

Network Security
Ali Shakiba

Vali-e-Asr University of Rafsanjan

ali.shakiba@vru.ac.ir

www.1ali.ir

3/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Cryptanalysis

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher

4/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Classification of the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols

Block Ciphers Stream Ciphers

5/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Some Basic Facts

• Ancient Crypto: Early signs of encryption in Eqypt in ca. 2000 B.C.

Letter-based encryption schemes (e.g., Caesar cipher) popular ever since.

• Symmetric ciphers: All encryption schemes from ancient times until 1976 were symmetric

ones.

• Asymmetric ciphers: In 1976 public-key (or asymmetric) cryptography was openly proposed

by Diffie, Hellman and Merkle.

• Hybrid Schemes: The majority of today‘s protocols are hybrid schemes, i.e., the use both

• symmteric ciphers (e.g., for encryption and message authentication) and

• asymmetric ciphers (e.g., for key exchange and digital signature).

6/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Cryptanalysis

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher

7/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Symmetric Cryptography

• Alternative names: private-key, single-key or secret-key cryptography.

Alice
(good)

Bob
(good)

Oscar
(bad guy)

x x

Unsecure
channel

(e.g. Internet)

• Problem Statement:
1) Alice and Bob would like to communicate via an unsecure channel (e.g.,
WLAN or Internet).
2) A malicious third party Oscar (the bad guy) has channel access but should
not be able to understand the communication.

8/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Symmetric Cryptography

Alice
(good)

Bob
(good)

Oscar
(bad guy)

Encryption
e()

Key Generator

Decryption
d()

Secure Channel

K

x y

K

x

Unsecure
channel

(e.g. Internet)

• x is the. plaintext

• y is the ciphertext

• K is the key

• Set of all keys {K1, K2, ...,Kn} is the key space

Solution: Encryption with symmetric cipher.
 Oscar obtains only ciphertext y, that looks
like random bits y

9/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Symmetric Cryptography

• Encryption equation y = eK(x)

• Decryption equation x = dK(y)

• Important: The key must be transmitted via a secure channel between Alice and Bob.

• The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi
Protected Access (WPA) protocol or a human courier.

• However, the system is only secure if an attacker does not learn the key K!

 The problem of secure communication is reduced to secure transmission and
storage of the key K.

• Encryption and decryption are inverse operations if the same key K is used on both
sides:

dK(y) = dK(eK(x)) = x

10/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Cryptanalysis

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher

11/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Why do we need Cryptanalysis?

• There is no mathematical proof of security for any practial cipher

• The only way to have assurance that a cipher is secure is to try to break it (and fail) !

A cryptosystem should be secure even if the attacker (Oscar)
knows all details about the system, with the exception of the secret

key.

Kerckhoff‘s Principle is paramount in modern cryptography:

• In order to achieve Kerckhoff‘s Principle in practice:
Only use widely known ciphers that have been cryptanalyzed for several years
by good cryptographers! (Understanding Cryptography only treats such ciphers)

• Remark: It is tempting to assume that a cipher is „more secure“ if its details are kept
secret. However, history has shown time and again that secret ciphers can almost
always been broken once they have been reversed engineered. (Example: Content
Scrambling System (CSS) for DVD content protection.)

12/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Cryptanalysis: Attacking Cryptosystems

• Classical Attacks

• Mathematical Analysis

• Brute-Force Attack

• Implementation Attack: Try to extract key through reverese engineering or power

measurement, e.g., for a banking smart card.

• Social Engineering: E.g., trick a user into giving up her password

13/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Treats the cipher as a black box

• Requires (at least) 1 plaintext-ciphertext pair (x0, y0)

• Check all possible keys until condition is fulfilled:

dK(y0) = x0

• How many keys to we need ?

 Brute-Force Attack (or Exhaustive Key Search) against Symmetric Ciphers

Key length
in bit

Key space Security life time
(assuming brute-force as best possible attack)

64 264 Short term (few days or less)

128 2128 Long-term (several decades in the absence of
quantum computers)

256 2256 Long-term (also resistant against quantum
computers – note that QC do not exist at the
moment and might never exist)

?

Important: An adversary only needs to succeed with one attack. Thus, a long key space
does not help if other attacks (e.g., social engineering) are possible..

14/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Cryptanalysis

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher

15/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Substitution Cipher

• Historical cipher

• Great tool for understanding brute-force vs. analytical attacks

• Encrypts letters rather than bits (like all ciphers until after WW II)

Idea: replace each plaintext letter by a fixed other letter.

Plaintext Ciphertext
A k
B d
C w

....
for instance, ABBA would be encrypted as kddk

• Example (ciphertext):

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc

hwwhbsqvqbre hwq vhlq

• How secure is the Substitution Cipher? Let‘s look at attacks…

16/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Attacks against the Substitution Cipher

1. Attack: Exhaustive Key Search (Brute-Force Attack)

• Simply try every possible subsititution table until an intelligent plaintext appears (note

that each substitution table is a key)..

• How many substitution tables (= keys) are there?

26 x 25 x … x 3 x 2 x 1 = 26! 288

Search through 288 keys is completely infeasible with today‘s computers! (cf. earlier table

on key lengths)

• Q: Can we now conclude that the substitution cipher is secure since a brute-forece

attack is not feasible?

• A: No! We have to protect against all possible attacks…

17/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 2. Attack: Letter Frequency Analysis (Mathematical Analysis Attack)

• Letters have very different frequencies in the English language

• Moreover: the frequency of plaintext letters is preserved in the ciphertext.

• For instanc, „e“ is the most common letter in English; almost 13% of all letters in a typical

English text are „e“.

• The next most common one is „t“ with about 9%.

E T A O I N S H R D L C U M W F G Y P B V K J X Q Z
0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

Letter frequencies in English

Letters

Fr
eq

ue
nc

y
in

 %

18/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Breaking the Substitution Cipher with Letter Frequency Attack

• Let‘s retun to our example and identify the most frequent letter:

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc

hwwhbsqvqbre hwq vhlq

• We replace the ciphertext letter q by E and obtain:

iE ifcc vEEr fb rdE vfllcE na rdE cfjwhwz hr bnnb hcc

hwwhbsEvEbre hwE vhlE

• By further guessing based on the frequency of the remaining letters we obtain the
plaintext:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL

ARRANGEMENTS ARE MADE

19/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Breaking the Substitution Cipher with Letter Frequency Attack

• In practice, not only frequencies of individual letters can be used for an attack, but also

the frequency of letter pairs (i.e., „th“ is very common in English), letter triples, etc.

• cf. Problem 1.1 in Understanding Cryptography for a longer ciphertext you can try to

break!

Important lesson: Even though the substitution cipher has a sufficiently large key
space of appr. 288, it can easily be defeated with analytical methods. This is an
excellent example that an encryption scheme must withstand all types of
attacks.

20/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Attacking crypto schemes

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher

21/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Short Introduction to Modular Arithmetic

Why do we need to study modular arithmetic?

• Extremely important for asymmetric cryptography (RSA, elliptic curves etc.)

• Some historical ciphers can be elegantly described with modular arithmetic (cf. Caesar and

affine cipher later on).

22/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Short Introduction to Modular Arithmetic

12 1
2

3

4

567
8

9

10
11

Generally speaking, most cryptosytems are based on sets of numbers that are

1. discrete (sets with integers are particularly useful)

2. finite (i.e., if we only compute with a finiely many numbers)

Seems too abstract? --- Let‘s look at a finite set with discrete numbers we are quite familiar
with: a clock.

Interestingly, even though the numbers are incremented every hour we never leave the set of
integers:

1, 2, 3, … 11, 12, 1, 2, 3, … 11, 12, 1, 2, 3, …:

23/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Short Introduction to Modular Arithmetic

• We develop now an arithmetic system which allows us to compute in finite sets of
integers like the 12 integers we find on a clock (1,2,3, … ,12).

• It is crucial to have an operation which „keeps the numbers within limits“, i.e., after
addition and multiplication they should never leave the set (i.e., never larger than 12).

Examples for modular reduction.

• Let a= 12 and m= 9 : 12 ≡ 3 mod 9

• Let a= 37 and m= 9: 34 ≡ 7 mod 9

• Let a= -7 and m= 9: -7 ≡ 2 mod 9

(you should check whether the condition „m divides (r-a)“holds in each of the 3 cases)

Definition: Modulus Operation

Let a, r, m be integers and m > 0. We write

a ≡ r mod m

if (r-a) is divisable by m.

• “m” is called the modulus

• “r” is called the remainder

24/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Properties of Modular Arithmetic (1)

• The remainder is not unique

It is somewhat surprising that for every given modulus m and number a, there are (infinitely)
many valid remainders.
Example:

• 12 ≡ 3 mod 9 → 3 is a valid remainder since 9 divides (3-12)

• 12 ≡ 21 mod 9 → 21 is a valid remainder since 9 divides (21-12)

• 12 ≡ -6 mod 9 → -6 is a valid remainder since 9 divides (-6-12)

25/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Which remainder do we choose?

By convention, we usually agree on the smallest positive integer r as remainder. This
integer can be computed as

a = q m + r where 0 ≤ r ≤ m-1

• Example: a=12 and m= 9

12 = 1 x 9 + 3 → r = 3

Remark: This is just a convention. Algorithmically we are free to choose any other valid
remainder to compute our crypto functions.

 Properties of Modular Arithmetic (2)

remainderquotient

26/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

• How do we perform modular division?

First, note that rather than performing a division, we prefer to multiply by the inverse. Ex:

b / a≡ b x a-1 mod m

The inverse a-1 of a number a is defined such that:

a a-1 ≡ 1 mod m

Ex: What is 5 / 7 mod 9 ?

The inverse of 7 mod 9 is 4 since 7 x 4 ≡ 28 ≡ 1 mod 9, hence:

5 / 7 ≡ 5 x 4 = 20 ≡ 2 mod 9

 Properties of Modular Arithmetic (3)

• How is the inverse compute?

The inverse of a number a mod m only exists if and only if:

gcd (a, m) = 1

(note that in the example above gcd(5, 9) = 1, so that the inverse of 5 exists modulo 9)

For now, the best way of computing the inverse is to use exhaustive search. In Chapter 6 of
Understanding Cryptography we will learn the powerful Euclidean Algorithm which
actually computes an inverse for a given number and modulus.

27/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Properties of Modular Arithmetic (4)

• Modular reduction can be performed at any point during a calculation

Let’s look first at an example. We want to compute 38 mod 7 (note that exponentiation is
extremely important in public-key cryptography).

1. Approach: Exponentiation followed by modular reduction

38 = 6561≡ 2 mod 7

Note that we have the intermediate result 6561 even though we know that the final result
can’t be larger than 6.

2. Approach: Exponentiation with intermediate modular reduction

38 = 34 34 = 81 x 81

At this point we reduce the intermediate results 81 modulo 7:

38 = 81 x 81 ≡ 4 x 4 mod 7

4 x 4 = 16 ≡ 2 mod 7

Note that we can perform all these multiplications without pocket calculator, whereas
mentally computing 38 = 6561 is a bit challenging for most of us.

General rule: For most algorithms it is advantageous to reduce
intermediate results as soon as possible.

 An Algebraic View on Modulo Arithmetic: The Ring Zm (1)

• Closure: We can add and multiply any two numbers and the result is always in the ring.

• Addition and multiplication are associative, i.e., for all a,b,c Zm

a + (b + c) = (a + b) + c

a (b c) = (a b) c

and addition is commutative: a + b = b + a

• The distributive law holds: a×(b+c) = (a×b)+(a×c) for all a,b,c Zm

• There is the neutral element 0 with respect to addition, i.e., for all a Zm

a + 0 a mod m

• For all a Zm, there is always an additive inverse element –a such that

a + (-a) 0 mod m

• There is the neutral element 1 with respect to multiplication, i.e., for all a Zm

a 1 a mod m

• The multiplicative inverse a-1

a a-1 1 mod m

exists only for some, but not for all, elements in Zm.

28/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

We can view modular arithmetic in terms of sets and operations in the set. By doing
arithmetic modulo m we obtain the integer ring Zm .with the following properties:

 An Algebraic View on Modulo Arithmetic: The Ring Zm (2)

29/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

• We recall from above that an element a Zm has a multiplicative inverse only if:
gcd (a, m) = 1

We say that a is coprime or relatively prime to m.

• Ex: We consider the ring Z9 = {0,1,2,3,4,5,6,7,8}
The elements 0, 3, and 6 do not have inverses since they are not coprime to 9.
The inverses of the other elements 1, 2, 4, 5, 7, and 8 are:

1-1 1 mod 9 2-1 5 mod 9 4-1 7 mod 9
5-1 2 mod 9 7-1 4 mod 9 8-1 8 mod 9

Roughly speaking, a ring is a structure in which we can always add, subtract and
multiply, but we can only divide by certain elements (namely by those for which a
multiplicative inverse exists).

30/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Attacking crypto schemes

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher

31/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Shift (or Caesar) Cipher (1)

• Ancient cipher, allegedly used by Julius Caesar

• Replaces each plaintext letter by another one.

• Replacement rule is very simple: Take letter that follows after k positions in the alphabet

Needs mapping from letters → numbers:

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

• Example for k = 7

Plaintext = ATTACK = 0, 19, 19, 0, 2, 10

Ciphertext = haahr = 7, 0, 0, 7, 17

Note that the letters ”wrap around” at the end of the alphabet, which can be mathematically
be expressed as reduction modulo 26, e.g., 19 + 7 = 26 ≡ 0 mod 26

32/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Shift (or Caesar) Cipher (2)

• Elegant mathematical description of the cipher.

• Q; Is the shift cipher secure?

• A: No! several attacks are possible, including:

• Exhaustive key search (key space is only 26!)

• Letter frequency analysis, similar to attack against substitution cipher

Let k, x, y ε {0,1, …, 25}

• Encryption: y = ek(x) ≡ x + k mod 26

• Decryption: x = dk(x) ≡ y - k mod 26

33/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Affine Cipher (1)

• Extension of the shift cipher: rather than just adding the key to the plaintext, we also
multiply by the key

• We use for this a key consisting of two parts: k = (a, b)

• Since the inverse of a is needed for inversion, we can only use values for a for which:

gcd(a, 26) = 1

There are 12 values for a that fulfill this condition.

• From this follows that the key space is only 12 x 26 = 312 (cf. Sec 1.4 in Understanding
Cryptography)

• Again, several attacks are possible, including:

• Exhaustive key search and letter frequency analysis, similar to the attack against
the substitution cipher

Let k, x, y ε {0,1, …, 25}

• Encryption: y = ek(x) ≡ a x + b mod 26

• Decryption: x = dk(x) ≡ a-1(y – b) mod 26

34/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

• Never ever develop your own crypto algorithm unless you have a team of experienced cryptanalysts

checking your design.

• Do not use unproven crypto algorithms or unproven protocols.

• Attackers always look for the weakest point of a cryptosystem. For instance, a large key space by itself

is no guarantee for a cipher being secure; the cipher might still be vulnerable against analytical

attacks.

• Key lengths for symmetric algorithms in order to thwart exhaustive key-search attacks:

• 64 bit: insecure except for data with extremely short-term value

• 128 bit: long-term security of several decades, unless quantum computers become available

(quantum computers do not exist and perhaps never will)

• 256 bit: as above, but probably secure against attacks by quantum computers.

• Modular arithmetic is a tool for expressing historical encryption schemes, such as the affine cipher, in

a mathematically elegant way.

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Intro to stream ciphers

• Random number generators (RNGs)

• One-Time Pad (OTP)

• Linear feedback shift registers (LFSRs)

• Trivium: a modern stream cipher

35/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Stream Ciphers in the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols

Block Ciphers Stream Ciphers

Stream Ciphers were invented in 1917 by Gilbert Vernam

36/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Stream Cipher vs. Block Cipher

• Stream Ciphers

• Encrypt bits individually

• Usually small and fast common in embedded devices (e.g., A5/1 for
GSM phones)

• Block Ciphers:

• Always encrypt a full block (several bits)

• Are common for Internet applications

37/27

 Encryption and Decryption with Stream Ciphers

• Encryption and decryption are simple additions modulo 2 (aka XOR)

• Encryption and decryption are the same functions

• Encryption: yi = esi(xi) = xi + si mod 2 xi , yi , si ∈ {0,1}

• Decryption: xi = esi(yi) = yi + si mod 2

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Plaintext xi, ciphertext yi and key stream si consist of individual bits

38/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Synchronous vs. Asynchronous Stream Cipher

• Security of stream cipher depends entirely on the key stream si :

• Should be random , i.e., Pr(si = 0) = Pr(si = 1) = 0.5

• Must be reproducible by sender and receiver

• Synchronous Stream Cipher

• Key stream depend only on the key (and possibly an initialization vector IV)

• Asynchronous Stream Ciphers

• Key stream depends also on the ciphertext (dotted feedback enabled)
39/27

 Why is Modulo 2 Addition a Good Encryption Function?

• Modulo 2 addition is equivalent to XOR operation

• For perfectly random key stream si , each ciphertext output bit has a 50%

chance to be 0 or 1

 Good statistic property for ciphertext

• Inverting XOR is simple, since it is the same XOR operation

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

xi si yi

0 0 0
0 1 1
1 0 1
1 1 0

40/27

 Stream Cipher: Throughput

Performance comparison of symmetric ciphers (Pentium4):

Cipher Key length Mbit/s
DES 56 36.95

3DES 112 13.32

AES 128 51.19

RC4 (stream cipher) (choosable) 211.34

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005

41/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Intro to stream ciphers

• Random number generators (RNGs)

• One-Time Pad (OTP)

• Linear feedback shift registers (LFSRs)

• Trivium: a modern stream cipher

42/27

 Random number generators (RNGs)

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

RNG

Cryptographically
Secure RNGPseudorandom NGTrue RNG

43/27

 True Random Number Generators (TRNGs)

• Based on physical random processes: coin flipping, dice rolling, semiconductor noise,

radioactive decay, mouse movement, clock jitter of digital circuits

• Output stream si should have good statistical properties:

Pr(si = 0) = Pr(si = 1) = 50% (often achieved by post-processing)

• Output can neither be predicted nor be reproduced

Typically used for generation of keys, nonces (used only-once values) and for many other

purposes

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl44/27

 Pseudorandom Number Generator (PRNG)

• Generate sequences from initial seed value

• Typically, output stream has good statistical properties

• Output can be reproduced and can be predicted

Often computed in a recursive way:

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

),...,,(11

0

tiiii sssfs
seeds

Example: rand() function in ANSI C:

31
1

0

2mod123451103515245

12345

 ii ss
s

Most PRNGs have bad cryptographic properties!

45/27

 Cryptanalyzing a Simple PRNG

Assume

• unknown A, B and S0 as key

• Size of A, B and Si to be 100 bit

• 300 bit of output are known, i.e. S1, S2 and S3

Solving

…directly reveals A and B. All Si can be computed easily!

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

mBASS
mBASS

mod
mod

23

12

Simple PRNG: Linear Congruential Generator

mBASS
seedS

ii mod1

0

Bad cryptographic properties due to the linearity of most PRNGs

46/27

 Cryptographically Secure Pseudorandom Number Generator
(CSPRNG)

• Special PRNG with additional property:

• Output must be unpredictable

More precisely: Given n consecutive bits of output si , the following output bits sn+1 cannot be

predicted (in polynomial time).

• Needed in cryptography, in particular for stream ciphers

• Remark: There are almost no other applications that need unpredictability, whereas many,

many (technical) systems need PRNGs.

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl47/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Intro to stream ciphers

• Random number generators (RNGs)

• One-Time Pad (OTP)

• Linear feedback shift registers (LFSRs)

• Trivium: a modern stream cipher

48/27

 One-Time Pad (OTP)

Unconditionally secure cryptosystem:

• A cryptosystem is unconditionally secure if it cannot be broken even with infinite

computational resources

One-Time Pad

• A cryptosystem developed by Mauborgne that is based on Vernam’s stream cipher:

• Properties:

Let the plaintext, ciphertext and key consist of individual bits

xi, yi, ki {0,1}.

Encryption: eki
(xi) = xi ki.

Decryption: dki
(yi) = yi ki

OTP is unconditionally secure if and only if the key ki. is used once!

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl49/27

 One-Time Pad (OTP)

Unconditionally secure cryptosystem:

y0 = x0 k0

y1 = x1 k1

:

Every equation is a linear equation with two unknowns

 for every yi are xi = 0 and xi = 1 equiprobable!

This is true iff k0, k1, ... are independent, i.e., all ki have to be generated

truly random

 It can be shown that this systems can provably not be solved.

Disadvantage: For almost all applications the OTP is impractical since the

key must be as long as the message! (Imagine you have to encrypt a

1GByte email attachment.)

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl50/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Intro to stream ciphers

• Random number generators (RNGs)

• One-Time Pad (OTP)

• Linear feedback shift registers (LFSRs)

• Trivium: a modern stream cipher

51/27

 Linear Feedback Shift Registers (LFSRs)

• Concatenated flip-flops (FF), i.e., a shift register together with a feedback path

• Feedback computes fresh input by XOR of certain state bits

• Degree m given by number of storage elements

• If pi = 1, the feedback connection is present (“closed switch), otherwise there is not

feedback from this flip-flop (“open switch”)

• Output sequence repeats periodically

• Maximum output length: 2m-1

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl52/27

 Linear Feedback Shift Registers (LFSRs): Example with m=3

• LFSR output described by recursive equation:

• Maximum output length (of 23-1=7) achieved only for certain feedback

configurations, .e.g., the one shown here.

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

clk FF2 FF1 FF0=si

0 1 0 0

1 0 1 0

2 1 0 1

3 1 1 0

4 1 1 1

5 0 1 1

6 0 0 1

7 1 0 0

8 0 1 0

2mod13 iii sss

53/27

 Security of LFSRs

LFSRs typically described by polynomials:

• Single LFSRs generate highly predictable output

• If 2m output bits of an LFSR of degree m are known, the feedback

coefficients pi of the LFSR can be found by solving a system of linear

equations*

• Because of this many stream ciphers use combinations of LFSRs

*See Chapter 2 of Understanding Cryptography for further details.

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

01
1

1 ...)(pxpxpxxP m
l

m

54/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Intro to stream ciphers

• Random number generators (RNGs)

• One-Time Pad (OTP)

• Linear feedback shift registers (LFSRs)

• Trivium: a modern stream cipher

55/27

 A Modern Stream Cipher - Trivium

• Three nonlinear LFSRs (NLFSR) of length 93, 84, 111

• XOR-Sum of all three NLFSR outputs generates key stream si

• Small in Hardware:

• Total register count: 288

• Non-linearity: 3 AND-Gates

• 7 XOR-Gates (4 with three inputs)

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl56/27

 Trivium

Initialization:

• Load 80-bit IV into A

• Load 80-bit key into B

• Set c109 , c110 , c111 =1, all other bits 0

Warm-Up:

• Clock cipher 4 x 288 = 1152 times without generating output

Encryption:

• XOR-Sum of all three NLFSR outputs generates key stream si

Design can be parallelized to produce up to 64 bits of output per clock cycle

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Register length Feedback bit Feedforward bit AND inputs

A 93 69 66 91, 92

B 84 78 69 82, 83

C 111 87 66 109, 110

57/27

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

• Stream ciphers are less popular than block ciphers in most domains such as Internet security. There

are exceptions, for instance, the popular stream cipher RC4.

• Stream ciphers sometimes require fewer resources, e.g., code size or chip area, for implementation

than block ciphers, and they are attractive for use in constrained environments such as cell phones.

• The requirements for a cryptographically secure pseudorandom number generator are far more

demanding than the requirements for pseudorandom number generators used in other applications

such as testing or simulation

• The One-Time Pad is a provable secure symmetric cipher. However, it is highly impractical for most

applications because the key length has to equal the message length.

• Single LFSRs make poor stream ciphers despite their good statistical properties. However, careful

combinations of several LFSR can yield strong ciphers.

58/27

59/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Introduction to DES

• Overview of the DES Algorithm

• Internal Structure of DES

• Decryption

• Security of DES

60/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Classification of DES in the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols

Block Ciphers Stream Ciphers

You are here!

61/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 DES Facts

• Data Encryption Standard (DES) encrypts blocks of size 64 bit.

• Developed by IBM based on the cipher Lucifer under influence of the National Security

Agency (NSA), the design criteria for DES have not been published

• Standardized 1977 by the National Bureau of Standards (NBS)

today called National Institute of Standards and Technology (NIST)

• Most popular block cipher for most of the last 30 years.

• By far best studied symmetric algorithm.

• Nowadays considered insecure due to the small key length of 56 bit.

• But: 3DES yields very secure cipher, still widely used today.

• Replaced by the Advanced Encryption Standard (AES) in 2000

• For a more detailed history see Chapter 3.1 in Understanding Cryptography

62/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Block Cipher Primitives: Confusion and Diffusion

• Claude Shannon: There are two primitive operations with which strong encryption

algorithms can be built:

1. Confusion: An encryption operation where the relationship between key and ciphertext

is obscured.

Today, a common element for achieving confusion is substitution, which is found in

both AES and DES.

2. Diffusion: An encryption operation where the influence of one plaintext symbol is

spread over many ciphertext symbols with the goal of hiding statistical properties of the

plaintext.

A simple diffusion element is the bit permutation, which is frequently used within DES.

• Both operations by themselves cannot provide security. The idea is to concatenate

confusion and diffusion elements to build so called product ciphers.

63/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Product Ciphers

• Most of today‘s block ciphers are product ciphers as they consist of rounds

which are applied repeatedly to the data.

• Can reach excellent diffusion: changing of one bit of plaintext results on

average in the change of half the output bits.

Example:

single bit flip many bit flips

64/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Introduction to DES

• Overview of the DES Algorithm

• Internal Structure of DES

• Decryption

• Security of DES

65/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Overview of the DES Algorithm

• Encrypts blocks of size 64 bits.

• Uses a key of size 56 bits.

• Symmetric cipher: uses same key for encryption and decryption

• Uses 16 rounds which all perform the identical operation

• Different subkey in each round derived from main key

66/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Bitwise initial permutation, then 16 rounds

1. Plaintext is split into 32-bit halves Li and Ri

2. Ri is fed into the function f, the output of which is then XORed with Li

3. Left and right half are swapped

• Rounds can be expressed as:

 The DES Feistel Network (1)

• DES structure is a Feistel network

• Advantage: encryption and decryption

differ only in keyschedule

67/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The DES Feistel Network (2)

• L and R swapped again at the end of the cipher, i.e., after round 16 followed by a

final permutation

68/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Introduction to DES

• Overview of the DES Algorithm

• Internal Structure of DES

• Decryption

• Security of DES

69/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Initial and Final Permutation

• Bitwise Permutations.

• Inverse operations.

• Described by tables IP and IP-1.

Initial Permutation Final Permutation

70/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The f-Function

• main operation of DES

• f-Function inputs:

Ri-1 and round key ki

• 4 Steps:

1. Expansion E

2. XOR with round key

3. S-box substitution

4. Permutation

71/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Expansion Function E

1. Expansion E

• main purpose: increases

diffusion !

72/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Add Round Key

2. XOR Round Key

• Bitwise XOR of the round key and the

output of the expansion function E

• Round keys are derived from the main key

in the DES keyschedule (in a few slides)

73/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The DES S-Boxes

3. S-Box substitution

• Eight substitution tables.

• 6 bits of input, 4 bits of output.

• Non-linear and resistant to differential
cryptanalysis.

• Crucial element for DES security!

• Find all S-Box tables and S-Box design criteria
in Understanding Cryptography Chapter 3.

74/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Permutation P

4. Permutation P

• Bitwise permutation.

• Introduces diffusion.

• Output bits of one S-Box effect several S-Boxes in next

round

• Diffusion by E, S-Boxes and P guarantees that after

Round 5 every bit is a function of each key bit and

each plaintext bit.

75/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Schedule (1)

• Derives 16 round keys (or subkeys) ki of 48 bits each from the original 56 bit

key.

• The input key size of the DES is 64 bit: 56 bit key and 8 bit parity:

• Parity bits are removed in a first permuted choice PC-1:

(note that the bits 8, 16, 24, 32, 40, 48, 56 and 64 are not used at all)

!

76/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Schedule (2)

• Split key into 28-bit halves C0 and D0.

• In rounds i = 1, 2, 9 ,16, the two halves are each rotated

left by one bit.

• In all other rounds where the two halves are each rotated

left by two bits.

• In each round i permuted choice PC-2

selects a permuted subset of 48 bits of Ci and Di as round

key ki, i.e. each ki is a permutation of k!

• Note: The total number of rotations:

4 x 1 + 12 x 2 = 28 D0 = D16 and C0 = C16!

77/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Introduction to DES

• Overview of the DES Algorithm

• Internal Structure of DES

• Decryption

• Security of DES

78/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Decryption
• In Feistel ciphers only the keyschedule has to be

modified for decryption.

• Generate the same 16 round keys in reverse

order.

(for a detailed discussion on why this works see

Understanding Crptography Chapter 3)

• Reversed key schedule:

As D0=D16 and C0=C16 the first round key can be

generated by applying PC-2 right after PC-1 (no

rotation here!).

All other rotations of C and D can be reversed to

reproduce the other round keys resulting in:

• No rotation in round 1.

• One bit rotation to the right in rounds 2, 9

and 16.

• Two bit rotations to the right in all other

rounds.

79/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Introduction to DES

• Overview of the DES Algorithm

• Internal Structure of DES

• Decryption

• Security of DES

80/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Security of DES

• After proposal of DES two major criticisms arose:

1. Key space is too small (256 keys)

2. S-box design criteria have been kept secret: Are there any hidden analytical attacks

(backdoors), only known to the NSA?

• Analytical Attacks: DES is highly resistent to both differential and linear cryptanalysis,

which have been published years later than the DES. This means IBM and NSA had

been aware of these attacks for 15 years!

So far there is no known analytical attack which breaks DES in realistic scenarios.

• Exhaustive key search: For a given pair of plaintext-ciphertext (x, y) test all 256 keys

until the condition DESk
-1(x)=y is fulfilled.

 Relatively easy given today’s computer technology!

81/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 History of Attacks on DES

Year Proposed/ implemented DES Attack

1977 Diffie & Hellman, (under-)estimate the costs of a key search machine

1990 Biham & Shamir propose differential cryptanalysis (247 chosen ciphertexts)

1993 Mike Wiener proposes design of a very efficient key search machine:
Average search requires 36h. Costs: $1.000.000

1993 Matsui proposes linear cryptanalysis (243 chosen ciphertexts)

Jun. 1997 DES Challenge I broken, 4.5 months of distributed search

Feb. 1998 DES Challenge II--1 broken, 39 days (distributed search)

Jul. 1998 DES Challenge II--2 broken, key search machine Deep Crack built by the
Electronic Frontier Foundation (EFF): 1800 ASICs with 24 search engines each,
Costs: $250 000, 15 days average search time (required 56h for the Challenge)

Jan. 1999 DES Challenge III broken in 22h 15min
(distributed search assisted by Deep Crack)

2006-2008 Reconfigurable key search machine COPACOBANA developed at the
Universities in Bochum and Kiel (Germany), uses 120 FPGAs to break DES in
6.4 days (avg.) at a cost of $10 000.

82/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Triple encryption using DES is often used in practice to extend the effective key
length of DES to 112. For more info on multiple encryption and effective key
lengths see Chapter 5 of Understanding Cryptography.

• Alternative version of 3DES:

Advantage: choosing k1=k2=k3 performs single DES encryption.

• No practical attack known today.

• Used in many legacy applications, i.e., in banking systems.

 Triple DES – 3DES

83/29
Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Alternatives to DES

Algorithm I/O Bit key lengths remarks

AES / Rijndael 128 128/192/256
DES ''replacement'',
worldwide used standard

Triple DES 64 112 (effective) conservative choice

Mars 128 128/192/256 AES finalist

RC6 128 128/192/256 AES finalist

Serpent 128 128/192/256 AES finalist

Twofish 128 128/192/256 AES finalist

IDEA 64 128 (Patented till 2011)

84/29 Chapter 3 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

• DES was the dominant symmetric encryption algorithm from the mid-1970s to the mid-

1990s. Since 56-bit keys are no longer secure, the Advanced Encryption Standard (AES)

was created.

• Standard DES with 56-bit key length can be broken relatively easily nowadays through an

exhaustive key search.

• DES is quite robust against known analytical attacks: In practice it is very difficult to break

the cipher with differential or linear cryptanalysis.

• By encrypting with DES three times in a row, triple DES (3DES) is created, against which

no practical attack is currently known.

• The “default” symmetric cipher is nowadays often AES. In addition, the other four AES

finalist ciphers all seem very secure and efficient.

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview of the AES algorithm

• Internal structure of AES

• Byte Substitution layer

• Diffusion layer

• Key Addition layer

• Key schedule

• Decryption

• Practical issues

85/28

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Some Basic Facts

• AES is the most widely used symmetric cipher today

• The algorithm for AES was chosen by the US National Institute of Standards
and Technology (NIST) in a multi-year selection process

• The requirements for all AES candidate submissions were:

• Block cipher with 128-bit block size

• Three supported key lengths: 128, 192 and 256 bit

• Security relative to other submitted algorithms

• Efficiency in software and hardware

86/28

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Chronology of the AES Selection

• The need for a new block cipher announced by NIST in January, 1997

• 15 candidates algorithms accepted in August, 1998

• 5 finalists announced in August, 1999:

• Mars – IBM Corporation

• RC6 – RSA Laboratories

• Rijndael – J. Daemen & V. Rijmen

• Serpent – Eli Biham et al.

• Twofish – B. Schneier et al.

• In October 2000, Rijndael was chosen as the AES

• AES was formally approved as a US federal standard in November 2001

87/28

 AES: Overview

The number of rounds depends on the chosen key length:

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key length (bits) Number of rounds

128 10

192 12

256 14

88/28

 AES: Overview

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Iterated cipher with 10/12/14 rounds

• Each round consists of “Layers”

89/28

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview of the AES algorithm

• Internal structure of AES

• Byte Substitution layer

• Diffusion layer

• Key Addition layer

• Key schedule

• Decryption

• Practical issues

90/28

 Internal Structure of AES

• AES is a byte-oriented cipher

• The state A (i.e., the 128-bit data path) can be arranged in a 4x4 matrix:

with A0,…, A15 denoting the 16-byte input of AES

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

91/28

 Internal Structure of AES

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Round function for rounds 1,2,…,nr-1:

• Note: In the last round, the MixColumn tansformation is omitted

92/28

 Byte Substitution Layer

• The Byte Substitution layer consists of 16 S-Boxes with the following

properties:

The S-Boxes are

• identical

• the only nonlinear elements of AES, i.e.,

ByteSub(Ai) + ByteSub(Aj) ≠ ByteSub(Ai + Aj), for i,j = 0,…,15

• bijective, i.e., there exists a one-to-one mapping of input and output

bytes

 S-Box can be uniquely reversed

• In software implementations, the S-Box is usually realized as a lookup table

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl93/28

 Diffusion Layer

The Diffusion layer

• provides diffusion over all input state bits

• consists of two sublayers:

• ShiftRows Sublayer: Permutation of the data on a byte level

• MixColumn Sublayer: Matrix operation which combines (“mixes”) blocks of four bytes

• performs a linear operation on state matrices A, B, i.e.,

DIFF(A) + DIFF(B) = DIFF(A + B)

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl94/28

 ShiftRows Sublayer

• Rows of the state matrix are shifted cyclically:

Input matrix

Output matrix

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

B15 B3 B7 B11

no shift
← one position left shift
← two positions left shift
← three positions left shift

95/28

 MixColumn Sublayer

• Linear transformation which mixes each column of the

state matrix

• Each 4-byte column is considered as a vector and multiplied

by a fixed 4x4 matrix, e.g.,

where 01, 02 and 03 are given in hexadecimal notation

• All arithmetic is done in the Galois field GF(28) (for more information see Chapter 4.3 in

Understanding Cryptography)

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

15

10

5

0

3

2

1

0

02010103
03020101
01030201
01010302

B
B
B
B

C
C
C
C

96/28

 Key Addition Layer

• Inputs:

• 16-byte state matrix C

• 16-byte subkey ki

• Output: C ki

• The subkeys are generated in the key schedule

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl97/28

 Key Schedule

• Subkeys are derived recursively from the original 128/192/256-bit input key

• Each round has 1 subkey, plus 1 subkey at the beginning of AES

• Key whitening: Subkey is used both at the input and output of AES

 # subkeys = # rounds + 1

• There are different key schedules for the different key sizes

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key length (bits) Number of subkeys

128 11

192 13

256 15

98/28

 Key Schedule

Example: Key schedule for 128-bit key AES

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Word-oriented: 1 word = 32 bits

• 11 subkeys are stored in W[0]…W[3],
W[4]…W[7], … , W[40]…W[43]

• First subkey W[0]…W[3] is the original
AES key

99/28

 Key Schedule

• Function g rotates its four input bytes and performs a bytewise S-Box substitution

 nonlinearity

• The round coefficient RC is only added to the leftmost

byte and varies from round to round:

RC[1] = x0 = (00000001)2

RC[2] = x1 = (00000010)2

RC[3] = x2 = (00000100)2

...

RC[10] = x9 = (00110110)2

• xi represents an element in a Galois field

(again, cf. Chapter 4.3 of Understanding Cryptography)

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl100/28

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview of the AES algorithm

• Internal structure of AES

• Byte Substitution layer

• Diffusion layer

• Key Addition layer

• Key schedule

• Decryption

• Practical issues

101/28

 Decryption

• AES is not based on a Feistel network

 All layers must be inverted for decryption:

• MixColumn layer → Inv MixColumn layer

• ShiftRows layer→ Inv ShiftRows layer

• Byte Substitution layer → Inv Byte Substitution

layer

• Key Addition layer is its own inverse

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl102/28

 Decryption

• Inv MixColumn layer:

• To reverse the MixColumn operation, each column of the state matrix C must be

multiplied with the inverse of the 4x4 matrix, e.g.,

where 09, 0B, 0D and 0E are given in hexadecimal notation

• Again, all arithmetic is done in the Galois field GF(28) (for more information see

Chapter 4.3 in Understanding Cryptography)

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

3

2

1

0

3

2

1

0

00900
00090
00009
09000

C
C
C
C

EDB
BED
DBE

DBE

B
B
B
B

103/28

 Decryption

• Inv ShiftRows layer:

• All rows of the state matrix B are shifted to the opposite direction:

Input matrix

Output matrix

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B0 B4 B8 B12

B13 B1 B5 B9

B10 B14 B2 B6

B7 B11 B15 B3

no shift
→ one position right shift
→ two positions right shift
→ three positions right shift

104/28

 Decryption

• Inv Byte Substitution layer:

• Since the S-Box is bijective, it is possible to construct an inverse, such that

Ai = S-1(Bi) = S-1(S(Ai))

 The inverse S-Box is used for decryption. It is usually realized as a lookup table

• Decryption key schedule:

• Subkeys are needed in reversed order (compared to encryption)

• In practice, for encryption and decryption, the same key schedule is used. This

requires that all subkeys must be computed before the encryption of the first block can

begin

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl105/28

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Overview of the AES algorithm

• Internal structure of AES

• Byte Substitution layer

• Diffusion layer

• Key Addition layer

• Key schedule

• Decryption

• Practical issues

106/28

 Implementation in Software

• One requirement of AES was the possibility of an efficient software implementation

• Straightforward implementation is well suited for 8-bit processors (e.g., smart cards), but

inefficient on 32-bit or 64-bit processors

• A more sophisticated approach: Merge all round functions (except the key addition) into one

table look-up

• This results in four tables with 256 entries, where each entry is 32 bits wide

• One round can be computed with 16 table look-ups

• Typical SW speeds are more than 1.6 Gbit/s on modern 64-bit processors

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl107/28

 Security

• Brute-force attack: Due to the key length of 128, 192 or 256 bits, a

brute-force attack is not possible

• Analytical attacks: There is no analytical attack known that is better

than brute-force

• Side-channel attacks:

• Several side-channel attacks have been published

• Note that side-channel attacks do not attack the underlying

algorithm but the implementation of it

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl108/28

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

• AES is a modern block cipher which supports three key lengths of 128, 192 and 256 bit. It provides

excellent long-term security against brute-force attacks.

• AES has been studied intensively since the late 1990s and no attacks have been found that are better

than brute-force.

• AES is not based on Feistel networks. Its basic operations use Galois field arithmetic and provide

strong diffusion and confusion.

• AES is part of numerous open standards such as IPsec or TLS, in addition to being the mandatory

encryption algorithm for US government applications. It seems likely that the cipher will be the

dominant encryption algorithm for many years to come.

• AES is efficient in software and hardware.

109/28

110/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Block Ciphers

• A block cipher is much more than just an encryption algorithm, it can be used ...

• to build different types of block-based encryption schemes

• to realize stream ciphers

• to construct hash functions

• to make message authentication codes

• to build key establishment protocols

• to make a pseudo-random number generator

• ...

• The security of block ciphers also can be increased by

• key whitening

• multiple encryption

111/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

112/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Encryption with Block Ciphers

• There are several ways of encrypting long plaintexts, e.g., an e-mail or a

computer file, with a block cipher (“modes of operation”)

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• All of the 6 modes have one goal:

• In addition to confidentiality, they provide authenticity and integrity:

• Is the message really coming from the original sender? (authenticity)

• Was the ciphertext altered during transmission? (integrity)

113/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

114/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Electronic Code Book mode (ECB)

• ek(xi) denote the encryption of a b-bit plaintext block xi with key k

• ek
-1(yi) denote the decryption of b-bit ciphertext block yi with key k

• Messages which exceed b bits are partitioned into b-bit blocks

• Each Block is encrypted separately

115/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption: yi = ek (xi), i ≥ 1
Decryption: xi = ek

−1 (yi) = ek
−1 (ek (xi)), i ≥ 1

 ECB: advantages/disadvantages

• Advantages

• no block synchronization between sender and receiver is required

• bit errors caused by noisy channels only affect the corresponding block but

not succeeding blocks

• Block cipher operating can be parallelized

• advantage for high-speed implementations

• Disadvantages

• ECB encrypts highly deterministically

• identical plaintexts result in identical ciphertexts

• an attacker recognizes if the same message has been sent twice

• plaintext blocks are encrypted independently of previous blocks

• an attacker may reorder ciphertext blocks which results in valid

plaintext

116/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Substitution Attack on ECB

• Once a particular plaintext to ciphertext block mapping xi → yi is known, a

sequence of ciphertext blocks can easily be manipulated

• Suppose an electronic bank transfer

• the encryption key between the two banks does not change too

frequently

• The attacker sends $1.00 transfers from his account at bank A to his

account at bank B repeatedly

• He can check for ciphertext blocks that repeat, and he stores blocks 1,3 and 4

of these transfers

• He now simply replaces block 4 of other transfers with the block 4 that

he stored before

• all transfers from some account of bank A to some account of bank B are

redirected to go into the attacker’s B account!

117/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Example of encrypting bitmaps in ECB mode

• Identical plaintexts are mapped to identical ciphertexts

• Statistical properties in the plaintext are preserved in the ciphertext

118/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

119/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Cipher Block Chaining mode (CBC)

• There are two main ideas behind the CBC mode:

• The encryption of all blocks are “chained together”

• ciphertext yi depends not only on block xi but on all previous plaintext

blocks as well

• The encryption is randomized by using an initialization vector (IV)

120/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption (first block): y1 = ek (x1 ⊕ IV)
Encryption (general block): yi = ek (xi ⊕ yi−1), i ≥ 2
Decryption (first block): x1 = ek

−1 (y1) ⊕ IV
Decryption (general block) : xi = ek

−1 (yi) ⊕ yi−1, i ≥ 2

 Cipher Block Chaining mode (CBC)

• For the first plaintext block x1 there is no previous ciphertext

• an IV is added to the first plaintext to make each CBC encryption nondeterministic

• the first ciphertext y1 depends on plaintext x1 and the IV

• The second ciphertext y2 depends on the IV, x1 and x2

• The third ciphertext y3 depends on the IV and x1, x2 and x3, and so on

121/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Substitution Attack on CBC

• Suppose the last example (electronic bank transfer)

• If the IV is properly chosen for every wire transfer, the attack will not

work at all

• If the IV is kept the same for several transfers, the attacker would

recognize the transfers from his account at bank A to back B

• If we choose a new IV every time we encrypt, the CBC mode becomes a

probabilistic encryption scheme, i.e., two encryptions of the same

plaintext look entirely different

• It is not needed to keep the IV secret!

• Typically, the IV should be a non-secret nonce (value used only once)

122/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

123/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Output Feedback mode (OFB)

• It is used to build a synchronous stream cipher from a block cipher

• The key stream is not generated bitwise but instead in a blockwise fashion

• The output of the cipher gives us key stream bits Si with which we can encrypt plaintext

bits using the XOR operation

124/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption (first block): s1 = ek (IV) and y1 = s1 ⊕ x1
Encryption (general block): si = ek (si−1) and yi = si ⊕ xi , i ≥ 2
Decryption (first block): s1 = ek (IV) and x1 = s1 ⊕ y1
Decryption (general block) : si = ek (si−1) and xi = si ⊕ yi , i ≥ 2

125/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Cipher Feedback mode (CFB)

• It uses a block cipher as a building block for an asynchronous stream cipher (similar to

the OFB mode), more accurate name: “Ciphertext Feedback Mode”

• The key stream Si is generated in a blockwise fashion and is also a function of the

ciphertext

• As a result of the use of an IV, the CFB encryption is also nondeterministic

• It can be used in situations where short plaintext blocks are to be encrypted

126/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption (first block): y1 = ek (IV) ⊕ x1
Encryption (general block): yi = ek (yi−1) ⊕ xi , i ≥ 2
Decryption (first block): x1 = ek (IV) ⊕ y1
Decryption (general block) : xi = ek (yi−1) ⊕ yi , i ≥ 2

127/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Counter mode (CTR)

• It uses a block cipher as a stream cipher (like the OFB and CFB modes)

• The key stream is computed in a blockwise fashion

• The input to the block cipher is a counter which assumes a different value every time

the block cipher computes a new key stream block

• Unlike CFB and OFB modes, the CTR mode can be parallelized since the 2nd encryption

can begin before the 1st one has finished

• Desirable for high-speed implementations, e.g., in network routers

128/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption: yi = ek (IV || CTRi) ⊕ xi, i ≥ 1
Decryption : xi = ek (IV || CTRi) ⊕ yi, i ≥ 1

129/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Electronic Code Book mode (ECB)

• Cipher Block Chaining mode (CBC)

• Output Feedback mode (OFB)

• Cipher Feedback mode (CFB)

• Counter mode (CTR)

• Galois Counter Mode (GCM)

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Galois Counter Mode (GCM)

• It also computes a message authentication code (MAC), i.e., a cryptographic checksum

is computed for a message (for more information see Chapter 12 in Understanding

Cryptography)

• By making use of GCM, two additional services are provided:

• Message Authentication

• the receiver can make sure that the message was really created by the original

sender

• Message Integrity

• the receiver can make sure that nobody tampered with the ciphertext during

transmission

130/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Galois Counter Mode (GCM)

• For encryption

• An initial counter is derived from an IV and a serial number

• The initial counter value is incremented then encrypted and XORed with the first

plaintext block

• For subsequent plaintexts, the counter is incremented and then encrypted

• For authentication

• A chained Galois field multiplication is performed (for more information Galois

field see Chapter 4.3 in Understanding Cryptography)

• For every plaintext an intermediate authentication parameter gi is derived

• gi is computed as the XOR of the current ciphertext and the last gi-1, and

multiplied by the constant H

• H is generated by encryption of the zero input with the block cipher

• All multiplications are in the 128-bit Galois field GF(2128)

131/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Galois Counter Mode (GCM)

132/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption:
a. Derive a counter value CTR0 from the IV and compute CTR1 = CTR0 + 1
b. Compute ciphertext: yi = ek (CTRi) ⊕ xi, i ≥ 1

Authentication:
a. Generate authentication subkey H = ek (0)
b. Compute g0 = AAD × H (Galois field multiplication)
c. Compute gi = (gi−1 ⊕ yi) × H, 1 ≤ i ≤ n (Galois field multiplication)
d. Final authentication tag: T = (gn × H) ⊕ ek (CTR0)

133/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

 Exhaustive Key Search Revisited

• A simple exhaustive search for a DES key knowing one pair (x1,y1):

DESk
(i) (x1) y1, i = 0,1, . . . ,256−1

• However, for most other block ciphers a key search is somewhat more

complicated

• A brute-force attack can produce false positive results

• keys ki that are found are not the one used for the encryption

• The likelihood of this is related to the relative size of the key space

and the plaintext space

• A brute-force attack is still possible, but several pairs of plaintext–

ciphertext are needed

134/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

?=

 An Exhaustive Key Search Example

• Assume a cipher with a block width of 64 bit and a key size of 80 bit

• If we encrypt x1 under all possible 280 keys, we obtain 280 ciphertexts

• However, there exist only 264 different ones

• If we run through all keys for a given plaintext–ciphertext pair, we find on average

280/264 = 216 keys that perform the mapping ek(x1) = y1

• In this example assuming two plaintext-ciphertext pairs, the likelihood is

280−2·64=2 −48

• for almost all practical purposes two plaintext-ciphertext pairs are sufficient

135/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Given a block cipher with a key length of k bits and block size of
n bits, as well as t plaintext–ciphertext pairs (x1, y1), ... , (xt , yt),
the expected number of false keys which encrypt all plaintexts
to the corresponding ciphertexts is:

2k−tn

136/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

• Double Encryption and Meet-in-the-Middle Attack

• Triple Encryption

• Key Whitening

 Increasing the Security of Block Ciphers

• In some situations we wish to increase the security of block ciphers, e.g.,

if a cipher such as DES is available in hardware or software for legacy

reasons in a given application

• Two approaches are possible

• Multiple encryption

• theoretically much more secure, but sometimes in practice

increases the security very little

• Key whitening

137/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

138/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

• Double Encryption and Meet-in-the-Middle Attack

• Triple Encryption

• Key Whitening

 Double Encryption

• A plaintext x is first encrypted with a key kL, and the resulting ciphertext is

encrypted again using a second key kR

• Assuming a key length of k bits, an exhaustive key search would require 2k·2k =
22k encryptions or decryptions

139/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Meet-in-the-Middle Attack

• A Meet-in-the-Middle attack requires 2k+2k = 2k+1 operations!

• Phase I: for the given (x1, y1) the left encryption is brute-forced for all kL,i, i=1,2, ...,
2k and a lookup table with 2k entry (each n+k bits wide) is computed

• the lookup table should be ordered by the result of the encryption (zL,i)

• Phase II: the right encryption is brute-forced (using decryption) and for each zR,i it is

checked whether zR,i is equal to any zL,i value in the table of the first phase

• Computational Complexity

• Double encryption is not much more secure then single encryption!

140/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

number of encryptions and decryptions = 2k +2k = 2k+1

number of storage locations = 2k

141/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

• Double Encryption and Meet-in-the-Middle Attack

• Triple Encryption

• Key Whitening

 Triple Encryption

• The encryption of a block three times y = ek3 (ek2 (ek1 (x)))

• In practice a variant scheme is often used EDE (encryption-decryption-encryption)

y = ek3 (e-1
k2 (ek1 (x)))

• Advantage: choosing k1=k2=k3 performs single DES encryption

• Still we can perform a meet-in-the middle attack, and it reduces the effective key length of

triple encryption from 3K to 2K!

• The attacker must run 2112 tests in the case of 3DES

• Triple encryption effectively doubles the key length

142/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

143/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Encryption with Block Ciphers: Modes of Operation

• Exhaustive Key Search Revisited

• Increasing the Security of Block Ciphers

• Double Encryption and Meet-in-the-Middle Attack

• Triple Encryption

• Key Whitening

 Key Whitening

• Makes block ciphers such as DES much more resistant against brute-force attacks

• In addition to the regular cipher key k, two whitening keys k1 and k2 are used to

XOR-mask the plaintext and ciphertext

• It does not strengthen block ciphers against most analytical attacks such as linear

and differential cryptanalysis

• It is not a “cure” for inherently weak ciphers

• The additional computational load is negligible

• Its main application is ciphers that are relatively strong against analytical attacks

but possess too short a key space especially DES

• a variant of DES which uses key whitening is called DESX

144/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

145/38 Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

• There are many different ways to encrypt with a block cipher. Each mode of operation has some

advantages and disadvantages

• Several modes turn a block cipher into a stream cipher

• There are modes that perform encryption together together with authentication, i.e., a cryptographic

checksum protects against message manipulation

• The straightforward ECB mode has security weaknesses, independent of the underlying block cipher

• The counter mode allows parallelization of encryption and is thus suited for high speed

implementations

• Double encryption with a given block cipher only marginally improves the resistance against brute-

force attacks

• Triple encryption with a given block cipher roughly doubles the key length

• Triple DES (3DES) has an effective key length of 112 bits

• Key whitening enlarges the DES key length without much computational overhead.

146/29

Content of this Chapter

• Symmetric Cryptography Revisited

• Principles of Asymmetric Cryptography

• Practical Aspects of Public-Key Cryptography

• Important Public-Key Algorithms

• Essential Number Theory for Public-Key Algorithms

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

147/29

Two properties of symmetric (secret-key) crypto-systems:

• The same secret key K is used for encryption and decryption

• Encryption and Decryption are very similar (or even identical) functions

 Symmetric Cryptography revisited

eK(x) dK(y)x y x

KK

Alice Bob

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

148/29

 Symmetric Cryptography: Analogy

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

K K

Safe with a strong lock, only Alice and Bob have a copy of the key

• Alice encrypts locks message in the safe with her key

• Bob decrypts uses his copy of the key to open the safe

• Symmetric algorithms, e.g., AES or 3DES, are very secure, fast & widespread but:

• Key distribution problem: The secret key must be transported securely

• Number of keys: In a network, each pair of users requires an individual key

 n users in the network require keys, each user stores (n-1) keys

• Alice or Bob can cheat each other, because they have identical keys.

Example: Alice can claim that she never ordered a TV on-line from Bob (he could have

fabricated her order). To prevent this: „non-repudiation“

149/29

 Symmetric Cryptography: Shortcomings

Example:

6 users (nodes)

keys (edges)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

15
2
56

150/29

Content of this Chapter

• Symmetric Cryptography Revisited

• Principles of Asymmetric Cryptography

• Practical Aspects of Public-Key Cryptography

• Important Public-Key Algorithms

• Essential Number Theory for Public-Key Algorithms

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

New Idea:

Use the „good old mailbox“ principle:

Everyone can drop a letter

But: Only the owner has the
correct key to open the box

151/29

 Idea behind Asymmetric Cryptography

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

1976: first publication of such an algorithm by Whitfield Diffie and Martin Hellman,and
also by Ralph Merkle.

152/29

 Asymmetric (Public-Key) Cryptography

Principle: “Split up” the key

K

Public Key (Kpub)
(Encrypt)

Secret Key (Kpr)
(Decrypt)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 During the key generation, a key pair Kpub and Kpr is computed

153/29

 Asymmetric Cryptography: Analogy

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

Safe with public lock and private lock:

• Alice deposits (encrypts) a message with the - not secret - public key Kpub

• Only Bob has the - secret - private key Kpr to retrieve (decrypt) the message

(Kpub) (Kpr)

154/29

Content of this Chapter

• Symmetric Cryptography Revisited

• Principles of Asymmetric Cryptography

• Practical Aspects of Public-Key Cryptography

• Important Public-Key Algorithms

• Essential Number Theory for Public-Key Algorithms

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

155/29

 Basic Protocol for Public-Key Encryption

Alice Bob

(KpubB,KprB) = KKpubB

x
y=eKpubB(x) y

x=dKprB(y)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Distribution Problem solved *

*) at least for now; public keys need to be authenticated, cf.Chptr. 13 of Understanding Cryptogr.

156/29

 Security Mechanisms of Public-Key Cryptography

Here are main mechanisms that can be realized with asymmetric cryptography:

• Key Distribution (e.g., Diffie-Hellman key exchange, RSA) without a pre-shared secret

(key)

• Nonrepudiation and Digital Signatures (e.g., RSA, DSA or ECDSA) to provide message

integrity

• Identification, using challenge-response protocols with digital signatures

• Encryption (e.g., RSA / Elgamal)

Disadvantage: Computationally very intensive

(1000 times slower than symmetric Algorithms!)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

157/29

 Basic Key Transport Protocol 1/2

In practice: Hybrid systems, incorporating asymmetric and symmetric algorithms

1. Key exchange (for symmetric schemes) and digital signatures are performed with (slow)

asymmetric algorithms

2. Encryption of data is done using (fast) symmetric ciphers, e.g., block ciphers or stream

ciphers

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Basic Key Transport Protocol 2/2

Alice

158/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

Bob

y1 = eKpubB(K) y1

K = dKprB(y1)

Key Exchange

(asymmetric)

y2 = AESK (x) x = AES-1
K (y2)

y2

Data Encryption

(symmetric)

(KpubB,KprB) = KKpubB

Choose random
symmetric key K

message x

Example: Hybrid protocol with AES as the symmetric cipher

159/29

Content of this Chapter

• Symmetric Cryptography Revisited

• Principles of Asymmetric Cryptography

• Practical Aspects of Public-Key Cryptography

• Important Public-Key Algorithms

• Essential Number Theory for Public-Key Algorithms

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

160/29

 How to build Public-Key Algorithms

Asymmetric schemes are based on a „one-way function“ f():

• Computing y = f(x) is computationally easy

• Computing x = f-1(y) is computationally infeasible

One way functions are based on mathematically hard problems.

Three main families:

• Factoring integers (RSA, ...):

Given a composite integer n, find its prime factors

(Multiply two primes: easy)

• Discrete Logarithm (Diffie-Hellman, Elgamal, DSA, …):

Given a, y and m, find x such that ax = y mod m

(Exponentiation ax : easy)

• Elliptic Curves (EC) (ECDH, ECDSA): Generalization of discrete logarithm

Note: The problems are considered mathematically hard, but no proof exists (so far).

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

161/29

 Key Lengths and Security Levels

Symmetric ECC RSA, DL Remark

64 Bit 128 Bit 700 Bit Only short term security
(a few hours or days)

80 Bit 160 Bit 1024 Bit Medium security

(except attacks from big
governmental institutions etc.)

128 Bit 256 Bit 3072 Bit Long term security
(without quantum computers)

• The exact complexity of RSA (factoring) and DL (Index-Calculus) is difficult to estimate

• The existence of quantum computers would probably be the end for ECC, RSA & DL
(at least 2-3 decades away, and some people doubt that QC will ever exist)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

162/29

Content of this Chapter

• Symmetric Cryptography Revisited

• Principles of Asymmetric Cryptography

• Practical Aspects of Public-Key Cryptography

• Important Public-Key Algorithms

• Essential Number Theory for Public-Key Algorithms

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Euclidean Algorithm 1/2

• Compute the greatest common divisor gcd (r0, r1) of two integers r0 and r1

• gcd is easy for small numbers:

1. factor r0 and r1

2. gcd = highest common factor

• Example:

r0 = 84 = 2 . 2 . 3 . 7

r1 = 30 = 2 . 3 . 5

 The gcd is the product of all common prime factors:

2 . 3 = 6 = gcd (30,84)

• But: Factoring is complicated (and often infeasible) for large numbers

163/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Euclidean Algorithm 2/2

• Observation: gcd (r0, r1) = gcd (r0 - r1, r1)

 Core idea:

• Reduce the problem of finding the gcd of two given numbers

to that of the gcd of two smaller numbers

• Repeat process recursively

• The final gcd (ri, 0) = ri is the answer to the original problem !

Example: gcd (r0, r1) for r0 = 27 and r1 = 21

• Note: very efficient method even for long numbers:

The complexity grows linearly with the number of bits

For the full Euclidean Algorithm see Chapter 6 in Understanding Cryptography.

164/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Extended Euclidean Algorithm 1/2

• Extend the Euclidean algorithm to find modular inverse of r1 mod r0

• EEA computes s,t, and the gcd :

• Take the relation mod r0

 Compare with the definition of modular inverse: t is the inverse of r1 mod r0

• Note that gcd (r0, r1) = 1 in order for the inverse to exist

• Recursive formulae to calculate s and t in each step

 „magic table“ for r, s, t and a quotient q to derive the inverse with pen and paper

(cf. Section 6.3.2 in Understanding Cryptography)

165/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Extended Euclidean Algorithm 2/2

Example:

• Calculate the modular Inverse of 12 mod 67:

• From magic table follows

• Hence 28 is the inverse of 12 mod 67.

• Check:

For the full Extended Euclidean Algorithm see Chapter 6 in Understanding Cryptography.

166/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

67mod13361228

 Euler‘s Phi Function 1/2

• New problem, important for public-key systems, e.g., RSA:

Given the set of the m integers {0, 1, 2, …, m -1},

How many numbers in the set are relatively prime to m ?

• Answer: Euler‘s Phi function Φ(m)

• Example for the sets {0,1,2,3,4,5} (m=6), and {0,1,2,3,4} (m=5)

 1 and 5 relatively prime to m=6, Φ(5) = 4

hence Φ(6) = 2

• Testing one gcd per number in the set is extremely slow for large m.

167/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

• If canonical factorization of m known:

(where pi primes and ei positive integers)

• then calculate Phi according to the relation

• Phi especially easy for ei = 1, e.g., m = p . q Φ(m) = (p-1) . (q-1)

• Example m = 899 = 29 . 31:

Φ(899) = (29-1) . (31-1) = 28 . 30 = 840

• Note: Finding Φ(m) is computationally easy if factorization of m is known

(otherwise the calculation of Φ(m) becomes computationally infeasible for large numbers)

 Euler‘s Phi Function 2/2

168/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Given a prime p and an integer a:

• Can be rewritten as

• Use: Find modular inverse, if p is prime. Rewrite to

• Comparing with definition of the modular inverse

 is the modular inverse modulo a prime p

Example: a = 2, p = 7

• Fermat‘s Little Theorem works only modulo a prime p

 Fermat‘s Little Theorem

169/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Euler‘s Theorem

• Generalization of Fermat‘s little theorem to any integer modulus

• Given two relatively prime integers a and m :

• Example: m=12, a=5

1. Calculate Euler‘s Phi Function

2. Verify Euler‘s Theorem

• Fermat‘s little theorem = special case of Euler‘s Theorem

• for a prime p:

 Fermat:

170/29 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

171/29

 Lessons Learned

• Public-key algorithms have capabilities that symmetric ciphers don’t have, in particular

digital signature and key establishment functions.

• Public-key algorithms are computationally intensive (a nice way of saying that they are

slow), and hence are poorly suited for bulk data encryption.

• Only three families of public-key schemes are widely used. This is considerably fewer

than in the case of symmetric algorithms.

• The extended Euclidean algorithm allows us to compute modular inverses quickly,

which is important for almost all public-key schemes.

• Euler’s phi function gives us the number of elements smaller than an integer n that are

relatively prime to n. This is important for the RSA crypto scheme.

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

172 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

173 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

The RSA Cryptosystem

• Martin Hellman and Whitfield Diffie published their landmark public-
key paper in 1976

• Ronald Rivest, Adi Shamir and Leonard Adleman proposed the
asymmetric RSA cryptosystem in1977

• Until now, RSA is the most widely use asymmetric cryptosystem
although elliptic curve cryptography (ECC) becomes increasingly
popular

• RSA is mainly used for two applications

• Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding
Cryptography)

• Digital signatures (cf. Chptr 10 of Understanding Cryptography)

174 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption and Decryption

• RSA operations are done over the integer ring Zn (i.e., arithmetic
modulo n), where n = p * q, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive
the „private exponent“ d given the public-key (n, e)

Definition

Given the public key (n,e) = kpub and the private key d = kpr we write

y = ekpub(x) ≡ xe mod n

x = dkpr(y) ≡ yd mod n

where x, y ε Zn.

We call ekpub() the encryption and dkpr() the decryption operation.

175 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key Generation
• Like all asymmetric schemes, RSA has set-up phase during which

the private and public keys are computed

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there
is always a private key d

Algorithm: RSA Key Generation

Output: public key: kpub = (n, e) and private key kpr = d

1. Choose two large primes p, q

2. Compute n = p * q

3. Compute Φ(n) = (p-1) * (q-1)

4. Select the public exponent e ε {1, 2, …, Φ(n)-1} such that
gcd(e, Φ(n)) = 1

5. Compute the private key d such that d * e ≡ 1 mod Φ(n)

6. RETURN kpub = (n, e), kpr = d

176 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: RSA with small numbers

ALICE

Message x = 4

y = xe ≡ 43 ≡ 31 mod 33

BOB

1. Choose p = 3 and q = 11

2. Compute n = p * q = 33

3. Φ(n) = (3-1) * (11-1) = 20

4. Choose e = 3

5. d ≡ e-1 ≡7 mod 20

yd = 317 ≡ 4 = x mod 33

Kpub = (33,3)

y = 31

177 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

178 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular
exponentiation) which makes it conceptually a simple asymmetric
scheme

• Even though conceptually simple, due to the use of very long
numbers, RSA is orders of magnitude slower than symmetric
schemes, e.g., DES, AES

• When implementing RSA (esp. on a constrained device such as
smartcards or cell phones) close attention has to be paid to the
correct choice of arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even
with very long numbers…

179 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply
• Basic principle: Scan exponent bits from left to right and

square/multiply operand accordingly

• Rule: Square in every iteration (Step 3) and multiply current result
by x if the exponent bit hi = 1 (Step 5)

• Modulo reduction after each step keeps the operand y small

Algorithm: Square-and-Multiply for xH mod n

Input: Exponent H, base element x, Modulus n

Output: y = xH mod n

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod n

4. IF hi = 1 THEN

5. y = y * x mod n

6. RETURN y

180 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: Square-and-Multiply

• Computes x26 without modulo reduction

• Binary representation of exponent: 26 =(1,1,0,1,0)2=(h4,h3,h2,h1,h0)2

• Observe how the exponent evolves into x26 = x11010

Step Binary exponent Op Comment

1 x = x1 (1)2 Initial setting, h4 processed

1a (x1)2 = x2 (10)2 SQ Processing h3

1b x2 * x = x3 (11)2 MUL h3 = 1

2a (x3)2 = x6 (110)2 SQ Processing h2

2b - (110)2 - h0 = 0

3a (x6)2 = x12 (1100)2 SQ Processing h1

3b x12 * x = x13 (1101)2 MUL h1=1

4a (x13)2 = x26 (11010)2 SQ Processing h0

4b - (11010)2 - h0 = 0

181 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Complexity of Square-and-Multiply Alg.

• The square-and-multiply algorithm has a logarithmic complexity, i.e.,
its run time is proportional to the bit length (rather than the absolute
value) of the exponent

• Given an exponent with t+1 bits
H = (ht,ht-1, ..., h0)2

with ht = 1, we need the following operations

• # Squarings = t

• Average # multiplications = 0.5 t

• Total complexity: #SQ + #MUL = 1.5 t

• Exponents are often randomly chosen, so 1.5 t is a good estimate
for the average number of operations

• Note that each squaring and each multiplication is an operation with
very long numbers, e.g., 2048 bit integers.

182 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Speed-Up Techniques

• Modular exponentiation is computationally intensive

• Even with the square-and-multiply algorithm, RSA can be quite slow
on constrained devices such as smart cards

• Some important tricks:

• Short public exponent e

• Chinese Remainder Theorem (CRT)

• Exponentiation with pre-computation (not covered here)

183 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fast encryption with small public exponent
• Choosing a small public exponent e does not weaken the security of

RSA

• A small public exponent improves the speed of the RSA encryption
significantly

• This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA
the fastest asymmetric scheme with regard to encryption!

Public Key e as binary string #MUL + #SQ

21+1 = 3 (11)2 1 + 1 = 2

24+1 = 17 (1 0001)2 4 + 1 = 5

216 + 1 (1 0000 0000 0000 0001)2 16 + 1 = 17

184 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fast decryption with CRT

• Choosing a small private key d results in security weaknesses!

• In fact, d must have at least 0.3t bits, where t is the bit
length of the modulus n

• However, the Chinese Remainder Theorem (CRT) can be used to
(somewhat) accelerate exponentiation with the private key d

• Based on the CRT we can replace the computation of

xd mod Φ(n) mod n

by two computations

xd mod (p-1) mod p and xd mod (q-1) mod q

where q and p are „small“ compared to n

185 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Basic principle of CRT-based exponentiation

• CRT involves three distinct steps

(1) Transformation of operand into the CRT domain

(2) Modular exponentiation in the CRT domain

(3) Inverse transformation into the problem domain

• These steps are equivalent to one modular exponentiation in the
problem domain

x

xp

xq

Xp
d mod (p-1) mod p

Xq
d mod (q-1) mod q

xd mod nProblem
Domain

CRT Domain

186 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 1 – Transformation

• Transformation into the CRT domain requires the knowledge of p
and q

• p and q are only known to the owner of the private key, hence CRT
cannot be applied to speed up encryption

• The transformation computes (xp, xq) which is the representation of x
in the CRT domain. They can be found easily by computing

xp ≡ x mod p and xq ≡ x mod q

187 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 2 – Exponentiation

• Given dp and dq such that

dp ≡ d mod (p-1) and dq ≡ d mod (q-1)

one exponentiation in the problem domain requires two
exponentiations in the CRT domain

yp ≡ xp
dp mod p and yq ≡ xq

dq mod q

• In practice, p and q are chosen to have half the bit length of n, i.e.,
|p| ≈ |q| ≈ |n|/2

188 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 3 – Inverse Transformation

• Inverse transformation requires modular inversion twice, which is
computationally expensive

cp ≡ q-1 mod p and cq ≡ p-1 mod q

• Inverse transformation assembles yp, yq to the final result y mod n in
the problem domain

y ≡ [q * cp] * yp + [p * cq] * yq mod n

• The primes p and q typically change infrequently, therefore the cost
of inversion can be neglected because the two expresssions

[q * cp] and [p * cq]
can be precomputed and stored

189 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Complexity of CRT
• We ignore the transformation and inverse transformation steps since

their costs can be neglected under reasonable assumptions

• Assuming that n has t+1 bits, both p and q are about t/2 bits long

• The complexity is determined by the two exponentiations in the CRT
domain. The operands are only t/2 bits long. For the exponentiations
we use the square-and-multiply algorithm:

• # squarings (one exp.): #SQ = 0.5 t

• # aver. multiplications (one exp.): #MUL = 0.25t

• Total complexity: 2 * (#MUL + #SQ) = 1.5t

• This looks the same as regular exponentations, but since the
operands have half the bit length compared to regular exponent.,
each operation (i.e., multipl. and squaring) is 4 times faster!

• Hence CRT is 4 times faster than straightforward exponentiation

190 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

191 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Finding Large Primes

• Generating keys for RSA requires finding two large primes p and q
such that n = p * q is sufficiently large

• The size of p and q is typically half the size of the desired size of n

• To find primes, random integers are generated and tested for
primality:

• The random number generator (RNG) should be non-predictable
otherwise an attacker could guess the factorization of n

RNG Primality Test
p' „p‘ is prime“

OR
„p‘ is composite“

a

candidate
prime

192 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Primality Tests

• Factoring p and q to test for primality is typically not feasible

• However, we are not interested in the factorization, we only want to
know whether p and q are composite

• Typical primality tests are probabilistic, i.e., they are not 100%
accurate but their output is correct with very high probability

• A probabilistic test has two outputs:

• „p‘ is composite“ – always true

• „p‘ is a prime“ – only true with a certain probability

• Among the well-known primality tests are the following

• Fermat Primality-Test

• Miller-Rabin Primality-Test

193 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fermat Primality-Test

• Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a
number p‘ is found for which ap‘-1 ≡ 1 mod p‘, it is not a prime

• For certain numbers („Carchimchael numbers“) this test returns „p‘
is likely a prime“ often – although these numbers are composite

• Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. IF ap‘-1 ≡ 1 mod p’ THEN

4. RETURN „p‘ is composite“

5. RETURN „p‘ is likely a prime“

194 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Theorem for Miller-Rabin‘s test

• The more powerful Miller-Rabin Test is based on the following
theorem

• This theorem can be turned into an algorithm

Theorem

Given the decomposition of an odd prime candidate p‘

p‘ – 1 = 2u * r

where r is odd. If we can find an integer a such that

ar ≡ 1 mod p‘ and ar2j ≡ p‘ - 1 mod p‘

For all j = {0,1, ..., u-1}, then p‘ is composite.

Otherwise it is probably a prime.

195 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Miller-Rabin Primality-Test

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p‘ with p‘-1 = 2u * r security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. z ≡ ar mod p’

4. IF z ≠ 1 AND z ≠ p’-1 THEN

5. FOR j = 1 TO u-1

6. z ≡ z2 mod p’

7. IF z = 1 THEN

8. RETURN „p‘ is composite“

9. IF z ≠ p‘-1 THEN

10. RETURN „p‘ is composite“

11. RETURN „p‘ is likely a prime“

196 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

197 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 1/3

• There are two distinct types of attacks on cryptosystems

• Analytical attacks try to break the mathematical structure of the
underlying problem of RSA

• Implementation attacks try to attack a real-world
implementation by exploiting inherent weaknesses in the way
RSA is realized in software or hardware

198 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

• Mathematical attacks

• The best known attack is factoring of n in order to obtain Φ(n)

• Can be prevented using a sufficiently large modulus n

• The current factoring record is 664 bits. Thus, it is recommended
that n should have a bit length between 1024 and 3072 bits

• Protocol attacks

• Exploit the malleability of RSA, i.e., the property that a ciphertext
can be transformed into another ciphertext which decrypts to a
related plaintext – without knowing the private key

• Can be prevented by proper padding

199 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 3/3

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g.,
power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can
lead to a complete leakage of the private key

More on all attacks can be found in Section 7.8 of Understanding Cryptography

201 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

202 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Lessons Learned

• RSA is the most widely used public-key cryptosystem

• RSA is mainly used for key transport and digital signatures

• The public key e can be a short integer, the private key d needs to
have the full length of the modulus n

• RSA relies on the fact that it is hard to factorize n

• Currently 1024-bit cannot be factored, but progress in factorization
could bring this into reach within 10-15 years. Hence, RSA with a
2048 or 3076 bit modulus should be used for long-term security

• A naïve implementation of RSA allows several attacks, and in
practice RSA should be used together with padding

• Diffie–Hellman Key Exchange

• The Discrete Logarithm Problem

• Security of the Diffie–Hellman Key Exchange

• The Elgamal Encryption Scheme

 Content of this Chapter

203/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Proposed in 1976 by Whitfield Diffie and Martin Hellman

• Widely used, e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol

Security (IPSec)

• The Diffie–Hellman Key Exchange (DHKE) is a key exchange protocol and not used for

encryption

(For the purpose of encryption based on the DHKE, ElGamal can be used.)

 Diffie–Hellman Key Exchange: Overview

204/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

Diffie–Hellman Key Exchange: Set-up

1. Choose a large prime p.

2. Choose an integer α ∈ {2,3, . . . , p−2}.

3. Publish p and α.

205/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Diffie–Hellman Key Exchange

Bob

Choose random private key
kprA=a ∈{1,2,…,p-1}

Choose random private key
kprB=b ∈ {1,2,…,p-1}

Compute corresponding public key
kpubA= A = αa mod p

Compute correspondig public key
kpubB= B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

yy = AESkAB(x) x = AES-1
kAB(y)

206/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

We can now use the joint key kAB
for encryption, e.g., with AES

Alice

Diffie–Hellman Key Exchange: Example

Bob

Choose random private key
kprA= a = 5

Choose random private key
kprB=b = 12

Compute corresponding public key
kpubA= A = 25 = 3 mod 29

Compute correspondig public key
kpubB= B = 212 = 7 mod 29

Compute common secret
kAB = Ba = 75 = 16 mod 29

Compute common secret
kAB = Ab = 312 = 16 mod 29

A

B

Domain parameters p=29, α=2

207/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

Proof of correctness:

Alice computes: Ba = (αb)a mod p
Bob computes: Ab = (αa)b mod p

i.e., Alice and Bob compute the same key kAB !

Discrete Logarithm Problem (DLP) in Zp*

• Given is the finite cyclic group Zp* of order p−1 and a primitive element α ∈ Zp* and another

element β ∈ Zp*.

• The DLP is the problem of determining the integer 1 ≤ x ≤ p−1 such that

αx ≡ β mod p

• This computation is called the discrete logarithm problem (DLP)

x = logα β mod p

• Example: Compute x for 5x ≡ 41 mod 47

Remark: For the coverage of groups and cylcic groups, we refer to Chapter 8 of Understanding

Cryptography

 The Discrete Logarithm Problem

208/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Given is a finite cyclic group G with the group operation ◦ and cardinality n.

• We consider a primitive element α ∈ G and another element β ∈ G.

• The discrete logarithm problem is finding the integer x, where 1 ≤ x ≤ n, such that:

β = α ◦ α ◦ α ◦. . .◦ α = αx

 The Generalized Discrete Logarithm Problem

x times

209/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

The following discrete logarithm problems have been proposed for use in cryptography

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance, the

classical DHKE uses this group (cf. previous slides), but also Elgamal encryption or

the Digital Signature Algorithm (DSA).

2. The cyclic group formed by an elliptic curve (see Chapter 9)

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. Schemes such as

the DHKE can be realized with them.

4. Hyperelliptic curves or algebraic varieties, which can be viewed as generalization of

elliptic curves.

Remark: The groups 1. and 2. are most often used in practice.

 The Generalized Discrete Logarithm Problem

210/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Security of many asymmetric primitives is based on the difficulty of computing the DLP in cyclic

groups, i.e.,

Compute x for a given α and β such that β = α ◦ α ◦ α ◦. . .◦ α = αx

• The following algorithms for computing discrete logarithms exist

• Generic algorithms: Work in any cyclic group

• Brute-Force Search

• Shanks‘ Baby-Step-Giant-Step Method

• Pollard‘s Rho Method

• Pohlig-Hellman Method

• Non-generic Algorithms: Work only in specific groups, in particular in Zp

• The Index Calculus Method

• Remark: Elliptic curves can only be attacked with generic algorithms which are weaker than non-

generic algorithms. Hence, elliptic curves are secure with shorter key lengths than the DLP in

prime fields Zp

 Attacks against the Discrete Logarithm Problem

211/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

Summary of records for computing discrete logarithms in Zp*

 Attacks against the Discrete Logarithm Problem

Decimal digits Bit length Date
58 193 1991
68 216 1996
85 282 1998

100 332 1999
120 399 2001
135 448 2006
160 532 2007

212/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

In order to prevent attacks that compute the DLP, it is recommended to use primes
with a length of at least 1024 bits for schemes such as Diffie-Hellman in Zp*

• Which information does Oscar have?

• α, p

• kpubA = A = αa mod p

• kpubB = B = αb mod p

• Which information does Oscar want to have?

• kAB = αba = αab = mod p

• This is kown as Diffie-Hellman Problem (DHP)

• The only known way to solve the DHP is to solve the DLP, i.e.

1.Compute a = logα A mod p

2.Compute kAB = Ba = αba = mod p

It is conjectured that the DHP and the DLP are equivalent, i.e., solving the DHP

implies solving the DLP.

• To prevent attacks, i.e., to prevent that the DLP can be solved, choose

p > 21024

 Security of the classical Diffie–Hellman Key Exchange

213/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Proposed by Taher Elgamal in 1985

• Can be viewed as an extension of the DHKE protocol

• Based on the intractability of the discrete logarithm problem and the Diffie–Hellman problem

 The Elgamal Encryption Scheme: Overview

214/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Elgamal Encryption Scheme: Principle

Alice Bob

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute ephemeral key
kE = kpubA= αi mod p

compute kM = kE
d mod p

compute kM = βi mod p

encrypt message x ∈ Zp*:
y = x·kM mod p

kE

y

β

decrypt x = y·kM
-1 mod p

215/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

This looks very similar to the DHKE! The actual Elgamal protocol re-orders

the computations which helps to save one communication (cf. next slide)

 The Elgamal Encryption Protocol

Alice Bob
choose large prime p

choose primitive element α ∈ Zp*
or in a subgroup of Zp*

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute kE = kpubA= αi mod p

compute masking key kM = βi mod p

compute masking key kM = kE
d mod p

encrypt message x ∈ Zp*:
y = x·kM mod p (kE, y)

kpubB = (p, α, β)

decrypt x = y·kM
-1 mod p

216/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Key Generation

• Generation of prime p

• p has to of size of at least 1024 bits

• cf. Section 7.6 in Understanding Cryptography for prime-finding algorithms

• Encryption

• Requires two modular exponentiations and a modular multiplictation

• All operands have a bitlength of log2p

• Efficient execution requires methods such as the square-and-multiply algorithm

(cf. Chapter 7)

• Decryption

• Requires one modular exponentiation and one modulare inversion

• As shown in Understanding Cryptography, the inversion can be computed from the

ephemeral key

 Computational Aspects

217/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Passive attacks

• Attacker eavesdrops p, α, β = αd , kE = αi, y = x· βi and wants to recover x

• Problem relies on the DLP

• Active attacks

• If the public keys are not authentic, an attacker could send an incorrect public key

(cf. Chapter 13)

• An Attack is also possible if the secret exponent i is being used more than once (cf.

Understanding Cryptography for more details on the attack)

 Security

218/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• The Diffie–Hellman protocol is a widely used method for key exchange. It is based on cyclic

groups.

• The discrete logarithm problem is one of the most important one-way functions in modern

asymmetric cryptography. Many public-key algorithms are based on it.

• For the Diffie–Hellman protocol in Zp*, the prime p should be at least 1024 bits long. This

provides a security roughly equivalent to an 80-bit symmetric cipher.

• For a better long-term security, a prime of length 2048 bits should be chosen.

• The Elgamal scheme is an extension of the DHKE where the derived session key is used as a

multiplicative masked to encrypt a message.

• Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical messages does not

yield two identical ciphertexts.

 Lessons Learned

219/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• Computations on Elliptic Curves

• The Elliptic Curve Diffie-Hellman Protocol

• Security Aspects

• Implementation in Software and Hardware

220/24 Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Content of this Chapter

 Introduction

 Computations on Elliptic Curves

 The Elliptic Curve Diffie-Hellman Protocol

 Security Aspects

 Implementation in Software and Hardware

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Content of this Chapter

221/24

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Problem:

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields

with parameters of more than 1000 bits.

 High computational effort on CPUs with 32-bit or 64-bit arithmetic

 Large parameter sizes critical for storage on small and embedded

 Motivation:

Smaller field sizes providing equivalent security are desirable

 Solution:

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes

with coefficient sizes of 160-256 bits, reducing significantly the computational

effort.

 Motivation

222/24

 Introduction

 Computations on Elliptic Curves

 The Elliptic Curve Diffie-Hellman Protocol

 Security Aspects

 Implementation in Software and Hardware

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Content of this Chapter

223/24

 Computations on Elliptic Curves

• Elliptic curves are polynomials that define points

based on the (simplified) Weierstraß equation:

y2 = x3 + ax + b

for parameters a,b that specify the exact shape

of the curve

• On the real numbers and with parameters

a, b R, an elliptic curve looks like this

• Elliptic curves can not just be defined over the real

numbers R but over many other types of finite fields.

Example: y2 = x3 −3x+3 over R

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl224/24

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Computations on Elliptic Curves (ctd.)

 In cryptography, we are interested in elliptic curves module

a prime p:

 Note that Zp = {0,1,…, p -1} is a set of integers

with modulo p arithmetic

Definition: Elliptic Curves over prime fields

The elliptic curve over Zp, p>3 is the set of all
pairs (x,y) Zp which fulfill

y2 = x3 + ax + b mod p
together with an imaginary point of infinity θ,
where a,b Zp and the condition

4a3+27b2 ≠ 0 mod p.

225/24

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Computations on Elliptic Curves (ctd.)

 Some special considerations are required to convert elliptic

curves into a group of points

 In any group, a special element is required to allow for

the identity operation, i.e.,

given P E: P + θ = P = θ + P

 This identity point (which is not on the curve) is

additionally added to the group definition

 This (infinite) identity point is denoted by θ

 Elliptic Curve are symmetric along the x-axis

 Up to two solutions y and -y exist for each quadratic

residue x of the elliptic curve

 For each point P =(x,y), the inverse or negative point is

defined as -P =(x,-y)

θ

P

-P

point at
infinity

226/24

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Computations on Elliptic Curves (ctd.)

 Generating a group of points on elliptic curves

based on point addition operation P+Q = R, i.e.,

(xP,yP)+(xQ,yQ) = (xR,yR)

 Geometric Interpretation of point addition operation

 Draw straight line through P and Q; if P=Q use

tangent line instead

 Mirror third intersection point of drawn line with

the elliptic curve along the x-axis

 Elliptic Curve Point Addition and Doubling Formulas

Point Addition

Point Doublingx3 = s2 −x1−x2 mod p and y3 = s(x1 −x3)−y1 mod p

where

s =
p

xx
yy mod

12

12

p
y

ax mod
2

3
1

2
1

; if P ≠ Q (point addition)

; if P = Q (point doubling) =P+P

227/24

 Computations on Elliptic Curves (ctd.)

 Example: Given E: y2 = x3+2x+2 mod 17 and point P=(5,1)

Goal: Compute 2P = P+P = (5,1)+(5,1)= (x3,y3)

s = = (2 · 1)−1(3 · 52 + 2) = 2−1 · 9 ≡ 9 · 9 ≡ 13 mod 17

x3 = s2 − x1 − x2 = 132 − 5 − 5 = 159 ≡ 6 mod 17

y3 = s(x1−x3) − y1 = 13(5 − 6) − 1= −14 ≡ 3 mod 17

Finally 2P = (5,1) + (5,1) = (6,3)

1

2
1

2
3

y
ax

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl228/24

 Computations on Elliptic Curves (ctd.)

 The points on an elliptic curve and the point at infinity θ form cyclic subgroups

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)

3P = 2P+P = (10,6) 12P = (0,11)

4P = (3,1) 13P = (16,4)

5P = (9,16) 14P = (9,1)

6P = (16,13) 15P = (3,16)

7P = (0,6) 16P = (10,11)

8P = (13,7) 17P = (6,14)

9P = (7,6) 18P = (5,16)

10P = (7,11) 19P = θ

This elliptic curve has order #E = |E| = 19 since it contains

19 points in its cyclic group.

P

θ

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl229/24

 Number of Points on an Elliptic Curve

• How many points can be on an arbitrary elliptic curve?

• Consider previous example: E: y2 = x3+2x+2 mod 17 has 19 points

• However, determining the point count on elliptic curves in general is hard

• But Hasse‘s theorem bounds the number of points to a restricted interval

Definition: Hasse‘s Theorem:

Given an elliptic curve module p, the number of points

on the curve is denoted by #E and is bounded by

p+1-2 ≤ #E ≤ p+1+2

• Interpretation: The number of points is „close to“ the prime p

• Example: To generate a curve with about 2160 points, a prime with a length of about

160 bits is required

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

p p

230/24

 Elliptic Curve Discrete Logarithm Problem

 Cryptosystems rely on the hardness of the Elliptic Curve Discrete

Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a primitive element P and another element T on an elliptic curve E.

The ECDL problem is finding the integer d, where 1 ≤ d ≤ #E such that

P + P +…+ P = dP = T.

d times

 Cryptosystems are based on the idea that d is large and kept secret and attackers cannot

compute it easily

 If d is known, an efficient method to compute the point multiplication dP is required to

create a reasonable cryptosystem

 Known Square-and-Multiply Method can be adapted to Elliptic Curves

 The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl231/24

 Double-and-Add Algorithm for Point Multiplication

 Double-and-Add Algorithm

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits di

Output: T = d P

Initialization:

T = P

Algorithm:

FOR i = t −1 DOWNTO 0

T = T +T mod n

IF di = 1

T = T +P mod n

RETURN (T)

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: 26P = (110102)P = (d4d3d2d1d0)2 P.

Step
#0 P = 12P inital setting
#1a P+P = 2P = 102P DOUBLE (bit d3)
#1b 2P+P = 3P = 102 P+12P = 112P ADD (bit d3=1)
#2a 3P+3P = 6P = 2(112P) = 1102P DOUBLE (bit d2)
#2b no ADD (d2 = 0)
#3a 6P+6P = 12P = 2(1102P) = 11002P DOUBLE (bit d1)
#3b 12P+P = 13P = 11002P+12 P = 11012P ADD (bit d1=1)
#4a 13P+13P = 26P = 2(11012P) = 110102P DOUBLE (bit d0)
#4b no ADD (d0 = 0)

232/24

 Introduction

 Computations on Elliptic Curves

 The Elliptic Curve Diffie-Hellman Protocol

 Security Aspects

 Implementation in Software and Hardware

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Content of this Chapter

233/24

 The Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

 Given a prime p, a suitable elliptic curve E and a point P=(xP,yP)

 The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

 Joint secret between Alice and Bob: TAB = (xAB, yAB)

 Proof for correctness:
 Alice computes aB=a(bP)=abP

 Bob computes bA=b(aP)=abP since group is associative

 One of the coordinates of the point TAB (usually the x-coordinate) can be used as session key (often after

applying a hash function)

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Choose kPrA= a {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab

Bob

Choose kPrB= b {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab

A

B

234/24

 The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.)

 The ECDH is often used to derive session keys for (symmetric) encryption

 One of the coordinates of the point TAB (usually the x-coordinate) is taken as session key

 In some cases, a hash function (see next chapters) is used to derive the session key

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Choose kPrA= a {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab = (xT,yT)

Define key kAES = xT

Given a message m:
Encrypt c = AESkAES(m)

Bob

Choose kPrB= b {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab= (xT,yT)

Define key kAES = xT

Received ciphertext c:
Decrypt m = AES-1

kAES(c)

A

B

c

EC
D

H
Sy

m
m

et
ric

en
cr

yp
tio

n/
de

cr
yp

tio
n

235/24

 Introduction

 Computations on Elliptic Curves

 The Elliptic Curve Diffie-Hellman Protocol

 Security Aspects

 Implementation in Software and Hardware

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Content of this Chapter

236/24

 Security Aspects

 Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA (1024-3076

bit)?

 Attacks on groups of elliptic curves are weaker than available factoring algorithms or integer

DL attacks

 Best known attacks on elliptic curves (chosen according to cryptographic criterions)

are the Baby-Step Giant-Step and Pollard-Rho method

 Complexity of these methods: on average, roughly steps are required before the ECDLP can

be successfully solved

 Implications to practical parameter sizes for elliptic curves:

 An elliptic curve using a prime p with 160 bit (and roughly 2160 points) provides a security of 280

steps that required by an attacker (on average)

 An elliptic curve using a prime p with 256 bit (roughly 2256 points) provides a security of 2128

steps on average

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

p

237/24

 Introduction

 Computations on Elliptic Curves

 The Elliptic Curve Diffie-Hellman Protocol

 Security Aspects

 Implementation in Software and Hardware

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Content of this Chapter

238/24

 Implementations in Hardware and Software

 Elliptic curve computations usually regarded as

consisting of four layers:

 Basic modular arithmetic operations are

computationally most expensive

 Group operation implements point doubling

and point addition

 Point multiplication can be implemented using

the Double-and-Add method

 Upper layer protocols like ECDH and ECDSA

 Most efforts should go in optimizations of the

modular arithmetic operations, such as

 Modular addition and subtraction

 Modular multiplication

 Modular inversion

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

Protocol
(ECDSA)

Point
Multiplication

(k·P)

Group Operation
P+Q, 2·P

Modular Arithmetic
(+, -, x , ÷)

239/24

 Implementations in Hardware and Software

 Software implementations

 Optimized 256-bit ECC implementation on

3GHz 64-bit CPU requires about 2 ms per point

multiplication

 Less powerful microprocessors (e.g, on

SmartCards or cell phones) even take

significantly longer (>10 ms)

 Hardware implementations

 High-performance implementations with 256-bit

special primes can compute a point

multiplication in a few hundred microseconds

on reconfigurable hardware

 Dedicated chips for ECC can compute a point

multiplication even in a few ten microseconds

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl240/24

• Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. It requires, for

instance, arithmetic modulo a prime.

• ECC can be used for key exchange, for digital signatures and for encryption.

• ECC provides the same level of security as RSA or discrete logarithm systems over Zp with

considerably shorter operands (approximately 160–256 bit vs. 1024–3072 bit), which results in

shorter ciphertexts and signatures.

• In many cases ECC has performance advantages over other public-key algorithms.

• ECC is slowly gaining popularity in applications, compared to other public-key schemes, i.e., many

new applications, especially on embedded platforms, make use of elliptic curve cryptography.

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

241/24

242/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)

243/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)

244/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Motivation

• Alice orders a pink car from the car salesmen
Bob

• After seeing the pink car, Alice states that she
has never ordered it:

• How can Bob prove towards a judge that Alice
has ordered a pink car? (And that he did not
fabricate the order himself)

 Symmetric cryptography fails because both
Alice and Bob can be malicious

 Can be achieved with public-key cryptography

245/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Basic Principle of Digital Signatures

246/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Main idea

• For a given message x, a digital signature is
appended to the message (just like a conventional
signature).

• Only the person with the private key should be
able to generate the signature.

• The signature must change for every document.

The signature is realized as a function with the
message x and the private key as input.

The public key and the message x are the inputs
to the verification function.

247/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)

248/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Core Security Services

1. Confidentiality: Information is kept secret from all but
authorized parties.

2. Integrity: Ensures that a message has not been modified in
transit.

3. Message Authentication: Ensures that the sender of a
message is authentic. An alternative term is data origin
authentication.

4. Non-repudiation: Ensures that the sender of a message can
not deny the creation of the message. (c.f. order of a pink car)

The objectives of a security systems are called
security services.

249/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Additional Security Services

5. Identification/entity authentication: Establishing and
verification of the identity of an entity, e.g. a person, a
computer, or a credit card.

6. Access control: Restricting access to the resources to
privileged entities.

7. Availability: The electronic system is reliably available.

8. Auditing: Provides evidences about security relevant
activities, e.g., by keeping logs about certain events.

9. Physical security: Providing protection against physical
tampering and/or responses to physical tampering attempts

10. Anonymity: Providing protection against discovery and misuse
of identity.

250/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)

 Main idea of the RSA signature scheme

251/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

To generate the private and public key:

• Use the same key generation as RSA encryption.

To generate the signature:

• “encrypt” the message x with the private key

• Append s to message x

To verify the signature:

• “decrypt” the signature with the public key

• If x=x’, the signature is valid

s = sigKpriv(x) = xd mod n

x’=verKpub(s)=se mod n

252/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The RSA Signature Protocol

Alice Bob

Kpr = d
Kpub = (n, e)

Compute signature:
s = sigkpr(x) ≡ xd mod n

Kpub

(x,s)

Verify signature:
x‘ ≡ se mod n
If x‘ ≡ x mod n → valid signature
If x‘ ≡ x mod n → invalid signature

253/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Security and Performance of the RSA Signature Scheme

Security:

The same constrains as RSA encryption: n needs to be at
least 1024 bits to provide a security level of 80 bit.

 The signature, consisting of s, needs to be at least 1024 bits
long

Performance:

The signing process is an exponentiation with the private key
and the verification process an exponentiation with the public
key e.

 Signature verification is very efficient as a small number can
be chosen for the public key.

254/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Existential Forgery Attack against RSA Digital Signature

Alice Bob
Kpr = d
Kpub = (n, e)

1. Choose signature:
s Zn

2. Compute message:
x ≡ se mod n

(n,e)

(x,s)

Verification:
se ≡ x‘ mod n

since se = (xd)e ≡ x mod n
→ Signature is valid

Oscar

(n,e)

255/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Existential Forgery and Padding

• An attacker can generate valid message-signature
pairs (x,s)

• But an attack can only choose the signature s and
NOT the message x

 Attacker cannot generate messages like „Transfer
$1000 into Oscar‘s account“

Formatting the message x according to a padding scheme can be used to
make sure that an attacker cannot generate valid (x,s) pairs.

(A messages x generated by an attacker during an Existential Forgery
Attack will not coincide with the padding scheme. For more details see
Chapter 10 in Understanding Cryptography.)

256/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)

18/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Facts about the Digital Signature Algorithm (DSA)

• Federal US Government standard for digital
signatures (DSS)

• Proposed by the National Institute of Standards
and Technology (NIST)

• DSA is based on the Elgamal signature scheme

• Signature is only 320 bits long

• Signature verification is slower compared to RSA

258/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Digital Signature Algorithm (DSA)

Key generation of DSA:

1. Generate a prime p with 21023 < p < 21024

2. Find a prime divisor q of p-1 with 2159 < q < 2160

3. Find an integer α with ord(α)=q

4. Choose a random integer d with 0<d<q

5. Compute β ≡ αd mod p

The keys are:

kpub = (p,q,α,β)

kpr = (d)

259/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Digital Signature Algorithm (DSA)

DSA signature generation :

Given: message x, signature s, private key d and public
key (p,q,α,β)

1. Choose an integer as random ephemeral key kE

with 0<kE<q

2. Compute r ≡ (αkE mod p) mod q

3. Computes s ≡ (SHA(x)+d ∙ r) kE
-1 mod q

The signature consists of (r,s)

SHA denotes the hashfunction SHA-1 which computes
a 160-bit fingerprint of message x. (See Chapter 11 of
Understanding Cryptography for more details)

260/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The Digital Signature Algorithm (DSA)

DSA signature verification

Given: message x, signature s and public key (p,q,α,β)

1. Compute auxiliary value w ≡ s-1 mod q

2. Compute auxiliary value u1 ≡ w ∙ SHA(x) mod q

3. Compute auxiliary value u2 ≡ w ∙ r mod q

4. Compute v ≡ (αu1 ∙ β u2 mod p) mod q

If v ≡ r mod q → signature is valid

If v ≡ r mod q → signature is invalid

261/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Proof of DSA:

We show need to show that the signature (r,s) in fact satisfied the
condition r ≡ v mod q:

s ≡ (SHA(x))+d ∙r) ∙ kE
-1 mod q

 kE ≡ s-1 SHA(x) + d ∙ s-1 r mod q

 kE ≡u1+d ∙ u2 mod q

We can raise α to either side of the equation if we reduce modulo p:

 αkE mod p ≡ αu1+d∙u2 mod p

Since β ≡ αd mod p we can write:

 αkE mod p ≡ αu1 βu2 mod p

We now reduce both sides of the equation modulo q:

 (αkE mod p) mod q ≡ (αu1 βu2 mod p) mod q

Since r ≡ αkE mod p mod q and v ≡ (αu1 βu2 mod p) mod q, this expression is
identical to:

 r ≡ v

262/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Example

Alice Bob

Key generation:
1. choose p = 59 and q = 29
2. choose α = 3
3. choose private key d = 7
4. β = αβ = 37 ≡ 4 mod 59

Sign:
Compute has of message H(x)=26
1. Choose ephermal key kE=10
2. r = (310 mod 59) ≡ 20 mod 29
3. s = (26 + 7 ∙ 20) ∙ 3) ≡ 5 mod 29

(p, q, α, β)=(59, 29, 3, 4)

(x,(r, s))=(x,20, 5)

Verify:
w ≡ 5-1 ≡ 6 mod 29
u1 ≡ 6 ∙ 26 ≡ 11 mod 29
u2 ≡ 6 ∙ 20 ≡ 4 mod 29
v = (311 ∙ 44 mod 59) mod 29 = 20
v ≡ r mod 29 → valid signature

263/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Security of DSA

To solve the discrete logarithm problem in p the powerful index
calculus method can be applied. But this method cannot be
applied to the discrete logarithm problem of the subgroup q.
Therefore q can be smaller than p. For details see Chapter 10 and
Chapter 8 of Understanding Cryptography .

p q hash output
(min)

security levels

1024 160 160 80
2048 224 224 112
3072 256 256 128

Standardized parameter bit lengths and security levels for the DSA

264/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Elliptic Curve Digital Signature Algorithm (ECDSA)

• Based on Elliptic Curve Cryptography (ECC)

• Bit lengths in the range of 160-256 bits can be chosen
to provide security equivalent to 1024-3072 bit RSA
(80-128 bit symmetric security level)

• One signature consists of two points, hence the
signature is twice the used bit length (i.e., 320-512 bits
for 80-128 bit security level).

• The shorter bit length of ECDSA often result in shorter
processing time

For more details see Section 10.5 in Understanding
Cryptography

265/26 Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned

• Digital signatures provide message integrity, message authentication and non-repudiation.

• RSA is currently the most widely used digital signature algorithm.

• Competitors are the Digital Signature Standard (DSA) and the Elliptic Curve Digital

Signature Standard (ECDSA).

• RSA verification can be done with short public keys e. Hence, in practice, RSA

verification is usually faster than signing.

• DSA and ECDSA have shorter signatures than RSA

• In order to prevent certain attacks, RSA should be used with padding.

• The modulus of DSA and the RSA signature schemes should be at least 1024- bits long.

For true long-term security, a modulus of length 3072 bits should be chosen. In contrast,

ECDSA achieves the same security levels with bit lengths in the range 160–256 bits.

Fig.. 1.2 Absorbing and squeezing phase of Keccak

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

x0
rr

c

absorbing squeezing

f

x1
r

xt-1
r

y0

r
y1

r r
yu

f f f f

Fig. 1.3 The internal structure of Keccak

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

Fig. 1.4 The state of Keccak

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

Fig. 1.5 The Theta Step of Keccak – visually

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

Fig. 1.5 The Theta Step of Keccak – pseudo code

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

• Input: state array A[x,y]

• Output: manipulated state array A[x,y]

• C[x] = A[x,0] A[x,1] A[x,2] A[x,3] A[x,4] x = 0…4

• D[x] = C[x-1] rot(C[x+1],1) x = 0…4

• A[x,y] = A[x,y] D[x] x,y = 0…4

Table 1.3 The rotation constants of Keccak

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

Fig. 1.6 The Chi Step of Keccak

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

Table 1.4 The round constants of Keccak

Chapter 9b of Understanding Cryptography by Christof Paar and Jan Pelzl

274/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1

275/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Motivation
Problem:

Naive signing of long messages generates a signature of same length.

• Three Problems

• Computational overhead

• Message overhead

• Security limitations

• For more info see Section 11.1 in “Understanding Cryptography”.

Solution:
Instead of signing the whole message, sign only a digest (=hash)

Also secure, but much faster

Needed:
Hash Functions

276/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Notes:

• x has fixed length

• z, y have fixed length

• z, x do not have equal length in general

• h(x) does not require a key.

• h(x) is public.

x

zi = h(xi || zi-1)

sigkpr
z)

xi

z

y = sigkpr
(z)

 Digital Signature with a Hash Function

277/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Basic Protocol for Digital Signatures with a Hash Function:

Alice Bob

z = h(x)
s = sigKpr

(z)

(x, s)

z' = h(x)
verKpub

(s,z')=true/false

Kpub

278/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Principal input–output behavior of hash functions

279/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1

280/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The three security properties of hash functions

281/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Hash Funktionen: Security Properties

• Preimage resistance: For a given output z, it is impossible to find any
input x such that h(x) = z, i.e., h(x) is one-way.

• Second preimage resistance: Given x1, and thus h(x1), it is computa-
tionally infeasible to find any x2 such that h(x1) = h(x2).

• Collision resistance: It is computationally infeasible to find any pairs
x1 ≠ x2 such that h(x1) = h(x2).

282/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Hash Funktionen: Security
It turns out that collison resistance causes most problems

• How hard is it to find a collision with a probability of 0.5 ?

• Related Problem: How many people are needed such that two
of them have the same birthday with a probability of 0.5 ?

• No! Not 365/2=183. 23 are enough ! This is called the
birthday paradoxon (Search takes ≈√2n steps) .

• For more info see Chapter 11.2.3 in Understanding
Cryptography.

• To deal with this paradox, hash functions need a output size of
at least 160 bits.

283/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1

284/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Hash Funktionen: Algorithms

• MD5 - family

• SHA-1: output - 160 Bit; input - 512 bit chunks of message x;

operations - bitwise AND, OR, XOR, complement und cyclic shifts.

• RIPE-MD 160: output - 160 Bit; input - 512 bit chunks of message x;
operations – like in SHA-1, but two in parallel and combinations of them
after each round.

Hash Algorithms

based on
block ciphers

Special Algorithms,
e.g. MD5 - family

285/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• Why we need hash functions

• How does it work

• Security properties

• Algorithms

• Example: The Secure Hash Algorithm SHA-1

 SHA-1

• Part of the MD-4 family.

• Based on a Merkle-Dåmgard construction.

• 160-bit output from a message of maximum length 264

bit.

• Widely used (even tough some weaknesses are known)

286/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 SHA-1 High Level Diagramm

287/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Compression Function consists of 80 rounds which are divided into four

stages of 20 rounds each

 SHA-1: Padding

• Message x has to be padded to fit a size of a multiple of 512 bit.

• k ≡ 512 − 64 − 1 − l = 448 − (l + 1) mod 512.

288/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 SHA-1: Hash Computation

• Each message block xi is processed in four stages with 20 rounds each

SHA-1 uses:

• A message schedule which computes a 32-bit word W0,W1,...,W79 for each of the 80

rounds

• Five working registers of size of 32 bits A,B,C,D,E

• A hash value Hi consisting of five 32-bit words Hi
(0), Hi

(1), Hi
(2) , Hi

(3), Hi
(4)

• In the beginning, the hash value holds the initial value H0, which is replaced by a new

hash value after the processing of each single message block.

• The final hash value Hn is equal to the output h(x) of SHA-1.

289/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 SHA-1: All four stages

290/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 SHA-1: Internals of a Round

291/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

Stage t Round j Constant Kt Function ft

1 00…19 K=5A827999 f(B,C,D)=(B∧C)∨(¯B∧D)
2 20…39 K=6ED9EBA1 f(B,C,D)=B⊕C⊕D
3 40…59 K=8F1BBCDC f(B,C,D)=(B⊕C)∨(B⊕D)∨(C⊕D)
4 60…79 K=CA62C1D6 f(B,C,D)=B⊕C⊕D

292/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Lessons Learned: Hash-Funktionen

• Hash functions are keyless. The two most important applications of hash
functions are their use in digital signatures and in message authentication
codes such as HMAC.

• The three security requirements for hash functions are one-wayness,
second preimage resistance and collision resistance.

• Hash functions should have at least 160-bit output length in order to
withstand collision attacks; 256 bit or more is desirable for long-term
security.

• MD5, which was widely used, is insecure. Serious security weaknesses
have been found in SHA-1, and the hash function should be phased out.
The SHA-2 algorithms all appear to be secure.

• The ongoing SHA-3 competition will result in new standardized hash
functions in a few years.

293/23 Chapter 11 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Further Informations: Hash-Funktionen

• Overview over many Hash Functions with Spezifications:

• http://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo

• Birthday Paradox: Wikipedia has a nice explanation

• http://en.wikipedia.org/wiki/Birthday_problem

• SHA Standards

• SHA1+2: http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf

• SHA3 Overview: http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

• CrypTool is a learning program which also can hash:

• http://www.cryptool.org/

• The principle behind MACs

• The security properties that can be achieved with MACs

• How MACs can be realized with hash functions and with block ciphers

 Content of this Chapter

294/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Similar to digital signatures, MACs append an authentication tag to a message

• MACs use a symmetric key k for generation and verification

• Computation of a MAC: m = MACk(x)

 Principle of Message Authentication Codes

295/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

1. Cryptographic checksum

A MAC generates a cryptographically secure authentication tag for a given message.

2. Symmetric

MACs are based on secret symmetric keys. The signing and verifying parties must share a secret

key.

3. Arbitrary message size

MACs accept messages of arbitrary length.

4. Fixed output length

MACs generate fixed-size authentication tags.

5. Message integrity

MACs providemessage integrity: Any manipulations of a message during transit will be detected

by the receiver.

6. Message authentication

The receiving party is assured of the origin of the message.

7. No nonrepudiation

Since MACs are based on symmetric principles, they do not provide nonrepudiation.

 Properties of Message Authentication Codes

296/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• MAC is realized with cryptographic hash functions (e.g., SHA-1)

• HMAC is such a MAC built from hash functions

• Basic idea: Key is hashed together with the message

• Two possible constructions:

• secret prefix MAC: m =MACk(x) = h(k||x)

• secret suffix MAC: m =MACk(x) = h(x||k)

• Attacks:

• secret prefix MAC: Attack MAC for the message x = (x1,x2, . . . ,xn,xn+1), where xn+1 is an arbitrary

additional block, can be constructed from m without knowing the secret key

• secret suffix MAC: find collision x and xO such that h(x) = h(xO), then m = h(x||k) = h(xO||k)

• Idea: Combine secret prefix and suffix: HMAC (cf. next slide)

 MACs from Hash Functions

297/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Proposed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in 1996

• Scheme consists of an inner and outer hash

• k+ is expanded key k

• expanded key k+ is XORed with the inner pad

• ipad = 00110110,00110110, . . .,00110110

• opad = 01011100,01011100, . . .,01011100

• HMACk(x) = h[(k+⊕opad)||h[(k+⊕ipad)||x]]

• HMAC is provable secure which means (informally speaking): The MAC can only be broken if a

collision for the hash function can be found.

 HMAC

298/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• MAC constructed from block ciphers (e.g. AES)

• Popular: Use AES in CBC mode

• CBC-MAC:

 MACs from Block Ciphers

299/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• MAC Generation

• Divide the message x into blocks xi

• Compute first iteration y1 = ek(x1⊕IV)

• Compute yi = ek(xi⊕yi−1) for the next blocks

• Final block is the MAC value: m =MACk(x) = yn

• MAC Verification

• Repeat MAC computation (m‘)

• Compare results:In case m’= m, the message is verified as correct

• In case m’ ≠ m, the message and/or the MAC value m have been altered during transmission

 CBC-MAC

300/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• MACs provide two security services, message integrity and message authentication, using

symmetric techniques. MACs are widely used in protocols.

• Both of these services also provided by digital signatures, but MACs are much faster as they are

based on symmetric algorithms.

• MACs do not provide nonrepudiation.

• In practice, MACs are either based on block ciphers or on hash functions.

• HMAC is a popular and very secure MAC, used in many practical protocols such as TLS.

 Lessons Learned

301/10 Chapter 12 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter

302/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Classification of Key Establishment Methods

In an ideal key agreement protocol, no single party can control
what the key value will be.

303/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

It is often desirable to frequently change the key in a cryptographic system.

Reasons for key freshness include:

• If a key is exposed (e.g., through hackers), there is limited damage if the key is changed often

• Some cryptographic attacks become more difficult if only a limited amount of ciphertext was

generated under one key

• If an attacker wants to recover long pieces of ciphertext, he has to recover several keys which

makes attacks harder

 Key Freshness

304/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Derivation

 In order to achieve key freshness, we need to generate new keys frequently.

 Rather than performing a full key establishment every time (which is costly in
terms of computation and/or communication), we can derive multiple session
keys kses from a given key kAB.

 The key kAB is fed into a key derivation function together with a nonce r („number
used only once“).

 Every different value for r yields a different session key

305/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Derivation

 The key derivation function is a computationally
simple function, e.g., a block cipher or a hash
function

Alice Bob

generate nonce r

derive session key
Kses= ekAB (r)

r

derive session key
Kses= ekAB (r)

 Example for a basic protocol:

306/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter

307/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The n2 Key Distribution Problem

 Simple situation: Network with n users. Every user wants to communicate
securely with every of the other n-1 users.

 Naïve approach: Every pair of users obtains an individual key pair

308/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 The n2 Key Distribution Problem

Shortcomings

 There are n (n-1) ≈ n2 keys in the system

 There are n (n-1)/2 key pairs

 If a new user Esther joins the network, new
keys kXE have to be transported via secure
channels (!) to each of the existing usersa

 Only works for small networks which are
relatively static

Example: mid-size company with 750 employees

 750 x 749 = 561,750 keys must be distributed securely

309/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter

310/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Establishment with Key Distribution Center

Alice Bob

derive session key
Kses= eKA (yA)

KDC
KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB) generate session key kses

yA = eKA (kses)
yB = eKB (kses)

yA yB

derive session key
Kses= eKB (yB)

y= eKses (x) y x= e-1
Kses (y)

 Key Distribution Center (KDC) = Central party, trusted by all users

 KDC shares a key encryption key (KEK) with each user

 Principle: KDC sends session keys to users which are encrypted with KEKs

message y

311/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Establishment with Key Distribution Center

 Advantages over previous approach:

Only n long-term key pairs are in the system

 If a new user is added, a secure key is only needed between the user
and the KDC (the other users are not affected)

Scales well to moderately sized networks

 Kerberos (a popular authentication and key distribution protocol) is based on
KDCs

 More information on KDCs and Kerberos: Section 13.2 of Understanding
Cryptography

312/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Key Establishment with Key Distribution Center

Remaining problems:

 No Perfect Forward Secrecy: If the KEKs are compromised, an attacker
can decrypt past messages if he stored the corresponding ciphertext

 Single point of failure: The KDC stores all KEKs. If an attacker gets
access to this database, all past traffic can be decrypted.

 Communication bottleneck: The KDC is involved in every
communication in the entire network (can be countered by giving the
session keys a long life time)

 For more advanced attacks (e.g., key confirmation attack): Cf. Section
13.2 of Understanding Cryptography

313/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter

314/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Recall: Diffie–Hellman Key Exchange (DHKE)

Bob

Choose random private key
kprA = a ∈ {1, 2,…, p-1}

Choose random private key
kprB = b ∈ {1, 2,…, p-1}

Compute public key
kpubA = A = αa mod p

Compute public key
kpubB = B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

 Widely used in practice

 If the parameters are chosen carefully (especially a prime p > 21024),
the DHKE is secure against passive (i.e., listen-only) attacks

 However: If the attacker can actively intervene in the communciation,
the man-in-the-middle attack becomes possible

Public parameters α, p

315/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Man-in-the-Middle Attack

Bob

kprA = a
kpubA = A = αa mod p

kAO = (B´)a mod p

A

 Oscar computes a session key kAO with Alice, and kBO with Bob

 However, Alice and Bob think they are communicationg with each other !

 The attack efficiently performs 2 DH key-exchanges: Oscar-Alice and Oscar-Bob

 Here is why the attack works:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

Alice computes: kAO = (B´)a = (αo)a

Oscar computes: kAO = Ao = (αa)o

Bob computes: kBO = (A´)b = (αo)b

Oscar computes: kBO = Bo = (αa)o

316/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Implications of the Man-in-the-Middle Attack

Bob

kprA = a
kpubA = A = αa mod p

kAO = (B´)a mod p

A

 Oscar has no complete control over the channel, e.g., if Alice wants to send an
encrypted message x to Bob, Oscar can read the message:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

y = AESkA,O (x)
y

decrypt x = AES-1
kA,O (y)

re-encrypt y´= AESkB,O (x)
y´

x = AES-1
kB,O (y´)

317/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Very, very important facts about the Man-in-the-Middle Attack

 The man-in-the-middle-attack is not restricted to DHKE; it is
applicable to any public-key scheme, e.g. RSA encryption.
ECDSA digital signature, etc. etc.

 The attack works always by the same pattern: Oscar replaces the
public key from one of the parties by his own key.

 The attack is also known as MIM attack or Janus attack

 Q: What is the underlying problem that makes the MIM attack possible?

 A: The public keys are not authenticated: When Alice receives a public key which is
allegedly from Bob, she has no way of knowing whether it is in fact his. (After all, a key
consists of innocent bits; it does not smell like Bob‘s perfume or anything like that)

Even though public keys can be sent over unsecure channels, they
require authenticated channels.

318/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter

319/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Certificates

 In order to authenticate public keys (and thus, prevent the MIM attack) , all public keys
are digitally signed by a central trusted authority.

 Such a construction is called certificate

certificate = public key + ID(user) + digital signature over public key and ID

 In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice))

 Certificates bind the identity of user to her public key

 The trusted authority that issues the certificate is referred to as certifying authority (CA)

 „Issuing certificates“ means in particular that the CA computes the signature sigKCA(kpub)
using its (super secret!) private key kCA

 The party who receives a certificate, e.g., Bob, verifies Alice‘s public key using the public
key of the CA

320/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Diffie–Hellman Key Exchange (DHKE) with Certificates

Bob

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

Cert(Alice)

kprA = a

kpubA = A

Cert(Alice) = ((A, IDA), sigKCA (A,IDA))

Cert(Bob)

kprB = b

kpubB = B = αb mod p

Cert(Bob) = ((B, IDB), sigKCA (B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

CA

321/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Note that verfication requires the public key of the CA for verKpub,CA

• In principle, an attacker could run a MIM attack when kpub,CA is being distributed

 The public CA keys must also be distributed via an authenticated channel!

Certificates

 Q: So, have we gained anything?
After all, we try to protect a public key (e.g., a DH key) by using yet another
public-key scheme (digital signature for the certificate)?

 A: YES! The difference from before (e.g., DHKE without certificates) is that
we only need to distribute the public CA key once, often at the set-upt
time of the system

 Example: Most web browsers are shipped with the public keys of many
CAs. The „authenticated channel“ is formed by the (hopefully) correct
distribution of the original browser software.

322/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Introduction

• The n2 Key Distribution Problem

• Symmetric Key Distribution

• Asymmetric Key Distribution

• Man-in-the-Middle Attack

• Certificates

• Public-Key Infrastructure

 Content of this Chapter

323/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

• In the wild certificates contain much more information than just a

public key and a signature.

• X509 is a popular signature standard. The main fields of such a

certificate are shown to the right.

• Note that the „Signature“ at the bottom is computed over all other

fields in the certifcate (after hashing of all those fields).

• It is important to note that there are two public-key schemes

involved in every certificate:

1. The public-key that actually is protected by the signature („Subject‘s

Public Key“ on the right). This was the public Diffie-Hellman key in

the earlier examples.

2. The digital signature algorithm used by the CA to sign the certificate

data.

• For more information on certificates, see Section 13.3 of

Understanding Cryptography

 Certificates in the Real World

325/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

There are many additional problems when certificates are to be used in systems with a large number

of participants. The more pressing ones are:

1. Users communicate which other whose certificates are issued by different CAs

• This requires cross-certification of CAs, e.g.. CA1 certifies the public-key of CA2. If

Alice trusts „her“ CA1, cross-certification ensures that she also trusts CA2. This is

called a „chain of trust“ and it is said that „trust is delegated“.

2. Certificate Revocation Lists (CRLs)

• Another real-world problem is that certificates must be revoced, e.g., if a smart card

with certificate is lost or if a user leaves an organization. For this, CRLs must be

sent out periodically (e.g., daily) which is a burden on the bandwidth of the system.

More information on PKIs and CAs can be found in Section 13.3 of Understanding Cryptography

 Remaining Issues with PKIs

326/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

