
Introduction to Software Testing

Paul Ammann and Jeff Offutt

Solutions to Exercises

Instructor Version

November 18, 2015

Copyright Ammann & Offutt, 2002-2009, all rights reserved.

2

Tell me and I may forget. Show me and I may remember. Involve me and I will understand

– Chinese proverb

Introductory Note

As readers will undoubtedly note, as of November 18, 2015, a few problems still do not have
complete solutions. Paul (pammann@gmu.edu) and Jeff (offutt@gmu.edu) welcome your help with
new solutions and corrections to our errors. In fact, we hope this will be viewed as a community
resource and welcome any kind of feedback.

We distinguish between “student solutions” and “instructor only” for the convenience of both.
Students can work homeworks then check their own answers. Instructors can assign homeworks
with some confidence that students will do their own work instead of looking up the answer in the
manual.

3

Exercises, Section 1.1

1. What are some of the factors that would help a development organization move from Beizer’s
testing level 2 (testing is to show errors) to testing level 4 (a mental discipline that increases
quality)?

Solution (Instructor only):
This question lends itself to open ended discussion. A few factors are:

(a) Good, technical people in testing.

(b) Amicable relationships between testers and developers.

(c) Management leadership.

2. The following exercise is intended to encourage you to think of testing in a more rigorous
way than you may be used to. The exercise also hints at the strong relationship between
specification clarity, faults, and test cases.

(a) Write a Java method with the signature
public static Vector union (Vector a, Vector b)

The method should return a Vector of objects that are in either of the two argument
Vectors.

Solution (Instructor only):
We give a simple implementation. Note that this implementation probably does the
wrong thing in some of the cases discussed below.

public static Vector union (Vector a, Vector b)

{
Vector result = new Vector (a); // get all of a’s elements

Iterator itr = b.iterator();

while (itr.hasNext())

{
Object obj = itr.next();

if (!a.contains (obj))

{ // already have a’s elements

result.add (obj);

}
}
return result;

}

4

(b) Upon reflection, you may discover a variety of defects and ambiguities in the given
assignment. In other words, ample opportunities for faults exist. Identify as many
possible faults as you can. (Note: Vector is a Java Collection class. If you are using
another language, interpret Vector as a list.)

Solution (Instructor only):
Many potential ambiguities exist. The method name suggest set union, but the argument
types (i.e. Vector) suggest otherwise. What happens if an input Vector is null? What
happens if an input Vector contains duplicates? What happens if an input Vector

contains null entries? Are the inputs modified? Is the return value always a new set,
or might it be either a or b? The choice of argument types and return types as Vector

is suspect; best practice is to use the least specific type consistent with the specifier’s
goals. In particular, if Vector is replaced with List, this solves some, but not all of the
problems above. Replacing Vector with Set is probably an even better idea, assuming
the arguments are really intended to be sets.

(c) Create a set of test cases that you think would have a reasonable chance of revealing
the faults you identified above. Document a rationale for each test in your test set. If
possible, characterize all of your rationales in some concise summary. Run your tests
against your implementation.

Solution (Instructor only):
See the examples in the specification below for some sample test cases, as well as the
corresponding rationale. You should have no difficulty creating additional tests. Note:
Other choices for resolving ambiguities are certainly possible. For example, the specifier
could decide to treat null inputs as if they were simply empty sets. Or, the specifier
could prohibit null inputs with a precondition. This latter option is typically, but not
always, avoided, on the principle that preconditions are an invitation to misbehavior by
clients. See Meyer [241] for a contrasting view.

(d) Rewrite the method signature to be precise enough to clarify the defects and ambiguities
identified earlier. You might wish to illustrate your specification with examples drawn
from your test cases.

Solution (Instructor only):
Again, we have lots of options here. We chose to change the argument and return types
to reflect ordinary set union. This change alone handles many of the ambiguities. The
use of examples in specifications, while not strictly formal, is extremely helpful in con-
veying design decisions from the specifier to the reader.
public static Set union (Set a, Set b)

// EFFECTS: if a or b is null throw NullPointerException

// else return a new Set that is the set union of a, b

// e.g. union (null,{}) is NullPointerException

// e.g. union ({1,2},{2,3}) is {1,2,3}
// e.g. union ({1,2},{cat,hat}) is {1,2,cat,hat}
// e.g. union ({null},{cat,hat}) is {null,cat,hat}
// e.g. union (a,a) is Set t st that t!=a, but t.equals(a)

Introducing generics makes the solution safer. A straight-forward generified solution
has the signature:

5

public static <E> Set<E> union (Set<E> a, Set<E> b)

A generified solution that properly respects the type hierarchy has the signature (See
Joshua Bloch’s Effective Java, Item 28, page 137):
public static <E> Set<E> union (Set<? extends E> a, Set<? extends E> b)

What is interesting about generic solutions is that they transform run time errors, usu-
ally in the form of ClassCastException, to compile time errors. This is a good thing!
The union example isn’t really restrictive with respect to types, so this fact isn’t well
illustrated here. However, readers might consider the generic version of max(), which
does illustrate this property. For example, try to call the following max() method with a
list mixing Integer and String elements. If you have properly used generics, it won’t
be possible to complete the compilation since a String can’t be compared to an Integer.

public static <T extends Comparable<? super T>> T max (List<? extends T>

list)

6

Exercises, Section 1.2

1. For what do testers use automation? What are the limitations of automation?

Solution:
Automation can help in many areas, most often to relieve the tester from repetitive, me-
chanical tasks. Checking of testing criteria can be automated through instrumentation, which
allows a higher level of testing to be performed. Automation will always run into undecidable
problems, such as infeasible paths, test case generation, internal variables, etc. Automation
cannot help validate output or make creative decisions.

2. How are faults and failures related to testing and debugging?

Solution:
Faults are problems in the code, failures are incorrect external events. Depending on which of
Beizer’s levels you are working in, testing is the process of trying to cause failures or to show
that they occur at an acceptable rate. In contrast, debugging is a diagnostic process where,
given a failure, an attempt is made to find the associated fault.

7

3. Below are four faulty programs. Each includes a test case that results in failure. Answer the
following questions about each program.

public int findLast (int[] x, int y) public static int lastZero (int[] x)

{ {

//Effects: If x==null throw NullPointerException //Effects: if x==null throw NullPointerException

// else return the index of the last element // else return the index of the LAST 0 in x.

// in x that equals y. // Return -1 if 0 does not occur in x

// If no such element exists, return -1

for (int i=x.length-1; i > 0; i--) for (int i = 0; i < x.length; i++)

{ {

if (x[i] == y) if (x[i] == 0)

{ {

return i; return i;

} }

} }

return -1; return -1;

} }

// test: x=[2, 3, 5]; y = 2 // test: x=[0, 1, 0]

// Expected = 0 // Expected = 2

public int countPositive (int[] x) public static int oddOrPos(int[] x)

{ {

//Effects: If x==null throw NullPointerException //Effects: if x==null throw NullPointerException

// else return the number of // else return the number of elements in x that

// positive elements in x. // are either odd or positive (or both)

int count = 0; int count = 0;

for (int i=0; i < x.length; i++) for (int i = 0; i < x.length; i++)

{ {

if (x[i] >= 0) if (x[i]%2 == 1 || x[i] > 0)

{ {

count++; count++;

} }

} }

return count; return count;

} }

// test: x=[-4, 2, 0, 2] // test: x=[-3, -2, 0, 1, 4]

// Expected = 2 // Expected = 3

(a) Identify the fault.
(b) If possible, identify a test case that does not execute the fault.
(c) If possible, identify a test case that executes the fault, but does not result in an error

state.
(d) If possible identify a test case that results in an error, but not a failure. Hint: Don’t

forget about the program counter.
(e) For the given test case, identify the first error state. Be sure to describe the complete

state.
(f) Fix the fault and verify that the given test now produces the expected output.

8

findLast() Solution (Instructor only):

(a) The for-loop should include the 0 index:
for (int i=x.length-1; i >= 0; i--) {

(b) A null value for x will result in a NullPointerException before the loop test is evaluated–
hence no execution of the fault.

Input: x = null; y = 3
Expected Output: NullPointerException
Actual Output: NullPointerException

(c) For any input where y appears in the second or later position, there is no error. Also,
if x is empty, there is no error.

Input: x = [2, 3, 5]; y = 3;
Expected Output: 1
Actual Output: 1

(d) For an input where y is not in x, the missing path (i.e. an incorrect PC on the final
loop that is not taken) is an error, but there is no failure.

Input: x = [2, 3, 5]; y = 7;
Expected Output: -1
Actual Output: -1

(e) Note that the key aspect of the error state is that the PC is outside the loop (following
the false evaluation of the 0>0 test. In a correct program, the PC should be at the
if-test, with index i==0.

Input: x = [2, 3, 5]; y = 2;
Expected Output: 0
Actual Output: -1
First Error State:

x = [2, 3, 5]
y = 2;
i = 0 (or undefined or 1, depending on the compiler);
PC = just before return -1;;

(f) See (a)

9

lastZero() Solution:

(a) The for-loop should search high to low:
for (int i=x.length-1; i >= 0; i--) {

(b) All inputs execute the fault - even the null input.

(c) If the loop is not executed at all, there is no error. If the loop is executed only once,
high-to-low and low-to-high evaluation are the same. Hence there is no error for length
0 or length 1 inputs.

Input: x = [3]
Expected Output: -1
Actual Output: -1

Correction 7-Mar-2010: In the case where the array has exactly one element, the last
value for variable i is -1 in the correct code, but 1 in the original code. Since variable
i has the wrong value the state clearly meets the definition of an error state. This is
a fairly subtle point; the loop predicate evaluates correctly to false, and the variable i

immediately goes out of scope. Thanks to Yasmine Badr who relayed this point from an
anonymous student.

(d) There is an error anytime the loop is executed more than once, since the values of index
i ascend instead of descend.

Input: x = [1, 0, 3]
Expected Output: 1
Actual Output: 1

(e) The first error state is when index i has the value 0 when it should have a value at
the end of the array, namely x.length-1. Hence, the first error state is encountered
immediately after the assignment to i in the for-statement if there is more than one
value in x.

Input: x = [0, 1, 0]
Expected Output: 2
Actual Output: 0
First Error State:

x = [0, 1, 0]
i = 0
PC = just after i= 0;

(f) See (a)

10

countPositive() Solution (Instructor only):

(a) The test in the conditional should be:
if (x[i] > 0) {

(b) x must be either null or empty. All other inputs result in the fault being executed. We
give the empty case here.

Input: x = []
Expected Output: 0
Actual Output: 0

(c) Any nonempty x without a 0 entry works fine.

Input: x = [1, 2, 3]
Expected Output: 3
Actual Output: 3

(d) For this particular program, every input that results in error also results in failure. The
reason is that error states are not repairable by subsequent processing. If there is a 0 in
x, all subsequent states (after processing the 0) will be error states no matter what else
is in x.

(e) Input: x = [-4, 2, 0, 2]
Expected Output: 2
Actual Output: 3
First Error State:
x = [-4, 2, 0, 2]
i = 2;
count = 1;
PC = immediately before the count++ statement. (taking the branch to the

count++ statement could be considered erroneous.)

(f) See (a)

11

oddOrPos() Solution:

(a) The if-test needs to take account of negative values (positive odd numbers are taken care
of by the second test):
if (x[i]%2 == -1 || x[i] > 0)

(b) x must be either null or empty. All other inputs result in the fault being executed. We
give the empty case here.

Input: x = []
Expected Output: 0
Actual Output: 0

(c) Any nonempty x with only non-negative elements works, because the first part of the
compound if-test is not necessary unless the value is negative.

Input: x = [1, 2, 3]
Expected Output: 3
Actual Output: 3

(d) For this particular program, every input that results in error also results in failure. The
reason is that error states are not repairable by subsequent processing. If there is a
negative value in x, all subsequent states (after processing the negative value) will be
error states no matter what else is in x.

(e) Input: x = [-3, -2, 0, 1, 4]
Expected Output: 3
Actual Output: 2
First Error State:
x = [-3, -2, 0, 1, 4]
i = 0;
count = 0;
PC = at end of if statement, instead of just before count++

(f) See (a)

Thanks to Jim Bowring for correcting this solution. Also thanks to Farida Sabry for pointing
out that negative even integers are also possible in the solution to part (c).

Also, note that this solution depends on treating the PC as pointing to the entire predicate
x[i]%2 == -1 || x[i] > 0 rather than to the individual clauses in this predicate. If you
choose to consider states where the PC is pointing to the individual clauses in the predicate,
then you can indeed get an infection without a failure in part (d). The reason is that for
an odd positive input the erroneous first clause, x[i]%== 1, returns true. Hence the if

short-circuit evaluation terminates, rather than evaluating the x[i]>0 clause, as the correct
program would. Bottom line: It’s tricky to analyzing errors where the the PC has the wrong
value!

12

Exercises, Section 1.3

1. Suppose that coverage criterion C1 subsumes coverage criterion C2. Further suppose that
test set T1 satisfies C1 on program P and test set T2 satisfies C2, also on P .

(a) Does T1 necessarily satisfy C2? Explain.

Solution:
Yes. This follows directly from the definition of subsumption.

(b) Does T2 necessarily satisfy C1? Explain.

Solution:
No. There is no reason to expect test requirements generated by C1 to be satisfied by
T2.

(c) If P contains a fault, and T2 reveals the fault, T1 does not necessarily also reveal the
fault. Explain.

Solution (Instructor only):
No. This is the hard question. Students often think that test sets for strong criteria are
at least as good at finding faults as test sets for weaker criteria. But subsumption is
about criteria, not about test sets. In particular, there is no requirement that test set T2

be a subset of test set T1. So, it could happen that T2 contains that one test that reveals
the fault, and T1 doesn’t.

2. How else could we compare test criteria besides subsumption?

Solution (Instructor only):

This is an open-ended research question. It is common to compare test criteria in terms of
fault detection. One approach is analytical; certain criteria are guaranteed to detect certain
fault classes, and the fault classes can be compared. The DNF criteria in chapter 3 are an
example of this approach.

Another approach is experimental. Faults are introduced into sample programs, and test
criteria are applied, preferably in a statistically meaningful manner. Sometimes naturally
occurring faults are used (if available), sometimes faults are randomly seeded, and the most
common method for seeding faults is mutation analysis, the topic in chapter 5.

It is also possible to compare criteria in terms of the number of tests needed. The idea is
that criteria that require more tests are possibly, but not necessarily, exercising the software
more extensively. This is somewhat offset by the fact that larger test sets are more expensive
to evaluate and maintain. This approach seems less useful than either subsumption or fault
detection ability.

13

Exercises, Section 2.1

1. Give the sets N , N0, Nf , and E for the graph in Figure 2.2.

Solution:
N = {n0, n1, n2, n3, n4, n5, n6, n7, n8, n9}
N0 = {n0, n1, n2}
Nf = {n7, n8, n9}
E = {(n0, n3), (n0, n4), (n1, n4), (n2, n5), (n2, n6), (n3, n7), (n4, n7), (n4, n8),
(n5, n1), (n5, n9), (n6, n9), (n8, n5), }

Thanks to Aya Salah for correcting this solution.

2. Give a path that is not a test path in Figure 2.2.

Solution:
Obviously, there are many possibilities. [n4, n8, n5, n9] is not a test path because it
does not start in an initial node. [n1, n4, n8, n5] is not a test path because it does not
end in a final node.

3. List all test paths in 2.2.

Solution:
There are an unbounded number of these. In particular, any path that visits the
loop [n1, n4, n8, n5] can be extended indefinitely. We list some of the shorter test
paths below. [n0, n3, n7], [n0, n4, n7], [n0, n4, n8], [n0, n4, n8, n5, n1, n4, n8],
[n0, n4, n8, n5, n9], [n1, n4, n8], [n1, n4, n8, n5, n1, n4, n8], [n1, n4, n8, n5, n9],
[n2, n5, n9], [n2, n5, n1, n4, n8], [n2, n5, n1, n4, n8, n5, n1, n4, n8], [n2, n6, n9].

4. In Figure 2.5, find test case inputs such that the corresponding test path visits edge
(n1, n3).

Solution:
As noted in the figure, input (a = 0, b = 1) works.

14

Exercises, Section 2.2.1

1. Redefine Edge Coverage in the standard way (see the discussion for Node Coverage).

Solution (Instructor only):
Definition 0.1 Edge Coverage–Standard Definition: Test set T satisfies Edge

Coverage on graph G if and only if for every edge e in E, there is some path p in
path(T) such that p visits e.

2. Redefine Complete Path Coverage in the standard way (see the discussion for Node
Coverage).

Solution (Instructor only):
Definition 0.2 Path Coverage: Test set T satisfies Path Coverage on graph G if

and only if path(T) tours every possible test path in G. Note that if G has a cycle, T
cannot be finite.

3. Subsumption has a significant weakness. Suppose criterion Cstrong subsumes criterion
Cweak and that test set Tstrong satisfies Cstrong and test set Tweak satisfies Cweak. It is
not necessarily the case that Tweak is a subset of Tstrong. It is also not necessarily the
case that Tstrong reveals a fault if Tweak reveals a fault. Explain these facts.

Solution (Instructor only):
The problem is that subsumption of Cweak by Cstrong doesn’t imply a subset relationship
between Tweak and Tstrong. In general, there are many tests to choose from in satisfying
a given test requirement. Given some test requirement common for both Cweak and
Cstrong, it is certainly possible to choose one test for Tweak and a different one for
Tstrong. In particular, a fault revealing test may be chosen when selecting Tweak, but
not chosen when selecting Tweak.

4. Answer questions a-d for the graph defined by the following sets:

• N = {1, 2, 3, 4}
• N0 = {1}
• Nf = {4}
• E = {(1, 2), (2, 3), (3, 2), (2, 4)}

(a) Draw the graph.

Solution:
See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/

(b) List test paths that achieve Node Coverage, but not Edge Coverage.

Solution:
For this program, this is not possible. All test paths must begin at node 1, visit
node 2, and, eventually, end at node 4. Any test path that visits node 3 also visits
both edge (2, 3) and edge (3, 2).

15

(c) List test paths that achieve Edge Coverage, but not Edge Pair Coverage.

Solution:
T = {[1, 2, 3, 2, 4]}
Note that the edge pair [3, 2, 3] is not toured by the single test path given.

(d) List test paths that achieve Edge Pair Coverage.

Solution:
T = {[1, 2, 4], [1, 2, 3, 2, 3, 2, 4]}
Thanks to Justin Donnelly for correcting this solution.

5. Answer questions a-g for the graph defined by the following sets:

• N = {1, 2, 3, 4, 5, 6, 7}
• N0 = {1}
• Nf = {7}
• E = {(1, 2), (1, 7), (2, 3), (2, 4), (3, 2), (4, 5), (4, 6), (5, 6), (6, 1)}

Also consider the following (candidate) test paths:

• t0 = [1, 2, 4, 5, 6, 1, 7]
• t1 = [1, 2, 3, 2, 4, 6, 1, 7]

(a) Draw the graph.

Solution:
See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/

(b) List the test requirements for Edge-Pair Coverage. (Hint: You should get 12
requirements of length 2).

Solution (Instructor only):
The edge pairs are: { [1, 2, 3], [1, 2, 4], [2, 3, 2], [2, 4, 5], [2, 4, 6], [3, 2, 3],
[3, 2, 4], [4, 5, 6], [4, 6, 1], [5, 6, 1], [6, 1, 2], [6, 1, 7] }

(c) Does the given set of test paths satisfy Edge-Pair Coverage? If not, identify what
is missing.

Solution (Instructor only):
No. Neither t0 nor t1 tours the following edge-pairs: {[3, 2, 3], [6, 1, 2]}

(d) Consider the simple path [3, 2, 4, 5, 6] and test path [1, 2, 3, 2, 4, 6, 1, 2, 4,
5, 6, 1, 7]. Does the test path tour the simple path directly? With a sidetrip?
If so, identify the sidetrip.

Solution (Instructor only):
Not directly. Yes, with sidetrip [4, 6, 1, 2, 4]. (It is also Ok to describe the
sidetrip as [6, 1, 2, 4], [4, 6, 1, 2], or [6, 1, 2].)

(e) List the test requirements for Node Coverage, Edge Coverage, and Prime Path
Coverage on the graph.

Solution (Instructor only):
NC: {1, 2, 3, 4, 5, 6, 7}
EC: {(1, 2), (1, 7), (2, 3), (2, 4), (3, 2), (4, 5), (4, 6), (6, 1), (5, 6)}
PPC: {[1, 2, 4, 5, 6, 1], [1, 2, 4, 6, 1], [2, 4, 6, 1, 2], [2, 4, 5, 6, 1, 2],

16

[3, 2, 4, 6, 1, 7], [3, 2, 4, 5, 6, 1, 7], [4, 6, 1, 2, 4], [4, 5, 6, 1, 2, 4],
[4, 6, 1, 2, 3], [4, 5, 6, 1, 2, 3], [5, 6, 1, 2, 4, 5], [6, 1, 2, 4, 6], [6, 1, 2, 4, 5, 6],
[3, 2, 3], [2, 3, 2]}

(f) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Solution (Instructor only):
[1, 2, 3, 2, 4, 5, 6, 1, 7] (does not cover edge (4, 6))

(g) List test paths that achieve Edge Coverage but not Prime Path Coverage on the
graph.

Solution (Instructor only):
[1, 2, 3, 2, 4, 5, 6, 1, 7], [1, 2, 4, 6, 1, 7]

6. Answer questions a-c for the graph in Figure 2.2.

(a) Enumerate the test requirements for Node Coverage, Edge Coverage, and Prime
Path Coverage on the graph.

Solution:
TRNC = {n0, n1, n2, n3, n4, n5, n6, n7, n8, n9}
TREC = {(n0, n3), (n0, n4), (n1, n4), (n2, n5), (n2, n6), (n3, n7), (n4, n7), (n4, n8),
(n5, n1), (n5, n9), (n6, n9), (n8, n5) }
TRPPC = { [n0, n3, n7], [n0, n4, n7], [n0, n4, n8, n5, n1], [n0, n4, n8, n5, n9], [n1, n4, n8, n5, n1],
[n1, n4, n8, n5, n9], [n2, n5, n1, n4, n7], [n2, n5, n1, n4, n8], [n2, n5, n9], [n2, n6, n9], [n4, n8, n5, n1, n4],
[n5, n1, n4, n8, n5], [n8, n5, n1, n4, n7], [n8, n5, n1, n4, n8] }

(b) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Solution (Instructor only):
TNC = {[n0, n3, n7], [n1, n4, n8, n5, n9], [n2, n6, n9]} Note that although TNC visits
all nodes, TNC does not tour edges (n0, n4), (n4, n7), (n5, n1), or (n2, n5).

(c) List test paths that achieve Edge Coverage but not Prime Path Coverage on the
graph.

Solution (Instructor only):
Taking TNC from the previous exercise, we simply add test paths to cover the
missing edges.

TEC = TNC ∪ {[n0, n4, n7], [n2, n5, n1, n4, n7], } Note that although TEC tours
all edges, TEC does not tour prime paths [n0, n4, n8, n5, n1], [n1, n4, n8, n5, n1],
[n2, n5, n1, n4, n8], [n2, n5, n9], [n4, n8, n5, n1, n4], [n5, n1, n4, n8, n5], [n8, n5, n1, n4, n7],
or [n8, n5, n1, n4, n8].

7. Answer questions a-d for the graph defined by the following sets:

• N = {0, 1, 2}
• N0 = {0}
• Nf = {2}
• E = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0)}

Also consider the following (candidate) paths:

17

• p0 = [0, 1, 2, 0]
• p1 = [0, 2, 0, 1, 2]
• p2 = [0, 1, 2, 0, 1, 0, 2]
• p3 = [1, 2, 0, 2]
• p4 = [0, 1, 2, 1, 2]

(a) Which of the listed paths are test paths? Explain the problem with any path that
is not a test path.

Solution:
Answer: Only p1 and p2 are test paths. p0 fails to terminate at a final node. p3
fails to start at an initial node. p4 includes an edge that does not exist in the
graph.

(b) List the eight test requirements for Edge-Pair Coverage (only the length two
subpaths).

Solution:
Answer: The edge pairs are:

{ [n0, n1, n0], [n0, n1, n2], [n0, n2, n0], [n1, n0, n1], [n1, n0, n2], [n1, n2, n0], [n2, n0, n1],
[n2, n0, n2] }

(c) Does the set of test paths (part a) above satisfy Edge-Pair Coverage? If not,
identify what is missing.

Solution:
Answer: No. Neither p1 nor p2 tours either of the following edge-pairs:

{ [n1, n0, n1], [n2, n0, n2] }
As discussed in (a), the remaining candidate paths are not test paths.

(d) Consider the prime path [n2, n0, n2] and path p2. Does p2 tour the prime path
directly? With a sidetrip?

Solution:
Answer: No, p2 does not directly tour the prime path. However, p2 does tour the
prime path with the sidetrip [n0, n1, n0].

8. Design and implement a program that will compute all prime paths in a graph, then
derive test paths to tour the prime paths. Although the user interface can be arbitrarily
complicated, the simplest version will be to accept a graph as input by reading a list
of nodes, initial nodes, final nodes, and edges.

Solution (Instructor only):
See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/ Contact the
authors if you are interested in source and documentation for this tool.

18

Exercises, Section 2.2.3

1. Below are four graphs, each of which is defined by the sets of nodes, initial nodes, final
nodes, edges, and defs and uses. Each graph also contains a collection of test paths.
Answer the following questions about each graph.
Graph I. Graph II.

N = {0, 1, 2, 3, 4, 5, 6, 7} N = {1, 2, 3, 4, 5, 6}
N0 = {0} N0 = {1}
Nf = {7} Nf = {6}
E = {(0, 1), (1, 2), (1, 7), (2, 3), (2, 4), (3, 2), E = {(1, 2), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5), (5, 2)}
(4, 5), (4, 6), (5, 6), (6, 1)} def(1) = def(3) = use(3) = use(6) = {x}
def(0) = def(3) = use(5) = use(7) = {x} // Assume the use of x in 3 precedes the def
Test Paths: Test Paths:

t1 = [0, 1, 7] t1 = [1, 2, 6]
t2 = [0, 1, 2, 4, 6, 1, 7] t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]
t3 = [0, 1, 2, 4, 5, 6, 1, 7] t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6]
t4 = [0, 1, 2, 3, 2, 4, 6, 1, 7] t4 = [1, 2, 3, 5, 2, 6]
t5 = [0, 1, 2, 3, 2, 3, 2, 4, 5, 6, 1, 7]
t6 = [0, 1, 2, 3, 2, 4, 6, 1, 2, 4, 5, 6, 1, 7]

Graph III. Graph IV.

N = {1, 2, 3, 4, 5, 6} N = {1, 2, 3, 4, 5, 6}
N0 = {1} N0 = {1}
Nf = {6} Nf = {6}
E = {(1, 2), (2, 3), (3, 4), (3, 5), (4, 5), (5, 2), (2, 6)} E = {(1, 2), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5), (5, 2)}
def(1) = def(4) = use(3) = use(5) = use(6) = {x} def(1) = def(5) = use(5) = use(6) = {x}

// Assume the use of x in 5 precedes the def
Test Paths: Test Paths:

t1 = [1, 2, 3, 5, 2, 6] t1 = [1, 2, 6]
t2 = [1, 2, 3, 4, 5, 2, 6] t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]

t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6]

(a) Draw the graph.
(b) List all of the du-paths with respect to x. (Note: Include all du-paths, even those

that are subpaths of some other du-path).
(c) For each test path, determine which du-paths that test path tours. For this part

of the exercise, you should consider both direct touring and sidetrips. Hint: A
table is a convenient format for describing this relationship.

(d) List a minimal test set that satisfies all defs coverage with respect to x. (Direct
tours only.) Use the given test paths.

(e) List a minimal test set that satisfies all uses coverage with respect to x. (Direct
tours only.) Use the given test paths.

(f) List a minimal test set that satisfies all du-paths coverage with respect to x.
(Direct tours only.) Use the given test paths.

19

Solution:
Solution for Graph I:

(a) See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/
(b) x has 5 du-paths, as enumerated below:

i [0, 1, 7]
ii [0, 1, 2, 4, 5]
iii [3, 2, 4, 5]
iv [3, 2, 4, 6, 1, 7]
v [3, 2, 4, 5, 6, 1, 7]

(c) The numbers in the table below correspond to the du-paths in the previous table.
The table indicates whether each test path tours each du-path with or without a
sidetrip.

direct w/ sidetrip
t1 i
t2 i
t3 ii i
t4 iv i
t5 iii, v i, ii
t6 i, ii, iii, iv, v

(d) This question has multiple possible answers. Either t1 or t3 can be used to directly
tour a path that satisfies all-defs for the def at node 0, and either t4 or t5 can be
used to directly tour a path that satisfies all-defs for the def at node 3.

Possible answers: {t1, t4} or {t1, t5} or {t3, t4} or {t3, t5}
(e) This question only has one possible answer: {t1, t3, t5}
(f) This question only has one possible answer: {t1, t3, t4, t5}

Thanks to Matt Rutherford and Ignacio Mart́ın for correcting this solution.

20

Solution (Instructor only):
Solution for Graph II:

(a) See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/
(b) x has 6 du-paths, as enumerated below:

i [1, 2, 3]
ii [1, 2, 6]
iii [3, 4, 5, 2, 3]
iv [3, 4, 5, 2, 6]
v [3, 5, 2, 3]
vi [3, 5, 2, 6]

(c) The numbers in the table below correspond to the du-paths in the previous table.
The table indicates whether each test path tours each du-path with or without a
sidetrip.

direct w/ sidetrip
t1 ii
t2 i, iii, vi
t3 i, iv, v
t4 i, vi

Note that, for example, although t2 does not tour path (v) with a sidetrip, it does
tour path (v) with a detour.

(d) This question has multiple possible answers. All test paths use the def in 1, and
test paths {t2}, {t3}, {t4} each use the def in 3. Possible answers: {t2}, {t3}, or
{t4}.

(e) This question only has two possible answers. {t1} is required for the def in 1 to
reach the use in 6. Either t2 or t3 is required for the def in 3 to reach the use in
3. Possible answers: {t1, t2} or {t1, t3}.

(f) This question has one possible answer: {t1, t2, t3}. t1 is required for path (ii). t2
is required for path (iii). t3 is required for path (iv). Since t1, t2, and t3 together
tour all six du-paths, t4 is not needed.

21

Solution:
Solution for Graph III: Note that this exercise is the same as Graph II, except that the
def/use sets are slightly different.

(a) See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/
(b) x has 6 du-paths, as enumerated below:

i [1, 2, 3]
ii [1, 2, 3, 5]
iii [1, 2, 6]
iv [4, 5]
v [4, 5, 2, 3]
vi [4, 5, 2, 6]

(c) The numbers in the table below correspond to the du-paths in the previous table.
The table indicates whether each test path tours each du-path with or without a
sidetrip.

direct w/ sidetrip
t1 i, ii iii
t2 i, iv, vi

Note that neither t1 nor t2 tours du-path (v), either directly or with a sidetrip.
Also note that neither t1 nor t2 tours du-path (iii), except with a sidetrip.

(d) This question has one possible answer: {t2}.
(e) For all-uses, all six du-paths must be toured. Since the given test set does not

have a test path that directly tours either of du-paths (iii) or (v), this ques-
tion is unsatisfiable. To directly tour the given du − paths, we would two ad-
ditional test paths. An example all-uses adequate test set (direct touring) is:
{t1, t2, [1, 2, 6], [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]}.

(f) For this exercise, all-du-paths coverage is the same as all-uses coverage. The
reason is that there is only one du-path for each du-pair.

Thanks to Rama Kesavan for pointing out the error in this solution. (February 2011).

22

Solution (Instructor only):
Solution for Graph IV: Note that this exercise is the same as Graph II, except that the
def/use sets are slightly different.

(a) See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/
(b) x has 6 du-paths, as enumerated below:

i [1, 2, 3, 4, 5]
ii [1, 2, 3, 5]
iii [1, 2, 6]
iv [5, 2, 3, 4, 5]
v [5, 2, 3, 5]
vi [5, 2, 6]

(c) The numbers in the table below correspond to the du-paths in the previous table.
The table indicates whether each test path tours each du-path with or without a
sidetrip.

direct w/ sidetrip
t1 iii
t2 i, v, vi
t3 ii, iv, vi

Note that, for example, although t2 does not tour path (ii) with a sidetrip, it does
tour path (ii) with a detour.

(d) This question has two possible answers: {t2} or {t3}.
(e) This question two possible answers: {t1, t2} or {t1, t3}.
(f) This question has one possible answer: {t1, t2, t3}.

23

Exercises, Section 2.3

1. Use the following program fragment for questions a-e below.

w = x; // node 1

if (m > 0)

{

w++; // node 2

}

else

{

w=2*w; // node 3

}

// node 4 (no executable statement)

if (y <= 10)

{

x = 5*y; // node 5

}

else

{

x = 3*y+5; // node 6

}

z = w + x; // node 7

(a) Draw a control flow graph for this program fragment. Use the node numbers
given above.

Solution (Instructor only):

24

(b) Which nodes have defs for variable w?

Solution (Instructor only):
Nodes 1, 2, 3 have defs of w.

(c) Which nodes have uses for variable w?

Solution (Instructor only):
Nodes 2, 3, 7 have uses of w.

(d) Are there any du-paths with respect to variable w from node 1 to node 7? If not,
explain why not. If any exist, show one.

Solution (Instructor only):
There are no def-clear paths wrt w from 1 to 7. The defs on nodes 2 and 3 “block”
the def in node 1.

(e) Enumerate all of the du-paths for variables w and x.

Solution (Instructor only):
i [1, 2] w

ii [1, 3] w

iii [2, 4, 5, 7] w

iv [2, 4, 6, 7] w

v [3, 4, 5, 7] w

vi [3, 4, 6, 7] w

vii [5, 7] x

viii [6, 7] x

2. Select a commercial coverage tool of your choice. Note that some have free trial
evaluations. Choose a tool, download it, and run it on some software. You can use
one of the examples from this text, software from your work environment, or software
available over the Web. Write up a short summary report of your experience with the
tool. Be sure to include any problems installing or using the tool. The main grading
criterion is that you actually collect some coverage data for a reasonable set of tests
on some program.

Solution:
This question doesn’t really have a textbook solution. The problem with links to specific
tools is that the set of available tools is quite dynamic, and hence links go out of date
with alarming regularity. Googling java coverage will bring back a large number of
mostly current links, typically including links that catalog and summarize available
tools. This is an excellent exercise for making the coverage theory in the text “real”.

3. Consider the pattern matching example in Figure 2.21. Instrument the code so as to
be able to produce the execution paths reported in the text for this example. That
is, on a given test execution, your instrumentation program should compute and print
the corresponding test path. Run the instrumented program on the test cases listed
at the end of Section 2.3.

25

Solution:
Access TestPatInstrument.java at http://www.cs.gmu.edu/∼offutt/softwaretest/.

4. Consider the pattern matching example in Figure 2.21. In particular, consider the final
table of tests in Section 2.3. Consider the variable iSub. Number the (unique) test
cases, starting at 1, from the top of the iSub part of the table. For example, (ab, c,−1),
which appears twice in the iSub portion of the table, should be labeled test t4.

Solution:
Test Number Test

t1 (ab, ab, 0)
t2 (ab, a, 0)
t3 (ab, ac, -1)
t4 (ab, c, -1)
t5 (a, bc, -1)
t6 (abc, bc, 1)
t7 (ab, b, 1)
t8 (abc, ba, -1)

t4 (ab, c, -1)
t2 (ab, a, 0)

(a) Give a minimal test set that satisfies all defs coverage. Use the test cases given.

Solution (Instructor only):
The following table really helps with the next three questions. Since all du-paths
can be toured directly, we ignore sidetrips. Direct touring is indicated by the symbol
‘+’.

du-path t1 t2 t3 t4 t5 t6 t7 t8

[2, 3, 4, 5, 6, 7, 9] +
[2, 3, 4, 5, 6, 10] +
[2, 3, 4, 5, 6, 7, 8, 10] +
[2, 3, 4, 10] + + + +
[2, 3, 11] +
[10, 3, 4, 5, 6, 7, 9] +
[10, 3, 4, 5, 6, 10] +
[10, 3, 4, 5, 6, 7, 8, 10] +
[10, 3, 4, 10] +
[10, 3, 11] + + + + + + +

For all defs coverage, we need to tour one of the du-paths starting with 2, and one
of the du-paths starting with 10. There are 7 possible minimal sets. Specifically,
each test, considered by itself, with the exception of t5, satisfed add defs.

(b) Give a minimal test set that satisfies all uses coverage.

26

Solution (Instructor only):
We again use the table from the prior exercise. To tour the def-use association
from 2 to 9 we must use t1. Similarly the 2 to 11 assoication requires t5, and the 10
to 9 association requires t6. These tests also happen to tour the 2 to 10 and 10 to
11 associations. The only assoication missing is the 10 to 10 association,w which
is toured by t4, t7, and t8. Hence there are 3 minimal all-uses sets: {t1, t4, t5, t6}.
{t1, t5, t6, t7}, and {t1, t5, t6, t8},

(c) Give a minimal test set that satisfies all du-paths coverage.

Solution (Instructor only):
We again use the prior table and start with tests that uniquely tour a given du-
path; the result is every test: {t1, t2, t3, t4, t5, t6, t7, t8}

5. Again consider the pattern matching example in Figure 2.21. Instrument the code so
as to produce the execution paths reported in the text for this example. That is, on a
given test execution, your tool should compute and print the corresponding test path.
Run the following three test cases and answer questions a-g below:

• subject = “brown owl” pattern = “wl” expected output = 7

• subject = “brown fox” pattern = “dog” expected output = -1

• subject = “fox” pattern = “brown” expected output = -1

(a) Find the actual path followed by each test case.

Solution:
t1: java TestPatInstrument "brown owl" wl

Pattern string begins at the character 7

Path is [1, 2, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 5, 6, 7, 8, 10, 3,

4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

t2: java TestPatInstrument "brown fox" dog

Pattern string is not a substring of the subject string

Path is [1, 2, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4,

10, 3, 4, 10, 3, 11]

t3: java TestPatInstrument fox brown

Pattern string is not a substring of the subject string

Path is [1, 2, 3, 11]

(b) For each path, give the du-paths that the path tours in the table at the end
of Section 2.3. To reduce the scope of this exercise, consider only the following
du-paths: du (10, iSub), du (2, isPat), du (5, isPat), and du (8, isPat).

Solution:
In the following table, we give information about both direct tours and tours with
sidetrips. Specifically, ‘+’ means ‘tours directly’, ‘-’ means ‘does not tour’, ‘+!’

27

means ‘tours with def-clear sidetrip’, and ‘-!’ means ‘tours, but sidetrip has def ’.
Also, we only consider du-paths from Table 2.5. That is, we ignore the du-paths
that are prefixes of other du-paths; see Table 2.3 for details. Note that except for
the infeasible du-path [5, 6, 10, 3, 4], all du-paths can be toured directly by
some test case; hence when we apply Best Effort touring later in this exercise, we
demand a direct tour.

Source du-path t1 t2 t3

du(10,iSub) [10, 3, 4, 5, 6, 7, 9] + - -
[10, 3, 4, 5, 6, 10] +! - -
[10, 3, 4, 5, 6, 7, 8, 10] + - -
[10, 3, 4, 10] + + -
[10, 3, 11] + + -

du(2,isPat) [2, 3, 4] + + -
[2, 3, 11] -! +! +

du(5,isPat) [5, 6, 10, 3, 4] - - -
[5, 6, 10, 3, 11] +! - -

du(8,isPat) [8, 10, 3, 4] + - -
[8, 10, 3, 11] -! - -

(c) Explain why the du-path [5, 6, 10, 3, 4] cannot be toured by any test path.

Solution:
Since the value if isPat is set to true in node 5 and not reset on the path
[6, 10, 3], the next node must be 11, not 4. Hence the du path [5, 6, 10, 3, 4] is
infeasible.

(d) Select tests from the table at the end of Section 2.3 to complete coverage of the
(feasible) du-paths that are uncovered in question a.

Solution:
The given tests do not directly tour the following 3 (feasible) du-paths: [10, 3, 4,
5, 6, 10], [5, 6, 10, 3, 11], and [8, 10, 3, 11]. According to Table 2.5, tests (ab,b),
(ab,a), and (ab,ac) respectively tour these du-paths directly. Note that Best Effort
touring requires a direct tour of each feasible du-path.

(e) From the tests above, find a minimal set of tests that achieves All-Defs Coverage
with respect to the variable isPat.

Solution:
To start, it’s helpful to extend the table given in part (b) to include the 3 additional
tests. Since direct tours are possible, we leave out the sidetrip information in this
version of the table.

28

Source du-path t1 t2 t3 (ab, b) (ab, a) (ab, ac)

du(10,iSub) [10, 3, 4, 5, 6, 7, 9] +
[10, 3, 4, 5, 6, 10] +
[10, 3, 4, 5, 6, 7, 8, 10] +
[10, 3, 4, 10] + +
[10, 3, 11] + + + + +

du(2,isPat) [2, 3, 4] + + + + +
[2, 3, 11] +

du(5,isPat) [5, 6, 10, 3, 4]
[5, 6, 10, 3, 11] + +

du(8,isPat) [8, 10, 3, 4] +
[8, 10, 3, 11] +

For All-Defs (Best Effort Touring) with respect to isPat, we need to tour 3 du-
paths, starting with, respectively, nodes 2, 5, and 8. Possible minimal sets are:
{t1, (ab, b)}, {t1, (ab, a)}, {(ab, b), (ab, ac)}, or {(ab, a), (ab, ac)}.

(f) From the tests above, find a minimal set of tests that achieves All-Uses Coverage
with respect to the variable isPat.

Solution:
For All-Uses (Best Effort Touring) with respect to isPat, we need to tour the
5 feasible du-paths starting with nodes 2, 5, and 8. Tests t1, t3, and (ab, ac) are
always needed since they are the only tests that tour [8, 10, 3, 4], [2, 3, 11],
and [8, 10, 3, 11], respectively. In addition, we need either (ab, b) or (ab, a) to
tour [2, 3, 4] and [5, 6, 10, 3, 11]. Hence there are two possible answers:
{t1, t3 (ab, b), (ab, ac)} or {t1, t3 (ab, a), (ab, ac)}.

(g) Is there any difference between All-Uses Coverage and all du-paths coverage with
respect to the variable isPat in the pat method?

Solution:
No. The test requirements are the same with respect to isPat. Note, however,
that they are not the same with respect to iSub.

6. Use the following method fmtRewrap() for questions a-e below.

29

1. /** ***

2. * Rewraps the string (Similar to the Unix fmt).

3. * Given a string S, eliminate existing CRs and add CRs to the

4. * closest spaces before column N. Two CRs in a row are considered to

5. * be "hard CRs" and are left alone.

7. *** */

6.

8. static final char CR = ’\n’;

9. static final int inWord = 0;

10. static final int betweenWord = 1;

11. static final int lineBreak = 2;

12. static final int crFound = 3;

13. static private String fmtRewrap (String S, int N)

14. {

15. int state = betweenWord;

16. int lastSpace = -1;

17. int col = 1;

18. int i = 0;

19. char c;

20.

21. char SArr [] = S.toCharArray();

22. while (i < S.length())

23. {

24. c = SArr[i];

25. col++;

26. if (col >= N)

27. state = lineBreak;

28. else if (c == CR)

29. state = crFound;

30. else if (c == ’ ’)

31. state = betweenWord;

32. else

33. state = inWord;

34. switch (state)

35. {

36. case betweenWord:

37. lastSpace = i;

38. break;

39.

40. case lineBreak:

41. SArr [lastSpace] = CR;

42. col = i-lastSpace;

43. break;

44.

45. case crFound:

46. if (i+1 < S.length() && SArr[i+1] == CR)

47. {

48. i++; // Two CRs => hard return

49. col = 1;

50. }

51. else

52. SArr[i] = ’ ’;

53. break;

54.

55. case inWord:

56. default:

57. break;

58. } // end switch

59. i++;

60. } // end while

61. S = new String (SArr) + CR;

62. return (S);

63. }

30

(a) Draw the control flow graph for the fmtRewrap() method.

Solution:

Note that in the switch statement, there is a separate node for the case inWord,
which, due to Java semantics, falls through directly to the default case.

(b) For fmtRewrap(), find a test case such that the corresponding test path visits
the edge that connects the beginning of the while statement to the S = new
String(SArr) + CR; statement without going through the body of the while

31

loop.

Solution:
There is only one test that does this - the empty string S. It doesn’t matter what
N, the output line length, is. The resulting path is [1, 2, 19].

(c) Enumerate the test requirements for Node Coverage, Edge Coverage, and Prime
Path Coverage for the graph for fmtRewrap().

Solution:

• Node Coverage: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19 }
• Edge Coverage: { (1,2), (2,3), (2,19), (3,4), (3,5), (4,10), (5,6), (5,7),

(6,10), (7,8), (7,9), (8,10), (9,10), (10,11), (10,12), (10,13), (10,16), (10,17),
(11,18), (12,18), (13,14), (13,15), (14,18), (15,18), (16,17), (17,18), (18,2)
}
• Prime Path Coverage: There are 403 prime paths for fmt; we don’t list them

here. See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/
for a complete enumeration
To get a grasp on why there are so many prime paths, consider the ”loop”
prime paths starting at node 2. It is possible to take any of 4 paths through
the if else statement, and then combine each of these with 6 paths through
the case statement and return to node 2, yielding 24 prime paths. For node
3, the analysis is more complex: 4 choices combined with 6 choices to node
2, combined with 2 more choices (3 or 19), for a total of 48 prime paths.

(d) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Solution:

This is certainly possible. The key is noticing that it is possible to visit nodes 10,
16, and 17 without traversing edge (10,17). Test paths are available online. See
the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/.

Thanks to Martin Gebert for correcting this solution.

(e) List test paths that achieve Edge Coverage but not prime Path Coverage on the
graph.

Solution:
This is certainly possible; you can find test paths for Edge Coverage and Prime
Path Coverage online. See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/.

7. Use the following method printPrimes() for questions a-f below.

32

1. /** ***

2. * Finds and prints n prime integers

3. * Jeff Offutt, Spring 2003

4. *** */

5. private static void printPrimes (int n)

6. {

7. int curPrime; // Value currently considered for primeness

8. int numPrimes; // Number of primes found so far.

9. boolean isPrime; // Is curPrime prime?

10. int [] primes = new int [MAXPRIMES]; // The list of prime numbers.

11.

12. // Initialize 2 into the list of primes.

13. primes [0] = 2;

14. numPrimes = 1;

15. curPrime = 2;

16. while (numPrimes < n)

17. {

18. curPrime++; // next number to consider ...

19. isPrime = true;

20. for (int i = 0; i <= numPrimes-1; i++)

21. { // for each previous prime.

22. if (isDivisible (primes[i], curPrime))

23. { // Found a divisor, curPrime is not prime.

24. isPrime = false;

25. break; // out of loop through primes.

26. }

27. }

28. if (isPrime)

29. { // save it!

30. primes[numPrimes] = curPrime;

31. numPrimes++;

32. }

33. } // End while

34.

35. // Print all the primes out.

36. for (int i = 0; i <= numPrimes-1; i++)

37. {

38. System.out.println ("Prime: " + primes[i]);

39. }

40. } // end printPrimes

(a) Draw the control flow graph for the printPrimes() method.

Solution (Instructor only):

33

(b) Consider test cases t1 = (n = 3) and t2 = (n = 5). Although these tour the
same prime paths in printPrimes(), they do not necessarily find the same faults.
Design a simple fault that t2 would be more likely to discover than t1 would.

Solution (Instructor only):
An obvious and boring fault is if the while loop test is incorrect – for example,
while (numPrimes < 3).

A more interesting type of fault is to note that n=3 returns all the odd numbers
between 2 and 5, whereas n=5 does not. Thus a fault that caused the program
to return odd numbers instead of prime numbers would be detected by n=5, not
n=3. For example, if the if test was if isDivisible (primes[0], curPrime),
or if the isDivisible() method was implemented incorrectly. This is ‘interesting’
because it’s an easy mistake to make and a difficult problem to spot.

(c) For printPrimes(), find a test case such that the corresponding test path visits

34

the edge that connects the beginning of the while statement to the for statement
without going through the body of the while loop.

Solution (Instructor only):
The test n=1 does the job.

(d) Enumerate the test requirements for Node Coverage, Edge Coverage, and Prime
Path Coverage for the graph for printPrimes().

Solution (Instructor only):

• Node Coverage: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }
• Edge Coverage: { (0,1) (1,2), (1,10), (2,3), (3,4), (3,7), (4,5), (4,6), (6,3),

(5,7), (7,8), (7,9), (8,9), (9,1), (10,11), (11,12), (11,14), (12,13), (13,11) }
• Prime Path Coverage: {

[0, 1, 2, 3, 4, 5, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 7, 9]
[0, 1, 2, 3, 4, 6]
[0, 1, 2, 3, 7, 8, 9]
[0, 1, 2, 3, 7, 9]
[0, 1, 10, 11, 12, 13]
[0, 1, 10, 11, 14]
[2, 3, 4, 5, 7, 8, 9, 1, 10, 11, 14]
[2, 3, 4, 5, 7, 8, 9, 1, 10, 11, 12, 13]
[2, 3, 4, 5, 7, 9, 1, 10, 11, 14]
[2, 3, 4, 5, 7, 9, 1, 10, 11, 12, 13]
[2, 3, 7, 8, 9, 1, 10, 11, 14]
[2, 3, 7, 8, 9, 1, 10, 11, 12, 13]
[2, 3, 7, 9, 1, 10, 11, 14]
[2, 3, 7, 9, 1, 10, 11, 12, 13]
[4, 6, 3, 7, 8, 9, 1, 10, 11, 14]
[4, 6, 3, 7, 8, 9, 1, 10, 11, 12, 13]
[4, 6, 3, 7, 9, 1, 10, 11, 14]
[4, 6, 3, 7, 9, 1, 10, 11, 12, 13]
[12, 13, 11, 14]
[1, 2, 3, 4, 5, 7, 8, 9, 1] (all combinations)
[1, 2, 3, 4, 5, 7, 9, 1] (all combinations)
[1, 2, 3, 7, 8, 9, 1] (all combinations)
[1, 2, 3, 7, 1] (all combinations)
[3, 4, 6, 3] (all combinations)
[11, 12, 13, 11] (all combinations) }

(e) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Solution (Instructor only):
One possibility is: [0, 1, 2, 3, 4, 6, 3, 4, 5, 7, 8, 9, 1, 10, 11, 12, 13, 11, 14]

35

This test path does not cover the edges (7,9) or (3,7). However, this test path is
infeasible. As it happens, all feasible test paths that satisfy Node Coverage also
satisfy Edge Coverage.

(f) List test paths that achieve Edge Coverage but not Prime Path Coverage on the
graph.

Solution (Instructor only):
Consider the single test path for n=3:

[0 1 2 3 4 6 3 7 8 9 1 2 3 4 5 7 9 1 2 3 4 6 3 4 6 3 7 8 9 1 10 11 12 13 11 12
13 11 12 13 11 14] This path does indeed tour all of the edges. However, example
prime paths this does not cover are [0, 1, 10, 11, 14] (infeasible) and [0 1 10 11
12 13] (result of test n = 1).

36

Exercises, Section 2.4

1. Use the class Stutter in Figures 2.34 and 2.35 in Section 2.5 to answer questions a-d
below.

(a) Draw a control flow graph for Stutter.

Solution:
The point of this question is getting students to think about how to handle the
call sites. Figure 2.36, which gives control flow graphs for methods stut(),
checkDupes(), and isDelimit(), illustrates the problem of trying naively to ag-
gregate control flow graphs. The alternate approach of expanding each method call
into its corresponding graph unfortunately causes the control flow graph to balloon
in size. Hence, neither approach is particularly useful. However, just tracking
du-pairs accross call-sites, as parts (b), (c), and (d) do below, does scale.

(b) List all the call sites.

The version in the book does not have line numbers. The answers below use the
line numbers in the following version.

37

1 // Jeff Offutt - June 1989, Java version 2003

2

3 // stutter checks for repeat words in a text file.

4 // It prints a list of repeat words, by line number.

5 // stutter will accept standard input or a list

6 // of file names.

7

8 import java.io.*;

9

10 class stutter

11 {

12 // Class variables used in multiple methods.

13 private static boolean lastdelimit = true;

14 private static String curWord = "", prevWord = "";

15 private static char delimits [] =

16 {’’, ’ ’, ’,’, ’.’, ’!’, ’-’, ’+’, ’=’, ’;’, ’:’, ’?’, ’&’, ’{’, ’}’, ’\\’};

17

18 //**

19 // main parses the arguments, decides if stdin

20 // or a file name, and calls stut().

21 //**

22 public static void main (String[] args) throws IOException

23 {

24 String fileName;

25 FileReader myFile;

26 BufferedReader inFile = null;

27

28 if (args.length == 0)

29 { // no file, use stdin

30 inFile = new BufferedReader (new InputStreamReader (System.in));

31 }

32 else

33 {

34 fileName = args [0];

35 if (fileName == null)

36 { // no file name, use stdin

37 inFile = new BufferedReader (new InputStreamReader (System.in));

38 }

39 else

40 { // file name, open the file.

41 myFile = new FileReader (fileName);

42 inFile = new BufferedReader (myFile);

43 }

44 }

45

46 stut (inFile);

47 }

48

49 //**

50 //**

51 private static void stut (BufferedReader inFile) throws IOException

52 {

53 String inLine;

54 char c;

55 int linecnt = 1;

38

56

57 while ((inLine = inFile.readLine()) != null)

58 { // For each line

59

60 for (int i=0; i<inLine.length(); i++)

61 { // for each character

62 c = inLine.charAt(i);

63

64 if (isDelimit (c))

65 { // Found an end of a word.

66 checkDupes (linecnt);

67 }

68 else

69 {

70 lastdelimit = false;

71 curWord = curWord + c;

72 }

73 }

74 checkDupes (linecnt);

75 linecnt++;

76 }

77 } // end stut

78

79 //**

80 //**

81 private static void checkDupes (int line)

82 {

83 if (lastdelimit)

84 return; // already checked, keep skipping

85 lastdelimit = true;

86 if (curWord.equals(prevWord))

87 {

88 System.out.println ("Repeated word on line " + line + ": " + prevWord+ " " + curWord);

89 }

90 else

91 {

92 prevWord = curWord;

93 }

94 curWord = "";

95 } // end checkDupes

96

97 //**

98 //**

99 private static boolean isDelimit (char C)

100 {

101 for (int i = 0; i < delimits.length; i++)

102 if (C == delimits [i])

103 return (true);

104 return (false);

105 }

106

107 } // end class stutter

Solution:
The callsites are:

i. Line 46, main() → stut()

ii. Line 64, stut() → isDelimit()

iii. Line 66, stut() → checkDupes()

iv. Line 74, stut() → checkDupes()

(c) List all du-pairs for each call site.

39

Solution:

i. (main(), curWord, 14) → (stut(), curWord, 71) – line 46

ii. (main(), inFile, 30) → (stut(), inFile, 57) – line 46

iii. (main(), inFile, 37) → (stut(), inFile, 57) – line 46

iv. (main(), inFile, 42) → (stut(), inFile, 57) – line 46

v. (stut(), c, 62) → (isDelimit(), C, 102) – line 64

vi. (stut(), linecnt, 55) → (checkDupes(), line, 88) – line 66

vii. (stut(), linecnt, 75) → (checkDupes(), line, 88) – line 66

viii. (stut(), curWord, 71) → (checkDupes(), curWord, 86) – line 66

ix. (stut(), lastdelimit, 70) → (checkDupes(), lastdelimit, 83) – line 66

x. (checkDupes(), curWord, 94) → (stut(), curWord, 71) – line 66

xi. (stut(), linecnt, 55) → (checkDupes(), line, 88) – line 74

xii. (stut(), linecnt, 75) → (checkDupes(), line, 88) – line 74

xiii. (stut(), curWord, 71) → (checkDupes(), curWord, 86) – line 74

xiv. (stut(), lastdelimit, 70) → (checkDupes(), lastdelimit, 83) – line 74

xv. (checkDupes(), curWord, 94) → (stut(), curWord, 71) – line 74

(d) Create test data to satisfy All-Coupling Use Coverage for Stutter.

Solution:

Consider the following tests:

• t1:
word

• t2:
word word

• t3:
first line
word word

i. (main(), curWord, 14) → (stut(), curWord, 71) – line 46
Test needs to start with a non-delimiter: t1.

ii. (main(), inFile, 30) → (stut(), inFile, 57) – line 46
Test needs to come from standard input.

iii. (main(), inFile, 37) → (stut(), inFile, 57) – line 46
Test not possible in normal usage.

iv. (main(), inFile, 42) → (stut(), inFile, 57) – line 46
Test needs to come from file.

v. (stut(), c, 62) → (isDelimit(), C, 102) – line 64
Test needs to be nonempty: t1.

40

vi. (stut(), linecnt, 55) → (checkDupes(), line, 88) – line 66
Test needs to stutter on first line: t2.

vii. (stut(), linecnt, 75) → (checkDupes(), line, 88) – line 66
Test needs to have on second or later lines: t3.

viii. (stut(), curWord, 71) → (checkDupes(), curWord, 86) – line 66
Test needs to find a word, and then a delimiter: t2.

ix. (stut(), lastdelimit, 70) → (checkDupes(), lastdelimit, 83) – line 66
Test needs to find a word, and then a delimiter: t2.

x. (checkDupes(), curWord, 94) → (stut(), curWord, 71) – line 66
Test needs multiple words: t2.

xi. (stut(), linecnt, 55) → (checkDupes(), line, 88) – line 74
Test needs to be nonempty: t1.

xii. (stut(), linecnt, 75) → (checkDupes(), line, 88) – line 74
Test needs to have on second or later lines: t3.

xiii. (stut(), curWord, 71) → (checkDupes(), curWord, 86) – line 74
Test needs to stutter: t2.

xiv. (stut(), lastdelimit, 70) → (checkDupes(), lastdelimit, 83) – line 74
Test needs a line that ends with a non-delimeter: t1.

xv. (checkDupes(), curWord, 94) → (stut(), curWord, 71) – line 74
Test needs a line that ends with a non delimeter: t1.

The observant reader might notice that stutter actually fails on both t2 and t3,
in that it reports the wrong line number. Credit for noticing this goes to Mark
Cornwell.

Also thanks to Hooman Safaee for noticing that lines 74 and 75 were switched,
both in the text and in the uncorrected solutions. The ripple effect from this error
affected a fair amount of the solution.

2. Use the following program fragment for questions a-e below.

public static void f1 (int x, int y)

{

if (x < y) { f2 (y); } else { f3 (y); };

}

public static void f2 (int a)

{

if (a % 2 == 0) { f3 (2*a); };

}

public static void f3 (int b)

{

if (b > 0) { f4(); } else { f5(); };

}

public static void f4() {... f6()....}

public static void f5() {... f6()....}

public static void f6() {...}

Use the following test inputs:

• t1 = f1 (0, 0)

41

• t2 = f1 (1, 1)
• t3 = f1 (0, 1)
• t4 = f1 (3, 2)
• t5 = f1 (3, 4)

(a) Draw the call graph for this program fragment.

Solution:

Note that in the call graph, all of the public methods are potentially initial nodes.
Final nodes are not marked in the given diagram. However, the code shown sug-
gests that f2 is final (since there is no requirement that further calls are made),
and that f6 may be final (no calls are shown). The remaining nodes are not final;
there is always another call from f1, f3, f4, and f5.

(b) Give the path in the graph followed by each test.

Solution:

• t1: [f1, f3, f5, f6]

• t2: [f1, f3, f4, f6]

• t3: [f1, f2]

• t4: [f1, f3, f4, f6]

• t5: [f1, f2, f3, f4, f6]

(c) Find a minimal test set that achieves Node Coverage.

Solution:
Three possibilities: {t1, t2, t3}, {t1, t3, t4}, or {t1, t5}.

(d) Find a minimal test set that achieves Edge Coverage.

Solution:
One possibility: {t1, t5}

(e) Give the prime paths in the graph. Give the prime path that is not covered by
any of the test paths above.

42

Solution:
There are 4 prime paths: { [f1, f2, f3, f4, f6], [f1, f2, f3, f5, f6],
[f1, f3, f4, f6], [f1, f3, f5, f6] }. The second of these paths is not cov-
ered by the given test paths.

3. Use the following methods trash() and takeOut() to answer questions a-c.

1 public void trash (int x) 15 public int takeOut (int a, int b)

2 { 16 {

3 int m, n; 17 int d, e;

4 18

5 m = 0; 19 d = 42*a;

6 if (x > 0) 20 if (a > 0)

7 m = 4; 21 e = 2*b+d;

8 if (x > 5) 22 else

9 n = 3*m; 23 e = b+d;

10 else 24 return (e);

11 n = 4*m; 25 }

12 int o = takeOut (m, n);

13 System.out.println ("o is: " + o);

14 }

(a) Give all call sites using the line numbers given.

Solution (Instructor only):
Only one callsite:
Line 12, trash() → takeOut()

(b) Give all pairs of last-defs and first-uses.

Solution (Instructor only):

i. (trash(), m, 5) → (takeOut(), a, 19)

ii. (trash(), m, 7) → (takeOut(), a, 19)

iii. (trash(), n, 9) → (takeOut(), b, 21)

iv. (trash(), n, 9) → (takeOut(), b, 23)

v. (trash(), n, 11) → (takeOut(), b, 21)

vi. (trash(), n, 11) → (takeOut(), b, 23)

vii. (takeOut(), e, 21) → (trash(), o, 13)

viii. (takeOut(), e, 23) → (trash(), o, 13)
(c) Provide test inputs that satisfy all-coupling-uses (note that trash() only has one

input).

Solution (Instructor only):

• x = 0: satisfies 1, 6, 8

• x = 1: satisfies 2, 5, 7

• x = 6: satisfies 2, 3, 7

• 4 cannot be satisfied because if trash :: x > 5, m = 4, then takeout :: x will
be greater than 0.

43

Exercises, Section 2.5

1. Use the class Queue in Figure 2.40 for questions a-f below. The queue is managed in
the usual circular fashion.

Suppose we build a FSM where states are defined by the representation variables of
Queue. That is, a state is a 4-tuple defined by the values for [elements, size, front, back].
For example, the initial state has the value [[null, null], 0, 0, 0], and the state that re-
sults from pushing an object obj onto the queue in its initial state is [[obj, null], 1, 0, 1].

(a) We do not actually care which specific objects are in the queue. Consequently,
there are really just four useful values for the variable elements. Enumerate them.

Solution (Instructor only):
The four values for elements are [null, null], [obj, null], [null, obj], and [obj, obj].
Note that the second and third of these values really are different at the represen-
tation level, even though they both map to the same abstract Queue.

(b) How many states are there?

Solution (Instructor only):
size is restricted to the values 0, 1, and 2, and front, and back are restricted to the
values 0 and 1. Hence, the number of states is |elements| ∗ |size| ∗ |front| ∗ |back|
or 4 ∗ 3 ∗ 2 ∗ 2, which equals 48 total states. Most of these states are unreachable,
of course, since the representation invariant for Queue prohibits them.

(c) How many of these states are reachable?

Solution (Instructor only):
Of the 48 states, only 6 are reachable. These are documented in part (d).

44

public class Queue

{ // Overview: a Queue is a mutable, bounded FIFO data structure

// of fixed size (size is 2, for this exercise).

// A typical Queue is [], [o1], or [o1, o2], where neither o1 nor o2

// are ever null. Older elements are listed before newer ones.

private Object[] elements;

private int size, front, back;

private static final int capacity = 2;

public Queue ()

{

elements = new Object [capacity];

size = 0; front = 0; back = 0;

}

public void enqueue (Object o)

throws NullPointerException, IllegalStateException

{ // Modifies: this

// Effects: If argument is null throw NullPointerException

// else if this is full, throw IllegalStateException,

// else make o the newest element of this

if (o == null)

throw new NullPointerException ("Queue.enqueue");

else if (size == capacity)

throw new IllegalStateException ("Queue.enqueue");

else

{

size++;

elements [back] = o;

back = (back+1) % capacity;

}

}

public Object dequeue () throws IllegalStateException

{ // Modifies: this

// Effects: If queue is empty, throw IllegalStateException,

// else remove and return oldest element of this

if (size == 0)

throw new IllegalStateException ("Queue.dequeue");

else

{

size--;

Object o = elements [(front % capacity)];

elements [front] = null;

front = (front+1) % capacity;

return o;

}

}

public boolean isEmpty() { return (size == 0); }

public boolean isFull() { return (size == capacity); }

public String toString()

{

String result = "[";

for (int i = 0; i < size; i++)

{

result += elements[(front + i) % capacity] . toString();

if (i < size -1) {

result += ", ";

}

}

result += "]";

return result;

}

}

Figure 1: Class Queue for exercises.

45

(d) Show the reachable states in a drawing.

Solution (Instructor only):

Note that exceptions (enqueue() on full queues and dequeue() on empty queues),
as well as observer methods (isEmpty() etc.) result in “loop” transitions from a
state back to itself. These are not shown on the diagram for clarity, and, from a
grading perspective, aren’t really relevant. Labels on nodes show the values of the
representation state variables: elements, size, front, and back.

(e) Add edges for the enqueue() and dequeue() methods. (For this assignment, ig-
nore the exceptional returns, although you should observe that when exceptional
returns are taken, none of the instance variables are modified.)

Solution (Instructor only):
See solution for part (d).

(f) Define a small test set that achieves Edge Coverage. Implement and execute this
test set. You might find it helpful to write a method that shows the internal
variables at each call.

Solution (Instructor only):
The following sequence of calls achieves Edge Coverage:
Queue q = new Queue();

Object obj = new Object();

q.enqueue(obj);

q.enqueue(obj);

q.dequeue();

q.enqueue(obj);

q.dequeue();

q.dequeue();

q.enqueue(obj);

q.dequeue();

46

2. For the following questions a-c, consider the method FSM for a (simplified) pro-
grammable thermostat. Suppose the variables that define the state and the methods
that transition between states are:

partOfDay : {Wake, Sleep}

temp : {Low, High}

// Initially "Wake" at "Low" temperature

// Effects: Advance to next part of day

public void advance();

// Effects: Make current temp higher, if possible

public void up();

// Effects: Make current temp lower, if possible

public void down();

(a) How many states are there?

Solution (Instructor only):
4: { A:(Wake, Low), B:(Wake, High), C:(Sleep, Low), D:(Sleep, High) }

(b) Draw and label the states (with variable values) and transitions (with method
names). Notice that all of the methods are total.

Solution (Instructor only):
The edges use the labels above. There 12 edges, since there are 3 total methods,
each of which applies in 4 states. The initial state is “A”.

i. advance(): A → C

ii. advance(): B → D

iii. advance(): C → A

iv. advance(): D → B

v. up() : A → B

vi. up() : B → B

vii. up() : C → D

viii. up() : D → D

ix. down() : A → A

x. down() : B → A

xi. down() : C → C

xii. down() : D → C

47

(c) A test case is simply a sequence of method calls. Provide a test set that satisfies
Edge Coverage on your graph.

Solution (Instructor only):
Lots of answers are possible. One possible answer is a single test sequence con-
sisting of the following. Note the use of the edge labels from part b.

• initially in state A

• down() – edge 9 to state A

• advance() – edge 1 to state C

• down() – edge 11 to state C

• up() – edge 7 to state D

• up() – edge 8 to state D

• advance() – edge 4 to state B

• up() – edge 6 to state B

• down() – edge 10 to state A

• up() – edge 5 to state B

• advance() – edge 2 to state D

• down() – edge 12 to state C

• advance() – edge 3 to state A

48

Exercises, Section 2.6

1. Construct two separate use cases and use case scenarios for interactions with a bank
Automated Teller Machine. Do not try to capture all the functionality of the ATM
into one graph; think about two different people using the ATM and what each one
might do.

Design test cases for your scenarios.

Solution (Instructor only):
Thanks to Jane Hayes of University of Kentucky
Solution: (Note the first use case is from the textbook.)
Use Case Name: Withdraw Funds
Summary: customer uses a valid card to check the balance from a valid bank account.
Actor: ATM Customer
Precondition: ATM is displaying the idle welcome message
Description:

(a) Customer inserts an ATM card into the ATM Card Reader.

(b) If the system can recognize the card, it reads the card number.

(c) System prompts the customer for a PIN.

(d) Customer enters PIN.

(e) System checks the expiration date and whether the card has been stolen or lost.

(f) If card is valid, the system checks whether the PIN entered matches the card PIN.

(g) If the PINs match, the system finds out what accounts the card can access.

(h) System displays customer accounts and prompts the customer to choose a type of
transaction. Three types of transactions are Withdraw Funds, Get Balance, and
Transfer Funds.

(i) Customer selects Withdraw Funds, selects account number, and enters the amount.

(j) System checks that the account is valid, makes sure that the customer has enough
funds in the account, makes sure that the daily limit has not been exceeded and
checks that the ATM has enough funds.

(k) If all four checks are successful, the system dispenses the cash.

(l) System prints a receipt with a transaction number, the transaction type, the amount
withdrawn and the new account balance.

(m) System ejects card.

(n) System displays the idle welcome message.

Alternatives:

49

• If the system cannot recognize the card, it is ejected and a welcome message is
displayed.

• If the current date is past the card’s expiration date, the card is confiscated and a
welcome message is displayed.

• If the card has been reported lost or stolen, it is confiscated and a welcome message
is displayed.

• If the customer entered PIN does not match the PIN for the card, the system
prompts for a new PIN.

• If the customer enters an incorrect PIN three times, the card is confiscated and a
welcome message is displayed.

• If the account number entered by the user is invalid, the system displays an error
message, ejects the card, and a welcome message is displayed.

• If the request for withdrawal exceeds the maximum allowable daily withdrawal
amount, the system displays an apology message, ejects the card, and a welcome
message is displayed.

• If the request for withdrawal exceeds the amount of funds in the ATM, the system
displays an apology message, ejects the card, and a welcome message is displayed.

• If the customer enters Cancel, the system cancels the transaction, ejects the card,
and a welcome message is displayed.

• If the request for withdrawal exceeds the amount of funds in the account, the system
displays an apology message, ejects the card, and a welcome message is displayed.

Postcondition: Funds have been withdrawn from the customer’s account.

Use Case Name: Get Balance
Summary: customer uses a valid card to check the balance from a valid bank account.
Actor: ATM Customer
Precondition: ATM is displaying the idle welcome message
Description:

(a) Customer inserts an ATM card into the ATM Card Reader.

(b) If the system can recognize the card, it reads the card number.

(c) System prompts the customer for a PIN.

(d) Customer enters PIN.

(e) System checks the expiration date and whether the card has been stolen or lost.

(f) If card is valid, the system checks whether the PIN entered matches the card PIN.

(g) If the PINs match, the system finds out what accounts the card can access.

50

(h) System displays customer accounts and prompts the customer to choose a type of
transaction. Three types of transactions are Withdraw Funds, Get Balance, and
Transfer Funds.

(i) Customer selects Get Balance and selects account number.

(j) System checks that the account is valid.

(k) If the check is successful, the system prints a receipt with a transaction number,
the transaction type and the current account balance.

(l) System ejects card.

(m) System displays the idle welcome message.

Alternatives:

• If the system cannot recognize the card, it is ejected and a welcome message is
displayed.

• If the current date is past the card’s expiration date, the card is confiscated and a
welcome message is displayed.

• If the card has been reported lost or stolen, it is confiscated and a welcome message
is displayed.

• If the customer entered PIN does not match the PIN for the card, the system
prompts for a new PIN.

• If the customer enters an incorrect PIN three times, the card is confiscated and a
welcome message is displayed.

• If the account number entered by the user is invalid, the system displays an error
message, ejects the card, and a welcome message is displayed.

• If the customer enters Cancel, the system cancels the transaction, ejects the card,
and a welcome message is displayed.

Postcondition: No changes have been made to the customer’s account.

One use case scenario for use case 1:
[Insert ATM card, Prompt for PIN, Enter PIN, Check PIN, Prompt for Transaction,
Select Acct#, Dispense Card, Print Receipt, Eject Card, Print Welcome Message]

One use case scenario for use case 2:
[Insert ATM card, Prompt for PIN, Enter PIN, Check PIN, Prompt for Transaction,
Select Acct#, Print Receipt, Eject Card, Print Welcome Message]

51

Test case for use case scenario 1:

Purpose: Test the Withdraw Funds functionality of ATM under normal situ-
ation.

Prereq: Suppose John has a ATM card and the card’s # is 00001234. The
PIN is 5678. The expiration date is 10/2010. The card is not stolen
or lost. The # of accounts the card can access is one and its # is
00009123. The account is valid. The current balance is $10,000.
The daily limit is $200. The ATM has enough funds to dispense
the requested amount.

Test Data: John wants to withdraw $100.
Steps: 1. John goes to an ATM and inserts his card.

2. When asking for PIN, he gives the correct PIN “5678”.
3. When asking for transaction type, he chooses “Withdraw Funds”.
4. When asking to select Acct#, he chooses 00009123.
5. When asking for the amount to withdraw, he enters “$100.00”
5. He gets the receipt.
6. He gets his card back and leaves the ATM.

Expected
output:

The balance of John’s account is now $9,900. The account # is
00009123. John has got a receipt with transaction#, transaction
type == Withdraw, the amount withdrawn == $100, and the new
balance == $9,900.

Test case for use case scenario 2:

Purpose: Test the Get Balance functionality of ATM under normal situation.
Prereq: Suppose Sam has a ATM card and the card’s # is 00002345. The

PIN is 6789. The expiration date is 10/2010. The card is not stolen
or lost. The # of accounts the card can access is one and its # is
00001234. The account is valid. The current balance is $10,000.

Test Data: Sam wants to check the balance of his account.
Steps: 1. Sam goes to an ATM and inserts his card.

2. When asking for PIN, he gives the correct PIN “6789”.
3. When asking for transaction type, he chooses “Get Balance”.
4. When asking to select Acct#, he chooses 00001234.
5. He gets the receipt.
6. He gets his card back and leaves the ATM.

Expected
output:

The balance of John’s account keeps the same. The account # is
00001234. Sam has got a receipt with transaction#, transaction
type == Get Balance, and the current balance == $10,000.

52

Exercises, Section 2.7

1. Derive and simplify the path expressions for the three graphs in Figure 2.43.

Solution:
For figure 2.43(a), the path expression can be read directly from the figure:
a (bd + ce) (fh + gi) j

For figure 2.43(b), the path expression also can be read more or less directly from the
figure:
ab (cd)∗ [cf + e] g

Figure 2.43(c) is a bit trickier. The general form is [A + B]∗ k, where A is the small
loop and B is the large loop.

A has the form: a g∗ f

B has the form: b (ch + di + ej)

The combined expression is: [[a g∗ f] + [b (ch + di + ej)]]∗ k

2. Derive and simplify the path expression for the flow graph in Figure 2.12. Assign
reasonable cycle weights and compute the maximum number of paths in the graph and
the minimum number of paths to reach all edges.

Solution:

53

54

3. The graph in Figure 2.10 was used as an example for prime test paths. Add appropriate
edge labels to the graph, then derive and simplify the path expressions. Next add edge
weights of 1 for non-cycle edges and 5 for cycle edges. Then compute the maximum
number of paths in the graph and the minimum number of paths to reach all edges.
This graph has 25 prime paths. Briefly discuss the number of prime paths with the
maximum number of paths and consider the effect of varying the cycle weight on the
maximum number of paths.

Solution:

55

The path expression can be read off directly: a(bcd)∗ef + gh∗i

For weights, if we set the weight WA of b and h to 5 and apply the formula for maximum
number of paths, we get:

1 ∗ ((5)0−n ∗ 1 ∗ 1) ∗ 1 ∗ 1 + 1 ∗ 50−n ∗ 1

= 1 ∗ (
∑n

i=0 5i ∗ 1 ∗ 1) ∗ 1 ∗ 1 + 1 ∗∑n
i=0 5i ∗ 1

= 2
∑n

i=0 5i

If we choose n to be 2, we get:

2
∑2

i=0 5i

= 2 ∗ (50 + 51 + 52) = 2 ∗ (1 + 5 + 25) = 62

On the other hand, if we choose n to be 3, we get:

2
∑3

i=0 5i

= 2 ∗ (50 + 51 + 52 + 53) = 2 ∗ (1 + 5 + 25 + 125) = 312

If we apply the formula for the minimum number of paths with WA set to 5, we get:

1 ∗ (WA ∗ 1 ∗ 1) ∗ 1 ∗ 1 + 1 ∗WA ∗ 1,

which simplifies to 10.

As for the relation to prime paths, note that setting the number of iterations at anything
other than a very small number results in a prohibitive number of paths to test under
the maximum test path model. While prime paths counts can also grow exponentially,
for small, and arguably typical, graphs such as this, the number of paths to test is
comparatively quite manageable.

4. (Challenging!) Section 2.5 presented four different versions of a FSM for Stutter.
Derive and simplify the path expressions for each of the four variations, then compute
the maximum number of paths and the minimum number of paths to reach all edges
in each. Discuss how the different numbers affect testing.

Solution (Instructor only):
For Figure 2.36:

56

57

58

59

For Figure 2.37:

60

61

For Figure 2.38:

62

63

For Figure 2.39:

64

5. Perform complementary operations analysis on the graph in Figure 2.32. Assume
complementary operators of open and close.

Solution (Instructor only):

Figure 2.32 shows operations within nodes. To put the operations on edges, certain

65

nodes are expanded using dummy nodes. Figure 2.32(a) expands as follows:

Among the operations, open and close are the complementary operations. Each edge is
represented with one of the following labels:

C: Open operation (Creator)
D: Close operation (Destructor)
W: Write operation
1: Neither open nor close nor write operation

The path expression is: C(1W1 + 1[1W1]∗1)1D

Algebraic rules are used to rewrite this as: CWD + CW ∗D.

As W is neither of the complementary operations, it is insignificant in the current
context. Hence, we change W to 1 to get CD+CD which is equivalent to CD.

Using the multiplicative table for the complementary operations on page 99, the final
path expression is 1.

This shows that the given graph is satisfied in terms of complementary operations.

Dummy nodes are added to figure 2.32(b) as was done in figure 2.32(a). An additional
dummy node SD is inserted at the conjunction of the nodes S6 and S7. Figure 2.32(b)
expands as follows:

66

The path expression is: C(11 + 1[1W (11 + 1D1)1]∗1)W1D

Algebraic rules are used to rewrite this as: CWD + C[W + WD]∗WD

As W is neither of the complementary operations, it is insignificant in the current
context. Hence, we change W to 1 to get CD+CD∗D which is equivalent to CD+CDD∗.
Using multiplicative table for the complementary operations on page 99, the final path
expression is 1 + D∗ = D∗.

This analysis shows that the intended complementary operations are not, in fact, com-
plementary in the given graph.

Thanks to Preetham Vemasani for providing this solution.

6. Derive and simplify the path expressions for the activity graph in Figure 2.42. The
only loop in that graph has a bound of 3 tries. Use that to compute the maximum
number of paths and the minimum number of paths to reach all edges. Discuss the
relationship between the scenarios for that graph and the terms in the path expression.

Solution (Instructor only):

One possible graph for the given activity diagram Figure 2.42 is:

67

Note: Another edge at node 9 is discarded as nodes from that edge are not described in
the given activity diagram.

The path expression derived from the above figure is:
a1 + a[bcd1]

0−2(b1 + bc1 + bcd2 + bcde(f1 + fg1 + fgh1 + fghi1 + fghi))

The table below gives the description of the variables used in the graph.

68

a card recognized
a1 card not recognized
b card not expired
b1 card expired
c card not lost
c1 card lost
d valid pin
d1 invalid pin entered less than 3 times
d2 invalid pin entered more than 3 times
e select withdraw
f valid account
f1 invalid acoount
g daily amount exceeded
g1 daily amount not exceeded
h sufficient funds
h1 insufficient funds
i ATM not out of funds
i1 ATM out of funds

Maximum number of paths computed from the path expression is:
1+1∗(1∗1∗1)0−2∗(1+1∗1+1∗1∗1+1∗1∗1∗1∗(1+1∗1+1∗1∗1+1∗1∗1∗1+1∗1∗1∗1))
= 1 + 10−2 ∗ (1 + 1 + 1 + 1 ∗ (1 + 1 + 1 + 1 + 1))
= 1 +

∑2
i=0 1i ∗ (3 + 5)

= 1 + (10 + 11 + 12) ∗ 8
= 1 + 3 ∗ 8
= 25

Minimum number of paths to reach all edges is:
1+1∗(1∗1∗1)0−2∗(1+1∗1+1∗1∗1+1∗1∗1∗1∗(1+1∗1+1∗1∗1+1∗1∗1∗1+1∗1∗1∗1))
= 1 + 1 ∗ (1 + 1 + 1 + 1 ∗ (1 + 1 + 1 + 1 + 1))
= 1 + (3 + 5)
= 9

In general, completely expanded path expression gives all the possible scenarios of the
given activity diagram with each term representing a particular scenario. In this case,
in addition to the possible scenarios, the path expression also produces some scenarios
which are not possible in reality. They are:

(a) abcd1b1

(b) abcd1bcd1b1

(c) abcd1bc1

(d) abcd1bcd1bc1

(e) abcd2

69

(f) abcd1bcd2

These scenarios describe the situaion where the card is confiscated. Scenarios (a-d)
are related to the situation where the card is lost or expired. This situation must arise
only when the pin is entered for the first time. But, the path expression allows this to
happen, even after entering the invalid pin more than once, which is not possible in
reality.

Scenarios (e-f) are related to the situation where a invalid pin is entered more than 2
times. But, this path expression allows this to happen, even in the case where invalid
pin is entered not more than 2 times, which is not possible in reality. These additional
scenarios, which are not possible in reality, are generated due to the limitations in
modeling a graph from the given activity diagram.

Thanks to Preetham Vemasani for providing this solution.

7. Answer questions a-c for the graph defined by the following sets:

• N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
• N0 = {1}
• Nf = {10}
• E = {(1, 2, a), (2, 3, b), (2, 4, c), (3, 5, d), (4, 5, e), (5, 6, f), (5, 7, g), (6, 6, h(1−4)),

(6, 10, i), (7, 8, j), (8, 8, k(0− 3)), (8, 9, l), (9, 7,m(2− 5)), (9, 10, n)}
(a) Draw the graph.

Solution:
See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/
The basic path expression is: a(bd + cd) [fh∗i + gjk∗l [mjk∗l] n]

(b) What is the maximum number of paths through the graph?

Solution:
We decorate the path expression with the loop counts and substitute:

1(1 ∗ 1 + 1 ∗ 1) ∗ [1 ∗ 11−4 ∗ 1 + 1 ∗ 1 ∗ 10−3 ∗ [1 [1 ∗ 1 ∗ 10−3 ∗ 1]]2−5 ∗ 1]

= (2) ∗ [11−4 + 10−3 ∗ (10−3)2−5]

= (2) ∗ [
∑4

i=1 1i +
∑3

i=0 1i ∗ ∑5
i=2(

∑3
j=0 1j)i]

= (2) ∗ [(1 + 1 + 1 + 1) + (1 + 1 + 1 + 1) ∗ ∑5
i=2(1 + 1 + 1 + 1)i]

= (2) ∗ [4 + 4 ∗ ∑5
i=2 4i]

= (2) ∗ [4 + 4 ∗ 42 + 43 + 44 + 45]

= (2) ∗ [4 + 4 ∗ 16 + 64 + 256 + 1024]

= (2) ∗ [4 + 4 ∗ 16 + 64 + 256 + 1024]

= (2) ∗ [4 + 4 ∗ 1360]

= (2) ∗ [4 + 5440]

= (2) ∗ [5444]

= 10888

Probably, this is a ridiculous number of test paths for this graph. To get a more
reasonable number, the iteration labels on the loops need to be tweaked.

70

(c) What is the approximate minimum number of paths through the graph?

Solution:
We again start with the same substitution, except we now replace with minimum
values. The only tricky part is the loop for edge m. If we assume a single test
path does this, we get:

a(bd + cd) [fh∗i + gjk∗l [mjk∗l] n]

= max(2, [1 + max(1, 1)]])

= max(2, 2)

= 2.

Two test paths probably won’t do a very good job of testing this graph.

71

Exercises, Section 3.1

1. List all the clauses for the predicate below:
((f <= g) ∧ (X > 0)) ∨ (M ∧ (e < d + c))

Solution:
There are four: f <= g, X > 0, M , and e < d + c.

2. Write the predicate (only the predicate) to represent the requirement: “List all the
wireless mice that either retail for more than $100 or for which the store has more
than 20 items. Also list non-wireless mice that retail for more than $50.”

Solution:
The predicate describing whether to list a given mouse is:
((mouseType = wireless) ∧ ((retail > 100) ∨ (stock > 20)))∨
(¬(mouseType = wireless) ∧ (retail > 50))

Note: Many students need additional practice with this type of exercise. Typical text-
books used in discrete structures classes are an excellent source for sample problems.

72

Exercises, Section 3.2
Use predicates (1) through (10) to answer the following questions.

1. p = a ∧ (¬b ∨ c)

2. p = a ∨ (b ∧ c)

3. p = a ∧ b

4. p = a→ (b→ c)

5. p = a⊕ b

6. p = a↔ (b ∧ c)

7. p = (a ∨ b) ∧ (c ∨ d)

8. p = (¬a ∧ ¬b) ∨ (a ∧ ¬c) ∨ (¬a ∧ c)

9. p = a ∨ b ∨ (c ∧ d)

10. p = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

(a) Identify the clauses that go with predicate p.

(b) Compute (and simplify) the conditions under which each of the clauses determines
predicate p.

(c) Write the complete truth table for all clauses. Label your rows starting from 1.
Use the format in the example underneath the definition of Combinatorial Cover-
age in Section 3.2. That is, row 1 should be all clauses true. You should include
columns for the conditions under which each clause determines the predicate, and
also a column for the predicate itself.

(d) Identify all pairs of rows from your table that satisfy General Active Clause Cov-
erage (GACC) with respect to each clause.

(e) Identify all pairs of rows from your table that satisfy Correlated Active Clause
Coverage (CACC) with respect to each clause.

(f) Identify all pairs of rows from your table that satisfy Restricted Active Clause
Coverage (RACC) with respect to each clause.

(g) Identify all 4-tuples of rows from your table that satisfy General Inactive Clause
Coverage (GICC) with respect to each clause. Identify any infeasible GICC test
requirements.

(h) Identify all 4-tuples of rows from your table that satisfy Restricted Inactive Clause
Coverage (RICC) with respect to each clause. Identify any infeasible RICC test
requirements.

73

Solution (Instructor only):
Solution for p = a ∧ (¬b ∨ c)

(a) Clauses are a, b, c.

(b) pa = ¬b ∨ c
pb = a ∧ ¬c
pc = a ∧ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T T
2 T T F T T
3 T F T T T
4 T F F T T T
5 F T T T
6 F T F
7 F F T T
8 F F F T

(d) GACC pairs for clause a are: {1, 3, 4} × {5, 7, 8}.
There is only one GACC pair for clause b: (2, 4).
There is only one GACC pair for clause c: (1, 2).

(e) CACC pairs for clauses a, b, and c are the same as GACC pairs.

(f) RACC pairs for clause a are: (1, 5), (3, 7)(4, 8).
RACC pairs for clauses b and c are the same as CACC pairs.

(g) GICC tuples for a are: (2, 6) for p = F ; no feasible pair for p = T .
GICC tuples for b are: {5, 6} × {7, 8} for p = F ; (1, 3) for p = T .
GICC tuples for c are: {5, 7} × {6, 8} for p = F ; (3, 4) for p = T .

(h) RICC tuples for a are same as GICC.
RICC tuples for b are: (5, 7), (6, 8) for p = F ; (1, 3) for p = T .
RICC tuples for c are: (5, 6), (7, 8) for p = F ; (3, 4) for p = T .

74

Solution:
Solution for p = a ∨ (b ∧ c)

(a) Clauses are a, b, c.

(b) pa = ¬b ∨ ¬c
pb = ¬a ∧ c
pc = ¬a ∧ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T
2 T T F T T
3 T F T T T
4 T F F T T
5 F T T T T T
6 F T F T T
7 F F T T T
8 F F F T

(d) GACC pairs for clause a are: {2, 3, 4} × {6, 7, 8}.
There is only one GACC pair for clause b: (5, 7).
There is only one GACC pair for clause c: (5, 6).

(e) CACC pairs for clauses a, b, and c are the same as GACC pairs.

(f) RACC pairs for clause a are: (2, 6), (3, 7), (4, 8).
RACC pairs for clauses b and c are the same as CACC pairs.

(g) GICC tuples for a are: no feasible pair for p = F ; (1,5) for p = T .
GICC tuples for b are: (6, 8) for p = F ; {1, 2} × {3, 4} for p = T .
GICC tuples for c are: (7, 8) for p = F ; {1, 3} × {2, 4} for p = T .

(h) RICC tuples for a are same as GICC.
RICC tuples for b are: (6, 8) for p = F ; (1, 3), (2, 4) for p = T .
RICC tuples for c are: (7, 8) for p = F ; (1, 2), (3, 4) for p = T .

75

Solution:
Solution for p = a ∧ b

(a) Clauses are a, b.

(b) pa = b
pb = a

(c) Note: Blank cells represent values of ‘F’.

a b p pa pb
1 T T T T T
2 T F T
3 F T T
4 F F

(d) There is only one GACC pair for clause a: (1, 3).
There is only one GACC pair for clause b: (1, 2).

(e) CACC pairs for clauses a and b are the same as GACC pairs.

(f) RACC pairs for clauses a and b are the same as CACC pairs.

(g) GICC tuples for a are: (2, 4) for p = F ; no feasible pair for p = T .
GICC tuples for b are: (3, 4) for p = F ; no feasible pair for p = T .

(h) RICC tuples for clauses a and b are the same as GICC tuples.

76

Solution:
Solution for p = a→ (b→ c)

(a) Clauses are a, b, c.

(b) pa = b ∧ ¬c
pb = a ∧ ¬c
pc = a ∧ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T
2 T T F T T T
3 T F T T
4 T F F T T
5 F T T T
6 F T F T T
7 F F T T
8 F F F T

(d) There is only one GACC pair for clause a: (2, 6).
There is only one GACC pair for clause b: (2, 4).
There is only one GACC pair for clause c: (1, 2).

(e) CACC pairs for clauses a, b, and c are the same as GACC pairs.

(f) RACC pairs for clauses a, b, and c are the same as CACC pairs.

(g) GICC tuples for a are: no feasible pair for p = F ; {1, 3, 4} × {5, 7, 8} for p = T .
GICC tuples for b are: no feasible pair for p = F ; {1, 5, 6} × {3, 7, 8} for p = T .
GICC tuples for c are: no feasible pair for p = F ; {3, 5, 7} × {4, 6, 8} for p = T .

(h) RICC tuples for a are: no feasible pair for p = F ; (1, 5), (3, 7), (4, 8) for p = T .
RICC tuples for b are: no feasible pair for p = F ; (1, 3), (5, 7), (6, 8) for p = T .
RICC tuples for c are: no feasible pair for p = F ; (3, 4), (5, 6), (7, 8) for p = T .

77

Solution (Instructor only):
Solution for p = a⊕ b

(a) Clauses are a, b.

(b) pa = T
pb = T

(c) Note: Blank cells represent values of ‘F’.

a b p pa pb
1 T T T T
2 T F T T T
3 F T T T T
4 F F T T

(d) GACC pairs for clause a are: {1, 2} × {3, 4}.
GACC pairs for clause b are: {1, 3} × {2, 4}.

(e) CACC pairs for clause a are: (1, 3), (2, 4).
CACC pairs for clause b are: (1, 2), (3, 4).

(f) RACC pairs for clauses a and b are the same as CACC pairs.

(g) There are no GICC tuples for either clause.

(h) There are no RICC tuples for either clause.

78

Solution:
Solution for p = a↔ (b ∧ c)

(a) Clauses are a, b, c.

(b) pa = T
pb = c
pc = b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T T T
2 T T F T T
3 T F T T T
4 T F F T
5 F T T T T T
6 F T F T T T
7 F F T T T T
8 F F F T T

(d) GACC pairs for clause a are: {1, 2, 3, 4} × {5, 6, 7, 8}.
GACC pairs for clause b are: {1, 5} × {3, 7}.
GACC pairs for clause c are: {1, 5} × {2, 6}.

(e) CACC pairs for clause a are: (1, 5) ∪ {2, 3, 4} × {6, 7, 8}.
CACC pairs for clause b are: (1, 3), (5, 7) for clause b.
CACC pairs for clause c are: (1, 2), (5, 6) for clause c.

(f) RACC pairs for clause a are: (1, 5), (2, 6), (3, 7), (4, 8).
RACC pairs for clauses b and c are the same as CACC pairs.

(g) There are no GICC tuples for clause a.
GICC tuples for b are: (2, 4) for p = F ; (6, 8) for p = T .
GICC tuples for c are: (3, 4) for p = F ; (7, 8) for p = T .

(h) RICC tuples for clauses a, b, and c are the same as GICC tuples.

79

Solution:
Solution for p = (a ∨ b) ∧ (c ∨ d)

(a) Clauses are a, b, c, d.

(b) pa = ¬b ∧ (c ∨ d)
pb = ¬a ∧ (c ∨ d)
pc = ¬d ∧ (a ∨ b)
pd = ¬c ∧ (a ∨ b)

(c) Note: Blank cells represent values of ‘F’.

a b c d p pa pb pc pd
1 T T T T T
2 T T T F T T
3 T T F T T T
4 T T F F T T
5 T F T T T T
6 T F T F T T T
7 T F F T T T T
8 T F F F T T
9 F T T T T T
10 F T T F T T T
11 F T F T T T T
12 F T F F T T
13 F F T T T T
14 F F T F T T
15 F F F T T T
16 F F F F

(d) GACC pairs for clause a are: {5, 6, 7} × {13, 14, 15}.
GACC pairs for clause b are: {9, 10, 11} × {13, 14, 15}.
GACC pairs for clause c are: {2, 6, 10} × {4, 8, 12}.
GACC pairs for clause d are: {3, 7, 11} × {4, 8, 12}.

(e) CACC pairs for clauses a, b, c, and d are the same as GACC pairs.

(f) RACC pairs for clause a, (5, 13), (6, 14), (7, 15).
RACC pairs for clause b, (9, 13), (10, 14), (11, 15).
RACC pairs for clause c, (2, 4), (6, 8), (10, 12).
RACC pairs for clause d, (3, 4), (7, 8), (11, 12).

80

(g) GICC tuples for a are:
{4, 8} × {12, 16} for p = F ; {1, 2, 3} × {9, 10, 11} for p = T .
GICC tuples for b are:
{4, 12} × {8, 16} for p = F ; {1, 2, 3} × {5, 6, 7} for p = T .
GICC tuples for c are:
{13, 14} × {15, 16} for p = F ; {1, 5, 9} × {3, 7, 11} for p = T .
GICC tuples for d are:
{13, 15} × {14, 16} for p = F ; {1, 5, 9} × {2, 6, 10} for p = T .

(h) RICC tuples for a are:
(4, 12), (8, 16) for p = F ; (1, 9), (2, 10), (3, 11) for p = T .
RICC tuples for b are:
(4, 8), (12, 16) for p = F ; (1, 5), (2, 6), (3, 7) for p = T .
RICC tuples for c are:
(13, 15), (14, 16) for p = F ; (1, 3), (5, 7), (9, 11) for p = T .
RICC tuples for d are:
(13, 14), (15, 16) for p = F ; (1, 2), (5, 6), (9, 10) for p = T .

81

Solution:
Solution for p = (¬a ∧ ¬b) ∨ (a ∧ ¬c) ∨ (¬a ∧ c)

(a) Clauses are a, b, c.

(b) pa = b ∨ c
pb = ¬a ∧ ¬c
pc = a ∨ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T
2 T T F T T T
3 T F T T T
4 T F F T T
5 F T T T T T
6 F T F T T T
7 F F T T T
8 F F F T T

(d) GACC pairs for clause a are: {1, 2, 3} × {5, 6, 7}.
GACC pair for clause b is: (6, 8).
GACC pairs for clause c are: {1, 3, 5} × {2, 4, 6}.

(e) CACC pairs for clause a are:, (1, 5), (1, 7), (2, 6), (3, 5), (3, 7).
The CACC pair for clause b is the same as GACC pair.
CACC pairs for clause c are: (1, 2), (1, 4), (3, 2), (3, 4), (5, 6).

(f) RACC pair for clause a is: (1, 5), (2, 6), (3, 7).
The RACC pair for clause b is the same as CACC pair.
RACC pairs for clause c are: (1, 2), (3, 4), (5, 6).

(g) GICC tuples for clause a are: no feasible pair for p = F ; (4, 8) for p = T .
GICC tuples for clause b are: (1,3) for p = F ; (2, 4), (2, 7), (5, 4), (5, 7) for p = T .
GICC tuples for clause c are: no feasible pair for p = F ; (7, 8) for p = T .

(h) RICC tuples for clauses a and c are same as GICC tuples.
RICC tuples for clause b are: (1, 3) for p = F ; (2, 4), (5, 7) for p = T .

82

Solution (Instructor only):
Solution for p = a ∨ b ∨ (c ∧ d)

(a) Clauses are a, b, c, d.

(b) pa = ¬b ∧ (¬c ∨ ¬d)
pb = ¬a ∧ (¬c ∨ ¬d)
pc = ¬a ∧ ¬b ∧ d
pd = ¬a ∧ ¬b ∧ c

(c)

a b c d p pa pb pc pd
1 T T T T T
2 T T T F T
3 T T F T T
4 T T F F T
5 T F T T T
6 T F T F T T
7 T F F T T T
8 T F F F T T
9 F T T T T
10 F T T F T T
11 F T F T T T
12 F T F F T T
13 F F T T T T T
14 F F T F T T T
15 F F F T T T T
16 F F F F T T

(d) GACC pairs for clause a are: {6, 7, 8} × {14, 15, 16}.
GACC pairs for clause b are: {10, 11, 12} × {14, 15, 16}.
GACC pair for clause c is: (13, 15).
GACC pair for clause d is: (13, 14).

(e) CACC pairs for clauses a, b, c, and d are the same as GACC pairs.

(f) RACC pairs for clause b are: (6, 14), (7, 15), (8, 16).
RACC pairs for clause b are: (10, 14), (11, 15), (12, 16).
RACC pairs for clauses c and d are the same as CACC pairs.

(g) GICC tuples for clause a are:
no feasible pair for p = F ; {1, 2, 3, 4, 5} × {9, 10, 11, 12, 13} for p = T .
GICC tuples for clause b are:
no feasible pair for p = F ; {1, 2, 3, 4, 9} × {5, 6, 7, 8, 13} for p = T .
GICC tuples for clause c are:
(14,16) for p = F ; {1, 2, 5, 6, 9, 10} × {3, 4, 7, 8, 11, 12} for p = T .
GICC tuples for clause d are:
(15,16) for p = F ; {1, 3, 5, 7, 9, 11} × {2, 4, 6, 8, 10, 12} for p = T .

83

(h) RICC tuples for clause a are:
no feasible pair for p = F ; (1, 9), (2, 10), (3, 11), (4, 12), (5, 13) for p = T .
RICC tuples for clause b are:
no feasible pair for p = F ; (1, 5), (2, 6), (3, 7), (4, 8), (9, 13) for p = T .
RICC tuples for clause c are:
(14, 16) for p = F ; (1, 3), (2, 4), (5, 7), (6, 8), (9, 11), (10, 12) for p = T .
RICC tuples for clause d are:
(14, 16) for p = F ; (1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) for p = T .

84

Solution (Instructor only):
Solution for p = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

(a) Clauses are a, b, c.

(b) pa = b ∧ ¬c ∨ ¬b ∧ c
pb = a ∧ ¬c ∨ ¬a ∧ c
pc = a ∧ ¬b ∨ ¬a ∧ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T
2 T T F T T T
3 T F T T T T
4 T F F T T
5 F T T T T T
6 F T F T T
7 F F T T T
8 F F F

(d) GACC pairs for clause a are: {2, 3} × {6, 7}.
GACC pairs for clause b are: {2, 5} × {4, 7}.
GACC pairs for clause c are: {3, 5} × {4, 6}.

(e) CACC pairs for clauses a, b, and c are the same as GACC pairs.

(f) RACC pairs for clause a are: (2, 6), (3, 7).
RACC pairs for clause b are: (2, 4), (5, 7).
RACC pairs for clause c are: (3, 4), (5, 6).

(g) GICC tuples for clause a are: (4, 8) p = F ; (1, 5) for p = T .
GICC tuples for clause b are: (6, 8) p = F ; (1, 3) for p = T .
GICC tuples for clause c are: (7, 8) p = F ; (1, 2) for p = T .

(h) RICC tuples for a, b, and c are same as GICC tuples.

85

11. Refine the GACC, CACC, RACC, GICC, and RICC coverage criteria so that the
constraints on the minor clauses are made more formal.

Solution:
Solution: We’ll start with GACC, and add more constraints we we proceed to RACC.
Then, we’ll repeat the process for GICC and RICC. The goal here is to help students
by giving a more explicit explanation of the test requirements.

We assume p is the predicate, ci is the major clause, cj, j 6= i are the minor clauses,
and pci is the conditions under which ci determines p.

For each i, GACC has two test requirements: ci = T ∧ pci = T and ci = F ∧ pci = T .
Note that the values of the minor clauses cj may differ between the two tests.

For each i, CACC has two test requirements: ci = T ∧ pci = T and ci = F ∧ pci = T .
Additionally, the value of p resulting from the first test must differ from the value of
p resulting from the second. Note that the values of the minor clauses cj may differ
between the two tests.

For each i, RACC has two test requirements: ci = T ∧ pci = T and ci = F ∧ pci = T .
Additionally, ci is the only difference between the two tests. That is, the values of the
minor clauses cj must be identical on the two tests.

For each i, GICC has two pairs of test requirements:

Pair 1: ci = T ∧ pci = F ∧ p = T . ci = F ∧ pci = F ∧ p = T .

Pair 2: ci = T ∧ pci = F ∧ p = F . ci = F ∧ pci = F ∧ p = F .

The minor clauses cj may differ between the two tests. Often, one of the pairs is
infeasible.

For each i, RICC has two pairs of test requirements:

Pair 1: ci = T ∧ pci = F ∧ p = T . ci = F ∧ pci = F ∧ p = T .

Pair 2: ci = T ∧ pci = F ∧ p = F . ci = F ∧ pci = F ∧ p = F .

Additionally, ci is the only difference between the two tests in Pair 1 and the two tests
in Pair 2. That is, the values of the minor clauses cj must be identical for the two tests
in Pair 1 and identical for the two tests in Pair 2. Again, one of the pairs is often
infeasible.

86

12. (Challenging!) Find a predicate and a set of additional constraints so that CACC is
infeasible with respect to some clause, but GACC is feasible.

Solution (Instructor only):
Consider the predicate a ∧ (b↔ c) equal to (x < y) ∧ (odd(x)↔ odd(y)) in an environment
where x + y is constrained to be even. Note that of the eight possible combinations of truth
values clauses a, b, and c, only four are feasible, since b and c will always have the same
truth value. pc, the conditions under which c determines p is simply a. Note that there is
exactly 1 feasible combination of truth values where c is true and pc is true, namely TTT ,
and exactly 1 feasible where c is false, but pc is still true, namely TFF . Thus the test set
{(TTT, TFF} satisfies GACC with respect to c, but not CACC. In terms of (x, y) pairs,
such a test set is {(1, 3), (2, 4)}.

87

Exercises, Section 3.3

1. Answer the following questions for the method checkIt() below:
public static void checkIt (boolean a, boolean b, boolean c)

{

if (a && (b || c))

{

System.out.println ("P is true");

}

else

{

System.out.println ("P isn’t true");

}

}

• Transform checkIt() to checkItExpand(), a method where each if statement tests
exactly one boolean variable. Instrument checkItExpand() to record which edges
are traversed. (“print” statements are fine for this.)

Solution (Instructor only):

public static void checkItExpand (boolean a, boolean b, boolean c)

{
if (a)

{
if (b)

{
System.out.println ("1: P is true");

}
else if (c)

{ // !b

System.out.println ("2: P is true");

}
else

{ // !b and !c

System.out.println ("3: P isn’t true");

}
}
else

{ // !a

System.out.println ("4: P isn’t true");

}
}

• Derive a GACC test set T1 for checkIt(). Derive an Edge Coverage test set T2
for checkItExpand(). Build T2 so that it does not satisfy GACC on the predicate
in checkIt().

88

Solution (Instructor only):
If we number the truth table in the usual way, we have:
GACC pairs for clause a are: {1, 2, 3} × {5, 6, 7}.
GACC pair for clause b is: (2, 4).
GACC pair for clause c is: (3, 4).

So, a GACC test set T1 for checkIt() needs to have tests {2, 3, 4} (due to clauses
b and c), and one of {5, 6, 7}.
For edge coverage for checkItExpand(), we need Txx and Fxx for clause a, TFx
and TTx for clause b, and TFT and TFF for clause c. The last two are rows
3 and 4 from the truth table, so any edge set has to have these. Additionally, we
need 1 or 2 for TTx. Note that TFx is already taken care of. Finally, we need 5,
6, 7, or 8 for Fxx. Again, Txx is already taken care of.

Hence, we could pick test set T2 = {1, 3, 4, 8}, which yields Edge Coverage on
checkItExpand(), but certainly not GACC on checkIt().

Of course, other choices could also work.
• Run both T1 and T2 on both checkIt() and checkItExpand().

Solution (Instructor only):

public class check

{
public static void checkIt (boolean a, boolean b, boolean c)

{
if (a && (b || c))

{
System.out.println ("1: P is true");

}
else

{
System.out.println ("3: P isn’t true");

}
}

public static void checkItExpand (boolean a, boolean b, boolean c)

{
if (a)

{
if (b)

{
System.out.println ("1: P is true");

}
else if (c)

{

89

System.out.println ("2: P is true");

}
else

{
System.out.println ("3: P isn’t true");

}
}
else

{
System.out.println ("4: P isn’t true");

}
}

public static void main (String[] args)

{
boolean a = true;

boolean b = true;

boolean c = true;

for (int i = 0; i < 2; i++)

{
for (int j = 0; j < 2; j++)

{
for (int k = 0; k < 2; k++)

{
System.out.println (a + " " + b + " " + c);

System.out.print ("checkIt(): ");

checkIt (a, b, c);

System.out.print ("checkItExpand(): ");

checkItExpand (a, b, c);

c = !c;

}
b = !b;

}
a = !a;

}
}
}

Output of the program:

true true true

checkIt(): 1: P is true

checkItExpand(): 1: P is true

true true false

checkIt(): 1: P is true

90

checkItExpand(): 1: P is true

true false true

checkIt(): 1: P is true

checkItExpand(): 2: P is true

true false false

checkIt(): 3: P isn’t true

checkItExpand(): 3: P isn’t true

false true true

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

false true false

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

false false true

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

false false false

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

2. Answer the following questions for the method twoPred() below:

public String twoPred (int x, int y)

{

boolean z;

if (x < y)

z = true;

else

z = false;

if (z && x+y == 10)

return "A";

else

return "B";

}

• Identify test inputs for twoPred() that achieve Restricted Active Clause Coverage
(RACC).

Solution (Instructor only):
Note: The first predicate will be taken care of in the analysis of the second pred-
icate. The second predicate can be rewritten in terms of x and y: p = (x <
y)&&x + y == 10 For RACC, I need three tests:
x < y true;x + y == 10 true; Example : twoPred(4, 6)
x < y false;x + y == 10 true; Example : twoPred(6, 4)
x < y true;x + y == 10 false; Example : twoPred(4, 5)

91

• Identify test inputs for twoPred() that achieve Restricted Inactive Clause Coverage
(RICC).

Solution (Instructor only):
RICC has no feasible pairs for P = True. For P = False, we need truth assignmets
TF and FF for the first clause, and FT and FF for the second clause. That results
in the following three tests:
x < y false;x + y == 10 false; Example : twoPred(6, 5)
x < y true;x + y == 10 false; Example : twoPred(4, 5)
x < y false;x + y == 10 true; Example : twoPred(6, 4)
Note: Short circuit evaluation makes the tests FF and FT redundant, because the
second clause will not be evaluated.

3. Answer the following questions for the program fragments below:

fragment P: fragment Q:

if (A || B || C) if (A)

{ {

m(); m();

} return;

return; }

if (B)

{

m();

return;

}

if (C)

{

m();

}

• Give a GACC test set for fragment P. (Note that GACC, CACC, and RACC
yield identical test sets for this example.)

Solution:
Note that each clause must be true with the other clauses false, and then all of the
clauses must be false, thereby yielding 4 tests (numbered 4, 6, 7, 8 in the usual
truth table scheme): TGACC = {(T, F, F), (F, T, F), (F, F, T), (F, F, F)}
• Does the GACC test set for fragment P satisfy Edge Coverage on fragment Q?

Solution:
Yes.
• Write down an Edge Coverage test set for fragment Q. Make your test set include

as few tests from the GACC test set as possible.

Solution:
Eight possible answers exist. All answers must include (F, F, F) and (F, F, T),
both of which are in the GACC tests. The first misses all calls to m(); and the
second reaches the third call. To reach the first call, A must be True but B and C
can have any value (four possibilities). To reach the second call, A must be False
and B must be true. With “don’tcare” values, we can list the four tests as:

92

TEDGE = {(T,−,−), (F, T,−), (F, F, T), (F, F, F)}

All the possible answers are:
TEDGE:1 = {(T, T, T), (F, T, T), (F, F, T), (F, F, F)}
TEDGE:2 = {(T, T, F), (F, T, T), (F, F, T), (F, F, F)}
TEDGE:3 = {(T, F, T), (F, T, T), (F, F, T), (F, F, F)}
TEDGE:4 = {(T, F, F), (F, T, T), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:5 = {(T, T, T), (F, T, F), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:6 = {(T, T, F), (F, T, F), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:7 = {(T, F, T), (F, T, F), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:8 = {(T, F, F), (F, T, F), (F, F, T), (F, F, F)} (2 in the GACC tests)

4. (Challenging!) For the TriTyp program, complete the test sets for the following
coverage criteria by filling in the “don’t care” values, ensuring reachability, and deriving
the expected output. Download the program, compile it, and run it with your resulting
test cases to verify correct outputs.

• Predicate Coverage (PC)

• Clause Coverage (CC)

• Combinatorial Coverage (CoC)

• Correlated Active Clause Coverage (CACC)

Solution (Instructor only):
Predicate Coverage (PC)

TRUE FALSE
Predicate S1 S2 S3 OUTPUT S1 S2 S3 OUTPUT

42 (S1 ≤ 0 ∨ S2 ≤ 0 ∨ S3 ≤ 0) 0 0 0 4 1 1 1 3
49 (S1 == S2) 1 1 1 3 1 2 2 3
51 (S1 == S3) 1 1 1 3 1 2 2 2
53 (S2 == S3) 1 1 1 3 2 1 2 2
55 (triOut == 0) 1 2 3 4 1 1 1 3
59 (S1 + S2 ≤ S3 ∨ S2 + S3 1 2 3 4 2 3 4 1

≤ S1 ∨ S1 + S3 ≤ S2)
70 (triOut > 3) 1 1 1 3 2 2 3 2
72 (triOut == 2 2 3 2 2 2 4 4

1 ∧ S1 + S2 > S3)
74 (triOut == 2 3 2 2 2 4 2 4

2 ∧ S1 + S3 > S2)
76 (triOut = 3 2 2 2 4 2 2 4

3 ∧ S2 + S3 > S1)

93

Clause Coverage (CC)

TRUE FALSE
Predicate S1 S2 S3 OUTPUT S1 S2 S3 OUTPUT

42 (S1 ≤ 0) 0 2 3 4 1 2 3 4
(S2 ≤ 0) 2 0 1 4 0 1 1 4
(S3 ≤ 0) 3 5 0 4 3 2 2 2

49 (S1 == S2) 1 1 5 4 1 3 2 4
51 (S1 == S3) 1 4 1 4 1 2 2 2
53 (S2 == S3) 2 1 1 4 2 3 2 2
55 (triOut == 0) 1 2 3 4 1 2 2 2
59 (S1 + S2 ≤ S3) 2 3 6 4 2 3 4 1

(S2 + S3 ≤ S1) 6 2 3 4 2 3 4 1
(S1 + S3 ≤ S2) 2 6 3 4 2 3 4 1

70 (triOut > 3) 1 1 1 3 2 2 3 2
72 (triOut == 1) 2 2 3 2 2 3 2 2

(S1 + S2 > S3) 2 2 3 2 2 2 5 4
74 (triOut == 2) 2 3 2 2 3 2 2 2

(S1 + S3 > S2) 2 3 2 2 2 5 2 4
76 (triOut == 3) 3 2 2 2 1 2 1 4

(S2 + S3 > S1) 3 2 2 2 5 2 2 4

94

Combinatorial Coverage (CoC)

Predicate Clauses S1 S2 S3 OUTPUT
42 (S1 ≤ 0 ∨ S2 ≤ 0 ∨ S3 ≤ 0) T T T 0 0 0 4

T T F 0 0 1 4
T F T 0 2 0 4
T F F 0 1 1 4
F T T 1 0 0 4
F T F 1 0 1 4
F F T 1 1 0 4
F F F 1 1 1 3

49 (S1 == S2) T 1 1 5 4
F 1 3 2 4

51 (S1 == S3) T 1 4 1 4
F 1 2 2 2

53 (S2 == S3) T 2 1 1 4
F 2 3 2 2

55 (triOut == 0) T 1 2 3 4
T 1 2 2 2

59 (S1 + S2 ≤ S3 ∨ S2 + S3 ≤ S1∨) T T T infeasible
T T F infeasible
T F T infeasible
T F F 2 3 6 4
F T T infeasible
F T F 6 2 3 4
F F T 2 6 3 4
F F F 2 3 4 1

70 (triOut > 3) T 1 1 1 3
F 2 2 3 2

72 (triOut == 1 ∧ S1 + S2 > S3) T T - 2 2 3 2
T F - 2 2 5 4
F T - 2 3 3 2
F F - infeasible

74 (triOut == 2 ∧ S1 + S3 > S2) T T - 2 3 2 2
T F - 2 5 2 4
F T - 2 3 3 2
F F - infeasible

76 (triOut == 3 ∧ S2 + S3 > S1) T T - 3 2 2 2
T F - 5 2 2 4
F T - 3 6 3 4
F F - infeasible

95

Correlated Active Clause Coverage (CACC)

Predicate Clauses S1 S2 S3 OUTPUT
42 (S1 ≤ 0 ∨ S2 ≤ 0 ∨ S3 ≤ 0) T F T 0 2 0 4

F T T 1 0 0 4
F F T 1 1 0 4
F F F 1 1 1 3

49 (S1 == S2) T 1 1 5 4
F 1 3 2 4

51 (S1 == S3) T 1 4 1 4
F 1 2 2 2

53 (S2 == S3) T 2 1 1 4
F 2 3 2 2

55 (triOut == 0) T 1 2 3 4
F 1 2 2 2

59 (S1 + S2 ≤ S3 ∨ S2 + S3 ≤ S1∨) T F F 2 3 6 4
F T F 6 2 3 4
F F T 2 6 3 4
F F F 2 3 4 1

70 (triOut > 3) T 1 1 1 3
F 2 2 3 2

72 (triOut == 1 ∧ S1 + S2 > S3) T T - 2 2 3 2
T F - 2 2 5 4
F T - 2 3 3 2

74 (triOut == 2 ∧ S1 + S3 > S2) T T - 2 3 2 2
T F - 2 5 2 4
F T - 2 3 3 2

76 (triOut == 3 ∧ S2 + S3 > S1) T T - 3 2 2 2
T F - 5 2 2 4
F T - 3 6 3 4

5. Repeat the prior exercise, but for the TestPat program in Chapter 2.

Solution (Instructor only):
In the following tables, subject and pattern are represented as s and p respectively.
Predicate Coverage(PC):

96

TRUE FALSE
predicate argv[0] argv[1] Output argv[0] argv[1] Output

9 argv.length!=2 mujava — line 11 mujava java line 21(n=2)
18 (n=testPat.pat(s,p))==-1 mujava jsp line 19 mujava java line 21(n=2)
39 isPat==false ∧ mujava java line 21(n=2) mujava test line 19

iSub+pLen-1 < sLen
41 s[iSub]==p[0] mujava java line 21(n=2) mujava test line 19
45 iPat<pLen mujava java line 21(n=2) mujava java line 21(n=2)
47 s[iSub+iPat]!=p[iPat] mujava jsp line 19 mujava java line 21(n=2)

Note: One can observe that for some predicates, both True and False conditions are
achieved with the same input. This is due to the loops present in the program.
Clause Coverage(CC):

TRUE FALSE
predicate argv[0] argv[1] Output argv[0] argv[1] Output

9 argv.length!=2 mujava - line 11 mujava java line 21(n=2)
18 (n=testPat.pat(s,p))==-1 mujava jsp line 19 mujava java line 21(n=2)
39 isPat==false mujava java line 21(n=2) mujava java line 21(n=2)

iSub+pLen-1 < sLen mujava test line 19 mujava test line 19
41 s[iSub]==p[0] mujava java line 21(n=2) mujava test line 19
45 iPat<pLen mujava java line 21(n=2) mujava java line 21(n=2)
47 s[iSub+iPat]!=p[iPat] mujava jsp line 19 mujava java line 21(n=2)

Combinatorial Coverage(CoC):
predicate Clauses argv[0] argv[1] Output

9 argv.length!=2 T mujava - line 11
F mujava java line 21(n=2)

18 (n=testPat.pat(s,p))==-1 T mujava jsp line 19
F mujava java line 21(n=2)

39 isPat==false ∧ T T mujava java line 21(n=2)
iSub+pLen-1 < sLen

T F mujava test line 19
F T mujava java line 21(n=2)
F F Infeasible

41 s[iSub]==p[0] T mujava java line 21(n=2)
F mujava test line 19

45 iPat<pLen T mujava java line 21(n=2)
F mujava java line 21(n=2)

47 s[iSub+iPat]!=p[iPat] T mujava jsp line 19
F mujava java line 21(n=2)

Correlated Active Clause Coverage(CACC):

97

predicate Clauses argv[0] argv[1] Output
9 argv.length!=2 T mujava - line 11

F mujava java line 21(n=2)
18 (n=testPat.pat(s,p))==-1 T mujava jsp line 19

F mujava java line 21(n=2)
39 isPat==false ∧ T T mujava java line 21(n=2)

iSub+pLen-1 < sLen
T F mujava test line 19
F T mujava java line 21(n=2)

41 s[iSub]==p[0] T mujava java line 21(n=2)
F mujava test line 19

45 iPat<pLen T mujava java line 21(n=2)
F mujava java line 21(n=2)

47 s[iSub+iPat]!=p[iPat] T mujava jsp line 19
F mujava java line 21(n=2)

Thanks to Preetham Vemasani for providing this solution.

6. Repeat the prior exercise, but for the Quadratic program in Chapter 2.

Solution (Instructor only):

Predicate Coverage(PC):
TRUE FALSE

predicate X Y Z Output X Y Z Output
12 argv.length==3 4 6 3 No Solution - - - R1=1.5, R2=2.75
35 ok==TRUE 8 5 -3 R1=0.37, R2=-1.0 4 6 3 No Solution
48 D<0.0 8 5 -3 R1=0.37, R2=-1.0 4 6 3 No Solution

As there is no more than one clause in any of the predicates, predicate coverage achieves
clause, combinatorial, correlated active clause coverages.

Thanks to Preetham Vemasani for providing this solution.

98

Exercises, Section 3.4
Consider the remove() method from the Java Iterator interface. The remove() method

has a complex precondition on the state of the Iterator, and the programmer can choose
to detect violations of the precondition and report them as IllegalStateException.

1. Formalize the precondition.

Solution (Instructor only):
Let the sequence of method calls on the iterator object be c1, c2, ...cn where each ci is
either next(), hasNext() or remove(). The precondition for cn to be a remove()

operation is ∃i@ci = next() ∧ ∀j@i < j < n→ cj 6= remove() The problem with this
formalization is that the ACC criteria are not defined on quantified predicates.

A different approach is to formalize the precondition without reference to the entire
history. Since there are only two mutators in the Iterator interface, let A be the
predicate that next() has been called and B be the predicate that remove() has not
been called subsequently. Then the precondition is simply A ∧B.

Both of these predicates ignore the fact that calling next() isn’t sufficient by itself; it is
also necessary for next() to actually return a value (instead of NoSuchElementException).

Finally, the behavior of the entire iterator, and of remove() in particular, is determined
by whether the client attempts to modify the underlying collection while the iterator is
in use. So, for example, a call to next(), followed by a modification of the underlying
collection, followed by a call to remove() is, in many implementations of Iterator,
going to result in ConcurrentModificationException being thrown.

For a more advanced exercise, consider the ListIterator interface, which is consider-
ably more complex.

2. Find (or write) an implementation of an Iterator. The Java Collection classes are
a good place to search.

Solution (Instructor only):
This is easier than it looks at first glance. All implementations of the Collection

interface provide an iterator() method.

3. Develop and run CACC tests on the implementation.

Solution (Instructor only):
This example is fun because there are various choices in treating the quantifiers. The
simple predicate A ∧B yields CACC tests TT, TF, andFT . Note that the last of these
is not very well defined, since if next() has not been called, the notion of a “subsequent
call” is problematic. The most consistent interpretation of Fx seems to be that there
are next() or remove() calls in the history. As concrete tests, we get:

Set<Integer> s = new HashSet<Integer>();

s.add(new Integer(1);

99

s.add(new Integer(2);

s.add(new Integer(3);

Iterator itr = s.iterator();

a call to itr.remove() here would test case Fx

itr.next();

a call to itr.remove() here would test case TT

itr.remove();

a call to itr.remove() here would test case TF

note that any number of hasNext() calls could be interspersed

To make the tests more interesting, we could model explicitly the presence of hasNext()
calls. We could also address the possibility that next() is called, but returns NoSuchElementException,
in which case the remove() call is still invalid, even though next() has been called.

100

Exercises, Section 3.5

1. For the Memory Seat finite state machine, complete the test sets for the following
coverage criteria by satisfying the predicates, ensuring reachability, and computing the
expected output.

• Predicate Coverage

• Correlated Active Clause Coverage

• General Inactive Clause Coverage

Solution:

(a) Transition: 1 −→ 2
Predicate: Button2 ∧ (Gear = Park ∨ ignition = off)
Prefix: values: Gear = Park, Button1

101

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button2 ∧ Gear = Park T 2
Button1 ∧ Gear = Park F 1

CACC Button2 ∧ Gear = Park T 2
Button1 ∧ Gear = Park F 1
Button2 ∧
(Gear = Park ∧ ignition = on) T 2
Button2 ∧
(Gear != Park ∧ ignition = on) F 1
Button2 ∧
(Gear != Park ∧ ignition = off) T 2
Button2 ∧
(Gear != Park ∧ ignition = on) F 1

GICC Button2 ∧
(Gear != Park ∧ ignition = on) T Infeasible
Button1 ∧
(Gear != Park ∧ ignition = on) T Infeasible
Button2 ∧
(Gear != Park ∧ ignition = on) F 1
Button1 ∧
(Gear != Park ∧ ignition = on) F 1
Button2 ∧
(Gear = Park ∧ ignition = on) T 2
Button2 ∧
(Gear != Park ∧ ignition = off) T 2
Button1 ∧
(Gear = Park ∧ ignition = on) F 1
Button1 ∧
(Gear != Park ∧ ignition = on) F 1
Botton2 ∧
(Gear = Park ∧ ignition = on) T 2
Button2 ∧
(Gear = Park ∧ ignition = off) T 2
Button1 ∧
(Gear = Park ∧ ignition = on) F 1
Button1 ∧
(Gear = Park ∧ ignition = off) F 1

102

(b) Transition: 1 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 1

CACC sideMirrors ∧ ignition = on T 3
ignition = on F 1
sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 1

GICC sideMirrors ∧ ignition = off T Infeasible
ignition = off T Infeasible
sideMirrors ∧ ignition = off F 1
ignition = off F 1
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 1
ignition = off F 1

(c) Pre-state: 1 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 1

CACC seatBottom ∧ ignition = on T 3
ignition = on F 1
seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 1

GICC seatBottom ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBottom ∧ ignition = off F 1
ignition = off F 1
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 1
ignition = off F 1

103

(d) Pre-state: 1 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 1

CACC lumbar ∧ ignition = on T 3
ignition = on F 1
lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 1

GICC lumbar ∧ ignition = off T Infeasible
ignition = off T Infeasible
lumbar ∧ ignition = off F 1
ignition = off F 1
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 1
ignition = off F 1

(e) Pre-state: 1 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 1

CACC seatBack ∧ ignition = on T 3
ignition = on F 1
seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 1

GICC seatBack ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBack ∧ ignition = off F 1
ignition = off F 1
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 1
ignition = off F 1

104

(f) Pre-state: 2 −→ 1
Predicate: Button1 ∧ (Gear = Park ∨ ignition = off)
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button1 ∧ Gear = Park T 1
Button2 ∧ Gear = Park F 2

CACC Button1 ∧ Gear = Park T 1
Button2 ∧ Gear = Park F 2
Button1 ∧
(Gear = Park ∧ ignition = on) T 1
Button1 ∧
(Gear != Park ∧ ignition = on) F 2
Button1 ∧
(Gear != Park ∧ ignition = off) T 1
Button1 ∧
(Gear != Park ∧ ignition = on) F 2

GICC Button1 ∧
(Gear != Park ∧ ignition = on) T Infeasible
Button2 ∧
(Gear != Park ∧ ignition = on) T Infeasible
Button1 ∧
(Gear != Park ∧ ignition = on) F 2
Button2 ∧
(Gear != Park ∧ ignition = on) F 2
Button1 ∧
(Gear = Park ∧ ignition = on) T 1
Button1 ∧
(Gear != Park ∧ ignition = off) T 1
Button2 ∧
(Gear = Park ∧ ignition = on F 2
Button2 ∧
(Gear != Park ∧ ignition = on) F 2
Button1 ∧
(Gear = Park ∧ ignition = on) T 1
Button1 ∧
(Gear = Park ∧ ignition = off) T 1
Button2 ∧
(Gear = Park ∧ ignition = on) F 2
Button2 ∧
(Gear = Park ∧ ignition = off) F 2

105

(g) Pre-state: 2 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 2

CACC sideMirrors ∧ ignition = on T 3
ignition = on F 2
sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 2

GICC sideMirrors ∧ ignition = off T Infeasible
ignition = off T Infeasible
sideMirrors ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 2
ignition = off F 2

(h) Pre-state: 2 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 2

CACC seatBottom ∧ ignition = on T 3
ignition = on F 2
seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 2

GICC seatBottom ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBottom ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 2
ignition = off F 2

106

(i) Pre-state: 2 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 2

CACC lumbar ∧ ignition = on T 3
ignition = on F 2
lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 2

GICC lumbar ∧ ignition = off T Infeasible
ignition = off T Infeasible
lumbar ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 2
ignition = off F 2

(j) Pre-state: 2 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 2

CACC seatBack ∧ ignition = on T 3
ignition = on F 2
seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 2

GICC seatBack ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBack ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 2
ignition = off F 2

107

(k) Pre-state: 3 −→ 1
Predicate: Button1 ∧ (Gear = Park ∨ ignition = off)
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button1 ∧ Gear = Park T 1
Button2 ∧ Gear = Park F 2

CACC Button1 ∧ (Gear = Park T 1
Button2 ∧ (Gear = Park F 2
Button1 ∧
(Gear = Park ∧ ignition = on T 1
Button1 ∧
(Gear != Park ∧ ignition = on F 3
Button1 ∧
(Gear != Park ∧ ignition = off T 1
Button1 ∧
(Gear != Park ∧ ignition = on F 3

GICC Button1 ∧
(Gear != Park ∧ ignition = on T Infeasible
Button2 ∧
(Gear != Park ∧ ignition = on T Infeasible
Button1 ∧
(Gear != Park ∧ ignition = on F 3
Button2 ∧
(Gear != Park ∧ ignition = on F 3
Button1 ∧
(Gear = Park ∧ ignition = on T 1
Button1 ∧
(Gear != Park ∧ ignition = off T 1
Button2 ∧
(Gear = Park ∧ ignition = on F 2
Button2 ∧
(Gear != Park ∧ ignition = on F 3
Botton1 ∧
(Gear = Park ∧ ignition = on T 1
Button1 ∧
(Gear = Park ∧ ignition = off T 1
Button2 ∧
(Gear = Park ∧ ignition = on F 2
Button2 ∧
(Gear = Park ∧ ignition = off F 2

108

(l) Pre-state: 3 −→ 2
Predicate: Button2 ∧ (Gear = Park ∨ ignition = off)
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button2 ∧ Gear = Park T 2
Button1 ∧ Gear = Park F 1

CACC Button2 ∧ Gear = Park T 2
Button1 ∧ Gear = Park F 1
Button2 ∧
(Gear = Park ∧ ignition = on) T 2
Button2 ∧
(Gear != Park ∧ ignition = on) F 3
Button2 ∧
(Gear != Park ∧ ignition = off) T 2
Button2 ∧
(Gear != Park ∧ ignition = on) F 3

GICC Button2 ∧
(Gear != Park ∧ ignition = on) T Infeasible
Button1 ∧
(Gear != Park ∧ ignition = on) T Infeasible
Button2 ∧
(Gear != Park ∧ ignition = on) F 3
Button1 ∧
(Gear != Park ∧ ignition = on) F 3
Button2 ∧
(Gear = Park ∧ ignition = on) T 2
Button2 ∧
(Gear != Park ∧ ignition = on) T 3
Button1 ∧
(Gear = Park ∧ ignition = on) F 1
Button1 ∧
(Gear != Park ∧ ignition = on) F 3
Botton2 ∧
(Gear = Park ∧ ignition = on) T 2
Button2 ∧
(Gear = Park ∧ ignition = off) T 2
Button1 ∧
(Gear = Park ∧ ignition = on) F 1
Button1 ∧
(Gear = Park ∧ ignition = off) F 1

109

(m) Pre-state: 3 −→ 4
Predicate: Reset ∧ Button1 ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Reset ∧ Button1 ∧ ignition = on T 4
Reset ∧ Button1 ∧ ignition = off F 3

CACC Reset ∧ Button1 ∧ ignition = on T 4
Button1 ∧ ignition = on F 1
Reset ∧ Button1 ∧ ignition = on T 4
Reset ∧ ignition = on F 3
Reset ∧ Button1 ∧ ignition = on T 4
Reset ∧ Button1 ∧ ignition = off F 3

GICC Reset ∧ Button1 ∧ ignition = off T Infeasible
Button1 ∧ ignition = off T Infeasible
Reset ∧ Button1 ∧ ignition = off F 3
Button1 ∧ ignition = off F 1
Reset ∧ Button1 ∧ ignition = off T Infeasible
Reset ∧ ignition = off T Infeasible
Reset ∧ Button1 ∧ ignition = off F 3
Reset ∧ ignition = off F 3
Button1 ∧ ignition = on T Infeasible
Button1 ∧ ignition = off T Infeasible
Button1 ∧ ignition = on F 1
Button1 ∧ ignition = off F 1

(n) Pre-state: 3 −→ 5
Predicate: Reset ∧ Button2 ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

110

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Reset ∧ Button2 ∧ ignition = on T 5
Reset ∧ Button2 ∧ ignition = off F 3

CACC Reset ∧ Button2 ∧ ignition = on T 5
Button2 ∧ ignition = on F 2
Reset ∧ Button2 ∧ ignition = on T 5
Reset ∧ ignition = on F 3
Reset ∧ Button2 ∧ ignition = on T 5
Reset ∧ Button2 ∧ ignition = off F 3

GICC Reset ∧ Button2 ∧ ignition = off T Infeasible
Button2 ∧ ignition = off T Infeasible
Reset ∧ Button2 ∧ ignition = off F 3
Button2 ∧ ignition = off F 2
Reset ∧ Button2 ∧ ignition = off T Infeasible
Reset ∧ ignition = off T Infeasible
Reset ∧ Button2 ∧ ignition = off F 3
Reset ∧ ignition = off F 3
Button2 ∧ ignition = on T Infeasible
Button2 ∧ ignition = off T Infeasible
Button2 ∧ ignition = on F 2
Button2 ∧ ignition = off F 2

111

(o) Pre-state: 4 −→ 1
Predicate: ignition = off
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and
Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage, CACC, GICC ignition = off T 1
ignition = on F 4

(p) Pre-state: 4 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and
Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 1

CACC sideMirrors ∧ ignition = on T 3
ignition = on F 4
sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 1

GICC sideMirrors ∧ ignition = off T Infeasible
ignition = off T Infeasible
sideMirrors ∧ ignition = off F 1
ignition = off F 1
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 4
ignition = off F 1

112

(q) Pre-state: 4 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and
Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 1

CACC seatBottom ∧ ignition = on T 3
ignition = on F 4
seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 1

GICC seatBottom ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBottom ∧ ignition = off F 1
ignition = off F 4
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 4
ignition = off F 1

(r) Pre-state: 4 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and
Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 1

CACC lumbar ∧ ignition = on T 3
ignition = on F 4
lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 1

GICC lumbar ∧ ignition = off T Infeasible
ignition = off T Infeasible
lumbar ∧ ignition = off F 1
ignition = off F 4
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 4
ignition = off F 1

113

(s) Pre-state: 4 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and
Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 1

CACC seatBack ∧ ignition = on T 3
ignition = on F 4
seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 1

GICC seatBack ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBack ∧ ignition = off F 1
ignition = off F 1
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 4
ignition = off F 1

(t) Pre-state: 5 −→ 2
Predicate: ignition = off
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and
Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage, CACC, GICC ignition = off T 2
ignition = on F 5

114

(u) Pre-state: 5 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and
Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 2

CACC sideMirrors ∧ ignition = on T 3
ignition = on F 5
sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 2

GICC sideMirrors ∧ ignition = off T Infeasible
ignition = off T Infeasible
sideMirrors ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 5
ignition = off F 2

(v) Pre-state: 5 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and
Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 2

CACC seatBottom ∧ ignition = on T 3
ignition = on F 5
seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 2

GICC seatBottom ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBottom ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 5
ignition = off F 2

115

(w) Pre-state: 5 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and
Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 2

CACC lumbar ∧ ignition = on T 3
ignition = on F 5
lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 2

GICC lumbar ∧ ignition = off T Infeasible
ignition = off T Infeasible
lumbar ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 5
ignition = off F 2

(x) Pre-state: 5 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and
Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 2

CACC seatBack ∧ ignition = on T 3
ignition = on F 5
seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 2

GICC seatBack ∧ ignition = off T Infeasible
ignition = off T Infeasible
seatBack ∧ ignition = off F 2
ignition = off F 2
ignition = on T Infeasible
ignition = off T Infeasible
ignition = on F 5
ignition = off F 2

116

2. Redraw Figure 3.5 to have fewer transitions, but more clauses. Specifically, nodes 1, 2,
4, and 5 each has four transitions to node 3. Rewrite these transitions to have only one
transition from each of nodes 1, 2, 4, and 5 to node 3, and the clauses are connected
by ORs. Then derive tests to satisfy CACC for the resulting predicates. How do these
tests compare with the tests derived from the original graph?

(partial) Solution (Instructor only):
Edges in the graph: E = {(1, 3), (2, 3), (4, 3), (5, 3)}
The transitions should be:
(1, 3): (sideMirrors ∧ ignition = on) ∨ (seatButton ∧ ignition = on) ∨ (lumbar ∧
ignition = on) ∨ (seatBack ∧ ignition = on)
(2, 3): (sideMirrors ∧ ignition = on) ∨ (seatButton ∧ ignition = on) ∨ (lumbar ∧
ignition = on) ∨ (seatBack ∧ ignition = on)
(4, 3): (sideMirrors ∧ ignition = on) ∨ (seatButton ∧ ignition = on) ∨ (lumbar ∧
ignition = on) ∨ (seatBack ∧ ignition = on)
(5, 3): (sideMirrors ∧ ignition = on) ∨ (seatButton ∧ ignition = on) ∨ (lumbar ∧
ignition = on) ∨ (seatBack ∧ ignition = on)

(a) Redrawn graph

(b) Derive tests to satisfy CACC for the resulting predicates.

i. Based on the revised graph, we will focus only on the following edges:
(1,3), (2,3), (4,3), (5,3)

ii. If we set the following clauses:
a = (ignition = on)

117

b = sideMirror
c = seatBottom
d = lumbar
e = setBack
P = predicate

We get: P = a ∧ (b ∨ c ∨ d ∨ e)

iii. pa = b ∨ c ∨ d ∨ e
pb = a ∧ (¬c ∧ ¬d ∧ ¬e)
pc = a ∧ (¬b ∧ ¬d ∧ ¬e)
pd = a ∧ (¬b ∧ ¬c ∧ ¬e)
pe = a ∧ (¬b ∧ ¬c ∧ ¬d)

iv. The CACC table and tests can be derived by using the Logic Coverage Web Ap-
plication. See the graph tool at http://www.cs.gmu.edu/∼offutt/softwaretest/

v. For minimal coverage, you will end up with 6 tests.

(c) How do these tests compare with the tests derived from the original graph?
The reduction in the number of edges results in a decrease in tests since the test
with iginition = off can be covered by one test.

3. Consider the following deterministic finite state machine:

Current State Condition Next State
Idle a ∨ b Active
Active a ∧ b Idle
Active ¬b WindDown
WindDown a Idle

(a) Draw the finite state machine.

Solution (Instructor only):

(b) This machine does not specify which conditions cause a state to transition back
to itself. However, these conditions can be derived from the existing conditions.
Derive the conditions under which each state will transition back to itself.

118

Solution (Instructor only):
Some students may need a hint how to compute this. Take the negation of the
conditions on each outgoing transition, and “and” them together.

Current State Condition Next State
Idle a ∨ b Active
Idle ¬a ∧ ¬b Idle
Active a ∧ b Idle
Active ¬b WindDown
Active ¬a ∧ b Active
WindDown a Idle
WindDown ¬a WindDown

(c) Find CACC tests for each transition from the Active state.

Solution (Instructor only):
Some students may not think this question asks for tests for the transition from
Active to Active. The question in the book leaves it ambiguous. In the meantime,
we tell the students explicitly, or give them extra credit if they give the Active to
Active transition.

• Transition Active −→ Idle : predicate = a ∧ b, (a, b) = (T,T), (F, T), and
(T, F)

• Transition Active −→ WindDown : predicate = ¬b, (a, b) = (x,T) and (x,
F) (The value for a is irrelevant)

• Transition Active −→ Active : predicate = ¬a ∧ b, (a, b) = (F,T), (T, T),
and (F, F)

4. Pick a household appliance such as a watch, calculator, microwave, VCR, clock-radio or
programmable thermostat. Draw the FSM that represents your appliance’s behavior.
Derive tests to satisfy Predicate Coverage, Correlated Active Clause Coverage, and
General Inactive Clause Coverage.

Solution (Instructor only):
Obviously many answers are possible for this question. Below is an FSM for a Pro-
grammable Thermostat. The thermostat controls the temperature in the house during
four periods of the day with different controls on weekdays as on the weekend.

State Variables:
TimeOfDay: {Morning, Day, Night, Evening}
TypeOfDay: {Week, Weekend}

Non-State Variables:
Time: 00:00-24:00
Hour: 0-24
Minute: 1-60
Temperature: 0-100

119

Note that this model does not distinguish between heating and cooling seasons. Real
programmable thermostats typically store different values for each season, but the FSM
would be the same.

Some points about the FSM are:

• We have no obvious start and end states, so morning during the week is arbitrarily
designated.

• The edges define trigger times and action temperatures. That is, at 9:00 in the
morning during the week, the temperature is changed to 65 F.

• This model has no multi-clause predicates, so PC, CACC, GICC etc. are all the
same. (A more complicated example solution is welcome!)

• A human would want to test this with inputs that do not naturally arise from this
model:

– Large temperature changes–for example, changing from 50 degrees to 100 de-
grees.

– Inconsistent times–for example, setting the trigger for going to the evening
mode to be earlier than the time to go to the day mode.

5. Implement the memory seat FSM. Design an appropriate input language to your
implementation and turn the tests derived for question 1 into test scripts. Run the
tests.

Solution (Instructor only):
This is a lot. In fact, way too much for a single student single exercise. We developed

120

352 tests, 44 for PC, 106 for CACC, and 202 for GICC. The JUnit test file is almost
7000 lines, so we do not include all the tests in this document. Instead, we have put
them on the book website with the following URLs:
http://cs.gmu.edu/∼offutt/softwaretest/instructor/MemorySeat.java
http://cs.gmu.edu/∼offutt/softwaretest/instructor/MemorySeatTest.java

121

Exercises, Section 3.6
Use functions (1) through (4) to answer the following questions.

1. f = abc̄ + ābc̄

2. f = āb̄c̄d̄ + abcd

3. f = ab + ab̄c + āb̄c

4. f = āc̄d̄ + c̄d + bcd

(a) Draw the Karnaugh maps for f and f̄ .
(b) Find the nonredundant prime implicant representation for f and f̄ .
(c) Give a test set that satisfies Implicant Coverage (IC) for f .
(d) Give a test set that satisfies Unique True Point Coverage (UTPC) for f .
(e) Give a test set that satisfies Corresponding Unique True Point and Near False

Point Pair Coverage (CUTPNFP) for f .

122

Solution:
Solution for f = abc̄ + ābc̄

(a) Karnaugh map for f :

a, b
00 01 11 10

0 1 1
c 1

Karnaugh map for f̄ :

a, b
00 01 11 10

0 1 1
c 1 1 1 1 1

(b) Nonredundant prime implicant representation for f :
f = bc̄

Nonredundant prime implicant representation for f̄ :
f̄ = b̄ + c
Note that f is a function of b and c only; a is irrelevant.

(c) For IC we choose the nonredundant prime implicant representations. Other choices
are possible, of course. This leaves three implicants {bc̄, b̄, c} in f and f̄ collec-
tively. Test set {xTF, xFT} satisfies IC. Note that the second test, which is not
a unique true point, satisfies both b̄ and c.

(d) For UTPC we need three tests. Many possibilities; one is {xTF, xFF, xTT}.
Again, values for a are irrelevant.

(e) For CUTPNFP we take a unique true point for f , xTF , and pair it with all
near false points. The result in this case is the same as for UTPC, namely,
{xTF, xFF, xTT}.

123

Solution:
Solution for f = āb̄c̄d̄ + abcd

(a) Karnaugh map for f :

a, b
00 01 11 10

00 1
cd 01

11 1
10

Karnaugh map for f̄ :

a, b
00 01 11 10

00 1 1 1
cd 01 1 1 1 1

11 1 1 1
10 1 1 1 1

(b) Nonredundant prime implicant representation for f (Note: as given):
f = āb̄c̄d̄ + abcd

Nonredundant prime implicant representation for f̄ :
f̄ = ab̄ + bc̄ + cd̄ + ād

(c) For IC we choose the nonredundant prime implicant representations. Other choices
are possible, of course. This leaves six implicants {āb̄c̄d̄, abcd, ab̄, bc̄, cd̄, ād} in
f and f̄ collectively. Test set {FFFF, TTTT, TFTF, FTFT} satisfies IC. Note
that the third and fourth tests, which are not unique true points, each satisfy two
implicants.

(d) UTPC needs six tests. One possibility: {FFFF, TTTT, TTFF, TFFF, FFTT, FFTF}.
(e) For CUTPNFP we take unique true points for implicants in f , namely FFFF

and TTTT , and pair each with all near false points. The result is 10 tests.
With FFFF , we pair TFFF, FTFF, FFTF, FFFT , and with TTTT , we pair
FTTT, TFTT, TTFT, TTTF .

Although not part of this exercise, it is instructive to consider CUTPNFP for f̄ .
In particular, it appears that one could select unique true points TFFT , TTFF ,
FTTF , and FFTT , none of which have any near false points. However, this set
does not satisfy the CUTPNFP criterion. Instead, CUTPNFP requires that, if it
possible to select a unique true point that has a near false point with respect to a
given variable, then such a unique true point is chosen. It many be necessary to
choose different unique true points to pair with false points with respect to each
variable. To continue the example, for ab̄, we pair TFFF with FFFF for a, and
TFTT with TTTT for b. For bc̄ we pair FTFF with FFFF for b, and TTFT
with TTTT for c. For cd̄ we pair FFTF with FFFF for c, and TTTF with
TTTT for d. For ād we pair FFFT with FFFF for d, and FTTT with TTTT
for a. The union of these results is exactly the same set of 10 test cases as derived
for CUTPNFP for f .

124

Solution (Instructor only):
Solution for f = ab + ab̄c + āb̄c

(a) Karnaugh map for f :

a, b
00 01 11 10

0 1
c 1 1 1 1

Karnaugh map for f̄ :

a, b
00 01 11 10

0 1 1 1
c 1 1

(b) Nonredundant prime implicant representation for f :
f = ab + b̄c

Nonredundant prime implicant representation for f̄ :
f̄ = āb + b̄c̄

(c) For IC we choose the nonredundant prime implicant representations. Other choices
are possible, of course. This leaves four implicants {ab, b̄c, āb, b̄c̄} in f and f̄ col-
lectively. Test set {TTx, xFT, FTx, xFF} satisfies IC. Note that all of these tests
are unique true points.

(d) Since the IC test set above used nonredundant prime implicants and each test was
a unique true point, we can simply reuse the same test give for IC for UTPC.

(e) For CUTPNFP, we’ll choose particular unique true points in f (but not f̄) and
pair them up with near false points. We need to choose unique true points so
that all variables that yield near false points are represented. To this end, unique
true points {TTF, FFT} for f pair up with near false points {FTF, TFF} and
{FFF, FTT} respectively.

125

Solution (Instructor only):
Solution for f = āc̄d̄ + c̄d + bcd

(a) Karnaugh map for f :

a, b
00 01 11 10

00 1 1
cd 01 1 1 1 1

11 1 1
10

Karnaugh map for f̄ :

a, b
00 01 11 10

00 1 1
cd 01

11 1 1
10 1 1 1 1

(b) Nonredundant prime implicant representation for f :
f = āc̄ + c̄d + bd

Nonredundant prime implicant representation for f̄ :
f̄ = ad̄ + b̄c + cd̄

(c) For IC we choose the nonredundant prime implicant representations. Other choices
are possible, of course. This leaves six implicants, {āc̄, c̄d, bd, ad̄, b̄c, cd̄}, in f and
f̄ collectively. Test set {FTFT, TFTF} satisfies IC. (Only two test points are
needed due to overlaps between the implicants).

(d) To satisfy UTPC, we need six test points. All choices are covered by test set
{FxFF, TFFT, xTTT, FTTF, TxFF, xFTT}.

(e) For CUTPNFP we choose specific unique true points for f : FFFF, TFFT, TTTT .
We then pair each with near false points with respect to all possible variables. That
is, unique true point FFFF pairs up with near false points {TFFF, FFTF},
unique true point TFFT pairs up with near false points {TFFF, TFTT}, and
unique true point TTTT pairs up with near false points {TFTT, TTTF}.

Thanks to Sana’a Alshdefat for correcting this solution.

126

5 Use the following predicates to answer questions (a) through (e). In the questions,
“simplest” means “fewest number of variable references”.

• W = (B ∧ ¬C ∧ ¬D)
• X = (B ∧D) ∨ (¬B¬D)
• Y = (A ∧B)
• Z = (¬B ∧D)

(a) Draw the Karnaugh map for the predicates. Put AB on the top and CD on the
side. Label each cell with W , X, Y , and/or Z as appropriate.

Solution (Instructor only):
AB

00 01 11 10
00 X W WY X

CD 01 Z X XY Z
11 Z X XY Z
10 X Y X

(b) Write the simplest expression that describes all cells that have more than one
definition.

Solution (Instructor only):
ABC̄ + ABD

(c) Write the simplest expression that describes all cells that have no definitions.

Solution (Instructor only):
ĀBCD̄

(d) Write the simplest expression that describes X ∨ Z.

Solution (Instructor only):
B̄ + D

(e) Give a test set for expression X that uses each prime implicant once.

Solution (Instructor only):
Two tests: {(FFFF,X), (FTFT,X)}

6 Develop a counterexample to show that CUTPNFP does not subsume UTPC. Hint:
You might wish to start with the expression given in the text, f = ab + cd.

Solution (Instructor only):
Consider f = ab+cd. A possible CUPTPNP set is {TTFT, TFFT, FTFT} for impli-
cant ab (Unique true point with all near false points) combined with {FTTT, FTTF, FTFT}
for implicant cd (ditto). Note that there is a near false point in common; Hence the
resulting CUTPNFP set has five elements: {TTFT, TFFT, FTFT, FTTT, FTTF}.
To consider UTPC we need to compute a minimal form for f̄ .

f̄ = āc̄ + ād̄ + b̄c̄ + b̄d̄

127

Note that we have 4 prime implicants in f̄ , along with 2 prime implicants in f ; hence
we need exactly 6 tests for UTPC. The CUTPNFP set has only 5; hence CUTPNFP
does not subsume UTPC.

Thanks to Greg Williams for this solution.

128

Exercises, Section 4.1

1. Answer the following questions for the method search() below:

public static int search (List list, Object element)

// Effects: if list or element is null throw NullPointerException

// else if element is in the list, return an index

// of element in the list; else return -1

// for example, search ([3,3,1], 3) = either 0 or 1

// search ([1,7,5], 2) = -1

Base your answer on the following characteristic partitioning:

Characteristic: Location of element in list

Block 1: element is first entry in list

Block 2: element is last entry in list

Block 3: element is in some position other than first or last

(a) “Location of element in list” fails the disjointness property. Give an example that
illustrates this.

Solution (Instructor only):
Lots of examples can be found. One is: list = [3, 4, 3]; e = 3

Another is: list = [3]; e = 3
(b) “Location of element in list” fails the completeness property. Give an example

that illustrates this.

Solution (Instructor only):
The problem is that e may not be in the list: list = [5, 3]; e = 4

(c) Supply one or more new partitions that capture the intent of “Location of e in
list” but do not suffer from completeness or disjointness problems.

Solution (Instructor only):
The easiest approach is to separate the characteristics into separate partitions:

• Whether e is first in the list: true, false

• Whether e is last in the list: true, false

You might also consider:

• Whether e is in list: true, false

But this is not really covered by the original characteristic.

2. Derive input space partitioning tests for the GenericStack class with the following
method signatures:

• public GenericStack ();

• public void Push (Object X);

• public Object Pop ();

• public boolean IsEmt ();

Assume the usual semantics for the stack. Try to keep your partitioning simple, choose
a small number of partitions and blocks.

129

(a) Define characteristics of inputs

Solution (Instructor only):
Note that there are 4 testable units here (the constructor and the three meth-
ods), but that there is substantial overlap between the characteristics relevant
for each one. For the three methods, the implicit parameter is the state of the
GenericStack. The only explicit input is the Object x parameter in Push().
The constructor has neither inputs nor implicit parameters.

Typical characteristics for the implicit state are

• Whether the stack is empty.

– true (Value stack = [])

– false (Values stack = [”cat”], [”cat”, ”hat”])

• The size of the stack.

– 0 (Value stack = [])

– 1 (Possible values stack = [”cat”], [null])

– more than 1 (Possible values stack = [”cat”, ”hat”], [”cat”, null], [”cat”,
”hat”, ”ox”])

• Whether the stack contains null entries

– true (Possible values stack = [null], [null, ”cat”, null])

– false (Possible values stack = [”cat”, ”hat”], [”cat”, ”hat”, ”ox”])

A typical characteristic for Object x is

• Whether x is null.

– true (Value x = null)

– false (Possible values x = ”cat”, ”hat”, ””)

There are also charactistics that involves the combination of Object x and the
stack state. One is:

• Does Object x appear in the stack?

– true (Possible values: (null, [null, ”cat”, null]), (”cat”, [”cat”, ”hat”]))

– false (Possible values: (null, [”cat”]), (”cat”, [”hat”, ”ox”]))

(b) Partition the characteristics into blocks

Solution (Instructor only):
See solution to (a)

(c) Define values for the blocks

Solution (Instructor only):
See solution to (a)

130

Exercises, Section 4.2

1. Enumerate all 64 tests to satisfy the All Combinations (ACoC) criterion for the second
categorization of TriTyp’s inputs in Table 4.2. Use the values in Table 4.3.

Solution:
{(2, 2, 2), (2, 2, 1), (2, 2, 0), (2, 2,−1),
(2, 1, 2), (2, 1, 1), (2, 1, 0), (2, 1,−1),
(2, 0, 2), (2, 0, 1), (2, 0, 0), (2, 0,−1),
(2,−1, 2), (2,−1, 1), (2,−1, 0), (2,−1,−1),
(1, 2, 2), (1, 2, 1), (1, 2, 0), (1, 2,−1),
(1, 1, 2), (1, 1, 1), (1, 1, 0), (1, 1,−1),
(1, 0, 2), (1, 0, 1), (1, 0, 0), (1, 0,−1),
(1,−1, 2), (1,−1, 1), (1,−1, 0), (1,−1,−1),
(0, 2, 2), (0, 2, 1), (0, 2, 0), (0, 2,−1),
(0, 1, 2), (0, 1, 1), (0, 1, 0), (0, 1,−1),
(0, 0, 2), (0, 0, 1), (0, 0, 0), (0, 0,−1),
(0,−1, 2), (0,−1, 1), (0,−1, 0), (0,−1,−1),
(−1, 2, 2), (−1, 2, 1), (−1, 2, 0), (−1, 2,−1),
(−1, 1, 2), (−1, 1, 1), (−1, 1, 0), (−1, 1,−1),
(−1, 0, 2), (−1, 0, 1), (−1, 0, 0), (−1, 0,−1),
(−1,−1, 2), (−1,−1, 1), (−1,−1, 0), (−1,−1,−1)}

2. Enumerate all 16 tests to satisfy the Pair-Wise (PWC) criterion for the second cate-
gorization of TriTyp’s inputs in Table 4.2. Use the values in Table 4.3.

Solution:
Note: Lots of possibilities here, as suggested by the ways in which pairs are chosen
below.

{(2, 2, 2),
(2, 1, 1),
(2, 0, 0),
(2,−1,−1),
(1, 2, 1),
(1, 1, 2),
(1, 0,−1),
(1,−1, 0),
(0, 2, 0),
(0, 1,−1),
(0, 0, 2),
(0,−1, 1),
(−1, 2,−1),
(−1, 1, 0),

131

(−1, 0, 1),
(−1,−1, 2)}

3. Enumerate all 16 tests to satisfy the Multiple Base Choice (MBCC) criterion for the
second categorization of TriTyp’s inputs in Table 4.2. Use the values in Table 4.3.

Solution:
The text suggests both ‘2’ and ‘1’ base choices for side 1. (Other sides still have 1 base
choice of ‘2’). This give two base tests: (2, 2, 2) and (1, 2, 2). According to the formula
given in the text, we should get 2(base) + 6 + 6 + 6 = 20 (not 18, as erroneously
stated in the text) tests. However, 4 of these are redundant, so the result is 16. To
clarify, we list all 20 tests, with the base choices listed first:

{(2, 2, 2), (1, 2, 2)

(2, 1, 2), (2, 0, 2), (2,−1, 2),
(2, 2, 1), (2, 2, 0), (2, 2,−1),
(1, 2, 2), (0, 2, 2), (−1, 2, 2),
(1, 2, 1), (1, 2, 0), (1, 2,−1),
(1, 1, 2), (1, 0, 2), (1,−1, 2),
(2, 2, 2), (0, 2, 2), (−1, 2, 2)}

Here are the 16 nonredundant tests:

{(2, 2, 2), (1, 2, 2)

(2, 1, 2), (2, 0, 2), (2,−1, 2),
(2, 2, 1), (2, 2, 0), (2, 2,−1),
(0, 2, 2), (−1, 2, 2),
(1, 2, 1), (1, 2, 0), (1, 2,−1),
(1, 1, 2), (1, 0, 2), (1,−1, 2),
}

4. Answer the following questions for the method intersection() below:

public Set intersection (Set s1, Set s2)

// Effects: If s1 or s2 are null throw NullPointerException

// else return a (non null) Set equal to the intersection

// of Sets s1 and s2

Characteristic: Type of s1

- s1 = null

- s1 = {}

- s1 has at least one element

Characteristic: Relation between s1 and s2

- s1 and s2 represent the same set

- s1 is a subset of s2

- s2 is a subset of s1

- s1 and s2 do not have any elements in common

132

(a) Does the partition “Type of s1” satisfy the completeness property? If not, give a
value for s1 that does not fit in any block.

Solution (Instructor only):
Yes.

(b) Does the partition “Type of s1” satisfy the disjointness property? If not, give a
value for s1 that fits in more than one block.

Solution (Instructor only):
Yes.

(c) Does the partition “Relation between s1 and s2” satisfy the completeness prop-
erty? If not, give a pair of values for s1 and s2 that does not fit in any block.

Solution (Instructor only):
No. Note that some sets have elements in common, but still do not satisfy any
subset relationship. Example: s1 = {1, 2}; s2 = {1, 3}.

(d) Does the partition “Relation between s1 and s2” satisfy the disjointness property?
If not, give a pair of values for s1 and s2 that fits in more than one block.

Solution (Instructor only):
No. Consider s1 and s2 = the same set, such as {1, 2}. The predicates for each
of the first three blocks are satisfied. Alternatively, consider s1 and s2 = {}. The
predicate for every block is satisfied.

(e) If the “Base Choice” criterion were applied to the two partitions (exactly as
written), how many test requirements would result?

Solution (Instructor only):
There would be 1 (for the base test requirement) plus 2 (for first characteristic)
plus 3 (for second characteristic) = 6 test requirements total.

5. Derive input space partitioning tests for the BoundedQueue class with the following
signature:

• public BoundedQueue (int capacity);

• public void Enqueue (Object X);

• public Object Dequeue ();

• public boolean IsEmpty ();

• public boolean IsFull ();

Assume the usual semantics for a queue with a fixed, maximal capacity. Try to keep
your partitioning simple–choose a small number of partitions and blocks.

(a) Identify all of the variables. Don’t forget the state variables.

133

Solution (Instructor only):
This is another OO example; as a result, there are multiple testable units (1
constructor, 2 mutators, and 2 observers) for which there is substantial overlap
in characteristics.

Note that we have no idea what the implementation looks like; hence, we focus
strictly on the abstract state. There is an abstract state variable queue that rep-
resents the queue of objects. There is also an abstract state variable cap that
represents the capacity of the queue. If you wish, you can also suppose there is
an abstract state variable representing the current number of objects in the queue;
however, since this information is implicitly captured by the variable queue, we
do not consider it here.

For explicit parameters, we have capacity in the constructor and x in Enqueue.
(b) Identify several characteristics that suggest partitions.

Solution (Instructor only):
Some example characteristics are whether queue is empty or full, what the current
size is, what cap is, and whether there are special values (such as null) in the
queue. The only obvious syntactic characteristic for x is whether it is null. In
the constructor, capacity can clearly have ‘illegal’ values. It is not clear whether
cap can also have such values; hence this makes a good test characteristic.

In the next exercise, we make the characteristics more precise and provide a par-
tition.

(c) Identify the blocks in the partition for each characteristic. Designate one block
in each partition as the “Base” block.

Solution (Instructor only):

• Whether queue is empty.

– a1:true (Value queue = [])

– a2:false (Value queue = [”cat”, ”hat”]) Base

• Whether queue is full.

– b1:true (Value queue = [”cat”], cap = 1)

– b2:false (Value queue = [”cat”, ”hat”], cap = 3) Base

• Size of queue.

– c1:0 (Value queue = [])

– c2:1 (Value queue = [”cat”],)

– c3:more than 1 (Values queue = [”cat”, ”hat”]) Base

• Value of cap.

– d1:negative (Value cap = -1) (May not be possible.)

– d2:0 (Value cap = 0) (Also may not be possible.)

– d3:1 (Value cap = 1)

134

– d4:more than 1 (Value cap = 2) Base

• Value of capacity. (Note that this may differ from cap)

– e1:negative (Value cap = -1)

– e2:0 (Value cap = 0)

– e3:1 (Value cap = 1)

– e4:more than 1 (Value cap = 2) Base

• Whether x is null.

– f1:true (Value x = null)

– f2:false (Value x = ”cat”) Base

(d) Define values for the blocks.

Solution (Instructor only):
See solution for part (c). For simplicity, we only listed one value for each block.

(e) Define a test set that satisfies Base Choice (BCC) coverage.

Solution (Instructor only):
For this exercise, we’ll suppose we are testing Enqueue, since it makes the param-
eter x relevant. Note that the variable capacity in the constructor is not relevant
to this set of tests, although the constructor will certainly be called in the setup
for the given tests. That means we’ll skip blocks e1, e2, e3, and e4 when defining
the base choice tests for Enqueue.

The base test is (a2, b2, c3, d4, f2). Varying each partition gives 8 more tests:

{(a1, b2, c3, d4, f2),
(a2, b1, c3, d4, f2),
(a2, b2, c1, d4, f2),
(a2, b2, c2, d4, f2),
(a2, b2, c3, d1, f2),
(a2, b2, c3, d2, f2),
(a2, b2, c3, d3, f2),
(a2, b2, c3, d4, f1)
}.
To see what one of these tests would look like, consider (a2, b2, c3, d3, f2), where the
focus is on varying di, the value of cap. Note that the value for queue specified
by c3 is incompatible with this choice. Further either a2 or b2 has to change,
since, if cap is 1, the queue will always be either empty or full. Hence, a feasible
variant of this test is (a2, b1, c2, d3, f2). To instantiate this test, it is clear that
we need another value for a2, namely a one element value for queue, such as
[”cat”]. To run this test, the test engineer would construct a queue (via q =

new BoundedQueue(1);, insert a value (via q.enQueue("cat"); to achieve the
desired start for the beginning of the test, and then carry out the test (via another
call to q.enQueue("cat");. Naturally, the test engineer would want to verify

135

that the resulting queue contained two cats. At this stage, the test engineer might
decide that having two cats was not as informative as having, perhaps, a cat and a
dog, thereby motivating an expansion of the possible values for block f2 to include
”dog”.

6. Develop a set of characteristics and accompanying partitions for the pattern checking
procedure (the method pat() in Figure 2.21 in Chapter 2).

(a) Develop tests to satisfy the Base Choice criterion. Your tests should have both
inputs and expected outputs.

Solution:
We consider a fairly straightforward set of characteristics.

• subject length.

– a1 : 0

– a2 : 1

– a3 : 2

– a4 : > 2 // base

• pattern length.

– b1 : 0

– b2 : 1

– b3 : 2 // base

– b4 : > 2

• pattern occurrences in subject.

– c1 : 0

– c2 : 1 // base

– c3 : > 1

• pattern at start of subject.

– d1 : true

– d2 : false // base

• pattern at end of subject.

– e1 : true

– e2 : false // base

• Relation of pattern length to subject length

– f1 : pattern.length < subject.length // base

– f2 : pattern.length = subject.length

– f3 : pattern.length > subject.length

For these 6 characteristics, we get one base test (a4, b2, c2, d2, e2, f1) plus 3 + 3 +
2 + 1 + 1 + 2 = 12 variations for a total of 13 tests. Possible tests (subject,pat,
expected output) are:

136

(a4, b3, c2, d2, e2, f1) : (abcd, bc, 1) // base

Tests for a:

(a1, b3, c1, d2, e2, f3) : (””, bc,−1) // note change to c, f

(a2, b3, c1, d2, e2, f3) : (a, bc,−1) // note change to c, f

(a3, b3, c2, d1, e1, f2) : (ab, ab, 0) // note change to d, e, f

Tests for b:

(a4, b1, c1, d2, e2, f1) : (abcd, ””,−1) // note change to c

(a4, b2, c1, d2, e2, f1) : (abcd, b, 1)

(a4, b3, c2, d1, e1, f2) : (abcd, abcd, 0) // note change to d, e, f

Tests for c:

(a4, b3, c1, d2, e2, f1) : (abcd, bd,−1)

(a4, b3, c3, d2, e2, f1) : (abcbcd, bc, 1)

Tests for d:

(a4, b3, c2, d1, e2, f1) : (abcd, ab, 0)

Tests for e:

(a4, b3, c2, d2, e1, f1) : (abcd, cd, 2)

Tests for f :

(a3, b3, c2, d1, e1, f2) : (ab, ab, 0) // note change to a, d, e

(a2, b3, c2, d2, e2, f3) : (a, bc,−1) // note change to a, c
(b) Analyze your tests with respect to the data flow test sets developed in Chapter 2.

How well does input space partitioning do?

Solution:

Paths for the tests above are:

(abcd, bc, 1): [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

(””, bc, -1): [1, 2, 3, 11]

(a, bc, -1): [1, 2, 3, 11]

(ab, ab, 0): [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

(abcd, ””, -1): Exception: ArrayIndexOutOfBoundsException

(abcd, b, 1): [1, 2, 3, 4, 10, 3, 4, 5, 6, 10, 3, 11]

(abcd, abcd, 0): [1, 2, 3, 4, 5, 6, 7, 9, 6, 7, 9, 6, 7, 9, 6, 10, 3, 11]

(abcd, bd, -1): [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 8, 10, 3, 4, 10, 3, 11]

(abcbcd, bc, 1): [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

(abcd, ab, 0): [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

(abcd, cd, 2): [1, 2, 3, 4, 10, 3, 4, 10, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

(ab, ab, 0): [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

(a, bc, -1): [1, 2, 3, 11]

137

There are a number of things to notice in the comparison. First, the exceptional
return on the first test for b is an advantage for the input domain model ap-
proach. However, in terms of du-paths covered by the input domain model tests,
the following du-paths are missing:

[2, 3, 4, 5, 6, 7, 8]

[2, 3, 4, 5, 6, 7, 8]

[8, 10, 3, 11]

[2, 3, 4, 5, 6, 10]

[2, 3, 4, 5, 6, 7, 8, 10]

[9, 6, 7, 8]

[1, 2, 3, 4, 5, 6, 7, 8]

These results suggest that the two are approaches are complementary.

138

Exercises, Section 5.1.1

1. Consider how often the idea of covering nodes and edges pops up in software testing.
Write a short essay to explain this.

Solution (Instructor only):
Of course students can answer this question in many different ways. This is a question
about thinking and expression, so Paul and Jeff would grade this question by looking
for diversity in approach and clarity in how arguments are supported.

Our answer: Test design is fundamentally about exploring the input space. Lots of
graphs are natural ways to describe the software behavior and how it relates to the input
space. Algorithms are fundamentally about step-by-step actions that change values of
variables–these actions can naturally map to nodes and edges in many different ways.

2. Just as with graphs, it is possible to generate an infinite number of tests from a
grammar. How and what makes this possible?

Solution (Instructor only):
The closure operator (*) operator maps to a loop in a graph.

139

Exercises, Section 5.1.2

1. Define mutation score.

Solution (Instructor only):
The percent of mutants killed.

2. How is the mutation score related to coverage from Chapter 1?

Solution (Instructor only):
They are the same, or to be precise, the mutation score is a refinement of coverage.
Each mutant is a test requirement, so the mutation score counts the number of test
requirements satisfied.

3. Consider the stream BNF in Section 5.1.1 and the ground string “B 10 06.27.94.”
Give three valid and three invalid mutants of the string.

Solution (Instructor only):
This question has many possible answers. The important thing is that valid mutants
are in the grammar but invalid mutants are not.

Valid: G 10 06.27.94, B 999 06.27.94, B 10 06.14.94

Invalid: 42 10 06.27.94, B B 06.27.94, B 10 0627.94

140

Exercises, Section 5.2

1. Provide reachability conditions, infection conditions, propagation conditions, and test
case values to kill mutants 2, 4, 5, and 6 in Figure 5.1.

Solution (Instructor only):

∆1 The statement will always be reached. Since we replace one variable with an-
other, a test will infect if the variables have different values. The infection will
propagate if we skip the body of the if statement.

R: True

I: A 6= B

P: ¬(B < A) ≡ A ≥ B

∆2 The statement will always be reached. Since we change the relational operator, a
test will infect if the entire predicate gives a different result. Since the infection
will force a different path, the infection will always propagate.

R: True

I: (B < A) 6= (B > A) ≡ A 6= B

P: True

∆3 The statement will always be reached. Since we replace one variable with another,
a test will infect if the variables have different values. But, the value of A was
assigned to minVal in the previous statement, so they will always have the same
value. Therefore, the mutant is equivalent. Propagation is not relevant for an
equivalent mutant.

R: True

I: A 6= minV al ≡ False → equivalent

P: N/A

∆4 The statement is reached if the predicate is true. A Bomb() mutant raises an
immediate runtime exception, so it always infects. Likewise, Bomb() mutants
always propagate.

R: B < A

I: True

P: True

∆5 The statement is reached if the predicate is true. Since we replace one variable
with another, a test will infect if the variables have different values. Since minVal

has been given a different value, the infection will always propagate.

R: B < A

I: A 6= B

141

P: True

∆6 The statement is reached if the predicate is true. A failOnZero() mutant raises
an immediate runtime exception if the expression is zero. failonZero() mutants
always propagate.

R: B < A

I: B = 0

P: True

2. Answer questions (a) through (d) for the mutant in the two methods, findVal() and
sum().

(a) If possible, find a test input that does not reach the mutant.

Solution (Instructor only):
findVal: The mutant is always reached, even if x = null.

sum: If x is null or the empty array, ie x = null or [], then the mutant is never
reached.

(b) If possible, find a test input that satisfies reachability but not infection for the
mutant.

Solution (Instructor only):
findVal: Infection always occurs, even if x = null, because i always has the
wrong value after initialization in the loop.

sum: Any input with all zeroes will reach but not infect. Examples are: x = [0]

or [0, 0].

(c) If possible, find a test input that satisfies infection, but not propagation for the
mutant.

Solution (Instructor only):
findVal: As long as the last occurrence of val isn’t at numbers[0], the correct
output is returned. Examples are: (numbers, val) = ([1, 1], 1) or ([-1,

1], 1) or (null, 0).

sum: Any input with nonzero entries, but with a sum of zero, is fine. Examples
are: x = [1, -1] or [1, -3, 2].

(d) If possible, find a test input that strongly kills mutant m.

Solution (Instructor only):
findVal: Any input with val only in numbers[0] works. An example is: (numbers,
val) = ([1, 0], 1)

sum: Any input with a nonzero sum works. An example is: x = [1, 2, 3]

142

//Effects: If numbers null throw NullPointerException //Effects: If x null throw NullPointerException

// else return LAST occurrence of val in numbers[] // else return the sum of the values in x

// If val not in numbers[] return -1

1. public static int findVal (int numbers[], int val) 1. public static int sum (int[] x)

2. { 2. {

3. int findVal = -1; 3. int s = 0;

4. 4. for (int i=0; i < x.length; i++) }

5. for (int i=0; i<numbers.length; i++) 5. {

5’.// for (int i=(0+1); i<numbers.length; i++) 6. s = s + x[i];

6. if (numbers [i] == val) 6’. // s = s - x[i]; //AOR
7. findVal = i; 7. }

8. return (findVal); 8. return s;

9. } 9. }

3. Refer to the TestPat program in Chapter 2. Consider Mutant A and Mutant B given
below. Answer the following questions for each mutant.

Mutants A and B:

(a) while (isPat == false && isub + patternLen - 1 < subjectLen) // Original

while (isPat == false && isub + patternLen - 0 < subjectLen) // Mutant A

(b) isPat = false; // Original

isPat = true; // Mutant B

Solution (Instructor only):
Note that it is possible for the students to come up with different answers that also
work. We try to give the general description of a test input to kill the mutant, then an
example test.

(a) If possible, find test cases that do not reach the mutants.

Solution (Instructor only):
Mutant A: subject == null or pattern == null

example: TestPat X

will yield the call: pat (‘‘X’’, null)

Mutant B: subject == pattern

example: TestPat X X

(b) If possible, find test inputs that satisfy reachability but not infection for the
mutants.

Solution (Instructor only):
Mutant A: The pattern needs to be longer than the subject
example: TestPat x xyz

Mutant B: Not possible to satisfy reachability and not infection for this mutant.
(c) If possible, find test inputs that satisfy infection, but not propagation for the

mutants.

Solution (Instructor only):
Mutant A: The subject must be as long as or longer than the pattern, and the

143

pattern is not in the subject.
example: TestPat yet yes

Mutant B: The subject and pattern are the same length, the first characters match,
but not all the characters match.
example: TestPat yet yes

(d) If possible, find test inputs that strongly kill the mutants.

Solution (Instructor only):
Mutant A: subject == pattern

example: TestPat X X

Mutant B: The pattern is a substring of the subject, and a partial match occurs
first.
example: TestPat ohyeahyes yes

Fixed thanks to Xin Meng, Spring 2012.

4. Why does it make sense to remove ineffective test cases?

Solution (Instructor only):
They do not contribute to coverage, and thus are needed in a coverage-based test ap-
proach. However, it is important to realize that the concept of coverage is not perfect
and the tests we remove could find additional faults in the software under test.

5. Define 12 mutants for the following method cal() using the effective mutation operators
given previously. Try to use each mutation operator at least once. Approximately how
many mutants do you think there would be if all mutants for cal were created?

144

public static int cal (int month1, int day1, int month2,

int day2, int year)

{

//***

// Calculate the number of Days between the two given days in

// the same year.

// preconditions : day1 and day2 must be in same year

// 1 <= month1, month2 <= 12

// 1 <= day1, day2 <= 31

// month1 <= month2

// The range for year: 1 ... 10000

//***

int numDays;

if (month2 == month1) // in the same month

numDays = day2 - day1;

else

{

// Skip month 0.

int daysIn[] = {0, 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

// Are we in a leap year?

int m4 = year % 4;

int m100 = year % 100;

int m400 = year % 400;

if ((m4 != 0) || ((m100 ==0) && (m400 != 0)))

daysIn[2] = 28;

else

daysIn[2] = 29;

// start with days in the two months

numDays = day2 + (daysIn[month1] - day1);

// add the days in the intervening months

for (int i = month1 + 1; i <= month2-1; i++)

numDays = daysIn[i] + numDays;

}

return (numDays);

}

Solution (Instructor only):
This question also has lots of answers. muJava generates 164 mutants for cal(). The
twelve shown illustrate all the operators that can be applied to this method and in
various ways.

Note that the operators SOR, LOR, ASR and UOD do not apply to this method because
the language elements are not used.

∆1 numDays = abs (day2 - day1); // ABS operator
∆2 numDays = day2 - -abs (day1); // ABS operator (negAbs)
∆3 numDays = failOnZero (day2 - day1); // ABS operator (failOnZero)
∆4 numDays = day2 * day1; // AOR operator
∆5 if ((m4 > 0) || ((m100 ==0) && (m400 != 0))) // ROR operator
∆6 if (month2 >= month1) // ROR operator
∆7 if (false) // ROR operator (falseOp)
∆8 if ((m4 != 0) || ((m100 ==0) || (m400 != 0))) // COR operator
∆9 if ((m4 != 0)) // COR operator (leftOp)
∆10 numDays = day2 + -(daysIn[month1] - day1); // UOI operator

145

∆11 numDays = day1 + (daysIn[month1] - day1); // SVR operator
∆12 Replace “daysIn[2] = 29;” with “Bomb();” // BSR operator

6. Define 12 mutants for the following method power() using the effective mutation opera-
tors given previously. Try to use each mutation operator at least once. Approximately
how many mutants do you think there would be if all mutants for power() were created?

Solution (Instructor only):
muJava creates 53 mutants.
There is a problem with the computation. Power (0,0) returns 1.0, although the cor-
rect answer should be “undefined.” Is this a specification fault or a software fault?
Interestingly, Java’s Math.pow() method also returns 1.0.

public static int power (int left, int right)

{

//**************************************

// Raises Left to the power of Right

// precondition : Right >= 0

// postcondition: Returns Left**Right

//**************************************

int rslt;

rslt = Left;

if (Right == 0)

{

rslt = 1;

}

else

{

for (int i = 2; i <= right; i++)

rslt = rslt * left;

}

return (rslt);

}

Solution (Instructor only):
The twelve shown illustrate all the operators that can be applied to this method and in
various ways.

Note that the operators COR, SOR, LOR, ASR, and UOD do not apply to this method
because the language elements are not used.

∆1 rslt = abs (left); // ABS operator
∆1 rslt = -abs (left); // ABS operator
∆1 rslt = rslt + left; // AOR operator
∆1 rslt = rslt - left; // AOR operator
∆1 if (right != 0) // ROR operator
∆1 if (right >= 0) // ROR operator
∆1 for (int i = 2; i < right; i++) // ROR operator
∆1 rslt = -left; // UOI operator
∆1 rslt = -rslt * left; // UOI operator
∆1 rslt = rslt * right; // SVR operator
∆1 rslt = right * left; // SVR operator

146

∆1 Bomb(); // BSR operator

7. The fundamental premise was stated as: “In practice, if the software contains a fault,
there will usually be a set of mutants that can be killed only by a test case that also
detects that fault.”

(a) Give a brief argument in support of the fundamental mutation premise.

Solution (Instructor only):
As long as mutation operators are well-designed, this premise is almost true be-
cause such mutation operators mimic typical programmer mistakes, or encourage
testers to follow common testing heuristics. As a result, the activity to find an
adequate set of test cases that reaches a predefined threshold of mutation score
could find a fault in the software. The premise is also supported by the fact that
it is very challenging to find a fault and a set of mutation-adequate tests that do
not find the fault.

(b) Give a brief argument against the fundamental mutation premise.

Solution (Instructor only):
On the other hand, this premise is true only if mutation operators are well-
designed. Particularly for a multi-threaded application, it is hard to design ef-
fective mutation operators that reflect typical mistakes on concurrency issues such
as mutual exclusion, dead-lock, and starvation.

8. Try to design mutation operators that subsume Combinatorial Coverage. Why wouldn’t
we want such an operator?

Solution (Instructor only):
To achieve combinatorial coverage on a predicate P with n clauses, we need 2n truth
assignments, therefore 2n mutants and 2n tests. The most straightforward way to do
this is to create 2n mutants, each of which requires a different truth assignment. For
example, if P = (a ∧ b) ∨ c, the first mutant needs a = false ∧ b = false ∧ c = false.
With that test, P = false, so the mutant !a∧!b∧!c will be true only with that test, so
will be killed only with that test.

If P = true, the mutant must be false. We can use the same mutant, but negate the
entire thing. This is described algorithmically below, followed by an example.

for each truth assignment ta

if P = false

output "!("

for each clause ci

if ci = 0 in ta

output "!ci"

else

147

output "ci"

output "∧"
end for

if P = false

output ")"

For the expression P = (a ∧ b) ∨ c, we need 8 truth assignments and 8 mutants, as
shown below.

P = (a ∧ b) ∨ c P Pm Mutants
0 0 0 0 1 m1 = (!a∧!b)∨!c
0 0 1 1 0 m2 =!((!a∧!b) ∨ c)
0 1 0 0 1 m3 = (!a ∧ b)∨!c
0 1 1 1 0 m4 =!((!a ∧ b) ∨ c)
1 0 0 0 1 m5 = (a∧!b)∨!c
1 0 1 1 0 m6 =!((a∧!b) ∨ c)
1 1 0 0 0 m7 =!((a ∧ b)∨!c
1 1 1 1 0 m8 =!((a ∧ b) ∨ c)

Mutation operators typically generate a small number of mutants from a given artifact.
Some mutation operators, such as AOR are linear in the size of the input. Others,
such as SVR, are more expensive - the more variables that are in the current scope, the
more mutants are generated. But as far as the authors know, there are no “ordinary”
mutation operators that generate a combinatorial number of mutants. Higher-order
mutation, where multiple mutation operators are applied at the same time, can generate
very large number of mutants, but they are only used in special circumstances.

Therefore the answer to the second part of the question is simply “too many mutants.”

9. Look online for the tool Jester, which is based on JUnit1. Based on your reading,
evaluate Jester as a mutation-testing tool.

Solution (Instructor only):
Jester is described in a separate article: http://www.agilealliance.org/articles/articles/Jester.pdf.

Jester uses four mutation operators:
1. modifying literal numbers; e.g. 0 is changed to 1
2. changing true to false and vice-versa
3. changing “if (p)” to “if (true || p)”
4. changing “if (p)” to “if (false && p)”

The constant replacement operator (#1) is not very useful. The other operators essen-
tially give branch coverage. So Jester could be described as a “very expensive way to
do branch testing”. The tool does not benefit from the theoretical benefits of mutation.

1Jester’s web page is http://jester.sourceforge.net/

148

10. Download and install the Java mutation tool muJava: http://cs.gmu.edu/∼offutt/-
mujava/. Enclose the method cal() from question 5 inside a class, and use muJava to
test cal(). Note that a test case is a method call to cal().

Solution (Instructor only):
The questions cannot be answered unless the student generates all mutants, designs
tests to kill as many as possible, then analyzes the rest, either determining they are
equivalent or designing new tests to kill them.

Solution (Instructor only):
muJava was updated in Fall 2013, which changed some numbers.

(a) How many mutants are there?

Solution (Instructor only):
164 (pre-Fall 2013)

Solution (Instructor only):
173 (post-Fall 2013)

(b) How many test cases do you need to kill the mutants?

Solution (Instructor only):
9 (of course this answer could vary, but the answer should close.)

(c) What mutation score were you able to achieve without analyzing for equivalent
mutants?

Solution (Instructor only):
80%-85% is a likely range. We got 85%.

(d) How many equivalent mutants are there?

Solution (Instructor only):
Fall 2010: Our students have killed 140 mutants and concluded that 24 are equiv-
alent. They’ve used from 8 to 17 tests. Mutation has a lot of Test Requirements,
but often relatively few tests.

Solution (Instructor only):
Fall 2013: Our students have killed 144 mutants and concluded that 27 are equiv-
alent. They used from 8 to 17 tests. Mutation has a lot of Test Requirements, but
often relatively few tests.

149

Exercises, Section 5.4

1. (Challenging!) Find or write a small SMV specification and a corresponding Java
implementation. Restate the program logic in SPEC assertions. Mutate the assertions
systematically, and collect the traces from (nonequivalent) mutants. Use these traces
to test the implementation. Solution (Instructor only):
Rather than work a custom example, we direct interested readers to a survey paper
that covers multiple approaches to testing with model checkers. See G. Fraser, F.
Wotawa, and P. Ammann, Testing with Model Checkers: A Survey. Software Testing,
Verification, and Reliability, 19(3), pages 215-261. September 2009.

150

Exercises, Section 5.5

1. Generate tests to satisfy TSC for the bank example grammar based on the BNF in
Section 5.5.1. Try not to satisfy PDC.

Solution (Instructor only):
TSC can be satisfied with two transactions:
deposit 123 $7.89
debit 456 $0.00

It is not possible to satisfy TSC without satisfying PDC for this grammar.

2. Generate tests to satisfy PDC for the bank example grammar.

Solution (Instructor only):
See the answer for TSC.

3. Consider the following BNF with start symbol A:

A ::= B"@"C"."B

B ::= BL | L

C ::= B | B"."B

L ::= "a" | "b" | "c" | ... | "y" | "z"

and the following six possible test cases:

t1 = a@a.a

t2 = aa.bb@cc.dd

t3 = mm@pp

t4 = aaa@bb.cc.dd

t5 = bill

t6 = @x.y

For each of the six tests, (1) identify the test sequence as either “in” the BNF, and
give a derivation, or (2) identify the test sequence as “out” of the BNF, and give a
mutant derivation that results in that test. (Use only one mutation per test, and use
it only one time per test). Solution (Instructor only):

t1 (“in”): A → B@C.B
→ L@B.L
→ a@L.a
→ a@a.a

t2 (“out”): A → B@C.B
→ (mutant: B → BL | L | B.B) B.B@B.BL
→ BL.BL@BL.Ld
→ La.Lb@Lc.dd

151

→ aa.bb@cc.dd
t3 (“out”): A → (mutant: A → B@B) B@B

→ BL@BL
→ Lm@Lp
→ mm@pp

t4 (“in”): A → B@C.B
→ BL@B.B.BL
→ BLa@BL.BL.Ld
→ Laa@Lb.Lc.dd
→ aaa@bb.cc.dd

t5 (“out”): A → (mutant: A → B) B
→ BL
→ BLl
→ BLll
→ Lill
→ bill

t6 (“out”): A → B@C.B
→ (mutant: B → BL | L | ∼) @B.L
→ @L.y
→ @x.y

4. Provide a BNF description of the inputs to the cal() method in the homework set for
Section 5.2.2. Succinctly describe any requirements or constraints on the inputs that
are hard to model with the BNF.

Solution (Instructor only):

The cal() method has 5 parameters:

public static int cal (int month1, int day1, int month2, int day2, int year)

A possible grammar is that allows for years 0 through 99999 is:

C ::= "cal (" M "," D "," M "," D "," Y ")"

M ::= 1 | 2 | ... | 12
D ::= 1 | 2 | ... | 31
Y ::= I | II | III | IIII | IIIII
I ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This grammar doesn’t capture calendar constraints very well. It doesn’t force month1
to equal or precede month2. It also doesn’t account for different months having varying
numbers of days or for February having 29 of days in leap years.

5. Answer questions (a) through (c) for the following grammar.

152

val ::= number | val pair

number ::= digit+

pair ::= number op | number pair op

op ::= "+" | "-" | "*" | "/"

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Also consider the following mutation, which adds an additional rule to the grammar:

pair ::= number op | number pair op | op number

(a) Which of the following strings can be generated by the (unmutated) grammar?

42

4 2

4 + 2

4 2 +

4 2 7 - *

4 2 - 7 *

4 2 - 7 * +

Solution (Instructor only):

42 // In grammar
4 2 // Not in grammar
4 + 2 // Not in grammar
4 2 + // In grammar
4 2 7 - * // In grammar
4 2 - 7 * // In grammar
4 2 - 7 * + // Not in grammar

(b) Find a string that is generated by the mutated grammar, but not by the original
grammar.

Solution (Instructor only):
We can define lots of these. One example is given above:
4 + 2

(c) (Challenging) Find a string whose generation uses the new rule in the mutant
grammar, but is also in the original grammar. Demonstrate your answer by
giving the two relevant derivations.

Solution (Instructor only):
This question also has lots of possible answers. Again, one sample is given above:
4 2 - 7 *
which is obtained by (original)

153

val → val pair
→ val pair number op
→ number pair number op
→ number number op number op
→ 4 2 - 7 *

or the mutated version:

val → val pair
→ number pair
→ number number pair op
→ number number op number op // mutant rule
→ 4 2 - 7 *

6. Answer questions (a) and (b) for the following grammar.

phoneNumber ::= exhangePart dash numberPart

exchangePart ::= special zeroOrSpecial other

numberPart ::= ordinary4

ordinary ::= zero | special | other

zeroOrSpecial ::= zero | special

zero ::= "0"

special ::= "1" | "2"

other ::= "3" | "4" | "5" | "6" | "7" | "8" | "9"

dash ::= "-"

(a) Classify the following as either phoneNumbers (or not). For non-phone numbers,
indicate the problem.

• 123-4567
• 012-3456
• 109-1212
• 346-9900
• 113-1111

Solution (Instructor only):

• 123-4567 is phoneNumber.

• 012-3456 is not a phoneNumber because 0 may not be the first exchange digit.
Also, the third digit must be “other” (3-9).

• 109-1212 is a phoneNumber.

• 346-9900 is not a phoneNumber because the second exchange digit is not “ze-
roOrSpecial”. Also, 3 may not be the first exchange digit (this question would
be better if the number was 246-9900).

• 113-1111 is a phoneNumber.

154

(b) Consider the following mutation of the grammar:

exchangePart ::= special ordinary other

If possible, identify a string that appears in the mutated grammar but not in the
original grammar, another string that is in the original but not the mutated, and
a third string that is in both.

Solution (Instructor only):
For a string that is in the mutated, but not the original, the fourth example above
is close (change the 3 to a 2): 246-9900. (The second digit must be other, that is,
3-9.)

There are no strings that are in the original but not the mutated, because the set
of strings defined by the mutated grammar is a superset of the original.

For a string that is in both, see the first example above: 123-4567.

7. Java provides a package, java.util.regex, to manipulate regular expressions. Write a
regular expression for URLs and then evaluate a set of URLs against your regular ex-
pression. This assignment involves programming, since input structure testing without
automation is pointless.

(a) Write (or find) a regular expression for a URL. Your regular expression does not
need to be so general that it accounts for every possible URL, but give your best
effort (for example "*" will not be considered a good effort). You are strongly
encouraged to do some web surfing to find some candidate regular expressions.
One suggestion is to visit the Regular Expression Library.

Solution (Instructor only):
An initial baseline can be found online:
http://regexlib.com/REDetails.aspx?regexp id=90.
The regular expression given there is:
∧http\://[a-zA-Z0-9\−\.]+\.[a-zA-Z]{2,3}(/\S*)?$

This can be extended in several ways:
- Support https
- Allow IP address by adding (...)? for this expression
\\.[a-zA-Z]{2,3}
- Support for PORT ID in the URL
- Support of FTP on the URL

The final regular expression is:
∧(http[s]?—ftp)://[a-zA-Z0-9\\-\\.]+(\\.([a-zA-Z]{2,3})?—(:[0-9]{4})?)(/\\S*)?$

155

(b) Collect a set of URLs from a small web site (such as a set of course web pages).
Your set needs to contain at least 20 (different) URLs. Use the java.util.regex
package to validate each URL against your regular expression.

Solution (Instructor only):
We validated this regular expression against the following:

i. http://www.gmu.edu

ii. http://www.gmu.edu/

iii. http://mason.gmu.edu/∼mmedinam
iv. https://evpp607.pbworks.com/session/loggedout

v. http://196.40.56.20/ruc/#consulta

vi. http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#cg

vii. http://catsr.ite.gmu.edu/HCIPA 4x

viii. http://www.greenflights.info/greenflights/index.php?origin=Boston-Logan+%28BOS%29&destination=New+York-La+Guardia+%28LGA%29

ix. http://cs.gmu.edu:8080/offutt/coverage/GraphCoverage

x. http://www.facebook.com/home.php?

xi. http://www.bncr.fi.cr/BN/index.asp?c=home

xii. ftp://wuarchive.wustl.edu/pub/

xiii. http://www.cs.tut.fi/∼jkorpela/wwwold.html
xiv. https://www.bnonline.fi.cr/BNCR.InternetBanking.Web/EliminaSesionConexion.command.aspx

xv. http://www.google.com/search?q=weird+url+address&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a

xvi. http://www.google.com/webhp#q=weird+url+address&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a&fp=1&cad=b

xvii. http://www.greenflights.info/greenflights/Reports.php?sendAdKeyWords=luggage+security%2Cmotels%2Ccarbonoffsets%2Csave+energy%2Ccarbon++calculator%2Cbuy+green+power%2Cglobal+warming%2Cclimatefriendly%2Cterapass%2Ccarbonfund%2Cenergy+efficiency%2Cclean+environment

xviii. http://www.example.com/path/to/file.html

xix. http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

xx. http://mail.google.com/mail/?shva=1#inbox

xxi. http://aspm.faa.gov/main/sysMailTo.asp?area=asqp

xxii. http://aspmhelp.faa.gov/index.php/OPSNET: Day of the Week Report

Program used to validate the expressions:

import java.util.regex.*; public class validateURLs

{
/**

* @param args

/

public static void main (String[] args)

{
// TODO Auto-generated method stub

// Compile regular expression

String regExpression = "SEE ABOVE"

156

Pattern pattern = Pattern.compile (regExpression, Pattern.CASE INSENSITIVE);

for (int i = 0; i < args.length; i++)

{
CharSequence strURL = args[i];

Matcher matcher = pattern.matcher (strURL);

boolean matchFound = matcher.matches();

System.out.println (i+1 +")Is URL " + args[i]+ " valid?: " +

matchFound);

}
} // end main()

}
end class validateURLs

(c) Construct a valid URL that is not valid with respect to your regular expression
(and show this with the appropriate java.util.regex call). If you have done an
outstanding job in part 1, explain why your regular expression does not have any
such URLs.

Solution (Instructor only):
A URL that is not valid with respect to the above regular expression is:
mailto:offutt@gmu.edu?subject=test

The result of validating this URL with the above function is false. The regular
expression does not consider mailto or file.

8. Why is the equivalent mutant problem solvable for BNF grammars but not for program-
based mutation? (Hint: The answer to this question is based on some fairly subtle
theory.)

Solution (Instructor only):
BNF grammar mutation is purely syntactic, thus finite. Program-based mutation cre-
ates semantically different constructs. Semantics is much harder than syntax ...

157

Changes to the Solution Manual

This section documents changes so that users can download a fresh copy and quickly
locate additions and corrections.

• 1-July-2013: Added solutions for 5.2.8, 5.4.1 and 5.5.4.

• 1-July-2013: Added solutions for 2.7.5, 2.7.6, 3.3.5, and 3.3.6. Thanks to Preetham
Vemasani.

• 15-June-2013: Added solutions for 2.7.2, 2.7.4, 3.3.4, and 3.5.1. Thanks to Beth Pare-
des. (Work done 2012)

• 19-Sept-2011: Corrected solution to Exercise 1.2 Number 3e, countPositive() (Instruc-
tor only)

• 16-Jun-2011: Corrected solution to Exercise 2.4 Number 1 (page 73).

• 23-Feb-2011: Corrected solution to Exercise 2.2.3 Number 1 (page 51). For Graph III,
the solutions to parts (e) and (f) were incorrect.

• 12-Jan-2011: Corrected solution Section 2.1, number 1.

• 16-Feb-2011: Applied page 51 errata correction (Exercise 2.2.3, number 1) to solution
manuals.

• 12-Jan-2011: Corrected solution Section 2.1, number 1.

• 27-Dec-2010: Added clarification to the answer to 1.2, #3(c)

• 7-Dec-2010: Corrected the answer to 5.5, #6

• 5-Nov-2010: Added solutions to several additional questions (2.7:1, 5.2:3, 5.2:6, 5.2:7,
5.2:10, and 5.5:7).

• 3-Nov-2010: Clarification of RICC tests for question 2, Section 3.3 (Instructor only)

• 2-Nov-2010: Clarification of ambiguity to question 3, Section 3.5 (Instructor only)

• 10-Aug-2009: Correction to question 4, Section 3.6, Karnaugh map (Instructor only)

• 17-Oct-2008: Added an answer to Section 3.5, question 4 (Instructor only)

• 17-Oct-2008: Added an answer to Section 5.1.1, question 1 (Instructor only)

• 13-Oct-2008: Correction to question 3, Section 3.3, Edge Coverage

