Composition of serpentine after olivine and orthopyroxene: Serpentinized peridotites of Nain ophiolite (Isfahan Province, Iran)

N. SHIRDASHTZADEH¹, G. TORABI¹ AND R. SAMADI²

¹Department of Geology, Facualty of Science, University of Isfahan, Isfahan, Iran

²Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Introduction

The Naein ophiolite is one of the most complete ophiolitic suits at the East of Central-East Iranian Microcontinent - ophiolitic belt and it comprises a high proportion of serpentinized mantle peridotites [1]. As a possible alteration product of Nain mantle peridotites, serpentine constructed the veinlets and the mesh texture, characterized with a pale green-white chalky feature. The fibrous serpentine filled the cracks and veinlets are crossing the mesh texture and this indicates their former formation.

Raman Spectrometry and Microprobe Data

Raman Spectrometry of the serpentine suggests that the mesh texture is made of lizardite and the rock veinlets are filled by chrysotile. Based on major element data, lizardite is $Mg_{3.00}$ Fe_{0.31} Ni_{0.01} Si_{1.84}, with Al₂O₃= 0.00 wt%, Mg#=0.91, Cr#=0.00 in composition and chrysotile is Mg_{2.14} Fe_{0.10} Al_{0.23} Cr_{0.02} Si_{2.18}, with Al₂O₃= 2.84-5.97 wt%, Mg#=0.96, Cr#=0.10.

Disccusion of Results

Lizardite is characterized with higher Mg, Fe and Ni in while chrysotile is higher in Al₂O₃ and Cr#. [2] suggested that serpentine after orthopyroxene (bastite) are generally low in MgO (~ 34–37 wt.%), but have silica similar to serpentine after olivine (38–42 wt%). MgO of the studied chrysotile (~ 30-32 wt%), formed after orthopyroxene are generally higher than MgO of lizardite (~ 29 wt%), formed after olivine (i.e. lizardite), but the silica has a similar range (~ 43-54 wt%) in chrysotile and lizardite. The low Mg and high Cr and Al of chrysotile is a consequence of the composition of the original orthopyroxene (e.g., [3]; [4], [2]). Therefore, Al-rich serpentine of chrysotile is found in orthopyroxene bastite with lower MgO and FeO contents, and higher Al₂O₃ and Cr₂O₃ concentrations, while the lizardite is the serpentinization product of olivine.

[1] Shirdashtzadeh *et al.* (2013) Lithos (Submitted). [2] Shervais *et al.* (2005) Inter Geol Rev **47**, 1-23. [3] Dungan (1979) Can Min **17**, 77 1-784. [4] Wicks & Plant (1979) Can Min **17**, 785-830.