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Choose a random permutation 7 sl e

Claim: Pr[h_(C,) = h_(C,)] = sim(C,, C,) O |O

Why? o |1
Let X be a doc (set of shingles), ye X is a shingle 1 | o
Then: Pr[r(y) = min(x(X))] = 1/| X|

It is equally likely that any ye X is mapped to the min element
Let y be s.t. Qy) = min( 3C, %a,))
Then either:  Jy) =min( §C,)) ify ¢ C;,0or  One of the two

cols had to have

?py) = min( $C2)) ify ¢ Cz 1 at position y
So the prob. that both are true is the prob.y « C, ~ C,
Pr[min(n(C,))=min(n(C,))]=|C,NC,|/]|C,UC, | = sim(C,, C;)
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Four Types of Rows

Given cols C, and C,, rows may be classified as:

gl C2
A1 1
B 1 0O
c o0 1
D 0 O

a = # rows of type A, etc.
Note: sim(C,, C,) = a/(a +b +c)
Then: Pr[h(C,) = h(C,)] =Sim(C,, C,)
Look down the cols C; and C, until we see a 1

If it’s a type-A row, then h(C,) = h(C,)
If a type-B or type-C row, then not
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Similarity for Signatures

We know: Pr[h_(C,) = h_(C,)] = sim(C,, C,)
Now generalize to multiple hash functions

The similarity of two signatures is the
fraction of the hash functions in which they
agree

Note: Because of the Min-Hash property, the
similarity of columns is the same as the
expected similarity of their signatures



Min-Hashing Example

Permutationt Input matrix (Shingles x Documents ] ]
P ( J ) Signature matrix M

1 0] 1 )

0] 1 0] 1 )

O |1 |0 |1 Similarities:

1-3  2-4 1-2 3-4
i 10 11 10 Col/Col| 0.75 0.75 0 o©

1 lo |1 lo Sig/Sig| 0.67 1.00 0 ©
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Min-Hash Signatures

Pick K=100 random permutations of the rows

Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the

index of the first row that hasa 1 in column C
sig(C)[i] = min (7,(C))

Note: The sketch (signature) of document C is

small ~100 bytes!

We achieved our goal! We “compressed”
long bit vectors into short sighatures

ts, http://www.mmds.org



Implementation Trick

Permuting rows even once is prohibitive
Row hashing!

Pick K =100 hash functions k;

Ordering under k; gives a random row permutation!
One-pass implementation

For each column C and hash-func. k; keep a “slot” for
the min-hash value

Initialize all sig(C)[i] = «©

How to pick a random

Scan rows looking for 1s hash function h(x)?
Universal hashing:
Suppose row j has 1in column C h, ,(x)=((a-x+b) mod p) mod N
where:
Then for each ki' a,b ... random integers

If ki(j) < sig(C)[i], then sig(C)[i] < k(j) p ... prime number (p > N)
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Locality-
Sensitive
Hashing

those pairs
of signatures
that we need
to test for

The set similarity
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their
similarity

Locality Sensitive Hashing

Step 3:
Focus on pairs of signatures likely to be from
similar documents




LSH: First Cut -

Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

LSH — General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

For Min-Hash matrices:
Hash columns of signature matrix M to many buckets

Each pair of documents that hashes into the
same bucket is a candidate pair
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Candidates from Min-Hash

Pick a similarity threshold s (0 <s < 1)

Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of

their rows:
M (i, x) = M (i, y) for at least frac. s values of i

We expect documents x and y to have the same
(Jaccard) similarity as their signatures
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LSH for Min-Hash 4

Big idea: Hash columns of
signature matrix M several times

Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

Candidate pairs are those that hash to
the same bucket
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Partition M into b Bands

r rows
per band

b bands

One
signature

Signature matrix M
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Partition M into Bands

Divide matrix M into b bands of r rows

For each band, hash its portion of each
column to a hash table with k buckets

Make k as large as possible

Candidate column pairs are those that hash
to the same bucket for = 1 band

Tune b and r to catch most similar pairs,
but few non-similar pairs
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