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A new real-coded evolutionary algorithm is proposed for application to path synthesis of a
four-bar linkage. This new evolutionary algorithm is obtained by combining differential
evolution (DE) with the real-valued genetic algorithm (RGA). We term this the “GA–DE hybrid
algorithm.” The only difference between the proposed algorithm and RGA is in the content of
the crossover. The crossover operation in the RGA is replaced by differential vector
perturbation, with the best individual or some excellent individuals as the base vectors.
Thus, both themain perturbation of differential vectors and theminor perturbation ofmutation
are used as genetic operators in the GA–DE hybrid algorithm. The efficiency and accuracy of the
proposedmethod are tested using four cases. Findings show that muchmore accurate solutions
for three cases are obtained with this method than those obtained using other evolutionary
methods as discussed in the literature. A moveable stick diagram of the synthesized
mechanisms can be obtained using the 2D sketch feature of SolidWorks®. This can be used
to check whether the synthesized mechanisms encounter circuit defects or are incapable of
motion.
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1. Introduction

The path synthesis of a four-bar linkage has been actively studied during the past 50 years. There have been a large number of
studies on this topic using a variety of methods. These include analytical [1,2], continuation [3], nonlinear goal programming [4,5],
exact gradient [6], coupler-angle function curve [7] and curve curvature methods [8]. The problem of path synthesis of a four-bar
linkage is to generate a mechanism whose coupler point can trace the desired trajectory or target points. There is no analytical
solution to the general problem of four-bar linkage synthesis for more than five target points. This type of problemmay be solved
by a variety of numerical methods. For example, it may be considered a mechanism optimization to minimize an objective
function. The most common objective function is the so-called position error, defined as the sum of the square of the Euclidean
distance between the target points and the obtained coupler points. Following the development of evolutionary algorithms from
natural biological evolution and swarm intelligence, the merits of these algorithms are what make them suitable for application to
path synthesis of the four-bar linkage. The genetic algorithm (GA) was first introduced by Holland [9], then verified by his student,
DeJong [10], as applicable to numerical optimization problems. Differential evolution (DE), first proposed by Storn and Price [11],
is another simple yet powerful evolutionary algorithm for real parameter optimization. Particle swarm optimization (PSO),
proposed by Kennedy and Eberhart [12], is one of the swarm intelligence optimization methods that operate by imitating the
swarming behaviors of natural creatures. These evolutionary methods are simple and easy to implement for solving complicated
real-world optimization problems. For these evolutionary methods, there is no need for further demands pertaining to the
gradient or other mathematical characteristics of the objective function. Furthermore, if the objective function of an optimization
task is not expressed as an explicit function of the design variables, or alternatively, it is too complicated to manipulate, e.g., the
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optimization problem of dimensional synthesis of the five-point double-toggle mold clamping mechanism [13,14], it is more
suitable to use these evolutionary algorithms for optimization than the traditional deterministic optimization methods.

Although “genetic algorithm” is used in the title of Ref. [15], Cabrera et al. actually applied a new evolutionary method based on
DE to the path synthesis of a four-bar linkage. However, their method is somewhat different than either GA or DE. The main
difference between the new evolutionary method and DE is the mutation operation in GA retained in the new evolutionary
method. The objective function has two parts. The first part is concerned with the position error. In the second part the constraints
are inserted by the penalty function. Three cases were studied. The solutions of two cases were compared with those obtained by
Kunjur and Krishnamurty [16] based on the deterministic and genetic methods. Findings show that quite small errors in fast
convergence are obtained and therefore the new evolutionary algorithm is relatively effective and efficient. Notice that the final
error for case 2 obtained by Cabrera et al. is the same as the position error for their synthesized parameters. However, the values of
the final errors for cases 1 and 3 are not the same. Alternatively, the errors for cases 1 and 3 obtained by Cabrera et al. might be
incorrect or typing errors. To find the best algorithm among binary-coded GA (BGA), PSO and DE, Acharyya and Mandal [17]
applied BGA with multipoint crossover, the PSO with the CFA (constriction factor approach) and the DE with DE/rand/1/exp
strategy to the path synthesis of a four-bar linkage. They also introduced a new refinement technique for the generation of initial
population. This technique is quite helpful for solving the constrained optimization problem. Three cases were studied for more
than five target points. Findings show that the DE method produces a better solution than that obtained previously by Cabrera et
al. for case 1, and DE outperforms BGA and PSO for all three cases. However, some of their results for cases 2 and 3 might be
unreliable. The error for case 1 obtained by Cabrera et al. has been corrected by Acharyya and Mandal. Notice again that the error
employed by Acharyya and Mandal is the square root of the position error. However, this is not clearly stated. The error for the
BGA solution for case 2 and the errors for the BGA, PSO and DE solutions for case 3 might be incorrect or alternatively, their
synthesized parameters might be typing errors. If the synthesized parameters shown in their paper are correct, the error for the
BGA solution for case 2 should be 45.817, not 3.171 (according to their synthesized parameters). The errors for the BGA, PSO and
DE solutions for case 3 should be 2.403, 37.083 and 50.423, respectively, not 2.281, 1.971 and 1.952 (according to their synthesized
parameters).

The aim of this work is to propose a new real-valued evolutionary algorithm to apply to the path synthesis problems of the
four-bar linkage. The new evolutionary algorithm is a combination of the real-valued genetic algorithm (RGA) and the differential
evolution. Accordingly, this algorithm will be termed “GA–DE hybrid (evolutionary) algorithm.” To verify the efficiency and
accuracy of the proposed method, several of the afore-mentioned cases are studied. The only difference between the proposed
evolutionary algorithm and the real-valued genetic algorithm is in the content of the crossover. The crossover operation in RGA is
replaced by the differential vector perturbation of DE [18], with the best individual or some excellent individuals as the base
vectors. Thus, both the main perturbation of the differential vectors and the minor perturbation of the mutation act as genetic
operators in the proposed evolutionary algorithm.

It has been pointed out [19] that the synthesized solution may be unusable due to circuit or order defects, or be incapable of
moving from one coupler point to another. Although a synthesized solution can be at the traced points, there is no guarantee
regarding the behavior of the linkage between those traced points. A circuit defect occurs when the linkage cannot move into a
region between those traced points, that is, positions do not exist in such this region for a linkage with a circuit defect. Therefore, a
linkagewith a circuit defect must be disassembled before the region and reassembled after the region to complete themotion. This
is a fatal defect. In this work, a 2D sketch produced by SolidWorks® is used to check whether the synthesized mechanism
encounters such defects. One can manipulate rotations of the driving link of the SolidWorks® 2D sketch for the synthesized
linkage by using the mouse to drag the driving link to produce the motion. If the driving link cannot be dragged into a region, this
indicates the presence of a circuit defect. If one compels the driving link to complete the motion in the 2D sketch, one can observe
the phenomenon of jumping between the two limiting positions. Besides, if the defect leading to incapable of movement is not the
result of the circuit defect, the driving link cannot be compelled to move in the 2D sketch. The 2D sketch is also helpful to examine
the distance between the target point and the synthesized coupler point obtained from the synthesized geometric parameters and
the position equations.

2. Problem formulation

2.1. Position equations

Fig. 1 depicts a skeleton drawing and all the geometric parameters of the four-bar linkage, where C is the coupler point. The DOF
of the four-bar linkage is one. Angle θ2 is the input angle in this work and angle θ3 can be solved by the Freudenstein equation [20].
The position of coupler point C in the world coordinate system OXY can be expressed by
where
CX
CY

� �
= cosθ0 −sinθ0

sinθ0 cosθ0

� �
CXr
CYr

� �
+ x0

y0

� �
ð1Þ

CXr = r2cos θ2 + rcxcosθ3−rcysinθ3

CYr = r2sinθ2 + rcxsinθ3 + rcycosθ3

ð2Þ



where

Fig. 1. Four-bar mechanism in the global coordinate system.
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2.2. Design parameters

There are at least nine design parameters for path generation with prescribed timing, r1, r2, r3, r4, rcx, rcy, x0, y0 and θ0 to be
optimized. In addition to the nine design parameters, there are input angles θ2i (i=1−N) corresponding to target points that need
to be optimized for path generation without prescribed timing. Design variable vector X is given as follows:
X = r1;r2;r3;r4;rcx;rcy;x0;y0;θ0;θ
1
2;θ

2
2…θN2

h i
ð3Þ

N is the number of target points to be optimized.
2.3. Design objective

The position error is defined as the sum of the square of the Euclidean distance between each Cd
i and the corresponding Ci,

where {Cdi } is the set of the positions of target points (indicated by the designer); and {Ci} is the set of the positions of the coupler
point of the synthesized mechanism for a set of input angles {θ2i }. They can be written in the world coordinate system as Cdi =[CXdi ,
CYd
i ]T and Ci=[CXi ,CYi ]T, respectively.
In this work, the four-bar linkage synthesized problem is to minimize the position error considered as the first part of the

objective function, which may be expressed by
fobj = ∑
N

i=1
Ci
Xd−Ci

X Xð Þ
� �2

+ Ci
Yd−Ci

Y Xð Þ
� �2

� �
ð4Þ
For the establishment of a termination criterion, the mean error in distance between the target and coupler points is defined
as
em =
1
N

∑
N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci
Xd−Ci

X Xð Þ� �2 + Ci
Yd−Ci

Y Xð Þ� �2q
ð5Þ
2.4. Constraints

In this study, only the following constraints are considered:

1. the Grashof condition is satisfied to allow for the entire turn of at least one link. It may be expressed by
2 max r1;r2;r3;r4ð Þ + min r1;r2;r3;r4ð Þ½ �b r1 + r2 + r3 + r4ð Þ: ð6Þ
2. The sequence of input angles θ2 satisfies CW or CCW rotation of the crank.
3. The design parameters are within the specified ranges.
4. The rotation range of the crank.

For all cases discussed here, the crank has 360° of rotation (constraint 4). Apart from the input angles, constraint 3 may be
achieved by assigning the value of a design variable within the prescribed range during initialization and mutation operations.
Furthermore, if the value obtained by crossover operation is not within the prescribed range, one may repeat this operation until
the value falls within the prescribed range. The input angles are assigned values within the range [0,2π] only during initialization
andmutation operations. If the obtained input angle exceed its limit, say 2πbθ2b4π, the final value is obtained by subtraction of 2π
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from the obtained value. Therefore, it is allowable for the value of the input angle to exceed its limit during the course of evolution,
so long as constraint 2 is satisfied in the final evolution. Furthermore, by rearranging the input angles to satisfy CW or CCW
rotation during initialization and mutation operations, constraint 2 may be ignored until the end of the evolution. Sound
chromosomes may be obtained both by this scheme and the mechanism of evolution. The scheme proposed in this work differs
from that proposed by Acharyya and Mandal, in that their scheme is carried out only in the process of initialization and their
algorithm always checks constraints 2 in each generation. Lastly constraint 1 is inserted into the objective function as a penalty
function as follows:

Minimize
where
fobj = ∑
N

i=1
Ci
Xd−Ci

X Xð Þ
� �2

+ Ci
Yd−Ci

Y Xð Þ
� �2

� �
+ M1h1 Xð Þ ð7Þ

h1(X)=0 indicates that Grashof's condition is true and h1(X)=1 indicates that Grashof's condition is false;M1 is a constant
where
with a very large value that penalizes the objective function when the constraint fails.

3. GA–DE hybrid evolutionary algorithm

The GA–DE hybrid evolutionary algorithm is obtained by combining the real-valued genetic algorithm with the differential
evolution. Genetic algorithms are global search techniques based on the concepts of genetics, natural selection and survival of the
fittest. The RGA search process is briefly outlined below. A population with randomly generated chromosomes is initialized. Each
chromosome (individual) is a candidate solution. The quality of the individual is estimated by the fitness value related to the
objective function. Offsprings are generated using genetic operators, crossover and mutation, from either one or two individuals
(parents). The parents are randomly selected according to a probability proportional to their fitness. A population evolves from
generation to generation by selection pressure and genetic operations.

There are several methods of crossover in RGA, such as arithmetic crossover [21] and blend crossover (BLX-α) [22]. However,
these RGAmethods do not necessarily work better than those of BGA for the problem of linkage synthesis. There exist a number of
other crossover operations, for example, simulated binary crossover [23,24] and fuzzy recombination operations [25]. Beyer and
Deb [26] found there to be some similarity in such crossover methods. As pointed out in [27], crossover using such methods is not
as meaningful in RGA when contrasted with crossover in BGA. Crossover operators in RGA may be best described as blending
operators and may be regarded as perturbations. Most blending operators in RGA are known as crossover operators. Furthermore,
although debatable, Deb believes that the distinction between the crossover and mutation operations in RGA lies mainly in the
number of individuals used in the perturbation process.We agreewith Deb's opinion, so in this work, the crossover is replaced by a
differential vector perturbation of DE evolution. Thus, both the main perturbation of differential vectors and the minor
perturbation of mutation which act as genetic operators are used in the proposed evolutionary algorithm.

Here, genes xi (i=1−n) represent the design parameters encoded in terms of real numbers that fall between their bounds. All
genes are grouped in a vector X that represents a chromosome. That is
xi∈ min xið Þ;max xið Þ½ � ð8Þ

X = x1;x2;…;xn½ � = r1;r2;r3;r4;rcx;rcy;x0;y0;θ0;θ
1
2;θ

2
2…θN2

h i
ð9Þ

n is the number of the design parameters.
3.1. Initialization

An initial population with Np chromosomes is randomly generated. The gene in each chromosome is given by
xi = min xið Þ + γ max xið Þ−min xið Þð Þ ð10Þ

γ is a random real number between 0 and 1. Since the Grashof condition fails, it is possible that only a small to moderate
where
amount of individuals may survive. Therefore, during initialization it is natural to reassign r1, r2, r3 and r4 until the Grashof
condition is satisfied. As pointed out by Acharyya and Mandal, the order of randomly generated θ2i (i=1−N) can be rearranged in
CW or CCW; thereafter θ2i (i=1−N) are reassigned in CCW in this work.

3.2. Fitness

The quality of the chromosome is estimated by examining the fitness value. The fitness value is obtained by subtracting the
value of the objective function as defined in Eq. (7) from a prescribed large value for the minimization problem. The prescribed
large value may be chosen to avoid the fitness of a worse but feasible individual becoming negative and to maintain population
diversity. The prescribed large value is 10,000 in this work. The negative fitness value is set to zero.

While the mean error is obtained, a termination criterion is then checked, as given by
em≤etol ð11Þ
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etol is a prescribed value for error tolerance. If the termination criterion is not satisfied, the population is updated using
where
perturbation operations to produce the next generation. The procedure is repeated until the termination criterion is satisfied or
until the number of generation is equal to the prescribed number of generations Gmax.

3.3. Selection and pairing

Roulette-wheel selection is employed in this work to allow those individuals with higher fitness to have a higher chance of
being selected. Thereafter two non-repeated individuals are paired randomly to be parents.

3.4. Differential vector perturbations

The crossover operation in RGA is replaced by differential vector perturbation of DE, with the best individual or some excellent
individuals as the base vectors. Therefore, parents are used as differential vectors, not crossover. All paired parents are randomly
divided into k groups corresponding to the top k individuals, denoted by Xtop1, Xtop2…Xtopk. These form the base vectors. The value
of k is a user-defined integer. In the i-th group, the offspring may be generated by
X1 = Xtopi + F1 Xr1−Xr2ð Þ
X2 = Xtopi−F2 Xr1−Xr2ð Þ

ð12Þ

Xr1 and Xr2 are the parents; F1 and F2 are random real numbers between 0 and 1 for each design variable.
where
A main perturbation rate Pm1 is defined as the ratio of the expected number of offspring generated by differential vector

perturbations to the total population size, while replacing crossover rate Pc in RGA.

3.5. Mutation

Mutation may be useful in maintaining population diversity. Here, mutation is performed to replace randomly selected
chromosome by random real numbers (that are within the limits of variables). Theminor perturbation rate Pm2, i.e., mutation rate,
is defined as the ratio of the expected number of offspring introduced by mutation to the total population size.

3.6. Elitism

The technique of elitism [28] is employed in this work is defined as follows: the best-so-far individual is always retained,
replacing the current worst one, carrying on into the succeeding generation.

3.7. Comparison with DE

There are some differences between the GA–DE hybrid algorithm and DE as follows.

1. For the same number of differential vectors, the range (or the degree of uniform) of differential vector distribution for the GA–
DE hybrid algorithm may be better than DE. This is because the definition of disturbing vectors in Eq. (12) and non-repeated
individuals Xr1 and Xr2 are paired randomly. In different strategies of DE, the disturbing vector for the DE/x/y/z with y=2 (x:
object to be disturbed, y: number of differential vectors, z: crossover way) is obtained from 4 random individuals. However, the
DE/x/1/z is the most widely used strategy, being used in the works of Cabrera et al. and Acharyya and Mandal.

2. The number of the object to be disturbed in the GA–DE hybrid algorithm can be one, two, or more, while the number of the base
vector for DE is only one. This might be helpful when searching a better solution for some problems or for other purposes.

3. Both the main perturbation of the differential vectors and the minor perturbation of the mutation are used as genetic operators
in the GA–DE hybrid algorithm. However, the frame of this algorithm is the same as in GA. In DE, the main perturbation of the
differential vectors (called mutation in DE) is implemented and the crossover operator is retained for population diversity.

4. The ways in which selection is carried out are parent selection and survivor selection (replacement) for the GA–DE hybrid
algorithm and DE, respectively.

4. Results and discussion

The efficiency and accuracy of the proposed method are verified by studying four cases (for more than five target points) from
the literature. Two sets of user-supplied parameters are used. One is for the purpose of comparison with other solutions discussed
in the literature. It includes the following: size of population Np=100; only the best individual is used as the base vector for the
differential vector perturbation, i.e., k=1; number of generations Gmax=1000 for cases 1-3 and Gmax=50 for case 4; major
perturbation rate Pm1=0.6; minor perturbation rate Pm2=0.01; error tolerance etol=10−4. The other is expected to help obtain
more satisfactory solutions. It includes the following: size of population Np=400; top two individuals are used as the base vectors,
i.e., k=2; the other user-supplied parameters are the same.
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All the synthesized solutions in this work have been validated so that there are no circuit and order defects and they are not
incapable of motion. The number (No) of evaluations of the objective function and the population size are shown in the tables.

4.1. Case 1: 6 target points and 15 design variables

The first case is a path synthesized problemwith six target points arranged in a vertical line andwithout prescribed timing.
Table 1
Synthes

No

r1
r2
r3
r4
rcx
rcy
x0
y0
θ0
θ21

θ22

θ23

θ24

θ25

θ26

fobj
em

⁎ The
Design variables : X = r1;r2;r3;r4;rcx;rcy;x0;y0;θ0;θ
1
2;θ

2
2;θ

3
2;θ

4
2;θ

5
2;θ

6
2

h i

Target points : Ci
d = 20;20ð Þ; 20;25ð Þ; 20;30ð Þ; 20;35ð Þ; 20;40ð Þ; 20;45ð Þ½ �

Limits of the variables : r1;r2;r3;r4 ∈ 5;60½ �;rcx;rcy;x0;y0 ∈ −60;60½ �;θ0;θ12;θ22;θ32;θ42;θ52;θ62 ∈ 0;2π½ �:
The synthesized geometric parameters and the corresponding values of the objective function and the mean error are shown in
Table 1, togetherwith the synthesized solutions obtained by Cabrera et al. and Acharyya andMandal. The original value of θ21 obtained
forNp=100and k=1 is 6.80719 and exceeds 2π. Therefore, its real value should be 0.524005. Although the constraint of the sequence
of the input angles during the evolution is ignored in this case, there is no order defect in the best synthesized mechanisms, as can be
seen in Table 1. Obviously, the accuracy of the solution for case 1 has been remarkably improved using the presentmethod. Themean
error forNp=100 and k=1 obtained in this work show a decline by about 76% compared with the DE solution obtained by Acharyya
andMandal, and shows a decline by about 86% comparedwith the solution obtained by Cabrera et al. Clearly, the BGA solution ismost
unsatisfactory one. As expected, and as shown in Table 1, the solution for Np=400 and k=2 is more accurate than that for Np=100
and k=1. For Np=400 and k=2, we find some solutions for the objective function value on the order of 10−6. However, the order
defects are encountered. Fig. 2 shows the six target points and the coupler curve obtained using the proposed method with Np=100
and k=1 for case 1, together with that obtained by Acharyya and Mandal. Fig. 3 shows the six target points and the coupler curve
obtained using the proposed method with Np=400 and k=2 for case 1.

4.2. Case 2: 6 target points and 9 design variables

This case is a path synthesized problem with six target points arranged in a semi-circular arc and prescribed timing.
Design variables : X = r1;r2;r3;r4;rcx;rcy;x0;y0;θ0
h i

Target points : Ci
d = 0;0ð Þ; 1:9098;5:8779ð Þ; 6:9098;9:5106ð Þ; 13:09;9:5106ð Þ; 18:09;5:8779ð Þ; 20;0ð Þ½ � and θi2 =

π
6
;
π
3
;
π
2
;
2π
3

;
5π
6

;π
� �

Limits of the variables : r1;r2;r3;r4 ∈ 5;50½ �; rcx;rcy;x0;y0 ∈ −50;50½ �;θ0∈ 0;2π½ �:
The synthesized geometric parameters and the corresponding values of the objective function and the mean error are shown in
Table 2, together with the synthesized solutions obtained by Acharyya and Mandal. Obviously, the BGA solution is unsound. The mean
ized results for case 1.

Present [15]
Np=100

BGA [17]
Np=100

DE [17]
Np=100

Np=100,k=1 Np=400,k=2

100,000 400,000 100,000 200,000 100,000
33.5959 13.2516 39.46629 28.77133 35.02074
5.02972 5.94078 8.562912 5.000000 6.404196
11.1847 58.3118 19.09486 35.36548 31.60722
28.0878 53.7207 47.83886 59.13681 50.59949
−24.1755 16.3826 13.38556 0.000000 20.80324
5.51479 −59.0715 12.21961 14.85037 41.54364
39.7799 −35.3621 29.72255 29.91329 60.00000
24.7195 36.7704 23.45454 32.60228 18.07791
5.45884 0.196076 6.201627 5.287474 0.000000
0.524005 ⁎ 1.66015 6.119371 6.283185 6.283185
0.853145 2.04684 0.19304 0.318205 0.264935
1.16505 2.42811 0.44083 0.638520 0.500377
1.49253 2.80901 0.684674 0.979950 0.735321
1.87456 3.19009 0.958351 1.412732 0.996529
2.44206 3.57379 1.355331 2.076254 1.333549
7.36984×10−4 1.72075×10−5 3.6279×10−2 1.21216 1.50653×10−2

9.53563×10−3 1.43295×10−3 6.83347×10−2 4.1825×10−1 3.96175×10−2

original value of θ21 in the final evolution is 6.80719.



Fig. 3. Six target points and the coupler curve obtained using the proposed method with Np=400 and k=2 for case 1.

Fig. 2. Six target points and the coupler curve obtainedusing theproposedmethodwithNp=100 and k=1 for case 1, togetherwith that obtained byAcharyya andMandal
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.

error forNp=100 and k=1 obtained in this work shows a decline by about 31% as comparedwith the DE solution. The improvement of
the solutionwhenNp=400 and k=2 is almost negligible compared to thatwhenNp=100 and k=1, as shown in Table 2. Therefore, this
case should be studied further, using other algorithms or design considerations. Fig. 4 shows the six target points and the coupler curve
obtainedusing theproposedmethodwithNp=100and k=1for case 2, togetherwith that obtainedbyAcharyya andMandal. The typical
evolution of the value of the objective function of the best-so-far individual for case 2 corresponding to the number of generations,
obtainedwith theproposed evolutionary algorithm, is shown in Fig. 5. The convergence rate for thebest-so-far individual is fast. The value
of the objective function of the best-so-far individual for this case almost converges to a minimum value within only 200 generations;
thereafter the improvement of the objective is negligible, which is similar to the result obtained by Acharyya and Mandal.
4.3. Case 3: 10 target points and 19 design variables

The case is a path synthesized problem with 10 target points arranged in an ellipse and without prescribed timing.
Design variables : X = r1;r2;r3;r4;rcx;rcy;x0;y0;θ0;θ
1
2;θ

2
2;θ

3
2;θ

4
2;θ

5
2;θ

6
2;θ

7
2;θ

8
2;θ

9
2;θ

10
2

h i



Fig. 4. Six target points and the coupler curve obtained using the proposedmethodwithNp=100 and k=1 for case 2, together with that obtained by Acharyya and
Mandal.

Fig. 5. Typical evolution of the value of the objective function of the best-so-far individual for case 2 corresponding to the number of generations obtained with the
proposed evolutionary algorithm.

Table 2
Synthesized results for case 2.

Present BGA [17]
Np=100

DE [17]
Np=100

Np=100,k=1 Np=400,k=2

No 100,000 400,000 200,000 100,000
r1 50.0 50.0 50.0 50.0
r2 5.0 5.0 9.164414 5.0
r3 6.97009 7.03102 16.858082 5.905345
r4 48.1993 48.1342 50.0 50.0
rcx 17.045 16.9767 38.458872 18.819312
rcy 12.638 12.952 0.090117 0.0
x0 12.2377 12.1975 32.328282 14.373772
y0 −15.8332 −15.9981 29.537054 −12.444295
θ0 0.0508453 0.0428286 0.877212 0.463633
fobj 2.58286 2.58036 20922.2 5.52069
em 0.648358 0.647818 59.0389 0.938757

1103W.-Y. Lin / Mechanism and Machine Theory 45 (2010) 1096–1107



Table 3
Synthesized results for case 3.

Present BGA [17]
Np=100

DE [17]
Np=100

Np=100,k=1 Np=400,k=2

No 100,000 400,000 200,000 100,000
r1 80.0 80.0 79.981513 54.360893
r2 8.24689 8.42032 9.109993 8.683351
r3 45.8968 51.3426 72.936511 34.318634
r4 58.5404 42.4532 80.0 79.996171
rcx −6.40389 −9.3741 0.0 0.000187
rcy −9.12264 5.06098 0.0 1.46525
x0 6.52409 5.53372 10.155966 10.954397
y0 20.522 0.477183 10.0 11.074534
θ0 0.136532 4.28177 0.026149 2.12965
θ21 6.05991 2.0935 6.283185 6.283185
θ22 0.488453 2.81291 0.600745 0.616731
θ23 1.17805 3.51605 1.372812 1.310254
θ24 1.88339 4.20638 2.210575 2.19357
θ25 2.59806 4.89051 2.862639 2.91717
θ26 3.28585 5.57398 3.420547 3.490746
θ27 3.96674 6.26458 4.072611 4.132017
θ28 4.65966 0.676189 4.910373 4.922075
θ29 5.35231 1.38307 5.68244 5.695372
θ210 6.06263 2.09348 6.283185 6.28297
fobj 3.11511×10−2 6.02203×10−4 5.77309 2542.25
em 4.82473×10−2 6.74935×10−3 7.00454×10−1 15.8445

Fig. 6. Ten target points and the coupler curve obtained using the proposed method with Np=100 and k=1 for case 3, together with that obtained by Acharyya
and Mandal.
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Target points : Ci
d = 20;10ð Þ; 17:66;15:142ð Þ; 11:736;17:878ð Þ; 5;16:928ð Þ; 0:60307;12:736ð Þ;

0:60307;7:2638ð Þ; 5;3:0718ð Þ; 11:736;2:1215ð Þ; 17:66;4:8577ð Þ; 20;10ð Þ
� �

Limits of the variables : r1;r2;r3;r4 ∈ 5;80½ �; rcx;rcy;x0;y0 ∈ −80;80½ �; θ0;θ
1
2;θ

2
2…θ102 ∈ 0;2π½ �:
The synthesized geometric parameters and the corresponding values of the objective function and themean error are shown in
Table 3, together with the synthesized solutions obtained by Acharyya andMandal. Although the constraint of the sequence of the
input angles during the evolution is ignored in this case, there is no order defect in the best synthesized mechanisms, as can be
seen in Table 3. Obviously, the DE solution is unsound. There is remarkable improvement in the accuracy of the solution for case 3
using the present method. Themean error for Np=100 and k=1 obtained in this work shows a decline by about 93% as compared
with the BGA solution. Moreover, the BGA requires manymore generations for convergence. As can be seen in Table 3, the solution
for Np=400 and k=2 is much more accurate than that for Np=100 and k=1. Fig. 6 shows the ten target points and the coupler
curve obtained using the proposed method with Np=100 and k=1 for case 3, together with that obtained by Acharyya and



Fig. 7. Ten target points and the coupler curve obtained using the proposed method with Np=400 and k=2 for case 3.

Table 4
Synthesized results for case 4.

Present [15]
Np=100

Exact gradient
[16]

Np=100,k=1 Np=400,k=2

No 5000 400,000 5000 240
r1 49.9592 47.4379 3.057878 2.85452
r2 0.218612 0.32477 0.237803 0.36355
r3 42.4842 0.472857 4.828954 2.91374
r4 32.7470 47.3093 2.056456 0.49374
rcx −47.9660 0.118748 0.767038 1.031223
rcy 15.3586 −0.319924 1.850828 1.717471
x0 44.1758 0.526988 1.776808 0.95928
y0 −23.9643 0.72393 −0.641991 −1.19645
θ0 5.37543 3.32029 1.002168 0.76398
θ21 1.88551 3.51233 0.226186 0.51172
fobj 4.61271×10−2 1.08613×10−2 3.48391×10−2 1.09034×10−2

em 4.78422×10−2 2.2283×10−2 4.21508×10−2 2.26716×10−2
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Mandal. Fig. 7 shows the ten target points and the coupler curve obtained using the proposed method with Np=400 and k=2 for
case 3.

4.4. Case 4: 18 target points and 10 design variables

This case is a path synthesized problem with 18 target points and prescribed timing.
Design variables : X = r1;r2;r3;r4;rcx;rcy;x0;y0;θ0;θ
1
2

h i

Target points : Ci
d = 0:5;1:1ð Þ; 0:4;1:1ð Þ; 0:3;1:1ð Þ; 0:2;1:0ð Þ; 0:1;0:9ð Þ; 0:005;0:75ð Þ; 0:02;0:6ð Þ; 0:0;0:5ð Þ; 0:0;0:4ð Þ;

0:03;0:3ð Þ; 0:1;0:25ð Þ; 0:15;0:2ð Þ; 0:2;0:3ð Þ; 0:3;0:4ð Þ; 0:4;0:5ð Þ; 0:5;0:7ð Þ; 0:6;0:9ð Þ; 0:6;1:0ð Þ
� �

and θi2 = θ12;θ
1
2 + 20∘

4i
h i

i = 1;2…17ð Þ

Limits of the variables : r1;r2;r3;r4 ∈ 0;50½ �; rcx;rcy;x0;y0 ∈ −50;50½ �;θ0θi2 ∈ 0;2π½ �:
The synthesized geometric parameters and the corresponding values of the objective function and themean error are shown in
Table 4, together with the synthesized solutions obtained by Kunjur and Krishnamurty and Cabrera et al. The mean error for
Np=100 and k=1 increases by 14% and 34% compared to the solutions obtained by Cabrera et al. and the exact gradient method,
respectively. As expected, and as shown in Table 4, the solution for Np=100 and k=1 has been improved by using Np=400 and
k=2. Fig. 8 shows the eighteen target points and the coupler curve obtained using the proposed method with Np=100 and k=1
for case 4, together with the curves obtained by Kunjur and Krishnamurty and Cabrera et al. Fig. 9 shows the eighteen target points
and the coupler curve obtained using the proposed method with Np=400 and k=2 for case 4, together with that obtained by
Kunjur and Krishnamurty.



Fig. 8. Eighteen target points and the coupler curve obtained using the proposed method with Np=100 and k=1 for case 4, together with the curves obtained by
Kunjur and Krishnamurty and Cabrera et al.
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5. Conclusions

A GA–DE hybrid algorithm is presented to be applied to the problem of four-bar linkage synthesis. The main advantage of this
evolutionary algorithm is that it is simple and easy to implement to efficiently solve complicated real-world optimization
problems, with no need of deep knowledge of the searching space. The easy 2D moveable sketch method (SolidWorks®) can be
used to checkwhether there are circuit defects or the synthesizedmechanism is incapable of motion. The GA–DE hybrid algorithm
is produced by combining the real-valued genetic algorithm with the differential evolution. Both the main perturbation of the
differential vectors and the minor perturbation of the mutation can be used as genetic operators; the blending crossover operator
might thus be unnecessary. For problems without prescribed timing, the constraint of the sequence of the input angles may be
ignored by rearranging them to satisfy CW or CCW rotation during initialization and during mutation. The results for cases 1–3
show that much more accurate solutions are obtained with GA–DE hybrid algorithm than with other evolutionary methods
discussed in the literature. However, this work cannot lead us to claim that the proposed evolutionary algorithm outperforms
other state-of-the-art evolutionary algorithms in all possible real-world optimization problems. The conclusion we draw is that
the proper combination between/among evolutionary algorithms has potential to solve the optimization problem more
effectively. The present work may be extended to solve other mechanism design problems. Improvement of the proposed
evolutionary algorithm might be another direction for future work.
Fig. 9. Eighteen target points and the coupler curve obtained using the proposed method with Np=400 and k=2 for case 4, together with that obtained by Kunjur
and Krishnamurty.
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