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Content of this Chapter
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• Basics of symmetric cryptography

• Cryptanalysis

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher
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 Classification of the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols 

Block Ciphers Stream Ciphers
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 Some Basic Facts

• Ancient Crypto: Early signs of encryption in Eqypt in ca. 2000 B.C. 

Letter-based encryption schemes (e.g., Caesar cipher) popular ever since.

• Symmetric ciphers: All encryption schemes from ancient times until 1976 were symmetric 

ones.

• Asymmetric ciphers: In 1976 public-key (or asymmetric) cryptography was openly proposed 

by Diffie, Hellman and Merkle.

• Hybrid Schemes: The majority of today‘s protocols are hybrid schemes, i.e., the use both

• symmteric ciphers (e.g., for encryption and message authentication) and

• asymmetric ciphers (e.g., for key exchange and digital signature).
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 Symmetric Cryptography

• Alternative names: private-key, single-key or secret-key cryptography.

Alice
(good)

Bob
(good)

Oscar
(bad guy)

x x

Unsecure 
channel 

(e.g. Internet)

• Problem Statement:
1) Alice and Bob would like to communicate via an unsecure channel (e.g., 
WLAN or Internet). 
2) A malicious third party Oscar (the bad guy) has channel access but should 
not be able to understand the communication.
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 Symmetric Cryptography

Alice
(good)

Bob
(good)

Oscar
(bad guy)

Encryption
e( )

Key Generator

Decryption
d( )

Secure Channel

K

x y

K

x

Unsecure 
channel 

(e.g. Internet)

• x is the. plaintext

• y is the ciphertext

• K is the key

• Set of all keys {K1, K2, ...,Kn} is the key space

Solution: Encryption with symmetric cipher. 
 Oscar obtains only ciphertext y, that looks 
like random bits y
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 Symmetric Cryptography

• Encryption equation y = eK(x)

• Decryption equation x = dK(y)

• Important: The key must be transmitted via a secure channel between Alice and Bob.

• The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi 
Protected Access (WPA) protocol or a human courier.

• However, the system is only secure if an attacker does not learn the key K!

 The problem of secure communication is reduced to secure transmission and 
storage of the key K.

• Encryption and decryption are inverse operations if the same key K is used on both 
sides:

dK(y) = dK(eK(x)) = x
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 Why do we need Cryptanalysis?

• There is no mathematical proof of security for any practial cipher

• The only way to have assurance that a cipher is secure is to try to break it (and fail) !

A cryptosystem should be secure even if the attacker (Oscar) 
knows all details about the system, with the exception of the secret 

key. 

Kerckhoff‘s Principle is paramount in modern cryptography:

• In order to achieve Kerckhoff‘s Principle in practice:
Only use widely known ciphers that have been cryptanalyzed for several years 
by good cryptographers! (Understanding Cryptography only treats such ciphers)

• Remark: It is tempting to assume that a cipher is „more secure“ if its details are kept 
secret. However, history has shown time and again that secret ciphers can almost 
always been broken once they have been reversed engineered. (Example: Content 
Scrambling System (CSS) for DVD content protection.)
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 Cryptanalysis: Attacking Cryptosystems

• Classical Attacks

• Mathematical Analysis

• Brute-Force Attack

• Implementation Attack: Try to extract key through reverese engineering or power 

measurement, e.g., for a banking smart card.

• Social Engineering: E.g., trick a user into giving up her password
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• Treats the cipher as a black box

• Requires (at least) 1 plaintext-ciphertext pair (x0, y0)

• Check all possible keys until condition is fulfilled:

dK(y0)  = x0

• How many keys to we need ? 

 Brute-Force Attack (or Exhaustive Key Search) against Symmetric Ciphers

Key length
in bit

Key space Security life time
(assuming brute-force as best possible attack)

64 264 Short term (few days or less)

128 2128 Long-term (several decades in the absence of 
quantum computers)

256 2256 Long-term (also resistant against quantum 
computers – note that QC do not exist at the 
moment and might never exist)

?

Important: An adversary only needs to succeed with one attack. Thus, a long key space 
does not help if other attacks (e.g., social engineering) are possible..
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 Substitution Cipher

• Historical cipher 

• Great tool for understanding brute-force vs. analytical attacks

• Encrypts letters rather than bits (like all ciphers until after WW II)

Idea: replace each plaintext letter by a fixed other letter.

Plaintext             Ciphertext
A       k
B       d
C       w

....
for instance, ABBA would be encrypted as kddk

• Example (ciphertext): 

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb  hcc 

hwwhbsqvqbre hwq vhlq

• How secure is the Substitution Cipher? Let‘s look at attacks…
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 Attacks against the Substitution Cipher

1. Attack: Exhaustive Key Search (Brute-Force Attack)

• Simply try every possible subsititution table until an intelligent plaintext appears (note 

that each substitution table is a key)..

• How many substitution tables (= keys) are there?

26 x 25 x … x 3 x 2 x 1 = 26!  288

Search through 288 keys is completely infeasible with today‘s computers! (cf.  earlier table 

on key lengths)

• Q: Can we now conclude that the substitution cipher is secure since a brute-forece 

attack is not feasible?

• A: No! We have to protect against all possible attacks…



17/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 2. Attack: Letter Frequency Analysis (Mathematical Analysis Attack)

• Letters have very different frequencies in the English language

• Moreover: the frequency of plaintext letters is preserved in the ciphertext.

• For instanc, „e“  is the most common letter in English; almost 13% of all letters in a typical 

English text are „e“.

• The next most common one is „t“ with about 9%. 
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 Breaking the Substitution Cipher with Letter Frequency Attack

• Let‘s retun to our example and identify the most frequent letter: 

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc 

hwwhbsqvqbre hwq vhlq

• We replace the ciphertext letter q by E and obtain: 

iE ifcc vEEr fb rdE vfllcE na rdE cfjwhwz hr bnnb  hcc 

hwwhbsEvEbre hwE vhlE

• By further guessing based on the frequency of the remaining letters we obtain the 
plaintext:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL 

ARRANGEMENTS ARE MADE
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 Breaking the Substitution Cipher with Letter Frequency Attack

• In practice, not only frequencies of individual letters can be used for an attack, but also 

the frequency of letter pairs (i.e., „th“ is very common in English), letter triples, etc.

• cf. Problem 1.1 in Understanding Cryptography for a longer ciphertext you can try to 

break!

Important lesson: Even though the substitution cipher has a sufficiently large key 
space of appr. 288, it can easily be defeated with analytical methods. This is an 
excellent example that an encryption scheme must withstand all types of 
attacks.
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 Short Introduction to Modular Arithmetic

Why do we need to study modular arithmetic? 

• Extremely important for asymmetric cryptography (RSA, elliptic curves etc.)

• Some historical ciphers can be elegantly described with modular arithmetic (cf. Caesar and 

affine cipher later on).
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 Short Introduction to Modular Arithmetic

12 1
2

3

4

567
8

9

10
11

Generally speaking, most cryptosytems are based on sets of numbers that are

1. discrete (sets with integers are particularly useful)

2. finite (i.e., if we only compute with a finiely many numbers)

Seems too abstract?  --- Let‘s look at a finite set with discrete numbers we are quite familiar 
with: a clock.

Interestingly, even though the numbers are incremented every hour we never leave the set of 
integers:

1, 2, 3,  … 11, 12, 1, 2, 3,  … 11, 12, 1, 2, 3,  …:
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 Short Introduction to Modular Arithmetic

• We develop now an arithmetic system which allows us to compute in finite sets of 
integers like the 12 integers we find on a clock (1,2,3,  … ,12).

• It is crucial to have an operation which „keeps the numbers within limits“, i.e., after 
addition and multiplication they should never leave the set (i.e., never larger than 12).

Examples for modular reduction.

• Let a= 12 and  m= 9 : 12 ≡ 3 mod 9

• Let a= 37 and m= 9: 34 ≡ 7 mod 9

• Let a= -7 and m= 9: -7 ≡ 2 mod 9

(you should check whether the condition „m divides (r-a)“holds in each of the 3 cases) 

Definition: Modulus Operation

Let a, r, m be integers and m > 0. We write 

a ≡ r mod m

if (r-a) is divisable by m.

• “m” is called the modulus

• “r” is called the remainder
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 Properties of Modular Arithmetic (1)

• The remainder is not unique

It is somewhat surprising that for every given modulus m and number a, there are (infinitely) 
many valid remainders.
Example: 

• 12 ≡ 3 mod 9 → 3 is a valid remainder since 9 divides (3-12)

• 12 ≡ 21 mod 9 → 21 is a valid remainder since 9 divides (21-12)

• 12 ≡ -6 mod 9 → -6 is a valid remainder since 9 divides (-6-12)
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• Which remainder do we choose?

By convention, we usually agree on the smallest positive integer r as remainder. This 
integer can be computed as

a = q  m + r where 0 ≤ r ≤ m-1

• Example: a=12 and  m= 9

12 = 1 x 9 + 3 →  r = 3

Remark: This is just a convention. Algorithmically we are free to choose any other valid 
remainder to compute our crypto functions.

 Properties of Modular Arithmetic (2)

remainderquotient
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• How do we perform modular division?

First, note that rather than performing a division, we prefer to multiply by the inverse. Ex:

b / a≡ b x a-1 mod m

The inverse a-1 of a number a is defined such that:

a a-1 ≡ 1 mod m

Ex: What is 5 / 7 mod 9 ?

The inverse of 7 mod 9 is 4 since 7 x 4 ≡ 28 ≡ 1 mod 9, hence:

5 / 7 ≡ 5 x 4 = 20 ≡ 2 mod 9

 Properties of Modular Arithmetic (3)

• How is the inverse compute?

The inverse of a number a mod m only exists if and only if:

gcd (a, m) = 1

(note that in the example above gcd(5, 9) = 1, so that the inverse of 5 exists modulo 9)

For now, the best way of computing the inverse is to use exhaustive search. In Chapter 6 of 
Understanding Cryptography we will learn the powerful Euclidean Algorithm which 
actually computes an inverse for a given number and modulus.
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 Properties of Modular Arithmetic (4)

• Modular reduction can be performed at any point during a calculation

Let’s look first at an example. We want to compute 38 mod 7 (note that exponentiation is 
extremely important in public-key cryptography).

1. Approach: Exponentiation followed by modular reduction

38 = 6561≡ 2 mod 7

Note that we have the intermediate result 6561 even though we know that the final result 
can’t be larger than 6.

2. Approach: Exponentiation with intermediate modular reduction

38 = 34 34 = 81 x 81

At this point we reduce the intermediate results 81 modulo 7:

38 = 81 x 81 ≡ 4 x 4 mod 7

4 x 4 = 16 ≡ 2 mod 7

Note that we can perform all these multiplications without pocket calculator, whereas 
mentally computing 38 = 6561 is a bit challenging for most of us.

General rule: For most algorithms it is advantageous to reduce 
intermediate results as soon as possible. 



 An Algebraic View on Modulo Arithmetic: The Ring Zm (1) 

• Closure: We can add and multiply any two numbers and the result is always in the ring. 

• Addition and multiplication are associative, i.e., for all  a,b,c  Zm

a + (b + c) = (a + b) + c

a  (b  c) = (a  b)  c

and addition is commutative: a + b = b + a 

• The distributive law holds: a×(b+c) = (a×b)+(a×c) for all  a,b,c  Zm

• There is the neutral element 0 with respect to addition, i.e., for all a  Zm

a + 0  a mod m

• For all a  Zm, there is always an additive inverse element –a such that

a + (-a)  0 mod m

• There is the neutral element 1 with respect to multiplication, i.e., for all a  Zm

a  1  a mod m

• The multiplicative inverse a-1

a  a-1  1 mod m 

exists only for some, but not for all, elements in Zm.
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We can view modular arithmetic in terms of sets and operations in the set. By doing 
arithmetic modulo m we obtain the integer ring Zm .with the following properties:



 An Algebraic View on Modulo Arithmetic: The Ring Zm (2) 
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• We recall from above that an element a  Zm has a multiplicative inverse only if:
gcd (a, m) = 1

We say that a is coprime or relatively prime to m.

• Ex: We consider the ring Z9 = {0,1,2,3,4,5,6,7,8}
The elements 0, 3, and 6 do not have inverses since they are not coprime to 9.
The inverses of the other elements 1, 2, 4, 5, 7, and 8 are:

1-1  1 mod 9 2-1  5 mod 9 4-1  7 mod 9
5-1  2 mod 9 7-1  4 mod 9 8-1  8 mod 9 

Roughly speaking, a ring is a structure in which we can always add, subtract and 
multiply, but we can only divide by certain elements (namely by those for which a 
multiplicative inverse exists).
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 Shift (or Caesar) Cipher (1)

• Ancient cipher, allegedly used by Julius Caesar

• Replaces each plaintext letter by another one.

• Replacement rule is very simple: Take letter that follows after k positions in the alphabet

Needs mapping from letters → numbers:

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

• Example for k = 7

Plaintext = ATTACK =  0, 19, 19, 0, 2, 10

Ciphertext = haahr = 7, 0, 0, 7, 17

Note that the letters ”wrap around” at the end of the alphabet, which can be mathematically 
be expressed as reduction modulo 26, e.g., 19 + 7 = 26 ≡ 0 mod 26
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 Shift (or Caesar) Cipher (2)

• Elegant mathematical description of the cipher.

• Q; Is the shift cipher secure?

• A: No! several attacks are possible, including:

• Exhaustive key search (key space is only 26!)

• Letter frequency analysis, similar to attack against substitution cipher

Let k, x, y ε {0,1, …, 25}

• Encryption: y = ek(x) ≡ x + k mod 26

• Decryption: x = dk(x) ≡ y - k mod 26
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 Affine Cipher (1)

• Extension of the shift cipher: rather than just adding the key to the plaintext, we also 
multiply by the key

• We use for this a key consisting of two parts: k = (a, b)

• Since the inverse of a is needed for inversion, we can only use values for a for which:

gcd(a, 26) = 1

There are 12 values for a that fulfill this condition.

• From this follows that the key space is only 12 x 26 = 312 (cf. Sec 1.4 in Understanding 
Cryptography)

• Again, several attacks are possible, including:

• Exhaustive key search and letter frequency analysis, similar to the attack against 
the substitution cipher

Let k, x, y ε {0,1, …, 25}

• Encryption: y = ek(x) ≡ a x + b mod 26

• Decryption: x = dk(x) ≡ a-1( y – b) mod 26
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 Lessons Learned

• Never ever develop your own crypto algorithm unless you have a team of experienced cryptanalysts 

checking your design.

• Do not use unproven crypto algorithms or unproven protocols.

• Attackers always look for the weakest point of a cryptosystem. For instance, a large key space by itself 

is no guarantee for a cipher being secure; the cipher might still be vulnerable against analytical 

attacks.

• Key lengths for symmetric algorithms in order to thwart exhaustive key-search attacks:

• 64 bit: insecure except for data with extremely short-term value

• 128 bit: long-term security of several decades, unless quantum computers become available 

(quantum computers do not  exist and perhaps never will)

• 256 bit: as above, but probably secure against attacks by  quantum computers.

• Modular arithmetic is a tool for expressing historical encryption schemes, such as the affine cipher, in 

a mathematically elegant way.
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 Stream Ciphers in the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols 

Block Ciphers Stream Ciphers

Stream Ciphers were invented in 1917 by Gilbert Vernam
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 Stream Cipher vs. Block Cipher

• Stream Ciphers

• Encrypt bits individually

• Usually small and fast  common in embedded devices (e.g., A5/1 for 
GSM phones)

• Block Ciphers:

• Always encrypt a full block (several bits)

• Are common for Internet applications 

37/27



 Encryption and Decryption with Stream Ciphers

• Encryption and decryption are simple additions modulo 2 (aka XOR)

• Encryption and decryption are the same functions

• Encryption:  yi = esi(xi ) = xi + si mod 2 xi , yi , si ∈ {0,1}

• Decryption:  xi = esi(yi ) = yi + si mod 2

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Plaintext xi, ciphertext yi and key stream si consist of individual bits

38/27
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 Synchronous vs. Asynchronous Stream Cipher

• Security of stream cipher depends entirely on the key stream si :

• Should be random , i.e.,  Pr(si = 0) = Pr(si = 1) = 0.5

• Must be reproducible by sender and receiver

• Synchronous Stream Cipher

• Key stream depend only on the key (and possibly an initialization vector IV)

• Asynchronous Stream Ciphers

• Key stream depends also on the ciphertext (dotted feedback enabled)
39/27



 Why is Modulo 2 Addition a Good Encryption Function?

• Modulo 2 addition is equivalent to XOR operation

• For perfectly random key stream si , each ciphertext output bit has a 50% 

chance to be 0 or 1 

 Good statistic property for ciphertext

• Inverting XOR is simple, since it is the same XOR operation
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xi si yi

0 0 0
0 1 1
1 0 1
1 1 0
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 Stream Cipher: Throughput

Performance comparison of symmetric ciphers (Pentium4):

Cipher Key length Mbit/s
DES 56 36.95

3DES 112 13.32

AES 128 51.19

RC4 (stream cipher) (choosable) 211.34

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005
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 Random number generators (RNGs)

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

RNG

Cryptographically 
Secure RNGPseudorandom NGTrue RNG
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 True Random Number Generators (TRNGs)

• Based on physical random processes: coin flipping, dice rolling, semiconductor noise, 

radioactive decay, mouse movement, clock jitter of digital circuits

• Output stream si should have good statistical properties:

Pr(si = 0) = Pr(si = 1) = 50% (often achieved by post-processing)

• Output can neither be predicted nor be reproduced

Typically used for generation of keys, nonces (used only-once values) and for many other 

purposes
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 Pseudorandom Number Generator (PRNG)

• Generate sequences from initial seed value

• Typically, output stream has good statistical properties

• Output can be reproduced and can be predicted

Often computed in a recursive way:

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

),...,,( 11
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tiiii sssfs
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 


Example: rand() function in ANSI C:

31
1

0

2mod123451103515245

12345





 ii ss
s

Most PRNGs have bad cryptographic properties!
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 Cryptanalyzing a Simple PRNG

Assume 

• unknown A, B and S0 as key

• Size of A, B and Si to be 100 bit

• 300 bit of output are known, i.e. S1, S2 and S3

Solving

…directly reveals A and B. All Si can be computed easily!
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mBASS
mBASS

mod
mod

23

12




Simple PRNG: Linear Congruential Generator

mBASS
seedS

ii mod1

0






Bad cryptographic properties due to the linearity of most PRNGs 
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 Cryptographically Secure Pseudorandom Number Generator 
(CSPRNG)

• Special PRNG with additional property:

• Output must be unpredictable

More precisely: Given n consecutive bits of output si , the following output  bits sn+1 cannot be 

predicted (in polynomial time).

• Needed in cryptography, in particular for stream ciphers

• Remark: There are almost no other applications that need unpredictability, whereas many, 

many (technical) systems need PRNGs. 
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 One-Time Pad (OTP)

Unconditionally secure cryptosystem:

• A cryptosystem is unconditionally secure if it cannot be broken even with infinite

computational resources

One-Time Pad

• A cryptosystem developed by Mauborgne that is based on Vernam’s stream cipher:

• Properties:

Let the plaintext, ciphertext and key consist of individual bits

xi, yi, ki  {0,1}.

Encryption: eki
(xi) = xi  ki.

Decryption: dki
(yi) = yi  ki

OTP is unconditionally secure if and only if the key ki. is used once! 
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 One-Time Pad (OTP)

Unconditionally secure cryptosystem:

y0 =  x0  k0

y1 =  x1  k1

:

Every equation is a linear equation with two unknowns

 for every yi are  xi = 0 and xi = 1 equiprobable!

This is true iff k0, k1, ... are independent, i.e., all ki have to be generated 

truly random

 It can be shown that this systems can provably not be solved.

Disadvantage: For almost all applications the OTP is impractical since the 

key must be as long as the message! (Imagine you have to encrypt a 

1GByte email attachment.)
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 Linear Feedback Shift Registers (LFSRs)

• Concatenated flip-flops (FF), i.e., a shift register together with a feedback path

• Feedback computes fresh input by XOR of certain state bits

• Degree m given by number of storage elements

• If pi = 1, the feedback connection is present (“closed switch), otherwise there is not 

feedback from this flip-flop (“open switch”)

• Output sequence repeats periodically

• Maximum output length:  2m-1
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 Linear Feedback Shift Registers (LFSRs):  Example with m=3

• LFSR output described by recursive equation:

• Maximum output length (of 23-1=7) achieved only for certain feedback 

configurations, .e.g., the one shown here.
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clk FF2 FF1 FF0=si

0 1 0 0

1 0 1 0

2 1 0 1

3 1 1 0

4 1 1 1

5 0 1 1

6 0 0 1

7 1 0 0

8 0 1 0

2mod13 iii sss  
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 Security of LFSRs

LFSRs typically described by polynomials:

• Single LFSRs generate highly predictable output

• If 2m output bits of an LFSR of degree m are known, the feedback 

coefficients pi of the LFSR can be found by solving a system of linear 

equations*

• Because of this many stream ciphers use combinations of LFSRs

*See Chapter 2 of Understanding Cryptography for further details.
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 A Modern Stream Cipher - Trivium

• Three nonlinear LFSRs (NLFSR) of length 93, 84, 111

• XOR-Sum of all three NLFSR outputs generates key stream si

• Small in Hardware:

• Total register count: 288

• Non-linearity: 3 AND-Gates

• 7 XOR-Gates (4 with three inputs)
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 Trivium

Initialization:

• Load 80-bit IV into A

• Load 80-bit key into B

• Set c109 , c110 , c111 =1, all other bits 0

Warm-Up:

• Clock cipher 4 x 288 = 1152 times without generating output

Encryption:

• XOR-Sum of all three NLFSR outputs generates key stream si

Design can be parallelized to produce up to 64 bits of output per clock cycle
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Register length Feedback bit Feedforward bit AND inputs

A 93 69 66 91, 92

B 84 78 69 82, 83

C 111 87 66 109, 110
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 Lessons Learned

• Stream ciphers are less popular than block ciphers in most domains such as Internet security. There 

are exceptions, for instance, the popular stream cipher RC4.

• Stream ciphers sometimes require fewer resources, e.g., code size or chip area, for implementation 

than block ciphers, and they are attractive for use in constrained environments such as cell phones.

• The requirements for a cryptographically secure pseudorandom number generator are far more 

demanding than the requirements for pseudorandom number generators used in other applications 

such as testing or simulation

• The One-Time Pad is a provable secure symmetric cipher. However, it is highly impractical for most 

applications because the key length has to equal the message length.

• Single LFSRs make poor stream ciphers despite their good statistical properties. However, careful 

combinations of several LFSR can yield strong ciphers.
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 Classification of DES in the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols 

Block Ciphers Stream Ciphers

You are here!
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 DES Facts

• Data Encryption Standard (DES) encrypts blocks of size 64 bit.

• Developed by IBM based on the cipher Lucifer under influence of the National Security 

Agency (NSA), the design criteria for DES have not been published

• Standardized 1977 by the National Bureau of Standards (NBS)

today called National Institute of Standards and Technology (NIST)

• Most popular block cipher for most of the last 30 years.

• By far best studied symmetric algorithm.

• Nowadays considered insecure due to the small key length of 56 bit.

• But: 3DES yields very secure cipher, still widely used today.

• Replaced by the Advanced Encryption Standard (AES) in 2000

• For a more detailed history see Chapter 3.1 in Understanding Cryptography
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 Block Cipher Primitives: Confusion and Diffusion

• Claude Shannon: There are two primitive operations with which strong encryption 

algorithms can be built:

1. Confusion: An encryption operation where the relationship between key and ciphertext 

is obscured.

Today, a common element for achieving confusion is substitution, which is found in 

both AES and DES.

2. Diffusion: An encryption operation where the influence of one plaintext symbol is 

spread over many ciphertext symbols with the goal of hiding statistical properties of the 

plaintext.

A simple diffusion element is the bit permutation, which is frequently used within DES. 

• Both operations by themselves cannot provide security. The idea is to concatenate 

confusion and diffusion elements to build so called product ciphers.
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 Product Ciphers

• Most of today‘s block ciphers are product ciphers as they consist of rounds 

which are applied repeatedly to the data.

• Can reach excellent diffusion: changing of one bit of plaintext results on 

average in the change of half the output bits.

Example:

single bit flip many bit flips
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 Overview of the DES Algorithm

• Encrypts blocks of size 64 bits.

• Uses a key of size 56 bits.

• Symmetric cipher: uses same key for encryption and decryption

• Uses 16 rounds which all perform the identical operation

• Different subkey in each round derived from main key



66/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Bitwise initial permutation, then 16 rounds

1. Plaintext is split into 32-bit halves Li and Ri

2. Ri is fed into the function f, the output of which is then XORed with Li

3. Left and right half are swapped

• Rounds can be expressed as:

 The DES Feistel Network (1)

• DES structure is a Feistel network

• Advantage: encryption and decryption 

differ only in keyschedule
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 The DES Feistel Network (2)

• L and R swapped again at the end of the cipher, i.e., after round 16 followed by a 

final permutation
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 Initial and Final Permutation

• Bitwise Permutations.

• Inverse operations.

• Described by tables IP and IP-1.

Initial Permutation Final Permutation
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 The f-Function

• main operation of DES

• f-Function inputs: 

Ri-1 and round key ki

• 4 Steps:

1. Expansion E

2. XOR with round key

3. S-box substitution

4. Permutation
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 The Expansion Function E

1. Expansion E

• main purpose: increases 

diffusion !
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 Add Round Key

2. XOR Round Key

• Bitwise XOR of the round key and the 

output of the expansion function E

• Round keys are derived from the main key 

in the DES keyschedule (in a few slides)
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 The DES S-Boxes

3. S-Box substitution

• Eight substitution tables.

• 6 bits of input, 4 bits of output.

• Non-linear and resistant to differential 
cryptanalysis.

• Crucial element for DES security!

• Find all S-Box tables and S-Box design criteria 
in Understanding Cryptography Chapter 3.
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 The Permutation P

4. Permutation P

• Bitwise permutation.

• Introduces diffusion.

• Output bits of one S-Box effect several S-Boxes in next 

round

• Diffusion by E, S-Boxes and P guarantees that after 

Round 5 every bit is a function of each key bit and 

each plaintext bit.
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 Key Schedule (1)

• Derives 16 round keys (or subkeys) ki of 48 bits each from the original 56 bit 

key.

• The input key size of the DES is 64 bit: 56 bit key and 8 bit parity:

• Parity bits are removed in a first permuted choice PC-1:

(note that the bits 8, 16, 24, 32, 40, 48, 56 and 64 are not used at all)

!
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 Key Schedule (2)

• Split key into 28-bit halves C0 and D0.

• In rounds i = 1, 2, 9 ,16, the two halves are each rotated 

left by one bit.

• In all other rounds where the two halves are each rotated 

left by two bits.

• In each round i permuted choice PC-2

selects a permuted subset of 48 bits of Ci and Di as round 

key ki, i.e. each ki is a permutation of k!

• Note: The total number of rotations: 

4 x 1 + 12 x 2 = 28   D0 = D16 and C0 = C16!
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 Decryption 
• In Feistel ciphers only the keyschedule has to be 

modified for decryption.

• Generate the same 16 round keys in reverse 

order. 

(for a detailed discussion on why this works see 

Understanding Crptography Chapter 3)

• Reversed key schedule:

As D0=D16 and C0=C16 the first round key can be 

generated by applying PC-2 right after PC-1 (no 

rotation here!).

All other rotations of C and D can be reversed to 

reproduce the other round keys resulting in:

• No rotation in round 1.

• One bit rotation to the right in rounds 2, 9 

and 16.

• Two bit rotations to the right in all other 

rounds.
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 Security of DES

• After proposal of DES two major criticisms arose:

1. Key space is too small (256 keys)

2. S-box design criteria have been kept secret: Are there any hidden analytical attacks 

(backdoors), only known to the NSA?

• Analytical Attacks: DES is highly resistent to both differential and linear cryptanalysis, 

which have been published years later than the DES. This means IBM and NSA had 

been aware of these attacks for 15 years!

So far there is no known analytical attack which breaks DES in realistic scenarios.

• Exhaustive key search: For a given pair of plaintext-ciphertext (x, y) test all 256 keys 

until the condition DESk
-1(x)=y is fulfilled. 

 Relatively easy given today’s computer technology!
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 History of Attacks on DES

Year Proposed/ implemented DES Attack

1977 Diffie & Hellman, (under-)estimate the costs of a key search machine

1990 Biham & Shamir propose differential cryptanalysis (247 chosen ciphertexts)

1993 Mike Wiener proposes design of a very efficient key search machine: 
Average search requires 36h. Costs: $1.000.000

1993 Matsui proposes linear cryptanalysis  (243 chosen ciphertexts)

Jun. 1997 DES Challenge I broken, 4.5 months of distributed search

Feb. 1998 DES Challenge II--1 broken, 39 days (distributed search)

Jul. 1998 DES Challenge II--2 broken, key search machine Deep Crack built by the 
Electronic Frontier Foundation (EFF): 1800 ASICs with 24 search engines each, 
Costs: $250 000, 15 days average search time (required 56h for the Challenge)

Jan. 1999 DES Challenge III broken in 22h 15min 
(distributed search assisted by Deep Crack)

2006-2008 Reconfigurable key search machine COPACOBANA developed at the
Universities in Bochum and Kiel (Germany), uses 120 FPGAs to break DES in
6.4 days (avg.) at a cost of $10 000.
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• Triple encryption using DES is often used in practice to extend the effective key 
length of DES to 112. For more info on multiple encryption and effective key 
lengths see Chapter 5 of Understanding Cryptography.

• Alternative version of 3DES:

Advantage: choosing k1=k2=k3 performs single DES encryption.

• No practical attack known today.

• Used in many legacy applications, i.e., in banking systems.

 Triple DES – 3DES
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 Alternatives to DES

Algorithm I/O Bit key lengths remarks

AES / Rijndael 128 128/192/256
DES ''replacement'', 
worldwide used standard

Triple DES 64 112 (effective) conservative choice

Mars 128 128/192/256 AES finalist

RC6 128 128/192/256 AES finalist

Serpent 128 128/192/256 AES finalist

Twofish 128 128/192/256 AES finalist

IDEA 64 128 (Patented till 2011)
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 Lessons Learned

• DES was the dominant symmetric encryption algorithm from the mid-1970s to the mid-

1990s. Since 56-bit keys are no longer secure, the Advanced Encryption Standard (AES) 

was created.

• Standard DES with 56-bit key length can be broken relatively easily nowadays through an 

exhaustive key search.

• DES is quite robust against known analytical attacks: In practice it is very difficult to break 

the cipher with differential or linear cryptanalysis.

• By encrypting with DES three times in a row, triple DES (3DES) is created, against which 

no practical attack is currently known.

• The “default” symmetric cipher is nowadays often AES. In addition, the other four AES 

finalist ciphers all seem very secure and efficient.
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 Some Basic Facts

• AES is the most widely used symmetric cipher today

• The algorithm for AES was chosen by the US National Institute of Standards 
and Technology (NIST) in a multi-year selection process

• The requirements for all AES candidate submissions were:

• Block cipher with 128-bit block size

• Three supported key lengths: 128, 192 and 256 bit

• Security relative to other submitted algorithms

• Efficiency in software and hardware
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 Chronology of the AES Selection

• The need for a new block cipher announced by NIST in January, 1997

• 15 candidates algorithms accepted in August, 1998

• 5 finalists announced in August, 1999:

• Mars – IBM Corporation

• RC6 – RSA Laboratories

• Rijndael – J. Daemen & V. Rijmen

• Serpent – Eli Biham et al.

• Twofish – B. Schneier et al.

• In October 2000, Rijndael was chosen as the AES

• AES was formally approved as a US federal standard in November 2001
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 AES: Overview

The number of rounds depends on the chosen key length:
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Key length (bits) Number of rounds

128 10

192 12

256 14
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 AES: Overview

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Iterated cipher with 10/12/14 rounds

• Each round consists of “Layers”
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 Internal Structure of AES

• AES is a byte-oriented cipher

• The state A (i.e., the 128-bit data path) can be arranged in a 4x4 matrix:

with A0,…, A15 denoting the 16-byte input of AES 
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A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

91/28



 Internal Structure of AES
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• Round function for rounds 1,2,…,nr-1:

• Note: In the last round, the MixColumn tansformation is omitted
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 Byte Substitution Layer

• The Byte Substitution layer consists of 16 S-Boxes with the following 

properties:

The S-Boxes are

• identical

• the only nonlinear elements of AES, i.e.,

ByteSub(Ai) + ByteSub(Aj) ≠ ByteSub(Ai + Aj), for i,j = 0,…,15

• bijective, i.e., there exists a one-to-one mapping of input and output 

bytes

 S-Box can be uniquely reversed

• In software implementations, the S-Box is usually realized as a lookup table
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 Diffusion Layer

The Diffusion layer 

• provides diffusion over all input state bits

• consists of two sublayers:

• ShiftRows Sublayer: Permutation of the data on a byte level

• MixColumn Sublayer: Matrix operation which combines (“mixes”) blocks of four bytes

• performs a linear operation on state matrices A, B, i.e.,

DIFF(A) + DIFF(B) = DIFF(A + B)
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 ShiftRows Sublayer

• Rows of the state matrix are shifted cyclically:

Input matrix 

Output matrix
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B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

B15 B3 B7 B11

no shift
← one position left shift
← two positions left shift
← three positions left shift
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 MixColumn Sublayer

• Linear transformation which mixes each column of the

state matrix

• Each 4-byte column is considered as a vector and multiplied

by a fixed 4x4 matrix, e.g.,

where 01, 02 and 03 are given in hexadecimal notation

• All arithmetic is done in the Galois field GF(28) (for more information see Chapter 4.3 in 

Understanding Cryptography)
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 Key Addition Layer

• Inputs: 

• 16-byte state matrix C

• 16-byte subkey ki

• Output: C  ki

• The subkeys are generated in the key schedule

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl97/28



 Key Schedule

• Subkeys are derived recursively from the original 128/192/256-bit input key

• Each round has 1 subkey, plus 1 subkey at the beginning of AES

• Key whitening: Subkey is used both at the input and output of AES

 # subkeys = # rounds + 1 

• There are different key schedules for the different key sizes

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key length (bits) Number of subkeys

128 11

192 13

256 15
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 Key Schedule

Example: Key schedule for 128-bit key AES
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• Word-oriented: 1 word = 32 bits

• 11 subkeys are stored in W[0]…W[3], 
W[4]…W[7], … , W[40]…W[43]

• First subkey W[0]…W[3] is the original 
AES key
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 Key Schedule

• Function g rotates its four input bytes and performs a bytewise S-Box substitution

 nonlinearity

• The round coefficient RC is only added to the leftmost 

byte and varies from round to round:

RC[1] = x0 = (00000001)2

RC[2] = x1 = (00000010)2

RC[3] = x2 = (00000100)2

...

RC[10] = x9 = (00110110)2

• xi represents an element in a Galois field 

(again, cf. Chapter 4.3 of Understanding Cryptography)
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 Decryption

• AES is not based on a Feistel network

 All layers must be inverted for decryption:

• MixColumn layer → Inv MixColumn layer

• ShiftRows layer→ Inv ShiftRows layer

• Byte Substitution layer → Inv Byte Substitution 

layer

• Key Addition layer is its own inverse
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 Decryption

• Inv MixColumn layer:

• To reverse the MixColumn operation, each column of the state matrix C must be 

multiplied with the inverse of the 4x4 matrix, e.g.,

where 09, 0B, 0D and 0E are given in hexadecimal notation

• Again, all arithmetic is done in the Galois field GF(28) (for more information see 

Chapter 4.3 in Understanding Cryptography)
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 Decryption

• Inv ShiftRows layer: 

• All rows of the state matrix B are shifted to the opposite direction:

Input matrix

Output matrix
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B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B0 B4 B8 B12

B13 B1 B5 B9

B10 B14 B2 B6

B7 B11 B15 B3

no shift
→ one position right shift
→ two positions right shift
→ three positions right shift
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 Decryption

• Inv Byte Substitution layer:

• Since the S-Box is bijective, it is possible to construct an inverse, such that

Ai = S-1(Bi) = S-1(S(Ai))

 The inverse S-Box is used for decryption. It is usually realized as a lookup table

• Decryption key schedule:

• Subkeys are needed in reversed order (compared to encryption)

• In practice, for encryption and decryption, the same key schedule is used. This 

requires that all subkeys must be computed before the encryption of the first block can 

begin
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 Implementation in Software

• One requirement of AES was the possibility of an efficient software implementation

• Straightforward implementation is well suited for 8-bit processors (e.g., smart cards), but 

inefficient on 32-bit or 64-bit processors

• A more sophisticated approach: Merge all round functions (except the key addition) into one 

table look-up

• This results in four tables with 256 entries, where each entry is 32 bits wide

• One round can be computed with 16 table look-ups

• Typical SW speeds are more than 1.6 Gbit/s on modern 64-bit processors
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 Security

• Brute-force attack: Due to the key length of 128, 192 or 256 bits, a 

brute-force attack is not possible

• Analytical attacks: There is no analytical attack known that is better

than brute-force

• Side-channel attacks: 

• Several side-channel attacks have been published

• Note that side-channel attacks do not attack the underlying

algorithm but the implementation of it
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 Lessons Learned

• AES is a modern block cipher which supports three key lengths of 128, 192 and 256 bit. It provides 

excellent long-term security against brute-force attacks.

• AES has been studied intensively since the late 1990s and no attacks have been found that are better 

than brute-force.

• AES is not based on Feistel networks. Its basic operations use Galois field arithmetic and provide 

strong diffusion and confusion.

• AES is part of numerous open standards such as IPsec or TLS, in addition to being the mandatory 

encryption algorithm for US government applications. It seems likely that the cipher will be the 

dominant encryption algorithm for many years to come.

• AES is efficient in software and hardware.
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 Block Ciphers

• A block cipher is much more than just an encryption algorithm, it can be used ...

• to build different types of block-based encryption schemes

• to realize stream ciphers

• to construct hash functions

• to make message authentication codes

• to build key establishment protocols

• to make a pseudo-random number generator

• ...

• The security of block ciphers also can be increased by

• key whitening

• multiple encryption
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 Encryption with Block Ciphers

• There are several ways of encrypting long plaintexts, e.g., an e-mail or a 

computer file, with a block cipher (“modes of operation”)

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• All of the 6 modes have one goal:

• In addition to confidentiality, they provide authenticity and integrity:

• Is the message really coming from the original sender? (authenticity)

• Was the ciphertext altered during transmission? (integrity)
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 Electronic Code Book mode (ECB)

• ek(xi) denote the encryption of a b-bit plaintext block xi with key k

• ek
-1(yi) denote the decryption of b-bit ciphertext block yi with key k

• Messages which exceed b bits are partitioned into b-bit blocks

• Each Block is encrypted separately
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Encryption: yi = ek (xi),  i ≥ 1
Decryption:  xi = ek

−1 (yi) = ek
−1 (ek (xi)), i ≥ 1



 ECB: advantages/disadvantages

• Advantages

• no block synchronization between sender and receiver is required

• bit errors caused by noisy channels only affect the corresponding block but 

not succeeding blocks

• Block cipher operating can be parallelized 

• advantage for high-speed implementations

• Disadvantages

• ECB encrypts highly deterministically

• identical plaintexts result in identical ciphertexts

• an attacker recognizes if the same message has been sent twice

• plaintext blocks are encrypted independently of previous blocks

• an attacker may reorder ciphertext blocks which results in valid 

plaintext
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 Substitution Attack on ECB

• Once a particular plaintext to ciphertext block mapping xi → yi is known, a 

sequence of ciphertext blocks can easily be manipulated

• Suppose an electronic bank transfer

• the encryption key between the two banks does not change too 

frequently

• The attacker sends $1.00 transfers from his account at bank A to his 

account at bank B repeatedly

• He can check for ciphertext blocks that repeat, and he stores blocks 1,3 and 4 

of these transfers

• He now simply replaces block 4 of other transfers with the block 4 that 

he stored before

• all transfers from some account of bank A to some account of bank B are 

redirected to go into the attacker’s B account!
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 Example of encrypting bitmaps in ECB mode

• Identical plaintexts are mapped to identical ciphertexts

• Statistical properties in the plaintext are preserved in the ciphertext
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 Cipher Block Chaining mode (CBC)

• There are two main ideas behind the CBC mode:

• The encryption of all blocks are “chained together”

• ciphertext yi depends not only on block xi but on all previous plaintext 

blocks as well

• The encryption is randomized by using an initialization vector (IV)
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Encryption (first block): y1 = ek (x1 ⊕ IV)
Encryption (general block): yi = ek (xi ⊕ yi−1),  i ≥ 2
Decryption (first block): x1 = ek

−1 (y1) ⊕ IV
Decryption (general block) : xi = ek

−1 (yi) ⊕ yi−1,  i ≥ 2



 Cipher Block Chaining mode (CBC)

• For the first plaintext block x1 there is no previous ciphertext

• an IV is added to the first plaintext to make each CBC encryption nondeterministic

• the first ciphertext y1 depends on plaintext x1 and the IV

• The second ciphertext y2 depends on the IV, x1 and x2

• The third ciphertext y3 depends on the IV and x1, x2 and x3, and so on
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 Substitution Attack on CBC

• Suppose the last example (electronic bank transfer)

• If the IV is properly chosen for every wire transfer, the attack will not 

work at all

• If the IV is kept the same for several transfers, the attacker would 

recognize the transfers from his account at bank A to back B

• If we choose a new IV every time we encrypt, the CBC mode becomes a 

probabilistic encryption scheme, i.e., two encryptions of the same 

plaintext look entirely different

• It is not needed to keep the IV secret!

• Typically, the IV should be a non-secret nonce (value used only once)
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 Output Feedback mode (OFB)

• It is used to build a synchronous stream cipher from a block cipher

• The key stream is not generated bitwise but instead in a blockwise fashion

• The output of the cipher gives us key stream bits Si with which we can encrypt plaintext 

bits using the XOR operation
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Encryption (first block): s1 = ek (IV)  and y1 = s1 ⊕ x1
Encryption (general block): si = ek (si−1) and yi  = si ⊕ xi ,    i ≥ 2
Decryption (first block): s1 = ek (IV)  and x1 = s1 ⊕ y1
Decryption (general block) : si = ek (si−1) and xi  = si ⊕ yi ,    i ≥ 2
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 Cipher Feedback mode (CFB)

• It uses a block cipher as a building block for an asynchronous stream cipher (similar to 

the OFB mode), more accurate name: “Ciphertext Feedback Mode”

• The key stream Si is generated in a blockwise fashion and is also a function of the 

ciphertext

• As a result of the use of an IV, the CFB encryption is also nondeterministic

• It can be used in situations where short plaintext blocks are to be encrypted
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Encryption (first block): y1 = ek (IV) ⊕ x1
Encryption (general block):   yi = ek (yi−1) ⊕ xi ,     i ≥ 2
Decryption (first block): x1 = ek (IV) ⊕ y1
Decryption (general block) : xi = ek (yi−1) ⊕ yi ,    i ≥ 2
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 Counter mode (CTR)

• It uses a block cipher as a stream cipher (like the OFB and CFB modes)

• The key stream is computed in a blockwise fashion

• The input to the block cipher is a counter which assumes a different value every time 

the block cipher computes a new key stream block

• Unlike CFB and OFB modes, the CTR mode can be parallelized since the 2nd encryption 

can begin before the 1st one has finished

• Desirable for high-speed implementations, e.g., in network routers
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Encryption:    yi = ek (IV || CTRi ) ⊕ xi,     i ≥ 1
Decryption : xi = ek (IV || CTRi ) ⊕ yi,     i ≥ 1
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 Galois Counter Mode (GCM)

• It also computes a message authentication code (MAC), i.e., a cryptographic checksum 

is computed for a message (for more information see Chapter 12 in Understanding 

Cryptography)

• By making use of GCM, two additional services are provided:

• Message Authentication

• the receiver can make sure that the message was really created by the original 

sender

• Message Integrity

• the receiver can make sure that nobody tampered with the ciphertext during 

transmission
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 Galois Counter Mode (GCM)

• For encryption

• An initial counter is derived from an IV and a serial number

• The initial counter value is incremented then encrypted and XORed with the first 

plaintext block

• For subsequent plaintexts, the counter is incremented and then encrypted

• For authentication

• A chained Galois field multiplication is performed (for more information Galois 

field see Chapter 4.3 in Understanding Cryptography)

• For every plaintext an intermediate authentication parameter gi is derived

• gi is computed as the XOR of the current ciphertext and the last gi-1, and 

multiplied by the constant H

• H is generated by encryption of the zero input with the block cipher

• All multiplications are in the 128-bit Galois field GF(2128)
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 Galois Counter Mode (GCM)
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Encryption:
a. Derive a counter value CTR0 from the IV and compute CTR1 = CTR0 + 1
b. Compute ciphertext: yi = ek (CTRi) ⊕ xi,   i ≥ 1

Authentication:
a. Generate authentication subkey H = ek (0)
b. Compute g0 = AAD × H (Galois field multiplication)
c. Compute gi = (gi−1 ⊕ yi) × H, 1 ≤ i ≤ n (Galois field multiplication)
d. Final authentication tag: T = (gn × H) ⊕ ek (CTR0)
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 Exhaustive Key Search Revisited

• A simple exhaustive search for a DES key knowing one pair (x1,y1):

DESk
(i) (x1) y1,   i = 0,1, . . . ,256−1

• However, for most other block ciphers a key search is somewhat more 

complicated

• A brute-force attack can produce false positive results

• keys ki that are found are not the one used for the encryption

• The likelihood of this is related to the relative size of the key space 

and the plaintext space

• A brute-force attack is still possible, but several pairs of plaintext–

ciphertext are needed
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 An Exhaustive Key Search Example

• Assume a cipher with a block width of 64 bit and a key size of 80 bit

• If we encrypt x1 under all possible 280 keys, we obtain 280 ciphertexts

• However, there exist only 264 different ones

• If we run through all keys for a given plaintext–ciphertext pair, we find on average 

280/264 = 216 keys that perform the mapping  ek(x1) = y1

• In this example assuming two plaintext-ciphertext pairs, the likelihood is

280−2·64=2 −48

• for almost all practical purposes two plaintext-ciphertext pairs are sufficient
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Given a block cipher with a key length of k bits and block size of
n bits, as well as t plaintext–ciphertext pairs (x1, y1), ... , (xt , yt),
the expected number of false keys which encrypt all plaintexts
to the corresponding ciphertexts is:

2k−tn
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 Increasing the Security of Block Ciphers

• In some situations we wish to increase the security of block ciphers, e.g., 

if a cipher such as DES is available in hardware or software for legacy 

reasons in a given application

• Two approaches are possible

• Multiple encryption

• theoretically much more secure, but sometimes in practice 

increases the security very little

• Key whitening
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 Double Encryption

• A plaintext x is first encrypted with a key kL, and the resulting ciphertext is 

encrypted again using a second key kR

• Assuming a key length of k bits, an exhaustive key search would require 2k·2k = 
22k encryptions or decryptions
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Meet-in-the-Middle Attack

• A Meet-in-the-Middle attack requires  2k+2k = 2k+1 operations!

• Phase I:  for the given (x1, y1) the left encryption is brute-forced for all kL,i, i=1,2, ..., 
2k and a lookup table with 2k entry (each n+k bits wide) is computed

• the lookup table should be ordered by the result of the encryption (zL,i)

• Phase II: the right encryption is brute-forced (using decryption) and for each zR,i it is 

checked whether zR,i is equal to any zL,i value in the table of the first phase

• Computational Complexity

• Double encryption is not much more secure then single encryption!

140/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

number of encryptions and decryptions = 2k +2k = 2k+1

number of storage locations = 2k
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 Triple Encryption

• The encryption of a block three times          y = ek3 (ek2 (ek1 (x)))

• In practice a variant scheme is often used EDE (encryption-decryption-encryption)

y = ek3 (e-1
k2 (ek1 (x)))

• Advantage: choosing k1=k2=k3 performs single DES encryption

• Still we can perform a meet-in-the middle attack, and it reduces the effective key length of 

triple encryption from 3K to 2K!

• The attacker must run 2112 tests in the case of 3DES

• Triple encryption effectively doubles the key length
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 Key Whitening

• Makes block ciphers such as DES much more resistant against brute-force attacks

• In addition to the regular cipher key k, two whitening keys k1 and k2 are used to 

XOR-mask the plaintext and ciphertext

• It does not strengthen block ciphers against most analytical attacks such as linear 

and differential cryptanalysis

• It is not a “cure” for inherently weak ciphers

• The additional computational load is negligible

• Its main application is ciphers that are relatively strong against analytical attacks 

but possess too short a key space especially DES

• a variant of DES which uses key whitening is called DESX
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 Lessons Learned

• There are many different ways to encrypt with a block cipher. Each mode of operation has some 

advantages and disadvantages

• Several modes turn a block cipher into a stream cipher

• There are modes that perform encryption together together with authentication, i.e., a cryptographic 

checksum protects against message manipulation

• The straightforward ECB mode has security weaknesses, independent of the underlying block cipher

• The counter mode allows parallelization of encryption and is thus suited for high speed 

implementations

• Double encryption with a given block cipher only marginally improves the resistance against brute-

force attacks

• Triple encryption with a given block cipher roughly doubles the key length

• Triple DES (3DES) has an effective key length of 112 bits

• Key whitening enlarges the DES key length without much computational overhead.
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Two properties of symmetric (secret-key) crypto-systems:

• The same secret key K is used for encryption and decryption

• Encryption and Decryption are very similar (or even identical) functions

 Symmetric Cryptography revisited

eK(x) dK(y)x y x

KK

Alice Bob

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl
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 Symmetric Cryptography: Analogy

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

K K

Safe with a strong lock, only Alice and Bob have a copy of the key

• Alice encrypts locks message in the safe with her key

• Bob decrypts uses his copy of the key to open the safe



• Symmetric algorithms, e.g., AES or 3DES, are very secure, fast & widespread but:

• Key distribution problem: The secret key must be transported securely

• Number of keys: In a network, each pair of users  requires an individual key

 n users in the network require                       keys, each user stores (n-1) keys

• Alice or Bob can cheat each other, because they have identical keys.

Example: Alice can claim that she never ordered a TV on-line from Bob (he could have 

fabricated her order). To prevent this: „non-repudiation“
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 Symmetric Cryptography: Shortcomings

Example:

6 users (nodes)

keys (edges)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl
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New Idea: 

Use the „good old mailbox“ principle:

Everyone can drop a letter 

But: Only the owner has the
correct key to open the box
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 Idea behind Asymmetric Cryptography

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

1976: first publication of such an algorithm by Whitfield Diffie and Martin Hellman,and 
also by Ralph Merkle.
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 Asymmetric (Public-Key) Cryptography

Principle: “Split up” the key

K

Public Key (Kpub)
(Encrypt)

Secret Key (Kpr)
(Decrypt)
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 During the key generation, a key pair Kpub and Kpr is computed
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 Asymmetric Cryptography: Analogy

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

Safe with public lock and private lock:

• Alice deposits (encrypts) a message with the - not secret - public key Kpub

• Only Bob has the - secret - private key Kpr to retrieve (decrypt) the message

(Kpub) (Kpr)
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 Basic Protocol for Public-Key Encryption

Alice Bob

(KpubB,KprB) = KKpubB

x
y=eKpubB(x) y

x=dKprB(y)
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 Key Distribution Problem solved *

*) at least for now; public keys need to be authenticated, cf.Chptr. 13 of Understanding Cryptogr.
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 Security Mechanisms of Public-Key Cryptography

Here are main mechanisms that can be realized with asymmetric cryptography:

• Key Distribution (e.g., Diffie-Hellman key exchange, RSA) without a pre-shared secret 

(key)

• Nonrepudiation and Digital Signatures (e.g., RSA, DSA or ECDSA) to provide message 

integrity

• Identification, using challenge-response protocols with digital signatures

• Encryption (e.g., RSA / Elgamal)

Disadvantage: Computationally very intensive 

(1000 times slower than symmetric Algorithms!)
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 Basic Key Transport Protocol 1/2

In practice: Hybrid systems, incorporating asymmetric and symmetric algorithms 

1. Key exchange (for symmetric schemes) and digital signatures are performed with (slow) 

asymmetric algorithms

2. Encryption of data is done using (fast) symmetric ciphers, e.g., block ciphers or stream 

ciphers
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 Basic Key Transport Protocol 2/2

Alice
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Bob

y1 = eKpubB(K) y1

K = dKprB(y1)

Key Exchange

(asymmetric)

y2 = AESK (x) x = AES-1
K (y2)

y2

Data Encryption

(symmetric)

(KpubB,KprB) = KKpubB

Choose random 
symmetric key K

message x

Example: Hybrid protocol with AES as the symmetric cipher
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 How to build Public-Key Algorithms

Asymmetric schemes are based on a „one-way function“ f():

• Computing y = f(x) is computationally easy 

• Computing x = f-1(y) is computationally infeasible 

One way functions are based on mathematically hard problems.

Three main families:

• Factoring integers (RSA, ...): 

Given a composite integer n, find its prime factors

(Multiply two primes: easy)

• Discrete Logarithm (Diffie-Hellman, Elgamal, DSA, …):

Given a, y and m, find x such that ax = y mod m

(Exponentiation ax : easy)

• Elliptic Curves (EC) (ECDH, ECDSA): Generalization of discrete logarithm 

Note: The problems are considered mathematically hard, but no proof exists (so far).
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 Key Lengths and Security Levels

Symmetric ECC RSA, DL Remark

64 Bit 128 Bit  700 Bit Only short term security
(a few hours or days)

80 Bit 160 Bit  1024 Bit Medium security

(except attacks from big
governmental institutions etc.)

128 Bit 256 Bit  3072 Bit Long term security
(without quantum computers)

• The exact complexity of RSA (factoring) and DL (Index-Calculus) is difficult to estimate

• The existence of quantum computers would probably be the end for ECC, RSA & DL 
(at least 2-3 decades away, and some people doubt that QC will ever exist)
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 Euclidean Algorithm 1/2

• Compute the greatest common divisor gcd (r0, r1) of two integers r0 and r1

• gcd is easy for small numbers: 

1. factor r0 and r1

2. gcd = highest common factor

• Example: 

r0 = 84 = 2 . 2 . 3 . 7

r1 = 30 = 2 . 3 . 5

 The gcd is the product of all common prime factors:

2 . 3 = 6 = gcd (30,84)

• But: Factoring is complicated (and often infeasible) for large numbers
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 Euclidean Algorithm 2/2

• Observation: gcd (r0, r1) = gcd (r0 - r1, r1)

 Core idea:

• Reduce the problem of finding the gcd of two given numbers 

to that of the gcd of two smaller numbers

• Repeat process recursively

• The final gcd (ri, 0) = ri is the answer to the original problem !

Example: gcd (r0, r1) for r0 = 27 and r1 = 21

• Note: very efficient method even for long numbers:

The complexity grows linearly with the number of bits

For the full Euclidean Algorithm see Chapter 6 in Understanding Cryptography.
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 Extended Euclidean Algorithm 1/2

• Extend the Euclidean algorithm to find modular inverse of r1 mod r0 

• EEA computes s,t, and the gcd :

• Take the relation mod r0

 Compare with the definition of modular inverse:  t is the inverse of r1 mod r0

• Note that gcd (r0, r1) = 1 in order for the inverse to exist

• Recursive formulae to calculate s and t in each step

 „magic table“ for r, s, t and a quotient q to derive the inverse with pen and paper

(cf. Section 6.3.2 in Understanding Cryptography)
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 Extended Euclidean Algorithm 2/2

Example:

• Calculate the modular Inverse of 12 mod 67:

• From magic table follows  

• Hence 28 is the inverse of 12 mod 67.

• Check: 

For the full Extended Euclidean Algorithm see Chapter 6 in Understanding Cryptography.
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67mod13361228  



 Euler‘s Phi Function 1/2

• New problem, important for public-key systems, e.g., RSA:

Given the set of the m integers {0, 1, 2, …, m -1}, 

How many numbers in the set are relatively prime to m ?

• Answer: Euler‘s Phi function Φ(m)

• Example for the sets {0,1,2,3,4,5} (m=6),          and {0,1,2,3,4} (m=5)

 1 and 5 relatively prime to m=6,  Φ(5) = 4 

hence Φ(6) = 2

• Testing one gcd per number in the set is extremely slow for large m.
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• If canonical factorization of m known:

(where pi primes and ei positive integers)

• then calculate Phi according to the relation

• Phi especially easy for ei = 1, e.g., m = p . q  Φ(m) = (p-1) . (q-1)

• Example m = 899 = 29 . 31: 

Φ(899) = (29-1) . (31-1) = 28 . 30 = 840

• Note: Finding Φ(m) is computationally easy if factorization of m is known

(otherwise the calculation of Φ(m) becomes computationally infeasible for large numbers)

 Euler‘s Phi Function 2/2
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

• Given a prime p and an integer a:

• Can be rewritten as

• Use: Find modular inverse, if p is prime. Rewrite to 

• Comparing with definition of the modular inverse

 is the modular inverse modulo a prime p

Example: a = 2, p = 7

• Fermat‘s Little Theorem works only modulo a prime p

 Fermat‘s Little Theorem
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 Euler‘s Theorem

• Generalization of Fermat‘s little theorem to any integer modulus

• Given two relatively prime integers a and m :

• Example: m=12, a=5

1. Calculate Euler‘s Phi Function

2. Verify Euler‘s Theorem

• Fermat‘s little theorem = special case of Euler‘s Theorem

• for a prime p:

 Fermat:
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171/29

 Lessons Learned

• Public-key algorithms have capabilities that symmetric ciphers don’t have, in particular 

digital signature and key establishment functions.

• Public-key algorithms are computationally intensive (a nice way of saying that they are 

slow), and hence are poorly suited for bulk data encryption.

• Only three families of public-key schemes are widely used. This is considerably fewer 

than in the case of symmetric algorithms.

• The extended Euclidean algorithm allows us to compute modular inverses quickly, 

which is important for almost all public-key schemes.

• Euler’s phi function gives us the number of elements smaller than an integer n that are 

relatively prime to n. This is important for the RSA crypto scheme.

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl
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The RSA Cryptosystem

• Martin Hellman and Whitfield Diffie published their landmark public-
key paper in 1976

• Ronald Rivest, Adi Shamir and Leonard Adleman proposed the 
asymmetric RSA cryptosystem  in1977

• Until now, RSA is the most widely use asymmetric cryptosystem 
although elliptic curve cryptography (ECC) becomes increasingly 
popular

• RSA is mainly used for two applications

• Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding 
Cryptography)

• Digital signatures (cf. Chptr 10 of Understanding Cryptography)
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Encryption and Decryption

• RSA operations are done over the integer ring Zn (i.e., arithmetic 
modulo n), where n = p * q, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive 
the „private exponent“ d given the public-key (n, e)

Definition

Given the public key (n,e) = kpub and the private key d = kpr we write

y = ekpub(x) ≡ xe mod n

x = dkpr(y) ≡ yd mod n

where x, y ε Zn. 

We call ekpub() the encryption and dkpr() the decryption operation.
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Key Generation
• Like all asymmetric schemes, RSA has set-up phase during which 

the private and public keys are computed

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there 
is always a private key d

Algorithm: RSA Key Generation

Output: public key: kpub = (n, e) and private key kpr = d

1. Choose two large primes p, q

2. Compute n = p * q

3. Compute Φ(n) = (p-1) * (q-1)

4. Select the public exponent e ε {1, 2, …, Φ(n)-1} such that
gcd(e, Φ(n) ) = 1

5. Compute the private key d such that d * e ≡ 1 mod Φ(n)

6. RETURN kpub = (n, e), kpr = d
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Example: RSA with small numbers

ALICE

Message x = 4

y = xe ≡ 43 ≡ 31 mod 33

BOB

1. Choose p = 3 and q = 11

2. Compute n = p * q = 33

3. Φ(n) = (3-1) * (11-1) = 20

4. Choose e = 3

5. d ≡ e-1 ≡7 mod 20

yd = 317 ≡ 4 = x mod 33

Kpub = (33,3)

y = 31
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Content of this Chapter

• The RSA Cryptosystem
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• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned
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Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular 
exponentiation) which makes it conceptually a simple asymmetric 
scheme

• Even though conceptually simple, due to the use of very long 
numbers, RSA is orders of magnitude slower than symmetric 
schemes, e.g., DES, AES

• When implementing RSA (esp. on a constrained device such as 
smartcards or cell phones) close attention has to be paid to the 
correct choice of arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even 
with very long numbers…
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Square-and-Multiply
• Basic principle: Scan exponent bits from left to right and 

square/multiply operand accordingly

• Rule: Square in every iteration (Step 3) and multiply current result 
by x if the exponent bit hi = 1 (Step 5)

• Modulo reduction after each step keeps the operand y small

Algorithm: Square-and-Multiply for xH mod n 

Input: Exponent H, base element x, Modulus n

Output: y = xH mod n

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod n

4. IF hi = 1 THEN

5. y = y * x mod n

6. RETURN y
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Example: Square-and-Multiply

• Computes x26 without modulo reduction

• Binary representation of exponent: 26 =(1,1,0,1,0)2=(h4,h3,h2,h1,h0)2

• Observe how the exponent evolves into x26  = x11010

Step Binary exponent Op Comment

1 x = x1 (1)2 Initial setting, h4 processed

1a (x1)2 = x2 (10)2 SQ Processing h3

1b x2 * x = x3 (11)2 MUL h3 = 1

2a (x3)2 = x6 (110)2 SQ Processing h2

2b - (110)2 - h0 = 0

3a (x6)2 = x12 (1100)2 SQ Processing h1

3b x12 * x = x13 (1101)2 MUL h1=1

4a (x13)2 = x26 (11010)2 SQ Processing h0

4b - (11010)2 - h0 = 0
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Complexity of Square-and-Multiply Alg.

• The square-and-multiply algorithm has a logarithmic complexity, i.e., 
its run time is proportional to the bit length (rather than the absolute 
value) of the exponent

• Given an exponent with t+1 bits
H = (ht,ht-1, ..., h0)2 

with ht = 1, we need the following operations 

• # Squarings = t

• Average # multiplications = 0.5 t

• Total complexity: #SQ + #MUL = 1.5 t

• Exponents are often randomly chosen, so 1.5 t is a good estimate 
for the average number of operations

• Note that each squaring and each multiplication is an operation with 
very long numbers, e.g., 2048 bit integers.
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Speed-Up Techniques

• Modular exponentiation is computationally intensive

• Even with the square-and-multiply algorithm, RSA can be quite slow 
on constrained devices such as smart cards

• Some important tricks:

• Short public exponent e

• Chinese Remainder Theorem (CRT)

• Exponentiation with pre-computation (not covered here)
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Fast encryption with small public exponent
• Choosing a small public exponent e does not weaken the security of 

RSA

• A small public exponent improves the speed of the RSA encryption 
significantly

• This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA 
the fastest asymmetric scheme with regard to encryption!

Public Key e as binary string #MUL + #SQ

21+1 = 3 (11)2 1 + 1 = 2

24+1 = 17 (1 0001)2 4 + 1 = 5

216 + 1 (1 0000 0000 0000 0001)2 16 + 1 = 17
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Fast decryption with CRT

• Choosing a small private key d results in security weaknesses! 

• In fact, d must have at least 0.3t bits, where t is the bit 
length of the modulus n

• However, the Chinese Remainder Theorem (CRT) can be used to 
(somewhat) accelerate exponentiation with the private key d

• Based on the CRT we can replace the computation of 

xd mod Φ(n) mod n

by two computations 

xd mod (p-1) mod p and xd mod (q-1) mod q

where q and p are „small“ compared to n
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Basic principle of CRT-based exponentiation

• CRT involves three distinct steps

(1) Transformation of operand into the CRT domain

(2) Modular exponentiation in the CRT domain

(3) Inverse transformation into the problem domain

• These steps are equivalent to one modular exponentiation in the 
problem domain

x

xp

xq

Xp
d mod (p-1) mod p

Xq
d mod (q-1) mod q

xd mod nProblem
Domain

CRT Domain
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CRT: Step 1 – Transformation

• Transformation into the CRT domain requires the knowledge of p
and q

• p and q are only known to the owner of the private key, hence CRT 
cannot be applied to speed up encryption

• The transformation computes (xp, xq) which is the representation of x
in the CRT domain. They can be found easily by computing

xp ≡ x mod p and      xq ≡ x mod q
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CRT: Step 2 – Exponentiation

• Given dp and dq such that

dp ≡ d mod (p-1)      and dq ≡ d mod (q-1)

one exponentiation in the problem domain requires two 
exponentiations in the CRT domain

yp ≡ xp
dp mod p      and yq ≡ xq

dq mod q

• In practice, p and q are chosen to have half the bit length of n, i.e., 
|p| ≈ |q| ≈ |n|/2
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CRT: Step 3 – Inverse Transformation

• Inverse transformation requires modular inversion twice, which is 
computationally expensive

cp ≡ q-1 mod p      and cq ≡ p-1 mod q

• Inverse transformation assembles yp, yq to the final result y mod n in 
the problem domain

y ≡ [ q * cp ] * yp + [ p * cq ] * yq mod n

• The primes p and q typically change infrequently, therefore the cost 
of inversion can be neglected because the two expresssions

[ q * cp ]  and [ p * cq ]
can be precomputed and stored
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Complexity of CRT
• We ignore the transformation and inverse transformation steps since 

their costs can be neglected under reasonable assumptions

• Assuming that n has t+1 bits, both p and q are about t/2 bits long

• The complexity is determined by the two exponentiations in the CRT 
domain. The operands are only t/2 bits long. For the exponentiations 
we use the square-and-multiply algorithm:

• # squarings (one exp.): #SQ = 0.5 t

• # aver. multiplications (one exp.): #MUL = 0.25t

• Total complexity: 2 * (#MUL + #SQ) = 1.5t

• This looks the same as regular exponentations, but since the 
operands have half the bit length compared to regular exponent., 
each operation (i.e., multipl. and squaring) is 4 times faster! 

• Hence CRT is 4 times faster than straightforward exponentiation



190 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned
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Finding Large Primes

• Generating keys for RSA requires finding two large primes p and q 
such that n = p * q is sufficiently large

• The size of p and q is typically half the size of the desired size of n

• To find primes, random integers are generated and tested for 
primality:

• The random number generator (RNG) should be non-predictable 
otherwise an attacker could guess the factorization of n

RNG Primality Test
p' „p‘ is prime“

OR
„p‘ is composite“

a

candidate
prime
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Primality Tests

• Factoring p and q to test for primality is typically not feasible 

• However, we are not interested in the factorization, we only want to 
know whether p and q are composite

• Typical primality tests are probabilistic, i.e., they are not 100% 
accurate but their output is correct with very high probability

• A probabilistic test has two outputs:

• „p‘ is composite“ – always true 

• „p‘ is a prime“ – only true with a certain probability

• Among the well-known primality tests are the following

• Fermat Primality-Test

• Miller-Rabin Primality-Test
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Fermat Primality-Test

• Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a 
number p‘ is found for which ap‘-1 ≡ 1 mod p‘, it is not a prime

• For certain numbers („Carchimchael numbers“) this test returns „p‘
is likely a prime“ often – although these numbers are composite

• Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. IF ap‘-1  ≡ 1 mod p’ THEN

4. RETURN „p‘ is composite“

5. RETURN „p‘ is likely a prime“
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Theorem for Miller-Rabin‘s test

• The more powerful Miller-Rabin Test is based on the following 
theorem

• This theorem can be turned into an algorithm

Theorem

Given the decomposition of an odd prime candidate p‘ 

p‘ – 1 = 2u * r

where r is odd. If we can find an integer a such that

ar ≡ 1 mod p‘ and       ar2j ≡ p‘ - 1 mod p‘

For all j = {0,1, ..., u-1}, then p‘ is composite. 

Otherwise it is probably a prime.
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Miller-Rabin Primality-Test

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p‘ with p‘-1 = 2u * r security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. z ≡ ar mod p’

4. IF z ≠ 1 AND z ≠ p’-1 THEN

5. FOR j = 1 TO u-1

6. z ≡ z2 mod p’

7. IF z = 1 THEN

8. RETURN „p‘ is composite“

9. IF z ≠ p‘-1 THEN

10. RETURN „p‘ is composite“

11. RETURN „p‘ is likely a prime“
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Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned
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Attacks and Countermeasures 1/3

• There are two distinct types of attacks on cryptosystems

• Analytical attacks try to break the mathematical structure of the 
underlying problem of RSA

• Implementation attacks try to attack a real-world 
implementation by exploiting inherent weaknesses in the way 
RSA is realized in software or hardware
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Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

• Mathematical attacks

• The best known attack is factoring of n in order to obtain Φ(n)

• Can be prevented using a sufficiently large modulus n

• The current factoring record is 664 bits. Thus, it is recommended 
that n should have a bit length between 1024 and 3072 bits

• Protocol attacks

• Exploit the malleability of RSA, i.e., the property that a ciphertext
can be transformed into another ciphertext which decrypts to a 
related plaintext – without knowing the private key

• Can be prevented by proper padding
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Attacks and Countermeasures 3/3

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g., 
power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can 
lead to a complete leakage of the private key

More on all attacks can be found in Section 7.8 of Understanding Cryptography
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Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned
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Lessons Learned

• RSA is the most widely used public-key cryptosystem

• RSA is mainly used for key transport and digital signatures

• The public key e can be a short integer, the private key d needs to 
have the full length of the modulus n

• RSA relies on the fact that it is hard to factorize n

• Currently 1024-bit cannot be factored, but progress in factorization 
could bring this into reach within 10-15 years. Hence, RSA with a 
2048 or 3076 bit modulus should be used for long-term security

• A naïve implementation of RSA allows several attacks, and in 
practice RSA should be used together with padding



• Diffie–Hellman Key Exchange

• The Discrete Logarithm Problem 

• Security of the Diffie–Hellman Key Exchange 

• The Elgamal Encryption Scheme 

 Content of this Chapter
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• Proposed in 1976 by Whitfield Diffie and Martin Hellman

• Widely used, e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol 

Security (IPSec)

• The Diffie–Hellman Key Exchange (DHKE) is a key exchange protocol and not used for 

encryption

(For the purpose of encryption based on the DHKE, ElGamal can be used.)

 Diffie–Hellman Key Exchange: Overview
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Diffie–Hellman Key Exchange: Set-up

1. Choose a large prime p.

2. Choose an integer α ∈ {2,3, . . . , p−2}.

3. Publish p and α.
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Alice

Diffie–Hellman Key Exchange

Bob

Choose random private key
kprA=a ∈{1,2,…,p-1}

Choose random private key
kprB=b ∈ {1,2,…,p-1}

Compute corresponding public key
kpubA= A = αa mod p

Compute correspondig public key
kpubB= B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

yy = AESkAB(x) x = AES-1
kAB(y)
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We can now use the joint key kAB
for encryption, e.g., with AES



Alice

Diffie–Hellman Key Exchange: Example

Bob

Choose random private key
kprA= a = 5

Choose random private key
kprB=b = 12

Compute corresponding public key
kpubA= A = 25 = 3 mod 29

Compute correspondig public key
kpubB= B = 212 = 7 mod 29

Compute common secret
kAB = Ba = 75 = 16 mod 29

Compute common secret
kAB = Ab = 312 = 16 mod 29

A

B

Domain parameters p=29, α=2
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Proof of correctness:

Alice computes: Ba = (αb)a mod p
Bob computes:  Ab = (αa)b mod p 

i.e., Alice and Bob compute the same key kAB ! 



Discrete Logarithm Problem (DLP) in Zp*

• Given is the finite cyclic group Zp* of order p−1 and a primitive element α ∈ Zp* and another 

element β ∈ Zp*. 

• The DLP is the problem of determining the integer 1 ≤ x ≤ p−1 such that

αx ≡ β mod p

• This computation is called the discrete logarithm problem (DLP)

x = logα β mod p 

• Example: Compute x  for 5x ≡ 41 mod 47

Remark: For the coverage of groups and cylcic groups, we refer to Chapter 8 of Understanding 

Cryptography

 The Discrete Logarithm Problem
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• Given is a finite cyclic group G with the group operation ◦ and cardinality n. 

• We consider a primitive element α ∈ G and another element β ∈ G. 

• The discrete logarithm problem is finding the integer x, where 1 ≤ x ≤ n, such that: 

β = α ◦ α ◦ α ◦. . .◦ α = αx

 The Generalized Discrete Logarithm Problem

x times
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The following discrete logarithm problems have been proposed for use in cryptography

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance, the 

classical DHKE uses this group (cf. previous slides), but also Elgamal encryption or 

the Digital Signature Algorithm (DSA). 

2. The cyclic group formed by an elliptic curve (see Chapter 9)

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. Schemes such as 

the DHKE can be realized with them. 

4. Hyperelliptic curves or algebraic varieties, which can be viewed as generalization of 

elliptic curves. 

Remark: The groups 1. and 2. are most often used in practice.

 The Generalized Discrete Logarithm Problem
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• Security of many asymmetric primitives is based on the difficulty of computing the DLP in cyclic 

groups, i.e.,

Compute x for a given α and β such that β = α ◦ α ◦ α ◦. . .◦ α = αx

• The following algorithms for computing discrete logarithms exist

• Generic algorithms: Work in any cyclic group

• Brute-Force Search

• Shanks‘ Baby-Step-Giant-Step Method

• Pollard‘s Rho Method

• Pohlig-Hellman Method

• Non-generic Algorithms: Work only in specific groups, in particular in Zp

• The Index Calculus Method

• Remark: Elliptic curves can only be attacked with generic algorithms which are weaker than non-

generic algorithms. Hence, elliptic curves are secure with shorter key lengths than the DLP in 

prime fields Zp

 Attacks against the Discrete Logarithm Problem
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Summary of records for computing discrete logarithms in Zp*

 Attacks against the Discrete Logarithm Problem

Decimal digits Bit length Date
58 193 1991
68 216 1996
85 282 1998

100 332 1999
120 399 2001
135 448 2006
160 532 2007

212/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

In order to prevent attacks that compute the DLP, it is recommended to use primes 
with a length of at least 1024 bits for schemes such as Diffie-Hellman in Zp*



• Which information does Oscar have?

• α, p

• kpubA = A = αa mod p

• kpubB = B = αb mod p

• Which information does Oscar want to have?

• kAB = αba = αab = mod p

• This is kown as Diffie-Hellman Problem (DHP)

• The only known way to solve the DHP is to solve the DLP, i.e.

1.Compute a = logα A mod p

2.Compute kAB = Ba = αba = mod p

It is conjectured that the DHP and the DLP are equivalent, i.e., solving the DHP 

implies solving the DLP.

• To prevent attacks, i.e., to prevent that the DLP can be solved, choose

p > 21024

 Security of the classical Diffie–Hellman Key Exchange 
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• Proposed by Taher Elgamal in 1985

• Can be viewed as an extension of the DHKE protocol

• Based on the intractability of the discrete logarithm problem and the Diffie–Hellman problem

 The Elgamal Encryption Scheme: Overview
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 The Elgamal Encryption Scheme: Principle

Alice Bob

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute ephemeral key
kE = kpubA= αi mod p

compute kM = kE
d mod p

compute kM = βi mod p

encrypt message x ∈ Zp*:
y = x·kM mod p

kE

y

β

decrypt x = y·kM
-1 mod p
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This looks very similar to the DHKE! The actual Elgamal protocol re-orders 

the computations which helps to save one communication (cf. next slide)



 The Elgamal Encryption Protocol

Alice Bob
choose large prime p

choose primitive element  α ∈ Zp*
or in a subgroup of Zp*

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute kE = kpubA= αi mod p

compute masking key  kM = βi mod p

compute masking key kM = kE
d mod p

encrypt message x ∈ Zp*:
y = x·kM mod p (kE, y)

kpubB = (p, α, β)

decrypt x = y·kM
-1 mod p
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• Key Generation

• Generation of prime p 

• p has to of size of at least 1024 bits

• cf. Section 7.6 in Understanding Cryptography for prime-finding algorithms

• Encryption

• Requires two modular exponentiations and a modular multiplictation

• All operands have a bitlength of  log2p

• Efficient execution requires methods such as the square-and-multiply algorithm 

(cf. Chapter 7)

• Decryption

• Requires one modular exponentiation and one modulare inversion

• As shown in Understanding Cryptography, the inversion can be computed from the 

ephemeral key

 Computational Aspects
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• Passive attacks

• Attacker eavesdrops p, α, β = αd , kE = αi, y = x· βi and wants to recover x

• Problem relies on the DLP

• Active attacks

• If  the public keys are not authentic, an attacker could send an incorrect public key 

(cf. Chapter 13)

• An Attack is also possible if the secret exponent i is being used more than once (cf. 

Understanding Cryptography for more details on the attack)

 Security
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• The Diffie–Hellman protocol is a widely used method for key exchange. It is based on cyclic 

groups.

• The discrete logarithm problem is one of the most important one-way functions in modern 

asymmetric cryptography. Many public-key algorithms are based on it.

• For the Diffie–Hellman protocol in Zp*, the prime p should be at least 1024 bits long. This 

provides a security roughly equivalent to an 80-bit symmetric cipher.

• For a better long-term security, a prime of length 2048 bits should be chosen. 

• The Elgamal scheme is an extension of the DHKE where the derived session key is used as a 

multiplicative masked to encrypt a message.

• Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical messages does not 

yield two identical ciphertexts.

 Lessons Learned
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• Introduction

• Computations on Elliptic Curves

• The Elliptic Curve Diffie-Hellman Protocol

• Security Aspects

• Implementation in Software and Hardware
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 Problem: 

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields 

with parameters of more than 1000 bits.

 High computational effort on CPUs with 32-bit or 64-bit arithmetic

 Large parameter sizes critical for storage on small and embedded

 Motivation:

Smaller field sizes providing equivalent security are desirable

 Solution:

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes 

with coefficient sizes of 160-256 bits, reducing significantly the computational

effort.

 Motivation
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 Computations on Elliptic Curves

• Elliptic curves are polynomials that define points 

based on the (simplified) Weierstraß equation:

y2 = x3 + ax + b 

for parameters a,b that specify the exact shape 

of the curve

• On the real numbers and with parameters 

a, b    R, an elliptic curve looks like this 

• Elliptic curves can not just be defined over the real 

numbers R but over many other types of finite fields.

Example: y2 = x3 −3x+3 over R


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 Computations on Elliptic Curves (ctd.)

 In cryptography, we are interested in elliptic curves module 

a prime p:

 Note that Zp = {0,1,…, p -1} is a set of integers

with modulo p arithmetic



Definition: Elliptic Curves over prime fields

The elliptic curve over Zp, p>3 is the set of all 
pairs (x,y)    Zp which fulfill

y2 = x3 + ax + b mod p
together with an imaginary point of infinity θ,
where a,b    Zp and the condition

4a3+27b2 ≠ 0 mod p.




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 Computations on Elliptic Curves (ctd.)

 Some special considerations are required to convert elliptic 

curves into a group of points 

 In any group, a special element is required to allow for 

the identity operation, i.e.,

given P   E: P + θ = P = θ + P

 This identity point (which is not on the curve) is 

additionally added to the group definition 

 This (infinite) identity point is denoted by θ

 Elliptic Curve are symmetric along the x-axis

 Up to two solutions y and -y exist for each quadratic 

residue x of the elliptic curve

 For each point P =(x,y), the inverse or negative point is 

defined as -P =(x,-y)





θ

P

-P



point at 
infinity
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 Computations on Elliptic Curves (ctd.)

 Generating a group of points on elliptic curves 

based on point addition operation P+Q = R, i.e.,

(xP,yP)+(xQ,yQ) = (xR,yR)

 Geometric Interpretation of point addition operation

 Draw straight line through P and Q; if P=Q use

tangent line instead

 Mirror third intersection point of drawn line with 

the elliptic curve along the x-axis

 Elliptic Curve Point Addition and Doubling Formulas

Point Addition

Point Doublingx3 = s2 −x1−x2 mod p  and y3 = s(x1 −x3)−y1 mod p

where

s = 
p

xx
yy mod

12

12




p
y

ax mod
2

3
1

2
1 

; if P ≠ Q (point addition)

; if P = Q (point doubling) =P+P
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 Computations on Elliptic Curves (ctd.)

 Example: Given E: y2 = x3+2x+2 mod 17 and point P=(5,1)

Goal: Compute 2P = P+P = (5,1)+(5,1)= (x3,y3)

s =            = (2 · 1)−1(3 · 52 + 2) = 2−1 · 9 ≡ 9 · 9 ≡ 13 mod 17

x3 = s2 − x1 − x2 = 132 − 5 − 5 = 159 ≡ 6 mod 17

y3 = s(x1−x3) − y1 = 13(5 − 6) − 1= −14 ≡ 3 mod 17

Finally 2P = (5,1) + (5,1) = (6,3)

1

2
1

2
3

y
ax 
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 Computations on Elliptic Curves (ctd.)

 The points on an elliptic curve and the point at infinity θ form cyclic subgroups

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)

3P = 2P+P = (10,6) 12P = (0,11)

4P = (3,1) 13P = (16,4)

5P = (9,16) 14P = (9,1)

6P = (16,13) 15P = (3,16)

7P = (0,6) 16P = (10,11)

8P = (13,7) 17P = (6,14)

9P = (7,6) 18P = (5,16)

10P = (7,11) 19P = θ

This elliptic curve has order #E = |E| = 19 since it contains 

19 points in its cyclic group.

P

θ
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 Number of Points on an Elliptic Curve

• How many points can be on an arbitrary elliptic curve?

• Consider previous example: E: y2 = x3+2x+2 mod 17 has 19 points

• However, determining the point count on elliptic curves in general is hard

• But Hasse‘s theorem bounds the number of points to a restricted interval

Definition: Hasse‘s Theorem:

Given an elliptic curve module p, the number of points 

on the curve is denoted by #E and is bounded by

p+1-2 ≤ #E ≤ p+1+2   

• Interpretation: The number of points is „close to“ the prime p

• Example: To generate a curve with about 2160 points, a prime with a length of about 

160 bits is required

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

p p
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 Elliptic Curve Discrete Logarithm Problem

 Cryptosystems rely on the hardness of the Elliptic Curve Discrete

Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a primitive element P and another element T on an elliptic curve E.

The ECDL problem is finding the integer d, where 1 ≤ d ≤ #E such that

P + P +…+ P = dP = T.

d times

 Cryptosystems are based on the idea that d is large and kept secret and attackers cannot 

compute it easily

 If d is known, an efficient method to compute the point multiplication dP is required to 

create a reasonable cryptosystem

 Known Square-and-Multiply Method can be adapted to Elliptic Curves

 The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm
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 Double-and-Add Algorithm for Point Multiplication

 Double-and-Add Algorithm

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits di

Output: T = d P 

Initialization:

T = P

Algorithm:

FOR i = t −1 DOWNTO 0

T = T +T mod n

IF di = 1

T = T +P mod n

RETURN (T)
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Example: 26P = (110102)P = (d4d3d2d1d0)2 P.

Step
#0 P = 12P inital setting
#1a P+P = 2P = 102P DOUBLE (bit d3)
#1b 2P+P = 3P = 102 P+12P = 112P ADD (bit d3=1)
#2a 3P+3P = 6P = 2(112P) = 1102P DOUBLE (bit d2)
#2b no ADD (d2 = 0)
#3a 6P+6P = 12P = 2(1102P) = 11002P DOUBLE (bit d1)
#3b 12P+P = 13P = 11002P+12 P = 11012P ADD (bit d1=1)
#4a 13P+13P = 26P = 2(11012P) = 110102P DOUBLE (bit d0)
#4b no ADD (d0 = 0)
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 The Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

 Given a prime p, a suitable elliptic curve E and a point P=(xP,yP)

 The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

 Joint secret between Alice and Bob: TAB = (xAB, yAB)

 Proof for correctness:
 Alice computes aB=a(bP)=abP

 Bob computes bA=b(aP)=abP since group is associative

 One of the coordinates of the point TAB (usually the x-coordinate) can be used as session key (often after 

applying a hash function)

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Choose kPrA= a     {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab



Bob

Choose kPrB= b     {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab

A

B



234/24



 The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.)

 The ECDH is often used to derive session keys for (symmetric) encryption

 One of the coordinates of the point TAB (usually the x-coordinate) is taken as session key

 In some cases, a hash function (see next chapters) is used to derive the session key
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Alice

Choose kPrA= a     {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab = (xT,yT)

Define key kAES = xT

Given a message m:
Encrypt c = AESkAES(m)



Bob

Choose kPrB= b     {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab= (xT,yT)

Define key kAES = xT

Received ciphertext c:
Decrypt m = AES-1

kAES(c)

A

B



c
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D

H
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m
m
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n
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 Security Aspects

 Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA (1024-3076 

bit)?

 Attacks on groups of elliptic curves are weaker than available factoring algorithms or integer 

DL attacks

 Best known attacks on elliptic curves (chosen according to cryptographic criterions)

are the Baby-Step Giant-Step and Pollard-Rho method

 Complexity of these methods: on average, roughly steps are required before the ECDLP can 

be successfully solved

 Implications to practical parameter sizes for elliptic curves:

 An elliptic curve using a prime p with 160 bit (and roughly 2160 points) provides a security of 280

steps that required by an attacker (on average) 

 An elliptic curve using a prime p with 256 bit (roughly 2256 points) provides a security of 2128

steps on average

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

p
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 Implementations in Hardware and Software

 Elliptic curve computations usually regarded as 

consisting of four layers: 

 Basic modular arithmetic operations are 

computationally most expensive

 Group operation implements point doubling

and point addition

 Point multiplication can be implemented using 

the Double-and-Add method

 Upper layer protocols like ECDH and ECDSA

 Most efforts should go in optimizations of the 

modular arithmetic operations, such as 

 Modular addition and subtraction

 Modular multiplication 

 Modular inversion
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Protocol
(ECDSA)

Point 
Multiplication 

(k·P)

Group Operation
P+Q, 2·P

Modular Arithmetic
( +, -, x , ÷  )
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 Implementations in Hardware and Software

 Software implementations

 Optimized 256-bit ECC implementation on 

3GHz 64-bit CPU requires about 2 ms per point 

multiplication

 Less powerful microprocessors (e.g, on 

SmartCards or cell phones) even take 

significantly longer (>10 ms)

 Hardware implementations 

 High-performance implementations with 256-bit 

special primes can compute a point 

multiplication in a few hundred microseconds 

on reconfigurable hardware

 Dedicated chips for ECC can compute a point 

multiplication even in a few ten microseconds
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• Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. It requires, for 

instance, arithmetic modulo a prime.

• ECC can be used for key exchange, for digital signatures and for encryption.

• ECC provides the same level of security as RSA or discrete logarithm systems over Zp with 

considerably shorter operands (approximately 160–256 bit vs. 1024–3072 bit), which results in 

shorter ciphertexts and signatures.

• In many cases ECC has performance advantages over other public-key algorithms.

• ECC is slowly gaining popularity in applications, compared to other public-key schemes, i.e., many 

new applications, especially on embedded platforms, make use of elliptic curve cryptography.
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 Motivation

• Alice orders a pink car from the car salesmen 
Bob 

• After seeing the pink car, Alice states that she 
has never ordered it:

• How can Bob prove towards a judge that Alice 
has ordered a pink car? (And that he did not 
fabricate the order himself)

 Symmetric cryptography fails because both 
Alice and Bob can be malicious

 Can be achieved with public-key cryptography
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 Basic Principle of Digital Signatures
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 Main idea

• For a given message x, a digital signature is 
appended to the message (just like a conventional 
signature).

• Only the person with the private key should be 
able to generate the signature.

• The signature must change for every document.

The signature is realized as a function with the 
message x and the private key as input.

The public key and the message x are the inputs 
to the verification function.
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 Core Security Services

1. Confidentiality: Information is kept secret from all but 
authorized parties.

2. Integrity: Ensures that a message has not been modified in 
transit.

3. Message Authentication: Ensures that the sender of a 
message is authentic. An alternative term is data origin 
authentication.

4. Non-repudiation: Ensures that the sender of a message can 
not deny the creation of the message. (c.f. order of a pink car)

The objectives of a security systems are called 
security services.
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 Additional Security Services

5. Identification/entity authentication: Establishing and 
verification of the identity of an entity, e.g. a person, a 
computer, or a credit card.

6. Access control: Restricting access to the resources to 
privileged entities.

7. Availability: The electronic system is reliably available.

8. Auditing: Provides  evidences about security relevant 
activities, e.g., by keeping logs about certain events.

9. Physical security: Providing protection against physical 
tampering and/or responses to physical tampering attempts

10. Anonymity: Providing protection against discovery and misuse 
of identity.
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 Main idea of the RSA signature scheme
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To generate the private and public key:

• Use the same key generation as RSA encryption.

To generate the signature:

• “encrypt” the message x with the private key

• Append s to message x

To verify the signature:

• “decrypt” the signature with the public key

• If x=x’, the signature is valid

s = sigKpriv(x) = xd mod n

x’=verKpub(s)=se mod n
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 The RSA Signature Protocol

Alice Bob

Kpr = d
Kpub = (n, e)

Compute signature:
s = sigkpr(x) ≡ xd mod n

Kpub

(x,s)

Verify signature:
x‘ ≡ se mod n
If x‘ ≡ x mod n → valid signature
If x‘ ≡ x mod n → invalid signature
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 Security and Performance of the RSA Signature Scheme

Security:

The same constrains as RSA encryption: n needs to be at 
least 1024 bits to provide a security level of 80 bit.

 The signature, consisting of s, needs to be at least 1024 bits 
long

Performance:

The signing process is an exponentiation with the private key 
and the verification process an exponentiation with the public 
key e.

 Signature verification is very efficient as a small number can 
be chosen for the public key.



254/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Existential Forgery Attack against RSA Digital Signature

Alice Bob
Kpr = d
Kpub = (n, e)

1. Choose signature:
s Zn

2. Compute message:
x ≡ se mod n

(n,e)

(x,s)

Verification:
se ≡ x‘ mod n

since se = (xd)e ≡ x mod n
→ Signature is valid

Oscar



(n,e)
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 Existential Forgery and Padding

• An attacker can generate valid message-signature 
pairs (x,s)

• But an attack can only choose the signature s and 
NOT the message x

 Attacker cannot generate messages like „Transfer 
$1000 into Oscar‘s account“

Formatting the message x according to a padding scheme can be used to 
make sure that an attacker cannot generate valid (x,s) pairs. 

(A messages x generated by an attacker during an Existential Forgery 
Attack will not coincide with the padding scheme. For more details see 
Chapter 10 in Understanding Cryptography.)
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Content of this Chapter
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 Facts about the Digital Signature Algorithm (DSA)

• Federal US Government standard for digital 
signatures (DSS)

• Proposed by the National Institute of Standards 
and Technology (NIST)

• DSA is based on the Elgamal signature scheme 

• Signature is only 320 bits long

• Signature verification is slower compared to RSA
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 The Digital Signature Algorithm (DSA)

Key generation of DSA:

1. Generate a prime p with 21023 < p < 21024

2. Find a prime divisor q of p-1 with 2159 < q < 2160

3. Find an integer α with ord(α)=q

4. Choose a random integer d with 0<d<q

5. Compute β ≡ αd mod p

The keys are:

kpub = (p,q,α,β)

kpr = (d)
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 The Digital Signature Algorithm (DSA)

DSA signature generation :

Given: message x, signature s, private key d and public 
key (p,q,α,β)

1. Choose an integer as random ephemeral key kE

with 0<kE<q

2. Compute r ≡ (αkE mod p) mod q

3. Computes s ≡ (SHA(x)+d ∙ r) kE
-1 mod q

The signature consists of (r,s)

SHA denotes the hashfunction SHA-1 which computes 
a 160-bit fingerprint of message x. (See Chapter 11 of 
Understanding Cryptography for more details)
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 The Digital Signature Algorithm (DSA)

DSA signature verification

Given: message x, signature s and public key (p,q,α,β)

1. Compute auxiliary value w ≡ s-1 mod q

2. Compute auxiliary value u1 ≡ w ∙ SHA(x) mod q

3. Compute auxiliary value u2 ≡ w ∙ r mod q

4. Compute v ≡ (αu1 ∙ β u2  mod p) mod q

If v ≡ r mod q → signature is valid

If v ≡ r mod q → signature is invalid
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Proof of DSA:

We show need to show that the signature (r,s) in fact satisfied the 
condition r ≡ v mod q:

s ≡ (SHA(x))+d ∙r) ∙ kE
-1 mod q

 kE ≡ s-1 SHA(x) + d ∙ s-1 r mod q

 kE ≡u1+d ∙ u2 mod q

We can raise α to either side of the equation if we reduce modulo p:

 αkE mod p ≡ αu1+d∙u2 mod p

Since β ≡ αd mod p we can write:

 αkE mod p ≡ αu1 βu2 mod p

We now reduce both sides of the equation modulo q:

 (αkE mod p) mod q ≡ (αu1 βu2 mod p) mod q

Since r ≡ αkE mod p mod q and v ≡ (αu1 βu2 mod p)  mod q, this expression is 
identical to:

 r  ≡ v 
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 Example

Alice Bob

Key generation:
1. choose p = 59 and q = 29
2. choose α = 3
3. choose private key d = 7
4. β = αβ = 37 ≡ 4 mod 59

Sign:
Compute has of message H(x)=26
1. Choose ephermal key kE=10
2. r = (310 mod 59) ≡ 20 mod 29
3. s = (26 + 7 ∙ 20) ∙ 3) ≡ 5 mod 29

(p, q, α, β)=(59, 29, 3, 4)

(x,(r, s))=(x,20, 5)

Verify:
w ≡ 5-1 ≡ 6 mod 29
u1 ≡ 6 ∙ 26 ≡ 11 mod 29
u2 ≡ 6 ∙  20 ≡ 4 mod 29
v = (311 ∙ 44 mod 59) mod 29 = 20
v ≡ r mod 29 → valid signature
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 Security of DSA

To solve the discrete logarithm problem in p the powerful index 
calculus method can be applied. But this method cannot be 
applied to the discrete logarithm problem of the subgroup q. 
Therefore q can be smaller than p. For details see Chapter 10 and 
Chapter 8 of Understanding Cryptography .

p q hash output 
(min)

security levels

1024 160 160 80
2048 224 224 112
3072 256 256 128

Standardized parameter bit lengths and security levels for the DSA
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 Elliptic Curve Digital Signature Algorithm (ECDSA)

• Based on Elliptic Curve Cryptography (ECC)

• Bit lengths in the range of 160-256 bits can be chosen 
to provide security equivalent to 1024-3072 bit RSA 
(80-128 bit symmetric security level)

• One signature consists of two points, hence the 
signature is twice the used bit length (i.e., 320-512 bits 
for 80-128 bit security level).

• The shorter bit length of ECDSA often result in shorter 
processing time

For more details see Section 10.5 in Understanding 
Cryptography
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 Lessons Learned

• Digital signatures provide message integrity, message authentication and non-repudiation.

• RSA is currently the most widely used digital signature algorithm.

• Competitors are the Digital Signature Standard (DSA) and the Elliptic Curve Digital 

Signature Standard (ECDSA).

• RSA verification can be done with short public keys e. Hence, in practice, RSA 

verification is usually faster than signing.

• DSA and ECDSA have shorter signatures than RSA

• In order to prevent certain attacks, RSA should be used with padding.

• The modulus of DSA and the RSA signature schemes should be at least 1024- bits long. 

For true long-term security, a modulus of length 3072 bits should be chosen. In contrast, 

ECDSA achieves the same security levels with bit lengths in the range 160–256 bits.



Fig.. 1.2 Absorbing and squeezing phase of Keccak
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Fig. 1.3 The internal structure of Keccak
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Fig. 1.4 The state of Keccak
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Fig. 1.5 The Theta Step of Keccak – visually
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Fig. 1.5 The Theta Step of Keccak – pseudo code
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• Input: state array A[x,y]

• Output: manipulated state array A[x,y]

• C[x] = A[x,0]  A[x,1]  A[x,2]  A[x,3]  A[x,4] x = 0…4

• D[x] = C[x-1]  rot(C[x+1],1) x = 0…4

• A[x,y] = A[x,y]  D[x] x,y = 0…4



Table 1.3 The rotation constants of Keccak
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Fig. 1.6 The Chi Step of Keccak
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Table 1.4 The round constants of Keccak
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Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1
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Motivation
Problem: 

Naive signing of long messages generates a signature of same length.

• Three Problems

• Computational overhead

• Message overhead

• Security limitations

• For more info see Section 11.1 in “Understanding Cryptography”.

Solution:
Instead of signing the whole message, sign only a digest (=hash) 

Also secure, but much faster

Needed:
Hash Functions
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Notes:

• x has fixed length

• z, y have fixed length

• z, x do not have equal length in general

• h(x) does not require a key.

• h(x) is public.

x

zi = h( xi || zi-1 )

sigkpr
z)

xi

z

y = sigkpr
(z)

 Digital Signature with a Hash Function



277/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Basic Protocol for Digital Signatures with a Hash Function:

Alice Bob

z = h(x)
s = sigKpr

(z)

(x, s)

z' = h(x)
verKpub

(s,z')=true/false

Kpub
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 Principal input–output behavior of hash functions
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Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1
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 The three security properties of hash functions
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 Hash Funktionen: Security Properties

• Preimage resistance: For a given output z, it is impossible to find any
input x such that h(x) = z, i.e., h(x) is one-way. 

• Second preimage resistance: Given x1, and thus h(x1), it is computa-
tionally infeasible to find any x2 such that h(x1) = h(x2).

• Collision resistance: It is computationally infeasible to find any pairs
x1 ≠ x2 such that h(x1) = h(x2).
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 Hash Funktionen: Security
It turns out that collison resistance causes most problems

• How hard is it to find a collision with a probability of 0.5 ?

• Related Problem: How many people are needed such that two 
of them have the same birthday with a probability of 0.5 ? 

• No! Not 365/2=183.   23 are enough ! This is called the 
birthday paradoxon (Search takes ≈√2n steps) .

• For more info see Chapter 11.2.3 in Understanding 
Cryptography.

• To deal with this paradox, hash functions need a output size of 
at least 160 bits.



283/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1
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 Hash Funktionen: Algorithms

• MD5 - family

• SHA-1: output - 160 Bit; input - 512 bit chunks of message x;

operations - bitwise AND, OR, XOR, complement und cyclic shifts.

• RIPE-MD 160: output - 160 Bit; input - 512 bit chunks of message x; 
operations – like in SHA-1, but two in parallel and combinations of them 
after each round.

Hash Algorithms

based on
block ciphers

Special Algorithms,
e.g. MD5 - family
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Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1



 SHA-1

• Part of the MD-4 family.

• Based on a Merkle-Dåmgard construction.

• 160-bit output from a message of maximum length  264

bit.

• Widely used ( even tough some weaknesses are known)
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 SHA-1 High Level Diagramm
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• Compression Function consists of 80 rounds which are divided into four 

stages of 20 rounds each



 SHA-1: Padding

• Message x has to be padded to fit a size of a multiple of 512 bit.

• k ≡ 512 − 64 − 1 − l = 448 − (l + 1) mod 512.
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 SHA-1: Hash Computation

• Each message block xi is processed in four stages with 20 rounds each

SHA-1 uses:

• A message schedule which computes a 32-bit word W0,W1,...,W79 for each of the 80 

rounds

• Five working registers of size of 32 bits A,B,C,D,E

• A hash value Hi consisting of five 32-bit words Hi
(0), Hi

(1), Hi
(2) , Hi

(3), Hi
(4)

• In the beginning, the hash value holds the initial value H0, which is replaced by a new 

hash value after the processing of each single message block. 

• The final hash value Hn is equal to the output h(x) of SHA-1.
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 SHA-1: All four stages
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 SHA-1: Internals of a Round
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Stage t Round j Constant Kt Function ft

1 00…19 K=5A827999 f(B,C,D)=(B∧C)∨(¯B∧D)
2 20…39 K=6ED9EBA1 f(B,C,D)=B⊕C⊕D
3 40…59 K=8F1BBCDC f(B,C,D)=(B⊕C)∨(B⊕D)∨(C⊕D)
4 60…79 K=CA62C1D6 f(B,C,D)=B⊕C⊕D
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 Lessons Learned: Hash-Funktionen

• Hash functions are keyless. The two most important applications of hash 
functions are their use in digital signatures and in message authentication 
codes such as HMAC.

• The  three  security  requirements  for  hash  functions  are  one-wayness,  
second preimage resistance and collision resistance.

• Hash functions should have at least 160-bit output length in order to 
withstand collision attacks; 256 bit or more is desirable for long-term 
security.

• MD5, which was widely used, is insecure. Serious security weaknesses 
have been found in SHA-1, and the hash function should be phased out. 
The SHA-2 algorithms all appear to be secure.

• The ongoing SHA-3 competition will result in new standardized hash 
functions in a few years.
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 Further Informations: Hash-Funktionen

• Overview over many Hash Functions with Spezifications:

• http://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo

• Birthday Paradox: Wikipedia has a nice explanation

• http://en.wikipedia.org/wiki/Birthday_problem

• SHA Standards

• SHA1+2: http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf

• SHA3 Overview: http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

• CrypTool is a learning program which also can hash:

• http://www.cryptool.org/



• The principle behind MACs

• The security properties that can be achieved with MACs

• How MACs can be realized with hash functions and with block ciphers

 Content of this Chapter

294/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Similar to digital signatures, MACs append an authentication tag to a message

• MACs use a symmetric key k for generation and verification

• Computation of a MAC: m = MACk(x)

 Principle of Message Authentication Codes
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1. Cryptographic checksum

A MAC generates a cryptographically secure authentication tag for a given message.

2. Symmetric 

MACs are based on secret symmetric keys. The signing and verifying parties must share a secret 

key.

3. Arbitrary message size 

MACs accept messages of arbitrary length.

4. Fixed output length 

MACs generate fixed-size authentication tags.

5. Message integrity

MACs providemessage integrity: Any manipulations of a message during transit will be detected 

by the receiver.

6. Message authentication 

The receiving party is assured of the origin of the message.

7. No nonrepudiation 

Since MACs are based on symmetric principles, they do not provide nonrepudiation.

 Properties of Message Authentication Codes
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• MAC is realized with cryptographic hash functions (e.g., SHA-1)

• HMAC is such a MAC built from hash functions

• Basic idea: Key is hashed together with the message

• Two possible constructions:

• secret prefix MAC: m =MACk(x) = h(k||x)

• secret suffix MAC: m =MACk(x) = h(x||k)

• Attacks: 

• secret prefix MAC: Attack MAC for the message x = (x1,x2, . . . ,xn,xn+1), where xn+1 is an arbitrary 

additional block, can be constructed from m without knowing the secret key

• secret suffix MAC: find collision x and xO  such that h(x) = h(xO), then m = h(x||k) = h(xO||k)

• Idea: Combine secret prefix and suffix: HMAC (cf. next slide)

 MACs from Hash Functions
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• Proposed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in 1996

• Scheme consists of an inner and outer hash

• k+ is expanded key k

• expanded key k+ is XORed with the inner pad

• ipad = 00110110,00110110, . . .,00110110

• opad = 01011100,01011100, . . .,01011100

• HMACk(x) = h[(k+⊕opad)||h[(k+⊕ipad)||x]]

• HMAC is provable secure which means (informally speaking): The MAC can only be broken if a 

collision for the hash function can be found.

 HMAC
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• MAC constructed from block ciphers (e.g. AES)

• Popular: Use AES in CBC mode

• CBC-MAC:

 MACs from Block Ciphers
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• MAC Generation

• Divide the message x into blocks xi

• Compute first iteration y1 = ek(x1⊕IV)

• Compute yi = ek(xi⊕yi−1) for the next blocks

• Final block is the MAC value: m =MACk(x) = yn

• MAC Verification

• Repeat MAC computation (m‘) 

• Compare results:In case m’= m, the message is verified as correct

• In case m’ ≠ m, the message and/or the MAC value m have been altered during transmission

 CBC-MAC
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• MACs provide two security services, message integrity and message authentication, using 

symmetric techniques. MACs are widely used in protocols.

• Both of these services also provided by digital signatures, but MACs are much faster as they are 

based on symmetric algorithms.

• MACs do not provide nonrepudiation.

• In practice, MACs are either based on block ciphers or on hash functions.

• HMAC is a popular and very secure MAC, used in many practical protocols such as TLS.

 Lessons Learned
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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 Classification of Key Establishment Methods

In an ideal key agreement protocol, no single party can control 
what the key value will be.
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It is often desirable to frequently change the key in a cryptographic system. 

Reasons for key freshness include:

• If a key is exposed (e.g., through hackers), there is limited damage if the key is changed often

• Some cryptographic attacks become more difficult if only a limited amount of ciphertext was 

generated under one key

• If an attacker wants to recover long pieces of ciphertext, he has to recover several keys which 

makes attacks harder

 Key Freshness
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 Key Derivation

 In order to achieve key freshness, we need to generate new keys frequently.

 Rather than performing a full key establishment every time (which is costly in 
terms of computation and/or communication), we can derive multiple session
keys kses from a given key kAB.

 The key kAB is fed into a key derivation function together with a nonce r („number
used only once“).

 Every different value for r yields a different session key
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 Key Derivation 

 The key derivation function is a computationally
simple function, e.g., a block cipher or a hash
function

Alice Bob

generate nonce r

derive session key
Kses= ekAB (r)

r

derive session key
Kses= ekAB (r)

 Example for a basic protocol:
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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 The n2 Key Distribution Problem

 Simple situation: Network with n users. Every user wants to communicate
securely with every of the other n-1 users.

 Naïve approach: Every pair of users obtains an individual key pair
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 The n2 Key Distribution Problem

Shortcomings

 There are n (n-1) ≈ n2 keys in the system

 There are n (n-1)/2 key pairs

 If a new user Esther joins the network, new
keys kXE have to be transported via secure
channels (!) to each of the existing usersa

 Only works for small networks which are
relatively static

Example: mid-size company with 750 employees

 750 x 749 = 561,750 keys must be distributed securely
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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 Key Establishment with Key Distribution Center

Alice Bob

derive session key
Kses= eKA (yA)

KDC
KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB) generate session key kses

yA = eKA (kses)
yB = eKB (kses)

yA yB

derive session key
Kses= eKB (yB)

y= eKses (x) y x= e-1
Kses (y)

 Key Distribution Center (KDC) = Central party, trusted by all users

 KDC shares a key encryption key (KEK) with each user

 Principle: KDC sends session keys to users which are encrypted with KEKs

message y
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 Key Establishment with Key Distribution Center

 Advantages over previous approach: 

Only n long-term key pairs are in the system

 If a new user is added, a secure key is only needed between the user
and the KDC (the other users are not affected)

Scales well to moderately sized networks

 Kerberos (a popular authentication and key distribution protocol) is based on 
KDCs

 More information on KDCs and Kerberos: Section 13.2 of Understanding 
Cryptography
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 Key Establishment with Key Distribution Center

Remaining problems: 

 No Perfect Forward Secrecy: If the KEKs are compromised, an attacker
can decrypt past messages if he stored the corresponding ciphertext

 Single point of failure: The KDC stores all KEKs. If an attacker gets
access to this database, all past traffic can be decrypted.

 Communication bottleneck: The KDC is involved in every
communication in the entire network (can be countered by giving the
session keys a long life time)

 For more advanced attacks (e.g., key confirmation attack): Cf. Section
13.2 of Understanding Cryptography
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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Alice

Recall: Diffie–Hellman Key Exchange (DHKE)

Bob

Choose random private key
kprA = a ∈ {1, 2,…, p-1}

Choose random private key
kprB = b ∈ {1, 2,…, p-1}

Compute public key
kpubA = A = αa mod p

Compute public key
kpubB = B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

 Widely used in practice

 If the parameters are chosen carefully (especially a prime p > 21024), 
the DHKE is secure against passive (i.e., listen-only) attacks

 However: If the attacker can actively intervene in the communciation,
the man-in-the-middle attack becomes possible

Public parameters α, p 
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Alice

Man-in-the-Middle Attack

Bob

kprA = a
kpubA = A = αa mod p

kAO = (B´)a mod p

A

 Oscar computes a session key kAO with Alice, and kBO with Bob

 However, Alice and Bob think they are communicationg with each other ! 

 The attack efficiently performs 2 DH key-exchanges: Oscar-Alice and Oscar-Bob

 Here is why the attack works:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

Alice computes: kAO = (B´)a = (αo)a

Oscar computes: kAO = Ao = (αa)o

Bob computes: kBO = (A´)b = (αo)b

Oscar computes: kBO = Bo = (αa)o
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Alice

Implications of the Man-in-the-Middle Attack

Bob

kprA = a
kpubA = A = αa mod p

kAO = (B´)a mod p

A

 Oscar has no complete control over the channel, e.g., if Alice wants to send an 
encrypted message x to Bob, Oscar can read the message:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

y = AESkA,O (x)
y

decrypt  x = AES-1
kA,O (y)

re-encrypt  y´= AESkB,O (x)
y´

x = AES-1
kB,O (y´)
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Very, very important facts about the Man-in-the-Middle Attack

 The man-in-the-middle-attack is not restricted to DHKE; it is
applicable to any public-key scheme, e.g. RSA encryption. 
ECDSA digital signature, etc. etc.

 The attack works always by the same pattern: Oscar replaces the
public key from one of the parties by his own key.

 The attack is also known as MIM attack or Janus attack

 Q: What is the underlying problem that makes the MIM attack possible?

 A: The public keys are not authenticated: When Alice receives a public key which is
allegedly from Bob, she has no way of knowing whether it is in fact his. (After all, a key
consists of innocent bits; it does not smell like Bob‘s perfume or anything like that)

Even though public keys can be sent over unsecure channels, they
require authenticated channels.
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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 Certificates

 In order to authenticate public keys (and thus, prevent the MIM attack) , all public keys
are digitally signed by a central trusted authority.

 Such a construction is called certificate

certificate = public key + ID(user) + digital signature over public key and ID

 In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice) )

 Certificates bind the identity of user to her public key

 The trusted authority that issues the certificate is referred to as certifying authority (CA)

 „Issuing certificates“ means in particular that the CA computes the signature sigKCA(kpub)
using its (super secret!) private key kCA

 The party who receives a certificate, e.g., Bob, verifies Alice‘s public key using the public
key of the CA
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Alice

Diffie–Hellman Key Exchange (DHKE) with Certificates

Bob

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

Cert(Alice)

kprA = a

kpubA = A

Cert(Alice)  = ((A, IDA), sigKCA (A,IDA))

Cert(Bob)

kprB = b

kpubB = B = αb mod p

Cert(Bob)  = ((B, IDB), sigKCA (B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

CA
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• Note that verfication requires the public key of the CA for verKpub,CA

• In principle, an attacker could run a MIM attack when kpub,CA is being distributed

 The public CA keys must also be distributed via an authenticated channel!

Certificates

 Q: So, have we gained anything? 
After all, we try to protect a public key (e.g., a DH key) by using yet another
public-key scheme (digital signature for the certificate)?

 A: YES! The difference from before (e.g., DHKE without certificates) is that
we only need to distribute the public CA key once, often at the set-upt
time of the system

 Example: Most web browsers are shipped with the public keys of many
CAs. The „authenticated channel“ is formed by the (hopefully) correct
distribution of the original browser software.
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• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter
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• In the wild certificates contain much more information than just a 

public key and a signature.

• X509 is a popular signature standard. The main fields of such a 

certificate are shown to the right.

• Note that the „Signature“ at the bottom is computed over all other 

fields in the certifcate (after hashing of all those fields).

• It is important to note that there are two public-key schemes 

involved in every certificate:

1. The public-key that actually is protected by the signature („Subject‘s 

Public Key“ on the right). This was the public Diffie-Hellman key in 

the earlier examples.

2. The digital signature algorithm used by the CA to sign the certificate 

data.

• For more information on certificates, see Section 13.3 of 

Understanding Cryptography

 Certificates in the Real World
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There are many additional problems when certificates are to be used in systems with a large number 

of participants. The more pressing ones are:

1. Users communicate which other whose certificates are issued by different CAs

• This requires cross-certification of CAs, e.g.. CA1 certifies the public-key of CA2. If 

Alice trusts „her“ CA1, cross-certification ensures that she also trusts CA2. This is 

called a „chain of trust“ and it is said that „trust is delegated“.

2. Certificate Revocation Lists (CRLs)

• Another real-world problem is that certificates must be revoced, e.g., if a smart card 

with certificate is lost or if a user leaves an organization. For this, CRLs must be 

sent out periodically (e.g., daily) which is a burden on the bandwidth of the system.

More information on PKIs and CAs  can be found in Section 13.3 of Understanding Cryptography 

 Remaining Issues with PKIs
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