

Download from finelybook www.finelybook.com

Gray Hat C#

A Hacker’s Guide to Creating and
Automating Security Tools

Brandon Perry

no starch
press

San Francisco

Download from finelybook www.finelybook.com

GRAY HAT C#. Copyright © 2017 by Brandon Perry.

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-10: 1-59327-759-8
ISBN-13:978-1-59327-759-8

Publisher: William Pollock

Production Editors: Alison Law and Serena Yang
Cover Illustration: Jonny Thomas

Interior Design: Octopod Studios

Developmental Editors: William Pollock and Jan Cash
Technical Reviewer: Brian Rogers

Copyeditor: Barton D. Reed

Compositor: Susan Glinert Stevens

Proofreader: Paula L. Fleming

Indexer: BIM Creatives, LLC.

For information on distribution, translations, or bulk sales, please contact No Starch Press,
Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA94103

phone: 1.415.863.9900; sales@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Perry, Brandon, author.

Title: Gray hat C# : a hacker's guide to creating and automating security tools / Brandon Perry.

Description: San Francisco : No Starch Press, Inc., [2017]

Identifiers: LCCN 2017002556 (print) | LCCN 2017005221 (ebook) | ISBN
9781593277598 (pbk.) | ISBN 1593277598 (pbk.) | ISBN 9781593278311 (epub)
| ISBN 1593278314 (epub) | ISBN 9781593278328 (mobi) | ISBN 1593278322
(mobi)

Subjects: LCSH: C# (Computer program language) | Automatic control--Computer
programs. | Computer security.

Classification: LCC QA76.73.C154 P44 2017 (print) | LCC QA76.73.C154 (ebook)
| DDC 005.8--dc23

mailto:sales@nostarch.com
http://www.nostarch.com

Download from finelybook www.finelybook.com

LC record available at https://lccn.loc.gov/2017002556

No Starch Press and the No Starch Press logo are registered trademarks of No Starch
Press, Inc. Other product and company names mentioned herein may be the trademarks of
their respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this work, neither the author nor No
Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in
1t.

https://lccn.loc.gov/2017002556

Download from finelybook www.finelybook.com

BRIEF CONTENTS

Foreword by Matt Graeber

Preface

Chapter 1: C# Crash Course

Chapter 2: Fuzzing and Exploiting XSS and SQL Injection
Chapter 3: Fuzzing SOAP Endpoints

Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads
Chapter 5: Automating Nessus

Chapter 6: Automating Nexpose

Chapter 7: Automating OpenVAS

Chapter 8: Automating Cuckoo Sandbox

Chapter 9: Automating sqlmap

Chapter 10: Automating ClamAV

Chapter 11: Automating Metasploit

Chapter 12: Automating Arachni

Chapter 13: Decompiling and Reversing Managed Assemblies
Chapter 14: Reading Offline Registry Hives

Index

Download from finelybook www.finelybook.com

CONTENTS IN DETAIL

FOREWORD by Matt Graeber

PREFACE

Why Should I Trust Mono?
Who Is This Book For?
Organization of This Book
Acknowledgments

A Final Note

1
C# CRASH COURSE

Choosing an IDE
A Simple Example
Introducing Classes and Interfaces
Creating a Class
Creating an Interface
Subclassing from an Abstract Class and Implementing an Interface
Tying Everything Together with the Main() Method
Running the Main() Method
Anonymous Methods
Assigning a Delegate to a Method
Updating the Firefighter Class
Creating Optional Arguments
Updating the Main() Method
Running the Updated Main() Method
Integrating with Native Libraries
Conclusion

Download from finelybook www.finelybook.com

2
FUZZING AND EXPLOITING XSS AND
INJECTION

Setting Up the Virtual Machine
Adding a Host-Only Virtual Network
Creating the Virtual Machine
Booting the Virtual Machine from the BadStore ISO
SQL Injections
Cross-Site Scripting
Fuzzing GET Requests with a Mutational Fuzzer
Tainting the Parameters and Testing for Vulnerabilities
Building the HTTP Requests
Testing the Fuzzing Code
Fuzzing POST Requests
Writing a POST Request Fuzzer
The Fuzzing Begins
Fuzzing Parameters
Fuzzing JSON
Setting Up the Vulnerable Appliance
Capturing a Vulnerable JSON Request
Creating the JSON Fuzzer
Testing the JSON Fuzzer
Exploiting SQL Injections
Performing a UNION-Based Exploit by Hand
Performing a UNION-Based Exploit Programmatically
Exploiting Boolean-Blind SQL Vulnerabilities
Conclusion

3
FUZZING SOAP ENDPOINTS

Setting Up the Vulnerable Endpoint
Parsing the WSDL

SQL

Download from finelybook www.finelybook.com

Creating a Class for the WSDL Document

Writing the Initial Parsing Methods

Writing a Class for the SOAP Type and Parameters
Creating the SoapMessage Class to Define Sent Data
Implementing a Class for Message Parts

Defining Port Operations with the SoapPortType Class
Implementing a Class for Port Operations

Defining Protocols Used in SOAP Bindings
Compiling a List of Operation Child Nodes

Finding the SOAP Services on Ports

Automatically Fuzzing the SOAP Endpoint for SQL Injection Vulnerabilities

Fuzzing Individual SOAP Services
Fuzzing the HTTP POST SOAP Port
Fuzzing the SOAP XML Port
Running the Fuzzer

Conclusion

4
WRITING CONNECT-BACK, BINDING,
METASPLOIT PAYLOADS

Creating a Connect-Back Payload
The Network Stream
Running the Command
Running the Payload
Binding a Payload
Accepting Data, Running Commands, and Returning Output
Executing Commands from the Stream
Using UDP to Attack a Network
The Code for the Target’s Machine
The Attacker’s Code
Running x86 and x86-64 Metasploit Payloads from C#
Setting Up Metasploit
Generating Payloads

Download from finelybook www.finelybook.com

Executing Native Windows Payloads as Unmanaged Code
Executing Native Linux Payloads
Conclusion

S
AUTOMATING NESSUS

REST and the Nessus API

The NessusSession Class
Making the HTTP Requests
Logging Out and Cleaning Up
Testing the NessusSession Class

The NessusManager Class

Performing a Nessus Scan

Conclusion

6
AUTOMATING NEXPOSE

Installing Nexpose
Activation and Testing
Some Nexpose Parlance
The NexposeSession Class
The ExecuteCommand() Method
Logging Out and Disposing of Our Session
Finding the API Version
Driving the Nexpose API
The NexposeManager Class
Automating a Vulnerability Scan
Creating a Site with Assets
Starting a Scan
Creating a PDF Site Report and Deleting the Site
Putting It All Together
Starting the Scan

Download from finelybook www.finelybook.com

Generating a Report and Deleting the Site
Running the Automation
Conclusion

7
AUTOMATING OPENVAS

Installing OpenVAS

Building the Classes

The OpenVASSession Class
Authenticating with the OpenVAS Server
Creating a Method to Execute OpenVAS Commands
Reading the Server Message
Setting Up the TCP Stream to Send and Receive Commands
Certificate Validation and Garbage Collection
Getting the OpenVAS Version

The OpenVASManager Class
Getting Scan Configurations and Creating Targets
Wrapping Up the Automation
Running the Automation

Conclusion

8
AUTOMATING CUCKOO SANDBOX

Setting Up Cuckoo Sandbox
Manually Running the Cuckoo Sandbox API
Starting the API
Checking Cuckoo’s Status
Creating the CuckooSession Class
Writing the ExecuteCommand() Methods to Handle HTTP Requests

Creating Multipart HTTP Data with the GetMultipartFormData()
Method

Processing File Data with the FileParameter Class

10

Download from finelybook www.finelybook.com

Testing the CuckooSession and Supporting Classes
Writing the CuckooManager Class
Writing the CreateTask() Method
The Task Details and Reporting Methods
Creating the Task Abstract Class
Sorting and Creating Different Class Types
Putting It Together
Testing the Application
Conclusion

9
AUTOMATING SQLMAP

Running sqlmap
The sqlmap REST API
Testing the sqlmap API with curl
Creating a Session for sqlmap
Creating a Method to Execute a GET Request
Executing a POST Request
Testing the Session Class
The SqlmapManager Class
Listing sqlmap Options
Making a Method to Perform Scans
The New Main() Method
Reporting on a Scan
Automating a Full sqlmap Scan
Integrating sqlmap with the SOAP Fuzzer
Adding sqlmap GET Request Support to the SOAP Fuzzer
Adding sqlmap POST Request Support
Calling the New Methods
Conclusion

10

11

Download from finelybook www.finelybook.com

AUTOMATING CLAMAV

Installing ClamAV
The ClamAV Native Library vs. the clamd Network Daemon
Automating with ClamAV’s Native Library
Setting Up the Supporting Enumerations and Classes
Accessing ClamAV’s Native Library Functions
Compiling the ClamAV Engine
Scanning Files
Cleaning Up
Testing the Program by Scanning the EICAR File
Automating with clamd
Installing the clamd Daemon
Starting the clamd Daemon
Creating a Session Class for clamd
Creating a clamd Manager Class
Testing with clamd
Conclusion

11
AUTOMATING METASPLOIT

Running the RPC Server

Installing Metasploitable

Getting the MSGPACK Library
Installing the NuGet Package Manager for MonoDevelop
Installing the MSGPACK Library
Referencing the MSGPACK Library

Writing the MetasploitSession Class

Creating the Execute() Method for HTTP Requests and Interacting
with MSGPACK

Transforming Response Data from MSGPACK
Testing the session Class
Writing the MetasploitManager Class

12

Download from finelybook www.finelybook.com

Putting It All Together
Running the Exploit
Interacting with the Shell
Popping Shells
Conclusion

12
AUTOMATING ARACHNI

Installing Arachni
The Arachni REST API
Creating the ArachntHTTPSession Class
Creating the ArachnitHTTPManager Class
Putting the Session and Manager Classes Together
The Arachni RPC
Manually Running the RPC
The ArachniRPCSession Class
The Supporting Methods for ExecuteCommand()
The ExecuteCommand() Method
The ArachniRPCManager Class
Putting It All Together
Conclusion

13
DECOMPILING AND REVERSING
ASSEMBLIES

Decompiling Managed Assemblies
Testing the Decompiler

Using monodis to Analyze an Assembly
Conclusion

14

13

MANAGED

Download from finelybook www.finelybook.com

READING OFFLINE REGISTRY HIVES

The Registry Hive Structure
Getting the Registry Hives
Reading the Registry Hive
Creating a Class to Parse a Registry Hive File
Creating a Class for Node Keys
Making a Class to Store Value Keys
Testing the Library
Dumping the Boot Key
The GetBootKey() Method
The GetValueKey() Method
The GetNodeKey() Method
The StringToByteArray() Method
Getting the Boot Key
Veritying the Boot Key
Conclusion

INDEX

14

Download from finelybook www.finelybook.com

FOREWORD

As an attacker or defender developing software, one obviously needs to decide
which language makes the most sense to use. Ideally, a language won’t be
chosen simply because it is what the developer is most comfortable with.
Rather, a language should be chosen based on answering a series of questions
such as the following;

* What are my primary target execution environments?

» What is the state of detection and logging for payloads written in this
language?

* To what level does my software need to maintain stealth (for example,
memory residence)?

* How well 1s the language supported for both the client side and the server
side?

* Is there a sizable community developing in this language?

» What is the learning curve and how maintainable is the language?

C# has some compelling answers to these questions. As to the question
about the target execution environment, .NET should be an obvious candidate
for consideration in a Microsoft-heavy environment because it has been
packaged with Windows for years. However, with the open-sourcing of .NET,
C# 1s now a language that can drive a mature runtime on every operating
system. Naturally, it should be considered an extremely enticing language for
true cross-platform support.

C# has always been the lingua franca of .NET languages. As you will see in
this book, you will get up and running with C# in no time thanks to its low
barrier to entry and massive developer community. Additionally, with .NET
being a managed, type-rich language, compiled assemblies lend themselves to
being trivially decompiled to C#. Therefore, someone writing offensive C#
need not necessarily develop their capabilities in a vacuum. Rather, one can
pull from a wealth of .NET malware samples, decompile them, read the

15

Download from finelybook www.finelybook.com

equivalent of their source code, and “borrow” their capabilities. They could
even go so far as to employ the .NET reflection API to load and execute
existing .NET malware samples dynamically—assuming, of course, they’ve
been reversed sufficiently to ensure they do nothing subversive.

As someone who has spent years bringing offensive PowerShell into the
mainstream, my efforts have brought about massive security improvements and
logging facilities in the wake of the surge of PowerShell malware. The latest
version of PowerShell (v5 as of this writing) implements more logging than
any other scripting language in existence. From a defender’s perspective, this
is fantastic. From a pentester, red teamer, or adversary’s perspective, this
increases the noise of one’s attack significantly. For a book about C#, why do 1
mention this? Although it has taken me years to realize it, the more PowerShell
I write, the more I acknowledge that attackers stand to gain far more agility by
developing their tools in C# rather than doing so strictly in PowerShell. Allow
me to explain:

« NET offers a rich reflection API that allows one to load and dynamically
interact with a compiled C# assembly in memory with ease. With all the
additional introspection performed on PowerShell payloads now, the
reflection API enables an attacker to better fly under the radar by developing
a PowerShell payload that only serves as a .NET assembly loader and
runner.

* As Casey Smith (@subTee) has demonstrated, there are many legitimate,
Microsoft-signed binaries present on a default installation of Windows that
serve as a fantastic host process for C# payloads—msbuild.exe being among
the stealthiest. Using MSBuild as a host process for C# malware embodies
the “living off the land” methodology perfectly—the idea that attackers who
can blend into a target environment and introduce a minimal footprint will
thrive for a longer period of time.

* Antimalware vendors to date still remain largely unaware of .NET assembly
capabilities at runtime. There’s still enough unmanaged code malware out
there that the focus hasn’t shifted to effectively hooking the .NET runtime to
perform dynamic runtime introspection.

» With powerful access to the massive .NET class library, those comfortable
with PowerShell will find the transition to C# a relatively smooth one.
Conversely, those comfortable with C# will have a lower barrier to entry in

16

Download from finelybook www.finelybook.com

transferring their skills to other .NET languages such as PowerShell and F#.

* Like PowerShell, C# is a high-level language, which means developers do
not have to worry about low-level coding and memory management
paradigms. Sometimes, however, one needs to go “low level” (for example,
interacting with the Win32 API). Fortunately, through its reflection API and
P/Invoke and marshaling interface, C# allows one to get as low level as
needed.

Everyone has a different motivation for learning C#. My motivation was the
need to transition my PowerShell skills in order to become more agile with
.NET code across more platforms. You, the reader, may have been drawn to
this book as a means to acquire an attacker’s mindset to supplement your
existing C# skills. Conversely, you may want to apply your existing attacker’s
mindset to a language embraced by many across multiple platforms. Whatever
your motivation may be, get ready for a wild ride through Brandon’s head as he

imparts his unique experience and wisdom in developing offensive and
defensive C#.

Matt Graeber
Microsoft MVP

17

Download from finelybook www.finelybook.com

PREFACE

I get asked a lot why I like C# as much as I do. Being a supporter of open
source software, a dedicated Linux user, and a contributor to Metasploit
(which is written predominantly in Ruby), C# seems like an odd choice as my
favorite language. When I began writing in C# many years ago, Miguel de
Icaza (of GNOME fame) had recently started a small project called Mono.
Mono, in essence, is an open source implementation of Microsoft’s .NET
framework. C# as a language had been submitted as an ECMA standard, and
the .NET framework was touted by Microsoft as a replacement for Java
because code could be compiled on one system or platform and run on another.
The only issue with this was that Microsoft had only released the .NET
framework for the Windows operating system. Miguel and a small group of
core contributors took it upon themselves to make the Mono project the bridge
the .NET framework needed to reach the Linux community. Luckily, a friend of
mine who had recommended I learn C# but knew I was also very interested in
Linux, pointed me in the direction of this fledgling project to see whether I
could use both C# and Linux. After that, I was hooked.

C# 1s a beautiful language. The creator and lead architect of the language,
Anders Hejlsberg, got his start working on compilers for Pascal and later
Delphi. This experience gave him a keen understanding of truly powerful
features in an assortment of programming languages. After Hejlsberg joined
Microsoft, C# was born around the year 2000. In its early years, C# shared a
lot of language features with Java, such as Java’s syntax niceties, but over
time, it grew into its own language and introduced a slew of features before
Java did, such as LINQ, delegates, and anonymous methods. With C#, you have
many of the powerful features of C and C++ and can write full-fledged web
applications using the ASP.NET stack or rich desktop applications. On
Windows, WinForms is the Ul library of choice, but for Linux, the GTK and
QT libraries are easy to use. More recently, Mono has introduced support for
the Cocoa toolkit on OS X platforms. Even iPhones and Androids are
supported.

18

Download from finelybook www.finelybook.com

Why Should I Trust Mono?

Detractors of the Mono project and the C# language claim that the technologies
are unsafe to use on any platform that isn’t Windows. Their belief that
Microsoft will, at the drop of a dime, begin litigating Mono into oblivion
keeps many people from even taking the project seriously. I don’t find this to
be a credible risk. As of this writing, not only has Microsoft acquired Xamarin
—the company Miguel de Icaza created to support the Mono framework—it
has made large swathes of the core .NET framework open source. It has
embraced open source software in ways many people would have thought
unimaginable under the leadership of Steve Ballmer. The new chief executive
officer, Satya Nadella, has demonstrated that Microsoft has no problems at all
with open source software, and the company actively engages the Mono
community to enable mobile development using Microsoft technologies.

Who Is This Book For?

Many people in security-oriented jobs, such as network and application
security engineers, rely on automation to one extent or another—be it for
scanning for wvulnerabilities or analyzing malware. With many security
professionals preferring to use a wide variety of operating systems, writing
tools that everyone can easily run can be difficult. Mono is a great choice
because it is cross-platform and has an excellent core set of libraries that
makes automating many aspects of a security professional’s job easy. If you’re
interested in learning how to write offensive exploits, automate scanning for
infrastructure vulnerabilities, decompile other .NET applications, read offline
registry hives, or create custom cross-platform payloads, then many of the
topics covered in this book will get you started (even if you don’t have a
background in C#).

Organization of This Book

In this book, we’ll cover the basics of C# and rapidly implement real-life
security tools with the rich libraries available to the language. Right out of the
gate, we’ll write fuzzers to find possible vulnerabilities and write full-blown
exploits for any vulnerabilities found. It should become very apparent how
powerful the language features and core libraries are. Once the basics have
been covered, we’ll automate popular security tools such as Nessus, sqlmap,

19

Download from finelybook www.finelybook.com

and Cuckoo Sandbox. Overall, once you’ve finished this book, you’ll have an
excellent repertoire of small libraries to automate many of the menial jobs
security professionals often perform.

Chapter 1: C# Crash Course In this chapter, you learn the basics of C#
object-oriented programming with simple examples, but we cover a wide
variety of C# features. We start with a Hello World program and then build
small classes to better understand what object-oriented programming is.
We then move on to more advanced C# features, such as anonymous
methods and P/Invoke.

Chapter 2: Fuzzing and Exploiting XSS and SQL Injection In this
chapter, we write small HTTP request fuzzers that look for XSS and SQL
injection in a variety of data types by using the HTTP library to
communicate with web servers.

Chapter 3: Fuzzing SOAP Endpoints In this chapter, we take the concept
of the fuzzers in the previous chapter to the next level by writing another
small fuzzer that retrieves and parses a SOAP WSDL to find potential SQL
injections by automatically generating HTTP requests. We do this while
also looking at the excellent XML libraries available in the standard
library.

Chapter 4: Writing Conne ct-Back, Binding, and Metasploit Payloads In
this chapter, we break from the focus on HTTP and move on to creating
payloads. We first create a couple of simple payloads—one over TCP and
one over UDP. Then you learn how to generate x86/x86 64 shellcode in
Metasploit to create cross-platform and cross-architecture payloads.

Chapter 5: Automating Nessus In this chapter, we return to HTTP in
order to automate the first of several vulnerability scanners, Nessus. We go
over how to create, watch, and report on scans of CIDR ranges
programmatically.

Chapter 6: Automating Nexpose In this chapter, we maintain the focus on
tool automation by moving on to the Nexpose vulnerability scanner.
Nexpose, whose API is also HTTP based, can be automated to scan for
vulnerabilities and create reports. Rapid7, Nexpose’s creator, offers a free
yearlong license for its community product, which is very useful for home
enthusiasts.

20

Download from finelybook www.finelybook.com

Chapter 7: Automating OpenVAS In this chapter, we conclude the focus
on vulnerability scanner automation with OpenVAS, which is open source.
OpenVAS has a fundamentally different kind of API than both Nessus and
Nexpose, using only TCP sockets and XML for its communication protocol.
Because it’s also free, it is useful for hobbyists looking to gain more
experience in vulnerability scanning on a budget.

Chapter 8: Automating Cuckoo Sandbox In this chapter, we move on to
digital forensics with the Cuckoo Sandbox. Working with an easy-to-use
REST JSON API, we automate submitting potential malware samples and
then reporting on the results.

Chapter 9: Automating sqlmap In this chapter, we begin exploiting SQL
injections to their fullest extent by automating sqlmap. We first create small
tools to submit single URLs with the easy-to-use JSON API that is shipped
with sqlmap. Once you are familiar with sqlmap, we integrate it into the
SOAP WSDL fuzzer from Chapter 3, so any potential SQL injection
vulnerabilities can automatically be exploited and validated.

Chapter 10: Automating ClamAYV In this chapter, we begin to focus on
interacting with native, unmanaged libraries. ClamAV, a popular and open
source antivirus project, isn’t written in a .NET language, but we can still
interface with its core libraries as well as with its TCP daemon, which
allows for remote use. We cover how to automate ClamAV in both
scenarios.

Chapter 11: Automating Metasploit In this chapter, we put the focus back
on Metasploit so that you can learn how to programmatically drive it to

exploit and report on shelled hosts via the MSGPACK RPC that ships with
the core framework.

Chapter 12: Automating Arachni In this chapter, we focus on automating
the black-box web application scanner Arachni, a free and open source
project, though dual licensed. Using both the simpler REST HTTP API and
the more powerful MSGPACK RPC that ships with the project, we create
small tools to automatically report findings as we scan a URL.

Chapter 13: Decompiling and Reversing Managed Assemblies In this
chapter, we move on to reverse engineering. There are easy-to-use .NET
decompilers for Windows, but not for Mac or Linux, so we write a small
one ourselves.

21

Download from finelybook www.finelybook.com

Chapter 14: Reading Offline Registry Hives In this chapter, we move on
to incident response and focus on registry hives by going over the binary
structure of the Windows registry. You learn how to parse and read offline
registry hives, so you can retrieve the boot key of the system, used to
encrypt password hashes stored in the registry.

Acknowledgments

This book was 10 years in the making, even if it was only in a word processor
for three of those years. My family and friends have surely noticed that I’ve
been constantly talking about C#, but have been more than lenient and
understanding listeners. Props to the AHA brothers and sisters who inspired
many of the projects in this book. Many thanks to John Eldridge, a family
friend who introduced me to C# and really jump-started my interest in
programming. Brian Rogers has been one of the best technical resources for
bouncing ideas off of during the development of this book, as well as an
excellent technical editor with his keen eye and insights. My production
managers Serena Yang and Alison Law made the back and forth of the editing
process about as painless as it could be. Of course, Bill Pollock and Jan Cash
were able to sculpt my muddy words into clear sentences that anyone could
read. A huge thanks to the whole No Starch staft!

A Final Note

Each of these chapters only scratches the surface of C#’s power, as well as the
potential in the tools we automate and build—especially since many of the
libraries we create are meant to be flexible and extensible. I hope this book
shows you how easy it can be to automate mundane or tedious tasks and
inspires you to continue building on the tools we started. You’ll find source
code and updates to the book at https://www.nostarch.com/grayhatcsharp/.

22

https://www.nostarch.com/grayhatcsharp/

Download from finelybook www.finelybook.com

1
C# CRASH COURSE

Unlike other languages, such as Ruby, Python, and Perl, C# programs can be
run by default on all modern Windows machines. In addition, running programs
written in C# on a Linux system such as Ubuntu, Fedora, or another flavor
couldn’t be easier, especially since Mono can quickly be installed by most
Linux package managers like apt or yum. This puts C# in a better position to
meet cross-platform needs than most languages, with the benefit of an easy and
powerful standard library at your fingertips. All in all, C# and the Mono/.NET
libraries make a compelling framework for anyone wanting to write cross-
platform tools quickly and easily.

Choosing an IDE

Most who want to learn C# will use an integrated development environment
(IDE) like Visual Studio for writing and compiling their code. Visual Studio by
Microsoft is the de facto standard for C# development around the globe. Free
versions such as Visual Studio Community Edition are available for personal
use and can be downloaded from Microsoft’s website at
https://www.visualstudio.com/downloads/.

During the development of this book, I used MonoDevelop and Xamarin
Studio depending on whether I was on Ubuntu or OS X, respectively. On
Ubuntu, you can easily install MonoDevelop using the apt package manager.

23

https://www.visualstudio.com/downloads/

Download from finelybook www.finelybook.com

MonoDevelop is maintained by Xamarin, the company that also maintains
Mono. To install it, use the following command:

$ sudo apt-get install monodevelop

Xamarin Studio is the OS X brand of the MonoDevelop IDE. Xamarin
Studio and MonoDevelop have the same functionality, but with slightly
different user interfaces. You can download the installer for the Xamarin
Studio IDE from the Xamarin website at https.//www.xamarin.com/download-
it/.

Any of these three IDEs will fulfill our needs in this book. In fact, if you
just want to use vim, you don’t even need an IDE! We’ll also soon cover how to

compile a simple example using the command line C# compiler shipped with
Mono instead of an IDE.

A Simple Example

To anyone who’s used C or Java, the C# syntax will seem very familiar. C# 1s
a strongly typed language, like C and Java, which means that a variable you
declare in your code can be only one type (an integer, string, or Dog class, for
example) and will always be that type, no matter what. Let’s start by taking a
quick look at the Hello World example in Listing 1-1, which shows some basic
C# types and syntax.

using @System;

namespace @chl_hello world

{
class @MainClass

{

public static void @Main(string[] @args)
{

@ string hello = "Hello World!";

@ DateTime now = DateTime.Now;

@ Console.Write(hello);

© Console.WriteLine(" The date is "+ now.ToLongDateString());
}

}

24

https://www.xamarin.com/download-it/

Download from finelybook www.finelybook.com

Listing 1-1: A basic Hello World application

Right off the bat, we need to import the namespaces we’ll use, and we do
this with a using statement that imports the System namespace @. This enables
access to libraries in a program, similar to #include in C, import in Java and
Python, and require in Ruby and Perl. After declaring the library we want to
use, we declare the namespace @ our classes will live in.

Unlike C (and older versions of Perl), C# is an object-oriented language,
similar to Ruby, Python, and Java. This means that we can build complex
classes to represent data structures, along with the methods for those data
structures, while writing code. Namespaces allow us to organize our classes
and code as well as to prevent potential name collisions, such as when two
programmers create two classes with the same name. If two classes with the
same name are in different namespaces, there won’t be a problem. Every class
is required to have a namespace.

With the namespace out of the way, we can declare a class € that will hold
our Main() method €@). As we stated previously, classes allow us to create
complex data types as well as data structures that better fit real-world objects.
In this example, the name of the class doesn’t actually matter; it’s just a
container for our Main() method, which is what really matters because the
Main() method 1s what will execute when we run our sample application. Every
C# application requires a Main() method, just like in C and Java. If your C#
application accepts arguments on the command line, you can use the args
variable @ to access the arguments passed to the application.

Simple data structures, such as strings @, exist in C#, and more complex
ones, such as a class representing the date and time @, can also be created.
The DateTime class is a core C# class for dealing with dates. In our example,
we use it to store the current date and time (DateTime.Now) in the variable now.
Finally, with our variables declared, we can print a friendly message using the
Console class’s Write() @ and WriteLine() € methods (the latter of which
includes a newline character at the end).

If you’re using an IDE, you can compile and run the code by clicking the
Run button, which is in the top-left corner of the IDE and looks like a Play
button, or by pressing the F5 key. However, if you would like to compile the
source code from the command line with the Mono compiler, you can easily do
that as well. From the directory with your C# class code, use the mcs tool

25

Download from finelybook www.finelybook.com

shipped with Mono to compile your classes into an executable, like so:

$ mcs Main.cs -out:chl_hello_world.exe

Running the code from Listing 1-1 should print both the string "Hello World!"
and the current date on the same line, as in Listing 1-2. On some Unix systems,
you may need to run mono chl_hello_world.exe.

$./chl_hello_world.exe
Hello World! The date is Wednesday, June 28, 2017

Listing 1-2: Running the Hello World application

Congratulations on your first C# application!

Introducing Classes and Interfaces

Classes and interfaces are used to create complex data structures that would be
difficult to represent with just built-in structures. Classes and interfaces can
have properties, which are variables that get or set values for a class or
interface, and methods, which are like functions that execute on the class (or
subclasses) or interface and are unique to it. Properties and methods are used
to represent data about an object. For instance, a Firefighter class might need an
int property to represent the firefighter’s pension or a method that tells the
firefighter to drive to a place where there’s a fire.

Classes can be used as blueprints to create other classes in a technique
called subclassing. When a class subclasses another class, it inherits the
properties and methods from that class (known as the parent class). Interfaces
are used as a blueprint for new classes as well, but unlike classes, they don’t
have inheritance. Thus a base class that implements an interface won’t pass
down the interface’s properties and methods if it’s subclassed.

Creating a Class

We’ll create the simple class shown in Listing 1-3 as an example that
represents a public servant data structure for someone who works every day to
make our lives easier and better.

26

Download from finelybook www.finelybook.com

public @abstract class PublicServant

{
public int @PensionAmount { get; set; }

public abstract void @Drive ToPlaceOflnterest();
b

Listing 1-3: The PublicServant abstract class

The PublicServant class is a special kind of class. It is an abstract class @.
Generally, you can just create a class like you do any other type of variable,
and 1t is called an instance or an object. Abstract classes, though, cannot be
instantiated like other classes; they can only be inherited through subclassing.
There are many types of public servants—firefighters and police officers are
two that come to mind immediately. It would therefore make sense to have a
base class that these two types of public servants inherit from. In this case, if
these two classes were subclasses of PublicServant, they would inherit a
PensionAmount property @ and a DriveToPlaceOfInterest delegate € that must be
implemented by subclasses of PublicServant. There is no general “public
servant” job that someone can apply for, so there isn’t a reason to create just a
PublicServant instance.

Creating an Interface

A complement to classes in C# are interfaces. Interfaces allow a programmer
to force a class to implement certain properties or methods that aren’t
inherited. Let’s create a simple interface to start with, as shown in Listing 1-4.
This interface is called IPerson and will declare a couple of properties that
people usually have.

public interface @IPerson

{
string @Name { get; set; }

int @Age { get; set; }
}

Listing 1-4: The IPerson interface

NoTE

27

Download from finelybook www.finelybook.com

Interfaces in C# are usually prefaced with an 1 to distinguish them from
classes that may implement them. This | isn't required, but it is a very
common pattern used in mainstream C# development.

If a class were to implement the IPerson interface ©. that class would need
to implement both a Name @ and an Age € property on its own. Otherwise, it
wouldn’t compile. I’'ll show exactly what this means when we implement the
Firefighter class next, which implements the IPerson interface. For now, just
know that interfaces are an important and useful feature of C#. Programmers
familiar with interfaces in Java will feel right at home with them. C
programmers can think of them as header files with function declarations that
expect a .c file to implement the function. Those familiar with Perl, Ruby, or
Python may find interfaces strange at first because there isn’t a comparable
feature in those languages.

Subclassing from an Abstract Class and Implementing an
Interface

Let’s put our PublicServant class and IPerson interface to some use and solidify a
bit of what we have talked about. We can create a class to represent our
firefighters that inherits from the PublicServant class and implements the IPerson
interface, as shown in Listing 1-5.

public class @PFirefighter : @PublicServant, @IPerson
{
public @Firefighter(string name, int age)
{
this.Name = name;
this.Age = age;
}

//implement the [Person interface
public string OName { get; set; }
public int @Age { get; set; }

public override void @DriveToPlaceOflnterest()

{
GetInFiretruck();

TurnOnSiren();

28

Download from finelybook www.finelybook.com

FollowDirections();

}

private void GetInFiretruck() {}
private void TurnOnSiren() {}
private void FollowDirections() {}

Listing 1-5: The Firefighter class

The Firefighter class @ is a bit more complex than anything we’ve
implemented yet. First, note that the Firefighter class inherits from the
PublicServant class @ and implements the IPerson interface €. This is done by
listing the class and interface, separated by commas, after the Firefighter class
name and a colon. We then create a new constructor €) that is used to set the
properties of a class when a new class instance is created. The new
constructor will accept the name and age of the firefighter as arguments, which
will set the Name @ and Age @ properties required by the IPerson interface
with the values passed. We then override the DriveToPlaceOfInterest() method @
inherited from the PublicServant class with one of our own, calling a few empty
methods that we declare. We’re required to implement the
DriveToPlaceOfInterest() method because it’s marked as abstract in the
PublicServant class and abstract methods have to be overridden by subclasses.

Classes come with a default constructor that has no parameters to
create instances. Creating a new constructor actually overrides the
default constructor.

The PublicServant class and IPerson interface can be very flexible and can be
used to create classes with completely different uses. We will implement one
more class, a PoliceOfficer class, as shown in Listing 1-6, using PublicServant
and IPerson.

public class @PoliceOfficer : PublicServant, IPerson

{

private bool _hasEmergency;

29

Download from finelybook www.finelybook.com

public PoliceOfficer(string name, int age)
{

this.Name = name;

this.Age = age;

_hasEmergency = @false;
}

//implement the [Person interface
public string Name { get; set; }
public int Age { get; set; }

public bool @HasEmergency

{
get { return _hasEmergency; }
set { hasEmergency = value; }

}

public override void @DriveToPlaceOflnterest()

{
GetInPoliceCar();

if (this.@HasEmergency)
TurnOnSiren();

FollowDirections();

}

private void GetInPoliceCar() {}
private void TurnOnSiren() {}
private void FollowDirections() {}

b

Listing 1-6: The PoliceOfficer class

The PoliceOfficer class @ is similar to the Firefighter class, but there are a
few differences. Most notably, a new property called HasEmergency € is set in
the constructor @. We also override the DriveToPlaceOfInterest() method @ as in
the previous Firefighter class, but this time, we use the HasEmergency property
© to determine whether the officer should drive the car with the siren on. We
can use the same combination of parent class and interface to create classes
that function completely differently.

30

Download from finelybook www.finelybook.com

Tying Everything Together with the Main() Method

We can use our new classes to test a few more features of C#. Let’s write a
new Main() method to show off these new classes, as shown in Listing 1-7.

using System;

namespace chl the basics

{

public class MainClass

{

public static void Main(string[] args)

{
Firefighter firefighter = new @Firefighter("Joe Carrington", 35);

firefighter.@PensionAmount = 5000;

PrintName AndAge(firefighter);
PrintPensionAmount(firefighter);

firefighter.Drive ToPlaceOflnterest();

PoliceOfficer officer = new PoliceOfficer("Jane Hope", 32);
officer.PensionAmount = 5500;
officer. @HasEmergency = true;

OPrintNameAndAge(officer);
PrintPensionAmount(officer);

officer.@DriveToPlaceOfInterest();
}

static void PrintName AndAge(@®IPerson person)
{

Console.WriteLine("Name: "+ person.Name);
Console.WriteLine("Age: "+ person.Age);

}

static void PrintPensionAmount(@)PublicServant servant)

{
if (servant is @Firefighter)
Console.WriteLine("Pension of firefighter: "+ servant.PensionAmount);
else if (servant is @PoliceOfficer)

31

Download from finelybook www.finelybook.com

Console.WriteLine("Pension of officer: "+ servant.PensionAmount);

}
b
b

Listing 1-7: Tying together the PoliceOfficer and Firefighter classes with a Main() method

To use the PoliceOfficer and Firefighter classes, we must instantiate them
using the constructors we defined in the respective classes. We do this first
with the Firefighter class @), passing a name of Joe Carrington and an age of 35 to
the class constructor and assigning the new class to the firefighter variable. We
also set the firefighter PensionAmount property @ to 5000. After the firefighter
has been set up, we pass the object to the PrintNameAndAge() and PrintPension()
methods.

Note that the PrintNameAndAge() method takes the IPerson interface @ as an
argument, not a Firefighter, PoliceOfficer, or PublicServant class. When a class
implements an interface, you can create methods that accept that interface (in
our case, IPerson) as an argument. If you pass IPerson to a method, the method
only has access to the properties or methods that the interface requires instead
of to the whole class. In our example, only the Name and Age properties are
available, which is all we need for the method.

Similarly, the PrintPensionAmount() method accepts PublicServant @) as its
argument, so it only has access to the PublicServant properties and methods. We
can use the C# is keyword to check whether an object is a certain type of class,
so we do this to check whether our public servant is a Firefighter O ora
PoliceOfficer @, and we print a message depending on which it is.

We do the same for the PoliceOfficer class as we did for Firefighter, creating
a new class with a name of Jane Hope and an age of 32; then we set her pension
to 5500 and her HasEmergency property € to true. After printing the name, age,
and pension @), we call the officer’s DriveToPlaceOfInterest() method @.

Running the Main() Method

Running the application should demonstrate how classes and methods interact
with each other, as shown in Listing 1-8.

$./chl_the basics.exe
Name: Joe Carrington

32

Download from finelybook www.finelybook.com

Age: 35

Pension of firefighter: 5000
Name: Jane Hope

Age: 32

Pension of officer: 5500

Listing 1-8: Running the basics program’s Main() method

As you can see, the public servants’ names, ages, and pensions are printed
to the screen, exactly as expected!

Anonymous Methods

The methods we have used so far have been class methods, but we can also
use anonymous methods. This powerful feature of C# allows us to
dynamically pass and assign methods using delegates. With a delegate, a
delegate object is created that holds a reference to the method that will be
called. We create this delegate in a parent class and then assign the delegate’s
reference to anonymous methods in subclasses of the parent class. This way,
we can dynamically assign a block of code in a subclass to the delegate instead
of overriding the parent class’s method. To demonstrate how to use delegates
and anonymous methods, we can build on the classes we have already created.

Assigning a Delegate to a Method

Let’s update the PublicServant class to use a delegate for the method
DriveToPlaceOfInterest(), as shown in Listing 1-9.

public abstract class PublicServant
{
public int PensionAmount { get; set; }
public delegate void @DriveToPlaceOfInterestDelegate();
public DriveToPlaceOfInterestDelegate @DriveToPlaceOflnterest { get; set; }

}

Listing 1-9: The PublicServant class with a delegate

In the previous PublicServant class, we needed to override the
DriveToPlaceOfInterest() method if we wanted to change it. In the new
PublicServant class, DriveToPlaceOfInterest() is replaced with a delegate @ and a

33

Download from finelybook www.finelybook.com

property @ that allow us to call and assign DriveToPlaceOfInterest(). Now, any
classes inheriting from the PublicServant class will have a delegate they can use
to set their own anonymous method for DriveToPlaceOfInterest() instead of having
to override the method within each class. Because they inherit from
PublicServant, we’ll need to update our Firefighter and PoliceOfficer class
constructors accordingly.

Updating the Firefighter Class

We’ll update the Firefighter class first with the new delegate property. The
constructor, shown in Listing 1-10, is the only change we make.

public oFirefighter(string name, int age)
{

this.@Name = name;

this.€Age = age;

this.DriveToPlaceOfInterest @+= delegate

{
Console.WriteLine("Driving the firetruck");
GetInFiretruck();
TurnOnSiren();
FollowDirections();

K

b

Listing 1-10: The Firefighter class using the delegate for the DriveToPlaceOfInterest()
method

In the new Firefighter class constructor @), we assign the Name @ and Age
© like we did before. Next, we create the anonymous method and assign it to
the DriveToPlaceOfInterest delegate property using the += operator @) so that
calling DriveToPlaceOfInterest() Wwill call the anonymous method. This
anonymous method prints "Driving the firetruck" and then runs the empty methods
from the original class. This way, we can add the customized code we want to
each method within a class without having to override it.

Creating Optional Arguments

The PoliceOfficer class requires a similar change; we update the constructor as

34

Download from finelybook www.finelybook.com

shown in Listing 1-11. Because we’re already updating this class, we can also
change it to use an optional argument, which is a parameter in a constructor
that does not have to be included when a new instance is created. We’ll create
two anonymous methods and use an optional argument to determine which
method to assign to the delegate.

public @PoliceOfficer(string name, int age, bool @hasEmergency = false)
{

this.€@Name = name;

this.@Age = age;

this. @HasEmergency = hasEmergency;

if (this.®@HasEmergency)

{
this.DriveToPlaceOfInterest += delegate

{
Console.WriteLine("Driving the police car with siren");
GetInPoliceCar();
TurnOnSiren();
FollowDirections();
s
} else

{

this.DriveToPlaceOflInterest += delegate
{
Console.WriteLine("Driving the police car");
GetInPoliceCar();
FollowDirections();
s
b
h

Listing 1-11: The new PoliceOfficer constructor

In the new PoliceOfficer constructor @), we set the Name € and Age @
properties as we did originally. This time, however, we also use an optional
third argument @ to assign the HasEmergency property @. The third argument is
optional because it does not need to be specified; it has a default value (false)
when the constructor is provided with only the first two arguments. We then set
the DriveToPlaceOfInterest delegate property with a new anonymous method,
depending on whether HasEmergency is true @.

35

Download from finelybook www.finelybook.com

Updating the Main() Method

With the new constructors, we can run an updated Main() method that is almost
identical to the first. It’s detailed in Listing 1-12.

public static void Main(string[] args)

{
Firefighter firefighter = new Firefighter("Joe Carrington", 35);

firefighter.PensionAmount = 5000;

PrintName AndAge(firefighter);
PrintPensionAmount(firefighter);

firefighter.DriveToPlaceOfInterest();

PoliceOfficer officer = new @PoliceOfficer("Jane Hope", 32);
officer.PensionAmount = 5500;

PrintName AndAge(officer);
PrintPensionAmount(officer);

officer.DriveToPlaceOfInterest();
officer = new @PoliceOfficer("John Valor", 32, true);

PrintName AndAge(officer);
officer.@DriveToPlaceOfInterest();

Listing 1-12: The updated Main() method using our classes with delegates for driving to
places of interest

The only differences are in the last three lines, which demonstrate creating
a new PoliceOfficer @ who has an emergency (the third argument to the
constructor is true), as opposed to Jane Hope @), who has none. We then call
DriveToPlaceOfInterest() on the John Valor officer €.

Running the Updated Main() Method

Running the new method shows how creating two PoliceOfficer classes—one
with an emergency and one without—will print two different things, as
demonstrated in Listing 1-13.

36

Download from finelybook www.finelybook.com

$ /chl_the_basics_advanced.exe
Name: Joe Carrington
Age: 35
Pension of firefighter: 5000
Driving the firetruck
Name: Jane Hope
Age: 32
Pension of officer: 5500
@ Driving the police car
Name: John Valor
Age: 32
@ Driving the police car with siren

Listing 1-13: Running the new Main() method with classes using delegates

As you can see, creating a PoliceOfficer class with an emergency causes the
officer to drive with the siren on @. Jane Hope, on the other hand, can drive
without her siren on @ because she has no emergency.

Integrating with Native Libraries

Finally, sometimes you need to use libraries that are available only in standard
operating system libraries, such as libc on Linux and user32.dll on Windows.
If you plan to use code in a library that was written in C, C++, or another
language that gets compiled down to native assembly, C# makes working with
these native libraries very easy, and we will use this technique in Chapter 4
when making cross-platform Metasploit payloads. This feature is called
Platform Invoke, or P/Invoke for short. Programmers often need to use native
libraries because they are faster than a virtual machine such as used by .NET
or Java. Programmers such as financial or scientific professionals who use
code to do heavy math might write the code that they need to be fast in C (for
example, code for interfacing directly with hardware) but use C# to handle
code that requires less speed.

Listing 1-14 shows a simple application that uses P/Invoke to call the
standard C function printf() in Linux or to pop up a message box using
user32.dll on Windows.

class MainClass

{

37

Download from finelybook www.finelybook.com

[@DIlImport("user32", CharSet=CharSet.Auto)]
static extern int MessageBox(IntPtr hWnd, String text, String caption, int options);

[DllImport("libc")]
static extern void printf(string message);
static void @Main(string[] args)

{

OperatingSystem os = Environment.OSVersion;

if (@os.Platform == @PlatformID.Win32Windows||os.Platform ==
PlatformID.Win32NT)

{

OMessageBox(IntPtr.Zero, "Hello world!", "Hello world!", 0);

} else

{

@printf("Hello world!");

§

}

}

Listing 1-14: Demonstrating P/Invoke with a simple example

This example looks more complex than it is. We first declare two functions
that will be looked up externally in different libraries. We do this using the
DilImport attribute). Attributes allow you to add extra information to methods
(or classes, class properties, and so on) that is used at runtime by the .NET or
Mono virtual machine. In our case, the DIllmport attribute tells the runtime to
look up the method we are declaring in another DLL, instead of expecting us to
write it.

We also declare the exact function names and the parameters the functions
expect. For Windows, we can use the MessageBox() function, which expects a
few parameters such as the title of the pop-up and the text to be displayed. For
Linux, the printf() function expects a string to print. Both of these functions are
looked up at runtime, which means we can compile this on any system because
the function in the external library isn’t looked for until the program is running
and the function is called. This lets us compile the application on any operating
system, regardless of whether that system has either or both libraries.

With our native functions declared, we can write a quick Main() method @
that checks the current operating system with an if statement using os.Platform
©. The Platform property we use maps to the PlatformID enumeration @, which

38

Download from finelybook www.finelybook.com

stores the available operating systems that the program could be running on.
Using the PlatformID enumeration, we can test whether we are on Windows and
then call the respective method: either MessageBox() @ on Windows or printf()
® on Unix. This application, when compiled, can be run on either a Windows
machine or a Linux machine, no matter what operating system compiled it.

Conclusion

The C# language has many modern features that make it a great language for
complex data and applications. We have only scratched the surface of some of
the more powerful features like anonymous methods and P/Invoke. You’ll
become intimate with the concepts of classes and interfaces, as well as many
other advanced features, in the chapters to come. In addition, you’ll learn about
many more of the core classes available to you, such as HTTP and TCP clients
and much more.

As we develop our own custom security tools throughout this book, you
will also learn about general programming patterns, which are useful
conventions for creating classes that make building on them easy and fast.
Good examples of programming patterns are used in Chapters 5 and 11 where
we interface with APIs and RPCs of third-party tools such as Nessus and
Metasploit.

By the end of this book, we will have covered how C# can be used for
every security practitioner’s job—from the security analyst to the engineer, and
even the hobbyist researcher at home. C# 1s a beautiful and powerful language,
and with cross-platform support from Mono bringing C# to phones and
embedded devices, it is just as capable and usable as Java and other
alternatives.

39

Download from finelybook www.finelybook.com

2

FUZZING AND EXPLOITING XSS
AND SQL INJECTION

In this chapter, you’ll learn how to write a short and sweet cross-site scripting
(XSS) and SQL injection fuzzer for URLs that take HTTP parameters in GET
and POST requests. A fuzzer is software that attempts to find errors in other
software, such as that on servers, by sending bad or malformed data. The two
general types of fuzzers are mutational and generational. A mutational fuzzer
attempts to taint the data in a known-good input with bad data, without regard
for the protocol or the structure of the data. In contrast, a generational fuzzer
takes into account the nuances of the server’s communication protocol and uses
these nuances to generate technically valid data that is sent to the server. With
both types of fuzzers, the goal is to get the server to return an error to the
fuzzer.

We’ll write a mutational fuzzer that you can use when you have a known-
good input in the form of a URL or HTTP request. (We’ll write a generational
fuzzer in Chapter 3.) Once you’re able to use a fuzzer to find XSS and SQL
injection vulnerabilities, you’ll learn how to exploit the SQL injection
vulnerabilities to retrieve usernames and password hashes from the database.

In order to find and exploit XSS and SQL injection vulnerabilities, we’ll
use the core HTTP libraries to build HTTP requests programmatically in C#.
We’ll first write a simple fuzzer that parses a URL and begins fuzzing the

40

Download from finelybook www.finelybook.com

HTTP parameters using GET and POST requests. Next, we’ll develop full
exploits for the SQL injection vulnerabilities that use carefully crafted HTTP
requests to extract user information from the database.

We’ll test our tools in this chapter against a small Linux distribution called
BadStore (available at the VulnHub website, https://www.vulnhub.com/).
BadStore 1s designed with vulnerabilities like SQL injections and XSS attacks
(among many others). After downloading the BadStore ISO from VulnHub,
we’ll use the free VirtualBox virtualization software to create a virtual
machine in which to boot the BadStore ISO so that we can attack without risk
of compromising our own host system.

Setting Up the Virtual Machine

To install VirtualBox on Linux, Windows, or OS X, download the VirtualBox
software from https.//www.virtualbox.org/. (Installation should be simple; just
follow the latest directions on the site when you download the software.)
Virtual machines (VMs) allow us to emulate a computer system using a
physical computer. We can use virtual machines to easily create and manage

vulnerable software systems (such as the ones we will use throughout the
book).

Adding a Host-Only Virtual Network

You may need to create a host-only virtual network for the VM before actually
setting it up. A host-only network allows communication only between VMs
and the host system. Here are the steps to follow:

1. Click File » Preferences to open the VirtualBox — Preferences dialog. On
OS X, select the VirtualBox > Preferences.

2. Click the Network section on the left. You should see two tabs: NAT
Networks and Host-only Networks. On OS X, click the Network tab at
the top of the Settings dialog.

3. Click the Host-only Networks tab and then the Add host-only network
(Ins) button on the right. This button is an icon of a network card overlaid
with a plus sign. This should create a network named vboxnet0.

4. Click the Edit host-only network (Space) button on the right. This button

41

https://www.vulnhub.com/
https://www.virtualbox.org/

Download from finelybook www.finelybook.com

1s an icon of a screwdriver.

5. From the dialog that opens, click the DHCP Server tab. Check the
Enable Server box. In the Server Address field, enter the IP address
192.168.56.2. In the Server Mask field, enter 255.255.255.0. In the Lower
Address Bound field, enter 192.168.56.100. In the Upper Address Bound
field, enter 192.168.56.199.

6. Click OKto save changes to the host-only network.
7. Click OK again to close the Settings dialog.

Creating the Virtual Machine

Once VirtualBox is installed and configured with a host-only network, here’s
how to set up the VM:

1. Click the New icon in the top-left corner, as shown in Figure 2-1.

2. When presented with a dialog to choose the name of the operating system
and type, select the Other Linux (32-bit) drop-down option.

3. Click Continue, and you should be presented with a screen to give the
virtual machine some RAM. Set the amount of RAM to 512 MB and click
Continue. (Fuzzing and exploiting can make the web server use a lot of
RAM on the virtual machine.)

4. When asked to create a new virtual hard drive, choose Do not add a
virtual hard drive and click Create. (We’ll run BadStore from the ISO
image.) You should now see the VM in the left pane of the VirtualBox
Manager window, as shown in Figure 2-1.

42

Download from finelybook www.finelybook.com

MNew Settings Start Discard

| badstore [E] General = Preview
[% | @) Powered Off
Name: badstore

Operating System: Other Linux (32 bit)

[2] System

Base Memory: 512 MB
Boot Order: = Floppy, CD/DVD, Hard Disk badstore
Acceleration: VT-x/AMD-V, Nested Paging

Display

Video Memory: 16 MB
Remote Desktop Server: Disabled
Video Capture: Disabled
Storage

Controller: IDE

IDE Secondary Master: [CD/DVD] Empty
[l Audio

Host Driver: CoreAudio
Controller: ICH ACS7

EP Network

Adapter 1: PCnet-FAST Ill (NAT)
P usB

Device Filters: 0 (0 active)

=1 Sharad fnldare

Foos

Figure 2-1: VirtualBox with a BadStore VM

Booting the Virtual Machine from the BadStore ISO

Once the VM has been created, set it to boot from the BadStore ISO by
following these steps:

1. Right-click the VM in the left pane of the VirtualBox Manager and click
Settings. A dialog should appear showing the current settings for the
network card, CD-ROM, and other miscellaneous configuration items.

2. Select the Network tab in the Settings dialog. You should see upwards of
seven settings for the network card, including NAT (network address
translation), host-only, and bridged. Choose host-only networking to
allocate an IP address that is accessible only from the host machine but
not from the rest of the Internet.

43

Download from finelybook www.finelybook.com

3.

You need to set the type of network card in the Advanced drop-down to
an older chipset, because BadStore 1s based on an old Linux kernel and
some newer chipsets aren’t supported. Choose PCnet-FAST III.

Now set the CD-ROM to boot from the ISO on the hard drive by following

these steps:

1.

Select the Storage tab in the Settings dialog. Click the CD icon to show a
menu with the option Choose a virtual CD/DVD disk file.

Click the Choose a virtual CD/DVD disk file option to find the BadStore
ISO that you saved to your filesystem and set it as the bootable media.
The virtual machine should now be ready to boot.

Save the settings by clicking OK in the bottom-right corner of the Settings
tab. Then click the Start button in the top-left corner of the VirtualBox
Manager, next to the Settings gear button, to boot the virtual machine.

Once the machine has booted, you should see a message saying, ‘“Please
press Enter to activate this console.” Press enter and type ifconfig to view
the IP configuration that should have been acquired.

. Once you have your virtual machine’s IP address, enter it in your web

browser, and you should see a screen like the one shown in Figure 2-2.

44

Download from finelybook www.finelybook.com

J E Welcome to BadStore.net v1.2.35 -... ” - l

d | & 192.168.1.11/cgi-bin/badstore.cgl ¢ | (B~ Google Q) (- [&] (&

RAPSTORENET

Quick ltern Search elcome {Unregistered User} - Cart contains 0 items at $0.00

L
Home Welcome to BadStore.net!

What's New

Sign Our Guestbook
;Vicw Previous Orders

About Us

My Account

Login / Register

ez Suppliers Only -
Supplier Login
Supplier Contract
Supplier Procedures

- Reference -

\BaaStere ner Marual vi 2

BadStore v1.2.3s - Copyright © 2004-2005

Figure 2-2: The main page of the BadStore web application

SQL Injections

In today’s rich web applications, programmers need to be able to store and
query information behind the scenes in order to provide high-quality, robust
user experiences. This is generally accomplished using a Structured Query
Language (SQL; pronounced sequel) database such as MySQL, PostgreSQL, or
Microsoft SQL Server.

SQL allows a programmer to interact with a database programmatically
using SQL statements—code that tells the database how to create, read, update,
or delete data based on some supplied information or criteria. For instance, a
SELECT statement asking the database for the number of users in a hosted

45

Download from finelybook www.finelybook.com

database might look like Listing 2-1.

SELECT COUNT(*) FROM USERS

Listing 2-1: Sample SQL SELECT statement

Sometimes programmers need SQL statements to be dynamic (that is, to
change based on a user’s interaction with a web application). For example, a
programmer may need to select information from a database based on a certain
user’s ID or username.

However, when a programmer builds a SQL statement using data or values
supplied by a user from an untrusted client such as a web browser, a SQOL
injection vulnerability may be introduced if the values used to build and
execute SQL statements are not properly sanitized. For example, the C# SOAP
method shown in Listing 2-2 might be used to insert a user into a database
hosted on a web server. (SOAP, or Simple Object Access Protocol, is a web
technology powered by XML that’s used to create APIs on web applications
quickly. It’s popular in enterprise languages such as C# and Java.)

[WebMethod]

public string AddUser(string username, string password)

{
NpgsqlConnection conn = new NpgsqlConnection(_connstr);
conn.Open();

string sql = "insert into users values('{0}', '{1}");";

@sql = String Format(sql, username, password);
NpgsqlCommand command = new NpgsqlCommand(sql, conn);
@command.ExecuteNonQuery();

conn.Close();
return "Excellent!";

}

Listing 2-2: A C# SOAP method vulnerable to a SQL injection

In this case, the programmer hasn’t sanitized the username and password
before creating @ and executing @ a SQL string. As a result, an attacker could
craft a username or password string to make the database run carefully crafted

46

Download from finelybook www.finelybook.com

SQL code designed to give them remote command execution and full control of
the database.

If you were to pass in an apostrophe with one of the parameters (say
user'name instead of username), the ExecuteNonQuery() method would try to run an
invalid SQL query (shown in Listing 2-3). Then the method would throw an
exception, which would be shown in the HTTP response for the attacker to see.

insert into users values('user'name’, 'password');

Listing 2-3: This SQL query is invalid due to unsanitized user-supplied data.

Many software libraries that enable database access allow a programmer to
safely use values supplied by an untrusted client like a web browser with
parameterized queries. These libraries automatically sanitize any untrusted
values passed to a SQL query by escaping characters such as apostrophes,
parentheses, and other special characters used in the SQL syntax.
Parameterized queries and other types of Object Relational Mapping (ORM)
libraries like NHibernate help to prevent these SQL injection issues.

User-supplied values like these tend to be used in WHERE clauses within
SQL queries, as in Listing 2-4.

SELECT * FROM users WHERE user_id="1"

Listing 2-4: Sample SQL SELECT statement selecting a row for a specific user_id

As shown in Listing 2-3, throwing a single apostrophe into an HTTP
parameter that is not properly sanitized before being used to build a dynamic
SQL query could cause an error to be thrown by the web application (such as
an HTTP return code of 500) because an apostrophe in SQL denotes the
beginning or end of a string. The single apostrophe invalidates the statement by
ending a string prematurely or by beginning a string without ending it. By
parsing the HTTP response to such a request, we can fuzz these web
applications and search for user-supplied HTTP parameters that lead to SQL
errors in the response when the parameters are tampered with.

Cross-Site Scripting
Like SQL injection, cross-site scripting (XSS) attacks exploit vulnerabilities

47

Download from finelybook www.finelybook.com

in code that crop up when programmers build HTML to be rendered in the web
browser using data passed from the web browser to the server. Sometimes, the
data supplied by an untrusted client, such as a web browser, to the server can
contain HTML code such as JavaScript, allowing an attacker to potentially
take over a website by stealing cookies or redirecting users to a malicious
website with raw, unsanitized HTML.

For example, a blog that allows for comments might send an HTTP request
with the data in a comment form to a site’s server. If an attacker were to create
a malicious comment with embedded HTML or JavaScript, and the blog
software trusted and therefore did not sanitize the data from the web browser
submitting the “comment,” the attacker could use their loaded attack comment
to deface the website with their own HTML code or redirect any of the blog’s
visitors to the attacker’s own website. The attacker could then potentially
install malware on the visitors’ machines.

Generally speaking, a quick way to detect code in a website that may be
vulnerable to XSS attacks is to make a request to the site with a tainted
parameter. If the tainted data appears in the response without alteration, you
may have found a vector for XSS. For instance, suppose you pass <xss> in a
parameter within an HTTP request, as in Listing 2-5.

GET /index.php?name=Brandon<xss> HTTP/1.1

Host: 10.37.129.5

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:37.0) Gecko/20100101
Firefox/37.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Listing 2-5: Sample GET request to a PHP script with a query string parameter

The server responds with something like the HTTP response in Listing 2-6.

HTTP/1.1 200 OK

Date: Sun, 19 Apr 2015 21:28:02 GMT
Server: Apache/2.4.7 (Ubuntu)
X-Powered-By: PHP/5.5.9-1ubuntu4.7
Content-Length: 32

Keep-Alive: timeout=5, max=100

48

Download from finelybook www.finelybook.com

Connection: Keep-Alive
Content-Type: text/html

Welcome Brandon<xss>

Listing 2-6: Sample response from the PHP script sanitizing the name query string
parameter

Essentially, if the code <xss> is replaced with a version that has some
HTML entities, you know that the site is filtering input using a PHP function
such as htmispecialchars() or a similar method. However, if the site simply
returns <xss> in the response, you know that it’s not performing any filtering or
sanitization, as with the HTTP name parameter in the code shown in Listing 2-
7.

<?php

$name = $ GET['name'];
@ccho "Welcome $name
"
7>

Listing 2-7: PHP code vulnerable to XSS

As with the code vulnerable to a SQL injection in Listing 2-1, the
programmer 1s not sanitizing or replacing any potentially bad characters in the
parameter before rendering the HTML to the screen @. By passing a specially
crafted name parameter to the web application, we can render HTML to the
screen, execute JavaScript, and even run Java applets that attempt to take over
the computer. For example, we could send a specially crafted URL such as the
one in Listing 2-8.

www.example.com/vuln.php?name=Brandon<script>alert(1)</script>

Listing 2-8: A URL with a query string parameter that would pop up a JavaScript alert
if the parameter were vulnerable to XSS

The URL in Listing 2-8 could cause a JavaScript pop-up to appear in the
browser with the number 1 if the PHP script were using the name parameter to
build some HTML code that would eventually be rendered in the web browser.

49

Download from finelybook www.finelybook.com

Fuzzing GET Requests with a Mutational Fuzzer

Now that you know the basics of SQL injection and XSS vulnerabilities, let’s
implement a quick fuzzer to find potential SQL injection or XSS vulnerabilities
in query string parameters. Query string parameters are the parameters in a
URL after the ? sign, in key = value format. We’ll focus on the HTTP parameters
in a GET request, but first we’ll break up a URL so we can loop through any
HTTP query string parameters, as shown in Listing 2-9.

public static void Main(string[] args)

{

@string url = args[0];

int index = url. @IndexOf("?");

string[] parms = url. @Remove(0, index+1).@Split('&");

foreach (string parm in parms)
Console.WriteLine(parm);

}

Listing 2-9: Small Main() method breaking apart the query string parameters in a given
URL

In Listing 2-9, we take the first argument (args[0]) passed to the main fuzzing
application and assume it is a URL @ with some fuzzable HTTP parameters in
the query string. In order to turn the parameters into something we can iterate
over, we remove any characters up to and including the question mark (?) in
the URL and use IndexOf("") @ to determine the index of the first occurrence of
a question mark, which denotes that the URL has ended and that the query string
parameters follow; these are the parameters that we can parse.

Calling Remove(0, index+1) €@ returns a string that contains only our URL
parameters. This string is then split by the '& character @), which marks the
beginning of a new parameter. Finally, we use the foreach keyword, loop over
all the strings in the parms array, and print each parameter and its value. We’ve
now isolated the query string parameters and their values from the URL so that
we can begin to alter the values while making HTTP requests in order to
induce errors from the web application.

Tainting the Parameters and Testing for Vulnerabilities
Now that we have separated any URL parameters that might be vulnerable, the

50

Download from finelybook www.finelybook.com

next step is to taint each with a piece of data that the server will sanitize
properly if it is not vulnerable to either XSS or SQL injection. In the case of
XSS, our tainted data will have <xss> added, and the data to test for SQL
injection will have a single apostrophe.

We can create two new URLs to test the target by replacing the known-good
parameter values in the URLs with the tainted data for XSS and SQL injection
vulnerabilities, as shown in Listing 2-10.

foreach (string parm in parms)

{

@string xssUrl = url.Replace(parm, parm + "fd<xss>sa");
@string sqlUrl = url.Replace(parm, parm + "fd'sa");

Console.WriteLine(xssUrl);
Console.WriteLine(sqlUrl);

}

Listing 2-10: Modified foreach loop replacing parameters with tainted data

In order to test for vulnerabilities, we need to ensure that we’re creating
URLs that our target site will understand. To do so, we first replace the old
parameter in the URL with a tainted one, and then we print the new URLs we’ll
be requesting. When printed to the screen, each parameter in the URL should
have one line that includes the XSS-tainted parameter @ and one line
containing the parameter with a single apostrophe @, as shown in Listing 2-11.

http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=testfd<xss>sa&action=search
http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=testfd'sa&action=search
--Snip--

Listing 2-11: URLs printed with tainted HTTP parameters

Building the HTTP Requests

Next, we programmatically build the HTTP requests using the HttpWebRequest
class, and then we make the HTTP requests with the tainted HTTP parameters
to see if any errors are returned (see Listing 2-12).

foreach (string parm in parms)

51

Download from finelybook www.finelybook.com

string xssUrl = url.Replace(parm, parm + "fd<xss>sa");

string sqlUrl = url.Replace(parm, parm + "fd'sa");

HttpWebRequest request = (HttpWebRequest) WebRequest. @ Create(sqlUrl);
request.@Method = "GET",

string sqlresp = string. Empty;
using (StreamReader rdr = new
StreamReader(request.GetResponse().GetResponseStream()))
sqlresp = rdr.@ReadToEnd();

request = (HttpWebRequest) WebRequest.Create(xssUrl);
request.Method = "GET";
string xssresp = string. Empty;

using (StreamReader rdr = new
StreamReader(request.GetResponse().GetResponseStream()))
xssresp = rdr.ReadToEnd();

if (xssresp.Contains("<xss>"))
Console.WriteLine("Possible XSS point found in parameter: "+ parm);

if (sglresp.Contains("error in your SQL syntax"))
Console.WriteLine("SQL injection point found in parameter: "+ parm);

}

Listing 2-12: Full foreach loop testing the given URL for XSS and SQL injection

In Listing 2-12, we use the static Create() method @ from the WebRequest
class in order to make an HTTP request, passing the URL in the sqlUrl variable
tainted with a single apostrophe as an argument, and we cast the resulting
instantiated WebRequest returned to an HttpWebRequest. (Static methods are
available without instantiating the parent class.) The static Create() method uses
a factory pattern to create new objects based on the URL passed, which is why
we need to cast the object returned to an HttpWebRequest object. If we passed a
URL prefaced with fip:// or file://, for instance, then the type of object returned
by the Create() method would be a different class (FtpWebRequest or
FileWebRequest, respectively). We then set the Method property of the
HttpWebRequest to GET (so we make a GET request) @ and save the response
to the request in the resp string using the StreamReader class and the ReadToEnd()

52

Download from finelybook www.finelybook.com

method €. If the response either contains the unsanitized XSS payload or
throws an error regarding SQL syntax, we know we may have found a
vulnerability.

NOTE

Notice that we’re using the using keyword in a new way here. Prior to
this, we used using to import classes within a namespace (such as
System.Net) into the fuzzer. Essentially, instantiated objects (objects
created with the new keyword) can be used in the context of a using
block in this way when the class implements the IDisposable interface
(Which requires a class to implement a Dispose() method). When the
scope of the using block ends, the Dispose() method on the object is
called automatically. This is a very useful way to manage the scope of
a resource that can lead to resource leaks, such as network resources
or file descriptors.

Testing the Fuzzing Code

Let’s test our code with the search field on the BadStore front page. After
opening the BadStore application in your web browser, click the Home menu
item on the left side of the page and then perform a quick search from the
search box in the upper-left corner. You should see a URL in your browser
similar to the one shown in Listing 2-13.

http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=test&action=search

Listing 2-13: Sample URL to the BadStore search page

Pass the URL in Listing 2-13 (replacing the IP address with the IP address
of the BadStore instance on your network) to the program as an argument on the
command line, as shown in Listing 2-14, and the fuzzing should begin.

$./fuzzer.exe "http://192.168.1.75/cgi-bin/badstore.cgi?
searchquery=test&action=search"

SQL injection point found in parameter: searchquery=test
Possible XSS point found in parameter: searchquery=test

$

53

Download from finelybook www.finelybook.com

Listing 2-14.: Running the XSS and SQL injection fuzzer

Running our fuzzer should find both a SQL injection and XSS vulnerability
in BadStore, with output similar to that of Listing 2-14.

Fuzzing POST Requests

In this section, we’ll use BadStore to fuzz the parameters of a POST request (a
request used to submit data to a web resource for processing) saved to the
local hard drive. We’ll capture a POST request using Burp Suite—an easy-to-
use HTTP proxy built for security researchers and pen testers that sits between
your browser and the HTTP server so that you can see the data sent back and
forth.

Download and install Burp Suite now from Ahttp.//www.portswigger.net/.
(Burp Suite is a Java archive or JAR file that can be saved to a thumb drive or
other portable media.) Once Burp Suite is downloaded, start it using Java with
the commands shown in Listing 2-15.

$ cd ~/Downloads/
$ java -jar burpsuite*.jar

Listing 2-15: Running Burp Suite from the command line
Once started, the Burp Suite proxy should be listening on port 8080. Set

Firefox traffic to use the Burp Suite proxy as follows:

1. From within Firefox, choose Edit » Preferences. The Advanced dialog
should appear.

2. Choose the Network tab, as shown in Figure 2-3.

54

http://www.portswigger.net/

Download from finelybook www.finelybook.com

General Tabs Content Applications Privacy Security Sync Advanced

Update Certificates |

| General Data Choices

Connection

Configure how Firefox connects to the Internet Settings...

Cached Web Content

Your web content cache is currently using 74.9 MB of disk space Clear Now
Override automatic cache management

Limit cache to 350 2| MB of space

Offline Web Content and User Data

Your application cache is currently using 0 bytes of disk space Clear Now

Tell me when a website asks to store data for offline use Exceptions...

The following websites are allowed to store data for offline use:

Remove...

¥
Figure 2-3: The Network tab within Firefox preferences

3. Click Settings... to open the Connection Settings dialog, as shown in
Figure 2-4.

55

Download from finelybook www.finelybook.com

|i| Configure Proxies to Access the Internet

General
' No proxy
Auto-detect proxy settings for this network
Ce Use system proxy settings
Cao &) Manual proxy configuration:
HTTP Proxy: 127.0.0.1 Port: BOBO
Ce . ;
o Use this proxy server for all protocols
Yi SSL Proxy: 127.0.0.1 Port: 8080
FTP Proxy: 127.0.0.1 Port: 8080
SOCKS Host: 127.0.041 Port: 8080
of SOCKS v4 ('« SOCKS vS
Mo Proxy for:
Y localhost, 127.0.0.1
T :
k& | Example: .mozilla.org, .net.nz, 192.168.1.0/24
Automatic proxy configuration URL:
Reload
|.HL. Cancel OK
3

Figure 2-4: The Connection Settings dialog

4. Select Manual proxy configuration and enter 127.0.0.1 into the HTTP
Proxy field and 8080 into the Port field. Click OK and then close the

Connection Settings dialog.

Now all requests sent through Firefox should be directed through Burp
Suite first. (To test this, go to Attp://google.com/; you should see the request in

Burp Suite’s request pane, as shown in Figure 2-5.)

56

-~
w

http://google.com/

Download from finelybook www.finelybook.com

Burp Intruder Repeater Window Help

[Target T I Spider T Scanner T Iﬁtruder I Repeater ISequencer [Decoder I Comparer I Extender I Options IAIens]

J I HTTP history TWebSockets history T Options]

|_ﬁ_| Request to http://google.com:80 [216.58.218.206]

| Forward | Drop | | Interceptis on ' Action Coemment this item [._'J CJ

_[Raw I Headers T Hex]

GET / HTTF/1.1
Host: google.com

>

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac O X 10.10; rv:26.0) Gecko/20100101 Firefox/26.0
Booept: text/html, application/xhtml+xml, application/=xml ;gq=0.9,%/%;q=0.8

Accept-Language: en-US,en;g=0.5

Beooept-Encoding: gzip, deflate

Connection: kesp-aliwve

(i (el QJ L>J Type a search term 0 matches
Figure 2-5: Burp Suite actively capturing a request for google.com from Firefox

Clicking the Forward button within Burp Suite should forward the request
(to Google in this case) and return the response to Firefox.

Writing a POST Request Fuzzer

We’ll write and test our POST request fuzzer against BadStore’s “What’s
New” page (see Figure 2-6). Navigate to this page in Firefox and click the
What’s New menu item on the left.

57

Download from finelybook www.finelybook.com

What's New at BadStore.net

| EE What's New at BadStore.net L

4 | @ 192.168.1.64/cgi-bin/badstore.cgi?action=whatsnaw & | (B~ coogle Q) B I

—
¢ View Cart

Homs The following are new items:
What's New

T : Add to
Sien Our Guestbook ItemNum Item Description Price Image Cart

View Previous Orders

About Us g Useless but
1000 Snake Oil expensive 11.50
My Account

Login / Register

-8 liers Only -
UPPIErSTIY " 11003 |Magic Rabbit |Cute white bunny 12.50

Supplier Login
Sunnlier Contract

Figure 2-6: The “What'’s New” items page of the BadStore web application

A button at the bottom of the page is used to add checked items to your
shopping cart. With Burp Suite sitting between your browser and the BadStore
server, select a few items using the checkboxes on the right side of the page
and then click Submit to initiate the HTTP request to add the items to your cart.
Capturing the submit request within Burp Suite should yield a request like
Listing 2-16.

POST /cgi-bin/badstore.cgi?action=cartadd HTTP/1.1

Host: 192.168.1.75

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64;1v:20.0) Gecko/20100101
Firefox/20.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: https://192.168.1.75/cgi-bin/badstore.cgi?action=whatsnew
Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

58

Download from finelybook www.finelybook.com

Content-Length: 63

cartitem=1000&cartitem=1003 &Add+Items+to+Cart=Add+Items-+to+Cart

Listing 2-16: HTTP POST request from Burp Suite

The request shown in Listing 2-16 1s a typical POST request with URL-
encoded parameters (a set of special characters, some of which are whitespace
such as spaces and newlines). Note that this request uses plus signs (+) instead
of spaces. Save this request to a text file. We’ll use it later to systematically
fuzz the parameters being sent in the HTTP POST request.

The parameters in an HTTP POST request are included in the last line
of the request, which defines the data being posted in key/value form.
(Some POST requests post multipart forms or other exotic types of
data, but the general principle remains the same.)

Notice in this request that we are adding the items with an ID of 1000 and
1003 to the cart. Now look at the Firefox window, and you should notice that
these numbers correspond to the ItemNum column. We are posting a parameter
along with these IDs, essentially telling the application what to do with the
data we’re sending (namely, add the items to the cart). As you can see, the only
parameters that might be susceptible to SQL injection are the two cartitem
parameters, because these are the parameters that the server will interpret.

The Fuzzing Begins

Before we start fuzzing our POST request parameters, we need to set up a little
bit of data, as shown in Listing 2-17.

public static void Main(string[] args)
{
string[] requestLines = @File.ReadAllLines(args[0]);
@string[] parms = requestLines[requestLines.Length - 1].Split('&");
©string host = string. Empty;
StringBuilder requestBuilder = new @StringBuilder();

59

Download from finelybook www.finelybook.com

foreach (string In in requestLines)
{
if (In.StartsWith("Host:"))
host = In.Split(' ")[1].@Replace("\r", string. Empty);
requestBuilder. Append(In + "\n");
b

string request = requestBuilder. ToString() + "\r\n";
Console.WriteLine(request);

}

Listing 2-17: The Main() method reading a POST request and storing the Host header

We read the request from the file using File.ReadAllLines() @) and pass the
first argument to the fuzzing application as the argument to ReadAllLines(). We
use ReadAllLines() instead of ReadAllText() because we need to split the request
in order to get information out of it (namely, the Host header) before fuzzing.
After reading the request line by line into a string array and grabbing the
parameters from the last line of the file @, we declare two variables. The host
variable @ stores the IP address of the host we are sending the request to.
Declared below is a System.Text.StringBuilder @), which we’ll use to build the
full request as a single string.

NOTE

We use a StringBuilder because it's more performant than using the +=
operator with a basic string type (each time you call the += operator,
you create a new string object in memory). On a small file like this, you
won 't notice a difference, but when you're dealing with a lot of strings
in memory, you will. Using a StringBuilder creates only one object in
memory, resulting in much less memory overhead.

Now we loop through each line in the request that was previously read in.
We check whether the line begins with "Host:" and, if so, assign the second half
of the host string to the host variable. (This should be an IP address.) We then
call Replace() @ on the string to remove the trailing \r, which could be left by
some versions of Mono, since an IP address does not have \r in it. Finally, we
append the line with \r\n to the StringBuilder. Having built the full request, we
assign it to a new string variable called request. (For HTTP, your request must

60

Download from finelybook www.finelybook.com

end with \r\n; otherwise, the server response will hang.)

Fuzzing Parameters

Now that we have the full request to send, we need to loop through and attempt
to fuzz the parameters for SQL injections. Within this loop, we’ll use the
classes System.Net.Sockets.Socket and System.Net.IPEndPoint. Because we have the
full HTTP request as a string, we can use a basic socket to communicate with
the server instead of relying on the HTTP libraries to create the request for us.
Now we have all that we need to fuzz the server, as shown in Listing 2-18.

IPEndPoint rhost = @new IPEndPoint(IPAddress.Parse(host), 80);
foreach (string parm in parms)
{
using (Socket sock = new @Socket(AddressFamily.InterNetwork,
SocketType.Stream, Protocol Type.Tcp))

{
sock.@Connect (rhost);

string val = parm.@Split('=")[1];
string req = request.@Replace("="+ val, "="+ val + "");

byte[] reqBytes = @Encoding. ASCIL.GetBytes(req);
sock.@Send(reqBytes);

byte[] buf = new byte[sock.ReceiveBufferSize];

sock.@Receive(buf);

string response = @Encoding. ASCIIL GetString(buf);

if (response.Contains("error in your SQL syntax"))
Console.WriteLine("Parameter "+ parm + " seems vulnerable");
Console.Write("to SQL injection with value: "+ val + "™");

}
}

Listing 2-18: Additional code added to Main() method fuzzing the POST parameters

In Listing 2-18, we create a new IPEndPoint object @ by passing a new
[PAddress object returned by IPAddress.Parse(host) and the port we will be
connecting to on the IP address (80). Now we can loop over the parameters
grabbed from the requestLines variable previously. For each iteration, we need

61

Download from finelybook www.finelybook.com

to create a new Socket connection @ to the server, and we use the
AddressFamily.InterNetwork to tell the socket it 1s IPv4 (version 4 of the Internet
Protocol, as opposed to [Pv6) and use SocketType.Stream to tell the socket that
this 1s a streaming socket (stateful, two-way, and reliable). We also use
ProtocolType.Tep to tell the socket that the protocol to be used 1s TCP.

Once this object is instantiated, we can call Connect() € on it by passing
our IPEndPoint object rhost as an argument. After we have connected to the
remote host on port 80, we can begin fuzzing the parameter. We split the
parameter from the foreach loop on the equal sign (=) character @) and extract
the value of that parameter using the value in the second index of the array
(resulting from the method call). Then we call Replace() @ on the request string
to replace the original value with a tainted one. For example, if our value is
'foo' within the parameters string 'blah=foo&blergh=bar', we would replace foo
with foo' (note the apostrophe appended to the end of foo).

Next, we get a byte array representing the string using
Encoding. ASCILGetBytes() @, and we send it over the socket @ to the server
port specified in the IPEndPoint constructor. This is equivalent to making a
request from your web browser to the URL in the address bar.

After sending the request, we create a byte array equal to the size of the
response we will receive, and we fill it with the response from the server with
Receive() @. We use Encoding. ASCILGetString() @ to get the string that the byte
array represents, and we can then parse the response from the server. We check
the response from the server by checking whether the SQL error message we
expect is in the response data.

Our fuzzer should output any parameters that result in SQL errors, as shown
in Listing 2-19.

$ mono POST fuzzer.exe /tmp/request
Parameter cartitem=1000 seems vulnerable to SQL injection with value: 1000’
Parameter cartitem=1003 seems vulnerable to SQL injection with value: 1003’

$

Listing 2-19: Output from running the POST fuzzer on the request

As we can see in the fuzzer output, the cartitem HTTP parameter seems
vulnerable to a SQL injection. When we insert an apostrophe into the current
value of the HTTP parameter, we get back a SQL error in the HTTP response,

62

Download from finelybook www.finelybook.com

which makes this highly likely to be vulnerable to a SQL injection attacks.

Fuzzing JSON

As a pentester or security engineer, you will likely run into web services that
accept data serialized as JavaScript Object Notation (JSON) in some form as
input. In order to help you learn to fuzz JSON HTTP requests, I’ve written a
small web application called CsharpVulnJson that accepts JSON and uses the
information within to persist and search user-related data. A small virtual
appliance has been created so that the web service works out of the box; it 1s
available on the VulnHub website (http://www.vulnhub.com/).

Setting Up the Vulnerable Appliance

CsharpVulnJson ships as an OVA file, a completely self-contained virtual
machine archive that you can simply import into your choice of virtualization
suite. In most cases, double-clicking the OVA file should bring up your
virtualization software to automatically import the appliance.

Capturing a Vulnerable JSON Request

Once CsharpVulnJson is running, point Firefox to port 80 on the virtual
machine, and you should see a user management interface like the one shown in
Figure 2-7. We will focus on creating users with the Create User button and the
HTTP request this button makes when creating a user.

Assuming Firefox is still set up to pass through Burp Suite as an HTTP
proxy, fill in the Create a user fields and click Create User to yield an HTTP
request with the user information inside a JSON hash in Burp Suite’s request
pane, as in Listing 2-20.

63

http://www.vulnhub.com/

Download from finelybook www.finelybook.com

Default I -+ |

192.168.1.56 e | (B~ Google Q

Create a user List Users

Username Search
whatthebobiy

List Users
Password fdsfdsa Delete User
proganei TEW({ Delete User

whatthebobby Delete User
Age
42

Address Line 1
123 Main St

Address Line 2
City
Arden

State
>

ZIP
78727

First Name
Hank

Middle Name
Last Name
Hill

Create User

Figure 2-7: The CsharpVulnJson web application open in Firefox

POST /Vulnerable.ashx HTTP/1.1

Host: 192.168.1.56

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:26.0) Gecko/20100101
Firefox/26.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/json; charset=UTF-8

Referer: http://192.168.1.56/

Content-Length: 190

Cookie: ASPNET Sessionld=5D14CBCOD339F3F054674D8B
Connection: keep-alive

Pragma: no-cache

64

Download from finelybook www.finelybook.com

Cache-Control: no-cache

{"username": "whatthebobby","password": "propane1","age":42,"line1":"123 Main St",
"line2" "™, "city":"Arlen","state":"TX","zip": 78727, "first":"Hank","middle": "™, "last": "Hill",
"method":"create"}

Listing 2-20: Create User request with JSON containing user information to save to the
database

Now right-click the request pane and select Copy to File. When asked
where to save the HTTP request on your computer, make your choice and note
where the request was saved, because you’ll need to pass the path to the fuzzer.

Creating the JSON Fuzzer

In order to fuzz this HTTP request, we need to separate the JSON from the rest
of the request. We then need to iterate over each key/value pair in the JSON
and alter the value to try to induce any SQL errors from the web server.

Reading the Request File

To create the JSON HTTP request fuzzer, we start with a known-good HTTP
request (the Create User request). Using the previously saved HTTP request,

we can read in the request and begin the fuzzing process, as shown in Listing
2-21.

public static void Main(string[] args)

{
string url = @args[0];
string requestFile = @args[1];
string[] request = null;

using (StreamReader rdr = @new StreamReader(File.@®OpenRead(requestFile)))
request = rdr.@ReadToEnd().®Split("\n');

string json = @request[request.Length - 1];
JObject obj = @JObject.Parse(json);

Console.WriteLine("Fuzzing POST requests to URL "+ url);
Olterate AndFuzz(url, obj);

65

Download from finelybook www.finelybook.com

}

Listing 2-21: The Main method, which kicks off fuzzing the JSON parameter

The first thing we do is store the first @ and second @ arguments passed to
the fuzzer in two variables (url and requestFile, respectively). We also declare a
string array that will be assigned the data in our HTTP request after reading the
request from the filesystem.

Within the context of a using statement, we open our request file for reading
using File.OpenRead() @ and pass the file stream returned to the StreamReader
constructor €. With the new StreamReader class instantiated, we can read all
the data in the file with the ReadToEnd() method @. We also split the data in the
request file using the Split() method @, passing a newline character to the
method as the character to split the request up. The HTTP protocol dictates that
newlines (carriage returns and line feeds, specifically) be used to separate the
headers from the data being sent in the request. The string array returned by
Split() 1s assigned to the request variable we declared earlier.

Having read and split the request file, we can grab the JSON data we need
to fuzz and begin iterating through the JSON key/value pairs to find SQL
injection vectors. The JSON we want is the last line of the HTTP request,
which is the last element in the request array. Because 0 is the first element in
an array, we subtract 1 from the request array length, use the resulting integer
to grab the last element in the request array, and assign the value to the string
json (7}

Once we have the JSON separated from the HTTP request, we can parse
the json string and create a JObject that we can programmatically iterate on
using JObject.Parse() @. The JObject class is available in the Json.NET library,
freely available via the NuG