
Solving optimal control problems with
MATLAB — Indirect methods

Xuezhong Wang∗

1 Introduction

The theory of optimal control has been well developed for over forty years.
With the advances of computer technique, optimal control is now widely
used in multi-disciplinary applications such as biological systems, communi-
cation networks and socio-economic systems etc. As a result, more and more
people will benefit greatly by learning to solve the optimal control prob-
lems numerically. Realizing such growing needs, books on optimal control
put more weight on numerical methods. In retrospect, [1] was the first and
the “classic” book for studying the theory as well as many interesting cases
(time-optimal, fuel-optimal and linear quadratic regulator(LQR) problems).
Necessary conditions for various systems were derived and explicit solutions
were given when possible. Later, [2] proved to be a concise yet excellent book
with more engineering examples. One of the distinguish features of this book
is that it introduced several iterative algorithms for solving problems numer-
ically. More recently, [3] uses MATLAB to solve problems which is easier
and more precise. However, the numerical methods covered in these books
are insufficient for the wide range of problems emerging from various fields.
Especially, for those problems with free final time and nonlinear dynamics.

This tutorial shows common routines in MATLAB to solve both fixed and
free final time problems. Specifically, the following subjects are discussed
with examples:

1. How to use Symbolic Math Toolbox to derive necessary conditions and
solve for explicit solutions?

2. How to solve a fixed-final-time optimal control problem with steepest
descent method?

∗ISE. Dept., NCSU, Raleigh, NC 27695 (xwang10@ncsu.edu)

1

3. How to reformulate the original problem as a Boundary Value Problem
(BVP) and solve it with bvp4c?

4. How to get ‘good enough’ solutions with bvp4c and under what condi-
tions will bvp4c fail to find a solution?

It should be noted that all the routines (except the steepest descent
method) discussed in this tutorial belong to the “indirect methods” category.
This means that constraints on the controls and states are not considered.1

In other words, the control can be solved in terms of states and costates and
the problem is equivalently to a BVP. The reference of all the examples used
in this tutorial are stated such that the results can be compared and verified.

2 Optimal control problems with fixed-final-

time

In most books [1] [2], it is free-final-time problem that being tackled first to
derive the necessary conditions for optimal control. Fixed-final-time prob-
lems were treated as an equivalent variation with one more state for time.
However, for numerical methods, fixed-final-time problems are the general
form and we solve the free-final-time problem by converting it into a fixed-
final-time problem. The reason is simple: when dealing with optimal control
problems, it is inevitable to do numerical integration (either by indirect or
direct methods). Therefore, a time interval must be specified for these meth-
ods.

The first problem is from [2], Example 5.1-1 from page 198 to 202. The
routine deployed in this example shows how to derive necessary conditions
and solve for the solutions with MATLAB Symbolic Math Toolbox.

Example 1 The system

ẋ1(t) = x2(t) (1)

ẋ2(t) = −x2(t) + u(t) (2)

(a) Consider the performance measure:

J(u) =

∫ tf

0

1

2
u2(t) dt

1The last example implements a simple constraint on the control to show limitations
of bvp4c solver.

2

with boundary conditions:

x(0) = 0 x(2) =
[

5 2
]T

(b) Consider the performance measure:

J(u) =
1

2
(x1(2)− 5)2 +

1

2
(x2(2)− 2)2 +

∫ 2

0

1

2
u2(t) dt

with boundary conditions:

x(0) = 0 x(2) is free

(c) Consider the performance measure as in (a) with following boundary con-
ditions:

x(0) = 0 x1(2) + 5x2(2) = 15

The first step is to form the Hamiltonian and apply necessary conditions for
optimality. With MATLAB, this can be done as follows:

% State equations
syms x1 x2 p1 p2 u;
Dx1 = x2;
Dx2 = -x2 + u;

% Cost function inside the integral
syms g;
g = 0.5*u^2;

% Hamiltonian
syms p1 p2 H;
H = g + p1*Dx1 + p2*Dx2;

% Costate equations
Dp1 = -diff(H,x1);
Dp2 = -diff(H,x2);

% solve for control u
du = diff(H,u);
sol_u = solve(du, ’u’);

The MATLAB commands we used here are diff and solve. diff differen-
tiates a symbolic expression and solve gives symbolic solution to algebraic

3

equations. For more details about Symbolic Math Toolbox, please refer to
[5]. Applying the necessary conditions for optimality we get two equations:2

ṗ∗i = −∂H
∂x∗i

(3)

∂H

∂u∗
= 0 (4)

The first equation gives costate equations. From the second equation, we
solve for control u in terms of states and costates. The second step is to
substitute u from (4) back to the state and costate equations to get a set of
2n first-order ordinary differential equations (ODE’s). A solution (with 2n
arbitrary coefficients) can be obtained by using the dsolve command without
any boundary conditions. The symbolic solution looks different from the one
in [2]. By simplifying the expression and rearrange the arbitrary coefficients,
it is not difficult to see that the two are the same.

% Substitute u to state equations
Dx2 = subs(Dx2, u, sol_u);

% convert symbolic objects to strings for using ’dsolve’
eq1 = strcat(’Dx1=’,char(Dx1));
eq2 = strcat(’Dx2=’,char(Dx2));
eq3 = strcat(’Dp1=’,char(Dp1));
eq4 = strcat(’Dp2=’,char(Dp2));

sol_h = dsolve(eq1,eq2,eq3,eq4);

As stated in [2], the differences of the three cases in this problem are
merely the boundary conditions. For (a), the arbitrary coefficients can be
determined by supplying the 2n boundary conditions to dsovle:

% case a: (a) x1(0)=x2(0)=0; x1(2) = 5; x2(2) = 2;
conA1 = ’x1(0) = 0’;
conA2 = ’x2(0) = 0’;
conA3 = ’x1(2) = 5’;
conA4 = ’x2(2) = 2’;
sol_a = dsolve(eq1,eq2,eq3,eq4,conA1,conA2,conA3,conA4);

Again the solutions given by MATLAB and [2] look different from each
other. Yet Figure 1 shows that the two are in fact equivalent. For all the
figures in this problem, * represent state trajectory from [2] while symbolic
solution from MATLAB is plotted with a continuous line.

2We use * to indicate the optimal state trajectory or control.

4

Figure 1: Trajectories for Example 1 (a)

For case (b), we substitute t0 = 0, tf = 2 in the the general solution
to get a set of 4 algebraic equations with 4 arbitrary coefficients. Then
the four boundary conditions are supplied to determine these coefficients.
sol_b is a structure consists of four coefficients returned by solve. We get
the final symbolic solution to the ODE’s by substituting these coefficients
into the general solution. Figure 2 shows the results of both solutions from
MATLAB and [2].

It should be noted that we cannot get the solution by directly supplying
the boundary conditions with dsolve as we did in case (a). Because the
latter two boundary conditions: p∗1(2) = x∗1(t)− 5, p∗2(2) = x∗2(t)− 2 replaces
costates p1, p2 with states x1, x2 in the ODE’s which resulted in more ODE’s
than variables.

% case b: (a) x1(0)=x2(0)=0; p1(2) = x1(2) - 5; p2(2) = x2(2) -2;
eq1b = char(subs(sol_h.x1,’t’,0));
eq2b = char(subs(sol_h.x2,’t’,0));
eq3b = strcat(char(subs(sol_h.p1,’t’,2)),...

’=’,char(subs(sol_h.x1,’t’,2)),’-5’);
eq4b = strcat(char(subs(sol_h.p2,’t’,2)),...

’=’,char(subs(sol_h.x2,’t’,2)),’-2’);

sol_b = solve(eq1b,eq2b,eq3b,eq4b);

5

Figure 2: Trajectories for Example 1 (b)

% Substitute the coefficients
C1 = double(sol_b.C1);
C2 = double(sol_b.C2);
C3 = double(sol_b.C3);
C4 = double(sol_b.C4);
sol_b2 = struct(’x1’,{subs(sol_h.x1)},’x2’,{subs(sol_h.x2)}, ...

’p1’,{subs(sol_h.p1)},’p2’,{subs(sol_h.p2)});

Case (c) is almost the same as case (b) with slightly different bound-
ary conditions. From [2], the boundary conditions are: x∗1(2) + 5x∗2(2) =
15, p∗2(2) = 5p∗1(2). Figure 3 shows the results of both solutions from MAT-
LAB and [2].

% case c: x1(0)=x2(0)=0;x1(2)+5*x2(2)=15;p2(2)= 5*p1(2);
eq1c = char(subs(sol_h.x1,’t’,0));
eq2c = char(subs(sol_h.x2,’t’,0));
eq3c = strcat(char(subs(sol_h.p2,’t’,2)),...

’-(’,char(subs(sol_h.p1,’t’,2)),’)*5’);
eq4c = strcat(char(subs(sol_h.x1,’t’,2)),...

’+(’,char(subs(sol_h.x2,’t’,2)),’)*5-15’);
sol_c = solve(eq1c,eq2c,eq3c,eq4c);
% Substitute the coefficients
C1 = double(sol_c.C1);

6

Figure 3: Trajectories for Example 1 (c)

C2 = double(sol_c.C2);
C3 = double(sol_c.C3);
C4 = double(sol_c.C4);
sol_c2 = struct(’x1’,{subs(sol_h.x1)},’x2’,{subs(sol_h.x2)}, ...

’p1’,{subs(sol_h.p1)},’p2’,{subs(sol_h.p2)});

If the state equations are complicated, it is usually impossible to derive
explicit solutions. We depend on numerical methods to find the solutions. In
the next example, we will illustrate two numerical routines: steepest descent
method and convert to a BVP. The problem can be found in [2] page 338 to
339, Example 6.2-2.

Example 2 The state equations for a continuous stirred-tank chemical re-
actor are given as: ẋ1(t) = −2[x1(t) + 0.25] + [x2(t) + 0.5]exp

(
25x1(t)
x1(t)+2

)
− [x1(t) + 0.25]u(t)

ẋ2(t) = 0.5− x2(t)− [x2(t) + 0.5]exp
(

25x1(t)
x1(t)+2

)
(5)

The flow of a coolant through a coil inserted in the reactor is to control
the first-order, irreversible exothermic reaction taking place in the reactor.
x1(t) = T (t) is the deviation from the steady-state temperature and x2(t) =

7

C(t) is the deviation from the steady-state concentration. u(t) is the normal-
ized control variable, representing the effect of coolant flow on the chemical
reaction.
The performance measure to be minimized is:

J =

∫ 0.78

0

[x2
1(t) + x2

2(t) +Ru2(t)] dt,

with the boundary conditions

x(0) =
[

0.05 0
]T
, x(tf) is free

First, we will implement the steepest descent method based on the scheme
outlined in [2]. The algorithm consists of 4 steps:

1. Subdivide the interval [t0, tf] into N equal subintervals and assume
a piecewise-constant control u(0)(t) = u(0)(tk), t ∈ [tk, tk+1] k =
0, 1, · · · , N − 1

2. Applying the assumed control u(i) to integrate the state equations from
t0 to tf with initial conditions x(t0) = x0 and store the state trajectory
x(i).

3. Applying u(i) and x(i) to integrate costate equations backward, i.e.,
from [tf , t0]. The “initial value” p(i)(tf) can be obtained by:

p(i)(tf) =
∂h

∂x

(
x(i)(tf)

)
.

Evaluate ∂H(i)(t)/∂u, t ∈ [t0, tf] and store this vector.

4. If ∥∥∥∥∂H(i)

∂u

∥∥∥∥ ≤ γ (6)∥∥∥∥∂H(i)

∂u

∥∥∥∥2

≡
∫ tf

t0

[∥∥∥∥∂H(i)

∂u

∥∥∥∥]T [∥∥∥∥∂H(i)

∂u

∥∥∥∥] dt (7)

then stop the iterative procedure. Here γ is a preselected small positive
constant used as a tolerance.
If (6) is not satisfied, adjust the piecewise-constant control function by:

u(i+1)(tk) = u(i)(tk)− τ ∂H
(i)

∂u
(tk), k = 0, 1, · · · , N − 1

Replace u(i) by u(i+1) and return to step 2. Here, τ is the step size.

8

The main loop in MATLAB is as follows:

for i = 1:max_iteration
% 1) start with assumed control u and move forward
[Tx,X] = ode45(@(t,x) stateEq(t,x,u,Tu), [t0 tf], ...

initx, options);

% 2) Move backward to get the trajectory of costates
x1 = X(:,1); x2 = X(:,2);
[Tp,P] = ode45(@(t,p) costateEq(t,p,u,Tu,x1,x2,Tx), ...

[tf t0], initp, options);
p1 = P(:,1);
% Important: costate is stored in reverse order. The dimension of
% costates may also different from dimension of states
% Use interploate to make sure x and p is aligned along the time axis
p1 = interp1(Tp,p1,Tx);

% Calculate deltaH with x1(t), x2(t), p1(t), p2(t)
dH = pH(x1,p1,Tx,u,Tu);
H_Norm = dH’*dH;

% Calculate the cost function
J(i,1) = tf*(((x1’)*x1 + (x2’)*x2)/length(Tx) + ...

0.1*(u*u’)/length(Tu));

% if dH/du < epslon, exit
if H_Norm < eps

% Display final cost
J(i,1)
break;

else
% adjust control for next iteration
u_old = u;
u = AdjControl(dH,Tx,u_old,Tu,step);

end;
end

Because the step size of ode45 is not predetermined, interpolation is used to
make sure x(t), p(t) andu(t) are aligned along the time axis.

% State equations
function dx = stateEq(t,x,u,Tu)
dx = zeros(2,1);
u = interp1(Tu,u,t); % Interploate the control at time t

9

dx(1) = -2*(x(1) + 0.25) + (x(2) + 0.5)*exp(25*x(1)/(x(1)+2)) ...
- (x(1) + 0.25).*u;

dx(2) = 0.5 - x(2) -(x(2) + 0.5)*exp(25*x(1)/(x(1)+2));

% Costate equations
function dp = costateEq(t,p,u,Tu,x1,x2,xt)
dp = zeros(2,1);
x1 = interp1(xt,x1,t); % Interploate the state varialbes
x2 = interp1(xt,x2,t);
u = interp1(Tu,u,t); % Interploate the control
dp(1) = p(1).*(u + exp((25*x1)/(x1 + 2)).*((25*x1)/(x1 + 2)^2 - ...

25/(x1 + 2))*(x2 + 1/2) + 2) - ...
2*x1 - p(2).*exp((25*x1)/(x1 + 2))*((25*x1)/(x1 + 2)^2 - ...
25/(x1 + 2))*(x2 + 1/2);

dp(2) = p(2).*(exp((25*x1)/(x1 + 2)) + 1) - ...
p(1).*exp((25*x1)/(x1 + 2)) - 2*x2;

In step 4, we calculate ∂H/∂u|t = 2Ru(t)− p1(t)[x1(t) + 0.25] on each time
subinterval (function pH) and compare ‖∂H/∂u‖2 with the preselected γ.
If ‖∂H/∂u‖2 > γ, adjust u (function AdjControl).

% Partial derivative of H with respect to u
function dH = pH(x1,p1,tx,u,Tu)
% interploate the control
u = interp1(Tu,u,tx);
R = 0.1;
dH = 2*R*u - p1.*(x1 + 0.25);

% Adjust the control
function u_new = AdjControl(pH,tx,u,tu,step)
% interploate dH/du
pH = interp1(tx,pH,tu);
u_new = u - step*pH;

The step size τ is set as a constant in this example by some post hoc
investigation. A better strategy is to select τ with a line search method which
will maximize the reduction of performance measure with given ∂H(i)/∂u in
each iteration. Figure 4 shows the optimal state trajectory and control over
the time. The value of performance measure as a function of iteration number
is shown in Figure 5. In [2], two more numerical algorithms were introduced:
variation of extremals and quasilinearization. These two methods basically
reformulate and solve the original problem as a Boundary Value Problem
(BVP). In MATLAB, a BVP is typically solved with bvp4c. [4] is an excellent
reference on using bvp4c. For fix-final-time problems, u can always be solved

10

Figure 4: Example 2 Steepest descent method

Figure 5: Performance measure reduction

with respect to x and p by applying the necessary conditions (3) and (4).
And we will have 2n ODE’s and 2n boundary conditions.

11

Figure 6: Solution from bfv4c for Problem 2

% Initial guess for the solution
solinit = bvpinit(linspace(0,0.78,50), ...

[0 0 0.5 0.5]);
options = bvpset(’Stats’,’on’,’RelTol’,1e-1);
global R;
R = 0.1;
sol = bvp4c(@BVP_ode, @BVP_bc, solinit, options);
t = sol.x;
y = sol.y;

% Calculate u(t) from x1,x2,p1,p2
ut = (y(3,:).*(y(1,:) + 1/4))/(2*0.1);
n = length(t);
% Calculate the cost
J = 0.78*(y(1,:)*y(1,:)’ + y(2,:)*y(2,:)’ + ...

ut*ut’*0.1)/n;

The ODE’s and boundary conditions are two major considerations in
using bvp4c. A rule of thumb is that the number of ODE’s must equal to the
number of boundary conditions such that the problem is solvable. Once the
optimal control problem is converted to a BVP, it is very simple to solve.

%--
% ODE’s for states and costates

12

function dydt = BVP_ode(t,y)
global R;
t1 = y(1)+.25;
t2 = y(2)+.5;
t3 = exp(25*y(1)/(y(2)+2));
t4 = 50/(y(1)+2)^2;
u = y(3)*t1/(2*R);

dydt = [-2*t1+t2*t3-t2*u
0.5-y(2)-t2*t3
-2*y(1)+2*y(3)-y(3)*t2*t4*t3+y(3)*u+y(4)*t2*t4*t3
-2*y(2)-y(3)*t3+y(4)*(1+t3)];

% ---
% The boundary conditions:
% x1(0) = 0.05, x2(0) = 0, tf = 0.78, p1(tf) = 0, p2(tf) = 0;
function res = BVP_bc(ya,yb)
res = [ya(1) - 0.05

ya(2) - 0
yb(3) - 0
yb(4) - 0];

In this example, bvp4c works perfectly. It is faster and gives better re-
sults, i.e. a smaller performance measure J comparing to the steepest descent
method (see Figure 6). In the following section, we will solely use bvp4c when
numerical solutions are needed.

3 Optimal control problems with free-final-

time

Now we are prepared to deal with free-final-time problems. We will use both
Symbolic Math Toolbox and bvp4c in the next example, which can be find
from [3] on page 77, Example 2.14.

Example 3 Given a double integral system as:

ẋ1(t) = x2(t) (8)

ẋ2(t) = u(t) (9)

The performance measure is:

J =
1

2

∫ tf

0

u2(t)dt

13

find the optimal control given the boundary conditions as:

x(0) =
[

1 2
]T
, x1(tf) = 3, x2(tf) is free

To use the Symbolic Math Toolbox, the routine is very similar to Problem
1. We first supply the ODE’s and boundary conditions on states and costates
to dsolve. The only difference is that the final time tf itself is now a variable.
As a result, the solution is a function of tf . Next, we introduce four more
variables, namely x1(tf), x2(tf), p1(tf), p2(tf) into the solution obtained
above. With one additional boundary condition from

H (x∗(tf), u∗(tf), p∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0

For this problem, h ≡ 0 and we have p1(tf)x2(tf) − 0.5p2
2(tf) = 0. Now we

have 5 algebraic equations with 5 unknowns. And solve comes in handy
to solve this problem. Figure 7 shows the results from MATLAB and the
analytical solution in [3]. Although Symbolic Math Toolbox works fine in this
example, it should be pointed out that in most problems, it is impossible to
get explicit solutions. For example, there is no explicit solutions for Example
1 even though the state equations are similar to those of Example 3.

sol = dsolve(’Dx1 = x2, Dx2 = -p2, Dp1 = 0, Dp2 = -p1’,...
’x1(0) = 1, x2(0) = 2, x1(tf) = 3, p2(tf) = 0’);

eq1 = subs(sol.x1) - ’x1tf’;
eq2 = subs(sol.x2) - ’x2tf’;
eq3 = subs(sol.p1) - ’p1tf’;
eq4 = subs(sol.p2) - ’p2tf’;
eq5 = sym(’p1tf*x2tf - 0.5*p2tf^2’);
%%
sol_2 = solve(eq1, eq2, eq3, eq4, eq5);
tf = sol_2.tf;
x1tf = sol_2.x1tf;
x2tf = sol_2.x2tf;

x1 = subs(sol.x1);
x2 = subs(sol.x2);
p1 = subs(sol.p1);
p2 = subs(sol.p2);

Because of the limitations of symbolic method, numerical methods are
more useful in dealing with more general problems. However, when we try
to use a numerical method such as bvp4c, we immediately encountered with

14

Figure 7: Example 3 Symbolic method

a problem: the time interval is not known. One common treatment [4] [7]
for such a situation is to change the independent variable t to τ = t/T , the
augmented state and costate equations will then become ˙̃x = Tf(x, q, τ).3

Now the problem is posed on fixed interval [0, 1]. This can be implemented
in bvp4c by treating T as an auxiliary variable. The following code snippet
shows the details.

solinit = bvpinit(linspace(0,1),[2;3;1;1;2]);

sol = bvp4c(@ode, @bc, solinit);
y = sol.y;
time = y(5)*sol.x;
ut = -y(4,:);

% ---
% ODE’s of augmented states
function dydt = ode(t,y)
dydt = y(5)*[y(2);-y(4);0;-y(3);0];

% ---
% boundary conditions: x1(0)=1;x2(0)=2, x1(tf)=3, p2(tf)=0;

3f denotes the ODE’s for state and costates.

15

% p1(tf)*x2(tf)-0.5*p2(2)^2
function res = bc(ya,yb)
res = [ya(1) - 1; ya(2) - 2; yb(1) - 3; yb(4);

yb(3)*yb(2)-0.5*yb(4)^2];

Alternatively, we can accomplish this by treating T as a parameter for
bvp4c [4] The difference between the two lies in the parameter list of bvpinit,
and function definition of the ODE’s and boundary conditions. Figure 8
shows the result from numerical method which is the same as the analytical
solution.

solinit = bvpinit(linspace(0,1),[2;3;1;1],2);

sol = bvp4c(@ode, @bc, solinit);
y = sol.y;
time = sol.parameters*sol.x;
ut = -y(4,:);

% ---
% ODE’s of augmented states
function dydt = ode(t,y,T)
dydt = T*[y(2);-y(4);0;-y(3)];

% ---
% boundary conditions: x1(0)=1;x2(0)=2, x1(tf)=3, p2(tf)=0;
% p1(tf)*x2(tf)-0.5*p2(2)^2
function res = bc(ya,yb,T)
res = [ya(1) - 1; ya(2) - 2; yb(1) - 3; yb(4);

yb(3)*yb(2)-0.5*yb(4)^2];

Now it is the time to talk about the limitations of bvp4c. Thought it
works well so far, we must bear in mind that the quality of the solution from
bvp4c is heavily dependent on the initial guess. A bad initial guess may
result in inaccurate solutions, or no solutions, or solutions which make no
sense. For example, you may try the initial guess p1(0) = 0 and compare the
results with the analytical solution to see the difference. By looking at the
ODE’s closely, we find that ṗ1(t) = 0. When supplied with an initial guess
of 0, bvp4c fails to find the solution due to the state singularity.

The last problem is to further illustrate the capability, as well as the
limitation, of bvp4c in solving optimal control problems. This example can
be find from [6] which is a time-optimal problem for the double integral
system with a simple control constraint.

16

Figure 8: Example 3 Numerical method

Example 4 Given a double integral system as:

ẋ1(t) = x2(t) (10)

ẋ2(t) = u(t) (11)

Minimize the final time:

T =

∫ tf

0

dt

to drive the states to the origin:

x(0) =
[

2 2
]T
, x(tf) =

[
0 0

]T
, |u| ≤ 1

To formulate this problem as a BVP, control domain smoothing technique
must be applied first [6]. The resulted ODE’s are listed below:

ẋ1 = x5

(
x2 +

µx3√
µx2

3 + x2
4

)
(12)

ẋ2 = x5

(
x4√

µx2
3 + x2

4

)
(13)

ẋ3 = 0 (14)

ẋ4 = −x5x3 (15)

ẋ5 = 0 (16)

17

The boundary conditions are:

x1(0) = 2, x2(0) = 2, x1(1) = 0, x2(1) = 0, x3(1)2 + x4(1)2 = 1.

Auxiliary variable x5 = T , and u = x4/
√
µx2

3 + x2
4. It is well known that

the optimal control for this problem is the piecewise continuous “bang-bang”
control, which means that u will take either the maximum or the minimum
value within the admissible control set, i.e. +1 or−1 in this problem. Because
it is a linear second order system, there will be only one switch point and u
is not continuous at the switch point. The MATLAB code is as follows

global mu;
mu = 0.5;
solinit = bvpinit(linspace(0,1,10),[2;2;0;-1],4);

sol = bvp4c(@ode,@bc,solinit);
...
% the solution for one value of mu is used as guess for the next.
for i=2:3

if i==2
mu = 0.3;

else
mu = .1;

end;
% After creating function handles, the new value of mu
% will be used in nested functions.
sol = bvp4c(@ode,@bc,sol);

...
end
% ---
function dydt = ode(t,y,T)
global mu;
term = sqrt(mu*y(3)^2+y(4)^2);
dydt = T*[y(2) + mu*y(3)/term

y(4)/term
0
-y(3)];

% --
% boundary conditions, with 4 states and 1 parameters, 5 conditions are
% needed: x1(0) =2, x2(0) = 2; x1(1) = 0; x2(1) = 0; x3(1)^2+x4(1)^2 = 1;
function res = bc(ya,yb,T)
res = [ya(1)-2

ya(2)-2

18

Figure 9: Example 4 State trajectory

yb(1)
yb(2)
yb(3)^2+yb(4)^2-1];

As µ → 0, u appears to be more and more stiff at the switch point,
approximating the “bang-bang” control. Three values were tested: µ =
0.5, µ = 0.3, µ = 0.1. We uses continuation to solve this problem, by which
means the solution for µ = 0.5 is used as guess for the BVP with µ = 0.3.
The trajectory and control corresponding to different µ values are shown in
Figure 9 and Figure 10.

We can clearly see that u is approximating a “bang-bang” control at
switch point t = 4 and the state trajectory resembles the optimal trajectory
more and more closely as µ decrease. However, we cannot keep decreasing µ
to get x and u arbitrarily close to the optimal x∗ and u∗. For example, if we
set µ = 10−3 or smaller, bvp4c will fail due to the state singularity. In other
words, when the optimal control is piecewise continuous, bvp4c will fail at
discontinuous points.

19

Figure 10: Example 4 Control

4 Discussion

For many optimal control problems, bvp4c is the best option we have. Once
the problem is reformatted into a BVP, bvp4c can usually solve it efficiently.
However, we must pay attention to the limitations of bvp4c, more specifically

• Good initial guess is important to get an accurate solution, if a solution
exists.

• Discontinuous points (either in state/costate equations or control func-
tion) will cause bvp4c to fail.

For optimal control problems with no constraints on states or control, the
discontinuity is not that severe a problem. By applying the minimum prin-
ciple (4), we can convert the problem into a BVP and solve it with indirect
methods. Nevertheless, for problems with constraints, (4) does not neces-
sarily hold although the Hamiltonian still achieves the minimum within the
admissible control set. In this case, the optimal control problem cannot
be formulated as a BVP and indirect methods are not applicable. These
general optimal control problems are typically handled by direct methods,
most of which are closely related to nonlinear programming. Several pack-
ages for MATLAB are commercially available for such applications. Par-
ticularly, an open-source software GPOPS attracts more and more people

20

and improves with time. More information on GPOPS can be found in
http://www.gpops.org/.

References

[1] M. Athans and P. Falb (2007). Optimal control: an introduction to the
theory and its applications. Dover Publications, Inc.

[2] D. E. Kirk (2004). Optimal control theory: an introduction. Dover Pub-
lications, Inc.

[3] D. S. Naidu (2003). Optimal control systems. CRC Press LLC.

[4] L. F. Shampine., J. Kierzenka and M. W. Reichelt (2000). Solving
Boundary Value Problems for Ordinary Differential Equations in MAT-
LAB with bvp4c.

[5] The MATHWORKS, INC., Symbolic Math Toolbox User’s Guide.

[6] S. N. Avvakumov and Yu.N. Kiselev Boundary value problem for or-
dinary differential equations with applications to optimal control.

[7] Prof.Jonathan How MIT Open Courses Ware: 16.323 Principles of
optimal control, lecture 7.

21

