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This paper presents exchange market algorithm for solving economic load dispatch problems. Exchange
market algorithm (EMA) is a new, robust, and strong algorithm to extract the optimal point for global
optimization. Inspired by the stock exchange trading method, EMA strives to solve optimization problem.
Meticulous investigation of the stock exchange methods employed by the elites in such markets has
yielded to shape this algorithm. This algorithm has two searcher operators as well as two absorbent
operators for individuals to be absorbed to the elite person, which leads to creation and organization
of random numbers in the best way. In order to show the abilities of the EMA, this algorithm has been
implemented on four test systems in different dimensions (3, 6, 15 and 40 units) with convex and
nonconvex cost functions. The numerical results have been compared with the results of some new
and strong algorithms. The results prove the robustness and effectiveness of the proposed algorithm
and show that it could be used as a reliable tool for solving practical ELD problems.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Economic load dispatch (ELD) is one of the most important
optimization problems in power system operation and planning.
The main objective of economic dispatch problem of electric power
generation is to schedule the output power of committed generat-
ing units so as to meet the required load demand at minimum
operating cost, while satisfying system equality and inequality
constraints. In the ELD problem, the cost function for each genera-
tion unit is approximately represented by a single quadratic func-
tion and the problem is solved using mathematical programming
based on optimization techniques such as lambda iteration
method, gradient method, Newton’s method, linear programming,
interior point method and dynamic programming [1,2]. However,
many mathematical assumptions such as convexity, quadratic,
differentiable or linear objectives are required to simplify the
problem. In these numerical methods for solving the ELD problem,
an essential assumption is that the incremental cost curves of the
units are piecewise-linear monotonically increasing functions.
Unfortunately, the input–output characteristics of power generat-
ing units are inherently highly nonlinear because of prohibited
operating zones, valve-point loadings, etc. Furthermore, they may
lead to multiple local minimum points of the cost function.
Classical dispatch algorithms require that these characteristics be
approximated, even though such approximations are not desirable
as they may lead to suboptimal [3,4]. Due to the non-convergence
behavior of generation units’ input/output characteristics the
practical ELD problem should be a non-convex problem with con-
straints, which cannot be solved directly through the mathematical
approaches. Dynamic programming (DP) method can solve such
types of problems, but it suffers from so-called the curse of dimen-
sionality [5]. From the last decades, advanced heuristic techniques
such as genetic algorithm [6,7], evolutionary programming (EP)
[8,9], differential evolution (DE) [10–13], particle swarm optimiza-
tion (PSO) [14–19], and Biogeography-based optimization (BBO)
[20,21] are developed to solve these problems.

ExchangeMarket Algorithm (EMA) is ameta-heuristic algorithm
appropriate to solve the optimization problems. This algorithm is
inspired by the stockmarket in which the shareholders buy and sell
any types of shares under different market conditions. In this algo-
rithm, it is assumed that the shareholders compete to introduce
themselves as the most successful shareholder in the ranked list.
In the EMA, shareholders with lower ranks tend to do logical risks
to gain more profits and generally it is assumed that the sharehold-
ers are intelligent persons and behave similar with the successful
traders of the stock market. Unlike the other algorithms, this
algorithm has two searcher operators as well as two absorbent
operators for individuals to be absorbed to the elite person, which
leads to creation and organization of random numbers in the best
way. These operators make EMA able to overcome the usual limita-
tions of other algorithms such as local optimal trapping due to
premature convergence (i.e. exploration problem), insufficient
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capability to find nearby extreme points (i.e. exploitation problem)
and lack of efficient mechanism to treat the constraints (i.e. con-
straint handling problem). Less execution time, the ability in select-
ing search area and in turn the ability for optimization of various
problems, convergence to the identical solutions in each program
iteration, high ability in extraction of global optimum points, are
some advantages of EMA [22].

In order to reveal the capabilities of EMA, it is applied to optimize
several convex and nonconvex ELD problems aim to decrease the
system fuel costs. In order to investigate the performance of the
EMA in facing problems with several type of constraints, the ELD
problem is optimized considering the existence of system power
losses, system equality and inequality constraints, ramp rate limits,
valve-point effects, and prohibited operational zones. This algo-
rithm is implemented successfully on systems with 3, 6, 15, and
40 units. The obtained results are compared with other advanced
techniques. The results well demonstrate the practical advantage
of the exchange market algorithm over the other approaches.

The rest of this paper is organized as follows. Section ‘Economic
load dispatch problem formulation’: gives the formulation of the
ELD problem; Section ‘Exchange market algorithm’: explains the
EMA; Section ‘Implementation of exchange market algorithm for
ELD problem’: shows implementation pattern of EMA in solving
ELD problem; Section ‘Numerical results’: shows implementation
of the EMA to the test systems and obtained results; and Section ‘
Conclusions’ gives our conclusions.

Economic load dispatch problem formulation

Objective function

The [14–18] have mentioned the formulation and ELD problem
constraints in details. The aim of solving ELD problem is to mini-
mize the outputs of the online generating units, while simultane-
ously satisfying all unit and system equality and inequality
constraints. The simplified cost function of each generating unit
can be approximated to be a quadratic function of the active power
outputs from the generating units. The simplified cost function of
each generation unit in ELD problem is as follows [5]:

Ft ¼
Xn
i¼1

FiðPiÞ ð1Þ

FiðPiÞ ¼ ai þ biPi þ ciP
2
i ð2Þ

where Ft is the system fuel cost, Fi is the fuel cost of the ith unit, and
ai, bi, and ci are the coefficients related to the ith unit fuel. Parame-
ter Pi represents the ith plant’s generated power and n is the num-
ber of the last power unit of the system.

Equality and inequality constraints

Active powers balance equation
In order to balance the power, an equality constraint should be

met. Total generated power of the plants should equal to total sys-
tem demand power plus total transmission line power losses. In
other words, the following should be valid:

Xn
i¼1

Pi ¼ Pload þ Ploss ð3Þ

where Pload is the total system load. Parameter Ploss is the power
losses of transmission line and is a function of plants output power,
which is defined as follows using B factor:

Ploss ¼
Xn
i¼1

Xn
j¼1

PiBijPj þ
Xn

i¼1

B0iPi þ B00 ð4Þ
Minimum and maximum power limits
The output power of each power unit should fall between the

maximum and the minimum values of the power plant proportion-
ally with the following inequality:

Pi;min 6 Pi 6 Pi;max ð5Þ
where Pi;min and Pi;max are the minimum and the maximum powers
of the ith unit, respectively.

Ramp rate limits
The actual operation interval of all power plants is limited by

the ramp-up and ramp-down. In other words, the plant, which
used to generate P0

i can just increase or decrease its generation
to some extent. The constraints of ramp-up and ramp-down are
defined as follows:

Pi � P0
i 6 URi ð6Þ

P0
i � Pi 6 DRi ð7Þ

where P0
i is the previous output power of the ith generating unit,

URi and DRi are the ramp-up and ramp-down of the ith generating
unit, respectively. In order to consider the ramp-up and ramp-down
and power output limits constraints simultaneously, (5)–(7) can be
redefined as the following inequality:

maxfPi;min; P
0
i � DRig 6 Pi 6 minfPi;max; P

0
i þ URig ð8Þ
ELD problem considering prohibited operational zones
In some cases, whole generation range of a generating unit is

not available due to some executive physical limitations. Generat-
ing units may have some prohibited operation zones due to the
existence of some deficiencies in machineries or in accessories.
These defects might result in instability in some specific output
power intervals. Therefore, some additional constraints should be
added to the unit operation zones as follows for the plants with
prohibited operational zones:

Pi 2
Pi;min 6 Pi 6 Pl

i;1

Pu
i;k�1 6 Pi 6 Pl

i;k

Pu
i;pzi 6 Pi 6 Pi;max

8>><
>>:

i ¼ 1;2; . . . ;npz
k ¼ 2;3; . . . ;pzi

ð9Þ

where Pl
i;1 and Pu

i;k are respectively the lower and the upper bands of
the ith unit prohibited zone, pzi is the number of ith unit’s prohib-
ited zone and npz is the number of units with prohibited zone [25].

ELD problem considering valve-point effects
The generation units with multi steam valve create more varia-

tions in plant cost function. Since the existence of steam valves
leads to ripple creation in plants characteristics, the cost function
would have a more nonlinear formula. Therefore, the cost function
(2) should be replaced by the following cost function:

FiðPiÞ ¼ ai þ biPi þ ciP
2
i þ jei � sinðf i � ðPi;min � PiÞÞj ð10Þ

where ei and f i are the coefficients of generator i reflecting valve-
point loading [27].

Exchange market algorithm

Exchange market algorithm is an appropriate meta-heuristic
algorithm for optimization problems solving. This algorithm has
two searcher operators as well as two absorbent operators. This
advantageous enables the algorithm to search around the optimum
point and in a vast range simultaneously. In EMA, each member is
one of the answers. In the proposed algorithm there exists specific
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number of shares (in solving the ELD problem the number of
shares is the number of generation units), each member intelli-
gently tries to buy a number of them (in the ELD problem are
the power output of each generating units), and intelligently per-
forms to gain the maximum possible profit (in the ELD problem,
profits can be achieved by reducing fuel costs) at the end of each
period by calculating the validity of his own total shares.

In EMA, it is assumed that there exist two major market modes.
In the first mode, the market condition is normal and faces with no
considerable oscillation and the shareholders try to gain the max-
imum profit using the experiments of the successful members
without performing any non-market risks (searching around the
optimum point). In the second mode, the market experiences dif-
ferent oscillations and the shareholders try to perform some intel-
ligent risks identifying the conditions to use the situation
maximally to increase their assets (finding out the unknown
points). In other words, in each iteration of the EMA, the fitness
of the function is evaluated twice. In this algorithm, the sharehold-
ers are classified into three groups under any market condition.
Here, group means the primary, middle, and the end members of
the shareholder population [22].

Exchange market in normal mode

In this mode, the market is in normal condition without any
considerable oscillation and the shareholders try to gain the max-
imum possible profit without performing non-market risks using
the experiments of the elite shareholders and investigating the
present condition. Therefore, they compete with each other. Here,
each member is ranked according to the fitness function and
stands in a group [22].

First group: members with high fitness
These members do not change their shares without performing

any risk and trade to maintain their ranks. This group of sharehold-
ers composes 10–30% of the population. Members of this group are
the elite shareholders or the best problem answers, so, they do not
required to be changed.

Second group: members with average fitness
This group of shareholders composes 20–50% of the population.

The members of this group use the successful experiences of elite
stockbrokers and tend to take the least possible risk in changing
their shares.

popgroup ð2Þ
j ¼ r � popgroup ð1Þ

1;i þ ð1� rÞ � popgroup ð1Þ
2;i ð11Þ

i ¼ 1;2;3; � � � ;ni and j ¼ 1;2;3; � � � ;nj

where ni is the nth person of the first group and nj is the nth person
of the second group. Parameter r is a random number within [01],

popgroup ð1Þ
1;i and popgroup ð1Þ

2;i are the members of the first group and

popgroup ð2Þ
j is the jth member of the second group.

Third group: members with weak fitness
These groups of people are the end-list ranks of shareholders.

This group of shareholders composes 20–50% of the population.
The members of this group utilize the differences of share values
of the first group as well as their share values’ differences com-
pared to the first group individuals and change their shares based
on Eq. (12):

Sk ¼ 2� r1 � popgroup ð1Þ
i;1 � popgroup ð3Þ

k

� �
þ 2� r2

� popgroup ð1Þ
i;2 � popgroup ð3Þ

k

� �
ð12Þ
popgroup ð3Þ;new
k ¼ popgroup ð3Þ

k þ 0:8� Sk k ¼ 1;2;3; � � � ;nk ð13Þ
where r1 and r2 are random numbers, nk is the nth member of the

third group, popgroup ð3Þ
k is the kth member of the third group and

sk is the share variation of the kth member of the third group. The
members of this group actually search the optimum point in a vas-
ter domain in compare to the members of the second group.

Exchange market in oscillation mode

In this mode after shareholders reevaluation and members rat-
ing, the shareholders perform intelligent risks according to their
own rank among other members to gain the maximum possible
profit and achieve the higher ranks of the market from fitness func-
tion viewpoint. In other words, the algorithm should search in a
wider space and try to find out the unknown points in this mode.
Here, any member adopts different financial policies based on the
gained profit and performs different risks to surpass the elite mem-
bers. In this mode, members can be sorted in three separate groups
considering their performances.

First group: members with high fitness
This part of population is the elite members or the best opti-

mization problem answers, which do not tend to trade their shares
and try to maintain their ranks. This group of shareholders com-
poses 10–30% of the population. [22].

Second group: members with average fitness
In this section the sum of the shares held by people tends to be

constant and only the number of some of each type of shares
increase and some decrease in a way that the sum remains con-
stant. At first, the number of shares held by each person increases
based on the following equation:

Dnt1 ¼ nt1 � dþ ð2� r � l� g1Þ ð14Þ

l ¼ tpop
npop

� �
ð15Þ

nt1 ¼
Xn
y¼1

jstyj y ¼ 1;2;3; . . . ;n ð16Þ

g1 ¼ nt1 � g1 ð17Þ

gk
1 ¼ g1;max �

g1;max � g1;min

itermax
� k ð18Þ

where Dnt1 is the amount of shares should be added randomly to
some shares, nt1 is total shares of tth member before applying the
share changes. Sty is the shares of the tth member, d is the informa-
tion of exchange market. Because of using penalty factor in the ELD
problem and this paper, d is equal to nt1 [22]. r is a random number
in interval [1]. g1 is risk level related to each member of the second
group, tpop is the number of the tth member in exchange market.
npop is the number of the last member in exchange market, l is a
constant coefficient for each member and g1 is the common market
risk amount which decreases as iteration number increases. itermax

is the last iteration number and k is the number of program itera-
tion. g1;max and g1;min indicate the maximum and minimum values
of risk in market, respectively.

In the second part of this section, it is necessary that each per-
son randomly sells some of his shares equal to the number he has
purchased so that the sum of each person’s shares remains con-
stant. In this section, it is essential that each person reduces the
number of his shares in Dnt2 amount. In this status, the Dnt2 of each
person equals:
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Dnt2 ¼ nt2 � d ð19Þ

where Dnt2 is the share amount should be decreased randomly from
some shares and nt2 is total share amount of the tth member after
applying variations on shares.
Third group: members with weak fitness
In this section, unlike group 2, the sum of the person’s number

of shares would change after each trade. In other words, in this sec-
tion, the person purchases or sells a number of shares. The share-
holders of this group change some of their shares based on the
following equation:

Dnt3 ¼ ð4� rs � l� g2Þ ð20Þ
rs ¼ ð0:5� randÞ ð21Þ
g2 ¼ nt1 � g2 ð22Þ
gk
2 ¼ g2;max �

g2;max � g2;min

itermax
� k ð23Þ

where Dnt3 is totally the share amount should be applied in the
shares of each member of third group randomly. Parameter rs is a
random number within [�0.5 0.5]. Parameter g2 .is the risk related
to each member of third group and g2 is the market variable risk in
third group. In this section, members trade a part of their shares
randomly by varying total number of their shares.
Implementation of exchange market algorithm for ELD
problem

The ELD problem optimization pattern using by exchange mar-
ket algorithm is as the following steps:

(1) Selecting initial values and share allocation to the initial
shareholders;

(2) Shareholders cost calculation and their rating;

In this section, members are evaluated according to the values
of their shares and are classified in three separate groups to indi-
cate different shareholders groups. The fitness function in ELD
problem optimization is (1).

(3) Applying variations on the shares of the second group mem-
bers in normal market mode

In this step, the elite members or the shareholders of the first
group experience no variations and the middle members or the
members of the second group change some shares according to
(11).

(4) Applying variations on the shares of the third group mem-
bers in normal market mode

This group is the end members of the population with lower fitness
function value and they change their share amount from any type
using Eq. (13).

(5) Recalculating shareholders cost and rating them
In the previous mode, it was aimed to search around the

optimum point and the market was in its normal mode, but, in this
mode, according to the variations applied on the shares of the
middle and end members, the main population is evaluated from
fitness function and members are classified based on their share
values and are sorted in separate groups again.
(6) Trade in the shares of the second group members using Eq.
(14) in market oscillated mode

In this step, the higher ranked members or the elite sharehold-
ers are maintained without any variation and the shareholders of
the second group trade their shares considering Eq. (14) and
change some of their shares. Initially, each member randomly buys
some shares and then sells the same amount so that, there will be
no variation in sum shares amount.

(7) Trade in the shares of the third group members using Eq.
(20) in market oscillated mode

In this step, the shareholders trade their shares without any con-
sideration on total share amounts according to Eq. (20).

(8) Jump to step 2 until the program ending conditions are not
satisfied

In this step, the market oscillation condition is finished and the
program starts to operate in order to evaluate the shareholders
from step 2 if end up conditions that is the number of program iter-
ation are not satisfied. If end up conditions are satisfied, the pro-
gram operation is ended up. Flowchart of the EMA for solving the
ELD problem is illustrated in Fig. 1.
Numerical results

The EMA is applied on four different power systems: (1) System
with 3-unit system with prohibited operating zones, ramp rate
limits and network losses; (2) 6-unit system with prohibited
operating zones, ramp rate limits and network losses; (3) 15-unit
system with prohibited operating zones, ramp rate limits and
network losses; (4) 40-units system with valve-point effects.

Fifty independent experimentations are conducted on each
problem to compare the problem solution quality and convergence
features. In all case studies, the number of generation is 100.

In all experiments, the number of individuals in 1st, 2nd and
3rd groups in non-oscillation market (balanced or normal market)
conditions are 25, 25 and 50% of the generation, and the pattern for
the oscillated market conditions are equal to 20%, 60% and 20% of
initial generation [22]. The individuals’ percentage in three groups
has approximately constant values, and its optimum value is as the
mentioned value. The necessary adjustable parameters of the pro-
posed algorithm are risk factors of 2nd and 3rd groups in oscillated
market which its optimum value for each problem are included in
Table 1.
System with 3-unit system

The experimentations are accomplished on a system possessing
three units, in two separate parts, due to in some papers the results
do not satisfy the ramp rate limits. (A) System with network power
losses and prohibited operating zones; (B) System with network
power losses, prohibited operating zones and ramp rate limits.
The total demand is set to 300 MW. It is aimed to minimize the
total cost of the system. Input data for 3-unit test system are
included in Table 2 and B coefficient of network losses are in [6].

(A) The results obtained from solving the test system A by EMA
is in Table 3. As it is obvious, the minimum obtained fuel cost is
3619:7555 ($/h) resulted by EMA. (B) The results obtained from
ELD problem solution using EMA in a system with three units con-
sidering total constraints of case study A plus the ramp rate limits
are presented in Table 3. As it is obvious, the minimum fuel cost
and the minimum system losses are achieved applying EMA. In
order to investigate the convergence pattern of the EMA, fifty inde-
pendent experimentations are conducted for A and B case studies
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Fig. 1. Program implementation flowchart of exchange market algorithm.
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and the average of the results are presented in Table 3. The results
show the robust convergence of the proposed algorithm during
each program implementation. In Table 4, the result obtained by
EMA is illustrated for case study B after fifty program implementa-
tions with different iterations. In solving ELD problem with 3-unit
system by EMA, the least cost is obtained in 50 implementations
with 30 iterations, but the convergence to completely similar
answers with four digits of decimal is achieved for 500 iterations
due to the random nature of the algorithms operation process.
Table 1
Adjustable parameters of EMA for numerical experimentations.

Risk value g1 [max, min] g2 [max, min]

3-unit system [0.005,0.001] [0.01,0.002]
6-unit system [0.005,0.001] [0.01,0.002]
15-unit system [0.003,0.001] [0.006,0.002]
40-unit system [0.001,0.0005] [0.002,0.001]
Results shown in Table 4 well indicate the fact that this algorithm
converges to near the global optimum point during initial
iterations, and is able to finding out global optimum point during
each program implementation.

System with 6-unit

This test system contained six units with non-convex cost func-
tions considering ramp-rate limits, prohibited operating zones and
transmission network losses. Total system load power is 1263 MW.
Input data for 6-unit test system are included in Table 2 and B coef-
ficient of power losses are as presented in [14]. {R.4} Results of
solving ELD problem through EMA in a 6-unit system are presented
in Table 5. As can be seen in Table 5, the lowest fuel cost for the
system is 15443.0749 ($) that obtained by EMA and is lower than
that of h-PSO, Self-Organizing Hierarchical Particle Swarm
Optimization (SOH-PSO) and BBO. In order to investigate the con-
vergence pattern of the EMA, fifty independent experimentations
are conducted for 6 units test system and the average of the results
is presented in Table 5. As it is apparent, the presented method
found the same solutions in this problem in each program runs
indicating the robustness of this method. As can be seen from
Table 5, the run time of EMA is lower than h -PSO, SOH-PSO and
BBO.

System with 15 units

This test system contained 15-online units with non-convex
cost functions considering ramp-rate limits, prohibited operating
zones and transmission network losses. The system supplies a total
load of 2630 MW. The input data for 15-unit test system are
included in Table 2 and B-matrix for transmission network losses
for the system are given in [14]. {R.4 & R.5} The results of solving
ELD problem in a 15-unit system are presented in Table 6. In order
to investigate the convergence pattern of the EMA, fifty indepen-
dent experimentations are conducted on 15 units test system and
the average of the results in comparison with other methods is pre-
sented in Table 7. As can be seen in Tables 6 and 7, the minimum
fuel cost obtained for the system is 32704.4503 ($/h), which is
achieved using EMA and is less than that of GAAPI, SOH-PSO,
modified differential evolution (MDE), PSO, artificial bee colony
(ABC), particle swarm optimization with smart inertia factor
(PSO-SIF) and h-PSO techniques. Comparing the results of applying
EMA with that of the other approaches shows robustness and the
high capabilities of this algorithm in finding out the global
optimum point over other compared methods.

As shown in Table 7, the results of EMA are very robust in com-
pare with that of the other methodologies and their full-fledged
methods since the EMA algorithm achieves similar answers after
50 program implementations. For example, in comparing the
average results of EMA and PSO, it is obvious that PSO technique
finds out the average value 33,039 ($/h) in 50 program implemen-
tation, which is 181 ($/h) more than the minimum cost amount
obtained by PSO, while in EMA, the minimum and the average
obtained cost amounts in 50 program implementations are equal.
The convergence characteristic of EMA and PSO algorithms are
compared in Fig. 2.

In PSO, the search domain in initial iterations is wide and
decreases due to the reduction of weight inertia coefficient as the
iteration number increases [5]. The effect of wide search domain
of PSO in initial 200 iterations is distinctive in Fig. 2. The effect
of restricted PSO search domain in 600–800 iterations is also
depicted in Fig. 2. EMA has two searcher operators that one of
which searches in the restricted domain and the other simultane-
ously searches in a wider domain. Searching in the restricted
domain leads to finding out more optimized points adjacent to



Table 2
Data for 3, 6 and 15 units systems.

Unit Pi;min Pi;max ai bi ci URi DRi P0
i

Prohibited zones

3-unit test system
1 50 250 328.13 8.663 0.00525 55 95 215 [105,117][165,177]
2 5 150 136.91 10.04 0.00609 55 78 72 [50,60][92102]
3 15 100 59.16 9.76 0.00592 45 64 98 [25][60,67]

6-unit test system
1 100 500 240 7 0.0070 80 120 440 [210240][350380]
2 50 200 200 10 0.0095 50 90 170 [90110][140160]
3 80 300 220 8.5 0.0090 65 100 200 [150170][210240]
4 50 150 200 11 0.0090 50 90 150 [8090][110120]
5 50 200 220 10.5 0.0080 50 90 190 [90110][140150]
6 50 120 190 12 0.0075 50 90 110 [7585][100105]

15-unit test system
1 150 455 671 10.1 0.000299 80 120 400
2 150 455 574 10.2 0.000183 80 120 300 [185,225][305,335][420,450]
3 20 130 374 8.80 0.001126 130 130 105
4 20 130 374 8.80 0.001126 130 130 100
5 150 470 461 10.40 0.000205 80 120 90 [180,200][305,335][390,420]
6 135 460 630 10.10 0.000301 80 120 400 [230,255][365,395][430,455]
7 135 465 548 9.5 0.000364 80 120 350
8 60 300 227 11.2 0.000338 65 100 95
9 25 162 173 11.2 0.000807 60 100 105

10 25 160 175 10.7 0.001203 60 100 110
11 20 80 186 10.2 0.003586 80 80 60
12 20 80 230 9.90 0.005513 80 80 40 [30,40][55,65]
13 25 85 225 13.1 0.000371 80 80 30
14 15 55 309 12.1 0.001929 55 55 20
15 15 55 323 12.4 0.004447 55 55 20

Table 3
Results obtained with different algorithms on a system with three units.

Unit (MW) Case study A Case study B

EMA DE/BBO [21] EMA GA [6]

P1 207.7666 207.9926 200.5892 194.26
P2 87.1567 86.0125 78.2520 50
P3 15.0000 16.0723 34.0000 79.62
TP⁄ 309.9234 310.0774 312.8413 323.89
PLoss 9.9234 10.0774 12.8413 24.011
TC 3619.7555 3620.1748 3634.7683 3737.20
AC 3619.7555 3620.1799 3634.7683 –
T/I 0.0020 0.017 0.0022 0.01

⁄ TP: total power [MW], TC: total cost [$/h], AC: average cost [$/h], T/I: cpu time/
iteration [s].

Table 4
EMA results in 50 program implementations with different iterations for B case study.

Iteration 30 50 100 500

Min. cost 3634.8401 3634.7709 3634.7695 3634.7683
Max. cost 3635.4609 3634.9011 3634.8113 3634.7683
Ave. cost 3634.9131 3634.7818 3634.7706 3634.7683

Table 5
The best output power for a system with 6 units.

Unit (MW) SOH-PSO [19] h-PSO [23] BBO [20] EMA

P1 447.49 447.105 447.3997 447.3872
P2 173.32 173.112 173.2392 173.2524
P3 263.47 263.65 263.3163 263.3721
P4 139.06 139.152 138.0006 138.9894
P5 165.47 165.934 165.4104 165.3650
P6 87.13 86.5037 87.07979 87.0781
TP 1275.55 1275.46 1275.446 1275.4443
Ploss 12.55 12.4493 12.446 12.4430
TC 15446.02 15443.18 15443.09 15443.0749
AC 15497.35 15443.2117 15443.09 15443.0750
T/I 0.0633 0.0088 0.0325 0.0024

Table 6
The best output power for a system with 15 units.

Unit (MW) EMA GAAPI [7] SOH-PSO [19]

P1 455.0000 454.70 455.00
P2 380.0000 380.00 380.00
P3 130.0000 130.00 130.00
P4 130.0000 129.53 130.00
P5 170.0000 170.00 170.00
P6 460.0000 460.00 459.96
P7 430.0000 429.71 430.00
P8 72.0415 75.35 117.53
P9 58.6212 34.96 77.90
P10 160.0000 160.00 119.54
P11 80.0000 79.75 54.50
P12 80.0000 80.00 80.00
P13 25.0000 34.21 25.00
P14 15.0000 21.14 17.86
P15 15.0000 21.02 15.00
TP 2660.6626 2660.36 2662.29
Ploss 30.6626 30.36 32.28
TC 32704.4503 32732.95 32751.39
T/I 0.0033 NA 0.0936
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the global optimum point and searching in a wider domain leads to
find out unknown points. This optimum search of EMA enables the
algorithm to find out cost amount less than 32,850 ($/h) in initial
15 iterations but PSO is not able to find out even in 50 program
implementations with 1000 iterations. {R.3} As it can be seen,
the capability of extraction of global optimum point in EMA is far
better than PSO. The main reasons for this discrepancy include
the following points:

1. Having appropriate absorbent: operators: There are two absor-
bent operators toward the elite stockbrokers in the proposed
algorithm. In proposed algorithm and in balanced market the
shareholders in groups 2 and 3 are responsible to absorb



Table 7
Obtained results by different methods for 15-unit test system.

Methods Min. cost Ave. cost Max. cost

MDE [12] 32917.87 33066.76 33245.54
PSO [14] 32858 32989 33031
ABC [24] 32707.85 32707.95 32708.27
PSO-SIF [5] 32706.8800 32707.7900 32709.92
h-PSO [23] 32706.6856 32711.4955 32744.0306
EMA 32704.4503 32704.4504 32704.4506

0 200 400 600 800 1000

33,000

33,500

34,000

32,700

32850

To
ta

l g
en

er
at

io
n 

co
st

 ($
/h

)

Iterations

PSO

EMA

0 20 40

3.27

3.28

3.29

3.3

3.31

3.32

3.33

3.34

3.35

x 104

Fig. 2. Convergence characteristics of EMA and PSO in 15 units test system.
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Table 8
Determination of g1 and g2 for EMA in 15-unit test system.

Case g1;max g2;max Minimum cost ($) Average cost ($)

1 0.2 0.4 32754.2501 32785.6591
2 0.1 0.2 32719.4698 32731.1390
3 0.05 0.1 32707.1364 32715.3871
4 0.02 0.04 32705.5038 32711.0017
5 0.01 0.02 32704.7894 32706.0102
6 0.005 0.01 32704.4503 32705.2113
7 0.004 0.008 32704.4503 32704.4898
8 0.003 0.006 32704.4503 32704.4504
9 0.002 0.004 32704.4503 32705.0015

10 0.001 0.002 32708.1001 32721.0176

Table 9
Data for 40 units system.

Unit Pi;min Pi;max ai bi ci ei f i

1 36 114 94.705 6.73 0.00690 100 0.084
2 36 114 94.705 6.73 0.00690 100 0.084
3 60 120 309.540 7.07 0.02028 100 0.084
4 80 190 369.030 8.18 0.00942 150 0.063
5 47 97 148.890 5.35 0.01140 120 0.077
6 68 140 222.330 8.05 0.01142 100 0.084
7 110 300 287.710 8.03 0.00357 200 0.042
8 135 300 391.980 6.99 0.00492 200 0.042
9 135 300 455.760 6.60 0.00573 200 0.042

10 130 300 722.820 12.9 0.00605 200 0.042
11 94 375 635.200 12.9 0.00515 200 0.042
12 94 375 654.690 12.8 0.00569 200 0.042
13 125 500 913.400 12.5 0.00421 300 0.035
14 125 500 1760.400 8.84 0.00752 300 0.035
15 125 500 1760.400 8.84 0.00752 300 0.035
16 125 500 1760.400 8.84 0.00752 300 0.035
17 220 500 647.850 7.97 0.00313 300 0.035
18 220 500 649.690 7.95 0.00313 300 0.035
19 242 550 647.830 7.97 0.00313 300 0.035
20 242 550 647.810 7.97 0.00313 300 0.035
21 254 550 785.960 6.63 0.00298 300 0.035
22 254 550 785.960 6.63 0.00298 300 0.035
23 254 550 794.530 6.66 0.00284 300 0.035
24 254 550 794.530 6.66 0.00284 300 0.035
25 254 550 801.320 7.10 0.00277 300 0.035
26 254 550 801.320 7.10 0.00277 300 0.035
27 10 150 1055.100 3.33 0.52124 120 0.077
28 10 150 1055.100 3.33 0.52124 120 0.077
29 10 150 1055.100 3.33 0.52124 120 0.077
30 47 97 148.890 5.35 0.01140 120 0.077
31 60 190 222.920 6.43 0.00160 150 0.063
32 60 190 222.920 6.43 0.00160 150 0.063
33 60 190 222.920 6.43 0.00160 150 0.063
34 90 200 107.870 8.95 0.00010 200 0.042
35 90 200 116.580 8.62 0.00010 200 0.042
36 90 200 116.580 8.62 0.00010 200 0.042
37 25 110 307.450 5.88 0.01610 80 0.098
38 25 110 307.450 5.88 0.01610 80 0.098
39 25 110 307.450 5.88 0.01610 80 0.098
40 242 550 647.830 7.97 0.00313 300 0.035
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individuals toward group 1 members or elite stockbrokers.
Therefore, the absorption toward group 1 or elite stockbrokers
is done as well in EMA.

2. Robust and efficient searcher operators: In this algorithm, there
are two searcher operators and along with local search, the vas-
ter search is also simultaneously conducted which leads to cre-
ation and organization of random numbers in the best way.

3. Application of unique changes in each shareholder: In EMA algo-
rithm, shareholders with low fitness, trade with a higher risk,
conversely, shareholders with higher fitness levels trade with
lower ranks. Hence, considering the fitness rank of sharehold-
ers, each person shows a unique trade to increase his
possessions.
4. Selecting a specific search area: The structure of EMA is in a way
that it allows manipulation of the search area. In Table 1, the
risk level of groups 2 and 3 members in oscillated markets or
the selected search area have been presented.

5. Independence of searcher operators from obtained costs: in PSO,
the search area of the algorithm is dependent upon the costs
of best individual and group answers. Therefore, there exist
the possibility of individuals’ costs being equal and the algo-
rithm’s getting stuck in local optimum points [5]. In EMA the
trade volume does not depend on the cost of elite stockbrokers
and only depends on the sum number of the shares of each per-
son. Hence, in the proposed algorithm, the only possibility of
getting stuck would be in cases where the sum of the persons’



Table 10
The best output power for a system with 40 units.

Unit EMA BBO [20] QPSO [18]

P1 110.7998 110.0465 111.20
P2 110.7998 111.5915 111.7
P3 97.3999 97.6007 97.40
P4 179.7331 179.7095 179.73
P5 87.7999 88.3060 90.14
P6 140.0000 139.9992 140.00
P7 259.5996 259.6313 259.60
P8 284.5996 284.7366 284.80
P9 284.5996 284.7801 284.84
P10 130.0000 130.2484 130.00
P11 94.0000 168.8461 168.80
P12 94.0000 168.8461 168.80
P13 214.7598 214.7038 214.76
P14 394.2793 304.5894 304.53
P15 394.2793 394.2761 394.28
P16 394.2793 394.2409 394.28
P17 489.2793 489.2919 489.28
P18 489.2793 489.4188 489.28
P19 511.2793 511.2997 511.28
P20 511.2793 511.3073 511.28
P21 523.2793 523.4170 523.28
P22 523.2793 523.2795 523.28
P23 523.2793 523.3793 523.29
P24 523.2793 523.3225 523.28
P25 523.2793 523.3661 523.29
P26 523.2793 523.4362 523.28
P27 10.0000 10.0531 10.01
P28 10.0000 10.0113 10.01
P29 10.0000 10.0030 10.00
P30 87.7999 88.4775 88.47
P31 190.0000 189.9983 190.00
P32 190.0000 189.9881 190.00
P33 190.0000 189.9663 190.00
P34 164.7998 164.8054 164.91
P35 200.000 165.1267 165.36
P36 194.3977 165.7695 167.19
P37 110.0000 109.9059 110.00
P38 110.0000 109.9971 107.01
P39 110.0000 109.9695 110.00
P40 511.2793 511.2794 511.36
TC 121412.5355 121426.953 121448.21

Table 11
Obtained results by different methods for 40-unit test system.

Methods Min. cost Ave. cost Max. cost

ACO [25] 121811.3700 121930.5800 122048.0600
CSO [13] 121461.6707 121936.1926 122844.5391
BBO [20] 121426.9530 121508.0325 121688.6634
h-PSO [23] 121420.9027 121509.8423 121852.4249
FA [26] 121415.0500 121416.5700 121424.5600
EMA 121412.5355 121417.1328 121426.1548
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Fig. 4. Convergence characteristic of EMA in 40 units system.
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share numbers equals zero. This possibility can exist only when
all values converge to zero. This is not possible unless the global
optimum point is zero. Therefore, the possibility of this algo-
rithm getting stuck in local optimum points is very negligible,
and the algorithm is able to searching until its last iteration.

Fig. 3 shows the Convergence characteristic of EMA with just 15
iterations in 10 program implementations. In solving ELD problem
with 15-unit system by EMA, the least cost is obtained in 50 imple-
mentations with 200 iterations, but the convergence to completely
similar answers with three digits of decimal is achieved for 2000
iterations due to the randomnature of the algorithmsoperationpro-
cess.{R.4}Howselectingoptimal values for EMA’s adjustable param-
eters is explained in [22] and theoptimal adjustable value for the15-
unit system is presented in Table 1. Adjustable parameters of EMA
play a key role in algorithm’s convergence to the optimal point in
each program implementation. In order to show the effect of EMA’s
adjustable parameters in converging to optimal point, the results of
solving ELDproblem in 15-unit system in terms of various values for
g1;max and g2;max after fifty program implementations are given in
Table 8. Obtained results in Table 8, shows that suitable value of
adjustable parameters can be guaranteed the algorithm’s conver-
gence to the optimal point in 15 units system.

System with 40 units

Total system load power is 10,500 MW. The input data for test
system are included in Table 9 [14]. Results of solving ELD problem
in a 40-unit system with valve-point effects is presented in
Table 10. {R.4 & R.5} In order to investigate the convergence pat-
tern and robustness of proposed algorithm, the program is run
for 50 times and the average of results through EMA is compared
with other methods in Table 11. As seen in Tables 10 and 11, the
minimum fuel cost obtained for the system is 121412.5355 ($/h),
which is achieved using EMA and is less than that of BBO, QPSO,
ACO, CSO, h-PSO and FA techniques by 14.42 $, 35.68 $, 398.84 $,
49 $, 8.37 $, 2.43 $ and 2.52 $ respectively. Fig. 4 depicts the con-
vergence characteristics of EMA for the studied system. Comparing
the results of applying EMA with that of the other approaches
shows the high capabilities of this algorithm in finding out the
global optimum point over other advanced techniques.

Conclusions

In this paper, the proposed exchange market algorithm has
been successfully implemented to solve both convex and noncon-
vex ELD problems considering practical constraints such as ramp
rate limits, valve point effects, and prohibited operating zone. In
tests conducted on systems with 3, 6 and 15 units; EMA has been
able to find global optimum point for each run of the program. This
convergence to the identical solution shows the robustness and
search efficiency of the proposed method. In tests conducted on a
system with 40 units with valve point effects, EMA could extract
cost of 121412.5355 ($/h) which is minimum in comparison to
the other methods such as BBO, QPSO, ACO and others. In EMA
run-time of the program is the lowest in compared with other
compared algorithms. The findings considerably reveal that the
EMAmethod has superior solution quality, convergent characteris-
tics, computational efficiency, and robustness in achieving near
global solutions compared by other methods. The results prove
the robustness and effectiveness of the EMA and shows that it
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could be used as a reliable tool for solving the optimization
problems.
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