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Research into facial expression recognition has predominantly been applied to face images at frontal view
only. Some attempts have been made to produce pose invariant facial expression classifiers. However,
most of these attempts have only considered yaw variations of up to 45�, where all of the face is visible.
Little work has been carried out to investigate the intrinsic potential of different poses for facial expres-
sion recognition. This is largely due to the databases available, which typically capture frontal view face
images only. Recent databases, BU3DFE and multi-pie, allows empirical investigation of facial expression
recognition for different viewing angles. A sequential 2 stage approach is taken for pose classification and
view dependent facial expression classification to investigate the effects of yaw variations from frontal to
profile views. Local binary patterns (LBPs) and variations of LBPs as texture descriptors are investigated.
Such features allow investigation of the influence of orientation and multi-resolution analysis for multi-
view facial expression recognition. The influence of pose on different facial expressions is investigated.
Others factors are investigated including resolution and construction of global and local feature vectors.
An appearance based approach is adopted by dividing images into sub-blocks coarsely aligned over
the face. Feature vectors contain concatenated feature histograms built from each sub-block. Multi-
class support vector machines are adopted to learn pose and pose dependent facial expression classifiers.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over the last 20 years there has been a growing interest in
improving the interaction between human and computers. As
computing becomes more ubiquitous, human computer interac-
tion will become more important. It can be argued that for a truly
effective human computer interface, computers should be able to
interact naturally with the user, in the same way that humans
interact with other humans. In human to human interaction,
Mehrabian [15] discovered that verbal cues provide 7% of the
meaning of the message; vocal cues, 38%; and facial expressions,
55%. Thus facial expression provides more information about the
interaction than the spoken words.

Ekman and Friesen [3] carried out research that indicates facial
expressions are universal and innate. Ekman observed that mem-
bers of an isolated tribe in Papua New Guinea could reliably iden-
tify the expressions of emotions in photographs. These expressions
are commonly called the basic expressions which include joy,
surprise, anger, fear, sadness and disgust.

Extracting an efficient representation of the face from images is
an important step for successful facial expression recognition. In
general, there are two common types of features used for facial
ll rights reserved.
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expression recognition: geometric based methods and appearance
based methods [30]. Geometric features contain information about
the location and shape of facial features. Appearance based fea-
tures examine the appearance change of the face (including wrin-
kles, bulges and furrows) and are extracted by image filters applied
to the face or sub regions of the face. Geometric features are sensi-
tive to noise and tracking errors. Appearance based features are
less reliant on initialization and can encode micro patterns in skin
texture that are important for facial expression recognition. But
appearance features do not generalize as well across individuals
as they encode specific appearance information. In this paper we
investigate appearance based features using large varied datasets
and machine vision learning approaches to generalize across indi-
viduals and pose.

Psychophysical studies in saccadic eye movements [17] indicate
that local appearance is important for classification. People can
recognize objects when they seek regions where discriminating
information is located. Our approach utilizes this finding by divid-
ing face images into sub-blocks and comparing the similarities be-
tween these sub-blocks. This is a proven method for accurate facial
expression recognition [4,24].

LBPs have been demonstrated to be successful as a texture
descriptor in many computer vision applications [24,2,28]. One of
the most important properties of LBPs are its tolerance to illumina-
tion change. Also the computational simplicity of the operator is a
significant advantage over other approaches. In this paper we
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investigate many variants of LBPs for multi-view facial expression
recognition. Using different variants of a LBP allows us to investi-
gate the importance of multi-resolution and orientation analysis
for feature representation.

Facial expression databases primarily capture frontal view face
images only [8,13]. Recent databases such as the BU3DFE and
multi-pie databases allow an investigation of how a change in
yaw viewing angle can effect facial expressions recognition. The
BU3DFE database consists of 3D textured face models and moti-
vates us to investigate the effects of pose change on facial expres-
sion recognition. We attempt to classify each of the prototypical
expressions at five different yaw angles (0�, 30�, 45�, 60� and
90�). Another recent database multi-pie allows us to validate these
experiments on real image data for seven different poses (0�, 15�,
30�, 45�, 60�, 75� and 90� yaw angles).

The remainder of this paper is as follows. In the next section
background work is presented. In Section 3 a discussion and com-
parison of popular facial expression databases is presented. Section
4 introduces (LBPs) and some extensions including multi-scale
local binary patterns (LBPms) and local gabor binary patterns
(LGBP). Section 5 presents experiments on the BU3DFE Dataset
and a discussion on the findings. An investigation is presented into
the effects of pose on overall facial expression recognition and
individual expressions. Section 6 attempts to validate similar
experiments on a live dataset using the recently released multi-
pie dataset. We also investigate a local versus global approach
for building feature histograms of the face. Frontal and profile face
detectors are used to extract the face region. This allows us to
investigate the tolerance of features to misalignment errors intro-
duced by the face detectors. In Section 7 conclusions are drawn.
2. Background

Frequently used databases for facial expression recognition typ-
ically capture data at near frontal view [8,13]. High recognition
rates for prototypical facial expressions have been recorded for
these databases, in constrained settings [9,4,24]. Pose is one con-
straint that has largely been unexplored. This is mainly due to a
lack of suitable data. Research in psychology has shown how pose
can effect a humans ability to perceive facial expressions. Experi-
ments using a Japanese noh mask, show that slight variations in
pitch angle changes the two dimensional location of salient facial
features which viewers misinterpret as non ridged changes due
to muscle action [14]. Psychology experiments have shown that
even a 15� yaw head pose change, results in statistically significant
changes in how humans perceive emotion [18].

It is natural to assume that frontal pose is optimal for facial
expression recognition, as at this view the whole face is visible.
However, experiments in psychology suggest the optimal view
for face recognition is 45�. While, computer vision experiments
have shown similar findings for face recognition [12], little work
has been carried out to investigate optimal view for facial expres-
sion recognition. Some work has investigated facial expression rec-
ognition for large head pose changes [25] and Pantic and Patras
[22] explored recognition of facial action units from profile face
image sequences. Wang et al. [27] show how sensitive 2D facial
expression recognition approaches are to head pose variations.
But this highlights the need to further investigate how head pose
effects facial expression classifiers. Other approaches to pose
invariant facial expression recognition, learn models of the whole
face. These approaches typically do not consider views greater than
45�, when part of the face is occluded [23,1].

A recent database BU-3DFE [29] has initiated research into
multi-view facial expression recognition. Hu et al. [6] focuses on
facial expression recognition using LBPs, Histograms of Oriented
Gradients (HOGs) and the Scale Invariant Feature Transform (SIFT)
to characterize facial expressions over five yaw rotation angles
from frontal to profile views. Other contributions of this work are
the strong performance increase when features are combined with
Locality Preserving Projection (LPP). In [7], Hu et al. utilize the geo-
metric 2D displacement of manually labeled facial points, and con-
catenate them together to form a feature vector as input to a SVM
classifier. The main conclusion of [7] is that non-frontal views are
better than frontal view for a computer to recognize facial expres-
sions. An interesting question is if this conclusion is related to the
geometric features used. In this paper, we explore this question
using an appearance based approach. Limitations in the work of
[6,7] are that features are extracted using a set of sparse manually
labeled feature points. However it is not obvious how this ap-
proach can be applied to live captured data, since some feature
points are not visible for large pose variations. We adopt a dense
uniform sampling and use a multi-class support vector machine
to learn pose and pose dependent facial expression classifiers.
3. Comparison of databases

Popular databases for facial expression recognition include the
Cohn-kanade database [8] and the JAFFE database [13]. The JAFFE
database contains 213 images of seven facial expressions (six basic
facial expressions + one neutral) posed by 10 Japanese female mod-
els. Disadvantages of this database are the small number of subjects
and the limited variability of the dataset. Subjects are all the same
gender and the same ethnicity, thus reducing the complexity of
the problem. Results of up to 95% have been reported for this data-
base [9]. The Cohn-kanade database is the most popular dataset used
for facial expression recognition. This database has sufficent sub-
jects, different genders and ethnicities. However not all subjects per-
form all the basic expressions thus person independant experiments
are not feasable as this would reduce significantly the number of
subjects for experiments. Thus most experiments on this dataset
are not person indepentent. Results of up to 93% have been achieved
using gabor features [11] and LBPms [24].

The above mentioned databases do not allow investigation of
how different view points effect facial expression recognition.
The BU3DFE database provides 3D textured models of different fa-
cial expressions, from which images can be extracted by projecting
2D images at different yaw angles. An interesting characteristic of
this database is that facial expressions are captured at different
intensities. This allows an investigation into how different intensi-
ties effect recognition accuracy. Experiments in Section 5 use
images for five different poses from the BU3DFE dataset to evaluate
the effect of pose on facial expression recognition.

Another issue with the above databases is the lack of real world
variabilities such as facial hair (beards and mustaches) and glasses.
Fig. 1 shows examples of these variations in the recent multi-pie
dataset. The top row of Fig. 1 shows examples of facial hair present
in the multi-pie dataset. According to the Vision Council of
America, About 64% of americans wear eyeglasses. Yet little research
has been carried out for facial expression analysis with significant
data for subjects wearing glasses, particulary for multi view facial
expression recognition. In experiments 100 subjects are used
where 49 subjects wore glasses in some or all of the sessions. An
open question is how glasses effect multi-view facial expression
recognition. The second column of Fig. 1 highlights some problems
introduced by glasses. Picture D shows how glasses can occlude the
shape of the eyebrows. Specular reflection can occur when subject
wear glasses (picture E). Also at some angles glasses can occule
important facial features as seen in picture F of Fig. 1. These prob-
lems provide a challanging dataset which will test the robustness
of the apporach presented in this paper to such variations. Using



Fig. 1. Example of variations present in the multi-pie database. Top row – subjects with facial hair. Bottom row – occlusion due to subjects wearing glasses.
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a similar approaches to the state of the art approaches ([11,24]) for
a more difficult database will give a better reflection of
performance.

Experiments presented in Section 5 use images from the
BU3DFE database. Images are re-projected from a 3D textured
model for different yaw angles and thus there is less variability
in the synthesized dataset than in a live captured dataset. Also
the 3D models used in the BU3DFE dataset were cropped models.
The multi-pie dataset is used in Section 6 to validate the perfor-
mance of the approach on a real dataset that addresses subject var-
iability due to glasses and multiple recording sessions.

4. Local binary patterns

The LBP operator was first introduced by Ojala et al. [19]. The
operator labels the pixels fP (P = 0, . . . ,7) of an image by thresholding
a 3 � 3 neighborhood of each pixel with the value of the center pixel
fc and considering the result as a binary number S(fp � fc). An
example of the LBP operator is shown in Fig. 2.

Sðfp � fcÞ ¼
1 if f p P fc

0 otherwise

�
ð1Þ

Then, by assigning a binomial factor 2P for each S(fp � fc) the LBP is
computed as follows:

LBP ¼
X7

p¼0

Sðfp � fcÞ2p ð2Þ

LBPs have proven to be very effective for image representation hav-
ing been applied to visual inspection, motion detection and outdoor
scene analysis. The most important properties of LBP features are
their tolerance against monotonic illumination changes and their
computational simplicity. The LBP operator detects many different
Fig. 2. The basic LBP operator. First the values in each pixel around the center pixel are th
calculated.
texture primitives (spot, line end, edge, corner), typically accumu-
lated into a histogram over a region to capture local texture
information.

Ojala et al. [20] extended this operator to use neighborhoods of
different sizes, to capture dominant features at different scales.
Notation LBP(P,R) denotes a neighborhood of P equally spaced
sampling points on a circle of radius R. Fig. 2 shows a basic LBP
where P = 8 and R = 1. Ojala et al. [20] also showed that a small
subset of the 2p patterns accounted for the majority of the texture
of images, over 90% of all patterns for LBP(8,1). These patterns,
called uniform patterns, contain at most two bitwise transitions
from 0 to 1 or vice vera for a circular binary string. For example
01100000 and 11011111 are uniform patterns. These binary pat-
terns, can be used to represent texture primitives such as spot, flat
area, edge and corner. The uniform patterns contain in total
(P � 1)P + 2 binary patterns. Where (P � 1)P are rotational pat-
terns, including edges and two non-rotational patterns, spot and
flat area. Patterns where U(x) > 2, are defined as non-uniform
patterns:

LBPu2
P;R ¼

z if UðLBPP;RÞ 6 2; LBPP;R ¼ Iz; Iz 2 I;

where jIj ¼ ðP � 1ÞP þ 1
ðP � 1ÞP þ 2 otherwise

8><
>: ð3Þ

where,

UðLBPP;RÞ ¼ Sðfp�1 � fcÞ � Sðf0 � fcÞ
�� ���� ��
þ
XP

p¼0

Sðfp � fcÞ � SðfP�1 � fcÞ
�� ���� �� ð4Þ

Uniform patterns with a U value of at most 2 are defined by super-
script u2 shown in Eq. (3). If U(x) is less than 2, the pixel is labeled
using an index function I(z). Otherwise it is labeled as non-uniform
resholded with the center pixel. A binary number is extracted and a decimal value is
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and assigned a value of (P � 1)P + 2. I(z) the indexing function, con-
tains (P � 1)P + 2 indices to assign to each uniform pattern. Using
uniform patterns for a neighborhood where P = 8, reduces the histo-
gram from 256 to 59 bins (58 bins for uniform patterns and 1 bin for
non-uniform patterns). Fig. 3 shows the LBPu2 maps for each of the
basic facial expressions from the multi-pie database. Experiments
from [24] show that the performance of standard LBPs are similar
to that of LBPu2 for frontal facial expression recognition.

4.1. Rotation invariant LBP

Other extensions of the LBP operator used in this paper are rota-
tion invariant LBP (LBPri) and rotation invariant uniform LBP
(LBPriu2) [20]. To remove the effect of rotation i.e. to assign a unique
identifier to each rotationally invariant LBP:

LBPri
P;R ¼ minP�1

i¼0 RORðLBPP;R; iÞ
� �

ð5Þ

Where ROR(x, i) performs a circular bitwise right shift on the P-bit
number x, i times. This operation further reduces the histogram,
e.g. P = 8 LBPri has 36 unique rotational invariant patterns. The per-
formance of LBPri features varies. Some patterns sustain rotation
well, while other patterns do not and thus confuse the analysis
[20]. The concept of uniform patterns can be extended to this fea-
ture, also reducing the number of bins from 36 to 9. This provides
uniform rotational invariant local binary patterns LBPriu2.

4.2. Magnitude LBP

To further characterize the image information, the LBP operator
is applied to the gradient magnitude image to produce a (LBPgm)
image. To produce the gradient magnitude image, the image gradi-
ent for both x and y directions must be calculated. This can be
achieved by using a first order derivative like the sobel operator.
The sobel operator calculates the gradient of the image intensity
at each point. The resulting map shows how smooth or sudden
the image intensity changes at that point. The operator uses two
3 � 3 kernels which are convolved with the original image to cal-
culate approximations of the derivatives:
Fig. 3. Visualization of LBPu2 images for the six different facial expressions. Top row left
(white – dark spot, black – bright spot, gray – non-uniform patterns and other colors re
references to color in this figure legend, the reader is referred to the web version of thi
Ix ¼
�1 �2 �1
0 0 0
þ1 þ2 þ1

2
64

3
75 � I and Iy ¼

þ1 0 �1
þ2 0 �2
þ1 0 �1

2
64

3
75 � I ð6Þ

Where ⁄ is the convolution operation. I is the source image, Ix and Iy

are the two images where each point contains the horizontal and
vertical derivative approximations. For each point the gradient
approximations can be formulated to give the gradient magnitude
image:

Igm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2

x þ I2
y

q
ð7Þ

LBPu2 is applied to Igm to create the LBPgm feature map. This ap-
proach is a derivative based LBP which encodes the magnitude of lo-
cal variation. Similar features have been successfully applied to
frontal facial expressions recognition [9]. Fig. 4 shows the steps ta-
ken to produce a LBPgm map.

Over a region, LBPs are accumulated in a histogram and the con-
catenation of these neighborhoods are then used as a descriptor.
This characterizes the spatial structure of the local image texture.

All features mentioned above can be concatenation into a single
feature vector HG for image LBPxxx, with n sub-blocks:

HGðLBPxxxÞ ¼ ðH0;H1; . . . ;Hn�1Þ: ð8Þ

where the histogram of the rth sub-block of LBPxxx is computed by:

Hr ¼ ðhr;0; hr;1; . . . ;hr;u�1Þ ð9Þ

where u is the total number of bins for feature LBPxxx and h is de-
fined as:

hi ¼
X
x;y

I LBPxxxðx; y ¼ iÞ
� �

; i ¼ 0;1; . . . ;u� 1 ð10Þ

where i is the ith bin of histogram h, hi is the number of patterns in
the image with LBPxxx pattern i and

IðAÞ ¼
1 if A is true
0 otherwise

�
ð11Þ
to right, Joy, Surprise and Fear. Bottom row left to right, Sadness, Disgust and Anger.
present uniform patterns for different rotational angles). (For interpretation of the

s article.)



Fig. 4. (A) Original image, (B) horizontal gradient image, (C) vertical gradient image, (D) gradient magnitude image and (E) LBPu2 map of gradient magnitude image.
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4.3. Multi-scale LBP

Multi resolution analysis can be achieved by using different val-
ues of P and R. The LBPms has been proven to outperform standard
LBPs for face recognition [2] and frontal view facial expression rec-
ognition [24]. The first parameter for LBPms to be considered is the
neighborhood size, P. A large neighborhood increases the size of
the feature histogram and increases the computational cost of each
LBP image, while a small neighborhood could result in loss of
important information. The second parameter considered is the
number of multi-scale operators. A small number of operators
might not provide sufficient information for accurate facial expres-
sion recognition, where as a large radius operator can decreases
the number of uniform patterns which can effect the accuracy of
this approach. Here LBPms is LBPu2(8,R), where R = (1, . . . ,8) is ap-
plied to face images to extract the LBPms histogram.

Liao et al. [10] introduces a different approach to multi scale
analysis using LBPs. This approach replaces the comparison be-
tween single pixels to average gray-values of subregions. Liao
et al. argue that this approach is more robust to noise, however
it also loses sensitivity and can be distorted by illumination differ-
ences. LBPms as defined below is more robust because the LBP are
calculated for single pixels.

Features calculated over over a local 3 � 3 area cannot encode
the larger structures of the face. Thus LBPms is more robust, it en-
codes the micro structures of the face but also the macro structures
which provide a more extensive description than the basic LBP
operator. Fig. 5 shows the different LBPu2 that contribute to LBPms.
This figure shows how for smaller R, LBPu2(8,R) captures more de-
tail at the micro scale and for larger values of R a more structural
representation of the face.
Fig. 5. Different LBPu2 maps used for LBPms. Top row left to right, original
LBPms is formulated in the same way as other features in
Sections 4.1 and 4.2. However the final vector will concatenate
histograms from each sub-block from eight different LBPu2 maps.

4.4. Local gabor binary patterns

Gabor wavelets have been shown to be suitable for image
decomposition and representation when the task is the derivation
of local and discriminative features. Gabor filters have been
successfully applied to facial expression recognition [11]. Gabor
wavelet kernels are similar to the receptive field profiles of the
mammalian cortical simple cells. These kernels are popular for
vision processing as they display desirable characteristics of spatial
locality and orientation selectivity.

The combination of gabor and LBP further enhances the power
of the spatial histogram, and exploits multi-resolution and multi-
orientation gabor decomposition. LGBP were initially used for face
recognition [31]. LGBP are impressively insensitive to appearance
variations due to lighting and misalignment [31].

To extract LGBP, the images are convolved with the gabor filters
as follows:

Gðl; mÞ ¼ Iðx; yÞ � wl;mðzÞ ð12Þ

where:

wl;mðzÞ ¼
kl;m
�� ��2

r2 e
� kl;mk k2

zk k2

2r2 eikl;mz � e
�r2

2

h i
ð13Þ

kl;m ¼ kvei/l ; km ¼ 2�
mþ2

2 p; /l�lp
8

ð14Þ

where l and m define the orientation and scale of the gabor filters,
z = (x,y) and k�k denotes the norm operator. Five scales are used
face image and LBPu2(8, 1. . .4) and on the bottom row LBPu2(8, 5. . .8).
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m 2 {0, . . . ,4} and eight orientations l 2 {0, . . . ,7}. These gabor
kernels form a bank of 40 different filters.

In order to reduce the dimension of the LGBP feature vector,
LBPu2 are applied to the gabor maps. The LGBP feature vector is
formed from 40 gabor magnitude maps, where each map is divided
into 64 sub-blocks. The feature vector for the LGBP feature is
created by concatenating the histograms from each sub-block
(similar to Eq. (8)) in each of the gabor magnitude maps. Table 1
summaries the features formulated in this section.
4.5. Feature extraction

Psychophysical studies in saccadic eye movements [17] indicate
that local appearance is important for classification. People can
recognize objects when they seek regions where discriminating
information is located. LBP features computed over the whole face
represent only the micro patterns without any information about
their locations. Keeping the information about the spatial relation-
ship is very important for facial expression recognition. The
approach presented in this paper utilizes this finding by dividing
face images into sub blocks and comparing the similarities
between these sub-blocks. The face image is divided into 64
sub-blocks for feature extraction. This is a proven method for accu-
rate facial expression recognition [4,24]. This representation
captures local texture and global shape of face images. Fig. 6 shows
how the face images are partitioned by a 8 � 8 grid into 64
sub-blocks. Then a histogram of LBP features are accumulated
and each histogram is concatenated to form a feature vector.
5. BU3DFE dataset experiments

Most facial expression databases available have face images of
frontal view only. The BU3DFE database [29] provides 3D textured
models of six prototypical facial expressions, from which the ef-
fects of pose can be investigated by extracting projected 2D images
at different yaw angles. In the BU3DFE database, there are 100
Table 1
Summary of different features used in Section 5.

Feature Description

LBPriu2 Uniform rotation invariant local binary patterns
LBPri Rotation invariant local binary patterns
LBP gm Uniform local binary patterns obtained from gradient magnitude image
LBPu2 Standard local uniform binary patterns with a neighborhood of 8 pixels and

a radius of 1 pixel
LBPms Multi-scale local binary patterns where radius varies from 1 to 8 pixels

LGBP Local binary patterns are extracted from gabor images, where 40 different
gabor images are composed from applying gabor kernels at different scales
and orientations

Fig. 6. Feature vectors are built by concatenating fea
subjects, including undergraduates, graduates and faculty from
the State University of New York Binghamton. Age ranges from
18 years to 70 years old. The database consists of 60% female and
40% male with a variety of ethnicity (White, Black, East-Asian,
Middle-east Asian, Indian, and Hispanic Latino). Subjects perform
the facial expressions in front of a 3D face scanner. Every subject
performs each of the six prototypical expressions as well as neu-
tral. Each expression is captured at four different intensity levels
(see Fig. 8). Other popular databases do not include different inten-
sities for facial expressions (JAFFE [13] and Cohn-Kanade [8]). This
data allows an investigation of how the approach presented in this
paper is affected by different intensities of facial expressions.
When using the BU3DFE database, images are re-projected from
a 3D textured model in OpenGL, resulting in five different poses
corresponding to 0�, 30�, 45�, 60� and 90� yaw angles (see Fig. 7).
Fig. 7 shows how the face image is divided into sub-blocks and a
feature histogram is created from each sub-block. The final feature
vector is a result of concationating the histrograms from each sub-
block together.

5.1. Experiments

Pose variation typically occurs in human to human interaction
by changes in yaw angle. In this section experiments are carried
out to classify each of the prototypical expressions at five different
yaw angles, this is the same data used in [7] allowing comparison
of results. All results on the BU3DFE database are presented using
10-fold cross validation to test the generalization performance of
this approach. Training sets of 90 subjects and test sets of 10 sub-
jects were randomly selected, so all expressions for each subject
belong in the same group. In total 48,000 images are used for
experiments in this section. In an attempt to classify pose and
expression, a sequential approach is used. First a pose classifier is
trained on five different views, secondly a view dependent facial
expression classifier is trained. Experiments for pose estimation
achieve 100% success rate over the five yaw angles for all features.
This is due to the difference in yaw angle being significant
Properties Dimensions

Features offer rotation invariance, but poor descriptive abilities 640
Feature offers rotation invariance, but poor descriptive abilities 2304
Features encode the magnitude of local variation 3776
Offers illumination invariance and is computationally efficient 3776

Multi-scale analysis can encode the micro features of the face
plus features at the structural level

30,208

Gabor filters offer strong illumination invariance as well as
powerful descriptive features. However, the feature vector has
high dimensionality

151,040

ture histograms from each sub-block of the grid.



Fig. 7. Data from BU3DFE database showing the different yaw angles used for each facial expression. The textured 3D models were re-projecting at different yaw angles to
create the 2D images.
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(between 15� and 30�) and the relatively clean nature of the syn-
thetic data. In Section 6 we address this issue by performing simil-
iar experiments using live data. However, the aim of these
experiments are primarily to look at the effect of pose and features
type on recognition accuracy.
5.1.1. Effects of different features and resolution
Table 2 shows the overall recognition results for the features

formulated in Section 4 over four different resolutions. Bold values
in tables throughout this paper, highlight the highest value for a
particular column. Interestingly, there is no significant perfor-
mance increase for higher resolutions, as in general it is the faces
micro features which represent deformation. Less than 3% differ-
ence in performance for features over the four different resolou-
tions. This shows the power of LBP features to catpure important
information for facial expression recognition at low resoloutions.
Table 2
Overall performance of features for four different resolutions.

32 � 44 44 � 62 64 � 88 80 � 110

LBPriu2 47.28 46.12 46.31 46.32
LBPri 47.53 46.28 45.93 46.56
LBPgm 52.91 51.49 53.2 53.29
LBPu2 58.44 57.33 57.12 56.24
LBPms 62.41 62.9 64.98 65.02
LGBP 66.76 67.84 67.96 66.79
Features LBPri and LPBriu2 perform poorly on facial expressions.
This is most likely because the histograms are not descriptive
enough to disambiguate facial expressions correctly. Interestingly,
over all resolutions there is less than 1% difference in performance
between these features. Thus proving that the uniform patterns for
features LPBriu2 provide as much discrimination ability as LBPri

features.
Another interesting observation is LBPgm performed worse than

LBPu2. Thus the derivative based LBPgm, which encodes velocity of lo-
cal variation is outperformed by the standard LBPu2 on raw image
data for classifying facial expressions. LBPms outperforms standard
LBPu2 by up to 8%, utilizing the multi scale analysis. This result in
interesting as it highlights the importance of multi-scale analysis
for facial expression recognition. LGBP outperforms all other
features because of multi-resolution analysis combined with
multi-orientation analysis. Although LBPms combines multi-
resolution analysis with multi-orientation analysis, the gabor
representation proves more powerful as a texture descripture. How-
ever the LGBP representation is more computationally expensive.

Tables 3–8 show the confusion matrices for features formulated
in Section 4. Some general trends can be observed that are com-
mon to all features. The best performing expression is surprise
followed by joy. The high recognition rate of expression surprise
and joy can be attributed to the large amount of deformation of
the face for these expressions. Fear consistently has the lowest rec-
ognition rate. A contributing factor to the poor performance of the
fear expression is its confusion with the joy expression. Similar



Table 4
Confusion matrix for LBPms.

Feature Anger Disgust Fear Joy Sadness Surprise

Anger 55.31 15.31 4.94 1.31 19.87 3.25
Disgust 12 63.31 7.06 4.50 7.56 5.56
Fear 6.50 9.25 49 12.19 11.06 12
Joy 3.37 6.25 9.31 76.94 1.06 3.06
Sadness 15.75 7.37 6.31 3.13 63.38 4.06
Surprise 2.81 5.63 3.38 2.50 3.50 82.19

Table 5
Confusion matrix for LBPu2.

Feature Anger Disgust Fear Joy Sadness Surprise

Anger 30.12 16.56 1.81 8.93 27.50 15.06
Disgust 5.87 55.75 2.37 13.43 8.68 13.87
Fear 3.75 10.25 18.50 30.56 12.50 24.43
Joy 2.37 2.06 1.87 84.31 1.56 7.81
Sadness 10.25 7.00 2.37 6.25 60.56 13.56
Surprise 1.75 2.43 0.62 3.50 3.50 88.18

Table 6
Confusion matrix for LBPgm.

Feature Anger Disgust Fear Joy Sadness Surprise

Anger 30.31 12.50 2.12 10.93 29.93 14.18
Disgust 5.81 39.31 3.62 19.87 11.00 20.37
Fear 4.75 9.25 16.62 28.25 13.81 27.31
Joy 2.3125 1.93 2.75 81.31 2.62 9.06
Sadness 8.06 4.56 1.93 6.31 64.50 14.62
Surprise 1.68 1.81 1.43 3.12 4.25 87.68

Table 7
Confusion matrix for LBPri.

Feature Anger Disgust Fear Joy Sadness Surprise

Anger 23.44 11.81 3.81 11.06 31.62 18.25
Disgust 9.31 29.87 3.68 23.62 11.68 21.81
Fear 5.25 8.68 13.18 34.62 16.43 21.81
Joy 2.87 4.50 3.31 73.87 3.18 12.25
Sadness 8.75 3.93 5.56 10.12 58.12 13.50
Surprise 2.62 3.18 1.62 7.06 4.62 80.87

Table 8
Confusion matrix for LBPriu2.

Feature Anger Disgust Fear Joy Sadness Surprise

Anger 21.31 13.12 4.06 11.00 31.87 18.62
Disgust 9.00 30.18 3.93 23.43 11.31 22.12
Fear 4.87 9.06 13.37 34.87 15.87 21.93
Joy 2.43 3.93 4.12 73.81 3.50 12.18
Sadness 9.12 4.00 5.18 9.62 58.56 13.50
Surprise 2.68 3.75 1.43 6.87 4.56 80.68

Fig. 8. Examples of the different intensities for each facial expression in the BU3DFE
database.

Table 3
Confusion matrix for LGBP.

Feature Anger Disgust Fear Joy Sadness Surprise

Anger 63.06 8.81 3.50 1.88 19.62 3.13
Disgust 14.75 63.25 6.63 5.75 6.44 3.19
Fear 6.12 9.38 50.94 14.06 10.19 9.31
Joy 2.56 4.81 10.37 79 1.69 1.56
Sadness 17.56 2.81 5.88 1.44 68.13 4.19
Surprise 1.31 4.69 5.50 1.56 3.56 83.37

Fig. 9. ROC curves for LGBP feature.
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deformation around the mouth occurs for both expressions. An-
other common result for all features is the high confusion between
the expressions anger and sadness. These two expressions have the
least amount of facial movement and thus are difficult to distin-
guish from each other. From Fig. 8, it can been seen how difficult
it is to distinguish the expressions sadness and anger particularly
for the lower intensities. This is a common problem in facial
expression recognition as both expression are subtle and hard to
distinguish. Figs. 9–14 show the ROC curves for the different fea-
tures formulated in Section 5.1. The same trends as observed from
the confusion matrices are evident from the ROC curves. Surprise
and joy are consistently the best performing expressions, while fear
performs poorest.



Fig. 10. ROC curves for LBPms feature.

Fig. 11. ROC curves for LBPu2 feature.

Fig. 12. ROC curves for LBPgm feature.

Fig. 13. ROC curves for LBPri feature.

Fig. 14. ROC curves for LBPriu2 feature.
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Tables 7 and 8 for features LBPri and LBPriu2 have very similar
results. The performance of expressions surprise and joy are high,
around 74% and 81% respectively. These results are impressive
given the reduced capacity of the histograms. However results
for expressions anger, disgust and fear are very poor, with particular
poor results (13%) for the fear expression.

Focusing on Tables 7 and 5, the influence of orientation analysis
for facial expression recognition can be quantified. From Table 5,
feature LBPu2 outperforms feature LBPri by about 10%. Looking at
the confusion matrix for both features, it can be observed that
the influence of orientation analysis effects all expression with
the largest perforance increase for expression disgust. This could
be attributed to the importance of the orientation of the eyebrows
for the disgust expression. The recognition rate for sadness only in-
creases by about 5%. This indicates that the sadness expression does
not rely on orientation analysis as much as other expressions.

Tables 3 and 4 show confusion matrices for the best performing
features, LGBP and LBPms respectively. LGBP outperform LBPms for
all expressions except disgust, where results are similar. The largest
confusion occurs between expressions anger and sadness for both
sets of features. Confusion for expressions disgust and anger is also
evident in both Tables 3 and 4.
5.1.2. Effects of pose
In the following section an investigate of which pose is optimal

for facial expression recognition and how pose variations effects
particular facial expressions is presented. Fig. 15 shows the overall
recognition rate for each yaw angle for each feature and resolution.



Fig. 15. Recognition rate of view independent classifiers for all expressions, for all features presented in Section 4.
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Frontal pose is the optimal view over all resolutions for features
LGBP, LBPms and LBPu2. These features are the 3 best performing fea-
tures for facial expression classification (see Table 2). However,
from Fig. 15, it is also evident that performance does not decrease
significantly due to yaw variation. In particular LGBP achieved
impressive results for large yaw angles. The performance for LGBP
from frontal to profile is relatively uniform. Where as LBPms perfor-
mance drops significantly for yaw angles 60� and 90�. In general
this trend is also evident for features LBPu2 and LBPgm. Fig. 15 also
shows that weaker features, in particular LBPri and LBPriu2, some-
times perform better at non-frontal views. But even in this sce-
nario, the optimal yaw angle varies. This provides evidence that
selection of features, plays an important role in answering the
question which view is optimal for facial expression recognition.
Weaker features might not be efficient enough to utilize the dis-
criminatory information available at frontal pose.

Another important question is how does yaw variation effect
individual expression recognition performance. Fig. 16 shows the
performance of each expression over five yaw angles for LBPu2,
LBPms and LGBP over four resolutions. It does not follow that
because frontal view is optimal for overall expression recognition,
that individual expressions are optimal at frontal view. This is con-
firmed by Fig. 16. Sadness performs remarkably well at profile view
(yaw 90) over all three features, often outperforming other views.
For the LGBP feature over all four resolutions, sadness is consis-
tently classified best at non-frontal view. This is most likely due
to the lip movement which protrudes from the face for the expres-
sion and is more evident at large yaw angles. Anger is also classified
best at non-frontal view for LGBP but not for other features. An-
other interesting finding is the performance drop of the expression
joy as the yaw angles increases for the LGBP feature. This suggests
that important discriminatory information is lost as the yaw angle
increases for the joy expression. This finding is only evident for
LGBP and not the other features, suggesting that complementary
information between different features exists. Also, from these re-
sults it is clear that LBPu2 suffers because of its inability to classify
the expressions of anger and fear particularly at large yaw angles.
For features LBP and LBPms, performance generally degrades with
larger yaw angles with the exception of the sadness expression.
This is also true for LGBP, with the exception of anger, which is



Fig. 16. Performance of individual expressions for each yaw angle.
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recognized best at non-frontal view. This suggests that LGBP is
exploiting different multi-orientated filters at different angles.
Observations in this section are drawn from Fig. 16 which appear
for the 4 different resolutions.

5.2. Discussion

Previous studies employing geometric features on the BU3DFE
database are [6,7,32]. Hu et al. [7] presented evidence that
non-frontal views are best for automatic recognition of facial
expressions over varying yaw angles. Geometric points around
the salient features of the face are used. The 2D displacement of
each feature point for a expression against the same point for the
neutral expression of that subject is calculated and normalized.
Utilizing an SVM for classification [7] suggested that 45� yaw angle
performed the best. Hu et al. [6] also report results for similar
experiments. Features are extracted from an area around the fea-
ture points using SIFT, HoG and LBP features. Results show optimal
performance at 30�. Zheng et al. [32] using the same experiments
as above using similar features to [6] show best performance at
60�. The main conclusion of [7,6,32] is that non-frontal views are
better than frontal view for a computer to recognize facial expres-
sions. However, as can be seen, Fig. 15 shows conflicting results.
This could be attributed to the different type of features used.
The disparity between results could indicate that features play an
important part in answering the question of which view is optimal.

Results using LGBP show that actual performance is relatively
consistent across yaw angles. Also from other research mentioned
in this section the performance difference across yaw angles is
marginable [7,6,32]. Head pose recognition achieved 100% in
experiments. The problem of head pose classification is simplified
by the cropped 3D models and the large interval in yaw angles (up
to 30�, see Fig. 7).

The BU3DFE database captured each facial expression at four
different intensities. Other popular facial expression databases do
not include such variety. This allows analysis of how intensity
effects the performance of the methods. Table 9 shows the perfor-
mance of features for the different intensities of expressions. As



Table 9
Performance of features for four different intensities.

Features Intensity

1 2 3 4

LBPriu2 38.33 46.67 48.50 51.79
LBPri 38.96 46.54 48.71 52.04
LBPgm 44.58 53.21 56.75 58.63
LBPu2 46.08 57.46 58.75 62.67
LBPms 53.92 64.46 69.25 72.46
LGBP 56.83 68.63 73.04 77.67
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expected, higher intensity leads to higher recognition rates. LGBP
performs consistently best with intensity level 4 achieving an
average recognition rate of 77.67%. Recognition rates of over 90%
have been achieved using similiar approaches to this paper for
the Cohn-Kanade database. But these results are for exaggerated
expressions only. This database offers a more realistic evaluation
because of the challange of facial expression recognition at differ-
ent intenisties.

Another interesting observation from results presented in
Section 5.1.1 is the performance of uniform patterns for facial
expression recognition. The use of uniform patterns has been
justified by the results. Results show no significant different
between features LBPri and LBPriu2. Similar observations were found
for LBP and LBPu2 for frontal facial expression recognition [24]. The
advantage of using uniform patterns is the reduction in the size of
the feature histogram without significant loses of accuracy.

It is evident from Fig. 16 that complimentary information is
present in both LGBP and LBPms due to different performance at dif-
ferent yaw angles. Combining the feature vectors together as input
to an SVM, allows us to capture the performance of both features.
An overall performance of 71.1% was achieved for a combined fea-
ture vector of LGBP and LBPms and gives a performance increase of
3% over the LGBP features. Table 10 shows a comparison of geomet-
ric and appearance feature based approaches. All approaches use
an SVM as the classifier and are tested on similiar yaw variations.
However the geometric based method [7] requires manually la-
beled feature points of the mouth, eyes and eyebrows.

The best performing features were LGBP and LBPms on the
BU3DFE dataset. These features performed best at frontal view.
However, as can be seen from Fig. 15 performance is relatively con-
sistent across pose. Observing the overall results in Table 2 higher
recognition results correspond to the complexity of feature histo-
grams. In the experiments presented in this section synthetic data
was used. The face models were cropped (as can be seen in Fig. 7)
and because images are re-projected from a 3D textured model,
there is less variability in the synthesized dataset. The next section
introduces experiments on a live dataset.
6. Multi-pie dataset experiments

This section is going to build on the previous section by apply-
ing the best features and validating results on real data. To do this
we will use the multi-pie database to evaluate the performance of
the approach presented in this paper. The multi-pie database [5]
Table 10
Comparison of features methods.

Feature method Results

LBPms 65.02
Geometric based [7] 66.5
LGBP 67.96
LGBP/LBPms 71.10
contains images from 337 subjects. Subjects are predominantly
male (70%). 60% of subjects were European Americans, 35% Asian
and 3% Afican Americans. The average age of the subjects was 28
years old. Data was captured during four sessions over a six month
period. In each session, subjects were instructed to display various
facial expressions (neutral, smile, surprise, squint, disgust and
scream, see Fig. 17). Before each session subjects were shown
examples of the particular facial expression from the Cohn-Kanade
database [8]. Thirteen cameras were located at head height in 15�
intervals. 100 subjects were selected so all subjects were present at
all four recording sessions.

6.1. Face detection

The Viola and Jones face detector [26] is used to extract the face
region for all poses. This is available from the Opencv library [21].
The face detector uses boosted cascades of harr-like features. The
frontal detector was used for poses 0�, 15� and 30�. The profile cas-
cade was used for poses 45�, 60�, 75� and 90�. The performance of
the frontal detector was superior to the profile detector. Some false
positives and missed detections were observed for the profile
detector mainly at 75� and 90�. Most of the missed detection occur
when part of the face is occluded by facial hair. Images that were
incorrectly classified were corrected and labeled manually. False
positives were removed manually. Fig. 18 shows the results of
using the opencv frontal and profile detectors on the multi-pie
database.

6.2. Features

Best practices are taken from experiments presented in Section
4. The best performing features were LGBP and LBPms. Only a differ-
ence of around 3% in recognition rate was observed with LGBP (the
better performing feature). These features are applied to the multi-
pie dataset. Experiments presented in Section 5 used 3D models
which were centered so faces images were perfectly aligned. In this
section a more automated approach is presented. However, the
inherent noise in the face detector will test the ability of these
Fig. 17. Example of facial expressions from multi-pie database. Top row – neutral
and smile. Middle row – surprise and squint. Bottom row – disgust and scream.



Fig. 18. Opencv frontal and profile face detector results. The frontal face detector was used for poses 0�, 15� and 30�, while the profile detector was used for poses 45�, 60�, 75�
and 90�.
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features to discriminate facial expressions in the presence of mis-
alignment errors.
6.3. Experiments

For the experiments presented in this section, seven different
poses (0�, 15�, 30�, 45�, 60�, 75� and 90� yaw angles), are consid-
ered (see Fig. 18). 100 subjects were selected so that all subjects
were present at all four sessions and thus for each subject all
expressions were available. In total 4200 images were used for
experiments. Images were resized to 320 � 240, where the typical
face detection size was around 100 � 100 pixels. To test the algo-
rithms generalization performance, all experiments in the follow-
ing sections are based on 10-fold cross validation. Training and
test sets were divided 80–20%. This 20% testing data is taken from
subjects that were not present in the training data. This ensures
that any features extracted for classification provide person inde-
pendent facial expression recognition. Features are extracted using
a grid with 64 sub-blocks (similiar to Fig. 6).
Fig. 19. Examples of variations present in the multi-pie database. The area returned
by the face detector is subject dependent and does not always contain background
features.
6.3.1. Head pose and expression classification
To classify pose and expression, a cascade approach is adopted

where the classification task is divided into two steps. First, a pose
classifier is trained over seven views from frontal to profile view in
15� increments. Secondly, a pose dependent expression classifier is
trained to classify expressions. When training the pose classifiers
all expressions for each pose are including in the training sets. Thus
the difference between expressions is regarded as within-class var-
iance. Expression classifiers are trained for each pose. In total 42
expression classifiers are trained (seven different poses with six
pose specific expression classifiers at each pose). A multi-class
SVM is used for final classification (one against all approach).

From Fig. 18 it can been seen that at some poses part of the
background, including parts of the chair used in the multi-pie
recording is present in the area returned by the face detectors. This
is most evident at frontal view. However, Fig. 19 shows other sub-
jects where the background is different due to clothes, hair and
position of subjects head. Thus, enough variability exists in the



Table 11
Recognition rates for head pose and overall facial expression
recognition on multi-pie database.

Features Pose Expressions

LBPms 99.13 73.98
LGBP 99.45 80.17

Table 12
Facial expression recognition results for each yaw angle.

0� 15� 30� 45� 60� 75� 90�

LBPms 76.7 80.5 70.3 69 78.6 63 73.8
LGBP 82.1 87.3 75.6 77.8 85 71 75.9

Table 13
Confusion matrix for facial expressions over all yaw angles for LBPms features.

Neu Smi Sur Squ Dis Scr

Neu 73.92 11.57 2.98 8.91 3.41 0.66
Smi 9.21 78.04 4.04 4.79 3.62 1.74
Sur 3.41 3.40 81.01 2.54 1.89 9.21
Squ 9.28 8.84 2.90 60.11 18.71 1.60
Dis 5.51 4.85 1.74 14.87 69.21 5.27
Scr 0.15 1.15 12.95 0.94 3.48 81.57

Table 14
Confusion matrix for facial expressions over all yaw angles for LGBP features.

Neu Smi Sur Squ Dis Scr

Neu 80.55 8.02 2.75 6.87 2.67 0.58
Smi 7.54 82.74 2.61 5.07 2.62 0.87
Sur 1.03 3.55 88.67 0.87 1.81 5.52
Squ 8.61 7.45 1.37 66.26 16.89 0.87
Dis 4.12 3.55 1.02 14.70 74.81 3.25
Scr 0.14 0.94 8.52 0.36 2.18 88

Fig. 21. ROC curves for LBPms feature.
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dataset to suggest that background features are not a contributing
factor to training the head pose classifiers. Given that view specific
classifiers were trained, the background is the same for all expres-
sion and will not effect the training of facial expression classifiers.
6.3.2. Results
Table 11 shows the overall results for head pose and facial expres-

sion classification. As expected, LGBP outperformed LBPms for both
head pose and facial expressions. Both features achieved head pose
Fig. 20. ROC curves for LGBP feature.

Fig. 22. Examples of different grids applied to the face region to extract histograms
of features.
recognition results of over 99% averaged over seven poses. LGBP
significantly outperforms LBPms by over 6% for facial expressions



Table 15
Table showing results for pose estimation averaged for all poses for different sampling grids. Where grid 1 is a global histogram and grid 8 being a 8 � 8 grid over the face (see
Fig. 22).

Grid size

1 2 3 4 5 6 7 8

Multi-scale LBP 96.94 98.64 99.05 99.30 99.03 99.01 99.09 99.13
LGBP 98.65 99.17 99.51 99.45 99.60 99.52 99.48 99.45
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over all poses. This performance difference is further evidence for the
capabilities of the multi-orientation multi-resoloution analysis
present in the LGBP features. Table 12 shows results of both features
for each head pose. Surprisingly, results at angles 15� and 60� outper-
form frontal view. View 15� achieves the best results for both
features. Another interesting finding for both features is profile
views outperform other views, where more of the face is visable.
Given some of the problems with occlusion for profile view
(discussed in the Section 6.5), this result is interesting.

Tables 13 and 14 show the confusion matrices for LBPms and
LGBP respectively. In general, the same patterns can be seen for
both sets of features. The most confusion occurs between expres-
sions squint and disgust, due to the expressions having similar
deformation around the eyes. In fact, the squint expression has
some confusion with other expressions including neutral and smile.
This is most likely due to the fact that squint is a relatively subtle
expression and thus is hard to disambiguate between other expres-
sions. Subtle expressions are hard to distinguish because of the
variability across subjects. More confusion is present between
expressions scream and surprise, this can be attributed to the sim-
ilar deformation of the mouth. Surprise usually is associated with
raised eyebrows, but for some subjects in this database no notice-
able deformation occurs around the eyebrows. This could contrib-
ute to the confusion. Figs. 20 and 21 show the ROC curves for LBPms

and LGBP respectively. The best performing expressions for both
features are surprise and scream. These expressions have lots of
deformation and thus are easier to distinguish than more subtle
Table 16
Facial expression recognition results for LBPms features on pose dependent data, Rows
correspond to different sampling grids and columns correspond to different poses.

Grid size Pose Avg.

0 15 30 45 60 75 90

1 57.58 60.75 54.17 50.42 61.25 52.75 63.00 57.13
2 66.58 73.75 65.08 67.08 72.25 61.17 73.92 68.55
3 73.33 76.67 68.50 67.67 77.50 66.25 75.33 72.18
4 73.00 77.83 71.42 70.00 78.67 66.67 74.83 73.20
5 73.75 79.00 68.42 70.75 76.58 65.58 76.33 72.92
6 76.37 79.45 69.62 71.62 77.37 68.53 74.78 73.26
7 76.42 79.92 68.33 69.08 78.33 66.25 73.33 73.09
8 76.87 80.90 71.83 69.70 79.78 64.20 73.75 73.86

Table 17
Facial expression recognition results for LGBP features on pose dependent data, rows
correspond to different sampling grids and columns correspond to different poses.

Grid size Pose Avg.

0 15 30 45 60 75 90

1 60.75 63.50 57.50 51.58 61.83 51.50 66.50 59.02
2 72.25 76.42 69.83 64.58 73.92 62.00 74.25 70.46
3 80.08 82.08 73.00 72.58 80.92 68.67 77.75 76.44
4 78.83 82.08 75.92 76.83 84.92 71.92 79.58 78.58
5 81.33 83.33 76.67 79.33 87.17 72.17 75.33 79.33
6 84.00 85.50 75.25 80.33 87.58 74.00 76.17 80.40
7 82.08 85.67 76.33 78.83 89.08 73.08 76.50 80.22
8 82.58 87.85 76.58 78.95 85.00 72.50 77.92 80.19
expressions. Recognition results for the squint expression are poor
for both features due to the subtle nature of the expression.

6.4. Local versus global feature representation

To investigate the arbitrary nature of using 8 � 8 sub regions,
different grid sizes are tested from a global representation
(1 � 1) up to a 64 (8 � 8) sub-block representation. Having a large
number of sub blocks can degrade the accuracy in the present of
localization errors and also increases the computation cost. A small
number of sub-blocks increase the loss of spatial information. For
the experiments in this section, eight different grids are applied
to sample feature histograms. Fig. 22 shows these grids for three
poses.

Table 15 shows the overall performance of LBPms and LGBP for
head pose recognition over the seven different yaw angles. The
Fig. 23. Performance of individual facial expressions for different yaw angles for
features LBPms and LGBP.
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performance of both features is consistently over 99% for most grid
sizes. These results indicate the complexity of head pose estima-
tion is significantly reduced by only classifying head pose at 15�
intervals. Also the results show that there is no significant perfor-
mance difference for a global or a local histogram approach. This
reflects the nature of the problem as head pose estimation unlike
facial expression reconigtion does not discriminate based on local
variations of the face but at a structural level.

Tables 16 and 17 show the results for each yaw variation for the
different grids used to extract the feature vectors. In general the
trend is the finer the grid the more accurate the results. The lack
of spatial information for the global approach reduces the accu-
racy. For grid sizes 1–3 the difference between LBPms and LGBP is
insignificant but as the number of sub-blocks increases the perfor-
mance of LGBP is up to 7% greater. For both features the best per-
formance was for a grid size of six (36 different sub-blocks). In
general for both features, head poses 15� and 60� perform the best.
The higest results for any particular yaw angle was achieved at 60�
for grid size 7, with a very high recognition rate of over 89% for the
LGBP feature.

Fig. 23 shows the individual performance of each facial expres-
sion for each yaw angle. Comparing the features LBPms and LGBP,
Fig. 23 shows that LGBPs outperforms LBPms for all expression,
but squint performs significantly better for LGBP than LBPms. Once
again showing the importance of Gabor filter for the more subtle
expressions. The scream expressions performance is particular
high and consistent across different poses. This is evident in partic-
ular for the LGBP features, this could be explained by the exagger-
ated nature of the scream expression in the database. Squint and
disgust expressions perform surprisingly well at profile view and
Fig. 24. Examples of occlusion from facial hair present in the multi-pie database for diffe
the eyebrows and eyes of some subjects. However, for 90� pose the hair can cover all th
outperform other views. However as with experiments on the
BU3DFE dataset performance is relatively consistent over pose.

6.5. Discussions

The multi-pie dataset is a very challenging dataset. Figs. 24 and
1 show examples of some of these difficulties. Of the 100 subjects
used for experiments, 49 subjects wore glasses in some or all
recording sessions. Implications of this are significant given that
at different head poses glasses can occlude parts of the eyes and
eyebrows, where subtle information can be lost. Other challenging
aspects of this dataset are hair covering the eyes and eyebrows for
some views. Fig. 24 shows how hair can occlude facial features for
views 0�, 75� and 90� amongst others. This database also has sub-
jects with beards and mustaches. Other popular databases includ-
ing JAFFE [13] and Cohn-Kanade database [8] do not have the same
level of variability. Another variable to consider when evaluating
the above results is the noise included by the face detector. This
noise is more apparent for the profile detector, particularly at 75�
and 90� views. Some missed detections occurs at these poses due
to the occlusion from facial hair.

The above variations in the dataset are probably a contributing
factor as to why results for the multi-pie database are not as high
as results reported for other databases (JAFFE and Cohn-Kanade).
However, given the complexity of the dataset, the results are sur-
prisingly good. Gross et al. evaluated facial expression recognition
for frontal view on the multi-pie database, with results of under
50% [5]. A direct comparision with work presented in this section
is unfair as the number of subjects used for training and testing
was small. It should also be noted that these experiments were
rent head poses. For columns for angles 0� and 75�, it can be seen how hair occludes
e features of the face.
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carried out to evaluate the effect of illumination on expression rec-
ognition and not to find peak expression recognition performance.
Even so, our results as high as 89% on this challanging dataset are
impressive.

The results in Section 6.3.2 show the tolerance of this approach
to noise introduced by the face detector (localization errors), but
also to different variation in head pitch and roll angles. Psychology
studies [16] have shown that head tilt (pitch angle of the head) is
associated with certain groups of expressions. Pitch angles is more
prominent at large yaw angles and thus may help classification of
facial expressions at these angles. This could in part explain the
strong performance of particular expressions at profile view over
other poses.
7. Conclusions

The effects of pose on facial expression recognition is a largely
unexplored area. Robust facial expression recognition systems
must have the ability to classify expressions at different poses. This
paper presents an investigation into head pose and multi-view
facial expression recognition. Experiments were carried out on
two databases to investigate how pose effects facial expression
recognition. This paper investigates the effects of pose on facial
expression recognition using variations of LBPs at different resolu-
tions and different grid sampling sizes. Results in this paper have
shown that LGBPs outperform other features. LGBPs utilize multi-
resolution spatial histograms combined with local intensity distri-
butions and spatial information. LGBPs performs particularly well
at large yaw angles compared with other features. For the BU3DFE
database an overall recognition rate of 67.96% is achieved for six
expression over five yaw angles for four different intensity levels.
LGBP also achieved an overall recognition rate of 80.60% for six
expressions over seven yaw angles on the multi-pie dataset. LBPms

performed well on both databases with recognition rates of 65.02%
and 73.26% respectively. LBPms also showed good performance
compared with more basic features like LBPu2 and others. By com-
paring different features, it allows for the evaluation of the influ-
ence of orientation analysis and multi resolution analysis on
facial expression recognition. Results show LBPms outperforms
standard LBPu2 by up to 8% utilizing the multi-resolution analysis.
Also feature LBPu2 outperforms feature LBPri by about 10%, showing
the important of multi orientation analysis for facial expression
recognition. Results show the strong performance of LBPms and
when combined with LGBP, a recognition rate of 71.1% is achieved
on the BU3DFE datebase. Also this paper investigated how individ-
ual expressions performed over a range of poses. It was found that
some expressions performed better at non frontal views. Also re-
sults show for some facial expressions the optimal view is feature
dependent.

Experiments on the multi-pie dataset in which occlusion of
some of the facial features of subjects occurs presenting a challeng-
ing dataset. Different grid sizes were investigated for extracting the
feature histograms and it was shown that the local histograms out-
performs a global histogram.

Results have shown the tolerance of our approach (with fea-
tures LGBP and LBPms) to misalignment errors as noise is intro-
duced by the face detectors. In general from the above results
the facial expression with most deformation have the highest rec-
ognition rates (surprise, joy and scream). The more subtle expres-
sions like squint and disgust are more difficult to classify.

Experiments carried out on the BU3DFE (Section 5) have sug-
gested that frontal view was optimal for recognition. Further still,
other studies have suggested that 45� is the optimal view for facial
expression recognition [7]. In summary and observing results in
Table 12 and Fig. 15, experiments on both synthetic and real data
suggest that facial expression recognition is largely consistent
across all poses, but the optimal view is subject to the data and fea-
tures used. This is also highlighted in Tables 16 and 17 where the
optimal angle can also be dependent on the grid size used to ex-
tract feature vectors.

Acknowledgment

This work is supported by the EPSRC project LILiR (EP/E027946)
and the EU project Dicta-Sign (FP7/2007-2013) under Grant No.
231135.

References

[1] J.C. McCall, M.M. Trivedi, Pose invariant affect analysis using thin-plate splines,
in: ICPR ’04: Proceedings of the Pattern Recognition, IEEE Computer Society,
Washington, DC, USA, 2004, pp. 958–964.

[2] C. Chan, J. Kittler, K. Messer, Multi-scale local binary pattern histograms for
face recognition, in: The 2nd International Conference on Biometrics, ICIP
2010, pp. 809–818.

[3] P. Ekman, W.V. Friesen, Pictures of Facial Affect, Consulting Psychologists
Press, 1976.

[4] S. Gong, P.W. McOwan, C. Shan, Dynamic facial expression recognition using a
bayesian temporal manifold model, in: BMVC, vol. 1, 2006, pp. 297–306.

[5] R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, Multi-pie, Image and Vision
Computing 28 (2010) 807–813 (Best of Automatic Face and Gesture
Recognition 2008).

[6] Y. Hu, Z. Zeng, L. Yin, X. Wei, J. Tu, T. Huang, Multi-view facial expression
recognition, FG2008, in: 8th International Conference on Automatic Face and
Gesture Recognition 2008, ICPR 2008, 2008.

[7] Y. Hu, Z. Zeng, L. Yin, X. Wei, J. Tu, T. Huang, A study of non-frontal-view facial
expressions recognition, in: 19th International Conference on Pattern
Recognition 2008, ICPR 2008, 2008, pp. 1–4.

[8] T. Kanade, Y. Tian, J.F. Cohn, Comprehensive database for facial expression
analysis, in: FG ’00: Proceedings of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition 2000, Washington, DC, USA, IEEE
Computer Society, 2000, p. 46.

[9] S. Liao, W. Fan, A.C.S. Chung, D.Y. Yeung, Facial expression recognition using
advanced local binary patterns, tsallis entropies and global appearance
features, in: ICIP, 2006, pp. 665–668.

[10] S. Liao, X. Zhu, Z. Lei, L. Zhang, S. Li, Learning multi-scale block local binary
patterns for face recognition, in: International Conference on Biometrics,
ICB07, 2007, pp. 828–837.

[11] G. Littlewort, M.S. Bartlett, I. Fasel, J. Susskind, J. Movellan, Dynamics of facial
expression extracted automatically from video, Journal of Image and Vision
Computing, 2004, pp. 615–625.

[12] X. Liu, J. Rittscher, T. Chen, Optimal pose for face recognition, in: CVPR ’06:
Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, IEEE Computer Society, Washington, DC, USA,
2006, pp. 1439–1446.

[13] M.J. Lyons, J. Budynek, S. Akamatsu, Automatic classification of single facial
images, IEEE Transactions on Pattern Analysis and Machine Intelligence 21
(1999) 1357–1362.

[14] M.J. Lyons, R. Campbell, A. Plante, M. Coleman, M. Kamachi, S. Akamatsu, The
noh mask effect vertical viewpoint dependence of facial expression perception,
Proceedings of the Royal Society, Biological Sciences 267 (2000) 2239–2245.

[15] A. Mehrabian, Silent Messages, Wadsworth Publishing Company, Inc.,
Belmont, CA, 1971.

[16] A. Mignault, A. Chaudhuri, The many faces of a neutral face: head tilt and
perception of dominance and emotion, Journal of Nonverbal Behavior 27
(2003) 111–132.

[17] S. Minut, S. Mahadevan, J.M. Henderson, F.C. Dyer, Face recognition using
foveal vision, in: IEEE International Workshop on Biologically Motivated
Computer Vision, 2000, pp. 424–433.

[18] M.E.R. Nicholls, B.J. Wolfgang, D. Clode, A.K. Lindell, The effect of left and right
poses on the expression of facial emotion, Neuropsychologia 40 (2002) 1662–
1665.

[19] T. Ojala, M. Pietikainen, D. Harwood, A comparative study of texture measures
with classification based on feature distributions, Pattern Recognition 29
(1996) 51–59.

[20] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns, IEEE Transactions on
Pattern Analysis and Machine Intelligence 24 (2002) 971–987.

[21] OpenCV, <http://sourceforge.net/projects/opencvlibrary/>.
[22] M. Pantic, I. Patras, Dynamics of facial expression: recognition of facial actions

and their temporal segments from face profile image sequences, IEEE
Transactions on Systems, Man, and Cybernetics, Part B 36 (2006) 433–449.

[23] Y. Sato, E. Maeda, J. Yamato, K. Otsuka, S. Kumano, Pose-invariant facial
expression recognition using variable-intensity templates, in: Asian
Conference on Computer Vision 2007, ACCV07, pp. I: 324–334.

[24] C. Shan, T. Gritti, Learning discriminative lbp-histogram bins for facial expression
recognition, in: Proceedings of the British Machine Vision Conference 2008.

http://sourceforge.net/projects/opencvlibrary/


558 S. Moore, R. Bowden / Computer Vision and Image Understanding 115 (2011) 541–558
[25] Y. li Tian, L. Brown, A. Hampapur, S. Pankanti, A. Senior, R. Bolle, Real world
real-time automatic recognition of facial expressions, in: In Proceedings of
IEEE workshop on Performance Evaluation of Tracking and Surveillance, 2003.

[26] P. Viola, M. Jones, Robust real-time object detection, International Journal of
Computer Vision 57 (2004).

[27] J. Wang, L. Yin, X. Wei, Y. Sun, 3D facial expression recognition based on primitive
surface feature distribution, in: CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
Washington, DC, USA, IEEE Computer Society, 2006, pp. 1399–1406.

[28] X. Wang, T. Han, S. Yan, An hog-lbp human detector with partial occlusion
handling, in: International Conference on Computer Vision 2009, ICCV09, pp.
32–39.
[29] L. Yin, X. Wei, Y. Sun, J. Wang, M. Rosato, A 3d facial expression database for
facial behavior research, in: 7th International Conference on Automatic Face
and Gesture Recognition 2006, FGR 2006, 2006, pp. 211–216.

[30] Y. Tian, T. Kanade, J. Cohn, Facial expression analysis, in: Handbook of Face
Recognition, Springer, 2005 (Chapter 11).

[31] W. Zhang, S. Shan, W. Gao, X. Chen, H. Zhang, Local gabor binary pattern
histogram sequence (lgbphs): a non-statistical model for face representation
and recognition, in: Tenth IEEE International Conference on Computer Vision,
ICCV 1, vol. 1, 2005, pp. 786–791.

[32] W. Zheng, H. Tang, Z. Lin, T. Huang, A novel approach to expression recognition
from non-frontal face images, Twelth IEEE International Conference on
Computer Vision, ICCV, 2009.


	Local binary patterns for multi-view facial expression recognition
	Introduction
	Background
	Comparison of databases
	Local binary patterns
	Rotation invariant LBP
	Magnitude LBP
	Multi-scale LBP
	Local gabor binary patterns
	Feature extraction

	BU3DFE dataset experiments
	Experiments
	Effects of different features and resolution
	Effects of pose

	Discussion

	Multi-pie dataset experiments
	Face detection
	Features
	Experiments
	Head pose and expression classification
	Results

	Local versus global feature representation
	Discussions

	Conclusions
	Acknowledgment
	References


