






 Choose a random permutation 
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 
 Why?
 Let X be a doc (set of shingles), y X is a shingle
 Then: Pr[(y) = min((X))] = 1/|X|
 It is equally likely that any y X is mapped to the min element

 Let y be s.t. �S(y) = min(�S(C1�‰C2))
 Then either: �S(y) = min(�S(C1))  if y �• C1 , or

�S(y) = min(�S(C2))  if y �• C2

 So the prob. that both are true is the prob. y �• C1 �ˆ C2

 Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 
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One of the two
cols had to have
1 at position y



 Given cols C1 and C2, rows may be classified as:
C1 C2

A 1 1
B 1 0
C 0 1
D 0 0

 a = # rows of type A, etc.
 Note: sim(C1, C2) = a/(a +b +c)
 Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 
 Look down the cols C1 and C2 until we see a 1
 If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
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 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

 Note: Because of the Min-Hash property, the 
similarity of columns is the same as the 
expected similarity of their signatures
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

Signature matrix M
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0101
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Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 



 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C
sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is 
small  ~ bytes!

 We achieved our goal! We “compressed” 
long bit vectors into short signatures
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 Permuting rows even once is prohibitive
 Row hashing!
 Pick K = 100 hash functions ki

 Ordering under ki gives a random row permutation!
 One-pass implementation
 For each column C and hash-func. ki keep a “slot” for 

the min-hash value
 Initialize all sig(C)[i] = 
 Scan rows looking for 1s
 Suppose row j has 1 in column C
 Then for each ki :
 If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)
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How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)



Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity



 Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

 For Min-Hash matrices: 
 Hash columns of signature matrix M to many buckets
 Each pair of documents that hashes into the 

same bucket is a candidate pair
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 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i
 We expect documents x and y to have the same 

(Jaccard) similarity as their signatures
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 Big idea: Hash columns of 
signature matrix M several times

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

 Candidate pairs are those that hash to 
the same bucket
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Signature matrix  M

r rows
per band

b bands

One
signature

1212

1412

2121



 Divide matrix M into b bands of r rows

 For each band, hash its portion of each 
column to a hash table with k buckets
 Make k as large as possible

 Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs, 
but few non-similar pairs
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