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Preface

The last thirty or so years have been a time of enormous development
of analytic results for the linear model (LM). This has generated ex-
tensive publication of books and papers on the subject. Much of this
activity has focused on the normal distribution and homoscedasticity.
Even for unbalanced data, many useful, analytically tractable results
have become available. Those results center largely around analysis
of variance (ANOVA) procedures, and there is abundant computing
software which will, with wide reliability, compute those results from
submitted data.

Also within the realm of normal distributions, but permitting hetero-
geneity of variance, there has been considerable work on linear mixed
models (LMMs) wherein the variance structure is based on random ef-
fects and their variance components. Algebraic results in this context
are much more limited and complicated than with LMs. However, with
the advent of readily available computing power and the development
of broadly applicable computing procedures (e.g., the EM algorithm)
we are now at a point where models such as the LMM are available to
the practitioner. Furthermore, models that are nonlinear and incorpo-
rate non-normal distributions are now feasible. It is to understanding
these models and appreciating the available computing procedures that
this book is directed.

We begin by reviewing the basics of LMs and LMMs, to serve as
a starting point for proceeding to generalized linear models (GLMs),
generalized linear mixed models (GLMMs) and some nonlinear models.
All of these are encompassed within the title "Generalized, Linear, and
Mixed Models."

The progress from easy to difficult models (e.g. from LMs to GLMMs)
necessitates a certain repetition of basic analysis methods, but this is
appropriate because the book deals with a variety of models and the
application to them of standard statistical methods. For example, max-

xix



xx PREFACE

iimim likelihood (ML) is used in almost every chapter, on models that
get progressively more difficult as the book progresses. There is, in-
deed, purposeful concentration on ML and, very noticeably, an (almost
complete) absence of analysis of variance (ANOVA) tables.

Although analysis of variance methods are quite natural for fixed
effects linear models with normal distributions, even in the case of linear
mixed models with normal distributions they have much less appeal.
For example, with unbalanced data from mixed models, it is not clear
what the "appropriate" ANOVA table should be. Furthermore, from a
theoretical viewpoint, any such table represents an over-summarization
of data: except in special cases, it does not contain sufficient statistics
and therefore engenders a loss of information and efficiency. And these
deficiencies are aggravated if one tries to generalize analysis of variance
to models based on non-normal distributions such as, for example, the
Poisson or binomial. To deal with these we therefore concentrate on
ML procedures.

Although ML estimation under non-normality is limited in yielding
analytic results, we feel that its generality and efficiency (at least with
large samples) make it a natural method to use in today's world. To-
day's computing environment compensates for the analytic intractabil-
ity of ML and helps makes ML more palatable.

As prelude to the application of ML to non-normal models we often
show details of using it on models where it yields easily interpreted
analytic results. The details are lengthy, but studying them engenders a
confidence in the ML method that hopefully carries over to non-normal
models. For these, the details are often not lengthy, because there are so
few of them (as a consequence of the model's inherent intractability)
and they yield few analytic results. The brevity of describing them
should not be taken as a lack of emphasis or importance, but merely as
a lack of neat, tidy results. It is a fact of modern statistical practice that
computing procedures are used to gain numerical information about the
underlying nature of algebraically intractable results. Our aim in this
book is to illuminate this situation.

The book is intended for graduate students and practicing statisti-
cians. We begin with a chapter in which we introduce the basic ideas of
fixed and random factors and mixed models and briefly discuss general
methods for the analysis of such models. Chapters 2 and 3 introduce
all the main ideas of the remainder of the book in two simple contexts
(one-way classifications and linear regression) with a minimum of em-



PREFACE xxi

phasis on generality of results and notation. These three chapters could
form the core of a quarter course or, with supplementation, the basis of
a semester-long course for Master's students. Alternatively, they could
be used to introduce generalized mixed models towards the end of a
linear models class.

Chapters 4, 5, 6 and 8 cover the main classes of models (linear,
generalized linear, linear mixed, and generalized linear mixed) in more
generality and breadth. Chapter 7 discusses some of the special fea-
tures of longitudinal data and shows how they can be accommodated
within LMMs. Chapter 9 presents the idea of prediction of realized val-
ues of random effects. This is an important distinction introduced by
considering models containing random effects. Chapter 10 covers com-
puting issues, one of the main barriers to adoption of mixed models
in practice. Lest the reader think that everything can be accommo-
dated under the rubric of the generalized linear mixed model, Chapter
11 briefly mentions nonlinear mixed models. And the book ends with
two short appendices, M and S, containing some pertinent results in
matrices and statistics.

For students with some training in linear models, the first 10 chap-
ters, with light emphasis on Chapters 1 through 4 and 6, could form a
"second" course extending their linear model knowledge to generalized
linear models. Of course, the book could also be used for a semester
long course on generalized mixed models, although in-depth coverage
of all of the topics would clearly be difficult.

Our emphasis throughout is on modeling and model development.
Thus we provide important information about the consequences of
model assumptions, techniques of model fitting and methods of in-
ference which will be required for data analysis, as opposed to data
analysis itself. However, to illustrate the concepts we do also include
analysis or illustration of the techniques for a variety of real data sets.

The chapters are quite variable in length, but all of them have sec-
tions, subsections and sub-subsections, each with its own title, as shown
in the Table of Contents. At times we have sacrificed the flow of the
narrative to make the book more accessible as a reference. For exam-
ple, Section 2.1d is basically a catalogue of results with titles that make
retrieval more straightforward, particularly because those titles are all
listed in the table of contents.

Ithaca, NY Charles E. McCulloch
September 2000 Shayle R. Searle
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Chapter 1

INTRODUCTION

1.1 MODELS

a. Linear models (LM) and linear mixed models (LMM)

In almost all uses of statistics, major interest centers on averages and
on variation about those averages. For more than sixty years this in-
terest has frequently manifested itself in the widespread use of analysis
of variance (ANOVA), as originally developed by R. A. Fisher. This
involves expressing an observation as a sum of a mean plus differences
between means, which, under certain circumstances, leads to methods
for making inferences about means or about the nature of variability.
The usually-quoted set of circumstances which permits this is that the
mean of each datum be taken as a linear combination of unknown pa-
rameters, considered as constants; and that the data be deemed to
have come from a normal distribution. Thus the linear requirement
is such that the expected value (i.e., mean), mij, of an observation yij

can be, for example, of the form mij = m + ai + bj where m, ai and
bj are unknown constants—unknown, but which we are interested in
estimating. And the normality requirement would be that yij is nor-
mally distributed with mean mij. These requirements are the essence
of what we call a linear model, or LM for short. By that we mean that
the model is linear in the parameters, so "linearity" also includes being
of the form mij = b0 + b1x1 i j + b2x

2
2ij, for example, where the xs are

known and there can be (and often are) more than two of them.
A variant of LMs is where parameters in an LM are treated not as

constants but as (realizations of) random variables. To denote this dif-
ferent meaning we represent parameters treated as random by Roman

1



2 CHAPTER 1. INTRODUCTION

rather than Greek letters. Thus if the as in the example were to be con-
sidered random, they would be denoted by as, so giving mij = m+ai+bj.
With the bs remaining as constants, mij is then a mixture of random
and constant terms. Correspondingly, the model (which is still linear)
is called a linear mixed model, or LMM. Until recently, most uses of
such models have involved treating random ais as having zero mean,
being homoscedastic (i.e., having equal variance) with variance s2

a and
being uncorrelated. Additionally, normality of the ais is usually also
invoked.

There are many books dealing at length with LMs and LMMs. We
name but a few: Graybill (1976), Seber (1977), Arnold (1981), Hocking
(1985), Searle (1997), and Searle et al. (1992).

b. Generalized models (GLMs and GLMMs)

The last twenty-five years or so have seen LMs and LMMs extended
to generalized linear models (GLMs) and to generalized linear mixed
models (GLMMs). The essence of this generalization is two-fold: one,
that data are not necessarily assumed to be normally distributed; and
two, that the mean is not necessarily taken as a linear combination
of parameters but that some function of the mean is. For example,
count data may follow a Poisson distribution, with mean A, say; and
log A will be taken as a linear combination of parameters. If all the
parameters are considered as fixed constants the model is a GLM; if
some are treated as random it is a GLMM.

The methodology for applying a GLM or a GLMM to data can be
quite different from that for an LM or LMM. Nevertheless, some of the
latter is indeed a basis for contributing to analysis procedures for GLMs
and GLMMs, and to that extent this book does describe some of the
procedures for LMs (Chapter 4) and LMMs (Chapter 6); Chapters 5
and 8 then deal, respectively, with GLMs and GLMMs. Chapters 2 and
3 provide details for the basic modeling of the one-way classification
and of regression, prior to the general cases dealt with later.

1.2 FACTORS, LEVELS, CELLS, EFFECTS AND DATA

We are often interested in attributing the variability that is evident
in data to the various categories, or classifications, of the data. For
example, in a study of basal cell epithelioma sites (akin to Abu-Libdeh
et al., 1990), patients might be classified by gender, age-group and
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Table 1.1: A Format for Summarizing Data

Gender

Male
Female

Low Exposure
to Sunshine
Age Group

A B C

High Exposure
to Sunshine
Age Group

A B C

Table 1.2: Summarizing Exam Grades

Gender

Male
Female

English
Section

A B C

Geology
Section

A B C

extent of exposure to sunshine. The various groups of data could be
summarized in a table such as Table 1.1.

The three classifications, gender, age, and exposure to sunshine,
which identify the source of each datum are called factors. The in-
dividual classes of a classification are the levels of a factor (e.g., male
and female are the two levels of the factor "gender"). The subset of
data occurring at the "intersection" of one level of every factor being
considered is said to be in a cell of the data. Thus with the three fac-
tors, gender (2 levels), age (3 levels) and sunshine (2 levels), there are
2 x 3 x 2 = 12 cells.

Suppose that we have student exam grades from each of three sec-
tions in English and geology courses. The data could be summarized
as in Table 1.2, similar to Table 1.1. Although the layout of Table 1.2
has the same appearance as Table 1.1, sections in Table 1.2 are very
different from the age groups of Table 1.1. In Table 1.2 section A of
English has no connection to (and will have different students from)
section A of geology; in the same way neither are sections B (or C)
the same in the two subjects. Thus the section factor is nested within
the subject factor. In contrast, in Table 1.1 the three age groups are
the same for both low and high exposures to sunshine. The age and
sunshine factors are said to be crossed.
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In classifying data in terms of factors and their levels, the feature
of interest is the extent to which different levels of a factor affect the
variable of interest. We refer to this as the effect of a level of a factor
on that variable. The effects of a factor are always one or other of
two kinds, as introduced in Section 1.1 in terms of parameters. First
is the case of parameters being considered as fixed constants or, as we
henceforth call them, fixed effects. These are the effects attributable to
a finite set of levels of a factor that occur in the data and which are
there because we are interested in them. In Table 1.1 the effects for all
three factors are fixed effects.

The second case corresponds to what we earlier described as parame-
ters being considered random, now to be called random effects. These
are attributable to a (usually) infinite set of levels of a factor, of which
only a random sample are deemed to occur in the data. For exam-
ple, four loaves of bread are taken from each of six batches of bread
baked at three different temperatures. Since there is definite interest
in the particular baking temperatures used, the statistical concern is to
estimate those temperature effects; they are fixed effects. No assump-
tion is made that the temperature effects are random. Indeed, even if
the temperatures themselves were chosen at random, it would not be
sensible to assume that the temperature effects were random. This is
because temperature is defined on a continuum and, for example, the
effect of a temperature of 450.11° is almost always likely to be a very
similar to the effect of a 405.12° temperature. This nullifies the idea of
temperature effects being random.

In contrast, batches are not defined on a continuum. They are real
objects, just as are people, or cows, or clinics and so, depending on the
circumstance, it can be perfectly reasonable to think of their effects as
being random. Moreover, we can do this even if the objects themselves
have not been chosen as a random sample—which, indeed, they seldom
are. So we assume that batch effects are random, and then interest in
them lies in estimating the variance of those effects. Thus data from
this experiment would be considered as having two sources of random
variation: batch variance and, as usual, error variance. These two
variances are known as variance components: for linear models their
sum is the variance of the variable being observed.

Models in which the only effects are fixed effects are called fixed
effects models, or sometimes just fixed models. And those having (apart
from a single, general mean common to all observations) only random
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Figure 1.1: Examples of Interaction and No Interaction.

effects are called random effects models or, more simply, random models.
Further examples and properties of fixed effects and of random effects
are given in Sections 1.3 and 1.4.

When there are several factors, the effect of the combination of two
or more of them is called an interaction effect. In contrast, the effect
of a single factor is called a main effect The concept of interaction is
as follows: If the change in the mean of the response variable between
two levels of factor A is the same for different levels of factor B, we say
that there is no interaction; but if that change is different for different
levels of B, we say that there is an interaction. Figure 1.1 illustrates
the two cases.

Details of the application of analysis of variance techniques to LMs
and LMMs depend in many cases on whether every cell (as defined
above) of the data has the same number of observations. If that is so
the data are said to be balanced data] if not, the data are unbalanced
data, in which case they are either all-cells-filled data (where every
cell contains data) or some-cells-empty data (where some cells have
no data). Implications of these descriptions are discussed at length in
Searle et al. (1992, Sec. 1.2).

1.3 FIXED EFFECTS MODELS

Fixed effects and random effects have been specified and described
in general terms. We now illustrate the nature of these effects using
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real-life examples and emphasizing the particular properties of random
effects.

a. Example 1: Placebo and a drug

A clinical trial of treating epileptics with the drug Progabide is de-
scribed in Diggle et al. (1994). We ignore the baseline period of the
experiment, and consider a response which is the number of seizures af-
ter patients were randomly allocated to either the placebo or the drug.
If yij is the number of seizures experienced by patient j receiving treat-
ment i (i = 1 for placebo and i = 2 for Progabide), a possible model
for yij could be based upon starting from the expected value

where mi is the mean number of seizures expected from someone re-
ceiving treatment i. If we wanted to write mi = m + ai we would then
have

where m is a general mean and ai is the effect on the number of seizures
due to treatment i.

In this modeling of the expected value of yij, each mi (or m, and each
ai) is considered as a fixed unknown constant, the magnitudes of which
we wish, in some general sense, to estimate; that is, we want to estimate
m1, m2, and m1 — m2. And having estimated that difference we would
want to test if it is less than zero (i.e., to test if the drug is reducing the
number of seizures). In doing this the mis (or the ais) correspond to
the two different treatments being used. They are the only two being
used, and in using them there is no thought for any other treatments.
This is the concept of fixed effects. We consider just the treatments
being used and no others, and so the effects are called fixed effects.

The manner in which data are obtained always affects inferences that
can be drawn from them. We therefore describe a sampling process
pertinent to this fixed effects model. The data are envisaged as being
one possible set of data involving these same two treatments that could
be derived from repetitions of the clinical trial, repetitions for which
a different sample of people receiving each treatment would be used.
This would lead on each occasion to a set of data that would be two
random samples, one from a population of possible data having mean
m1, and another from a population having m2.
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The all-important feature of fixed effects is that they are deemed to
be constants representing the effects on the response variable y of the
various levels of the factor concerned, in this case the two treatments,
placebo and drug. These treatments are the levels of the factor of
particular interest, chosen because of interest in those treatments in
the trial. But they could just as well be different fertilizers applied to
a corn crop, different forage crops grown in the same region, different
machines used in a manufacturing process, different drugs given for the
same illness, and so on. The possibilities are legion, as are the varieties
of models and their complexities. We offer two more brief examples.

b. Example 2: Comprehension of humor

A recent study (Churchill, 1995) of the comprehension of humor ("Did
you get it?") involved showing three types of cartoons (visual only,
linguistic only, and visual-linguistic combined) to two groups of adoles-
cents (normal and learning disabled). Motivated by this study, suppose
the adolescents record scores of 1 through 9, with 9 representing ex-
tremely funny and 1 representing not funny at all. Then with yij. being
the mean score from showing cartoon type i to people in group j, a
suitable start for a model for yij. could be

where p, is a general mean, cx.i is the effect on comprehension due to
cartoon type i (= 1, 2 or 3) and bj is the effect due to respondents
being in adolescent group j (= 1 or 2). Because each of the same three
cartoon types is shown to each of the two adolescent groups, this is
an example of two crossed factors, cartoon type and adolescent group.
Furthermore, since the three cartoon types and the two groups of peo-
ple have been chosen as the only types and groups being considered,
the ais and bjs are fixed effects corresponding to the three types and
two groups. They are the specific features of interest in this study,
and under no circumstances can they be deemed to have been cho-
sen randomly from a larger array of types and groups. Thus the ais
and bjs are fixed effects. This is just a simple extension of Example
1 which has one factor with two levels. In Example 2 there are two
factors: one, type of cartoon, with three levels, and another, group
of people, with two levels. After estimating effects for these levels we
might want to make inferences about the extent to which the visual -
linguistic cartoons were comprehended differently from the average of
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the visual and linguistic ones; and we would also want to test if the
learning-disabled adolescents differed in their cartoon comprehension
from the non-disabled adolescents. (In actual practice this study in-
volved 8 different cartoons within each type, and several people in each
group; these two factors, cartoon-within-type of cartoon, and people-
within-group, had also to be taken into account.)

c. Example 3: Four dose levels of a drug

Suppose we have a clinical trial in which a drug (e.g., Progabide of
Example 1) is administered at four different dose levels. For yij being
the datum for the jth person receiving dose i we could start with

This is just like (1.1), only where i — 1, 2, 3 or 4, corresponding
to the four dose levels. The mis (and ais) are fixed effects because
the four dose levels used in the clinical trial are the only dose levels
being studied. They are the doses on which our attention is fixed.
This is exactly like Example 1 which has only two fixed effects whereas
here there are four, one for each dose level. And after collecting the
data, interest will center on differences between dose levels in their
effectiveness in reducing seizures.

No matter how many factors there are, if they are all fixed effects
factors and the fixed effects are combined linearly as in (1.1), (1.2) and
(1.3), the model is called a fixed model; or, more generally just a linear
model (LM). And there can, of course, also be fixed effects in nonlinear
models.

1.4 RANDOM EFFECTS MODELS

a. Example 4: Clinics

Suppose that the clinical trial of Example 3 was conducted at 20 differ-
ent clinics in New York City. Consider just the patients receiving the
dose level numbered 1. The model equation for yij, which represents
the jth. patient at the ith clinic, could then be

with i = 1, 2, . . . , 20 for the 20 clinics. But now pause for a moment.
It is not unreasonable to think of those clinics (as do Chakravorti and
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Grizzle, 1975) as a random sample of clinics from some distribution of
clinics, perhaps all the clinics in New York City.

Note that (1.4) is essentially the same algebraically as (1.3), save
for having ai in place of ai. However, the underlying assumptions are
different. In (1.3) each ai is a fixed effect, the effect of dose level i on
the number of seizures; and dose level i is a pre-decided treatment of
interest. But in (1.4) each ai is the effect on number of seizures of the
observed patient having been in clinic i; and clinic i is just one clinic,
the one from among the randomly chosen clinics that happened to be
numbered i in the clinical trial. The clinics have been chosen randomly
with the object of treating them as a representation of the population
of all clinics in New York State, and inferences can and will be made
about that population. This is a characteristic of random effects: they
can be used as the basis for making inferences about populations from
which they have come. Thus ai is a random effect. As such, it is,
indeed, a random variable, and the data will be useful for making an
inference about the variance of those random variables; i.e., about the
magnitude of the variation among clinics; and for predicting which
clinic is likely to have the best reduction of seizures.

b. Notation

As indicated briefly in Section 1.1 we adopt a convention of m for a
general mean and, for purposes of distinction, Greek letters for fixed
effects and Roman for random effects. Thus for fixed effects equations
(1.1) and (1.3) have ai, and (1.2) has ai and bj; but (1.4) has ai for
random effects.

— i. Properties of random effects in LMMs

With the ais being treated as random variables, we must attribute
probabilistic properties to them. There are two that are customar-
ily employed; first, that all ais are independently and identically dis-
tributed (i.i.d.); second, that they have zero mean, and then, that they
all have the same variance, s2

a. We summarize this as

This means that
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and

There are, of course, properties other than these that could be used
such as the covariances of (1.8) being non-zero.

— ii. The notation of mathematical statistics

A second outcome of treating the ais as random variables is that we
must consider E[yij] = m + ai of (1.4) with more forethought, because
it is really a mean calculated conditional on the value of ai. To de-
scribe this situation carefully, we revert for a moment to the standard
mathematical statistics notation which uses capital letters for random
variables and lowercase letters for realized values. Since a random vari-
able appears on the right-hand side of (1.4) the more precise way of
writing (1.4) is

from which, when the realized value of Ai is not known, we write

In fact, of course, (1.10) is the basic result from which (1.9) is the
special case. And from (1.10) we get the standard result

because we are taking EA[Ai], which is the expectation of Ai over the
distribution of A, as being zero.

Note that assuming EA[Ai] = 0 involves no loss of generality to the
results (1.9), (1.10) or (1.11). This is because if instead of EA[Ai] = 0
we took EA[Ai] = t, say, then (1.11) would become

And then (1.10) would be

for A'i = Ai — t with EA[A'i] = t — t = 0; and so (1.10) is effectively
unaffected. Similarly, (1.9) would become
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which is (1.9) with m' and a'i in place of m and ai, respectively, and the
form of (1.10) and (1.11) is retained.

Finally, if there is interest in the particular level of the random effect
(e.g., in knowing how the ith clinic differs from the average) then we
will be interested in predicting the realized value ai. On the other
hand, if interest lies in the population from which Ai is drawn, we will
be interested in var(Ai) = s2

a.
Prom now on, for notational convenience, we judiciously ignore the

distinction between a random variable and its realized value and let ai
do double duty for both; likewise for yij.

— iii. Variance of y

Having defined var(ai) = s2
a, we now consider var(yij) by first consid-

ering the variation that remains in the data after accounting for the
random factors. If the data were normally distributed we would typi-
cally define a residual error yij — E[yij-|ai] and to it attribute a normal
distribution. Equivalently we could simply assert that

Either approach works perfectly well when assuming normality. But
for non-normal cases (1.12) is more sensible.

In Example 1 each yij is a count of the number of seizures. It is
therefore quite natural to think that yij should follow a Poisson model,
and assert that

In doing this the "residual" variation is encompassed in the condi-
tional distribution which in (1.13) is taken to be Poisson. If we tried to
attribute a distribution to the residual yij — E[yij|ai] it would be much
less natural since, e.g., yij — E[yij|ai] may not even take on integer
values. Thus we would have an awkward-to-deal-with distribution.

- iv. Variance and conditional expected values

To obtain var(y) we will often use the formula which relates variance
to conditional expected values in order to partition variability:
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For the case of the homoscedastic linear model (1.4) through (1.7), this
gives the usual components of variance breakdown:

A similar formula holds for covariances:

a derivation of which is to be found in Searle et al. (1992, p. 462).
Applying this to the homoscedastic linear model gives

Thus s2
a is the intra-class covariance, i.e., the covariance between every

pair of observations in the same class; and s2a/(s2a+s2) is the intra-class
correlation coefficient.

c. Example 5: Ball bearings and calipers

Consider the problem of manufacturing ball bearings to a specified
diameter that must be achieved with a high degree of accuracy. Suppose
that each of 100 ball bearings is measured with each of 20 micrometer
calipers, all of the same brand. Then a suitable model equation for
yij, the diameter of the ith ball bearing measured with the jth caliper,
could be

This is another example of two crossed factors as in Example 2, with
the same model equation as in (1.2) except that the symbols ai and bj
are used rather than ai and bj. But it is the equation of a different
model because ai and bj are random effects corresponding, respectively,
to the 100 ball bearings being considered as a random sample from the
production line, and to the 20 calipers that are being considered as a
random sample of calipers from some population of available calipers.
Hence in (1.18) each ai and bj is treated in the same manner as a*
is treated in Example 4, with the additional property of stochastic
independence of the ais and bjs; thus
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In this case, inferences of interest will be those concerning the mag-
nitudes of the variance among ball bearings and the variance among
calipers.

1.5 LINEAR MIXED MODELS (LMMs)

a. Example 6: Medications and clinics

Another example of two crossed factors is to suppose that all four dose
levels of Example 3 were used in all 20 clinics of Example 4, such that
in each clinic each patient was randomly assigned to one of the dose
levels. If y+jk is the datum for patient k on dose level j in clinic i, then
a suitable model equation for Eft/^] would be

where a;, /3j and c^ are effects due to clinic i, dose j and clinic-by-dose
interaction, respectively. Since, as before, the doses are the only doses
considered, /3j is a fixed effect. But the clinics that have been used
were chosen randomly, and so df is a random effect. Then, because
Cjj is an interaction between a fixed effect and a random effect, it is
a random effect, too. Thus the model equation (1.20) has a mixture
of both fixed effects, the /3jS, and random effects, the 0,8 and c^s. It
is thus called a mixed model. It incorporates problems relating to the
estimation of both fixed effects and variance components. Inferences of
interest will be those concerning the effectiveness of the different doses
and the variability (variance) among the clinics.

In application to real-life situations, mixed models have broader use
than random models, because so often it is appropriate (by the manner
in which data have been collected) to have both fixed effects and ran-
dom effects in the same model. Indeed, every model that contains a /^
is a mixed model, because it also contains unexplained variation, and
so automatically has a mixture of fixed effects and random elements.
In practice, however, the name mixed model is usually reserved for any
model having both fixed effects (other than /^) and random effects, as
well as the customary unexplained variation.

b. Example 7: Drying methods and fabrics

Devore and Peck (1993) report on a study for assessing the smooth-
ness of washed fabric after drying. Each of nine different fabrics were
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subjected to five methods of drying (line drying; line drying after brief
machine tumbling; line drying after tumbling with softener; line drying
with air movement; and machine drying). Clearly, method of drying
is a fixed effects factor. But how about fabric? If those nine fabrics
were specifically chosen as being the only fabrics under consideration,
then fabric is a fixed factor. But if the nine fabrics just happened to
be the fabrics occurring in a family wash, then it might be reasonable
to think of those fabrics as just being a random sample of fabrics from
some population of fabrics—and fabric would be a random effect.

Notice that it is what we think is the nature of a factor and of its
levels occurring in the data that determines whether a factor is to be
called fixed or random. This is discussed further in Section 1.6. As in
many mixed models, inference is directed to differences between fixed
effects and to the magnitude of the variance among random effects.

c. Example 8: Potomac River Fever

A study of Potomac River Fever in horses was conducted by sampling
horses from social groups of horses within 522 farms in New York State
(Atwill et al., 1996). The social groups were defined by whether the
animals tended to be kept together (i.e., in the same barn or pasture).
Breed, gender, and types of animal care (e.g., stall cleaning and fre-
quency of spraying flies) are some of the fixed effects factors that might
need to be reckoned with. But farm, and equine social group nested
within farm, are clearly random factors.

d. Regression models

Customary regression analysis is based on model equations (for three
predictor variables, for example) of the form

where the (3s are considered to be fixed constants which get estimated
from data on y and the xs. But sometimes it is appropriate to think
of some /?s as being random. When this is so the model is often called
a random coefficients model.

e. Longitudinal data

A common use of mixed models is in the analysis of longitudinal data,
which are defined as data collected on each subject (broadly inter-
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preted) on two or more occasions. Methods of analysis have typically
been developed for the situation where the number of occasions is small
compared to the number of subjects. Experiments with longitudinal
data are widely used for at least three reasons: (1) to increase sen-
sitivity by making within-subject comparisons, (2) to study changes
through time, and (3) to use subjects efficiently once they are enrolled
in a study.

The decision as to whether a factor should be fixed or random in a
longitudinal study is often made on the basis of which effects vary with
subjects. That is, subjects are regarded as a random sample of a larger
population of subjects and hence any effects that are not constant for
all subjects are regarded as random.

For example, suppose we are testing a blood pressure drug at each
of two doses and a control dose (dose = 0) for each subject in our
study. Individuals clearly have different average blood pressures, so
our model must have a separate intercept for each subject. Similarly,
the response of each subject to increasing dosage of the drug might
vary from subject to subject, so we would model the slope for dose
separately for each subject. To complete our model, we might also
assume that blood pressure changes gradually with a subject's age,
measured at the beginning of the study. If we let yij denote the blood
pressure measurement taken on the iih subject (of age Xi) on occasion
j at dose d^, we could then model E[yij] as

Since the a{ and bi are specific to the ith subject, they would be declared
random factors. Since 7 is the same for all subjects, it is declared fixed.

If we are interested in the overall population response to the drug
we can separate overall terms from the terms specific to each subject.
To do so we rewrite (1.21) as

where aj = a$ — a and b\ = bi - /3, with a and /3 being averages over the
population of subjects and are thus fixed effects. On the other hand,
aj and b\ are subject-specific deviations from these overall averages and
so are treated as random effects with means zero and variances a\ and
o\. Chapter 7 is devoted to the analysis of longitudinal data.
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f. Model equations

Notice in the preceding examples that equations (1.1), (1.2), (1.3),
(1.4), (1.18) and (1.20) are all described as model equations. Many writ-
ers refer to such equations as models; but this is not correct, because
description of a model demands not only a model equation but also ex-
planation of the nature of the terms in such an equation. For example,
(1.1) and (1.4) are essentially the same model equation, E[T/;J] = fj, + ai
and E[y*j] = // + fli, but the models are not the same. The a* is a
fixed effect but the a^ is a random effect; and this difference, despite
the sameness of the model equations, means that the models are dif-
ferent and the analysis of data in the two cases is accordingly different.
Moreover, models being different but with the same right-hand sides
of their model equation applies not just to whether effects are fixed
or random, but can also apply to models that are even more different.
For example, p, + a^, which occurs so often in analysis of variance style
models can also occur on the right-hand side of a model equation in a
binomial model.

1.6 FIXED OR RANDOM?

Equation (1.2) for modeling cartoon types and groups of people (normal
and disabled) is indistinguishable from (1.18) for modeling ball bearings
and calipers. But the complete models in these cases are different
because of the interpretation attributed to the effects: in the one case,
fixed, and in the other, random. In these and the other examples most
of the effects are clearly fixed or random; thus drugs and methods of
drying are fixed effects, whereas clinics and farms are random effects.
But such clear answers to the question "fixed or random?" are not
necessarily the norm. Consider the following example.

a. Example 9: Clinic effects

A multicenter clinical trial is designed to judge the effectiveness of a
new surgical procedure. If this procedure will eventually become a
widespread procedure practiced at a number of clinics, then we would
like to select a representative collection of clinics in which to test the
procedure and we would then regard the clinics as a random effect.

However, suppose we change the situation slightly. Now assume
that the surgical procedure is highly specialized and will be performed
mainly at a very few referral hospitals. Also assume that all of those
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referral hospitals are enrolled in the trial. In such a case we cannot
regard the selected clinics as a sample from a larger group of clinics
and we will be satisfied with making inferences only to the clinics in
the study. We would therefore treat clinic as a fixed effect.

Is is clear that we could envision situations that are intermediate
between the "treat clinics as random" scenario and the "treat clinics
as fixed" scenario and making the decision between fixed and random
would be very difficult. Thus it is that the situation to which a model
applies is the deciding factor in determining whether effects are to be
considered as fixed or random.

b. Making a decision

Sometimes, then, the decision as to whether certain effects are fixed or
random is not immediately obvious. Take the case of year effects, for
example, in studying wheat yields: are the effects of years on yield to
be considered fixed or random? The years themselves are unlikely to
be random, for they will probably be a group of consecutive years over
which data have been gathered or experiments run. But the effects
on yield may reasonably be considered random, subject, perhaps, to
correlation between yields in successive years.

In endeavoring to decide whether a set of effects is fixed or random,
the context of the data, the manner in which they were gathered and
the environment from which they came are the determining factors. In
considering these points the important question is: are the levels of
the factor going to be considered a random sample from a population
of values which have a distribution? If "yes" then the effects are to
be considered as random effects; if "no" then, in contrast to random-
ness, we think of the effects as fixed constants and so the effects are
considered as fixed effects. Thus when inferences will be made about a
distribution of effects from which those in the data are considered to be
a random sample, the effects are considered as random; and when in-
ferences are going to be confined to the effects in the model, the effects
are considered fixed.

Another way of putting it is to ask the questions: "Do the levels of
a factor come from a probability distribution?" and "Is there enough
information about a factor to decide that the levels of it in the data
are like a random sample?" Negative answers to these questions mean
that one treats the factor as a fixed effects factor and estimates the
effects of the levels; and treating the factor as fixed indicates a more
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limited scope of inference. On the other hand, affirmative answers
mean treating the factor as a random effects factor and estimating the
variance component due to that factor. In that case, when there is also
interest in the realized values of those random effects that occur in the
data, then one can use a prediction procedure for those values.

It is to be emphasized that the assumption of randomness does not
carry with it the assumption of normality. Often this assumption is
made for random effects, but it is a separate assumption made subse-
quent to that of assuming effects are random. Although many estima-
tion procedures for variance components do not require normality, if
distributional properties of the resulting estimators are to be investi-
gated then normality of the random effects is often assumed.

For any factor, the decision tree shown in Figure 1.2 has to be fol-
lowed in order to decide whether the factor is to be considered as fixed
or random. Consider using Figure 1.2 for Example 7 of Section 1.5b
where the two factors of interest are five methods of drying and nine
different fabrics. To the question atop Figure 1.2, for methods of drying
the answer is clearly "no." The five methods cannot be thought of as
coming from a probability distribution. But for the other factor, fab-
rics, it might seem quite reasonable to answer that question with "Yes,
the nine fabrics used in the experiment can be thought of as coming
from a probability distribution insofar as their propensity for drying is
concerned." Thus methods of drying would be treated as fixed effects
and fabrics as random. On the other hand, suppose the nine fabrics
were nine mixtures of Orion and cotton being manufactured by one
company for a shirt maker. Then those nine fabrics would be the only
fabrics of interest to their manufacturer - and in no way would they
be thought of as coming from a distribution of fabrics. So they would
be treated as fixed.

1.7 INFERENCE

The essence of statistical analysis has three parts: collection of data,
summarizing data, and making inferences. Data get considered as sam-
ples from populations, and from data one makes inferences about pop-
ulations. These inferences might well be termed conclusions supported
by probability statements. In contrast to conclusions derived by de-
ductions as being rock-solid and immutable, one might say that con-
clusions drawn from inference are conclusions diluted by probability
statements. In any case, that is where the use of statistics usually
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Figure 1.2: Decision tree for deciding fixed versus random

leads us. We therefore briefly summarize goals we aim for when using
inference, and some of the methods involved in doing that. Goals in
the use of statistics are principally of three kinds: estimating (including
confidence intervals), testing and predicting.

Inference in traditional linear models is based largely on least squares
estimation for fixed effects, on analysis of variance sums of squares for
estimating variances of random effects, and on normality assumptions
for making tests of hypotheses, and for calculating confidence intervals,
best predictors and prediction intervals. These procedures will always
have their uses for LMs and LMMs. But for GLMs and GLMMs, where
distribution assumptions different from normality are so often invoked,
use is made of a broader range of procedures than those traditional to
linear models. We list briefly here some of the inferential methodolo-
gies.
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a. Estimation

In fixed and in mixed models we want to estimate both fixed effects
and linear functions of them, particularly differences between the levels
of any given factor. For instance, in Example 1 there would be interest
in estimating the difference in mean seizure numbers between patients
who received the drug Progabide and those who did not. And in Exam-
ple 2 we would want to estimate the difference in humor comprehension
between normal and learning-disabled people; and also the difference
in the average of the visual-only plus verbal-only types of cartoon from
the visual-and-verbal-combined type of cartoon. Similarly, in Example
7 we would be interested in estimating differences in fabric smoothness
among the various methods of drying.

When random effects are part of a model we often want to estimate
variances of the effects within a factor—and of covariances too, to the
extent that they are part of the specification of the random effects.
Thus in Example 4 estimating the variance of the clinic effects would
be important because it would be an estimate of the variability within
the entire population of clinics, not just within the 20 clinics used in the
study. And in mixed models, as well as estimating fixed effects we also
want to estimate variances of random effects just as in random models.
Thus in Example 6 we would estimate differences in seizure numbers
as between the various Progabide dose levels; and also estimate the
variance among clinics.

— i. Maximum likelihood (ML)

The primary method of estimation we consider throughout this book
is maximum likelihood (ML). If y is the data vector and 0 the vector
of parameters in the distribution function of y, we can represent that
function as /(y|0), meaning that for some given value of 9 it is the
density function of y. But for 0 being simply the representation of any
one of the possible values of 0 we could also rewrite the density function
as L(0\y) = /(y|0), which is called the likelihood. This is a function
of 0 and ML is the process of finding that value of 0 which maximizes
L(0\y). For mathematically tractable density functions this process
can be quite straightforward, yielding a single, algebraic expression for
the maximizing 0 as a function of y. But for difficult functions it can
demand iterative numerical methods and may not always yield a single
value for the maximizing (9. Naturally, this presents problems when
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applying ML to real data.

- ii. Restricted maximum likelihood (REML)

A method related to ML is restricted (or residual) maximum likelihood
(REML), which involves the idea of applying ML to linear functions of
y, say K'y, for which K' is specifically designed so that K'y contains
none of the fixed effects which are part of the model for y. So in ML,
replace y with K'y and one has REML. Historically REML was derived
only for the case of linear mixed models (Patterson and Thompson,
1971) but has been generalized to nonlinear models (e.g., Schall, 1991).

Two valuable consequences of using REML are first, that variance
components are estimated without being affected by the fixed effects.
This means that the variance estimates are invariant to the values of the
fixed effects. Second, in estimating variance components with REML,
degrees of freedom for the fixed effects are taken into account implicitly,
whereas with ML they are not. The simplest example of this is in
estimating cr2 from normally distributed data T/J, which we denote as
yi ~ N(n,02) for i = 1,2, . . . ,n . With y = Y%=iyi/n and Syy =
Y^f=i(yi — y}2i the REML estimator of a2 is Syy/(n — 1) whereas the
ML estimator is Syy/n. Further examples appear in Sections 2.1 and
3.1, and a full discussion of ML and REML is given in Chapter 6.
Derivation of the preceding results involving Syy is covered in Exercise
E 1.6.

Beyond LMMs, the ideas of REML can be generalized directly to
non-normal models where, in limited cases, a linear function of y can
be constructed to contain none of the fixed effects. However, for non-
normal and nonlinear models, other, alternative "definitions" of REML
have been put forth. Two examples are the solutions of equations that
equate quadratic forms of predicted random effects with their expected
values, and the maximization of a likelihood after "integrating out" the
fixed effects.

Whichever definition is adopted, note that REML does nothing about
estimating fixed effects. This is because all REML methods are de-
signed to be free of the fixed effects portion of a model.

- iii. Solutions and estimators

Estimators such as ML or REML are found by maximizing a function
of the parameters (the likelihood or restricted likelihood) within the
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bounds of the parameter space. In general this problem, the maxi-
mization of a nonlinear function within a constrained region, is quite
difficult. For many models considered in this book, we will be able
to do little more than point the reader in the direction of numerical
methods for finding the numerical estimates for a particular data set.
For other models we can be more explicit.

In cases where explicit, closed-form solutions exist for the maximiz-
ing values, an oft-successful method for finding those solutions is to
differentiate the likelihood or restricted likelihood and set the deriva-
tives equal to zero. From the resulting equations, solutions for the
parameter symbols might well be thought of as ML or REML estima-
tors, in which case they would be denoted by a "hat" or tilde over the
parameter symbol. However, this is not a fail-safe method because,
in some cases, solutions to these estimating equations may not be in
the parameter space. For example, in some cases of ML or REML a
solution for an estimated variance is such that it is possible for it to
be negative; that is, it is possible for data to be such that the solution
is a negative value (e.g., Section 2.2). Since, under ML and REML,
negative estimates of positive parameters are not acceptable, we will
often denote solutions with a dot above the parameter (e.g., a^). We
then proceed to adjust them (in accord with established procedures) to
yield the ML estimators which will be denoted in the usual way with
a "hat" above the parameter symbol. Thus for v denoting a variance
we can have

— iv. Bayes theorem

Even for fixed effects one school of thought in statistics is to assume
that they are random variables with a distribution 11(0). This is called
the prior distribution of 6. Then, because

we have
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This is called the posterior density of 0; and the mean of 0|y derived
from this density is an often-used estimator of 0—a Bayes estimator.

Suppose that 11(0) and II(0|y) themselves involve parameters ip so
that

from (1.25). There can be cases where y? can be estimated as a function
of y from (1.26) using, for example, marginal maximum likelihood.
Then, on using those estimates in (1.25), the E[0|y] derived from that
adaptation of /(0|y) is known as an empirical Bayes estimate of 0.

— v. Quasi-likelihood estimation

In many problems of statistical estimation we know some detail of the
distribution governing the data, but may be unwilling to specify it ex-
actly. This precludes the use of maximum likelihood, which requires
exact specification of the distribution in order to construct the likeli-
hood. The idea of quasi-likelihood, developed by Wedderburn (1974),
addresses this concern. This is a method of estimation that requires
only a model for the mean of the data and the relationship between the
mean and the variance, yet in many cases retains full or nearly full ef-
ficiency compared to maximum likelihood. Since the input is minimal,
the method is robust to misspecification of finer details of the model.
Section 5.6 contains further details.

— vi. Generalized estimating equations

To capture some of the beneficial aspects of quasi-likelihood estima-
tion in the context of correlated data models, Zeger and Liang (1986)
and Liang and Zeger (1986) developed generalized estimating equations
methods (GEEs). These methods are robust in the presence of misspec-
ification of the variance-covariance structure of data. Estimates using
GEEs are often easier to compute than maximum likelihood estimates.
GEEs are discussed in Section 8.6a.

b. Testing

Insofar as testing is concerned one's usual interests are to test hypothe-
ses about the parameters (and/or functions of them) which have been
estimated as described above. With fixed effects, we test hypotheses
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of the form that differences between levels of a factor are zero, or oc-
casionally that they equal some pre-decided constant. And for random
effects a useful hypothesis is that a variance component is zero—or,
occasionally, that it equals some pre-decided value.

Ancillary to all these cases we often also want to use parameter
estimates to establish confidence intervals for parameters, or for com-
binations of them.

— i. Likelihood ratio test (LRT)

Traditional analysis of variance methodology (under normality assump-
tions) leads to hypothesis tests involving F-statistics which are ratios
of mean squares. These statistics can also be shown to be an outcome
of the likelihood ratio test (LRT), first propounded by Neyman and
Pearson (1928). This in its general form can be applied much more
broadly than to traditional ANOVA, and is therefore useful for GLMs
and GLMMs. That general form can be described as follows. Let 0 be
the maximizing 0 over the complete range of values of each element of
0. Similarly, let 0Q be the maximizing 0, limited (restricted or defined)
by some hypothesis H pertaining to some elements of 0; and let L(0o)
be the value of the likelihood using OQ for 0- Then the likelihood ratio
is L(0o)/L(0); and it leads to a test statistic for the hypothesis H.

— ii. Wald's procedure

Another very general procedure for developing a hypothesis test, known
as Wald's test (Wald, 1941), is that if 0 is an estimate of 0 and 1(0)
is the information matrix for 0, then (0 — 0,K)/[I(0*)]~1(0 — 0+) is a
test statistic for the hypothesis H: 0 = 0*; and it has, under some
conditions, approximately a Xp distribution (p being the order of 0).
For LMs this is exactly Xp, or gets modified to exactly F when estimates
are used in 1(0). And for p = 1, the signed square root of this quadratic

A

form in 0 has approximately a normal distribution with zero mean and
unit variance.

c. Prediction

Finally, there is prediction. When dealing with a random effects factor
the random effects occurring in the data are realizations of a random
variable. But they are unobservable. Nevertheless, in many situations
we would like to use the data to put some sort of numerical values, or
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predicted values on those realizations. They may be useful for selecting
superior realizations: for example, picking superior clinics in our clinic
example. It turns out (see Chapter 9) that the best predictor (minimum
mean squared error) is a conditional mean. Thus if y represents the
data the best predictor (BP) of a^ is BP(oj) = E[aj|y]. And, similar to a
confidence interval, we will at times also want to calculate a prediction
interval for aj using BP(aj).

1.8 COMPUTER SOFTWARE

Nowadays there is a host of computer software packages that will com-
pute some or many of the analysis methods described in the following
chapters. Their existence is exceedingly important and useful to today's
disciplines of statistics and data analysis. Nevertheless, this is not a
book on software, its merits, its demerits, or the mechanics of using
it. Software expands and (usually) improves so rapidly that whatever
is written about it is somewhat outdated even before publication. So
this is a statistics, not a software, user's manual. Very occasionally we
mention SAS, which is a widely available package that can compute
much of what we describe. In doing so, we give few or no details - and
hope that our mentioning of only a single package is not construed as
anything negative about the many other packages!

1.9 EXERCISES

E 1.1 Suppose a clothing manufacturer has collected data on the num-
ber of defective socks it makes. There are six subsidiary compa-
nies (factor C) that make knitted socks. At each company, there
are five brands (B) of knitting machines with 20 machines of each
brand at each company. All machines of all brands are used on
the different types of yarn (Y) from which socks are made: cot-
ton, wool, and nylon. At each company, data have been collected
from just two machines (M) of each brand for operation by each
of four locally resident workers, using each of the yarns. And
on each occasion the number of defective socks in each of two
replicate samples of 100 socks is recorded.

Which factors do you think should be treated as fixed and which
as random? Give reasons for your decisions.
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E 1.2 For E^laj] = // + a>i and var(?/ij|a;) = a2 use formulae (1.14)
and (1.16) to derive var(yjj) = cr2 4- <72 and cov(y^, y^) = cr2.

E 1.3 For yij ~ Poisson(Aj), repeat E 1.2; take Aj = eM+fli, with a^ ~
jV(0, cr2). ^Tmi: E[efli] is the moment-generating function of a^,
i.e., E[e<0i], with t set equal to 1.

E 1.4 For y^ ~ N(ni, cr2) with i = 1, 2, use (a) the LRT and (b) Wald's
procedure to test Ho : n\ = (J>2-

E 1.5 Derive (1.14), starting from

In doing so, explain why, in the expansion of the squared term,
the cross-product is zero.

E 1.6 With yt ~ i.i.d. M(^a2},t = 1,2,.. . ,n and y' = [3/1,3/2, • • • ,3/n]
we have y ~ A^(/LAln,cr2In). Then the distribution function for y
is

and the log likelihood is

(a) By differentiating l\ with respect to n and cr2 show that the
ML estimators are

and

(b) For REML estimation of <72,K' for K'y such that K'l = 0
can be taken as the first n — l rows of Cn = In — Jn/n. Thus
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of order (n — 1) x n. Then

Thus the log likelihood of K'y is

By differentiating this with respect to cr2, show that the
REML estimator of a2 is

(c) Show that the REML estimator of <j2 is Y%=i(yt—y)2/(n-^),
Hint: To do so, show that K'K = In_i - Jn_i/n and K'y =
f .\n~l

b* - *}«=! '



Chapter 2

ONE-WAY
CLASSIFICATIONS

We begin by describing fixed and random effects models for the one-
way classification for both normally and Bernoulli (binary) distributed
data. Not only do these constitute a convenient starting point for
explaining many of the concepts described later in the book, they are
also commonly employed in practice.

For example, in a modification of the comprehension of humor ex-
ample (Section 1.3b) suppose that we have three cartoons, each of a
different type (visual only, linguistic only, and visual-linguistic com-
bined) and each is rated by separate people on a scale from 1 to 9,
where 9 represents extremely funny and 1 represents not funny at all.
We might consider the responses as approximately normally distributed
and be interested in whether the mean rating is the same for the three
cartoons. Alternatively or additionally, we might measure a yes/no re-
sponse of whether the rater "got" the cartoon. The goal is the same:
to compare the cartoons, but now, because of the binary nature of the
data ("yes" or "no"), it is no longer valid to consider the data as approx-
imately normally distributed. Statistical techniques acknowledging the
binary nature of the data would be required.

If the inferential goal were to compare cartoon types, it would be
insufficient to consider only a single cartoon of each type. A different
modification of the humor example might have only visual cartoons, but
would test, say, 15 different cartoons of this type. In this scenario, it is
likely that we would regard cartoon as a random effect and the response
could be either humor rating (from 1 to 9) or "got it?" (yes/no), or

28
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both.
In this chapter we first consider normally distributed data with a

fixed or random classification and then consider Bernoulli distributed
data. In dealing with the 1-way classification throughout the chapter
we let ra be the number of classes and n^ the number of observations
in the zth class. Then, with yij being the jth observation in the «th
class, we have i = 1,2, . . . , ra and j = 1,2, . . . , TV

2.1 NORMALITY AND FIXED EFFECTS

a. Model

Assuming normality and equal variances, a model for the responses y+j
is

where "indep." means that the random variables are mutually inde-
pendent and M(fj,ijCr2) indicates a normal distribution with mean Hi
and variance cr2. An alternative but equivalent specification to (2.1) is
the overparameterized model:

so-called because the mean of y is a function of more parameters than
there are distinct values for the mean.

b. Estimation by ML

Derivation of maximum likelihood estimators of the parameters re-
quires the likelihood. Using (2.1) it is

for N = YZLi n». Then

The derivatives are
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Setting these equal to zero gives solutions to the ML equations and, in
this case, the ML estimators, which are denoted using "hats":

These ML solutions are indeed ML estimators because they do not
lie outside their corresponding parameter ranges (see Section 2.2b-iii),
namely, —oo < n < oo and 0 < <r2.

It is easily shown that fa is unbiased; but <72, the ML estimator of
cr2 in (2.5), is biased since

where s2 = l/(nj — 1) Y^jdfij — yi-)2 is the sample variance for the ith
class. A common modification is to use an unbiased estimator:

This is also the REML (see Section 1.7a-ii) estimator. Derivation of
this and some other estimators (see Sections 2.2b-vi and 3.2c) is left
to Chapter 6 wherein a general equation is given for REML estimation
of variances. And exercises in that chapter require using that general
equation to obtain results for some simple cases such as those here.

The variances of these unbiased estimators are easily derived:

These results follow easily from the standard result for the variance of
a sample variance for a single sample from a normal distribution:

If we work with model (2.2) the derivatives of the log likelihood are
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Setting these equal to zero give the equations

The latter equation is redundant since it equals the sum of each of the
former equations multiplied by its n^. Hence there is no unique solution
to the equations. But we can get a solution by placing a constraint on
the di. A commonly-used constraint, which clearly makes the equations
easy to solve, is £} riidti = 0, which then yields

However, some people find it distasteful to have a constraint which
depends on the sample sizes; these may be, to some extent, random
variables for a given experiment.

This gives the ML estimators of n and c^. For cr2, (2.2) gives the
same estimator as does (2.1).

c. Generalized likelihood ratio test

A starting point for many statistical investigations is to test the hy-
pothesis

Denoting the common value of fa under HQ as /u, the ML estimator
under HQ is JJ,Q = y.. and the corresponding ML estimator of a2 is

This gives a generalized likelihood ratio statistic (see Section 1.7b-i)
of

Taking logarithms and multiplying by —2 gives
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where

is the usual F-statistic from the analysis of variance for a one-way
classification. Under HQ : /Uj all equal, F has a central ^"-distribution
with numerator degrees of freedom ra — 1 and denominator degrees of
freedom N — m. We denote this by F ~ ̂ -m •

Rejecting the null hypothesis when the likelihood ratio, A, is small
("the null hypothesis is unlikely") is equivalent to —2 log A being large
or F > F^Im !_Q, the 100(1 - a)% percentile of the .F-distribution

(i.e.,p{i^rii>^:ill-a} = a).
Asymptotic theory (Lehmann, 1986, p. 486) tells us that the large-

sample distribution of —2 log A under HQ is chi-square with degrees of
freedom equal to the difference in the number of parameters in the
parameter space and the number under HQ. In this situation there are
m + 1 parameters /zi,/^2> • • • ,A*m and cr2 . Under HQ there is a single
/^-parameter and a2, so the difference ism + 1 — 2 = m — 1.

The large-sample test would therefore be to reject HQ when —2 log A >
Xm-i i-Q- Exact distribution theory based on the ^"-distribution is

to reject H0 when -2 log A > N log (l + fE^^/?Im,i-a) • How do

these compare? Figure 2.1 plots the %2- and .F-based critical values
for a = 0.05, m = 2, 5, and 10, versus N. For total sample sizes
N < 50 the differences can be appreciable. For the impact of using the
chi-square critical values see E 2.2.

d. Confidence intervals

Confidence intervals for /Zf, //j — ̂ , and cr2 are easily derived and
widely available (Snedecor and Cochran, 1989, Chapters 5 and 6). For
completeness we list them here. In doing so we emphasize that these
intervals are for fixed effects models only, not for mixed models. For
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Figure 2.1: Critical values based on ^"-distribution (dashed
lines) and ^-distributions (solid lines) plotted versus N for
m = 10 (top set of lines), 5 (middle set of lines), and 2 (bottom
set of lines).

example, with /^ = // + ait, the interval shown here for //£ — /^ = oti — &k
is for the as being fixed effects. The case of mixed models is considered
in Chapter 6.

- i. For means

A confidence interval for /^ is given by

where tv>OL denotes the upper 100o;% percentile of the T-distribution
on v degrees of freedom, that is,

- ii. For differences in means

A confidence interval for ̂  — UK is given by
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— iii. For linear combinations

A linear combination of the means is defined as ]T)i Ci^i where the Cj
are known constants. A confidence interval for J^ Cj/^ is given by

- iv. For the variance

For a2 the confidence interval is given by

We note that although this interval is exact under model (2.1) or (2.2),
it is not robust to violations of the normality assumption (Snedecor
and Cochran, 1989, p. 252) and should therefore be used with caution.

e. Hypothesis tests

Hypothesis tests concerning the means are straightforward. For exam-
ple, to test

where 770 is a hypothesized value, we use the t-statistic

If the alternative is HA '• J3» ^Mi ^ ^o? we reject when \t\ > ^Ar-m,a/25
if the alternative is HA '• ICi^t > ^o, we reject when t > ttf_m>a; if
the alternative is HA : Z)iczA*i < ^o? we reject when t < —£Ar_m,a-

2.2 NORMALITY, RANDOM EFFECTS AND ML

a. Model

In accordance with Section 1.1, when we assume a random effects clas-
sification we attribute a distribution to the effects of the levels of the
factor.
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A model corresponding to (2.1) is

where we have used the usual notation, i.i.d., to indicate that the ran-
dom variables are mutually independent with identical distributions.
Since /^ appears in the expected value of yij but is later assumed to be
random, (2.13) is a somewhat sloppy specification of the distributions.
More precisely, the conditional distribution of y^ given /^ (we indicate
the conditioning on m with the vertical bar) is normal with mean p,
and variance cr2 and the distribution of ̂  is A/"(/i, cr2). This is written
as follows:

An equivalent model, corresponding to (2.2), is traditionally written as

where the notation a2 = cr2 is now used in place of cr2.
It is appropriate at this stage to contrast the random effects model

with a Bayesian approach. In a Bayesian approach the parameters /^
would be assumed to have a distribution just as does the random effects
model. However, the similarity ends there. In a true Bayesian approach
the distribution of the m would represent subjective information on the
Hi, not a distribution across tangible populations (e.g., across animals).
The Bayesian approach would further hypothesize a distribution for all
other unknown parameters (cr2 in this case). The method of estimating
the parameters would also be different.

- i. Covariances caused by random effects

A fundamental difference between the fixed and random effects models
is that the observations, y^, in a random effects model are not inde-
pendent. In fact, the assumption of a random factor can be viewed as a
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convenient way to specify a variance-covariance structure. Essentially,
observations with model equations that contain the same random effect
are correlated. Using (1.6) yields

Also

Thus we have an intraclass correlation of

- ii. Likelihood

Since observations within the same level of a random effect are corre-
lated the likelihood for the random model is more complicated than for
the fixed effects model. For y^ = [yn ya ... yini}' the model (2.15) has

where Vi = <J2In. +0%Jni, In is the identity matrix of order n, Jn is an
n x n matrix of all ones, and ln is a column vector of all ones of order
n. It is straightforward to show (see Section M.I in Appendix M) that

and |Vj| = (a2 + niO*)(ff2)ni~l. From these the likelihood is

or
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b. Balanced data

— i. Likelihood

Balanced data have HJ = n V i. This greatly simplifies log L so that it
becomes

The last two terms in (2.21) can be rewritten after a little algebra
(Searle et al., 1992, p. 80) to involve

the familiar sums of squares for classes and error, respectively, in the
usual analysis of variance of data from a 1-way classification. Further
simplification comes from defining

so that / is then

Introducing A in place of (72+ncr2 simplifies the ML estimation process.
Then ML yields estimators of cr2 and cr2 through the standard property
of ML estimation that the ML estimator of a function of parameters is
that same function of ML estimators of the parameters.

— ii. ML equations and their solutions

The maximum likelihood equations are those equations obtained by
equating to zero the partial derivatives of log L with respect to /^, cr2

and A:
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In equating these partial derivatives to zero we change the parameter
symbols /^, cr2 and A to be /i, c>2 and A representing solutions to those
equations, and get those solutions as

and then

where

These are the solutions to the ML equations. But they are not nec-
essarily the ML estimators, even though they maximize the likelihood
function, L, for variation in /^, cr2 and <j2.

The theory of maximum likelihood tells us that solutions of ML equa-
tions do indeed maximize the likelihood function if the matrix of second
derivatives (known as the Hessian) of the likelihood is negative definite
when the parameters in the Hessian are replaced by the solutions. For
/i, <j2 and 7 this is left as E 2.17 at the end of this chapter.

- iii. ML estimators

The very definition of ML demands that the likelihood be maximized
over the parameter space. And in the 1-way classification this space is,
from the nature of the parameters, — o o < / z < o o , 0 < c r 2 < o o and
0 < cr2 < oo. Fortunately, in the 1-way classification c>2 is the only one
of the three ML solutions /*, <r2 and /t that is not necessarily in the
parameter space.

We consider the solutions /J, a2 and c>2 in turn. First, fi does not
depend on <j2 or d2, and since fi = y.. is clearly in the space of ̂  it is
the MLE of fj,:

Also a2 = MSB is in the parameter space for <j2, since MSB is never
negative (and we exclude the naive case where yij = &. V i and j,
which would give a2 = 0). But since <72 depends on MSB = <j2, we
must ensure not just that c>2 is in the parameter space for cr2 but that
the pair of estimators (a2, a2) is in the 2-space defined by (cr2, cr2). As
a result, we find that when c>2 < 0 then a2 = MSB is not the MLE of
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a2. Establishing the ML estimators a2 and a2 from o2 and cr2 through
taking account of the possibility of cr2 being non-positive was first done
by Herbach (1959) and is summarized in Searle et al. (1992, pp. 81-83).
The consequences are that the MLEs of o2 and cr2 are as follows:

and

Although this is certainly the correct way of stating the MLEs, we
also state them in a manner that may well be more useful for data
analysts. This is because we state the data conditions first:

if

if

where SST = SjEj^^ — y..}2 is the total sum of squares corrected for
the mean.

- iv. Expected values and bias

The expected value of /} = y.. is easy:

i.e., the ML estimator p, is unbiased. And expected values of the ML
solutions (not estimators) are easily defined: from (2.26)

and
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But this direct derivation of expected values does not carry over
to ML estimators. The reason is that, as seen in (2.27) and (2.28),
each of those estimators takes two different forms: e.g., s2 is MSE if
(1 - l/m)MSA > MSE, but s2 is SST/mn if (1 - l/m)MSA < MSE.
Therefore, for

Similarly, and because s2 a 0,

These expectations have no closed form. Not only does p depend on
the values s2 and s2a because p can be expressed as

but also, the expectations in (2.32) and (2.33) are conditional expecta-
tions over just parts of the real line, the non-negative part and, sepa-
rately, the negative part.

Finally, with the ML estimators having expected values with no
closed form, that is also the case for bias.

— v. Asymptotic sampling variances

With m = y.. it is easily shown that

There is a very general result in ML estimation that the large-sample
asymptotic dispersion matrix of ML estimators is the inverse of the
negative of the expected value of the matrix of second derivatives of
the log likelihood, i.e., of / of (2.21). This general result includes the
fact for LMs that covariances between MLs of fixed effects and variance
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components are zero. See, for example, Searle et al. [1992, p. 239, eq.
(39)]. Thus with (2.25) leading to

and

we get the second derivatives

and

Thus

Therefore, with lazx = 0

Then, with a^ — (A — a )/n, the large-sample dispersion matrix for the
MLEs of the variance components is

Note that in (2.34) the large-sample variance of the ML estimator
a2 is 2cr4/m(n-1). This is the same as var(<72) = var(MSE). But <j2 =
MSB is not the same as <r2. As in (2.27), <r2 is MSB when <r2 > 0, but
a2 < 0 leads to a2 = SST/mn. However, (2.34) is an asymptotic result,
in which <72, by virtue of being an ML estimator, is consistent, and so
cannot be negative. Hence, in that asymptotic situation, a2 < 0 never
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occurs and so <72 is never SST/ran. It is always MSE, with variance
2<74/m(n-l) as in (2.34).

In contrast, the exact variance of a2 is, using p of (2.31),

Again intractability is apparent, and numerical evaluation has to be
used for each particular case. See Yu et al. (1994).

— vi. REML estimation

In contrast to the ML solutions of (2.26) the REML solutions are
<j2 = MSE (the same as ML) and a2 = (MSA - MSE)/n, as can be
derived from the Chapter 6 general REML equation.

c. Unbalanced data

- i. Likelihood

Following A = a2 + no\ in (2.23) we now define

Then the likelihood of (2.21), after writing yij — \i as yij — yi. + yt. — n
and simplifying, becomes

— ii. ML equations and their solutions

With dXi/da2 = I and d\i/da2 = n* we differentiate / of (2.37) to get
(using 10 = dlogL/dO)

and
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The ML equations are obtained by equating the above expressions to
zero using /t, <j2 and Xi = a\ + UiO\ as the solutions. Carrying out this
procedure with l^ of (2.38) gives

We see that (JL is a weighted average of the yi. weighted inversely by an
estimate of vaxfa.) = a2 + cr2 /n^.

Derivation of <j2 and a2 comes from equating the right-hand sides of
(2.39) and (2.40) to zero, so giving

and

With A = cr2 + ni<j2 occurring in the denominators of the terms being
summed (over i] in these equations, there is clearly no analytic solution
for the estimators, but there is when the data are balanced (i.e., ni — n
and \i = A V i).

- iii. ML estimators

As with balanced data, solutions /i, a2 and cr2 are ML estimators only
if the triplet (/i, cr2, cr2) is in the 3-space of (/Lt, cr2, cr2). And in
ensuring that this is achieved, the negativity problem raises its head
again. For each data set, equations (2.41), (2.42) and (2.43) have to be
solved numerically, using some iterative method suited to the numerical
solution of non-linear equations. After doing this, the ML estimators
are as follows:

when cV2 > 0,

when a2 < 0,
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In the latter case, when <j2 < 0, the argument for having <72 = 0 is
essentially the same as with balanced data, whereupon it is left to the
reader to show that log L reduces to being such that on equating its
derivatives to zero one obtains d2 = SST/./V, as in (2.45) for balanced
data and /} = y.. (see E 2.5). Having been derived by the method of
maximum likelihood, the estimators in (2.44) and (2.45) are, as is well
known, asymptotically normally distributed.

The question might well be raised as to what to do if the numerical
solution of (2.42) and (2.43) yields a negative value for a2. Fortunately,
it can be shown that L = el —> 0 as a2 tends to zero or to infinity, and
so L must have a maximum at a positive value of a2 (see E 2.6).

d. Bias

With balanced data we were able to specify p, the probability of the
solution for d2 to the ML equations being negative - in (2.31). But
with unbalanced data F — MSA/MSE does not have a distribution that
is proportional to an T, so this probability cannot be easily specified.
Moreover, although we know that a2 = SST/N with probability p, and
the expected value of SST is readily derived, the expected value of d2

when a2 < 0 cannot easily be derived. Thus, in general, the bias in the
solutions obtained to (2.42) cannot be derived analytically.

e. Sampling variances

Large-sample variances come from a matrix similar to (2.34), namely
the inverse of the negative of the expected value of the Hessian (matrix
of second derivatives) of log L with respect to /^, o2 and a2. Keeping
in mind that, by definition, a2 > 0 (because if a2 = 0 the model and
L change), we differentiate the three first differentials of (2.38), (2.39)
and (2.40) and take expected values of the resulting second differen-
tials. [Details are shown in Searle et al. (1992) in Sec. 3.7b.] Arraying
these expected values in a matrix gives, after inverting that matrix, the
matrix of large-sample variance-covariance matrix:



2.3. NORMALITY, RANDOM EFFECTS AND REML 45

Therefore

and

where

2.3 NORMALITY, RANDOM EFFECTS AND REML

a. Balanced data

- i. Likelihood

For the 1-way classification with model equation E[y^] = p, + a^ the
part of the likelihood of y not involving fixed effects is simply that part
not involving [L. And for balanced data that is easily derived. From
(2.24) we reconstruct L, the likelihood of y and write it as

Since y.. is independent of both SSE and SSA, the preceding expression
can be factored as

where L(fj,\y..) is the likelihood of p, given ?/.., namely
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and

is the likelihood function of <r2 and cr2 given SSA and SSE. Thus, be-
cause n is not involved in (2.49) that is the likelihood for REML.

- ii. REML equations and their solutions

The REML equations come from maximizing the logarithm of (2.49).
Denoting this by IR we find

Equating to zero the derivative of IR with respect to cr2 and A gives
solutions d\ and XR as XR = SSA/(a — 1) = MSA and

These are the REML solutions.

— iii. REML estimators

Similar to the situation with ML, the preceding REML solutions are
REML estimators only when both are non-negative. o\ can never be
negative, but a2

 R can be, whereupon we have to maximize IR subject
to <72

A = 0, which leads to d\ then being SST/(mn — 1). Thus the
REML estimators are

when d2
 R > 0,

when °Z,R < °»
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— iv. Comparison with ML

Comparing the REML estimators of (2.52) with the ML estimators of
(2.27) and (2.28), we see that the condition for a negative solution for
a2 is not quite the same in the two cases. In REML it is MSA <
MSB whereas in ML it is (1 - l/m)MSA < MSE; and the positive
estimator is similarly slightly different: (MSA - MSE)/n in REML but
[(1 —l/m)MSA - MSE]/n in ML. Also, when there is a negative solution
for <j2, the resulting estimator of cr2 is not the same in the two cases:
SST/(mn - 1) in REML but SST/mn in ML. Each of these differences
has a common feature: that with REML we see SSA being divided by
ra — 1 where it is divided by m in ML; and in REML the divisor of SST
is mn — 1 whereas it is mn in ML. In both instances the REML divisor
is one less than the ML divisor. In this way REML is taking account of
the degree of freedom that gets utilized in estimating p.—even though
REML does not explicitly involve the estimation of p. Nevertheless, it
is a general feature of REML estimation of variance components from
balanced data that degrees of freedom for fixed effects get taken into
account. The simplest example is that of estimating <j2 from a simple
sample of n independent observations #1, #2? • • • 5 ^n> from -A/"(/^, cr2).
The ML estimator is Sj(oji — x)2/n whereas the REML estimator is
Zi(Xi-x)2/(n-l).

— v. Bias

What has just been said about REML might lead one to surmise that
REML estimators are unbiased. They are not. The same need for non-
negative estimates arises as with ML estimation. Similar to (2.31) we
define, for balanced data

Then, based on (2.52), the expected value of o\ is
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- vi. Sampling variances

Based on (2.50), we can easily find the large-sample dispersion matrix,

which leads to exactly the same results as in (2.35) except that in the
lower right-hand element the term (A2/cr4)/m is (A2/cr4)/(ra — 1).

b. Unbalanced data

In keeping with (2.20), the likelihood function for unbalanced data is

There is no straightforward factoring of this likelihood that permits
separating a function of /z in the manner of (2.48) for balanced data.
Nevertheless, equations for REML estimators can be established—as
a special case of the equations for the general case. This is left until
Chapter 6.

2.4 MORE ON RANDOM EFFECTS AND NORMALITY

a. Tests and confidence intervals

— i. For the overall mean, fj,

With balanced data (HI = ri) we can show (E 2.8) that

the ^-distribution on ra — 1 degrees of freedom. A test of HQ : p, = HQ
is then to reject HQ when

and a corresponding confidence interval for fj, is
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- ii. For cr2

Tests and confidence intervals for a1 are based on the result that

for both balanced and unbalanced data. A somewhat unusual applica-
tion of this would be to form a test of a specified value of cr2 or, more
commonly, to form a confidence interval:

- iii. For a2

For balanced or unbalanced data a likelihood ratio test (see E 2.10) of
HQ : cr2 = 0 is to reject #0 when F = MSA/MSE > P/fl^i-a- For

balanced data (ni = n) a confidence interval for cr2/<j2 is given by

For unbalanced data no exact intervals exist for cr2/<r2 in closed form.
Approximate intervals are described in Searle et al. (1992) in Sections
3.6d-vi. Exact intervals for other functions of the variances are dis-
cussed in Khuri et al. (1998).

b. Predicting random effects

— i. A basic result

Our model assumes that ai ~ i.i.d. AA(0, cr2) where the a^ are unknown.
If we wanted to guess a value for a,i in the absence of any data or
information, we could do no better than to guess the mean value of
Oj, namely zero. However, suppose we have data known as having a
correlation of 0.99 with a^: then we could use that information to get
a prediction of flj better than its zero mean. The information would
adjust our prediction away from that mean of zero.

The basic result for doing this is quite general, as follows. Suppose
we have two random variables one of which, Y, cannot be observed but
which, in particular cases, we wish to predict; and the other, X, can be
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observed and which is to be used for predicting Y. Then the predictor
we use is the minimum mean squared error predictor of y, based on
X\ it is E[y|Jt], the conditional mean of Y given X (see E 2.9).

Motivation for this result

is dealt with extensively in Chapter 8, including its derivation, its prop-
erties and applications. Here we just list results for the 1-way classifi-
cation [see Searle, 1971, Sec. 2.4f-v].

- ii. In a 1-way classification

Returning to the linear model, we wish to predict aj given the data.
The only portion of the data relevant to a$ is the sample mean for
class i, j fc . . Using the general result in Section S.I of Appendix S for a
conditional mean of a normal variate,

This is the best predictor of a;, which we denote by BP(aj).
Immediately a serious problem confronts us concerning the use of

(2.56). It depends on the parameters /^c^, and cr2 whose values are
unknown. The usual solution is to replace them with estimates and get
an estimated best predicted value, which we denote as aj, i.e.,

It is instructive to compare the estimated best predictor with the
estimator of oti under the fixed effects model (2.2) using the constraint
X)t- ni&i = 0- For prediction in the random model, with balanced data,
we have

For estimation in the fixed model we have
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Both are based on y^. — y.. but cti is "shrunk" compared to dj. It is
always smaller than dj, the degree to which it is smaller depending
on the relative size of <r2 and <j2/n. If cr2 is estimated to be large
with respect to the estimate of a2/n (either <72 is large compared to <r2

and/or the sample size per class is large) then the two values for the
class effect are similar. This corresponds to the situation where there is
a lot of variation (relatively speaking) between classes and not much is
to be gained by assuming that the effects are selected from a common
distribution. On the other hand, when u2 is estimated to be small with
respect to <72/n, the shrinkage can be extensive and the two values can
differ greatly.

2.5 BERNOULLI DATA: FIXED EFFECTS

We return to the ideas of Section 2.1 wherein yij is distributed indepen-
dently, and Ejj/y] = //j, but use a distribution to accommodate binary
data. Hence the only possible distribution is the Bernoulli.

a. Model equation

As previously, we consider m classes indexed by i, with the ith class
having n^ observations. A model for the responses yij which are coded
as 1 or 0 would be

The more usual notation for the mean of a Bernoulli distribution is pi
which we reserve for Section 2.6 where pi is random; and here we use TT^
for the fixed effects case - all this being in accord with our convention
of Greek letters for fixed effects and Roman letters for random effects.

b. Likelihood

The likelihood for the data is
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Therefore

c. ML equations and their solutions

The ML equations come from differentiating / of (2.59) with respect to
the ?Ti to obtain

Setting this equal to zero gives

ftk — yk- — sample proportion of Is in class k.

d. Likelihood ratio test

The hypothesis HQ : ̂  all equal is tested using the likelihood ratio
statistic

giving

where -ft = y.. = overall sample proportions of Is.
The large-sample test is given by

e. The usual chi-square test

A test used more commonly in practice than (2.62) is the chi-square
test of independence, or (equivalently) the chi-square test for equality
of binomial proportions (Snedecor and Cochran, 1989, Sec. 11.7). It is
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Table 2.1: Successes and Failures in a 1-Way Classification

Outcome
Success
Failure
Total

Classification Level
1

!/i-
"i - l/i-

ni

2
2/2-

n2 - 3/2-
n2

i

yi-
••• rii-yi. •

Hi

m

ym-
Tim 2/771-

nm

Total

y-
N-y..

N

best described by starting with Table 2.1. The usual chi-square test is
to reject HQ when

where Oij and Eij are, respectively, observed and expected values. For
Table 2.1, there are but two values for j, 1 and 2, and

and hence

An interesting question is: How does x2 of (2.63) compare to —2 log A
of (2.62)? To answer this we use a Taylor series expansion of f ( x ) =
x\og(c/x) about c:

where
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This gives

Applying this to log A, wherein each term is of the form xlog(c/x),
gives

or

of (2.63). Thus, when TTJ is not too far from TT, the two statistics give
similar results.

f. Large-sample tests and intervals

Large-sample tests for testing HQ : TTJ = TI^O, where TTJQ is a specified
value, can be based on

where AN means asymptotically normally distributed.
The test statistic for the hypothesis HQ : TTJ — TT^ = TTJQ — Kko would

be

where TTJO — TTfco is the hypothesized difference under HQ. For example,
to test HQ: TTi = TTfc versus the alternative HI : TTJ 7^ TT^, we set TTJQ — TT^Q
equal to zero and reject HQ if
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where za is the 100or% percentile of the standard normal distribution,
i.e., if Z ~ jV(0,1), then P{Z > za} = a. Alternatively, we could
perform a likelihood ratio test or a x2 test using only the data in
columns i and k of Table 2.1. These two tests are quite similar (see
E 2.7). Note that in (2.66) we use the estimated values of TTJ and itk
rather than the values under HQ as we did in (2.65). This is because
hypothesizing a difference between TTJ and TT^ under HQ does not tell us
the actual values of TTJ and TT^ under HO-

Large-sample confidence intervals for the TTJ are given by

again using (2.65). The corresponding confidence intervals for TTJ — TT/.
are given by

g. Exact tests and confidence intervals

The likelihood ratio and %2 tests of HQ : TTI = -KI — • • • = 7rm and the
normality-based confidence intervals and tests of the preceding section
are based on large-sample distributional approximations which can be
inaccurate for small samples. The usual rule of thumb (Snedecor and
Cochran, 1989, p. 127) is that the approximation is accurate when most
of the "expected values" of Table 2.1 i.e., n^y.. and n j ( l—y . . ) are greater
than five and can give inaccurate results when expected values are less
than one.

Exact tests can be based on the conditional distribution of the table
entries given the marginal totals. Under HQ : TTJ all equal the condi-
tional probability of a sample is given by

A p-value can be calculated via the usual definition: the probability,
under HQ, of a result as extreme or more extreme than that observed.
This would be done by summing (2.67) over all the possible data config-
urations (as in Table 2.1) which are "more extreme" than the observed
table.
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For two populations (m = 2) we have a 2 x 2 table and it is straight-
forward to designate more extreme tables. That is, once a single entry
in the 2 x 2 table is known, and conditional on the margins, all the
remaining entries are fixed. We can thus enumerate the more extreme
tables by varying this single entry from the observed table in a direction
"away" from HQ. This test is known as Fisher's exact test.

For 77i > 2 populations we must choose a definition of "more ex-
treme." For example, a common choice is whether a table of possible
data gives a larger value of the x2 statistic than that given by the
observed table. The problem is then a computational one since the
number of possible tables with given margins gets unmanageably large.
Special software (e.g., Mehta and Patel, 1992) is usually required.

Exact confidence intervals for TTJ can be calculated (Mood et al.,
1974, p. 393) as (i^iLi^iu} where the -KH, and TTHJ solve

These are known as the Clopper-Pearson intervals and can be some-
what conservative. Blyth and Still (1983) give less conservative inter-
vals in tabular form and accurate approximate intervals. Santner and
Snell (1980) give intervals for TT^ - Tr^ and Tr;/?^.

h. Example: Snake strike data

An experiment was conducted at Cornell University to find factors that
determine whether a snake would strike at a target or fail to do so.
Snakes were placed in a cage with a target that looked something like
an artificial mouse and a binary response was recorded as to whether
the snake struck at the target within five minutes. A concern was that
some snakes would always strike at targets, whereas others would not
strike at all, obscuring any effect due to target differences. Table 2.2
show data for six snakes.

We are interested in testing homogeneity across the snakes. The
likelihood ratio test of (2.62) gives a statistic of 9.10 to be compared to
a x2 distribution with five degrees of freedom. The asymptotic p-value
of this test is approximately 0.10.
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Table 2.2: Number of Occurrences of Strike or No Strike
for Each Snake

Outcome
Strike
No strike
Total

Snake
1 2 3 4 5 6
2 2 3 0 1 1
2 2 0 2 0 0
4 4 3 2 1 1

Total
9
6
15

The chi-square statistic of Section 2.5e is equal to 6.67, again to be
compared to a x2 distribution with five degrees of freedom, giving an
asymptotic p-value of 0.25. Exact calculations using the conditional
distribution (2.67) give a p-value for the x2 statistic of 0.27 and 0.24
for the likelihood ratio statistic.

2.6 BERNOULLI DATA: RANDOM EFFECTS

a. Model equation

The analog of the random effects model for normally distributed data,
(2.13), would be

where G is a distribution for the pi and we maintain our convention of
using Roman letters for random effects. Normality cannot be assumed
for the pi since they are probabilities and are restricted to the interval
(0,1).

b. Beta-binomial model

A logical choice for G is the beta distribution since it is a flexible
distribution on (0,1) and leads to mathematically tractable results. If
Pi from (2.68) follows a beta distribution with parameters a and /?, its
density is given by

where
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is the beta function. It then follows that

Model (2.68) along with (2.69) we call the beta-binomial model:

— i. Means, variances, and covariances

It is straightforward to calculate moments of the yij under model (2.72).
We have

The result (2.74) also reflects the fact that being binary forces y^ to
have a marginal Bernoulli distribution with variance equal to the mean
times 1 minus the mean.

We can calculate a covariance similarly:
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The covariance between yij and ykl is zero for i k. Thus we have an
intraclass correlation of

where corr(., .) denotes correlation. Some authors (e.g., Williams, 1975;
Griffiths, 1973) suggest a reparameterization of (2.69) in terms of the
mean m = a/(a + b) and the intraclass correlation, p, or a related
quantity, t = 1/(a + b). Reparameterized in such a way, the mean is,
of course, m, and the covariance is m(1 — m)p or m(l — m)t/(t+1).

- ii. Overdispersion

If yij (j = 1,2,... ,n i) were independent Bernoulli random variables
with mean m then yi. would follow a binomial(ni, m) distribution with
variance nim(l — m). Under the beta-binomial model

As long as p > 0, which is required by the beta-binomial model (a >
0,b > 0), the variance will be larger than the binomial variance. This
is often termed overdispersion.

Examination of the preceding expressions for var(yi.) reveals that
no detail from the beta-binomial model is used. The only assumption
made is that the variances and covariances are the same for all j and
l. Thus, overdispersion can arise in a variety of contexts with non-
independent data.
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— iii. Likelihood

The likelihood is given by

the last equality coming about from the definition of the beta function
(2.70).

Using the results that B(a,0) = T(a)r(P)/T(a + /3) and that

we have

In (2.80), and (2.81) shown below, any sum with an upper limit of
—1 is interpreted as zero. Under the parameterization r = !/(« + /?),
equation (2.80) takes the form (see E 2.13)

— iv. ML estimation

Closed-form maximizing values of / do not exist, so numerical maxi-
mization must be used to find maximum likelihood estimates for any
given data set.
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— v. Large-sample variances

ML estimators based on (2.80) or the reparameterized version (2.81)
are asymptotically normally distributed with means equal to the true
values and variances given by the inverse of the information matrix. In
particular for (2.80)

where

in\
and P{yi. = & } = ( * \B(a + k,rii + /3 - k)/B(a,p). As noted below

\kj
(2.80) any sum with an upper limit of —1 is set equal to zero.

For the n and T parameterization,

where
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and

— vi. Large-sample tests and intervals

Large-sample inferences concerning fj, can be based on the asymptotic
distribution (2.82) or (2.83). Let var(/i) denote the (1,1) entry of S^f.
Then a large-sample confidence interval would be

where var(-) indicates that the estimated values of fj, and r have been
substituted in the variance formula. Large-sample tests could be based
on

Alternatively, tests and confidence regions can be based on the like-
lihood ratio statistic. To test HQ : fj, = //o, we calculate r(no) (i.e., the
value of T which maximizes the likelihood when n is fixed at /J,Q). The
large-sample test is then to reject HQ if

where /(/^, T) = logL(//, T) is a function of // and T.
A confidence interval for // which corresponds to the test (2.86) is

the set of values //* given by
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i.e., the set of values of n* for which we can accept the HQ : / / = //*.
This set must be calculated numerically.

Large-sample inferences for r must be handled carefully. The usual
hypothesis of interest is HQ : r = 0, which, as long as jj, is not zero or
one, is equivalent to no correlation, or equivalently, no variation in the
Pi across the one-way classification. When r = 0 and for large samples,
the maximum likelihood estimator is exactly zero half the time (for
a similar situation see E 2.18). It thus does not have a large-sample
normal distribution and the usual large-sample theory for —2 log A fails.

In this simple case an easy modification is available: Calculate the
usual likelihood ratio statistic and make a simple adjustment to the
critical value. Under H,o: r = 0 the maximum likelihood estimator of
/it is y.. . The test is thus to reject HQ when

Roughly speaking, this can be thought of as adjusting a test statistic
appropriate for a two-sided test (the likelihood ratio test) in order to
test a one-sided hypothesis (Ho : r = 0 versus HI : r > 0).

In the less usual case when a specified value of r > 0 is of interest,
the large-sample distribution of r is asymptotically normal. Tests and
confidence intervals can then be based on the standard normal distri-
bution just as with fj, in (2.85) or on the likelihood ratio test with the
usual critical point, xl i-a-

— vii. Prediction

As before, we wish to calculate the best predicted values as given by

Under the beta-binomial model, (2.72), it is straightforward to show
(E 2.14) that the conditional distribution of pi given y±. is beta with
parameters a + T/J. and ft + n^ — yi. . The conditional mean is therefore
given by

and the estimated best predictor, pi, is given by
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As with the normal random effects model, the estimated best predic-
tor, pi, is a weighted average of an overall estimate, /}, and the fixed
effects estimate, TTJ. It is also a shrinkage estimator, with the individual
predicted values, p^, being closer to the overall estimate, /i, than are
the TTj.

c. Logit-normal model

The reason a normal distribution cannot be assumed for pi in (2.68) is
that it is restricted to the interval (0,1). An alternative approach is to
transform pi using logit(pj) = log[pj/(l — p^)]. The range for logit(pj)
is (—00, oo) as pi ranges from zero to one and a normal distribution
can be assumed for logit(pj). This gives the model

- i. Likelihood

The likelihood for this model, similar to that derived in (2.79), is

This can be written in a slightly simpler fashion as

With a change of variables of Zi = (li — n)/a this becomes

Unfortunately, neither L nor / = log!/ can be appreciably simplified
and both calculation and maximization of / must be performed using
numerical methods.
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- ii. Calculation of the likelihood

Changing variables again, using \z^ = v\ in (2.95) allows the log like-
lihood to be written as

In this form, each integral in / can be evaluated using Gauss-Hermite
quadrature wherein

where r is the order of integration, the w^ are weights, and the x^
are evaluation points. Generally, using large values of r increases the
computation time and increases accuracy. Values of Wk and x^ are
given in references on numerical integration, e.g., (Abramowitz and
Stegun, 1964, Table 25.10). Using this approximation,

For speed of computation, values of r as small as 2 or 3 have been rec-
ommended in practice (Goldstein, 1986; Hedeker and Gibbons, 1994),
but this can lead to inaccurate results. If ̂  is not near zero, the integral
can be difficult to evaluate accurately (Liu and Pierce, 1994). Values
of r of 10 or greater often give good accuracy.

— iii. Means, variances, and covariances

Under model (2.92) we calculate the mean by writing pi = 1/(1 + e~li)
with li ~ A/X/^cr2). Therefore,

Again, this cannot be evaluated in closed form, but can be approxi-
mated as before using Gauss-Hermite quadrature.
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Since t/y is binary, it has a marginal Bernoulli distribution with
mean, E[7/ij], given by (2.99). Its variance is therefore E[?/;J] (1 — E^]).

Prom first principles, the covariance of two observations in the same
level of the one-way classification is cov(yij,yu) = Efyijyu] —E[j/y]E[jfa].
The second part of this can be evaluated using (2.99) and the first part
calculated as

How does cr relate to the correlation between observations in the
same level of the classification? Table 2.3 gives values of the correlation
for several values of fj, and a.

Table 2.3: Correlations for the Logit-normal Model

<7

0

1

3
5

V>
-2

0.000
0.118
0.521
0.694

-1
0.000
0.158
0.536
0.698

-0.5
0.000
0.169
0.539
0.699

0
0.000
0.174
0.541
0.699

0.5
0.000
0.169
0.539
0.699

1
0.000
0.158
0.536
0.698

2
0.000
0.118
0.521
0.694

— iv. Large-sample tests and intervals

As in Section 2.5f, large-sample inferences concerning p, can be based on
the large-sample normal distribution of p, or the asymptotic chi-square
distribution of —2 log A. Derivatives for calculating the observed infor-
mation matrix must be calculated numerically (Hedeker and Gibbons,
1994), which makes dealing with —2 log A more attractive.

A large-sample test of HQ : o2 = 0 is made by rejecting HQ if

A disadvantage of this approach is that the MLEs must be calcu-
lated under the random effects model, which is computationally diffi-
cult. An alternative is to consider score tests as given by, for example,
Commenges et al. (1994). Scores tests use as their statistic the deriva-
tive of the log likelihood evaluated under the null hypothesis (Cox and
Hinkley, 1974, p. 315), which does not require estimation under the
model with random effects. For the simple case of model (2.92), the
test reduces to the usual Pearson chi-square test of Section 2.5e (see E
2.16).
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- v. Prediction

For prediction we want E[pj|yjj] for which the conditional distribution
of pi given j/j. is required. Again it is more convenient to consider pi =
1/(1 + e-^+<7Zi)) where z* ~ .A/"(0,1). We thus need

The numerator is given by

so the estimated predicted value can now be calculated as

As in Section 2.6b numerical evaluation must be used; one possible
method is Gauss-Hermite quadrature.

d. Probit-normal model

A model similar to the logit-normal model is the probit-normal model,
which is obtained by replacing the logit function in (2.92) by $-1, where
$ is the standard normal cumulative distribution function (c.d.f.):

This does not appreciably simplify the calculations, except E[j/^] slightly,
which is given by

(see E 2.19).
Otherwise derivations and formulae closely follow those for the logit-

normal in Section 2.7. For example, the analog of (2.100) is
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2.7 COMPUTING

Even the most mathematically tractable of the models for binary data
with random effects, the beta-binomial model, poses numerical difficul-
ties. The more easily generalizable logit- and probit-normal models of
the preceding section raise further problems. Though we have indicated
a possible approach using Gauss-Hermite quadrature, this quickly be-
comes intractable, even for problems of moderate size. More is said
about these issues in Chapter 10.

2.8 EXERCISES

E 2 .1 Show that N l o g t e n d s to Xm-i.i-a f°r ^arSe

N.

E 2.2 For the F-test of Section 2.1c, with m = 5 and N = 20, 50, and
100, calculate the significance level achieved if the asymptotic
critical value is used instead of the exact critical value.

E 2.3 Derive (2.11).

E 2.4 Show for Section 2.2b that the ML solutions maximize the likeli-
hood.

(a) First derivatives of I are shown at (2.25). Use them to find
the three second derivatives with respect to /u.

(b) For the results in (a) and for the second derivatives shown in
Section 2.2b-v, replace parameters by solutions of the ML
equations.

(c) Put results from (b) in a matrix and explain why that matrix
is negative definite, and hence the solutions maximize I.

E 2.5 When d\ < 0, and hence a2
a = 0:

(a) Use (2.41) and (2.42) to show that for unbalanced data,
/i = y.. and a2 = SST/W.

(b) Why is (2.43) not used?

E 2.6 With
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show that L —)• —oo as a2 —>• 0 and as cr2 —> oo, so that L must
have a maximum for a positive value of a2.

E 2.7 For the hypothesis Ho: TTJ = TTJ compare the x2 test, which uses
only columns i and j of Table 2.1, with the test given by (2.66).

E 2.8 For the balanced data situation (rii = n) for model (2.15) show
that

E 2.9 Show that E[Y|X] is the minimum mean square error predictor of
Y. That is, show that g(X) = E[Y\X] minimizes E [(Y - g(X))2]
among all functions g(-) of X.

E 2.10 Suppose that X and Y are bivariate normal with correlation p.
Show that if X is k standard deviations above its mean, then
the minimum mean square error predictor is that Y will be pk
standard deviations above its mean.

E 2.11 (a) Derive F = MSA/MSE as the LRT statistic for H: cr2 = 0 in
the one-way classification, random, normal model, balanced
data. The derivation is lengthy. The following steps help.

(i.) Denote (2.24) as /(/u, cr2, a).

(ii.) Find /(/i, cr2, cr).

(iii.) Find /(/io, OQ) under H.
(iv.) Define q = (m — l)F/m(n — 1).
(v.) Show that d(-21ogA)/<9? > 0 if cr2 > 0.

(vi.) Explain how this leads to F being a test statistic.

(b) For unbalanced data explain why (ii) cannot be obtained
analytically, and so neither can log A. But find (iii).

(c) Despite (b), show that F is a test statistic for H: a2 = 0.
See Searle et al. (1992, p. 76).

E 2.12 From (2.60) find —E [d2l/d7r2.] and from that the sampling vari-
ance Of TTfc.

E 2.13 For the beta-binomial model given by (2.72) with the parame-
terization jj, = a/(a + fi) and r — l/(c* + /?), derive (2.81) from
(2.80).
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E 2.14 Prove the penultimate sentence before (2.90).

E 2.15 For the beta-binomial model given by (2.72) show that the con-
ditional distribution of pi given yi. is again beta, but with param-
eters o; + y^ and (3 + U{ - y^. .

E 2.16 Prove (2.90).

E 2.17 Show that the derivative of the log of L from (2.95) evaluated at
o = 0 is a function of

as in (2.63). The score test of HQ : a = 0 is based on this statistic.
Hence show that when properly standardized and with the MLEs
substituted for unknown parameters, this is the same as the Pear-
son chi-square statistic of Section 2.5e for testing homogeneity in
the fixed effects model. Hint: To calculate the derivative you will
need to use L'Hospital's rule.

E 2.18 For large samples from model (2.92), show that the maximum
likelihood estimator of a is equal to zero with probability 1/2.
Hence show that —2 log A for testing HQ : a — 0 is zero with
probability 1/2.

E 2.19 For the probit-normal model show that E[yij] = $(/^/\/l + 0"2)-



Chapter 3

SINGLE-PREDICTOR
REGRESSION

3.1 INTRODUCTION

Chapter 2 deals with the one-way classification for data which are either
normally or Bernoulli distributed. For each of these distributions this
chapter covers simple regression, i.e., regression with a single predictor.
For the one-way classification in Chapter 2 we described the class means
by using different parameters for each class. As such, we made no
assumptions about the form of the mean of y as a function of the
classification variable. In contrast, for simple linear regression we make
the restrictive assumption that y is a linear function of a predictor,
x. For example, we will consider a case study in which the mean of
y, log radial growth of colonies of Phytophthora infestans sporangia
inoculated onto potato leaflets, is modeled as a linear function of the
temperature at which the colonies were allowed to grow.

In practice, there are many situations where the linearity assump-
tion is not met, in which case we must regard it either as a crude
approximation or merely the first step in a more in-depth analysis. For
some cases it is adequate to assume that the mean of y is a linear func-
tion of x, but over only a short interval of x. For example, a plot of
the radial growth data (Figure 3.1) for weeks 2, 3 and 4 for tempera-
tures 15°C through 25°C shows an approximately linear relationship.
However, over the entire range of the experiment (down to 10° C), the
relationship appears nonlinear.

In other cases we must transform y and/or x before the linearity as-

71
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Figure 3.1: Log(area) versus temperature for the lesion data.

sumption is met even approximately. Alternatively or additionally, we
might try more complicated models with multiple predictors designed
to encompass more flexible functional forms. We describe such models
in subsequent chapters.

A different approach is to model some known function of the mean
of y, call it //, as linear in x. This is called a generalized linear model,
examples of which are found in Sections 3.7 and 3.8. There we argue
that in many instances of Bernoulli-distributed data, it does not make
sense to assume a simple linear regression model. Instead we model
log[/z/(l — /i)j as linear in the predictor.

3.2 NORMALITY: SIMPLE LINEAR REGRESSION

a. Model

We begin with normally distributed data, for which the well-known and
frequently used simple linear regression model is given by

where the notation p,(x) is used to indicate that p is a function of
x. The Xi are assumed to be known constants, either fixed as part
of the data collection process or regarded as fixed by considering the
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conditional distribution given the z's. Note that (3.1) encompasses
four assumptions:

1. The yi follow a normal distribution.

2. The yi are independent.

3. The yi all have the same variance, cr2.

4. The mean of y is a linear function of the predictor, x.

Any or all of these may be regarded simply as adequate approximations
or as the beginning of a more serious analysis.

b. Likelihood

The log likelihood is easily derived:

c. Maximum likelihood estimators

The maximum likelihood estimators can be found by equating the
derivatives of the log likelihood to zero. Those derivatives are

In equating these to zero, we can replace parameters by MLEs (e.g.,
replace a by a) because the solutions to the resulting equations are
indeed the MLEs. The distinction between solutions and estimators
(discussed in Section 1.7a-iii) is not problematic here because a and P
can be any real numbers and therefore so can a and /3, as evident in
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(3.6) and (3.7). And, from equation (3.8), a2 is non-negative, in accord
with the definition of a2. We therefore have

from (3.3);

from (3.4); and

from (3.5). We can straightforwardly solve these equations:

Again, the Chapter 6 general REML equation yields the REML estima-
tor of <72. It is exactly a2 of (3.9) except for the important replacement
of N by N — 2 to account for the two fixed effects a and fi (see Section
1.7a-ii).

d. Distributions of MLEs

Standard derivations (e.g., Weisberg, 1980, p. 44) give the distributions
of the MLEs. Defining Sxx = Y^i(xi ~ ^)2» ^ne MLEs of a and ft are
bivariate normal:
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They are independent of <r2, which is distributed as a multiple of a
chi-square distribution:

e. Tests and confidence intervals

Tests and confidence intervals can be derived utilizing the ^-distribution.
For example, a confidence interval for /? is given by

which is

Similarly, a test of HQ : fi < 0 versus HA '• fi > 0 would be to reject
the H0 if

Tests and confidence intervals for a can be derived in the same manner.
A confidence interval for cr2 can be calculated using (3.11) as

f. Illustration

For the Phytophthora data of Figure 3.1 (using weeks 2 through 4,
temperatures 15°C through 25°C only) we consider a linear regression
model for the average of the two measurements on a leaflet

where ALDj = yj is the average log diameter of the lesions on the jith
leaflet, and TEMPj = Xj is the temperature for the jth leaflet. For
these data, the maximum likelihood estimators are a = —1.296,4 =
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0.157, and <r2 = 0.0755. Prom these we calculate a 95% confidence in-
terval for /3 as

We are thus 95% confident that the average log lesion diameter in-
creases by between 0.121 and 0.193 with each increase in temperature
of 1° C over the range of temperatures from 15°C through 25°C.

3.3 NORMALITY: A NONLINEAR MODEL

a. Model

A variation on (3.1) is to assume that the model is nonlinear in its
parameters. A simple example is

Note that we have changed only the mean of y^ not assumptions about
its distribution.

b. Likelihood

The log likelihood is basically the same as (3.2):

except that /z(rcj) in (3.16) is e
a+/3xi instead of a + fai of (3.1).

c. Maximum likelihood estimators

From (3.16) we can see that to maximize the likelihood with respect to
a and /3 we minimize the residual sum of squares: Y^bji ~ fj>(xi}}2- So
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maximum likelihood for homoscedastic, normal distribution models is
equivalent to least squares, even with nonlinear models. More formally,
we can differentiate I of (3.16) to try to maximize it. The derivatives
are

Setting these equal to zero, with parameters replaced by MLEs (e.g.,
a replaced by a as in (3.9)), gives

The first two equations can be solved for a and J3 which are then
substituted in the third equation to find a2. To solve (3.20) and (3.21)
for a and /? reduce the equations to

and

or

This equation must be solved numerically to find /3. We can then obtain
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and

What about restricted maximum likelihood for this model? The
usual basis for REML is linear combinations of the data chosen to be
free of the fixed effects. With a nonlinear model such as this one, that
is not possible.

d. Distributions of MLEs

The MLEs are nonlinear functions of the data and do not having closed-
form expressions and this precludes our working out their exact, small-
sample distributions. Simulations and calculations for small sample
sizes show that the estimators for the parameters a, b, and s2 are bi-
ased.

The large-sample distributions of the MLEs (see Section S.4d of Ap-
pendix S) are, as usual, tractable:

where D = S m2
ix

2
imSm2

ix
2
i - (S m2

ixi)
2, and mi = exp(a + bxi).

This points out that the nice properties of ML estimators under the
linear model (3.1) are quite delicate. A small change to the model [from
(3.1) to (3.15)] causes the estimators not to have closed-form expres-
sions, makes it impossible to work out their small-sample distribution
and causes the estimator to be biased (in small samples).

3.4 TRANSFORMING VERSUS LINKING

a. Transforming

A temptation to resolve the difficulties inherent in (3.15) is to work
with the log transform of the data and assume the model
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where we have used superscript asterisks to indicate that the param-
eters are different from those of (3.15). Since the model for log yi is
now linear with homoscedastic, normal distributions, we regain the
nice properties of ML estimators.

b. Linking

In (3.15) we assume that a function of the mean is linear in the param-
eters. We will call this the link function. In that case we are assuming
that log E[yi] = a + bx i, so we are using a log link. However, this is not
the same as in (3.29). First, using (3.15), E[logyi] does not exist (since
negative values of yi are possible). More practically, even if yi had a
distribution such that it was positive with probability 1, by Jensen's
inequality (Casella and Berger, 1990, p. 182)

Second, (3.15) has yi homoscedastic on the original scale while (3.29)
has yi homoscedastic after taking the log transformation. Under (3.29)
it is easy to show (E 3.3) that the standard deviation of yi increases
proportionally with the mean.

c. Comparisons

Thus a log transformation of the data is not the same as using the log
link, namely that log(E[yi]) follows a linear model. Choosing between
(3.15) and (3.29) would ordinarily be done by checking whether the
variance is constant on the original scale or increases with the mean
(Ruppert et al., 1989).

3.5 RANDOM INTERCEPTS: BALANCED DATA

Prom the example of observing lesion growth on potato leaflets de-
scribed at the start of this chapter, let us concentrate on yij being the
log lesion area observed in week i at temperature x+. Then, as an
extension of traditional single-predictor regression, E[yij] = a + bx i j ,
we now consider
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for i = 1,2,. . . , m and (initially for balanced data) for j = 1,2, . . . , n.
The important feature attributed to (3.31) is that the intercepts m+ ai

are taken as being random; that is, we treat the ai as random effects,
normally distributed with zero mean:

In every week, i = 1,2,... , m, the same n temperatures are used so
that xij = x j[for j = 1,2, . . . , n for all i. Thus (3.31) becomes

a. The model

Suppose that for a given i we write down the equation (3.33) for each
j = 1,2,.. . , n. This gives n equations

Now define three column vectors of order n:

Thus yi is the vector of all n observations in the ith week, ln is a vector
of n ones, and x0 is the vector of the n different x-values associated
with the n observations each week. Then, with the definitions of (3.35),
equations (3.34) can be written succinctly as

which we rewrite as

with
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We now assume normality for yij|ai in the form

Then with (1.14) and (1.17) we have var(y i j) = s2
a + s2 and also

cov(y i j ,y i j ') = s2
a. Thus on defining

we have

where, as described in Section M.1 of Appendix M, In is an identity
matrix and Jn is a square matrix of all ones.

Notation For purposes of subsequent algebra it turns out to be
useful to define

with

This gives

To encompass all the data, namely yi for i = 1 ,2, . . . , m, we define

Then from (3.37) we get

and
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with

where 0 represents the direct (or Kronecker) product operation as de-
scribed in Section M.2 of Appendix M. Similarly, with the yi-vectors
being independent (being data from different weeks) and with every yi

having the same variance-covariance matrix, namely V0 of (3.40),

a block diagonal matrix of m matrices V0 on the diagonal. And

Thus

b. Estimating m and b

ML estimators (under normality, and assuming V known) of m and ft
come from the general expression given in Section S.6a of Appendix S.

— i. Estimation

On substituting for X and V-1 from (3.47) and (3.49) we find (3.51)
reduces to

To simplify this expression note that

and
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where

Also for (3.52), using (3.53) leads to

where

The inverse of (3.54) is easily derived, being

and post-multiplying this by (3.56) leads (see E 3.2), from (3.52), to

and

An immediately noticeable feature of this result is that m and b do
not depend on the unknown variances s2

a and s2. Also, these estimators
are exactly the same (for balanced data) as when the ai-effects are fixed
rather than random, or indeed if there are no ai-eflfects. Moreover,
(3.58) and (3.59) are precisely the results that occur in traditional
analysis of covariance as in, for example, equations (6) and (7) of Searle
(1987, Chapter 6).
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— ii. Unbiasedness

On using E[ai] = 0 of (3.32) the expected values of m and b are

and

Thus the estimators m and b are unbiased.

- iii. Sampling distributions

From (3.58) and (3.59) we see that m and b are linear combinations of
the normally distributed yij—see (3.39), and so the estimators them-
selves are bivariate normally distributed. Their means are m and b,
and using the well-known result that the variance-covariance matrix of
estimators (X'V-1X)-1X'V-1y of (3.51) is (X'V-1X)-1, we see that
this is (l/m)(X'0V

-1
0
1X0)

-1 as occurs in (3.52). And so from (3.57)

and

Except for the occurrence of s2
a in (3.60), these results are essentially

the same as with standard, simple regression of Section 3.1. One appar-
ent difference is the presence of m in the denominators, arising from the
fact that Sxx is defined, in (3.55), as Sxx = Sj(xj - x)2 = Sjx

2
j — nx2

and not as
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c. Estimating variances

In Section 3.5b the ML estimation of m and (3 was dealt with on the
assumption of (normality and) knowing V. Interestingly, the resulting
estimators, m and b of (3.58) and (3.59), do not depend on V; i.e.,
they do not depend on s2

a and s2. However, these variances are often
unknown, in which case we will want to estimate them, not only for
their own sake but also to use them in, for example, the variances of
the estimators in Section 3.5b-iii. And if we are going to estimate
s2

a and s2 from the same data set as will be used for estimating m
and 0 (as is often done) it will be advisable to use ML for estimating
all four parameters, m, b, s2

a and s2, simultaneously. In doing this,
the equations for estimating m and b will be exactly the same as those
already considered except that the ML estimators s2

a and s2 will replace
s2

a and s2 in those equations. However, because s2
a and s2 do not occur

in those equations the estimators m and b when estimating all four
parameters will be exactly the same as already derived in (3.58) and
(3.59). This means that to estimate s2

a and s2 we can maximize, with
respect to s2

a and s2, the likelihood with m and b replaced by m and b.
Thus if we write the log likelihood as l(m,bs2,s2

a) we maximize

- i. When ML solutions are estimators

Suppose we write q = E[y] = X|mb| of (3.50), in which the normality

assumed therein gives the likelihood as

Then, using V-1 of (3.49) and

it can be shown that
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where

After substituting for m and b from (3.58) and (3.59)

and

where the familiar notation for sums of squares in analysis of variance
is introduced:

We also have occasion later to use notation familiar to analysis of co-
variance:

the sum of squares due to covariance, and

the sum of squares for residual. This gives (3.67) as

Now, differentiating I* with respect to s2
a and s2 and equating the

results to zero yields ML solutions s2
a and s2 (see Section 1.7a-iii, for
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the overhead dot notation). First, l*/ s2
a = 0 yields

so giving

Next, after some considerable algebra, and using (3.75) we find that
l* / s2 ultimately yields

This is exactly the same result, for balanced data, as when the ai-effects
are fixed, not random. Indeed it is the standard analysis of covariance
result as in, for example, equations (23) and (25) of Chapter 6 of Searle
(1987). Then from (3.75)

Providing s2
a is not negative it is the ML estimator s2

a = s2
a. In passing

we note that (3.77) is the same as s2
a in (2.25) except for the addition

of the term in b2.

— ii. When an ML solution is negative

But it is possible for s2
a to be negative, in which case it is not the ML es-

timator. And then neither is s2 of (3.76) the ML estimator of s2. This
is so because the general method of maximum likelihood estimation de-
mands that ML estimators be within the range of their corresponding
parameters; and negative s2

a is not within the non-negative range of
s2

a. To overcome this difficulty we must adopt the ML methods for this
situation (see Searle et al., 1992, Section 3.7a-iii) which lead to taking
s2

a = 0. This being so we then have to maximize

obtained from (3.65) by replacing s2
a with zero. Equating to zero the

differential of (3.78) with respect to s2 gives what will be denoted as
s2

0, which is s2
0 = S1lmn. And so using (3.74) for S\ we have
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d. Tests of hypotheses - using LRT

The likelihood ratio technique (LRT) of hypothesis testing is described
in general terms in Section 1.7b-i. Suppose 0 is the value of 0 that
maximizes a likelihood function L(q) involving parameters 0. And
denote by q0 the value of 0 which maximizes the likelihood when the
parameters are limited (restricted or defined) by a null hypothesis H0

pertaining to some of the elements of 0. Then the likelihood ratio is

It leads to a test statistic for the hypothesis H. We illustrate this
for two hypotheses that are often of interest, namely H0 : b = 0, and
H0:s

2
a = 0.

Rather than using (3.80) in practical application, it is often easier
to use the negative of twice its logarithm:

- i. Using the maximized log likelihood l * ( q )

The maximized log likelihood is l* of (3.65) with s2 replaced by s2 of
(3.76) and, on assuming s2

a is positive, with s2
a replaced by s2

a = s2
a of

(3.77). Then, with m and b used in S1 and S2 as in (3.67) and (3.68)
we have

after some simplification of ns2
a/s

2 for the last term. Then, after col-
lecting all the terms in (3.82) that do not involve SSA and SSR into
what we will call f1(m,n), we get

It is to be noticed that the LRT is defined in terms of maximum
likelihood estimators. Yet in going from (3.65) to (3.83) we did, in
fact, use s2

a = s2
a, as if s2

a > 0. But we know that when s2
a < 0 we
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take s2
a = 0; and no account of this has been used in deriving L(q) of

(3.83). The reason for this is that (see E 3.4), for H0 : s
2
a = 0, having

s2
a = 0 leads to LRT = 1, for which value one would never reject H0.

— ii. Testing the hypothesis H0 : s2
a = 0

To derive —2 log L for H0 : s2
a = 0 we need first to estimate m, b and

s2 from the likelihood adapted by using 0 for s2
a. But with m and b of

(3.58) and (3.59) not involving s2 or s2
a, we know they will be the same

for q0- And the estimator of s2 for q0 will be s2
a obtained in (3.79).

Therefore, —2l* (q0) can be found by replacing s2 by s2
a of (3.79) and

s2
a by 0 in (3.65). This gives

Therefore, on ignoring f1(m,n) and f2(m,n), we get from (3.81)

We now write

where F is the F-statistic in an analysis of covariance for testing
H0 : ai all equal; and if the ai are all equal then, with probability 1.0,
we have s2

a = 0. And, on using q

To investigate the monotonicity of —2 log A with respect to q we
consider
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and this is the condition for d\ — cr2. And, in (3.86) we see that
—2 log A is monotonic increasing with g, i.e., log A is monotonic de-
creasing with increasing g, which is just what we want. This algebra
shows that the usual F-test in an analysis of covariance is the LRT for
#0:^ = 0.

- iii. Testing HQ : ft = 0

This is easy. First, l*(0) stays as is, in (3.83). Second, under HQ\f3 = Q
we simply put ft = 0 in the estimators /i, <r2 and a2. Thus jj, of (3.58)
becomes fa = y.., S\ of (3.67) becomes SST and 82 of (3.68) stays the
same, 62 = SSA. Also, with no f3 in the model, SSC of (3.73) becomes
SSR = SSE. Therefore from (3.75) and (3.76)

The only effective change in all of this is that /*(#o) will be I* (6)with
SSR replaced by SSE. Doing this in (3.83) gives

and so, on subtracting (3.83) from (3.88) and ignoring /i and /3,

from (3.73) where, in (3.72) SSC is /32m5xa;, which is what is usually
called SS(Regression). Thus (3.89) suggests what we will denote by qp
as the test statistic:
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In point of fact the usual analysis of variance statistic is

where SS(Residual) has k = m(n — 1) — 1 degrees of freedom. And from
(3.90)

As in the previous Section (3.5d-ii) we see that, with balanced data,
the usual analysis of variance F-test is the LRT of HQ : /3 = 0.

e. Illustration

We return to the Phytophthora data of Figure 3.1 using all six weeks of
data but only temperatures 15°C through 25° C. Since conditions vary
from week to week, possibly causing lesion sizes to change, and since
our goal would probably be to draw conclusions about a hypothetical
population of experiments replicated over time, we treat the week-
specific intercepts as random. Accordingly, we model the average log
diameter (ALD) per leaflet as

where ALDjj = y^ is the average log diameter of the lesion, and
TEMPjj = Xij is the temperature, both being defined for the jth leaflet
during the z'th week.

Using SAS PROG MIXED (SAS Institute,^1998) the restricted max-
imum likelihood estimators are p, = —1.818, /3 = 0.170, o1 = 0.219 and
<JQ = 0.250. So, for example, the estimate of /? tells us that log diameter
increases about 0.170 with each increase in temperature of one degree.
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The value of a% indicates the magnitude of the variation of the weekly
intercepts: They have a standard deviation of about 0.5. We can also
use it to provide an estimate of the correlation of the observations taken
in the same week. Using (2.18) the ML estimate of the correlation is

which is appreciably high. Is the correlation statistically significantly
different from zero? We can test it by testing HQ : o\ = 0 versus HA '•
a\ > 0. As in Snedecor and Cochran (1989) we form the F-statistic,
F = MSA/MSR, which is equal to 7.85. The critical value is J|0 0 95 =
2.54, so the test easily rejects HQ with a p-value, P{^3o > 7.85}, which
is less than 0.001.

f. Predicting the random intercepts

As a predictor of a we use, as in Section 2.4b, the best predictor, BP:

This is valid for all forms of probability distributions of a and y (see
Section 9.2). In the model being considered here the individual vectors
yi are independent and the only information about a« is that contained
in j/j. . Therefore we consider just

and under the normality conditions of (3.32) and (3.34) this is

This is very similar to BP(o,) of Section 2.4b-ii.
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We now face a problem: how to convert the algebraic expression
of (3.92) to a numerical value that can be of practical use? In other
words, how can we estimate BP(aj)? Because it is a ratio of variances
multiplying a linear function of // and (3, the derivation of an optimum
estimator is undoubtedly difficult. Several alternative possibilities do
exist. The easy part is to use jj, and /3 in place of // and /3. At least
for balanced data, jj, and fi do not involve a1 and cr2, so no matter
what we do about those variances, using /i of (3.58) and /3 of (3.59)
seems appropriate. Thus if cr2 and a2 are known we could use, as an
estimator of BP(oj),

after substituting for p, and /3. The sampling variance would be

If we do not know a and cr2 we may be prepared to assume that
some prior estimates are true values, in which case we could use them
in (3.93) and (3.94).

But lacking true (or satisfactory prior) values for cr2 and cr2 we need
to estimate them. Suppose we do this, using ML. Then, bearing in
mind that under large-sample theory the ML estimator of a function
of parameters represented by 0, say /(0), is f ( 0 ) for 0 being the ML
estimator of 0, we calculate the ML estimate of BP(aj) as

But if we use BP(aj) of (3.95), goodness knows how we could derive
its variance, especially if, as is often the case, the estimates of all four
parameters have been obtained from the same data set. Moreover, the
very form of BP(aj) creates complications for ascertaining variances.
For example, what is the variance of a ratio of estimated variance com-
ponents, let alone of that ratio multiplied by a mean?

A practical way out of this predicament is to assume the variance
components are known, leading to BP° of (3.93); derive its variance and
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in that variance replace cr2 and a^ by estimates (or assumed values)
thereof. Thus use as the variance (3.94) with a2 and a^ replaced by
their estimates:

Properties of this are unknown—but at least it is a practical procedure.
Of course, if <j\ = 0 every BP(af) is the same, namely zero, consistent
with (T^ = 0.

3.6 RANDOM INTERCEPTS: UNBALANCED DATA

The preceding section deals with balanced data, by which we mean
that every data vector y; for i = 1,2, . . . , m contains n observations yij
for j = 1,2, . . . , n. And corresponding to every y^ is the same vector XQ
of the n x-values, Xj for j = 1,2, . . . , n. Now we deal with unbalanced
data, which is the situation when for each i (i.e., each week of the ex-
ample) there may be some y-values missing (i.e., at some temperatures
data are missing). Thus y; may contain fewer than n observations: we
denote the number of observations in y^ by U{. Likewise, corresponding
to yi there will be only n; or-values. They will, of course, be rij values
from the XQ vector, but not necessarily the same HI values even for two
values of n{ that are the same. So now, instead of the balanced data
case of every y^ of order n being associated with XQ of order n, each y^
of order n^ is associated with its own x^ of order n^, its elements being
U{ values occurring in XQ. Table 3.1 shows some illustrative examples.

Notation
Elements of yf are yij for j = 1,2, . . . ,n j . The revalues associated
with elements of yj are denoted Xij for j = 1 ,2, . . . , n^. But this use of
j is for y^ and x^ being numbered consecutively from j = I through
j = m without regard for the value of j when it is used for Xj in XQ of
(3.35) for the balanced data case. For example, in Table 3.1, the entry
6 in XQ is Xj for j = 5. But that same 6 in xi is #13, in X2 it is #24 and
in X4 it is X43- And, of course, as these second subscripts indicate, the
elements of Xj are written one after the other in the usual way, so that
Xj is nj x 1; it is not n x 1 with gaps or zeros as might be suggested by
Table 3.1.

This particularly affects one's understanding of average z-values.
With balanced data the average x-value was the same for every i, the
average of all n elements of XQ: it was denoted as X{. . Now we have 2^.,
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Table 3.1: Illustrative Examples of Xj

Balanced
Data

xo

Unbalanced Data
xi

HI = 5
X2

ri2 = 6
Elements

2
3
4
5
6
7
8
9

x\\
#12

#13

Xu

#15

= 2
-3

= 6
= 7
= 8

#21

#22

#23

#24

#25

#26

= 2

= 4
= 5
= 6
= 7

= 9

X3

n3 =
of Xi

#31 =

#32 =

#33 =

#34 =

4

3

5

7
8

X4

r&4 = 5

#41

#42

#43

#44

#45

= 3

= 5
= 6

= 8
= 9

the average of the nj re-values in x,, namely X{. = Z)?4i #zj/ni- And
special care in this regard is needed in reducing results for unbalanced
data to those for balanced data. For then, not only does n{ = n and
Xj = XG but also X{. becomes x. .

a. The model

With yi and Xj having order n^ we have, comparable to (3.36)

for

Through steps similar to those leading up to (3.46) we now have

for



96 CHAPTERS. SINGLE-PREDICTOR REGRESSION

For variance specifications we maintain the homoscedasticity of a« in
(3.32) and of yi\a,i in (3.39) (with n and XQ replaced by ni and Xj) and
so, akin to (3.40), have

Notation
For notational simplification and clarity in this section we make the

changes:

and, for example

Thus we write

with

similar to (3.44). Then

b. Estimating p, and (3 when variances are known

- i. ML estimators

As in (3.51) we need X'V-1y and (X'V^X)"1 for estimating p, and
0. Thus from (3.96), (3.97) and (3.98) we get
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Also

after adding and subtracting ^inixl..la'2 m the (2,2) element to get

And, with algebra similar to that used for deriving X'V 1X,

For the moment, write

Then

with, from comparing (3.99) and (3.101),



98 CHAPTERS. SINGLE-PREDICTOR REGRESSION

Thus

This gives

where WSSA is for weighted sum of squares in the sense of

for x.. of (3.105). WSSAxy is denned similarly, jl can also be derived
from (3.102). Tedious algebra (see E 3.8) which includes the use of
weighted means

ultimately reduces to
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Notationally this is similar to previous results but with, of course, using
the weighted means and the not-so-simple expression for J3 in (3.104).

These expressions for /t and J3 are ML estimators provided that cr2

and a2 are known. And using those known values together with the x-
and y-values of the data gives p. and ft as ML estimates.

— ii. Unbiasedness

Using the same procedure as in Section 3.5b-i, it is not difficult to show
for E[ft] that

and so ft is unbiased. And then the unbiasedness of ft is easily estab-
lished (see E 3.9).

— iii. Sampling variances

Some solid algebra (see E 3.11), assuming cr2 and <r2 are known, yields

and

- iv. Predicting a*

The only change from Section 3.5e is that everywhere n occurs it is
replaced by ?v Thus

and everything follows from this just as in Section 3.5 but with /} and
ft of (3.106) and (3.104) in place of // and ft.
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3.7 BERNOULLI - LOGISTIC REGRESSION

Consider the example of Section 3.1: We are interested in the growth
of Phytophthora infestans sporangia lesions as a function of #, the tem-
perature. Suppose our response, y, is the presence (coded as y = 1) or
absence (coded as y = 0) of certain diameter growth. This would be
much easier to judge than measuring the radius of colony growth.

What sort of model can we reasonably hypothesize for y as a function
of xl Since y is binary it must follow a Bernoulli distribution. Since
E[y] will be modeled as (and vary as) a function of x and since var(?/) =
E[y](l — E[y]) the variance cannot be assumed constant. Further, since
E[y] = P{y = 1}, the mean must be bounded between zero and one.
Therefore E[y] cannot be assumed to be linear in x unless it is modeled
over only a short range of x. Otherwise it would lead to values of
E[y] not in the interval (0,1). Alas, three of the four assumptions (all
except independence) of the simple linear regression model of Section
3.2a cannot be used for binary data.

One way to deal with the range restriction inherent in E[y] is in the
same parsimonious fashion as in Section 2.6c. Instead of modeling E[y]

directly we instead model logit(E[y]) = log

a. Logistic regression model

The preceding discussion is motivation for the widely used logistic re-
gression model:

or equivalently

In (3.109) we have again used the notation TT for the mean of y since it
is a probability.

How is this model different from (3.1)? Clearly we are assuming a
different distribution for t/f. Also, by modeling logit(E[?/i]) as linear in
X{ we are, in fact, hypothesizing a nonlinear model for E[yi] as given in
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Figure 3.2: Plot of E[y] for the Logistic Regression Model
(3.109) with a = 1 and (3 = 2.

(3.109). As an example of the form of E[y], Figure 3.2 shows a plot of
E[y] as x ranges from -4 to 4 when o; = 1 and {3 = 2.

Several comments about the form of E[yi] are in order to understand
more fully the logistic regression model. The equation describes a re-
gression line that is always (when viewed over a wide enough range of
x and as long as fi is not zero) an S-shaped curve as demonstrated in
Figure 3.2. It is increasing if /3 is greater than zero, decreasing if f3 is
less than zero and flat if {3 is equal to zero. Thus j3 governs how quickly
the curve increases or decreases whereas a governs its horizontal loca-
tion. The curve reaches its half height (of 0.5) when a + fix = 0 or,
equivalently, when x = —a//3.

Another primary interpretation of /? is related to the idea of odds.
If the probability of an event is TT, then the odds of the event is defined
as 7T/(1 — ?r). For example, if the probability of an event is 1/3, then
its odds are ̂ | = 1/2 or the odds are 1 to 2; if the probability is 3/4,

then the odds of the event are 774 = 3. Thus, another way to state
(3.109) is that the log of the odds of the event P{T/J = 1} is a + fixi or
that the odds of a success are ea+&Xi.

A common way to interpret 0 in the linear regression model (3.1)
is to consider how much E[y] changes when x is increased by a single
unit. For that model we get the simple result that the difference in
expected values is just [a + j3(x + 1)] — [a -I- 0x] = /0.
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The equivalent calculation for (3.109) is that

or

where odds(x) = Tt(x)/[l — 7r(rc)]. This result is described by saying
that /3 is the log odds ratio or that e@ is the odds ratio.

While the formulation (3.109) is quite standard and leads to easy
interpretations of a and /3 in the scale of logit[7r(rri)], for which it is
linear in z, it does not give a straightforward interpretation on the TT
scale. For ease of interpretation E[j/f] is sometimes reparameterized in
terms of x^, = —a//3, the halfway point on the x-axis, and 7, the slope
of the curve at Xh. In this parameterization

b. Likelihood

Since the yi are independent and Bernoulli distributed, the likelihood
is straightforward to evaluate:

Using

and
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gives L as

and the log likelihood as

We immediately see an advantage of assuming the logit of TT(X) to be
linear in x—it yields an extremely simple log likelihood, in (3.113).

c. ML equations

Differentiating (3.113) with respect to ex and {3 gives

Noting that n(xi) = E[J/J] we can see that setting (3.114) and (3.115)
equal to zero gives exactly the same equations as (3.6) and (3.7) that
were derived for the simple linear regression model of Section 3.2. Un-
fortunately, they are not as easy to solve.

After equating (3.114) and (3.115) to zero we need to solve the (non-
linear in a and /?) equations
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The first equation has a straightforward interpretation: the ML so-
lutions are chosen so that the total predicted number of successes is
equal to ]T)i T/J, the total observed number of successes. Except in some
special cases (e.g E 3.4), (3.116) does not have an explicit solution and
must be solved numerically.

The second derivatives of / take a convenient form:

and

With V = var(y) = diag{7r(xi)[l-7r(o;i)]} and X' =

then we can compactly write the information matrix as

which shows that the large-sample variance of a and /3 is (X'VX) l.
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This also yields a convenient computing algorithm (see Chapter 10)
for finding a and p. Since the Hessian is negative definite, the log
likelihood is concave. Hence, except in rare cases (see E 3.6), a single
local maximum exists (and is the global maximum) and the Newton-
Raphson algorithm described below is guaranteed to converge to the
MLEs (Santner and Duffy, 1990). The algorithm proceeds as follows,
with m denoting the iteration number and superscripts indicating se-
quential values of the parameters:

1. Obtain starting values 0;^°^ and /?(°). Set m = 0.

2. Calculate

3. Check for convergence of . If it has converged, stop;

otherwise set m = m + 1 and return to step 2.

In this algorithm 7r(m)(x) is the notation we use for the vector

d. Large-sample tests and intervals

As in Section 2.6b-v, large-sample tests and confidence intervals can
be based on the asymptotic normality (AJ\f] of o; and ft,

where X'VX is given in (3.117) through (3.120). For example, to test
HQ: fi <Q versus HA '• P > 0 we would reject HQ if

^^^^ *,

where var(/3) comes from inserting the MLEs into the lower-right-hand
entry of (X'VX)" . A large-sample confidence interval for (3 would be
calculated as
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Similarly, the large-sample confidence interval for the odds ratio, e&,
would be

Alternatively, we can use the likelihood ratio test to test the two-
sided hypothesis HQ : /3 = 0 versus HA • P 7^ 0. Under HQ the likelihood
becomes

with maximum do = l°g[y/(l ~ 2/)]- Hence the maximized value of
/ = logL under HQ is YjVi l°gy + Z)(l — l/<) log(l — y)- The likelihood
ratio statistic is then

and the test is to reject HQ whenever —2 log A exceeds xf i-a-

3.8 BERNOULLI - LOGISTIC WITH RANDOM INTERCEPTS

Now consider our example from Section 3.7, but recall that the exper-
iment has been repeated at six different times. We want to analyze
all the data together but suspect that the probability of a lesion for a
fixed inoculation level varied from time to time. We might hypothesize
a model with a common "slope" parameter j3 but "intercepts" which
varied from time to time. Since our goal would probably be to draw
conclusions about all the experiments that could be replicated over
time, we would want the intercepts to be a random effect, as in Section
3.6e.

a. Model

A reasonable model for a success for observation j in experiment i
would therefore be the following:

or, equivalently,
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and

Conditional on aj the yij follow a logistic regression model with inter-
cepts that vary with the index i (with time in our example). Thus,
conditional on a^, ft has the same interpretation as in the usual logistic
regression model.

Since the a; are random effects, there are two important differences
between (3.126) and (3.109). First, the yij do not follow a logistic
model marginally. This is because

cannot be evaluated in closed form, and, in particular, is not of the
logistic form, i.e., 1/(1 + e~(a*+0*z«')), for some choice of a* and ft*.
However, it can be well approximated by a marginal logistic model:

where

for A = 256/757T (see E 3.8).
Second, the yij and y^ are correlated since they both involve the

same random effect a^. Using (1.16) we obtain

covfaj, yik) = cov(E[j/y|ai], E^a,]) + E [cov(yy, yikM]
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b. Likelihood

The likelihood can be calculated in the usual manner by writing the
density conditional on the random effects as in (3.112) and then inte-
grating them out:

giving a log likelihood of

As in Section 2.6c-ii this must be evaluated and maximized numerically.
Gauss-Hermite quadrature is again a logical method.

c. Large-sample tests and intervals

Given the intractibility of the log likelihood in (3.130), calculation of
the information matrix for tests or confidence intervals is difficult and
numerical at best.

Likelihood ratio tests can be performed by numerically maximizing
(3.130) and log likelihoods of reduced models and calculating the neg-
ative of twice the difference between their maximized values.
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d. Prediction

Conceptually, the estimated best predictor is given by

However, as in the preceding section, closed-form expressions do not
exist and are numerically difficult to compute.

e. Conditional Inference

If interest focused solely on (3 of (3.126) as opposed to a, cr^, or the a,,
then another approach is available for inference. Suppose we rewrite
model (3.126) as

(using oti = a + aj) and make no assumptions about the az. Writing
the log likelihood gives

from which the sufficient statistics are j/i., 7/2-5 • • • > ym--> an<i Z)i,j Vijxij-
One reason for using random effects models is that it is known (Ney-

man and Scott, 1948) that if we let the sample size increase by letting
m —> oo and we try to estimate c*i,a2, • . • ,am, and fi by maximum
likelihood then inconsistent MLEs can result.

Standard theory (Lehmann, 1986, Sec. 4.4) is to consider the condi-
tional distribution of the sufficient statistic "associated" with the pa-
rameter of interest conditional on all the others. Conditioning on the
sufficient statistic removes dependence on the remaining "nuisance" pa-
rameters. Such a methodology leads to tests which, for the marginal
problem, are uniformly most powerful unbiased.

Applied in our situation, where we are assuming 0 is the parameter
of interest, leads to consideration of the conditional distribution of
T = £»j-ytjz»j given Si = yi.,52 = 2 / 2 - , - • • ,Sm = ym. • We start
with their joint distribution.
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Since the y^ are discrete, to calculate the probability that S\ = si,
$2 = 82, • • ••> Sm = Sm and T = t, we merely sum over the yij that give
2/1- = 5i, 2/2- = S2, • • -, ym. = sm, and £ij j/y-rcy = *:

where .R = {j/y : j/i. = s i , . . . , ym. = sm, 5Z yij^y — *}• This is equal to

where G(SI , . . . , sm, t) is the number of combinations of the y^ that are
in R. To find the marginal distribution of Si, £2, • • •»•S'm we sum out

T:

Then

which is independent of the c*j, as promised by sufficiency. This can be
used to form tests or calculate estimates.

For example, to test HQ : j3 < 0 versus HA '• P > 0, we use the null
hypothesis distribution of T|S, namely

which depends only on the combinatorial coefficients and on no un-
known parameters. The p-value corresponding to an observed value,
*o = ^yijXij, is
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Clearly we need to know the values of C(si , . . . , sm, t] to perform the
calculation. Conceptually this is a simple counting task, but from a
practical point of view the task can get tedious or, for larger problems,
insurmountable. Specialized software (e.g., Mehta and Patel, 1992)
has been written to efficiently compute these quantities for small and
moderate-sized problems.

A conditional MLE for /? can be calculated by maximizing (3.137).

3.9 EXERCISES

E 3.1 Under model (3.29) show that the standard deviation of y is pro-
portional to its mean.

E 3.2 Showing all intermediate steps, derive from details given in Sec-
tion 3.5b-i, the jj, and & of (3.58) and (3.59).

E 3.3 Derive (3.65), and from that derive (3.75) and (3.76).

E 3.4 Explain why the LR statistic for H: o^ = 0 is 1.0 when a\ — 0.

E 3.5 Derive (3.94) and develop expressions for the covariance of BP°(aj)
and BP°(ajt); and for the variance of BP°(aj) — a^.

E 3.6 Show that the covariances of (1 with BP°(a;), of J3 with j/j., and
of P with y.. are all zero.

E 3.7 Derive (3.99) and (3.100).

E 3.8 Prom (3.102) derive ft, of (3.106). Note: This is quite lengthy.

E 3.9 Show that 0 and p, of (3.104) and (3.106) are unbiased.

E 3.10 Simplify p and /} of (3.104) and (3.106) for n* = n Vz.

E 3.11 Derive (3.107) and (3.108).

E 3.12 For Xi taking on only the values 0 and 1, find the MLEs of a and
p from (3.116).

E 3.13 Suppose there is a value d such that yi = 1 for all observations
with Xi > d and yi = 0 for all observations with Xi < d. Show
that the log likelihood (3.113) is an increasing function of P for
an appropriately chosen value of a and hence that a finite MLE
does not exist.
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E 3.14 Under /3 = 0 for model (3.109), show that do, the estimate of a,
is log[y/(l - y)].

E 3.15 Using the fact that (Johnson and Kotz,

1970, p. 6) and the results of E 3.16, derive a* and ft* of (3.128).



Chapter 4

LINEAR MODELS (LMs)

This chapter provides a thumbnail discussion of linear models (LMs),
one of the most widely treated branches of statistics, both in theory and
in practice, embracing, as it does, regression, analysis of variance, and
analysis of covariance. These topics are dealt with in varying degrees
of detail in a myriad of books and papers, so it is not our intention to
have this book or this chapter replicate them to any great extent. We
simply assume at this point that the reader is familiar with the basic
ideas dealt with in Chapters 1 through 3.

The prime object of the chapter is to describe the general ideas of
LMs and the analysis of data based thereon. In doing this we establish
notation and concepts for use in the succeeding chapters on linear mixed
models (LMMs), generalized linear models (GLMs) and some nonlinear
models. We begin with an introductory example.

Consider a portion of the experiment on the growth of potato lesions
described in Chapter 3. That experiment extended over several weeks;
we consider just one week, the first, say. In that week there are 16
observations, consisting of the extent of lesions on each of four leaves, at
four different temperatures. Let yij be the average log diameter of the
lesions on leaf j at temperature z, for j = 1 ,2 , . . . , 4 and i = 1 ,2, . . . , 4.
Then for fj, being an overall mean, and TJ the effect of temperature on
lesion number we could take, for each i

for j = 1 ,2, . . . , 4. For

113
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we can define

and then write

Throughout all this the \i and rs are taken as fixed effects which we
wish to estimate. That is what is now considered. But we go no further
with this example, using (4.5) simply as a base from which to describe
a general model.

4.1 A GENERAL MODEL

We think of dealing with N items of data, arrayed as a vector y of
order N x 1, and we take the basic (vector) equation of a model to be

where, for example, fj, may have the form p, = X/3 as in (4.5). We turn
to this form in Section 4.2.

With y being data, we think of its elements as being realized values
of some random variable which would traditionally be denoted as Y.
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For simplicity we abandon this notational distinction and use y both
as a realization of a random vector and as the random vector itself. In
this latter sense we attribute to y a variance-covariance matrix V and
write

Then, to combine (4.6) and (4.7) we write

meaning that y has mean n and variance-covariance matrix V.
Statement (4.8) is very general. It does no more than assign a symbol

p, to the mean y and another symbol V to the matrix of var(y). As
they stand, p. and V are nothing more than symbols, p, has N elements
and V = V has N(N + l)/2 unique elements. But there are only N
data values; so without describing (modeling) fj, and V in terms of
less than N parameters, fj, and V cannot be estimated. Thus we have
to specify /z and V in terms of underlying parameters appropriate to
the nature of the data being studied. And this is just what we do for
the different forms of models, LMs, LMMs, GLMs, GLMMs and some
nonlinear models. We start with LMs.

4.2 A LINEAR MODEL FOR FIXED EFFECTS

Special forms of fj, and V for the traditional linear model for fixed
effects are

and

/3 in (4.9) is a p x 1 vector of unknown fixed effects and X is a known
matrix, of order N x p. Thus (4.8) and (4.9) give

a vector of linear combinations of fixed effects. And from (4.7) and
(4.10)
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which means that the variance of every element of y is taken as being
the same, namely cr2, and the covariance between every pair of elements
is taken as being zero. In summary, we therefore have for LMs

The equation E[y] = X/3 of (4.11) is called the model equation and X
is the model matrix. In many situations X will have elements which
are all 0 or 1, in which case X is known as an incidence matrix. But it
is perfectly permissible for X to also have columns of observed or mea-
sured variables, such as predictor variables in regression (e.g., Chapter
3) or concomitant variables in analysis of covariance.

Notice that although (4.11) and (4.12) specify the mean and variance-
covariance structure for y of (4.13), the actual form of the distribution
is not specified in (4.13).

4.3 MAXIMUM LIKELIHOOD UNDER NORMALITY

Although estimating the ft of (4.13) is often done by ordinary least
squares (OLSE) or generalized least squares (GLSE), neither of which
demand having an underlying distribution for y, we follow the general
approach of this book and use maximum likelihood (ML). This has the
particular merit of simultaneously providing an estimator not only for
ft but also one for cr2 of (4.13).

Starting with the assumption that y follows a multivariate normal
distribution,

the likelihood function is

and so the log likelihood is

Denoting dl/dft by lp and dl/dv2 by /a2, it is easily found that

and
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Equating lp to zero, and in doing so denoting ft by J3 gives X'E[y] =
X'y or

Equations (4.18) are known as normal equations, from which

And from equating lai to zero, with a2 in place of a2 we get

These are the ML estimators; they are not just solutions, because J3 lies
in the same range as /3, namely — oo < (3 < oo, and a2 is non-negative,
as is a2.

The first thing to notice about J3 of (4.19) is that it exists only if
(X'X)"1 exists: and this requires XjyXp to have full column rank p.
This is very restrictive, because in many situations X does not have
rank p.

4.4 SUFFICIENT STATISTICS

Working from (4.14) we can rewrite the density of y as

To identify the sufficient statistics we define 0' = (jS^cr2)' as the pa-
rameter vector and define the following functions to match with the
definition in Section S.3 of Appendix S:
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This results in the distribution of y being in the exponential family and
hence the sufficient statistic is (y'X y'y)'. As expected, the maximum
likelihood estimators are functions of the sufficient statistics.

4.5 MANY APPARENT ESTIMATORS

a. General result

When (X'X)-1 does not exist there is no longer just one solution J3
given by (4.19). Instead there is an infinite number of solutions to
(4.18) of the form

for (X'X) being any matrix satisfying

For notational convenience we use G for (X'X) :

By virtue of the nature of (4.23), we call (X'X) a generalized inverse
of X'X. For X of full column rank, (X'X)~ of (4.24) is (X'X)-1, which
exists, and we use ft = (X'X)-1X'y as the estimator of /3. But when
X has less than full column rank, (X'X)"1 does not exist and there
are many matrices (X'X)~ satisfying (4.24). Thus there are many
solutions /3° available from (4.22). That is why the symbol /3° is used
in (4.22), as emphasis for distinguishing the many solutions /3° when
X is less than full column rank from the solitary ft when X is of full
column rank.
Note: From this point onward we assume X has less than full column
rank, unless otherwise stated.
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b. Mean and variance

Not only are there numerous values of /3° for any given X, but none of
them is unbiased for /3. With E[y] = X/3 of (4.11) it is easily seen that
the expected value of/3° is GX'X/3:

In general this is not /3; it is (3 if GX'X equals I, but this occurs only
when X'X is non-singular, in which case G is (X'X)"1.

The variance of /3° is

This does not simplify to G<r2, which one might expect on the basis of
it being (X'X)"1 when that exists.

In view of there being numerous solutions /3°, with none of them
unbiased for /3, one well might wonder what use there is for any (3°.
Fortunately, there is an important invariance property pertaining to
X/3 which provides widespread applicability and utility.

c. Invariance properties

The infinity of values /3°, together with the dependence on G of E[/3°]
and var(/3°) in (4.25) and (4.26), clearly negates using any j3Q as an
estimator of ft. But three standard properties of G (Section M.4 of
Appendix M) do provide useful results that are invariant to G (for
given X, of course). These results are

and

These results lead to the following useful properties involving X/3°.
First, the predicted mean of y is
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and is invariant to G. Thus for every ft0 = GX'y, no matter what G
is used, the value of X/3° does not depend on G. Second, in place of
(4.25),

from (4.29); and third,

is also invariant to G.

d. Distributions

For

(4.25) and (4.26) give

whilst from (4.31) and (4.32)

4.6 ESTIMABLE FUNCTIONS

a. Introduction

When we are interested in estimating functions of ft we must distinguish
between those which are functions just of X/3 and those which are not.
Because the parameter ft affects the distribution of y only through
X/3, it is only functions of X/3 which can be estimated satisfactorily.
In that context consider a linear combination of elements of X/3, say
t'X/3. An unbiased, though perhaps not efficient, estimator of t'X/3 is
t'y- Therefore we can estimate q'/3 whenever q' is of the form t'X. But
when q' cannot be written in the form t'X it is not possible to estimate
q'/3 unbiasedly. Thus for estimating linear functions of (3 the only ones
we can consider are those of the form q'ft = t'X/3. Such functions are
said to be estimable functions—functions of ft. Their characteristics
are now described.
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b. Definition

A linear combination of elements of f3 is q'/3 for some row vector q'. It
is called an estimable function, and is said to be estimable, under the
following circumstances:

i.e.,

c. Properties

Three important properties of estimable functions are as follows:

(1) E[yjt] is estimable for any element y^ of y. This is so because for

we have

which satisfies (4.35). Thus the expected value of each observa-
tion is estimable.

(2) Linear combinations of estimable functions are estimable. Sup-
pose q'j/3 = tjX/3 and q2/3 = t2X/3 are estimable functions.
Combining them using scalars c\ and c2 gives

for t* = citj + C2t2, thus demonstrating estimability.

(3) Putting properties (1) and (2) together enables the establishment
of functions (linear combinations of elements of (3} that are es-
timable without having to ascertain the corresponding vectors t'.
This is illustrated in the example of Section 4.7.
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d. Estimation

With q' = t;X of (4.36) and X/3° = XGX'y of (4.30) being invariant
to G, we have the ML estimator of estimable q'/3 as

invariant to G. A notable feature of this is the second equality, that
the estimator of estimable q'/3 is q'/3°5 the same linear combination
of elements of /3° as is the estimable function q'/3 of 13. Furthermore,
under normality of y, using (4.37), we have

Since the ML estimator of q'/3 is unbiased and based on the suffi-
cient statistic (Section 4.4) it is a uniform minimum variance unbiased
(UMVU) estimator.

The invariance of q'/3° and of its variance to different G when q'/3
is an estimable function are two eminently practical features of an es-
timable function. They totally avoid the impracticality of /3° as an
estimator of ft through it and its variance being functions of G for
which there is an infinite number of values.

4.7 A NUMERICAL EXAMPLE

For the sole purpose of numerically illustrating some of the preceding
results, suppose for the 1-way classification of Chapter 2 we have the
following data, for three classes with 3, 2 and 1 observations.

i = l
72
36
12

120

t = 2
48
12

60

i = 3
36

36

Then for
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The resulting normal equations, X'X/3° = X'y of (4.18), are therefore

Four different matrices G = (X'X) are

Post-multiplying these by X'y = [216 120 60 36]' gives solutions
(3° = [»° a? a° a°]'as

Note that fi\ has a® = 0 (i.e., the last effect has solution zero), a
characteristic seen in SAS GLM and Proc MIXED outputs. And /3§ =
/^ has «i + c*2 + as = 0? a feature of some other computing software.
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It is also interesting to note that two different G-matrices can give the
same 0° = GX'y.

Demonstrating (4.28) we find that XGX' for each of the four Gs is

where Jn is n x n with every element 1/n. It is then easily verified
that XGX'X = X of (4.29). Next, from (4.30) it is easily seen that
(X0°)' - [40 40 40 30 30 36] for each 0°.

By property (1) of Section 4.6c, having E[T/JJ] = n + c^ means that
H + a.i is estimable; and from each /3° we find that the MLE of ̂  + ot\
is 40. For example, /z° + a? from /3? is 0 + 40 = 40, from fy it is 36 +
4 =40 and from 0jj it is 35^ + 4§ =40. Also by property (2) e*i - a2

is estimable because ai — 0:2 = // + QI — (/z + 02); and each /3° gives
ai ~ a2 ~ 10- These calculations demonstrate for estimable q'/3° the
invariance of q'/3° to /3°.

Writing estimable fj, + ai as q'/3 for q7 = [1 1 0 0] it will then be
found, using (4.38), that

no matter which G is used.

Remark: Derivation of the four G-matrices is as follows: GI and
62 are based on the regular inverse of the lower right and upper left
(respectively) 3 x 3 submatrices. GS uses the formula for Gr in Searle
(1987, p. 307) and G4 uses (X'X + H'H)-1 discussed in Searle (1971,
p. 23) and more thoroughly in Searle (1999).

4.8 ESTIMATING RESIDUAL VARIANCE

a. Estimation

Equation (4.20) shows the ML estimator for a2 of y ~ (X/3, a2!) when
X'X is nonsingular. In that equation replacing J3 by /3° gives the ML
estimator a^L when X;X is singular as follows,
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The numerator of aJjL is denoted by SSE, the residual (or error) sum
of squares in the context of analysis of variance. For convenience we
retain that label but without reference to analysis of variance.

It is of interest to see if OML is unbiased for cr2. To do this we use
the result in Section S.lb of Appendix S for the expected value of a
quadratic form. Then after simplifying SSE to be

we find, for

that

Note that this result does not rely on any distributional form for y,
only on y having mean X/3 and variance cr2!. Then (4.45) gives

Thus the ML estimator of cr2 is biased downward.
On the other hand, dividing SSE by (N — rx) gives an unbiased

estimator

This is, of course, the usual estimator used in analysis of variance, and
being based on the sufficient statistic is a UMVU estimator.

b. Distribution of estimators

SSE is a quadratic form; and in Section S.2c of Appendix S is the
following important theorem concerning the distribution of quadratic
forms.

Theorem. When y ~ A/"(/x, V) with V nonsingular then
y'Ay is distributed as a non-central x2 with degrees of free-
dom v = rank(AV) and non-centrality parameter ^/z'A/i,
if and only if AV is idempotent.

In applying this theorem there is also the extension that whenever
/Lt'A/i = 0, the distribution becomes a usual (central) x2 distribution
on v degrees of freedom, which is denoted by x2,-
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In applying the preceding theorem to SSE of (4.43) it will be found
(E 4.12) that

Therefore

meaning by this that the distribution of a2 is a scalar multiple oi
Xjv-rX5 tnat scalar being a2/(N — rx). And from (4.48)

and from (4.42)

and so

These results, (4.48) and (4.50), rely on the normality of y. An alter-
native expression comes from the general result (applicable to all ML
estimators, regardless of the assumed distribution) that ML estimators
have asymptotic normal distributions with variance structure given by
the inverse of the information matrix. In the case of CT^L this yields an
asymptotic variance of a^ of 2cr4/JV. And this is, of course, close in
value to (4.51) when rx/N is small.

4.9 COMMENTS ON 1- AND 2-WAY CLASSIFICATIONS

Section 4.7 numerically illustrates some of the basic properties sur-
rounding the estimation of ft from E[y] = X/3. Here, for the 1-way
classification, we describe some of its general results. For the 2-way
classification we merely give a hint as to possible complications. Both
of the 1-way and 2-way classifications are dealt with in great detail in
a variety of books (e.g., Searle, 1987, 1997).

a. The 1-way classification

The example of Section 4.7 is that of a 1-way classification with un-
balanced data, i.e., not all the same number of observations in the
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subclasses. Equations (4.40) are an example of the normal equations
which for the model equation

always take the form

And the easiest solution, exemplified by ft® of (4.41), using

gives

Thus with E[yjj] = jj, + ai being estimable its ML estimator is

Also, with Q!J — ak = \i + &i — (n + otk) being estimable, its estimator is

and the sampling variance of a® — a% from (4.38) is (1/n^ + l/n/j)cr2.
An alternative model, simpler than E[y^] = fj, + oij, is E[yy] = /^,

often called the cell means model. In using it, X of (4.39) would be
changed to exclude its first column, and X'X and G would have their
first row and column excluded. This change in the model is effectively
equating /j, + cxi and /^. Hence fJLi = /j, + cti = &. from (4.52).

b. The 2-way classification

The example in Section 1.3b, where yijk represented the rating of the
zth cartoon type by the fcth person in the jth group, suggests using

Estimation details for that model are available in many places (e.g.,
Searle 1971, 1987): Particularly for unbalanced data, those details are
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extensive and need not occupy us here. We confine attention to estima-
bility. Suppose we are interested in estimating the mean rating for the
ith cartoon type. A reasonable estimator for this might be &.., similar
to (4.52). If we define u,i = u, + cti so that

then

where n^ is the number of observations at the intersection of row i
and row j. Thus ?/,.. is not an unbiased estimator of /Uj as might have
been expected. This illustrates how careful one must be in drawing
what seems like an "obvious" conclusion about what it is that some
estimators are estimating. In many cases they are not estimating what
one might think is "obvious". However, if one follows the X'X/3° = X'y
estimation procedure one finds that oti — otk and J3j — $\ are estimable.
On the other hand, when an interaction effect is added to (4.53) so that

then jiij = yij. is an estimator of fj, + cti + fij + 7 -̂ (providing U{j / 0).
But then it is impossible to estimate OL{ — ajt because the interaction
terms can never be gotten rid of.

4.10 TESTING LINEAR HYPOTHESES

The general formulation of a linear hypothesis concerning 0 is

K' must satisfy three conditions:

1. K' = T'X for some T', so that K'/3 is estimable, with unbiased
estimator K'/3° invariant to /3°.

2. K7 must have full row rank—so that K'/3 contains no redundant
elements.

3. K/ must have no more than rx rows: i.e., the row rank of K'
cannot exceed the rank of X.

We show two ways of deriving a test.
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a. Using the likelihood ratio

When 0 represents the vector of parameters in a model, we use L(0)
^ *

as the likelihood. Then for B being the ML estimator of 0, and OQ the
ML estimator under the hypothesis, the likelihood ratio is L(Oo)/L(0),
as discussed in Section 2.5b-iii. With this notation, and 6' = [ft' cr2],
we have L(0) given in (4.14). For 0, (4.22) and (4.42) give the values
of /3 and cr2 that maximize L(/3, cr2) as (3° = GX'y and cr^i, — (y —
X/3°)'(y - X0°)/JV. Using these in (4.14) in place of /3 and a2 gives

Deriving L($Q) requires maximizing L(/3, cr2) subject to K'/3 = m.
The results of doing this (E 4.13) are that for OQ

and

Substituting these values in place of j3 and cr2 in (4.14) gives, after
more algebra,

for

Then the likelihood ratio reduces to

Clearly this ratio, (4.62), is a single-valued function of Q/SSE, de-
creasing monotonically when Q/SSE increases. Therefore Q/SSE can
be used as a test statistic in place of (4.62). Moreover, by the same
reasoning, instead of Q/SSE one can use (with degrees of freedom being
abbreviated df)
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as the test statistic.
Then, using the theorem of Section 4.8b one can show (E 4.18) that Q

has a non-central x2 distribution and SSE has a central x2 distribution.
Furthermore, Q and SSE are independent, as may be established by
using the following theorem.

Theorem. For y ~ .A/"(/i,V) with V nonsingular, the
quadratic forms y'Ay and y'By are independent if and
only if AVB = 0.

These x2 and independence properties of Q and SSE result in our
being able to use (4.63) as an F-statistic for testing H: K.'I3 = m; its
degrees of freedom are r(K') and N — rx-

4.11 t-TESTS AND CONFIDENCE INTERVALS

When K' of the hypothesis H: K'/3 = m has just a single row k', then
Q of (4.61) becomes

to be compared to the ^"-distribution on 1 and N—r degrees of freedom,
where we use the notation r = rx = rank(X) for this section. Now
recall that when a variable is distributed as the ^-distribution on n
degrees of freedom its square is distributed as T\. Therefore

provides a test of H: k'/3° = m. This i-test is also useful for one-sided
alternatives, which is not so for the F-test.

Suppose q'/3 is estimable; then from (4.38) we have the 100(1 - a)%
confidence interval on q'/3 as

where £jv_r>Q/2 is defined by the probability statement P{t > £#-,-,0/2} =
a/2 for t having the t-distribution with N—r degrees of freedom. When
N — r is large, (N — r > 100, say) za/2 may be used in place of t^_r)Q,/2,
where ZQ /2 is defined by
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Prom SSE/a2 ~ X?v-r °f (4-51) a confidence interval on cr2 is

where the denominators are defined by

4.12 UNIQUE ESTIMATION USING RESTRICTIONS

In the case of models of the form such as E[yij] = jJ- + &i for i = 1,2,3,
readers will undoubtedly have encountered constraints on the &iS of
the form

The second of these (and extensions thereof) is especially familiar to
users of SAS GLM software where its use is standard practice.

Each equation in (4.64) is what we call a linear constraint on the
solution. Careful use of such constraints can eliminate having many
solutions /3° to the normal equations, and instead can yield just a single
solution, one that satisfies the constraint(s) imposed. That being so,
we denote such a solution as J3. A brief outline for deriving JB follows.
Some of the details are available in Searle (1971, Section 1.5b) and a
complete description is given in Searle (1999).

In order to have a unique solution of the ML equations means that
for X#xp of rank r = p — m we need to have H in H)9 = c being
of order m x p of full row rank m. Then ML leads to minimizing
(y - X/3)'(y - X/3) + 20'(H/3 - c) which yields equations

where 10 is a vector of Lagrange multipliers.
After considerable algebra (Searle, 1999) (4.65) yields

Because we have already established that ML generally yields a /3 as
GX'y for some G [and (X'X + H'H)"1 is a G] we cannot call (4.66)
an ML estimator because of the H'c term therein. But (4.66) is an ML
estimator under the constraints H/0 = c. And if c = 0, which is often
the case, then (3 = (X'X + H'H^X'y is an ML estimator.
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Instead of having H/9 = c as constraints on solutions, suppose that
we have H/3 = c as restrictions on parameters ("restrictions" rather
than "constraints" to distinguish parameters from solutions). Then on
partitioning H as [Hi H2] with H^1 existing (after perhaps permuting
columns of H to permit this), we can rewrite H/3 = c as

This can then be substituted into E[y] = X/3 = Xi/^ + X2/32, from
which the ML estimator of 02 can be obtained as

4.13 EXERCISES

E 4.1 Write the linear model equation E[j/y] = M + a« + Pj f°r * —
1,2,..., m and j = 1,2,..., n in matrix form by identifying X
and 0. For X use Kronecker product notation (Appendix M).

E 4.2 Consider two different forms of simple linear regression, namely

for i = 1,2,... , n:

(a) For each model write E[y] = X/3, specifying X and ft.

(b) Obtain X'X, (X'X)"1 and 0.

(c) Obtain var(/9). Do you see any advantage of one model
equation over the other?

(d) Obtain the variance of the estimated value of the mean of
yi at a new value of x, denoted as x*.

5 4.3 For X~ being a generalized inverse of X, and for any z of appro-
priate order, show for 0° of (4.22) that

is a solution of the normal equations X'X/3 = X'y-
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E 4.4 Prom Appendix M, quote the two calculus results used in deriving
(4.16), and explain how they are used.

E 4.5 For X = show that XGX' has the same form

as the example of Section 4.7.

E 4.6 For E[y] = X/3 with X of full rank, show that all linear combi-
nations of /3 are estimable.

E 4.7 For the example of Section 4.7, and 77 = <*i + 2.7a2 — 3.70:3:

(a) Explain why 77 is estimable.

(b) What is the ML estimate of 77?

E 4.8 For y ~ Af(X/3, a2!) derive (4.38) for estimable q'/3.

E 4.9 For the 1-way classification E^] = fj, + cti:

(a) Show that £)» ^»at *s estimable if and only if ̂  Aj = 0.

(b) For i = 1,2,3 and j = 1,2 derive the generalized inverses of
X'X which give

(c) Verify that your answers in part (b) are indeed generalized
inverses of X'X.

E 4.10 Show that

(a) is non-singular;

(b) is a generalized inverse of X'X in (4.40);

(c) gives a solution of (4.40) very different from the solutions in
(4.41), but yields the same estimators of fi + aj.

E 4.11 Show that the mean squared error of <j2 is var(<r2) but that of
a^ is a*[2N - 1 + (rx - 1)2]/AT.
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E 4.12 Derive (4.47).

E 4.13 Derive (4.58).

E 4.14 Derive (4.60).

E4.15 Derive (4.62).

E 4.16 Simplify (4.63) for r(K') = 1, and relate it to t of Section 4.11.

E 4.17 Maximize L({3, a2) subject to K'/3 = mto yield (4.58) and (4.59).

E 4.18 Show that Q and SSE have the distribution described below
(4.63).



Chapter 5

GENERALIZED LINEAR
MODELS (GLMs)

5.1 INTRODUCTION

Models for the analysis of non-normal data using nonlinear models
have a long history. The use of probit regression for a binary response
is a classic example. The word probit was traced by David (1995) as
far back as Bliss (1934). Finney (1952) attributes the actual origin of
probit regression to psychologists in the late 1800s.

In an early example of probit regression, Bliss (1934) describes an
experiment in which nicotine is applied to aphids and the proportion
killed is recorded (how is that for an early antismoking message?). As
an appendix to a paper Bliss wrote a year later (Bliss, 1935), Fisher
(1935) outlines the use of maximum likelihood to obtain estimates of
the probit model.

However it was years before maximum likelihood estimation for pro-
bit models caught on. Finney (1952), in an appendix entitled "Math-
ematical basis of the probit method" gives some of the rational for
maximum likelihood and motivates a computational method that he
spends six pages describing in a different appendix.

More specifically, if we let pi denote the probability of a success for
the zth observation, the probit model is given by
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where x^ denotes the ith row of a matrix of predictors and $(•) is
the standard normal c.d.f. Considering the scalar functions applied
elementwise to the vectors, we can rewrite (5.1) as

or equivalently

where X is the model matrix. The use of the inverse standard normal
c.d.f., known as the probit, to transform the mean of y to the linear
predictor is attractive on two counts. First, it expands the range of p
from [0,1] to the whole real line, making it more reasonable to assume a
model of the form X/3. Second, in many problems, the sigmoidal form
of p as a function of the covariates is often observed in practice.

Finney (1952) suggested calculating an estimate of {3 via an itera-
tively weighted least squares algorithm. He recommended using work-
ing probits which he defined (ignoring the shift of five units historically
used to keep all the calculations positive) as

where (/>(•) is the standard normal probability density function (p.d.f.).
The working probits for a current value of ft were regressed on the

predictors using weights given by —.—.. * f—rr (see E 5.1) in order
*lPiJ[l ~~ ®(Pi)\

to get the new value of ft. This algorithm was iterated until convergence
(or at least until the computer - a person! - got tired of performing
the calculations).

Nelder and Wedderburn (1972) recognized that the working probits
could be generalized in a straightforward way to unify an entire col-
lection of maximum likelihood problems. This generalized linear model
(GLM) could handle probit or logistic regression, Poisson regression,
log-linear models for contingency tables, variance components estima-
tion from ANOVA mean squares and many other problems in the same
way.
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They replaced $~l(-) with a general link function, #(•), which trans-
forms (or links) the mean of \a to the linear predictor. With g^p,}
representing dg(p)/d^, they then defined a working variate via

Since the second term on the right-hand side of (5.4) has expectation
zero it can be regarded as an error term so that ti follows a linear
model, albeit with unequal variances which depend on the unknown
(3. This suggests using (5.4) just like (5.3): regress t on X using a
weighted linear regression (more details are given in Section 5.4e) and
iterate until the estimates of 0 stabilize.

More important, it made possible a style of thinking which freed
the data analyst from necessarily looking for a transformation which
simultaneously achieved linearity in the predictors and normality of the
distribution (as in Box and Cox, 1962).

What advantages does this have? First, it unifies what appear to
be very different methodologies, which helps us to understand, use and
(for those of us in the business) teach the techniques. Second, since the
right-hand side of the model equation is a linear model after applying
the link, many of the standard ways of thinking about linear models
carry over to GLMs.

5.2 STRUCTURE OF THE MODEL

Building a generalized linear model involves three decisions:

1. What is the distribution of the data (for fixed values of the pre-
dictors and possibly after a transformation)?

2. What function of the mean will be modeled as linear in the pre-
dictors?

3. What will the predictors be?

a. Distribution of y

Typically the vector y is assumed to consist of independent measure-
ments from a distribution with density from the exponential family or
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similar to the exponential family:

where, for convenience, we have written the distribution in what is
called canonical form. For example, for the probit model, the data
would be independent Bernoulli so that /y; (yi) would be p^ (1 — Pi)l~yi,
where pi is the probability of a success and 7* = log[pi/(l — pi)]. Most
commonly-used distributions can be written in the form (5.5) (see E
5.2).

b. Link function

We typically want to relate the parameters of the distribution to various
predictors. We do so by modeling a transformation of the mean, ^i,
which would be some function of 7*, as a linear model in the predictors:

where g(-) is a known function, called the link function (since it links
together the mean of yi and the linear form of predictors), xj is the
ith row of the model matrix, and /3 is the parameter vector in the
linear predictor. In the probit example g(p,} = ^~l(fj,) and ^ = 1/(1 +
exp[-7]).

c. Predictors

In practice, of course, one must make decisions as to which predictors
to include on the right-hand side of (5.6) and in what form to include
them. For example, in the classic paper of Bliss (1934) the suggested
predictor of survival is log nicotine dose as opposed to nicotine itself.

A key point in using GLMs is that many of the considerations in mod-
eling are the same as for LMMs since the right-hand sides of the model
equations for the mean are the same. For example, issues of how to
represent predictors and interactions, whether and how to model non-
linear relationships and (as we will see in Chapter 8) the incorporation
of random factors.
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d. Linear models

This generalized class of models subsumes the linear model of Chapter
4 as a special case. The normal distribution can be written in the form
(5.5) by defining:

With g(ni) = fa and /^ = xJ/3 we generate the linear model of Section
4.3.

5.3 TRANSFORMING VERSUS LINKING

In its earliest incarnations, probit analysis was little more than a trans-
formation technique. It was realized that the frequent sigmoidal shape
in plots of observed proportions of successes plotted against a predic-
tor x could be made into a straight line by applying a transformation
corresponding to the inverse of the normal c.d.f. However, one of the
main ideas of GLMs is to get away from the idea of transforming the
data. The strategy, then, is to apply a link function to the mean of
the response and fit the resulting model by the method of maximum
likelihood.

5.4 ESTIMATION BY MAXIMUM LIKELIHOOD

a. Likelihood

The log likelihood for (5.5) is given by
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b. Some useful identities

Before we derive the maximum likelihood equations it is useful to es-
tablish some identities. These flow from the results

and

which require regularity conditions (Casella and Berger, 1990, p. 308).
Using (5.5) in (5.9) gives

or

And using (5.5) in (5.10) we obtain

which, using (5.12) gives

or

wherein we define v(fjLi) as d2b(ji}/d^. Note that v(ni) is often called
the variance function, since it indicates how the variance of yi depends
on the mean of yi. Two other useful identities are
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and, using the chain rule and (5.6),

As an illustration of these results, consider the linear model in Sec-
tion 5. Id. With subscripts denoting derivatives we have &7(7i) equal
to //i, the mean, and &77(7i) = 1 so that, from (5.14), var(yf) =
T2677(7i) = cr2, as expected. Also, d^i/d^i = dpi/dpi = 1 = u^)"1,
verifying (5.15) and, with £M(/Jt) = 1, dm/d(3 = xj as in (5.16). Note
that the normal distribution has an unusual feature among distribu-
tions given by (5.5): its variance is a constant and not a function of
the mean.

c. Likelihood equations

We are now in a position to derive the maximum likelihood equations
for /3. From (5.8) we have

upon defining Wi = [v(m)g%(ni)] l.
We can write this in matrix notation as
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with W = \d
wi} and A = \d 0/*(A*»)} •

The ML equations are thus given by

where W, A and // involve the unknown ft. Typically these are non-
linear functions of/3 and so (5.19) cannot be solved analytically.

For example, for the probit model of (5.2), the log likelihood and its
derivative are

and

Identifying 6(71) of (5.5) as Iog(l+e7i) so that 67(7*) = (1+e 7i) l = /^
and 677(7i) = m(l — /^i), it is straightforward (see E 5.4) to show that
(5.21) is of the form of (5.18).

For solving the ML equations or for deriving the large-sample vari-
ance of )9, it is useful to have the expected value of the second derivative
of the log likelihood:

so that

where, again, W = {̂  } = {d[u(/ii)^(^»)] l} •
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d. Large-sample variances

To derive the large-sample variance of J3 we first note that

so that estimation of r2 does not affect the large-sample variance of J3.
The usual large-sample arguments (see Section S.4c of Appendix S),
along with (5.23) and (5.24), show that (see E 5.6)

where varoo indicates the limiting or asymptotic variance.

e. Solving the ML equations

Solution of the ML equations, (5.19), for j3 is usually performed by
an iterative weighted least squares method. This can be derived as an
example of the use of Fisher scoring (Searle et al., 1992, p. 295). Fisher
scoring is an iterative method for maximizing a likelihood and it takes
the form

where (ra) indicates the rath iteration, 1(0) is the information matrix
and 0 is the entire parameter vector.

Using (5.24), (5.23), and (5.18), the portion of the equation for ft
(see E 5.7) is of the form

where it is understood that W, A, and p, are evaluated at fy-™'.
How does this relate to the working variate of (5.4)? We have

so that, with the use of (5.14)
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so a weighted regression of t on X using weights equal to the inverse
of the variance of t gives

which is the same as (5.27).

f. Example: Potato flour dilutions

Finney (1971) gives an example of the growth of spores in a potato flour
suspension. For each of 10 dilutions, five plates are tested for positive
growth. The data are given in Table 5.1. As the flour suspensions
get more concentrated, the probability of growth (i.e., proportion of
positive plates) increases. Figure 5.1 shows that the probability of
response, as a function of the natural logarithm of dilution, follows a
roughly sigmoidal shape, so we might entertain a logistic regression
model. Let yi denote the number of plates out of five that show a
positive response. A possible model is

Table 5.1: Potato Flour Data

Dilution
(g/lOOml

1/128
1/64
1/32

1/16
1/8
1/4

1/2
1
2
4

Spore
No. of Plates

5
5
5

5
5
5

5
5
5
5

Growth
No. Positive

0
0
2

2
3
4

5
5
5
5

Proportion
of Residual Plates

0.0
0.0
0.4

0.4
0.6
0.8

1.0
1.0
1.0
1.0
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Figure 5.1: Proportion of positive spore growth plotted
against log dilution for the potato flour data.

The log likelihood for this model is given by

/ 5 \
where c = £) I 1 is a function of the yi but not of a and j3. The

\yi J
log likelihood is shown as a function of a and j3 in Figure 5.2. The ML
equations are thus given by

With Y^Vi = 31 and Y^Vixi == —17.329 it is merely tedious arithmetic
*N

to verify that a = 4.17 and /? = 1.62 solve these equations to within
rounding error. Figure 5.3 plots the data and fitted values.

To illustrate the large-sample variance calculation note that
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Figure 5.2: Log likelihood plotted against parameters for the
potato flour data.

Figure 5.3: Proportion positive versus log dilution for the
potato flour data.
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so that W = | fj,i(l — m)\ . We thus have

with inverse

This gives

5.5 TESTS OF HYPOTHESES

a. Likelihood ratio tests

Likelihood ratio tests follow the usual prescription of comparing the
maximized values of the log likelihood both under Ho and not restricted
to HQ. If the difference is large (i.e., the unrestricted model fit is much
better) then HQ is rejected.

When there are multiple parameters we will often be interested in
hypotheses concerning only a subset of the parameters. Accordingly,
let the parameter vector 0 be partitioned into two components 6' =
(^1*^2) and suppose interest focuses on 6\ while 62 is left unspecified.
62 is often called a nuisance parameter. Either or both of B\ and 02
could be vector-valued and, if the entire parameter vector is of interest,
02 could be null.

Suppose our hypothesis is of the form HQ : 6\ = 0i(o, where Q\JQ is a
specified value of 0i, and let £2,0 De the MLE of 02 under the restriction
that 0i = 0i5o. The likelihood ratio test statistic is given by
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/> / -V / /v /

where 0 = (B^B^} and the large-sample critical region of the test is
to reject HQ in favor of the alternative when

where v is the dimension of B\.

b. Wald tests

An alternative method of testing is to use the large-sample normality
of the ML estimator in order to form a test. Prom standard results
(Appendix S)

where 1(0) is the Fisher information for 0. Again, if we write 0' =
(#1,02)5 and write conformably

then standard matrix algebra for partitioned matrices (Searle, 1982,
p. 354) and multivariate normal calculations show that the large-sample
variance of 0i is given by

To test HQ: 0i = 0i$ we form the Wald statistic

which, under H$, has the same large-sample x2 distribution as the LRT
with degrees of freedom equal to the dimension of B\. More explicitly
we would reject the HQ: B\ = 0i,o if

Both the LRT and the Wald tests are available to test the same hy-
potheses and have the same limiting distribution. What are the differ-
ences? For large samples, and if the deviation from the null hypothesis
is not too extreme, the two test statistics will give similar, though not
identical results (Bishop et al., 1975, Sec. 14.9). However, for small
samples or for extreme deviations, they can differ. Generally, inves-
tigations have shown (Cox and Hinkley, 1974; McCullagh and Nelder,
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1989) that use of the large sample-distribution for the LRT gives a more
accurate approximation for small and moderate-sized samples than for
the Wald test. The LRT is thus to be preferred. The Wald test does,
however, have a computational advantage since it does not require cal-
culation of 02,o-

c. Illustration of tests

We use the potato flour data to illustrate these tests for the null
hypothesis HQ : f3 = 0, i.e., no relationship between spore growth and
log dilution. To perform the likelihood ratio test we must maximize
the likelihood under the null hypothesis, that is, when the probability
of growth is constant. Under HQ, a = 0.4896 (see E 5.5). We thus have

while

The LRT statistic is thus -2 log A = -2[-33.20 - (-14.21)] = 37.88.
The statistic has 1 degree of freedom, which is the dimension of ft. So
we easily reject HQ at any usual level of significance and the p-value is
P{Xi > 37.88} = 0.

The Wald test statistic uses J3 = 1.62 from below (5.33) and var(^)oo =
0.2089 from the end of Section 5.4. Substituting in (5.39) we then have
W = (1.62)(0.2089)~1(1.62) = 1.622/0.2089 = 12.6. This has ap-value
of P{XI > 12.6} = 0.0004, which again corresponds to rejection of the
null hypothesis at the usual significance levels. This illustrates that
the two test statistics need not be numerically similar for large devia-
tions from the null hypothesis. Of course, in such situations the same
qualitative conclusion would ordinarily be reached.

d. Confidence intervals

Either the LRT or Wald test can be used to construct large-sample
confidence intervals for 9\. For the LRT we include in the confidence
set all values 0\ such that

In (5.41) 02,1 represents the MLE of #2 for each value of B\ checked for
inclusion in the set.
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For the Wald test we include in the confidence set all values of B\
such that

The computational burden of the likelihood-based confidence interval
is thus larger than that for the Wald-based interval. However, the small
and moderate-sized sample performance of the LRT-based confidence
region has generally been found to be better.

e. Illustration of confidence intervals

The likelihood-based confidence interval solves for the values of ft such
that

where ap denotes the MLE of a when /3 is fixed at some value. Nu-
merical calculations give the interval as (0.90, 2.76).

The Wald-based confidence interval for /3 is straightforward since it
is based on

which gives a confidence interval of 1.62 ±1.96(Q.2QS9)1/2 = (0.72,
2.52). The LR based interval is approximately the same length as
the Wald interval but is not symmetrically placed about the MLE, an
indication of the non-normality of the sampling distribution.

5.6 MAXIMUM QUASI-LIKELIHOOD

a. Introduction

In some statistical investigations, such as the potato flour example
of Section 5.5, we know the distribution of the data (binomial with
n = 5 in that instance). In others we are less certain. For example, in
analyzing data on costs of hospitalization we know the data are positive
(though it would be nice to be paid for some hospital ordeals!) and they
are invariably skewed right. With a little more experience with such
data we would know that the variance increases with the mean and we
might have a rough idea as to how quickly it increases. However, we are
unlikely to know a priori exactly what distributional form is correct
or even likely to fit well. But not knowing the distribution makes it
impossible to construct a likelihood and thus to use such techniques as
maximum likelihood and likelihood ratio tests.
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It would therefore be useful to have inferential methods which work
as well or almost as well as ML but without having to make specific dis-
tributional assumptions. This is the basic idea behind quasi-likelihood:
to derive a likelihood-like quantity whose construction requires few as-
sumptions.

What are the important characteristics of likelihood which are re-
quired to generate workable estimators? It turns out to be easier to
mimic the properties of the derivative of the log likelihood (also called
the score function) rather than the likelihood itself.

b. Definition

We define an analog of likelihood using (5.9) and (5.10), except that
we differentiate with respect to fa instead of 7^. First, from (5.9) we
want

Then we observe that by the chain rule, what we will denote as v* is

and using (5.10)

Now, by the nature of /y^I/i) m (5-5), with 6(7^) containing no data
this is

and from the definition of v(fj,i) below (5.14) this becomes
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Thus

or, by (5.10) and using dpi in place of d^

Observe that (5.43) and (5.48) are the analogs of (5.9) and (5.10).
We thus seek a quantity in place of d log /yj (yi)/diJ,i which has prop-

erties (5.43) and (5.48). It is straightforward to verify (see E 5.8) that

satisfies these same conditions, where we assume that var(j/j) oc v(fj,i).
The r occurring in (5.49) is merely the (unspecified) constant of pro-
portionality relating var(yj) to v(/^i), which is not exactly the same as
the r that appears in the density (5.5). However, we will use the same
notation since, as we see below, they play the same role.

Since the contribution to the log likelihood from yi is the integral
with respect to /^ of d log fy{ (yi)/dm, we define the log quasi-likelihood
via the contribution yi makes to it:

which, by definition, has derivative with respect to /^ equal to <&. Fi-
nally, to find the maximum quasi-likelihood (MQL) estimator of ft we
solve the maximum quasi-likelihood equations

Evaluating the derivative in (5.51) gives

which, using (5.16), is the same as
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or, in matrix notation,

the same as (5.18). Note that by defining maximum quasi-likelihood
estimators as solutions to the maximum quasi-likelihood equations,
(5.51), we avoid a true maximization problem or even the definition of
a quasi-likelihood or log quasi-likelihood itself.

In some ways this is a remarkable result. Qi is constructed using only
information about how the variance changes with the mean and nothing
more. And, it is often the case that if we specify a mean-to-variance
relationship, we obtain maximum quasi-likelihood equations which are
exactly the same as those corresponding to a legitimate likelihood.

For example, suppose we are willing to assume the mean and variance
are equal, so that what we build into quasi-likelihood is the fact that
v(ni) = fj,i. Note that this allows the variance to be merely proportional
to the mean rather than exactly equal to it, so that

and the MQL equations for ft are

(the other terms dropping out).
Instead of merely assuming that v(^i) = Hi suppose we make the

assumption that T/J ~ Poisson(//i), which would actually force var(yi) =
m as well. Then log/y^) = yi\ogHi - A*» ~ logfetO and the ML
equations would be

which are the same as the MQL equations, (5.55)! In this case MQL
and ML would give exactly the same estimates and hence MQL would
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be fully efficient. In other cases (see E 5.3) ML does not give equations
of the form (5.19) and, in those cases, MQL may not be fully efficient.
See exercise E 5.10 for some simple calculations and Firth (1987) for
more detail.

MQL has important advantages over ML. To explain, consider again
the specific situation of regression with a Poisson-distributed response.
ML would assume var(?/j) = v(ni). However, in practice it is often true
that data appear selected from a distribution in which the variance
is larger than the mean. If the variance is proportional to the mean,
the specification of the model under quasi-likelihood is still correct
because the assumption is only that var(yj) = r2v(^j); that is, var(?/j)
is proportional to v(/ij), not necessarily equal.

Thus MQL affords us two degrees of robustness. First, we need not
make a distributional assumption and second, we have only to spec-
ify the mean-to-variance relationship up to a proportionality constant
which can be estimated from the data (see below).

Inference using MQL proceeds much as ML for ft. Under mild con-
ditions (McCullagh, 1983) it can be shown that

with ft being the MQL estimator of ft and, as we defined before, W =

{..[•(wjsjwr1}-
However, r is usually handled differently and estimated via a moment

estimator (McCullagh and Nelder, 1989, p. 328):

where n is the number of observations and p is the dimension of ft.

5.7 EXERCISES

E 5.1 Show that is the inverse of an estimate of var(tj),

where t{ is defined in (5.3).

E 5.2 Show that the binomial, Poisson and gamma distributions can be
written in the form (5.5). Hint for the gamma distribution: Write
the density in terms of the mean and coefficient of variation.



5.7. EXERCISES 155

E 5.3 Suppose y ~ A/"(ee,ee), i.e., y is normal with equal mean and
variance. Show that the distribution oft/ is not of the form (5.5).

E 5.4 Show that (5.21) can be written in the form (5.18).

E 5.5 Suppose yi ~ indep. Binomial(n,p) for i = 1,2,...,m, where
p = l/(l+e~Q). ShowthattheMLEofaislogE^/fmn-Ej/i)].

E 5.6 Using (5.24) verify that the large-sample variance of J3 is given
by (5.25).

E 5.7 Derive (5.27) from (5.26).

E 5.8 Show that q{ of (5.49) satisfies (5.51), (5.52), and (5.53).

E 5.9 For binary (Bernoulli) and Poisson distributed data, in (5.19)
show that WA = I and hence it simplifies to

E 5.10 Efficiency ofMQL: Suppose that yi ~ Af(fj,i, 0?) for i = 1,2,... n,
where log /Zj = Xifi and v(ni) = //$. Calculate the ratio of the
large-sample variances of /§, the MQL estimator of /3 and /9, the
MLE of f3. For concreteness, assume that n/2 of the observations
have Xi = 5 and n/2 are 10. Do the calculations for (3 equal to
0.1, 1, and 10.



Chapter 6

LINEAR MIXED
MODELS (LMMs)

6.1 A GENERAL MODEL

a. Introduction

Chapter 4 deals with linear models (LMs), E[y] = X/3, where elements
of/3 are fixed effects, i.e., unknown constants. An example is EJT/JJ] =
fj. + oti where /z is a general mean and (in Section 1.3a) ai and oti
represent effects on the response variable of a patient receiving the
placebo or the drug progabide, respectively. Each of n, a\ and 0:2 is a
fixed effect, and in E[y] = X/3 the ft is \jj, ct\ a$.

In contrast, in Section 1.5a we discuss the model

where Oj is a random effect representing clinic i, /3j is a fixed effect for
dose j of a drug, and Cij is a random effect for interaction. This, with
its mixture of fixed and random effects, is a linear mixed model (LMM).
A special case of an LMM is when there are no fixed effects (except /z),
whereupon it is called a random model.

In linear models, fixed effects are used for modeling the mean of
y while random effects govern the variance-covariance structure of y.
In fact, a prime reason for having random effects is to simplify the
otherwise difficult task of specifying the N(N + l)/2 distinct elements
of var(y#xi)- Without using random effects we would have to deal with
elements of var(y) being a variety of forms; but with random factors
we can conveniently deal with variances and covariances attributable

156
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to factors acknowledged to be affecting the data. Since the two kinds
of effect (fixed and random) are different and so get treated differently
when analyzing data, we need to know, for our data, how to decide
for each factor whether it is to be deemed to be a fixed effects factor
or a random effects factor. The making of this decision is discussed
in Section 1.6. Having so decided, the procedures for an LMM are as
follows.

b. Basic properties

The starting point for an LM is E[y] = X/3 with ft being fixed effects;
for an LMM we still use X/3 for fixed effects but add to it Zu where
Z, like X, is a known (model) matrix and u is the vector of random
effects that occur in the data vector y. Although the elements of u
are random variables it is convenient to specify the model conditional
on their unobservable but realized values. Thus we write not E[y] as
X/3 + Zu but

meaning that for the realized u, (6.2) is the conditional mean. Were
we to use U for random variables and u for their realized values, we
would in place of E[y|u] write E[y|U = u]—but the clumsiness of this
is distracting, so we stay with E[y|u].

In order to handle first and second moments of y, those of u are
needed. They get specified by

There is no loss of generality in taking E[u] to be 0, because if it was
otherwise, E[u] = r, say, then E[y|u] = X/3-f Zu could be rewritten as
E[y|u] = X/3 + Zr + Z(u-r). Defining X* = [X Z] and /3* = \ft' r'}'
gives X/3 + Zr as X*/3*; and the further defining of u — r as u* gives
E[y|u] = X*/3* + Zu* which, with E[u*] = 0, has exactly the same
form as E[y|u] = X/3 + Zu.

For specifying var(y) we have var(u) = D from (6.3) and now define

With E[u] = 0 applied to (6.2), this gives (see E 6.1)

showing that the fixed effects enter only the mean whereas the random
effects model matrix and variance enter only the variance of y.
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6.2 ATTRIBUTING STRUCTURE TO VAR(y)

The expression for var(y) in (6.5) is

Some simplifications are now described, using the following example
for illustration.

a. Example

Suppose data are scores on a mathematics exam given to four ninth-
grade classes from each of fifteen high schools in New York City. Aside
from differences between boys and girls (which would be modelled by
fixed effects) there will undoubtedly be three sources of variability: (i)
among schools, (ii) among classes within each school, and (iii) among
pupils within each class. Let the exam score of pupil k (of gender t) in
class j of school i be ytijk- Then a model equation could be

fa is the fixed effect for gender t. The school effects, Si for i =
1,2,..., 15, and the class effects Cij for j = 1,..., 4 for each school
i, would be treated as random effects. So would ptijk, representing
everything not accounted for by /%, Sj and c^ for the individual pupil.
Thus /3 of X/3 in (6.2) will have two elements, /3m and /3f for male and
female, respectively; and u of Zu will have the 15 Sj-effects and the
60 (= 4 x 15) Cij-effects.

b. Taking covariances between factors as zero

For the example it is convenient to partition u into two sub-vectors ui
and U2, with ui having all 15 s^-effects as elements, and 112 having all
60 Cy-effects. Thus

Partition Z correspondingly as
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Also partition D as

with D2i = Di2. Then (6.2) becomes

and V = ZDZ' -I- R gets to be

R is defined in (6.4) as var(y)u). For the example this is the variance-
covariance matrix of the p^-terms described below (6.7). These rep-
resent not only the variability among pupils but also any variability
not attributable to Si and Cij.

The preceding notations extend very directly from the two random
factors of the example to having r random factors, so that with

and

(6.8) and (6.9) become

and

where

Thus, in the example, DH is the variance-covariance matrix of schools
and Di2 is the matrix of covariances between schools and classes. In
point of fact, it is reasonable to take those covariances as zero. Some of
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them are covariances between a school effect s^ and the class effects cyj
of classes in a different school; and there would seem to be no reason for
thinking those covariances (correlations) are anything but zero. And
other covariances in Di2 are covariances between a school effect S{ and
the class effects c+j of classes within that school; and since we use
random effects with the thought that they capture all the variability in
the data, we assume those covariances are zero too; i.e., Di2 = 0. This
extends very directly to the general case of (6.10), so that for i / i1 we
take Dji/ = 0. Hence, on writing Dj for D^,

c. The traditional variance components model

- i. Customary notation

If in the example we assume that there is no covariance between schools
and that schools exhibit homogeneity of variance, then for the 15
schools (6.9) has

Similar assumptions for the four classes within school i would give

And making the very reasonable assumption that the classes in one
school are independent of those in every other school gives

An even simpler assumption is that the four classes within a school
have the same variance for all 15 schools, i.e., that a\ = a\ V i, so
giving

a form that is similar to (6.11). Thus (6.11) and (6.12), and a similar
form for R, namely

makes up the standard structure for the traditional variance compo-
nents model.
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The general case of r random effects factors then has

for random factor i having <fc effects in the data (i.e., Uj of order <& x 1)
and

for y of order N x 1.

— ii. Amended notation

An amendment to the preceding notation suggested by Hartley and
Rao (1967) amounts to redefining D so as to include a2!//. This is
achieved by defining

Then we define

and from (6.13)

which can be written as

Corresponding to ZQ will be UQ of order AT x 1, familiarly thought of in
the context of analysis of variance models as the residual error term.

The variances of for i = 0,1,... ,r are called variance components
because they are the components of the variance of an individual ob-
servation; i.e., for the example
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d. An LMM for longitudinal data

Longitudinal data are successive observations on each of a collection
of observational units (often people). An example is blood pressure
measurements taken weekly on a group of patients. If yi is the vector
of Hi measurements on patient i, a model equation suggested by Laird
and Ware (1982) is

with vectors /3 and u* consisting of fixed and random effects, respec-
tively. 13 is the same for all patients and u» is specific to patient i.

Suppose that there are m such patients. Then for

we have

And the variance structure suggested by Laird and Ware (1982) is
V = ZDZ' + R with

so that

More details for this model are described in Chapter 7.

6.3 ESTIMATING FIXED EFFECTS FOR V KNOWN

We take y to be normally distributed,

so that the log likelihood is

Then from the chapter appendix (Section 6.12a-ii) we use
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with p, = X/3 and 0 = fi. Making those substitutions in (6.18) and
equating the result to 0 with (3 written as /3° gives

Because fi° varies with the choice of (X'V XX) , we confine attention
to X/3° which is invariant because X(X/V~1X)~X'V~1 (see Section
M.4c of Appendix M) is. Thus

is the ML estimator of X/3; and so A'X/3° is the ML estimator of A'X/3
for any A.

With var(y) = V it is easily seen that

Then, because (X'V XX) is a generalized inverse of (X'V 1X), and
also because of the invariance property referred to prior to (6.20),
var(X/3°) reduces to

To test the null hypothesis HQ : S'X/3 = m, where S' is of full row
rank (rs < rx), we can derive a chi-square statistic using

Under HQ, X2 has a central x2 distribution with rs = rank(S) degrees
of freedom.

More typically V is known only up to a scalar multiple. To empha-
size the connections with Chapter 5 and for simplicity of notation we
therefore write V in terms of a weight matrix W, which is the inverse
of V up to a scalar multiple, i.e., V = cr2W~1, where W is assumed
known. In such a case the following statistic can be derived as the
likelihood ratio test and is also the uniformly most powerful invariant
test (Lehmann, 1986):

where

Under the null hypothesis, F has an ^"-distribution on rs and N — rx
degrees of freedom. The null hypothesis is rejected at significance level
a when F exceeds ^f_rx j_Q.
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6.4 ESTIMATING FIXED EFFECTS FOR V UNKNOWN

a. Estimation

With V unknown but not being a function of /3, the log likelihood
function I of (6.17) has to be maximized with respect to elements of
both p, and V. For /* = X/3 and 0 = /3, setting dl/dB to 0 will
lead to the same result for 0° as in (6.19), only with V therein being
replaced by the solution V coming from maximizing I with respect to
the parameters in V. No matter what V is, the ML estimator of X/3
will be

A A

where we here introduce the symbol /3 to represent (B of (6.19) but with
V replaced by V, which is V with its parameters replaced by their ML
estimators. The ML equations for V are obtained from equating to 0
the expression

of (6.70) using (f> for each parameter in V; and in doing this p, is
replaced by X)3 of (6.24). On writing

this gives

where

and P is P with V replaced by V. For the case of the parameters in
V being variance components, as in (6.15), we describe ML estimation
in Section 6.8.

b. Sampling variance

Instead of dealing with the variance (matrix) of a vector X^ we consider
the simpler case of the scalar l'J3 for estimable t'(3 (i.e., t' = t'X for
some t').

For known V we have from (6.21) that vax(l'/3°) = £'(X.'V~1X)-1
A replacement for this when V is not known is to use ^(X'V^X)"^,
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which is an estimate of var(£'/30) - var[^(X'y-1X)-X/Y-1y]- But
this is not an estimate of vax(£'J3) = var^X'V-^XJ-X'V^y]- The
latter requires taking account of the variability in V as well as that
in y. To deal with this, Kackar and Harville (1984, p. 854) observe
that (in our notation) t'0 — t'0 can be expressed as the sum of two
independent parts, £0 - £.'0° and £'0° - 1'0. This leads to var(£'/3)
being expressed as a sum of two variances which we write as

where, in the words of Kenward and Roger (1997, p. 985), "the compo-
nent T [in our notation] represents the amount by which the asymptotic
variance-covariance matrix underestimates (in a matrix sense) vax(0)"
The matrix T in (6.28) is defined in adapting Kenward and Roger's
equation (1) for the variance components model of Section 6.2c to write

where Cij is an element of the asymptotic variance-covariance matrix
of the vector of estimated variance components; i.e.,

which is (6.64) of Section 6.8c. Also in (6.29)

We now use (6.30) in (6.29) together with both

and the general result for matrices S^ and vectors t that
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This gives

Thus (6.28) becomes

To use (6.34) it does, of course, have to be calculated with V in place
of V, meaning also P in place of P—and these replacements also have
to be made in (6.31).

c. Bias in the variance

Kenward and Roger (1997) additionally point out that ^(X'V^X)-^
is a biased estimate of ^/(X'V~1X)~£, and they investigate that bias
for nonsingular X/V~1X with unstructured V. We adapt their meth-
ods for the variance components model having V = ]Ci=o ^iZ^of. For
investigating the bias a starting point is a two-term Taylor series ex-
pansion:

This has expected value

On using for the derivative (6.76) from Section 6.12c,
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But in (6.28) we want to estimate

and from (6.36) we have

Therefore an approximately unbiased estimator for (6.37) based on
adjusting ^(X'V^X)-* is

with everything calculated using V and P in place of V and P.

d. Approximate F-statistics

The F-statistic in (6.23) has an JF-distribution; it is for the case of
V= (J2W~1 with W known. But when V is not of this simple form,
it has to be replaced in S'X/9 and in F by an estimate, V, and the
resulting value of F, call it F, has an unknown distribution. If we
assume that F is distributed approximately as T, one way of making
this approximation is to assume that

where

Then, similar to Satterthwaite (1946), A and d are derived by equating
first and second moments of both sides of (6.40). This gives

and
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These lead to

and

Kenward and Roger (1997) derive these results in their equations (7)
and (8) and give some extensions. The calculation of E[F] and var(F)
is tedious.

6.5 PREDICTING RANDOM EFFECTS FOR V KNOWN

The assumptions about random effects differ from those for fixed effects
and so treatment of the two kinds of effects is not the same. A fixed
effect is considered to be a constant, which we wish to estimate. But a
random effect is considered as just an effect coming from a population
of effects. It is this population that is an extra assumption, compared to
fixed effects, and we would hope it would lead to an estimation method
for random effects being an improvement over that for fixed effects. To
emphasize this distinction we use the term prediction of random effects
rather than estimation.

For instance, in Example 4 of Section 1.4a, we treat clinic i as being
from a population of clinics, with E^laj] = //+<2j being the iih clinic's
true response. We may wish to predict the value of c^ to gain informa-
tion about the performance of that particular clinic. Alternatively, we
may want to use the predicted values of the a,i from several clinics in
order to rank the clinics, or to select the best ones. Since they are all
assumed to be selected from the same distribution it makes sense that
their predicted values will have some degree of similarity and be less
variable than might be anticipated without such an assumption.

Using the assumption that the realized random effects which deter-
mine the data are just a random selection from a conceptual population
of such effects, it is not difficult to show that the "best" prediction of a^
(best in the sense of minimized mean squared error of prediction—see
Chapter 9) is the conditional mean E[aj|y]. In using this as the predic-
tor of o,i we are using the expected value of the random effect in light



6.5. PREDICTING RANDOM EFFECTS FOR V KNOWN 169

of the data. An example of this is in the dairy farming industry where
bulls are selected for use in artificial breeding on the basis of their
daughters' average milk yield. Suppose the kth bull has a daughter
with average milk yield y^- It is perfectly reasonable to think that in
the population of bulls there will be bulls other than the kth that nev-
ertheless have (or could have) the same daughter average, namely yk-
Despite this, these bulls will not necessarily all have the same genetic
values, let alone all the same as that of bull k. Therefore, since yk is our
data, and if a is the random effect representing bull genetic values, the
best we can do for estimating bull fc's genetic value is the conditional
mean E[a|j/fc]. Not surprisingly, since predictors calculated as E[aj|y]
are "best", they have smaller mean squared error than would estimates
based on assuming the random effects were fixed effects. They also have
less variability and are sometimes called shrinkage estimators. This is
because, just as in Section 1.4b-iv,

where a = E[a|y] is the predictor. Thus

and so a is said to be a shrinkage estimator.
From the preceding discussion we now turn to the general case of

for which the conditional expected value E[u|y] is, assuming y and u
follow a jointly normal distribution

Replacing p by /3° = (X.fV-lX)-X'V~ly of (6.19) gives what is called
the best linear unbiased predictor (BLUP). Derivation of (6.41) and
other results concerning prediction are detailed in Chapter 9.

We write

and
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Then

the latter result using PVP = P. Thus with D and V known, (6.44)
provides opportunities for testing hypotheses or deriving confidence
intervals for elements of u. And use can also be made of

and

6.6 PREDICTING RANDOM EFFECTS FOR V UNKNOWN

a. Estimation

When D and V are unknown, they are typically replaced by D and V
in u of (6.42), giving what could be called the estimated best predictor,
to be denoted u:

b. Sampling variance

Kackar and Harville (1984) give extensive discussion of deriving the

mean squared error of t'fi + m'u; Prasad and Rao (1990) suggest an
alternative approximation and apply it to their three special cases of
small-area estimators. And although the Kenward and Roger (1997)
form of var(£'/3) given by (6.28) and (6.29) is very different looking from
Kackar and Harville (1984), they both ultimately reduce to the same
thing. Using similar methods of reduction for the variance components
model, var(m'u — m'u) comes from Kackar and Harville (1984) as

where m' = [nig mi • • • mj • • • rnj.]. We write
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so that

c. Bias in the variance

The procedure used for obtaining the bias of var(£'^) in Section 6.4c
can be applied similarly to var^m'u0 —m'u) starting from an expression
like that of (6.35), namely

The result, after using (6.79) in Section 6.12, is

Thus, by comparison with (6.47),

is an approximately unbiased estimator of var(m'u - m'u). As with
var(£'/9), of course, (6.50) must be calculated with D, V and P replac-
ing D, V and P.

6.7 ANOVA ESTIMATION OF VARIANCE COMPONENTS

For random effects we want not only to predict them, as just discussed,
but also to estimate their variances. Methods for doing this are detailed
in many books and papers, the two main methods being ANOVA and
ML. We here briefly outline the main ideas of the ANOVA methodology
which, although seldom applicable to GLMMs of later chapters, is im-
portant for LMMs, both historically and for its practicality in certain
circumstances.
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a. Balanced data

Suppose in the 1-way classification random model, with model equation
E[t/ij|ai] = // + aj, as in Section 2.1, that we have i = 1 ,2, . . . , m and
j — 1,2,... ,n; i.e., n observations in every one of the m classes, the
simplest example of balanced data. Then V of V = ZDZ' + R turns
out to be

For this, the traditional analysis of variance table contains the fol-
lowing two sums of squares:

The expected values of these, based on V of (6.51), are

The ANOVA method of estimating variance components is to equate
expected values like (6.53) to the corresponding calculated values, (6.52):
the solutions for the variance components are taken as the ANOVA es-
timates thereof. This gives

and

This method of estimation extends very directly to analysis of vari-
ance of balanced (equal subclass numbers) data where there are more
sums of squares than just the two of the preceding example. The result-
ing estimators are always unbiased, although they can yield negative
estimates, as is possible, for example, in (6.55). The estimators are also
minimum variance quadratic unbiased. On assuming normality for y
they are minimum variance unbiased and their sampling variances and
unbiased estimators thereof are readily available. Searle et al. (1992,
Chapter 4) has extensive details for the case of balanced data.
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b. Unbalanced data

For unbalanced data (unequal subclass numbers) the ANOVA method
can still be applied, but its utility is severely limited. This is because
with many cases of unbalanced data there is more than one set of sums
of squares that might be laid out as an analysis of variance (see Chapter
5). In such cases there is therefore no unique set of sums of squares
as there is with balanced data. Consequently there is no unique set of
equations such as (6.54) and (6.55) and no unique estimators.

An extension of this is to use not just sums of squares but quadratic
forms of the data, arrayed in a vector q, say, such that E[q] = B<r2

where cr2 is the vector of variance components in the model under
consideration. Then, if B"1 exists, cr2 = B-1q provides unbiased
ANOVA estimators of the elements of cr2. Usually, q is the same order
as cr2—as in equations (6.52) and (6.53). It cannot be less. But if it
is more, and provided that B has full column rank, cr2 = (B/B)~1B'q
is an unbiased estimator of cr2. Note that in using q there are no
rules for choosing its elements other than they be quadratic forms with
expected values not involving /3. Hence there are infinite numbers of
estimators (B/B)~1B'q; and all of them are ANOVA (or method-of-
moments, second moments) estimators. There are also methods of
the 1970s such as LaMotte's various quadratic estimators, and Rao's
minimum norm quadratic unbiased estimators, some of which utilize a
priori values of the variance components. Searle et al. (1992, Section
11.3) discuss these methods in some detail and give extensive references.

From a theoretical statistics perspective, ANOVA estimators are not
always based on sufficient statistics; and minimal, complete, sufficient
statistics do not exist (see E 6.7). As a consequence, there are no uni-
formly optimal ANOVA estimators. One way out of this dilemma may
be to invoke further criteria for choosing quadratic forms for estimat-
ing variance components. In Section 10.2b we show that restricted ML
(REML) estimation suggests using quadratic forms coming from best
linear unbiased predicted (BLUP) values.

A consequence of all this is that ANOVA estimation of variance com-
ponents is losing some (much) of its popularity. This includes the three
well-known methods of Henderson (1953), a landmark paper in its time,
which definitively motivated much interest in estimating variance com-
ponents from unbalanced data and which provided methodology that
was pivotal and widely used for some thirty years or more. Extensive
details of these three methods, of their application to the 2-way clas-
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sification random model, and of ANOVA estimation from unbalanced
data are given in the sixty pages of Chapter 6 of Searle et al. (1992).

6.8 MAXIMUM LIKELIHOOD (ML) ESTIMATION

a. Estimators

In place of the numerous forms of ANOVA estimation (with its defi-
ciencies) the method now widely preferred is maximum likelihood (ML)
estimation or variations thereof. In applying it to

we simultaneously seek ML estimators of /3 and V. Section 1.7a-iii
describes the need for distinguishing between solutions of ML equations
and the ML estimators derived therefrom. In keeping with that, the
solution /3 for ft is as in (6.24), only with the solution V replacing V,
so that

And for or2 we use dV/da? = #(£., ZjZffi/da? = Z;ZJ in dl/d<p of
(6.25). This gives

In equating this to 0 for each i = 0,1, . . . , r and continuing with the /3
and V notation we have

Now (6.57) and (6.58) have to be solved for (3 and <r2, so leading to
V. But the right-hand side of (6.58) involves X/3 of (6.57); and that
equation involves V. So somehow these equations must simultaneously
be solved numerically (often by iteration).

In point of fact we can reduce the two equations (6.57) and (6.58)
by observing from (6.57) that V-1(y — X/3) needed for (6.58) is

for P of (6.27) with, of course, P being P with V in place of V.
Therefore (6.58) can be written as



6.8. MAXIMUM LIKELIHOOD (ML) ESTIMATION 175

So now, for obtaining a solution <r2, we need concentrate only on
(6.60) using (6.59). And when a solution is obtained, (6.57) will yield
X/3. Of course, solving (6.60) is not simple; for a few experiment
designs yielding balanced data it does have straightforward algebraic
solutions, as shown in Searle et al. (1992, Sec. 4.7).

At this point we can evaluate the profile likelihood for V, denoted
/P, which is the likelihood for a given value of V with the maximizing
value of/3 for that V inserted. Using (6.59) in the log likelihood, (6.17),
gives the profile log likelihood of

Although (6.60) and (6.61) do not appear to involve the <72s, they do,
of course, because the cr2s are embedded in V and P. For unbalanced
data and even for some balanced data (e.g., 2-way crossed classification,
random model, see Searle et al., 1992, Section 4.7d), solving (6.60) or
maximizing (6.61) has to be achieved by arithmetic methods. A prime
difficulty is to obtain estimates within the range of the parameters (see
Section 2.2b-iii). For the variance components model this means <j2 > 0
for i > 0 and <JQ > 0. On achieving this, the corresponding V will be
the ML estimator V, and ML(X/3) will be X/3 = X(X'V-1X)-XV~1y
as in (6.24). Further discussion of computing techniques for finding the
ML estimates will be found in Chapter 10.

b. Information matrix

Asymptotic sampling variances of ML estimators are obtained from the
inverse of the information matrix, which is minus the expected value
of the matrix of second derivatives (with respect to the parameters)
of the likelihood. Expressions for this, for the general model where
p, depends on a parameter 0 and V depends on a parameter ^ and
where we assume y ~ Af[fj,(0], V(y>)], are given in Section 6.12a-iii.
For y ~ JV/XX&EJ^oZiZjo?) where for (6.74) p, = X/3,0 = /3,V =
£)J_o ZjZja2 and each element of (p is a of, (6.74) gives the information
matrix as
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c. Asymptotic sampling variances

Inverting (6.62) but using a generalized inverse for X'V-1X gives

so that

and

6.9 RESTRICTED MAXIMUM LIKELIHOOD (REML)

For estimating variance components an alternative maximum likeli-
hood procedure, known as restricted (or residuat) maximum likelihood
(REML), maximizes the likelihood of linear combinations of elements
of y. They are chosen as k'y (for vector k) so that k'y contains none
of the fixed effects in ft. This means having k' such that k'X = 0.
For optimality we use the maximum number, N — rx, of linearly inde-
pendent vectors k' and write K = [ki k2 • • • kjv-rx]- This results in
doing maximum likelihood on K'y instead of y, where K'X = 0 and
K' has full row rank N — rx- (These results are described in Sections
M.4f and g)

a. Estimation

For y ~ A/XX0, V) with K'X = 0, we have

ML equations for K'y can therefore be derived from those for y ~
jV(X/3, V), namely (6.58), by replacing
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On using

of (6.77) the ML equations for K'y reduce to

These are the REML equations, to be solved for or2 which occurs in
P. It is easily seen that they are the same as the ML equations (6.60)
except for V on the left-hand side being replaced by P in (6.67).

b. Sampling variances

If the replacements noted in (6.66) are made to var00(<T2) of (6.64) the
result is the variance-covariance matrix of the REML estimators:

6.10 ML OR REML?

An oft-asked question is: Should one use ML or REML? Searle et al.
(1992, Sec. 6.8) definitely prefer each of ML and REML over ANOVA
estimation. We firmly endorse that preference, particularly because, as
has already been mentioned, ANOVA methods do not apply satisfac-
torily to generalized linear mixed models.

For addressing "ML versus REML" there are a number of features of
the two methods that can easily be stated. Both have the merit of being
based on the well-respected maximum likelihood principle. This does
have the problem that if any of the maximizing solutions are negative,
one has to adjust those solutions to yield estimators in the parameter
space (see, for example, Sections 2.2b-ii and -iii). On the other hand,
the maximum likelihood principle yields asymptotic sampling variances
of the variance components estimators; but it also has the demerit of
difficult computability. ML provides estimation of fixed effects, but
REML itself does not. Nevertheless, overriding these features there
seems to be a growing preference for REML, influenced by its following
merits. First, it is sensible for balanced data for which REML solu-
tions (not estimators) are the ANOVA estimators—and these, despite
their ability to be negative, have the substantive merit of being mini-
mal variance unbiased, under normality - and even minimum variance
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quadratic unbiased otherwise. But there is no guarantee that proper-
ties of this nature apply to REML solutions from unbalanced data.
Second, REML estimators are based on taking into account the de-
grees of freedom for the fixed effects in the model. Sections 1.7a-ii,
2.1b, 2.2b-vi and 3.2c show examples of this for balanced data. This
is particularly important when the rank of X is large in relation to
the sample size. And, although REML for unbalanced data yields no
clean algebraic results, presumably this degree-of-freedom feature oc-
curs with unbalanced data too. Third, because ft is not involved in
REML, the resulting estimators (of variance components) are invari-
ant to the value of ft. Change ft (but with X unchanged) and one does
not alter REML estimators. Finally, REML estimators do not seem to
be as sensitive to outliers in the data (see Verbyla, 1993) as are ML
estimators.

6.11 OTHER METHODS FOR ESTIMATING VARIANCES

Several other methods for estimating variance components are men-
tioned briefly in Searle et al. (1992, Chap. 11), and even more briefly
here. The methods are referred to mostly by their acronyms, which
indicate their primary properties. The best known is MINQUE: min-
imum norm quadratic unbiased estimation, a method which is based
on a pre-assigned value of &2. As such, the resulting estimates depend
on that value; and for this reason we feel it is of little appeal. Vari-
ants of MINQUE are MINQU(O), which takes the pre-assigned value
of <r2 as having every a? (except cr2) as zero; and I-MENQUE, iterated
MINQUE, the estimates from which are identical to REML solutions
(which, of course, can be negative); and conversely, solutions from the
first iteration of REML are a set of MINQUE estimates. There is also
MIVQUE, minimum variance quadratic unbiased estimation - and sev-
eral variants of it.

6.12 APPENDIX

a. Differentiating a log likelihood

- i. A general likelihood under normality

For the general model under normality,
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the density function is

Thus the log likelihood is

We consider a general parameterization of p and V such that each
element of /i is a function of elements of a parameter vector 0; and,
similarly, each element of V is a function of elements of a parameter
vector (f which is unrelated to 0. Thus we write

and so have, after ignoring N/2 log 27T,

- ii. First derivatives

Direct differentiation of / (which, in application to vectors demands
careful consideration of conformability, as seen in Section M.5) gives

And, for <£% being an element of (p in V(^>)

Using n = n(Q) and V = V(^?) in each of these, and equating them
to zero gives the ML equations. In the case of (6.70) there will be one
such equation for each (p^ of (p.

- iii. Information matrix
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and so

Also

Since E[y - p] = 0

Next, on differentiating (6.70) with respect to </?5,

Now for any A

Therefore
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Therefore, on assembling (6.71), (6.72) and (6.73), the information ma-
trix is

b. Differentiating a generalized inverse

Suppose A is a function of the scalar z, and that we write dA/dx as
dA. Then for A~ being a generalized inverse of A denned by

we have

Post-multiplying byA A gives

which is

Recalling that equations Ax = y can be solved as x = A y we can
"solve" (6.75) as

When A is nonsingular this gives dA 1. When A is singular we can
either assume that A~ is reflexive (i.e. that A~AA~ = A~), or if A~
is not reflexive, use A* = A~ AA~ in its place, and A* is reflexive. In
either case we then get dA~ = —A~(dA)A~.



182 CHAPTER 6. LINEAR MIXED MODELS (LMMS)

c. Differentiation for the variance components model

For (6.35) and the expected value that follows it, we want the par-
tial derivative 52(X'V~1X)/5cr^ ddj. Its derivation proceeds as follows.
Recall from (6.14) and (6.16) that

and

As here, and in all that follows, we have i = 0,1,... , r. From D* and
V we then have the following results:
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Then for

Ultimately Ay of (6.47) comes from ^(m'DZ'PZ'Dm)/^? da]
just as (6.76) was needed for (6.35) to yield (6.36). First recall (e.g.,
Searle et al., 1992, Sec. M.4f) for X having N rows and rank rx that
for K' satisfying K;X = 0 with K' having full row rank N — rx we
have

Therefore

Furthermore, for Ej = dD,/d<7?, which is a block diagonal matrix with
the ith block being I9t. and the rest 0,

because each term is a scalar and so equals its transpose. Therefore
twice the value of Ay of (6.47) is
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as required.

6.13 EXERCISES

E 6.1 Use (6.2), (6.3), and (1.14) to prove (6.6).

E 6.2 (a) Why does V"1 = I/L for some non-singular L?

(b) Through using L of (a), explain why X/3° of (6.19) is invariant
to (X'V^X)-.

E 6.3 For the linear model E[y] = X/3, where X is of full column rank,
show that all linear combinations of ft are estimable.

E 6.4 In the linear model E[y] = X/3, with var(y) = V, where V is
known and nonsingular invertible, show that the MLE of an es-
timable function c'/3 is c'fX'V^XJ-X'VV Why is it reason-
able to assume that V is nonsingular whereas it is not reasonable
to assume X'V-1X is?

E 6.5 Consider the balanced one-way random model:

Find a 100(1 — a)% confidence interval for the intraclass correla-
tion coefficient.

E 6.6 Write the following models in matrix notation and in each case
determine the marginal mean and variance of y. If a factor is not
specified, assume it is fixed.

(a) yij\a,i ~ indep. tf(p + a, + ft, <r2); a, ~ i.i.d. tf(Q, a2.);
i = 1,2,..., m; j = 1,2,...,n. (Two-way mixed).
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(b) 2/tj|fli, bj ~ indep. N(n + a, + 6j, 01); a; ~ i.i.d. A/*(0, cr2.);
6^ ~ i.i.d. .Af(0,0f); a^ and 6j indep. ; i = 1,2,... ,ra;
j = 1,2,. . . , n. (Two-way random).

(c) yijk\a>i,9ij ~ indep. j^+ai+ft+^u^2);^ ~ i.i.d. .A/"(0,<72);
<7ij ~ i.i.d. ^(0, cr2,); a; and ̂  indep.; i = 1,2,..., m;
j = 1,2,... , n; fc = 1,2,... , r. (Two-way mixed with inter-
action).

E 6.7 Consider the unbalanced one-way random model:

Show that the sufficient statistics are not complete. One way to
do this is to develop an unbiased estimator of zero, or equivalently
two different unbiased estimators of the same parameter based
on the sufficient statistics. Do this by constructing two different
estimators of d^. Hint: Consider the "usual" sums of squares
for treatments in a one-way ANOVA, Sin^y,. — i/..)2, and the
unweighted version, Sj(yi. — yu)

2, where yu = (l/m)Eij/i. . An
important implication of this result is that there is no UMVUE
for a2.

E 6.8 (a) For K'y of Section 6.9 (REML) write the log likelihood; de-
note it as l\.

(b) Kenward and Roger write the log likelihood as

for P = V-1 - V^XfX'V-^-X'V-1. Show that the
quadratic forms in y are the same in l\ and l^.

(c) If V is a function of i, write dV/dt as V$. Show that dl\fdt =
dl2/dt.

E 6.9 For K of Section 6.9, determine the effect on Z'Py of the replace-
ments listed in (6.66).

E 6.10 The ML and REML equations for estimating <r2 are (6.60) and
(6.67), respectively. Use those equations to derive ML and REML
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solutions for the following models. In each case i — 1,. . . , m, and
j = l , . . . ,n

(a) E[yij} = fj.yV = (72lN.

(b) E[yij] = n + c*i,V = <72I,v, .

(c) E[yij] = ji, V = v2IN + {d ̂ Jn}.™-

(d) Efotf] = A* + bxi, V = a2!^-

E 6.11 In line with definitions (6.21), define UQ and u* = so that

For /3 of (6.29) and u° of (6.57) show that y - X/3° - Zu° is
identical to the predictor of u[j derived from D*Z'^Py.



Chapter 7

LONGITUDINAL DATA

7.1 INTRODUCTION

Sections 1.5d and 6.2d each briefly describe the general nature of lon-
gitudinal data. Their basic feature consists of successive observations
on each of a number of subjects (often people or animals). This can
be likened to a randomized complete blocks experiment where the sub-
jects, as blocks, are treated as random, and the successive occasions
on which observations are taken are akin to treatments. One big dif-
ference is that with longitudinal data the correlation structure among
observations on the same subject is often more complicated than that
among treatments in the same block.

To begin with, and for most of this chapter, we deal with balanced
data, meaning that on each subject there is the same number of obser-
vations, to be denoted by n. (Unbalanced data is much more difficult
to deal with than balanced data.) For ease of description we refer
to the occasions when observations are taken as times; thus each of
say, m, subjects provides a datum at n times. For subject «, with
i = 1,2,..., 77i, the datum at time j (for j = 1,2,..., n) is denoted by
yij and the vector of data for subject i is

And the vector of data on all m subjects is
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7.2 A MODEL FOR BALANCED DATA

a. Prescription

We define the mean and variance of y, as being the same for each i:

And on taking the y»s to be independent with var(yj) = VQ V i we
have

b. Estimating the mean

On assuming normality,

the ML estimator of /x is (X.'V^X.^X'V^y from (6.19), whenever
(X'V^X)-1 exists. This gives

ML(/x ) = A = [(l^®In)(Im®V0-1)(l^®In)]-1(4(8)In)(Im®V0-1)y

which reduces (see E 7.1) to

It is to be noticed that this result does not involve VQ; thus it holds
no matter what VQ is. And this is important, because in what follows
we consider several forms of VQ, but for all of them with X = lm ® In

the estimator of p is as in (7.4).

c. Estimating V0

In attributing no structure to VQ, we want to estimate (by ML) its every
element. This necessitates differentiating the likelihood with respect to
every element of VQ. But since the likelihood

involves V0
 1 that differentiating is somewhat cumbersome. It can be

circumvented by writing
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and then, ignoring the 2vr term,

We differentiate this with respect to an element Wjk of W, for this
purpose treating Wjk as different from Wkj (even though they are equal
because W is symmetric). Then, on recalling that d(log \A\}fdx =
\,T[A.~l(dA>/dx)}, and that log|Im ® W = mlog|W|, and observing
that

where E^ is a matrix of all zeros except with element (j, k) being one,
we have

where VQJA; is the (j, k)th element of VQ. We already know from (7.4)
that MLE(/xj) = frj = y.j. To get the MLE(v0,jA:) we equate (7.7) to
zero, with pj replaced by p,j. Thus

And since this is true for all j, A; we have the matrix result

i.e., VQ is a Wishart matrix. Since the MLE not constraining VQ to
be symmetric, happens to be symmetric, this is also the constrained
MLE.

7.3 A MIXED MODEL APPROACH

Having dealt with general VQ, we now consider some special cases,
where VQ is structured in terms of a few (often just two or three)
parameters. We do this by specifying a mixed model for the data.
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a. Fixed and random effects

A starting point for a model equation for yij being the datum on subject
i taken at time j is

where Ui is a random effect for subject i and otj is now playing the part
of PJ of Section 7.2. And for y defined in (7.2) and for

we write

for

b. Variances

To set up a variance-covariance matrix V for y, we begin by defining

Then from (1.14)

for D defined as

Thus

For D it is not unusual to attribute correlation among the ttjs; as in
genetics, when subjects can be siblings (such as dairy cows), or even



7.4. PREDICTING RANDOM EFFECTS 191

litter mates (as with pigs or laboratory mice or rats). Thus, along with
assuming the same variance for each subject effect we take

This gives D as a matrix having diagonal elements d^ and off-diagonal
elements puo\. Thus

and so V of (7.15) is

A tractable form for R = var(y|u) is to take the yf|uj variables as
being independent and all having the same variance-covariance matrix
RO, so that R = Im <8> RO so giving

For balanced data, this is a fairly general form for V. It provides
for a uniform variance d^ of the random effects, for a correlation pu

between them, and for the same variance, RO, of y%\Ui for each subject.
With a^ = 0 it reduces to V = I <8> RO, which is the same form as
I <8> VQ treated earlier; and for pu = 0 it is also

7.4 PREDICTING RANDOM EFFECTS

We start from the general expression for u°, the best linear unbiased
predictor of the random effects

This result is presented in Section 6.5 and is established in Chapter 9.
Clearly this expression assumes that D = var(u) and V = var(y) are
both known. Z and X are taken as Z = Im ® ln and X = 1™ <8> In of
(7.12), and for our purpose /3° is taken as jj, of (7.4), ft = J3 = j dtj \ =

{ y.j\. Thus (7.21) becomes

Simplifications of this for special cases are as follows.
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a. Uncorrelated subjects

With pu = 0, the correlation between subjects is taken as being zero;
and it reduces (7.18) to

The predictor (7.22) then reduces (see Section 7.10a) to

This gives

This is not particularly tractable unless R0
 1 is analytically man-

ageable; but numerically it will usually offer little difficulty, especially
because RQ has order n, the number of observations on a subject, and
this is often not very large.

b. Uncorrelated between, and within, subjects

Here the correlation between subjects, and between observations on
each subject, are each taken as zero. This simply involves putting
R0 = <J2I in (7.23) which (in Section 7.10b) yields

This is a very familiar estimator, known as a Stein, or shrinkage, esti-
mator. It occurs widely in animal genetics when wanting to calculate
the estimated genetic value of animals. With genetic definitions

and

the fraction multiplying (y^. — y..) then has several forms that are very
familiar to animal geneticists:
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c. Uncorrelated between, and autocorrelated within,
subjects

Another tractable form for Ro/cr2 is a first-order autocorrelation ma-
trix, a 5 x 5 example of which is

with

Using that inverse (generalized to order n) for R0
 1cr2 in (7.23), the

value of {$ is (see E 7.3)

Note that the p(yn — y-i+yin — y-n) m the numerator represents "end
effects" commensurate with the autocorrelation matrix A"1 of (7.26)
having first and last diagonal elements different from all other diagonal
elements. Also note that for large n, (7.27) reduces to j/j. — y.., as it
should.

d. Correlated between, but not within, subjects

In each of the preceding cases V has been of the form Im <8> VQ. Now,
though,

for
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We now invoke a theorem (e.g., Puntanen and Styan, 1989) that if V
and X are such that VX = XH for some H (see E 7.2 for a proof with
H"1 existing) then /3, the MLE, is the ordinary least squares estimator.
This is so here because

for H being the matrix in the square brackets. Thus we continue to
have J3 yielding J3 = { y.j \ , as in the preceding sections.

To derive the predicted value u° of (7.21) using V of (7.28) does,
however, take some considerable algebra—as shown in Section 7.10c.
The result is

Several features of this result merit comment.

1. For large n, uj tends to &. — y...

2. pu = 0 gives {# of (7.24).

3. In the pu = 0 result of (7.24), replacing crj by crj(l — pu) gives
the PUT^Q result in (7.30). This seems reasonable on the grounds
that pu ^ 0 effectively represents a reduction in the variance of
the UjS.

4. The pu ^ 0 predictor of (7.30) is always less than the pu = 0
predictor of (7.24).

5. Increases in pu lead to decreases in u® of (7.30). This is under-
standable because for large correlations among the u^s one would
expect them to be more alike than for zero (or small) correla-
tions. Indeed, for pu = 1, its maximum value, every uj is the
same, namely zero.

6. On denning
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(7.30) becomes

which increases as p increases.

7.5 ESTIMATING PARAMETERS

Having dealt with estimating j3 and predicting u in X/3 + Zu (for V
assumed known) we now consider estimating the parameters that occur
in the forms of V considered in Section 7.4.

a. The general case

The distributional assumption for the variance components model of
Chapter 6, as in (6.56), is

and equations (6.60) for ML estimation of the cr2s are

where the appearance of ZjZj comes about because

Also

for /3° = (X/V~1X)-X/V-1y from (6.29). Hence (7.31) is

As in Section 6.4, we now think of V being structured, with elements
which are functions of just a few scalar parameters: denote one such
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element as (p playing the part of of in (7.32). Its equations are of the
form

We use either (7.33) or (7.34) for special cases of V = I <8> VQ, often
using the notation

and

so that the estimating equations are then

for (p taking in turn each parameter in V, e.g., pu, o\ and a2 in V of
(7.18) when R = cr2In. We do this for the four cases of Section 7.4.

b. Uncorrelated subjects

This has

with

Using this in (7.35) for (p = o\ gives

Similarly, using (7.34) gives
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and so the ML equation is

If RQ is unspecified, with elements functionally independent of o\
(which has been assumed in deriving the preceding result), then ML
estimation of RQ will be exactly like that of VQ in Section 7.2b. We
therefore consider having RQ = <72In.

c. Uncorrelated between, and within, subjects

First, for RQ = cr2In the estimating equation (7.38) becomes

that is,

And, with V now being

and

Then, with
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Note that

so that gives

Now define

a between-subjects sum of squares. The estimating equation is

and the earlier equation, (7.39), is

These have to be solved for a2 and <jj. To do this, begin by substituting
(7.42) into (7.41):

But

and so



7.5. ESTIMATING PARAMETE&S 199

which leads to

because SSE = (m - l)(n - 1)MSE. And then from (7.42)

These results agree exactly, as they should, with those for a2, and ai
at the bottom of page 150 of Searle et al. (1992). Confirmation of this
demands very careful consideration of the two notations, see E 7.5.

d. Uncorrelated between, and auto correlated within,
subjects

We here have V = Im <8> A<j2 for Anxn being the n-order form of the
5 x 5 example in (7.26). Therefore in (7.34) and (7.35) Aa2 plays the
part of VQ. So from using (7.26) for order n i n V = I®Vo = I®<J2A
we get from (7.35) for (p = a2

And from RHS(y?) of (7.34)

With J3 from (7.4), we can write
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so defining 6ij. Then, on using (7.26) for A""1 generalized from order
5 to order n, we get

Therefore LHS(<J2) = RHS(cr2) gives the estimating equation

Now doing the same thing for (p = p gives

On generalizing A 1 and A of (7.26) to order n it will be found (see E
7.6) that LHS(p) reduces to

And RHS(p) will be the same as RHS(<72) of (7.45) but with

Therefore from (7.46)

Now in looking at A l it will be found that in A l the element
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Therefore, in making these changes in going from (7.46) to (7.48) for
RHS(/o) gives

Then equating this to LHS(/o) gives the second estimating equation as

Clearly, this and (7.49) have to be solved numerically. They appear
to have no algebraic solution for a2 and p. And the solutions will be
ML estimators only if 1 < p < 1 and a2 > 0.

e. Correlated between, but not within, subjects

We have from (7.28)

and from Section 7.10c

Although differentiating V with respect to each of the parameters pu,
<72 and cr2 is easy, the LHS((p) expressions give nothing that is simple.
For example

We therefore pursue no further attempts at finding analytic forms of
the MLEs of pu, cr% and a2.
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7.6 UNBALANCED DATA

a. Example and model

Suppose a clinical trial consists of m = 5 patients observed on n = 7
occasions but where some of the patients from time to time fail to visit
the clinic. Table 7.1 is an example of this.

Table 7.1. Patients Visiting a Clinic
(v/ indicates a visit)

Patient Clinic Visit j = 1,..., n
i = l , . . . ,m ~~1 2 3 4 5 6 7

1
2
3
4
5 ,

We still write E[y|/i] = X/3 + Zu as in (7.11) but now the specifica-
tion of X and Z is more complicated than in (7.12). For Table 7.1 the
data for patient 1 have

where n^ is the number of times patient i visits the clinic using i = 1
in (7.52).

f 1 "*Assembling y = { yi\ as in (7.2) gives
lc J i=l

where 0 is n x 1 and u is m x 1. In comparing (7.51) and (7.52),
it is apparent that for patient i, Xj is n^ x n with one row for each
checkmark for that patient in Table 7.1; and that row of Xj is null
except for a one corresponding to the checkmark. As examples, in the



7.6. UNBALANCED DATA 203

first line of Table 7.1 there are checkmarks for j = I and j = 2. These
generate [1 0 0 0 0 0 0] and [0 1 0 0 0 0 0] as rows of X».

Using var(y|u) = R, (7.53), and with D = var(u) of (7.17), gives

where

We now consider three special cases similar to those dealt with in Sec-
tion 7.4 for deriving u. Now, though, X = { Xj \ of (7.53) is no longer
as simple as the lm <8> In of (7.12) for balanced data, as is evident from
the description of Xj following (7.53). As a result, there is no theorem
such as that mentioned in Section 7.4. Therefore for each of our three
special cases we deal with V, V"1, J3 and ii.

b. Uncorrelated subjects

For balanced data, every patient had n observations and one could
assume the same variance-covariance matrix, RQ, for all patients and
so have R = Im <8> RQ as in Section 7.4a. But that is not possible for
patient i having n» data with n^ not being the same for all patients.
The nearest counterpart is to have R be block diagonal, of blocks of

{ •» m
Ri f

d J i=l
Notation

At this point our curly bracket notation mostly involves i ranging
from 1 to 77i, so we cease indicating that range unless context demands
it.

- i. Matrix V and its inverse

Then with R = { Rj} and pu = 0, (7.54) gives

and so
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- ii. Estimating the fixed effects

With

from (7.53), we get

and

and so

This has no simplification such as bj = mj = y.j of (7.4) and (7.23) in
the balanced data case.

— iii. Predicting the random effects

We have

and so with V-1 of (7.57)

The nature of Xi discussed following (7.53), together with Vi not being
the same for all i (not even of the same order), makes b of (7.59) not
very tractable; and so (7.60) is not amenable to further simplification.
But for known Vi, both it and (7.59) are reasonable computations.

c. Uncorrelated between, and within, subjects

- i. Matrix V and its inverse

Using Ri = s2Ini in (7.56), akin to R0 = s2I in Section 7.4b, gives
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and

— ii. Estimating the fixed effects

On looking at the example of Xi in (7.51) we can see that XiX'i = Ini

and Xiln = ln; but, unfortunately, these are not what are needed in

of order n. This appears to have no attractive simplification; nor does

simplify beyond the following. Define nij as 1 if yij exists and 0 if yij

does not exist; i.e., nij is the number of data on subject i at time j,
either 0 or 1. Then

— iii. Predicting the random effects
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d. Correlated between, but not within, subjects

Going back to (7.54) with R = | <72Ini j we have

which is the analogue for unbalanced data of the V of the beginning
of Section 7Ad and 7.5e (which are for balanced data); see E 7.7. We
know of no way to invert this.

7.7 AN EXAMPLE OF SEVERAL TREATMENTS

Instead of having just m subjects (or patients) as described in Section
7.1, suppose we had m subjects in each of T treatments, a total of
Tm patients. Then take yuj as the datum of the ith person in the £th
treatment at time j. Then for

with uu being the (random) effect for that person. We have, instead
of (7.9)
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where tt and aj are the fixed effects for the tth treatment and jth time,
respectively. Prom this we get

with X being the partitioned matrix

and

On assuming that data on different patients are independent we take

Then, for the theorem mentioned in Section 7.4d we find that

and so there is no H for which VX = XH for a general V0. But if

then for l = s2[(l - p) + np]

and for

it will be found that VX = XH. Therefore for X of (7.64) and V
based on (7.65) the estimators of m, tt and sj will be exactly the
same, for balanced data, as in the simple additive fixed effects model
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E[ytj] = m + tt + aj; for which one such set of estimators is well known
to be

For deriving uti we have D = s2
uITm and Z = ITm. ln? so that in

This leads to

7.8 GENERALIZED ESTIMATING EQUATIONS

If we define balanced data as the case where VX = XH for some
H (some justification of so defining it is given via examples in the
exercises) then the ordinary least squares estimator of b is equal to
the generalized least squares estimator which is the same as the max-
imum likelihood estimator. What would happen if the ordinary least
squares estimator were used for unbalanced data? For this section, for
ease of exposition we will assume that X is of full column rank, and
use the notation bw-1 to denote the weighted least squares estimator
(X/WX)-1X/Wy. Thus bI denotes the ordinary least squares estima-
tor and bv denotes the MLE with a known variance-covariance matrix
V = var(y), i.e., bv = (X'V-1X)-1X'V-1y.

If primary interest lies in estimating b, a possible estimator is fa.
How well does it perform? First, note that fa is unbiased no matter
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what the value of V:

Furthermore, it is straightforward to calculate the variance of /3j :

How does this compare with /9V, which is the optimal estimator for
known V? We know that /9V

 ls also unbiased with variance (X'V~1X)~1

which is smaller than the variance of /9j, but how much smaller? In-
terestingly, it is often not very much smaller.

For example, consider the extremely simple situation where the mean
of all the observations is p, and the data come in m equicorrelated
clusters with correlation p > 0. Further assume that half the clusters
are of size n and the other half are of size An. We thus have

where

and

It is straightforward to derive an expression (see E 7.10) for the variance
of 3i and /3y and *° show that the relative efficiency of the ordinary
least squares estimator decreases as a function of increasing p. Further-
more, the relative efficiency in the worst case, when p = 1, is given
by 2(1 + A2)/(l + A)2. So if the data are balanced with A = 1, the
relative efficiency is 1, as expected. If the sample size is 50% larger in
one group than in the other, then the worst the variance of ordinary
least squares estimator can be is 4% larger than the optimal estimator.
Even in the case when the sample size is double (A = 2) the variance
is only 2(5)/9 = 1.1 times as large (see E 7.10 and E 7.11).
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Certainly it is possible to construct examples where the ordinary
least squares estimator does arbitrarily badly in relation to the opti-
mal estimator, but the point of the above calculation is that often the
ordinary least squares estimator is quite good for moderate degrees
of unbalancedness. If the ordinary least squares estimator performs
so well for a wide variety of problems and, furthermore, obviates the
need to estimate the variance-covariance structure, then why not use
standard regression and analysis of variance software whenever the ef-
ficiency is high?

The problem is that even though the efficiency is high, the apparent
variance can be grossly incorrect. Intuitively, if the observations are
positively correlated and we treat them as if they are independent,
then the data appear much less variable than they actually are and
we can drastically underestimate the variance. This would hold true
whether or not the data were balanced.

Again consider a clustered variance scenario with

so that

where Vo,n is defined in (7.69) and the (scalar) fi is the mean. The
variance that would be estimated from a standard regression or ANOVA
program would be

with

and using N = ran.
On average vax((3i) estimates
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On the other hand, the true variance of fii is

Thus the estimated variance averages less than cr2/./V, the variance if
all the observations were independent, while the true variance is larger
than <7 2 fN \ and it can be substantially so. If p = 0.5, a small to mod-
erate correlation, and if m = 5 and n — 11, then the underestimation
is by a factor of (1 + 5)/(l - 10[0.5]/54) = 6.6!

The remedy is relatively straightforward; use 0i but correctly as-
sess its variance. For example, with model (7.70), we estimate ft =
(l'l)-ll'y = y... Then

is a consistent estimator (see E 7.13) of var(yj), no matter what its
form. When the mean structure takes a more complicated form, namely
E[yj] = Xj/3, we would generalize accordingly:

This is the basic idea behind generalized estimating equations (GEEs),
which are developed more fully in Chapter 8. Another aspect of GEEs
is the specification of a working variance-covariance structure. That is,
in some cases we might suspect that a specific form of covariance might
hold for yi of (7.70). Also, the use of the independence assumption can
lead to inefficient estimators (Fitzmaurice, 1995). In such cases it is
straightforward to make adjustments. Let W represent the inverse of
the assumed variance-covariance structure of each of the yjs:
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where varvy(-) denotes a temporarily assumed variance-covariance struc-
ture. If we believed this structure, our estimator of ft would be ^w-1

= (X'WXj^X'Wy with variance

which is sometimes called the sandwich variance formula since X'VX
is "sandwiched" between two (X/WX)~1s. As before, a consistent
estimator of V is formed from the independent "replicates," yj. For
more details see Diggle et al. (1994, Sec. 4.6).

7.9 A SUMMARY OF RESULTS

The results developed in Sections 7.4 and 7.5 are sequenced by model
within each estimation situation. Here we give a summary of those re-
sults and those of Section 7.2 sequenced by estimation situation within
each model.
Note: Equation numbers in square brackets refer to equations occur-
ring earlier in the chapter.

a. Balanced data

— i. With some generality

and

the MLE of Hj is

and that of VQ is

a Wishart matrix. The estimator p.j = y.j applies for the special cases
of balanced data we now list; it is not repeated, and it is denoted J3.
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— ii. Uncorrelated subjects

With RO defined just prior to (7.19)

— iii. Uncorrelated between, and within, subjects

- iv. Uncorrelated between, and autocorrelated within,
subjects

For 8ij = yij - y.j
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— v. Correlated between, but not within, subjects

Estimators for o^, pu and a2: no results (see the end of Section 7.5).

b. Unbalanced data

— i. Uncorrelated subjects

— ii. Uncorrelated between, and within, subjects

Special case: Uij — 1 if yij exists

= 0 if y^ does not exist.

— iii. Correlated between, but not within, subjects

No results could be obtained (see Section 7.6d).
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7.10 APPENDIX

a. For Section 7.4a

In V = Im <8) (<J^Jn + RO) write <7^Jn = cr^lnl4 and use the standard
result for any nonsingular A:

to get

Then, since pu = 0 gives D = <jjlm, with Z = Im ® ln we get for u

b. For Section 7.4b

Put R^1 = (l/o-2)In in (7.23), to get

c. For Section 7.4d



216 CHAPTER 7. LONGITUDINAL DATA

Suppose M* = B ® Jn + (l/A)(Im + In) is M"1. Then in MM* = I
we want the coefficient of Jn to be 0. Thus

Therefore

[eA®Jn+X(Im®In)]-1 - - [(n0A + AI)-^A/A]®Jn+(l/A)(Im®In)

and so for V

Therefore

Then with Z = Im <8> ln and D of (7.17)
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Write r = 1 + (m — l)pu and then

where

and

Then a — /3 reduces very simply to cr4, so that

Now
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Also

Using these in post-multiplying DZ'V l by (y — XjS) where X =
1m ® In of (7.12), and where 0 = { y.j\ as mentioned at the end of
the paragraph preceding (7.30) gives

since y.. - m £"=1 y.j = mn(y.. - y..) = 0.

7.11 EXERCISES

E 7.1 Reduce ML(/z) in Section 7.2b to jj, of (7.4).

E 7.2 If H'1 exists and for X of full column rank, show that VX = XH
leads to (X'V^XJ^X'V-V - (X'X^X'y.

E 7.3 In Section 7.4c show that AA"1 = I and derive (7.27).

E 7.4 In Section 7.5b confirm the final form of LHSfaJ) and RHS(a£).
Also, verify the simplification of (7.38) to (7.39).

E 7.5 Results (7.43) and (7.44) are said (at the end of Section 7.5c) to
be the same as in Searle et al.(1992, p.150). Those results are

At first sight these are somewhat different from (7.43) and (7.44).
Reconcile the two sets of results. Hint: Do not match the two
methods by the criterion of rows-and-columns layout, but match
them by random effects.
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E 7.6 Derive (7.49) and (7.50) from their respective LHS(-) = RHS(-)
equations.

E 7.7 Explain why V of Section 7.6d is the unbalanced data analogue
of (7.28).

E 7.8 In Section 7.7 show that VX = XH.

E 7.9 For the setting of Section 7.7, explain why E[jtoj|itei] = Otj leads
^ A

to Otj = yt-j- Describe how Otj leads to /t, r and ctj of that Section.
^\ **

E 7.10 Derive the relative efficiency of 0i and /3V as described in the
paragraph immediately following (7.69).

E 7.11 Again following the discussion after (7.69), show that the relative
efficiency of the ordinary least squares estimator decreases as a
function of increasing p. Furthermore, show that the relative effi-
ciency in the worst case, when p = 1, is given by 2(1+A2)/(1+A)2.

E 7.12 Show the calculation of tr(V - ll'V/N) involved in deriving
(7.74).

E 7.13 Show that VQ of (7.76) is consistent for VQ as m tends to oo.

E 7.14 In E 6.6(c) write

Then

and

X = [(1m ® !„ ® lr) (1m ® In ® IT) (1m ® In ® IT)] •

(a) For m = 2, n = 3, and r = 2 write out y, V, and X.

(b) Find H such that VX = XH.

(c) With r = 1 (i.e., effectively deleting k from y), what are V
and X for E 6.6(a)? And what is H such that VX = XH?

(d) Repeat (c) for E 6.6(b).



Chapter 8

GENERALIZED LINEAR
MIXED MODELS
(GLMMs)

8.1 INTRODUCTION

The use of random factors is not restricted to linear mixed models, the
topic of Chapter 6. For many of the same reasons as seen there, we
may want to incorporate random factors into nonlinear models. That
is, we may wish to build a model that accommodates correlated data,
or to consider the levels of a factor as selected from a population of
levels in order to make inference to that population.

For example, suppose we wish to study factors affecting cost of hos-
pitalization by taking a random sample of patient records from each
of 15 teaching hospitals. The costs within a hospital almost certainly
must be regarded as correlated. They will be similar because of the
general costs of running the hospital, billing practices, costs of nearby,
competing hospitals, and so on. Also, a goal may be to make inferences
to a larger population of research hospitals. Both of these could be ac-
commodated by incorporating random hospital effects into the model.
And a potential benefit could be gained by using best prediction tech-
nology to improve the predictions for individual hospitals.

How should the random effects be incorporated? For many problems
the decision between treating a factor as fixed or random is a subtle one.
As illustration, if we change the example of hospitalization costs slightly
and study only three hospitals, all of which are unique and whose effects

220
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cannot easily be regarded as a random sample, we must treat them as
fixed. But this would not fundamentally change the way in which they
would be incorporated into the mean of the response. This line of
argument suggests that random factors should be incorporated in the
same manner and in the same portion of the model as the fixed factors.
This is exactly the approach of Chapter 6. Our basic linear model there
had mean E[y] = X/3. We incorporated random effects by enlarging
the model as E[y |u] = X/3 + Zu. If we write a combined model matrix
X* = [X Z] and an enlarged "parameter" vector ft* = [/3; u1]' it is
easy to see that E[y|u] = X*/3*.

This suggests a straightforward extension of the generalized linear
models of Chapter 5: Append the random effects in the form Zu to
the linear predictor X/3. This will achieve the two main goals of in-
corporating correlation and allowing broader inference. However, the
nonlinear nature of the model creates complications not encountered
in Chapter 6.

In the remainder of the chapter we define the generalized linear
mixed model (GLMM), explore the consequences of adding random
factors and discuss a variety of inferential methods. The issue of pre-
diction of random effects we leave to Chapter 9. Models in which the
random effects cannot be incorporated in a linear predictor are dealt
with briefly in Chapter 11.

8.2 STRUCTURE OF THE MODEL

a. Conditional distribution of y

To specify the model we start with the conditional distribution of y
given u. As in (5.5) and (5.6), the response vector y is typically, but not
necessarily, assumed to consist of conditionally independent elements,
each with a distribution with density from the exponential family or
similar to the exponential family:

Prom (5.12) we know that the conditional mean of y, is related to 7^
in (8.1) via the identity /i, = db(ji)/d^i. It is a transformation of this
mean that we wish to model as a linear model in both the fixed and
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random factors:

As in Chapter 5, g(-) is a known function, called the link function
(since it links together the conditional mean of yi and the linear form
of predictors), xj is the ith row of the model matrix for the fixed effects,
and ft is the fixed effects parameter vector. To that specification we
have added zj, which is the zth row of the model matrix for the random
effects, and u, the random effects vector. Note that we are using m here
to denote the conditional mean of yi given u, not the unconditional
mean. To complete the specification we assign a distribution to the
random effects:

In light of the fact that the conditional distribution of y given u is just
a notations! extension of the generalized linear model of Chapter 5 (i.e.,
//i represents the conditional mean rather than the marginal or uncon-
ditional mean; otherwise, all is the same), many of the relationships
derived there will hold. Correspondingly, as below (5.14), we denote
the conditional variance of y, given u as T2v(^i) in order to display its
dependence on the conditional mean /^.

8.3 CONSEQUENCES OF HAVING RANDOM EFFECTS

a. Marginal versus conditional distribution

Since the model specification in (8.1) and (8.2) is made conditional on
the value of u, we now derive aspects of the marginal distribution of y
in order to understand what has been assumed for the observed data.

b. Mean of y

The mean of y can be derived by the usual device of iterated expecta-
tion:
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This cannot, in general, be simplified, due to the nonlinear function

«-'(•)•
To illustrate for a particular #(•), suppose we have a log link so that

<?(/z) = log/^ and g~l(x) = exp{x}. Then we have

where MU(ZJ) is the moment generating function of u evaluated at Zj
(see Section S.lc).

Suppose further that Ui ~ A/"(0, cr%) and that each row of Z has a
single entry equal to 1 with all the rest being zero. Then MU(ZI) =
exp{0-2/2} and

or

c. Variances

To derive the marginal variance of y we use formula (1.14):

which again cannot be simplified appreciably without making specific
assumptions about the form of g(-) and/or the conditional distribution
of y.

To illustrate the derivation assume, as before, that we have a log link
and now further assume that the elements of y, given u, are indepen-
dent with a Poisson distribution. Hence the conditional variance of yi
given u is r2u(//j) = m. Using these facts in (8.7) gives
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If we make the further assumption that Ui ~ A/"(0, cr^) and that each
row of Z has a single entry equal to 1 with all the rest being zero, then

Since the term in parentheses in (8.9) is greater than 1, we see that
the variance is larger than the mean. Therefore, although the condi-
tional distribution of yi given u is Poisson, the marginal distribution
cannot be. In fact, under these assumptions, it will always be overdis-
persed (see Section 2.6b-ii) compared to the Poisson distribution. In
this sense we can think of random effects as a way to model or attribute
overdispersion to a particular source.

d. Covariances and correlations

As noted before, the use of random effects introduces a correlation
among observations which have any random effect in common. The
same is true for generalized linear mixed models. Assuming conditional
independence of the elements of y and using (1.16), we have

If we have a log link, this can be evaluated as
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Again we make further assumptions, namely that u ~ -A/"(0, Icr2) and
that each row of Z has a single entry equal to 1 with all the rest being
zero. Then

which is equal to zero if zjzj = 0 (i.e., if the two observations do
not share a random effect) and is positive otherwise (in which case

<*j = 1).
Prom (8.12) and (8.9), when z^Zj = 1, we can calculate the correla-

tion (after canceling exp{x£/3 + x'jfl} in the numerator and denomina-
tor) as:

corr(yi,t/j)

where 77 is given by l/(e3a«/2 — e^/2).

8.4 ESTIMATION BY MAXIMUM LIKELIHOOD

a. Likelihood

Prom (8.1), (8.2), and (8.3) it is straightforward to write down a formula
for the likelihood:

where, as before, the integration is over the q-dimensional distribution
of u.

As an example, consider modeling data in correlated clusters thought
to come from a Poisson distribution. An example of such a situation
is described in Diggle et al. (1994) in which they consider the analysis
of the number of epileptic seizures in patients on a drug or placebo.
In this context, the clusters would be repeated measurements taken
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on the same patients. Let y+j denote the jth count taken on the iih
cluster. We might therefore create a model as:

This uses a log link and a normal distribution for the random cluster
(patient) effects. The normal distribution assumption for the random
effects is viable since the log link carries the range of the parameter
space for mj into the entire real line. The random effects Uj are shared
among observations within the same cluster and hence those observa-
tions are being modeled as correlated.

The log likelihood can be simplified as follows (see E 8.3)

Unfortunately, (8.16) cannot be simplified further or evaluated in closed
form and hence maximizing values cannot be expressed in closed form
either.

In the simplest cases, numerical integration for calculating the likeli-
hood is straightforward and hence numerical maximization of the like-
lihood is not too difficult. For example, for (8.15), as seen in (8.16), the
log likelihood is the sum of independent contributions from each cluster,
each of which involves just a single-dimensional integral. This integral
can be evaluated accurately using standard quadrature techniques, for
example, Gauss-Hermite quadrature (see Chapter 10).

This "brute force" approach to maximum likelihood works relatively
well in simple situations: a single random effect, two or perhaps three
nested random effects, and random effects which come in clusters (e.g.,
longitudinal data with subjects having random intercepts and slopes).
However, for more complicated structures (e.g., crossed random factors)
it fails.
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b. Likelihood equations

- i. For the fixed effects parameters

Even though the likelihood equations are numerically difficult, we can
write them in a simpler form. From (8.14)

so that

since /u(u) does not involve /3. Noting that

we can rewrite (8.18) as

Using (5.18), which gives the derivative of the log likelihood for a
GLM, in (8.20) gives

where W* = {^afoM^)^)]-1} .
The likelihood equation for /3 is therefore



228 CHAPTERS. GLMMS

which is similar to (5.19), the difference being that W* and W*/x are
replaced by their conditional expected values given y.

In cases like the Poisson example of (8.15), W* = I and the equations
simplify to

Computing issues related to solving these equations are described in
Chapter 10.

— ii. For the random effects parameters

A result similar to (8.20) can be derived for the ML equations for the
parameters in the distribution of fv(u). Let (p denote those parameters
so that

Further simplifications are not possible without specifying a form for
the random effects distribution.

8.5 MARGINAL VERSUS CONDITIONAL MODELS

Instead of starting from the conditional specification as in (8.1), (8.2),
and (8.3), we might directly hypothesize a model for the mean of y.
As an example, suppose ytj is equal to 1 if the jth child of woman i is
born prematurely and is zero otherwise and assume we have a single
predictor Xij = number of drinks of alcohol per day. The marginal ap-
proach would model the marginal mean of yij directly by, for example,
assuming that a logistic regression model, as in (3.109), fits the data:

In words, the model would be for logit of the probability of premature
birth, averaged over a population of women. Of course, if the model was
for correlated data, we would not be able to assume the observations
were independent.

On the other hand, our typical conditional approach corresponds to
hypothesizing the existence of a random factor for women and specify-
ing a conditional model such as
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where Ui represents the random woman effect. This corresponds to
modeling the conditional probability of a premature birth for each
woman.

Prom a probabilistic perspective, we can calculate the marginal dis-
tribution of y (at least conceptually—it might be computationally dif-
ficult) from the distribution of u and the conditional distribution of
y|u. It is not possible to recover the marginal of u and the conditional
distribution of y|u from the marginal distribution of y. This would
seem to favor the conditional specification of the model.

However, in some cases, the marginal distribution (or perhaps only
the marginal mean) may be adequate for answering questions of in-
terest. For example, in the alcohol consumption example, a natural
question of interest is how much could the incidence of premature birth
be reduced by lowering, on average, women's alcohol consumption. In
such cases, the potentially difficult problem of specifying the condi-
tional distribution of y|u and the marginal distribution of u can be
avoided. This is an advantage of marginal modeling and the basis of
the generalized estimating equations approach, which is described in
Section 8.6a.

Distinguishing conditional from marginal models is straightforward
probabilistically, but it is often difficult in practice. For example, a
researcher might be interested in "the influence of alcohol consumption
on premature birth", which would not specify which type of model
to build. In our experience, researchers often think about building
models in a mechanistic way, which seems more compatible with the
conditional approach. Again considering the premature birth example,
a researcher might think about the influence of alcohol consumption
by trying to understand how alcohol influenced individual women's
physiology.

The distinction between conditional and marginal models is an im-
portant one to keep in mind in practice. The reason is perhaps easiest
to see in a binary data, probit-normal model:

It is not hard to show, as we do later in (8.52), that if the conditional
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Figure 8.1: Probability of success versus a predictor for the
marginal and conditional versions of a probit-normal model.
Solid line, marginal model; Dashed lines, realizations of the
conditional model.

mean is given as in (8.25), then the unconditional mean is

so that j3* = (3/Jz'iDzi + 1. Hence 0 represents the magnitude of
the effect of the predictors on the conditional distribution, while ft*
represents the magnitude of the effect on the marginal distribution.

Clearly, ft is always larger than ft* in absolute value. Why this is
so is perhaps easiest to understand graphically, as shown in Figure
8.1. Each of the realized values of the conditional model [i.e., equation
(8.25) plotted for various realized uj, shown by the dashed lines in the
figure, have a large value of ft. However, the variance of the random
effect is quite large and when all the curves are averaged, the resulting
unconditional mean has a much smaller slope and much smaller value
for /3*.

There are other advantages to the conditional approach. For exam-
ple, if two studies are performed in different populations with different
variances the marginal models will be different even though the con-
ditional models are the same. Returning to the alcohol consumption
example, suppose a small, preliminary study is conducted with a pur-
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posefully homogeneous study population (and hence a small variance
for the subject random effect). Later, a larger scale study is conducted
on a wider scale with a more heterogeneous study population. Even
if the effect on every person in both studies is the same, the marginal
models will differ because of the different variances.

8.6 OTHER METHODS OF ESTIMATION

The difficulty in evaluating the likelihood for models such as (8.15) and
the fact that numerical maximization must be resorted to has led to
both alternative approaches and to a body of research for effective ways
to compute and maximize the likelihoods. The latter topic is treated
in Chapter 10; here we introduce some of the alternative methods of
estimation.

a. Generalized estimating equations

The generalized estimating equations (GEEs) approach begins by posit-
ing a marginal generalized linear model for the mean of y as a function
of the predictors. For example, for binary data we might hypothesize
a logistic regression for the mean:

If we used a working assumption of independence (as in Section 7.8)
of all the elements of y, the ML estimating equations for j3 would be,
from E 5.9,

These are unbiased estimating equations, meaning that the difference
between the right-hand side and the left-hand side is zero, namely
E (X'y — X'E[y]) = 0. It is not surprising and is true under regu-
larity conditions (Heyde, 1997, Sec. 12.2) that solutions to unbiased
estimating equations give consistent estimators.

Operationally, this estimator could be calculated by pretending that
all the data were independent and conducting a standard logistic regres-
sion analysis. Just as described in Section 7.8, this is often a nearly fully
efficient estimator but the standard errors, variance estimates, tests and
confidence intervals would often be highly misleading. Again, as in
Section 7.8, this can be dealt with by using the estimator that naively
assumes independence but properly calculating its (large-sample) vari-
ance.



232 CHAPTERS. GLMMS

For longitudinal data with m subjects and with y, denoting the data
for the ith subject, we have

and the estimating equation, (8.27), for binary data becomes

From this it can be shown that (Heyde, 1997, Sees. 4.2 and 12.4) the
large-sample variance of /3 is

upon the assumption of independence among the y^. This can be con-
sistently estimated as m -+ oo with

where E[yf] = 1/(1 +exp{-Xi£}).
The working assumption of independence may lead to inefficient es-

timators (Fitzmaurice, 1995) and other working variance-covariance
structures can be entertained. In that case, for (8.28) we have

where Wi
 1 = varw(yi) IS tne working variance for y^. This engenders

corresponding changes in (8.29) and (8.30). See Diggle et al. (1994,
Sees. 8.2.3 and 8.4.2) for more details.

b. Penalized quasi-likelihood

For the generalized linear models (GLMs) of Chapter 5, the use of work-
ing variates, as in (5.4) and (5.28), and the principle of quasi-likelihood
(Section 5.6) are highly useful concepts. Quasi-likelihood is attractive
because of its ability to generate highly efficient estimators without
making precise distributional assumptions. Working variates form the
basis of efficient computing algorithms for both maximum likelihood
and maximum quasi-likelihood. A natural question is whether they
can be adapted for use in GLMMs.
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Working variates for GLMs begin with a Taylor expansion of the link
function around the mean of yi :

The working variate thus follows a linear model and can be used to
form a provisional estimate of/3. This local approximation is repeated
at each update of an iterative algorithm.

The direct analog of working variates for the GLMM specification in
(8.1) and (8.2) would be an expansion around the conditional mean of
Vi '

or

where A = j <^(//i) j . To derive a local approximation, the next step
would be to calculate the variance of t. But this approach quickly
becomes complicated since A (through its dependence on /z) and p, —
E[y|u] itself are random functions of u and their variances are not easily
calculated.

A possible simplification is to set u in A equal to its mean, 0, sim-
plifying (8.32) to be

whereA* = {cpMfa-1(x5/9)]}.
Under this simplification

That is, the working variate t approximately follows a linear mixed
model (LMM) as in Chapter 6. This suggests an iterative algorithm
(Schall, 1991) in which an LMM is fitted to get estimates of ft and u.
These are then used to recalculate the working variate, and so on.

A completely different justification of this approach is via what is
called penalized quasi-likelihood (PQL). Recall that quasi-likelihood
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does not specify a distribution, only the mean-to-variance relation-
ship. This is not a sufficient basis on which to estimate the variance-
covariance structure. One suggestion (Green and Silverman, 1994) to
remedy this defect is to add a penalty function to the quasi-likelihood
of the form ^u'D"1!!, that is

where Qi is defined in (5.50).
The maximum quasi-likelihood equations would come from differen-

tiating (8.35) with respect to ft and u and would be [compare (5.53)]

and

These lead (Breslow and Clayton, 1993) to a computational algorithm
similar to that of Schall(1991). Yet another justification for this ap-
proach is via Laplace approximations (see Chapter 10 and Wolfinger,
1994).

Despite the number of ways in which basically the same approach has
been justified, it has not been found to work well in practice, especially
for binary data in small clusters (Breslow and Clayton, 1993; Breslow
and Lin, 1995; Lin and Breslow, 1996). We therefore recommend that
unmodified penalized quasi-likelihood not be used in practice. More
detail is given in Chapter 10.

c. Conditional likelihood

An approach very different in nature to integrating random effects out
of the distribution and working with the marginal distribution is to
consider a conditional likelihood and construct conditional estimators
and tests as in Section 3.8e. In the conditional approach we start with
the conditional distribution of the data given the random effects, but
instead of hypothesizing a distribution for these effects and integrating
them out, they are treated as fixed parameters. The sufficient statistics
for them are derived and the conditional distribution given the suffi-
cient statistics (which, by definition, is free of these effects) is used for
inferential purposes.
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A classic application of the conditional approach is to the case of
matched pairs binary data. For example, suppose we wish to ask
whether cancer patients get more effective treatment in major cancer
centers than in community hospitals. We cannot compare remission
rates directly since patient populations might be drastically different.
For example, major cancer centers might appear to provide poorer
treatment merely because they treat the most difficult cases.

A possible solution is to employ a matched pairs design: A patient
from a cancer center is matched with a patient from a community
hospital on the basis of treatment date, type of treatment received,
and patient's age. Suppose that the response variable is whether or not
there is a sizable shrinkage in tumor size within 90 days and let yij = I
for shrinkage and 0 otherwise. Here i indexes pairs i = 1,2,. . . , n and
j indexes type of hospital (with j' = I representing a cancer center and
.7 = 2 representing a community hospital). Also, let X{j be 0 when
j = 1 and 1 when j = 2.

A possible model for y^ is:

Primary interest focuses on /?, which represents the log odds of tumor
shrinkage for community hospitals as compared to cancer centers, which
is assumed constant within each pair. The Ui represent the pair-to-pair
differences in the probability of tumor shrinkage.

What happens if we treat the Ui as fixed effects and estimate them,
along with /3? Maximum likelihood gives (see E 8.6).

where NIQ is the number of pairs with yn = 1 and yi2 = 0 and where
NQI is the number of pairs with yn = 0 and y^ = 1. This is perhaps
easiest to visualize in a 2 x 2 format as in Table 8.1.

Table 8.1: Fate of Matched Pairs

Cancer
Center
Success
Failure

Community Hospital
Success Failure

Nn Nw

NQI NQQ
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It is not hard to show that this ML estimator is twice what it "should"
be in the sense that it converges to 1ft (see E 8.7).

What is the remedy? A commonly-used approach is that of condi-
tional likelihood, in which we derive the sufficient statistics for the Ui
and work with the conditional distribution given those sufficient statis-
tics.

We follow the development in (3.134) through (3.138). If interest
focuses on /#, then we will want to base inferences on the conditional
distribution of T = £^ y^Sy given S\ = j/i., £2 = 2/2-, • • • , Sm = ym- •
In our example,

so we want the conditional distribution of the total number of successes
in the community hospitals conditional on the number of successes in
each pair. Prom Table 8.1, T = NU + NQ\. Now NU is just the number
of pairs that have two successes, so conditional on Si, it is known and
fixed. We therefore focus on the conditional distribution of NQI given
the Si. We build it up in two steps. First consider a pair for which
$ = 1.

If Si = 1, there are two possibilities: {yn = 0, yi2 = 1} or {yn =
l>?/i2 = 0}- The conditional probability of the first event is

So the conditional distribution of y^ given 5, = 1 is Bernoulli with a
probability of success having a logit of ft.
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Writing T as

shows that the conditional distribution of NQI =T — NU given the Si
is the sum of independent Bernoullis, each with conditional probability
of success of (1 + e~^)-1, that is,

It is therefore straightforward to show that the maximizing value of the
conditional distribution (the conditional MLE) is

which is a consistent estimator of 0 as NU 4- NQI increases.
Also, under HQ\ fi = 0, the distribution is binomial (Afn + iVoi, ^)5

from which exact tests or p-values can easily be derived. To do so, we
use as our test statistic NQI , the number of successes in the community
hospitals out of the pairs for which 5» = 1. If we were testing against
the alternative that HA '• fi > 0, we would reject for large values of
NQI. Therefore the p-value for the one-tailed test would be:

where X ~ binomial(./Voi + NIQ, ^).
As a numerical illustration, consider the hypothetical data of Table

8.2.

Table 8.2: Matched Pairs Data

Cancer
Center
Success

Failure
Total

Community Hospital
Success Failure

501 157

146 132
647 289

Total
658
278
936

The conditional analysis discards the 501 + 132 = 633 responses for
which the response in the cancer center and community hospital are
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the same and bases the analysis on the 303 remaining. The p-value for
the one-tailed test is

which is approximately 0.283. A usual convention is to multiply the
one-sided p-value by 2 to get the two-tailed p-value, so the answer is
2(0.283) = 0.566, suggesting no difference between cancer centers and
community hospitals.

By its nature the conditional approach has three potentially serious
drawbacks. First, because it treats the random effects as unknown pa-
rameters to be conditioned away, it is incapable of making inference
to quantities involving the random effects: for example, their variances
or predicted values. Second, it discards information that might be
available by making only weak assumptions about the form of the dis-
tribution from which the random effects are chosen. Third, it removes
any information that would be gained by comparing across levels of
the random effects. In some situations, virtually all the information
of interest is garnered from comparisons across levels of a random ef-
fect. Hence use of a conditional approach would be disastrous in such
a context: It would eliminate all the information of interest due to the
extreme manner in which the effects are handled.

Basically, the conditional approach is effective and attractive when
interest centers almost exclusively on effects that can be measured
within levels of a random factor. When extensive information exists
across levels of a random factor or when interest focuses on the ran-
dom factor itself, the conditional approach cannot be used.

d. Simpler models

To avoid the computational difficulties of GLMMs, other models have
been considered, mostly on the basis of computational convenience.
For example, the beta-binomial model of Section 2.6b has long been
used for modeling correlated binary data. The most basic use of the
beta-binomial is for a context in which there are m groups, and within
the ith group we have Ui observations, j/y ~ binomial(fcy,py), with
j running from 1 to nj. This is conditional on the values of the pij.
To complete the specification we assume that p^ ~ beta(aj,/?j). Given
these distributional assumptions it is straightforward to show that the
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likelihood is given by

where B(a,j3) represents the beta function.
Working with the log likelihood, some simplifications occur as in

(2.79). However, the likelihood still cannot be maximized in closed
form, and numerical maximization must be resorted to. Likelihood
ratio tests can be performed to test for dispersion or to compare the
means of the various groups.

For data having Poisson distributions, a natural distribution to in-
corporate correlation is the gamma distribution. As with the beta-
binomial model, we consider a situation with m groups, and within
group i we have n^ observations, yij ~ Poisson(Ajj) with j running
from 1 to nj. This is conditional on the values of the \ij. To complete
the specification we assume that Ay ~ gamma(rj,/:?j). This allows for
easy integration over the distribution of the parameters across groups,
so that the likelihood takes a simple closed form.

However, like the beta-binomial model, it is limited in its applica-
tion. It cannot handle models for the fixed effects (e.g., a regression
situation), it cannot separate sources of variation in a crossed design,
and it generally does not have the flexibility to tackle a wide variety
of practical problems. Generalizations to handle more complicated co-
variate patterns and more complicated random effects structures have
been considered by Lee and Nelder (1996), at the cost of additional
computational complexity.

8.7 TESTS OF HYPOTHESES

The usual large-sample tools (see Chapter 2 and Sections S.4 and S.5)
are about the only techniques currently available for statistical infer-
ence.

a. Likelihood ratio tests

The likelihood ratio test for nested models can be performed in the
usual way by comparing —2 log A to a chi-square distribution. Testing
whether a variance component is zero leads to the same boundary-of-
the-parameter-space problem noted before in Chapter 2 [see (2.88)]. In
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the simple case where we are testing the null hypothesis that a single
variance component is equal to zero, the large-sample distribution is
a 50/50 mixture of the constant 0 and a Xi distribution. The critical
values are thus given by (see E 8.4) Xi,i-2a f°r an a-level test.

Since the likelihood cannot, in general, be evaluated analytically the
same is true of the likelihood ratio test statistic. It can be calculated
only numerically for a given data set. In many cases it is a challenge
even to perform the numerical maximization and calculation.

b. Asymptotic variances

Again, with the difficulty of calculating the likelihood, even large-
sample variances and standard errors can be a computational burden.
Numerical methods must be resorted to to calculate even the observed
Fisher information (i.e., the negative of the second derivative matrix of
the log likelihood).

c. Wald tests

For large samples, when construction of the observed or expected in-
formation is possible, Wald tests can be formed by utilizing the large-
sample normality of estimators. This can be for an individual param-
eter:

or for a set of linear combinations of the parameters,

where I represents the observed or expected information.

d. Score tests

For testing the presence of a single random effect or multiple ran-
dom effects, score tests have also been proposed (Commenges et al.,
1994; Jacqmin-Gadda and Commenges, 1995; Lin, 1997; Commenges
and Jacqmin-Gadda, 1997). These have the advantage of not requir-
ing the maximum likelihood estimators under the GLMM. However,
they often have less power than the tests based on the random effects
models.
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8.8 ILLUSTRATION: CHESTNUT LEAF BLIGHT

The American chestnut tree used to be a predominant hardwood in the
forests of the eastern United States, reaching 80 to 100 feet in height
at maturity and providing timber and low-fat, high-protein nutrition
for animals and humans in the form of chestnuts. In the early 1900s
an imported fungal pathogen, which causes chestnut leaf blight, was
introduced into the United States. The disease spread from infected
trees in the New York City area and by 1950 had killed more than 3
billion trees and virtually eliminated the chestnut tree in the United
States. Economic losses in both timber and nut production have been
estimated in the hundreds of billions of dollars. As well, there are
ecological impacts in eliminating a dominant species.

To try to bring this tree back to the U.S. forests, several methods
have been explored, including the development of blight-resistant vari-
eties. We focus instead on attempts to weaken the fungus by infecting
it with a virus that reduces the fungus' virulence. The basic idea is to
release these hypovirulent isolates of chestnut blight fungus and let the
viruses infect the natural populations of the fungus, thereby allowing
chestnuts trees to survive.

Michael Milgroom from the Department of Plant Pathology at Cor-
nell University, and his colleague, Paolo Cortesi from the University
of Milan, have studied this system (Cortesi et al., 1996; Cortesi and
Milgroom, 1998). Viruses can spread between fungal individuals only
when they come in contact and fuse together. A major obstacle in
spreading this virus and thus controlling the disease is that different
isolates of the fungus cannot necessarily transfer the virus to one an-
other. They have worked with six incompatibility genes, which may
block the transmission of this virus between isolates of the fungus. By
developing lab isolates that are compatible with a wide variety of nat-
urally occurring isolates (and thus able to transmit the hypovirulence)
an avenue may be opened to biocontrol of this fungal disease.

To estimate the effects of these genes Milgroom and Cortesi have
made extensive attempts to pair isolates which differ on the first gene
only, the second gene only, the first and the second gene, and so on.
For each combination of isolates they attempt transmission an average
of 30 times and record a binary response of whether or not the attempt
succeeded in transmitting the virus.

Questions of interest include whether pre-identified genes actually
do have an influence on transmission of the virus (and if so, to what
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degree), whether there axe other, as yet unidentified, genes that might
affect transmission, and whether transmission is symmetric. By sym-
metry of transmission we mean the following: Suppose the infected
fungus is type b at the locus for the first gene and the non-infected
isolate (that we are trying to infect) is type B. The two isolates are
the same at the other five loci. Is the probability of transmission the
same as when using type B to try to infect type 6?

a. A random effects probit model

A common model in genetics for describing the presence or absence of
a trait is the threshold model. This arises from assuming that a large
number of genes each have a small and additive effect and that when
the cumulative effect exceeds a threshold of zero, the trait is present
in an individual. Letting y = 1 denote the presence of the trait, t
represent the additive genetic effect and x'/3 represent either genetic or
non-genetic fixed effects, we can appeal to the central limit theorem to
give the probit model:

so that we have

or

where TT = E[y] = P{y = I } .
We use this model by letting yi be equal to 1 if the attempt succeeds

in transmitting the virus and 0 otherwise.

- i. The fixed effects

We concentrate first on building the fixed effects portion of the model.
With xj the ith row of the model matrix for the fixed effects, our model
is
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where MCHj is 1 if there is a mismatch at locus j and zero otherwise
and ASYj is 1/2 if there is a mismatch at locus j with a b donor, —1/2 if
it is a B donor and 0 if there is no mismatch. The effect of a mismatch
on gene j (averaged over donor types 6 and J5) is thus measured by o;j,
and 7j measures the difference between a mismatch with a donor type
6 and a donor type B.

— ii. The random effects

The fact that different isolates of the fungus are used which may differ
with regard to genes other than the six pre-identified suggests that we
might model their effects as being selected from a normal distribution.
Let ZD be the model matrix for the donor effects, i.e., an incidence
matrix identifying which donor isolates are used for which attempted
transmissions. Similarly define ZR for the recipient isolates, with the
ith row of the matrices denoted respectively as zJD and z'iR. With xj
defined by (8.49), Z = [Z# Z#], and u' = [u'D u'^], a reasonable
model might then be: *

In this model, up represents the (random) effects of the donor isolate
and MR represents the (random) effects of the recipient isolate.

- iii. Consequences of having random effects

The unconditional mean is given by

This last quantity can most easily be calculated by appeal to the thresh-
old model. We do not necessarily need to believe that the threshold
model holds, but can merely use it as a probabilistic identity.
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where W ~ Af(0, z^Dz, + 1). The marginal probability is thus

where /3* is equal to /3/*/zjDzi + 1.
This result is interesting in two ways. First, it is somewhat surprising

(and, as it turns out, special) that the form of the relationship of the
mean of y to the fixed effects is probit either conditionally or uncondi-
tionally. Second, it shows that the marginal coefficients on the probit
scale are always attenuated as compared to the conditional coefficients.
Thus it clearly is important to keep in mind when considering any of
these models whether they represent the response conditional on the
random effects or are, instead, marginal calculations.

Since m is binary, it has a marginal Bernoulli distribution with mean,
E[yj], given by (8.52). Its variance is therefore E[yj] (1 - E[i/j]).

A typical consequence of including random effects is that they induce
a correlation between observations sharing the random effects and this
model is no exception. Prom first principles, the covariance of two
observations with the same donor and recipient isolates would be given
by cov(yi,yj) = E[yi2/j] — E[yj]E[t/j]. The second part of this can be
evaluated using (8.52) and the first part calculated as

where a = Jz'^Dzj.

- iv. Likelihood analysis

Again, with a conditional specification, the likelihood is most naturally
calculated by first writing out the conditional distribution and then
integrating out the random factors. The conditional distribution given
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u is the product of Bernoulli densities:

The likelihood would then be given by

where the integral is of order equal to the dimension of u, which in
this example is 259. Furthermore, for the design of this experiment,
the likelihood does not break down into smaller-dimensional pieces, as
it might with longitudinal data. This poses a serious computational
problem.

— v. Results

Given the difficulty of calculating the likelihood, the techniques of Sec-
tion 10.3c were used to fit the model. A logistic version of (8.54) was
fitted using the Monte Carlo Newton-Raphson technique. This was
done since the computations were somewhat faster than for (8.54).
The maximized value of the likelihood was estimated by importance
sampling.

The variance components were estimated to be

indicating a small to moderate correlation among observations taken
on the same donor isolate and a somewhat smaller correlation among
observations taken on the same recipient isolate. A likelihood ratio test
of HQ : all 7i = 0 gives a value for —2 log A of about 160 (since the value
is determined by simulation it is not known exactly), which is highly
statistically significant when referred to a chi-square distribution with
6 df. This indicates that, unfortunately, transmission is asymmetric: it
depends on the value at that locus, not just on whether or not there is
a match.

Further analysis shows that the fourth gene (tentatively identified
from previous research) does not have an effect on transmission. Nei-
ther its direct effect nor its asymmetry effect is statistically significant.
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8.9 EXERCISES

E 8.1 Show that, if Ui ~ -A/"(0,0%) and that each row of Z has a sin-
gle entry equal to 1 with all the rest being zero, then Mu(z) =
exp{^/2}.

E 8.2 Prove (8.12).

E 8.3 Show that the log likelihood for (8.15) can be written as (8.16).

E 8.4 Suppose that Y = 6X, where P{5 = 1} = P{6 = 0} = \ and
X ~ xf independent of 6. Show that

E 8.5 Derive the log likelihood for the Poisson-gamma model described
in Section 8.6d.

E 8.6 Show that for (8.37), where the Ui are treated as fixed, unknown
parameters to be estimated, that the MLE of ̂  is given by (8.37).
Hints: Consider separately pairs in which there are zero, one and
two successes and first maximize with respect to the n^, then (3.

E 8.7 Show that 0 of (8.37) converges to 2/3. Hint: Calculate P{yn =
I>yi2 = 0} and P{yn = 0, ya = 1} and hence the expected value
of NQI and NIQ.



Chapter 9

PREDICTION

9.1 INTRODUCTION

Earlier chapters contain results for estimation known as predicting ran-
dom effects. Section 1.2 describes what is meant by a random effect; in
being a random variable, it has mean and second moments, properties
of which are shown in Section 1.4 for traditional LMMs. Some real-life
examples of random effects are described in Section 1.5. How one de-
cides whether effects are fixed or random is discussed in Section 1.6, a
decision tree in Section 1.7 helps with doing this, and Section 1.7c has
a brief discussion of predicting random effects. It is this brevity which
we now expand upon. In doing so we provide underlying methodology
for expressions given earlier for predicted values of random effects in a
variety of models. These predictors can be found in equations (2.56),
(2.90), (2.103), (3.92), and (6.42), and in Section 6.6a.

We begin by presenting three different but interrelated methods of
prediction. In doing so we make numerous references to Searle et al.
(1992) wherein Chapter 7 has the extensive mathematical detail sup-
porting much of what we present here. For brevity's sake the Searle et
al. book is denoted by VC, from its title, Variance Components.

We deal with the general case of y being available data, in the model
for which u is a vector of random effects. First and second moments of
u and y are defined by

247
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so that E[u] = IJLU, E[y] = p,y and

9.2 BEST PREDICTION (BP)

When /(u,y) is the joint density function of y and scalar u then,
with the predictor of u being denoted by u, the mean squared error of
prediction is

A generalization of this to a vector of random variables u is

where A is a positive definite symmetric matrix. Clearly, for A being
scalar and unity, (9.4) is identical to (9.3).

a. The best predictor

Our criterion for deriving a predictor is minimum mean square, i.e., we
minimize (9.4). The result is what we call the best predictor. Note that
"best" here means minimum mean squared error of prediction, which is
different from a common meaning of "best" being minimum variance.
Because variance is variability around a fixed value and because u in
(9.3) is a random variable, (9.3) is not the definition of the variance of
u. Thus, for estimating a parameter we use the criterion of minimum
variance unbiased, while for predicting the realized value of a random
variable we use the criterion of minimum mean square error. Thus, as
shown in VC p. 262, from minimizing (9.4) we get

i.e., the best predictor of u is the conditional mean of u given y. Details
are given in Section 9.8.

Noteworthy features of this result are: (i) it holds for all probability
density functions /(u,y) and (ii) it does not depend on the positive
definite symmetric matrix A.
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b. Mean and variance properties

First and second moments of the best predictor axe important. They
are discussed in Cochran (1951) and in Rao (1965, pp. 79 and 220-
222) for the case of scalar u. First, the best predictor is unbiased for
sampling over y:

as detailed in Section S.I of VC. Note that the meaning of the unbi-
asedness here is that the expected value of the predictor equals that of
the random variable for which it is a predictor. This differs from the
usual meaning of unbiasedness when estimating a parameter. In that
case unbiasedness means that the expected value of (estimator minus
parameter) is zero; e.g., E[J3 — /3] = 0, where J3 is a constant. With
prediction, unbiasedness means that the expected value of (predictor
minus random variable) is zero; e.g., E[u — u] = 0 where u is a ran-
dom variable. The former gives E[/0] = /3, whereas the latter gives
E[u] = E[u].

Second, prediction errors u — u have a variance-covariance matrix
that is the mean value, over sampling on y, of that of u|y:

Also,

c. A correlation property

For scalar u there are two further properties of interest. The first is
that the correlation between u and any predictor of it that is a function
of y is maximum for the best predictor, that maximum value being

A proof of (9.9) following that of Rao (1973, pp. 265-266) is given in
VC, p. 263.

d. Maximizing a mean

A second property of interest concerns the mean of a selected upper
fraction of a population of random effects. Making this selection on
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the basis of values of u ensures that

This, too, has a proof available in VC at pp. 264-265.

e. Normality

It is to be emphasized that u = E[u|y] is a random variable, being a
function of y and unknown parameters. Thus the problem of estimating
the best predictor u remains, and demands some knowledge of the joint
density /(u|y). Should this be normal,

using Section S.2b gives

Properties (9.7) through (9.10) of u still hold. In (9.7) we now have
from (9.11) that var(u|y) = D - CV-1C', so that in (9.7)

And using (9.12) in (9.8) gives

where ci is the ith row of C.
An estimation problem is clearly visible in these results. The pre-

dictor is given in (9.12) but it and its succeeding properties cannot be
elucidated without having values for, or estimating, the four parameters
mu,my, C and V.

9.3 BEST LINEAR PREDICTION (BLP)

a. BLP(u)

The best predictor (9.5) is not necessarily linear in y. Suppose attention
is now confined to predictors of u that are linear in y, of the form
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for some vector a and matrix B. Minimizing (9.4) for u of (9.15), in
order to obtain the best linear predictor, leads (without any assumption
of normality) to

where /Ltu, ny, C and V are as defined in (9.11) but without assuming
normality as there. Not only do (9.5) and (9.16) demand no assumption
of normality, but additionally important is the fact that they also apply
no matter what form \JLU and fj,y have. Equations (9.5) and (9.16) apply
for all forms of those means.

An immediate observation on (9.16) is that it is identical to (9.12).
This shows that the best linear predictor (9.16), derivation of which
demands no knowledge of the form of /(u,y), is identical to the best
predictor under normality, (9.12). Properties (9.13) and (9.14) there-
fore apply equally to (9.16) as to (9.12). And, of course, BLP(u) is un-
biased, in the sense described following (9.6), namely that E[ii] = E[u].
Problems of estimation of the unknown parameters in (9.16) remain.

b. Example

To illustrate (9.16) we use the beta-binomial model of Section 2.6b
wherein we have

and

also

and

Therefore using (9.16)



252 CHAPTERS. PREDICTION

To derive cov(j/j.,pj) we adapt (2.75) as follows:

Therefore

c. Derivation

Since we want a predictor u to be linear (in y) we take u = a + By
and proceed to derive a and B so that u = a 4- By is best, meaning
that it has minimum mean squared error of prediction. Thus we want
to minimize the left-hand side of (9.4), which now gets written as

Equating dq/da. to 0 gives

and so

Substituting a into (9.17) gives

We wish to minimize this with respect to B. To do this, ignore A and
D (because they do not involve B), and define bj and c^ as the ith
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and jth rows of B and C, respectively. Then the (i^j)th element of
BVB' - BC' - CB' is

Thus to minimize this element with respect to bj and bj

Therefore we take the minimizing form of B as VB' = C' and so
B = CV-1. Thus

d. Ranking

In establishing, as observed in (9.10), that selection on the basis of the
best predictor u maximizes E[u] of the selected proportion of the popu-
lation, Cochran's (1951) development implicitly relies on each scalar u
having the same variance and being derived from a y that is indepen-
dent of other ys. Sampling is over repeated samples of u (scalar) and
y. However, these conditions are not met for the elements of u derived
in (9.12). Each such element is derived from the whole vector y, their
variances are not equal, and the elements of y used in one element of
u are not necessarily independent of those used for another element of
u. Maximizing the probability of correctly ranking individuals on the
basis of elements in u is therefore not assured. In place of this there is
a property about pairwise ranking.

Having predicted the (unobservable) realized values of the random
variables in the data, a salient problem that is often of great impor-
tance is this: How does the ranking on predicted values compare with
the ranking on the true (realized but unobservable) values? Henderson
(1963) and Searle (1974) show, under certain conditions (including nor-
mality), that the probability that predictors of Ui and Uj have the same
pairwise ranking as Ui and Uj is maximized when those predictors are el-

ements of BLP(u) of (23); i.e., the probability P{UI—iij < 0|iti — U j < 0}
is maximized. Portnoy (1982) extends this to a special components-
of-variance model, for which he shows that ranking all the UiS of u in
the same order as the Uj (the best linear predictors) rank themselves
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does maximize the probability of ranking the itjS correctly. He does,
however, go on to show that in models more general than variance com-
ponents models, there can be predictors that lead to higher values of
this probability than do the best linear predictors, which are elements
of the vector BLP(u) = p,u + CV-1(y -/-*„).

9.4 LINEAR MIXED MODEL PREDICTION (BLUP)

The preceding discussion is concerned with the prediction of random
variables. Through maximizing the probability of correct ranking, the
predictors are appropriate values upon which to base selection; e.g., in
genetics, selecting the animals with highest predictions to be parents of
the next generation. Consideration is now given to linear mixed model
prediction, corresponding to mixed models in which some factors are
fixed and others are random.

a. BLUE(X£)

In Section 6.3 we derived at equation (6.20)

By concentrating attention on estimating X/3 rather than ft we achieved
the invariance of X/3° to (X/V~1X)~ compared to the non-invariance
of ft0. Deriving ML(X/3) of (9.20) relied upon assuming normality
of the data vector y. But that same estimator X/3° can also be de-
rived, without requiring normality, as the best linear unbiased estimator
(BLUE) of X/3:

Best in this context means that of all linear (in y) unbiased estimators
of X/3, the "best", i.e., the BLUE(X/3), is the one with the smallest
variance. This is established by taking the estimator to have the form
A'y and deriving A so that A'y is both unbiased for t'X/3 (for given
t') and also so that var(A'y) is minimized. With 2m being a vector of
Lagrange multipliers, this leads to wanting

and needing to minimize
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with respect to A. The resulting equations for A and m (which is of
little interest) are

or, in matrix form

an example of equation (1) of Hayes and Haslett (1999). The solution
for A is what leads to BLUE(X£) = X0° of (9.21).

b. BLUP(t'X/3 + s'u)

The counterpart of BLUE(t'X/3) in an LM or GLM is BLUP(t'X/3 +
s'u) in an LMM or GLMM where u is a vector of random effects and t'
and s' are known vectors. And BLUP is best linear unbiased predictor.

Akin to the derivation of BLUE, we seek A for A'y to be unbiased
for t'X/3 + s'u; and in taking E[u] = 0, which is customary, this unbi-
asedness leads, just as in (9.22), to

We additionally seek A so as to minimize the variance of the prediction
error of [A'y — (t'X/3 + s'u)]. This is done by minimizing

with respect to A and m. This gives equations

Solving for A yields A'y as

where X/3° is the same BLUE(X/3) of (9.21).
Special cases of (9.28) are (i) for s = 0 and t' taking successive rows

of I, then BLUP(X/3) = X/3°; and (ii) for t' = 0 and s' being successive
rows of I, BLUP(u) = C'V-^y - X/3°). And a very familiar special
case is that of C = ZD, giving BLUP(u)= DZ'V-^y-X/?0) of (6.43).
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c. Two variances

The variance and covariances of some eight variants of (9.28) are given
in VC p. 272. We show just two of them here.

Let

with

Then for

d. Other derivations

Although Henderson had developed and used (9.28) in dairy cow se-
lection programs prior to publication in Henderson (1963), in the sta-
tistical literature an early version can be found in Goldberger (1962).
His equation (3.12) has X of full column rank, and with its H = V,
xi = t'X and its w' = s'C (3.12) is a special case of (9.28).

Of the numerous ways for deriving (9.28), five are detailed in VC,
pp. 271-275. One is primarily algebraic as in the derivation of (9.18);
another simplifies E[u|yc] for yc being y corrected for fixed effects (B\
a third starts with assuming that w is linear in y, such as a 4- By,
another procedure is based on partitioning y as (y — X/3°) and X/3°;
and finally there is a Bayes method.

9.5 REQUIRED ASSUMPTIONS

It is interesting to note that BP, BLP and BLUP do not all require
the same assumptions. In some general sense BP requires more as-
sumptions than BLP which in turn requires more than BLUP. For
BP(u) = E[u|y] one needs to know the distribution of u|y. But BLP
demands knowing only first and second moments of u and y. BLUP
requires knowing only V = var(y) and C = cov(u,y'), but first mo-
ments are not needed, with fixed effects /3 being estimated through
using X/3° = X(X'V-1X)-X/V~1y. In not one of BP, BLP or BLUP
is normality needed.
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9.6 ESTIMATED BEST PREDICTION

An expression for BP(u) more usable in practice than E[u|y] demands
knowing the distribution of y and u. And even then, numerical values
are needed for the parameters of that distribution. This need is clearly
demonstrated by considering

In many situations of having data on which one wants to use (9.32),
numerical values for /iu, C, V and p,y may not be available. So in order
to use (9.32) estimates of these parameters need to be found. Often
this entails deriving such estimates from the data being used to obtain
estimates of (9.32).

Just as one can simultaneously and optimally estimate // and cr2 from
data x ~ Af(/xl, a2!), one would ideally like to optimally estimate u of
(9.32) along with /xu, C, V and p,y. But this is seldom (if ever) feasible.
The usual procedure, therefore, is to estimate /Ltu, C, V and /xy and
replace those parameters in (9.32) by their estimates. No matter what
estimation methods are used for the parameters, denote the resulting
estimates by /iu, C, V and jJLy. Then in denoting BLP(u) as u,

we can have a calculated value

as an estimated BLP(u). Similarly for

is an estimated BLUP, with

Note that these estimated predictors have been derived from a purely
practical viewpoint: Estimate parameters of the distribution of u and y
and in the predictors simply replace the parameters by those estimates.
In doing this no statistical rationale such as minimum variance has
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been invoked. The estimated predictors have just been set up in what
seems like an "obvious" manner. Nevertheless, u° and X/9 are (with
V being the MLE of V) ML estimators of u° and X/3°, respectively.
Their properties, such as mean and variance (let alone distribution)
are largely intractable. This is so if for no other reason that if the
estimated parameters are based on y, then the parameter estimates
are correlated, not only with each other but also with y. And these
correlations will have to be taken into account when seeking moments
of the estimated predicted values. And doing that is not easy. The best
that has been done in the research literature so far is various attempts
at developing approximations. Some of those results are dealt with in
Chapter 6, Linear Mixed Models. Analogous results for generalized
linear models, or nonlinear models would be even more complicated
than what is in Chapter 6. Kackar and Harville (1984) and Prasad
and Rao (1990) consider some of these complications for the estimated
BLUP(u), namely u° of (9.33).

9.7 HENDERSON'S MIXED MODEL EQUATIONS

a. Origin

A set of equations developed by Henderson in Henderson et al. (1959),
which simultaneously yield BLUE(X/3) and BLUP(u) in the LMM with
model equation E[y|u] = X/3 + Zu, have come to be known as the
mixed model equations (MMEs). For the joint density of u and y being
normal, as in (9.11), with C = DZ', var(y|u) = R, and V = ZDZ'+R,
this density is

where q. is the number of columns in Z (i.e., the number of random
effects in the model for the data).

Henderson's approach was to maximize (9.34) with respect to ft and
u, which results in
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These are the MMEs. Their form is worthy of note: Without the D"1

in the lower right-hand submatrix of the matrix on the left, they would
be the ML equations for the model treated as if u represented fixed
effects, rather than random effects.

b. Solutions

After a minor amount of algebra (see E 9.7) it will be found that the
solutions to (9.35) are

and

The MMEs not only represent a procedure for calculating a 0 and u,
but are also computationally more economical than the ML equations
which lead to X/#°. Those equations require inversion of V of order
N. But the MMEs need inversion of a matrix of order only p + <?.,
the total number of levels of fixed and random effects in the data.
And this number is usually much smaller than the N, the number of
observations. True, the MMEs do require inversion of both R and D,
but for variance components linear models these are often diagonal,
which makes these inversions easy.

c. Use in ML estimation of variance components

An interesting feature of the MMEs is that parts of them can be used for
setting up iterative procedures for calculating ML and REML estimates
of variance components in variance components models. Derivation of
these iterative procedures is shown in great detail in VC, pp. 277-285.
Unfortunately the detailed algebra for these derivations is tedious and
lengthy, and so is not given here. The interested reader can go to the
VC reference. Presented here are the main results from that reference.

— i. ML estimation

Define
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and oi ^ is the calculated value of of after the rath round of itera-
tion. The superscript parenthesized m is used throughout to indicate
iteration number. Then for i = 1,... ,r the ML equations (6.60) can
be reduced to the iterations

or

each along with

- ii. REML estimation

The iterative procedure is essentially the same for REML as it is for
ML but with the following changes. Define

and use S instead of R 1 in W. Then, with N — rank(X) replacing
N as the denominator of (9.38), (9.36) through (9.38) are an iterative
procedure for REML estimation of variance components. Making these
changes in (9.36), for example, gives

for W^REML) being the ith diagonal submatrix of

VC, pp. 277-285 not only gives details of deriving the preceding
results, but also derives the information matrix for both the ML and
REML procedures.

9.8 APPENDIX

a. Verification of (9.5)

In the mean square on the left-hand side of (9.4), to u — u add and
subtract E[u|y], which, for convenience, will be denoted by UQ; i.e.,
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with

E[(u - u)'A(u - u)] = E[(u - u0 + u0 - u)'A(ii - u0 4- u0 - u)]. (9.40)

To choose a u that minimizes (9.40), note that in expanding it, the
last term, E[(UQ — u)'A(iio — u)], does not involve u. And in the cross-
product term, using iterated expectation with Ey representing expec-
tation with respect to the distribution of y,

since, for a given y, only u is not fixed and has Eu|y[u|y] = UQ. There-
fore

E[(u - u)'A(ii - u)] = E[(u - u0)'A(u - UQ)] + terms without u.

Since E[(u — Uo)'A(ii — UQ)] must be non-negative, it is minimized by
choosing u = UQ; i.e., the best predictor is u = UQ = E[u|y]. Thus the
problem of predicting a random variable is simply that of predicting
its conditional mean.

b. Verification of (9.7) and (9.8)

Deriving (9.7) comes from (1.14) with yij replaced by u — u and a^ by
y. The two results in (9.8) are established by using (1.16) with y, w
and u replaced, respectively, by u, u', and y. This gives

The second term here involves the covariance of u (conditional on y)
with its mean E[u|y]. It is therefore zero. Hence

which is the first result in (9.8). Likewise, for the second result we start
with

In the second term, the covariance is of u with y', which is constant
conditional on y. Therefore it is zero and so

Thus (9.8) is established.
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9.9 EXERCISES

E 9.1 Suppose yij\\i ~ indep. Poisson(Aj) and Aj ~ Gamma(r,/?);i =
1,2,. . . , m- j = 1,2,... , n. Find the BP and the BLP of Aj.

E 9.2 Establish (9.7) and (9.8).

E 9.3 For the random effects 1-way classification model with unbal-
anced data of Section 2.2c, use (9.16) to derive

Under what condition is this also BP(aj) of Section 2.4b-ii?

E 9.4 Use (9.24) and (9.25) to derive BLUE(X/3).

E 9.5 Derive (9.28) using a partitioned inverse in (9.27).

E 9.6 Derive (9.30) and (9.31).

E 9.7 Derive (9.35) and use it to obtain the solutions in Section 9.7b.

E 9.8 Prove

(a) V-1 = (ZDZ'+R)-1 = R-1-R-1Z(Z'R-1+D-1)-1Z'R-1.

(b) DZ'V-1 = (Z'R-1 +D~1)-1Z'R-1.



Chapter 10

COMPUTING

10.1 INTRODUCTION

A common theme throughout this book has been the difficulty of calcu-
lation of likelihood-based inference. As noted in Chapter 8, computing
the likelihood itself is often difficult for GLMMs, requiring the cal-
culation of high-dimensional integrals. In the case of the leaf blight
example of Section 8.8, the integral is more than 200 dimensions. Un-
fortunately, the current state of software does not include any well-
tested and general-purpose routines for performing such calculations.
For certain subclasses, e.g., linear mixed models, they do exist, but not
for the full generality of GLMMs. In this chapter we identify some of
the common methods used for likelihood calculation and maximization
and briefly describe and give references to some current research topics
in computing for GLMMs.

10.2 COMPUTING ML ESTIMATES FOR LMMs

We first consider computing ML estimates for linear mixed models since
their structure simplifies the calculations somewhat.

a. The EM algorithm

The EM algorithm (McLachlan and Krishnan, 1996) is an iterative al-
gorithm for calculating ML (or REML) estimates, its name standing
for expectation maximization: It alternates between calculating condi-
tional expected values and maximizing simplified likelihoods. It gener-
ates only estimates and requires extra computations (e.g., Louis, 1982)

263
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for obtaining variance estimates.
The EM algorithm is designed for situations where the recognition or

invention of "missing" data simplifies the maximum likelihood calcula-
tions. Starting with initial guesses for the model's parameters, the EM
algorithm typically fills in the missing data by calculating conditional
expected values (given the observed or incomplete data y) of the suffi-
cient statistics. The combination of the observed data and the missing
data is usually referred to as complete data.

For estimating variance components in LMMs with E[y|u] = X/3 +
Xli ZjUj, the missing data are typically taken to be the realized values
of the random effects. Knowledge of the random effects simplifies the
calculations from two viewpoints. First, if they were known we could
simply estimate of = var(uj) as:

where qi is the dimension of Uj. This the ML estimator under the as-
sumption that Ui ~ A/"(0, lof). Second, if they were known, we could
subtract them from y leaving the resulting data independent and fol-
lowing a linear model, to which we could apply ordinary least squares:

All this is very nice, but in reality we do not know the realized values
of the Uj. To counter this, the EM algorithm calculates values to use
in place of the unknown realized values (the missing data) in order to
effect estimation. The conditional expected values of the u^Uj are used
in place of the u^Uj in (10.1) and the conditional expected values of
the u, are used in place of the u, in (10.2) to form improved estimates
of the parameters. This is the maximization step since those equations
represent ML estimation from the complete data. The new estimates
are then used to recalculate conditional expected values; and so on.
This iterative scheme is used until convergence.

Details of applying the preceding ideas to the linear mixed model are
given in Searle et al. (1992, Sec. 8.3). They result in three procedures,
one for ML, a variation of that, and one for REML. We now describe
the procedures, in each case by indicating iteratively computed values
of (functions of) parameters using parenthesized superscripts. Thus
<7f ^

m' is the computed value of of after the rath round of iteration; and
V-Um) is v-i with a2 in v ^placed by ot

2(m) for t = 0,1,. . . , r.
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- i. EM for ML

Step 0. Set m = 0, and choose starting values 0^ and cr, •
Step 1. Calculate

Step 2. If convergence is reached, set of = o-|m+1) and X/3 = X/3(m+1);
otherwise increase m by 1 and return to step 1.

- ii. EM (a variant) for ML

Step 0. Set ra = 0, and choose starting values ai .
Step 1. Calculate

Step 2. If convergence is reached, set of = o^m ' and then calculate
Xj& = X(X'V-1(m+1)X)-X'V-1(m-|-1)y; otherwise increase m by 1 and
return to step 1.

- iii. EM for REML

Step 0. Set m = 0, and choose starting values ai .
Step 1. Calculate

Step 2. If convergence is reached, set of = <7Jm + ; otherwise increase
m by 1 and return to step 1.
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b. Using E[u|y]

An alternative to EM is to begin with the REML equations of (6.67):

which have to be solved for the a2s inherent in P. We now show that
those equations can also be written as equating calculated and expected
best predicted values:

for

of (6.43). First,

Hence

and so

Moreover,

Therefore the REML equations of (10.7) are equivalent to

Moreover, from (10.7), the REML equations can, for i = 1 ,2, . . . , r be
written as
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or

This suggests a substitution algorithm: starting with initial guesses
<T/ find successive iterates of of ,cr/ , from

where

Successive substitutions would be performed in (10.16) until conver-
gence.

c. Newton-Raphson method

The Newton-Raphson method is an old and celebrated method that
can be used for maximization of a nonlinear function. More precisely,
it is a root-finding algorithm. Starting from a function f ( 0 ) we wish
to find a root of

which we hope is a maximum.
We expand df(0)/d0 about #o as

Equating (10.18) to 0, solve for the root as

which gives

This can be used iteratively to refine the estimate of the root:
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To use (10.21) we need the first and second derivatives of the function.
We illustrate this method on the profile log likelihood, (6.61), of the

components-of-variance model:

where V = £S=o z<zfo? and P = V'1 - V~1X(X/V-1X)-X'V-1.
Since this is a profile log likelihood it depends only on the cr2s and not
on /3. We therefore need partial derivatives of log lp with respect to o\
and the mixed partial derivatives with respect to of and dj.

The ingredients for these are given in Section 6.12. From (6.78) we
have

and therefore

Also, from (M.20)

and using (M.18)

Prom these derivatives it is straightforward to calculate

and

Based on (10.21) the Newton-Raphson algorithm would take the form
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where ^2^2 and Ia2 are evaluated at a2 — <r2(m).
The Newton-Raphson method is not without its drawbacks. First,

it does not guarantee convergence, even to a local maximum. It can fail
when the linearized approximation in (10.18) is a poor one. Second,
it does not necessarily keep iterations in the parameter space. For
example, (10.25) could lead to negative cr2s.

Various improvements are possible to remedy these defects. For
example, <7j can be estimated in place of of (and then squared to get
of) to keep iterative estimates of of positive. Also, taking smaller steps
by modifying (10.25) to be of the form

where 0 < a < 1 is often a good idea. For more details on implemen-
tation and for some calculations! details for alternative models, see
Jennrich and Schluchter (1986), Lindstrom and Bates (1988) and Press
et al. (1996).

10.3 COMPUTING ML ESTIMATES FOR GLMMs

a. Numerical quadrature

Generalized linear mixed models pose special challenges beyond lin-
ear mixed models because of the high-dimensional integration required
to evaluate (and hence maximize) the likelihood. The direct numeri-
cal evaluation of integrals has a long history in mathematics and is a
natural first place for considering how to deal with the computational
complexity of GLMMs. We start by considering a GLMM with a sin-
gle, normally distributed random effect. Let yij be the jih observation
corresponding to the ith level of the random effect so that

The likelihood for this model is
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where h^m) = e^
[yij7ij 6(^)]/r2 EJC(WJ.T) and 7ij. is a function of

Ui.

It can be seen that the likelihood is the product of one-dimensional
integrals of the form

which, upon a change of variables of u = V2cruv, can be written as

where h*(-) = h(^/2au-)/^.

— i. Gauss-Hermite quadrature

Numerical integration over an unbounded range can be difficult. How-
ever, for integrals of smooth functions /&*(•) multiplied by the function

2
e~v , the method of Gauss-Hermite quadrature is available. This ap-
proximates the integral in (10.29) as a weighted sum:

where the weights, Wk, and the evaluation points, x^, are designed to
provide an accurate approximation in the case where h*(-) is a polyno-
mial. More specifically, when the sum is from 1 to d, Gauss-Hermite
quadrature gives the exact answer for all polynomials up to degree
Id — 1. Table 10.1 lists the Xk and Wk for d = 3, 4, and 5. More ex-
tensive tables are available in, for example, Abramowitz and Stegun
(1964), or the Xk and w^, can be calculated via mathematical software
since



10.3. COMPUTING ML ESTIMATES FOR GLMMS 271

Table 10.1: Constants for Gauss-Hermite Quadrature

d = 3

d = 4

d = 5

Xk

-1.22474487
0

1.22474487
-1.65068012
-0.52464762
0.52464762
1.65068012
-2.02018287
-0.95857246

0
0.95857246
2.02018287

wk
0.29540898
1.18163590
0.29540898
0.08131284
0.80491409
0.80491409
0.08131284
0.01995324
0.39361932
0.94530872
0.39361932
0.01995324

where Hn(x) is the Hermite polynomial of degree n.
As an illustration consider

This would be approximated using 3-point quadrature as

as expected. On the other hand,

which is approximated by (4.375) (0.29541) (2) + 1.18163 = 3.76645
with 3-point quadrature, a poor approximation. But 4-point quadra-
ture gets the answer exactly right.

By using quadrature of a high-enough degree, accurate approxima-
tions can be calculated to integrals of functions that are similar to those
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of any high-degree polynomial. For the likelihood calculations we have
in mind, practical experience shows that quadrature with less than 10
points often gives inaccurate answers, while 20 is usually enough for a
good degree of approximation.

Two cautions are in order. First, if the function is not properly
"centered," Gauss-Hermite quadrature can give a poor approximation
and second, if the function whose integral is to be approximated is not
a smooth one, the approximation can also be poor. To illustrate the
idea of centering, consider

which is easily shown to be T/TT for any value of a. Five-point quadra-
ture gives V^TT as the answer when a = 0 but has an error of 0.001
when a = 1, and an error of 0.240 when a = 2, eventually giving an
answer of 0 as a —>• ±00. This shows that the approximation is more
accurate when the values of Xk are near where the function is nonzero
and can be inaccurate otherwise. Exercise E 10.4 illustrates that the
approximation can be poor for non-smooth functions.

— ii. Likelihood calculations

Gauss-Hermite quadrature can be used to calculate integrals with re-
spect to the normal density as

To derive an approximation to a likelihood such as (10.28), (10.32)
would be used repeatedly. For example, suppose that our model was,
for i = 1,2,..., m and j = 1,2,..., n,

The log likelihood would be
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This log likelihood needs to be maximized numerically to get esti-
mates of m and sa. Derivatives of the log likelihood, which are often
required by numerical maximization algorithms, can be approximated
similarly. Alternatively, quasi-Newton or derivative-free maximization
methods can be used.

A likelihood ratio test, or best predicted values, would require similar
numerical calculation. For example, the best predicted values for model
(10.33) are

The denominator is exactly the likelihood, the approximation for which
is displayed in (10.34), and the numerator would be approximated sim-
ilarly. If the MLEs m and sa were used in the calculation, then the
approximation would be for the estimated best predictor.

- iii. Limits of numerical quadrature

Numerical quadrature is limited in its application. The calculations
above show that with clustered data the computations are feasible. It is
also possible to use numerical quadrature to approximate the likelihood
of a model with two nested random effects (see E 10.5). However,
crossed random factors and higher levels of nesting lead to integrals
that are not amenable to Gauss-Hermite quadrature.

The possible distributions available for the random effect distribution
are also limited. The quadrature techniques described in the preced-
ing sections are appropriate only when integrating products of func-
tions with e-x2 , that is, for normally distributed random effects. To
employ other random effects distributions we need alternative quadra-
ture methods. Although these could be derived conceptually they are
not readily available, except for integrating products with e-x, which
would correspond to exponentially distributed random effects. This
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methodology is called Laguerre integration (Abramowitz and Stegun,
1964, p. 923). Another way to extend the class of random effects distri-
butions is to consider transformations of normally distributed random
effects (Piepho and McCulloch, 1999), for example, by using eai to
introduce lognormally distributed random effects.

b. EM algorithm

As noted in Section 10.2a, for mixed models a typical missing data
configuration is to assume the random effects to be the missing data.
Since the random effects introduce correlation in the model, once they
are filled in by the EM algorithm and can be treated as fixed known
values, the problem often simplifies. The variance components version
of the linear mixed model, for example, treated in Section 10.2a, simpli-
fies to the traditional homoscedastic linear model, for which maximum
likelihood is ordinary least squares. So, for that model, EM reduces
maximum likelihood to a series of least squares problems.

We return to the GLMM of Chapter 8 as our most general model:

where D represents the parameters governing the distribution of u in
keeping with the notation in Chapter 6.

To set up the EM algorithm we declare u to be the missing data
so that the complete data are w' = (y',u'). The EM algorithm pro-
ceeds by forming the log likelihood of the complete data, calculating
its expectation with respect to the conditional distribution of u given
y and then maximizing with respect to the parameters. The algorithm
is iterative since we now recalculate the log likelihood of the complete
data given the new parameter estimates, and so on.

The distribution of the complete data, w, can be factored as f Y,U =
f Y|U f U that the complete data log likelihood, logLw, is
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This choice of missing data has two advantages. First, conditional on
u, the yi are independent. Second, /3 and r enter only the first portion
of the log likelihood (the GLM portion) whereas D enters only through
/u, the portion coming from the random effects. The maximization or
M-step of the algorithm with respect to f3 and r will be similar to the
calculations for GLMs in Section 5.4e. Maximizing with respect to D is
akin to ML using the distribution of u. In fact, if the distribution of u
is a member of the exponential family, then the M-step for D simplifies
to maximum likelihood after replacing the sufficient statistics with their
conditional expected values.

The EM algorithm takes the following form:

1. Choose starting values J3^\r^\ and D<°). Set m = 0.

2. Calculate (with expectations evaluated under current values)

(a) p(m+V and r(m+1) to maximize E[log/Y|u(y|u>/3,T)|y].

(b) D(m+1) to maximize E[log/u(u|D)|y].

(c) Set m = m + 1.

3. If convergence is achieved, declare the current values to be the
MLEs; otherwise return to step 2.

In general, the expectations in neither steps 2(a) nor 2(b) can be
computed in closed form for the model. This is because the conditional
distribution of u|y involves /y, i.e., the likelihood, which we are trying
to avoid calculating directly. However, because it is possible to pro-
duce random draws from the conditional distribution of ujy without
specifying /y, one can then use those draws to form Monte Carlo ap-
proximations to the required expectations. We describe this approach
in the next section.

c. Markov chain Monte Carlo algorithms

There are a number of ways to generate draws from a difficult-to-
calculate density, e.g., Gibbs sampling or Markov chain Monte Carlo
methods (Robert and Casella, 1999). McCulloch (1994, 1997) uses the
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Gibbs sampler for probit models, and the Metropolis-Hastings algo-
rithm for general GLMM problems, while Booth and Robert (1999)
use the independence sampler.

- i. Metropolis

As an example, we consider a Metropolis algorithm, which generates
a Markov chain sequence of values that eventually stabilizes to draws
from the candidate distribution. To specify a Metropolis algorithm, a
candidate distribution, /&u(u), must be selected, from which potential
new values are drawn. The acceptance function, which gives the prob-
ability of accepting a new value (as opposed to keeping the previous
value) is given by

where u* = ( M I , H I , ...,n^-i,uj, U f c + i , . . . , ng)', which is the candidate
new value and has all entries equal to the previous value except the
fcth.

What can be used for the candidate distribution? Upon choosing
^U = /u? the ratio term in (10.38) simplifies to

This calculation involves specifying only the generalized linear model
portion of the model, i.e. the conditional distribution of y given u.

Incorporating this Metropolis step into the EM algorithm gives a
Monte Carlo EM (MCEM) algorithm as follows:

1. Choose starting values /3(0),r(°), and D<0). Set m = 0.

2. Generate M values, u^l\ u^,..., u^M\ from the conditional dis-
tribution of u given y using the Metropolis algorithm described
above.
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(a) Calculate ^m+l^ and r^m+1^ to maximize a Monte Carlo es-
timate of E[log/Y|u(y u>/3>T)|yL i-e., choose them to max-
imize(l/M)Eiblilog/Y|u(y|uW,/3,T).

(b) Calculate D<m+1) to maximize (1/M) £fcii log/u(u^|D).

(c) Set m = ra + 1.

3. If convergence is achieved, declare the current values to be the
MLEs; otherwise return to step 2.

While computationally intensive, this approach remains feasible for a
variety of data configurations.

— ii. Monte Carlo Newton-Raphson

There is also a simulation analog of the working variates or Fisher
scoring approach which was used to fit GLMs in Section 5.4e. Whenever
the marginal density of y is formed as a mixture as in (10.35) with
separate parameters for /y|u and /u? then the ML equations for 0 =
(/3',r)' and D take the following form (see Exercise E 10.6):

Equation (10.41) involves only the distribution of u and is often fairly
easy to solve, e.g., when the distribution is normal. On the other hand,
(10.40) is amenable to Newton-Raphson or a scoring approach just as
in Chapter 5.

Expanding d/Y|u(y|u>0)/d/3 as a function of /3 around a value OQ
gives

Specializing this to our model, and dropping the term with a condi-
tional expected value of zero, the formula for a scoring-type algorithm
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becomes

where W = {[«(/** )0j!(A*t)] j and A = | 0M(^i)J and it is under-
stood that W, A, and /x = E[y|u] are all functions of u and that all
parameters are evaluated at 0 = OQ.

Using this approximation in (10.40) leads to an iteration equation of
the form

This analog of scoring would proceed by iteratively solving (10.44),
(10.41), and an equation for r. An advantage of the scoring approach
over MCEM is that is makes automatic the maximization step 2(a).

Again, typically the expectations cannot be evaluated in closed form,
which leads to a Monte Carlo Newton-Raphson (MCNR) approach. As
before, an algorithm like the Metropolis algorithm is used to approx-
imate the expectations in (10.44) since these are expectations with
respect to the conditional distribution of u given y.

d. Stochastic approximation algorithms

A different approach to fitting these models has been suggested recently
by Gu and Kong (1998) through the use of a stochastic approximation
(SA) algorithm, although the basic idea of using SA to find MLEs is
certainly older (e.g. Moyeed and Baddeley, 1991; Ruppert, 1991). The
basic concept is to write /Y,U as /Y/UJY- I* ls then straightforward to
derive

We are interested in finding the root of the likelihood equation, that
is, the value of 0 such that dlog/y(y|0)/d0 = 0. SA algorithms are
methods of finding roots of regression equations, so we need to rewrite
(10.45) as a regression equation.

Write m(0) for the score function, dlog/Y(y|0)/d0, to emphasize
we are regarding it as a function of 0 and that it is not a function of
u. Next observe that
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for fixed y when the expectation is taken with respect to the conditional
distribution of u given y. This is the usual score identity, e.g. (5.9), ap-
plied to the conditional distribution. Hence d\ogfu\-y(u\y,B)/d0, can
be regarded as a mean-zero, "error" term in the following "regression"
equation, which is (10.45) rewritten:

Thus, inserting random values of u ~ /u|Y m^° dlog/Y,u(y, u|0)/d0
gives "data" for performing the regression.

To implement an SA algorithm, we use the Metropolis algorithm
of Section 10.2c to generate a sequence of values u^ ~ /u|Y and
use them to form data dlogfY,u(y,u^\0)/d0. One can then apply a
multivariate version of an SA algorithm in order to find the root of the
likelihood equation. Ruppert (1991) provides a nice review.

An SA algorithm applied to maximum likelihood for the GLMM
would generally take the form

where am is chosen to decrease slowly to zero. Ideally, am also in-
corporates information about the derivative of dlog/Y(y|0)/d# (with
respect to 6} at the root, but this is rarely known in practice.

A reasonable choice for am allowing it to decrease to zero and using
some information about the curvature of the surface to be maximized
is

where E denotes a Monte Carlo estimate of the expectation (taken with
respect to the conditional distribution of u given y). This choice of am

follows recommendations in the literature; see, for example, Frees and
Ruppert (1990) and Ruppert (1991). There is latitude in the choice of
the constants a, k and a, although we have successfully used a = 3, k =
50 and a = 0.75. Estimates are formed by iterating until convergence.

MCNR and SA are similar, with the main difference being that SA
uses a single simulated value at each iteration. The multiplier am de-
creases the step size as the iterations increase in SA. This eventually
serves to eliminate the stochastic error involved in the Metropolis step.
To achieve a corresponding reduction using MCNR, the simulation size
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would have to be increased as the iterations increase in order to elimi-
nate the simulation noise.

SA seems to have advantages in that it can use all of the simulated
data to calculate estimates and it uses the simulated values one at a
time. A theoretical advantage of SA is that convergence proofs are
worked out for many cases. Practical details of the implementation of
both SA and MCNR have not yet been settled in the literature.

e. Simulated maximum likelihood

While both MCEM and MCNR work on the log of the likelihood, Geyer
and Thompson (1992), Gelfand and Carlin (1993), and Durbin and
Koopman (1997) have suggested simulation to estimate the value of
the likelihood directly. Starting from the likelihood we have

where the subscript u on the expectation is a reminder that the expec-
tation is with respect to u, h\j (u) is a density with respect to which the
expectation is taken, u^ are selected from this density, and M is the
number of simulated values. This is an unbiased estimate no matter
the choice of /iu(u). The simulated likelihood is then numerically max-
imized, either after a single simulation, or using multiple simulations
in an iterative process where the importance sampling distribution is
allowed to depend on the current parameter values.

Although unbiased, the approximation is sensitive to the choice of
h\j (u) in the sense that it can be highly variable for choices far from the
optimal choice (for the optimal choice see E 10.10). So implementation
of simulated maximum likelihood must be done with care.
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10.4 PENALIZED QUASI-LIKELIHOOD AND LAPLACE

The attractive features of quasi-likelihood, namely model robustness
and less restrictive assumptions, have led to a search for generalizations
applicable to GLMMs. Central to these is the use of a Laplace approxi-
mation (Tierney and Kadane, 1986) for evaluating the high-dimensional
integral in the likelihood. The basic form of Laplace's approximation
is based on a second-order Taylor series expansion and takes the form

where UQ is the solution to

We utilize this result to approximate the log likelihood of the GLMM
via

with h(u) = log/Y|u + l°g/u- To construct the Laplace approximation
(10.52) must be solved and an expression for d2h(u)/dudu' is needed.

If we assume that u ~ .A/^O, D) then

and h(u) becomes

Differentiating with respect to u gives
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where W and A are defined below (10.43). The second equality comes
about from derivations identical to (5.18) with u replacing ft and Z
replacing X. To find UQ it is necessary to solve for u in

which is not as simple as it appears since W, A, and p, = E[y|u] on
the left-hand side of the equation are all functions of u.

We will also need the second derivative:

For some models (e.g., the binomial or Poisson) WA = I so the second
term is zero. In general, the second term has expectation zero with
respect to the conditional distribution of y given u. So it may be
reasonable to consider it as negligible with respect to the other terms.
If this is the case, (10.56) becomes

Using (10.57) in (10.51) gives

This still must be maximized with respect to ft to find the ML es-
timate. Differentiating with respect to ft gives an approximate score
equation of
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where the second equality follows from (5.18) and for the third we have
assumed that W changes negligibly as a function of ft. Thus we jointly
solve the equations

and

for ft and u. Of course, this only gives an estimate of ft; a subsidiary
method is needed to estimate D.

Equations (10.60) and (10.61) can also arise from jointly maximizing
(with respect to ft and u)

which is similar to a quasi-likelihood (the /YJU term) with a "penalty"
function added on ( the u'D"1!! term). In (10.62) the ^u'D-1u term
serves to prevent arbitrary values of u from being selected and forces
them to be closer to zero (a shrinkage effect). Methods to solve these
equations are thus frequently called penalized quasi-likelihood (PQL)
methods. Green (1990), Schall (1991), and Wolfinger (1993) all discuss
methods of this type.

In the "derivation" of the PQL equations quite a few approximations
of undetermined accuracy are bandied about and the development has
an air of ad hocery. How well do these methods work in practice?
Unfortunately, not very.

Breslow and Lin (1995) and Lin and Breslow (1996) show that PQL
methods lead to estimators which are asymptotically biased and hence
inconsistent. Of course, inconsistency in itself may not be a worry if the
asymptotic bias is small and the the small- or moderate-sized sample
performance is good. After all, even full ML is not unbiased in small-
er moderate-sized samples. Unfortunately, for situations like paired
binary data the PQL estimator can perform quite badly. Its perfor-
mance improves as the conditional distribution of y given u gets closer
to normal (and the Laplace approximation becomes more accurate), for
example with a Poisson distribution with mean 7 or greater. However,
from a practical point of view, we may prefer to transform such data
to make them approximately normal and use LMM methods. We thus
cannot recommend the use of simple PQL methods in practice.
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Recently, there have been improvements in PQL methods (using
more accurate Taylor expansions) that may lead to better-performing
estimators. However, these have not yet been fully tested.

10.5 EXERCISES

E 10.1 If iij of order qi is distributed A/XO,Icr2) show that the ML esti-
mator of o\ is of = u'iUi/qi.

E 10.2 For Wk of (10.30) show that ^Cfc^fc — V^ f°r any order Gauss-
Hermite quadrature.

E 10.3 Calculate dx both analytically and using 3-

point Gauss-Hermite quadrature. What relationship is there be-
tween w\,W2, and it>s?

E 10.4 Calculate P{Z > 1.7} when Z ~ JV(o, 1) using 3-, 4- and 5-
point quadrature and compare to the value from a table. Is the
approximation likely to improve by using a slightly higher-order
quadrature? Why or why not?

E 10.5 Consider a nested logit-normal model:

Write the likelihood in as simple a form as possible with regard
to the integrations involved.

E 10.6 Derive (10.40) and (10.41).

E 10.7 For Ui ~ i.i.d. A/"(0,<72) and hence D = la2, write out (10.41).

E 10.8 Derive (10.44).

E 10.9 Show that (10.50) is an unbiased estimator of the likelihood in-
dependent of the choice of h\j(u).

E 10.10 Show that h\j(\i) = /U|Y(U!V) IS tne optimal choice of h\j(u) in
the sense that it gives a zero variance estimator for (10.50).
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E 10.11 For the case of a scalar u, derive (10.51) by approximating h(u) in
a second-order Taylor series about the point UQ with h'(uo) = 0.

E 10.12 Show that the Laplace approximation is exact for the case of a
linear mixed model.



Chapter 11

NONLINEAR MODELS

11.1 INTRODUCTION

This chapter considers very briefly the topic of nonlinear mixed mod-
els (NLMMs). The main purpose is to emphasize that GLMMs are
a proper subset of NLMMs, which comes with both advantages and
disadvantages. We illustrate the ideas mostly in the context of an ex-
ample. References are given to more complete coverage of these topics.

11.2 EXAMPLE: CORN PHOTOSYNTHESIS

Parker (1995) at Cornell University studied the photosynthetic ability
of wild relatives of corn. The main question of interest was to compare
two species (an annual and perennial) with respect to photosynthetic
physiology. Seeds from two populations of each species were collected
and grown in the greenhouse. The experimental design was a random-
ized complete block design with four blocks and three seeds from each
population in each block (for a total of 12 seeds per block). After
24 days, photosynthesis was recorded at nine different light levels from
full sunlight to darkness on one individual from each population in each
block (N=16). Measurements on the same 16 plants were repeated after
48 days. Prom these data, photosynthesis versus irradiance response
curves reflecting the change in photosynthetic rate with light level were
derived.

The traits of interest are the maximum photosynthetic rate, dark
respiration, the light compensation point, and the quantum yield. The
maximum photosynthetic rate measures the maximum amount of car-
bon dioxide the plants are able to assimilate in full sunlight, the dark

286
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Figure 11.1: Photosynthetic rate versus light for two plants.

respiration indicates how much carbon dioxide they respire in the dark,
the light compensation point is the light level at which photosynthesis
overcomes respiration and carbon assimilation becomes positive, and
quantum yield is the efficiency of carbon assimilation at low light levels,
or the slope of the light response curve as it crosses the light compen-
sation point.

This is perhaps easier to describe mathematically and graphically.
Figure 11.1 shows the graph of photosynthetic rate of two represen-
tative plants, one annual and one perennial species. The form of the
curve typically used to describe this relationship as a function of light,
/, is

Though a simple way to write the equation, not all of the parameters
fa are directly of interest. Equation (11.1) has value /?i -f $2 at I = 0,
asymptotes at /% at / -> oo (for ^3 > 0), and crosses the x-axis at
I = -log(—/fti/Aj)//^. Thus we define
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and rewrite (11.1) (see E 11.1) as

This is the equation for a single plant. If we assume that (11.3) repre-
sents the mean response as a function of light, this cannot be a GLMM.
This is because no function of rate will be linear in the parameters.
Hence models like this one which are intrinsically nonlinear in the pa-
rameters are not GLMMs. Of course, GLMMs are special cases of
nonlinear mixed models; but this example shows that they are not one
and the same.

So far, only the effect of light is incorporated into (11.3). What about
the effect of plants, blocks, populations and species? If the results in
Figure 11.1 are typical then we might consider modeling a as a function
of species and perhaps each of the other factors as well. Use i as a
subscript for species, j for populations, k for blocks, ra for plants, and
t for time. A reasonable model for a itself would be

where BLOCK and PLANT might be considered random effects. This
approach, of modeling the parameters as functions of the other factors,
is sensible since they represent (three of) the traits of interest in this
study. It is thus easy to assess, for example, the influence of species on
the maximum photosynthetic rate, a. To complete the overall model
we would need similar submodels for the dependence of 6 and AO on
the foregoing factors. However, it is certainly also possible to entertain
alternate ways of incorporating the factors.

Some of the advantages and disadvantages of GLMMs as compared
to NLMMs are clear from this example. To specify the NLMM each
of the sub-models for a, £, and AO must first be specified, then fit and
perhaps simplified using the data. For example, the plant effects in
each model would need to be considered and separate plant variance
components would need to be estimated for each submodel. This would
lead to a large number of parameters to be estimated. In contrast, for
a GLMM we assume that all model terms enter into the mean of the
distribution, simplifying the construction of the model.

Clearly this is a double-edged sword. Although the models are sim-
pler, with fewer parameters to estimate, they may make unreasonably
restrictive assumptions. In the photosynthesis example the model is
fundamentally nonlinear and a GLMM will not suffice.
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11.3 PHARMACOKINETIC MODELS

A common usage of nonlinear mixed models is in pharmacokinetic mod-
eling, that is, models for describing the movement of drugs or other
substances through the body. The mean structure for these models is
typically derived from a system of differential equations. The differ-
ential equations are commonly set up by hypothesizing the existence
of two or more compartments in the body with differential equations
incorporating the rates of flow from one compartment to the next.

For example, suppose a dose DQ of a drug is administered orally at
time t = 0. Two compartments might be hypothesized, representing
the stomach and the blood system. We model this as a system of
differential equations that describe the flows between compartments.
Let S(t] be the amount in the stomach at time t and let B(t) be the
amount in the bloodstream. We assume that the drug moves from the
stomach to the bloodstream at a rate ri2, leaves the system from the
stomach at rate 7*13, is reabsorbed from the bloodstream at rate r2i,
and exits the system from the bloodstream at rate r^- This would give
the following set of equations:

Since this is a relatively simple system of differential equations, it
can be solved explicitly for the amount of drug in the bloodstream at
any time t. The solution is of the form

Let yij represent the amount of the drug found in the jth sample
taken from the ith person's bloodstream, which occurred at time tij.
Our model might then be
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which allows the parameters to vary from person to person.
Clearly, this is a nonlinear mixed model: The means are nonlinear in

the parameters and cannot be linearized with a fixed transformation.
And we are allowing the flow rates between the compartments to vary
from person to person.

Models that arise from the solution of a differential equation or a
system of such equations are typically nonlinear in the parameters.
When we incorporate random effects to model variation from subject
to subject or other forms of correlation we end up with nonlinear mixed
models. A much more thorough treatment of these topics can be found
in Giltinan and Davidian (1995) and Sheiner et al. (1997). Vonesh
and Chinchilli (1997) cover the more general topic of nonlinear mixed
models in more detail than here.

11.4 COMPUTATIONS FOR NONLINEAR MIXED MODELS

When the data are normally distributed and homoscedastic (or can be
transformed to be) then the Laplace approximation methods described
in Chapter 10 are more successful for NLMMs than they are for GLMMs
in general. This is the basis of computing algorithms implemented
in S-Plus and SAS for NLMMs. The conceptual basis for them is
described in Giltinan and Davidian (1995), Pinheiro and Bates (1995),
and Lindstrom and Bates (1990).

11.5 EXERCISES

E 11.1 Prove that (11.1) can be rewritten as (11.3) using the reparame-
terization given in (11.2).

E 11.2 Why might we expect the Laplace approximation method of Sec-
tion 10.3 to work for models such as (11.7) when it fails for some
of the models discussed previously?



Appendix M: Some Matrix
Results

Readers of this book are assumed to have a working knowledge of ma-
trix algebra. Nevertheless, we provide a few reminders in this appendix.

M.1 VECTORS AND MATRICES OF ONES

Vectors having every element equal to unity are denoted by 1: Thus
1'3 = [ 1 1 1 ]. With xr = [ x1 x2 x3 ], 1'x = S3

i=1 xi. The inner
product of ln with itself is n : 1'n1n = n and outer products of these
vectors with each other are matrices having every element unity. They
are denoted by J. For example,

Square J-matrices are the most common form: lnl'n = Jn- Products of
Js with each other and with Is are, respectively, Js and 1s multiplied
by scalars. For square J

Illustration The mean and variance of data x1,x2... ,xn are easily
expressed in terms of the preceding matrices. Thus
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Linear combinations of I (an identity matrix) and J often arise in
a variety of circumstances, for which the following results are found
useful.

1. (aln + 6Jn)(aIn + PJn) = aaln + (a/3 + ba + bpn)Jn.

2. (aln + Wn)"1 = £ , for a ̂  0 and a ̂  ~nb.

3. |aIn + Wn| = an-1(a + n&).

4. Eigenroots of aln + bJn are a, with multiplicity n — 1, and a + nb.

M.2 KRONECKER (OR DIRECT) PRODUCTS

The Kronecker product of two matrices A = {o»j} and B = {bij} is

Examples arising in linear models are

Kronecker products have many properties. Assuming conformability

M.3 A MATRIX NOTATION IN TERMS OF ELEMENTS

Familiar notation for A of order p x q is
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where aij is the element in row i and column j of A. We abbreviate
this to

using only as much detail concerning i and j as is needed for the context.
Similarly we use

for a column and a row, respectively, of elements Ui. Also we use

{ Xi\ for a diagonal matrix with t diagonal elements X{.
Id J z=l

The advantage of this notation is, for example, that instead of writing
A = {a,ij} for i = 1,... ,p and j = 1,..., g, and u as a column vector
of elements u^ for i = 1,..., q with Au = Z)j=i aijuj for i = 1,... ,p,
one has no need of the symbols A and u but simply writes

M.4 GENERALIZED INVERSES

a. Definition

Readers will be familiar with a nonsingular matrix T being a square
matrix that has an inverse T"1 such that TT"1 = T~1T = I. More
generally, for any non-null matrix A, be it rectangular, or square and
singular, there are always matrices A~ satisfying

When A is non-singular, (M.I) leads to A = A *, but otherwise there
is an infinite number of matrices A~ that, for each A, satisfy (M.I).
Each such A~ is called a generalized inverse of A.

Example For

Calculation of A A A yields A no matter what value of t is used, thus
illustrating an infinity of matrices A~ satisfying (M.I).
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A great deal has been written about generalized inverse matrices,
with much of what is useful for linear models being available in books
such as Rao (1962) and Searle (1997) and many others. We direct
attention here solely to generalized inverses of X'X and their properties,
which are extremely useful in solving the normal equations X'X/3° =
X'y of (4.18) or their more general form X'V^X/S0 = X'V^y of
(6.19).

b. Generalized inverses of X'X

Clearly X'X is square and symmetric; its generalized inverses are de-
noted by (X'X)~ and G interchangeably. Thus G is defined as

Note that although X'X is symmetric, G need not be symmetric. For
example,

as a non-symmetric generalized inverse. Despite this, transposing (M.2)
shows that when G is a generalized inverse of X'X, then so also is G'.
As a consequence, as may easily be verified,

is a symmetric generalized inverse of X'X.
The following theorem is vital for linear model theory.

Theorem M.I. When G is a generalized inverse of X'X :
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Proof. Condition (M.5) comes from transposing (M.2). Result (M.6)
is true because, for real matrices, there is a theorem (e.g., Searle, 1982,
p. 63) indicating that if PX'X = QX'X then PX' = QX'; applying
this to the transpose of (M.2) and then transposing it yields (M.6); and
applying it to XGX'X = X = XFX'X for F being any other gener-
alized inverse of X'X yields (M.7). Using (X'X)~ of (M.4) in place
of G in X'GX demonstrates the symmetry of (M.8) which, by (M.7),
therefore holds for any G. Finally, (M.9) follows from considering an
individual column of X in (M.6). Q.E.D.

Notice that (M.5) and (M.6) spawn three other results similar to
(M.6): XG'X'X = X, X'XGX' - X', and X'XG'X' = X'.

A particularly useful matrix is M = I — XGX'. Theorem M.I pro-
vides the means for verifying that M has the following properties: M
is symmetric, idempotent, invariant to G, of rank N — rx when X has
N rows, and its products with X and X' are null. Thus

c. Two results involving X(X/V-1X)-X'V~1

For V being symmetric and positive definite [as it usually is when it is
var(y)]

and

Proof of these results stems from the nature of V ( = V and p.s.d.)
enabling us to write V"1 = L'L for some L. Then

which by (M.6) is invariant to the generalized inverse.
Also
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d. Solving linear equations

Rao (1962) shows that equations Ax = y have solutions A~y + (I —
A~ A)z for any z of the appropriate order. The simplest application of
this to

for any (X7X)~. Equation (M.7) ensures that X/3° = X(X/X)~X/y is
invariant to (X7X)~. Extension to X'V^Xjfl0 = X'V^y is obvious.

e. Rank results

The standard result for the rank of a product matrix is TAB < ^H-
Thus using r(X) and rx interchangeably to represent the rank of X,
we have r(AA~) < TA; and from A = AA~A we have TA < r(AA~).
Therefore r(AA~) = TA- And so, because (M.5) shows that (X'X)~X'
is a generalized inverse of X, r[X(X7X)~X7] = rx-

f. Vectors orthogonal to columns of X

Suppose k7 is such that k'X = 0. Then X'k = 0 and, from the theory
of solving linear equations (e.g., Searle, 1982, Sec. 9.4b), k = [I —
(X')~X7]c for any vector c, of the appropriate order. Therefore, since
(X')~ is a generalized inverse of X; we can write k' = c'(I — XX~).
Moreover, because (X7X)~X' is a generalized inverse of X, another
form for k7 is k7 = c7[I - X(X7X)~X7]. Thus two forms of k are

for M = I - X(X'X)~X/ of Section M.4b.
With X of order N x p of rank r, there are only N — r linearly

independent vectors k7 satisfying k'X = 0 (e.g., Searle, 1982, Sec.
9.7a). Using a set of such N — r linearly independent vectors k' as
rows of K7, we then have the following theorem, for K'X = 0 with K'
having maximum row rank N — r, and with K' = C'M for some C.

g. A theorem for K7 with K'X being null

Theorem M.2. If K7X = 0, where K7 has maximum row
rank and V is positive definite then
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for

The proof of this is lengthy and technical and we do not show it here;
it can be found in VC p. 452.

M.5 DIFFERENTIAL CALCULUS

a. Definition

Differentiation with respect to elements of a vector x = i s de-
fined by the notation

b. Scalars

Thus

c. Vectors

For y' = [ yi y2 . . . yp }

Then

and for A not involving x

d. Inner products

Consider u and v, of the same order, each having elements that are
functions of the elements of x. Then u'v is a scalar, and so by (M.13)
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d(u'v)/dx is a column. Therefore, because differentiating the u' part
of u'v gives (du'/&x)v and because u'v = v'u, we have

e. Quadratic forms

To differentiate x'Ax with respect to x, use (M.16) with u7 and v being
x' and Ax respectively. This gives

which it usually is.

f. Inverse matrices

If V is non-singular of order n and has elements which are functions of
a scalar iy, differentiating V"1 with respect to w comes from differen-
tiating the identity V-1V = I. Thus

and so

where

Note that (M.18) is a special case of (6.75) for generalized inverses.
Finally, using P = K(K/VK)~1K/ note that
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g. Determinants

with V{j being an element of V, |Vjj| its cofactor, and v^ = |Vjj|/|V|
representing an element of V"1. The last step arises from V being
symmetric. Some intermediate details are given in VC pp. 456-457.



Appendix S: Some
Statistical Results

As with Appendix M, we assume that a reader's background knowledge
includes familiarity with basic mathematical statistics. Nevertheless,
here are a few reminders.

S.I MOMENTS

a. Conditional moments

For random variables y and u, let /(y, u) and /(y|u) denote, respec-
tively, the joint density of y and u, and the density of y conditional on
u. Also, let Ey and vary denote expectation and variance with respect
to the distribution of y. There are three well-established results (Searle
et al., 1992):

and using the latter with w = y,

(S.I) is established as follows

When y of E[y] is replaced by (y — E[y])(w — E[w]), the left-hand side
of (S.I) becomes cov(y,w). That same replacement on the right-hand

300
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side of (S.I) followed by some tedious algebra (see VC, p. 462), yields
(S.2). And then replacing w by y in (S.2) gives it as

which is (S.3).

b. Mean of a quadratic form

Suppose E[y] = p, and var(y) = V, i.e., y ~ (/i, V), not necessarily
normally distributed. Then, for a quadratic form in y, we have

c. Moment generating function

The moment generating function (m.g.f.) of a random variable y is a
function [carefully defined; see Casella and Berger (1990, p. 61)] of a
mathematical variable t. For y having a density f(y) the m.g.f. is

This yields the rth moment (about zero) of y as

Similarly, for a function h(y) of y

For a vector random variable y, the m.g.f. is
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S.2 NORMAL DISTRIBUTIONS

a. Univariate

The scalar random variable y is said to be normally distributed with
mean p and variance cr2 when it has probability density function

We represent this as y ~ Af((j,, cr2).

b. Multivariate

The vector of n random variables y' = [ y\ 3/2 • • • 2/n ] is said to
have a multivariate normal distribution with mean vector p, and non-
singular variance-covariance matrix V when it has probability density
function

This is represented as y ~ Nn(p>, V), often with the subscript n omitted
when it is evident from the context. Many texts (e.g., Searle, 1997) have
numerous details about these distributions, so we summarize just some
of the properties of the multivariate normal, mostly those which are
useful to the purposes of this book.

Fory-.A/nC/^V):

1. E[y] = /z and var(y) = V.

2. Ky ~JVr(KAi,KVK').

On writing

3. the marginal distribution of yi is

4. and the conditional distribution of yi|y2 is
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5. The moment generating function is

6. var(y'Ay) = 2tr[(AV)2] + 4m'AVAm.

Extensive details of deriving these, especially properties 4, 5 and 6, are
available in Searle (1971, Chap. 2).

c. Quadratic forms in normal variables

Section S.lb shows the derivation of E[y'Ay] no matter what the distri-
bution of y is. When that distribution is normal, y'Ay has three very
useful properties, the first of which requires the prelude of describing
the non-central chi-square (x2) distribution.

— i. The non-central x2

For ynx1 ~ N(0,I), we have the well-known result that Siy
2
i = y'y

is distributed as chi-square on n degrees of freedom, i.e., y'y ~ X2
n .

A well-known variant of this is that when ynx1 ~ N (m1,s2I) then
Y7i=\.(yi — y}2 ~ Xn-i- An extension of these two cases is when y ~
A/"(/i,I). Then the resulting distribution of y'y is known as the non-
central chi-square. It is akin to the customary x2 (now called the
central x2)? with degrees of freedom n, but with a second parameter
A = 5/i'/i) known as the non-centrality parameter. And when /x = 0
the non-central chi-square [denoted by x2'(n^)} reduces to being the
central x2-

— ii. Properties of y'Ay when y ~ .A/"(/Li, V)

Wheny ~Af(Ai,V)

Details and proofs of these widely-known results can be found in
Searle (1997, Chap. 2). The sufficient condition in each is easily proven,
whereas the necessity conditions are not. Driscoll and Gundberg (1986)
and Driscoll and Krasnicka (1995) have an interesting history of these
necessity conditions.
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Two further results for y ~ M(p, V) axe

The first of these two is a special case of the more general result that the
kth cumulant of y'Ay is 2k~l(k - l)![tr(AV)* + fc/i'AfVA)*-1/*]. And
the second of the two comes from applying the first to var[y/(A + B)y].

S.3 EXPONENTIAL FAMILIES

Probability densities which can be written in the form

are said to constitute an exponential family. Many of the commonly-
used distributions are of this form: for example, normal, gamma, beta,
binomial, and Poisson. An important consequence of the form (S.12)
is that the sufficient statistics are [Ti(y),T2(y),... ,Tjt(y)]'.

S.4 MAXIMUM LIKELIHOOD

a. The likelihood function

Suppose a vector of random variables, y, has density function /(y). Let
0 be the vector of parameters involved in /(y). Then /(y) is a function
of both y and 0. As a result, it can be viewed in two different ways.
The first is (as above) as a density function, in which case 6 is usually
assumed to be known. With this in mind we use the symbol /(y|0) in
place of /(y) to emphasize that 0 is being taken as known.

A second viewpoint is where y represents a known vector of data and
where 0 is unknown. Then /(y) will be a function of just 0. It is called
the likelihood function for the data y; and because in this context 0
is unknown and y is known we use the notation L(0\y) or just L(0)
or even just L. Thus, although f ( y \ 0 ) and L(0\y) represent the same
thing mathematically, i.e.,

it is convenient to use each in its appropriate context.
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b. Maximum likelihood estimation

The likelihood function L(0\y) is the foundation of the widely-used
method of estimation known as maximum likelihood estimation. It
yields estimators that have many good properties. ML is used as an
abbreviation for maximum likelihood and MLE for maximum likelihood
estimate—with whatever suffix is appropriate to the context: estimate,
estimator (and their plurals) or estimation.

The essence of the ML method is to view L(0\y) as a function of
the mathematical variable 6 and to derive 0 as the value of 0 that
maximizes L(0\y). The only proviso is that this maximization must be
carried out within the range of permissible values for 0. For example,
if one element of 0 is a variance then permissible values for that vari-
ance are non-negative values. This aspect of ML estimation is very
important in estimating variances of random effects.

Under widely existing regularity conditions on /(y|#), a general
method of establishing equations that yield MLEs is to differentiate
L(0) with respect to 0 and equate the derivative to 0. But finding the
values of 0 that maximize L is equivalent to maximizing logL, which
we denote by l, and it is often easier to use l rather than L. Thus for
/ = logL(0|y) the equations

are known as the ML equations, with 0, their solution, being called
the ML solution. When this solution is the global maximum and is in
the parameter space it is also the maximum likelihood estimator, 0.
When it is not within the permissible range, then adjustments must be
made to the solution to find the MLE; these adjustments depend on
the context and form of f(y|0).

c. Asymptotic variance-covariance matrix

A useful property of the ML estimator, 0, is that its large-sample, or
asymptotic, variance-covariance matrix is easy to calculate. From I(0),
known as the information (or Fisher information) matrix, and defined
as
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the asymptotic variance-covariance matrix of 0 is

Note that this is available without even needing a formula or the sam-
pling distribution of 0. An alternative form of the information matrix
that is valid in many situations is

Proof of this is widely available (e.g., Searle et al., 1992, p. 473).

d. Asymptotic distribution of MLEs

No matter what the distribution of one's data vector y, it is ordinarily
the case for an MLE that, as the sample size increases, the MLE of 0
is consistent and asymptotically normally distributed with mean 0 and
variance [1(0)] "^ we summarize this by writing

where 1(0) is given in (S.14) or (S.16).

S.5 LIKELIHOOD RATIO TESTS

The likelihood ratio test is a standard test for composite hypotheses.
It has the advantage of an easily derived large-sample distribution.
Suppose the parameter vector 0 is partitioned into two components
0' = [0i, 02] and suppose interest focuses on 0\ while 02 is left unspec-
ified. 02 is often called a nuisance parameter. Either or both of Q\
and 02 could be vector-valued and, if the entire parameter vector is of
interest, 02 would be null.

Suppose our hypothesis is of the form HQ : 0\ — 9\$, where 0\<Q is a
specified value of 0\, and let #2,0 be the MLE of 02 under the restriction
that 0i = 0i)0.

With L(0) = L(0i,02) being the likelihood, the likelihood ratio
statistic is
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The test is to reject HQ when A < k and with k determined such that

An equivalent rejection region is when

Under regularity conditions, a notable one being that #1,0 is not on
the boundary of the parameter space, the large-sample distribution of
—2 log A is x2 with degrees of freedom equal to f, the dimension of
01. The large-sample value of k* is then given by Xvi-a- This can be
written in terms of the log likelihood, /, as follows:

with the large-sample critical region of the test given by

If 01,0 is on the boundary of the parameter space then special care
must be taken. This can arise in the analysis of random effects since
we may be interested in testing the null hypothesis that the variance
of the random effect is zero. See Self and Liang (1987) for details.

S.6 MLE UNDER NORMALITY

In this section we consider maximum likelihood estimation under the
linear model: y ~ A/"(X/3, V).

a. Estimation of J3

If we assume V to be known then, from (S.ll), with p, = X/3

In Section 6.3 we use the general results of Section 6.12 to differentiate
/ with respect to ft. Now we confirm that result by differentiating / of
(S.21) using the rules in Section M.5:
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Equating this to 0 and using /3° for the solution gives /3° of (6.19):

And then, as in (6.20),

which, by (M.ll), is invariant to the choice of (X'V XX) .
It is to be noted in passing when y ~ (X/3,V), whether normally

distributed or not, that (S.24) is the generalized least squares estimator
(GLSE) of X£. Moreover, if V = <r2!, then (S.24) simplifies to

which is known as the ordinary least squares estimator (OLSE) of X/3.

b. Estimation of variance components

Equation (6.60) for obtaining ML(cr2) is

c. Asymptotic variance-covariance matrix

The asymptotic variance of the ML estimators X)9 and <j2 is shown in

Section 6.8c. Using (S.16) the terms for I I 9 1 are& v ' \ cr2 J

and based on dl/da? following (6.57)

And
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The last term is a scalar and so equals its transpose, which is the
penultimate term. Moreover, a scalar equals its own trace. Thus the
expected value of the sum of those two (equal) terms is

Thus

From these results we get (6.62), (6.63), and (6.64).

d. Restricted maximum likelihood (REML)

The underlying concept of restricted maximum likelihood (REML) is
described at the beginning of Section 6.9. In that section we give a
wholly technical derivation of the REML methodology whereas here we
describe the derivation from basic principles. That involves estimating
variance components from linear combinations of the data that do not
involve ft. This is achieved by using maximum likelihood on K'y where
K' is chosen to have as many linearly independent rows as possible
satisfying K'X = 0. This results in K' having row rank TK = N — rx-
Then with

- i. Estimation

Using (S.31) the log likelihood of K'y is

To apply maximum likelihood we need
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Equating this to zero, and using P= K(K'VK)~1K' of Section M.4g
in doing so, gives

This equation written for each i = 0,1,... , r is equation (6.66) which
is the REML procedure.

— ii. Asymptotic variance

Using (S.33) together with (M.19) of Section M.5f gives

Each quadratic in y is a scalar and so equals its transpose; hence the
last two terms are equal.

To derive the asymptotic variance we first note that, for any A,

Thus on using (S.34) in

and then applying (S.35) with A = PZjZjPZjZj, we get

leading to
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Acceptance function, 276
Algorithm

EM, 263, 265, 274
Markov chain Monte Carlo,

276
Metropolis, 276, 279
Newton-Raphson, 105, 267,

278
quasi-Newton, 273
stochastic approximation, 278
substitution, 267

All-cells-filled data, 5
Analysis of covariance, 83, 87,

90, 113
Analysis of variance, 1, 5, 16,

19, 24, 86, 91, 113, 125,
161, 171, 210

ANCOVA, see Analysis of Co-
variance

ANOVA, see Analysis of vari-
ance

Approximate F-statistic, 167
Asymptotic

normal distribution, 105,126,
306

variance, 126,143,165,175-
177, 240, 305, 310

Asymptotic distribution, 32
Attenuation, 244

Balanced data, 5, 79, 80, 87, 93,
172, 177, 184, 187, 188,

191, 208, 212
Bayes estimation, 22, 23
Bayesian, 35
Bernoulli distribution, 28, 51, 57,

100, 102, 106, 135, 155,
235, 244, 245, 251, 272

Best linear prediction, 250, 257
Best linear unbiased

estimator, 254
prediction, 169, 254, 255

Best prediction, 24, 50, 92, 109,
168, 220, 247, 266

estimated, 170, 257
Beta distribution, 57, 238
Beta-binomial model, 57, 239
Binomial distribution, 144, 154,

237, 238
BLP, see Best linear prediction
BLUE, see Best linear unbiased

estimation
BLUP, see Best linear unbiased

prediction
BP, see Best prediction

Candidate distribution, 276
Cell means model, 127
Complete data, 264, 274
Computing, 263
Conditional inference, 234, 236,

238
Conditional maximum likelihood,
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Constraint, 31, 131
Correlation, 35, 57

intraclass, 36, 59
Covariance, 35, 36, 57

Data
all-cells-filled, 5
balanced, 5, 79, 87, 93, 172,

177, 184, 187, 188, 191,
208, 212

complete, 264, 274
longitudinal, 14, 162, 187,

232
missing, 94, 264, 274
some-cells-empty, 5
unbalanced, 5, 94, 173, 178,

185, 202, 208, 214, 219,
262

Design matrix, 116
Distribution

Bernoulli, 28, 51, 57, 100,
102, 106, 135, 155, 235,
244, 245, 251, 272

beta, 57, 238
binomial, 144, 154, 237, 238
exponential family, 304
gamma, 154, 239, 246
normal, 105, 126, 306
Poisson, 11, 153-155, 223-

225, 239, 246, 283
t, 48, 75

E-step, 275
Effect, 4

fixed, 4, 6, 18, 28
random, 4, 18, 28

EM
algorithm, 263, 265, 274
Monte Carlo, 276

Empirical Bayes, 23

Equicorrelated, 81, 209
Estimable function, 120, 128, 133,

184
Estimated best predictor, 170,

257
Estimating equations

generalized, 208, 211, 231,
232

unbiased, 231
Estimator

shrinkage, 51, 64
unbiased, 30

Examples
cancer treatment, 237
chestnut blight, 241
clinics, 8, 16, 25, 168
corn photosynthesis, 286
epilepsy, 6, 8
fabric, 13, 18, 20
hospital costs, 220
humor, 7, 28
math scores, 158
medications and clinics, 13
Phytophthora, 71, 75, 91, 113
potato, 149
Potomac River Fever, 14

Exponential family, 304

F-test (or statistic), 24, 89, 92,
130

approximate, 167
Factor, 3

crossed, 184, 273
levels of, 3
nested, 273

Fisher information, 148, 240, 305
Fisher scoring, 143, 277
Fisher's exact test, 56
Fixed effect, 4-6, 16, 18, 28

model, 6
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Gamma distribution, 154, 239,
246

Gauss-Hermite quadrature, 270
Gaussian quadrature, 270
Generalized estimating equations,

208, 211, 231, 232
Generalized inverse, 118, 293
Generalized least squares, 308

estimator, 308
Generalized linear mixed model,

2, 220, 269
Generalized linear model, 2, 135
GLM, see Generalized linear model
GLMM, see Generalized linear

mixed model

Hypothesis testing, 88, 129

Incidence matrix, 116
Information, 148, 240, 305
Interaction, 5, 13, 128, 138, 156,

185
Intraclass correlation, 36, 59
Inverse, generalized, 118, 293

Kronecker product, 292

Least squares
generalized, 208, 308
iterative, 136
ordinary, 194, 208, 308
weighted, 136

Level, 3
Likelihood

function, 304
penalized quasi-, 232, 233,

281
quasi, 23
ratio, 129

ratio test, 24, 31, 88, 106,
108, 129, 147, 148, 150,
163, 239, 240, 245, 306

Linear mixed model, 2, 13, 156,
254, 263

Linear model, 1, 113, 139
generalized, 2
mixed, 2

Link function, 79, 138, 222
LM, see Linear model
LMM, see Linear mixed model
Logistic regression, 100
Logit, 100, 102, 107, 144, 228,

231, 236, 272, 273, 284
Logit-normal model, 64
Longitudinal data, 14, 162, 187,

232
unbalanced, 202

LRT, see Likelihood ratio test

Main effect, 5
Markov chain, 276
Matrix derivatives, 297
Matrix results, 291
Maximum likelihood, 20

conditional, 237
estimation, 305
restricted, 21, 26, 74, 78, 176-

178,185,186, 260, 265-
267, 309

simulated, 276, 280
Maximum quasi-likelihood, 152
MCEM, see Monte Carlo EM
MCNR, see Monte Carlo Newton-

Raphson
Mean square error

of prediction, 25, 248, 260
Metropolis algorithm, 276, 279
Minimum norm quadratic unbi-

ased estimation, 178
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Minimum variance quadratic un-
biased estimation, 178

MINQUE, see Minimum norm
quadratic unbiased es-
timatiom

Missing data, 94, 264, 274
MIVQUE, see Minimum variance

quadratic unbiased es-
timation

Mixed model, 13
ML, see Maximum likelihood

equations, 30
estimators, 30
solutions, 30

ML solutions and estimators, 87
Model

beta-binomial, 57, 239
cell means, 127
equation, 116
fixed, 5, 6
Logit-normal, 273
logit-normal, 64, 107, 272,

284
matrix, 116
mixed, 5
Poisson-gamma, 239
probit, 135, 136, 142
probit-normal, 67,154,155,

229, 242, 243, 276
random, 5

Moment generating function, 301
Moments, 300
Monte Carlo

EM, 276
Newton-Raphson, 245, 277

Newton-Raphson
algorithm, 105, 267, 278
Monte Carlo, 277

Nonlinear model, 76, 286

Normal distribution
asymptotic, 105, 126, 306

Normal equations, 117
just one solution, 117

Nuisance parameter, 147, 306
Numerical quadrature, 270

One-way classification, 28
Ordinary least squares, 308
Outlier, 178
Overdispersion, 59, 224
Overparameterized, 29

Penalized quasi-likelihood, 232,
233, 281

Pharmacokinetic, 289
Poisson distribution, 11,153-155,

223-225, 239, 246, 283
PQL, see Penalized quasi-likelihood
Prediction, 18, 24, 92, 109, 168,

169, 220, 247, 250, 254,
255, 257, 266

best, 24, 50, 92, 109, 168,
220, 247, 266

best linear, 250, 257
best linear unbiased, 169, 254,

255
Probit, 135, 138, 142, 154, 155,

229, 242, 243, 276
Probit-normal model, 67
Profile likelihood, 175

Quadratic form, 303
in predicted values, 266
mean, 301

Quadrature, 270
Quasi-likelihood, 23

maximum, 151
penalized, 232, 233, 281

Quasi-Newton algorithm, 273
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Random effect, 4, 8, 16, 18, 28
Random intercepts, 79
Ranking, 253
Regression, 71

logistic, 100
REML, see Restricted maximum

likelihood
Repeated measurements, 225, 286
Restricted maximum likelihood,

21, 26, 74, 78, 176-178,
185, 186, 260, 265-267,
309

Robustness, 23, 34,154, 232, 233,
281

Sandwich variance, 212
Satterthwaite approximation, 167
Score function, 151, 278
Score test, 66, 240
Scoring, 143, 277
Shrinkage estimator, 51, 64
Simulated maximum likelihood,

280
Some-cells-empty, 5
Standard error, 240
Statistical results, 300
Stochastic approximation algo-

rithm, 278
Substitution algorithm, 267
Sufficient statistics, 109,117,118,

122, 125, 173, 185, 234,
236, 304

t-distribution, 75
Taylor series, 53
Test

X2,52
Fisher's exact, 56
likelihood ratio, 24, 88, 106,

108, 129, 147-150, 163,

239, 240, 245, 306
score, 66, 240
Wald, 24, 26, 148, 149, 240

Transformation, 71, 139

UMVU, see Uniform minimum
variance unbiased

Unbalanced data, 5, 94, 173, 178,
185, 208, 214, 219, 262

longitudinal data, 202
Unbiased estimating equation, 231
Uniform minimum variance un-

biased, 122, 125, 185

Variance
asymptotic, 165, 175-177, 240,

305, 310
sandwich, 212
working, 211, 231, 232

Variance components, 4
Variance function, 140

Wald test, 24, 26, 148, 149, 240
Working variance, 211, 231, 232
Working variate, 137, 143, 232,
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Texts, References, and Pocketbooks Section

AGRESTI • An Introduction to Categorical Data Analysis
ANDEL • Mathematics of Chance
ANDERSON • An Introduction to Multivariate Statistical Analysis, Second Edition
ANDERSON and LOYNES • The Teaching of Practical Statistics
ARMITAGE and COLTON • Encyclopedia of Biostatistics: Volumes 1 to 6 with Index
BARTOSZYNSKI and NIEWIADOMSKA-BUGAJ • Probability and Statistical Inference
BENDAT and PIERSOL • Random Data: Analysis and Measurement Procedures,

Third Edition
BERRY, CHALONER, and GEWEKE • Bayesian Analysis in Statistics and

Econometrics: Essays in Honor of Arnold Zellner
BHATTACHARYA and JOHNSON • Statistical Concepts and Methods
BILLINGSLEY • Probability and Measure, Second Edition
BOX • R. A. Fisher, the Life of a Scientist
BOX, HUNTER, and HUNTER • Statistics for Experimenters: An Introduction to

Design, Data Analysis, and Model Building
BOX and LUCENO • Statistical Control by Monitoring and Feedback Adjustment

*Now available in a lower priced paperback edition in the Wiley Classics Library.



Texts, References, and Pocketbooks (Continued)
CHATTERJEE and PRICE • Regression Analysis by Example, Third Edition
COOK and WEISBERG • Applied Regression Including Computing and Graphics
COOK and WEISBERG • An Introduction to Regression Graphics
COX • A Handbook of Introductory Statistical Methods
DANIEL • Biostatistics: A Foundation for Analysis in the Health Sciences, Sixth Edition
DILLON and GOLDSTEIN • Multivariate Analysis: Methods and Applications

*DODGE and ROMIG • Sampling Inspection Tables, Second Edition
DRAPER and SMITH • Applied Regression Analysis, Third Edition
DUDEWICZ and MISHRA • Modern Mathematical Statistics
EVANS, HASTINGS, and PEACOCK • Statistical Distributions, Third Edition
FISHER and VAN BELLE • Biostatistics: A Methodology for the Health Sciences
FREEMAN and SMITH • Aspects of Uncertainty: A Tribute to D. V. Lindley
GROSS and HARRIS • Fundamentals of Queueing Theory, Third Edition
HALD • A History of Probability and Statistics and their Applications Before 1750
HALD • A History of Mathematical Statistics from 1750 to 1930
HELLER • MACSYMA for Statisticians
HOEL • Introduction to Mathematical Statistics, Fifth Edition
HOLLANDER and WOLFE • Nonparametric Statistical Methods, Second Edition
HOSMER and LEMESHOW • Applied Logistic Regression, Second Edition
HOSMER and LEMESHOW • Applied Survival Analysis: Regression Modeling of

Time to Event Data
JOHNSON and BALAKRISHNAN • Advances in the Theory and Practice of Statistics: A

Volume in Honor of Samuel Kotz
JOHNSON and KOTZ (editors) • Leading Personalities in Statistical Sciences: From the

Seventeenth Century to the Present
JUDGE, GRIFFITHS, HILL, LUTKEPOHL, and LEE • The Theory and Practice of

Econometrics, Second Edition
KHURI • Advanced Calculus with Applications in Statistics
KOTZ and JOHNSON (editors) • Encyclopedia of Statistical Sciences: Volumes 1 to 9

with Index
KOTZ and JOHNSON (editors) • Encyclopedia of Statistical Sciences: Supplement

Volume
KOTZ, REED, and BANKS (editors) • Encyclopedia of Statistical Sciences: Update

Volume 1
KOTZ, REED, and BANKS (editors) • Encyclopedia of Statistical Sciences: Update

Volume 2
LAMPERTI • Probability: A Survey of the Mathematical Theory, Second Edition
LARSON • Introduction to Probability Theory and Statistical Inference, Third Edition
LE • Applied Categorical Data Analysis
LE • Applied Survival Analysis
MALLOWS • Design, Data, and Analysis by Some Friends of Cuthbert Daniel
MARDIA • The Art of Statistical Science: A Tribute to G. S. Watson
MASON, GUNST, and HESS • Statistical Design and Analysis of Experiments with

Applications to Engineering and Science
McCULLOCH and SEARLE • Generalized, Linear, and Mixed Models
MURRAY • X-STAT 2.0 Statistical Experimentation, Design Data Analysis, and

Nonlinear Optimization
PURI, VILAPLANA, and WERTZ • New Perspectives in Theoretical and Applied

Statistics
RENCHER • Linear Models in Statistics
RENCHER • Methods of Multivariate Analysis
RENCHER • Multivariate Statistical Inference with Applications
ROSS • Introduction to Probability and Statistics for Engineers and Scientists
ROHATGI • An Introduction to Probability Theory and Mathematical Statistics

*Now available in a lower priced paperback edition in the Wiley Classics Library.



Texts, References, and Pocketbooks (Continued)
ROHATGI and S ALEH • An Introduction to Probability and Statistics, Second Edition
RYAN • Modern Regression Methods
SCHOTT • Matrix Analysis for Statistics
SEARLE • Matrix Algebra Useful for Statistics
STYAN • The Collected Papers of T. W. Anderson: 1943-1985
TIAO, BISGAARD, HILL, PENA, and STIGLER (editors) • Box on Quality and

Discovery: with Design, Control, and Robustness
TIERNEY • LISP-STAT: An Object-Oriented Environment for Statistical Computing

and Dynamic Graphics
WONNACOTT and WONNACOTT • Econometrics, Second Edition
WU and HAMADA • Experiments: Planning, Analysis, and Parameter Design

Optimization

JWS/SAS Co-Publications Section

KHATTREE and NAIK • Applied Multivariate Statistics with SAS Software,
Second Edition

KHATTREE and NAIK • Applied Descriptive Multivariate Statistics Using SAS Software

WILEY SERIES IN PROBABILITY AND STATISTICS
ESTABLISHED BY WALTER A. SHEWHART AND SAMUEL S. WlLKS

Editors
Robert M. Groves, Graham Kalton, J. N. K. Rao, Norbert Schwarz,
Christopher Skinner

Survey Methodology Section

BIEMER, GROVES, LYBERG, MATHIOWETZ, and SUDMAN • Measurement
Errors in Surveys

COCHRAN • Sampling Techniques, Third Edition
COUPER, BAKER, BETHLEHEM, CLARK, MARTIN, NICHOLLS, and O'REILLY

(editors) • Computer Assisted Survey Information Collection
COX, BINDER, CHINNAPPA, CHRISTIANSON, COLLEDGE, and KOTT (editors) •

Business Survey Methods
*DEMING • Sample Design in Business Research
DILLMAN • Mail and Telephone Surveys: The Total Design Method, Second Edition
DILLMAN • Mail and Internet Surveys: The Tailored Design Method
GROVES and COUPER • Nonresponse in Household Interview Surveys
GROVES • Survey Errors and Survey Costs
GROVES, BIEMER, LYBERG, MASSEY, NICHOLLS, and WAKSBERG •

Telephone Survey Methodology
*HANSEN, HURWITZ, and MADOW • Sample Survey Methods and Theory,

Volume 1: Methods and Applications
*HANSEN, HURWITZ, and MADOW • Sample Survey Methods and Theory,

Volume II: Theory
KISH • Statistical Design for Research

*Now available in a lower priced paperback edition in the Wiley Classics Library.



Survey Methodology (Continued)
*KISH • Survey Sampling
KORN and GRAUBARD • Analysis of Health Surveys
LESSLER and KALSBEEK • Nonsampling Error in Surveys
LEVY and LEMESHOW • Sampling of Populations: Methods and Applications,

Third Edition
LYBERG, BIEMER, COLLINS, de LEEUW, DIPPO, SCHWARZ, TREWIN (editors) •

Survey Measurement and Process Quality
SIRKEN, HERRMANN, SCHECHTER, SCHWARZ, TANUR, and TOURANGEAU

(editors) • Cognition and Survey Research
VALLIANT, DORFMAN, and ROYALL • A Finite Population Sampling and Inference
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