.net/content/mr2/index_feature.html
http://www.kaffe.org

There are other projects that may eventually become more important, such as Japhar
(http://www.japhar.org), Kissme (http://kissme.sourceforge.net), Aegis (http://ae
gisvm.sourceforge.net), and Sable VM (http://www.sablevm.org). For a complete list of
open source VM projects, see the list provided by the Kaffe project at http:/
www.kaffe.org/links.shtml.

See each project’s respective website and documentation for information on how to
install and operate the VM.

The GNU Java Compiler

As part of the GNU project, the GNU Compiler for the Java programming language
(G(J) is an extension to GCC that can handle both Java source code and Java bytecode.
In particular, GCJ can compile either Java source code or Java bytecode into native
machine code. In addition, it can also compile Java source into Java bytecode. It is often
referred to as an ahead-of-time (AOT) compiler, because it can compile Java source
code directly into native code, in contrast with popular just-in-time (JIT) compilers
that convert Java bytecode into native code at runtime. GCJ does, nevertheless, include
a Java interpreter equivalent to the JDK’s java command.

G(J is a fairly active project, and most core Java class libraries are already available as
part of the GCJ runtime libraries. Although most windowing components, such as
AWT, are still under development, the compiler and its runtime environment can al-
ready be used to compile and run most command-line applications.

As with other GNU projects, GC]J is fairly well documented. A good starting place is
the project’s website at http://gcc.gnu.org/java. In its documentation section, you will
find a compile HOWTO, a general FAQ, and instructions on how to debug Java ap-
plications with gdb. You should be able to use the compilation HOWTO in conjunction
with our earlier instructions regarding the GNU toolchain to build GCJ for your target.

Perl

Larry Wall introduced Perl in 1987, and it has since become a world of its own. If you
are interested in Perl, have alook at Programming Perl by Larry Wall, Tom Christiansen,
and Jon Orwant or Learning Perl by Randal Schwartz, Tom Phoenix, and brian d foy
(both O’Reilly). Briefly, Perl is an interpreted language whose compiler, tools, and
libraries are all available as open source under the terms of the Perl Artistic License and
the GNU GPL from the Comprehensive Perl Archive Network (CPAN) at http:/
www.cpan.org. Because there is only one Perl toolset, you will not need to evaluate
different toolsets to figure out which one best suits your needs.

The main component you will need to run Perl programs on your target is a properly
compiled Perl interpreter. Unfortunately, at the time of this writing, Perl is not well

Perl | 131

http://www.japhar.org
http://kissme.sourceforge.net
http://aegisvm.sourceforge.net
http://aegisvm.sourceforge.net
http://www.sablevm.org
http://www.kaffe.org/links.shtml
http://www.kaffe.org/links.shtml
http://gcc.gnu.org/java
http://www.cpan.org
http://www.cpan.org

adapted to cross-compilation, and it is currently not possible to cross-compile a full
Perl package.

However, two build options for cross-compiling small versions of the full Perl package
do exist: microperl and miniperl. Note that both options are part of the same package,
available on CPAN, and you do not need to download any other package.

Microperl

Simon Cozens implemented the microperl build option, based on an idea by Ilya
Zakhareivh. It is the absolute bare minimum build of Perl, with no outside dependen-
cies other than ANSI C and the make utility. Unlike the other builds, microperl does
not require that you run the Configure script, which performs a great deal of tests on
the installation machine before generating the appropriate files for the package’s build.
Instead, microperl provides default configuration files with minimal settings that allow
the core Perl interpreter to build properly. None of the language’s core features is miss-
ing from this interpreter. Of course, it does not support all the features of the full
interpreter, but it is sufficient to run basic Perl applications. Because this code is con-
sidered “experimental,” for the moment you will need to evaluate most of microper!’s
capabilities on your own.

We have successfully built a microperl for our DAQ module using the toolchain set up
earlier, uClibc, and Perl 5.7.3. The resulting interpreter was able to adequately execute
all Perl programs that did not have any outside references. It failed, however, to run
programs that used any of the standard Perl modules.

To build microperl for your target, you must first download a Perl version from CPAN
and extract it into the ${PRJROOT}/sysapps directory. Place the package in the
sysapps directory, because it will run only on the target and will not be used to build
any of the other software packages for your target. After extracting the package, move
into its directory for the build (here, you cannot use a different build directory, as we
did for the GNU toolchain, because Perl does not support this build method):

$ cd ${PRIROOT}/sysapps/perl-5.10.0
Since microperl is a minimal build of Perl, you do not need to configure anything. Build

the package using the appropriate Makefile and instructing it to use the uClibc compiler
wrapper instead of the standard GCC compiler:

$ make -f Makefile.micro CC=i386-uclibc-gcc
This will generate a microperl binary in the package’s root directory. This binary does

not require any other Perl components and can be copied directly to the /bin directory
of your target’s root filesystem, ${PRJROOT }/rootfs.

When dynamically linked with either glibc or uClibc and stripped, the microperl binary
is about 1.5 MB in size.

132 | Chapter4: Development Tools

For more information on how microperl is built, have a look at the Makefile.micro
Makefile and the uconfig.sh script. As work continues on microperl, it is expected that
more documentation will become available.

Miniperl

Miniperl is less minimalistic than microper] and provides most of what you would
expect from the standard Perl interpreter. The main component it lacks is the Dyna-
Loader XS module, which allows Perl subroutines to call C functions. It is therefore
incapable of loading XS modules dynamically. This is a minor issue, however, given
the type of system miniperl will be running on.

As with the main Perl build, miniperl requires that you run the Configure script to
determine the system’s capabilities. Since the system for which Perl must be built is
your target, the script requires you to specify information about how to communicate
with that target: a hostname, a remote username, and a target-mapped directory. The
script uses this information to run its tests on your target and generate the proper build
files.

The main caveat concerning this method is that it requires a direct network link between
the host and the target. In essence, if your target does not have some form of networking,
you will be unable to build miniperl for it.

The installation methodology for miniperl is explained well in the INSTALL file pro-
vided with the 5.10.0 Perl package, under the “Cross-compilation” heading.

Cross-Compiling the Impossible

As we’ve just seen with Perl, not all packages cross-compile easily. As a matter of fact,
a great number of packages have not been designed to allow cross-compilation. We’ve
mentioned a few of these, but certainly can’t list them all.

Besides trying to modify build scripts and using compilation tricks to force packages
to compile for another architecture, sometimes the only realistic solution is to actually
build the package on the target where it is supposed to run. At first, this may seem
unfeasible for most embedded systems because of their limited storage space. As we
shall see in Chapter 9, however, it is possible to mount a system’s root filesystem on a
server using NFS. By using an NFS-mounted root filesystem, the target can access as
much storage space as the server allows.

In such a setup, it is therefore possible to cross-compile the GCC compiler itself for the
target, and then use this compiler to natively compile any package directly on the target
in exactly the same way the package’s build scripts expect to operate. Once the package
has been compiled, the resulting binaries and libraries can thereafter be copied to a
small root filesystem tailored for the target’s internal storage device, and used in the
field like any other target application. Obviously, there is no need to package the cross-
compiled GCC with the rest of the system in the field.

Perl | 133

Python

Guido van Rossum introduced Python to the world in 1991. It has since gathered many
followers and, as with Perl, is a world of its own. If you are interested in Python, read
Mark Lutz’s Programming Python or his Learning Python (both O’Reilly). Python is
routinely compared to Perl, because it often serves the same purposes, but because this
is the subject of yet another “holy war,” we will not go any further. Instead, feel free to
browse the main Python website at http://www.python.org for more information. The
Python package, which includes the Python interpreter and the Python libraries, is
available from that website under the terms of a composite license called the Python
license, which is an approved open source license.

As with Perl, you will need a properly configured interpreter to run Python code on
your target. Although the main Python distribution does not support cross-
compilation, a patch by Christopher Lambacher that allows cross-compilation of Py-
thon 2.5 is available at http://whatschrisdoing.com/~lambacck/Python2.5_xcom
pile.patch. A blog post by Lambacher at http://whatschrisdoing.com/blog/2006/10/06/
howto-cross-compile-python-25 explains in detail how to get Python to cross-compile
with this patch.

Follow the instructions, substituting the appropriate names for your target in the place
of the arm-linux target used in the instructions. To follow the same project workspace
organization that we established earlier, download and extract the Python package into
the ${PRJROOT}/sysapps directory. Also, instead of building Python directly in its
source directory, you can use a build-python directory, as we did with the GNU tools,
because Python supports this build method. In addition, use the --prefix=${PREFIX}/
${TARGET}/usr option instead of the values provided by the HOWTO. All the Python
material will thereby be installed in the ${PREFIX}/${TARGET}/usr directory. You can
then customize this directory and copy it onto the target’s root filesystem.

There are a couple of observations to make about the resulting package. First, you will
not be able to build Python with diet libc; use either glibc or uClibc. This means that
glibc or uClibc will have to be on your target’s root filesystem. When storage space on
your target is limited, we recommend you use uClibc instead of glibc.

Second, Python has installed many libraries in the ${PREFIX}/${TARGET}/usr/lib/py
thon2.2 directory, and many of those are large. You may want to trim down the content
of this directory by deleting the components you are unlikely to use. By itself, the dy-
namically linked and stripped Python interpreter is 725 KB in size.

Nevertheless, Python’s size and dependencies have not stopped developers from using
it. Anumber of projects, including the OLPC’s entire “Sugar” environment, make heavy
use of Python. And a growing number of major Linux distributions are now even re-
quiring a minimal python interpreter in order to even boot normally.

Finally, you may see some warnings and failures during the build. This is because some
libraries and applications are missing from your target. The Tkinter interface to

134 | Chapter4: Development Tools

http://www.python.org
http://whatschrisdoing.com/~lambacck/Python2.5_xcompile.patch
http://whatschrisdoing.com/~lambacck/Python2.5_xcompile.patch
http://whatschrisdoing.com/blog/2006/10/06/howto-cross-compile-python-25
http://whatschrisdoing.com/blog/2006/10/06/howto-cross-compile-python-25

libtk.a and libtcl.a will fail to build, for instance, unless you cross-compiled and installed
Tcl/Tk for your target. This doesn’t mean the Python build has failed. Rather, it is an
indication that one of the Python components has not built successfully. You will still
be able to install and use the Python interpreter and the modules that built properly on
your target.

Other Programming Languages

Linux, of course, supports many more programming languages. Whether you are look-
ing for programming in Ada, Forth, Lisp, or FORTRAN, a short search on the Net with
your favorite search engine should yield rapid results. A good starting point is the
“Other Languages” section in Chapter 13 of Running Linux by Matthias Dalheimer and
Matt Welsh (O’Reilly).

The cross-compiling and cross-development capabilities of the various language tools
will need to be evaluated on a tool-tool basis, since few compilers and interpreters lend
themselves well to cross-platform development.

Eclipse: An Integrated Development Environment

As we have seen in previous sections, the development tools for embedded Linux are
a collection of standalone command-line programs. It has long been the preference of
die-hard Unix and Linux developers to create software using a simple file editor and a
command-line shell to invoke the development tool. However, most embedded
software developers prefer to work in an IDE that provides a common graphical inter-
face to all the functions of the development tools.

The Eclipse project, which IBM originally created in November 2001, and which has
been an independent nonprofit corporation since 2004, provides an open development
platform comprised of extensible frameworks, tools, and runtimes for building, de-
ploying, and managing software. Its popularity, openness, and rich features make it an
excellent choice as an IDE for embedded Linux development. A typical display by
Eclipse appears in Figure 4-5.

Instead of a monolithic IDE, Eclipse provides a modular framework on which many
IDEs can be built by combining a common base and a plethora of plug-ins for various
functionalities, such as the CDT plug-in for C/C++ developers and the Remote System
Explorer for target management. You can read more about Eclipse on the project web-
site at http://lwww.eclipse.org.

Although several other IDEs exist for Linux, no other such tool enjoys the widespread
adoption of Eclipse, which is used by both commercial vendors (who base development
environments on Eclipse and provide many plug-ins and extensions) and the open
source community, which has extended Eclipse to support practically every need.

We will cover the installation, adaptation, and use of Eclipse in the following sections.

Other Programming Languages | 135

http://www.eclipse.org

S C T actareR channele enan e e T Ceipea piat

File Edit Refactor Navigate Search Bun Project Window Help

Iﬁv @J@-@gvl'ﬁ-@vj - -J&-ovqivJ@énl I - Ui v »
Mcic 2\ Navi ‘ =8| chan_ac.c 8 “_[¢ chan_ac.h |EI chan_sip.c ‘ [cli.c ‘ [¢ clih | = 08| B outl Xi_@) Mak‘ =a
g &~ #define ZERO(x) memset(&x, 0, sizeof(x)) (=] AW e T
= L asterisk [trunkfasteri; — /*! \brief Get private chan struct by channel number */ | 5] asterisk.h =
s =inline struct ac_pvt * num2chan(unsigned int num) { 5
P 3 Binaries (= e® _ register_file_vere
b i Archives if({num > AC_MAX_CHAN) || (channels[num].dsp_chan == -1)) { Bil o5 unregister file vl
P &l Includes L) FEnEn = o stdlib.h
b Gaagi = U stdioh
b g apps : return &channels[numl; = 1 stringh
b G build_tools “| = unistdh
b Egcdr =static int open_ac_chan(unsigned int dsp_chan, int codec) { 51 ermaih
=
~ (@ channels acgTchannelParameters chan_param; o u stdlib.h
b @@ h323 o fentlh
& ZERO(chan_param) ; it
(x misdn Wl sys/signal.h
[} acGatewayAPLt acgFillpefaultParameters(&chan_param); = 0 pthreadh
[r} acGatewayDefs chan param.RTPStreamParameters.Coder = ast2ac format(codec); (=] H sysmman.h 3]
[k acGatewayDrive Ul - I [+ (€0l I [+
[answerh 1 872 | || (2 Problems | & console &3, = Properties| € ngress" & History| @ Bt B-ri-=0

3

b

4

4

b

b [busyh C-Build [asterisk]
make[L]: NOthing to be dohe Tor 4&Ll'.

P [chan_ach 84 2/ lnaye 1] Nothing to be done for ~all'. =
3

3

4

4

4

N

[DialTone.h 1 8f make[1]: Nothing to be done for “all'.

Rimzh 1 a210 makel[1]: Nothing to be done for “all'.
1) a2 |

S Asterisk Build Complete --------- +
[} iax2-parser.h 1 + Asterisk has successfully been built, and + ||
& - + can be installed by running: +
iy 1ax2-provision,| + o
[® ringloh 1 sr21) || + make install +
o D e +

Gl v =

| o

Figure 4-5. Typical Eclipse project workspace

Installing Eclipse

Eclipse is a Java application, which makes it cross-platform. However, that means you
need a Java runtime virtual machine (JVM) to run it. Most current Linux distributions
come with a preinstalled JVM called GCJ. Unfortunately, although Eclipse does run
on the GCJ, it is not one of the referenced JVMs on which it is regularly tested. We
therefore recommend that you first install a free JVM for Linux from the Sun Java
download website at http://www.java.com/en/download/manual.jsp.

W N

The Sun Java JV can peacefully coexist with GC]J, so you should not
worry about trashing your current JVM installation.

After successfully installing the Sun JVM, proceed to download Eclipse from the project
download page at http://www.eclipse.org/downloads. You will want to download the
Eclipse IDE for C/C++ Developers edition, which integrates the basic common Eclipse
core with the CDT plug-in for C/C++ developers.

136 | Chapter4: Development Tools

http://www.java.com/en/download/manual.jsp
http://www.eclipse.org/downloads

After downloading the compressed tar archive, change into the directory to which you
wish to install Eclipse and decompress the tar archive.

W

You can install Eclipse in any location you wish, including your home
directory, but if you wish to share the Eclipse installation with others
%s using the same computer (such as a shared networked server), we rec-
° ommend you open the archive in a location that is accessible to all users.
This may require you to uncompress the archive as the superuser.

$ cd $PRIROOT/tools
$ tar zxvf $PROJROOT/build-tools/eclipse-cpp-europa-fall2-linux-gtk-x86_64.tar.gz

Before you can run Eclipse, you need to configure the location of your alternative JVM.
To do so, find the text file named eclipse.ini in the $PRJROOT/tools/eclipse folder, and

make sure the following lines are present and point to the correct location where the
Sun JVM has been installed:

-vm
/usr/lib/jvm/java-6-sun/jre/bin/java

L)

\

Do not try to put the path to the JVM in the same line as the -vm argu-
ment. The text must appear on two separate lines, as shown in the pre-
Ws ceding excerpt.

Running Eclipse

Now you are ready to run Eclipse:
$ $PRIROOT/tools/eclipse/eclipse &

The first time you invoke it, you will be presented with a dialog box asking you to select
a workspace (Figure 4-6). An Eclipse workspace is the location where development
projects and Eclipse configuration information are saved. Either accept the default
workspace location of a directory named workspace in your home directory, or provide
an alternate location and click OK.

Edlipse: An Integrated Development Environment | 137

Workspace Launcher

Select a workspace

Eclipse Platform stores your projects in a folder called a workspace.,
Choose a workspace folder to use for this session,

Workspace: |fhome/gbyjworkspace ‘ - l l Browse...

[} Use this as the default and do not ask again

oK] l Cancel

Figure 4-6. Eclipse Workspace Launcher

After Eclipse finishes loading, it presents you with a welcome screen.

Extending Eclipse

As we explained, Eclipse is a modular framework for building IDEs. Thus, apart from
the common core framework, most Eclipse-based IDE functionalities are provided by
plug-ins. Plug-ins allow Eclipse to support a wide range of languages, source control
systems, targets, debugging facilities, and more.

As we chose to install the Eclipse IDE for C/C++ Developers edition, one plug-in is
already installed in our new Eclipse installation: CDT, the C/C++ developer support
plug-in. In order to make Eclipse a more useful developer environment for embedded
Linux, we will add the the Target Management toolkit plug-in and the Subclipse Sub-
version source control integration plug-in.

N

W

You can find many more plug-ins (more than a thousand are listed at
the time of this writing) in the Eclipse Plugin Central website at http:/
Ws www.eclipseplugincentral.com.

Installing a plug-in

Eclipse contains a generic infrastructure for installing and updating plug-ins. Installa-
tion of practically all Eclipse plug-ins, therefore, follows the same procedure.

138 | Chapter4: Development Tools

http://www.eclipseplugincentral.com
http://www.eclipseplugincentral.com

ee Platrorm.

File Edit Refactor Navigate Search Run Project Window Help
= @ Welcome

() Help contents
%7 search
Dynamic Help

Key Assist... shift+Ctri+L
Tips and Tricks...
Cheat Sheets...

Software Updates 3

About Eclipse Platform

Figure 4-7. Eclipse Software Updates menu

Installjipdate

Feature Updates I

"
Choose the way you want to search for features to install @

() Search for updates of the currently installed features

Select this option if you want to search for updates of the features you already have
installed.

@ Search for new features to install

Select this option if you want to install new features from existing or new update sites.
Some sites may already be available. You can add new update site URLs to the search.

@ = Back " MNext > “ Finish H Cancel

Figure 4-8. Eclipse Install/Update dialog

Edlipse: An Integrated Development Environment | 139

Update sites to visit

Select update sites to visit while looking for new features. (@g
3

Sites to include in search:

[[] %l Data Tools Platform (DTP) Updates = [New Remote Site...]
[] %] Eclipse Modeling Framework (EMF) Updates

l New Local Site...]

[[] %l Eclipse Modeling Frarmework Technologies (EMFT) Updates
]] Europa Discovery Site lNew Archived Site...]

— L1 Lo Lt 1 L

Ignore features not applicable to this environment

[] Automatically select mirrors

@ < Back ll M || Finish |[cancel

Figure 4-9. Eclipse Install dialog with update sites

First, locate the requested plug-in’s update site URL. This is a web URL (e.g., http:/
download.eclipse.org/dsdp/tm/updates/2.0) that hosts a specific plug-in download and
future updates. The update site URL tells the Eclipse plug-in framework where to
download both the plug-in and future updates to it. The update site URL for a specific
plug-in version is usually published on the plug-in website.

Now configure the Eclipse plug-in framework to pull the plug-in from the update site
as follows:

1.
2.

From the Help menu, choose the Software Updates entry (Figure 4-7).

In the Install/Update dialog that appears, choose “Search for new features to in-
stall” and click Next (Figure 4-8).

. In the Install dialog, click on the “New Remote Site...” button, which displays a

list of update sites (Figure 4-9).

. Enter a descriptive name for the new update site (such as the plug-in name) and

the update site URL from the plug-in website. Click OK.

. The new site will be added to the list of available update sites. Make sure the

checkbox next to the new site entry is marked and click Finish.

. In the new Updates dialog that appears, check all the requested plug-ins from the

available list.

. Click on the Select Required button to automatically add any additional plug-ins

that your chosen plug-ins depend upon.

140

| Chapter4: Development Tools

http://download.eclipse.org/dsdp/tm/updates/2.0
http://download.eclipse.org/dsdp/tm/updates/2.0

8. Click Finish.

The new plug-in will be now be installed.

Target Management toolkit

The Target Management project creates data models and frameworks to configure and
manage remote systems, their connections, and their services. It has been found useful
on all kinds of remote systems, from mainframes down to embedded devices. The base
toolkit includes a Remote Files subsystem, which allows you to work on remote
computers transparently, just as if you were on the local system. It also includes a shell
and processes subsystem, a lightweight terminal, and a Network Discovery framework.

You can read more about the Target Management project at the project website, http://
www.eclipse.org/dsdp/tm. An online tutorial for the Target Management toolkit is avail-
able at http://lwww.eclipse.org/dsdp/tm/tutorial.

You can find the update site URL for the latest version of the Target Management toolkit
on the project website and can install it using the procedure outlined earlier in “Instal-
ling a plug-in.”

Subclipse

Subclipse is an Eclipse Team Provider plug-in that provides support for Subversion
within the Eclipse IDE. You can read more about Subclipse at the project website,
http://subclipse.tigris.org. The update site for the latest version of the Subclipse plug-in
is available on the project website.

Working With Eclipse

Eclipse is a modern IDE supporting many types of languages and setups, and it is very
customizable. The following sections will walk you through the setup of a new em-
bedded software project.

Projects

Like many IDEs, Eclipse groups the development of related software in the context of
a project. To start a new project, choose “New entry” from the file menu, and you will
be presented with the New Project wizard dialog (Figure 4-10).

Choose a C (or C++) projectand click on Next. You will be presented with the C Project
configuration dialog (Figure 4-11). Its options involve a choice between two basic ap-
proaches: letting Eclipse manage the project build (called a managed project) or man-
aging your own build system in the traditional fashion using your own Makefile.

In managed build projects, Eclipse automatically creates a set of Makefiles to build the
project based on project properties that you define (e.g., the toolchain to use) and the

Edlipse: An Integrated Development Environment | 141

http://www.eclipse.org/dsdp/tm
http://www.eclipse.org/dsdp/tm
http://www.eclipse.org/dsdp/tm/tutorial
http://subclipse.tigris.org

Select a wizard p—

Create a new C project [

Wizards:

[type filter text l

P = General
v iEC
C Project
P &=Cc++
P =cCvs
P (= Eclipse Modeling Framework
b =)ava
P = SWN

@ Bacl |[Next =] | Finish | [Cancel

Figure 4-10. Eclipse New Project wizard

specific configuration (e.g., Debug versus Release). Eclipse builds the software by ex-
ecuting this automatically created Makefile.

Delegating the project build to Eclipse may seem very convenient, but it comes at a
price: henceforth, you will be tightly dependent on the Eclipse IDE to build your
project.

Indeed, such tasks as performing an automated nightly build may become much more
complicated, and optimizing your build process might become much more difficult, if
at all possible.

Consider carefully whether the time and effort saved by letting Eclipse create your
Makefiles automatically might cost you extra time and effort later on.

If you are like most embedded systems developers, you’ll prefer to have as much control
as you can over the build process of your projects. The best way to accomplish this is
to create your own custom Makefile. This also allows you to import software projects
that already have an existing build system. Finally, it frees you from depending on
Eclipse for building your project, which can come in handy under circumstances such
as implementing nightly builds.

142 | Chapter4: Development Tools

C Project p—

Create C project of selected type [

Project name: [my new project]

M Use default location

Location: | hormefabyfwark space/my new project | | Browse.,, |

Project types: Toolchain:

~ = Executable Linux GCC
® Hello World C++ Project
® Hello World ANSI C Project
@ Empty Project
= Shared Library
(= Static Library
= (= Makefile project
@ Hello World C++ Project

[# Show project types and toolchains only if they are supported on the platferm

@ < Back H Mext = “ Finish ” Cancel

Figure 4-11. Eclipse C/C++ Project dialog

Managed build projects. If you wish to let Eclipse manage your project’s build process, you
must first tell Eclipse what kind of project you wish to create. The following are the
available options:

Executable
This project will produce an executable binary image.

Shared library
This project will produce a dynamically loaded, shared library whose code can be
shared between several processes at runtime.

Static library
This project will create a standard static code library, whose code is added to the
code of the executable that makes use of it at build time.

Edlipse: An Integrated Development Environment | 143

type filter text Settings i G

Resource

Configuration: [Debug

ar

Builders

¥ C/C++ Build

Variables

Discovery options &3 Tool settings |F‘Bui|d steps | Build artifact I [wiBinary parsers | @ Error parsers l
Environment
¥ B GCC C Compiler Command: Igcc]
Settings - N
_ = Preprocessor All opti | g3 - o " [=]
Tool chain editor & Prep REEEHE |oo EE Wall -c -fmessage =
2 symbols ength=0

E Directories
P Cjc++ General = =

(# optimization

Project References

Debuggin :
Refactoring History % 89709 Expert settings:
Warnings Command
Run/Debug Settings et g ime pattern: [$ICOMMAND] ${FLAGS] ${oUTPy]

& Miscellaneous
~ B GCC C Linker

General

(2 Libraries

2 miscellaneous

(2 Shared Library Settings
- B GCC Assembler

General

IRestore Qefaults] [Apply]

@ [oK H Cancel]

Figure 4-12. Eclipse Properties sheet

The same screen allows you to choose which toolchain you wish to work with. By
default, Eclipse offers just the Linux GCC toolchain, the native toolchain installed by
default on the host development machine. Choose this toolchain for now; we’ll edit
the configuration later to make use of our custom cross toolchain.

To continue, click on the Next button. You will be presented with the configuration
selection screen, which will let you define which configurations you wish to support.
By default, Eclipse offers the Debug and Release configurations.

By default, Eclipse will configure your project to use the native host toolchain. Since
you wish to use a cross toolchain, you need to make some changes to this default
configuration. Thus, in the same screen, choose the “Advanced settings...” button. In
the project properties screen that will open, choose the Settings entry from the C/C+
+ Build submenu and replace the command fields of both the “GCC C compiler” and
“GCC C linker” entries with the cross toolchain counterparts, such as arm-linux-gcc.
See Figure 4-12.

144 | Chapter4: Development Tools

Eclipse Custom Toolchains

Tweaking the toolchain properties as described here is fine if you are installing only a
single instance of Eclipse. But if you plan to deploy Eclipse to a dozen developers or
more in an automated fashion, you might not find the process very scalable.

Instead of tweaking the setting for the Linux GNU toolchain by hand, you can create
an Eclipse plug-in that describes your custom toolchain and distribute it together with
Eclipse to your developers. This will make your toolchain show up in the toolchain list
in the C/C++ Project wizard menu alongside the default GNU toolchain, and is a much
more scalable option for large deployments.

This process is explained in an article on Dr. Dobb’s website, “Extending the Eclipse
CDT Managed Build System,” by Chris Recoskie and Leo Treggiari, available at http://
www.ddj.com/cpp/197002115.

Makefile projects. To use your own Makefile, choose the “Hello World C++ Project” un-
der the “Makefile project” entry in the “C/C++ Project” wizard dialog and click on the
Finish button. Eclipse will create a template Makefile project for you with a single
C++ file and a Makefile that builds it. You can then customize the Makefile.

Development

From the point where your new project has been created, the rest of the development
cycle with Eclipse is no different from development with a native toolchain. Therefore,
instead of documenting it here, we refer you to the Eclipse CDT website, where various
Eclipse CDT functions and screens are documented: http://www.eclipse.org/cdt/.

Target management

One of the most convienient facilities Eclipse offers for embedded systems developers
is the Remote System Explorer (RSE) subsystem, which is part of the Target Manage-
ment toolkit plug-in we installed earlier. Features include:

Remote filesystems
Browse, upload, and download files on the target board and remote server using
SSH, FTP, or the dstore agent. dstore supports the seamless editing of remote files,
including remote searches and comparisons.

Remote shell access
Remote control of the target board.

Remote process control
View the remote board tasks and state (requires a dstore agent running on the
target).

Remote debugging
This is offered through CDT, GDB, and the GDBServer proxy.

Edlipse: An Integrated Development Environment | 145

http://www.ddj.com/cpp/197002115
http://www.ddj.com/cpp/197002115
http://www.eclipse.org/cdt/

File Edit Navigate Search Run Project Window Help

B e B$o-q|@|iri-s e w "
48 Remote Syst 23\ \SE'TEE"‘E =5 L& *Makefile iL@*Makef\\e B\) = 8| Bz outline E:i."\\f' g
£ & &~ EclipmoteCXXFLAGS = -02 -g -Wall -fmessage-length=0 = 2
b Ef Local 0BJS = test2.0 5 EclipmoteCXrLs
P -4 Discovery@10.0.0.204 L1BS = B 0B|S
b - Discovery@10.0.0.3 E ues
b < Discovery@10.0.0.231 [WARET-= "tesE2 = TARGET
D -4 Discovery@10.0.0.230 $(TARGET): $(0BIS) = bo §(TARGET)
v 7% zelma.codefidence com (000} 0/ ${TARGET) “§(0R1S] “§LLTES) B $(o00 -0 $Te
b 3% sftp Files all: $(TARGET) % all
< 15 ssh shells = 1o clean
B zelma.codefidence.com clearr]r:“ -f s(oBIS) H(TARGET) B rm -f $(0BJS)

|
B » -8

8 Remote System Details 52 @}Tasksi

Root Connections

Resource Parent profile Remote systel| Connection st | Host name | Default User I Description

: G Local voyager Local Some subsyst LOCALHOST (Inherited)

E propertie 2 ‘—‘L. Rernote ‘ =8 < Discovery@10.0.0.2 voyager Discovery Mo subsystem 10.0.0.204 (Inherited) Discovered serv

= || 4 Discovery@10.0.0.3 voyager Discovery Mo subsystem 10.0.0.3 (Inherited) Discovered serv

Ry A -4 Discovery@10.0.0.2 voyager Discovery No subsystem 10.0.0.231 (Inherited) Discovered sery
-4 Discovery@10.0.0.2 voyager Discovery No subsystem 10.0.0.230 (Inherited) Discovered serv
% zelma.codefidence « voyager SSH Only Some subsyst ZELMA.CODEF ghy

| o &

Figure 4-13. Eclipse Remote System Explorer browser

Defining remote connections. To use all the features the RSE framework has to offer, you
must configure some remote machines or target boards to interact with. To do this,
open the Open Perspective submenu in the Window menu and choose Remote Systems
Prespective (Figure 4-13).

At the right of the screen, the Remote Systems list will open with a list of all previously
configured remote systems. To create a new connection, right-click in the Remote
Systems list window and choose New Connection. This displays a Remote System Type
wizard (Figure 4-14).

If autodiscovery via DNS-SD Service Discovery (previously known as Zeroconf) is
available, it will be automatically selected for you. Otherwise, you can manually con-
figure a new remote connection.

After a connection has been created, you can browse the resources it provides via the
Remote Systems view. Resources include remote files, remote shells, and views of
remote processes, if available. Not all types of connections provide all the functionality,
and some require the dstore agent to be running on the remote target.

In addition, once a connection has been defined in such a fashion, it will show up in
the list of available connections in the C/C++ Remote Application menu in both the

146 | Chapter4: Development Tools

New Connection

Select Remote System Type
Discovery =L

System type:

[type filter text l

< (= General
& Daytime
-t Discovery
% FTP Only
A Linux
El Local
3 SSH Only
5% Telnet Only (Experimental)
unis IINIX

& windows

@ < Bach |E MNext > H Finish |[Cancel

Figure 4-14. Eclipse Remote System Type wizard

Run and Debug menus, allowing you to run and debug your application remotely on
the target board.

For further discussion of debugging with Eclipse, see “Eclipse” in Chapter 11.

Terminal Emulators

The most common way to communicate with an embedded system is to use a terminal
emulation program on the host and communicate through an RS232 serial port with
the target. Although there are a few terminal emulation programs available for Linux,
notevery one s fit for all uses. In the past, there have been well-know problems between
minicom and U-Boot, for instance, during file transfers over the serial port. Hence, we
recommend that you try more than one terminal application to communicate with your
target. If nothing else, you are likely to discover one that best fits your personal

Terminal Emulators | 147

preferences. Also, see your bootloader’s documentation for any warnings regarding
terminal emulators.

Three main terminal emulators are available in Linux: minicom, cu, and kermit. The
following sections cover the setup and configuration of these tools, but not their uses.
Refer to each package’s documentation for its use.

Accessing the Serial Port

Before you can use any terminal emulator, you must ensure that you have the appro-
priate access rights to use the serial port on your host. In particular, you need read and
write access to the serial port device, which is /dev/ttySO for permanently connected
physical ports and /dev/ttyUSBO for ports attached via USB. If you do not have these
rights, any terminal emulator you use will complain at startup.®

To give your user account permission to access the serial port, add your username to
the group of users with serial port access. The name of this group changes from one
Linux distribution to another, so the easiest way to find it is to check the ownership on
the serial port device file using the Is command:

$ 1s -al /dev/ttySo
CIw------- 1 root tty 4, 64 May 5 1998 /dev/ttySo

In this example, the /dev/ttySO serial port device file is owned by the root user and the
group named tty (the fourth field from the left). So, you will need to add your username
to this group.

In addition, some terminal emulation applications also require your user to have access
to the /var/lock directory, for the purpose of creating a lock file, to protect the serial
port from concurrent use. Although the use of lock files for this purpose is outdated,
some programs still make use of it for backward compatibility. For this reason, you
also need to check which group has access to the /var/lock file and add your user to that
group as well.

In similar fashion to our check with the serial port device file, you can examine the
permission on the /var/lock directory using the following command:

$ 1s -1d /var/lock
dTWXTWXT -X 5 root uucp 1024 Oct 2 17:14 /var/lock

As you can see in this example, the required group is called uucp.

You will need, therefore, to add your user to both the tty and the uucp groups. The
easiest way to add a user to a group is to use the appropriate graphical user interface
tool provided by your distribution. The following are a couple of popular distributions
that currently offer the commands described here:

T The actual changes required for your distribution may differ from those discussed in this section. Refer to
your distribution’s documentation in case of doubt.

148 | Chapter4: Development Tools

Red Hat and Fedora
Systems based on these distributions can use the redhat-config-users tool:

$ redhat-config-users

Ubuntu
These distributions can use the users-admin tool with the gksu wrapper:

$ gksu users-admin

In addition, you can add a user to a group by editing the /etc/group file using the vigr
command. The command is tailored for editing that file and sets locks to ensure that
only one user is accessing the file at any time. Because the command requires superuser
access, you usually invoke it as follows:

Red Hat Enterprise Linux, Fedora, OpenSuSE, SLES, and Debian
Use the following command sequence:
$ su
Password:
vigr
Ubuntu
Use the following alternate syntax:

$ sudo vigr

Once in vigr, locate the line that starts with the group name (such as tty) and add your
username:

tty:x:5:karim
uucp:x:14:uucp,karim

See the vigr manpage for more information.

Finally, log out from superuser mode and from your own account, and log back into
your account:

exit

$ id

uid=501(karim) gid=501(karim) groups=501(karim)

$ exit

Teotihuacan login: karim

Password:

$ id

uid=501(karim) gid=501(karim) groups=501(karim),5(tty),14(uucp)
As you can see, you need to log out and then log back in for the changes to take effect.
Opening a new terminal window in your GUI may have similar effects, depending on
the GUI you are using and the way it starts new terminal windows. Even if it works,
however, only the new terminal window will be part of the appropriate groups, but any

Terminal Emulators | 149

other window opened before the changes will still be excluded. For this reason, it is
preferable to exit your GUI, completely log out, and then log back in.

For more information on the setup of the serial interface, have a look at the Serial
HOWTO available from the Linux Documentation Project and Chapter 3 of the Linux
Network Administrator’s Guide by Tony Bautts et al. (O’Reilly).

Eclipse Terminal

If you followed the instructions on the installation and configuration of the Eclipse IDE
provided earlier in this chapter, a simple terminal is already installed as part of the
Target Management toolkit plug-in. To use it, choose Show View from the Window
menu and then choose the Terminal view.

A new terminal tab will open at the bottom of the screen and allow you to connect to
any remote system via the Telnet protocol, the SSH protocol, or an RS232 serial con-

nection. To connect to a remote system, simply choose the Connect button at the top
of the tab.

The Telnet and SSH protocols do not require any additional installation. But to use a
serial connection, a free third-party Java library called RXTX needs to be downloaded
and installed.

The RXTX library is available at ftp:/ftp.qgbang.org/pub/rxtx/rxtx-2.1.-7-bins.zip. Install
it as follows, replacing the string x86_64-unknown-1linux-gnu in the example with the
appropriate directory on your host system:

$ wget ftp://ftp.gbang.org/pub/rxtx/rxtx-2.1-7-bins.zip

$ cd rxtx-2.1-7-bins/

$ cp RXTXcomm.jar /usr/lib/jvm/java-6-sun/jre/lib/ext/
$ cp Linux/x86_64-unknown-1inux-gnu/librxtxSerial.so /usr/lib/

Minicom
Minicom is the most commonly used terminal emulator for Linux. Most documenta-
tion about embedded Linux assumes that you are using minicom. However, as we said

earlier, there are known file transfer problems between minicom and at least one boot-
loader, so it may not be right for you.

Minicom is a GPL clone of the Telix DOS program and provides ANSI and VT102
terminals. Its project website is currently located at http://alioth.debian.org/projects/
minicom. Minicom is also likely to be available through your distribution’s software
package management tool. To install it, use yum install minicom if you are using a
distribution based on Red Hat or SUSE, and apt-get install minicom for a distribution
based on Debian or Ubuntu.

Use the minicom command to start it:

$ minicom

150 | Chapter4: Development Tools

ftp://ftp.qbang.org/pub/rxtx/rxtx-2.1.-7-bins.zip
http://alioth.debian.org/projects/minicom
http://alioth.debian.org/projects/minicom

The utility starts in full-screen mode and displays the following at the top of the screen:

Welcome to minicom 1.83.0

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Mar 7 2000, 06:12:31.

Press CTRL-A Z for help on special keys

To enter commands to Minicom, press Ctrl-A and then the letter of the desired func-
tion. As Minicom’s welcome message states, use Ctrl-A Z to get help from Minicom.
Refer to the package’s manpage for more details about its use.

UUCP cu

Unix to Unix CoPy (UUCP) used to be one of the most popular ways to link Unix
systems. Though UUCP is rarely used today, the cu command in the UUCP package
can be used to “call up” other systems. The connection used to communicate to the
other system can take many forms. In our case, we are mostly interested in establishing
a terminal connection over a serial line to our target.

To this end, we must add the appropriate entries to the configuration files used by
UUCP. In particular, this means adding a port entry in /etc/uucp/port and a remote
system definition to /etc/uucp/sys. As the UUCP info page states, “a port is a particular
hardware connection on your computer,” whereas a system definition describes the
system to connect to and the port used to connect to it.

Although UUCP is available from the GNU FTP site under the terms of the GPL, it is
usually already installed on your system. On a system based on Red Hat or Fedora,
enter rpm -q uucp to verify that it is installed.

Here is an example /etc/uucp/port file:

/etc/uucp/port - UUCP ports
/dev/ttySo

port ttySo # Port name

type direct # Direct connection to other system
device /dev/ttySo # Port device node

hardflow false # No hardware flow control

speed 115200 # Line speed

This entry states that there is a port called ttySo that uses direct 115200 bps connections
without hardware flow control to connect to remote systems through /dev/ttyS0. The
name of the port in this case, ttySo, is used only to identify this port definition for the
rest of UUCP utilities and configuration files. If you’ve used UUCP before to connect
using a traditional modem, you will notice that this entry resembles modem definitions.
Unlike modem definitions, however, there is no need to provide a carrier field to
specify whether a carrier should be expected. Setting the connection type to direct
makes carrier default to false.

Here is an example /etc/uucp/sys file that complements the /etc/uucp/port file just shown:

Terminal Emulators | 151

/etc/uucp/sys - name UUCP neighbors

system: target

system target # Remote system name

port ttySo # Port name

time any # Access is possible at any time

Basically, this definition states that the system called target can be called up at any
time, using port ttySo.

With those files in place, you can use cu to connect to the target:

$ cu target
Connected.

Once in a cu session, you can issue instructions using the ~ character, followed by
another character specifying the actual command. For a complete list of commands,
use ~?.

For more information on configuring and customizing UUCP for your system, look at
Chapter 16 of the Linux Network Administrator’s Guide, the UUCP HOWTO available
from the Linux Documentation Project (LDP), and the UUCP info page.

(-Kermit

C-Kermit is one of the packages maintained as part of Columbia University’s Kermit
project (http://'www.columbia.edu/kermit). C-Kermit provides a unified interface for
network operations across a wide range of platforms. Although it features many capa-
bilities, terminal emulation is the one we are most interested in.

Though you are free to download it for personal and internal use, C-Kermit is not open
source software and its licensing makes it difficult for use in commercial distribu-
tions.¥ C-Kermit is available for download at http:/'www.columbia.edu/kermit/cker
mit.html. Follow the documentation in the ckuins.txt file included with the package to
compile and install C-Kermit. In contrast with most other tools we discuss in this book,
C-Kermit should be installed system-wide, not locally to your project workspace. Once
installed, C-Kermit is started using the kermit command.

In terms of usability, kermit compares quite favorably to both Minicom and UUCP.
Although it lacks the menus provided by Minicom, kermit’s interactive command lan-
guage provides a very intuitive and powerful way of interacting with the terminal em-
ulator. When you initiate a file transfer from the target’s bootloader, for example, the
bootloader starts waiting for the file. You can then switch to kermit’s interactive com-
mand line on the host using Ctrl-\ C and send the actual file using the send command.

Among other things, the interactive command line provides tab filename completion
similar to that provided by most shells in Linux. Also, the interactive command line is

* Although the license was changed lately to simplify inclusion in commercial distributions such as Red Hat,
C-Kermit has yet to be included in most mainstream distributions.

152 | Chapter4: Development Tools

http://www.columbia.edu/kermit
http://www.columbia.edu/kermit/ckermit.html
http://www.columbia.edu/kermit/ckermit.html

capable of recognizing commands using the shortest unique character string that is part
of acommand name. The set receive command, for example, can be shortened to set rec.

To use the kermit command, you must have a .kermrc configuration file in your home
directory. kermit runs this file at startup. Here is an example .kermiec file that one author
uses on his workstation:

; Line properties

set modem type none ; Direct connection
set line /dev/ttySo ; Device file

set speed 115200 ; Line speed

set carrier-watch off ; No carrier expected
set handshake none ; No handshaking

set flow-control none ; No flow control

; Communication properties
robust

set receive packet-length 1000
set send packet-length 1000
set window 10

Most robust transfer settings macro
Max pack len remote system should use
Max pack len local system should use
Nbr of packets to send until ack

e e e W

; File transfer properties
set file type binary ; All files transferred are binary
set file names literal ; Don't modify filenames during xfers

For more information about each of the settings, try the help command provided by
kermit’s interactive command line. For more information regarding the robust macro,
for example, enter help robust. In this case, robust must be used before set receive,
because robust sets the maximum packet length to be used by the remote system to 90
bytes, whereas we want it set to 1,000 bytes.

After creating your configuration file, you can start kermit:

$ kermit -c
Connecting to /dev/ttySo, speed 115200

Escape character: Ctrl-\ (ASCII 28, FS): enabled
Type the escape character followed by C to get back,
or followed by ? to see other options.

If you are looking for more information about the use of C-Kermit and intend to use it
more extensively, think about purchasing Using C-Kermit by Frank Da Cruz and Chris-
tine Gianone (Digital Press). Apart from providing information regarding the use of C-
Kermit, sales of the book help fund the project. Although the book covers version 6.0,
supplements for versions 7.0 and 8.0 are freely available on the project’s website.

Terminal Emulators | 153

CHAPTER5
Kernel Considerations

]
%)
ﬁ%’”’]

:”'{‘ #/,,Im

The kernel is the most fundamental software component of all Linux systems. It is
responsible for managing the bare hardware within your chosen target system and
bringing order to what would otherwise be a chaotic struggle between each of the many
various software components on a typical system.

In essence, this means the kernel is a resource broker. It takes care of scheduling use
of (and mediating access to) the available hardware resources within a particular Linux
system. Resources managed by the kernel include system processor time given to pro-
grams, use of available RAM, and indirect access to a multitude of hardware devices—
including those custom to your chosen target. The kernel provides a variety of software
abstractions through which application programs can request access to system resour-
ces, without communicating with the hardware directly.

The precise capabilities provided by any particular build of the Linux kernel are con-
figurable when that kernel is built. Kernel configuration allows you to remove support
for unnecessary or obscure capabilities that will never be used. For example, it is pos-
sible to remove support for the many different networked filesystems from an embed-
ded device that has no networking support. Conversely, it is possible to add support
for a particular peripheral device unique to a chosen target system. Depending on their
function, many capabilities can also be built into optional, runtime-loadable, modular
components. These can be loaded later when the particular capability is required.

Most desktop or enterprise Linux vendors ship prebuilt Linux kernels as part of their
distributions. Such kernels include support for the wide range of generic hardware
devices typically available within modern consumer-grade or enterprise-level comput-
ing systems. Many of these capabilities are built into runtime-loadable modules, which
are demand loaded by a variety of automated tools as hardware devices are detected.
This one-size-fits-all approach allows Linux vendors to support a wide range of target
systems with a single prebuilt binary kernel package, at the cost of a certain amount of
generalization and the occasional performance impact that goes alongside it.

155

Unlike their desktop, server, or enterprise counterparts, embedded Linux systems usu-
ally do not make use of such all-encompassing prebuilt, vendor-supplied kernels. The
reasons for this are varied, but include an inability for generic kernels to handle certain
embedded, target-specific customizations, as well as a general underlying desire to keep
the kernel configuration as simple as possible. A simpler configuration is both easier
to debug and typically requires a reduced resource footprint when compared with its
more generic counterpart. Building an embedded system from scratch is tough enough
already without worrying about the many kernel capabilities you will never use.

This chapter will cover some of the many considerations you will face when choosing
a suitable Linux kernel for your target embedded system. Our discussion will include
issues surrounding Linux kernel configuration, compilation, and installation as it per-
tains to such embedded use. We will not discuss using the Linux kernel in typical user
systems at any considerable length. If you are interested in learning more about doing
the latter, have a look at Running Linux by Matthias Dalheimer and Matt Welsh and
Linux Kernel in a Nutshell by Greg Kroah-Hartman (both from O’Reilly).

Selecting a Kernel

As you begin to work more with Linux, you will quickly discover that more than one
kernel is available to you. The “official” (also known as the “upstream” or “mainline”)
Linux kernel is always available for download at http://www.kernel.org/. There are sev-
eral releases of the upstream kernel available for download. Those beginning 2.6.x or
2.6.x.y are the latest series at the time of this writing, and they are generally intended
to be used in new Linux system deployments. An older 2.4 series is still in use in many
devices and is occasionally updated with maintenance releases, but all new develop-
ment should happen with the 2.6 kernel.

The kernel available from kernel.org is blessed by Linux creator Linus Torvalds, and a
diverse assortment of volunteers spread across the globe are actively developing it. This
is known as upstream development, and those working directly on the upstream Linux
kernel are motivated by extending the state of the art. For anumber of practical reasons,
upstream kernel developers are likely to show more interest in issues related to using
Linux on desktop and server class hardware with Intel or AMD x86 (i686) and x86_64
processors rather than on embedded devices, which few upstream developers have
access to. But embedded developers are not ignored.

Where you get your Linux kernel from is largely determined by the architecture of your
chosen target. Of course, this chapter will not address vendor-specific issues, but should
you be using a vendor-supplied kernel in place of the official release, then you will want
to contact your vendor for support. The kernel development community cannot be
expected to know what additional features (patches) were added to the kernel supplied
by another party.

156 | Chapter5: Kernel Considerations

http://www.kernel.org/

Embedded Linux Kernels

Development of the Linux kernel for embedded devices tends to be split according to
the processor architecture involved. For example, Russell King leads a group of
developers who actively port Linux to ARM-based devices (via the http://www.arm.li
nux.org.uk/ website). The ARM developers base their work on the upstream Linux
kernel as published by Linus Torvalds and develop ARM-specific patches for it. These
source code patches enable new hardware support, fix existing bugs affecting the ARM
architecture in the upstream kernel, and do many other things besides. From time to
time, these patches are pushed back upstream; that is, Russell will ask Linus to merge
his changes into the official kernel. The process is automated using the git SCM tool
Linus wrote for just this purpose.

Historically, Linux kernel development for embedded devices was much more frag-
mented than it is today, and those who read the previous edition of this book will have
seen this firsthand. Many embedded Linux developers often maintained their own en-
tirely separate kernel source trees, only occasionally sending patches upstream to Linus
or one of the other key kernel developers for inclusion in an arbitrary future release of
the mainline kernel. The situation was so precarious that there were periods during 2.4
Linux kernel development when the official kernel wouldn’t even boot on a wide variety
of target platforms it allegedly supported. In fact, necessary support was typically in
place, but the fixes required to make it work were not always correctly synchronized
into the official Linux kernel.

During the development of the 2.6 series Linux kernel, various key failings of the 2.4
development process were identified and measures were put in place to address them.
Of course, there are still a number of different groups within the wider Linux kernel
development community maintaining their own patches to the official kernel, but these
days the process for getting these fixes upstream and into the mainline kernel is much
better defined. You will benefit directly from this enhanced development process be-
cause you will be able to track the official Linux kernel much more closely in your own
embedded development. Today, you can (and typically should) simply use the official
Linux kernel as much as possible in order to benefit from the collective strength of the
entire kernel community.

Your first point of call when building a Linux kernel for your chosen target will be the
website of the person (or group) that maintains the kernel on your chosen architecture
—for example, Russell’s ARM Linux website or Paul Mackerras’s PowerPC Linux
website. A list of such resources was given in Chapter 3. Even though you may not
require any special version of the kernel, it pays to know who is responsible for the
ongoing development of support for your architecture of choice and where to go for
those architecture-specific issues that are bound to arise sooner or later. At the very
least, you will want to join whatever developer mailing list is available to you.

Selecting a Kernel | 157

http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/

2.4 Series Kernels

The 2.4 series Linux kernel is arguably no longer relevant for new embedded designs,
as it has long since been replaced by the more recent (and much improved) 2.6 series.
Although the 2.6 series kernel is known mostly for its improvements in the area of
scalability—improvements aimed at large servers—it also adds a rich set of configura-
ble options for resource-constrained embedded devices. Despite the many advantages
of using a 2.6 kernel, it has taken much longer to reach a point where embedded
developers are comfortable using the 2.6 kernel than might have reasonably been ex-
pected. This was largely due to the time required to bring third-party kernel source
trees and drivers up-to-date.

At this point, you are extremely unlikely to begin a new project with the 2.4 Linux
kernel. In fact, you are discouraged from doing so due to the declining support for the
older kernel, coupled with the fact that ongoing development work exclusively involves
the newer 2.6 series kernel. This means that fixes for subtle bugs—for example, a
hardware vendor supplied workaround addressing an issue affecting a specific System
on Chip (SoC)—are much more likely to be available for a 2.6 kernel than the older
series. For this and other reasons, this chapter will not dwell on 2.4 kernel considera-
tions. If you need to use a 2.4 kernel, you may wish to consult the previous edition of

this book.

The 2.6 Series Linux Kernel

The mainstream, or official, 2.6 series Linux kernel is generally available from the
kernel.org website. There are two ways in which you will usually obtain source code
for this kernel:

* Asatarball, or archive, from which you can unpack a specific release of the kernel.
These releases are self-contained and released whenever Linus Torvalds deems the
current stage of development fit for release. For example, you might obtain the
2.6.20 release of the kernel in a file named linux-2.6.20.tar.bz2.

* Using the git kernel Software Configuration Management (SCM) tool to track day-
to-day development, as well as official releases of the kernel. You can also visualize
changes to the kernel using a variety of git add-on tools, such as the gtik graphical
changeset tracking tool that allows you to visually track daily kernel development.

158 | Chapter5: Kernel Considerations

An official release of the kernel is generally preferred to a development snapshot when
it comes to new embedded device designs, although you are also encouraged to track
ongoing development and join the various community mailing lists in order to be aware
of any changes that might later affect your work. The general goal of any Linux kernel
developer is to have his modifications feed back into a later release of the official kernel
so that they are immediately available to future projects or later updates to the current
project.” Traditionally, embedded developers have chosen one specific release of the
Linux kernel and stuck with it throughout the lifetime (or at least initial release) of their
product. This is fine if you don’t make any modifications to the kernel for your em-
bedded project. However, if you find that you need to develop Linux kernel code for
yourself, you are advised to track ongoing development in order to ensure that your
modifications continue to work. This will prevent lengthy refactoring of existing code
when you later decide to rebase to a newer version of the kernel.

Using a stable release tarball

Stable Linux kernel releases tend to happen roughly every 1-2 months, following pha-
ses of active development and prerelease stabilization of new features and other
additions. Tarballs, or source archives, are made available on the kernel.org website.
For example, following the 2.6.20 release, the front page of the website contained a
link to this particular release, along with various changelog information and other re-
lated resources. You can always download the current release of the Linux kernel—
just follow the links on the main kernel.org webpage.

Unpacking the kernel is as easy as unpacking any other source archive. Using regular
GNU tar commands, you can extract the source tree, which will be in the form of either
a conventional .gz tarball or a slightly more heavily compressed .bz2 tarball. The
appropriate extraction command will vary depending upon the type of archive. To
extract a regular .gz tarball archive of the 2.6.20 kernel, you would run the following
command:

tar xvfz linux-2.6.20.tar.gz

Whereas, for a bz2-compressed kernel, the command changes to:

tar xvfj linux-2.6.20.tar.bz2

This instructs GNU tar to extract the given file in a verbose mode. You can find out
more about the available options for the tar command by referring to any standard
Linux administration reference or by reading the tar man or info page. Once the kernel
sources are unpacked, they are ready for configuration and compilation using the proc-
ess described in the following sections.

" There really is little commercial advantage to be gained from keeping your fixes, device drivers, and other
kernel code out of the official Linux kernel, especially as the GPL places a variety of legal obligations upon
you to distribute such source modifications along with your embedded product. However, it does appear to
be a common practice that certain patches are withheld until a product is released, for reasons of
confidentiality. If this is your plan, try to get these patches into the official kernel at the earliest opportunity.

Selecting a Kernel | 159

Tracking development with git

Day-to-day development of the Linux kernel is supported through extensive use of
Linus Torvald’s git SCM tool. git, the “stupid content tracker,” was written by Torvalds
in response to a sudden need to replace a proprietary version control system that had
previously been in use for some time. It works by tracking changesets—related groups
of changes to the kernel—rather than changes (patches) to individual source files. In
this way, it is possible to see modifications in terms of their collective impact upon the
kernel, rather than by wading through many patches. A variety of third-party tools,
such as gitk, can be used to provide a visual representation of the changing state of a
git repository. You can obtain a copy of git from your Linux distribution, or at http://
www.kernel.org/.

You can download a private copy of the kernel git repository using the clone command:

git clone git://git.kernel.org/pub/scm/linux/git/torvalds/linux-2.6.git linus_26

This clones, or copies, the upstream Linux kernel repository (which Linus Torvalds
maintains on the kernel.org site) and creates a local directory, in this case called [i-
nus_26, that reflects the current state of the art. The upstream kernel repository is
frequently changing due to the many thousands of changesets that can make it into the
kernel from one release to the next. If you’re serious about tracking the Linux kernel,
you will want to get into a daily habit of updating your local copy of Linus’s repository.
You can do this using the following command, from within the local repository:

git pull

Many more commands exist, along with a number of documents describing the kernel
development process and how it involves git. You can find out more about git or
download a copy (if your Linux distribution does not include it, or you are running
another operating system for which git has been ported) at http://git.or.cz/.

Third-party kernel trees and patches

Rather than using the kernel available from the kernel.org website, you may also choose
to use a third-party-supplied 2.6 kernel. This will typically be the case whenever you
elect to use a specific embedded Linux distribution. Although these kernels are based
on the upstream 2.6 Linux kernel, they are typically patched with a variety of additional
features, bug fixes, and other modifications deemed useful by the vendor. Therefore,
you should not place too much stock in the version of the kernel they claim to provide
—you might think you have a 2.6.20 kernel, but in fact it may differ widely from the
2.6.20 kernel available from the kernel.org website. In any case, you should contact
your vendor for support in the first instance; the kernel community, in general, does
not support vendor kernels.

You may also want to try some of the various patches made available by some devel-
opers. Extra kernel functionality is often available as an independent patch before it is
integrated into the mainstream kernel. Robert Love’s kernel preemption patch, for

160 | Chapter5: Kernel Considerations

http://www.kernel.org/
http://www.kernel.org/
http://git.or.cz/

instance, was maintained as a separate patch before Linus integrated it into the 2.5
development series. We will discuss a few kernel patches in Chapter 11. Have a look
at Running Linux if you are not familiar with patches.

Configuring the Kernel

Configuration is the initial step in the build of a kernel for your target. There are many
ways to configure the Linux kernel, and there are many options from which to choose.
Regardless of the configuration method you use or the actual configuration options
you choose, the kernel will generate a .config file at the end of the configuration and
will generate a number of symbolic links and file headers that will be used by the rest
of the build process.

We will limit our discussion to issues specifically affecting embedded systems. For
general advice on kernel configuration and compilation, consult one of the previously
mentioned texts on Linux kernel development or the documentation supplied inside
the Linux kernel source tree itself; see the Documentation subdirectory.

Linux Kernel in a Nutshell (published by O’Reilly and also available online at http://
www.kroah.com/lkn) provides a brief but thorough guide to configuring and building
a kernel, along with explanations of some of the most popular configuration options.
(It is not specially addressed to embedded systems developers, though.)

Configuration Options

It is during configuration that you will be able to select the options you want to see
included in the kernel. Depending on your target, the option menus available will
change, as will their content. Some options, however, will be available no matter which
embedded architecture you choose. The following is a list of the main menu options
available to all embedded Linux architectures:

* Code maturity level options

* General setup

* Loadable module support

* Block layer

* Networking

* Device drivers

* Filesystems

* Kernel hacking

¢ Security options

* Cryptographic options

* Library routines

Configuring the Kernel | 161

http://www.kroah.com/lkn
http://www.kroah.com/lkn

This section will not cover each option individually, as the kernel configuration menu
provides context-sensitive help that you can refer to as you perform the configuration.
Many of the options are self-explanatory—for example, which device drivers will be
built—while others are less obvious. For instance, the kernel can include a variety of
strong security options as part of the SELinux stack implemented by the U.S. Nation-
al Security Agency (NSA). Many of these options will make less sense to you if you are
not familiar with the design of SELinux. This isn’t a huge problem, however, since only
a few embedded devices choose to make use of the extensive SELinux functionality in
Linux.

One of the most important option menus is the one in which you choose the exact
instance of the processor architecture that best fits your target. The name of this menu
varies according to your architecture. Table 5-1 provides the system and processor
selection option menu name, along with the correct kernel architecture name for several
of the common architectures. When issuing make commands, you need to set the
ARCH variable to the architecture name recognized by the kernel Makefiles.

Table 5-1. System and processor selection option and kernel architecture name according to processor
architecture

Processor architecture System and processor selection option Kernel architecture name

x86 Processor type and features i386

ARM System Type arm

PPC Platform support powerpc (or ppc for older targets)
MIPS Machine selection/CPU selection mips

SH System type sh

M68k Platform-dependent support or processor type and features ~ m68k or m68knommu

AVR32 System Type and features avr32

When browsing through the kernel configuration options for your target, bear in mind
that it is possible to enable support for hardware you do not have. Indeed, the config-
uration menus may allow you to enable many kernel features that have never been
tested for your target. There are many millions of possible kernel configuration com-
binations, and it is not possible for the kernel developers to test every configuration
choice you may make. Typically, selecting support for a device that is not present won’t
prevent a system from booting, especially if it’s simply a PCI device driver that won’t
be detected by the kernel anyway. But this isn’t always the case on embedded systems,
and it is still all too possible to create a kernel that will not boot on a particular target.
Therefore, you are advised to verify your selections against the published documenta-
tion for your chosen target before building your target kernel.

162 | Chapter5: Kernel Considerations

Configuration Methods

The Linux kernel build system (Kbuild) includes support for a variety of configuration
methods, including the following:

make config
Provides a command-line interface where you are asked about each option one by
one. If a.config configuration file is already present, it uses that file to set the default
values of the options it asks you to set.

make oldconfig
Feeds config with an existing .config configuration file and prompts you to config-
ure only those options you have not previously configured. This contrasts with
make config, which asks you about all options, even those you have previously
configured. Developers often use this option to update their configuration as up-
stream configuration options change, without having to reconfigure the entire
kernel.

make menuconfig
Displays a curses-based terminal configuration menu. If a .config file is present, it
uses it to set default values, as with make config.

make xconfig
Displays a Tk-based X Window configuration menu. If a .config file is present, it
uses it to set default values, as with make config and make menuconfig.

Any of these can be used to configure the kernel. They all generate a .config file in the
root directory of the kernel sources. (This is the file that contains the full details of the
options you choose.)

Few developers actually use the make config command to configure the kernel. Instead,
most use make menuconfig to create an initial configuration or to tweak an existing one.
You can also use make xconfig. Keep in mind, however, that make xconfig may have
some broken menus in some architectures, as is the case for the PowerPC, for instance.

To view the kernel configuration menu, type the appropriate command at the com-
mand line with the proper parameters. For example, to cross compile the Linux kernel
for use on an embedded ARM system, you might use the following command line (the
exact cross-compiler name prefix may vary):

$ make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig

Note that the CROSS_COMPILE prefix ends with a hyphen (this will be prepended to com-
mand names, such as “gcc”, forming “arm-linux-gec”, and so on), and there is a space
between that and the menuconfig command itself.

This presents a graphical configuration menu from which available options can be
selected. Many features and drivers are available as modules, and it is possible to choose
whether to build features into the kernel or as modules at this stage. Once the kernel
has been configured, you can quit the kernel configuration menu via the Escape key or

Configuring the Kernel | 163

the Exit menu item. The kernel configuration system will ask whether to save the new
configuration. Choosing Yes saves the new configuration into a new .config file. In
addition to creating the .config file, a few header files and symbolic links are created. It
isalso possible to exit the kernel configuration without making any changes, just answer
No to the question.

Apart from the main configuration options, the architecture support within the kernel
often includes standard template configurations for certain targets. This is especially
true for standard PowerPC and ARM targets. In those cases, the defaults provided with
the kernel will be used to generate the .config file. For example, here is how to configure
the kernel for a TQMB860L ppc target:

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- TQM860L_config
$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- oldconfig

Managing Multiple Configurations

It is often desirable to test different configurations using the same kernel sources.
Changing the kernel’s configuration, however, destroys the previous configuration,
because all the configuration files are overwritten by the kernel’s configuration utilities.
To save a configuration for future use, you need to save the .config files created by the
kernel’s configuration. These files can later be reused to restore a previous kernel
configuration.

The easiest way to back up and retrieve configurations is to use the kernel’s own con-
figuration procedures. The menus displayed by both the menuconfig and xconfig
Makefile targets allow you to save and restore configurations. In each case, you need
to provide an appropriate filename.

You can also save the .config files by hand. In that case, you need to copy the configu-
ration file created by the kernel configuration utilities to an alternative location for
future use. To use a saved configuration, you will need to copy the previously
saved .config file back into the kernel’s root directory and then use the make command
with the oldconfig Makefile target to configure the kernel using the newly cop-
ied .config file. As with the menuconfig Makefile target, the oldconfig Makefile target
creates a few headers files and symbolic links.

Whether you copy the files manually or use the menus provided by the various utilities,
store the configurations in an intuitive location and use a meaningful naming scheme
for saving your configurations. To identify each configuration file, prepend each file-
name with the kernel version it relates to, along with a small descriptive comment, a
date, or both. Leave the .config extension as-is, nevertheless, to identify the file as a
kernel configuration file.

164 | Chapter5: Kernel Considerations

Using the EXTRAVERSION Variable

If you are using multiple variants of the same kernel version, you will find the
EXTRAVERSION variable to be quite useful in identifying each instance. The EXTRAVER
SION variable is appended to the kernel’s version number to give the kernel being built
its final name. For example, if you need to add an additional patch from Russell King
in order to add serial support for a given target to your 2.6.20 kernel, it might set
EXTRAVERSION to -rmk1. The end result would be a kernel version of 2.6.20-rmk1. EXTRA
VERSION is commonly used to identify prerelease kernels, too. For example, prior to the
release of 2.6.21, the EXTRAVERSION in Linus’s git repository was regularly set to -rc
followed by a number, indicating multiple release candidate kernels, not an official
release.

The final version number is also used to name the directory where the modules built
for the kernel are stored. Hence, modules built for two kernels based on the same initial
version but with different EXTRAVERSIONs will be stored in two different directories,
whereas modules built for two kernels based on the same initial version but that have
no EXTRAVERSION will be stored in the same directory.

You can also use EXTRAVERSION to identify variants based on the same kernel version.
To do so, edit the Makefile in the main kernel directory and set EXTRAVERSION to your
desired value. You will find it useful to rename the directory containing this modified
source code using this same value. If, for example, the EXTRAVERSION of a 2.6.20 kernel
is set to -motor-diff, the parent directory should be named 2.6.20-motor-diff. The
naming of the backup .config files should also reflect the use of EXTRAVERSION. The
configuration file for the kernel with disabled serial support should therefore be called
2.6.20-motor-diff-no-serial.config in this case.

Compiling the Kernel

Compiling the kernel involves a number of steps. These include building the kernel
image and building the kernel modules. Each step uses a different make command and
is described separately in this section. However, you could also carry out all these steps
using a single command line.

The kernel build process has changed in the 2.6 series kernel. Prior to 2.6, it was nec-
essary to carry out an additional dependency generation stage in which you would
explicitly invoke the kernel build system to calculate all the necessary Makefile de-
pendencies for a subsequent build. During the 2.6 development process, the entire
kernel build system was overhauled and replaced with a newer, improved build system
that does not require this additional step.

Compiling the Kernel | 165

Building the Kernel

Building the kernel requires little more than a simple call to GNU make. Depending
upon your chosen architecture, you might also need to specify what kind of image will
be produced. For example, in the case of an ARM platform, you could use the following
command to create a compressed image:

$ make ARCH=arm CROSS_COMPILE=arm-linux- zImage

The zImage targetinstructs the Makefile to build a kernel image that is compressed using
the gzip algorithm.™ There are, nevertheless, other ways to build a kernel image. The
vmlinux target instructs the Makefile to build only the uncompressed image. Note that
this image is generated even when a compressed image is requested.

On the x86, there is also the bzImage target. The “bzImage” name stands for “big
zImage,” and has nothing to do with the bzip2 compression utility. In fact, both the
bzImage and zImage Makefile targets rely on the gzip algorithm. The difference between
the two Makefile targets is that the compressed kernel images generated using zImage
cannot be larger than 512 KB, whereas those generated using bzImage are not bound
by this limit. If you want more information regarding the differences between zImage
and bzImage, have a look at the Documentation/i386/boot.txt file included in the kernel
sources.

If you chose any options not supported by your architecture during the kernel config-
uration, or if some kernel option is broken, your build will fail at this stage. If all goes
well, you should have a newly built kernel image within five minutes, at most, on any
reasonably powerful development machine.

Verifying the Cross-Development Toolchain

Notice that the kernel build is the first real test for the cross-development tools we built
in the previous chapter. If the tools you built earlier compile a functional kernel suc-
cessfully, all the other software should build perfectly. Of course, you will need to
download the kernel you built to your target to verify its functionality, but the fact that
it builds properly is already a positive sign.

Building the Modules

With the kernel image properly built, you can now build the kernel modules:
$ make ARCH=arm CROSS_COMPILE=arm-linux- modules

The duration of this stage depends largely on the number of kernel options you chose
to build as modules instead of having been linked in as part of the main kernel image.

T Though zImage is a valid Makefile target for all the architectures we discussed in depth in Chapter 3, there
are other Linux architectures for which it isn’t valid.

166 | Chapter5: Kernel Considerations

This stage is seldom longer than the build of the kernel image. As with the kernel image,
if your configuration is inadequate for your target or if a feature is broken, this stage of
the build may also fail.

With both the kernel image and the kernel modules now built, it is time to install them
onto the target system. Before you do so, note that if you needed to clean up the kernel’s
sources and return them to their initial state prior to any configuration, dependency
building, or compilation, you could use the following command:

$ make ARCH=arm CROSS_COMPILE=arm-linux- distclean

Be sure to back up your kernel configuration file prior to using this command, as make
distclean erases all the files generated during the previous stages, including the .config
file, all object files, and the kernel images.

Installing the Kernel

Ultimately, the kernel you just generated and its modules will have to be copied to your
target to be used. The actual copying of the kernel and its modules is covered in Chap-
ters 6 and 9. Meanwhile, the next few sections will discuss how to manage multiple
kernel images and corresponding module installations. The configuration of the target’s
boot layout and its root filesystem depends on what you do after reading the following
sections.

Managing Multiple Kernel Images

In addition to using separate directories for different kernel versions, you will find it
useful to have access to multiple kernel images to test on your target. Since these images
may be built using the same sources, you will need to copy them out of the kernel source
and into a directory where they can be properly identified. For example, you might
create an images directory containing each of the available kernel images for your em-
bedded project.

For each kernel configuration, you will need to copy four files: the uncompressed kernel
image, the compressed kernel image, the kernel symbol map, and the configuration
file. The last three are found within the kernel source’s root directory and are called
vmlinux, System.map, and .config, respectively. The compressed kernel image file is
found in the arch/your_arch/boot directory, where your_arch is the name of your target’s
architecture, and is called zImage or bzlmage, depending on the Makefile target you
used earlier. For the example ARM-based target, the compressed kernel image would
be located in arch/arm/boot/zImage.

Some architectures, such as the PPC, have many boot directories. In those cases, the
kernel image to use is not necessarily the one located at arch/your_arch/boot/zImage.
In the case of the TQM board mentioned earlier, for example, the compressed kernel
image that should be used is arch/ppc/images/vmlinux.gz. Have a look at the arch/

Installing the Kernel | 167

your_arch/Makefile for a full description of all the Makefile boot image targets for your
architecture. In the case of the PPC, the type of boot image generated depends on the
processor model for which the kernel is compiled.

To identify the four files needed, you can use a naming scheme similar to that of the
kernel’s version. For example, for a kernel built from the 2.6.20 source release, you
might copy the kernel into a dedicated project directory:

$ cp arch/arm/boot/zImage ${PRIROOT}/images/zImage-2.6.20

$ cp System.map ${PRIROOT}/images/System.map-2.6.20

$ cp vmlinux ${PRIROOT}/images/vmlinux-2.6.20
$ cp .config ${PRIROOT}/images/2.6.20.config

where $PRIROOT represents the top directory of your embedded project.

You could also include the configuration name in the filenames. For example, suppose
that you decided it was worthwhile having a build without any serial support (for
whatever reason). To distinguish this special build of the kernel from any others, you
might dutifully decide upon the following names: zlmage-2.6.20-no-serial,
System.map-2.6.20-no-serial, vmlinux-2.6.20-no-serial, and 2.6.20-no-serial.config.

Installing Kernel Modules

The kernel Makefile includes the modules_install target for installing the kernel mod-
ules. By default, the modules are installed in the /lib/modules directory. This is entirely
appropriate for most desktop and enterprise Linux environments, but doesn’t work so
well when you're using a cross-development environment. In the case of cross-
compilation, you specifically don’t want to install the newly built kernel modules into
your host /lib/modules hierarchy (not unless you want to risk interfering with your host
development system, anyway). Instead, you need to instruct make to use an alternate
location.

Linux kernel modules are strongly dependent upon a particular build of the kernel—
aparticular kernel image. Because this is the case, you will usually install kernel modules
in a directory similar in name to that of the corresponding prebuilt kernel image. In the
case of the 2.6.20 kernel, you might install the modules in a directory named
${PRJROOT}/images/modules-2.6.20. The content of this directory will later be copied
to the target’s /lib/modules directory within its root filesystem for use with the corre-
sponding kernel on the target.

To install the Linux kernel modules in an alternate directory, use this command:

$ make ARCH=arm CROSS_COMPILE=arm-linux- \
> INSTALL_MOD_PATH=${PRIROOT}/images/modules-2.6.20 \
> modules_install

The precise command will vary by target architecture, but the important part is that
the INSTALL_MOD_PATH variable is used to set the alternate path for module installation.
The kernel build system will take care of the rest, provided that it can write into the

168 | Chapter5: Kernel Considerations

location that you have specified. The modules-2.6.20 subdirectory will be created if it
does not exist.

Once it is done copying the modules, the kernel build system will try to build the
module dependencies needed for the module utilities during runtime. Since depmod,
the utility that builds the module dependencies, is not designed to deal with cross-
compiled modules, it will fail.

To build the module dependencies for your modules, you will need to use another
module dependency builder provided with the BusyBox package. You will learn more
than you could ever want to know about BusyBox (well, almost) in Chapter 6. For now,
you can download, and then extract, a copy of the BusyBox archive from http://
www.busybox.net into a convenient location (for example, ${PRJROOT}/sysapps).t
From the BusyBox directory, copy the scripts/depmod.pl Perl script into the ${PREFIX}/
bin directory.

You can now build the module dependencies for the target:

$ depmod.pl \

> -k ./vmlinux -F ./System.map \

> -b ${PRIRO0T}/images/modules-2.6.20/1ib/modules > \

> ${PRIROOT}/images/modules-2.6.20/1ib/modules/2.6.20/modules.dep

The -k option is used to specify the uncompressed kernel image, the -F option is used
to specify the system map, and the -b option is used to specify the base directory con-
taining the modules for which you will need to build dependencies. Because the tool’s
output goes to the standard output, you will want to redirect it to the actual dependency
file, which is always called modules.dep.

In the Field

Let’s take a look at the kernel’s operation once it’s installed on your target and ready
to run. Because the algorithms and underlying source code are the same for embedded
and regular systems, the kernel will behave almost exactly the same as it would on a
workstation or a server. For this reason, other books and online material on the subject,
such as Linux Device Drivers by Jonathan Corbet et al. and Understanding the Linux
Kernel by Daniel Bovet and Marco Cesati (both from O’Reilly), are much more appro-
priate for finding in-depth explanations of the kernel. There are, nevertheless, aspects
particular to embedded Linux systems that warrant particular emphasis.

Dealing with Kernel Failure

The Linux kernel is a very stable and mature piece of software. This, however, does not
mean that it or the hardware it relies on never fails. Linux Device Drivers covers issues
such as “oops” messages and system hangs. In addition to keeping these issues in mind

¥ Download BusyBox version 0.60.5 or later.

IntheField | 169

http://www.busybox.net
http://www.busybox.net

during your design, you should think about the most common form of kernel failure:
kernel panic.

When a fatal error occurs and the kernel catches it, it will stop all processing and emit
a kernel panic message. There are many reasons a kernel panic can occur. One of the
most frequent reasons is that you forgot to specify to the kernel the location of its root
filesystem. In that case, the kernel will boot normally and will panic upon trying to
mount its root filesystem.

The only means of recovery in case of a kernel panic is a complete system reboot. For
this reason, the kernel accepts a boot parameter that indicates the number of seconds
it should wait after a kernel panic to reboot. If you would like the kernel to reboot one
second after a kernel panic, for instance, you would pass the following sequence as part
of the kernel’s boot parameters: panic=1.

Depending on your setup, however, a simple reboot may not be sufficient. In the case
of our control module, for instance, a simple reboot may even be dangerous, since the
chemical or mechanical process being controlled may get out of hand. For this reason,
we need to change the kernel’s panic function to notify a human operator who could
then use emergency manual procedures to control the process. Of course, the actual
panic behavior of your system depends on the type of application for which your system
is being used.

The code for the kernel’s panic function, panic(), is in the kernel/panic.c file in the
kernel’s sources. The first observation to be made is that the panic function’s default
output goes to the console.§ Since your system may not even have a terminal, you may
want to modify this function according to your particular hardware. An alternative to
the terminal, for example, would be to write the actual error string in a special section
of flash memory that is specifically set aside for this purpose. At the next reboot, you
would be able to retrieve the text information from that flash section and attempt to
solve the problem.

Whether you are interested in the actual text message or not, you can register your own
panic function with the kernel. This function will be called by the kernel’s panic func-
tion in the event of a kernel panic and can be used to carry out such things as signaling
an emergency.

The list that holds the functions called by the kernel’s own panic function is
panic_notifier list. Thenotifier chain register function is used to add an item to
thislist. Conversely, notifier chain unregister isused to remove an item from this list.

§ The console is the main terminal to which all system messages are sent.

170 | Chapter5: Kernel Considerations

The location of your own panic function has little importance, but the registration of
this function must be done during system initialization. In our case, we add a
mypanic.c file in the kernel directory of the kernel sources and modify that directory’s
Makefile accordingly. Here is the mypanic.c for our control module:

#include <linux/kernel.h>

#include <linux/init.h>
#include <linux/notifier.h>

static int my panic_event(struct notifier block *,
unsigned long,
void *);

static struct notifier block my panic_block = {
notifier call: my panic_event,

next: NULL,
priority: INT_MAX

b

int _ _init register my panic(void)

{
printk("Registering buzzer notifier \n");
notifier chain register(&panic_notifier list,

&my panic_block);

return 0;

}

void ring big buzzer(void)

}

static int my_panic_event(struct notifier block *this,
unsigned long event,

void *ptr)
{
ring big buzzer();
return NOTIFY_DONE;
}

module_init(register my panic);

The module_init(register my panic); statement ensures that the register my panic
function is called during the kernel’s initialization without requiring any modification
of the kernel’s startup functions. The registration function adds my_panic_block to the
list of other blocks in the panic notifier list. The notifier block structure has three
fields. The first field is the function to be called, the second is a pointer to the next
notifier block, and the third is the priority of this block. In our case, we want to have
the highest possible priority. Hence the use of INT_MAX.

Inthe Field | 171

In case of kernel panic, my_panic_event is called as part of the kernel’s notification of
all panic functions. In turn, this function calls on ring_big buzzer, which contains code
to start aloud alarm to attract the human operator’s attention to the imminent problem.

172 | Chapter5: Kernel Considerations

CHAPTER 6
Root Filesystem
Content

One of the last operations conducted by the Linux kernel during system startup is
mounting the root filesystem. The Linux kernel itself doesn’t dictate any filesystem
structure, but user space applications do expect to find files with specific names in
specific directory structures. Therefore, it is useful to follow the de facto standards that
have emerged in Linux systems.

In this chapter, we will start by discussing the basic root filesystem structure. Then, we
will explain how and where to install the system libraries, the kernel modules, kernel
images, device nodes, main system applications, and custom applications. Finally, we
will discuss how to configure the system initialization scripts.

At the end of this chapter, you will have a fully functional root filesystem for your target.
In the following chapters, we will talk about how you can place this root filesystem on
an actual filesystem type on a storage device for use in your target.

Basic Root Filesystem Structure

The “official” rules to build a root filesystem are contained in the Filesystem Hierarchy
Standard (FHS) introduced in Chapter 1. The document is less than 30 pages long and
is fairly easy to read. If you are looking for answers or clarifications regarding how to
build a root filesystem, the FHS, along with related standards documentation from the
Linux Foundation, are probably the best places to start.

Each of the top-level directories in the root filesystem has a specific purpose. Many of
these, however, are meaningful only in multiuser systems in which a system adminis-
trator is in charge of many servers or workstations employed by different users. In most
embedded Linux systems, where there are no users and no administrators, the rules for
building a root filesystem can be loosely interpreted. This doesn’t mean that all rules
can be violated, but it does mean that breaking some of them will have little to no effect
on the system’s proper operation. Interestingly, even mainstream commercial
distributions for workstations and servers sometimes deviate from the de facto rules
for root filesystems.

173

Table 6-1 provides the complete list of root filesystem top-level directories and their
content as specified by the FHS (note that /sys is not in the standard yet, and therefore
doesn’t appear in the table).

Table 6-1. Root filesystem top-level directories

Directory Content

bin Essential user command binaries

boot Static files used by the bootloader

dev Devices and other special files

etc System configuration files, including startup files

home User home directories

lib Essential libraries, such as the Clibrary, and kernel modules

media Mount points for removable media

mnt Mount points for temporarily mounted filesystems

opt Add-on software packages

proc Virtual filesystem for kernel and process information

root Root user's home directory

sbin Essential system administration binaries

sys Virtual filesystem for system information and control (buses, devices, and drivers)
tmp Temporary files

usr Secondary hierarchy containing most applications and documents useful to most users, including the X server
var Variable data stored by daemons and utilities

If you are using Linux for your day-to-day work, you are already familiar with some of
these directories. Nevertheless, let’s take a closer look at the content of a typical root
filesystem for use in an embedded Linux system.

First, all the directories that pertain to providing an extensible multiuser environment,
such as /home, /mnt, /opt, and /root, can be omitted. You could trim the root filesystem
even further by removing /tmp and /var, but these omissions may jeopardize the oper-
ation of certain programs. We do not encourage such a minimalistic approach.

This choice of what to include in your root filesystem should be based
on what’s actually useful, not on size considerations, because omitting
%s" a directory entry has practically no effect on the resulting root filesys-
* tem’s size. The reason we recommend the omission of /home, for
example, is that it would be left empty in an embedded Linux system
because its content, as prescribed by the FHS, is useful only in work-
station and server setups.

174 | Chapter6: Root Filesystem Content

Depending on your bootloader and its configuration, you may not need to have
a /boot directory. This will depend on whether your bootloader can retrieve kernel
images from your root filesystem before your kernel is booted. You will be able to decide
whether you should use a /boot directory and how to use it for your target after you
read Chapter 9. Of course, you can redesign the root filesystem later if need be.

The remaining directories—/bin, /dev, fetc, /lib, /proc, /sbin, /sys, and /usr—are
essential.

At the extreme, you could decide to omit /proc and /sys, and configure the kernel with-
out support for the corresponding virtual filesystems. However, access to the proc
filesystem is required by very basic commands such as ps, mount, ifconfig, and modp-
robe. The sysfs filesystem is now also used by an increasing number of programs. So,
unless your system has a very limited scope, be prepared to replace scripts with custom
C programs directly accessing the kernel system call interface if you wish to do without
proc and sysfs.

Two of the root directories, /usr and /var, have a predefined hierarchy of their own,
much like that of the root directory. We will briefly discuss these hierarchies as we
populate both directories in the steps below.

Confusing Similarities

One of the most confusing aspects of the root filesystem is the apparent similarity in
purpose of some directories. In particular, newcomers often ask what difference there
is between the various directories containing binaries and the various directories con-
taining libraries.

There are four main directories for binaries in the root filesystem: /bin, /sbin, /usr/bin,
and /usr/sbin. The directory in which a binary is placed largely depends on its role in
the system. Binaries that are essential to both users and system administrators are
in /bin. Binaries that are essential to system administration, but will never be used by
ordinary users, are located in /sbin. In contrast, most nonessential user binaries are
located in /usr/bin and most nonessential system administration tools are in /usr/shin.

The rationale is similar for the location of libraries. The ones required to boot the system
and run the most essential commands are located in /lib, while /usr/lib contains all the
other libraries. Often, packages will create subdirectories in /us#/lib to contain their
own libraries. The Perl 5.x packages, for instance, have a /usr/lib/perl5 directory that
contains all the Perl-related libraries and modules.

A look at your Linux workstation’s own root filesystem in these directories will show
you actual examples of the application of these criteria by your distribution’s designers.

Towork on the root filesystem, let’s move into the directory we created for this purpose:
$ cd ${PRIROOT}/rootfs

Basic Root Filesystem Structure | 175

Now create the core root filesystem directories required for your system:

$ mkdir bin dev etc 1lib proc sbin sys tmp usr var
$ chmod 1777 tmp

Notice that we did not create /boot. We will come back to it later and create it if it
becomes necessary. Also, note that we changed the permissions for the /tmp directory
to turn the “sticky bit” on. This bit in the directory permissions field ensures that files
created in the /tmp directory can be deleted only by the user who created them. Though
most embedded Linux systems are single-user systems, as mentioned already, there are
cases in which embedded applications must not run with root privileges. The OpenSSH
package we discuss in Chapter 10, for example, is such an application. Hence the need
to follow some basic rules about root filesystem permission bits.

You can then proceed with the creation of the /usr hierarchy:

$ mkdir usr/bin usr/lib usr/sbin

On a fully featured root filesystem, the /usr directory usually contains many more en-
tries. You can easily demonstrate this by typing Is -al /usr (perhaps adding a -r for
recursive output) on your workstation. You will find directories that are useful on non-
embedded systems for routine user activity, such as man, src, and local. The FHS con-
tains a section addressing the layout of this directory in detail. For the purposes of most
embedded Linux systems, however, the three directories we created will suffice.

The last entries to create are in the /var directory:

$ mkdir var/lib var/lock var/log var/run var/tmp
$ chmod 1777 var/tmp

Here, too, this directory contains many more entries on nonembedded systems. Di-
rectories such as cache, mail, and spool are useful for a workstation or a server, but few
embedded systems need those directories. The directories we created are the bare min-
imum required for the normal operation of most applications found in an embedded
Linux system. Of course, if you need functionality such as serving web pages or printing,
you may want to add some of the additional directories required by the applications
providing this functionality. See the FHS and the documentation provided with your
application to find out your actual requirements.

With the root filesystem skeleton now ready, let’s place the various software compo-
nents in their appropriate locations.

Running Linux with a Different Root Filesystem Structure

As we said in the previous discussion, the rules for building a root filesystem are in the
FHS. Although most Linux applications and distributions depend on these rules, they
are not enforced by the Linux kernel itself. In fact, the kernel source code makes very
few assumptions regarding the structure of the root filesystem. It follows from this that
you could build an embedded Linux system with a very different root filesystem struc-
ture. You would then have to modify the defaults of most software packages to make

176 | Chapter6: Root Filesystem Content

them comply with your new structure. Indeed, certain regular “desktop” oriented dis-
tributions have attempted to mimic the Apple filesystem layout. Some have taken an
even more extreme approach by building embedded Linux systems without any root
filesystem at all.

Needless to say, we don’t encourage you to go down this path. The root filesystem rules
we outlined earlier are recognized and agreed upon by all open source and free software
developers working on Linux systems. Building your embedded Linux system using
other rules would cut you off from most open source and free software packages and
their developers, and you would be needlessly ignoring a useful de facto standard in
the process.

Libraries

In Chapter 4, we discussed how to build, install, and use the GNU C library and its
alternatives for application development. Here, we will discuss how to install those
same libraries on the target’s root filesystem so that the applications you develop can
use them at runtime. We will not discuss diet libc, because it is mainly used as a static
library.

glibc

As we said earlier, the glibc package contains a number of libraries. Look in your
${TARGET_PREFIX)/lib directory for the entire list of libraries installed during the
package’s build process. This directory contains mainly four types of files:

Actual shared libraries
These files’ names are formatted as libLIBRARY NAME-GLIBC VERSION.so, where
LIBRARY NAME is the name of the library and GLIBC VERSION is the version of the glibc
package you are using. For instance, the name of the math library for glibc 2.3.6 is
libm-2.3.6.s0 (the name of the math library is simply “m”).

Many people do not know that .so files are also executable ELF binaries that can
return useful information. For example:

/1ib/1libc-2.5.s0
GNU C Library stable release version 2.5, by Roland McGrath et al.
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Compiled by GNU CC version 4.1.2 (Ubuntu 4.1.2-Oubuntu4).
Compiled on a Linux >>2.6.15.7<< system on 2007-04-04.
Available extensions:

crypt add-on version 2.1 by Michael Glad and others

GNU Libidn by Simon Josefsson

GNU libio by Per Bothner

NIS(YP)/NIS+ NSS modules 0.19 by Thorsten Kukuk

Libraries | 177

Native POSIX Threads Library by Ulrich Drepper et al
BIND-8.2.3-T5B
Thread-local storage support included.
For bug reporting instructions, please see:
<http://www.gnu.org/software/libc/bugs.html>.

Major revision version symbolic links

Major revision versions do not follow the same numbering as the actual glibc ver-
sion. The major revision version for the actual shared C library in glibc 2.3.6,
libc-2.3.6.s0, is 6, not 2 as the name suggests. In contrast, the major revision version
for libdl-2.3.6.so truly is 2. The names of the symbolic links for the major revision
version are formatted as [ibLIBRARY NAME.so.MAJOR REVISION VERSION, where
MAJOR _REVISION VERSION is the major revision version of the library. For the actual
C library, for instance, the symbolic link is libc.s0.6. For libdl, it is libdl.s0.2. Once
a program has been linked to a library, it will refer to this symbolic link. At startup,
the loader will therefore look for this file before loading the program.

Version-independent symbolic links to the major revision version symbolic links

The role of these links is to provide a universal entry for all the programs that need
to link with a particular library, regardless of the actual major revision or the version
of glibc involved. These symbolic links are typically formatted as
libLIBRARY NAME.so. For example, libm.so points to libm.s0.6, which itself points to
the actual shared library, libm-2.3.6.s0. The only exception to this is libc.so, which,
as we said in Chapter 4, is a link script. The version-independent symbolic link is
the one used when linking programs.

Static library archives
These archives are used by applications that choose to link statically with a library.
The names of these archives are formatted as libLIBRARY NAME.a. The static archive
for libdl, for instance, is libdl.a.

You will also find some other types of files in ${TARGET_PREFIX}/lib, such as crti.o
and crt1.0, but you will not need to copy them to your target’s root filesystem. These
files are used by the GNU Linker Id when producing executable binaries that need to
“bootstrap” themselves (load themselves into memory and initialize). Thus, their role
is finished after linking, and they are not used at runtime.

Out of the four types of files just described, you need only two for each library: the
actual shared libraries and the major revision version symbolic links. The other two file
types are needed only when linking executables and are not required for the runtime
operation of your applications.

In addition to the library files, you need to copy the dynamic linker and its symbolic
link. The dynamic linker itself follows the naming convention of the various glibc li-
braries and is usually called Id-GLIBC_VERSION.so. In what is probably one of the most
bizarre aspects of the GNU toolchain, however, the name of the symbolic link to the
dynamic linker differs depending on the architecture for which the toolchain has been
built. If the toolchain is built for the 1386, the ARM, the SuperH, or the m68k, the

178 | Chapter6: Root Filesystem Content

symbolic link to the dynamic linker is usually called [d-linux.so.MAJOR REVI-
SION_VERSION. If the toolchain is built for the MIPS or the PowerPC, the symbolic link
to the dynamic linker is usually called Id.so.MAJOR_REVISION VERSION.

Before you actually copy any glibc component to the target’s root filesystem, however,
you need to select the glibc components required for your applications. Table 6-2 pro-
vides the description of all the components in glibc” and provides inclusion guidelines
for each component. In addition to our guidelines, you will need to evaluate which
components your programs need, depending on how they are linked.

Table 6-2. Library components in glibc and root filesystem inclusion guidelines

Library component Content Inclusion guidelines

Id Dynamic linker.? Compulsory. Needed to use any shared libraries.
Theoretically not necessary if using only a statically
built root filesystem—although this is quite rare,
unless you are only using BusyBox, for example.

libBrokenLocale Fixup routines to get applications that have Rarely used.
broken locale features to run. Overrides appli-
cation defaults through preloading. (Need to
use LD_PRELOAD.)

libSegFault Routines for catching segmentation faultsand ~ Rarely used.
doing backtraces.
libanl Asynchronous name lookup routines. Rarely used.
libbsd-compat Dummy library for certain BSD programs that ~ Rarely used.
are compiled with -fbsd-compat.
libc Main Clibrary routines. Compulsory.
libcrypt Cryptography routines. Required for most applications involved in
authentication.
libdl Routines for loading shared objects Required for applications that use functions such as
dynamically. dlopen().
libm Math routines. Required for math functions.
libmemusage Routines for heap and stack memory profiling. Rarely used.
libns! NIS network services library routines. Rarely used.
libnss_compat Name Switch Service (NSS) compatibility rou- Loaded automatically by the glibc NSS.2
tines for NIS.
libnss_dns NSS routines for DNS. Loaded automatically by the glibc NSS.
libnss_files NSS routines for file lookups. Loaded automatically by the glibc NSS.
libnss_hesiod NSS routines for Hesiod name service. Loaded automatically by the glibc NSS.
libnss_nis NSS routines for NIS. Loaded automatically by the glibc NSS.

" See the glibc manual for a complete description of the facilities provided.

Libraries | 179

Library component Content Inclusion guidelines

libnss_nisplus NSS routines for NIS plus. Loaded automatically by the glibc NSS.

libpcprofile Program counter profiling routines. Rarely used.

libpthread POSIX 1003.1c threads routines for Linux. Required for threads programming.

libresolv Name resolver routines. Required for name resolution.

librt Asynchronous I/0 routines. Rarely used.

libthread_db Thread debugging routines. Loadedautomaticallyby gdbwhen debugging threa-
ded applications. Never actually linked to by any
application.

libutil Login routines, part of the user accounting Required for terminal connection management.

database.

a This library component is not itself a library. Instead, Id.so is an executable invoked by the ELF binary
format loader to load the dynamically linked libraries into an application’s memory space.

b See Chapter 4 for details.

If you wish to find out which dynamic libraries a given application uses, the usual way
is with the ldd command. In a cross-platform development environment, however, your
host’s Idd command will fail when provided with target binaries. Instead, you could
use the cross-platform readelf command you installed in Chapter 4 to identify the dy-
namic libraries that your application depends on. Here is an example using readelf to
retrieve the BusyBox utility’s dependencies:

$ powerpc-linux-readelf -a ${PRIROOT}/rootfs/bin/busybox | \

> grep "Shared library"
0x00000001 (NEEDED) Shared library: [libc.so.0]

Ideally, however, if you installed uClibc, you should use the [dd-like command installed
by uClibc, which has cross-platform capabilities. For our control module target, which
is based on a PowerPC board, the command’s name is powerpc-uclibc-ldd. This way,
you can build the list of libraries your target binaries depend on. Here are the depend-
encies of the BusyBox utility, for example (one line has been wrapped to fit the page):
$ powerpc-uclibc-1dd ${PRIR0OT}/rootfs/bin/busybox
libc.so0.0 => /home/karim/control-project/control-module/tools/uclibc/1ib/

libc.so.0
/1ib/1d-uClibc.so0.0 => /1lib/1d-uClibc.s0.0

Having determined the library components you need, you can copy them and the rel-
evant symbolic links to the /lib directory of the target’s root filesystem. Here is a set of
commands that copy the essential glibc components:

$ cd ${TARGET PREFIX}/lib

$ for file in libc libcrypt libdl libm \

> libpthread libresolv libutil

> do

> cp $file-*.so ${PRIROOT}/rootfs/lib

> cp -d $file.so.[*0-9] ${PRIROOT}/rootfs/lib

180 | Chapter6: Root Filesystem Content

> done
$ cp -d ld*.so* ${PRIROOT}/rootfs/lib

The first cp command copies the actual shared libraries, the second one copies the major
revision version symbolic links, and the third one copies the dynamic linker and its
symbolic link. All three commands are based on the rules outlined earlier in this section
regarding the naming conventions of the different files in ${TARGET_PREFIX}/lib. The
-d option is used with the second and third cp commands to preserve the symbolic links
as-is. Otherwise, the files that the symbolic links point to are copied in their entirety.

Of course, you can remove the libraries that are not used by your applications from the
list in the set of commands shown. If you would rather have the complete set of libraries
included in glibc on your root filesystem, use the following commands:

$ cd ${TARGET PREFIX}/1ib

$ cp *-*.so ${PRIROOT}/rootfs/lib

$ cp -d *.so.[*0-9] ${PRIROOT}/rootfs/lib

$ cp libSegFault.so libmemusage.so libpcprofile.so \

> ${PRIR00OT}/rootfs/1lib

If you have applications that use the glibc NSS, don’t forget to copy the
libnss_SERVICE libraries you need to your target’s root filesystem. libnss_files and
libnss_dns are the ones most often used. You will also need to copy the sample
nsswitch.conf provided with glibc to your target’s /etc directory and customize it to your
setup:T

$ cp ${PRIROOT}/build-tools/glibc-2.2.1/nss/nsswitch.conf \
> ${PRIROOT}/rootfs/etc

Whether you copy all or part of the glibc libraries, you will notice that some of these
libraries are large. To reduce the size of the libraries installed, you can use the cross-
platform strip utility you built in Chapter 4. Be careful not to strip the original libraries,
because you would have to install them all over again. Strip the libraries only after you
copy them to the root filesystem:

$ powerpc-linux-strip ${PRIROOT}/rootfs/lib/*.so
On our control module, the ${PRJROOT]/rootfs/lib directory with all the glibc libraries

weighs around 10 MB before stripping. Stripping all the libraries reduces the directory
size to 2.5 MB.

The glibc components have now been installed on the target’s root filesystem and are
ready to be used at runtime by your applications.

T Have a look at Linux Network Administrator’s Guide by Tony Bautts, Terry Dawson, and Gregor Purdy
(O’Reilly) for details about the customization of the nsswitch.conf file.

Libraries | 181

uClibc

As with glibc, uClibe contains a number of libraries. Look in your ${PREFIX}/uclibc/
lib directory for the entire list. It contains the same four different types of files as the
glibc directory.

Because uClibc is meant to be a glibc replacement, the names and uses of the uClibc
components are identical to the glibc components. Hence, you can use Table 6-2
(shown previously) to research uClibc components. Note, however, that not all glibc
components are implemented by uClibc. uClibc implements only Id, libc, libcrypt, libdl,
libm, libpthread, libresolv, and libutil. Use the same method as described for glibc to
identify the uClibc components you will need on your target.

Having determined the list of components you need, you can now copy them and their
relevant symbolic links to the /lib directory of your target’s root filesystem. The fol-
lowing set of commands copies the essential uClibc components:

$ cd ${PREFIX}/uclibc/1lib

$ for file in libuClibc ld-uClibc 1libc libdl \

> libcrypt libm libresolv libutil

> do

> cp $file-*.so ${PRIROOT}/rootfs/1lib

> cp -d $file.so.[*0-9] ${PRIROOT}/rootfs/lib

> done

The commands are likely to report that two files haven’t been found:

cp: libuClibc.so.[*0-9]: No such file or directory
cp: libc-*.so: No such file or directory

This is not a problem, because these files are not supposed to exist. The set of
commands just shown is meant to be easy to type in, but you could add conditional
statements around the ¢p commands if you prefer not to see any errors.

As with glibc, you can modify the list of libraries you copy according to your require-
ments. Note that, in contrast to glibc, you will not save much space by copying only a
select few uClibc components. For the control module previously mentioned, for in-
stance, the root filesystem’s /lib directory weighs only around 300 KB when all the
uClibc components are copied. The following commands copy all uClibc’s components
to your target’s root filesystem:

$ cd ${PREFIX}/uclibc/1ib

$ cp *-*.so ${PRIROOT}/rootfs/1lib
$ cp -d *.s0.[*0-9] ${PRIROOT}/rootfs/lib

There is no need to strip uClibc components, since they were already stripped by
uClibc’s own build scripts. You can verify this using the file command.

182 | Chapter6: Root Filesystem Content

Kernel Modules

In Chapter 5, we built the kernel modules and installed them in a temporary directory,
${PRJROOT}/images. We are now ready to copy these modules to their final destination
in the target’s /lib directory.

Since you may have compiled many kernels to test for your target, you now need to
select which set of kernel modules to copy to the root filesystem. In the case of our
control module, for example, we chose a 2.6.20 kernel for the target. The following
command copies that kernel’s entire modules directory to the root filesystem:

$ cp -a ${PRIROOT}/images/modules-2.6.20/* ${PRIROOT}/rootfs

We use ¢p’s -a option here to copy the files and directories in archive mode. This has
the effect of preserving file attributes and links, and copying directories recursively.
Note that there is no need to explicitly append the /lib/modules path to ${PRJROOT}/
rootfs in the previous command because of the way we installed the modules in the
${PRJROOT}/images/modules-2.6.20 directory in Chapter 5.

That’s it; the kernel modules are now ready for use on your target. You may also need
to add a /etc/modprobe.conf file to specify special module parameter values, to manually
override modules, or to do anything else that alters modprobe’s default behavior. See
the modprobe.conf manpage for details.

Kernel Images

Aswesaid earlier, the presence of the actual kernel image on your root filesystem largely
depends on your bootloader’s capabilities. If you anticipate that your bootloader’s set-
up will boot a kernel from the root filesystem, you may copy the kernel image to your
target’s root filesystem at this time:

$ mkdir ${PRIROOT}/rootfs/boot

$ cd ${PRIROOT}/images
$ cp zImage-2.6.20 ${PRIROOT}/rootfs/boot

In addition to the kernel image, you may want to make it a standard practice to copy
the configuration file used to create the kernel so that you can service units for which
the original project workspace may be lost:

$ cp 2.6.20.config ${PRIR0OOT}/rootfs/boot
Because we discuss the actual bootloader setup in Chapter 9, there is nothing more to

be done here about the kernel’s setup for now. We will continue the kernel image’s
setup later.

Kernel Modules | 183

Device Files

Following Unix tradition, every object in a Linux system is visible as a file, including
devices. All the device files (a.k.a. device “nodes”) in a Linux root filesystem are located
in the /dev directory. Once more, having device files in /dev is not dictated by the kernel,
but by standard applications such as interactive shells that expect to find device files
there.

In generic Linux systems, managing device files is a complex task, because devices can
change from one computer to another, and external devices can also change at any
moment. Therefore, such systems need a way to keep track of connected devices to
make sure that the corresponding device files exist and that the corresponding drivers
are loaded. Fortunately, many custom embedded systems always run with the same
devices and just need fixed device files.

Static Device Files

These device files are called static because they just need to be created once in the
filesystem. They are special files characterized by a type, character or block, and a
major and minor number. Whereas user space applications distinguish device files by
their names, the kernel just relies on their type and their major and minor numbers to
find which driver manages each device. Therefore, two different device files with the
same type, major number, and minor number will be processed in the same way.

The official source of information for static device major and minor numbers is the
Documentation/devices.txt file in the kernel sources. You can consult this file whenever
you are uncertain about the name or numbering of a certain device. Another, easier
option is to read the numbers of device files on your Linux workstation.

For example, listing /dev/console shows that it is a character device (because the first
character on the line is ¢), with major number 5 and minor number 1:

$ 1s -1 /dev/console
CYW------- 1 root root 5, 1 2007-05-10 07:05 /dev/console

Similarly, /dev/ram0 (the first ramdisk) is a block device, (listed with a b character),
with major number 1 and minor number O:

$ 1s -1 /dev/ramo
brw-rw---- 1 root disk 1, 0 2007-05-04 13:20 /dev/ramo

Table 6-3 lists the essential entries you need in your /dev directory. Depending on your
particular setup, you will probably need to add a few extra entries. In some cases, you
may even need to use entries other than the ones listed in the table. On some systems,
for example, the first serial port is not t¢tyS0. Such is the case of SuperH-based systems,

¥ The notable exception to this is networking interfaces, such as Ethernet cards, for which there are no device
files.

184 | Chapter6: Root Filesystem Content

for instance, where the first serial port is ttySCO (major number: 204, minor number:
8), and StrongARM-based systems where the first serial port is ttySAO (major number:
204, minor number: 5).

Table 6-3. Basic /dev entries

Filename Description Type Majornumber Minornumber Permission bits
mem Physical memory access char 1 1 600
null Null device char 1 3 666
zero Null byte source char 1 5 666
random Nondeterministic random number genera- char 1 8 644
tor
tty0 Current virtual console char 4 0 600
ttyl First virtual console char 4 1 600
ttyS0 First UART serial port char 4 64 600
tty Current TTY device char 5 0 666
console System console char 5 1 600

Matthias Dalheimer and Matt Welsh’s Running Linux (O’Reilly) explains how to create
device files. Essentially, you need to use the mknod command for each entry to be
created. In contrast to most other commands we have used up until now, you need to
be logged in as root to use this one. Remember to log out from the root user mode once
you are done creating the device files.

Here is a simple example showing the creation of the first few entries in Table 6-3:

$ cd ${PRIROOT}/rootfs/dev
$ su -m

Password:

mknod -m 600 mem c 1 1

mknod -m 666 null c 1 3

mknod -m 666 zero c 1 5

mknod -m 644 random c 1 8

exit

In addition to the basic device files, a few symbolic links, which are described in Ta-
ble 6-4, have to be part of your /dev directory. As with other symbolic links, you can
use the In -s command to create these links.

Table 6-4. Compulsory /dev symbolic links

Linkname Target

fd /proc/self/fd
stdin fd/0
stdout fd/1

Device Files | 185

Linkname Target
stderr fd/2

We have now prepared a basic /dev directory for our target. We will come back to this
directory later to create some additional entries for some types of storage devices. You
can consult Linux Device Drivers by Jonathan Corbet et al. (O’Reilly) for a more com-
plete discussion about device files and device drivers in general.

Creation of /dev Entries Without Root Privileges

Creation tools for the EXT2 and JFFS2 filesystems have been extended by Erik Ander-
sen to allow the creation of /dev entries on the fly using a device table file. With such a
file, it is no longer necessary to log in as root, mount the newly created filesystem, and
use the mknod command to create the device files. Instead, the file creation tool parses
the device table file and creates the entries while it builds the rest of the filesystem,
without requiring root login.

The device_table.txt file in the MTD tools package explains how to write device tables.
Here is an example table for basic devices:

#<name> <type> <mode> <uid> <gid> <major> <minor> <start>
<inc> <count>
/dev d 755 0 0 - - - - -

/dev/mem C 640 0 0 1 1 0 0 -
/dev/kmem c 640 0 0 1 2 0 0 -
/dev/null c 640 0 0 1 3 0 0 -
/dev/zero C 640 0 0 1 5 0 0 -
/dev/random C 640 0 0 1 8 0 0 -
/dev/urandom c 640 0 0 1 9 0 0 -
/dev/tty ¢ 666 0 o0 5 0 O 0 -
/dev/tty ¢ 666 0 0O 4 0 O 1 6
/dev/console c 640 0 0 5 1 0 0 -
/dev/ram b 640 0 0 1 1 0 0

/dev/ram b 640 0 0 1 0 0 1 4
/dev/loop b 640 o0 o0 7 0 0 1 2

To create a JFFS2 filesystem using such a device table, you just need the standard
mkfs.jffs2 command, found in the MTD tools package. For EXT2, however, you need
to use genext2fs instead of mkfs.ext2. genext2fs supports the same specification table
format. You can find genext2fs at http://genext2fs.sourceforge.net.

udev

The first edition of this book and Red Hat 9.0 were released in the same year. Red Hat
9.0 had over 18,000 files in /dev. We were still in the Linux 2.4 days, and static device
files had reached their climax. The /dev directory in all distributions contained entries
for all the possible devices the system could support, and continued to grow, whenever
the need arose for some kind of new device—not such a rare occurrence!

186 | Chapter6: Root Filesystem Content

http://genext2fs.sourceforge.net

Things are very different now, as we release the new edition of this book. We have been
using Linux 2.6 for four years, and newly installed Linux systems (for example, in this
case, an Ubuntu 7.04 system) might have only 700 device files in the /dev directory.
Indeed, if you were to mount the / directory from another system, /dev might even be
an empty directory, which means that there aren’t any static device files. We are now
entering what might be eventually described as “the golden days” of dynamic device
files. We’ve been here before, of course—with devfs—but this time, the solution seems
more practical, and built to last, too.

The rise and fall of static device files is easy to explain: it was difficult to implement
dynamic device files in the Linux 2.4 days. We’ll discuss how Linux 2.6 and udev made
dynamic device files easy to implement in today’s Linux systems. We will then look at
why you want to use udev if your embedded system has to support external devices
(and perhaps even just because it’s a better design decision, period).

The need for dynamic devices

Back in the Linux 2.4 days and the proliferation of /dev static device files, the main
problem for user space applications was that they couldn’t tell whether a device was
present on the system by looking at the contents of the /dev directory. All they could
do was try to open a particular device file, and if this operation failed, assume that the
corresponding device was not present.

This situation called for the use of dynamic device files, which cause /dev to contain
only devices files that are ready to use. This removes some unwanted complexity from
user space applications (of course, error handling is still needed, just in case!). As device
information is primarily managed by the kernel, the first dynamic device files were
implemented in Linux 2.3 with devfs.

Even though it had a long life, devfs was never fully adopted by the community, largely
because of major shortcomings. First, there was no flexibility in device names. For
example, the first IDE disk device had to be named either /dev/hda or /dev/ide/hd/
c0b0t0u0. Device driver developers also had to modify their code to add support for
devfs. Last but not least, devfs stored the device-naming policy in kernel memory. This
was a very serious offense, as kernel code usually stays in RAM forever, even if it is used
just once (for a kernel module, at least for the whole time the module is loaded; in
certain other cases, until the kernel specifically frees it—for example, at boot time when
the kernel frees unneeded “init” memory used during early kernel initialization). In
addition, in the common mechanism/policy design philosophy, the kernel is supposed
to implement only the mechanism, and it leaves policy up to user space.

In early Linux 2.6, Greg Kroah-Hartman created a new solution called udev. As sug-
gested by the u character in its name, udev is completely implemented in user space. It
doesn’t have the limitations and shortcomings that any in-kernel implementation
would have.

Device Files | 187

In the beginning, udev took advantage of new kernel services, namely sysfs and the
hotplug infrastructure. sysfs, usually mounted in /sys, makes device, system, and driver
information available to user space. For example, you can enumerate all devices on the
USB bus, and for each device, read its vendor and device ID. Hotplug was introduced
in Linux 2.4 to support USB devices. Whenever a device was inserted or removed, the
kernel executed the /sbin/hotplug program to notify user space programs. For each
subsystem (USB, PCI, etc.), /sbin/hotplug then ran scripts (agents) identifying the hard-
ware and inserting or removing the right driver modules. udev was just one of these
scripts.

The implementation of udev had to evolve because of limitations in the hotplug
infrastructure. First, hotplug processes sometimes executed in the wrong order. For
example, they might not realize that events for partitions in an inserted disk had to be
processed after the disk event itself.

Out-of-memory failures also happened when hotplug got too hot and ran too many
udev processes in a very short time. To overcome these issues, udev had to take over
several parts of the hotplug infrastructure, and eventually completely replaced it. To-
day, this means that udev manages not just device file creation and naming, but also
tasks previously handled by hotplug, such as loading or removing drivers, loading
firmware, and notifying user space programs of events.

Building udev

You can obtain udev sources from the project’s web page (http://kernel.org/pub/linux/
utils/kernel/hotplug/udev.html), and extract them into your ${PRJROOT|//sysapps di-
rectory. We tested this section of the chapter with udev version 110. Let’s start out in
the source directory:

$ cd ${PRIROOT}/sysapps/udev-110

You have to use variables in Guinea hensudev’s Makefile to configure udev features
and the way udev is built. Here are the most useful ones:

DESTDIR
Specifies the root directory in which to install the udev directory structure. Be sure
to set this variable, because udev installs itself by default in /. You may overwrite
the udev software and settings of your workstation distribution if you run
make install without specifying DESTDIR. This could make your workstation
stop working properly.

CROSS_COMPILE
Specifies a cross-compiler prefix, for use when you build udev for a different pro-
cessor architecture or Clibrary. This variable has exactly the same usage as in Linux
kernel compilation.

188 | Chapter6: Root Filesystem Content

http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html

USE_STATIC
Set this to true if you want to build udev without dynamic libraries. The default
value is false.

Now compile and install udev. The following command does this for a PowerPC target
with glibe:
$ make CROSS_COMPILE=powerpc-linux- DESTDIR=${PRIROOT}/rootfs install

Starting udev

Near the beginning of your system startup script, or in one of the first system services
that you start, mount /dev as a tmpfs filesystem (tmpfs is a kind of in-memory RAM-
based filesystem backed by kernel virtual memory):

$ mount -t tmpfs udev /dev

Then, populate /dev with static device files, contained in /lib/udev/devices:
$ cp -a -f /lib/udev/devices/* /dev

For example, here are static device files used in Ubuntu 6.10:
$ 1s -la /lib/udev/devices

CIW------~ 1 root root 5, 1 2007-01-31 04:18 console

lrwxrwxrwx 1 root root 11 2007-01-31 04:18 core -> /proc/kcore
lrwxrwxrwx 1 root root 13 2007-01-31 04:18 fd -> /proc/self/fd
CIW-Y----~ 1 root kmem 1, 2 2007-01-31 04:18 kmem

brw------- 1 root root 7, 0 2007-01-31 04:18 loopO

Lrwxrwxrwx 1 root root 13 2007-01-31 04:18 MAKEDEV -> /sbin/MAKEDEV
drwxr-xr-x 2 root root 4096 2007-01-31 04:18 net

CIW------- 1 root root 1, 3 2007-01-31 04:18 null

CIW------~ 1 root root 108, 0 2007-01-31 04:18 ppp

drwxr-xr-x 2 root root 4096 2006-10-16 14:39 pts

drwxr-xr-x 2 root root 4096 2006-10-16 14:39 shm

Irwxrwxrwx 1 root root 24 2007-01-31 04:18 sndstat -> /proc/asound/oss/sndstat
Irwxrwxrwx 1 root root 15 2007-01-31 04:18 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdin -> /proc/self/fd/o

lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdout -> /proc/self/fd/1

The next thing to do is to start /sbin/udevd, the udev daemon. This daemon first reads
and parses all the rules found in /etc/udev/rules.d and keeps them in memory. Whenever
rules are added, removed, or modified, udevd receives an inotify§ event and updates
its ruleset in memory.

udev’s operation

udevd waits for uevents from the kernel core (such as the USB and PCI core drivers),
which are messages sent whenever a device is inserted or removed. When it receives
such an event, udevd starts a process to:

§ The inotify mechanism lets user space programs subscribe to notifications of filesystem changes. See http://
en.wikipedia.org/wiki/Inotify for details.

Device Files | 189

http://en.wikipedia.org/wiki/Inotify
http://en.wikipedia.org/wiki/Inotify

* Try to match an event against udev rules, using information found in the message
itself or extracting device information from /sys. Rules are processed in lexical
order.

* When a matching naming rule is found, create or remove device files.

* When a matching rule is found, execute a specified command, such as loading or
removing a driver module, or notifying user space programs.

The kernel uses netlink sockets to carry uevents. Unlike other means of communication
between kernelspace and user space (system calls, ioctls, /proc or /sys), these sockets
are asynchronous. They are queued and the receiver can choose to process the messages
at its convenience. This lets udevd limit the number of processes it starts, to avoid out-
of-memory issues. With netlink sockets, sending a message to multiple recipients is
also possible (multicasting in networking language).

You can use the udevmonitor command to visualize the driver core events and the
corresponding udev event processes. The following sequence was obtained after in-

serting a USB mouse:
UEVENT[1170452995.

UEVENT[1170452995

UEVENT[1170452995

UDEV
UDEV
UDEV
UDEV
UDEV
UDEV
UDEV

1170452995.
1170452995.
1170452995.
1170452995.
1170452995.
1170452995.

094476

.094569
UEVENT[1170452995.
UEVENT[1170452995.

098337
098618

[
[
[
[.098868
UEVENT[1170452995.
UEVENT[1170452995.
[1170452995.
[
[
[
[
[
[

099110
099353
165185
274128
375726
415638
504164
525087
568758

]
]
]
]
]
]
]
]
]
]
]
]
]
]

add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2
add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
add@/class/input/input28

add@/class/input/input28/mouse2
add@/class/input/input28/event4

add@/class/input/input28/ts2

add@/class/usb_device/usbdev4.30
add@/devices/pci0n000:00/0000:00:1d.7/usb4/4-3/4-3.2
add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
add@/class/usb_device/usbdev4.30

add@/class/input/input28

add@/class/input/input28/mouse2
add@/class/input/input28/event4

add@/class/input/input28/ts2

Each line gives time information measured in microseconds. By a simple subtraction
you can measure the elapsed time between a given uevent (a UEVENT line), and the
completion of the corresponding udev process (the matching UDEYV line).

With udevmonitor --env, you can see the kind of information each event carries, which
can be matched against udev rules:

UDEV

[1170453642.595297] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV_LOG=3
ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
SUBSYSTEM=usb
SEQNUM=3417
PHYSDEVBUS=usb
DEVICE=/proc/bus/usb/004/031
PRODUCT=46d/c03d/2000
TYPE=0/0/0
INTERFACE=3/1/2

190 | Chapter6: Root Filesystem Content

MODALIAS=usb:v046DpC03Dd2000dc00dsc00dp00ic03isc01ip02
UDEVD_EVENT=1

udev rules

Rather than describing udev rules extensively, let’s just review typical rules that dem-
onstrate udev matching capabilities. A full reference is available at http://www.reacti
vated.net/writing_udev_rules.html. The udev manual page on your Linux workstation
is a good reference, too.

The first types of rules are naming rules. iSuch rules make it possible to choose a device
filename from a label or serial number, from a bus device number, from a location on
the bus topology, from a kernel driver name, or from the output of a program:

Naming testing the output of a program
BUS=="scsi", PROGRAM="/sbin/scsi id", RESULT=="OEM 0815", NAME="disk1"

USB printer to be called 1lp color
BUS=="usb", SYSFS{serial}=="W09090207101241330", NAME="1p color"

SCSI disk with a specific vendor and model number will be called boot
BUS=="scsi", SYSFS{vendor}=="IBM", SYSFS{model}=="ST336", NAME="boot%n"

sound card with PCI bus id 00:0b.0 to be called dsp
BUS=="pci", ID=="00:0b.0", NAME="dsp"

USB mouse at third port of the second hub to be called mousel
BUS=="usb", PLACE=="2.3", NAME="mousel"

ttyUSB1 should always be called pda with two additional symlinks
KERNEL=="ttyUSB1", NAME="pda", SYMLINK="palmtop handheld"

As an example of a way to manipulate this data, you can use serial numbers to mark
the difference between two identical color printers, such as one with photo-quality
cartridges and one with regular cartridges for ordinary documents.

udev rules can also be used to control the group and permissions of the device files
created:

BUS=="usb", GROUP="plugdev"
SUBSYSTEM=="sound", GROUP="audio"
KERNEL=="ttyLTM[0-9]*", GROUP="dialout", MODE="0660"

Last but not least, udev rules can be used to identify the right driver module to load or
remove. Here are some example modprobe rules:

SUBSYSTEM!="ide", GOTO="ide_end"

IMPORT{program}="ide media --export $devpath"

ENV{IDE_MEDIA}=="cdrom", RUN+="/sbin/modprobe -Qba ide-cd"

ENV{IDE_MEDIA}=="disk", RUN+="/sbin/modprobe -Qba ide-disk"

ENV{IDE_MEDIA}=="floppy", RUN+="/sbin/modprobe -Qba ide-floppy"

ENV{IDE_MEDIA}=="tape", RUN+="/sbin/modprobe -Qba ide-tape"

LABEL="ide_end"

SUBSYSTEM=="input", PROGRAM="/sbin/grepmap --udev", \
RUN+="/sbin/modprobe -Qba $result"

Device Files | 191

http://www.reactivated.net/writing_udev_rules.html
http://www.reactivated.net/writing_udev_rules.html

Load drivers that match kernel-supplied alias
ENV{MODALIAS}=="2*", RUN+="/sbin/modprobe -Q $env{MODALIAS}"

In the case of our USB mouse, modprobe is run with the value of the MODALIAS environ-
ment variable. To identify the driver module to load, it tries to find a matching line in
the /lib/modules/kernel-version/modules.alias file.

How does it work? PCI or USB drivers announce the devices they support, denoting
them by vendor IDs, product IDs, or device classes. When modules are installed, such
information is stored in modules.alias. In this file, you can see that the line correspond-
ing to the USB mouse driver can match several product and vendor IDs:

alias usb:v*p*d*dc*dsc*dp*ic03isc01ip02* usbmouse
When our USB mouse is inserted, you can see from the output of udevmonitor --env
that the MODALIAS environment variable matches the previous line from the file:
MODALIAS=usb:v046DpC03Ed2000dc00dsc00dp00ic03isc01ip02

Coldplugging

What about device files for devices that were already present when the system was
started? udev offers an elegant solution to this scenario. After starting the udev daemon,
you can use the udevtrigger utility to have the kernel emit uevents for all devices present
in /sys.

Thanks to udevtrigger, legacy and removable devices are handled and named in exactly
the same way. Whether a device has been hotplugged or not is completely transparent
to user space.

Kernel configuration

udev’s operation requires a kernel compiled with several settings. Here are the ones
needed in a 2.6.20 kernel:

Hotplugging support

General setup
CONFIG_HOTPLUG=y

Networking support, for netlink sockets

Networking, networking options
CONFIG_NET=y

CONFIG_UNIX=y

CONFIG_NETFILTER NETLINK=y
CONFIG_NETFILTER _NETLINK QUEUE=y

Pseudofilesystems, to manage /dev

Pseudofilesystems
CONFIG_PROC_FS=y
CONFIG_SYSFS=y

192 | Chapter6: Root Filesystem Content

CONFIG_TMPFS=y
CONFIG_RAMFS=y

Of course, support for kernel core subsystems (such as USB and PCI) and drivers should

be added, too.

Lightweight udev implementation: BusyBox mdev

Embedded system makers found that udev wasn’t always well suited for very small
systems. The main reason is that, although udev executables are small C executables,
the udevd daemon can consume more than 1 MB of RAM, probably because it keeps
its rules in memory.

The BusyBox toolset, covered in the next section, offers a lightweight implementation
of udev called mdev. You may be interested in mdev if saving 1 MB of RAM matters to
your system.

Here’s a typical system startup scheme using mdev:

1. Mount /sys:
mount -t sysfs none /sys
2. Mount a tmpfs filesystem on /dev:
mount -t tmpfs mdev /dev
3. Instruct the kernel to call /bin/mdev every time a hotplug event happens:
echo /bin/mdev > /proc/sys/kernel/hotplug
4. Populate /dev with devices already found in /sys:
mdev -s
Note that mdev relies on the original hotplug infrastructure, as udev used to do. Because

it doesn’t use netlink sockets, mdev doesn’t have to stay running, and therefore doesn’t
consume RAM permanently. This is another advantage for very small systems.

mdev doesn’t have the sophisticated naming capabilities of udev; it just uses raw device
information found in /sys to name device files. However, an /etc/mdev.conf file lets you
control the permissions and ownership of device files. For each entry in this file, a
dedicated script can also be specified, for example, to rename device files or to notify
user space processes.

Extra details about BusyBox mdev can be found in the docs/mdev.txt file in BusyBox
sources.

Main System Applications

Beyond the kernel’s functionality and the root filesystem’s structure, Linux inherits
Unix’s very rich command set. The problem is that a standard workstation or server
distribution comes equipped with thousands of command binaries, each providing its

Main System Applications | 193

own set of capabilities. Obviously, developers cannot be expected to cross-compile
such a large amount of binaries one by one, nor do most embedded systems require
such a large body of binaries.

There are, therefore, two possibilities: choose a few select standard commands, or try
to group as many commands as possible into a very few trimmed-down applications
that implement the essential overall functionality. We will start by discussing the first
approach, but we don’t favor it because it is tedious at best. Instead, we will mostly
focus on the second approach and the various projects that implement it. In particular,
we will discuss BusyBox (including TinyLogin) and embutils, which are the main pack-
ages used for this purpose.

Complete Standard Applications

If you would like to selectively include some of the standard applications found in
mainstream distributions, your best bet is to start with the Linux From Scratch project,
located at http://www.linuxfromscratch.org. This project aims to provide explanations
and links to packages to help you build your own custom distributions. Linux From
Scratch, available through the project’s website, is its main documentation. It includes
instructions and links to build each application one by one. For each package, the
instructions provide build-time and disk-space estimates.

Alternatively, you can download applications off the Net one by one and follow each
package’s instructions for compiling and cross-compiling. Because few packages in-
clude full cross-compilation instructions, you may need to look in the packages’ Make
files to determine the appropriate build flags or make the proper modifications for the
packages to cross-compile adequately.

BusyBox

The BusyBox project was initiated by Bruce Perens in 1996 to help build install disks
for the Debian distribution. In December 1999, Eric Andersen, the maintainer of
uClibc, revived the project, first as part of Lineo’s open source efforts and then as a
vendor-independent project. Since then, the embedded Linux market has exploded in
growth and the BusyBox project has grown dramatically in features and user base.
Busybox can now be found in most embedded Linux systems and in all embedded
Linux distributions, and it has a very active user community. The project’s location is
http://www.busybox.net. The website includes documentation, downloads, links, and
a mailing list archive. BusyBox is available under the GNU GPL.

Enthusiasm for BusyBox stems from the functionality it provides while still remaining
a very small-size application. BusyBox implements most Unix commands through a
single executable that is less than 1 MB (statically linked with glibc) or less than 500
KB (statically linked with uClibc). BusyBox even includes a DHCP client and server
(udhcpc and udhcpd), package managers (dpkg and rpm), a viimplementation with most

194 | Chapter6: Root Filesystem Content

http://www.linuxfromscratch.org
http://www.busybox.net

of its features, and last but not least, a web server. This server should satisty the typical
needs of many embedded systems, as it supports HTTP authentication, CGI scripts,
and external scripts (such as PHP). Configuring support for this server with all its fea-
tures adds only 9 KB to BusyBox 1.5.0 (dynamically linked to glibc on i386).

You can save an enormous amount of storage space—perhaps tens of megabytes—
using BusyBox instead of the standard versions of the utilities it contains. You’ll also
save a lot of time and find it easier to implement a simple system, because you don’t
have to configure and build the sources of each tool.l

Although BusyBox does not support all the options provided by the commands it re-
places, the subset it provides is sufficient for most typical uses. The docs directory of
the BusyBox distribution contains its documentation in a number of different formats.

BusyBox supports all the architectures covered in Chapter 3. It can be linked both
statically and dynamically to glibc or uClibc.

Setup

First, you need to download a copy of the BusyBox package from the project’s website
and into your ${PRJROOT}/sysapps directory. We will be using BusyBox 1.4.2 for the
example in this section.

Once the package is extracted, move into its directory for the rest of the setup:
$ cd ${PRIROOT}/sysapps/busybox-1.4.2

Since version 1.3, BusyBox uses exactly the same configuration tools as the Linux 2.6
kernel. Hence, the Config.in files describing configuration parameters have the same
syntax as the kernel Kconfig ones. Likewise, all configuration settings are stored in
a .config file in the root source directory, which can be created with the same configu-
ration commands:

make xconfig
This command starts the gconf Qt-based graphical interface, used for configuring
the Linux kernel. However, the BusyBox releases do not include the gconf version
from the latest kernel releases. For example, BusyBox 1.4.2 gconf shipped without
the search functionality that appeared in the Linux version available at that time.
make gconfig
This command starts the GTK equivalent of gconf.

I' Some people insist on using the term GNU/Linux instead of just Linux to stress the huge contribution of the
GNU project and insist on its core values. While the GNU development toolchains are still essential, many
embedded Linux systems using BusyBox and the uClibc library no longer include any GNU components at
all. Such systems could thus be called BusyBox/Linux.

Main System Applications | 195

make menuconfig
This text-based interface, based on the ncurses library, is the one most BusyBox
users are familiar with. It had been the friendliest configuration tool available in
the years before the kernel configuration interface was introduced.

make defconfig
This command gives a generic configuration to BusyBox. It enables most common
options and can be used as an initial configuration for people trying BusyBox for
the first time.

make allnoconfig
This command configures BusyBox with only a strict minimum of options enabled.
It is typically run before one of the configuration interfaces, because it helps build
an embedded system containing only the features the system needs.

make oldconfig
Do not be confused by the name of this command. It is not an old way of config-
uring BusyBox. Instead, it is meant to process an existing .config file, typically from
an older version. Whenever a new parameter is introduced, this command-line
interface asks the user to choose a value, rather than silently picking a default one,
as make xconfig, make gconfig, or make menuconfig do.

Using this command is also essential after making manual changes in the .config
file. Many configuration options have dependencies on others, so when you enable
a given option, it may require new ones. For example, once you enable support for
the Is command, you need to set each of the optional features for this command
to y or n. make oldconfig prompts you for values for undefined options, and there-
fore avoids failures in compilation.

make help
This is not a configuration command, but it explains all the available Makefile
targets, such as make clean, make mrproper, and make install. You can use this
command on newer versions of BusyBox to learn about new Makefile capabilities.

Because the .config file contains Makefile variable definitions included by the main
Makefile, it is also possible to define configuration settings on the make command line.

Compilation

BusyBox has several configuration options to control the way it is built. The main one
is CONFIG_STATIC. By default, BusyBox is dynamically linked with the C library. How-
ever, in small systems using only BusyBox and a few small extra binaries, it can make
sense to compile everything statically (by setting CONFIG_STATIC=y for BusyBox). This
way, the whole C library is no longer needed in the filesystem, making the system
simpler and often smaller because unused parts of the C library symbols are not
included.

196 | Chapter6: Root Filesystem Content

Since version 1.3, the choice of a compiler or a cross-compiler is no longer made in the
configuration file, but instead in the same way as in the Linux kernel, with the same
ARCH and CROSS_COMPILE settings. This was explained in detail in Chapter 5.

Once BusyBox is configured, you can compile and install it. When linking with glibc,
use the following command:

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- \
> CONFIG_PREFIX=${PRIROOT}/rootfs install

CONFIG_PREFIX is set to the root filesystem base directory. The Makefile will install all
BusyBox’s components within this directory.

To build BusyBox with uClibc instead of the GNU C library, use the following
command:

$ make ARCH=ppc CROSS_COMPILE=powerpc-uclibc- \
> CONFIG_PREFIX=${PRIROOT}/rootfs install

BusyBox is now installed on your target’s root filesystem and ready to be used.

Usage

To understand how best to use BusyBox, let’s first take a look at the components
BusyBox’s build process installs on the target’s root filesystem. As expected, only one
executable was installed, /bin/busybox. This is the single binary with support for the
configured commands. This binary is never called directly, however; instead, symbolic
links bearing the original commands’ names have been created to /bin/busybox. Such
symbolic links have been created in all the directories in which the original commands
would be found, including /bin, /sbin, /usr/bin, and /usr/sbin.

When you type a command during the system’s normal operation, the busybox com-
mand is invoked via the symbolic link. In turn, busybox determines the actual command
you were invoking, using the name being used to run it. /bin/ls, for instance, points
to /bin/busybox. When you type Is, the busybox command is called and it determines
that you were trying to use the Is command, because Is is the first argument on the
command line.#

Although this scheme is simple and effective, it means you can’t use arbitrary names
for symbolic links. Creating a symbolic link called /bin/dir to either /bin/ls or /bin/busy
box will not work, because busybox does not recognize the dir command.

Note that, although symbolic links are the usual way of linking commands to /bin/
busybox, BusyBox can also be instructed to create hard links instead of symbolic ones
during its installation. Its behavior at runtime is the same, regardless of the type of links
used.

Like any other application, busybox’s main() function is passed to the command line used to invoke it.

Main System Applications | 197

The documentation on the project’s website, which is also provided with the package,
describes all the options available for each command supported. In most cases, the
options supported by BusyBox have the same functions as the options provided by the
original commands. For instance, using the -al options with BusyBox’s Is will have the
same effect as using the same options with the original Is.

When using one of the shells provided in BusyBox, such as ash, hush, lash, or msh, you
will find it convenient to use a /etc/profile file to define a few global variables for all shell
users. Here is a sample /etc/profile file for a single-user target:

Set path

PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

In addition to setting the path, you could set the LD_LIBRARY_PATH environment variable,
which is used during the startup of each application to locate the libraries it depends
on. Though the default location for libraries is /lib, your system may have libraries
located in other directories. If that is the case, you can force the dynamic linker to look
for the other libraries by adding the appropriate directory paths to LD_LIBRARY_ PATH. As
with the PATH environment variable, you can add more directories to the library path
by placing colons between directory paths.

Note that on a workstation or a server, LD_LIBRARY_PATH would actually be used only
as a temporary holding place for new library paths. To permanently add another library
path, the administrator would edit /etc/ld.so.conf and run the ldconfig command to
consult that file and generate /etc/ld.so.cache, which is itself read by the dynamic linker
to find libraries for dynamically linked applications. Although ldconfig was generated
when we compiled glibc in Chapter 4, it is a target binary and cannot be run on the
host to generate a target Id.so.cache. So, you can expect many embedded systems to
have no /etc/ld.conf and instead rely on the LD_LIBRARY_ PATH technique.

TinyLogin: BusyBox logging utilities

TinyLogin used to be another collection of utilities maintained by the developers of
BusyBox. A single binary like BusyBox, it implemented the following commands:
addgroup, adduser, delgroup, deluser, getty, login, passwd, su, sulogin, and vlock.

There were several reasons to keep the TinyLogin functionality separate from BusyBox.
The main one was that many of the commands implemented in TinyLogin had to run
with root privileges, which in turn required that the TinyLogin binary file belong to the
root user and have its “set user” permission bit enabled, a configuration commonly
known as “setuid root.” Since TinyLogin used symbolic links in the same way BusyBox
does, a single binary containing the functionality of both packages would also result in
having commands such as Is and cat run as root, which increased the likelihood that a
programming error in any one command could be exploited to gain root privileges.

198 | Chapter6: Root Filesystem Content

However, as you can see from the original TinyLogin website, http://tinylogin.busy
box.net, the project hasn’t been updated since 2003. These logging utilities are now
actively maintained in BusyBox.

To address the setuid security issues, BusyBox drops its root privileges for applets that
don’t require root access. It can also be configured to check the /etc/busybox.conf con-
figuration file specifying those privileged applets. For the most paranoid users, the
safest solution is still to build two separate BusyBox binaries, one for privileged applets
and one for unprivileged applets.

Among the options you can configure, pay special attention to the
CONFIG FEATURE SHADOWPASSWD, CONFIG USE BB SHADOW, and CONFIG USE BB PWD GRP con-
figuration options, which are documented in the configuration interface. The most
important one is CONFIG_FEATURE_SHADOWPASSWD, which adds support for passwords en-
crypted in a separate /etc/shadow file.

Traditionally, /etc/passwd could be read by anyone in the system, and this in turn be-
came a security risk as more and more programs for cracking passwords were available.
Hence, the use of so-called shadow passwords became the norm. When in use, the
password fields in /etc/passwd contain only filler characters. The real encrypted pass-
words are stored in /etc/shadow, which can be read only by a process running with root
privileges. Note that if you configure uClibc without shadow password support, ena-
bling CONFIG_FEATURE_SHADOWPASSWD and linking with uClibc will result in a failed build.

You should enable CONFIG_USE_BB_SHADOW to let BusyBox use its own shadow functions
for accessing shadow passwords, unless you plan to use glibc’s NSS libraries with a
properly configured /etc/nsswitch.conf file.

If you enable CONFIG_USE_BB_PWD GRP, the logging utilities will directly use the /etc/
passwd and /etc/group files instead of using the password and group functions provided
by glibc. Otherwise, you will also need the C library NSS libraries and a /etc/
nsswitch.conf file.

Note that you will not need to create and manage the /etc/group, /etc/passwd, and /etc/
shadow files by hand, as the addgroup, adduser, delgroup, and deluser commands take
care of creating or updating these files.

For more information on the creation and manipulation of group, password, or shadow
password files, as well as system administration in general, see the Linux System Ad-
ministrator’s Guide (O’Reilly, also available from the Linux Documentation Project
[LDP]), Running Linux, and the Linux From Scratch book (mentioned earlier in “Com-
plete Standard Applications”).

embutils

embutils is another set of miniaturized and optimized replacements for mainstream
Unix commands. Although embutils groups some of the commands in a single binary,

Main System Applications | 199

http://tinylogin.busybox.net
http://tinylogin.busybox.net

its main approach is to provide one small binary for each command. embutils was
written and is maintained by Felix von Leitner, the author of diet libc, with goals very
similar to those of diet libc. embutils is available at http://www.fefe.de/embutils/.”

Though it supports many of the most common Unix commands, embutils is still far
from being as exhaustive as BusyBox. For example, at the time of this writing, version
0.18still lacks fbset, find, grep, ifconfig, ps, and route. It doesn’t offer any shell command
either.

As with BusyBox, not all the options provided by the full commands are supported,
but the subset provided is sufficient for most system operations. In contrast to BusyBox,
however, embutils must be statically linked with diet libc. It can’t be linked to any other
library. Because diet libc is already very small, the resulting command binaries are
reasonably small, too. This can make embutils a better choice than BusyBox when just
a few binaries are needed, because the overall size is smaller.

Setup

Before you start the setup, you will need to have diet libc installed on your host system,
as described in Chapter 4. Then, download embutils and extract it into your
${PRJROOT//sysapps directory. For this example, we use embutils 0.18. You can move
into the package’s directory for the rest of the setup:

$ cd ${PRIROOT}/sysapps/embutils-0.18
There is no configuration capability for embutils. You can, therefore, build the package
right away:

$ make ARCH=ppc CROSS=powerpc-linux- all
You can then install embutils:

$ make ARCH=ppc DESTDIR=${PRIROOT}/rootfs prefix="" install

The options and variables used in the build and installation of embutils have the same
meaning as those used for diet libc.

Usage

The embutils installation procedure copies quite a few statically linked binaries to your
target root filesystem’s /bin directory. In contrast to BusyBox, this is the only directory
where binaries are installed.

A BusyBox-like all-in-one binary has also been installed, allinone. This binary reacts
the same way as BusyBox when proper symbolic links are created to it. Note that unlike
BusyBox, you need to create these symbolic links manually, because they are not created
automatically by the installation scripts. allinone supports the following commands, as
revealed by the allinone.c file:

" As with diet libc, the trailing slash (“/”) is important.

200 | Chapter6: Root Filesystem Content

http://www.fefe.de/embutils/

arch pwd

basename sleep
clear sync
chvt tee
dirname true
dmesg ity
domainname uname
echo which
env whoami
false yes
hostname
Custom Applications

There are many places in the root filesystem where you can put your own application,
depending on the number and types of components it has. Usually, it is preferable to
follow the FHS’s guidelines.

If your application consists of a relatively small number of binaries, placing them
in/bin is probably the best choice. This is the actual installation path used for the control
daemon in Chapter 4.

If your application consists of a complex set of binaries, and possibly datafiles, consider
adding an entry in the root filesystem for your project. You may either call this new
directory project or name it after your own project. In the case of our control module,
this directory could be control-module.

The custom directory can contain a hierarchy of its own that you can customize to best
suit your needs. You may have to set the PATH environment variable on your target to
include the custom directory if your binaries are placed there.

Note that the addition of a custom entry in the root filesystem is contrary to the FHS.
This is a forgivable violation of the standard, however, because your filesystem is cus-
tom built for your target and is unlikely to become a distribution of its own.

System Initialization

System initialization is yet another particularity of Unix systems. As explained in
Chapter 2, the kernel’s last action during initialization is to start the init program. This
program is in charge of finalizing system startup by spawning various applications and
starting some key software components. In most Linux systems, init mimics System V
init and is configured much the same way. In embedded Linux systems, the flexibility
of System V init is overkill, because they rarely run as multiuser systems.

Custom Applications | 201

There is no actual requirement for you to have a standard init program, such as System
V init, on your root filesystem. The kernel itself doesn’t really care. All it needs is an
application it can start once it’s done initializing the system. For instance, you can add
an init=path to your init boot parameter to tell the kernel to use your main applica-
tion as its init. There are, however, drawbacks to this approach, because your applica-
tion will be the one and only application the kernel ever starts. Your application would
then be responsible for starting other applications on the system. Furthermore, if your
application unexpectedly dies, its exit will cause a kernel panic followed by a system
reboot, as would an unexpected exit of System V init. Though this may be the desired
behavior in some cases, it would usually render an embedded system useless. For these
reasons, generally it is much safer and useful to actually have a real init on your root
filesystem.

The following subsections cover the standard init package found in most Linux distri-
butions, the BusyBox init, and Minit, a miniature init provided by the author of embutils

and diet libc.

As with other issues in Unix, init is a broad subject. There are quite a few documents
that discuss Linux init at length. Running Linux describes the mainstream workstation
and server init setups. Alessandro Rubini wrote a very interesting piece about init that
goes into the nuances of the various initialization schemes, available at http://www.li
nux.it/kerneldocs/init.

Standard System V init

The standard init package found in most Linux distributions was written by Miquel
van Soorenburg and is available at ftp://ftp.cistron.nl/pub/people/miquels/sysvinit. Using
this package gives you the same flexibility to configure your target’s startup that you
would have configuring the startup of a workstation or a server. However, the extra
functionality and flexibility require additional space. Also, it requires that you keep
track of the development of yet another software package. The 2.86 version of the
package includes the following commands:

bootlogd poweroff

halt reboot
init runlevel
killall5 shutdown
last sulogin
mesg telinit

mountpoint utmpdump

pidof wall

202 | Chapter6: Root Filesystem Content

http://www.linux.it/kerneldocs/init
http://www.linux.it/kerneldocs/init
ftp://ftp.cistron.nl/pub/people/miquels/sysvinit

The package can be cross-compiled easily. First, download the package and uncom-
press it into your ${PRJROOT|/sysapps directory. For our control module, we used
sysvinit version 2.86. Then, move into the package’s source directory and build it:

$ cd ${PRIROOT}/sysapps/sysvinit-2.86/src
$ make CC=powerpc-linux-gcc

Replace the value of CC to match the cross-compiler for your target. With the package
now built, you can install it on the target’s root filesystem:

$ make BIN_OWNER="$(id -un)" BIN_GROUP="$(id -gn)" \

> ROOT=${PRIR0OT}/rootfs install
This command will install all the binaries in the target’s root filesystem, but it will fail
afterward because the Makefile tries to install the manpages on the root filesystem as
well. You can modify the Makefile to avoid this, but you can also ignore the failure
message.

The previous command sets the BIN_OWNER and BIN_GROUP variables to be that of your
own current user. By default, the Makefile attempts to install the various components
and set their ownership to the root user. Since you aren’t logged in as root, the
Makefile would fail. The ownership of the binaries matters little on the target, because
it generally isn’t a multiuser system. If it is, however, you need to log in as root and run
the make install command. Be very careful, in any case, to appropriately set the value
of ROOT to point to your target’s root filesystem. Otherwise, you may end up overwriting
your workstation’s init with a target binary. Alternatively, to avoid having to log in as
root, you could still run the installation command using your normal user privileges
and then use the chown command as root to change the privileges on each file installed.
This, however, involves going through the Makefile to find each installed file and its
destination.

With init installed on your target’s root filesystem, you will need to add the appropri-
ate /etc/inittab file and fill the /etc/rc.d directory with the appropriate files. In
essence, /etc/inittab defines the runlevels for your system, and the files in /etc/rc.d define
which services run on each runlevel. Table 6-5 lists init’s seven runlevels and their
typical uses in a workstation and server distribution.

Table 6-5. System V init runlevels

Runlevel Description

0 System is halted.

1 Only one user on system; no need for /ogin.
Multiuser mode without NFS, command-line login.
Full multiuser mode, command-line /ogin.
Unused.

X11, graphical user interface login.

AN UL BB W N

Reboot the system.

System Initialization | 203

Each runlevel corresponds to a certain set of applications. When entering runlevel 5 on
a workstation, for example, init starts X11 and the user is prompted to enter his user-
name and password using a graphical login. When switching between runlevels, the
services started in the previous runlevel are shut down and the services of the new
runlevel are started.

In this scheme, runlevels 0 and 6 have a special meaning: they are used for stopping
the system safely. This may involve, for example, remounting the root filesystem in
read-only mode—to avoid filesystem corruption when the system is halted—and un-
mounting all the other filesystems.

On most workstations, the default runlevel at system startup is 5. For an embedded
system, it can be set to 1 if no access control is necessary. The system’s runlevel can be
changed after system startup using either init or telinit, which is a symbolic link to
init. In both cases, the newly issued init command communicates with the original
init through the /dev/initctl FIFO. To this end, we need to create a corresponding entry
in our target’s root filesystem:

$ mknod -m 600 ${PRIROOT}/rootfs/dev/initctl p

For more information on the format of /etc/inittab and the files found in /etc/rc.d, refer
to the resources mentioned earlier.

BusyBox init

Among the commands it supports by default, BusyBox provides init-like capabilities.
BusyBox init is particularly well adapted to embedded systems because it provides most
of the init functionality an embedded system typically needs without dragging the
weight of the extra features found in System V init. Also, because BusyBox is a single
package, there is no need to keep track of an additional software package when devel-
oping or maintaining your system. There are cases, however, where BusyBox init may
not be sufficient, for example, it does not support multiple runlevels.

Since we already described how to obtain, configure, and build BusyBox, we will limit
this discussion to the setup of the init configuration files.

Because /sbin/init is a symbolic link to /bin/busybox, BusyBox is the first application to
run on the target system. BusyBox identifies that the command being invoked is init
and immediately jumps to the init routine.

BusyBox’s init routine carries out the following main tasks in order. (Action types are
defined in the inittab file, described later in this section.)
1. Sets up signal handlers for init.

2. Initializes the console. By default, it uses the device specified with the kernel’s
console boot option. If no console was specified to the kernel, BusyBox tries to
use /dev/console.

3. Parses the inittab file, /etc/inittab.

204 | Chapter6: Root Filesystem Content

4. Runs the system initialization script. (/etc/init.d/rcS is the default for BusyBox.)
5. Runs all the inittab commands that block (action type: wait).

6. Runs all the inittab commands that run only once (action type: once).

After completing these steps, the init routine loops forever, carrying out the following
tasks:

1. Runs all the inittab commands that have to be respawned (action type: respawn).
2. Runsall the inittab commands that have to be asked for first (action type: askfirst).

3. Waits for child processes to exit.

After having initialized the console, BusyBox checks for the existence of an /etc/init
tab file. If no such file exists, BusyBox uses a default inittab configuration. Mainly, it
sets up default actions for system reboot, system halt, and init restart. Also, it sets up
actions to start shells on the console and on the virtual consoles from /dev/tty2 to /dev/
tty4, although it will skip consoles without complaining if you haven’t created the
virtual console device entries.

If an /etc/inittab file is found, it is parsed, and the commands it contains are recorded
inside internal structures to be carried out at the appropriate time. The format of the
inittab file as recognized by BusyBox is well explained in the documentation included
in the BusyBox package, which also includes an elaborate example inittab file.

Each line in the inittab file follows this format:

id:runlevel:action:process

Although this format resembles that of traditional System V init, take note that the
meaning of id is different in BusyBox init. Mainly, the id is used to specify the con-
trolling tty for the process to be started. If you leave this entry empty, BusyBox init will
use the system console, which is fine when the process to be started isn’t an interactive
shell, or when you start a shell on the console. BusyBox completely ignores the
runlevel field, so you can leave it blank. The process field specifies the path of the
program to run, along with its command-line options. The action field is one of eight
recognized actions to be applied to process, as described in Table 6-6.

Table 6-6. Types of inittab actions recognized by BusyBox init

Action Effect

sysinit Provides init with the path to the initialization script.

respawn Restarts the process every time it terminates.

askfirst Similar to respawn, but is mainly useful for reducing the number of terminal applications running on the

system. It prompts init to display “Please press Enter to activate this console.” at the console and waits for the
user to press Enter before starting the process.

wait Tells init that it has to wait for the process to complete before continuing.

once Runs the process only once without waiting for its completion.

System Initialization | 205

Action Effect
ctrlaltdel Runsthe process when the Ctrl-Alt-Delete key combination is pressed.
shutdown Runs the process before shutting the system down.

restart Runs the process when init restarts. Usually, the process to be run here is init itself.

The following is a simple inittab file for our control module:

1:sysinit:/etc/init.d/rcS
::respawn:/sbin/getty 115200 ttySo
::respawn:/control-module/bin/init
:irestart:/sbin/init

::shutdown: /bin/umount -a -r

This inittab file does the following:
1. Sets /etc/init.d/rcS as the system initialization file.
. Starts a login session on the serial port at 115200 bps.
. Starts the control module’s custom software initialization script.

. Sets /sbin/init as the program to execute if init restarts.

G AW N

. Tells init to run the umount command to unmount all filesystems it can at system
shutdown and set the others as read-only to preserve the filesystems.

However, none of these actions takes place until init runs the system initialization script.
This script can be quite elaborate and can actually call other scripts. Use it to set all the
basic settings and initialize the various components of the system that need special
handling. Particularly, this is a good place to:

* Remount the root filesystem in read-write mode.

* Mount additional filesystems.

* Initialize and start networking interfaces.

* Start system daemons.

Here is the initialization script for the control module:
#1/bin/sh

Remount the root filesystem in read-write (requires /etc/fstab)
mount -n -o remount,rw /

Mount /proc filesystem
mount /proc

Start the network interface
/sbin/ifconfig etho 192.168.172.10

This initialization script depends on the existence of an /etc/fstab file in the target’s root
filesystem. We won’t discuss the contents and use of this file, because it is already
explained in many documentation sources, such as the fstab manpage and Running

206 | Chapter6: Root Filesystem Content

Linux. Nevertheless, here’s the /etc/fstab file used for the development of my control
module:

/etc/fstab

device directory type options
#

/dev/nfs / nfs defaults
none /proc proc defaults

In this case, we mount the target’s root filesystem on NFS to simplify development.
Chapter 8 discusses filesystem types, and Chapter 9 discusses NFS mounts.

Minit
Minit is part of the miniaturized tools developed by Felix von Leitner, such as diet libc

and embutils, and is available at hitp://www.fefe.de/minit/.T As with the other tools
distributed by Felix, Minit requires a properly configured diet libc.

Minit’s initialization procedure is a complete departure from the traditional System V
init. Instead of using /etc/inittab, for instance, Minit relies on the existence of a properly
built /etc/minit directory. Firdtjof Busse provides a description of how Minit operates
at http://'www.fbunet.de/minit.shtml. He also provides pointers to example /etc/minit
directories.

By default, Minit’s Makefile installs Minit components in the host’s root filesystem.
You can use the DESTDIR Makefile variable to install Minit in another directory:

$ make DESTDIR=${PRIROOT}/rootfs install

—Michael Opdenacker

T As with the other tools available from fefe.de, the last slash (“/”) is important.

System Initialization | 207

http://www.fefe.de/minit/
http://www.fbunet.de/minit.shtml

CHAPTER 7
Storage Device
Manipulation

The storage devices used in embedded systems are often quite different from those used
in workstations and servers. Embedded systems tend to use solid-state storage devices,
such as flash chips and flash disks. As with any other component of the Linux system,
these devices must be properly set up and configured to be used by the kernel. Because
these storage devices differ greatly from typical workstation and server disks, the tools
to manipulate them (for partitioning, copying files, and erasing, for instance) are also
different. These tools are the subject of this chapter.

In this chapter, we will discuss the manipulation of embedded storage devices for use
with Linux. We will start with our primary topic: the manipulation of devices supported
by the memory technology device (MTD) subsystem. We’ll also briefly cover the ma-
nipulation of disk devices. If you intend to use a conventional disk device as part of
your system, however, we recommend that you look at one of the books that discusses
Linux system maintenance, such as O’Reilly’s Running Linux by Matthias Dalheimer
and Matt Welsh for more extensive coverage. The last section of this chapter will cover
the use of swap in embedded systems.

MTD-Supported Devices

As we saw in “Memory Technology Devices” in Chapter 3, the MTD subsystem is rich
and elaborate. To use it on your target, you will need a properly configured kernel and
the MTD tools available from the project’s website. We will discuss both of these issues.

As with other kernel subsystems, the development of the MTD subsystem is closely
linked with the upstream kernel, and the best way to ensure you have the latest func-
tionality and bug fixes is to make sure you run the latest Linux kernel. For bleeding-
edge requirements, there is a git repository at git:/git.infradead.org/mtd-2.6.git that
contains the latest changes due for inclusion in the next development cycle of the Linux
kernel. It is also often helpful to follow the MTD mailing list or peruse its archive.

In the following sections, we will discuss the basic use of the MTD subsystem. We’ll
cover issues such as configuring the kernel, installing the required utilities, and creating

209

git://git.infradead.org/mtd-2.6.git

appropriate entries in the /dev device directory. We will then focus on the use of the
MTD subsystem with the solid-state storage devices most commonly used in embedded
Linux systems: native common flash interface (CFI)-compliant NOR flash and NAND
flash. We will also briefly cover the popular DiskOnChip devices.

MTD Usage Basics

Having already covered the detailed architecture of the MTD subsystem, we can now
concentrate on the actual practical use of its components. First, we will discuss how
MTD storage devices are presented to user space, including the /dev entries required
for MTD abstractions. Second, we will discuss the basic MTD kernel configuration
options. Third, we will discuss the tools available to manipulate MTD storage devices
in Linux. Finally, we will describe how to install these tools both on the host and on
the target.

MTD /dev entries

Traditional Unix knows two types of devices: character and block. Memory technology
devices are not a perfect match for either of these abstractions, since they share char-
acteristics of both and have their own unique limitations.

The primary method of access to “raw” devices from user space is through a character
device, /dev/mtdN. This offers basic read and write functionality, along with ioctl access
to the erase function and other functionality, such as locking.

For compatibility with device node registration, which predates the MTD infrastruc-
ture, there are also read-only versions of the same devices, /dev/mtdrN. These devices
serve no particular purpose except to confuse users by ensuring that there is nota 1:1
mapping between the device name and the minor device number. Each mtdN device has
minor number N*2, while the corresponding read-only device mtdrN has minor number
N*2 + 1.

Additionally, there are various types of “translation layers” that allow flash devices to
be used as if they were standard block devices. These translation layers are forms of
pseudofilesystems that plays tricks to pretend to be a normal hard drive with individ-
ually overwritable 512-byte sectors. They are generally designed for compatibility with
existing devices in the field, and usually provide some form of wear levelling and power-
fail resilience, as well as mapping out bad blocks on NAND flash.

The most naive implementation of a translation layer is the mtdblock driver, which
provides /dev/mtdblockN devices, with a 1:1 mapping between logical and physical sec-
tors. The illusion of being able to overwrite 512-byte sectors individually is provided
by reading an entire erase block into RAM, modifying the changed sectors, and then
erasing and rewriting the flash. This, obviously, provides no reliability in the face of
power loss or kernel crashes—and not only are the sectors being modified likely to be
lost, but also a large amount of data surrounding them. However, the mtdblock driver

210 | Chapter7: Storage Device Manipulation

is useful for purely read-only access, in conjunction with “normal” filesystems such as
Cramfs.

When mounting a JFFS2 or other MTD-aware filesystem, it is also possible to refer to
MTD devices by number or name, in which case, the MTD user modules don’t have
to be loaded. For example:

mount -tjffs2 mtdo /mnt
mount -tjffs2 mtd:jffs2 /mnt

Note that if you use this method with the root= option to mount the root filesystem,
you must also specify rootfstype=jffs2.

[tis also possible to mount JFFS2 using the /dev/mtdblockN device, although in this case
the device is not actually used; it simply serves as a way to tell the kernel which internal
MTD device to use.

There are six types of MTD /dev entries and seven corresponding MTD user modules.
Table 7-1 describes each type of MTD /dev entry and the corresponding MTD user
modules, and Table 7-2 provides the minor number ranges and describes the naming
scheme used for each device type.

Note that there are two user modules that provide the /dev/mtdblockN devices: the
mtdblock driver and the mtdblock_ro driver. As the name implies, the latter driver
provides read-only access, lacking the read-modify-erase-write functionality of the
former.

Table 7-1. MTD /dev entries, corresponding MTD user modules, and relevant device major numbers

/deventry Accessible MTD user module Devicetype Major number
mtdN char device char 90

mtdrN char device char 90

mtdblockN block device, read-only block device, JFFS, and JFFS2 block 31

ftILN FTL block 44

nftiLN NFTL block 93

inftlLN INFTL block 9%

rfdLN RFD FTL block 256

ssfdcLN SmartMedia FTL block 257

Table 7-2. MTD /dev entries, minor numbers, and naming schemes

/deventry Minor number range Naming scheme
mtdN 0to32perincrementsof 2~ N'=minor/2
mtdrN 1to 33 perincrementsof 2 N=(minor-1)/2

mtdblockv- 0to 16 perincrementsof 1 N'=minor

MTD-Supported Devices | 211

/deventry Minor numberrange Naming scheme

nftlLN 0to 255 per sets of 16 L =set;> N =minor - (set - 1) X 16; N is not appended to the entry name if its
value is zero.

inftlLN 00 255 per sets of 16 Same as NFTL.

ftILN 010 255 per sets of 16 Same as NFTL.

fd_ftiLN 0to 255 per sets of 16 Same as NFTL.

ssdfcLN 0to 255 per sets of 8 N =minor - (set-1)*8

a As with other partitionable block device entries in /dev, device sets are identified by letters. The first set is

«, o

a,” the second set is “b,” the third set is “c,” and so on.

The use of each type of MTD /dev entry is as follows:

mtdN
Each entry is a separate MTD device or partition. Remember that each MTD par-
tition acts as a separate MTD device.

mtdrN
Each entry is the read-only equivalent of the matching /dev/mtdN entry.

mtdblockN
Each entry is the block device equivalent of the matching /dev/mtdn entry.

nftlLN
Each set is a separate NFTL device, and each entry in a set is a partition on that
device. The first entry in a set is the entire device. /dev/nftlb, for instance, is the
second NFTL device in its entirety, while /dev/nftlb3 is the third partition on the
second NFTL device.

inftlLN, ftlLN, rfd_ftILN, and ssfdcLN
Same as NFTL.

As we’ll see later, you don’t need to create all these entries manually on your host.
Unless you use udev, however, you will need to create some of these entries manually
on your target’s root filesystem to use the corresponding MTD user module.

Configuring the kernel

As mentioned in Chapter 5, the configuration of the MTD subsystem is part of the main
menu of the kernel configuration options. Whether you are configuring the kernel using
the curses-based terminal configuration menu or through the graphical X Window
configuration menu, you will need to enter the MTD submenu to configure the MTD
subsystem for your kernel.

The MTD submenu contains a list of configuration options that you can choose to
build as part of the kernel, build as separate modules, or disable completely. Here are
the main options you can configure in the MTD submenu:

212 | Chapter7: Storage Device Manipulation

MTD support, CONFIG_MTD
Enable this option if you want to include core MTD subsystem support. If you
disable this option, this kernel will not have any MTD support. When this option
is set to be built as a module, the resulting functionality is found in the module
called mtdcore.ko.

MTD concatenating support, CONFIG_MTD_CONCAT
Enable this option if you want to combine multiple MTD devices or partitions into
a single logical device, for example, to combine space from two or more separate
devices into a single filesystem. If you compile this as a module, the module’s
filename will be mtdconcat.ko.

MTD partitioning support, CONFIG_MTD_PARTITIONS
Enable this option if you want to be able to divide your MTD devices into separate
partitions. If you compile this as a module, the module’s filename is mtdpart.ko.
Note that MTD partitioning does not apply to partitions within the “translation
layer” used on DiskOnChip devices. These devices are partitioned using conven-
tional disk partitioning tools.

Direct char device access to MTD devices, CONFIG_MTD_CHAR
This is the configuration option for the char device MTD user module that is visible
as /dev/imtdN and /dev/mtdrN. If you configure this as a module, the module’s
filename will be mtdchar.ko.

Caching block device access to MTD devices, CONFIG_MTD BLOCK
This is the configuration option for the read-write block device MTD user module
that is visible as /dev/mtdblockN. If you configure this as a module, the module’s
filename will be mtdblock.ko.

Read-only block device access to MTD devices, CONFIG_MTD_BLOCK_RO
This is the configuration option for the read-only block device MTD user module
that is visible using the same /dev entries as the read-write block device. If you
configure the read-only block device user module as a module, the module’s file-
name will be mtdblock_ro.ko.

FTL (Flash Translation Layer) support, CONFIG_FTL
Set this option if you would like to include the FTL user module in your kernel.
When configured as a module, the module’s filename is ftl.ko. The FTL user mod-
ule is accessible through the /dev/ftILN device entries.

NFTL (NAND Flash Translation Layer) support, CONFIG_NFTL
Set this option if you would like to include the NFTL user module in your kernel.
When configured as a module, the module’s filename is nftl.o. The NFTL user
module is accessible through the /dev/nftILN device entries.

Write support for NFTL, CONFIG_NFTL_RW
You must enable this option if you want to be able to write to your NFTL-formatted
devices. This will only influence the way the NFTL user module is built and is not
a separate user module in itself.

MTD-Supported Devices | 213

Notice that only one of the two block device MTD user modules can be
*t% built in the kernel, although both can be configured as modules

(mtdblock.ko and mtdblock_ro.ko). In other words, if you set the read-
write block device user module to be built into the kernel—not as a
module—you will not be able to configure the read-only block device
user module, either built-in or as a module. As we saw earlier, both block
device MTD user modules use the same /dev entry and cannot therefore
be active simultaneously.

The preceding list is primarily made up of the user modules described earlier. The
remaining MTD user modules, JFFS and JFFS2, are not configured as part of the MTD
subsystem configuration, rather, they are configured within the “Filesystems” subme-
nu. Nevertheless, you will need to enable MTD support to enable support for either
JFFS or JFFS2.

The MTD submenu also contains four submenus to configure support for the actual
MTD hardware device drivers. Here are the submenus found in the MTD submenu
and their descriptions:

RAM/ROM/Flash chip drivers
Contains configuration options for CFI-compliant flash, JEDEC-compliant flash,
old non-CFI flash, RAM, ROM, and absent chips.

Mapping drivers for chip access
Contains configuration options for mapping drivers. Includes one generic mapping
driver that can be configured by providing the physical start address of the device
and its size in hexadecimal notation, and its bus width in octets. This submenu
also contains one entry for each board for which there is an existing mapping driver
included in the kernel.

Self-contained MTD device drivers
Contains configuration options for standalone drivers that are not part of the NOR,
NAND, or OneNAND frameworks. This includes test drivers such as the memory-
backed test device, “loopback” block device driver, and legacy drivers for the
DiskOnChip devices.

NAND Flash Device Drivers
Contains configuration options for NAND flash devices, including the supported
DiskOnChip modules.

OneNAND Flash Device Drivers
Contains configuration options for Samsung OneNAND flash devices.

Before configuring your kernel’s MTD subsystem, make sure you have read the MTD
subsystem discussion in Chapter 3, since many of the options described here were
amply covered there.

When configuring the kernel for your host, you will find it useful to configure all the
MTD subsystem options as modules, since you will be able to test different device setup

214 | Chapter7: Storage Device Manipulation

combinations. For your target, however, you will need to compile all the options re-
quired to support your solid-state storage device as part of your kernel, rather than as
modules. Otherwise, your target will not be able to mount its root filesystem from its
solid-state storage device. If you forget to configure your target’s kernel so that it can
mount its root filesystem from the MTD device, your kernel will panic during startup
and complain about its inability to mount its root filesystem with a message similar to
the following;:

Kernel panic: VFS: unable to mount root fs on ...

The MTD utilities

Because the MTD subsystem’s functionality is different from that of other kernel sub-
systems, a special set of utilities is required to interact with it. We will see in the next
sections how to obtain and install these utilities. For now, let’s take a look at the avail-
able tools and their purposes.

The MTD utilities are powerful tools. Make sure you understand exactly
% the operations a tool performs before using it. Also, make sure you un-
derstand the particularities of the device on which you are using the
tools. DiskOnChip devices, for example, require careful manipulation.

You can easily damage your DiskOnChip device if you do not use the
MTD tools appropriately.

Within the MTD tool set, there are different categories of tools, each serving a different
MTD subsystem component. Here are the different tool categories and the tools they
contain:

Generic tools
These are the tools that can be used with all types of MTD devices:
flash_info device
Provides information regarding a device’s erase regions.
flash_erase device start_address number_of blocks
Erases a certain number of blocks from a device starting at a given address.

flash_eraseall [options] device
Erases the entire device. The -j option is often used to write JFFS2 “clean-
markers” to each erase block after erasing. This informs the JFFS2 filesystem
that the block was completely erased, and prevents JFFS2 from erasing each
block again for itself when first mounted.

flash_unlock device
Unlocks™ all the sectors of a device.

" Some devices can be protected from accidental writes using write “locks.” Once a device, or some portion of
it, is locked, it cannot be written to until it is unlocked.

MTD-Supported Devices | 215

flash_lock device offset number of blocks
Locks a certain number of blocks on a device.

flashcp [options] filename flash_device
Copies a file to a flash device.

doc_loadbios device firmware file
Writes a bootloader to the device’s boot region. Though this command is
usually used with DiskOnChip devices only, it is not DiskOnChip-specific.

mtd_debug operation [operation parameters]
Provides useful MTD debugging operations.

Filesystem creation tools
These tools manipulate the filesystems that are later used by the corresponding
MTD user modules:

mkfs.jffs2 [options] -r directory -o output file
Builds a JFFS2 filesystem image from a directory.

sumtool [options] -i input_file -0 output file
Processes a JFFS2 filesystem image, adding summary information to each
erase block. This works in conjunction with the CONFIG_JFFS2_SUMMARY support
in the kernel to speed up mounting JFFS2 filesystems. By storing a summary
at the end of each erase block, JFFS2 avoids the need to scan every node in the

block.
jiffs2dump [options] image
Dumps the contents of a binary JFFS2 image, and also allows endian
conversion.
NFTL tools
These tools interact with NFTL partitions:
nftl_format device [start_address [size]]
Formats a DiskOnChip device for use with the NFTL or INFTL user module.
nftldump device [output file]
Dumps the content of an NFTL partition to a file. This utility does not pres-
ently support INFTL.
FTL tools
These tools interact with FTL partitions:
ftl_format [options] device
Formats a NOR flash device with FTL.
ftl_check [options] device
Checks and provides information regarding an FTL device.
NAND chip tools
These tools are provided for manipulating NAND chips:

nandwrite device input_file start_address
Writes the content of a file to a NAND chip.

216 | Chapter7: Storage Device Manipulation

nandtest device
Tests NAND chips, including those in DiskOnChip devices.

nanddump device output_file [offset] [number of bytes]
Dumps the content of a NAND chip to a file.

Most of these tools are used on /dev/mtdN devices, which are the char device interfaces
to the various MTD devices. I will describe the typical uses of the most important MTD
tools over the next few chapters, covering the actual MTD hardware in this chapter,
preparation of the root filesystem in Chapter 8, and the boot setup in Chapter 9.

Installing the MTD utilities for the host

The MTD utilities are maintained in the git tree at git://git.infradead.org/mtd-utils.git,
also viewable through gitweb at http://git.infradead.org/mtd-utils.git. Release tarballs
are downloadable from ftp://ftp.infradead.org/pub/mtd-utils, and distributions such as
Fedora include relatively recent versions of the tools. Therefore, it is likely that you will
need to build the tools for your host only if you need bleeding-edge features or bug fixes.

To build the latest MTD utilities for your host, first clone the GIT tree in your
${PRJROOT//build-tools directory:
$ cd ${PRIROOT}/build-tools/
$ git-clone git://git.infradead.org/mtd-utils
Initialized empty Git repository in /tmp/mtd-utils/.git/
remote: Counting objects: 1838, done.
remote: Compressing objects: 100% (554/554), done.
remote: Total 1838 (delta 1254), reused 1828 (delta 1244)
Receiving objects: 100% (1838/1838), 809.16 KiB | 80 KiB/s, done.
Resolving deltas: 100% (1254/1254), done.
$ cd mtd-utils

The MTD utilities do not use autoconf; you simply use the provided Makefile to build
them:

$ make
To build the mkfs.jffs2 utility you will need to have the development packages for libacl,
Izo, and zlib installed. If you don’t need to build JFFS2 images, you can edit the Make
file and remove mkfs.jffs2 from the RAWTARGETS variable.
With the utilities built, you can now install them in your tools directory:

$ make DESTDIR=${PREFIX} install
This will install the utilities in ${PREFIX}/usr/sbin. You will need to add this directory
to your path if it’s not already part of it. See the earlier explanation in Chapter 4 about

installing uClibc’s utilities for a complete description of how to add a new directory to
your development path.

If your MTD devices are accessible on the host because you are using the removable
storage setup or the standalone setup we discussed in Chapter 2, you are ready to
manipulate your MTD devices immediately. If you are using the linked setup or want

MTD-Supported Devices | 217

git://git.infradead.org/mtd-utils.git
http://git.infradead.org/mtd-utils.git
ftp://ftp.infradead.org/pub/mtd-utils

to use the MTD utilities on your target in a removable storage setup, read the next
section for instructions on how to build the MTD utilities for your target.

Installing the MTD utilities for the target

To install the MTD utilities for your target, you need to first download and install zlib,
Izo, and libacl in the sys-root of your cross-compiler. Although you will need to build
libz and liblz02, you need only the Zlib from http://www.gzip.org/zlib, LZO from http://
www.oberhumer.com/opensource/lzo, and libacl from http://oss.sgi.com/projects/xfs.
You need to build libz and liblzo, but we need only the <sys/acl.h> header file from
libacl.

Download the zlib tarball and extract it in your ${PRJROOT}/build-tools directory. You
can then move to the library’s directory to prepare its compilation:
$ cd ${PRIROOT}/build-tools/z1ib-1.2.3

$ €C=i386-linux-gcc LDSHARED="1386-1inux-1d -shared" \
> ./configure --shared

By default, the zlib build process generates a static library. To build zlib as a shared
library, you must set the LDSHARED variable and provide the - -shared option when in-
voking configure. With the Makefile created, you can compile and install the library:

$ make
$ make prefix=${TARGET_PREFIX} install

As with the other target libraries we installed earlier, we install zlib in ${TARGET_PRE
FIX}/lib. Once the library is installed, you can install it on your target’s root filesystem:

$ cd ${TARGET_PREFIX}/lib
$ cp -d libz.so* ${PRIROOT}/rootfs/lib

Next, build Izo in a similar fashion:

$ cd ${PRIR0OOT}/build-tools/1zo0-2.03

$ €C=i386-linux-gcc ./configure --enable-shared

$ make

$ make prefix=${TARGET_PREFIX} install

$ cp -d ${TARGET_PREFIX}/lib/liblzo.so* ${PRIROOT}/rootfs/lib

Finally, extract the libacl tarball and simply copy its acl.h in place:

$ tar xfz acl_2.2.47-1.tar.gz
$ cp acl-2.2.47/include/acl.h ${TARGET_PREFIX}/usr/include/sys

As before, if you don’t need to build mkfs.jffs2, you can simply edit the Makefile and
remove it from the RAWTARGETS variable.

You are now ready to build the MTD utilities. Download the MTD snapshot into your
${PRJROOT}/sysapps and extract it, or use git to clone it there. Now move into the
utilities directory and build the tools:

$ cd ${PRIROOT}/sysapps/mtd-utils*
$ make CROSS=1386-1inux-

218 | Chapter7: Storage Device Manipulation

http://www.gzip.org/zlib
http://www.oberhumer.com/opensource/lzo
http://www.oberhumer.com/opensource/lzo
http://oss.sgi.com/projects/xfs

With the utilities built, you can now install them in your target’s root filesystem:
$ make DESTDIR=${PRIROOT}/rootfs install
This will install the utilities in ${PRJROOT}/rootfs/sbin. Unless your target is using

udev, you will also need to create appropriate device nodes. We will see in the following
sections how to create just the devices needed on the target’s root filesystem.

How NOR and NAND Flash Work

Flash devices, including NOR flash devices such as CFI flash chips and NAND flash
devices such as the DiskOnChip, are not like disk storage devices. They cannot be
written to and read from arbitrarily. To understand how to operate flash chips properly,
we must first look at how they operate internally. Flash devices are generally divided
into erase blocks. Initially, an empty block will have all its bits set to 1. Writing to this
block amounts to clearing bits to 0. Once all the bits in a block are cleared (set to 0),
the only possible way to erase this block is to set all of its bits to 1 simultaneously. With
NOR flash devices, bits can be set to 0 individually in an erase block until the entire
block is full of 0s. NAND flash devices, on the other hand, have their erase blocks
divided further into pages, typically of 512 bytes, which can be written only to a certain
number of times—typically fewer than 10 times—before their content becomes unde-
fined. Pages can then only be reused once the blocks they are part of are erased in their
entirety. Newer NAND flash chips known as MLC or Multi Level Cell flash reduce the
number of writes per page to only one.

Native CFl Flash

Most recent small- to medium-size non-x86 embedded Linux systems are equipped
with some form of CFI flash. Setting up CFI flash to be used with Linux is relatively
easy. In this section, we will discuss the setup and manipulation of CFI devices in Linux.
We will not discuss the use of filesystems on such devices, however, since these will be
covered in the next chapter. The order of the subsections follows the actual steps
involved in using CFI flash devices with Linux as much as possible. You can, never-
theless, use these instructions selectively according to your current manipulation.

Kernel configuration
You will need to enable kernel support for the following options to use your CFI flash
device:

* MTD support

* MTD partitioning support if you would like to partition your flash device

* Direct char device access to MTD devices

* Caching block device access to MTD devices

* In the “RAM/ROM/Flash chip drivers” submenu, detect flash chips by CFI probe

MTD-Supported Devices | 219

* In the “Mapping drivers for chip access” submenu, the CFI flash device-mapping
driver for your particular board

You may also choose to enable other options, but these are the bare minimum. Also,

remember to set the options to “y” instead of “m” if you intend to have the kernel
mount its root filesystem from the CFI device.

Partitioning

Unlike disk devices (or those that pretend to be a disk, such as a DiskOnChip using
NFTL), CFI flash cannot be partitioned using tools such as fdisk or pdisk. Those tools
are for block devices only. Instead, partition information is often hardcoded in the
mapping driver, or the board’s device tree, and registered with the MTD subsystem
during the driver’s initialization. In this case, the actual device does not contain any
partition information whatsoever. You will, therefore, have to edit the mapping driver’s
C source code or its OpenFirmware device tree to modify the partitions.

Take TQMS8xxL PPC boards, for instance. Such boards can contain up to two 4 MiB
flash banks. Each 32-bit-wide memory-addressable flash bank is made of two 16-bit-
wide flash chips. To define the partitions on these boards, the boards’ mapping driver
contains the following structure initializations:

static struct mtd _partition tqm8xxl partitions[] = {

{
name: "ppcboot", /* PPCBoot Firmware */
offset: 0x00000000,
size: 0x00040000, /* 256 KiB */
b
{
name: "kernel", /* default kernel image */
offset: 0x00040000,
size: 0x000C0000,
b
{ n "
name: user",
offset: 0x00100000,
size: 0x00100000,
b
{
name: "initrd",
offset: 0x00200000,
size: 0x00200000,
}
I
static struct mtd_partition tqm8xxl_fs partitions[] = {
{
name: “cramfs",
offset: 0x00000000,
size: 0x00200000,
b
{

220 | Chapter7: Storage Device Manipulation

name: "jffs2",
offset: 0x00200000,
size: 0x00200000,

}
};
In this case, tqm8xx1 partitions defines four partitions for the first 4 MiB flash bank,
and tqm8xx1 fs partitions defines two partitions for the second 4 MiB flash bank.
Three attributes are defined for each partition: name, offset, and size.

A partition’s name is an arbitrary string meant only to facilitate human usability. Neither
the MTD subsystem nor the MTD utilities uses this name to enforce any sort of struc-
ture on said partition, although it can be used to mount MTD-based filesystems (such
as JFFS2) by name, as we saw earlier in this chapter.

The offset is used to provide the MTD subsystem with the start address of the partition,
while the size is self-explanatory. Notice that each partition on a device starts where
the previous one ended; no padding is necessary. Table 7-3 presents the actual physical
memory address ranges for these partitions on a TQM860L board where the two 4 MiB
banks are mapped consecutively starting at address 0x40000000.

Table 7-3. Flash device partition physical memory mapping for TQM860L board

Device Startaddress Endaddress Partition name

0 0x40000000 0x40040000 ppcboot
0 0x40040000 0x40100000 kernel

0 0x40100000 0x40200000 user

0 0x40200000 0x40400000 initrd

1 0x40400000 0x40600000 cramfs
1 0x40600000 0x40800000 jffs2

During the registration of this device’s mapping, the kernel displays the following
message:

TQM flash bank 0: Using static image partition definition
Creating 4 MTD partitions on "TQM8xxL Bank 0":
0x00000000-0x00040000 : "ppcboot”

0x00040000-0x00100000 : "kernel"

0x00100000-0x00200000 : "user"

0x00200000-0x00400000 : "initrd"

TQM flash bank 1: Using static filesystem partition definition
Creating 2 MTD partitions on "TQM8xxL Bank 1":
0x00000000-0x00200000 : "cramfs"

0x00200000-0x00400000 : "jffs2"

You can also see the partitions by looking at /proc/mtd. Here is its content for my control
module:

cat /proc/mtd
dev: size erasesize name

MTD-Supported Devices | 221

mtdo: 00040000 00020000 "ppcboot”
mtd1: 000c0000 00020000 "kernel"
mtd2: 00100000 00020000 "user"
mtd3: 00200000 00020000 "initrd"
mtd4: 00200000 00020000 "cramfs"
mtd5: 00200000 00020000 "jffs2"

Notice that the partitions are on erase size boundaries. Because flash chips are erased
by block, not by byte, the size of the erase blocks must be taken into account when
creating partitions. In this case, erase blocks are 128 KB in size, and all partitions are
aligned on 128 KB (0x20000) boundaries.

Some types of boot firmware, such as RedBoot, AFS, and TI AR7, do store information
on the flash itself about how it is divided into separate images or regions. When ap-
propriately configured, the MTD subsystem is capable of interpreting such information
to provide an automatic partition of the flash.

As you see, the concept of MTD partitioning is not exposed to user space in the same
way that partitioning on block devices is. The separate partitions of a single flash chip
appear to user space as entirely separate MTD devices (mtd0, mtdl, etc.).

Another Way to Provide MTD Partition Information

For some time now, the MTD subsystem has been able to accept partition information
as part of the kernel boot options. The iPAQ’s Familiar distribution uses this capability
to provide the iPAQ’s kernel with the partition information for the device’s CFI flash
chips.

Here is an example boot option line used to provide the kernel with the same partition
information provided in the previous section for the TQM8xxL board (it must be writ-
ten as a single line):

mtdparts=0:256k(ppcboot)ro, 768k (kernel),im(user),-(initrd);1:2m(cramfs),-(jffs2)

Required /dev entries

You need to create /dev entries for the MTD character devices, and potentially also for
the block device MTD user modules, to access your CFI flash device. Create as many
entries for each type of user module as you have partitions on your device. For example,
the following commands create root filesystem entries for the six partitions of my
TQMS860L board:

$ cd ${PRIROOT}/rootfs/dev

$ su -m

Password:

for i in $(seq 0 5)

> do

> mknod mtd$i c 90 $(expr $i + $i)
> mknod mtdblock$i b 31 $i

> done

exit

222 | Chapter7: Storage Device Manipulation

Here are the resulting entries:

$ 1s -al mtd*

CIW-TW-T-- 1 root root 90, 0 Aug 23 17:19 mtdo
CIW-TW-T-- 1 root root 90, 2 Aug 23 17:20 mtd1
CIW-TW-T-- 1 root root 90, 4 Aug 23 17:20 mtd2
CIW-TW-T-- 1 root root 90, 6 Aug 23 17:20 mtd3
CIW-TW-T-- 1 root root 90, 8 Aug 23 17:20 mtd4
CIW-TW-T-- 1 root root 90, 10 Aug 23 17:20 mtds
brw-rw-r-- 1 root root 31, 0 Aug 23 17:17 mtdblocko
brw-rw-r-- 1 root root 31, 1 Aug 23 17:17 mtdblock1
brw-rw-r-- 1 root root 31, 2 Aug 23 17:17 mtdblock2
brw-rw-r-- 1 root root 31, 3 Aug 23 17:17 mtdblock3
brw-rw-r-- 1 root root 31, 4 Aug 23 17:17 mtdblock4
brw-rw-r-- 1 root root 31, 5 Aug 23 17:17 mtdblocks

Erasing

Before you can write to a CFI flash device, you need to erase its content. You can do
this with one of the two erase commands available as part of the MTD utilities,
flash_erase and flash_eraseall.

Before updating the initial RAM disk on my control module, for example, I need to
erase the “initrd” partition:

eraseall /dev/mtd3
Erased 2048 Kibyte @ 0 -- 100% complete.

Writing and reading

Whereas flash filesystems such as JFFS2 take advantage of their capability to continue
clearing bits to 0 in an erase block to allow transparent read and write access, you
cannot usually use user-level tools to write to an MTD device more than once. This is
mostly because the tools usually will want to replace an image wholesale, and thus
would want to set some bits from 0 to 1, which is not possible with erasing. If you want
to update the content of an MTD device or partition using its raw char /dev entry, for
example, you generally must erase this device or partition before you can write new
data to it.

Although writing to a raw flash device can be done using traditional filesystem com-
mands such as cat and dd, it is better to use the MTD utilities—flashcp for NOR flash
and nandwrite for NAND—because they are more suited to the task. The flashcp com-
mand will erase flash before writing, and will read back the contents afterward to verify
correct programming. The nandwrite command will detect bad blocks on a NAND
flash device, and skip over them as appropriate. To write a new initial RAM disk image
to the “initrd” partition on my control module, for example, I use the following
command:

flashcp /tmp/initrd.bin /dev/mtd3

MTD-Supported Devices | 223

In this case, my target’s root filesystem is mounted via NFS, and I am running the MTD
commands on my target.

Reading from a CFI MTD partition is no different from reading from any other device.
The following command on my control module, for instance, will copy the binary image
of the bootloader partition to a file:

dd if=/dev/mtdo of=/tmp/ppcboot.img

Since the bootloader image itself may not fill the entire partition, the ppcboot.img file
may contain some extra unrelated data in addition to the bootloader image.

DiskOnChip

DiskOnChip devices used to be quite popular in x86-based embedded Linux systems,
and the MTD subsystem goes a long way in providing support for them. I use it, for
example, in my DAQ module. It remains that the DiskOnChip is a peculiar beast that
requires an attentive master. The reasons for such a statement will become evident
shortly.

The DiskOnChip is simply a NAND flash device with a clever ASIC that performs ECC
calculations in hardware. On that NAND flash, we use a special “translation layer”
called NFTL, which works as a kind of pseudofilesystem that is used to emulate a
normal hard drive. The underlying raw flash device is exposed as /dev/mtdN devices,
while the emulated disk is exposed as /dev/nftiX. It is this dichotomy that often causes
confusion.

Like all NAND flash devices, DiskOnChip devices can contain a certain number of
manufacturing defects that result in bad blocks. Before a DiskOnChip is shipped from
the factory, a Bad Block Table (BBT) is written on it. Although this table is not write-
protected, it is essential to the operation of all software that reads and writes to the
device. As such, M-Systems’s DiskOnChip software is capable of reading this table and
storing it to a file. Linux should manage to preserve this table, but the tools are not
particularly well tested.

There are two ways to install a bootloader on the DiskOnChip (DOC) and format it
for NFTL. The first, which is most recommended by the MTD maintainer because it
is guaranteed to preserve the Bad Block Table, is to use M-Systems’s dformat DOS
utility. The second, which gives you the greatest degree of control over your DOC device
from within Linux, is to use the doc_loadbios and nftl_format MTD utilities.

M-Systems’s DOS DOC tools and related documentation used to be available from the
company’s website at http://www.m-sys.com. However, Sandisk bought M-Systems,
and the website now redirects to the parent company. I have been unable to find the
DiskOnChip tools on the new site.

When experimenting with a DiskOnChip, it is useful to save the Bad Block Table before
you manage to destroy it. You can do this using the DOS dformat tool:

224 | Chapter7: Storage Device Manipulation

http://www.m-sys.com

A:\>dformat /win:do00 /noformat /log:docbbt.txt
DFORMAT Version 5.1.0.25 for DOS
Copyright (C) M-Systems, 1992-2002

DiskOnChip 2000 found in 0xd0000.
32M media, 16K unit

0K

The dformat command is usually used to format the DOC for use with DOS. In this
case, we use the /noformat option to instruct dformat not to format the device. In ad-
dition, we instruct it to record the BBT of the device starting at segment 0xD000T to
the docbbt.txt file. Once dformat finishes retrieving the BBT, store a copy of
docbbt.txt in a safe repository, since you may have to restore it if you erase the entire
DOC device in Linux. Have a look at the M-Systems dformat documentation for in-
formation on how to restore a lost BBT.

Note that your DOC device may be free of bad blocks. In that case, the docbbt.txt will
be empty and you will not need to worry about restoring the BBT if you erase the device
completely.

Kernel configuration

You will need to enable kernel support for the following options to use your
DiskOnChip device:

¢ MTD support

* MTD partitioning support if you would like to partition your flash device

* Direct char device access to MTD devices

* NAFT (NAND Flash Translation Layer) support

* Write support for NFTL (BETA)

* NAND Device Support

e DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)

(EXPERIMENTAL)

Although the DiskOnChip devices used to have a dedicated driver, we now make use
of the generic NAND flash infrastructure for DiskOnChip. It is even possible to use
JFES2 on the DiskOnChip instead of NFTL, although it is harder to boot from it that
way.

As with CFI flash, you may choose to select other options. If you compile the options
just listed as modules, the DiskOnChip support will require a number of modules.
Issuing a modprobe diskonchip command should load all necessary modules

T “Real-mode” addresses on the PC are represented using a segment and offset couple in the following way:
segment:offset. It’s usually shorter to provide just the segment whenever the offset is null. In this case, for
example, segment 0xD000 starts at address 0xD000O, as is displayed by dformat in its output.

MTD-Supported Devices | 225

automatically. Whether it is part of the kernel or loaded as a module, the DiskOnChip
driver will probe all potential memory addresses for DOC devices. Here is an example
of output from the driver on my DAQ module:

DiskOnChip found at 0xdoooo

DiskOnChip 2000 responds to DWORD access

NAND device: Manufacturer ID: 0x98, Chip ID: 0x73 (Toshiba NAND 16MiB 3,3V 8-bit)
Found DiskOnChip ANAND Media Header at 0x10000
Found DiskOnChip ANAND Media Header at 0x18000

The M-Systems DOC Driver

M-Systems provides a DOC driver for Linux as part of its Linux tools packages. This
driver, however, is not under the GPL, and you can use it only as a loadable kernel
module. Distributing a kernel with this driver built-in, or any combined or collective
work comprised of both this module and a Linux kernel, is a violation of the GPL.
Hence, if you want to boot from a DOC with a kernel that uses the M-Systems driver,
you need to use an init RAM disk to load the binary driver and ship it separately from
the kernel. Also, postings on the MTD mailing list suggest that the driver uses a lot of
system resources and can sometimes cause data loss on the serial port. For these rea-
sons, I recommend that you avoid using the M-Systems Linux DOC driver. Instead,
use the GPL MTD drivers, as I describe here.

Required /dev entries

You need to create /dev entries for the char device and the NFTL MTD user modules
in order to access your DOC device. Create as many char device entries and sets of
NFTL entries as you have DOC devices in your system. For each NFTL set, create as
many entries as you will create partitions on your device. For my DAQ module, for
instance, I have one DOC device with only one main partition. I use the following

commands to create the relevant entries:

$ cd ${PRIROOT}/rootfs/dev
$ su -m

Password:

mknod mtdo c 90 0

mknod nftla b 93 0

mknod nftlai b 93 1

exit

Here are the resulting entries:
$ 1s -al mtd* nftl*

CIW-TW-T-- 1 root root 90,

brw-rw-r-- 1 root root 93,

brw-rw-r-- 1 root root 93,
Erasing

0 Aug 29 12:48 mtdo
0 Aug 29 12:48 nftla
1 Aug 29 12:48 nftlal

Erasing a DOC device is done in very much the same way as other MTD devices, using
the erase and eraseall commands. Before using any such command on a DOC device,

226 | Chapter7: Storage Device Manipulation

make sure you have a copy of the BBT, because an erase of the device will wipe out the
BBT it contains.

To erase the entire DOC device in my DAQ modules, for instance, I use the following
command on my DAQ module:

eraseall /dev/mtdo
Erased 32768 Kibyte @ 0 -- 100% complete.

Typically, you will need to erase a DOC device only if you want to erase the bootloader
and the current format on the device. If you installed a Linux bootloader, for example,
and would like to revert back to an M-Systems SPL, you will need to use the eraseall
command before you can install the M-Systems SPL with M-Systems tools. Whenever
you erase the entire device, however, you need to use the M-Systems tools to restore
the BBT.

Installing bootloader image

If your target does not boot from its DOC device, you can skip this step. Otherwise,
you need to build the bootloader, described in Chapter 9, before going any further. But
first, let’s see how a system boots from the DOC.

During system startup on x86 systems, the BIOS scans the memory for BIOS extensions.
When such an extension is found, it is executed by the BIOS. DOC devices contain a
ROM program called the Initial Program Loader (IPL) that takes advantage of this
characteristic to install another program called the Secondary Program Loader (SPL),
which acts as a bootloader during system startup. By default, the SPL is provided by
M-Systems’ own firmware. To boot Linux from a DOC device, however, the SPL must
be replaced with a bootloader able to recognize the format used by Linux on a DOC.
We will discuss the various DOC-capable Linux bootloaders in Chapter 9. For now,
let us take a look at how we can install our own SPL on a DOC.

Here is the command I use to install the GRUB bootloader image, grub_firmware, on
the DOC in Linux:

doc_loadbios /dev/mtdo grub_firmware

Performing Flash Erase of length 16384 at offset 0
Performing Flash Erase of length 16384 at offset 16384
Performing Flash Erase of length 16384 at offset 32768
Performing Flash Erase of length 16384 at offset 49152
Performing Flash Erase of length 16384 at offset 65536
Performing Flash Erase of length 16384 at offset 81920
Writing the firmware of length 92752 at 0... Done.

Here is the command I use to install the GRUB bootloader image on the DOC in DOS:

A:\>dformat /win:dooo /bdkfo:grub_firmware

DFORMAT Version 5.1.0.25 for DOS

Copyright (C) M-Systems, 1992-2002

WARNING: All data on DiskOnChip will be destroyed. Continue ? (Y/N)y

DiskOnChip 2000 found in 0xd0000.

MTD-Supported Devices | 227

32M media, 16K unit

Formatting 2042
Writing file to BDK 0 92752
0K

Please reboot to let DiskOnChip install itself.

As with updating the firmware version earlier, you need to power cycle your system
after using doc_loadbios or dformat for the firmware to be installed properly. That said,
do not use doc_loadbios or dformat before reading the explanations in Chapter 9 per-
taining to its use with a bootloader.

NFTL formatting

Currently, the only way to use DOC devices in Linux is to format them for NFTL. Once
we format a DOC device for NFTL, we can use conventional block device tools and
filesystems in conjunction with the device.

If you would like to boot from the DOC, read the sections in Chapter 9 regarding x86
bootloaders before carrying out any further operations on your DOC.

If you used the dformat utility earlier to install GRUB on the DOC, your DOC is already
formatted for NFTL. If you used doc_loadbios in Linux, you must use the nftl_format
command to format the device for NFTL.

The following MTD command formats the entire DOC device for NFTL:

nftl_format /dev/mtdo

$Id: cho7.xml,v 1.5 2004/04/16 20:29:01 chodacki Exp $

Phase 1. Checking and erasing Erase Zones from 0x00000000 to 0x02000000
Checking Zone #2047 @ ox1ffc000

Phase 2.a Writing NFTL Media Header and Bad Unit Table

Phase 2.b Writing Spare NFTL Media Header and Spare Bad Unit Table

Phase 3. Writing Unit Control Information to each Erase Unit

This command takes some time to go through the various zones on the DOC. If
nftl_format encounter bad blocks on the DOC, it outputs the following message:
Skipping bad zone (factory marked) #BLOCK NUM @ OXADDRESS

The BLOCK_NUM and ADDR values output by nftl_format should match the values found
in the docbbt.txt file generated earlier.

A Word of Caution on Flash Translation Layers and Formatting

For the nftl_format command to operate properly, it needs to have total control and
exclusive access over the raw DOC device it is formatting. Total control is guaranteed
by the fact that the commands provided earlier use the /dev/mtdX device entries. Because
these entries are handled by the char device MTD user module, there is no conversion
layer between the operations conducted on these devices and the actual hardware.
Hence, any operation carried out by nftl_format has a direct effect on the hardware.

228 | Chapter7: Storage Device Manipulation

Exclusive access to the raw DOC device is a little trickier, however, because of the NFTL
driver. Basically, once the NFTL driver recognizes a DOC device, it assumes that it has
total control over the device. Consequently, no other software, including nftl_format,
should attempt to manipulate a DOC device while the NFTL driver controls it. There
are a few ways to avoid this type of conflict, depending on the configuration of the
kernel you are using.

If the NFTL driver was configured as a module, unload the module before running
nftl_format. You can reload it once nftl_format is done formatting the device. If the
NFTL driver was built-in, you can either use another kernel or build one, if need be,
that doesn’t have the NFTL driver built-in. If you want to continue to use the same
kernel that has the NFTL driver built-in, you can use the eraseall command to erase
the device entirely. The next time you restart your system after the erase, the built-in
NFTL driver will not recognize the DOC and therefore will not interfere with the op-
erations of nftl_format. Finally, if you are carrying out these instructions for the first
time, because the NFTL driver should not be able to recognize any format on the DOC
device at this stage, it should not cause any problems.

If you have installed a Linux bootloader on the DOC using doc_loadbios, you need to
skip the region where the bootloader was written and start formatting at its end. To do
so, you need to provide an offset to nftl_format. Here is the command I use to format
my DOC for NFTL in the case where I had already installed GRUB as the SPL:

nftl_format /dev/mtdo 98304

$Id: cho7.xml,v 1.5 2004/04/16 20:29:01 chodacki Exp $

Phase 1. Checking and erasing Erase Zones from 0x00018000 to 0x02000000

Checking Zone #