






Finding topics:
 Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document
 It actually doesn’t matter if k is infinite; i.e., we 

don’t limit the set of words

 Documents with similar sets of words 
may be about the same topic
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 As with CDs we have a choice when we 
think of documents as sets of words or 
shingles:
 Sets as vectors: Measure similarity by the 

cosine distance
 Sets as sets: Measure similarity by the 

Jaccard distance
 Sets as points: Measure similarity by 

Euclidean distance
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 Hierarchical:
 Agglomerative (bottom up):
 Initially, each point is a cluster
 Repeatedly combine the two 

“nearest” clusters into one

 Divisive (top down):
 Start with one cluster and recursively split it

 Point assignment:
 Maintain a set of clusters
 Points belong to “nearest” cluster
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 Key operation: 
Repeatedly combine 
two nearest clusters

 Three important questions:
 1) How do you represent a cluster of more 

than one point?
 2) How do you determine the “nearness” of 

clusters?
 3) When to stop combining clusters?
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 Key operation: Repeatedly combine two 
nearest clusters

 (1) How to represent a cluster of many points?
 Key problem: As you merge clusters, how do you 

represent the “location” of each cluster, to tell which 
pair of clusters is closest?

 Euclidean case: each cluster has a 
centroid = average of its (data)points

 (2) How to determine “nearness” of clusters?
 Measure cluster distances by distances of centroids
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What about the Non-Euclidean case?
 The only “locations” we can talk about are the 

points themselves
 i.e., there is no “average” of two points

 Approach 1:
 (1) How to represent a cluster of many points?

clustroid = (data)point “closest” to other points
 (2) How do you determine the “nearness” of 

clusters? Treat clustroid as if it were centroid, when 
computing inter-cluster distances
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 (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

 Possible meanings of “closest”:
 Smallest maximum distance to other points
 Smallest average distance to other points
 Smallest sum of squares of distances to other points
 For distance metric d clustroid c of cluster C is:
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Centroid is the avg. of all (data)points 
in the cluster. This means centroid is 
an “artificial” point.
Clustroid is an existing (data)point 
that is “closest” to all other points in 
the cluster.
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 (2) How do you determine the “nearness” of 
clusters? 
 Approach 2:

Intercluster distance = minimum of the distances 
between any two points, one from each cluster
 Approach 3:

Pick a notion of “cohesion” of clusters, e.g., 
maximum distance from the clustroid
 Merge clusters whose union is most cohesive

408J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Approach 3.1: Use the diameter of the 
merged cluster = maximum distance between 
points in the cluster

 Approach 3.2: Use the average distance
between points in the cluster

 Approach 3.3: Use a density-based approach
 Take the diameter or avg. distance, e.g., and divide 

by the number of points in the cluster
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 Naïve implementation of hierarchical 
clustering:
 At each step, compute pairwise distances 

between all pairs of clusters, then merge
 O(N3)

 Careful implementation using priority queue 
can reduce time to O(N2 log N)
 Still too expensive for really big datasets 

that do not fit in memory
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 Assumes Euclidean space/distance

 Start by picking k, the number of clusters

 Initialize clusters by picking one point per 
cluster
 Example: Pick one point at random, then  k-1 

other points, each as far away as possible from 
the previous points
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 1) For each point, place it in the cluster whose 
current centroid it is nearest

 2) After all points are assigned, update the 
locations of centroids of the k clusters

 3) Reassign all points to their closest centroid
 Sometimes moves points between clusters

 Repeat 2 and 3 until convergence
 Convergence: Points don’t move between clusters 

and centroids stabilize
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