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Preface

We were pleasantly surprised by the ready acceptance of the first edition of
our book by the CFD community and by the amount of positive feedback
received over a period of 10 years. To us this has provided justification of
our original plan, which was to provide an accessible introduction to this
fast-growing topic to support teaching at senior undergraduate level, post-
graduate research and new industrial users of commercial CFD codes. Our
second edition seeks to enhance and update. The structure and didactic
approach of the first edition have been retained without change, but aug-
mented by a selection of the most important developments in CFD.

In our treatment of the physics of fluid flows we have added a summary
of the basic ideas underpinning large-eddy simulation (LES) and direct
numerical simulation (DNS). These resource-intensive turbulence predic-
tion techniques are likely to have a major impact in the medium term on
CFD due to the increased availability of high-end computing capability.

Over the last decade a number of new discretisation techniques and
solution approaches have come to the fore in commercial CFD codes. To
reflect these developments we have included summaries of TVD techniques,
which give stable, higher-order accurate solutions of convection—diffusion
problems, and of iterative techniques and multi-grid accelerators that are
now commonly used for the solution of systems of discretised equations. We
have also added examples of the SIMPLE algorithm for pressure—velocity
coupling to illustrate its workings.

At the time of writing our first edition, CFD was firmly established in the
aerospace, automotive and power generation sectors. Subsequently, it has
spread throughout engineering industry. This has gone hand in hand with
major improvements in the treatment of complex geometries. We have
devoted a new chapter to describing key aspects of unstructured meshing
techniques that have made this possible.

Application of CFD results in industrial research and design crucially
hinges on confidence in its outcomes. We have included a new chapter on
uncertainty in CFD results. Given the rapid growth in CFD applications it
is difficult to cover, within the space of a single introductory volume, even a
small part of the submodelling methodology that is now included in many
general-purpose CFD codes. Our selection of advanced application material
covers combustion and radiation algorithms, which reflects our local perspec-
tive as mechanical engineers with interest in internal flow and combustion.

Finally, we thank colleagues in UK and overseas universities who have
encouraged us with positive responses and constructive comments on our
first edition and our proposals for a second edition. We are also grateful to
several colleagues and postgraduate researchers who have given help in the
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development of material, particularly Dr Jonathan Henson, Dr Mamdud
Hossain, Dr Naminda Kandamby, Dr Andreas Haselbacher, Murthy
Ravikanti-Veera and Anand Odedra.

August 2006 H.K. Versteeg
Loughborough W. Malalasekera
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Chapter one Introduction

What is CFD?

Computational fluid dynamics or CFD is the analysis of systems involving
fluid flow, heat transfer and associated phenomena such as chemical reactions
by means of computer-based simulation. The technique is very powerful and
spans a wide range of industrial and non-industrial application areas. Some
examples are:

» aerodynamics of aircraft and vehicles: lift and drag

* hydrodynamics of ships

* power plant: combustion in internal combustion engines and gas
turbines

e turbomachinery: flows inside rotating passages, diffusers etc.

* electrical and electronic engineering: cooling of equipment including
microcircuits

* chemical process engineering: mixing and separation, polymer moulding

* external and internal environment of buildings: wind loading and
heating/ventilation

e marine engineering: loads on off-shore structures

* environmental engineering: distribution of pollutants and effluents

* hydrology and oceanography: flows in rivers, estuaries, oceans

* meteorology: weather prediction

* biomedical engineering: blood flows through arteries and veins

From the 1960s onwards the aerospace industry has integrated CFD tech-
niques into the design, R&D and manufacture of aircraft and jet engines.
More recently the methods have been applied to the design of internal
combustion engines, combustion chambers of gas turbines and furnaces.
Furthermore, motor vehicle manufacturers now routinely predict drag forces,
under-bonnet air flows and the in-car environment with CFD. Increasingly
CFD is becoming a vital component in the design of industrial products and
processes.

The ultimate aim of developments in the CFD field is to provide a
capability comparable with other CAE (computer-aided engineering) tools
such as stress analysis codes. The main reason why CFD has lagged behind
is the tremendous complexity of the underlying behaviour, which precludes
a description of fluid flows that is at the same time economical and sufficiently
complete. The availability of affordable high-performance computing hard-
ware and the introduction of user-friendly interfaces have led to a recent
upsurge of interest, and CFD has entered into the wider industrial commun-
ity since the 1990s.
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E How does a CFD

code work?

We estimate the minimum cost of suitable hardware to be between £5,000
and £10,000 (plus annual maintenance costs). The perpetual licence fee for
commercial software typically ranges from £10,000 to £50,000 depending on
the number of ‘added extras’ required. CFD software houses can usually arrange
annual licences as an alternative. Clearly the investment costs of a CFD cap-
ability are not small, but the total expense is not normally as great as that of a
high-quality experimental facility. Moreover, there are several unique advant-
ages of CFD over experiment-based approaches to fluid systems design:

* substantial reduction of lead times and costs of new designs

* ability to study systems where controlled experiments are difficult or
impossible to perform (e.g. very large systems)

* ability to study systems under hazardous conditions at and beyond their
normal performance limits (e.g. safety studies and accident scenarios)

e practically unlimited level of detail of results

The variable cost of an experiment, in terms of facility hire and/or person-
hour costs, is proportional to the number of data points and the number
of configurations tested. In contrast, CFD codes can produce extremely large
volumes of results at virtually no added expense, and it is very cheap to per-
form parametric studies, for instance to optimise equipment performance.

Below we look at the overall structure of a CFD code and discuss the
role of the individual building blocks. We also note that, in addition to a
substantial investment outlay, an organisation needs qualified people to run
the codes and communicate their results, and briefly consider the modelling
skills required by CFD users. We complete this otherwise upbeat section by
wondering whether the next constraint to the further spread of CFD amongst
the industrial community could be a scarcity of suitably trained personnel
instead of availability and/or cost of hardware and software.

CFD codes are structured around the numerical algorithms that can tackle
fluid flow problems. In order to provide easy access to their solving power
all commercial CFD packages include sophisticated user interfaces to input
problem parameters and to examine the results. Hence all codes contain three
main elements: (i) a pre-processor, (ii) a solver and (iii) a post-processor. We
briefly examine the function of each of these elements within the context of
a CFD code.

Pre-processor

Pre-processing consists of the input of a flow problem to a CFD program by
means of an operator-friendly interface and the subsequent transformation
of this input into a form suitable for use by the solver. The user activities at
the pre-processing stage involve:

e Definition of the geometry of the region of interest: the computational
domain

* Qrid generation — the sub-division of the domain into a number
of smaller, non-overlapping sub-domains: a grid (or mesh) of cells
(or control volumes or elements)

e Selection of the physical and chemical phenomena that need to be

modelled
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* Definition of fluid properties
* Specification of appropriate boundary conditions at cells which coincide
with or touch the domain boundary

The solution to a flow problem (velocity, pressure, temperature etc.) is defined
at nodes inside each cell. The accuracy of a CFD solution is governed by the
number of cells in the grid. In general, the larger the number of cells, the
better the solution accuracy. Both the accuracy of a solution and its cost in
terms of necessary computer hardware and calculation time are dependent
on the fineness of the grid. Optimal meshes are often non-uniform: finer in
areas where large variations occur from point to point and coarser in regions
with relatively little change. Efforts are under way to develop CFD codes
with a (self-)adaptive meshing capability. Ultimately such programs will auto-
matically refine the grid in areas of rapid variations. A substantial amount
of basic development work still needs to be done before these techniques are
robust enough to be incorporated into commercial CFD codes. At present
it is still up to the skills of the CFD user to design a grid that is a suitable
compromise between desired accuracy and solution cost.

Over 50% of the time spent in industry on a CFD project is devoted to
the definition of the domain geometry and grid generation. In order to max-
imise productivity of CFD personnel all the major codes now include their
own CAD-style interface and/or facilities to import data from proprietary
surface modellers and mesh generators such as PATRAN and I-DEAS.
Up-to-date pre-processors also give the user access to libraries of material
properties for common fluids and a facility to invoke special physical and
chemical process models (e.g. turbulence models, radiative heat transfer,
combustion models) alongside the main fluid flow equations.

Solver

There are three distinct streams of numerical solution techniques: finite
difference, finite element and spectral methods. We shall be solely concerned
with the finite volume method, a special finite difference formulation that is
central to the most well-established CFD codes: CFX/ANSYS, FLUENT,
PHOENICS and STAR-CD. In outline the numerical algorithm consists of
the following steps:

* Integration of the governing equations of fluid flow over all the (finite)
control volumes of the domain

* Discretisation — conversion of the resulting integral equations into a
system of algebraic equations

e Solution of the algebraic equations by an iterative method

The first step, the control volume integration, distinguishes the finite volume
method from all other CFD techniques. The resulting statements express
the (exact) conservation of relevant properties for each finite size cell. This
clear relationship between the numerical algorithm and the underlying
physical conservation principle forms one of the main attractions of the finite
volume method and makes its concepts much more simple to understand by
engineers than the finite element and spectral methods. The conservation
of a general flow variable ¢, e.g. a velocity component or enthalpy, within
a finite control volume can be expressed as a balance between the various
processes tending to increase or decrease it. In words we have:
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B Problem solving

with CFD

Net rate of Net rate of
Rate of change . . Net rate of
. increase of increase of .
of ¢ in the creation of
¢ due to ¢ due to -
control volume | = .. e +| ¢ inside the
. convection into diffusion into
with respect to control
. the control the control
time volume
volume volume

CFD codes contain discretisation techniques suitable for the treatment of
the key transport phenomena, convection (transport due to fluid flow) and
diffusion (transport due to variations of ¢ from point to point) as well as for
the source terms (associated with the creation or destruction of ¢) and the
rate of change with respect to time. The underlying physical phenomena
are complex and non-linear so an iterative solution approach is required.
The most popular solution procedures are by the TDMA (tri-diagonal
matrix algorithm) line-by-line solver of the algebraic equations and the
SIMPLE algorithm to ensure correct linkage between pressure and velocity.
Commercial codes may also give the user a selection of further, more
recent, techniques such as Gauss—Seidel point iterative techniques with
multigrid accelerators and conjugate gradient methods.

Post-processor

As in pre-processing, a huge amount of development work has recently taken
place in the post-processing field. Due to the increased popularity of engin-
eering workstations, many of which have outstanding graphics capabilities,
the leading CFD packages are now equipped with versatile data visualisation
tools. These include:

* Domain geometry and grid display

* Vector plots

e Line and shaded contour plots

e 2D and 3D surface plots

* Particle tracking

* View manipulation (translation, rotation, scaling etc.)
* Colour PostScript output

More recently these facilities may also include animation for dynamic result
display, and in addition to graphics all codes produce trusty alphanumeric
output and have data export facilities for further manipulation external to the
code. As in many other branches of CAE, the graphics output capabilities
of CFD codes have revolutionised the communication of ideas to the non-
specialist.

In solving fluid flow problems we need to be aware that the underlying
physics is complex and the results generated by a CFD code are at best as
good as the physics (and chemistry) embedded in it and at worst as good as
its operator. Elaborating on the latter issue first, the user of a code must have
skills in a number of areas. Prior to setting up and running a CFD simula-
tion there is a stage of identification and formulation of the flow problem in
terms of the physical and chemical phenomena that need to be considered.
Typical decisions that might be needed are whether to model a problem in
two or three dimensions, to exclude the effects of ambient temperature
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or pressure variations on the density of an air flow, to choose to solve the
turbulent flow equations or to neglect the effects of small air bubbles dis-
solved in tap water. To make the right choices requires good modelling
skills, because in all but the simplest problems we need to make assumptions
to reduce the complexity to a manageable level whilst preserving the salient
features of the problem at hand. It is the appropriateness of the simplifica-
tions introduced at this stage that at least partly governs the quality of the
information generated by CFD, so the user must continually be aware of all
the assumptions, clear-cut and tacit ones, that have been made.

Performing the computation itself requires operator skills of a different
kind. Specification of the domain geometry and grid design are the main
tasks at the input stage and subsequently the user needs to obtain a success-
ful simulation result. The two aspects that characterise such a result are
convergence and grid independence. The solution algorithm is iterative in
nature, and in a converged solution the so-called residuals — measures of the
overall conservation of the flow properties — are very small. Progress towards
a converged solution can be greatly assisted by careful selection of the set-
tings of various relaxation factors and acceleration devices. There are no
straightforward guidelines for making these choices since they are problem
dependent. Optimisation of the solution speed requires considerable experi-
ence with the code itself, which can only be acquired by extensive use. There
is no formal way of estimating the errors introduced by inadequate grid
design for a general flow. Good initial grid design relies largely on an insight
into the expected properties of the flow. A background in the fluid dynamics
of the particular problem certainly helps, and experience with gridding of
similar problems is also invaluable. The only way to eliminate errors due
to coarseness of a grid is to perform a grid dependence study, which is a
procedure of successive refinement of an initially coarse grid until certain
key results do not change. Then the simulation is grid independent. A sys-
tematic search for grid-independent results forms an essential part of all
high-quality CFD studies.

Every numerical algorithm has its own characteristic error patterns. Well-
known CFD euphemisms for the word ‘error’ are terms such as numerical
diffusion, false diffusion or even numerical flow. The likely error patterns
can only be guessed on the basis of a thorough knowledge of the algorithms.
At the end of a simulation the user must make a judgement whether the
results are ‘good enough’. It is impossible to assess the validity of the models
of physics and chemistry embedded in a program as complex as a CFD code
or the accuracy of its final results by any means other than comparison with
experimental test work. Anyone wishing to use CFD in a serious way must
realise that it is no substitute for experimentation, but a very powerful
additional problem solving tool. Validation of a CFD code requires highly
detailed information concerning the boundary conditions of a problem, and
generates a large volume of results. To validate these in a meaningful way it
is necessary to produce experimental data of similar scope. This may involve
a programme of flow velocity measurements with hot-wire anemometry,
laser Doppler anemometry or particle image velocimetry. However, if the
environment is too hostile for such delicate laboratory equipment or if it is
simply not available, static pressure and temperature measurements com-
plemented by pitot-static tube traverses can also be useful to validate some
aspects of a flow field.

Sometimes the facilities to perform experimental work may not (yet)
exist, in which case the CFD user must rely on (i) previous experience,
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(i1) comparisons with analytical solutions of similar but simpler flows and (iii)
comparisons with high-quality data from closely related problems reported in
the literature. Excellent sources of the last type of information can be found
in Transactions of the ASME (in particular the Journal of Fluids Engineering,
FJournal of Engineering for Gas Turbines and Power and Journal of Heat Transfer),
AIAA Fournal, Journal of Fluid Mechanics and Proceedings of the IMechE.

CFD computation involves the creation of a set of numbers that (hope-
fully) constitutes a realistic approximation of a real-life system. One of the
advantages of CFD is that the user has an almost unlimited choice of the
level of detail of the results, but in the prescient words of C. Hastings, written
in the pre-IT days of 1955: “The purpose of computing is insight not num-
bers.” The underlying message is rightly cautionary. We should make sure
that the main outcome of any CFD exercise is improved understanding of
the behaviour of a system, but since there are no cast-iron guarantees with
regard to the accuracy of a simulation, we need to validate our results fre-
quently and stringently.

It is clear that there are guidelines for good operating practice which can
assist the user of a CFD code, and repeated validation plays a key role as the
final quality control mechanism. However, the main ingredients for success
in CFD are experience and a thorough understanding of the physics of fluid
flows and the fundamentals of the numerical algorithms. Without these it is
very unlikely that the user will get the best out of a code. It is the intention
of this book to provide all the necessary background material for a good
understanding of the internal workings of a CFD code and its successful
operation.

This book seeks to present all the fundamental material needed for good
simulation of fluid flows by means of the finite volume method, and is split
into three parts. The first part, consisting of Chapters 2 and 3, is concerned
with the fundamentals of fluid flows in three dimensions and turbulence.
The treatment starts with the derivation of the governing partial differential
equations of fluid flows in Cartesian co-ordinates. We stress the commonal-
ities in the resulting conservation equations and arrive at the so-called trans-
port equation, which is the basic form for the development of the numerical
algorithms that are to follow. Moreover, we look at the auxiliary conditions
required to specify a well-posed problem from a general perspective and
quote a set of recommended boundary conditions and a number of derived
ones that are useful in CFD practice. Chapter 3 represents the development
of the concepts of turbulence that are necessary for a full appreciation of the
finer details of CFD in many engineering applications. We look at the
physics of turbulence and the characteristics of some simple turbulent flows
and at the consequences of the appearance of random fluctuations on the flow
equations. The resulting equations are not a closed or solvable set unless we
introduce a turbulence model. We discuss the principal turbulence models
that are used in industrial CFD, focusing our attention on the #—€ model,
which is very popular in general-purpose flow computations. Some of the
more recent developments that are likely to have a major impact on CFD in
the near future are also reviewed.

Readers who are already familiar with the derivation of the 3D flow equa-
tions can move on to the second part without loss of continuity. Apart from
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the discussion of the #—¢ turbulence model, to which we return later, the
material in Chapters 2 and 3 is largely self-contained. This allows the use
of this book by those wishing to concentrate principally on the numerical
algorithms, but requiring an overview of the fluid dynamics and the math-
ematics behind it for occasional reference in the same text.

The second part of the book is devoted to the numerical algorithms of
the finite volume method and covers Chapters 4 to 9. Discretisation schemes
and solution procedures for steady flows are discussed in Chapters 4 to 7.
Chapter 4 describes the basic approach and derives the central difference
scheme for diffusion phenomena. In Chapter 5 we emphasise the key prop-
erties of discretisation schemes, conservativeness, boundedness and trans-
portiveness, which are used as a basis for the further development of the
upwind, hybrid, QUICK and TVD schemes for the discretisation of con-
vective terms. The non-linear nature of the underlying flow phenomena and
the linkage between pressure and velocity in variable density fluid flows
requires special treatment, which is the subject of Chapter 6. We introduce
the SIMPLE algorithm and some of its more recent derivatives and also
discuss the PISO algorithm. In Chapter 7 we describe algorithms for the
solution of the systems of algebraic equations that appear after the discret-
isation stage. We focus our attention on the well-known TDMA algorithm,
which was the basis of early CFD codes, and point iterative methods with
multigrid accelerators, which are the current solvers of choice.

The theory behind all the numerical methods is developed around a set
of worked examples which can be easily programmed on a PC. This pres-
entation gives the opportunity for a detailed examination of all aspects of the
discretisation schemes, which form the basic building blocks of practical
CFD codes, including the characteristics of their solutions.

In Chapter 8 we assess the advantages and limitations of various schemes
to deal with unsteady flows, and Chapter 9 completes the development of the
numerical algorithms by considering the practical implementation of the
most common boundary conditions in the finite volume method.

The book is primarily aimed to support those who have access to a CFD
package, so that the issues raised in the text can be explored in greater depth.
The solution procedures are nevertheless sufficiently well documented for
the interested reader to be able to start developing a CFD code from scratch.

The third part of the book consists of a selection of topics relating to the
application of the finite volume method to complex industrial problems. In
Chapter 10 we review aspects of accuracy and uncertainty in CFD. It is not
possible to predict the error in a CFD result from first principles, which
creates some problems for the industrial user who wishes to evolve equip-
ment design on the basis of insights gleaned from CFD. In order to address
this issue a systematic process has been developed to assist in the quantifica-
tion of the uncertainty of CFD output. We discuss methods, the concepts of
verification and validation, and give a summary of rules for best practice that
have been developed by the CFD community to assist users. In Chapter 11
we discuss techniques to cope with complex geometry. We review various
approaches based on structured meshes: Cartesian co-ordinate systems, gen-
eralised co-ordinate systems based on transformations, and block-structured
grids, which enable design of specific meshes tailored to the needs of dif-
ferent parts of geometry. We give details of the implementation of the finite
volume method on unstructured meshes. These are not based on a grid of
lines to define nodal positions and can include control volumes that can have
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any shape. Consequently, unstructured meshes have the ability to match
the boundary shape of CFD solution domains of arbitrary complexity. This
greatly facilitates the design and refinement of meshes, so that unstructured
meshes are the most popular method in industrial CFD applications. The
remaining Chapters 12 and 13 are concerned with one of the most significant
engineering applications of CFD: energy technology and combusting systems.
In order to provide a self-contained introduction to the most important
aspects of CFD in reacting flows, we introduce in Chapter 12 the basic
thermodynamic and chemical concepts of combustion and review the most
important models of combustion. Our particular focus is the laminar flamelet
model of non-premixed turbulent combustion, which is the most widely
researched model with capabilities to predict the main combustion reaction
and pollutant species concentrations. In the final Chapter 13 we discuss CFD
techniques to predict radiative heat transfer, a good understanding of which
is necessary for accurate combustion calculations.



Chapter two

Governing
equations of fluid
flow and heat transfer

Conservation laws of fluid

motion and boundary conditions

In this chapter we develop the mathematical basis for a comprehensive
general-purpose model of fluid flow and heat transfer from the basic prin-
ciples of conservation of mass, momentum and energy. This leads to the
governing equations of fluid flow and a discussion of the necessary auxiliary
conditions — initial and boundary conditions. The main issues covered in this
context are:

e Derivation of the system of partial differential equations (PDEs) that
govern flows in Cartesian (x, y, z) co-ordinates

* Thermodynamic equations of state

* Newtonian model of viscous stresses leading to the Navier—Stokes
equations

e Commonalities between the governing PDEs and the definition of the
transport equation

* Integrated forms of the transport equation over a finite time interval and
a finite control volume

* Classification of physical behaviours into three categories: elliptic,
parabolic and hyperbolic

e Appropriate boundary conditions for each category

* Classification of fluid flows

* Auxiliary conditions for viscous fluid flows

* Problems with boundary condition specification in high Reynolds
number and high Mach number flows

The governing equations of fluid flow represent mathematical statements of
the conservation laws of physics:

e The mass of a fluid is conserved

* The rate of change of momentum equals the sum of the forces on a fluid
particle (Newton’s second law)

e The rate of change of energy is equal to the sum of the rate of heat
addition to and the rate of work done on a fluid particle (first law of
thermodynamics)

The fluid will be regarded as a continuum. For the analysis of fluid flows
at macroscopic length scales (say 1 wm and larger) the molecular structure
of matter and molecular motions may be ignored. We describe the behaviour
of the fluid in terms of macroscopic properties, such as velocity, pressure,
density and temperature, and their space and time derivatives. These may
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Figure 2.1 Fluid element for

conservation laws

211

be thought of as averages over suitably large numbers of molecules. A fluid
particle or point in a fluid is then the smallest possible element of fluid whose
macroscopic properties are not influenced by individual molecules.

We consider such a small element of fluid with sides dx, dy and Oz
(Figure 2.1).

(x ¥ 2 8z
,,,,, Iy

The six faces are labelled N, S, E, W, T and B, which stands for North,
South, East, West, Top and Bottom. The positive directions along the co-
ordinate axes are also given. The centre of the element is located at position
(%, 5, 2). A systematic account of changes in the mass, momentum and energy
of the fluid element due to fluid flow across its boundaries and, where appro-
priate, due to the action of sources inside the element, leads to the fluid flow
equations.

All fluid properties are functions of space and time so we would strictly
need to write p(x, y, 2, 1), p(x, y, 2, t), T(x, y, 2, t) and u(x, y, 2, t) for the
density, pressure, temperature and the velocity vector respectively. To avoid
unduly cumbersome notation we will not explicitly state the dependence on
space co-ordinates and time. For instance, the density at the centre (x, y, 2)
of a fluid element at time # is denoted by p and the x-derivative of, say, pres-
sure p at (v, y, z) and time ¢ by dp/ dx. This practice will also be followed for
all other fluid properties.

The element under consideration is so small that fluid properties at the
faces can be expressed accurately enough by means of the first two terms
of a Taylor series expansion. So, for example, the pressure at the /7 and E
faces, which are both at a distance of %5x from the element centre, can be
expressed as

_%

l5x and p+ @l&c
v 2 o.

x 2

Mass conservation in three dimensions

The first step in the derivation of the mass conservation equation is to write
down a mass balance for the fluid element:

Rate of increase Net rate of flow
of mass in fluid = of mass into
element fluid element
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The rate of increase of mass in the fluid element is
—(p5x5y5z) —5x5y5z 2.1

Next we need to account for the mass flow rate across a face of the element,
which is given by the product of density, area and the velocity component
normal to the face. From Figure 2.2 it can be seen that the net rate of flow of
mass into the element across its boundaries is given by

a(pu ) 8(pu)1
+(pv Idpe) L Jss ( MGCON j5x5z
dy 2 dy 2

_dpm) 1 B 9(pw) 1
+ [pw g 25z] Ox Oy (p = j5 woy  (2.2)

£

Flows which are directed into the element produce an increase of mass in the
element and get a positive sign and those flows that are leaving the element
are given a negative sign.

Figure 2.2 Mass flows in and pw+8(pw). 1,
out of fluid element Jz 2
V+M-£6y
P dy 2
]
.. ‘
M dpu) 1
. | purZol 5o
— o | -t—
_dpu) 1 sx x5, 2! \
ox 2 @ Ke----------- Ll
A IS N
y 200 Lo

The rate of increase of mass inside the element (2.1) is now equated to the
net rate of flow of mass into the element across its faces (2.2). All terms of the
resulting mass balance are arranged on the left hand side of the equals sign
and the expression is divided by the element volume Sxdydz. This yields

I dpu)  dpv)  dpw)

=0 (2.3)
ot ox ady oz
or in more compact vector notation
? + div(pu) =0 (2.4)
A

Equation (2.4) is the unsteady, three-dimensional mass conservation
or continuity equation at a point in a compressible fluid. The first term
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2.1.2

on the left hand side is the rate of change in time of the density (mass per unit
volume). The second term describes the net flow of mass out of the element
across its boundaries and is called the convective term.

For an incompressible fluid (i.e. a liquid) the density p is constant and
equation (2.4) becomes

divu=0 (2.5)
or in longhand notation

ou dv Oow

ox dy Iz

Rates of change following a fluid particle and for a fluid
element

The momentum and energy conservation laws make statements regarding
changes of properties of a fluid particle. This is termed the Lagrangian
approach. Each property of such a particle is a function of the position
(x, y, 2) of the particle and time ¢. Let the value of a property per unit mass
be denoted by ¢@. The total or substantive derivative of ¢ with respect to time
following a fluid particle, written as D@/ D, is

%_@+8¢dx+8¢dy+8¢dz
Dt &  Ovdi dy dt  dz di

A fluid particle follows the flow, so dx/dt = u, dy/dt = v and dz/d¢ = w.
Hence the substantive derivative of ¢ is given by

Dp_2, 9, 9 00 _0¢
Dt o ox ady dz o

D¢/ Dt defines rate of change of property ¢ per unit mass. It is possible
to develop numerical methods for fluid flow calculations based on the
Lagrangian approach, i.e. by tracking the motion and computing the rates of
change of conserved properties ¢ for collections of fluid particles. However,
it is far more common to develop equations for collections of fluid elements
making up a region fixed in space, for example a region defined by a duct, a
pump, a furnace or similar piece of engineering equipment. This is termed
the Eulerian approach.

As in the case of the mass conservation equation, we are interested in
developing equations for rates of change per unit volume. The rate of change
of property ¢ per unit volume for a fluid particle is given by the product of
D¢/ Dr and density p, hence

p% = [@ +u . grad q)J (2.8)

+u.grad ¢ (2.7)

Di or
The most useful forms of the conservation laws for fluid flow computation
are concerned with changes of a flow property for a fluid element that is
stationary in space. The relationship between the substantive derivative of @,

which follows a fluid particle, and rate of change of ¢ for a fluid element is
now developed.
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The mass conservation equation contains the mass per unit volume (i.e.
the density p) as the conserved quantity. The sum of the rate of change of
density in time and the convective term in the mass conservation equation
(2.4) for a fluid element is

@ + div(pu)
ot

The generalisation of these terms for an arbitrary conserved property is

‘9(; P\ div(pou) 2.9)

Formula (2.9) expresses the rate of change in time of @ per unit volume plus
the net flow of ¢ out of the fluid element per unit volume. It is now rewritten
to illustrate its relationship with the substantive derivative of ¢:

a(”"” AP | div(pgu) = {? +u. grad ¢} + ¢[%’; + div(pu)}
i

= p% (2.10)

The term ¢[(dp/ ) + div(pu)] is equal to zero by virtue of mass conserva-
tion (2.4). In words, relationship (2.10) states

Rate of increase Net rate of flow Rate of increase
of ¢ of fluid + of ¢ out of = of¢fora
element fluid element fluid particle

To construct the three components of the momentum equation and the
energy equation the relevant entries for ¢ and their rates of change per unit
volume as defined in (2.8) and (2.10) are given below:

y-momentum u p% % + div(puu)
y-momentum | v | p22 &(p %) ¢ div(pou)
z-momentum w p% 8(5 ) + div(pmwu)
energy | pRE KPE) , div(pku)

Both the conservative (or divergence) form and non-conservative form of the
rate of change can be used as alternatives to express the conservation of a
physical quantity. The non-conservative forms are used in the derivations of
momentum and energy equations for a fluid flow in sections 2.4 and 2.5 for
brevity of notation and to emphasise that the conservation laws are funda-
mentally conceived as statements that apply to a particle of fluid. In the final
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Figure 2.3 Stress components
on three faces of fluid element

section 2.8 we will return to the conservative form that is used in finite vol-
ume CFD calculations.

Momentum equation in three dimensions

Newton’s second law states that the rate of change of momentum of a fluid
particle equals the sum of the forces on the particle:

Rate of increase of Sum of forces
momentum of = on
fluid particle fluid particle

The rates of increase of x-, y- and z-momentum per unit volume of a

fluid particle are given by
Du Do Dw
— — — 2.11
P Dt P Dt P Dt @1

We distinguish two types of forces on fluid particles:

* surface forces
— pressure forces
— viscous forces
— gravity force
* body forces
— centrifugal force
— Coriolis force
— electromagnetic force

It is common practice to highlight the contributions due to the surface forces
as separate terms in the momentum equation and to include the effects of
body forces as source terms.

The state of stress of a fluid element is defined in terms of the pressure
and the nine viscous stress components shown in Figure 2.3. The pressure,
a normal stress, is denoted by p. Viscous stresses are denoted by 7. The usual
suffix notation 7; is applied to indicate the direction of the viscous stresses.
The suffices i and j in 7 indicate that the stress component acts in the j-
direction on a surface normal to the /-direction.

Tz \ "\ Tox
T, ‘
. T
. ” [Ty 4 D
o T Wa,
| .,
I T
| 7
TeY__ 7 ,,yf,,il ad
T, N
x X A Ny

First we consider the x-components of the forces due to pressure p and
stress components T,,, T,,and 7, shown in Figure 2.4. The magnitude of a
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Figure 2.4 Stress components
in the x-direction

force resulting from a surface stress is the product of stress and area. Forces
aligned with the direction of a co-ordinate axis get a positive sign and those
in the opposite direction a negative sign. The net force in the x-direction is
the sum of the force components acting in that direction on the fluid element.

T, 1

T+

! op 1
1 —_—
p—g—p 78x\ ; p+ae 50
X 2 | emdea=y b — !

e } e | e
—— | === —
TXX,@_}& 777777777777 < TXX+‘71'X }5)(
ox 2 , P ~o x 2

)"\T_, \
I, 1
X _ It 1
Tox > 262

On the pair of faces (£, W) we have

ap 1 or,, 1 op 1
L N B P TR N Setllps 22
[(p ox 2 x} [TM ov 2 J]@/ z+[ [ +3x2 xj

+ [TM + BTX“'l&c]} 0yoz = [ Bp oF ”]5 wdyoz  (2.12a)
ox 2

8x o

The net force in the x-direction on the pair of faces (N, §) is

- T),x_ﬂlay Sxbz + T),x+%l®/ G062 = 255 505,62
Ty 2 Ty 2 dy

(2.12b)

Finally the net force in the x-direction on faces 7 and B is given by

g, o] S0 Sl + | T+ P L | sesy = ua 8y
0 8z

4
(2.12¢)

The total force per unit volume on the fluid due to these surface stresses is
equal to the sum of (2.12a), (2.12b) and (2.12¢) divided by the volume
Ox Oy Oz:
I+ | O | O (2.13)
ox dy 0z
Without considering the body forces in further detail their overall effect
can be included by defining a source .S;, of x-momentum per unit volume
per unit time.
The x-component of the momentum equation is found by setting
the rate of change of x-momentum of the fluid particle (2.11) equal to the



16

CHAPTER 2 CONSERVATION LAWS OF FLUID MOTION

2.1.4

total force in the w-direction on the element due to surface stresses (2.13)
plus the rate of increase of x-momentum due to sources:

Du_optd) O 0%, o (2.14a)
Dt ox dy oz

It is not too difficult to verify that the y-component of the momentum
equation is given by

p2o Oty I HT) O g (2.14b)
Dt ox ady oz :

and the z-component of the momentum equation by

Dw:%Jr%Jr&(—errz)

— +.S 2.14
Poi " T O e (2.14c)

The sign associated with the pressure is opposite to that associated with the
normal viscous stress, because the usual sign convention takes a tensile stress
to be the positive normal stress so that the pressure, which is by definition a
compressive normal stress, has a minus sign.

The effects of surface stresses are accounted for explicitly; the source
terms Sy, Sy, and S, in (2.14a—) include contributions due to body forces
only. For example, the body force due to gravity would be modelled by
Sy =0, Sy, =0and Sy, =—pg.

Energy equation in three dimensions

The energy equation is derived from the first law of thermodynamics,
which states that the rate of change of energy of a fluid particle is equal to the
rate of heat addition to the fluid particle plus the rate of work done on the
particle:

Rate of increase Net rate of Net rate of work
of energy of = heataddedto + doneon
fluid particle fluid particle fluid particle

As before, we will be deriving an equation for the rate of increase of

energy of a fluid particle per unit volume, which is given by
DE
== 2.15
P, (2.15)

Work done by surface forces

The rate of work done on the fluid particle in the element by a surface
force is equal to the product of the force and velocity component in the
direction of the force. For example, the forces given by (2.12a—c) all act in
the x-direction. The work done by these forces is given by
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s
ox ax 2
— | pu+ 8(81:;) %5&5] + [Tmu + %%5&5]} 0y oz

4——(%u (£ME®J+(%u (éfg@J Sv6z

+ —(‘L'Mu 8( )1 ZJ+(TMM 8( u)l J5x5y
oz 2 oz 2

The net rate of work done by these surface forces acting in the x-direction is
given by
8(u(—p + Txa)) a(” )/1) a(urzx)
ox ady oz
Surface stress components in the y- and z-direction also do work on the fluid

particle. A repetition of the above process gives the additional rates of work
done on the fluid particle due to the work done by these surface forces:

'aw%o Av(p+1,)) , 9vT,)
ox dy 0z

} O0x0y Oz (2.16a)

} Sx8ydz (2.16b)

and

dwr) | It dw(p+ )
ox ady oz

} O0x 0y Oz (2.16¢)

The total rate of work done per unit volume on the fluid particle by all
the surface forces is given by the sum of (2.16a—c) divided by the volume
Ox9ydz. The terms containing pressure can be collected together and written
more compactly in vector form

dup) I(wp) d(wp) _
ox dy oz

This yields the following total rate of work done on the fluid particle by
surface stresses:

= —div(pu)

8(1”[11) 8(” _)/l) 8(u ) (vTxy) a(v )g/)
ox ay 0z ox oy
L) A | AT At
oz ox dy oz

[—div(pu)] + {

2.17)

Energy flux due to heat conduction

The heat flux vector q has three components: ¢,, ¢, and ¢, (Figure 2.5).
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Figure 2.5 Components of the o+ de: 1,
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The net rate of heat transfer to the fluid particle due to heat flow in
the x-direction is given by the difference between the rate of heat input
across face /7 and the rate of heat loss across face E:

8q11 &qu &qx
———=0 |- | g, ~—0 0z =——=0x0y0z (2.18
{[% ox 2 x) (qﬁ- ox 2 x)] &0 ox "o (218

Similarly, the net rates of heat transfer to the fluid due to heat flows in the
y-and z-direction are

—L6xdydz and —%&c@/ﬁz (2.18b—c)
2

The total rate of heat added to the fluid particle per unit volume due to heat
flow across its boundaries is the sum of (2.18a—c) divided by the volume

Oxdyoz:
- E o divg (2.19)

Fourier’s law of heat conduction relates the heat flux to the local temperature
gradient. So

oT oT oT
qx:_k_ qy:_k_ q:.:_k_
ox dy oz
This can be written in vector form as follows:
q=—kgrad T (2.20)

Combining (2.19) and (2.20) yields the final form of the rate of heat
addition to the fluid particle due to heat conduction across element
boundaries:

—div q = div(k grad T) 2.21)

Energy equation

Thus far we have not defined the specific energy £ of a fluid. Often the
energy of a fluid is defined as the sum of internal (thermal) energy 7, kinetic
energy +(u? + v* + w?) and gravitational potential energy. This definition
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takes the view that the fluid element is storing gravitational potential energy.
It is also possible to regard the gravitational force as a body force, which does
work on the fluid element as it moves through the gravity field.

Here we will take the latter view and include the effects of potential
energy changes as a source term. As before, we define a source of energy S
per unit volume per unit time. Conservation of energy of the fluid particle is
ensured by equating the rate of change of energy of the fluid particle (2.15)
to the sum of the net rate of work done on the fluid particle (2.17), the net
rate of heat addition to the fluid (2.21) and the rate of increase of energy due
to sources. The energy equation is

DE [ du) | o) | 9,
Dt ox dy oz ox

L) den) v | dws) )
dy oz ox ady oz
+div(k grad T) + .S, (2.22)

In equation (2.22) we have £ =17+ %(u2 + 0 + w?).

Although (2.22) is a perfectly adequate energy equation it is common
practice to extract the changes of the (mechanical) kinetic energy to obtain
an equation for internal energy ¢ or temperature 7. The part of the energy
equation attributable to the kinetic energy can be found by multiplying the
r-momentum equation (2.14a) by velocity component #, the y-momentum
equation (2.14b) by v and the z-momentum equation (2.14c) by » and
adding the results together. It can be shown that this yields the following
conservation equation for the kinetic energy:

102, 2, 2
pD[z(u e +w)]=—u.gradp+u %+%+%
Dt ox dy 0z
ov dy 0z

ox dy 0z

+w(arxz+%+%J +u-SM (223)

Subtracting (2.23) from (2.22) and defining a new source term as
S; =Sy —u. Sy yields the internal energy equation

Di du ou ou
—=—pdivu+div(bgrad "+ 7, —+7,—+ T.,—
th 74 (kg )+ T, g EY

dv dv dv
+ Txy&_ + T]/yg_ + Tz]/&_
S ox oy S o2

ow ow ow
+T,.—+

Xz Ty 22~ i 2.24
o oy oz (2.24)
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Equations of
state

For the special case of an incompressible fluid we have i = ¢7, where ¢ is the
specific heat and div u=0. This allows us to recast (2.24) into a temperature
equation

=
Jv

DT du
c—— =div(k grad T) + T,,—
P (k grad T) + 7, —

Ju
+ T

yx 5

ow

+

ow

Ju

szg

+

v
PN

ow

+7,—+7T.—+3S;

v
+ Ty —+ Ty—+ To—+ T, - i
ox T dy oz

, 3 2.25
7 dy Y 0z (2.25)

For compressible flows equation (2.22) is often rearranged to give an equa-
tion for the enthalpy. The specific enthalpy % and the specific total enthalpy
hy of a fluid are defined as

h=i+p/p and hy=h+3?+ 2+ w?)
Combining these two definitions with the one for specific energy E we get
hy=i+p/p+5W+ >+ w?)=E+p/p (2.26)

Substitution of (2.26) into (2.22) and some rearrangement yields the (total)
enthalpy equation

Iphy) div(phyu) = div(k grad 7)) + 2
» ot

+ a(urﬁm) + a(uT)/JL) + a(urzx)
ox dy oz

+ a(vrxy) + a(vr)/y) + a(szy)
ox ady oz

+ a(lprxz) + a(wq’-yz) + a(lpTzz) + S/l
ox dy oz

(2.27)

It should be stressed that equations (2.24), (2.25) and (2.27) are not new (extra)
conservation laws but merely alternative forms of the energy equation (2.22).

The motion of a fluid in three dimensions is described by a system of five
partial differential equations: mass conservation (2.4), x-, y- and z-momentum
equations (2.14a—c) and energy equation (2.22). Among the unknowns are
four thermodynamic variables: p, p, 7 and 7. In this brief discussion we point
out the linkage between these four variables. Relationships between the
thermodynamic variables can be obtained through the assumption of thermo-
dynamic equilibrium. The fluid velocities may be large, but they are
usually small enough that, even though properties of a fluid particle change
rapidly from place to place, the fluid can thermodynamically adjust itself to
new conditions so quickly that the changes are effectively instantaneous. Thus
the fluid always remains in thermodynamic equilibrium. The only exceptions
are certain flows with strong shockwaves, but even some of those are often
well enough approximated by equilibrium assumptions.
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Navier—Stokes
equations for a
Newtonian fluid

We can describe the state of a substance in thermodynamic equilibrium
by means of just two state variables. Equations of state relate the other
variables to the two state variables. If we use p and 7 as state variables we
have state equations for pressure p and specific internal energy

p=pp, T) and i=ip, T) (2.28)
For a perfect gas the following, well-known, equations of state are useful:
p=pRT and i=C,T (2.29)

The assumption of thermodynamic equilibrium eliminates all but the two
thermodynamic state variables. In the flow of compressible fluids the
equations of state provide the linkage between the energy equation on the
one hand and mass conservation and momentum equations on the other.
This linkage arises through the possibility of density variations as a result of
pressure and temperature variations in the flow field.

Liquids and gases flowing at low speeds behave as incompressible
fluids. Without density variations there is no linkage between the energy
equation and the mass conservation and momentum equations. The flow
field can often be solved by considering mass conservation and momentum
equations only. The energy equation only needs to be solved alongside the
others if the problem involves heat transfer.

The governing equations contain as further unknowns the viscous stress
components 7;. The most useful forms of the conservation equations for

uid flows are obtained by introducing a suitable model for the viscous
stresses 7;. In many fluid flows the viscous stresses can be expressed as func-
tions of the local deformation rate or strain rate. In three-dimensional flows
the local rate of deformation is composed of the linear deformation rate and
the volumetric deformation rate.

All gases and many liquids are isotropic. Liquids that contain signific-
ant quantities of polymer molecules may exhibit anisotropic or directional
viscous stress properties as a result of the alignment of the chain-like polymer
molecules with the flow. Such fluids are beyond the scope of this intro-
ductory course and we shall continue the development by assuming that the
fluids are isotropic.

The rate of linear deformation of a fluid element has nine components
in three dimensions, six of which are independent in isotropic fluids
(Schlichting, 1979). They are denoted by the symbol s;. The suffix system
is identical to that for stress components (see section 2.1.3). There are three
linear elongating deformation components:

ad d ad
=y = =2 (2.30a)
ov 7 dy oz
There are also six shearing linear deformation components:
1(du Jv 1(du Jw
Sy =S, =—|—+—| and s, =s5,=—| —+—
2l dy ox 2| dz o«
I(dv d
§0 =Sy = —| =+ == (2.30b)
210z dy
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The volumetric deformation is given by

%+@+@= divu (2.30c)

ov dy 0z
In a Newtonian fluid the viscous stresses are proportional to the rates
of deformation. The three-dimensional form of Newton’s law of viscosity
for compressible flows involves two constants of proportionality: the first
(dynamic) viscosity, U, to relate stresses to linear deformations, and the sec-
ond viscosity, A, to relate stresses to the volumetric deformation. The nine
viscous stress components, of which six are independent, are

trx=2u@+/ldivu T),l,zz,u@+/1divu Tzz=2y&—w+/ldivu
Ox ’ ad 0z

94
B LN [ L
0= he=H dy ox o= = H Jdz  Ox
& ow
T,,=T,= u(g + o'?_)/j (2.31)

Not much is known about the second viscosity A4, because its effect is small
in practice. For gases a good working approximation can be obtained by
taking the value A = —3 (Schlichting, 1979). Liquids are incompressible so
the mass conservation equation is div u = () and the viscous stresses are just
twice the local rate of linear deformation times the dynamic viscosity.

Substitution of the above shear stresses (2.31) into (2.14a—c) yields the
so-called Navier—Stokes equations, named after the two nineteenth-century
scientists who derived them independently:

Du dp 0 ou . d Ju dv
p—=—"—+—|2u—+Adiva| +—| u| —+—
Dt ox O ox dy dy Oox

J du ow
i 4= S 2.32
" oz [ﬂ(8z+ (9ij| e (232
p&:—@+i u %+@ +i zu@+ldivu
Dt dy ox| |dy ox dy| Iy
d Jdv ow
I I O R 2.32b
+&Z[u(&z+ ayﬂ +Sy, ( )

Dw dp d du Jw d dv odw
p—=—— b —| | —+— || +—| pu| —+ —
Dt oz Ox dz  Ox dy dz dy

+ i[zua—”’ + A div u] + Sy (2.32¢)

£4 £4
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Often it is useful to rearrange the viscous stress terms as follows:

d ou ) d ou v d ou Ow
—| 2u—+Adiva |+ —| | —+— ||+ —| Y| —+—
ox ox dy dy ox oz odz  Ox
N I R DR B R
ox u&x dy u&y oz u&z

+ I 2 +i % +i @+i(ldivu)
o 'uax dy 'uax oz H ov | ok

= div(u grad u) + [sy,]

The viscous stresses in the y- and z-component equations can be recast in a
similar manner. We clearly intend to simplify the momentum equations by
‘hiding’ the bracketed smaller contributions to the viscous stress terms in the
momentum source. Defining a new source by

Su=Syu+Isul (2.33)

the Navier—Stokes equations can be written in the most useful form for
the development of the finite volume method:

D o,

p—u -2 + div(u grad u) + .Sy, (2.34a)
Dt ox
Dv ap .

pE = —5 + div(u grad o) + Sy, (2.34b)
D

=2 = % + div(u grad w) + .S, (2.34¢)
Dt oz

If we use the Newtonian model for viscous stresses in the internal energy
equation (2.24) we obtain after some rearrangement

Di

pyy =0 divutdive grad T) + @ 4.5, (2.35)
4

All the effects due to viscous stresses in this internal energy equation are
described by the dissipation function @, which, after considerable algebra,
can be shown to be equal to

2 2 2
DO=pu42 % + @ + %
ox dy oz

du v ’ du Jdw ’ dv dw ’
tl—t—| +|—F+—| +| =—+—
dy Oox oJx  Ox oz dy

+ A(div u)? (2.36)
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Conservative form
of the governing
equations of fluid flow

Differential and
integral forms
of the general

transport equations

The dissipation function is non-negative since it only contains squared terms
and represents a source of internal energy due to deformation work on the
fluid particle. This work is extracted from the mechanical agency which
causes the motion and converted into internal energy or heat.

To summarise the findings thus far, we quote in Table 2.1 the conservative
or divergence form of the system of equations which governs the time-
dependent three-dimensional fluid flow and heat transfer of a compressible
Newtonian fluid.

Table 2.1 Governing equations of the flow of a compressible Newtonian fluid

9
Continuity 5/3 + div(pu) =0 (2.4)
'
dpu) . 9
x-momentum + div(puu) = _3_ + div(u grad u) + .Sy, (2.37a)
v
dpv) P
y-momentum 7 + div(pou) = _(9_ + div(u grad v) + .8,y (2.37b)
Y
dpm) . P
Z-momentum + div(pwu) = _3_ + div(u grad w) + Sy, (2.37¢)
' 24
api) . : :
Energy 7 + div(prua) = —p div u + div(k grad 7) + @ +.5; (2.38)
Equations p=p(p, T)and i=i(p, T) (2.28)
of state
e.g. perfect gas p = pR7 and i = C,T (2.29)

Momentum source .S, and dissipation function @ are defined by (2.33)
and (2.36) respectively.

It is interesting to note that the thermodynamic equilibrium assumption of
section 2.2 has supplemented the five flow equations (PDEs) with two further
algebraic equations. The further introduction of the Newtonian model, which
expresses the viscous stresses in terms of gradients of velocity components,
has resulted in a system of seven equations with seven unknowns. With an
equal number of equations and unknown functions this system is mathemat-
ically closed, i.e. it can be solved provided that suitable auxiliary conditions,
namely initial and boundary conditions, are supplied.

It is clear from Table 2.1 that there are significant commonalities between
the various equations. If we introduce a general variable ¢ the conservative
form of all fluid flow equations, including equations for scalar quantities such
as temperature and pollutant concentration etc., can usefully be written in
the following form:

d(p9)
o

+ div(ppu) = div(T grad ¢) + S, (2.39)
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In words,

Rate of increase  Net rate of flow Rate of increase  Rate of increase
of ¢ of fluid + of ¢ out of = of ¢ due to + of ¢ due to

element fluid element diffusion sources

Equation (2.39) is the so-called transport equation for property ¢. It
clearly highlights the various transport processes: the rate of change term
and the convective term on the left hand side and the diffusive term (I" =
diffusion coefficient) and the source term respectively on the right hand
side. In order to bring out the common features we have, of course, had to
hide the terms that are not shared between the equations in the source terms.
Note that equation (2.39) can be made to work for the internal energy equa-
tion by changing 7 into 7 or vice versa by means of an equation of state.

Equation (2.39) is used as the starting point for computational procedures
in the finite volume method. By setting ¢ equal to 1, u, v, w and / (or T or
hy) and selecting appropriate values for diffusion coefficient I" and source
terms, we obtain special forms of Table 2.1 for each of the five PDEs for
mass, momentum and energy conservation. The key step of the finite volume
method, which is to be to be developed from Chapter 4 onwards, is the integ-
ration of (2.39) over a three-dimensional control volume (CV):

J @dm J div(ppu)dV = J div(T grad ¢)dV + J S,dV (2.40)
A

Ccv Cv cv Cv

The volume integrals in the second term on the left hand side, the convec-
tive term, and in the first term on the right hand side, the diffusive term, are
rewritten as integrals over the entire bounding surface of the control volume
by using Gauss’s divergence theorem. For a vector a this theorem states

Jdiv(a)dV= Jn .adA (2.41)
cv A

The physical interpretation of n.a is the component of vector a in the
direction of the vector n normal to surface element d4. Thus the integral
of the divergence of a vector a over a volume is equal to the component of a
in the direction normal to the surface which bounds the volume summed
(integrated) over the entire bounding surface 4. Applying Gauss’s diver-
gence theorem, equation (2.40) can be written as follows:

g[Jp¢dV] + Jn. (ppu)dA = Jn (T grad ¢)dA + qu,dV 2.42)
t
cv A A cv

The order of integration and differentiation has been changed in the first
term on the left hand side of (2.42) to illustrate its physical meaning. This
term signifies the rate of change of the total amount of fluid property
¢ in the control volume. The product n.p¢u expresses the flux com-
ponent of property ¢ due to fluid flow along the outward normal vector n,
so the second term on the left hand side of (2.42), the convective term,
therefore is the net rate of decrease of fluid property ¢ of the fluid
element due to convection.
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A diffusive flux is positive in the direction of a negative gradient of the
fluid property ¢, i.e. along direction —grad ¢@. For instance, heat is conducted
in the direction of negative temperature gradients. Thus, the product
n . (I grad ¢) is the component of diffusion flux along the outward normal
vector, so out of the fluid element. Similarly, the product n . (I" grad ¢),
which is also equal to I'(—n . (—grad ¢)), can be interpreted as a positive dif-
fusion flux in the direction of the inward normal vector —n, i.e. into the fluid
element. The first term on the right hand side of (2.42), the diffusive term,
is thus associated with a flux into the element and represents the net rate of
increase of fluid property ¢ of the fluid element due to diffusion. The
final term on the right hand side of this equation gives the rate of increase
of property ¢ as a result of sources inside the fluid element.

In words, relationship (2.42) can be expressed as follows:

Net rate of decrease  Net rate of
. . Net rate of
Rate of increase of ¢ due to increase of @ reation of ¢
of ¢ inside the + convection across = due to diffusion  + creation o
inside the
control volume  the control volume  across the control
. . control volume
boundaries volume boundaries

This discussion clarifies that integration of the PDE generates a statement of
the conservation of a fluid property for a finite size (macroscopic) control
volume.

In steady state problems the rate of change term of (2.42) is equal to zero.
This leads to the integrated form of the steady transport equation:

Jn . (ppu)dA = Jn . (T grad ¢)dA + qu,dV (2.43)

A A Cv

In time-dependent problems it is also necessary to integrate with respect to
time 7 over a small interval Az from, say, ¢ until ¢ + Az. This yields the most
general integrated form of the transport equation:

J;(Jp¢dl/)dz+ J Jn . (pou)d Ad:
It

At CV At A
= J j n . (T grad ¢)dAds + J J S,dVdr (2.44)
Ar A At cv

Now that we have derived the conservation equations of fluid flows the time
has come to turn our attention to the issue of the initial and boundary
conditions that are needed in conjunction with the equations to construct
a well-posed mathematical model of a fluid flow. First we distinguish two
principal categories of physical behaviour:

e Equilibrium problems
e Marching problems
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Figure 2.6 Steady state
temperature distribution of an
insulated rod

Equilibrium problems

The problems in the first category are steady state situations, e.g. the steady
state distribution of temperature in a rod of solid material or the equilibrium
stress distribution of a solid object under a given applied load, as well as many
steady fluid flows. These and many other steady state problems are governed
by elliptic equations. The prototype elliptic equation is Laplace’s equa-
tion, which describes irrotational flow of an incompressible fluid and steady
state conductive heat transfer. In two dimensions we have

>

79 + 79 =0 (2.45)

ot oy
A very simple example of an equilibrium problem is the steady state heat
conduction (where ¢ = 7 in equation (2.45)) in an insulated rod of metal

whose ends at v = 0 and x = L are kept at constant, but different, tempera-
tures 7, and 77 (Figure 2.6).

Problem specification Solution
T
Heat flux g=0
T
7 ) 0
T=To | | T=T,
g

x=0 x=1L

This problem is one-dimensional and governed by the equation 4d*7/dx?
= 0. Under the given boundary conditions the temperature distribution in
the x-direction will, of course, be a straight line. A unique solution to this
and all elliptic problems can be obtained by specifying conditions on the
dependent variable (here the temperature or its normal derivative the heat
flux) on all the boundaries of the solution domain. Problems requiring data
over the entire boundary are called boundary-value problems.

An important feature of elliptic problems is that a disturbance in the
interior of the solution, e.g. a change in temperature due to the sudden
appearance of a small local heat source, changes the solution everywhere else.
Disturbance signals travel in all directions through the interior solution.
Consequently, the solutions to physical problems described by elliptic equa-
tions are always smooth even if the boundary conditions are discontinuous,
which is a considerable advantage to the designer of numerical methods. To
ensure that information propagates in all directions, the numerical techniques
for elliptic problems must allow events at each point to be influenced by all
its neighbours.

Marching problems

Transient heat transfer, all unsteady flows and wave phenomena are examples
of problems in the second category, the marching or propagation problems.
These problems are governed by parabolic or hyperbolic equations.
However, not all marching problems are unsteady. We will see further on
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Figure 2.7 Transient
distribution of temperature in an
insulated rod

that certain steady flows are described by parabolic or hyperbolic equations.
In these cases the flow direction acts as a time-like co-ordinate along which
marching is possible.

Parabolic equations describe time-dependent problems, which involve
significant amounts of diffusion. Examples are unsteady viscous flows and
unsteady heat conduction. The prototype parabolic equation is the diffusion
equation

2
%% _ 99
ot o’

The transient distribution of temperature (again ¢ = 7°) in an insulated rod
of metal whose ends at x = 0 and x = L are kept at constant and equal tem-
perature 7} is governed by the diffusion equation. This problem arises when
the rod cools down after an initially uniform source is switched off at time
t =0. The temperature distribution at the start is a parabola with a maximum
at v = L/2 (Figure 2.7).

(2.46)

Problem specification Solution

t=0

T(x, t=0) = f(x) and
heat flux g=0

t—> oo

=T | | 7=7,

The steady state consists of a uniform distribution of temperature 7= 7,
throughout the rod. The solution of the diffusion equation (2.46) yields the
exponential decay of the initial quadratic temperature distribution. Initial
conditions are needed in the entire rod and conditions on all its boundaries
are required for all times # > 0. This type of problem is termed an initial—
boundary-value problem.

A disturbance at a point in the interior of the solution region (i.e. 0 <x <
and time #; > 0) can only influence events at later times # > #; (unless we
allow time travel!). The solutions move forward in time and diffuse in space.
The occurrence of diffusive effects ensures that the solutions are always
smooth in the interior at times # > () even if the initial conditions contain
discontinuities. The steady state is reached as time r — o and is elliptic. This
change of character can be easily seen by setting d¢/ dt =0 in equation (2.46).
The governing equation is now equal to the one governing the steady tem-
perature distribution in the rod.

Hyperbolic equations dominate the analysis of vibration problems. In
general they appear in time-dependent processes with negligible amounts of
energy dissipation. The prototype hyperbolic equation is the wave equation

2 2
M = czﬂ (2.47)
o ox?

The above form of the equation governs the transverse displacement (¢ = y)
of a string under tension during small-amplitude vibrations and also acoustic
oscillations (Figure 2.8). The constant ¢ is the wave speed. It is relatively
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Figure 2.8 Vibrations of a string
under tension

The role of
characteristics in
hyperbolic equations

straightforward to compute the fundamental mode of vibration of a string of
length L using (2.47).

Problem specification Solution
y(x, t=0) = f(x) and dy/dx(x, t=0) =0 for first cycle 0 < t< 2L/c
t=0,2L/c
y=0 y=0
x=0 x=0 L/c
x=0 x=L

Solutions to wave equation (2.47) and other hyperbolic equations can be
obtained by specifying two initial conditions on the displacement y of the
string and one condition on all boundaries for times 7 > (. Thus hyperbolic
problems are also initial-boundary-value problems.

If the initial amplitude is given by «, the solution of this problem is

. 1) et .
X, 1) =a cos| — |sin| —
J 7 I

The solution shows that the vibration amplitude remains constant, which
demonstrates the lack of damping in the system. This absence of damping
has a further important consequence. Consider, for example, initial condi-
tions corresponding to a near-triangular initial shape whose apex is a section
of a circle with very small radius of curvature. This initial shape has a sharp
discontinuity at the apex, but it can be represented by means of a Fourier
series as a combination of sine waves. The governing equation is linear
so each of the individual Fourier components (and also their sum) would
persist in time without change of amplitude. The final result is that the
discontinuity remains undiminished due to the absence of a dissipation
mechanism to remove the kink in the slope.

Compressible fluid flows at speeds close to and above the speed of sound
exhibit shockwaves and it turns out that the inviscid flow equations are
hyperbolic at these speeds. The shockwave discontinuities are manifestations
of the hyperbolic nature of such flows. Computational algorithms for hyper-
bolic problems are shaped by the need to allow for the possible existence of
discontinuities in the interior of the solution.

It will be shown that disturbances at a point can only influence a limited
region in space. The speed of disturbance propagation through an hyperbolic
problem is finite and equal to the wave speed ¢. In contrast, parabolic and
elliptic models assume infinite propagation speeds.

Hyperbolic equations have a special behaviour, which is associated with the
finite speed, namely the wave speed, at which information travels through
the problem. This distinguishes hyperbolic equations from the two other
types. To develop the ideas about the role of characteristic lines in hyper-
bolic problems we consider again a simple hyperbolic problem described by
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wave equation (2.47). It can be shown (The Open University, 1984) that a
change of variables to {=x — ¢t and 1 = « + ¢t transforms the wave equation
into the following standard form:

2
¢ =0 (2.48)
déon
The transformation requires repeated application of the chain rule for
differentiation to express the derivatives of equation (2.47) in terms of
derivatives of the transform variables. Equation (2.48) can be solved very
easily. The solution is, of course, ¢(&, n) = Fi(§) + Fy(n), where F; and F,
can be any function.
A return to the original variables yields the general solution of equation

(2.47):

O(x, 1) = Fi(x — ct) + Fy(x + c1) (2.49)

The first component of the solution, function F}, is constant if x — ¢z is
constant and hence along lines of slope dz/dx = 1/¢ in the x— plane. The
second component F), is constant if x + ¢z is constant, so along lines of slope
dt/dx =—1/¢. The lines x — ¢t = constant and x + ¢/ = constant are called the
characteristics. Functions I} and F, represent the so-called simple wave
solutions of the problem, which are travelling waves with velocities +¢
and —¢ without change of shape or amplitude.

The particular forms of functions F; and F, can be obtained from the ini-
tial and boundary conditions of the problem. Let us consider a very long
string (—oo < x < o0) and let the following initial conditions hold:

d(x, 0)=f(x) and J¢/d(x, 0) = g(x) (2.50)
Combining (2.49) and (2.50) we obtain
Fi(x) + Fy(x)=f(x) and —cF(x)+ cFj(x) =g(x) (2.51)

It can be shown (Bland, 1988) that the particular solution of wave equation
(2.47) with initial conditions (2.50) is given by

xtct

1 1
O(x, 1) = E[f(x —ct)+ flo+ )]+ ; j g(s)ds (2.52)

x—ct

Careful inspection of (2.52) shows that ¢ at point («, ) in the solution domain
depends only on the initial conditions in the interval (x — ¢t, x + ¢t). It is par-
ticularly important to note that this implies that the solution at (x, #) does
not depend on initial conditions outside this interval.

Figure 2.9 seeks to illustrate this point. The characteristics x — ¢z = con-
stant and x + ¢/ = constant through the point (+”, #’) intersect the x-axis at the
points (x" — ¢/, 0) and («" + ¢/, 0) respectively. The region in the x— plane
enclosed by the x-axis and the two characteristics is termed the domain of
dependence.

In accordance with (2.52) the solution at (x", ¢’) is influenced only by
events inside the domain of dependence and not those outside. Physically
this is caused by the limited propagation speed (equal to wave speed ¢) of
mutual influences through the solution domain. Changes at the point (+”, )
influence events at later times within the zone of influence shown in
Figure 2.9, which is again bounded by the characteristics.
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Figure 2.9 Domain of
dependence and zone of
influence for an hyperbolic
problem

Figure 2.10 Domains of
dependence for the (a)
hyperbolic, (b) parabolic
and (c) elliptic problem

t
Zone of
T influence
X', t)
Domain of
dependence
(X' —ct’, 0) (X" +ct’, 0) X

Figure 2.10a shows the situation for the vibrations of a string fixed at
x=0and x = L. For points very close to the x-axis the domain of dependence
is enclosed by two characteristics, which originate at points on the x-axis.
The characteristics through points such as P intersect the problem boundaries.
The domain of dependence of P is bounded by these two characteristics and
the lines t=0,x=0and v = L.

' \T/ ! ! P(x, t)
o

—_— @
P(x, t)

e g
Domain of
dependence

Domain of
dependence

Domain of
dependence

(a) (b) (c)

The shape of the domains of dependence (see Figures 2.10b and c¢) in
parabolic and elliptic problems is different because the speed of information
travel is assumed to be infinite. The bold lines which demarcate the bound-
aries of each domain of dependence give the regions for which initial and/or
boundary conditions are needed in order to be able to generate a solution at
the point P(x, ¢) in each case.

The way in which changes at one point affect events at other points
depends on whether a physical problem represents a steady state or a tran-
sient phenomenon and whether the propagation speed of disturbances is
finite or infinite. This has resulted in a classification of physical behaviours,
and hence attendant PDEs, into elliptic, parabolic and hyperbolic problems.
The distinguishing features of each of the categories were illustrated by con-
sidering three simple prototype second-order equations. In the following
sections we will discuss methods of classifying more complex PDEs and
briefly state the limitations of the computational methods that will be devel-
oped later in this text in terms of the classification of the flow problems to be
solved. A summary of the main features that have been identified so far is
given in Table 2.2.
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Table 2.2 Classification of physical behaviours

Problem type

Equilibrium Elliptic
problems
Marching Parabolic
problems with
dissipation
Marching Hyperbolic
problems without
dissipation
E Classification
method for
simple PDEs

Equation type Prototype equation Conditions Solution domain Solution smoothness

div grad ¢ =0 Boundary  Closed domain Always smooth
conditions
0 . Initial and ~ Open domain Always smooth
a gl el boundary
conditions
*¢ A Initial and ~ Open domain May be
i diy grad ¢ boundary discontinuous
conditions

A practical method of classifying PDEs is developed for a general second-
order PDE in two co-ordinates x and y. Consider
2 2 2
aﬂ+b ¢ +cﬂ+d%+e@
ox* oxdy Iy ox  dy
At first we shall assume that the equation is linear and a, b, ¢, d, e, fand g are
constants.

The classification of a PDE is governed by the behaviour of its highest-
order derivatives, so we need only consider the second-order derivatives.
The class of a second-order PDE can be identified by searching for possible
simple wave solutions. If they exist this indicates a hyperbolic equation. If
not the equation is parabolic or elliptic.

Simple wave solutions occur if the characteristic equation (2.54) below
has two real roots:

2
. [QJ - (d_yJ re=0 (2.54)
dx dx

The existence or otherwise of roots of the characteristic equation depends on
the value of discriminant (#” — 4ac). Table 2.3 outlines the three cases.

+fo+g=0 (2.53)

Table 2.3 Classification of linear second-order PDEs

¥ — 4ac Equation type Characteristics

>0 Hyperbolic Two real characteristics
= Parabolic One real characteristic
<0 Elliptic No characteristics

It is left as an exercise for the reader to verify the nature of the three
prototype PDEs in section 2.6 by evaluating the discriminant.

The classification method by searching for the roots of the characteristic
equation also applies if the coefficients «, b and ¢ are functions of x and y or
if the equation is non-linear. In the latter case «, b and ¢ may be functions
of dependent variable ¢ or its first derivatives. It is now possible that the
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Classification
of fluid flow
equations

equation type differs in various regions of the solution domain. As an example
we consider the following equation:

o* o*

79 + 79 =0 (2.55)

oxr oy
We look at the behaviour within the region —1 < y < 1. Hence a = a(x, y) =y,

b=0and ¢ = 1. The value of discriminant (5> — 4ac) is equal to —4y. We need
to distinguish three cases:

e Ify <0: * —4ac > 0 so the equation is hyperbolic
« Ify=0: ¥ — 4ac = 0 so the equation is parabolic
e Ify>0: ¥ — 4ac < 0 and hence the equation is elliptic

Equation (2.55) is of mixed type. The equation is locally hyperbolic,
parabolic or elliptic depending on the value of y. For the non-linear case sim-
ilar remarks apply. The classification of the PDE depends on the local values
of a, b and c.

Second-order PDEs in N independent variables (x}, &5, . .., 4y) can be
classified by rewriting them first in the following form with A, = A,:

N N

22A~kﬂ+H:0 (2.56)
i=1 k= k

Fletcher (1991) explains that the equation can be classified on the basis of the
eigenvalues of a matrix with entries 4. Hence we need to find values for A
for which

det[A4;, — M]=0 (2.57)
The classification rules are:

 if any eigenvalue A = 0: the equation is parabolic

* ifall eigenvalues A # 0 and they are all of the same sign: the equation is
elliptic

« ifall eigenvalues A # 0 and all but one are of the same sign: the equation
is hyperbolic

In the cases of Laplace’s equation, the diffusion equation and the wave
equation it is simple to verify that this method yields the same results as the
solution of characteristic equation (2.54).

Systems of first-order PDEs with more than two independent variables
are similarly cast in matrix form. Their classification involves finding eigen-
values of the resulting matrix. Systems of second-order PDEs or mixtures
of first- and second-order PDEs can also be classified with this method. The
first stage of the method involves the introduction of auxiliary variables,
which express each second-order equation as first-order equations. Care
must be taken to select the auxiliary variables in such a way that the result-
ing matrix is non-singular.

The Navier—Stokes equation and its reduced forms can be classified using
such a matrix approach. The details are beyond the scope of this introduc-
tion to the subject. We quote the main results in Table 2.4 and refer the
interested reader to Fletcher (1991) for a full discussion.
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Table 2.4 Classification of the main categories of fluid flow

Steady flow Unsteady flow
Viscous flow Elliptic Parabolic
Inviscid flow M < 1, elliptic Hyperbolic

M > 1, hyperbolic
Thin shear layers Parabolic Parabolic

The classifications in Table 2.4 are the ‘formal’ classifications of the flow
equations. In practice many fluid flows behave in a complex way. The steady
Navier—Stokes equations and the energy (or enthalpy) equations are formally
elliptic and the unsteady equations are parabolic.

The mathematical classification of inviscid flow equations is different
from the Navier—Stokes and energy equations due to the complete absence
of the (viscous) higher-order terms. The classification of the resulting equa-
tion set depends on the extent to which fluid compressibility plays a role and
hence on the magnitude of the Mach number 4. The elliptic nature of invis-
cid flows at Mach numbers below 1 originates from the action of pressure. If
M < 1 the pressure can propagate disturbances at the speed of sound, which
is greater than the flow speed. But if M > 1 the fluid velocity is greater than
the propagation speed of disturbances and the pressure is unable to influence
events in the upstream direction. Limitations on the zone of influence are
a key feature of hyperbolic phenomena, so the supersonic inviscid flow equa-
tions are hyperbolic. Below, we will see a simple example that demonstrates
this behaviour.

In thin shear layer flows all velocity derivatives in the flow (x- and z-)
direction are much smaller than those in the cross-stream (y-) direction.
Boundary layers, jets, mixing layers and wakes as well as fully developed
duct flows fall within this category. In these conditions the governing
equations contain only one (second-order) diffusion term and are therefore
classified as parabolic.

As an illustration of the complexities which may arise in inviscid flows we
analyse the potential equation which governs steady, isentropic, inviscid,
compressible flow past a slender body (Shapiro, 1953) with a free stream
Mach number M..:

2 2
(I—Mi)ﬂ—i—ﬂ:() (2.58)
PR
Taking x; = x and x, = y in equation (2.56) we have matrix elements A4, =
1= M2, Ay, = Ay =0and Ay, = 1. To classify the equation we need to solve

(1-M2)—-24 0

det 0 1-2

=0

The two solutions are A, = 1 and A,= 1 — M2, If the free stream Mach num-
ber is smaller than 1 (subsonic flow) both eigenvalues are greater than zero
and the flow is elliptic. If the Mach number is greater than 1 (supersonic
flow) the second eigenvalue is negative and the flow is hyperbolic. The reader
is left to demonstrate that these results are identical to those obtained by
considering the discriminant of characteristic equation (2.54).
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Figure 2.11 Sketch of flow
around an aerofoil at supersonic
free stream speed

m Auxiliary

conditions for
viscous fluid flow
equations

It is interesting to note that we have discovered an instance of hyperbolic
behaviour in a steady flow where both independent variables are space co-
ordinates. The flow direction behaves in a time-like manner in hyperbolic
inviscid flows and also in the parabolic thin shear layers. These problems are
of the marching type and flows can be computed by marching in the time-
like direction of increasing x.

The above example shows the dependence of the classification of com-
pressible flows on the parameter M.,. The general equations of inviscid,
compressible flow (the Euler equations) exhibit similar behaviour, but the
classification parameter is now the local Mach number M. This complicates
matters greatly when flows around and above M = 1 are to be computed.
Such flows may contain shockwave discontinuities and regions of subsonic
(elliptic) flow and supersonic (hyperbolic) flow, whose exact locations are not
known a priori. Figure 2.11 is a sketch of the flow around an aerofoil at a
Mach number somewhat greater than 1.

M>1
M<1 M>1

The complicated mixture of elliptic, parabolic and hyperbolic behaviours
has implications for the way in which boundary conditions enter into a flow
problem, in particular at locations where flows are bounded by fluid bound-
aries. Unfortunately few theoretical results regarding the range of permiss-
ible boundary conditions are available for compressible flows. CFD practice
is guided here by physical arguments and the success of its simulations.
The boundary conditions for a compressible viscous flow are given in
Table 2.5.

In the table subscripts # and ¢ indicate directions normal (outward)
and tangential to the boundary respectively and I are the given surface
stresses.

Table 2.5 Boundary conditions for compressible viscous flow

Initial conditions for unsteady flows:

* Everywhere in the solution region p, u and 7 must be given at time 7 = (.

Boundary conditions for unsteady and steady flows:

¢ On solid walls u = u,, (no-slip condition)
T =T, (fixed temperature) or kdT/dn = —q,, (fixed heat flux)

e On fluid boundaries inlet: p, u and 7" must be known as a function of position
outlet: —p + pdu,/ dn = F, and Udu,/ dn = F,(stress continuity)
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m Problems

in transonic
and supersonic
compressible flows

It is unnecessary to specify outlet or solid wall boundary conditions for
the density because of the special character of the continuity equation, which
describes the changes of density experienced by a fluid particle along its
path for a known velocity field. At the inlet the density needs to be known.
Everywhere else the density emerges as part of the solution and no boundary
values need to be specified. For an incompressible viscous flow there
are no conditions on the density, but all the other above conditions apply
without modification.

Commonly outflow boundaries are positioned at locations where the
flow is approximately unidirectional and where surface stresses take known
values. For high Reynolds number flows far from solid objects in an external
flow or in fully developed flow out of a duct, there is no change in any of the
velocity components in the direction across the boundary and F, = —p and
F,=0. This gives the outflow condition that is almost universally used in the
finite volume method:

| specified pressure, du,/dn=0and dT/dn =0

Gresho (1991) reviewed the intricacies of open boundary conditions in
incompressible flow and stated that there are some ‘theoretical concerns’
regarding open boundary conditions which use du,/dn = 0; however, its
success in CFD practice left him to recommend it as the simplest and
cheapest form when compared with theoretically more satisfying selections.

Figure 2.12 illustrates the application of boundary conditions for a typ-
ical internal and external viscous flow.

General-purpose CFD codes also often include inlet and outlet pressure
boundary conditions. The pressures are set at fixed values and sources
and sinks of mass are placed on the boundaries to carry the correct mass flow
into and out of the solution zone across the constant pressure boundaries.
Furthermore, symmetric and cyclic boundary conditions are supplied to take
advantage of special geometrical features of the solution region:

* Symmetry boundary condition: d¢/dn =0
e Cyclic boundary condition: O =0,

Figure 2.13 shows typical boundary geometries for which symmetry and
cyclic boundary conditions (bc) may be useful.

Difficulties arise when calculating flows at speeds near to and above the
speed of sound. At these speeds the Reynolds number is usually very high
and the viscous regions in the flow are usually very thin. The flow in a large
part of the solution region behaves as an effectively inviscid fluid. This gives
rise to problems in external flows, because the part of the flow where the outer
boundary conditions are applied behaves in an inviscid way, which differs
from the (viscous) region of flow on which the overall classification is based.

The standard SIMPLE pressure correction algorithm for finite volume
calculations (see section 6.4) needs to be modified. The transient version of
the algorithm needs to be adopted to make use of the favourable character
of parabolic/hyperbolic procedures. To cope with the appearance of shock-
waves in the solution interior and with reflections from the domain bound-
aries, artificial damping needs to be introduced. It is further necessary to
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Figure 2.12 (a) Boundary Velocity = 0, temperature or
.. . heat flux given
conditions for an internal flow )
L. Solid wall
problem; (b) boundary condition v,
for external flow problem
Inflow Outflow
boundary boundary
Flow
Density,
velocity and
temperature
given \
7
Solid wall Velocity = 0, temperature or
heat flux given
(a)
R \ -
Inflow Open boundary Outflow
boundary boundary
Density, Flow Velocity = O temperature or
velocity and > heat flux given
temperature

given \
Solid object

Open boundary

As inflow bc where flow into /\ Or as outflow bc where

domain through open boundary flow out of domain

(b)

ensure that the limited domain of dependence of effectively inviscid (hyper-
bolic) flows at Mach numbers greater than 1 is adequately modelled. Issa
and Lockwood (1977) and McGuirk and Page (1990) gave lucid papers that
identify the main issues relevant to the finite volume method.

Open (far field) boundary conditions give the most serious problems for
the designer of general-purpose CFD codes. Subsonic inviscid compressible
flow equations require fewer inlet conditions (normally only p and u are spe-
cified) than viscous flow equations and only one outlet condition (typically
specified pressure). Supersonic inviscid compressible flows require the same
number of inlet boundary conditions as viscous flows, but do not admit any
outflow boundary conditions because the flow is hyperbolic.

Without knowing a great deal about the flow before solving a problem it
is very difficult to specify the precise number and nature of the allowable
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Figure 2.13 Examples of flow
boundaries with symmetry and
cyclic conditions

m Summary

\ Wall bc

Symmetry bc

Inlet bc Outlet bc

Solution region

Ibnflow Cyclic bc
/ c %

li/': Outflow
Cyclic bc Wall be %Z\ be

boundary conditions on any fluid/fluid boundary in the far field. Issa and
Lockwood’s work (1977) reported the solution of a shock/boundary layer
interaction problem where part of the far field boundary conditions are
obtained from an inviscid solution performed prior to the viscous solution.
The usual (viscous) outlet condition d(pu,)/ dn = 0 is applied on the remain-
der of the far field boundary.

Fletcher (1991) noted that under-specification of boundary conditions
normally leads to failure to obtain a unique solution. Over-specification,
however, gives rise to flow solutions with severe and unphysical ‘boundary
layers’ close to the boundary where the condition is applied.

If the location of the outlet or far field boundaries is chosen far enough
away from the region of interest within the solution domain it is possible to
get physically meaningful results. Most careful solutions test the sensitivity
of the interior solution to the positioning of outflow and far field boundaries.
If results do not change in the interior, the boundary conditions are ‘trans-
parent’ and the results are acceptable.

These complexities make it very difficult for general-purpose finite vol-
ume CFD codes to cope with general subsonic, transonic and/or supersonic
viscous flows. Although all commercially available codes claim to be able to
make computations in all flow regimes, they perform most effectively at
Mach numbers well below 1 as a consequence of all the problems outlined
above.

We have derived the complete set of governing equations of fluid flow from
basic conservation principles. The thermodynamic equilibrium assumption
and the Newtonian model of viscous stresses were enlisted to close the sys-
tem mathematically. Since no particular assumptions were made with regard
to the viscosity, it is straightforward to accommodate a variable viscosity that
is dependent on local conditions. This facilitates the inclusion of fluids with
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temperature-dependent viscosity and those with non-Newtonian character-
istics within the framework of equations.

We have identified a common differential form for all the flow equations,
the so-called transport equation, and developed integrated forms which are
central to the finite volume CFD method:

For steady state processes

Jn (pgu)dA = Jn.(r grad ¢)dA + JS¢dV 2.43)

A A [

and for time-dependent processes

J% (Jp(])dl/JdHJJn.(p(pu)dA dr

At cv Ar A
= J Jn (T grad ¢)dA dr + j JSq,dth (2.44)
Ar A Ar cv

The auxiliary conditions — initial and boundary conditions — needed to solve
a fluid flow problem were also discussed. It emerged that there are three
types of distinct physical behaviour — elliptic, parabolic and hyperbolic — and
the governing fluid flow equations were formally classified. Problems with
this formal classification were identified as resulting from: (i) boundary-
layer-type behaviour in flows at high Reynolds numbers and (ii) compress-
ibility effects at Mach numbers around and above 1. These lead to severe
difficulties in the specification of boundary conditions for completely general-
purpose CFD procedures working at any Reynolds number and Mach
number.

Experience with the finite volume method has yielded a set of auxiliary
conditions that give physically realistic flow solutions in many industrially
relevant problems. The most complete problem specification includes, in
addition to initial values of all flow variables, the following boundary
conditions:

* Complete specification of the distribution of all variables ¢ (except
pressure) at all inlets to the flow domain of interest

e Specification of pressure at one location inside the flow domain

* Set gradient of all variables ¢ to zero in the flow direction at suitably
positioned outlets

* Specification of all variables ¢ (except pressure and density) or their
normal gradients at solid walls



Chapter three Turbulence and its modelling

All flows encountered in engineering practice, simple ones, such as two-
dimensional jets, wakes, pipe flows and flat plate boundary layers, and
more complicated three-dimensional ones, become unstable above a certain
Reynolds number (UL/v where U and L are characteristic velocity and
length scales of the mean flow and Vv is the kinematic viscosity). At low
Reynolds numbers flows are laminar. At higher Reynolds numbers flows
are observed to become turbulent. A chaotic and random state of motion
develops in which the velocity and pressure change continuously with time
within substantial regions of flow.

Flows in the laminar regime are completely described by the equations
developed in Chapter 2. In simple cases the continuity and Navier—Stokes
equations can be solved analytically (Schlichting, 1979). More complex flows
can be tackled numerically with CFD techniques such as the finite volume
method without additional approximations.

Many, if not most, flows of engineering significance are turbulent, so the
turbulent flow regime is not just of theoretical interest. Fluid engineers need
access to viable tools capable of representing the effects of turbulence. This
chapter gives a brief introduction to the physics of turbulence and to its
modelling in CFD.

In sections 3.1 and 3.2, the nature of turbulent flows and the physics of
the transition from laminar flow to turbulence are examined. In section 3.3
we give formal definitions for the most common descriptors of a turbulent
flow, and in section 3.4 the characteristics of some simple two-dimensional
turbulent flows are described. Next, in section 3.5, the consequences of
the appearance of the fluctuations associated with turbulence on the time-
averaged Navier—Stokes equations are analysed. The velocity fluctuations
are found to give rise to additional stresses on the fluid, the so-called
Reynolds stresses. The main categories of models for these extra stress terms
are given in section 3.6. The most widely used category of classical turbu-
lence models is discussed in section 3.7. In section 3.8 we review large eddy
simulations (LLES) and in section 3.9 we give a brief summary of direct
numerical simulation (DNS).

m turbm:::el‘? First we take a brief look at the main characteristics of turbulent flows.
The Reynolds number of a flow gives a measure of the relative importance
of inertia forces (associated with convective effects) and viscous forces.
In experiments on fluid systems it is observed that at values below the so-
called critical Reynolds number Re,,, the flow is smooth and adjacent layers
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Figure 3.1 Typical point
velocity measurement in
turbulent flow

of fluid slide past each other in an orderly fashion. If the applied boundary
conditions do not change with time the flow is steady. This regime is called
laminar flow.

At values of the Reynolds number above Re,, a complicated series of
events takes place which eventually leads to a radical change of the flow
character. In the final state the flow behaviour is random and chaotic. The
motion becomes intrinsically unsteady even with constant imposed bound-
ary conditions. The velocity and all other flow properties vary in a random
and chaotic way. This regime is called turbulent flow. A typical point velo-
city measurement might exhibit the form shown in Figure 3.1.

t

The random nature of a turbulent flow precludes an economical descrip-
tion of the motion of all the fluid particles. Instead the velocity in Figure 3.1
is decomposed into a steady mean value U with a fluctuating component #’(f)
superimposed on it: u(t) = U + «’(¢). This is called the Reynolds decom-
position. A turbulent flow can now be characterised in terms of the mean
values of flow properties (U, V, W, P etc.) and some statistical properties of
their fluctuations («’, v’, ', p etc.). We give formal definitions of the mean
and the most common statistical descriptors of the fluctuations in section 3.3.

Even in flows where the mean velocities and pressures vary in only
one or two space dimensions, turbulent fluctuations always have a three-
dimensional spatial character. Furthermore, visualisations of turbulent
flows reveal rotational flow structures, so-called turbulent eddies, with a
wide range of length scales. Figure 3.2, which depicts a cross-sectional
view of a turbulent boundary layer on a flat plate, shows eddies whose length
scale is comparable with that of the flow boundaries as well as eddies of inter-
mediate and small size.

Particles of fluid which are initially separated by a long distance can be
brought close together by the eddying motions in turbulent flows. As a
consequence, heat, mass and momentum are very effectively exchanged.
For example, a streak of dye which is introduced at a point in a turbulent
flow will rapidly break up and be dispersed right across the flow. Such
effective mixing gives rise to high values of diffusion coefficients for mass,
momentum and heat.

The largest turbulent eddies interact with and extract energy from the
mean flow by a process called vortex stretching. The presence of mean
velocity gradients in sheared flows distorts the rotational turbulent eddies.
Suitably aligned eddies are stretched because one end is forced to move
faster than the other.
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Figure 3.2 Visualisation of a

turbulent boundary layer
Source: Van Dyke (1982)

The characteristic velocity ©¥ and characteristic length € of the larger
eddies are of the same order as the velocity scale U and length scale L of the
mean flow. Hence a ‘large eddy’ Reynolds number Re, = ¥/ v formed by
combining these eddy scales with the kinematic viscosity will be large in all
turbulent flows, since it is not very different in magnitude from UL/v,
which itself is large. This suggests that these large eddies are dominated by
inertia effects and viscous effects are negligible.

The large eddies are therefore effectively inviscid, and angular momen-
tum is conserved during vortex stretching. This causes the rotation rate to
increase and the radius of their cross-sections to decrease. Thus the process
creates motions at smaller transverse length scales and also at smaller time
scales. The stretching work done by the mean flow on the large eddies dur-
ing these events provides the energy which maintains the turbulence.

Smaller eddies are themselves stretched strongly by somewhat larger
eddies and more weakly with the mean flow. In this way the kinetic energy is
handed down from large eddies to progressively smaller and smaller eddies
in what is termed the energy cascade. All the fluctuating properties of a
turbulent flow contain energy across a wide range of frequencies or wavenum-
bers (= 27f7 U where fis the frequency). This is demonstrated in Figure 3.3,
which gives the energy spectrum of turbulence downstream of a grid.

The spectral energy E(K) is shown as a function of the wavenumber
Kk=2m/ A, where A is the wavelength of the eddies. The spectral energy E(K)
(units m3/s?) is the kinetic energy per unit mass and per unit wavenumber of
fluctuations around the wavenumber k. The diagram shows that the energy
content peaks at the low wavenumbers, so the larger eddies are the most
energetic. They acquire their energy through strong interactions with the
mean flow. The value of E(k) rapidly decreases as the wavenumber increases,
so the smallest eddies have the lowest energy content.

The smallest scales of motion in a turbulent flow (lengths of the order
of 0.1 to 0.01 mm and frequencies around 10 kHz in typical turbulent
engineering flows) are dominated by viscous effects. The Reynolds number
Re, of the smallest eddies based on their characteristic velocity v and
characteristic length 7 is equal to 1, Re,, = v1/v =1, so the smallest scales
present in a turbulent flow are those for which the inertia and viscous effects
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Figure 3.3 Energy spectrum of
turbulence behind a grid
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are of equal strength. These scales are named the Kolmogorov microscales
after the Russian scientist who carried out groundbreaking work on the struc-
ture of turbulence in the 1940s. At these scales work is performed against the
action of viscous stresses, so that the energy associated with small-scale eddy
motions is dissipated and converted into thermal internal energy. This dissipa-
tion results in increased energy losses associated with turbulent flows.
Dimensional analysis can be used to obtain ratios of the length, time and
velocity scales of the small and large eddies. The Kolmogorov microscales
can be expressed in terms of the rate of energy dissipation of a turbulent flow
and the fluid viscosity, which uses the notion that in every turbulent flow the
rate of production of turbulent energy has to be broadly in balance with its
rate of dissipation to prevent unlimited growth of turbulence energy. This
yields the following order of magnitude estimates of the ratios of small
length, time and velocity scales 7, 7, U and large length, time and velocity
scales €, T, ¥ (Tennekes and Lumley, 1972; Reynolds in Lumley, 1989):

Length-scale ratio % = Rey3/* (3.1a)
. . T
Time-scale ratio ? = Re;'? (3.1b)

Velocity-scale ratio = Re;'* (3.1¢)

e
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a Transition from

laminar to
turbulent flow

Typical values of Re, might be 10°~10° so the length, time and velocity
scales associated with small dissipating eddies are much smaller than those of
large, energetic eddies, and the difference — the so-called scale separation —
increases as Re, increases.

The behaviour of the large eddies should be independent of viscosity and
should depend on the velocity scale ©¥ and length scale €. Thus, on dimen-
sional grounds we would expect that the spectral energy content of these
eddies should behave as follows: £(k) o< 1¥*€, where k= 1/{. Since the length
scale € is related to the length scale of turbulence producing processes — for
example, boundary layer thickness 0, obstacle width L, surface roughness
height &k, — we expect the structure of the largest eddies to be highly
anisotropic (i.e. the fluctuations are different in different directions) and
strongly affected by the problem boundary conditions.

Kolmogorov argued that the structure of the smallest eddies and, hence,
their spectral energy E(k = 1/1) should only depend on the rate of dissipa-
tion of turbulent energy € (units m?/s*) and the kinematic viscosity of the
fluid v. Dimensional analysis yields the following proportionality relation-
ship for the spectral energy: E(k=1/1) o< v¥/*€!/4, Thus, the spectral energy
E(x) of the smallest eddies only depends on the problem through the rate of
energy dissipation and is not linked to other problem variables. The diffusive
action of viscosity tends to smear out directionality at small scales. At high
mean flow Reynolds numbers the smallest eddies in a turbulent flow are,
therefore, isotropic (non-directional).

Finally, Kolmogorov derived the universal spectral properties of eddies of
intermediate size, which are sufficiently large for their behaviour to be un-
affected by viscous action (as the larger eddies), but sufficiently small that the
details of their behaviour can be expressed as a function of the rate of energy
dissipation € (as the smallest eddies). The appropriate length scale for these
eddies is 1/k;, and he found that the spectral energy of these eddies — the
inertial subrange — satisfies the following relationship: E(x) = ox™>/3¢%/3,
Measurements showed that the constant o = 1.5. Figure 3.3 includes a line
with a slope of —5/3, indicating that, for the measurements shown, the scale
separation is insufficient for a clear inertial subrange. Overlap between the
large and small eddies is located somewhere around x = 1000.

The initial cause of the transition to turbulence can be explained by con-
sidering the stability of laminar flows to small disturbances. A sizeable body
of theoretical work is devoted to the analysis of the inception of transition:
hydrodynamic instability. In many relevant instances the transition to
turbulence is associated with sheared flows. Linear hydrodynamic stability
theory seeks to identify conditions which give rise to amplification of disturb-
ances. Of particular interest in an engineering context is the prediction of the
values of the Reynolds numbers Re, ., (= Ux,,;,/ V) at which disturbances are
amplified and Re,, (= Ux,/V) at which transition to fully turbulent flow
takes place.

A mathematical discussion of the theory is beyond the scope of this brief
introduction. White (1991) gave a useful overview of theory and experi-
ments. The subject matter is fairly complex but its confirmation has led to a
series of experiments which reveal the physical processes causing transition
from laminar to turbulent flow. Most of our knowledge stems from work on
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Figure 3.4 Velocity profiles
susceptible to (a) inviscid
instability and (b) viscous
instability

two-dimensional incompressible flows. All such flows are sensitive to two-
dimensional disturbances with a relatively long wavelength, several times the
transverse distance over which velocity changes take place (e.g. six times the
thickness of a flat plate boundary layer).

Hydrodynamic stability of laminar flows

Two fundamentally different instability mechanisms operate, which are
associated with the shape of the two-dimensional laminar velocity profile
of the base flow. Flows with a velocity distribution which contains a point
of inflexion as shown in Figure 3.4a are always unstable with respect to
infinitesimal disturbances if the Reynolds number is large enough. This
instability was first identified by making an inviscid assumption in the equa-
tions describing the evolution of the disturbances. Subsequent refinement
of the theory by inclusion of the effect of viscosity changed its results very
little, so this type of instability is known as inviscid instability. Velocity
profiles of the type shown in Figure 3.4a are associated with jet flows, mix-
ing layers and wakes and also with boundary layers over flat plates under the
influence of an adverse pressure gradient (dp/dx > 0). The role of viscosity
is to dampen out fluctuations and stabilise the flow at low Reynolds numbers.

y

?

/ /
/ /

Point of
inflexion

— Velocity —> Velocity

(a) (b)

Flows with laminar velocity distributions without a point of inflexion such
as the profile shown in Figure 3.4b are susceptible to viscous instability.
The approximate inviscid theory predicts unconditional stability for these
velocity profiles, which are invariably associated with flows near solid walls
such as pipe, channel and boundary layer flows without adverse pressure
gradients (dp/dx < 0). Viscous effects play a more complex role providing
damping at low and high Reynolds numbers, but contributing to the destabil-
isation of the flows at intermediate Reynolds numbers.

Transition to turbulence

The point where instability first occurs is always upstream of the point of
transition to fully turbulent flow. The distance between the point of instab-
ility where the Reynolds number equals Re, ,, and the point of transition
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Figure 3.5 'Transition in
a jet flow

Re,,, depends on the degree of amplification of the unstable disturbances.
The point of instability and the onset of the transition process can be pre-
dicted with the linear theory of hydrodynamic instability. There is, however,
no comprehensive theory regarding the path leading from initial instability
to fully turbulent flows. Next, we describe the main, experimentally observed,
characteristics of three simple flows: jets, flat plate boundary layers and pipe
flows.

Jet flow: an example of a flow with a point of inflexion

Flows which possess one or more points of inflexion amplify long-
wavelength disturbances at all Reynolds numbers typically above about 10.
The transition process is explained by considering the sketch of a jet flow
(Figure 3.5).

Vortex Vortex
roll-up pairing

Fully
turbulent
flow

After the flow emerges from the orifice the laminar exit flow produces the
rolling up of a vortex fairly close to the orifice. Subsequent amplification
involves the formation of a single vortex of greater strength through the pair-
ing of vortices. A short distance further downstream, three-dimensional dis-
turbances cause the vortices to become heavily distorted and less distinct.
The flow breaks down, generating a large number of small-scale eddies, and
the flow undergoes rapid transition to the fully turbulent regime. Mixing
layers and wakes behind bluff bodies exhibit a similar sequence of events,
leading to transition and turbulent flow.

Boundary layer on a flat plate: an example of a flow without a
point of inflexion

In flows with a velocity distribution without a point of inflexion viscous
instability theory predicts that there is a finite region of Reynolds numbers
around Res = 1000 (0 is the boundary layer thickness) where infinitesimal
disturbances are amplified. The developing flow over a flat plate is such a
flow, and the transition process has been extensively researched for this case.

The precise sequence of events is sensitive to the level of disturbance of
the incoming flow. However, if the flow system creates sufficiently smooth con-
ditions the instability of a boundary layer flow to relatively long-wavelength
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Figure 3.6 Plan view sketch of
transition processes in boundary
layer flow over a flat plate

disturbances can be clearly detected. A sketch of the processes leading to
transition and fully turbulent flow is given in Figure 3.6.

Re = Reg

\

Flow
——
4
3D distortion In-phase arrays Turbulent Merging of Fully turbulent flow
of T-S waves of hairpin spot turbulent spots
vortices (K-type) formation
T-S waves

If the incoming flow is laminar numerous experiments confirm the
predictions of the theory that initial linear instability occurs around Re, ,,;, =
91 000. The unstable two-dimensional disturbances are called Tollmien—
Schlichting (T-S) waves. These disturbances are amplified in the flow
direction.

The subsequent development depends on the amplitude of the waves
at maximum (linear) amplification. Since amplification takes place over a
limited range of Reynolds numbers, it is possible that the amplified waves
are attenuated further downstream and that the flow remains laminar. If the
amplitude is large enough a secondary, non-linear, instability mechanism
causes the Tollmien—Schlichting waves to become three-dimensional and
finally evolve into hairpin A-vortices. In the most common mechanism of
transition, so-called K-type transition, the hairpin vortices are aligned.

Above the hairpin vortices a high shear region is induced which subse-
quently intensifies, elongates and rolls up. Further stages of the transition
process involve a cascading breakdown of the high shear layer into smaller
units with frequency spectra of measurable flow parameters approaching
randomness. Regions of intense and highly localised changes occur at random
times and locations near the solid wall. Triangular turbulent spots burst from
these locations. These turbulent spots are carried along with the flow and
grow by spreading sideways, which causes increasing amounts of laminar
fluid to take part in the turbulent motion.

Transition of a natural flat plate boundary layer involves the formation
of turbulent spots at active sites and the subsequent merging of different tur-
bulent spots convected downstream by the flow. This takes place at Reynolds
numbers Re, , = 10°. Figure 3.7 is a plan view snapshot of a flat plate boundary
layer that illustrates this process.
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Figure 3.7 Merging of
turbulent spots and transition
to turbulence in a flat plate
boundary layer

Source: Nakayama (1988)

Pipe flow transition

The transition in a pipe flow represents an example of a special category
of flows without an inflexion point. The viscous theory of hydrodynamic
stability predicts that these flows are unconditionally stable to infinitesimal
disturbances at all Reynolds numbers. In practice, transition to turbulence
takes place between Re (= UD/V) 2000 and 10°. Various details are still
unclear, which illustrates the limitations of current stability theories.

The cause of the apparent failure of the theory is almost certainly the
role played by distortions of the inlet velocity profile and the finite amplitude
disturbances due to entry effects. Experiments show that in pipe flows, as
in flat plate boundary layers, turbulent spots appear in the near-wall region.
These grow, merge and subsequently fill the pipe cross-section to form tur-
bulent slugs. In industrial pipe flows intermittent formation of turbulent
slugs takes place at Reynolds numbers around 2000 giving rise to alternate
turbulent and laminar regions along the length of the pipe. At Reynolds
numbers above 2300 the turbulent slugs link up and the entire pipe is filled
with turbulent flow.

Final comments

It is clear from the above descriptions of transition in jets, flat plate bound-
ary layers and pipe flows that there are a number of common features in
the transition processes: (i) the amplification of initially small disturbances,
(i1) the development of areas with concentrated rotational structures, (iii) the
formation of intense small-scale motions and finally (iv) the growth and
merging of these areas of small-scale motions into fully turbulent flows.
The transition to turbulence is strongly affected by factors such as
pressure gradient, disturbance levels, wall roughness and heat transfer. The
discussions only apply to subsonic, incompressible flows. The appearance of
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Descriptors of
turbulent flow

significant compressibility effects in flows at Mach numbers above about 0.7
greatly complicates the stability theory.

It should be noted that although a great deal has been learnt from simple
flows, there is no comprehensive theory of transition. Advances in super-
computer technology have made it possible to simulate the events leading up
to transition, including turbulent spot formation, and turbulence at modest
Reynolds numbers by solving the complete, time-dependent Navier—Stokes
equations for simple geometries. Kleiser and Zang (1991) gave a review
which highlights very favourable agreement between experiments and their
computations.

For engineering purposes the major case where the transition process
influences a sizeable fraction of the flow is that of external wall boundary
layer flows at intermediate Reynolds numbers. This occurs in certain turbo-
machines, helicopter rotors and some low-speed aircraft wings. Cebeci
(1989) presented an engineering calculation method based on a combination
of inviscid far field and boundary layer computations in conjunction with
a linear stability analysis to identify the critical and transition Reynolds num-
bers. Transition is deemed to have occurred at the point where an (arbitrary)
amplification factor ¢’ (= 8000) of initial disturbances is found. The proced-
ure, which includes a mixing length model (see section 3.6.1) for the fully
turbulent part of the boundary layer, has proved very effective for aerofoil
calculations, but requires a substantial amount of empirical input and there-
fore lacks generality.

Commercially available general-purpose CFD procedures often ignore
transition entirely and classify flows as either laminar or fully turbulent. The
transition region often constitutes only a very small fraction of the size of the
flow domain and in those cases it is assumed that the errors made by neglect-
ing its detailed structure are only small.

Let us consider a single point measurement in a turbulent flow, e.g. a velo-
city measurement made with a hot-wire anemometer (Comte-Bellot, 1976)
or a laser Doppler anemometer (Buchhave ¢z a/., 1979) or a local pressure
measurement made with a small transducer. In Figure 3.1, we saw that the
appearance of turbulence manifested itself as random fluctuations of the
measured velocity component about a mean value. All other flow variables,
i.e. all other velocity components, the pressure, temperature, density etc.,
will also exhibit this additional time-dependent behaviour. The Reynolds
decomposition defines flow property ¢ at this point as the sum of a steady
mean component @ and a time varying fluctuating component ¢/'(¢) with zero
mean value: hence @(7) = @ + ¢'(r). We start with a formal definition of the
time average or mean @ and we also define the most widely used statistical
descriptors of the fluctuating component ¢'.

Time average or mean

The mean @ of flow property @ is defined as follows:
At

1
o= Ej(p(t) dr (3.2)

0
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In theory we should take the limit of time interval Az approaching infinity,
but the process indicated by equation (3.2) gives meaningful time averages
if At 1s larger than the time scale associated with the slowest variations (due
to the largest eddies) of property ¢. This definition of the mean of a flow
property is adequate for steady mean flows. In time-dependent flows the
mean of a property at time 7 is taken to be the average of the instantaneous
values of the property over a large number of repeated identical experiments:
the so-called ‘ensemble average’.
The time average of the fluctuations ¢’ is, by definition, zero:

At

— 1
(04 :EJ(”’(’) dr=0 (3.3)

0

4

From now on we shall not write down the time-dependence of ¢ and ¢
explicitly, so we write =@ + ¢’

The most compact description of the main characteristics of the fluctuat-
ing component of a turbulent flow variable is in terms of its statistics.

Variance, r.m.s. and turbulence kinetic energy

The descriptors used to indicate the spread of the fluctuations ¢’ about the
mean value @ are the variance and root mean square (r.m.s.):

At

_fz_LJ "2
(¢") = Y (p") de (3.42)
0

At 1/2

— |1
Dpns = ((p')Z = EJ((P/)Z de (34b)

0

The r.m.s. values of the velocity components are of particular importance
since they are generally most easily measured and express the average
magnitude of velocity fluctuations. In section 3.5 we will come across the
variances of velocity fluctuations #’*, v’> and »’> when we consider the time
average of the Navier—Stokes equations and find that they are proportional
to the momentum fluxes induced by turbulent eddies, which cause additional
normal stresses experienced by fluid elements in a turbulent flow.

One-half times these variances has a further interpretation as the mean
kinetic energy per unit mass contained in the respective velocity fluctuations.
The total kinetic energy per unit mass £ of the turbulence at a given location
can be found as follows:

11— —
k= E[u'z + 0% + w'z) (3.5)

The turbulence intensity 7 is the average r.m.s. velocity divided by a refer-
ence mean flow velocity U, and is linked to the turbulence kinetic energy
as follows:

_ (%k)uz
Uref'

T

1

(3.6)
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Moments of different fluctuating variables

The variance is also called the second moment of the fluctuations. Important
details of the structure of the fluctuations are contained in moments constructed
from pairs of different variables. For example, consider properties o=@ + ¢’
and y="Y + vy’ with ¢" = ¥’ = 0. Their second moment is defined as

At

/ ’ 1 7’ ’
oy =—J<p y'di (.7)
At

0

If velocity fluctuations in different directions were independent random
fluctuations, then the values of the second moments of the velocity compon-
ents u'v", u'w’ and v'w” would be equal to zero. However, as we have seen,
turbulence is associated with the appearance of vortical flow structures and
the induced velocity components are chaotic, but not independent, so in turn
the second moments are non-zero. In section 3.5 we will come across v,
u'w’" and v'w’ again in the time-average of the Navier—Stokes equations.
They represent turbulent momentum fluxes that are closely linked with the
additional shear stresses experienced by fluid elements in turbulent flows.
Pressure—velocity moments, p'u’, p’v” etc., play a role in the diffusion of
turbulent energy.

Higher-order moments

Additional information relating to the distribution of the fluctuations can be
obtained from higher-order moments. In particular, the third and fourth
moments are related to the skewness (asymmetry) and kurtosis (peakedness),
respectively:

At

1
(@) = EJ(fp’)3 dt (3.8)
0
At
1
(@)= EJ(fp'ﬁdt (3.9)

0

Correlation functions — time and space

More detailed information relating to the structure of the fluctuations can be
obtained by studying the relationship between the fluctuations at different
times. The autocorrelation function R;,(7) is defined as

At

- 1
Ry (T)= @' ()" (1 + 7) = E J o'+ 7)ds (3.10)
0

Similarly, it is possible to define a further autocorrelation function Ry, (&)
based on two measurements shifted by a certain distance in space:

AL

——— 1
Ry (&) = ' (x,0)¢"(x + &1) = ™ J O'(x ) (x+ &) dr’ (3.11)

t
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turbulent flows

When time shift 7 (or displacement &) is zero the value of the autocorrelation
function R ;(0) (or.R(pr(pr(Q)) just corresponds to the variance ¢’ and will
have its largest possible value, because the two contributions are perfectly
correlated. Since the behaviour of the fluctuations ¢’ is chaotic in a turbulent
flow, we expect that the fluctuations become increasingly decorrelated as
T — oo (or [£]—o0), so values of the time or space autocorrelation functions
will decrease to zero. The eddies at the root of turbulence cause a certain
degree of local structure in the flow, so there will be correlation between the
values of ¢’ at time 7 and a short time later or at a given location x and a small
distance away. The decorrelation process will take place gradually over the
lifetime (or size scale) of a typical eddy. The integral time and length scale,
which represent concrete measures of the average period or size of a turbu-
lent eddy, can be computed from integrals of the autocorrelation function
R /() with respect to time shift T or R (&) with respect to distance in the
direction of one of the components of displacement vector &.

By analogy it is also possible to define cross-correlation functions
R 4,/(7) with respect to time shift T or Ry,/(&) between pairs of different
fluctuations by replacing the second ¢’ by ¥’ in equations (3.10) and (3.11).

Probability density function

Finally, we mention the probability density function P(¢*), which is
related to the fraction of time that a fluctuating signal spends between ¢*
and @* + d@. This is defined in terms of a probability as follows:

P(p*)de* = Prob(ep* < ¢ < o* + do¥) (3.12)

The average, variance and higher moments of the variable and its fluctu-
ations are related to the probability density function as follows:

0= J PP(p)do (3.13a)
(p") = J (@)'P(¢)dg (3.13b)

In equation (3.13b) we can use # =2 to obtain the variance of ¢” and n = 3, 4
. .. for higher-order moments. Probability density functions are used exten-
sively in the modelling of combustion and we come across them again in
Chapter 12.

Most of the theory of turbulent flow was initially developed by careful exam-
ination of the turbulence structure of thin shear layers. In such flows large
velocity changes are concentrated in thin regions. Expressed more formally,
the rates of change of flow variables in the (x-)direction of the flow are negli-
gible compared with the rates of change in the cross-stream (y-)direction
(d@/ dx < d@/ dy). Furthermore, the cross-stream width 0 of the region over
which changes take place is always small compared with any length scale L
in the flow direction (8/L << 1). In the context of this brief introduction we
review the characteristics of some simple two-dimensional incompressible



3.4 CHARACTERISTICS OF SIMPLE TURBULENT FLOWS 53

turbulent flows with constant imposed pressure. The following flows will be
considered here:

Free turbulent flows

* mixing layer

° jet

* wake

Boundary layers near solid walls
* flat plate boundary layer

e pipe flow

We review data for the mean velocity distribution U = U(y) and the pertinent

2
second moments #’2, v’>, w”? and u'v’.

3.4.1 Free turbulent flows

Among the simplest flows of significant engineering importance are those in
the category of free turbulent flows: mixing layers, jets and wakes. A mixing
layer forms at the interface of two regions: one with fast and the other with
slow moving fluid. In a jet a region of high-speed flow is completely sur-
rounded by stationary fluid. A wake is formed behind an object in a flow, so
here a slow moving region is surrounded by fast moving fluid. Figure 3.8 is
a sketch of the development of the mean velocity distribution in the stream-
wise direction for these free turbulent flows.

H HVV‘HH H
!

Jet Mixing layer Wake

Figure 3.8 Free turbulent flows

It is clear that velocity changes across an initially thin layer are important
in all three flows. Transition to turbulence occurs after a very short distance
in the flow direction from the point where the different streams initially
meet; the turbulence causes vigorous mixing of adjacent fluid layers and
rapid widening of the region across which the velocity changes take place.

Figure 3.9 shows a visualisation of a jet flow. It is immediately clear that
the turbulent part of the flow contains a wide range of length scales. Large
eddies with a size comparable to the width across the flow are occurring
alongside eddies of very small size.

The visualisation correctly suggests that the flow inside the jet region is
fully turbulent, but the flow in the outer region far away from the jet is
smooth and largely unaffected by the turbulence. The position of the edge of
the turbulent zone is determined by the (time-dependent) passage of indi-
vidual large eddies. Close to the edge these will occasionally penetrate into
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Figure 3.9 Visualisation of a jet

flow
Source: Van Dyke (1982)
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the surrounding region. During the resulting bursts of turbulent activity in
the outer region — called intermittency — fluid from the surroundings is
drawn into the turbulent zone. This process is termed entrainment and is
the main cause of the spreading of turbulent flows (including wall boundary
layers) in the flow direction.

Initially fast moving jet fluid will lose momentum to speed up the sta-
tionary surrounding fluid. Due to the entrainment of surrounding fluid the
velocity gradients decrease in magnitude in the flow direction. This causes
the decrease of the mean speed of the jet at its centreline. Similarly the dif-
ference between the speed of the wake fluid and its fast moving surroundings
will decrease in the flow direction. In mixing layers the width of the layer
containing the velocity change continues to increase in the flow direction but
the overall velocity difference between the two outer regions is unaltered.

Experimental observations of many such turbulent flows show that after
a certain distance their structure becomes independent of the exact nature of
the flow source. Only the local environment appears to control the turbu-
lence in the flow. The appropriate length scale is the cross-stream layer
width (or half width) 4. We find that if y is the distance in the cross-stream
direction

U-Uy U Upx — U
.. [0 | I B 0 | I T P (3.14)
Umax - Umin b Umax b Umax - Umin b

for mixing layers for jets for wakes

In these formulae U, and U,,;, represent the maximum and minimum
mean velocity at a distance x downstream of the source (see Figure 3.8).
Hence, if these local mean velocity scales are chosen and v is large enough,
the functions f, g and % are independent of distance x in the flow direction.
Such flows are called self-preserving.

The turbulence structure also reaches a self-preserving state, albeit after

a greater distance from the flow source than the mean velocity. Then

u'? y o2 y w2 y W' y
_ [y _rl —rl2 N ESINCRE
Uk, fl[l)] Uk fz[lﬂ Uk, s b Uk, S b (3.15)

The velocity scale U,,/is, as above, (U, — Upin) for a mixing layer and wakes
and U, for jets. The precise form of functions /, g, & and /; varies from flow
to flow. Figure 3.10 gives mean velocity and turbulence data for a mixing
layer (Champagne et al., 1976), a jet (Gutmark and Wygnanski, 1976) and a
wake flow (Wygnanski ez al., 1986). o

The largest values of «”*, v"*, w’* and — 4’2" are found in the region where
the mean velocity gradient U/ dy is largest, highlighting the intimate con-
nection between turbulence production and sheared mean flows. In the flows
shown above the component #” gives the largest of the normal stresses; its
r.m.s. value has a maximum of 15-40% of the local maximum mean flow
velocity. The fact that the fluctuating velocities are not equal implies an
anisotropic structure of the turbulence.

As |y/b| increases above unity the mean velocity gradients and the veloc-
ity fluctuations all tend to zero. It should also be noted that the turbulence
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Figure 3.10 Distribution of
mean velocity and second
moments %>, v, w’* and —u'v’
for incompressible mixing layer,
jet and wake
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3.4.2

properties become more isotropic. The absence of shear means that turbu-
lence cannot be sustained in this region.

The mean velocity gradient is also zero at the centreline of jets and wakes
and hence no turbulence is produced here. Nevertheless, the values of W,
2”2 and " do not decrease very much because vigorous eddy mixing trans-
ports turbulent fluid from nearby regions of high turbulence production
towards and across the centreline. The value of —#’v" has to become zero
at the centreline of jet and wake flows since it must change sign here by
symmetry.

Flat plate boundary layer and pipe flow

Next we will examine the characteristics of two turbulent flows near solid
walls. Due to the presence of the solid boundary, the flow behaviour and
turbulence structure are considerably different from free turbulent flows.
Dimensional analysis has greatly assisted in correlating the experimental
data. In turbulent thin shear layer flows a Reynolds number based on a
length scale L in the flow direction (or pipe radius) Re; is always very large
(e.g. U=1m/s, L=0.1 mand v=10"°m?/s gives Re, = 10°). This implies
that the inertia forces are overwhelmingly larger than the viscous forces at
these scales.

If we form a Reynolds number based on a distance y away from the wall
(Re, = Uy/v) we see that if the value of y is of the order of L the above
argument holds. Inertia forces dominate in the flow far away from the wall.
As y is decreased to zero, however, a Reynolds number based on y will also
decrease to zero. Just before y reaches zero there will be a range of values of
y for which Re, is of the order of 1. At this distance from the wall and closer
the viscous forces will be equal in order of magnitude to inertia forces
or larger. To sum up, in flows along solid boundaries there is usually a
substantial region of inertia-dominated flow far away from the wall and a thin
layer within which viscous effects are important.

Close to the wall the flow is influenced by viscous effects and does not
depend on free stream parameters. The mean flow velocity only depends on
the distance y from the wall, fluid density p and viscosity y and the wall shear
stress 7,. So

U=/, p, 1, 7))
Dimensional analysis shows that

U /
ur=— =f[””7ﬂj = /(") (3.16)

Ug

Formula (3.16) is called the law of the wall and contains the definitions of
two important dimensionless groups, #™ and y*. Note that the appropriate
velocity scale is u, = +/17,/p, the so-called friction velocity.

Far away from the wall we expect the velocity at a point to be influenced
by the retarding effect of the wall through the value of the wall shear stress,
but not by the viscosity itself. The length scale appropriate to this region is
the boundary layer thickness &. In this region we have

U=z, 6,p, 1,)
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Dimensional analysis yields

The most useful form emerges if we view the wall shear stress as the cause
of a velocity deficit U,,,, — U which decreases the closer we get to the edge
of the boundary layer or the pipe centreline. Thus

Unay = U:g[l] (3.17)

Ug o

This formula is called the velocity-defect law.

Linear or viscous sub-layer — the fluid layer in contact with a
smooth wall

At the solid surface the fluid is stationary. Turbulent eddying motions must also
stop very close to the wall and the behaviour of the fluid closest to the wall is
dominated by viscous effects. This viscous sub-layer is in practice extremely
thin (y* < 5) and we may assume that the shear stress is approximately con-
stant and equal to the wall shear stress 7, throughout the layer. Thus

U
() =p= 1,
dy
After integration with respect to y and application of boundary condition
U=01if y=0, we obtain a linear relationship between the mean velocity and
the distance from the wall
T,
U=
u
After some simple algebra and making use of the definitions of #* and y* this
leads to

ut=y"* (3.18)

Because of the linear relationship between velocity and distance from the wall
the fluid layer adjacent to the wall is also known as the linear sub-layer.

Log-law layer — the turbulent region close to a smooth wall

Outside the viscous sublayer (30 < y* < 500) a region exists where viscous
and turbulent effects are both important. The shear stress T varies slowly
with distance from the wall, and within this inner region it is assumed to be
constant and equal to the wall shear stress. One further assumption regard-
ing the length scale of turbulence (mixing length ¢,, = Ky, see section 3.7.1
and Schlichting, 1979) allows us to derive a functional relationship between
u* and y* that is dimensionally correct:

1 1
u* =—In(y") + B =— In(Ey") (3.19)
K K
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Figure 3.11 Velocity
distribution near a solid wall
Source: Schlichting, H. (1979)
Boundary Layer Theory, 7th edn,
reproduced with permission of
The McGraw-Hill Companies

Numerical values for the constants are found from measurements. We find
von Karman’s constant K= 0.4 and the additive constant B = 5.5 (or £ = 9.8)
for smooth walls; wall roughness causes a decrease in the value of B. The
values of K and B are universal constants valid for all turbulent flows past
smooth walls at high Reynolds number. Because of the logarithmic relation-
ship between " and y*, formula (3.18) is often called the log-law, and the
layer where y* takes values between 30 and 500 the log-law layer.

Outer layer — the inertia-dominated region far from the wall

Experimental measurements show that the log-law is valid in the region
0.02 < y/6 < 0.2. For larger values of y the velocity-defect law (3.17)
provides the correct form. In the overlap region the log-law and velocity-
defect law have to be equal. Tennekes and Lumley (1972) show that a
matched overlap is obtained by assuming the following logarithmic form:

Upn=U _ 1 (%) 4 (3.20)

Uz K

where A is a constant. This velocity-defect law is often called the law of the
wake.

Figure 3.11 from Schlichting (1979) shows the close agreement between
theoretical equations (3.18) and (3.19) in their respective areas of validity and
experimental data.

log y*

The turbulent boundary layer adjacent to a solid surface is composed of
two regions:

* The inner region: 10-20% of the total thickness of the wall layer;
the shear stress is (almost) constant and equal to the wall shear stress 7,,.
Within this region there are three zones. In order of increasing distance
from the wall we have:
— the linear sub-layer: viscous stresses dominate the flow adjacent to

surface

— the buffer layer: viscous and turbulent stresses are of similar magnitude
— the log-law layer: turbulent (Reynolds) stresses dominate.
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Figure 3.12 Distribution of
mean velocity and second
moments %>, v, w’* and —u'v’
for flat plate boundary layer

» The outer region or law-of-the-wake layer: inertia-dominated core flow
far from wall; free from direct viscous effects.

Figure 3.12 shows the mean velocity and turbulence property distribution
data for a flat plate boundary layer with a constant imposed pressure
(Klebanoft, 1955).
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The mean velocity is at a maximum far away from the wall and sharply
decreases in the region y/6 < 0.2 due to the no-slip condition. High values
of w2, v"2, w’* and —u’v" are found adjacent to the wall where the large mean
velocity gradients ensure that turbulence production is high. The eddying
motions and associated velocity fluctuations are, however, also subject to
the no-slip condition at the wall. Therefore all turbulent stresses decrease
sharply to zero in this region. The turbulence is strongly anisotropic near
the wall since the production process mainly creates component #’2. This is
borne out by the fact that this is the largest of the mean-squared fluctuations
in Figure 3.12.

In the case of the flat plate boundary layer the turbulence properties
asymptotically tend towards zero as y/§ increases above a value of 0.8.
The r.m.s. values of all fluctuating velocities become almost equal here, indi-
cating that the turbulence structure becomes more isotropic far away from
the wall. In pipe flows, on the other hand, the eddying motions transport
turbulence across the centreline from areas of high production. Therefore,
the r.m.s. fluctuations remain comparatively large in the centre of a pipe.
By symmetry the value of —#’v" has to go to zero and change sign at the
centreline.

This multi-layer structure is a universal feature of turbulent boundary
layers near solid surfaces. Monin and Yaglom (1971) plotted data from
Klebanoft (1955) and Laufer (1952) in the near-wall region and found not
only the universal mean velocity distribution but also that data for second
moments %2, v"2, w’?> and —u'v” for flat plates and pipes collapse onto a
single curve if they are non-dimensionalised with the correct velocity scale
u,. Between these distinct layers there are intermediate zones which ensure
that the various distributions merge smoothly. Interested readers may find
further details including formulae which cover the whole inner region and

the log-law/law-of-the-wake layer in Schlichting (1979) and White (1991).
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3.4.3

a The effect of

turbulent
fluctuations

on properties of
the mean flow

Figure 3.13 Control volume
within a two-dimensional
turbulent shear flow

Summary

Our review of the characteristics of a number of two-dimensional turbulent
flows revealed many common features. Turbulence is generated and main-
tained by shear in the mean flow. Where shear is large the magnitudes of tur-
bulence quantities such as the r.m.s. velocity fluctuations are high and their
distribution is anisotropic with higher levels of fluctuations in the mean flow
direction. Without shear, or an alternative agency to maintain it, turbulence
decays and becomes more isotropic in the process. In spite of these common
features, it was clear that, even in these relatively simple thin shear layers,
the details of the turbulence structure are very much dependent on the flow
itself. In regions close to solid walls the structure is dominated by shear due
to wall friction and damping of turbulent velocity fluctuations perpendicular
to the boundary. This results in a complex flow structure characterised by
rapid changes in the mean and fluctuating velocity components concentrated
within a very narrow region in the immediately vicinity of the wall. Since
most engineering flows contain solid boundaries, the turbulence structure
generated by them will be very geometry dependent. Engineering flow cal-
culations must include sufficiently accurate and general descriptions of the
turbulence that capture all the above effects and further interactions of
turbulence and body forces.

In this section we derive the flow equations governing the time-averaged
properties of a turbulent flow, but before we do this we briefly examine the
physical basis of the effects resulting from the appearance of turbulent
fluctuations.

In Figure 3.13 we consider a control volume in a two-dimensional turbu-
lent shear flow parallel to the x-axis with a mean velocity gradient in the
y-direction. The presence of vortical eddy motions creates strong mixing.
Random currents that are associated with the passage of eddies near the
boundaries of the control volume transport fluid across its boundaries. These
recirculating fluid motions cannot create or destroy mass, but fluid parcels
transported by the eddies will carry momentum and energy into and out of
the control volume. Figure 3.13 shows that, because of the existence of the
velocity gradient, fluctuations with a negative y-velocity will generally bring

Velocity
v'>0 v/ <0 flyctuations
S 1/\ due to eddies
f—
L .
_ . Turbulent

— -1~ .- eddies
1
— Q
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fluid parcels with a higher y-momentum into the control volume across
its top boundary and will also transport control volume fluid to a region
of slower moving fluid across the bottom boundary. Similarly, positive y-
velocity fluctuations will — on average — transport slower moving fluid into
regions of higher velocity. The net result is momentum exchange due to
convective transport by the eddies, which causes the faster moving fluid
layers to be decelerated and the slower moving layers to be accelerated.
Consequently, the fluid layers experience additional turbulent shear stresses,
which are known as the Reynolds stresses. In the presence of temperature
or concentration gradients the eddy motions will also generate turbulent
heat or species concentration fluxes across the control volume bound-
aries. This discussion suggests that the equations for momentum and energy
should be affected by the appearance of fluctuations.

Reynolds-averaged Navier—Stokes equations for
incompressible flow

Next we examine the consequences of turbulent fluctuations for the mean
flow equations for an incompressible flow with constant viscosity. These
assumptions considerably simplify the algebra involved without detracting
from the main messages. We begin by summarising the rules which govern
time averages of fluctuating properties 9= ® + ¢ and y=Y + y’ and their
summation, derivatives and integrals:

T =0 B 2_2® quk:jcpds (3.21)

ds s

P+yYy=0+¥ Qu=0¥+9y’ e¥=0¥ ¢¥=0

These relationships can be easily verified by application of (3.2) and (3.3),
noting that the time-averaging operation is itself an integration. Thus, the
order of time averaging and summation, further integration and/or differen-
tiation can be swapped or commuted, so this is called the commutative
property.

Since div and grad are both differentiations, the above rules can be
extended to a fluctuating vector quantity a = A + a’ and its combinations
with a fluctuating scalar ¢ = ® + @”:

div a = div A; div(@a) = div(@a) = div(®A) + div(¢a’);
div grad ¢ = div grad @ (3.22)
To start with we consider the instantaneous continuity and Navier—Stokes

equations in a Cartesian co-ordinate system so that the velocity vector u has
r-component u, y-component v and z-component w:

diva=0 (3.23)
@ + div(uu) = —l@ + v div(grad(u)) (3.24a)
or p Ox
ﬁ + div(va) = —l@ + v div(grad(v)) (3.24b)
o pay

% + div(wu) = —l@ + v div(grad(w)) (3.24¢)
ol p oz
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This system of equations governs every turbulent flow, but we investigate
the effects of fluctuations on the mean flow using the Reynolds decomposi-
tion in equations (3.23) and (3.24a—c) and replace the flow variables u (hence
also u, v and w) and p by the sum of a mean and fluctuating component. Thus

u=U+u u=U+d v=V+7 w=W+n" p=P+)p

Then the time average is taken, applying the rules stated in (3.21)—(3.22).
Considering the continuity equation (3.23), first we note that div u =div U.
This yields the continuity equation for the mean flow:

629

A similar process is now carried out on the »-momentum equation (3.24a). The
time averages of the individual terms in this equation can be written as follows:

ou = (24 div(uu) = div(UU) + div(z'a)

Jt ot

1 1P erad@) = v div(erad (V)
pox  pox

Substitution of these results gives the time-average x-momentum equation
U —— 1 0P

— 4+ div(UU) + div(z'u’) = ——— + v div(grad(U)) (3.26a)
ol p ox

@ (1) (I11) (IV) V)

Repetition of this process on equations (3.24b) and (3.24c) yields the time-
average y- and z-momentum equations:

Y aiv(rU) + div@@) =L b v diverad())  (3.26b)
ot p oy
@ 1) (I1T) Iv) V)

ow . o 1 0P .
—+ div(W'U) + div(w'a") = ———+ v div(grad(W)) (3.26¢)
or p 0z

@ (1) (I11) (IV) V)

It is important to note that the terms (I), (IT), (IV) and (V) in (3.26a—c) also
appear in the instantaneous equations (3.24a—c), but the process of time
averaging has introduced new terms (III) in the resulting time-average
momentum equations. The terms involve products of fluctuating velocities
and are associated with convective momentum transfer due to turbulent
eddies. It is customary to place these terms on the right hand side of equa-
tions (3.26a—c) to reflect their role as additional turbulent stresses on the
mean velocity components U, V and W

W, div(UU) = Loy div(grad(U))
ot p Ox

(3.27a)
p ox ady oz

7 o7 o
+1{8< pu?) | A-pu')  A-pu'n)
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Y aivr 0y =12 o div(grad(1))
or p oy
= pa; PN
L[ 9epdv)  dpe) | Apr'w) (3.27b)
p ox dy Jz
8_W +div(WU) = —lﬁ + v div(grad(I))
ot p oz
P PN /2
+l o—pu'w +3( pv'w +8( P (3.27¢)
p ox d Js

The extra stress terms have been written out in longhand to clarify their
structure. They result from six additional stresses: three normal stresses

Txx = —plﬁ T = —pﬁ T —pn? (3283)

0y S

and three shear stresses

=1, =—pn (3.28b)
These extra turbulent stresses are called the Reynolds stresses. The
normal stresses involve the respective variances of the x-; y- and z-velocity
fluctuations. They are always non-zero because they contain squared velo-
city fluctuations. The shear stresses contain second moments associated with
correlations between different velocity components. As was stated earlier,
if two fluctuating velocity components, e.g. " and v/, were independent ran-
dom fluctuations the time average #’v” would be zero. However, the correla-
tion between pairs of different velocity components due to the structure of
the vortical eddies ensures that the turbulent shear stresses are also non-zero
and usually very large compared with the viscous stresses in a turbulent flow.
The equation set (3.25) and (3.27a—c) is called the Reynolds-averaged
Navier-Stokes equations.

Similar extra turbulent transport terms arise when we derive a transport
equation for an arbitrary scalar quantity, e.g. temperature. The time-average
transport equation for scalar @Qis

Txy = Tyx = _pu,v, Toe =T =~ pu,w’ Ty:.

D 1
2, div(®U) = — div(T, grad ®)
ot p

Ox dy oz (3.29)

+[_&u(p_&v(p_&w(p:|+5®

So far we have assumed that the fluid density is constant, but in practical
flows the mean density may vary and the instantaneous density always
exhibits turbulent fluctuations. Bradshaw er a/. (1981) stated that small
density fluctuations do not appear to affect the flow significantly. If r.m.s.
velocity fluctuations are of the order of 5% of the mean speed they show that
density fluctuations are unimportant up to Mach numbers around 3 to 5. In
free turbulent flows we have seen in section 3.4 that velocity fluctuations can
easily reach values around 20% of the mean velocity. In such circumstances
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density fluctuations start to affect the turbulence around Mach numbers
of 1. To summarise the results of the current section we quote, without
proof, in Table 3.1, the density-weighted averaged (or Favre-averaged;
see Anderson ¢z al., 1984) form of the mean flow equations for compressible
turbulent flows where effects of density fluctuations are negligible, but mean
density variations are not. This form is widely used in commercial CFD
packages. The symbol U stands for the Favre-averaged velocity.

Table 3.1 Turbulent flow equations for compressible flows

p 8
Continuity 7’) +div(pU) =0 (3.30)
i

Reynolds equations

507 . P N ) == =
KD | aivip 00y = 2L + div( grad ) + | - 222 _PUT)_dpumh | o (3.31a)
t ox ox dy oz
APV - oP N Apuv) Ap?)  Apvw
(pt )+div(ﬁVU)=—g+div(,u — V){ (’;';v - (’;; )_ (p;zw )} + Sy (3.31b)
ApW .. P N Apu'n’) Apv'w) AN pw’
W) | div(pi 0y = -2 + diviu grad W) + | ~2PEZ)_20o®) _dpw)) | o (3.31¢)
t 0z ox dy 0z
Scalar transport equation
a —é s . & — 7 7 & — 7 7 a — 7 7
(PD) | div(FBO) = div(Ty grad &) + | - 2PLL) _APve) _dpwdh| | o (3.32)
ox dy 0z

where the overbar indicates a time-averaged variable and the tilde indicates a density-weighted or Favre-averaged
variable

“ Turbulent flow . _— .

calculations ! urbulence causes the appearance in the flow of eddies with a wide range of
length and time scales that interact in a dynamically complex way. Given the
importance of the avoidance or promotion of turbulence in engineering
applications, it is no surprise that a substantial amount of research effort is
dedicated to the development of numerical methods to capture the important
effects due to turbulence. The methods can be grouped into the following
three categories:

* Turbulence models for Reynolds-averaged Navier-Stokes
(RANS) equations: attention is focused on the mean flow and the
effects of turbulence on mean flow properties. Prior to the application
of numerical methods the Navier—Stokes equations are time averaged
(or ensemble averaged in flows with time-dependent boundary
conditions). Extra terms appear in the time-averaged (or Reynolds-
averaged) flow equations due to the interactions between various
turbulent fluctuations. These extra terms are modelled with classical
turbulence models: among the best known ones are the £—€ model and
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3.7

Reynolds-
averaged Navier—
Stokes equations

and classical
turbulence models

the Reynolds stress model. The computing resources required for
reasonably accurate flow computations are modest, so this approach
has been the mainstay of engineering flow calculations over the last
three decades.

* Large eddy simulation: this is an intermediate form of turbulence
calculations which tracks the behaviour of the larger eddies. The
method involves space filtering of the unsteady Navier—Stokes
equations prior to the computations, which passes the larger eddies
and rejects the smaller eddies. The effects on the resolved flow (mean
flow plus large eddies) due to the smallest, unresolved eddies are
included by means of a so-called sub-grid scale model. Unsteady
flow equations must be solved, so the demands on computing resources
in terms of storage and volume of calculations are large, but (at the time
of writing) this technique is starting to address CFD problems with
complex geometry.

e Direct numerical simulation (DNS): these simulations compute
the mean flow and all turbulent velocity fluctuations. The unsteady
Navier—Stokes equations are solved on spatial grids that are sufficiently
fine that they can resolve the Kolmogorov length scales at which energy
dissipation takes place and with time steps sufficiently small to resolve
the period of the fastest fluctuations. These calculations are highly
costly in terms of computing resources, so the method is not used for
industrial flow computations.

In the next section we discuss the main features and achievements of each of
these methods.

For most engineering purposes it is unnecessary to resolve the details of
the turbulent fluctuations. CFD users are almost always satisfied with infor-
mation about the time-averaged properties of the flow (e.g. mean velocities,
mean pressures, mean stresses etc.). Therefore, the vast majority of turbu-
lent flow computations has been and for the foreseeable future will continue
to be carried out with procedures based on the Reynolds-averaged
Navier-Stokes (RANS) equations (3.30), (3.31a—c) and (3.32). A descrip-
tion of the effects of turbulence on the mean flow is nevertheless needed
because the time-averaging operation on the momentum equations discards
all details concerning the state of the flow contained in the instantaneous
fluctuations. We have already seen in section 3.5 that this yields six addi-
tional unknowns in the time-averaged momentum equations (3.31a—c): the
Reynolds stresses —pu’?, —pv?, —pw™, —pu’v’, —pu'w’, —pv'w’. Similarly,
time-average scalar transport equations show extra terms containing ¢,
'@ and w'¢@’.

In order to be able to compute turbulent flows with the RANS equations
it is necessary to develop turbulence models to predict the Reynolds
stresses and the scalar transport terms and close the system of mean flow
equations (3.30), (3.31a—c) and (3.32). For a turbulence model to be useful in
a general-purpose CFD code it must have wide applicability, be accurate,
simple and economical to run. The most common RANS turbulence models
are classified on the basis of the number of additional transport equations
that need to be solved along with the RANS flow equations:
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No. of extra transport equations Name
Zero Mixing length model
One Spalart—Allmaras model
Two k—€ model

k— model

Algebraic stress model
Seven Reynolds stress model

These models form the basis of standard turbulence calculation procedures
in currently available commercial CFD codes.

Eddy viscosity and eddy diffusivity

Of the tabulated models the mixing length and #—€ models are at present by
far the most widely used and validated. They are based on the presumption
that there exists an analogy between the action of viscous stresses and
Reynolds stresses on the mean flow. Both stresses appear on the right hand
side of the momentum equation, and in Newton’s law of viscosity the viscous
stresses are taken to be proportional to the rate of deformation of fluid
elements. For an incompressible fluid this gives

Ou;  ou,
7:1].= mi/. = ‘u(g + a—xj] (231)

] 1

In order to simplify the notation the so-called suffix notation has been used
here. The convention of this notation is that  or j = 1 corresponds to the
x-direction, 7 or j = 2 the y-direction and 7 or j = 3 the z-direction. So, for

example,
P — o N Oy iy Ou N dv
SR (P YN Jy o

In section 3.4 we reviewed experimental evidence which showed that turbu-
lence decays unless there is shear in isothermal incompressible flows. Further-
more, turbulent stresses are found to increase as the mean rate of deformation
increases. Boussinesq proposed in 1877 that Reynolds stresses might be
proportional to mean rates of deformation. Using the suffix notation we get

o, , 9,

8_xj o,

Tij =—p uiuj = p’f( 3

j - Epkd- (3.33)

where k = 3(u"* + "2 + w'%) is the turbulent kinetic energy per unit mass (see
section 3.3).

The first term of the right hand side is analogous to formula (2.31) above
except for the appearance of the turbulent or eddy viscosity K, (dimensions
Pas). There is also a kinematic turbulent or eddy viscosity denoted by v,= 1,/ p,
with dimensions m*/s. The second term on the right hand side involves J;
the Kronecker delta (5, = 1 if i = j and §; = 0 if 7 # ). This contribution
ensures that the formula gives the correct result for the normal Reynolds
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, = —pv’* and
T,. = —pw’*. To demonstrate the necessity of the extra term we consider an
incompressible flow and explore the behaviour of the first part of (3.33) by
itself. If we sum this over all the normal stresses (i.e. let i = 1, 2 and 3 whilst
keeping i =) we find, using continuity, that it is zero, since

ZIJ;S;’,’ = Zﬂ’liﬂ + ﬂ + &_VV:| = 2#[ divU=0

stresses (those with / = j), and hence for 7, = —pﬁ, T

ox dy oz

Clearly in any flow the sum of the normal stresses —p(u* + v'> + w'?) is equal
to minus twice the turbulence kinetic energy per unit volume (-2pk). In
equation (3.33) an equal third is allocated to each normal stress component
to ensure their sum always has its physically correct value. It should be noted
that this implies an isotropic assumption for the normal Reynolds stresses
which the data in section 3.4 have shown is inaccurate even in simple two-
dimensional flows.

Turbulent transport of heat, mass and other scalar properties can be mod-
elled similarly. Formula (3.33) shows that turbulent momentum transport is
assumed to be proportional to mean gradients of velocity (i.e. gradients of
momentum per unit mass). By analogy turbulent transport of a scalar is taken
to be proportional to the gradient of the mean value of the transported quan-
tity. In suffix notation we get

g =122 (3.34)
o,
where T, is the turbulent or eddy diffusivity.

Since turbulent transport of momentum and heat or mass is due to the
same mechanism — eddy mixing — we expect that the value of the turbulent
diffusivity I, is fairly close to that of the turbulent viscosity f,. This assump-
tion is better known as the Reynolds analogy. We introduce a turbulent
Prandtl/Schmidt number defined as follows:

0,="= (3.35)

Experiments in many flows have established that this ratio is often nearly
constant. Most CFD procedures assume this to be the case and use values of
0, around unity.

Preamble

It has become clear from our discussions of simple turbulent flows in section
3.4 that turbulence levels and turbulent stresses vary from point to point in
a flow. Mixing length models attempt to describe the stresses by means of
simple algebraic formulae for f, as a function of position. The #—& model is
a more sophisticated and general, but also more costly, description of turbu-
lence which allows for the effects of transport of turbulence properties by
convection and diffusion and for production and destruction of turbulence.
Two transport equations (PDEs), one for the turbulent kinetic energy £ and
a further one for the rate of dissipation of turbulent kinetic energy &, are solved.

The underlying assumption of both these models is that the turbulent
viscosity U, is isotropic: in other words that the ratio between Reynolds stress
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and mean rate of deformation is the same in all directions. This assumption
fails in many complex flows where it leads to inaccurate predictions. Here it
is necessary to derive and solve transport equations for the Reynolds stresses
themselves. It may at first seem strange to think that a stress can be subject
to transport. However, it is only necessary to remember that the Reynolds
stresses initially appeared on the left hand side of the momentum equations
and are physically due to convective momentum exchanges as a consequence
of turbulent velocity fluctuations. Fluid momentum — mean momentum as
well as fluctuating momentum — can be transported by fluid particles and
therefore the Reynolds stresses can also be transported.

The six transport equations, one for each Reynolds stress, contain diffu-
sion, pressure—strain and dissipation terms whose individual effects are
unknown and cannot be measured. In Reynolds stress equation models
(also known in the literature as second-order or second-moment closure
models) assumptions are made about these unknown terms, and the result-
ing PDEs are solved in conjunction with the transport equation for the rate
of dissipation of turbulent kinetic energy € The design of Reynolds stress
equation models is an area of vigorous research, and the models have not
been validated as widely as the mixing length and #—€ model. Solving the
seven extra PDEs gives rise to a substantial increase in the cost of CFD sim-
ulations when compared with the #/—¢& model, so the application of Reynolds
stress equation models outside the academic fraternity is relatively recent.

A much more far-reaching set of modelling assumptions reduces the
PDEs describing Reynolds stress transport to algebraic equations to be
solved alongside the £ and € equations of the #—& model. This approach leads
to the algebraic stress models that are the most economical form of
Reynolds stress model able to introduce anisotropic turbulence effects into
CFD simulations.

In the following sections the mixing length and #—& models will be dis-
cussed in detail and the main features of the Reynolds stress equation and
algebraic stress models will be outlined. We also describe the £—® models
and the Spalart-Allmaras model, which are more recent entrants to the
industrial CFD arena, and outline the distinguishing features of other models
that are beginning to make an impact on industrial turbulence modelling.

Mixing length model

On dimensional grounds we assume the kinematic turbulent viscosity v,
which has dimensions m?/s, can be expressed as a product of a turbulent
velocity scale 1 (m/s) and a turbulent length scale € (m). If one velocity scale
and one length scale suffice to describe the effects of turbulence, dimensional
analysis yields

v,= Co¢ (3.36)

where C is a dimensionless constant of proportionality. Of course the
dynamic turbulent viscosity is given by

H, = Cpoit

Most of the kinetic energy of turbulence is contained in the largest eddies,
and turbulence length scale € is therefore characteristic of these eddies which
interact with the mean flow. If we accept that there is a strong connection
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between the mean flow and the behaviour of the largest eddies we can
attempt to link the characteristic velocity scale of the eddies with the mean
flow properties. This has been found to work well in simple two-dimensional
turbulent flows where the only significant Reynolds stress is 7,, = 7, = —pu'v
and the only significant mean velocity gradient is dU/ dy. For such flows it is
at least dimensionally correct to state that, if the eddy length scale is €,

U

)

v=ct

(3.37)

where ¢ is a dimensionless constant. The absolute value is taken to ensure
that the velocity scale is always a positive quantity irrespective of the sign of
the velocity gradient.

Combining (3.36) and (3.37) and absorbing the two constants C and ¢ into
a new length scale €,, we obtain

U

EY

This is Prandtl’s mixing length model. Using formula (3.33) and noting
that JU/dy is the only significant mean velocity gradient, the turbulent
Reynolds stress is described by

V=0 (3.38)

== (3.39)

Turbulence is a function of the flow, and if the turbulence changes it is
necessary to account for this within the mixing length model by varying €,,.
For a substantial category of simple turbulent flows, which includes the
free turbulent flows and wall boundary layers discussed in section 3.4,
the turbulence structure is sufficiently simple that €,, can be described by
means of simple algebraic formulae. Some examples are given in Table 3.2
(Rodi, 1980).

Table 3.2 Mixing lengths for two-dimensional turbulent flows

Flow

Mixing layer

Jet

Wake

Axisymmetric jet

Boundary layer (dp/dx = 0)
viscous sub-layer and
log-law layer (y/L <0.22)
outer layer (y/L = 0.22)

Pipes and channels
(fully developed flow)

Mixing length ¢, 1L

0.07L Layer width
0.09L Jet half width
0.16L Wake half width
0.075L Jet half width

ky[1 - exp(~y*/26)]

Boundary layer
0.09L thickness

Pipe radius or
L[0.14-0.08(1 — y/L)* — 0.06(1 — y/L)*] channel half width
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Figure 3.14 Results of
calculations using mixing
length model for (a) planar jet
and (b) wake behind a long,
slender, circular cylinder
Source: Schlichting, H. (1979)
Boundary Layer Theory, 7th edn,
reproduced with permission of
The McGraw-Hill Companies

The mixing length model can also be used to predict turbulent transport
of scalar quantities. The only turbulent transport term which matters in the
two-dimensional flows for which the mixing length is useful is modelled as
follows:

S
=1,

5 (3.40)

where I', = y,/ 0, and y, = pv, where v, is found from (3.38). Rodi (1980)
recommended values for o, of 0.9 in near-wall flows, 0.5 for jets and mixing
layers and 0.7 in axisymmetric jets.

In the formulae in Table 3.2 y represents the distance from the wall and
k= 0.41 is von Karman’s constant. The expressions give very good agree-
ment between computed results and experiments for mean velocity distribu-
tions, wall friction coefficients and other flow properties such as heat transfer
coefficients in simple two-dimensional flows. Results for two flows from
Schlichting (1979) are given below in Figures 3.14a—b.

1.0
T
&
x‘ €
- &~ 0751 A Mixing length |
/I | & “* theory
£
= A
© A
- A g o050 N _
¢ SR X
Oo /A/A =) A}
- ‘ 0.25 + N .
_- ‘< : O O™
A ~
oQO‘ - A S« P
\ \ \ \ \ \ \ \ R oy

-25 20 -15 -10 -05 0.5 1.0 1.5 2.0 2.5

0
Y
b

(a)

Mixing length
theory

Upax — U
Unax = Unin

-1.2 -0.8 -0.4 0.4 0.8 1.2

T|< ©

(b)

The mixing length has been found to be very useful in simple two-
dimensional flows with slow changes in the flow direction. In these cases
the production of turbulence is in balance with its dissipation throughout



72

CHAPTER 3 TURBULENCE AND ITS MODELLING

3.7.2

the flow, and turbulence properties develop in proportion with a mean flow
length scale .. This means that in such flows the mixing length ¢, is pro-
portional to L and can be described as a function of position by means of
a simple algebraic formula. The majority of practically important flows,
however, involve additional contributions to the budgets of turbulence
properties due to transport, i.e. convection and diffusion. Moreover, the
production and destruction processes may be modified by the flow itself.
Consequently, the mixing length model is not used on its own in general-
purpose CFD, but we will find it embedded in many of the more sophisti-
cated turbulence models to describe near-wall flow behaviour as part of the
treatment of wall boundary conditions.
An overall assessment of the mixing length model is given in Table 3.3.

Table 3.3 Mixing length model assessment

Advantages:

* easy to implement and cheap in terms of computing resources

* good predictions for thin shear layers: jets, mixing layers, wakes and
boundary layers

» well established

Disadvantages:
» completely incapable of describing flows with separation and recirculation
* only calculates mean flow properties and turbulent shear stress

The k—€ model

In two-dimensional thin shear layers the changes in the flow direction are
always so slow that the turbulence can adjust itself to local conditions. In flows
where convection and diffusion cause significant differences between produc-
tion and destruction of turbulence, e.g. in recirculating flows, a compact
algebraic prescription for the mixing length is no longer feasible. The way
forward is to consider statements regarding the dynamics of turbulence. The
k—& model focuses on the mechanisms that affect the turbulent kinetic energy.
Some preliminary definitions are required first. The instantaneous kinetic
energy k(1) of a turbulent flow is the sum of the mean kinetic energy K =
Z(U* + V2 + W?) and the turbulent kinetic energy k= 3(u2 + 2 + w'%):

k)=K+#k

In the developments below we extensively need to use the rate of deforma-
tion and the turbulent stresses. To facilitate the subsequent calculations it is
common to write the components of the rate of deformation s; and the
stresses T, in tensor (matrix) form:

S Sy Saz Tox Txy Tez
=S Sy S| and T=1T, 0T, T,
Slx sl_)/ SZZ TZX T/’:J’ Tz:

Decomposition of the rate of deformation of a fluid element in a turbulent
ﬂoW into a mean and a fluctuating component, s,(t) = .S; + 57, gives the fol-
lowing matrix elements:
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Sx,r(t) = Sx‘ + S,:‘x = aa—(] + iu— s){)’(t) = S)’J/ + S‘;y — % + Z)/
X oy
Szz(t) = Sz: + S;z = 5_VV+ &W
oz
Sx]’(l) = Sxy + S;y = SW([) = Syx + S;/x — l a_lj n i + l a_u N ﬂ
| | | | | 2 = &y ox 20 dy  ox
) =St =) =S bty | DL 2V L] O O
S)'z(t) = Sl’z + S;,z = Szy([) = SZ)/ + S;), — l % + ow + l v N ow
. J . 3 3 > 2 | oz &)/ 2| o2 3)/

The product of a vector a and a tensor 4, is a vector ¢ whose components can
be calculated by application of the ordinary rules of matrix algebra:

- -
byy byz by ayby + axby + asbs I

ab;=ab;=[ay ay az]| by byy bys |=| a1b1y + arbyy + ashy, | =| ;| =¢j=c
b3y b, b3 arbyz + azby3 + azbss 3

The scalar product of two tensors a; and b is evaluated as follows:

@i . b= anbyy + apbyy + ayzhiz + aybyy + aynby + arby;
+ azbs) + axnbs; + asbs;

We have used the convention of the suffix notation where the x-direction
is denoted by subscript 1, the y-direction by 2 and the z-direction by 3.
It can be seen that products are formed by taking the sum over all possible
values of every repeated suffix.

Governing equation for mean flow kinetic energy K

An equation for the mean kinetic energy K can be obtained by multiplying
x-component Reynolds equation (3.27a) by U, y-component equation
(3.27b) by V and z-component equation (3.27¢c) by W. After adding together
the results and a fair amount of algebra it can be shown that the time-
average equation governing the mean kinetic energy of the flow is as follows
(Tennekes and Lumley, 1972):

d(pK —_— -
% + div(pKU) = div(=PU + 2uUS; — pUu/u) = 2uS; . S;+ pulu/ . S; | (3.41)
. i A e i
@) an (11I) v) V) (VI) (VII)
Or in words
Rate of change  Transport  Transport Transport  Transport  Rate of Rate of destruction
of mean kinetic + of Kby =of Kby + of Kby of Kby —_ viscous _ of Kdueto
N K tion viscous Reynolds dissipation  turbulence

enersy convectio pressure stresses stress of K production

The transport terms (III), (IV) and (V) are all characterised by the appearance
of div and it is common practice to place them together inside one pair of
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brackets. The effects of the viscous stresses on K have been split into two parts:
term (IV), the transport of K due to viscous stresses; and term (VI), the viscous
dissipation of mean kinetic energy K. The two terms that contain the Reynolds
stresses —pu/u; account for turbulence effects: term (V) is the turbulent
transport of K by means of Reynolds stresses and (VII) is the net decrease of
K due to deformation work by Reynolds stresses giving rise to turbulence
production. In high Reynolds number flows the turbulent terms (V) and
(VII) are always much larger than their viscous counterparts (IV) and (VI).

Governing equation for turbulent kinetic energy k

Multiplication of each of the instantaneous Navier—Stokes equations (3.24a—)
by the appropriate fluctuating velocity components (i.e. ¥-component equa-
tion multiplied by #” etc.) and addition of all the results, followed by a repeat
of this process on the Reynolds equations (3.27a—c), subtraction of the two
resulting equations and very substantial rearrangement, yields the equation
for turbulent kinetic energy 4 (Tennekes and Lumley, 1972).

d
(5 ) + div(pkU) = div(-p'u’ + 2uu’s’; s = p2 ul) = 2Us) . s — pulu! u .S, | (3.42)
) (IT) I — av V) (VD (VII)
In words
Rate of change of Transport  Transport Transportof Transportof  Rate of Rate of
turbulent kinetic + of £ by =of kby  + k by viscous + £ by Reynolds — dissipation + production
energy k convection  pressure stresses stress of k of k

Equations (3.41) and (3.42) look very similar in many respects; however, the
appearance of primed quantities on the right hand side of the k-equation
shows that changes to the turbulent kinetic energy are mainly governed by
turbulent interactions. Terms (VII) in both equations are equal in magni-
tude, but opposite in sign. In two-dimensional thin shear layers we found
(see section 3.4) that the only signiﬁcant Reynolds stress —pu'v” is usually
positive if the main term of .S; in such a flow, the mean velocity gradient
dU/ dy, is positive. Hence term (VII) gives a positive contribution in the
k-equation and represents a production term. In the K-equation, however,
the sign is negative, so there the term destroys mean flow kinetic energy.
This expresses mathematically the conversion of mean kinetic energy into
turbulent kinetic energy.
The viscous dissipation term (VI),

—2/.15 Zu(sll + S + Sg; + 2512 + 231; + 232@)

gives a negative contrlbutlon to (3.42) due to the appearance of the sum
of squared fluctuating deformation rates s. The dissipation of turbulent
kinetic energy is caused by work done by the smallest eddies against viscous
stresses. The rate of dissipation per unit volume (VI) is normally written as
the product of the density p and the rate of dissipation of turbulent kinetic
energy per unit mass &, so

e=2vs) . s/, .
25 s (3.43)
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The dimensions of € are m?/s®. This quantity is of vital importance in the
study of turbulence dynamics. It is the destruction term in the turbulent
kinetic energy equation, of a similar order of magnitude as the production
term and never negligible. When the Reynolds number is high, the viscous
transport term (IV) in (3.42) is always very small compared with the turbu-
lent transport term (V) and the dissipation (VI).

The k—e model equations

It is possible to develop similar transport equations for all other turbulence
quantities including the rate of viscous dissipation € (see Bradshaw et al.,
1981). The exact e-equation, however, contains many unknown and unmea-
surable terms. The standard k—€ model (LLaunder and Spalding, 1974) has
two model equations, one for # and one for &, based on our best understand-
ing of the relevant processes causing changes to these variables.

We use £ and € to define velocity scale ¥ and length scale € representative
of the large-scale turbulence as follows:

D=k (= ﬁ/l
£

One might question the validity of using the ‘small eddy’ variable € to define
the ‘large eddy’ scale €. We are permitted to do this because at high Reynolds
numbers the rate at which large eddies extract energy from the mean flow is
broadly matched to the rate of transfer of energy across the energy spectrum
to small, dissipating, eddies if the flow does not change too rapidly. If this
was not the case the energy at some scales of turbulence could grow or
diminish without limit. This does not occur in practice and justifies the use
of € in the definition of €.

Applying dimensional analysis we can specify the eddy viscosity as
follows:

kZ
u,= Cpt =pC,— (3.44)
£

where C,, is a dimensionless constant.
The standard f#—€ model uses the following transport equations for £
and &

A(pk [ i
(PR) | div(prU) = div| 2 grad & | + 28, . S, - pe (3.45)
ot | O ]
B T 2
XPD) | div(peU) = div| - grad | + 01%2#[5,, S,- ckp% (3.46)
i o, | '

In words the equations are

Rate of Transport  Transport  Rate of Rate of
change of +of kor eby=of kor €  + production — destruction
kore convection by diffusion of kor € of kor ¢
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The equations contain five adjustable constants: C,, 0}, O, Ci.and C,,. The
standard #—& model employs values for the constants that are arrived at by
comprehensive data fitting for a wide range of turbulent flows:

1€,=0.09 6,=1.00 0,=130 C,=144 Cy=192](3.47)

The production term in the model k-equation is derived from the exact
production term in (3.42) by substitution of (3.33). A modelled form of the
principal transport processes in the #- and &-equation appears on the right
hand side. The turbulent transport terms are represented using the gradient
diffusion idea introduced earlier in the context of scalar transport (see equa-
tion (3.34)). Prandtl numbers 0, and 0, connect the diffusivities of # and &
to the eddy viscosity U,. The pressure term (III) of the exact k-equation can-
not be measured directly. Its effect is accounted for in equation (3.45) within
the gradient diffusion term.

Production and destruction of turbulent kinetic energy are always closely
linked. Dissipation rate € is large where production of 4 is large. The model
equation (3.46) for € assumes that its production and destruction terms are
proportional to the production and destruction terms of the k-equation
(3.45). Adoption of such forms ensures that € increases rapidly if £ increases
rapidly and that it decreases sufficiently fast to avoid (non-physical) negative
values of turbulent kinetic energy if £ decreases. The factor &/ in the pro-
duction and destruction terms makes these terms dimensionally correct in
the &-equation. Constants C;, and C,, allow for the correct proportionality
between the terms in the 4- and &-equations.

To compute the Reynolds stresses we use the familiar Boussinesq
relationship:

—— U, dU )\ 2 2
—pu;u; :/Jz[a_xj"'a_xj] _Epk(sij: ZlutSij_gpk(sij (3.48)

Boundary conditions

The model equations for £ and € are elliptic by virtue of the gradient diffu-
sion term. Their behaviour is similar to the other elliptic flow equations,
which gives rise to the need for the following boundary conditions:

e inlet: distributions of £ and € must be given
e outlet, symmetry
axis: ok/dn=0and de/dn=0
* free stream: k and € must be given or dk/dn=0and de/dn =0
* solid walls: approach depends on Reynolds number (see below)

In exploratory design calculations the detailed boundary condition informa-
tion required to operate the model may not be available. Industrial CFD
users rarely have measurements of # and € at their disposal. Progress can
be made by entering values of £ and € from the literature (e.g. publications
referred to in section 3.4) and subsequently exploring the sensitivity of the
results to these inlet distributions. If no information is available at all, rough
approximations for the inlet distributions for # and € in internal flows can
be obtained from the turbulence intensity 7; and a characteristic length L of
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the equipment (equivalent pipe diameter) by means of the following simple
assumed forms:

2 1372
k= g(U”fT,-)2 €= Cf/“T €=0.07L

The formulae are closely related to the mixing length formulae given above
and the universal distributions near a solid wall given below.

The natural choice of boundary conditions for turbulence-free free
stream would seem to be £ =0 and €= 0. Inspection of formula (3.44) shows
that this would lead to indeterminate values for the eddy viscosity. In prac-
tice, small, but finite, values are commonly used, and once again the sensitiv-
ity of the results to these arbitrary assumed values needs to be investigated.

At high Reynolds number the standard /—€ model (Launder and
Spalding, 1974) avoids the need to integrate the model equations right
through to the wall by making use of the universal behaviour of near-wall
flows discussed in section 3.4. If y is the co-ordinate direction normal to a
solid wall, the mean velocity at a point at yp with 30 < y} < 500 satisfies the
log-law (3.19), and measurements of turbulent kinetic energy budgets indi-
cate that the rate of turbulence production equals the rate of dissipation.
Using these assumptions and the eddy viscosity formula (3.44) it is possible
to develop the following wall functions, which relate the local wall shear
stress (through #;) to the mean velocity, turbulence kinetic energy and rate
of dissipation:

U o1 2 3
Wr=—=—In(Ey}) k=-—r= e=-T (3.49)
u, K JC, Ky

Von Karman’s constant k¥ = 0.41 and wall roughness parameter £ = 9.8 for
smooth walls. Schlichting (1979) also gives values of E that are valid for
rough walls.

For heat transfer we can use a wall function based on the universal near-
wall temperature distribution valid at high Reynolds numbers (Launder and
Spalding, 1974)

T+E_wzgw 4+ p| 2re (3.50)
Iw O-T,l

with 7, = temperature at near-wall point y,
T,, = wall temperature
C, = fluid specific heat at constant pressure
4,, = wall heat flux
Oy, = turbulent Prandtl number
o7, = UC,/T'y= (laminar or molecular) Prandtl number
I'; = thermal conductivity

Finally P is the pee-function, a correction function dependent on the ratio of
laminar to turbulent Prandtl numbers (LLaunder and Spalding, 1974).

At low Reynolds numbers the log-law is not valid, so the above-
mentioned boundary conditions cannot be used. Modifications to the k—¢
model to enable it to cope with low Reynolds number flows are reviewed in
Patel et al. (1985). Wall damping needs to be applied to ensure that viscous



88

CHAPTER 3 TURBULENCE AND ITS MODELLING

and

n(l —n/ny)
1+ g}

Only the constant f3 is adjustable; the above value is calculated from near-
wall turbulence data. All other constants are explicitly computed as part of
the RNG process.

The &-equation has long been suspected as one of the main sources of
accuracy limitations for the standard version of the £—& model and the RSM
in flows that experience large rates of deformation. It is, therefore, interest-
ing to note that the model contains a strain-dependent correction term in the
constant Cj, of the production term in the RNG model &-equation (it can
also be presented as a correction to the sink term).

Yakhot ez al. (1992) report very good predictions of the flow over a
backward-facing step. This performance improvement initially aroused
considerable interest and a number of commercial CFD codes have now
incorporated the RNG version of the #/—& model. Hanjali¢ (2004) noted that
subsequent experience with the model has not always been positive, because
the strain parameter 7] sensitises the RNG model to the magnitude of the
strain. Therefore the effect on the dissipation rate € is the same irrespective
of the sign of the strain. This gives the same effect if a duct is strongly
contracting or expanding. Thus, the performance of the RNG k—& model is
better than the standard #—& model for the expanding duct, but actually
worse for a contraction with the same area ratio.

k
Cle=Ce— n=—/25,.S, m=4377 B=0.012
&€

Effects of adverse pressure gradients: turbulence models for
aerospace applications

Aerodynamic calculations, such as whole-aircraft simulations, involve very
complex geometries and phenomena at different length scales induced by
geometry (ranging from flows induced by vortex generators to trailing vortices
and fuselage wakes). The bulk of the flow will be effectively inviscid, but the
structure of the outer flow is affected by the development of viscous bound-
ary layers and wakes, so local effects at small scale can influence the state of
the entire flow field. Specification of a mixing length is not possible in flows
of such complexity and, as we have seen previously, the /—& model does not
have an unblemished performance record. Leschziner (in Peyret and Krause,
2000) summarises the problems in this context as follows:

e The k—€& model predicts excessive levels of turbulent shear stress,
particularly in the presence of adverse pressure gradients (e.g. in curved
shear layers) leading to suppression of separation on curved walls

* Grossly excessive levels of turbulence in stagnation/impingement
regions giving rise to excessive heat transfer in reattachment regions

In such complex flows the RSM would be expected to be significantly better,
but the computational overhead of this method prevents its routine applica-
tion for the evaluation of complex external flows. Substantial efforts have
been made by the CFD community to develop more economical methods for
aerospace applications. We discuss the following recent developments:

e Spalart—Allmaras one-equation model
*  Wilcox #/—® model
e Menter shear stress transport (SST) £—® model
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Spalart—Allmaras model

The Spalart—Allmaras model involves one transport equation for kinematic
eddy viscosity parameter V and a specification of a length scale by means
of an algebraic formula, and provides economical computations of boundary
layers in external aerodynamics (Spalart and Allmaras, 1992). The (dynamic)
eddy viscosity is related to V by

M= pVfn (3.68)

Equation (3.68) contains the wall-damping function f,; = f,,(V/V), which
tends to unity for high Reynolds numbers, so the kinematic eddy viscosity
parameter V is just equal to the kinematic eddy viscosity V, in this case. At
the wall the damping function f,,; tends to zero.

The Reynolds stresses are computed with

—— L. [9U; 9y
Ty=—puju =2U,5;=pVfy, [W + g/j

7

(3.69)

i

The transport equation for V is as follows:

2
+ div(pvU) = LI (1 + pv) grad(V) + Cthii +CppvQ—C,,p Y 30
O, ox;, 0. Ky

(I

v Xp OXp

(I1I) (Iv) V) (VD)

Or in words

Rate of change Transport  Transport of  Rate of Rate of
of viscosity  +of Vby =V by turbulent + production — dissipation
parameter V convection  diffusion of v of v

In Equation (3.70) the rate of production of V is related to the local mean
vorticity as follows:

(ky)*
where  Q=_/2Q,Q,; = mean vorticity
and
1(oU; 9U; ..
= —| — — —| = mean vorticity tensor
2\ dv; O

The functions f,, = f,,(V/ V) and f,, = f,(V/ (QK?)?)) are further wall-damping
functions.

In the /—€ model the length scale is found by combining the two trans-
ported quantities # and & € = ¥%/%/¢. In a one-equation turbulence model
the length scale cannot be computed, but must be specified to determine the
rate of dissipation of the transported turbulence quantity. Inspection of the
destruction term (VI) of equation (3.70) reveals that xy (with y = distance to
the solid wall) has been used as the length scale. The length scale Ky also
enters in the vorticity parameter Q and is just equal to the mixing length used
in section 3.4 to develop the log-law for wall boundary layers.
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The model constants are as follows:

6,=2/3

k=0.4187

1+Cy
C}rl = 01355 CbZ = 0622 Cwl = Cbl + K'z

v

These model constants and three further ones hidden in the wall functions
were tuned for external aerodynamic flows, and the model has been shown to
give good performance in boundary layers with adverse pressure gradients,
which are important for predicting stalled flows. Its suitability to aerofoil
applications means that the Spalart—Allmaras model has also attracted an
increasing following among the turbomachinery community. In complex
geometries it is difficult to define the length scale, so the model is unsuitable
for more general internal flows. Moreover, it lacks sensitivity to transport
processes in rapidly changing flows.

Wilcox k—@ model

In the k—€ model the kinematic eddy viscosity V, is expressed as the product
of a velocity scale ¥ =./F and a length scale € = £¥2/¢. The rate of dissipa-
tion of turbulence kinetic energy € is not the only possible length scale
determining variable. In fact, many other two-equation models have been
postulated. The most prominent alternative is the #—® model proposed by
Wilcox (1988, 1993a,b, 1994), which uses the turbulence frequency w = &/k
(dimensions s7!) as the second variable. If we use this variable the length
scale is € =./k /. The eddy viscosity is given by

U, = pk/o (3.71)

The Reynolds stresses are computed as usual in two-equation models with
the Boussinesq expression:

—— 2 U, Uu) 2
Tj=—p uju; =2/L,S; _gpkfsij: K (L +L]

— —pkd; 3.72
The transport equation for # and @ for turbulent flows at high Reynolds is
as follows:

M + div(pkU) = div[ [,u + &J grad (/e)] + P, — B*pkw (3.73)
ot o,
@ 1) (I1T) awvy v
where
20U,
Py= (ZlurSij S - gpka_xl(ng

is the rate of production of turbulent kinetic energy and

@ + div(pwU) = div[ (u LA ] grad(a))]
t [0}

Uy,
g‘ijj - Bipw’ (3.74)

7

2
+% [ZpSij LS gpw
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d(pw)

@

+ div(poU) = di{ [

(1)

Or in words
Rate of ~ Transport Transport of k or  Rate of Rate of
change + of £ or @ by = @by turbulent + production — dissipation
of kor @ convection  diffusion of kor @ of kor @

2
u+ i} grad(w)} + )’{ZPSz/ S ng—l@j ~Bpor +2

The model constants are as follows:

6,=20 | 0,=20 | %=0553 | B=0.075 | p*=0.09 |

The k—® model initially attracted attention because integration to the wall
does not require wall-damping functions in low Reynolds number applica-
tions. The value of turbulence kinetic energy # at the wall is set to zero. The
frequency o tends to infinity at the wall, but we can specify a very large
value at the wall or, following Wilcox (1988), apply a hyperbolic variation
wp = 6V/(B,y3) at the near-wall grid point. Practical experience with the
model has shown that the results do not depend too much on the precise
details of this treatment.

At inlet boundaries the values of # and @ must be specified, and at
outlet boundaries the usual zero gradient conditions are used. The boundary
condition of @ in a free stream, where turbulence kinetic energy £ — 0 and
turbulence frequency @ — 0, is the most problematic one. Equation (3.71)
shows that the eddy viscosity K, is indeterminate or infinite as @ — 0, so a
small non-zero value of @ must be specified. Unfortunately, results of the
model tend to be dependent on the assumed free stream value of @ (Menter,
1992a), which is a serious problem in external aerodynamics and aerospace
applications where free stream boundary conditions are used as a matter of
routine.

Menter SST k—w model

Menter (1992a) noted that the results of the #—& model are much less sensi-
tive to the (arbitrary) assumed values in the free stream, but its near-wall
performance is unsatisfactory for boundary layers with adverse pressure gra-
dients. This led him to suggest a hybrid model using (i) a transformation of
the k—€ model into a #/—® model in the near-wall region and (ii) the standard
k—€ model in the fully turbulent region far from the wall (Menter, 1992a,b,
1994, 1997). The Reynolds stress computation and the k-equation are the
same as in Wilcox’s original #/—® model, but the &equation is transformed
into an w-equation by substituting € = k®. This yields

o, p 2w

O-w,zw axk 8xk

ov;

o1 J

(I11) (IV) ) V) (3.75)

Comparison with equation (3.74) shows that (3.75) has an extra source term
(VI) on the right hand side: the cross-diffusion term, which arises during the
€ = ko transformation of the diffusion term in the &-equation.

Menter et al. (2003) summarise a series of modifications to optimise the
performance of the SST £—® model based on experience with the model in
general-purpose computation. The main improvements are:
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Revised model constants:

|6,=1.0 | 0, =20 | 0,,=1.17 | =044 | B,=0.083 | p*=0.09 |

Blending functions: Numerical instabilities may be caused by differences
in the computed values of the eddy viscosity with the standard k—€&
model in the far field and the transformed #—¢€ model near the wall.
Blending functions are used to achieve a smooth transition between
the two models. Blending functions are introduced in the equation to
modify the cross-diffusion term and are also used for model constants
that take value C, for the original #—® model and value C, in Menter’s
transformed #—€ model:

Typically, a blending function Fo = F(€,/y, Re,) is a function of the
ratio of turbulence €, = Jk/® and distance y to the wall and of a
turbulence Reynolds number Re, = y*@/v. The functional form of
F is chosen so that it (i) is zero at the wall, (ii) tends to unity in the
far field and (ii1) produces a smooth transition around a distance half
way between the wall and the edge of the boundary layer. This way the
method now combines the good near-wall behaviour of the £—m model
with the robustness of the #—€ model in the far field in a numerically
stable way.
Limiters: The eddy viscosity is limited to give improved performance
in flows with adverse pressure gradients and wake regions, and
the turbulent kinetic energy production is limited to prevent the
build-up of turbulence in stagnation regions. The limiters are
as follows:

o wpk (3.772)

max(a, o, SF;)

where S = /25,5, a; = constant and F} is a blending function, and

Xj

P, = min(lOﬁ*p/ea), 2u,8;. S; - %pk% 5,.]] (3.77b)

Assessment of performance of turbulence models for aerospace
applications

External aerodynamics: The Spalart—Allmaras, #—® and SST k-
models are all suitable. The SST k—® model is most general, and tests
suggest that it gives superior performance for zero pressure gradient
and adverse pressure gradient boundary layers, free shear layers and a
NACA4412 aerofoil (Menter, 1992b). However, the original #—® model
was best for the flow over a backward-facing step.

General-purpose CFD: The Spalart—Allmaras model is unsuitable, but
the £~ and SST k—® models can both be applied. They both have a
similar range of strengths and weaknesses as the #—€ model and fail to
include accounts of more subtle interactions between turbulent stresses
and mean flow when compared with the RSM.
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Anisotropy

Two-equation turbulence models (i.e. 4—¢€, #—® and other similar models)
are incapable of capturing the more subtle relationships between turbulent
energy production and turbulent stresses caused by anisotropy of the normal
stresses. They also fail to represent correctly the effects on turbulence of
extra strains and body forces. The RSM incorporates these effects exactly,
but several unknown turbulence processes (pressure—strain correlations, tur-
bulent diffusion of Reynolds stresses, dissipation) need to be modelled, and
the computer storage requirements and run times are significantly increased
compared with two-equation models. In order to avoid the performance
penalty associated with the solution of extra transport equations in the RSM,
several attempts have been made to ‘sensitise’ two-equation models to the
more complex effects. The first method to incorporate sensitivity to normal
stress anisotropy was the algebraic stress model. Subsequently, the research
groups at NASA Langley Research Center (Speziale) in the USA and at
UMIST (Launder) in the UK have developed a number of non-linear two-
equation models. These models are discussed below.

Algebraic stress equation model

The algebraic stress model (ASM) represents the earliest attempt to find an
economical way of accounting for the anisotropy of Reynolds stresses with-
out going to the full length of solving their transport equations. The large
computational cost of solving the RSM is caused by the fact that gradients
of the Reynolds stresses R;; etc. appear in the convective C; and diffusive
transport terms D; of Reynolds stress transport equation (3.55). Rodi and
colleagues proposed the idea that, if these transport terms are removed or
modelled, the Reynolds stress equations reduce to a set of algebraic equations.

The simplest method is to neglect the convection and diffusion terms
altogether. In some cases this appears to be sufficiently accurate (Naot and
Rodi, 1982; Demuren and Rodi, 1984). A more generally applicable method
is to assume that the sum of the convection and diffusion terms of the
Reynolds stresses is proportional to the sum of the convection and diffusion
terms of turbulent kinetic energy. Hence

Dulu/ ulu]( Dk
2ty D;= ) ZE [transport of £ (i.e. div) terms]
Dt k | Dt
= %(—ﬁ .S;— 8 (3.78)

The terms in the brackets on the right hand side comprise the sum of the rate
of production and the rate of dissipation of turbulent kinetic energy from the
exact k-equation (3.42). The Reynolds stresses and the turbulent kinetic
energy are both turbulence properties and are closely related, so (3.78) is
likely not to be too bad an approximation provided that the ratio u/u//k does
not vary too rapidly across the flow. Further refinements may be obtained by
relating the transport by convection and diffusion independently to the
transport of turbulent kinetic energy.

Introducing approximation (3.78) into the Reynolds stress transport
equation (3.55) with production term P; (3.57), modelled dissipation rate
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term (3.60) and pressure—strain interaction term (3.61) on the right hand side
yields after some rearrangement the algebraic stress model:

——_2 2 k
Rz’/ =upu; = ;kd] + aASM(PU - gpd); (379)
where Oagm = OCASM(P/S)
and P = production rate of turbulence kinetic energy

The factor gy must account for all the physics ‘lost’ in the algebraic
approximation. As indicated, it is a function of the ratio of the rates of pro-
duction and dissipation of turbulence kinetic energy, which will be close to
unity in slowly changing flows. The value of @y, is around 0.25 for swirling
flows. Turbulent scalar transport can also be described by algebraic models
derived from their full transport equations that were alluded to in section
3.7.3. Rodi (1980) gives further information for the interested reader.

The Reynolds stresses appear on both sides of (3.79) — on the right hand
side they are contained within P; —so (3.79) is a set of six simultaneous alge-
braic equations for the six unknown Reynolds stresses R;; that can be solved
by matrix inversion or iterative techniques if £ and € are known. Therefore,
the formulae are solved in conjunction with the standard #—€ model equa-
tions (3.44)—(3.47).

Demuren and Rodi (1984) reported the computation of the secondary
flow in non-circular ducts with a somewhat more sophisticated version of
this model that includes wall corrections for the pressure—strain term and
modified values of adjustable constants to get a good match with measured
data in nearly homogeneous shear flows and channel flows. They achieved
realistic predictions of the primary flow distortions and secondary flow in
square and rectangular ducts. The latter is caused by anisotropy of the nor-
mal Reynolds stresses and can therefore not be represented by simulations of
the same situation with the standard #—& model.

Table 3.6 ASM assessment

Advantages:

* cheap method to account for Reynolds stress anisotropy

* potentially combines the generality of approach of the RSM (good
modelling of buoyancy and rotation effects possible) with the economy of
the k—& model

* successfully applied to isothermal and buoyant thin shear layers

 if convection and diffusion terms are negligible the ASM performs as well
as the RSM

Disadvantages:

* only slightly more expensive than the #—& model (two PDEs and a system
of algebraic equations)

* not as widely validated as the mixing length and k—€ models

» same disadvantages as RSM apply

» model is severely restricted in flows where the transport assumptions for
convective and diffusive effects do not apply — validation is necessary to
define performance limits
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Assessment of performance

The ASM is an economical method of incorporating the effects of anisotropy
into the calculations of Reynolds stresses, but it does not consistently per-
form better than the standard k—& model (Table 3.6). Moreover, the ASM
can suffer from stability problems that can be attributed to the appearance of
singularities in the factor oygy = Aagm(P/ €), which becomes indeterminate
in turbulence-free flow regions, i.e. when P — 0 and € — 0. Recently the
ASM has been rather overshadowed by the development of non-linear eddy
viscosity k£—€ models, which will be discussed in the next section.

Non-linear k—e models

Early work on non-linear two-equation models built on an analogy between
viscoelastic fluids and turbulent flows first noted by Rivlin (1957) and elabor-
ated by Lumley (1970). Speziale (1987) presented a systematic framework
for the development of non-linear #—€ models. The idea is to ‘sensitise’ the
Reynolds stresses through the introduction of additional effects in a math-
ematically and physically correct form.

The standard #—& model uses the Boussinesq approximation (3.33) and
eddy viscosity expression (3.44). Hence:

U] = Ty= TSy, by &, p) (3.80)

This relationship implies that the turbulence characteristics depend on
local conditions only, i.e. the turbulence adjusts itself instantaneously as
it is convected through the flow domain. The viscoelastic analogy holds that
the adjustment does not take place immediately. In addition to the above
dependence on mean strain rate .S;, turbulence kinetic energy &, rate of dis-
sipation € and fluid density p the Reynolds stress should also be a function
of the rate of change of mean strain following a fluid particle. So,

W =T, =T, S DS; k€ (3.81)
—Puju; =1;="1; R ) .
puity =T ) P

When we studied the RSM we noted that 7 is actually a transported quantity,
1.e. subject to rates of change, convective and diffusive redistribution and
to production and dissipation. Bringing in a dependence on DS,/ Dt can be
regarded as a partial account of Reynolds stress transport, which recognises
that the state of turbulence lags behind the rapid changes that disturb the
balance between turbulence production and dissipation.

A group of researchers at NASA Langley Research Center led by Speziale
have elaborated this idea and proposed a non-linear #—€ model. Their
approach involves the derivation of asymptotic expansions for the Reynolds
stresses which maintain terms that are quadratic in velocity gradients

(Speziale, 1987):

— 2 e I3 1 o 1o

where S, = j+ U . grad(S;) - (8_1 St = S,,,,-j and C,=1.68

m axm
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The value of adjustable constant Cj, was found by calibration with experi-
mental data.

Equation (3.82) is the non-linear extension of the #—€ model to flows with
moderate and large strains. Expression (3.48) for the Reynolds stresses in the
standard #—€ model can be regarded as a special case of (3.82) at low rates
of deformation when terms that are quadratic in velocity gradients may be
dropped. Horiuti (1990) argued in favour of a variant of this approach which
retains terms up to third-order in velocity gradients.

The precise form of the model arose from the application of a number of
powerful constraints on the mathematical shape of the resulting models,
most of which were first compiled and formulated by Lumley (1978):

e Frame invariance: turbulence models must be expressed in a
mathematical form that is independent of the co-ordinate system used
for CFD computations and must give a consistent account of
interactions between turbulence and time-dependent translations or
rotations of the frame of reference o

*  Realisability: the values of turbulence quantities such as «/?, k and &
cannot be negative and must be constrained to be always greater
than zero.

As an aside it should be noted that application of the realisability constraint
without the viscoelastic analogy has given rise to the realisable k—& model
with variable C,, = C,(Sk/€) where S = /25,5, and modification of the &-
equation (see e.g. Shih ez al., 1995).

Launder and colleagues at UMIST worked on non-linear #—& models
with the aim of ‘sensitising’ the model to the anisotropy of normal Reynolds
stresses in a way that preserves the spirit of RSM to the extent that this
is possible in a two-equation model. Pope (1975) introduced a generalisation
of the eddy viscosity hypothesis based on a power series of tensor products
of the mean rate of strain S;; = +(dU,/dx; + dU;/dx;) and the mean vorticity
Q; =5(9U/x; — dU/9x)).

The simplest non-linear eddy viscosity model relates the Reynolds
stresses to quadratic tensor products of S;; and Q;:

— 2
T = —puin] = 2U:S; = < pkd;

k 1
—Cl.U;; ['Si/e Sy ESkl . Skléijj

k
=G, — (S - Qi+ Si . ) quadratic terms | (3.83)
£

k 1
_Cs.UzE [Qi/c Q- EQH . Qk/dj]

The addition of the last three quadratic terms allows the normal Reynolds
stresses to be different, so the model has the potential to capture anisotropy
effects. The predictive ability of the model is optimised by adjustment of
the three additional model constants C;, C, and Cj along with the five con-
stants of the original #—€ model. Craft ez a/. (1996) demonstrated that it is
necessary to introduce cubic tensor products to obtain the correct sensitising
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3.7.5

effect for interactions between Reynolds stress production and streamline
curvature. They also included:

* Variable C,, with a functional dependence on local strain rate .S; and
vorticity €2,

e Ad hoc modification of the &-equation to reduce the overprediction of
the length scale, leading to poor shear stress predictions in separated
flows

* Wall-damping functions to enable integration of the 4#- and &-equation
to the wall through the viscous sub-layer

Leschziner (in Peyret and Krause, 2000) compared the performance of
linear and cubic #/—€ models with the RSM to demonstrates the performance
enhancement for an aerofoil computation at an incidence angle where trail-
ing edge separation has just occurred. The linear #/—& model fails to indicate
the stall condition and gives poor accuracy for a range of other boundary
layer parameters, whereas the results of the cubic £#—€ model are very close to
those of the RSM.

Closing remarks — RANS turbulence models

The field of turbulence modelling provides an area of intense research
activity for the CFD and fluid engineering communities. In the previous
sections we have outlined the modelling strategy of the most prominent
RANS turbulence models that are applied in or under development for
commercially available general-purpose codes. Behind much of the research
effort in advanced turbulence modelling lies the belief that, irrespective
of boundary conditions and geometry, there exists a (limited) number of
universal features of turbulence, which, when identified correctly, can form
the basis of a complete description of flow variables of interest to an engineer.
The emphasis must be on the word ‘belief’; because the very existence of
a classical model — based on time-averaged equations — of this kind is con-
tested by a number of renowned experts in the field. Encouraged by, for
example, the early successes of the mixing length model in the external
aerodynamics field, they favour the development of dedicated models for
limited classes of flow. These two viewpoints naturally lead to two distinct
lines of research work:

1 Development and optimisation of turbulence models for limited
categories of flows

2 The search for a comprehensive and completely general-purpose
turbulence model

Industry has many pressing flow problems to solve that will not wait for the
conception of a universal turbulence model. The 4—¢€ model is still widely
used in industrial applications and produces useful results in spite of earlier
observations relating to its limited validity. Fortunately many sectors of
industry are specifically interested in a limited class of flows only, e.g. pipe
flows for the oil transportation sector, turbines and combustors for power
engineering. The large majority of turbulence research consists of case-
by-case examination and validation of existing turbulence models for such
specific problems.
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stresses take over from turbulent Reynolds stresses at low Reynolds numbers
and in the viscous sub-layer adjacent to solid walls. The equations of the low
Reynolds number #—¢€ model, which replace (3.44)—(3.46), are given below:

/€2
u,=pC,Lﬁl; (3.51)

/e
3(5;%_ div(pkU) = div[ (u + ﬂ] grad /e] 21, . S, - pe | (3.52)
i o, ’

AP | div(peu = div[ [u + ﬂJ grad s}
ot (o]

£

€ g
+ ClEﬁZZ,u,S,-j . S,-j— C2£f2p? (3.53)

The most obvious modification, which is universally made, is to include the
molecular viscosity i in the diffusion terms in (3.52)—(3.53). The constants
Cy, Ciz and Gy, in the standard k—€ model are multiplied by wall-damping
functions f,, f; and f;, respectively, which are themselves functions of the
turbulence Reynolds number (Re, = €/ v = k*/(gVv)), Re, = k''*y/v and/or
similar parameters. As an example we quote the Lam and Bremhorst (1981)
wall-damping functions:

20.5
fu=11—exp(=0.0165 Rej/)]z(l + 1(; ]
el

3
f= [1 +%J f=1—exp(—Re?) (3.54)

u

Equations (3.51)—(3.53) and the RANS equations need to be integrated to
the wall, but the boundary condition for € gives rise to problems. The best
available measurements suggest that the rate of dissipation of turbulent
energy rises steeply as the wall is approached and tends to an (unknown) con-
stant value. Lam and Bremhorst use de/dy = 0 as the boundary condition.
Other low Reynolds number #—¢€ models are based on a modified dissipation
rate variable defined as & = £ — 2v(d/k/dn)%, introduced by Launder and
Sharma (1974), which allows us to use the more straightforward boundary
condition € = 0. It should be noted that the resulting equation set is numer-
ically stiff and the further appearance of non-linear wall-damping functions
regularly gives rise to severe challenges to achieve convergence.

Assessment of performance

The k—€ model is the most widely used and validated turbulence model.
It has achieved notable successes in calculating a wide variety of thin shear
layer and recirculating flows without the need for case-by-case adjustment of
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Figure 3.15 Comparison

of predictions of #—¢& model
with measurements in an
axisymmetric combustor:

(a) axial velocity contours;

(b) temperature contours

Source: Jones and Whitelaw (1982)

the model constants. The model performs particularly well in confined flows
where the Reynolds shear stresses are most important. This includes a wide
range of flows with industrial engineering applications, which explains its
popularity. Versions of the model are available which incorporate effects
of buoyancy (Rodi, 1980). Such models are used to study environmental
flows such as pollutant dispersion in the atmosphere and in lakes and the
modelling of fires. Figure 3.15 (Jones and Whitelaw, 1982) shows the results
of early calculations with the k—€ model of turbulent combusting flows for
an axisymmetric combustor. Computed contours of axial velocity and
temperature are compared with experimental values showing good general
agreement but differences in detail. The flow pattern in the combustor is
dominated by turbulent transport and hence its correct prediction is vitally
important for the development of the flow field and the combustion process.
We come back to this issue in Chapter 12 where we examine different
models of turbulent combustion.
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In spite of the numerous successes, the standard #—& model shows only
moderate agreement in unconfined flows. The model is reported not to perform
well in weak shear layers (far wakes and mixing layers), and the spreading
rate of axisymmetric jets in stagnant surroundings is severely overpredicted.
In large parts of these flows the rate of production of turbulent kinetic energy
is much less than the rate of dissipation, and the difficulties can only be over-
come by making ad hoc adjustment to model constants C.

Bradshaw ez al. (1981) stated that the practice of incorporating the pressure
transport term of the exact k-equation in the gradient diffusion expression of
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3.7.3

the model equation is deemed to be acceptable on the grounds that the
pressure term is sometimes so small that measured turbulent kinetic energy
budgets balance without it. They noted, however, that many of these meas-
urements contain substantial errors, and it is certainly not generally true that
pressure diffusion effects are negligible.

We can expect that the #—€ model, and all other models that are based
on Boussinesq’s isotropic eddy viscosity assumption, will have problems in
swirling flows and flows with large rapid extra strains (e.g. highly curved
boundary layers and diverging passages) that affect the structure of turbu-
lence in a subtle manner. Secondary flows in long non-circular ducts, which
are driven by anisotropic normal Reynolds stresses, can also not be predicted
due to the same deficiencies of the treatment of normal stresses within the
k—€ model. Finally, the model is oblivious to body forces due to rotation of
the frame of reference.

A summary of the performance assessment for the standard #—& model is
given in Table 3.4.

Table 3.4 Standard k—& model assessment

Advantages:

» simplest turbulence model for which only initial and/or boundary
conditions need to be supplied

» excellent performance for many industrially relevant flows

» well established, the most widely validated turbulence model

Disadvantages:
* more expensive to implement than mixing length model (two extra PDEs)
* poor performance in a variety of important cases such as:
(1) some unconfined flows
(i1) flows with large extra strains (e.g. curved boundary layers, swirling
flows)
(i11) rotating flows
(iv) flows driven by anisotropy of normal Reynolds stresses (e.g. fully
developed flows in non-circular ducts)

Reynolds stress equation models

The most complex classical turbulence model is the Reynolds stress equa-
tion model (RSM), also called the second-order or second-moment closure
model. Several major drawbacks of the £—€ model emerge when it is attempted
to predict flows with complex strain fields or significant body forces. Under
such conditions the individual Reynolds stresses are poorly represented by
formula (3.48) even if the turbulent kinetic energy is computed to reasonable
accuracy. The exact Reynolds stress transport equation on the other hand
can account for the directional effects of the Reynolds stress field.

The modelling strategy originates from work reported in Launder ez al.
(1975). We follow established practice in the literature and call R; = —7;/p
= u/u] the Reynolds stress, although the term kinematic Reynolds stress
would be more precise. The exact equation for the transport of R;; takes the
following form:
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DR. OR.
TU:TZJ'FC’]:P#"FDU—&]‘FH,]"FQ# (355)
i t
Rate of Transport  Rate of Transport  Rate of Transport of R; due ~ Transport
change of + of R;by = production + of R;by  — dissipation + to turbulent pressure + of R; due to
R;=u/u]  convection of R; diffusion of R; — strain interactions  rotation

port of e: each of the six 1rﬁpendent _ElOldS stresses (ul S u?, u; S ujy, ujus
and ujuj, since wyu] = ujuy, wiu; = wjuy and wiu; = wyu}). If it is compared
with the exact transport equation for the turbulent kinetic energy (3.42)
two new physical processes appear in the Reynolds stress equations: the
pressure—strain interaction or correlation term H,], whose effect on the
kinetic energy can be shown to be zero, and the rotation term €.

In CFD computations with the Reynolds stress transport equations the
convection, production and rotation terms can be retained in their exact
form. The convective term is as follows:

a(PUk” ) 7 7
C;= = div(p u;u; U) (3.56)
ax]e
the production term is
U. A
Pi=- R,-mL + R,,,,&U’ (3.57)
' ox,, ox,,
and, finally, the rotational term is given by
Qij = _Zwk(mgi/em + mejkm) (358)

Here @, is the rotation vector and ¢;;, is the alternating symbol; ¢;;, = +1 if ¢,
jand £ are different and in cyclic order, ¢;;, =—1if 7, j and k are dlfferent and
in anti-cyclic order; and ¢;;, = 0 if any two indices are the same.

To obtain a solvable form of (3.55) we need models for the diffusion, the
dissipation rate and the pressure—strain correlation terms on the right hand
side. Launder e al. (1975) and Rodi (1980) gave comprehensive details of
the most general models. For the sake of simplicity we quote those models
derived from this approach that are used in some commercial CFD codes.
These models often lack somewhat in detail, but their structure is easier to
understand and the main message is intact in all cases.

The diffusion term D;; can be modelled with the assumption that the rate
of transport of Reynolds stresses by diffusion is proportional to gradients of
Reynolds stresses. This gradient diffusion idea recurs throughout turbulence
modelling. Commercial CFD codes often favour the simplest form:

d (v, dR; vV,
=2 = div| —* grad(R, 3.59
v axm [G/e ax J (O-k g ( j)] ( )
2
with v,=C C,=0.09and 0,=1.0

u-
£
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The dissipation rate &; is modelled by assuming isotropy of the small dissi-
pative eddies. It is set so that it affects the normal Reynolds stresses (i = ;)
only and each stress component in equal measure. This can be achieved by

(3.60)

where € is the dissipation rate of turbulent kinetic energy defined by (3.43).
The Kronecker delta § is given by 6; =1 if i=jand 6;=0if i # .

The pressure—strain interactions constitute one of the most important
terms in (3.55), but the most difficult one to model accurately. Their effect
on the Reynolds stresses is caused by two distinct physical processes: (i) a
‘slow’ process that reduces anisotropy of the turbulent eddies due to their
mutual interactions; and (ii) a ‘rapid’ process due to interactions between
turbulent fluctuations and the mean flow strain that produce the eddies such
that the anisotropic production of turbulent eddies is opposed. The overall
effect of both processes is to redistribute energy amongst the normal
Reynolds stresses (1 =) so as to make them more isotropic and to reduce the
Reynolds shear stresses (i # 7). The simplest account of the slow process
takes the rate of return to isotropic conditions to be proportional to the
degree of anisotropy a; of the Reynolds stresses (a; = R;; — %/edj) divided by
a characteristic time scale of the turbulence £/¢. The rate of the rapid pro-
cess is taken to be proportional to the production processes that generate the
anisotropy. The simplest representation of the pressure—strain term in the
Reynolds stress transport equation is therefore given by

2 2

with C;=1.8 and C,=0.6

More advanced accounts include corrections in the second set of brackets in
equation (3.61) to ensure that the model is frame invariant (i.e. the effect is
the same irrespective of the co-ordinate system).

The effect of the pressure—strain term (3.61) is to decrease anisotropy of
Reynolds stresses (i.e. to equalise the normal stresses u]?, u5> and u$?), but
we have seen in section 3.4 that measurements indicate an increase of the
anisotropy of normal Reynolds stresses in the vicinity of a solid wall due to
damping of fluctuations in the directions normal to the wall. Hence, addi-
tional corrections are needed to account for the influence of wall proximity
on the pressure—strain terms. These corrections are different in nature from
the wall-damping functions encountered in the #/—& model and need to be
applied irrespective of the value of the mean flow Reynolds number. It is
beyond the scope of this introduction to give all this detail. The reader is
directed to a comprehensive model that accounts for all these effects in
Launder et al. (1975).

Turbulent kinetic energy £ is needed in the above formulae and can be
found by simple addition of the three normal stresses:

k=3(Ryy + Ry + Ryg) = H(uf? + uf + uf?)

The six equations for Reynolds stress transport are solved along with a
model equation for the scalar dissipation rate £ Again a more exact form is
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found in Launder ez al. (1975), but the equation from the standard #—& model
is used in commercial CFD for the sake of simplicity:

De v £ e
ZZ div| L grad e | + C,=2v,S,; . S; — Cpo— 3.62
Dt (Gg g ] lsk i ij 2¢e 2 ( )

where C;,=1.44 and C,,=1.92

Rate of Transport Transport Rate of Rate of
change + of € by =of eby 4+ production — destruction
of € convection diffusion  of € of €

The usual boundary conditions for elliptic flows are required for the solution
of the Reynolds stress transport equations:

e inlet: specified distributions of R;; and €

+ outlet and symmetry: dR;;/dn =0 and de/n =0

¢ free stream: R;=0and £= 0 are given or dR;/dn =0 and
dg/dn=0

e solid wall: use wall functions relating R;; to either  or u7,
e.g. ulr = 1.1k, u}t = 0.25k, uiZ = 0.66k,
—ujuy =0.26k

In the absence of any information, approximate inlet distributions for R;
may be calculated from the turbulence intensity 7;and a characteristic length
L of the equipment (e.g. equivalent pipe diameter) by means of the follow-
ing assumed relationships:

3/2

2 k
k= E(UM/TJZ E= CISIMT €=0.07L

ulu! =0 (i#j)

Expressions such as these should not be used without a subsequent test of
the sensitivity of results to the assumed inlet boundary conditions.

For computations at high Reynolds numbers wall-function-type bound-
ary conditions can be used, which are very similar to those of the #—€ model
and relate the wall shear stress to mean flow quantities. Near-wall Reynolds
stress values are computed from formulae such as R, = u/u/ = ¢;k, where the
¢; are obtained from measurements.

Low Reynolds number modifications to the models can be incorporated
to add the effects of molecular viscosity to the diffusion terms and to account
for anisotropy in the dissipation rate term in the R;-equations. Wall-damping
functions to adjust the constants of the &-equation and Launder and Sharma’s
modified dissipation rate variable & = £— 2v(dk'/2/ dy)* (see also section 3.7.2)
give more realistic modelling near solid walls (Launder and Sharma, 1974).
So et al. (1991) gave a review of the performance of near-wall treatments
where details may be found.

Similar models involving three further model PDEs — one for every tur-
bulent scalar flux u/¢" of equation (3.32) — are available for scalar transport.




84

CHAPTER 3 TURBULENCE AND ITS MODELLING

The interested reader is referred to Rodi (1980) for further material. Com-
mercial CFD codes may use or give as an alternative the simple expedient of
solving a single scalar transport equation and using the Reynolds analogy by
adding a turbulent diffusion coefficient I', = 11,/ 6, to the laminar diffusion
coefficient with a specified value of the Prandtl/Schmidt numbers 6, around
0.7. Little is known about low Reynolds number modifications to the scalar
transport equations in near-wall flows.

Assessment of performance

RSMs are clearly quite complex, but it is generally accepted that they are
the ‘simplest’ type of model with the potential to describe all the mean
flow properties and Reynolds stresses without case-by-case adjustment. The
RSM is by no means as well validated as the k—€ model, and because of
the high cost of the computations it is not so widely used in industrial flow
calculations (Table 3.5). Moreover, the model can suffer from convergence
problems due to numerical issues associated with the coupling of the mean
velocity and turbulent stress fields through source terms. The extension and
improvement of these models is an area of very active research. Once a con-
sensus has been reached about the precise form of the component models
and the best numerical solution strategy, it is likely that this form of turbu-
lence modelling will begin to be more widely applied by industrial users.
Figure 3.16 (Leschziner, in Peyret and Krause, 2000) gives a performance
comparison of the RSM and 4—¢€ models against measured distributions of
pressure coefficient and suction-side skin friction coefficients for an
Aérospatiale aerofoil. Leschziner notes that the aerofoil is close to stall at the
chosen angle of attack. The diagrams show that the 4—& model (labelled
LL k—¢) fails to reproduce several details of the pressure distribution in the
leading and trailing edge regions. The prediction of the onset of separation
depends crucially on the details of the boundary layer structure just
upstream, which are captured much better by the RSM model (labelled
RSTM + leq, to highlight the chosen treatment of the viscous sub-layer).
This model also gives excellent agreement with the measured distribution of
skin friction on the suction side of the aerofoil.

Table 3.5 RSM assessment

Advantages:

* potentially the most general of all classical turbulence models

* only initial and/or boundary conditions need to be supplied

* very accurate calculation of mean flow properties and a// Reynolds stresses
for many simple and more complex flows including wall jets, asymmetric
channel and non-circular duct flows and curved flows

Disadvantages:

* very large computing costs (seven extra PDEs)

* not as widely validated as the mixing length and k—€ models

» performs just as poorly as the #—€ model in some flows due to identical
problems with the &-equation modelling (e.g. axisymmetric jets and
unconfined recirculating flows)
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Figure 3.16 Comparison of
predictions of RSM and standard
k—€ model with measurements on
a high-lift Aérospatiale aerofoil:
(a) pressure coefficient; (b) skin
friction coefficient

Source: Leschziner, in Peyret and

Krause (2000)
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Advanced turbulence models

Two-equation turbulence models, such as the £—& model introduced earlier,
give good results for simple flows and some recirculating flows, but research
over a period of three decades has highlighted a number of shortcomings.
Leschziner (in Peyret and Krause, 2000) and Hanjali¢ (2004) summarised
the nature and causes of these performance problems:

Low Reynolds number flows: in these flows wall functions based on

the log-law are inaccurate and it is necessary to integrate the /- and
&-equations to the wall. Very rapid changes occur in the distributions

of k and € as we reach the buffer layer between the fully turbulent
region and the viscous sublayer. This requires large numbers of grid
points to resolve the changes, and we also need non-linear wall-damping
functions to force upon £ and € the correct behaviour as the character
of the near-wall flow changes from turbulence dominated to viscous
dominated. As a consequence the system of equations that needs to be
solved is numerically stiff, which means that it may be difficult to get
converged solutions. Furthermore, the results can be grid dependent.
Rapidly changing flows: the Reynolds stress —p u/u/ is proportional to the
mean rate of strain .S;; in two-equation models. This only holds when
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the rates of production and dissipation of turbulence kinetic energy are
roughly in balance. In rapidly changing flows this is not the case.

*  Stress anisotropy: the normal Reynolds stresses —p /> will all be
approximately equal to —%p/e if a thin shear layer flow is evaluated
using a two-equation model. Experimental data presented in section 3.4
showed that this is not correct, but in spite of this the k—& model
performs well in such flows because the gradients of normal turbulent
stresses —pu;* are small compared with the gradient of the dominant
turbulent shear stress —p #’v”. Consequently, the normal stresses may be
large, but they are not dynamically active in thin shear layer flows, i.e.
they are not responsible for driving any flows. In more complex flows
the gradients of normal turbulent stresses are not negligible and can
drive significant flows. These effects cannot be predicted by the
standard two-equation models.

o Strong adverse pressure gradients and recirculation regions: this problem
particularly affects the £—€ model and is also attributable to the isotropy
of its predicted normal Reynolds stresses and the resultant failure to
represent correctly the subtle interactions between normal Reynolds
stresses and mean flow that determine turbulent energy production.
The k—€ model overpredicts the shear stress and suppresses separation
in flows over curved walls. This is a significant problem in flows over
aerofoils, e.g. in aerospace applications.

e Extra strains: streamline curvature, rotation and extra body forces all
give rise to additional interactions between the mean strain rate and the
Reynolds stresses. These physical effects are not captured by standard
two-equation models.

As we have seen, the RSM incorporates an exact representation of the
Reynolds stress production process and, hence, addresses most of these
problems adequately, but at the cost of a significant increase in computer
storage and run time. Below we consider some of the more recent advances
in turbulence modelling that seek to address some or all of the above
problems.

Advanced treatment of the near-wall region: two-layer k—& model

The two-layer model represents an improved treatment of the near-wall
region for turbulent flows at low Reynolds number. The intention is, as
in the low Reynolds number k—€ model discussed earlier, to integrate to
the wall by placing the near-wall grid point in the viscous sublayer (y* < 1).
The numerical stability problems (Chen and Patel, 1988) associated with the
non-linear wall-damping functions, necessary in the low Reynolds number
k—€ model to integrate both k- and &-equations to the wall, are avoided by
sub-dividing the boundary layer into two regions (Rodi, 1991):

* Fully turbulent region, Re, =y.Jk /v = 200: the standard k—& model is
used and the eddy viscosity is computed with the usual relationship
(3.44), w,, = C,pk*/ e

* Viscous region, Re, < 200: only the k-equation is solved in this
region and a length scale is specified using € = ky[1 — exp(—Re,/A)]

for the evaluation of the rate of dissipation with £ = C;/**?/{ using

A= ZKC;*V“ and the eddy viscosity in this region with y, ,= C}/“‘pﬂ€

and 4 =70
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The mixing length formulae are similar in form to the expression in Table 3.2
for the length scale in the viscous sub-layer of a wall boundary layer. In order
to avoid instabilities associated with differences between ,, and i, , at the
join between the fully turbulent and viscous regions, a blending formula is
used to evaluate the eddy viscosity in 7; = —pu/u/ = 2,5, — %p/edj:

i, = Fu:ut,t +(1- F,u).ul,v (3.64)

The blending function F,, = F,(Re)) is zero at the wall and tends to 1 in the
fully turbulent region when Re, > 200. The functional form of F), is designed
to ensure a smooth transition around Re, = 200.

The two-layer model is less grid dependent and more numerically
stable than the earlier low Reynolds number #—€ models and has become
quite popular in more complex flow simulations where integration to the wall
of the flow equations is necessary.

Strain sensitivity: RNG k—e model

The statistical mechanics approach has led to new mathematical formalisms,
which, in conjunction with a limited number of assumptions regarding the
statistics of small-scale turbulence, provide a rigorous basis for the extension
of eddy viscosity models. The renormalization group (RNG) devised by
Yakhot and Orszag of Princeton University has attracted most interest. They
represented the effects of the small-scale turbulence by means of a random
forcing function in the Navier—Stokes equation. The RNG procedure sys-
tematically removes the small scales of motion from the governing equations
by expressing their effects in terms of larger scale motions and a modified
viscosity. The mathematics is highly abstruse; we only quote the RNG k—¢
model equations for high Reynolds number flows derived by Yakhot ez al.
(1992):

d(pk)
ot

+ div(pkU) = div[ o,y grad k] + 7; . S;; — pe (3.65)

2
% + div(peU) = div[oft,; grad €] + ci';fr,.j S, - ckp% (3.66)

with
7 7. 2
7= = /= 20,5, = —pkS;
and
2
Hp=H+ 4y fh=pCu—
and

C,=00845 0=, =139 C.=142 C,=1.68 (3.67)
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Large eddy
simulation

3.8.1

The literature is too extensive even to begin to review here. The main
sources of useful, applications-oriented information are: Transactions of the
American Society of Mechanical Engineers — in particular the Journal of Fluids
Engineering, Journal of Heat Transfer and Journal of Engineering for Gas Turbines
and Power — as well as the AIAA Journal, the International Journal of Heat
and Mass Transfer and the International Journal of Heat and Fluid Flow.

In spite of century-long efforts to develop RANS turbulence models, a
general-purpose model suitable for a wide range of practical applications has
so far proved to be elusive. This is to a large extent attributable to differences
in the behaviour of large and small eddies. The smaller eddies are nearly
isotropic and have a universal behaviour (for turbulent flows at sufficiently
high Reynolds numbers at least). On the other hand, the larger eddies, which
interact with and extract energy from the mean flow, are more anisotropic
and their behaviour is dictated by the geometry of the problem domain, the
boundary conditions and body forces. When Reynolds-averaged equations
are used the collective behaviour of all eddies must be described by a
single turbulence model, but the problem dependence of the largest eddies
complicates the search for widely applicable models. A different approach
to the computation of turbulent flows accepts that the larger eddies need
to be computed for each problem with a time-dependent simulation. The
universal behaviour of the smaller eddies, on the other hand, should hope-
fully be easier to capture with a compact model. This is the essence of the
large eddy simulation (LES) approach to the numerical treatment of
turbulence.

Instead of time-averaging, LES uses a spatial filtering operation to separ-
ate the larger and smaller eddies. The method starts with the selection of a
filtering function and a certain cutoff width with the aim of resolving in an
unsteady flow computation all those eddies with a length scale greater than
the cutoff width. In the next step the spatial filtering operation is performed
on the time-dependent flow equations. During spatial filtering information
relating to the smaller, filtered-out turbulent eddies is destroyed. This, and
interaction effects between the larger, resolved eddies and the smaller unre-
solved ones, gives rise to sub-grid-scale stresses or SGS stresses. Their effect
on the resolved flow must be described by means of an SGS model. If the
finite volume method is used the time-dependent, space-filtered flow equa-
tions are solved on a grid of control volumes along with the SGS model of
the unresolved stresses. This yields the mean flow and all turbulent eddies at
scales larger than the cutoff width. In this section we review the methodo-
logy of LES computation of turbulent flows and summarise recent achieve-
ments in the calculation of industrially relevant flows.

Spatial filtering of unsteady Navier—Stokes equations

Filters are familiar separation devices in electronics and process applications
that are designed to split an input into a desirable, retained part and an un-
desirable, rejected part. The details of the design of a filter — in particular its
functional form and the cutoff width A — determine precisely what is retained
and rejected.



3.8 LARGE EDDY SIMULATION 929

Filtering functions

In LES we define a spatial filtering operation by means of a filter function

G(x, X', A) as follows:
o(x, 1) = J J JG(X x', A)o(x', r)dx] dwj dwj (3.84)

where @ (x, #) = filtered function

and  ¢(x, ) = original (unfiltered) function
and A = filter cutoff width

In this section the overbar indicates spatial filtering, not time-averaging.
Equation (3.84) shows that filtering is an integration, just like time-averaging
in the development of the RANS equations, only in the LES the integration
is not carried out in time but in three-dimensional space. It should be noted
that filtering is a linear operation.

The commonest forms of the filtering function in three-dimensional LES
computations are

* Top-hat or box filter:

o (1N k=x|<A/2 (3.852)
G(X’X’A)‘{o K—x|>A/2

e Qaussian filter:

372
’ _ Y |X B X'lz
G(X, X, A) = [EJ exp (—’}/T] (385b)

typical value for parameter Y= 6

e Spectral cutoff:
3
in[(x; — x7)/A
G, )= [ 0= 5/A]

i=1 (x;— x))

(3.85¢)

The top-hat filter is used in finite volume implementations of LES. The
Gaussian and spectral cutoff filters are preferred in the research literature.
The Gaussian filter was introduced for LES in finite differences by the
Stanford group, which, over a period of more than three decades, has been
the centre of research on LES and has established a rigorous basis for the
technique as a turbulence modelling tool. Spectral methods (i.e. Fourier
series to describe the flow variables) are also used in turbulence research, and
the spectral filter gives a sharp cutoff in the energy spectrum at a wavelength
of A/m. The latter is attractive from the point of view of separation of the
large and small eddy scales, but the spectral method cannot be used in
general-purpose CFD.

The cutoff width is intended as an indicative measure of the size of eddies
that are retained in the computations and the eddies that are rejected. In
principle, we can choose the cutoff width A to be any size, but in CFD
computations with the finite volume method it is pointless to select a cutoff
width that is smaller than the grid size. In this type of computation only a
single nodal value of each flow variable is retained on each grid cell, so all
finer detail is lost anyway. The most common selection is to take the cutoff
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width to be of the same order as the grid size. In three-dimensional computa-
tions with grid cells of different length Ax, width Ay and height Az the
cutoff width is often taken to be the cube root of the grid cell volume:

A =3 [AxAyAz (3.86)

Filtered unsteady Navier—Stokes equations

As before in section 3.3 we focus our attention on incompressible flows. As
usual we take Cartesian co-ordinates so that the velocity vector u has u-, v-,
w-components. The unsteady Navier—Stokes equations for a fluid with con-
stant viscosity U are as follows:

%’; + div(pu) =0 (2.4)

3(5”) + div(puu) = _% + u div(grad(u)) + S, (2.37a)
X

9(5 v ., div(pou) = —% + u div(grad(v)) + .S, (2.37b)

I pm) + div(pmwu) = % + 1 div(grad(w)) + S, (2.37¢)
ot 0z

If the flow is also incompressible we have div(u) = 0, and hence the viscous
momentum source terms .S,, S, and S, are zero.

Considerable further simplification of the algebra is possible if we use the
same filtering function G(x, x") = G(x — x") throughout the computational
domain, i.e. G is independent of position x. If we use such a uniform filter
function we can, by exploiting the linearity of the filtering operation, swap
the order of the filtering and differentiation with respect to time, as well as
the order of filtering and differentiation with respect to space co-ordinates.
We have already seen this commutative property in action in section 3.3
when the time-averaged RANS flow equations were derived. Filtering of
equation (2.4) yields the LES continuity equation:

P, div(pi) = 0 (3.87)
ot

The overbar in this and all following equations in this section indicates a
filtered flow variable.
Repeating the process for equations (2.37a—c) gives

8(5 i) + div(puu) = —? + 1 div(grad(iz)) (3.88a)
X
KB 4 i) =+ i ad ) (3.880)

XD | divipmay = -2 + 1 div(erad(m)) (3.88¢)
ot oz
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Equation set (3.87) and (3.88a—c) should be solved to yield the filtered veloc-
ity field #, 0, » and filtered pressure field . We now face the problem that
we need to compute convective terms of the form div(p¢u) on the left hand
side, but we only have available the filtered velocity field i, v, w and pressure
field p. To make some progress we write

div(p gu) = div(@a) + (div(pu) — div(9i))
The first term on the right hand side can be calculated from the filtered ¢ —
and # — fields and the second term is replaced by a model.

Substitution into (3.88a—c) and some rearrangement yields the LES
momentum equations:

J(pir)

~+ div(pi) = —? + u div(grad(@)) — (div(paw) — div(pi@)) | (3.89a)
A X

8(577) + div(poa) = —% + u div(grad(?)) — (div(pou) — div(pzi)) | (3.89b)
t

8(;39—7) + div(pwi) = —? + u div(grad(i»)) — (div(pwu) — div(pwia))| (3.89¢c)
4 2

) (I1) (IIT) av) V)

The filtered momentum equations look very much like the RANS momen-
tum equations (3.26a—c) or (3.27a—c). Terms (I) are the rate of change of
the filtered x-, y- and z-momentum. Terms (IT) and (IV) are the convective
and diffusive fluxes of filtered x-, y- and z-momentum. Terms (III) are the
gradients in the x-, y- and z-directions of the filtered pressure field. The last
terms (V) are caused by the filtering operation, just like the Reynolds stresses
in the RANS momentum equations that arose as a consequence of time-
averaging. They can be considered as a divergence of a set of stresses 7;. In
suffix notation the /~component of these terms can be written as follows:

I piuji - pujr)  I(pu — pu;v)

div(puua — pu;u) =

ox dy
| pw — puim) _ It (3.90)
dz ox;
where 7; = pua — pu;u = puu; — pu;u; (3.90b)

In recognition of the fact that a substantial portion of 7; is attributable to
convective momentum transport due to interactions between the unresolved
or SGS eddies, these stresses are commonly termed the sub-grid-scale
stresses. However, unlike the Reynolds stresses in the RANS equations, the
LES SGS stresses contain further contributions. The nature of these contri-
butions can be determined with the aid of a decomposition of a flow variable
(%, t) as the sum of (i) the filtered function @(x, ¢) with spatial variations that
are larger than the cutoff width and are resolved by the LES computation
and (ii) ¢'(x, ¢), which contains unresolved spatial variations at a length scale
smaller than the filter cutoff width:
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3.8.2

O(x, 1) =(x, 1) + ¢'(x, 1) (3.91)

Using this decomposition in equation (3.90b) we can write the first term on
the far right hand side as follows:

pu; = p( +u)(u +u)) = pulu +pu +pu +pu,u
—pu1 +(pu )+pu, +puu+pu

Now we can write the SGS stresses as follows:

7

Ty = pug; — pu; u; = (P ad; — pu;w) + pig + puls; + pulu/ (3.92)
—_—
@ (II) (1)
Thus, we find that the SGS stresses contain three groups of contributions:
* Term (I), Leonard stresses L;: L= pﬁ - p;l;/
* Term (II), cross-stresses Cj;: C;= pW + pﬁ

e Term (III), LES Reynolds stresses R: R, = pﬁ

The Leonard stresses L;; are solely due to effects at resolved scale. They are
caused by the fact that a second filtering operation makes a change to a
filtered flow variable, i.e. ¢ # ¢ for space-filtered variables, unlike in time-
averaging, where (p( ) =® = ® = ¢(¢) (compare equation (3.21)). These stress
contributions were named after the American scientist A. Leonard, who first
identified an approximate method to compute them from the filtered flow
field (see Leonard (1974) for further details). The cross-stresses C; are due
to interactions between the SGS eddies and the resolved flow. An approx-
imate expression for this term is given in Ferziger (1977). Finally, the LES
Reynolds stresses R;; are caused by convective momentum transfer due to
interactions of SGS eddies and are modelled with a so-called SGS turbu-
lence model. Just like the Reynolds stresses in the RANS equations, the SGS
stresses (3.92) must be modelled. Below we discuss the most prominent

SGS models.

Smagorinksy—Lilly SGS model

In simple flows such as two-dimensional thin shear layers the Boussinesq
eddy viscosity hypothesis (3.33) was often found to give good predictions of
Reynolds-averaged turbulent stresses. In recognition of the intimate connec-
tion between turbulence production and mean strain, the hypothesis takes
the turbulent stresses to be proportional to the mean rate of strain. Success
of the approach requires that (i) the changes in the flow direction should be
slow so that production and dissipation of turbulence are more or less in bal-
ance and (ii) the turbulence structure should be isotropic (or if this is not the
case the gradients of the anisotropic normal stresses should not be dynami-
cally active). Smagorinsky (1963) suggested that, since the smallest turbulent
eddies are almost isotropic, we expect that the Boussinesq hypothesis might
provide a good description of the effects of the unresolved eddies on the
resolved flow. Thus, in Smagorinsky’s SGS model the local SGS stresses
R are taken to be proportional to the local rate of strain of the

resolved flow S, = +(dii/ Ox; + i/ dx):
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oy,  ox; 3 v

J 4

| i h 1

The constant of proportionality 1 is the dynamic SGS viscosity Uggs, Which
has dimensions Pa s. The term 1R, ;0; on the rlght hand side of equation
(3.93) performs the same functlon as the term —fp/e5 in equation (3.33): it
ensures that the sum of the modelled normal SGS stresses is equal to the
kinetic energy of the SGS eddies. In much of the LES research literature the
above model is used along with approximate forms of the Leonard stresses
L; and cross-stresses C;; for the particular filtering function applied in the
work.

Meinke and Krause (in Peyret and Krause, 2000) review applications
of finite volume/LLES to complex, industrially relevant CFD computations.
These authors note that, in spite of the different nature of the Leonard
stresses and cross-stresses, they are lumped together with the LES Reynolds
stresses in the current versions of the finite volume method. The whole
stress T; is modelled as a single entity by means of a single SGS turbulence
model:

ov, Ox

J

1 i i 1
ZuSGSS,] +— r 0, = ,uSGs[ o, + i} +— 3 7,6, (3.94)

The Smagorinsky—Lilly SGS model builds on Prandtl’s mixing length
model (3.39) and assumes that we can define a kinematic SGS viscosity Vggg
(dimensions m?/s), which can be described in terms of one length scale and
one velocity scale and is related to the dynamic SGS viscosity by Vggg =
Usgs/ p- Since the size of the SGS eddies is determined by the details of the
filtering function, the obvious choice for the length scale is the filter cutoff
width A. As in the mixing length model, the velocity scale is expressed as
the product of the length scale A and the average strain rate of the resolved
flow A X | S|, where | S| =+/25;.S;. Thus, the SGS viscosity is evaluated as

follows:

Hsgs = P(CSGSA)2|§ | = p(CsasA)A 25'1‘]'5'1] (3.95)

where Cggg = constant

- dii; i
and S, = [g vaj

Lilly (1966, 1967) presented a theoretical analysis of the decay rates of iso-
tropic turbulent eddies in the inertial subrange of the energy spectrum, which
suggests values of Cggg between 0.17 and 0.21. Rogallo and Moin (1984)
reviewed work by other authors suggesting values of Cggg = 0.19-0.24 for
results across a range of grids and filter functions. They also quoted early
LES computations by Deardorff (1970) of turbulent channel flow, which has
strongly anisotropic turbulence, particularly in the near-wall regions. This work
established that the above values caused excessive damping and suggested
that Cggg = 0.1 is most appropriate for this type of internal flow calculation.
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3.8.3

The difference in Cggg values is attributable to the effect of the mean flow
strain or shear. This gave an early indication that the behaviour of the small
eddies is not as universal as was surmised at first and that successful LES
turbulence modelling might require case-by-case adjustment of Cgsg or a
more sophisticated approach.

Higher-order SGS models

A model of the SGS Reynolds stresses based on the Boussinesq eddy vis-
cosity hypothesis assumes that changes in the resolved flow take place
sufficiently slowly that the SGS eddies can adjust themselves instantan-
eously to the rate of strain of the resolved flow field. An alternative strategy
to case-by-case tuning of the constant Cggg is to use the ideas of RANS
turbulence modelling to make an allowance for transport effects. We keep
the filter cutoff width A as the characteristic length scale of the SGS eddies,
but replace the velocity scale A X |.§'| by one that is more representative of the
velocity of the SGS eddies. For this we choose the square root of the SGS
turbulent kinetic energy ./ksgs. Thus,

Uscs = PCsGsAJkscs (3.96)

where C§gg = constant

To account for the effects of convection, diffusion, production and destruc-
tion on the SGS velocity scale we solve a transport equation to determine the
distribution of kggg:

d(pksgs)
A

+ div(phsgsil) = div(% grad(/eSGS)j 2568, - S, - peses|  (3.97)
k

Dimensional analysis shows that the rate of dissipation &g of SGS turbu-
lent kinetic energy is related to the length and velocity scales as follows:

/63/2

SGs
3.98
A (3.98)

where C, = constant

&as = G

This is the LES equivalent of a one-equation RANS turbulence model, such
as the one used in the two-layer #—€ model for the viscous-dominated near-
wall region. Schumann (1975) successfully used such a model to compute
turbulent flows in two-dimensional channels and annuli. In a more recent
study Fureby ez al. (1997) have carried out LES computations of homogen-
eous isotropic turbulence, which has revived interest in this model, leading
to its implementation in the commercial CFD code STAR-CD.

The above SGS models are all based on the Boussinesq assumption of a
constant SGS eddy viscosity to link SGS stresses and resolved-flow strain
rates. Challenging this isotropic eddy viscosity assumption naturally leads to
the LES equivalent of the Reynolds stress model. Deardorff (1973) used this
model in computations of the atmospheric boundary layer, where the filter
cutoff width must be chosen so large that the unresolved turbulent eddies are
anisotropic and the eddy viscosity assumption becomes inaccurate.
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3.8.4

Advanced SGS models

The Smagorinsky model is purely dissipative: the direction of energy flow is
exclusively from eddies at the resolved scales towards the sub-grid scales. 1Leslie
and Quarini (1979) have shown that the gross energy flow in this direction
is actually larger and offset by 30% backscatter — energy transfer in reverse
direction from SGS eddies to larger, resolved scales. Furthermore, analysis
of results from direct numerical simulation (DNS) by Clark ez a/. (1979) and
McMillan and Ferziger (1979) revealed that the correlation between the
actual SGS stresses (as computed by accurate DNS) and the modelled SGS
stresses using the Smagorinsky—Lilly model is not particularly strong. These
authors came to the conclusion that the SGS stresses should not be taken as
proportional to the strain rate of the whole resolved flow field, but, in recogni-
tion of the actual energy cascade processes (see section 3.1), should be estimated
from the strain rate of the smallest resolved eddies. Bardina er al. (1980) pro-
posed a method to compute local values of Cq;g based on the application of
two filtering operations, taking the SGS stresses to be proportional to the
stresses due to eddies at the smallest resolved scale. They proposed

Tfj = pc,(ﬁi Eﬁj)

where C’ is an adjustable constant and the factor in the brackets can be eval-
uated from twice-filtered resolved flow field information. The correlation
between the actual SGS stresses as computed with a DNS and the modelled
SGS stresses was found to be much improved, but the appearance of nega-
tive viscosities generated stability problems. They proposed adding a damp-
ing term with the form of the Smagorinsky model (3.94)—(3.95) to stabilise
the calculations, which yields a mixed model:

7, = pC'(i;; — iwir) — 2pClGs A% S|S; (3.99)

The value of the constant C’" depends on the cutoff width used for the sec-
ond filtering operation, but is always close to unity.

Germano (1986) proposed a different decomposition of the turbulent
stresses. This formed the basis of the dynamic SGS model (Germano
et al., 1991) for the computation of local values of Cggg. In Germano ef al.’s
decomposition of turbulent stresses the difference of the SGS stresses for
two different filtering operations with cutoff widths A; and A,, respectively,
can be evaluated from resolved flow data:

TSJZ)—TSJ-I):pL puu — PiLii; (3.100)

7

The bracketed superscripts (1) and (2) indicate filtering at cutoff widths A;
and A,.

The SGS stresses are modelled using Smagorinsky’s model (3.94)—(3.95)
assuming that the constant Cggg is the same for both filtering operations. It
can be shown that this yields:

Lk,e6 ClasM, (3.101a)

with M, = 243 S|, + 2431 S1S; (3.101b)

Lilly (1992) suggested a least-squares approach to evaluate local values of
Css:
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3.8.5

C%US=M (3.102)
(M M)

The angular brackets { ) indicate an averaging procedure. As Bardina et al.
(1980) before them, Germano et al. (1991) found that the dynamic SGS
model yielded highly variable eddy viscosity fields including regions with
negative values. This problem was resolved by averaging: for problems with
homogeneous directions (e.g. two-dimensional planar flows) the averaging
takes place over the homogeneous direction; in complex flows an average
over a small time interval is used.

Germano (in Peyret and Krause, 2000) reviewed other formulations for
the dynamic calculation of the SGS eddy viscosity. The dynamic model and
other advanced SGS models are reviewed in Lesieur and Métais (1996) and
Meneveau and Katz (2000). The interested reader is referred to these publi-
cations for further material in this area.

Initial and boundary conditions for LES

In LES computations the unsteady Navier—Stokes equations are solved, so
suitable initial and boundary conditions must be supplied to generate a well-
posed problem.

Initial conditions

For steady flows the initial state of the flow only determines the length of time
required to reach the steady state, and it is usually adequate to specify an initial
field that conserves mass with superimposed Gaussian random fluctuations
with the correct turbulence level or spectral content. If the development of a
time-dependent flow depends on its initial state it is necessary to specify it
more accurately using data from other sources (DNS or experiments).

Solid walls

The no-slip condition is used if the LES filtered Navier—Stokes equations
are integrated to the wall, which requires fine grids with near-wall grid
points y* < 1. For high Reynolds number flows with thin boundary layers it
is necessary to economise on computing resources by means of graded non-
uniform meshes. As an alternative it is possible to use wall functions.
Schumann (1975) proposed a model that takes the fluctuating shear stress to
be in phase with the fluctuating velocity parallel to the wall and links the
shear stress to the instantaneous velocity through logarithmic wall functions
of the same type as equation (3.49) used in the RANS k—¢ model and RSM.
Moin (2002) reviewed an advanced method of dynamically computing von
Karman’s proportionality constant x in his near-wall RANS mixing length
model by matching the values of the RANS and LES eddy viscosities at
matching points. This avoids excessive shear stress predictions associated
with the standard value k= 0.41.

Inflow boundaries

Inflow boundary conditions are very challenging since the inlet flow propert-
ies are convected downstream, and inaccurate specification of the inflow
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boundary condition can strongly affect simulation quality. The simplest
method is to specify measured mean velocity distributions and to super-
impose Gaussian random perturbations with the correct turbulence intensity,
but this ignores the cross-correlations between velocity components
(Reynolds stresses) and two-point correlations (i.e. spatial coherence) in real
turbulent flows. Distortions of turbulence properties can take considerable
settling distance before the mean flow reaches equilibrium with the turbu-
lence properties, and the settling distance is problem dependent. Several
alternatives are available:

1 Represent the inlet flow with the correct geometry using a RANS
turbulence model. The commonest method is to perform an unsteady
flow calculation with the RSM to obtain estimates of all the Reynolds
stresses at the inlet plane and impose these by maintaining correct
values of the relevant autocorrelations and cross-correlations during
the generation of the Gaussian random perturbations.

2 Extend the computational domain further upstream and use a
turbulence-free inflow (by developing the flow from a large reservoir).
This requires a long upstream distance, typically of the order of
50 hydraulic diameters, until a fully developed flow is reached,
but is feasible if an inlet flow with thin boundary layers is required.

3 Specify a fully developed inlet profile as the starting point for internal
flows in complex geometry. Such profiles can be economically computed
from an auxiliary LES computation with streamwise periodic
boundaries (see below).

4 Specify a precise inlet profile with prescribed shear stress, momentum
thickness and boundary layer thickness. Lund ez a/. (1998) proposed a
technique to extract inlet profiles for developing boundary layers from
auxiliary LES computations. Other methods with this objective have
been developed by Klein ez al. (2003) and Ferrante and Elgobashi
(2004). The former is based on digital filtering of random data and the
specification of length scales in each co-ordinate direction to generate
two-point correlations. The latter proposes a refinement of the Lund
et al. procedure to ensure that the correct spectral energy distribution is
reproduced across the wavenumbers. Both algorithms are reported to
reduce the settling length between the inflow boundary and the location
in the computational domain of the actual LES calculations where the
turbulence reaches equilibrium with the mean flow.

Outflow boundaries

Outflow boundary conditions are less troublesome. The familiar zero gradient
boundary condition is used for the mean flow, and the fluctuating properties
are extrapolated by means of a so-called convective boundary condition:
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Periodic boundary conditions

All LES and DNS calculations are three-dimensional because turbulence
is three-dimensional. Periodic boundary conditions are particularly useful
in directions where the mean flow is homogeneous (e.g. the z-direction in
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two-dimensional planar flow). All properties are set to be equal at equivalent
points on pairs of periodic boundaries. The distance between the two peri-
odic boundaries must be such that two-point correlations are zero for all
points on a pair of periodic boundaries. This means that the distance should
be chosen to be at least twice the size of the largest eddies so that the effect
of one boundary on the other is minimal.

LES applications in flows with complex geometry

Considerable effort has been made in the research community to develop
robust LES methods for general-purpose CFD computations involving
complex geometry. We briefly summarise some of the issues that have been
addressed in the recent literature.

Non-uniform grids are preferable in flows with solid boundaries to
resolve the rapid changes in the near-wall region. However, this would
require different filter cutoff width in the core flow and near-wall regions.
Suppose we adjust the cutoff width of a filter to give the correct separation
between large and small eddy scales in the core flow. This cutoff width
would be inappropriate for the near-wall region, where the size of turbulence
eddies is restricted by the presence of the solid boundary. Here the chosen
filter cutoff width would be too large and would cause anisotropic, energetic
near-wall eddies to be included in the SGS scales. Equation (3.86) states that
the cutoff width for three-dimensional computations should be taken as the
cube root of the control volume size. In non-uniform grids the cutoff width
would vary along with the control volume size. Scotti et al. (1993) show that
Smagorinsky’s constant Cggg should be corrected to take into account grid
anisotropy in the three dimensions:

Css = 0.16 X cosh. /% [(In 4> = In a; X In a, + (In a,)*]

where the grid-anisotropy factors are given by a; = Ax/Az and a, = Ay/Az.

In finite volume applications the filter cutoff width A =3 /AxAyAz is neces-
sarily close to the mesh size. There is a price to pay because this choice of
cutoff width blurs the distinction between the effects of the SGS eddies and
the numerical errors associated with the discretisation of the equations on the
grid. The SGS stresses will be similar in magnitude to the numerical trun-
cation errors. Unless careful attention is paid to the control of numerical
errors they may even swamp the SGS stresses. Upwind differencing (see
Chapter 5), which was standard practice in early CFD computations with
RANS turbulence modelling, is far too diffusive and generates large truncation
errors. Second-order or higher-order discretisation techniques are needed.
Moin (2002) reported the performance of a robust and non-dissipative dis-
cretisation method for unstructured grids in simulations of a gas turbine
combustor.

A uniform cutoff width was assumed in the development of the LLES
equations (3.87) and (3.89a—c) to ensure that filtering commutes with time
and space derivatives. This is not the case when the cutoff width is non-
uniform. Ghosal and Moin (1995) show that the non-commutativity errors
associated with non-uniform cutoff width can be of similar magnitude to
the Leonard stresses and truncation errors. They propose a method based
on transformation of the co-ordinate system to control this error. Further
methods to minimise this problem have since been proposed: Vasilyev et al.
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Figure 3.17 LES computations
on Pratt & Whitney gas turbine —
detail of combustor geometry
and computational grid

Source: Moin (2002)

(1998) developed a class of discrete commutative filters for non-uniform
structured grids, which was extended by Marsden ez a/. (2002) to unstructured
grids for use in conjunction with second-order accurate discretisation schemes.

General comments on performance of LES

It is the main task of turbulence modelling to develop computational pro-
cedures of sufficient accuracy and generality for engineers to predict the
Reynolds stresses and the scalar transport terms. The inherent unsteady
nature of LES suggests that the computational requirements should be much
larger than those of classical turbulence models. This is indeed the case when
LES is compared with two-equation models such as the k—€ and k-
models. However, RSMs require the solution of seven additional PDEs, and
Ferziger (1977) noted that LES may only need about twice the computer
resources compared with RSM for the same calculation. With such modest
differences in computational requirements the focus switches to the achiev-
able solution accuracy and the ability of the LLES to resolve certain time-
dependent features ‘for free’. Post-processing of LES results yields informa-
tion relating to the mean flow and statistics of the resolved fluctuations. The
latter are unique to LLES, and Moin as well as Meinke and Krause (both in
Peyret and Krause, 2000) gave examples of flows where persistent large-scale
vortices have a substantial influence on flow development, e.g. vortex shed-
ding behind bluff bodies, flows in diffusing passages, flows in pipe bends and
tumble swirl in engine combustion chambers. The ability to obtain fluctuat-
ing pressure fields from LES output has also led to aeroacoustic applications
for the prediction of noise from jets and other high-speed flows.

As an illustration of the most advanced LLES capability we show results
from Moin (2002) for a gas turbine. Figure 3.17 shows a detail of the com-
bustor geometry and the computational grid, which is unstructured to model
all the details in this very complex geometry. Figure 3.18 shows contours of
instantaneous velocity magnitude on a mid-section plane and on four further
perpendicular cross-sections as indicated on the diagram. The physics of the
turbulent flow is also highly complex, involving combustion, swirl, dilution
jets etc. Flow instabilities have serious consequences for combustion, and
the information generated by LLES calculations is uniquely applicable to the
development of this technology.
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Figure 3.18 LES computations
on Pratt & Whitney gas turbine
— instantaneous contours of
velocity magnitude on sectional
planes

Source: Moin (2002)

“ Direct numerical

simulation

LES has been around since the 1960s, but sufficiently powerful comput-
ing resources to consider application to industrially relevant problems have
only recently become available. Inclusion of LES in commercial CFD is even
more recent, so the range of validation experience is limited. Most code ven-
dors usually state that care must be taken with the interpretation of results
generated with their LES models. Furthermore, it should be noted that the
methodology for the treatment of non-commutativity effects in non-uniform
and unstructured grids is comparatively recent, as are treatments for com-
pressible flow and turbulent scalar fluctuations. This research does not yet
appear to have been incorporated in finite volume/LES codes. Geurts and
Leonard (2005) give a survey of the main issues that need to be addressed to
control error sources and generate robust LES methodology for application
to industrially relevant complex flows. It is likely that the pace of develop-
ments will increase as computing resources become more powerful and as the
CFD user community becomes more aware of the advantages of the LES
approach to turbulence modelling.

The instantaneous continuity and Navier—Stokes equations (3.23) and
(3.24a—c) for an incompressible turbulent flow form a closed set of four equa-
tions with four unknowns #, v, w and p. Direct numerical simulation
(DNS) of turbulent flow takes this set of equations as a starting point and
develops a transient solution on a sufficiently fine spatial mesh with
sufficiently small time steps to resolve even the smallest turbulent eddies and
the fastest fluctuations.

Reynolds (in Lumley, 1989) and Moin and Mahesh (1998) listed the
potential benefits of DNSs:

e Precise details of turbulence parameters, their transport and budgets at
any point in the flow can be calculated with DNS. These are useful for
the development and validation of new turbulence models. Refereed
databases giving free access to DNS results have started to emerge (e.g.
ERCOFTAC, http://ercoftac.mech.surrey.ac.uk/dns/homepage.html;
Turbulence and Heat Transfer Lab of the University of Tokyo,
http://www.thtlab.t.u-tokyo.ac.jp; the University of Manchester,
http://cfd.me.umist.ac.uk/ercoftac).
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* Instantaneous results can be generated that are not measurable with
instrumentation, and instantaneous turbulence structures can be
visualised and probed. For example, pressure—strain correlation terms in
RSM turbulence models cannot be measured, but accurate values can be
computed from DNSs.

e Advanced experimental techniques can be tested and evaluated in DNS
flow fields. Reynolds (in Lumley, 1989) noted that DNS has been used
to calibrate hot-wire anemometry probes in near-wall turbulence.

* Fundamental turbulence research on virtual flow fields that cannot
occur in reality, e.g. by including or excluding individual aspects of flow
physics. Moin and Mahesh (1998) listed some examples: shear-free
boundary layers developing on walls at rest with respect to the free
stream, effect of initial conditions on the development of self-similar
turbulent wakes, the study of the fundamentals of reacting flows (strain
rates of flamelets and distortion of mixing surfaces).

On the downside we note that direct solution of the flow equations is very
difficult because of the wide range of length and time scales caused by the
appearance of eddies in a turbulent flow. In section 3.1 we considered order-
of-magnitude estimates of the range of scales present in a turbulent flow and
found that the ratio of smallest to largest length scales varied in proportion
to Re*’*. To resolve the smallest and largest turbulence length scales a direct
simulation of a turbulent flow with a modest Reynolds number of 10* would
require of the order of 10° points in each co-ordinate direction. Thus, since
turbulent flows are inherently three-dimensional, we would need computing
meshes with 10° grid points (N = Re’’*) to describe processes at all length
scales. Furthermore, the ratio of smallest to largest time scales varies as Re'/2,
so at Re = 10" we would need to run a simulation for at least 100 time steps.
In practice, a larger number of time steps would be needed to ensure the
passage of several of the largest eddies in order to obtain meaningful time-
average flow results and turbulence statistics.

Speziale (1991) estimated that the direct simulation of a turbulent pipe
flow at a Reynolds number of 500 000 requires a computer which is 10 mil-
lion times faster than a (then) current generation Cray supercomputer. Moin
and Kim (1997) estimated computing times of 100 hours to 300 years for tur-
bulent flows at Reynolds numbers in the range 10* to 10° based on high-
performance computer speeds of 150 Mflops available at that time. This
confirmed that it started to become possible to compute interesting turbulent
flows with DNS based on the unsteady Navier—Stokes equations. Advanced
supercomputers at present (2006) have processor speeds of the order 1-10
Tflops. If the performance scaling can be maintained across such a wide
range of speeds, this would reduce computing times to minutes or hours.
We briefly review progress in this rapidly growing area of turbulence
research.

Numerical issues in DNS

It is of course beyond the scope of this introduction to go into the details of
the methods used for DNS, but it is worth touching on the specific require-
ments for this type of computation. The review by Moin and Mahesh (1998)
highlights the following issues being tackled in the DNS research literature.
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Spatial discretisation

The first DNS simulations were performed with spectral methods (Orszag
and Patterson, 1972). These are based on Fourier series decomposition in
periodic directions and Chebyshev polynomial expansions in directions with
solid walls. The methods are economical and have high convergence rates,
but they are difficult to apply in complex geometry. Nevertheless, they are
still widely used in research on transitional flows and turbulent flows with
simple geometries: some recent applications are flow-induced vibrations
(Evangelinos et al., 2000), strained two-dimensional wake flow (Rogers, 2002)
and transition in rotor—stator cavity flow (Serre et al., 2002, 2004). Early
recognition of the limitations of spectral methods led to the development of
spectral element methods (Orszag and Patera, 1984; Patera, 1986). These
combine the geometric flexibility of the finite element method with the good
convergence properties of the spectral method. These methods have been
developed for complex turbulent flows by Karniadakis and co-workers (e.g.
Karniadakis, 1989, 1990).

Higher-order finite difference methods (Moin, 1991) are now widely
used for problems with more complex geometry. Particular attention needs
to be paid to the design of the spatial and temporal discretisation schemes to
ensure that the method is stable and to make sure that numerical dissipation
does not swamp turbulent eddy dissipation. A sample of recent work illus-
trates the range of applications: turbulent flow in a pipe rotating about its
axis (Orlandi and Fatica, 1997), flow around square cylinders (Tamura ez a/.,
1998), plumes ( Jiang and Luo, 2000) and diffusion flames (Luo ¢z al., 2005).

Spatial resolution

Above we have noted that the spatial mesh for DNS is determined at one end
by the largest geometrical features that need to be resolved and at the other
end by the finest turbulence scales that are generated. Research has shown
that the grid point requirement N o< Re’’* can be somewhat relaxed, because
most of the dissipation actually takes place at scales that are substantially
larger than of the order of the Kolmogorov length scale 1, say 51-151
(Moin and Mahesh, 1998). As long as the bulk of the dissipation process is
adequately represented, the number of grid cells can be reduced. In typical
finite difference calculations reduction by a factor of around 100 is possible
without significant loss of accuracy.

Temporal discretisation

There is a wide range of time scales in a turbulent flow, so the system of
equations is stiff. Implicit time advancement and large time steps are
routinely used for stiff systems in general-purpose CFD, but these are
unsuitable in DNS because complete time resolution is needed to describe
the energy dissipation process accurately. Specially designed implicit and
explicit methods have been developed to ensure time accuracy and stability
(see e.g. Verstappen and Veldman, 1997).

Temporal resolution

Reynolds (in Lumley, 1989) noted that it is essential to have accurate time
resolution of all the scales of turbulent motion. The time steps must be
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Summary

adjusted so that fluid particles do not move more than one mesh spacing.
Moin and Mahesh (1998) demonstrated the strong influence of time step size
on small-scale amplitude and phase error.

Initial and boundary conditions

Issues relating to initial and boundary conditions are similar to those in LES.
The reader is referred to section 3.8.5 for a relevant discussion.

Some achievements of DNS

Early work on transitional flows is reviewed in Kleiser and Zang (1991).
Since the paper by Orszag and Patterson (1972) a range of turbulent incom-
pressible flows of fundamental importance have been investigated. We list
the most important studies and refer the interested reader to the review
paper by Moin and Mahesh (1998) for further details: homogeneous turbu-
lence with mean strain, free shear layers, fully developed channel flow,
curved channel flow, channel flow with riblets, channel flow with heat trans-
fer, rotating channel flow, channel flow with transverse curvature, flow over
a backward-facing step, flat plate boundary layer separation.

More recently the DNS methodology has been extended to compress-
ible flows: homogeneous compressible turbulence, isotropic and sheared
compressible turbulence, compressible channel flow, compressible turbulent
boundary layer, high-speed compressible turbulent mixing layer.

During the first two decades after the study by Orszag and Patterson the
resources required for DNS calculations were only available to a handful of
groups across the globe. Since the 1990s, however, high-performance com-
puting has become much more widely available, and the technique is within
reach of a much larger number of turbulence researchers with more diverse
interests including fundamental aspects of flows with multi-physics: gas—
liquid turbulent flows, particle-laden flows (Elghobashi and Truesdell, 1993)
and reacting flows (Poinsot ez al., 1993). The unique ability of DNS to
generate accurate flow fields has led to the development of the new field of
computational aeroacoustics (reviewed in Tam, 1995; Lele, 1997).

Although most DNS computations are at comparatively low Reynolds
numbers (e.g. Hoarau et al., 2003), predictions in the 1960s and 1970s that
DNS would never be a realistic proposition for turbulent flows of relevance
to engineering may have been unduly pessimistic. Much effort will be
focused on speed and stability improvements of the basic numerical algo-
rithms (see e.g. Verstappen and Veldman, 1997) as well as the development
of methods to take best advantage of future high-performance computer
architectures. Given the potential benefits of DNS results it is likely that
rapid growth of interest in this area is set to continue.

This chapter provides a first glimpse of turbulent flows and of the practice of
turbulence modelling in CFD. Turbulence is a phenomenon of great com-
plexity and has challenged leading theoreticians for over a hundred years.
The flow fluctuations associated with turbulence give rise to additional trans-
fer of momentum, heat and mass. These changes to the flow character can be
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favourable (efficient mixing) or detrimental (high energy losses) depending
on one’s point of view.

Engineers are mainly interested in the prediction of mean flow behaviour,
but turbulence cannot be ignored, because the fluctuations give rise to the
extra Reynolds stresses on the mean flow. These extra stresses must be
modelled in industrial CFD. What makes the prediction of the effects of
turbulence so difficult is the wide range of length and time scales of motion
even in flows with very simple boundary conditions. It should therefore be
considered as truly remarkable that RANS turbulence models, such as the
k—€ models, succeed in expressing the main features of many turbulent flows
by means of one length scale and one time scale defining variable. The stand-
ard k—€ model is valued for its robustness, and is still widely preferred in
industrial internal flow computations. The #—® model and Spalart—Allmaras
model have become established as the leading RANS turbulence models for
aerospace applications. Many experts argue that the RSM is the only viable
way forward towards a truly general-purpose classical turbulence model,
but recent advances in the area of non-linear #—€ models are very likely to
reinvigorate research on two-equation turbulence models. As a cautionary
note, Leschziner (in Peyret and Krause, 2000) observes that performance
improvements of new RANS turbulence models have not been uniform: in
some cases the cubic #—€ model performs as well as the RSM, whereas in
other cases it is not discernibly better than the standard #—& model, so the
verdict on these models is still open.

Large eddy simulation (LLES) requires substantial computing resources,
and the technique needs further research and development before it can be
applied as an industrial general-purpose tool in flows with complex geometry.
However, it is already recognised that valuable information can be obtained
from LES computations in simple flows by generating turbulence properties
that cannot be measured in the laboratory due to the absence of suitable
experimental techniques. Hence, as a research tool LES will increasingly be
used to guide the development of classical models through comparative stud-
ies. Several commercial CFD codes now contain basic LES capability, and
these are likely to see more widespread industrial applications in flows where
large-scale time-dependent flow features (vortex shedding, swirl etc.) play a
role. The emergence of high-performance computing resources based around
Linux PC clusters is likely to accelerate this trend.

Although the resulting mathematical expressions of turbulence models
may be quite complicated it should never be forgotten that they all contain
adjustable constants that need to be determined as best-fit values from
experimental data that contain experimental uncertainties. Every engineer
is aware of the dangers of extrapolating an empirical model beyond its
data range. The same risks occur when (ab)using turbulence models in this
fashion. CFD calculations of ‘new’ turbulent flows should never be accepted
without validation against high-quality data. The source can be experiments,
but increasingly the data that can be generated by means of numerical experi-
ments with DNS are being used as benchmarks. DNS is likely to play an
increasingly important role in turbulence research in the near future.
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The nature of the transport equations governing fluid flow and heat trans-
fer and the formal control volume integration were described in Chapter 2.
Here we develop the numerical method based on this integration, the
finite volume (or control volume) method, by considering the simplest
transport process of all: pure diffusion in the steady state. The governing
equation of steady diffusion can easily be derived from the general transport
equation (2.39) for property ¢ by deleting the transient and convective terms.
This gives

div(T grad ¢) + S, =0 (4.1)

The control volume integration, which forms the key step of the finite
volume method that distinguishes it from all other CFD techniques, yields
the following form:

Jdiv(l" grad ¢)dV + J SydV
CV CvV

= Jn (T grad ¢)dA + JS(,,dV: 0 (#2)
A cv

By working with the one-dimensional steady state diffusion equation, the
approximation techniques that are needed to obtain the so-called discretised
equations are introduced. Later the method is extended to two- and three-
dimensional diffusion problems. Application of the method to simple one-
dimensional steady state heat transfer problems is illustrated through a series
of worked examples, and the accuracy of the method is gauged by compar-
ing numerical results with analytical solutions.

Consider the steady state diffusion of a property ¢ in a one-dimensional
domain defined in Figure 4.1. The process is governed by

i[l"d—d)] +S5=0 (4.3)
dv| du

where I is the diffusion coefficient and .S is the source term. Boundary values
of ¢ at points A and B are prescribed. An example of this type of process,
one-dimensional heat conduction in a rod, is studied in detail in section 4.3.
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Figure 4.1

Figure 4.2
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Step 1: Grid generation

The first step in the finite volume method is to divide the domain into dis-
crete control volumes. Let us place a number of nodal points in the space
between A and B. The boundaries (or faces) of control volumes are posi-
tioned mid-way between adjacent nodes. Thus each node is surrounded by a
control volume or cell. It is common practice to set up control volumes near
the edge of the domain in such a way that the physical boundaries coincide
with the control volume boundaries.

At this point it is appropriate to establish a system of notation that can be
used in future developments. The usual convention of CFD methods is
shown in Figure 4.2.

‘ SXup SXpe |

‘ | SXup SXpe | ‘
\

. EEEEEEES G- | .

* [ EEE K E—— 1 *

w w P e E
‘ AX = OXye ‘

A general nodal point is identified by P and its neighbours in a one-
dimensional geometry, the nodes to the west and east, are identified by W
and F respectively. The west side face of the control volume is referred to by
w and the east side control volume face by e. The distances between the
nodes /¥ and P, and between nodes P and E, are identified by Ox;;p and Oupy
respectively. Similarly distances between face w» and point P and between P
and face ¢ are denoted by Ox,,» and Oxp, respectively. Figure 4.2 shows that
the control volume width is Ax = dx

we*

Step 2: Discretisation

The key step of the finite volume method is the integration of the governing
equation (or equations) over a control volume to yield a discretised equation
at its nodal point P. For the control volume defined above this gives

Ji[rd—‘dem JSde (md—‘PJ - (md—")] +SAV =0 (4.4)
dv| dv dx dx

AV AV

Here A is the cross-sectional area of the control volume face, A} is the
volume and .S is the average value of source S over the control volume. It is
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a very attractive feature of the finite volume method that the discretised
equation has a clear physical interpretation. Equation (4.4) states that the
diffusive flux of ¢ leaving the east face minus the diffusive flux of ¢ entering
the west face is equal to the generation of ¢, i.e. it constitutes a balance equa-
tion for ¢ over the control volume.

In order to derive useful forms of the discretised equations, the interface
diffusion coefficient I" and the gradient d¢/dx at east (¢) and west (») are
required. Following well-established practice, the values of the property ¢
and the diffusion coefficient are defined and evaluated at nodal points.
To calculate gradients (and hence fluxes) at the control volume faces an
approximate distribution of properties between nodal points is used. Linear
approximations seem to be the obvious and simplest way of calculating inter-
face values and the gradients. This practice is called central differencing
(see Appendix A). In a uniform grid linearly interpolated values for I',, and
T, are given by

r,= ARy, (4.5)
2
r - % (4.5)

And the diffusive flux terms are evaluated as

[rAd‘bJ =T, A, [d’E ‘P”] (4.6)
dw Oxpy

[FAd—(PJ =T,A4, [‘PP ¢WJ (4.7)
dw Oxyp

In practical situations, as illustrated later, the source term .S may be a func-
tion of the dependent variable. In such cases the finite volume method
approximates the source term by means of a linear form:

SAV=S,+ S,0p (4.8)
Substitution of equations (4.6), (4.7) and (4.8) into equation (4.4) gives
IA, 9= 0r ) _ r,A, Gp=tw ), (S, + S,0p) = (4.9)
XpE Oxyyp

This can be rearranged as

r, r, T
A, + = —A +S 4.10
( 6xPE SXWP )¢P [ 6xWP )‘pW ( (SxPE e) ¢F u ( )

Identifying the coefficients of ¢y and @ in equation (4.10) as aj-and aj, and
the coefficient of ¢p as ap, the above equation can be written as

| apPp=ayPy+ ayPp (4.11)
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m Worked

examples: one-
dimensional steady
state diffusion

where
/377 ar ap
T T
L AW ¢ Ae ﬂl/y+ ap— Sp
Oyyp Opy

The values of S, and §, can be obtained from the source model (4.8):
SAV =S, + S,¢p. Equations (4.11) and (4.8) represent the discretised form
of equation (4.1). This type of discretised equation is central to all further
developments.

Step 3: Solution of equations

Discretised equations of the form (4.11) must be set up at each of the nodal
points in order to solve a problem. For control volumes that are adjacent to
the domain boundaries the general discretised equation (4.11) is modified to
incorporate boundary conditions. The resulting system of linear algebraic
equations is then solved to obtain the distribution of the property ¢ at nodal
points. Any suitable matrix solution technique may be enlisted for this task.
In Chapter 7 we describe matrix solution methods that are specially designed
for CFD procedures. The techniques of dealing with different types of
boundary conditions will be examined in detail in Chapter 9.

The application of the finite volume method to the solution of simple dif-
fusion problems involving conductive heat transfer is presented in this
section. The equation governing one-dimensional steady state conductive
heat transfer is

d( dT
—|k— | +S5=0 (4.12)
dr| dx

where thermal conductivity % takes the place of I in equation (4.3) and the
dependent variable is temperature 7. The source term can, for example, be
heat generation due to an electrical current passing through the rod. Incor-
poration of boundary conditions as well as the treatment of source terms will
be introduced by means of three worked examples.

Consider the problem of source-free heat conduction in an insulated rod
whose ends are maintained at constant temperatures of 100°C and 500°C
respectively. The one-dimensional problem sketched in Figure 4.3 is gov-

erned by

dr

i k— =0 (4.13)
dv| dx

Calculate the steady state temperature distribution in the rod. Thermal con-
ductivity £ equals 1000 W/m.K, cross-sectional area A4 is 10 x 1075 m?.
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Figure 4.3

Figure 4.4 'The grid used
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Let us divide the length of the rod into five equal control volumes as shown
in Figure 4.4. This gives ox = 0.1 m.

1 2 3 4 5

. |— - | ‘ o ; o }TE

!
|
1 5x/2_ | ox \ Sx \ ‘ 8x/2 ‘

The grid consists of five nodes. For each one of nodes 2, 3 and 4 temper-
ature values to the east and west are available as nodal values. Consequently,
discretised equations of the form (4.10) can be readily written for control
volumes surrounding these nodes:

k, k k k
_LA‘, + _WAW TP = z AW TVVJ'_ ¢ Ae TE (4.14)
O py; Oxyyp Oyyp Oxp

The thermal conductivity (£, = k,, = k), node spacing (6x) and cross-sectional

area (A, = A, = A) are constants. Therefore the discretised equation for
nodal points 2, 3 and 4 is
apTp=ayTy+ agTy (4.15)
with
ay ar ap
%A é/] ay+ag

§,and S, are zero in this case since there is no source term in the governing
equation (4.13).

Nodes 1 and 5 are boundary nodes, and therefore require special atten-
tion. Integration of equation (4.13) over the control volume surrounding
point 1 gives

kA ﬁ — kA ﬂ =0 (4.16)
o ox/2

This expression shows that the flux through control volume boundary A has
been approximated by assuming a linear relationship between temperatures
at boundary point A4 and node P. We can rearrange (4.16) as follows:

k 2k k 2k
—A+—A\T,=0.Ty+|—A\|T,+|—A|T 4.17
[Sx o ) r v (&c ] k [Ex J N (+17)
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Comparing equation (4.17) with equation (4.10), it can be easily identified
that the fixed temperature boundary condition enters the calculation as a
source term (S, + SpTp) with S, = (2kA/0x)T ;and S, = —2kA/ 6x, and that
the link to the (west) boundary side has been suppressed by setting
coefficient a, to zero.

Equation (4.17) may be cast in the same form as (4.11) to yield the dis-
cretised equation for boundary node 1:

ﬂPTP= ﬂW'TI/V"F ﬂETE"FSu (4.18)
with
Ay ag ap Sp S
kA 2kA | 2kA
0 — awy+ap—S, | —
o e Ox P

The control volume surrounding node 5 can be treated in a similar manner.
Its discretised equation is given by

pa| L= T} [ o= T (4.19)
ox/2 O

As before we assume a linear temperature distribution between node P and
boundary point B to approximate the heat flux through the control volume
boundary. Equation (4.19) can be rearranged as

L Vo A P T (4.20)
O Ox

O O

The discretised equation for boundary node 5 is

ﬂPTP= ﬂn/Tw'f' dETE+Su (4.21)
where
Ay ar ap SP Su
kA 2kA | 2kA
— 0 aw+ap—3S, | - T
Ox e s | &’

The discretisation process has yielded one equation for each of the nodal
points 1 to 5. Substitution of numerical values gives £A/dx = 100, and the
coefficients of each discretised equation can easily be worked out. Their
values are given in Table 4.1.

The resulting set of algebraic equations for this example is

3007, = 1007, + 2007,
2007, = 1007, + 1007,
2007, = 1007, + 1007, (4.22)
2007, = 10075 + 1007
3007, = 1007, + 2007
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Figure 4.5 Comparison of the
numerical result with the
analytical solution

Table 4.1
Node ay ag S, Sp ap=awy+ag—Sp
1 0 100 2007, —-200 300
2 100 100 0 0 200
3 100 100 0 0 200
4 100 100 0 0 200
5 100 0 2007, —200 300

This set of equations can be rearranged as

300 -100 0 0 01777 [2007,

~100 200 -100 0 0|l 7, 0
0 —-100 200 -100 ol|750=1] o (4.23)
0 0 -100 200 -100||7, 0

0 0 0 -100  300|| 75 2007%

The above set of equations yields the steady state temperature distribution
of the given situation. For simple problems involving a small number of
nodes the resulting matrix equation can easily be solved with a software
package such as MATLAB (1992). For 7, =100 and 75 = 500 the solution
of (4.23) can obtained by using, for example, Gaussian elimination:

T, 140
7| (220
;| = 300 (4.24)
7, 1380
T;|  [460

The exact solution is a linear distribution between the specified boundary
temperatures: 7= 800x + 100. Figure 4.5 shows that the exact solution and
the numerical results coincide.

600

500 [—

400 —

i

Numerical

300 [—

200

Temperature (°C)

Exact

100

l l l l
0 0.05 0.15 0.25 0.35 0.45 0.5
Distance x (m)

Now we discuss a problem that includes sources other than those arising
from boundary conditions. Figure 4.6 shows a large plate of thickness
L =2 c¢m with constant thermal conductivity £ = 0.5 W/m.K and uniform
heat generation ¢ = 1000 kW/m?. The faces A and B are at temperatures
of 100°C and 200°C respectively. Assuming that the dimensions in the y- and
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Figure 4.6

Figure 4.7 'The grid used

z-directions are so large that temperature gradients are significant in the x-
direction only, calculate the steady state temperature distribution. Compare
the numerical result with the analytical solution. The governing equation is

d( dT

a[/«—} +4=0 (4.25)

dw

7 T

el
L

X

As before, the method of solution is demonstrated using a simple grid.
The domain is divided into five control volumes (see Figure 4.7), giving
Or = 0.004 m; a unit area is considered in the y—z plane.

S
1 2 3 4 5
T ° it -~ 1 ™ ; o ; ® |7
A L 2 A — A —— u e | hd i d [
w w P e E
‘ 6x/2 ‘ [ ‘ [ ‘ ‘ x/2 ‘
I I I —~

Formal integration of the governing equation over a control volume gives

T
Ji(kd—)dV+ Jquz 0 (4.26)
dr| dx

AV AV

We treat the first term of the above equation as in the previous example. The
second integral, the source term of the equation, is evaluated by calculating
the average generation (i.e. SAJ = gAJ’) within each control volume.
Equation (4.26) can be written as

i T T
[/«Ad—] - [kAd—] ] +gAV =0 (4.27)
X do
M(M] ) M(LH 4 A= 428)
X Ox

The above equation can be rearranged as

kA koA koA
| Tp= | = |Ty+
Sr &]P [&JW [

kA j Ty + qAdx (4.29)
Ox
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This equation is written in the general form of (4.11):

aPTP = dWTW-l_ ﬂETE + Su (430)

Since k, = k,, = k we have the following coefficients:

4377 ar ap SP Su
kA kA

— — lay+ay;—Sp| 0 qAox
O O

Equation (4.30) is valid for control volumes at nodal points 2, 3 and 4.

To incorporate the boundary conditions at nodes 1 and 5 we apply the
linear approximation for temperatures between a boundary point and the
adjacent nodal point. At node 1 the temperature at the west boundary is
known. Integration of equation (4.25) at the control volume surrounding
node 1 gives

[[/e/ld—TJ - [/e/ld—T) ] +gAV =0 (4.31)
dx dx

Introduction of the linear approximation for temperatures between A and P

yields
[/ee/l( TE(; Tr ] - /eAA( Tg_/ZTA H +gA8r =0 (4.32)
X X

The above equation can be rearranged, using k, = £, = k, to yield the discre-
tised equation for boundary node 1:

aPTP = dWTW-l_ ﬂETE + Su (433)
where
Ay ar ap SP Su
kA 2kA 2kA
0 — lay+tay—Sp| - Adx + ——T
Ox e O 1 P

At nodal point 5, the temperature on the east face of the control volume is
known. The node is treated in a similar way to boundary node 1. At bound-
ary point 5 we have

[/«Ad—TJ - (/eAd—T] ] +gAV=0 (4.34)

dx dx

/eBA[ Ty~ T”] — kA [%H +qA8x =0 (4.35)

ox/2 v
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The above equation can be rearranged, noting that k5 = k,, = &, to give the
discretised equation for boundary node 5:

apTp=ayTy+ayTp+ S, (4.36)
where
ay ap | ap Sp S,
% 0 ay+ap—Sp —2;:1 gAbx + 2(/;;4 Ty

Substitution of numerical values for 4=1, # =0.5 W/m.K, 4= 1000 kW/m?
and Oox = 0.004 m everywhere gives the coefficients of the discretised equa-
tions summarised in Table 4.2.

Table 4.2
Node ay ag S, Sp ap=ay+ag—Sp
1 0 125 4000 + 2507, -250 375
2 125 125 4000 0 250
3 125 125 4000 0 250
4 125 125 4000 0 250
5 125 0 4000 + 2507 =250 375
Given directly in matrix form the equations are
[ 375 -125 0 0 0| 7y 29000
=125 250 -125 0 0| T, 4000
0 -125 250 -125 0| 75| =| 4000 (4.37)
0 0 -125 250 —125|| 7, 4000
0 0 0 -125  375|| T; 54000
The solution to the above set of equations is
[T 150
T, 218
T;| = | 254 (4.38)
T, 258
| 75 230

Comparison with the analytical solution

The analytical solution to this problem may be obtained by integrating equa-

tion (4.25) twice with respect to x and by subsequent application of the

boundary conditions. This gives

[ 1-T,
L

T + é([, - x)} v+ Ty (4.39)

The comparison between the finite volume solution and the exact solution is
shown in Table 4.3 and Figure 4.8 and it can be seen that, even with a coarse
grid of five nodes, the agreement is very good.
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Table 4.3
Node number 1 2 3 4 5]
x (m) 0.002 0.006 0.01 0.014 0.018
Finite volume solution 150 218 254 258 230
Exact solution 146 214 250 254 226
Percentage error 2.73 1.86 1.60 1.57 1.76
Figure 4.8 Comparison of the 300
numerical result with the
analytical solution 250 [~
o
‘s 200 [~
?;;_ 150 |- Exact |
3
100 Numerical |
50 | | | |
0.0 0.4 0.8 1.2 1.6 2.0
Distance (cm)
In the final worked example of this chapter we discuss the cooling of a
circular fin by means of convective heat transfer along its length. Convection
gives rise to a temperature-dependent heat loss or sink term in the govern-
ing equation. Shown in Figure 4.9 is a cylindrical fin with uniform cross-
sectional area 4. The base is at a temperature of 100°C (77) and the end is
insulated. The fin is exposed to an ambient temperature of 20°C. One-
dimensional heat transfer in this situation is governed by
d dT
—| kA— |- hP(T-T.)=0 (4.40)
dx dw
where 7 is the convective heat transfer coefficient, P the perimeter, £ the
thermal conductivity of the material and 7., the ambient temperature.
Calculate the temperature distribution along the fin and compare the results
with the analytical solution given by
T-T. cosh[n(L—x
_ [( )] (4.41)
T;-T., cosh(nL)
Figure 4.9 The geometry for Insulated
(zero heat flux
Example 4.3

across this boundary)

Ts

( 0

Tambient
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Figure 4.10 'The grid used in
Example 4.3

where #> = hP/(kA), L is the length of the fin and x the distance along the
fin. Data: L =1 m, hP/(kA) = 25/m? (note that kA4 is constant).

The governing equation in the example contains a sink term, —2P(T — T..),
the convective heat loss, which is a function of the local temperature 7. As
before, the first step in solving the problem by the finite volume method is to
set up a grid. We use a uniform grid and divide the length into five control
volumes so that dx = 0.2 m. The grid is shown in Figure 4.10.

Tg=100°C 4 2 5
T T S B
I P . ‘ . ‘ o (]

‘ Ox/2 ‘ X Ox ‘ Ox/2
I I

w
IN
Q
I
o

When kA = constant, the governing equation (4.40) can be written as

d(dT

—|— | =#X(T - T.)) = 0 where n* = hp/(kA) (4.42)

dx| dw

Integration of the above equation over a control volume gives

d(dT

J— — |dV - JnZ(T— T.)dV=0 (4.43)
dx| dw

AV AV

The first integral of the above equation is treated as in Examples 4.1 and
4.2; the second integral due to the source term in the equation is evaluated
by assuming that the integrand is locally constant within each control

volume:
HAd_T] _ (Ad_TJ } — [Ty — T.)ASx] = 0
dx dx

First we develop a formula valid for nodal points 2, 3 and 4 by introducing
the usual linear approximations for the temperature gradient. Subsequent
division by cross-sectional area A gives

[ Ty — TPJ _ ( Tp— Tn/]] _ [ﬂZ(TP _ Tw)ax] =0 (444)

o O

This can be rearranged as

= [i) Ty + [SLJ Tp+n*oxT, —n*xTp  (4.45)

X

For interior nodal points 2, 3 and 4 we write, using general form (4.11),

ﬂPTP = dn/Tw'f' ﬂETE + Su (4.46)




4.3 WORKED EXAMPLES 127

with

Ay g ap Sp S

1 1
- ﬂn/+ ap— Sp —n25x n25me

Sr o

Next we apply the boundary conditions at nodal points 1 and 5. At node 1
the west control volume boundary is kept at a specified temperature. It is
treated in the same way as in Example 4.1, i.e.

=T\ (To=Ts )| ... _
[[ 5 J (&/2 H [P(Tp— T.)8x] =0 (4.47)

The coefficients of the discretised equation at boundary node 1 are

4377 ar ap SP Su
1 2 2

0 — aw+ap—Sp| —ntow—— | 2T, +—T
o wenE e o P

At node 5 the flux across the east boundary is zero since the east side of the
control volume is an insulated boundary:

[0 _ [MH —[nX(Tp— T.)éx] =0 (4.48)
Ox

Hence the east coefficient is set to zero. There are no additional source terms
associated with the zero flux boundary condition. The coefficients at bound-
ary node 5 are given by

4377 ar ap SP Su

1
— 0 ap+ap—Sp | —n*dx | n?oxT,
o

Substituting numerical values gives the coefficients in Table 4.4.

Table 4.4
Node ay ag S, Sp ap=ay+ap—Sp
1 0 5 100 + 1075 —15 20
2 5 5 100 =5 15
3 5 5 100 -5 15
4 5 5 100 =5 15
5 5 0 100 -5 10

The matrix form of the equations set is

20 -5 0 0 O||T 1100

=5 15 =5 0 0|7 100
0 =5 15 =5 0f| 73| =| 100 (4.49)
0 0 =5 15 5|17, 100
0 0 0 =5 10||7; 100
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Figure 4.11 Comparison of
numerical and analytical results

The solution to the above system is

7,1 [64.22
7| |36.91
Ty | = 126.50 (4.50)
T,|  |22.60
Ti|  |21.30

Comparison with the analytical solution

Table 4.5 compares the finite volume solution with analytical expression
(4.41). The maximum percentage error ((analytical solution — finite volume
solution)/analytical solution) is around 6%. Given the coarseness of the grid
used in the calculation, the numerical solution is reasonably close to the exact
solution.

Table 4.5

Node Distance Finite volume Analytical Difference Percentage
solution solution error

1 0.1 64.22 68.52 4.30 6.27

2 0.3 36.91 37.86 0.95 2.51

3 0.5 26.50 26.61 0.11 0.41

4 0.7 22.60 22.53 —-0.07 —-0.31

5 0.9 21.30 21.21 —-0.09 -0.42

The numerical solution can be improved by employing a finer grid.
Let us consider the same problem with the rod length sub-divided into 10
control volumes. The derivation of the discretised equations is the same as
before, but the numerical values of the coefficients and source terms are
different due to the smaller grid spacing of dx = 0.1 m. The comparison of
results of the second calculation with the analytical solution is shown in
Figure 4.11 and Table 4.6. The second numerical results shows better agree-
ment with the analytical solution; now the maximum deviation is only 2%.

100 T T T
= The analytical solution 1
® Numerical solution (coarse grid)
80 [— B Numerical solution (fine grid) —
g? | _
@
=]
% 60— ]
@
Q
£ o _
(3
2
40 — —]
20 l l l
0.0 0.2 0.4 0.6 0.8 1.0

Distance (m)
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Table 4.6
Node Distance Finite volume Analytical Difference Percentage
solution solution error
1 0.05 80.59 82.31 1.72 2.08
2 0.15 56.94 57.79 0.85 1.47
3 0.25 42.53 42.93 0.40 0.93
4 0.35 33.74 33.92 0.18 0.53
5 0.45 28.40 28.46 0.06 0.21
6 0.55 25.16 25.17 0.01 0.03
7 0.65 23.21 23.19 —-0.02 —-0.08
8 0.75 22.06 22.03 -0.03 —-0.13
9 0.85 21.47 21.39 —-0.08 -0.37
10 0.95 21.13 21.11 —0.02 —-0.09

m Finite volume . . N S
method for 1 he methodology used in deriving discretised equations in the one-
two-dimensional  dimensional case can be easily extended to two-dimensional problems. To

diffusion problems illustrate the technique let us consider the two-dimensional steady state

diffusion equation given by

d(_d d(_ad
— 1“—¢ +— 1“—¢ +85,=0 (4.51)
ox| O dy|
A portion of the two-dimensional grid used for the discretisation is shown in
Figure 4.12.
Figure 4.12 A part of the two- ‘ ‘ ‘
dimensional grid N
SR I O ! O H D
w P E 3jy
w e '
BB EDEANIEN
s
N R U\ e e

In addition to the east (£) and west (J/) neighbours a general grid node
P now also has north (V) and south (.5) neighbours. The same notation as in
the one-dimensional analysis is used for faces and cell dimensions. When the
above equation is formally integrated over the control volume we obtain

Ji 1—‘% dv. dy + Ji % dv . dy + JS¢dV=0 (4.52)
o ox dy dy

Av Ar " Av
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So, noting that A4, = A, = Ay and A, = A, = Ax, we obtain

ERRe)
o o

+ [r,@{ﬂj —FXAX[@]] +SAV=0 (4.53)
dy dy |

As before, this equation represents the balance of the generation of ¢ in a
control volume and the fluxes through its cell faces. Using the approxima-
tions introduced in the previous section we can write expressions for the flux
through control volume faces:

12 — oy
Flux across the west face = I",I,AW—¢ = 1",1,AWM (4.54a)
ax 5pr
0 —
Flux across the east face = F‘,Ae—dj = FeAeM (4.54b)
8.76' X pr
Flux across the south face = FXAX% = FSAXM (4.54¢)
dy Oysp
0 —
Flux across the north face = FnAn—q) = F,,Anw (4.544)
dy ) Oy py

By substituting the above expressions into equation (4.53) we obtain

(9p— 9p) (9p— Ow) (On — 0p)

FeAc— - F)vAm + FnAn -
X pp Xyyp Y PN
—FXAIM+S‘AV=O (4.55)
dysp

When the source term is represented in the linearised form SAV'=.S,+ S ' Op,
this equation can be rearranged as

+ +
Ovyp  Ovpp  Oysp  Oypy

— FIDAW ¢ + FeAe ¢ + FSAS ¢ + rnAn ¢ + S
- O yyp " Oxpp ’ Oysp y Oypy v ’

(4.56)

rlI)AIP rt‘At‘ r.\'A_\‘ rﬂAVl
+ - Sp (DP

Equation (4.56) is now cast in the general discretised equation form for
interior nodes:

apPp=ay Oy +agPp+agPs+ayPy+ S, (4.57)
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n Finite volume

method for
three-dimensional
diffusion problems

Figure 4.13 A cell in three
dimensions and neighbouring
nodes

where
4377 ar as an ap
I A I' A I, A, I A
w w e (4 s § n n [lW—i- dE + dS + d]\/_ Sp
Owyp Oxpy sp ey

The face areas in a two-dimensional case are A, = A, = Ay; A, = A, = Ax.

We obtain the distribution of the property ¢ in a given two-dimensional
situation by writing discretised equations of the form (4.57) at each grid node
of the sub-divided domain. At the boundaries where the temperatures or
fluxes are known the discretised equations are modified to incorporate
boundary conditions in the manner demonstrated in Examples 4.1 and 4.2.
The boundary-side coefficient is set to zero (cutting the link with the bound-
ary) and the flux crossing the boundary is introduced as a source which is
appended to any existing .S, and S, terms. Subsequently, the resulting set of
equations is solved to obtain the two-dimensional distribution of the prop-
erty ¢. Example 7.2 in Chapter 7 shows how the method can be applied to
calculate conductive heat transfer in two-dimensional situations.

Steady state diffusion in a three-dimensional situation is governed by

() 2fi2) 22 oss
ov| ox dy| dy oJz| Oz

Now a three-dimensional grid is used to sub-divide the domain. A typical
control volume is shown in Figure 4.13.

¢

A cell containing node P now has six neighbouring nodes identified as
west, east, south, north, bottom and top (W, E, S, N, B, T). As before, the
notation w, e, s, n, b and ¢ is used to refer to the west, east, south, north,
bottom and top cell faces respectively.
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Integration of Equation (4.58) over the control volume shown gives

o ox dy
- rSAx[@J } + [rﬁ,(ﬂj - F,,A{%) } +SAV =0
dy ) oz t oz ,

(4.59)

Following the procedure developed for one- and two-dimensional cases the
discretised form of equation (4.59) is obtained:

{re P DR ¢W)} . {rn 4 Ov=0n)
Oxpy Xyyp N
g (9= 99 } s {M @r=0) ., Gr=0) }
sp 2pT Ozpp
+ (S, +Spop) =0 (4.60)
As before, this can be rearranged to give the discretised equation for interior
nodes:
apPp = ay P+ apdp + asPs + ayPy + apPp + ardr+ S, (4.61)
where
Ay ar as an ap ar ap
FWAW FeAe FSAS rnAn r},Ab rlA, ay + ar + ag + an
Oxyyp Oxpy; Oysp 0ypn Ozpp Ozpr | +ag+ar—Sp

Boundary conditions can be introduced by cutting links with the appropri-
ate face(s) and modifying the source term as described in section 4.3.

Summary N . L .
The discretised equations for one-, two- and three-dimensional diffusion

problems have been found to take the following general form:

apPp=2a 0,4+ S, (4.62)

where X indicates summation over all neighbouring nodes (#), a,; are
the neighbouring coefficients, a;y, a; in one dimension, ay, ay, ag, ay in
two dimensions and ayy, ay, ag, ay, ap, a7 in three dimensions; @,, are
the values of the property ¢ at the neighbouring nodes; and (.S, + Sp¢p)
is the linearised source term.

* In all cases the coefficients around point P satisfy the following relation:

ap=Sa,-S, (4.63)
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Table 4.7

ay ag as an ap ar
FW AW re Ae

1D — — — - —
Syyp Opy
I,A, I,A, I A, Ir,A4,

2D —_— — — _ - —
Svypp Oxpp; Oysp Oypy

3D FWAW reAe FxAx FnAn Fl;AI; FtAt
Sxyp Oxpg Oysp Sypn Ozpp Ozpr

e A summary of the neighbour coefficients for one-, two- and three-
dimensional diffusion problems is given in Table 4.7.

* Source terms can be included by identifying their linearised form
SAV =S, + §,¢p and specifying values for S, and .S,,.

* Boundary conditions are incorporated by suppressing the link to the
boundary side and introducing the boundary side flux — exact or linearly
approximated — through additional source terms .S, and S,. For a
one-dimensional control volume of width A¢g with a boundary B:

— link cutting:

set coefficient ay =0 (4.64)
— source contributions:
2kpAy
fixed value ¢p: S, = ——
Oz AL Op
2kpA
S, =——22L (4.65)
AL

fixed flux gz: S, +S,0p=1q5 (4.66)



Chapter five The finite volume method for

convection—diffusion problems

“ Introduction In problems where fluid flow plays a significant role we must account for the
effects of convection. Diffusion always occurs alongside convection in nature
so here we examine methods to predict combined convection and diffusion.
The steady convection—diffusion equation can be derived from the transport
equation (2.39) for a general property ¢ by deleting the transient term

div(pug) = div(I" grad ¢) + .5, (5.1)

Formal integration over a control volume gives

Jn. (ppu)dA = Jn.(l" grad ¢)dA + JS¢dV (5.2)
A A CV

This equation represents the flux balance in a control volume. The left hand
side gives the net convective flux and the right hand side contains the net
diffusive flux and the generation or destruction of the property ¢ within the
control volume.

The principal problem in the discretisation of the convective terms is the
calculation of the value of transported property ¢ at control volume faces and
its convective flux across these boundaries. In Chapter 4 we introduced the
central differencing method of obtaining discretised equations for the diffu-
sion and source terms on the right hand side of equation (5.2). It would seem
obvious to try out this practice, which worked so well for diffusion problems,
on the convective terms. However, the diffusion process affects the distribu-
tion of a transported quantity along its gradients in all directions, whereas
convection spreads influence only in the flow direction. This crucial difference
manifests itself in a stringent upper limit to the grid size, which is dependent
on the relative strength of convection and diffusion, for stable convection—
diffusion calculations with central differencing.

Naturally, we also present the case for a number of alternative discretisa-
tion practices for the convective effects which enable stable computations
under less restrictive conditions. In the current analysis no reference will
be made to the evaluation of face velocities. It is assumed that they are
‘somehow’ known. The method of computing velocities will be discussed
in Chapter 6.
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a Steady one-

dimensional
convection and
diffusion

Figure 5.1 A control volume
around node P

In the absence of sources, steady convection and diffusion of a property ¢ in
a given one-dimensional flow field « is governed by

d d(_do¢
— =—|I— 53
& (pug) 0 [ & ] (5.3)
The flow must also satisfy continuity, so
d
dlpw) _ (5.4
dx

We consider the one-dimensional control volume shown in Figure 5.1 and
use the notation introduced in Chapter 4. Our attention is focused on a
general node P; the neighbouring nodes are identified by /7 and E and the
control volume faces by w and e.

SXup \ SXpe
U, ——>— —_ U,
s jpesessse jesesecs " s
* E—— B S— { *
w w P e E
OXue

Integration of transport equation (5.3) over the control volume of
Figure 5.1 gives

(puf), — (puAg), = (FA?) - [m@J 5.5)

X dx

And integration of continuity equation (5.4) yields
(puA), — (puAd), =0 (5.6)

To obtain discretised equations for the convection—diffusion problem we
must approximate the terms in equation (5.5). It is convenient to define two
variables /" and D to represent the convective mass flux per unit area and
diffusion conductance at cell faces:

r

F=puand D=— (5.7)
O

The cell face values of the variables /" and D can be written as
Fo=(ou),  F.=(pu), (5.82)
T T
D, =—=" D,=—= (5.8b)
6){’,4/1_) SxPE

We develop our techniques assuming that A, = A, = A, so we can divide the
left and right hand sides of equation (5.5) by area 4. As before, we employ
the central differencing approach to represent the contribution of the diffu-
sion terms on the right hand side. The integrated convection—diffusion
equation (5.5) can now be written as

Fe¢e - Fm¢m = De(d)E - ¢P) - Dw(¢1’ - ¢W) (59)
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and the integrated continuity equation (5.6) as

s

We also assume that the velocity field is ‘somehow known’, which takes care
of the values of I, and F,,. In order to solve equation (5.9) we need to calcu-
late the transported property @ at the ¢ and w faces. Schemes for this purpose
are assessed in the following sections.

The central differencing approximation has been used to represent the
diffusion terms which appear on the right hand side of equation (5.9), and it
seems logical to try linear interpolation to compute the cell face values for the
convective terms on the left hand side of this equation. For a uniform grid
we can write the cell face values of property ¢ as

0.=(9p+ ¢)/2 (5.11a)
0, = (O + ¢p)/2 (5.11b)

Substitution of the above expressions into the convection terms of (5.9)
yields

F F
7€(¢P + ) — 2m (Ow + ¢p) = D(Or — 0p) — D, (9p — D) (5.12)

This can be rearranged to give

_D F”’+D+F€ —D+F’” D re
W_7 ¢ 7 ¢P_ w 7 ¢W + e_T ¢F
_D+£+D—£ (-1, |0
w 2 ¢ 2 e w. P
Z[Dm+ J¢W+(De_

Identifying the coefficients of ¢y, and ¢, as a;y and ay, the central differ-
encing expressions for the discretised convection—diffusion equation are

F F
5 5 j% (5.13)

| apPp = ay Py + apPp | (5.14)
where
Ay ar ap
F, F,
DW+7 De_? aw+ap+ (F,—F,)

It can be easily recognised that equation (5.14) for steady convection—diffusion
problems takes the same general form as equation (4.11) for pure diffusion
problems. The difference is that the coefficients of the former contain
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Figure 5.2

Figure 5.3 'The grid used for
discretisation

additional terms to account for convection. To solve a one-dimensional
convection—diffusion problem we write discretised equations of the form
(5.14) for all grid nodes. This yields a set of algebraic equations that is solved
to obtain the distribution of the transported property ¢. The process is now
illustrated by means of a worked example.

A property ¢ is transported by means of convection and diffusion through
the one-dimensional domain sketched in Figure 5.2. The governing equation
is (5.3); the boundary conditions are @y =1 at x=0and ¢, =0 at v = L. Using
five equally spaced cells and the central differencing scheme for convection
and diffusion, calculate the distribution of ¢ as a function of x for (i) Case 1:
u = 0.1 m/s, (i1) Case 2: u = 2.5 m/s, and compare the results with the
analytical solution
o—9 _ exp(pux/I") — 1 (5.15)
9.— 9 exp(pul/T)—1
(ii1) Case 3: recalculate the solution for # = 2.5 m/s with 20 grid nodes and
compare the results with the analytical solution. The following data apply:
length L =1.0m, p=1.0 kg/m’ T'=0.1 kg/m.s.

u
_——

x=1L

The method of solution is demonstrated using the simple grid shown in
Figure 5.3. The domain has been divided into five control volumes giving
6x=0.2 m. Note that F = pu, D=T1/6x, F,=F,=Fand D,=D, =D
everywhere. The boundaries are denoted by 4 and B.

The discretisation equation (5.14) and its coefficients apply at internal
nodal points 2, 3 and 4, but control volumes 1 and 5 need special treatment
since they are adjacent to the domain boundaries. We integrate governing
equation (5.3) and use central differencing for both the diffusion terms and
the convective flux through the east face of cell 1. The value of ¢ is given
at the west face of this cell (¢, = ¢, = 1) so we do not need to make any
approximations in the convective flux term at this boundary. This yields the
following equation for node 1:

F
zl (0p+ Op) — F194= D¢ — ¢p) — D.(0p— ¢.) (5.16)

For control volume 5, the ¢-value at the east face is known (¢, = ¢ =0). We
obtain

F
Fyop— %(dﬁp + 0w) = Dp(9p = 0p) = Do(0p = Op) (5.17)
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Rearrangement of equations (5.16) and (5.17), noting that D, = Dy = 2"/ 6x
=2D and F, = Fy = F, gives discretised equations at boundary nodes of the
following form:

| apPp=ayPy+apPp+ S, (5.18)
with central coefficient
|ﬂP=dW+ﬂE+(Fe_Fm)_SP |
and
Node ay ag Sp S,
1 0 D-F/2 ~2D+F) @D+ F)¢,
2,354 D+F/2 D—-F/2 0 0
5 D+F/2 0 —2D - F) @D - F)¢,

To introduce the boundary conditions we have suppressed the link to the
boundary side and entered the boundary flux through the source terms.

(1) Case 1
u=0.1m/s: F=pu=0.1,D=T/6=0.1/0.2 = 0.5 gives the coefficients as
summarised in Table 5.1.

Table 5.1
Node ay ag S, Sp ap=ay+ag— Sp
1 0 0.45 1.1¢, -1.1 1.55
2 0.55 0.45 0 0 1.0
3 0.55 0.45 0 0 1.0
4 0.55 0.45 0 0 1.0
5 0.55 0 0.9¢, -0.9 1.45

The matrix form of the equation set using ¢, =1 and ¢z =01s

[ 155 045 0 0 0 oA 1.1
—-0.55 1.0 -045 0 0 O 0
0 —0.55 1.0 -045 0 o1 =10 (5.19)
0 0 —0.55 1.0 -0.45|| ¢, 0
0 0 0 —0.55 1.45|| ¢5 0
The solution to the above system is
[, 0.9421
o} 0.8006
;| =10.6276 (5.20)
Oy 0.4163
Os 0.1579
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Figure 5.4 Comparison of
numerical and analytical
solutions for Case 1

Comparison with the analytical solution

Substitution of the data into equation (5.15) gives the exact solution of the

problem:

P(v)

_ 2.7183 — exp(x)

1.7183

The numerical and analytical solutions are compared in Table 5.2 and in
Figure 5.4. Given the coarseness of the grid the central differencing (CD)
scheme gives reasonable agreement with the analytical solution.

Table 5.2
Node Distance Finite volume Analytical Difference
solution solution
1 0.1 0.9421 0.9387 —0.003
2 0.3 0.8006 0.7963 —0.004
3 0.5 0.6276 0.6224 —0.005
4 0.7 0.4163 0.4100 —0.006
5 0.9 0.1579 0.1505 —0.007
1.0
u=0.1m/s
0.8 -
0.6 - Exact solution
0
04
Numerical solution (CD)
0.2 -
0.0 ! ! ! !
0 0.2 0.4 0.6 0.8 1.0
Distance (m)
(11) Case 2

Percentage
error

—-0.36
—-0.53
—-0.83
—-1.53
—4.91

u=25m/s: F=pu=25D=T/6=0.1/0.2=0.5 gives the coefficients as
summarised in Table 5.3.

Table 5.3

1.75
1.75
1.75
1.75

ar

—-0.75
—-0.75
—-0.75
-0.75

ap=ay+ap— Sp

2.75
1.0
1.0
1.0
0.25
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Figure 5.5 Comparison of
numerical and analytical
solutions for Case 2

Comparison of numerical and analytical solution

The matrix equations are formed from the coefficients in Table 5.3 by the
same method used in Case 1 and subsequently solved. The analytical solu-
tion for the data that apply here is

1- 25
N exp(25x)

~1
) 7.20 x 10"

The numerical and analytical solutions are compared in Table 5.4 and shown
in Figure 5.5. The central differencing scheme produces a solution that
appears to oscillate about the exact solution. These oscillations are often
called ‘wiggles’ in the literature; the agreement with the analytical solution is
clearly not very good.

Table 5.4
Node Distance Finite volume Analytical Difference  Percentage
solution solution error
1 0.1 1.0356 1.0000 —-0.035 -3.56
2 0.3 0.8694 0.9999 0.131 13.05
3 0.5 1.2573 0.9999 —0.257 —25.74
4 0.7 0.3521 0.9994 0.647 64.70
5 0.9 2.4644 0.9179 —1.546 -168.48
25 |-
u=2.5m/s
Numerical solution (CD)
20
15 [
[
e /\
o~
0.5 - Exact/
solution
00 ! ! ! !
0 0.2 0.4 0.6 0.8 1.0

Distance (m)

(111) Case 3

u=2.5m/s: a grid of 20 nodes gives v = 0.05, F = pu =2.5,D =T/0dx
= 0.1/0.05 = 2.0. The coefficients are summarised in Table 5.5 and the
resulting solution is compared with the analytical solution in Figure 5.6.

Table 5.5
Node ay ag S, Sp ap=awy+ag— Sp
1 0 0.75 6.5¢, —6.5 7.25
2-19 3.25 0.75 0 0 4.00

20 3.25 0 1.5¢; -1.5 4.75
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Figure 5.6 Comparison of
numerical and analytical
solutions for Case 3

Properties
of discretisation
schemes

54.1

Numerical solution (CD)
0.8 |-
0.6 [~
o
Exact solution
0.4 |-
0.2 |-
u=2.5m/s
0.0 I I I I
0 0.2 0.4 0.6 0.8 1.0

Distance (m)

The agreement between the numerical results and the analytical solution
is now good. Comparison of the data for this case with the one computed on
the five-point grid of Case 2 shows that grid refinement has reduced the /D
ratio from 5 to 1.25. The central differencing scheme seems to yield accurate
results when the F/D ratio is low. The influence of the F'/D ratio and the
reasons for the appearance of ‘wiggles’ in central difference solutions when
this ratio is high will be discussed below.

The failure of central differencing in certain cases involving combined con-
vection and diffusion forces us to take a more in-depth look at the properties
of discretisation schemes. In theory numerical results may be obtained that
are indistinguishable from the ‘exact’ solution of the transport equation
when the number of computational cells is infinitely large, irrespective of the
differencing method used. However, in practical calculations we can only use
a finite — sometimes quite small — number of cells, and our numerical results
will only be physically realistic when the discretisation scheme has certain
fundamental properties. The most important ones are:

¢ Conservativeness
¢ Boundedness
* Transportiveness

Conservativeness

Integration of the convection—diffusion equation over a finite number of
control volumes yields a set of discretised conservation equations involving
fluxes of the transported property @ through control volume faces. To ensure
conservation of ¢ for the whole solution domain the flux of ¢ leaving a
control volume across a certain face must be equal to the flux of ¢ entering
the adjacent control volume through the same face. To achieve this the flux
through a common face must be represented in a consistent manner — by
one and the same expression — in adjacent control volumes.

For example, consider the one-dimensional steady state diffusion prob-
lem without source terms shown in Figure 5.7.
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Figure 5.7 Example of
consistent specification of

diffusive fluxes

Figure 5.8 Example of
inconsistent specification of

diffusive fluxes

Gradient = (¢, — ¢1)/6x

9 1 3 2 3 3 3 4 s

[
!
‘ ox/2 ‘ OX 2% éx ‘ Ox/2 ‘
|

The fluxes across the domain boundaries are denoted by ¢, and ¢;. Let us
consider four control volumes and apply central differencing to calculate the
diffusive flux across the cell faces. The expression for the flux leaving the
element around node 2 across its west face is T, (¢, — ¢;)/6r and the flux
entering across its east face is I, (¢; — ¢,)/ ox. An overall flux balance may be
obtained by summing the net flux through each control volume, taking into
account the boundary fluxes for the control volumes around nodes 1 and 4:

{rﬁ(@ — ) 4 . {rq(% —6) L (9= ¢l>}

5x 6x 2 ax
N reﬂ(¢4 -9 r, (@5=¢) | n—T, (0~ ¢3)
: 5.%’ ’ 5x * 5x
=43~ 44 (5.21)
SinceI', =T, T, =T, and I, =T, the fluxes across control volume faces

are expressed in a consistent manner and cancel out in pairs when summed
over the entire domain. Only the two boundary fluxes ¢ ,and ¢ remain in the
overall balance, so equation (5.21) expresses overall conservation of property
¢. Flux consistency ensures conservation of ¢ over the entire domain for the
central difference formulation of the diffusion flux.

Inconsistent flux interpolation formulae give rise to unsuitable schemes
that do not satisfy overall conservation. For example, let us consider the
situation where a quadratic interpolation formula, based on values at 1, 2 and
3, is used for control volume 2, and a quadratic profile, based on values at
points 2, 3 and 4, is used for control volume 3.

As shown in Figure 5.8, the resulting quadratic profiles can be quite
different.

Gradient of 2 Gradient of 1
Quadratic function 1 Quadratic function 2
(2]
</ 3 /
é—&?
j 3 ~
! 02 : ;
9 1 3 2 ; 3 3 4 s

! }
‘ 6x/2 ‘ X ‘ X X ‘ 6x/2 ‘
|

Consequently, the flux values calculated at the east face of control volume 2
and the west face of control volume 3 may be unequal if the gradients of the
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5.4.3

two curves are different at the cell face. If this is the case the two fluxes do
not cancel out when summed and overall conservation is not satisfied. The
example should not suggest to the reader that quadratic interpolation is
entirely bad. Further on we will meet a quadratic discretisation practice — the
so-called QUICK scheme — that is consistent.

Boundedness

The discretised equations at each nodal point represent a set of algebraic
equations that needs to be solved. Normally iterative numerical techniques
are used to solve large equation sets. These methods start the solution
process from a guessed distribution of the variable ¢ and perform successive
updates until a converged solution is obtained. Scarborough (1958) has
shown that a sufficient condition for a convergent iterative method
can be expressed in terms of the values of the coefficients of the discretised
equations:

Yla,l { <1 at all nodes (5.22)
|ap| < 1 at one node at least

Here ap is the net coefficient of the central node P (i.e. ap — .Sp), and the
summation in the numerator is taken over all the neighbouring nodes (nb). If
the differencing scheme produces coefficients that satisfy the above criterion
the resulting matrix of coefficients is diagonally dominant. To achieve
diagonal dominance we need large values of net coefficient (ap —Sp) so the
linearisation practice of source terms should ensure that Sp is always
negative. If this is the case —S) is always positive and adds to ap.

Diagonal dominance is a desirable feature for satisfying the ‘boundedness’
criterion. This states that in the absence of sources the internal nodal
values of property ¢ should be bounded by its boundary values. Hence
in a steady state conduction problem without sources and with boundary
temperatures of 500°C and 200°C, all interior values of 7 should be less than
500°C and greater than 200°C. Another essential requirement for bounded-
ness is that all coefficients of the discretised equations should have
the same sign (usually all positive). Physically this implies that an increase
in the variable ¢ at one node should result in an increase in ¢ at neighbour-
ing nodes. If the discretisation scheme does not satisfy the boundedness
requirements it is possible that the solution does not converge at all, or, if it
does, that it contains ‘wiggles’. This is powerfully illustrated by the results
of Case 2 of Example 5.1. In all other worked examples we have developed
discretised equations with positive coefficients ap and 4,,, but in Case 2 most
of the east coefficients were negative (see Table 5.3), and the solution con-
tained large under- and overshoots!

Transportiveness

The transportiveness property of a fluid flow (Roache, 1976) can be illus-
trated by considering the effect at a point P due to two constant sources of ¢
at nearby points /¥ and E on either side as shown in Figure 5.9. We define
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Figure 5.9 Distribution of ¢
in the vicinity of two sources
at different Peclet numbers:
(a) pure convection, Pe — 0;
(b) diffusion and convection

the non-dimensional cell Peclet number as a measure of the relative strengths
of convection and diffusion:

peo Lt __pu (5.23)
D T/6éx

where 0x = characteristic length (cell width)

The lines in Figure 5.9 indicate the general shape of contours of constant
¢ (say ¢ = 1) due to both sources for different values of Pe. The value of ¢
at any point can be thought of as the sum of contributions due to the two
sources.

(a)

Direction of
flow —>—
W P J\E ™~
Pure
(b)

convection Pe — oo

Let us consider two extreme cases to identify the extent of the influence
at node P due to the sources at /¥ and E:

* no convection and pure diffusion (Pe — 0)
* no diffusion and pure convection (Pe — o)

In the case of pure diffusion the fluid is stagnant (Pe — 0) and the contours
of constant ¢ will be concentric circles centred around /¥ and E since the
diffusion process tends to spread ¢ equally in all directions. Figure 5.9a
shows that both ¢ =1 contours pass through P, indicating that conditions at
this point are influenced by both sources at  and E. As Pe increases the
contours change shape from circular to elliptical and are shifted in the direc-
tion of the flow as shown in Figure 5.9b. Influencing becomes increasingly
biased towards the upstream direction at large values of Pe, so, in the present
case where the flow is in the positive x-direction, conditions at P will be
mainly influenced by the upstream source at I¥. In the case of pure convec-
tion (Pe — oo) the elliptical contours are completely stretched out in the flow
direction. All of property ¢ emanating from the sources at /¥ and E is imme-
diately transported downstream. Thus, conditions at P are now unaffected
by the downstream source at £ and completely dictated by the upstream
source at V. Since there is no diffusion ¢ is equal to ¢;;. If the flow is in the
negative x-direction we would find that @p is equal to ¢;. It is very important
that the relationship between the directionality of influencing and the flow
direction and magnitude of the Peclet number, known as the transportive-
ness, is borne out in the discretisation scheme.
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a Assessment of

the central
differencing scheme
for convection—
diffusion problems

Conservativeness: The central differencing scheme uses consistent expres-
sions to evaluate convective and diffusive fluxes at the control volume faces.
The discussions in section 5.4.1 show that the scheme is conservative.

Boundedness:

(i)  The internal coefficients of discretised scalar transport equation (5.14) are

Ay arp ap
F

wt+t— | D,—— |ay+ap+(F,-F,
2 2 w E ( )

D

A steady one-dimensional flow field is also governed by the
discretised continuity equation (5.10). This equation states that

(F,— F,) is zero when the flow field satisfies continuity. Thus the
expression for ap in (5.14) becomes equal to ap = aj+ap. The
coefficients of the central differencing scheme satisfy the Scarborough
criterion (5.22).

(i) With az= D, — F,/2 the convective contribution to the east coefficient
is negative; if the convection dominates it is possible for @ to be
negative. Given that F, > 0 and F, > 0 (i.e. the flow is unidirectional),
for a; to be positive D, and F, must satisfy the following condition:

F./D,=Pe,<2 (5.24)

If Pe, is greater than 2 the east coefficient will be negative. This
violates one of the requirements for boundedness and may lead to
physically impossible solutions.

In the example of section 5.3 we took Pe =5 in Case 2 so condition (5.24) is
violated. The consequences were evident in the results, which showed large
‘undershoots’ and ‘overshoots’. Taking Pe less than 2 in Cases 1 and 3 gave
bounded answers close to the analytical solution.

Transportiveness: The central differencing scheme introduces influencing
at node P from the directions of all its neighbours to calculate the convective
and diffusive flux. Thus the scheme does not recognise the direction of the
flow or the strength of convection relative to diffusion. It does not possess
the transportiveness property at high Pe.

Accuracy: The Taylor series truncation error of the central differencing
scheme is second-order (see Appendix A for further details). The require-
ment for positive coefficients in the central differencing scheme as given
by formula (5.24) implies that the scheme will be stable and accurate only if
Pe = F/D < 2. It is important to note that the cell Peclet number, as defined
by (5.23), is a combination of fluid properties (p and I'), a flow property (u)
and a property of the computational grid (dx). So for given values of p and
T" it is only possible to satisfy condition (5.24) if the velocity is small, hence
in diffusion-dominated low Reynolds number flows, or if the grid spacing is
small. Owing to this limitation central differencing is not a suitable discretisa-
tion practice for general-purpose flow calculations. This creates the need for
discretisation schemes which possess more favourable properties. Below we
discuss the upwind, hybrid, power-law, QUICK and TVD schemes.



146

CHAPTER 5 FINITE VOLUME METHOD FOR C—D PROBLEMS

a The upwind

differencing
scheme

Figure 5.10

Figure 5.11

One of the major inadequacies of the central differencing scheme is its inabil-
ity to identify flow direction. The value of property ¢ at a west cell face is
always influenced by both ¢p and ¢y in central differencing. In a strongly
convective flow from west to east, the above treatment is unsuitable because
the west cell face should receive much stronger influencing from node W
than from node P. The upwind differencing or ‘donor cell’ differencing
scheme takes into account the flow direction when determining the value at
a cell face: the convected value of ¢ at a cell face is taken to be equal to the
value at the upstream node. In Figure 5.10 we show the nodal values used to
calculate cell face values when the flow is in the positive direction (west
to east) and in Figure 5.11 those for the negative direction.

3
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When the flow is in the positive direction, u,, > 0, u, > 0 (F,, > 0, F, > 0),
the upwind scheme sets

¢,=¢y and @, =@ (5.25)
and the discretised equation (5.9) becomes
Fopp— Fo0pr=DSOr — 9p) — D, (¢p — Op) (5:26)

which can be rearranged as

Dy + D, + F)pp= (D, + F) oy + D9

to give
[(Dm + Fm) + De + (Fe - Fm)]¢P = (Dm + F117)¢W+ D¢'¢E (527)

When the flow is in the negative direction, u,, <0, u, < 0 (F, <0, F, <0), the
scheme takes

¢n7 = ¢P and ¢e = ¢F (528)

Now the discretised equation is

Fopp— F0p= De(¢E - ¢P) - Dm(¢P - ¢Vl) (5.29)
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or
[Dw + (De - Fe) + (Fe - Fm)]‘pP: Dm¢l’V+ (De - Fe)¢E (530)

Identifying the coefficients of ¢y and ¢y as a; and 4, equations (5.27) and
(5.30) can be written in the usual general form

| arbp=andy+asd;| (5.31)

with central coefficient

|aP=aW+tlE+(Fe—Fm)|

and neighbour coefficients

Ay ag
F,>0,F,>0 | D,+F, | D
F,<0,F,<0 | D

4

D,-F,

w

A form of notation for the neighbour coefficients of the upwind differ-
encing method that covers both flow directions is given below:

ay ag
D, + max(F,, 0) D, + max(0, —F,)

Solve the problem considered in Example 5.1 using the upwind differencing
scheme for (1) # = 0.1 m/s, (ii) # = 2.5 m/s with the coarse five-point grid.

The grid shown in Figure 5.3 is again used here for the discretisation. The
discretisation equation at internal nodes 2, 3 and 4 and the relevant neigh-
bour coefficients are given by (5.31) and its accompanying tables. Note that
in this example F = F,=F,,= puand D= D,= D, =T/ x everywhere.

At the boundary node 1, the use of upwind differencing for the convec-
tive terms gives

Fopp— Fi94=DJ¢r— ¢p) — Dy(¢p — ¢4) (5.32)
And at node 5
Fpop— F b= DB(¢B - ¢P) - Dm(¢1’ - ‘PW) (5.33)

At the boundary nodes we have D ;= D;=2I"/6x=2Dand F ;= Fy=F, and
as usual the boundary conditions enter the discretised equations as source
contributions:

| apOp=ayPy+apPp+ S, (5.34)

with

|dp=ﬂw+ﬂE+(Fe_Fm)_Sp|
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Figure 5.12 Comparison of the
upwind difference numerical
results and the analytical solution
for Case 1

and

Node

2,3,4
5

ay ar
0 D
D+ F D
D+ F 0

S,

u

2D+ F)¢,
0
2D¢,

The reader will by now be familiar with the process of calculating
coefficients and constructing and solving the matrix equation. For the sake
of brevity we leave this as an exercise and concentrate on the evaluation of
the results. The analytical solution is again given by equation (5.15) and is

compared with the numerical, upwind differencing, solution.

Case 1

u=01m/s: F=pu=0.1,D=T/0x=0.1/0.2=0.5s0 Pe=F/D=0.2. The
results are summarised in Table 5.6, and Figure 5.12 shows that the upwind
differencing (UD) scheme produces good results at this cell Peclet number.

Table 5.6
Node Distance Finite volume Analytical
solution solution
1 0.1 0.9337 0.9387
2 0.3 0.7879 0.7963
3 0.5 0.6130 0.6224
4 0.7 0.4031 0.4100
5 0.9 0.1512 0.1505
1.0
u=0.1m/s
08 -
O8I Exact soluti
¢ Xact solution
04 /
Numerical solution (UD)
0.2 -
0.0 ! ! ! !
0 0.2 0.4 0.6 0.8 1.0
Distance (m)
Case 2

Difference

0.005
0.008
0.009
0.007
—0.001

Percentage
error

0.53
1.05
1.51
1.68
—-0.02

u=2.5m/s: F=pu=2.5,D=T/6x=0.1/0.2=0.5 now Pe=5. The numer-

ical results are compared with the analytical solution in Table 5.7 and Fig-

ure 5.13.
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Figure 5.13 Comparison of
the upwind difference numerical
results and the analytical solution

for Case 2

5.6.1

The central differencing scheme failed to produce a reasonable result with
the same grid resolution. The upwind scheme produces a much more realistic
solution that is, however, not very close to the exact solution near boundary B.

Table 5.7

Node Distance Finite volume Analytical Difference Percentage

solution solution error
1 0.1 0.9998 1.0000 0.0002 0.02
2 0.3 0.9987 0.9999 0.001 0.13
3 0.5 0.9921 0.9999 0.008 0.79
4 0.7 0.9524 0.9994 0.047 4.71
5 0.9 0.7143 0.9179 0.204 22.18
1.0 —= o =

/I
0.8 |- Numerical solution (UD)
=
0.6 |-
(4
Exact solution
0.4 |-
02
u=2.5m/s
0.0 ! ! ! !
0 0.2 0.4 0.6 0.8 1.0

Distance (m)

Assessment of the upwind differencing scheme

Conservativeness: The upwind differencing scheme utilises consistent
expressions to calculate fluxes through cell faces: therefore it can be easily
shown that the formulation is conservative.

Boundedness: The coefficients of the discretised equation are always posi-
tive and satisfy the requirements for boundedness. When the flow satisfies
continuity the term (F, — F,) in ap (see (5.31)) is zero and gives ap = a; + ap,
which is desirable for stable iterative solutions. All the coefficients are
positive and the coefficient matrix is diagonally dominant, hence no ‘wiggles’
occur in the solution.

Transportiveness: The scheme accounts for the direction of the flow so
transportiveness is built into the formulation.

Accuracy: The scheme is based on the backward differencing formula so the
accuracy is only first-order on the basis of the Taylor series truncation error
(see Appendix A).

Because of its simplicity the upwind differencing scheme has been
widely applied in early CFD calculations. It can be easily extended to
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Figure 5.14 Flow domain for
the illustration of false diffusion

multi-dimensional problems by repeated application of the upwind strategy
embodied in the coefficients of (5.31) in each co-ordinate direction. A major
drawback of the scheme is that it produces erroneous results when the flow
is not aligned with the grid lines. The upwind differencing scheme causes
the distributions of the transported properties to become smeared in such
problems. The resulting error has a diffusion-like appearance and is referred
to as false diffusion. The effect can be illustrated by calculating the trans-
port of scalar property ¢ using upwind differencing in a domain where the
flow is at an angle to a Cartesian grid.

In Figure 5.14 we have a domain where u = v =2 m/s everywhere so the
velocity field is uniform and parallel to the diagonal (solid line) across the
grid. The boundary conditions for the scalar are ¢ = 0 along the south and
east boundaries, and ¢ = 100 on the west and north boundaries. At the first
and the last nodes where the diagonal intersects the boundary a value of 50
is assigned to property ¢.
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n
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>
—_ ¢9=0 X
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To identify the false diffusion due to the upwind scheme, a pure convec-
tion process is considered without physical diffusion. There are no source
terms for ¢ and a steady state solution is sought. The correct solution is
known in this case. As the flow is parallel to the solid diagonal the value of
¢ at all nodes above the diagonal should be 100 and below the diagonal it
should be zero. The degree of false diffusion can be illustrated by calculating
the distribution of ¢ and plotting the results along the diagonal (X—X). Since
there is no physical diffusion the exact solution exhibits a step change of ¢
from 100 to zero when the diagonal X—X crosses the solid diagonal. The cal-
culated results for different grids are shown in Figure 5.15 together with the
exact solution. The numerical results show badly smeared profiles.

The error is largest for the coarsest grid, and the figure shows that
refinement of the grid can, in principle, overcome the problem of false
diffusion. The results for 50 X 50 and 100 x 100 grids show profiles that
are closer to the exact solution. In practical flow calculations, however,
the degree of grid refinement required to eliminate false diffusion can be
prohibitively expensive. Trials have shown that, in high Reynolds number
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Figure 5.15

The hybrid
differencing
scheme
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flows, false diffusion can be large enough to give physically incorrect results
(Leschziner, 1980; Huang ez al., 1985). Therefore, the upwind differencing
scheme is not entirely suitable for accurate flow calculations and considerable
research has been directed towards finding improved discretisation schemes.

The hybrid differencing scheme of Spalding (1972) is based on a combina-
tion of central and upwind differencing schemes. The central differencing
scheme, which is second-order accurate, is employed for small Peclet num-
bers (Pe < 2) and the upwind scheme, which is first-order accurate but
accounts for transportiveness, is employed for large Peclet numbers (Pe > 2).
As before, we develop the discretisation of the one-dimensional convection—
diffusion equation without source terms. This equation can be interpreted
as a flux balance equation. The hybrid differencing scheme uses piecewise
formulae based on the local Peclet number to evaluate the net flux through
each control volume face. The Peclet number is evaluated at the face of the
control volume. For example, for a west face,

£ __ (pu),
Dm Fm/ 5xWP

The hybrid differencing formula for the net flux per unit area through the
west face is as follows:

1 2 1 2
w=F,| = 1+—— |p+—| 1 - for =2 < Pe,, <2
1 [2[ Pe, j‘PW 2[ Pe, ](DP}

4= Fo0w for Pe,, =2 (5.36)
qw = Fm¢P for P€m <=2

Pe, =

w

(5.35)
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It can be easily seen that for low Peclet numbers this is equivalent to using
central differencing for the convection and diffusion terms, but when | Pe| > 2
it is equivalent to upwinding for convection and setting the diffusion to zero.
The general form of the discretised equation is

| apPp=ayQy+apPp | (5.37)

The central coefficient is given by

|“P:al'V+ﬂE+(Fe_Fm)

After some rearrangement it is easy to verify that the neighbour coeffi-
cients for the hybrid differencing scheme for steady one-dimensional
convection—diffusion can be written as follows:

Ay ag
£, F,
max[Fm, [Dm+7} O] max[—Fe, (DE— 5 J, 0}

Solve the problem considered in Case 2 of Example 5.1 using the hybrid
scheme for # = 2.5 m/s. Compare a 5-node solution with a 25-node
solution.

If we use the 5-node grid and the data of Case 2 of Example 5.1 and u =
25m/swehave: F=F,=F,=pu=25and D=D,=D,=T/dxr=0.5 and
hence a Peclet number Pe,, = Pe, = pudx/T = 5. Since the cell Peclet number
Pe is greater than 2 the hybrid scheme uses the upwind expression for the
convective terms and sets the diffusion to zero.

The discretised equation at internal nodes 2, 3 and 4 is defined by (5.37)
and its coefficients. We also need to introduce boundary conditions at nodes
1 and 5, which need special treatment. At the boundary node 1 we write

Fe¢P_FA¢A=O_DA(¢P_ ¢A) (5.38)
and at node 5
Fpop—F,0p= DB(¢’B - ‘PP) -0 (5.39)

It can be seen that the diffusive flux at the boundary is entered on the right
hand side and the convective fluxes are given by means of the upwind
method. We note that F, = Fy = F and Dy = 2"/ dx = 2D so the discretised
equation can be written as

| ap@p=ayPy+apPp+ S, (5.40)

with

|ap=a,,,,+ﬂE+(Fe—Fw)—SP|

and
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Node ay ag Sp S,
1 0 0 —-(2D+ F) 2D+ F)¢,
2,34 F 0 0 0
5 F 0 -2D 2D¢y

Substitution of numerical values gives the coefficients summarised in

Table 5.8.

Table 5.8
Node ay ag S, Sp
1 0 0 3.5¢, -3.5 3.5
2 2.5 0 0 0 2.5
3 2.5 0 0 0 2.5
4 2.5 0 0 0 2.5
5 2.5 0 1.0¢, -1.0 3.5

The matrix form of the equation set is

[ 3.5 0 0 0  0ffl¢ 3.5

=25 25 0 0 0}l ¢ 0
0 =25 25 0 Ofl¢g;|=1] O
0 0 =25 25 0]¢ 0
0 0 0 =25 35]|¢s 0

The solution to the above system is

[ ¢, 1.0

o, 1.0

o) = 1.0

Oy 1.0

Os 0.7143

Comparison with the analytical solution

ap=ay+ap— Sp

(5.41)

(5.42)

The numerical results are compared with the analytical solution in Table 5.9
and, since the cell Peclet number is high, they are the same as those for pure

Table 5.9
Node Distance Finite volume Analytical Difference
solution solution
1 0.1 1.0 1.0000 0.0
2 0.3 1.0 0.9999 —0.0001
3 0.5 1.0 0.9999 —0.0001
4 0.7 1.0 0.9994 —0.0006
5 0.9 0.7143 0.9179 0.204

Percentage

error

0.0
—0.01
—0.01
—0.06
22.18
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Figure 5.16

5.7.1

5.7.2

upwind differencing. When the grid is refined to an extent that the cell
Pe < 2, the scheme reverts to central differencing and produces an accurate
solution. This illustrated by using a 25-node grid with ox =0.04 m so F= D
=2.5. The results computed on both the coarse and the fine grids are shown
in Figure 5.16 together with the analytical solution. Now Pe = 1, the hybrid
scheme reverts to central differencing, and it can be seen that the solution
obtained with the fine grid is remarkably good.

0.8 ]

Numerical solution
(hybrid, 5 cells) [ ]
0.6 [~ 3 ]
(4 ) L
Numerical solution |
04 - (hybrid, 25 cells) _
0.2 [~ 1
u=25m/s Exact solution
l l l l
0.0 0.2 0.4 0.6 0.8 1.0
Distance (m)

Assessment of the hybrid differencing scheme

The hybrid difference scheme exploits the favourable properties of the
upwind and central differencing schemes. It switches to upwind differencing
when central differencing produces inaccurate results at high Pe numbers.
The scheme is fully conservative and since the coefficients are always posi-
tive it is unconditionally bounded. It satisfies the transportiveness require-
ment by using an upwind formulation for large values of Peclet number. The
scheme produces physically realistic solutions and is highly stable when
compared with higher-order schemes such as QUICK to be discussed later
in the chapter. Hybrid differencing has been widely used in various CFD
procedures and has proved to be very useful for predicting practical flows.
The disadvantage is that the accuracy in terms of Taylor series truncation
error is only first-order.

Hybrid differencing scheme for multi-dimensional
convection—diffusion

The hybrid differencing scheme can easily be extended to two- and three-
dimensional problems by repeated application of the derivation in each
new co-ordinate direction. The discretised equation that covers all cases is
given by

apPp=ay Py + agdp + as@s + anOy + agp + arPr (5.43)
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ay

ar

as

ay

ap

ar

AF

One-dimensional flow

with central coefficient

ap=ay+ag+ag+ay+ag+ar+ AF

and the coefficients of this equation for the hybrid differencing scheme
are as follows:

Two-dimensional flow Three-dimensional flow

2 i 2 | r,
max| F,, | D,+— |,0 max| F,, | D, +— |,0 max| F,, | D,+— |[,0

2 2 2

Fe Fe FE
max | —F, | D,— ? , 0 max| —F, | D,— ? , 0 max| —F, | D,— ; , 0

The power-law
scheme

F, F;
max F_w DS+? ,0 max Fva Ds+; ’0

Fn F"
max | —F,, Dn—? , 0 max | —F,, Dn—z ,0

F,
= max Fln Db"’? ,0

F
- max | —F,, D,—? ,0

=00, A I, = 1F W= IR AR I = IR AR 1, = I

In the above expressions the values of /' and D are calculated with the
following formulae:

Face w e s n b t

r (pu)wAw (pu)eAf (pv)sAs (pv)nAn (P"’)b Ab (pw)tAt

D rm A re A Fs 1—‘n Fb Ft A
Ocyp " Ovpy © Oysp Oypy " Oxgp ! Oxpr !

Modifications to these coefficients to cater for boundary conditions in two
and three dimensions are available in the form of expressions such as (5.40).

The power-law differencing scheme of Patankar (1980) is a more accurate
approximation to the one-dimensional exact solution and produces better
results than the hybrid scheme. In this scheme diffusion is set to zero when
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cell Pe exceeds 10. If 0 < Pe < 10 the flux is evaluated by using a polynomial
expression. For example, the net flux per unit area at the west control volume
face is evaluated using

4w = F, [0 — B.(0p— ¢y)] for 0 < Pe < 10 (5.44a)
where S8, = (1 —0.1Pe,)/ Pe,

and
4, = F, ¢y for Pe> 10 (5.44b)

The coefficients of the one-dimensional discretised equation utilising the
power-law scheme for steady one-dimensional convection—diffusion
are given by

central coefficient: ap=ay+ap+ (F,— F,)

and

aw

ag

D, max[0, (1 - 0.1] Pe, |)*] + max[F,, 0] | D, max[0, (1 — 0.1| Pe,|)’] + max[-F,, 0]

a Higher-order

differencing
schemes for
convection—diffusion
problems

5.9.1

Properties of the power-law differencing scheme are similar to those of the
hybrid scheme. The power-law differencing scheme is more accurate for
one-dimensional problems since it attempts to represent the exact solution
more closely. The scheme has proved to be useful in practical flow calculations
and can be used as an alternative to the hybrid scheme. In some commercial
computer codes, e.g. FLUENT version 6.2, this scheme is available as a dis-
cretisation option for the user to choose (FLUENT documentation, 2006).

The accuracy of hybrid and upwind schemes is only first-order in terms of
Taylor series truncation error (TSTE). The use of upwind quantities ensures
that the schemes are very stable and obey the transportiveness requirement,
but the first-order accuracy makes them prone to numerical diffusion errors.
Such errors can be minimised by employing higher-order discretisation.
Higher-order schemes involve more neighbour points and reduce the dis-
cretisation errors by bringing in a wider influence. The central differencing
scheme, which has second-order accuracy, proved to be unstable and does
not possess the transportiveness property. Formulations that do not take into
account the flow direction are unstable and, therefore, more accurate higher-
order schemes, which preserve upwinding for stability and sensitivity to
the flow direction, are needed. Below we discuss in some detail L.eonard’s
QUICK scheme, which is the oldest of these higher-order schemes.

Quadratic upwind differencing scheme: the QUICK scheme

The quadratic upstream interpolation for convective kinetics (QUICK)
scheme of Leonard (1979) uses a three-point upstream-weighted quadratic
interpolation for cell face values. The face value of ¢ is obtained from a
quadratic function passing through two bracketing nodes (on each side of the
face) and a node on the upstream side (Figure 5.17).
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Figure 5.17 Quadratic profiles
used in the QUICK scheme
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For example, when #,, > 0 and %, > 0 a quadratic fit through WIW, W and

P is used to evaluate ¢,, and a further quadratic fit through W, P and E to

calculate ¢,. For u,, < 0 and u, < 0 values of ¢ at W/, P and E are used for ¢,,

and values at P, F and EFE for ¢,. It can be shown that for a uniform grid the

value of ¢ at the cell face between two bracketing nodes 7 and / — 1 and
upstream node 7 — 2 is given by the following formula:

6 3 1
(P/zt[c 3 ¢z—1 + 8 ¢1 3 ¢l—2 (545)

When u, > 0, the bracketing nodes for the west face w are W and P, the
upstream node is W (Figure 5.17) and

6. 3 1
=~y + —p — —Ouy 5.46
(P 8¢Vl 8¢P 8¢WW ( )

When #, > 0, the bracketing nodes for the east face ¢ are P and E, the
upstream node is W, so

6 3 1
N (5.47)

The diffusion terms may be evaluated using the gradient of the approximat-
ing parabola. It is interesting to note that on a uniform grid this practice gives
the same expressions as central differencing for diffusion, since the slope
of the chord between two points on a parabola is equal to the slope of the
tangent to the parabola at its midpoint. If F, > 0 and F, > 0, and if we use
equations (5.46)—(5.47) for the convective terms and central differencing for
the diffusion terms, the discretised form of the one-dimensional convection—
diffusion transport equation (5.9) may be written as

£l S0, +30, - Lo | - (86 4+ 30,1
4 8¢P 8¢E 8¢W w 8¢W 8¢P 8¢I/IW

=D.(¢y - ¢P) =D, (¢p— ¢w)

which can be rearranged to give

Dy =28 +D.+ 28 [0p=| D, +%r,+1r | o
w 8m 3 86 P w 8117 8¢' w

1
" {De - %F} 0= (549
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This is now written in the standard form for discretised equations:

apPp = ay Oy + agdp + ayy Gy (549)
where
Ay ar Ay ap
6 1 3 1
DW+§FW+§F€ De_gFe —gFW ay+ag+ayy+ (F,—F,)

For F,, < 0 and F, < 0 the flux across the west and east boundaries is given
by the expressions

6 3 1
0, = §¢p + §¢W - §¢E (5.50)
6 3 1
o, = g‘PE + gq)P - §¢EE

Substitution of these two formulae for the convective terms in the discretised
convection—diffusion equation (5.9) together with central differencing for
the diffusion terms leads, after rearrangement as above, to the following
coefficients:

Ay ar app | ap

3 6 1
Dm+§Fm De_gFe_gFm _Fe‘ ﬂW+ﬂE+aEE+(Fe_Fm)

General expressions, valid for positive and negative flow directions, can be
obtained by combining the two sets of coefficients above.

The QUICK scheme for one-dimensional convection—diffusion
problems can be summarised as follows:

| apPp = ap Oy + apdp + ayy Oy + apg Opp | (5.51)

with central coefficient

|ﬂP:aW+aE+aWW+aEE+(Fe_Fm) |

and neighbour coefficients

Ay Ayww ar gk
6 1 1 3 6 1
Dw+_ame+_aeE __(mew De__ae}:;__(l - ae)}:‘e _(1 - ae)}:;
8 8 8 8 8 8
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Figure 5.18 Mirror node
treatment at the boundary

where

o,=1for F,>0and o, =1 for F,>0
o,=0for F,<0and o, =0 for F,<0

Using the QUICK scheme solve the problem considered in Example 5.1 for
u = 0.2 m/s on a five-point grid. Compare the QUICK solution with the
exact and the central differencing solution.

As before, the five-node grid introduced in Example 5.1 is used for the
discretisation. With the data of this example and # = 0.2 m/s we have F=F,
=F,=02and D=D,=D, =0.5 everywhere so that the cell Peclet number
becomes Pe, = Pe, = pudx/T = 0.4. The discretisation equation with the
QUICK scheme at internal nodes 3 and 4 is given by (5.51) together with its
coefficients.

In the QUICK scheme the ¢-value at cell boundaries is calculated with
formulae (5.46)—(5.47) that use three nodal values. Nodes 1, 2 and 5 are
all affected by the proximity of domain boundaries and need to be treated
separately. At the boundary node 1, ¢ is given at the west () face (¢, = @),
but there is no west (/) node to evaluate ¢, at the east face by (5.47). To
overcome this problem Leonard (1979) suggested a linear extrapolation to
create a ‘mirror’ node at a distance dx/2 to the west of the physical bound-
ary. This is illustrated in Figure 5.18.

3
Oa
%o
Ox/2 8x/2
0 P
Mirror node Domain Node 1
boundary

It can be easily shown that the linearly extrapolated value at the mirror
node is given by
G=20,— ¢p (5.52)

The extrapolation to the ‘mirror’ node has given us the required /¥ node for
the formula (5.47) that calculates ¢, at the east face of control volume 1:

6 3 1
0. = §¢P + §¢E - §(2¢A — p)
7 3 2
=§¢P+§¢E_§¢A (5.53)

At the boundary nodes the gradients must be evaluated using an expression
consistent with formula (5.53). It can be shown that the diffusive flux through
the west boundary is given by
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d D*
r22 =200~ 80, 90 (559
A 3
A
where D% = I
Ox

The superscript * is used to indicate that, in the QUICK scheme, the diffu-

sion conductances at boundary nodes and interior nodes have the same value,

i.e. D% = D=T/dx. This aspect is different from the discretisation schemes

we have discussed thus far. These used the half-cell approximation, so the

diffusive conductance at the boundary cell was always D, = 2D = 2I"/ éx.
The discretised equation at node 1 is

F Z +§ _E - F
; 8¢p 8¢E 8¢A P

DX 96— 80, o) (5.55)

=D — ¢p) — 3

At control volume 5, the @-value at the east face is known (¢, = @) and the
diffusive flux of ¢ through the east boundary is given by

d D}
Fa—¢ =—2(8¢5— 90p + 0y) (5.56)
v 3
where D} = —
x

At node 5 the discretised equation becomes

Y R
BYB UJSIV 8P 8WW

D*
= 73(8% =95+ ¢u) — D,(dp — 1) (5.57)

Since a special expression is used to evaluate ¢ at the east face of control
volume 1 we must use the same expression for ¢ to calculate the convective
flux through the west face of control volume 2 to ensure flux consistency. So
at node 2 we have

6 3 1 7 3 2
F {g% + §¢E - gd’w} - w|:§¢W + §¢P - §¢A:|
= D¢z — ¢p) — D,(¢p — D) (5.58)

The discretised equations for nodes 1, 2 and 5 are now written to fit into the
standard form to give

ap@p = ayy Py + aw Py + apPp + S, (5.59)
with
ap=ayy+ay+ap+(F,—F,))—Sp

and
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Node

Ay

ayy ag Sp
8
0 D,+—D% ——F, = ;Dj A=A Iy
7 1 3 1
1D}y, 3F =1, A =P, D), ==IF, =1
8 8 4

1 6
D, +—D¥ +—F, 0
3 8

S

8 .. 2
EDA+gF€+FA ¢A

1
_Z ID¢A

8 _r
3 B B ¢B

Substitution of numerical values gives the coefficients summarised in

Table 5.10.

Table 5.10
Node ay ag ayy S,
1 0 0.592 0 1.583¢,
2 0.7 0.425 0 —0.05¢,
3 0.675 0.425 —0.025 0
4 0.675 0.425 —0.025 0
5 0.817 0 —0.025 1.133¢5

The matrix form of the equation set is

[ 2175 -0.592 0 0
-0.7 1.075 —-0.425 0
0.025 -0.675 1.075 -0.425
0 0.025 -0.675 1.075
0 0 0.025 -0.817

The solution to the above system is

[, 0.9648

o, 0.8707

o;1=10.7309

O 0.5226

05 0.2123

Comparison with the analytical solution

0
0

0

—0.425

1.925

Sp ap
—1.583 2.175
0.05 1.075
0 1.075
0 1.075
—1.133 1.925
&, 1.583
o, |-0.05
o= 0 (5.60)
o, 0
os 0
(5.61)

Figure 5.19 shows that the QUICK solution is almost indistinguishable from
the exact solution. Table 5.11 confirms that the errors are very small even
with this coarse mesh. Following the steps outlined in Example 5.1 the cen-
tral differencing solution is computed with the data given above. The sum of
absolute errors in Table 5.11 indicates that the QUICK scheme gives a more
accurate solution than the central differencing scheme.
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Figure 5.19 Comparison
QUICK solution with the
analytical solution
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5.9.2
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Table 5.11
Node Distance Analytical QUICK Difference CD Difference
solution solution solution
1 0.1 0.9653 0.9648 0.0005 0.9696 0.0043
2 0.3 0.8713 0.8707 0.0006 0.8786 0.0073
3 0.5 0.7310 0.7309 0.0001 0.7421 0.0111
4 0.7 0.5218 0.5226 —0.0008 0.5374 0.0156
5 0.9 0.2096 0.2123 —0.0027 0.2303 0.0207
Y. Absolute error 0.0047 0.059

Assessment of the QUICK scheme

The scheme uses consistent quadratic profiles — the cell face values of fluxes
are always calculated by quadratic interpolation between two bracketing
nodes and an upstream node — and is therefore conservative. Since the
scheme is based on a quadratic function its accuracy in terms of Taylor series
truncation error is third-order on a uniform mesh. The transportiveness
property is built into the scheme as the quadratic function is based on two
upstream and one downstream nodal values. If the flow field satisfies con-
tinuity the coefficient ap equals the sum of all neighbour coefficients, which
1s desirable for boundedness.

On the downside, the main coefficients (£ and ¥) are not guaranteed
to be positive and the coefficients a5 and app are negative. For example, if
u, > 0 and u, > 0 the east coefficient becomes negative at relatively modest
cell Peclet numbers (Pe, = F,/ D, > 8/3). This gives rise to stability problems
and unbounded solutions under certain flow conditions. Similarly the west
coefficient can become negative when the flow is in the negative direction.
The QUICK scheme is therefore conditionally stable.

Another notable feature is the fact that the discretised equations involve
not only immediate-neighbour nodes but also nodes further away. Tri-diagonal
matrix solution methods (see Chapter 7) are not directly applicable.
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5.9.3

Stability problems of the QUICK scheme and remedies

Since the QUICK scheme in the form presented above can be unstable due
to the appearance of negative main coefficients, it has been reformulated
in different ways that alleviate stability problems. These formulations all
involve placing troublesome negative coefficients in the source term so as
to retain positive main coefficients. The contributing part is appropriately
weighted to give better stability and positive coefficients as far as possible.
Some of the better known practical approaches are described in Han et al.
(1981), Pollard and Siu (1982) and Hayase e al. (1992). The last authors
generalised the approach for rearranging QUICK schemes and derived a
stable and fast converging variant.

The Hayase ez al. (1992) QUICK scheme can be summarised as follows:

1
0, =y + g [30p — 201 — byl for F,,>0

1

¢e=¢P+§[3¢E_2¢P_¢W] for F,>0 (5.62)
1

¢, =¢p+ §[3¢W_ 2¢p— o) for F,, <0
1

¢e=¢E+§[3¢P_2¢E_¢EE] for F, <0

The discretisation equation takes the form

|a,,¢P=u,,V¢W+aE¢E+§| (5.63)

The central coefficient is

lap=ay+ag+(F.~F,) |

and
2377 ar 5
1
Dm+ ame Dc_(l - aE)FL’ §(3¢P_2¢W_ ¢WW/)aWFm
1
+ §(¢W +2¢0p— 30p)0. L,
1
+ §(3¢W_ 2¢P - ¢E)(1 - am)Fm
1
+ §(2¢E + Opp = 30p)(1 — 0,)F,
where

1for F,>0and ¢, =1 for F,>0
0 for F,,<0and ¢, =0 for F,<0

a)’l?
aw
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5.9.4

Figure 5.20 Comparison of
QUICK and upwind solutions
for the 2D test case considered in
section 5.6.1
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The advantage of this approach is that the main coefficients are positive
and satisfy the requirements for conservativeness, boundedness and trans-
portiveness. The allocation to the source term of the part of the discretisa-
tion that contains negative coefficients is called deferred correction and
relies on the scheme being applied as part of an iterative loop structure. At
the nth iteration the source term is evaluated using values known at the end
of the previous (z — 1)th iteration, i.e. ‘correction’ of the main coefficients is
‘deferred’ by one iteration. After a sufficiently large number of iterations
the correction ‘catches up’ with the rest of the solution, so all variations
of QUICK, including the one developed by Hayase ¢z al., will give the same
converged solution.

General comments on the QUICK differencing scheme

The QUICK differencing scheme has greater formal accuracy than the
central differencing or hybrid schemes, and it retains the upwind-weighted
characteristics. The resultant false diffusion is small, and solutions achieved
with coarse grids are often considerably more accurate than those of the
upwind or hybrid schemes. Figure 5.20 shows a comparison between
upwind and QUICK for the two-dimensional test case considered in section
5.6.1. It can be seen that the QUICK scheme matches the exact solution
much more accurately than the upwind scheme on a 50 x 50 grid.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Distance along diagonal X — X

The QUICK scheme can, however, give (minor) undershoots and over-
shoots, as is evident in Figure 5.20. In complex flow calculations, the use of
QUICK can lead to subtle problems caused by such unbounded results: for
example, they could give rise to negative turbulence kinetic energy (k) in k—¢&
model (see Chapter 3) computations. The possibility of undershoots and
overshoots needs to be considered when interpreting solutions.

Schemes of third-order and above have been developed for the discretisation
of convective terms with varying degrees of success. Implementation of
boundary conditions can be problematic with such higher-order schemes.
The fact that the QUICK scheme and other higher-order schemes can give
undershoots and overshoots has led to the development of second-order
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schemes that avoid these problems. The class of TVD (total variation dimin-
ishing) schemes has been specially formulated to achieve oscillation-free
solutions and has proved to be useful in CFD calculations. TVD is a
property used in the discretisation of equations governing time-dependent
gas dynamics problems. More recently, schemes with this property have
also become popular in general-purpose CFD solvers. Fundamentals of the
development of TVD methodology involves a fair amount of mathematical
background. However, the ideas behind TVD schemes can be easily illus-
trated in the context of the discretisation practices presented in the previous
sections by considering the basic properties of standard schemes and their
deficiencies.

As discussed earlier, the basic upwind differencing scheme is the most
stable and unconditionally bounded scheme, but it introduces a high level of
false diffusion due to its low order of accuracy (first-order). Higher-order
schemes such as central differencing and QUICK can give spurious oscilla-
tions or ‘wiggles’ when the Peclet number is high. When such higher-order
schemes are used to solve for turbulent quantities, e.g. turbulence energy
and rate of dissipation, wiggles can give physically unrealistic negative values
and instability. TVD schemes are designed to address this undesirable oscil-
latory behaviour of higher-order schemes. In TVD schemes the tendency
towards oscillation is counteracted by adding an artificial diffusion fragment
or by adding a weighting towards upstream contribution. In the literature
early schemes based on these ideas were called flux corrected transport
(FCT) schemes: see Boris and Book (1973, 1976). Further work by Van Leer
(1974, 1977a,b, 1979), Harten (1983, 1984), Sweby (1984), Roe (1985), Osher
and Chakravarthy (1984) and many others has contributed to the develop-
ment of present-day TVD schemes. In the next section we explain the funda-
mentals of the TVD methodology.

Generalisation of upwind-biased discretisation schemes

Consider the standard control volume discretisation of the one-dimensional
convection—diffusion equation (5.3). Discretisation of the diffusion terms
using the central differencing practice is standard and does not require
any further consideration. It is the discretisation of the convective flux term
that requires special attention. We assume that the flow is in the positive
x-direction, so # > 0, and develop the TVD concept as a generalisation of
upwind-biased expressions for the value of transported quantity ¢ at the east
face of a one-dimensional control volume.

The standard upwind differencing (UD) scheme for the east face value of

0, gives
0.= o (5.64)

A linear upwind differencing (LUD) scheme, which involves two upstream
values, yields the following expression for ¢,:

(60— B) Ox

=¢p+
(Pe (PP 5.96‘ 2

1
=0p+ E(¢P = 0w) (5.65)
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This can be thought of as a second-order extension of the original UD
estimate (5.64) of ¢, with a correction based on an upwind-biased estimate
(¢p — @y)/ Ox of the gradient of ¢ multiplied by the distance dx/2 between
node P and the east face. Another way of looking at this is to recall that our
aim is to construct expressions for convective flux F,¢,. Hence, for positive
flow direction, the convective flux discretisation by means of the LUD scheme
can be thought of as the sum of the basic UD convective flux F,@p plus an
additional flux contribution F,(¢p — @)/ 2 to improve the order of accuracy.

The QUICK scheme (5.47) can be similarly rearranged in the form of the
UD estimate plus a correction:

1
0.=¢p+ 3 (305 —20p — ¢yl (5.66)
The central differencing (CD) scheme can be written as follows:
_(¢p+ 9p)
¢e - 2
1
= ¢P+E(¢E_ op) (5.67)

We consider a generalization of the higher-order schemes in the following
form:

1
0.=dp+ EW(Q)E — ¢p) (5.68)

where Y/ is an appropriate function.

In choosing this form we express the convective flux at the east face as the
sum of the flux F,@p that is obtained when we use UD and an additional con-
vective flux F,y(@; — ¢p)/2. The extra contribution is connected in some
way to the gradient of the transported quantity ¢ at the east face, as indicated
by its central difference approximation (¢ — @p). It is easy to see that the
central difference scheme (5.68) leads to function y = 1, but in sections
5.3-5.5 we have established that an additional convective flux based on this
choice of yleads to wiggles in the solution if the grid is too coarse due to lack
of transportiveness. The upwind scheme (5.64) corresponds to function
w =0, but this choice of ¥ gave rise to false diffusion. Looking at the higher-
order schemes we find that the .LUD scheme (5.65) may be rewritten as
1( ¢p— 0w
), = + - — p — 5.69
9.= 00 2[%_%)(@ 9) (5.69)
Hence, for LUD the function is W= (¢p — ¢5)/ (91 — Op).

After some algebra the QUICK expression (5.66) can be rewritten as

1 — ¢y |1
0.2 ¢P+5[ [3 +%]Z](¢E— o) (5.70)
E— ¥YpP

By comparing equation (5.70) with equation (5.68) it can be seen that the
appropriate function for the QUICK scheme is

o= 0n )1
B SR </ el
v [ : ¢E—¢pJ4
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Figure 5.21 The function y for
various discretisation schemes

5.10.2

Inspection of the forms (5.69) and (5.70) shows that the ratio of upwind-side
gradient to downwind-side gradient (¢p — @)/ (¢ — ¢p) determines the
value of function Y and the nature of the scheme. Therefore, we let

V= y(r) (5.71)

op—
r =

Op— p
The general form of the east face value ¢, within a discretisation scheme for
convective flux may be written as

with

1
¢ = ¢p+ 51//(7)(055 — 0p) (5.72)

For the UD scheme y(r) =0

For the CD scheme w(r) =1

For the LUD scheme y(r) =r

For the QUICK scheme w(r) = (3 +r)/4

Figure 5.21 shows the y(r) vs. r relationships for these four schemes. This
diagram is known as the r— y diagram. All the above expressions assume that
the flow direction is positive (i.e. from west to east). It can be shown that
similar expressions exist for negative flow direction and r will still be the ratio
of upwind-side gradient to downwind-side gradient.

y=r QUICK

/ w=0.25r+0.75

1T T T

<
LI

y=1CD

w=0UD
Il Il Il Il

Total variation and TVD schemes

From our earlier discussion we know that the UD scheme is the most stable
scheme and does not give any wiggles, whereas the CD and QUICK schemes
have higher-order accuracy and give rise to wiggles under certain conditions.
Our goal is to find a scheme with a higher-order of accuracy without wiggles.
In our introduction to this topic it was noted that TVD schemes were
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Figure 5.22 An example of a
discrete data set for illustrating

total variation

5.10.3

initially developed for time-dependent gas dynamics. In this context it has
been established that the desirable property for a stable, non-oscillatory,
higher-order scheme is monotonicity preserving. For a scheme to preserve
monotonicity, (i) it must not create local extrema and (ii) the value of an
existing local minimum must be non-decreasing and that of a local maximum
must be non-increasing. In simple terms, monotonicity-preserving schemes
do not create new undershoots and overshoots in the solution or accentuate
existing extremes.

These properties of monotonicity-preserving schemes have implications
for the so-called total variation of discretised solutions. Consider the dis-
crete data set shown in Figure 5.22 (Lien and Leschziner, 1993). The total
variation for this set of data is defined as

V() =10 — ¢l + @3 — @] + |04 — O3] + | D5 — ¢4
=@ — o1l + 195 — 95l (5.73)

For monotonicity to be satisfied, this total variation must not increase (see
Lien and Leschziner, 1993).

o o

Monotonicity-preserving schemes have the property that the total variation
of the discrete solution should diminish with time. Hence the term total
variation diminishing or TVD. In the literature (Harten, 1983, 1984; Sweby,
1984) the total variation has been considered for transient one-dimensional
transport equations. Total variation is therefore considered at every time
step and a solution is said to be total variation diminishing (or TVD) if
TV (¢") < TV(¢") where n and n + 1 refer to consecutive time steps. In the
next sections we show how this property is also linked to desirable behaviour
of discretisation schemes for steady convection—diffusion problems.

Criteria for TVD schemes

Sweby (1984) has given necessary and sufficient conditions for a scheme
to be TVD in terms of the » — y relationship:

e If 0 <7< 1 the upper limit is Y(r) = 2r, so for TVD schemes y/(r) < 2r
o Ifr2>1 the upper limit is y(r) = 2, so for TVD schemes w(r) <2

Figure 5.23 shows the shaded TVD region in a /—y diagram along with the
r—y relationships for all the finite difference schemes we have discussed so far.
It can be seen that according to Sweby’s criteria:

¢ the UD scheme is TVD

¢ the LUD scheme is not TVD for » > 2.0

¢ the CD scheme is not TVD for » < 0.5

e the QUICK scheme is not TVD for » < 3/7 and r > 5
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Figure 5.23
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Except for UD, all the above schemes are outside the TVD region for
certain values of 7. The idea of designing a TVD scheme is to introduce
a modification to the above schemes so as to force the r—y relationship
to remain within the shaded region for all possible values of 7. This would
imply that, in order to make the scheme TVD, we must constrain or limit the
range of possible values of the additional convective flux F,y(r)(¢; — ¢p)/2,
which was originally introduced to make the scheme higher-order. Hence,
the function y(r) is called a flux limiter function.

Sweby (1984) also introduced the following requirement for second-
order accuracy in terms of the relationship v = y(r):

e The flux limiter function of a second-order accurate scheme should pass
through the point (1, 1) in the /—y diagram

Figure 5.23 confirms that the CD and QUICK schemes, which are both
second-order accurate, satisfy this criterion, but the (first-order) UD scheme
does not.

Sweby also showed that the range of possible second-order schemes
is bounded by the central difference and linear upwind schemes:

o If0<r<1 the lower limit is W(r) = r, the upper limit is W(r) = 1, so for
TVD schemes r < y(r) < 1

o Ifr 21 the lower limit is y(r) = 1, the upper limit is y(r) =, so for
TVD schemes 1 < y(r)<r

The choice of y(r) for a scheme dictates the order of the scheme and its
boundedness properties. Any second-order limited scheme could be based
on a limiter function which lies between w(r) = 7 and w(r) = 1, goes through
(1, 1) and stays below the upper limit. Any weighted average of the CD and
LUD schemes that stays within the bounded region would, therefore, result
in a second-order TVD scheme. Figure 5.24 shows the resulting shaded area
for second-order TVD schemes.

Sweby finally introduced the symmetry property for limiter functions:

YO _yam (5.74)

r

A limiter function that satisfies the symmetry property (5.74) ensures that
backward- and forward-facing gradients are treated in the same fashion with-
out the need for special coding.
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Figure 5.24 Region for a 3r v=2r v=r
second-order TVD scheme -
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5.10.4 Flux limiter functions

Over the years a number of limiters that satisfy Sweby’s requirements have
been developed and successfully used. Below we give some of the most pop-
ular limiter functions found in the literature:

Name Limiter function y(r) Source
r+|7|
Van Leer Van Leer (1974)
1+7r
r+r7
Van Albada Van Albada et al. (1982)
1+
Min-Mod () = min(r, 1) ifr>0 Roe (1985)
VIO=1 0 ifr<o
SUPERBEE max[0, min(27, 1), min(r, 2)] Roe (1985)
Sweby max[0, min(fr, 1), min(r, B)] Sweby (1984)
QUICK max|[0, min(2r, (3 +7)/4, 2)] Leonard (1988)
UMIST max[0, min(2r, (1 + 3r)/4, Lien and Leschziner
(3 +1r/4,2)] (1993)

To compare the limiter functions we have plotted them all on the same 7~y
diagram in Figure 5.25. Separate figures for individual functions are shown
in Appendix D.

Figure 5.25  All limiter 3 T e
functions in a 7~y diagram -
B SUPERBEE
2 | / /( UMIST Van Leer
- fm— =
v [ supersee -—— = — = — — === Shtpf=as|
- e Van Albada ]
' N
" 1% MIN_MOD
0
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5.10.5

All the limiter functions stay inside the TVD region and pass through the
point (1, 1) on the 7~y diagram, so they all represent second-order accurate
TVD discretisation schemes. Figure 5.25 shows that Van Leer and Van
Albada’s limiters are smooth functions, whereas all the others are piecewise
linear expressions. The Min-Mod limiter function exactly traces the lower
limit of the TVD region, whereas Roe’s SUPERBEE scheme follows the
upper limit. Sweby’s expression is a generalisation of the Min-Mod and
SUPERBEE limiters by means of a single parameter 3. The limiter becomes
the Min-Mod limiter when 3 =1 and the SUPERBEE limiter of Roe when
B=2. To stay within the TVD region we only consider the range of values
1 £ B<2. Figure 5.25 shows Sweby’s limiter when = 1.5. It is relatively
easy to verify that L.eonard’s QUICK limiter function is the only one that is
non-symmetric, whereas all the others are symmetric limiters. Lien and
Leschziner’s UMIST limiter function was designed as a symmetrical version

of the QUICK limiter.

Implementation of TVD schemes

To demonstrate the most important aspects of the implementation of a TVD
scheme we consider the now familiar one-dimensional convection—diffusion
equation

d rde
( ug) = { dx} (5.3)

The diffusion term is discretised using central differencing as before, but the
convective flux is now evaluated using a TVD scheme. In our usual notation
the discretised form of the equation is as follows:

Fe‘pe m(Pm - Dc((pE - ¢P) - Dm(¢P - ¢W) (575)

For flow in the positive x-direction # > 0 and the values of @, and ¢, using a
TVD scheme may be written as

1
Q.= Pp+ EW(&)(% = p) (5.76a)

1
¢W = (PW + EW(VW)((DP - ¢W) (576b)

_ [ ¢p—Ow O — dww
where 7, = and 7, =
Gp— Pp op— i
Note that  for each face flux term is the local ratio of upstream gradient to
downstream gradient. The limiter functions y(r,) and y(r,) can be any of

the functions described above. Substitution of (5.76a) and (5.76b) into equa-
tion (5.75) gives

1 1
Fe|: ¢P + EW(re)((bE - ¢P):| - Fm|: ¢W+ EW(TW)((bP - ¢W):|

= De(¢E - ¢P) - Dm(¢P - ¢W)
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This can be rearranged to yield

[De + Fe + Dzv]¢P: [Dm + sz]¢W+ Dc(bE
1 1
- F{Ellf(n)(% - ¢P)i| +F, {EV/(MUPP - ¢W)i| (5.77)

This can be written as

apPp = ay Py + apPp+ S>¢ (5.78a)
where ay =D, + F, (5.78b)
ag=D, (5.78¢)
ap=ay+ap+ (F,—F,) (5.78d)

) 1 1
SPC = —Fe[EW(ﬂ)(‘PE - ¢P):| + FW|:EW(;’W)(¢P - ¢W):| (5.78¢)

It should be noted that the coefficients aj, ay and ap are those of the UD
scheme, which provides numerical stability to the TVD schemes. The
contribution arising from the additional flux with the limiter function is
introduced through the source term as a deferred correction SP¢. We have
come across this practice before in section 5.9.3 when we discussed Hayase’s
implementation of the QUICK scheme. Deferred correction avoids the
occurrence of stability problems due to negative coefficients in the discretised
equation, whilst ensuring that the final converged solution has the desired
TVD behaviour. As mentioned earlier, the above derivation is for the positive
flow direction. To note the flow direction we use a superscript ‘+’. Therefore
both r, and r,, are replaced with 7} and ». We rewrite the source term as

1 1
SP¢ = —Fe[ngm - %)} - F{Engw - w} (5.79)

For u < 0, i.e. flow in the negative x-direction, the discretised form of the
equation is as before:

Fc¢e - FH7¢W = Dc(¢E - ¢P) - Dw(¢P - (PW) (580)

Values of ¢, and ¢,, using a TVD scheme are now

1

¢ =¢p+ El//(n‘)(ﬁbp = p) (5.81a)
1

¢ = 0p+ Ey/(r;)(qbw— ¢r) (5.81b)

(P9 [ 9e—¢r

where 7, = | ———= |and r, = | ———

Or— p Pp— O
Here we use the superscript ‘— to indicate that the flow direction is in the
negative x-direction. Note that r is still the local ratio of upstream gradient

to downstream gradient. Substitution of (5.81a) and (5.81b) into equation
(5.80) gives
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1 1
F{ Op + EV’("[)(‘PP - ¢E):| - Fm[ op+ EV’(’;Z)(‘PW_ ¢P):|

=DS(¢r— ¢p) — D,(0p — 1)
The usual rearrangement yields

[De - FW + Dw]¢1’ = qu)W—i_ [DL - F¢]¢b

1 1
- F{Ewmm - @)} - F{En/f(mwp - ¢W)} (5.82)

This can be written as

apPp=ay Py +agy+ S2° (5.83a)
where ay =D, (5.83b)
ap=D,—F, (5.83¢)
ap=ay+ag+(F,—F,) (5.83d)

1 1
S0 = F{El/f(n)(% - ¢p)} - FW[EW(VW)(% - ¢w)} (5.83¢)

Again the expressions for the main coefficients are the same as for the UD
scheme. We note that ', and F, are negative when the flow is in the negative
v-direction, so coefficients ayy, a; and ap will always be positive. Combining
expressions (5.78a—¢) and (5.83a—¢) we obtain a set of expressions valid for
both positive and negative flow directions. Thus the TVD scheme for one-
dimensional convection—diffusion problems may be written as

ap@p = ay P+ agdp+ SP° (5.84)

with central coefficient

“P:aW+aE+(Fe_Fm)

The neighbour coefficients and deferred correction source term of TVD
schemes are as follows:

TVD neighbour coefficients
ay D,, + max(F,, 0)

ag D, + max(—F,, 0)
TVD deferred correction source term
DC 1 - o
Su 7Fe[(1 - (Xe)l[/(i’e ) —0,. ll/(f’e )]((pE - ¢P)

1
+ >l y(ry) = (1= 00,)y(r,)I(9p = Pn)
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where

a,=1for F,>0and a,=1for F,>0
a,=0for F,<0and o, =0 for F, <0
Treatment at the boundaries

At inlet /outlet boundaries it is necessary to generate upstream/downstream
values to evaluate the values of 7. These can be obtained using the extra-
polated mirror node practice that was demonstrated for the QUICK scheme
in Example 5.4 (see section 5.9.1).

Consider an inlet with given boundary value ¢ = ¢, and convective mass
flux per unit area: F'= F,. The TVD discretised equation is

1
Fel: op+ E‘/’(%)(% - (DP):l = F10.4=D.g— 0p) — Di(¢p— ¢.1)

1
(D, + F, + D)¢p = D¢y + (D7 + F.)s — Fezvl(n)(fbﬁ = 0p)

with D% =T/ Sx

The problem is to find

Op— P
r,=|———
Pp— 0p
for the deferred correction term. The gradient ratio contains a missing nodal

value ¢ = ¢y
Leonard mirror node extrapolation gives

,_[%—@]_ﬂ%—%)
SO 7 =

¢0 = 2¢1 - ¢P

e

| p-op op — O

A further discussion on boundary conditions for higher-order schemes is

available in Leonard (1988).

Extension to two and three dimensions

Extension of the TVD expressions to two dimensions is straightforward.
The discretised equation using a TVD scheme in a two-dimensional
Cartesian grid arrangement is given by

ap@p=ay Py + apdp + asPs + ay Py + SO¢ (5.85)

with central coefficient

dPZdW+dE+dS+dN+(Fe_Fm)+(Fn_Fr)

The neighbour coefficients and deferred correction source term of TVD
schemes are as follows:
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TVD neighbour coefficients

ay D,, + max(F,, 0)
ag D, + max(—F,, 0)
ag D, + max(F,, 0)
ay D, + max(—F,, 0)

TVD deferred correction source term

G FEI1 = )y (7) = o, . w95~ 0)
+ 3 F L0, w(rd) = (1= a)y(r) |9 — O)
+3F[(1= a)w(ry) = &, . y(r))(on — )
+3F oy w(rh) = (1— )y (r))(9p— 65)

where

a,=1for F,>0and o, =1 for F,>0
0, =0for F,<0and o, =0 for F, <0
o,=1for F,>0and o,= 1 for F,>0

o,=0for F,<0and o,=0 for F, <0

We note that the deferred correction source term now also includes terms re-
lated to south and north. The extension to three dimensions is straightforward.

Evaluation of TVD schemes

TVD schemes are generalisations of existing discretisation schemes, so they
inherently satisfy all the necessary requirements of transportiveness, conser-
vativeness and boundedness. In Figure 5.26 we compare the performance
of two TVD schemes — Van Leer and Van Albada — with the UD and
Leonard’s QUICK schemes. The problem is the 2D source-free pure con-
vection of a transported quantity ¢ with the flow at 45° to the lines of a 50 X
50 grid, which we considered previously in section 5.6.1. The exact solution
to this problem is a step function at x = (.7. It can be seen that TVD solu-
tions show far less false diffusion than the UD scheme and are almost as close
to the exact solution as the QUICK scheme. Moreover, they do not show any
non-physical overshoots and undershoots. The two TVD solutions are quite
close to each other, which is also a recurring feature in more broadly based
performance comparisons in the literature.

Lien and Leschziner (1993) note that the more complex limiter functions
take up more computer CPU time. Compared with an ordinary scheme, a
calculation employing any TVD scheme would require more CPU time due
to additional calculation overhead associated with evaluating the extra source
terms (see section 5.10.5). The UMIST scheme, for example, was found to
require 15% more CPU than the standard QUICK scheme (Lien and
Leschziner, 1993). However, the advantage is that a TVD scheme guarantees
wiggle-free solutions. There is no convincing argument in favour of any par-
ticular TVD scheme and the choice appears to be a matter of individual pref-
erence. The reader is also referred to the work of Darwish and Moukalled
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Figure 5.26 Comparison of two
TVD schemes: Van Leer and
Van Albada with UD and
QUICK

m Summary

Scheme ay

Central differencing D,+ F,/2

Upwind differencing D, + max(F,, 0)

Hybrid differencing max|F,, (D, + F,/2), 0]

Power law D, max[0, (1 —0.1| Pe,|)’] + max(F,, 0)

100 |

ub

QUICK

— Van Leer TVD
===Van Albada TVD

0.5

Distance along diagonal X-X

1.5

(2003), who describe the application of TVD schemes to unstructured mesh
systems (see also Chapter 11).

We have discussed the problems of discretising the convection—diffusion equa-
tion under the assumption that the flow field is known. The crucial issue is the
formulation of suitable expressions for the values of the transported property
¢ at cell faces when accounting for the convective contribution in the equation:

* All the finite volume schemes presented in this chapter describe the
effects of simultaneous convection and diffusion by means of discretised

equations whose coefficients are weighted combinations of the

convective mass flux per unit area /' and the diffusion conductance D.
e The discretised equations for a general internal node for the central,

upwind and hybrid differencing and the power-law schemes of a one-

dimensional convection—diffusion problem take the following form:

with

apPp = ay Py + agdy

ﬂpzﬂn/"l‘ ap+ (Fe_

F,)

e The neighbour coefficients for these schemes are

ag

D,—F,/2
D, + max(0, —F))
max|[—F,, (D, — F,/2), 0]

(5.86)

D, max[0, (1 — 0.1| Pe,|)’] + max(=F,, 0)
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The boundary conditions enter the discretised equations via source
terms. Their treatment is specific to each discretisation scheme.
Discretisation schemes that possess conservativeness, boundedness and
transportiveness give physically realistic results and stable iterative
solutions:

— The central differencing method is not suitable for general-purpose
convection—diffusion problems because it lacks transportiveness and
gives unrealistic solutions at large values of the cell Peclet number.

— Upwind, hybrid and power-law differencing all possess
conservativeness, boundedness and transportiveness and are highly
stable, but suffer from false diffusion in multi-dimensional flows if
the velocity vector is not parallel to one of the co-ordinate
directions.

The discretised equations of the standard QUICK method of Leonard

(1979) have the following form for a general internal node point:

ap®p=ay Py + ag Qg+ ayy Oy + app Pr (5.87)

where

ap=ay+ag+ayy+ag;+(F,— F,)

The neighbour coefficients of the standard QUICK scheme are

Standard QUICK
ay Dw+£awa+laeF‘,+i(l -k,
8 8 8
1
Ay —ED‘WFW
ag De_iaeFe_g(l_ae)Fe_l(l_am)Fm
8 8 8
1
arr E(l - ae)Fe

with

a,=1for F,>0and o, =1 for F,>0
a,=0for F,<0and o, =0 for F,<0

w

Higher-order schemes, such as QUICK, can minimise false diffusion
errors but are less computationally stable. This manifests itself as
small over- and undershoots in the solution of some problems
including those with large gradients of ¢, which can potentially lead to
non-physical behaviour, e.g. negative turbulence properties 4 and &,
in extreme cases. Nevertheless, if used with care and judgement the
QUICK scheme can give very accurate solutions of
convection—diffusion problems.
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* The discretised equations of the TVD schemes have the following form
for a general internal node point:

apdp = ay Py + apdp+ SPC

where

ap=ay+ap+(F,— F,)

(5.88)

The neighbour coefficients and deferred correction source term of TVD
schemes are as follows:

with

TVD neighbour coefficients

ay ay =D, + max(F,, 0)
arg agp= D, + max(-F,, 0)

TVD deferred correction source term
S2¢ TEI1 = a)y(7) - o . w9 — 0p)

+ 3 F [0, . W) — (1= o) W(r)1(6p — Op)

o,=1for F,>0and o, =1 for F,>0
a,=0for F,,<0and o, =0 for F, <0

e The most frequently used limiter functions are

Name

Van Leer

Van Albada

Min-Mod

Roe’s SUPERBEE

Sweby
QUICK
UMIST

Limater function Y{(r)

r+ |7
147
r+ 7
1+
_ [min(r, 1) ifr>0
W(’)‘{o ifr<0

max|[0, min(2r, 1), min(r, 2)]
max[0, min(fr, 1), min(r, )]
max[0, min(2r, (3 + r)/4, 2)]

max[0, min(2r, (1+ 3r)/4, (3 + 1)/4, 2)]

* The performance of the limiter functions has been found to be fairly
similar: all TVD discretisations based on the above limiter functions
give second-order accurate solutions that are free from non-physical

wiggles, so all are suitable for general-purpose CFD computations.



Chapter six Solution algorithms for pressure—

velocity coupling in steady flows

Introduction

The convection of a scalar variable ¢ depends on the magnitude and direc-
tion of the local velocity field. To develop our methods in the previous chap-
ter we assumed that the velocity field was somehow known. In general the
velocity field is, however, not known and emerges as part of the overall solu-
tion process along with all other flow variables. In this chapter we look at the
most popular strategies for computing the entire flow field.

Transport equations for each velocity component — momentum equations
— can be derived from the general transport equation (2.39) by replacing the
variable ¢ by u, v and w respectively. Every velocity component appears in
each momentum equation, and the velocity field must also satisfy the con-
tinuity equation. This can be clearly shown by considering the equations
governing a two-dimensional laminar steady flow:

r-momentum equation

il

y-momentum equation

I AN AN
- (pu) + (pvu)—gx[u J+ay{u J +5, (6.1

d J d( odv d( dv ap
— +— =—|U— |+— -—+S5 6.2
o, ) ) (prv)=— (u ) ) [u ] T (6.2)
continuity equation

a—i(pu) + %(pv) =0 (63)

The pressure gradient term, which forms the main momentum source term
in most flows of engineering importance, has been written separately to
facilitate the discussion that follows.

The solution of equation set (6.1)—(6.3) presents us with two new problems:

e The convective terms of the momentum equations contain non-linear
quantities: for example, the first term of equation (6.1) is the x-
derivative of pu?.

* All three equations are intricately coupled because every velocity
component appears in each momentum equation and in the continuity
equation. The most complex issue to resolve is the role played by the
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The staggered
grid

pressure. It appears in both momentum equations, but there is evidently
no (transport or other) equation for the pressure.

If the pressure gradient is known, the process of obtaining discretised equa-
tions for velocities from the momentum equations is exactly the same as that
for any other scalar, and the schemes explained in Chapter 5 are applicable.
In general-purpose flow computations we also wish to calculate the pressure
field as part of the solution, so its gradient is not normally known beforehand.
If the flow is compressible the continuity equation may be used as the trans-
port equation for density and, in addition to (6.1)—(6.3), the energy equation
is the transport equation for temperature. The pressure may then be obtained
from density and temperature by using the equation of state p = p(p, T).
However, if the flow is incompressible the density is constant and hence by
definition not linked to the pressure. In this case coupling between pressure
and velocity introduces a constraint in the solution of the flow field: if the
correct pressure field is applied in the momentum equations the resulting
velocity field should satisfy continuity.

Both the problems associated with the non-linearities in the equation set
and the pressure—velocity linkage can be resolved by adopting an iterative
solution strategy such as the SIMPLE algorithm of Patankar and Spalding
(1972). In this algorithm the convective fluxes per unit mass /” through cell
faces are evaluated from so-called guessed velocity components. Further-
more, a guessed pressure field is used to solve the momentum equations, and
a pressure correction equation, deduced from the continuity equation, is
solved to obtain a pressure correction field, which is in turn used to update
the velocity and pressure fields. To start the iteration process we use initial
guesses for the velocity and pressure fields. As the algorithm proceeds our
aim must be progressively to improve these guessed fields. The process
is iterated until convergence of the velocity and pressure fields. The main
features of the SIMPLE algorithm and its more recent enhancements will be
discussed in this chapter.

The solution procedure for the transport of a general property ¢ developed
in Chapter 5 will, of course, be enlisted to solve the momentum equations.
Matters are, however, not completely straightforward since there are prob-
lems associated with the pressure source terms of the momentum equations
that need special treatment.

The finite volume method starts, as always, with the discretisation of the
flow domain and of the relevant transport equations (6.1)—(6.3). First we
need to decide where to store the velocities. It seems logical to define these
at the same locations as the scalar variables such as pressure, temperature
etc. However, if velocities and pressures are both defined at the nodes of an
ordinary control volume a highly non-uniform pressure field can act like a
uniform field in the discretised momentum equations. This can be demon-
strated with the simple two-dimensional situation shown in Figure 6.1,
where a uniform grid is used for simplicity. Let us assume that we have
somehow obtained a highly irregular ‘checker-board’ pressure field with
values as shown in Figure 6.1.

If pressures at e and w are obtained by linear interpolation the pressure
gradient term dp/ dx in the u-momentum equation is given by
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Figure 6.1 A ‘checker-board’
pressure field
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Similarly, the pressure gradient dp/dy for the v-momentum equation is
evaluated as

I Pn—bs

d 20
The pressure at the central node (P) does not appear in (6.4) and (6.5).
Substituting the appropriate values from the ‘checker-board’ pressure field
in Figure 6.1 into (6.4)—(6.5) we find that all the discretised gradients are
zero at all the nodal points even though the pressure field exhibits spatial
oscillations in both directions. As a result, this pressure field would give the
same (zero) momentum source in the discretised equations as a uniform
pressure field. This behaviour is obviously non-physical.

It is clear that, if the velocities are defined at the scalar grid nodes, the
influence of pressure is not properly represented in the discretised momentum
equations. A remedy for this problem is to use a staggered grid for velocity
components (Harlow and Welch, 1965). The idea is to evaluate scalar vari-
ables, such as pressure, density, temperature etc., at ordinary nodal points
but to calculate velocity components on staggered grids centred around the
cell faces. The arrangement for a two-dimensional flow calculation is shown
in Figure 6.2.

The scalar variables, including pressure, are stored at the nodes marked
(®). The velocities are defined at the (scalar) cell faces in between the nodes
and are indicated by arrows. Horizontal (—) arrows indicate the locations for
u-velocities and vertical (T) ones denote those for v-velocity. In addition to
the E, W, N, S notation Figure 6.2 also introduces a new system of notation
based on a numbering of grid lines and cell faces. It will be explained and
used later on in this chapter.

For the moment we continue to use the original £, I/, N, S notation; the
u-velocities are stored at scalar cell faces ¢ and w and the v-velocities at
faces # and s. In a three-dimensional flow the w-component is evaluated
at cell faces ¢/ and b. We observe that the control volumes for # and v are

(6.5)
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Figure 6.2
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different from the scalar control volumes and from each other. The scalar
control volumes are sometimes referred to as the pressure control volumes
because, as we will see later, the discretised continuity equation is turned
into a pressure correction equation, which is evaluated on scalar control
volumes.

In the staggered grid arrangement, the pressure nodes coincide with
the cell faces of the u-control volume. The pressure gradient term dp/dv is
given by

@= Pr— Pw
o o

where Ox, is the width of the u-control volume. Similarly dp/dy for the v-
control volume shown is given by

9 _ pr=ps
A

where 0y, is the width of the v-control volume.

If we consider the ‘checker-board’ pressure field again, substitution of the
appropriate nodal pressure values into equations (6.6) and (6.7) now yields
very significant non-zero pressure gradient terms. The staggering of the
velocity avoids the unrealistic behaviour of the discretised momentum equa-
tion for spatially oscillating pressures like the ‘checker-board’ field. A further
advantage of the staggered grid arrangement is that it generates velocities at

(6.6)

u

(6.7)
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a The momentum

equations

exactly the locations where they are required for the scalar transport —
convection—diffusion — computations. Hence, no interpolation is needed to
calculate velocities at the scalar cell faces.

As mentioned earlier, if the pressure field is known, the discretisation of
velocity equations and the subsequent solution procedure is the same as that
of a scalar equation. Since the velocity grid is staggered the new notation
based on grid line and cell face numbering will be used. In Figure 6.2
the unbroken grid lines are numbered by means of capital letters. In the

x-direction the numbering is..., I — 1, I, I + 1,.. . etc. and in the y-
direction ..., 7—1,7 7+1, ... etc. The dashed lines that construct the cell
faces are denoted by lower case letters . .., 7—1,4,/+1,...and ... ,j— 1,

7,7+ 1, ... in the x- and y-directions respectively.

A subscript system based on this numbering allows us to define the loca-
tions of grid nodes and cell faces with precision. Scalar nodes, located at the
intersection of two grid lines, are identified by two capital letters: e.g. point
P in Figure 6.2 is denoted by (/, 7). The u-velocities are stored at the ¢- and
w-cell faces of a scalar control volume. These are located at the intersection
of a line defining a cell boundary and a grid line and are, therefore, defined
by a combination of a lower case letter and a capital, e.g. the w-face of the cell
around point P is identified by (7, 7). For the same reasons the storage loca-
tions for the v-velocities are combinations of a capital and a lower case letter:
e.g. the s-face is given by (Z, 7).

We may use forward or backward staggered velocity grids. The uniform
grids in Figure 6.2 are backward staggered since the i-location for the
u-velocity u; 5 is at a distance of — 0, from the scalar node (/, 7). Likewise,
the j-location for the v-velocity v, ; is — 18y, from node (/, ).

Expressed in the new co-ordinate system the discretised z-momentum
equation for the velocity at location (7, ) is given by

ﬂ’.s]ui,] = zﬂnbunb - %A Vu + EA Vu

X

or

a; gl 3= Xa g+ (pr, g= 1A g+ b, 4 (6.8)

where AV, is the volume of the u-cell, &, ;= SAV, is the momentum source
term, A; ; is the (east or west) cell face area of the u-control volume. The
pressure gradient source term in (6.8) has been discretised by means of a
linear interpolation between the pressure nodes on the u-control volume
boundaries.

In the new numbering system the £, ¥, N and .S neighbours involved in
the summation Y.a,,u,, are (i — 1, 7), (i + 1, ), (i, 7— 1) and (5, ¥ + 1). Their
locations and the prevailing velocities are shown in more detail in Figure 6.3.
The values of coefficients a; y and a,, may be calculated with any of the
differencing methods (upwind, hybrid, QUICK, TVD) suitable for con-
vection—diffusion problems. The coefficients contain combinations of the
convective flux per unit mass /" and the diffusive conductance D at u-control
volume cell faces. Applying the new notation system we give the values of F'
and D for each of the faces e, w, n and s of the u-control volume:
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Figure 6.3 A u-control volume
and its neighbouring velocity
components
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Figure 6.4 A v-control volume
and its neighbouring velocity
components
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The formulae (6.9) show that where scalar variables or velocity components
are not available at a #-control volume cell face, a suitable two- or four-point
average is formed over the nearest points where values are available. During
each iteration the #- and v-velocity components used to evaluate the above
expressions are those obtained as the outcome of the previous iteration (or
the initial guess in the first iteration). It should be noted that these known
u- and v-values contribute to the coefficients @ in equation (6.8). These are
distinct from u; yand u,, in this equation, which denote the unknown scalars.
By analogy the v-momentum equation becomes

a0 = 2V + Pz — 01, AL; + by (6.10)

The neighbours involved in the summation X.a,,v,, and prevailing velocities
are as shown in Figure 6.4.
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Coefficients a; ; and 4, again contain combinations of the convective flux
per unit mass [ and the diffusive conductance D at v-control volume cell
faces. Their values are obtained by the same averaging procedure adopted for
the u-control volume and are given below:

Fig+ Fiza

F, = (pu), = n

1 +pr
_2 [Pyt Pry Uy g+

2 2 b

Pri711 Pry1

U 6.11a
5 -1 ( )
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F, = (puy, = Lt Feg
2
1 + +
= | | BT Py, oy | PR P, L (6.110)
2 2 ’ z ’
F, = (po), = 0
1| (pry1+Prya Pry+ Pry1
_1 gLyl PLy L, | EA PR 611C
2 [[ 2 b 2 " (o110
£y = (po), = LIk

1 + P17 w1t
:E[[ Pry ZPJ,] 1 jvaf+ [PJ,] 12 p]"7]7f1,]'+1:| (6.11d)

_ Ui+ U+ T+ Ty

D, (6.11¢)
4wy —xry)
D, = Diga D + T+ Ty g (6.11f)
(v — ¥y
r
D, = 1,7-1 (6.11g)
Vi= Vi
r
p, =117 (6.11h)
Vi1 =Y

Again at each iteration level the values of /" are computed using the #- and
v- velocity components resulting from the previous iteration.

Given a pressure field p, discretised momentum equations of the form
(6.8) and (6.10) can be written for each u- and v-control volume and then
solved to obtain the velocity fields. If the pressure field is correct the result-
ing velocity field will satisfy continuity. As the pressure field is unknown, we
need a method for calculating pressure.

The acronym SIMPLE stands for Semi-Implicit Method for Pressure-
Linked Equations. The algorithm was originally put forward by Patankar
and Spalding (1972) and is essentially a guess-and-correct procedure for the
calculation of pressure on the staggered grid arrangement introduced above.
The method is illustrated by considering the two-dimensional laminar steady
flow equations in Cartesian co-ordinates.

To initiate the SIMPLE calculation process a pressure field p* is guessed.
Discretised momentum equations (6.8) and (6.10) are solved using the
guessed pressure field to yield velocity components «* and v* as follows:

aguly=Yaul+ (pFa =0T Aig+biy (6.12)
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ap;vf;= 2a,,0% + (T —pTPAL;+ by (6.13)

Now we define the correction p” as the difference between correct pressure
field p and the guessed pressure field p*, so that

(6.14

Similarly we define velocity corrections #” and v’ to relate the correct velo-
cities # and v to the guessed velocities #* and v*:

u=u*+u (6.15)

v=0%+7 (6.16)

Substitution of the correct pressure field p into the momentum equations
yields the correct velocity field (u, v). Discretised equations (6.8) and (6.10)
link the correct velocity fields with the correct pressure field.

Subtraction of equations (6.12) and (6.13) from (6.8) and (6.10), respec-

tively, gives
a; 5(u; 5 — ”f]) =2,y — ul) + [((Pr1,7—p 91’6—1,]) —(pry— P?’f])]Ai,] (6.17)
ar (v ;— U?’fj) =2, (v,y — Vi) + (171 —Pf}l) = (1.7 —Pf])]AI,j (6.18)
Using correction formulae (6.14)—(6.16) the equations (6.17)—(6.18) may be
rewritten as follows:
a; g 3= Xty + iy 0194 g (6.19)
ap vl ;= 2lyom + (P11 =1 DAL (6.20)

At this point an approximation is introduced: Ya,,u,, and Xa,,v,, are
dropped to simplify equations (6.19) and (6.20) for the velocity corrections.
Omission of these terms is the main approximation of the SIMPLE
algorithm. We obtain

uly=d; 7(pra13— Pl (6.21)

v =di (Pl g1 =013 (6.22)
A A,

where d; ;=" and d, ;= "L (6.23)
ai‘] a]’j

Equations (6.21) and (6.22) describe the corrections to be applied to velo-
cities through formulae (6.15) and (6.16), which gives

wg=ufg+d; J(piy 7= P19 (6.24)

v =0f;+d(prg1— P17 (6.25)

Similar expressions exist for #;,1 yand v; ;1
Ui, g= s g+ diy 3 (P17 Plr1,7) (6.26)
v 41 =070 T dp (Pl — Pl ge1) (6.27)
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Figure 6.5 The scalar
control volume used for the
discretisation of the continuity

equation

where d;41 5=

Am,]

div1,7

and d],j+1 =

A], 1

ar j+1

(6.28)

Thus far we have only considered the momentum equations but, as men-
tioned earlier, the velocity field is also subject to the constraint that it should
satisfy continuity equation (6.3). Continuity is satisfied in discretised form
for the scalar control volume shown in Figure 6.5:

[(puA);1, 5= (puA); 71 + [(pvA); js1 = (prA)r ;1 = 0 (6.29)
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Substitution of the corrected velocities of equations (6.24)—(6.27) into
discretised continuity equation (6.29) gives

(Pir1, 7 A1 g s g+ diy 7(P1 7= D1s1.9) — PigAi 7wy
+ d,,](l’;—l,] - PI,,]))] + [p],j+1A],j+l(v;'Ifj+l + d],j+l(p1/,] - 17;,]+1))
—prjArj0F+d (01— pr )] =0 (6.30)
This may be rearranged to give
[(pdA)i1 7+ (PdA); 7+ (pdA); 11 + (pdA); j1p] 7 = (PdA)isy 77417
+(pdA); gpr1 7+ (PdA); jrp 1 ge1 + (PdA); ;1 71
+[(pu*A) 5 = (pu* A1 5+ (pv*A); ;= (pv*A)jia]  (6.31)
Identifying the coefficients of p’, this may be written as

argpl 3= a1 gPis1 g+ Qo gP i1 g+ ap gDl g T APl 1 b1 5| (6.32)

where a;;=a,.1 g+ a;y 7+ a; 71+ a; 51 and the coefficients are given below:

arv1,y

a1,y

ar, g1

ar g1

big

(pdA)is1, 5

(pdA); 5

(pdA) 41

(pdA), ;

(pu*A); 3= (pu*A);41 5
+ (pv*A); ;= (pv*A); i
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Equation (6.32) represents the discretised continuity equation as an equa-
tion for pressure correction p’. The source term 4’ in the equation is
the continuity imbalance arising from the incorrect velocity field «*, v*. By
solving equation (6.32), the pressure correction field p” can be obtained at
all points. Once the pressure correction field is known, the correct pressure
field may be obtained using formula (6.14) and velocity components through
correction formulae (6.24)—(6.27). The omission of terms such as >.a,,u,; in
the derivation does not affect the final solution because the pressure correc-
tion and velocity corrections will all be zero in a converged solution, giving
p*=p,u*=wuand v* =0,

The pressure correction equation is susceptible to divergence unless some
under-relaxation is used during the iterative process, and new, improved,
pressures p"” are obtained with

pnem :pélé + app' (633)

where @, is the pressure under-relaxation factor. If we select ¢, equal to 1
the guessed pressure field p* is corrected by p”. However, the corrections p’,
in particular when the guessed field p* is far away from the final solution, is
often too large for stable computations. A value of ¢, equal to zero would
apply no correction at all, which is also undesirable. Taking a, between 0 and
1 allows us to add to guessed field p* a fraction of the correction field p” that
is large enough to move the iterative improvement process forward, but
small enough to ensure stable computations.

The velocities are also under-relaxed. The iteratively improved velocity
components #"” and v"” are obtained from

§er = o + (1 _ au)u(n—l) (634)
o = oo + (1 — o)t (6.35)

where o, and ¢, are the u- and v-velocity under-relaxation factors, z and v
are the corrected velocity components without relaxation, and #"" and v
represent their values obtained in the previous iteration. After some algebra
it can be shown that with under-relaxation the discretised #-momentum
equation takes the form

ﬂl"] ﬂi, 1
Ly, 5= Syt + (prag— 1Ay + b g+ (1_%)7] w7V (6.36)

U U
and the discretised v-momentum equation

d’» i ﬂl, i n—1
7]'5'1,]‘ = 2,0y + Prg1 —prpAr;+ b+ (1 - av)?j v(l,j ) (6.37)

v v

The pressure correction equation is also affected by velocity under-relaxation,
and it can be shown that 4-terms of the pressure correction equation become

_ Ai,]au _ Ai+1,](xu _ A[,j a, A[,j+lav
dz’,] - > +1,7 > d[,j - > d],j—*—l -
a;y i1,y ayj ay +1
Note thaF in t}}ese formglae i3 Gist, 3 A1 j a.n.d ap, v are the central co_efﬁci—
ents of discretised velocity equations at positions (z, 7), (i + 1, 7), (Z, ) and
(Z,7 + 1) of a scalar cell centred around P.



190

CHAPTER 6 ALGORITHMS FOR PRESSURE—-VELOCITY COUPLING

E Assembly of a

complete method

Figure 6.6 The SIMPLE
algorithm

A correct choice of under-relaxation factors o is essential for cost-
effective simulations. Too large a value of o may lead to oscillatory or even
divergent iterative solutions, and a value which is too small will cause
extremely slow convergence. Unfortunately, the optimum values of under-
relaxation factors are flow dependent and must be sought on a case-by-case
basis. The use of under-relaxation will be discussed further in Chapters 7
and 8.

The SIMPLE algorithm gives a method of calculating pressure and
velocities. The method is iterative, and when other scalars are coupled to the
momentum equations the calculation needs to be done sequentially. The
sequence of operations in a CFD procedure which employs the SIMPLE
algorithm is given in Figure 6.6.

( START )

Initial guess p*, u*, v¥, ¢*

\

STEP 1: Solve discretised momentum equations

* * * k
8y Upy = ZanUnp+ (Pl — P1s) A+ biy

* * *
ay Vi = ZawVost (07— P1J) At by

Uk, v

STEP 2: Solve pressure correction equation

a1y Py = 84 Pray + 8iay Phaas+ 8 Pl + 8 Pl + bl

’

p

STEP 3: Correct pressure and velocities

Set P = Piy+ Pl
* _ * _ )
p* -P u* - Uy = uly+ diy (Pl = P1)
V= VY (p = ¢ ’ ’
Vij = ‘//’,(J +di (Pl = Pl

p, u, v, ¢*

STEP 4: Solve all other discretised transport equations

8910 = a1 P+ anagPras+ g rua + @a Prusa + Doy

-€ Convergence?

STOP
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The SIMPLER
algorithm

The SIMPLER (SIMPLE Revised) algorithm of Patankar (1980) is an
improved version of SIMPLE. In this algorithm the discretised continuity
equation (6.29) is used to derive a discretised equation for pressure,

instead of a pressure correction equation as in SIMPLE. Thus the intermedi-
ate pressure field is obtained directly without the use of a correction. Velocities
are, however, still obtained through the velocity corrections (6.24)—(6.27) of
SIMPLE.

The discretised momentum equations (6.12)—(6.13) are rearranged as

X, +big A

1]_— _’](Pf—l,]_ﬁl,]) (6.38)
ai gy a;y
zﬂnbvn[, + b A
U= ar. = i(M;f 1= P17) (6.39)
5]

In the SIMPLER algorithm pseudo—ve1001ties #i and ¥ are now defined as
follows:

X, + b,

lhj 5= d—] (6.40)
gy =2t by (6.41)
ar;
Equations (6.38) and (6.39) can now be written as
ujg=1t; 3+ d; y(pr1,3— P13 (6.42)
vy, =0p+dj(prga— P1y) (6.43)

The definition for 4, introduced in the developments of section 6.4, is
applied in (6.42)—(6.43). Substituting for u; y and v, ; from these equations
into the discretised continuity equation (6.29), using similar forms for u,,; 5
and vy ;;4, results in

[Pi1 341 7 iir g+ divy 3(D1 7= Drer9) — PigA; 7l 5
+d; (01 3= 01D+ P11 AL i1 (Brjsr + dp (P17 — D1, 741))
= PrjA B+ d (g — 21 )] =0 (6.44)

Equation (6.44) may be rearranged to give a discretised pressure equation

arpgbry= A 3P+ a1 gpia g+ ap gl g+ apgaprg t by | (6.45)

where a; y=ayy 3+ a; y+a; 7.1 +a; 5 and the coefficients are given below:

Ay ariy ar g ar g by

(pdA)iny g | (pdA)iy | (pdA)rjer | (pdA);,; (PﬁA)l', 7 (Pﬁ/{)m, 7
+(piA);;— (pBA); jm

Note that the coefficients of equation (6.45) are the same as those in the
discretised pressure correction equation (6.32), with the difference that
the source term /4 is evaluated using the pseudo-velocities. Subsequently, the
discretised momentum equations (6.12)—(6.13) are solved using the pressure
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Figure 6.7 The SIMPLER
algorithm

field obtained above. This yields the velocity components u* and v*. The
velocity correction equations (6.24)—(6.27) are used in the SIMPLER algo-
rithm to obtain corrected velocities. Therefore, the p’-equation (6.32) must
also be solved to obtain the pressure corrections needed for the velocity
corrections. The full sequence of operations is described in Figure 6.7.

( START )

Initial guess p*, u*, v¥, ¢*

\

STEP 1: Calculate pseudo-velocities
G _ ZanUhy + by
iJ a!,/
G _ ZanV i+ by
1j al,]
A A
u, v

\

STEP 2: Solve pressure equation

8,01y = 811,y Pra, s+ 8ty Prsay + 8isa Proa + @igsa Prosa + by

STEP 3: Solve discretised momentum equations

* * * *
8, Uiy = ZanUnp + (Play = Pis) Ayt by

Set
p*=p, ut=u a,; vl = SapVis + (pffa - Pt/) A+ by
VE=v, 0% =9

u*, v*

STEP 4: Solve pressure correction equation

8y Py = 84, Pray+ @uay Praas+ @uca Pluca + psa Plasa + by

STEP 5: Correct velocities
Uy = U+ diy (Pl = Pl)

*
Vij = Vij+ dij (Pl = i)

p, u, v, ¢*
y

STEP 6: Solve all other discretised transport equations

a0 = 811,91+ uasPray+ s Qrua + Agsa @11 + Dy

No

Convergence?
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The SIMPLEC
algorithm

The PISO
algorithm

The SIMPLEC (SIMPLE-Consistent) algorithm of Van Doormal and Raithby

(1984) follows the same steps as the SIMPLE algorithm, with the difference

that the momentum equations are manipulated so that the SIMPLEC velocity

correction equations omit terms that are less significant than those in SIMPLE.
The u-velocity correction equation of SIMPLEC is given by

uf]: d{,](ﬁf’—l,]_ﬁf,]) (6.46)
where d, ;= Ay (6.47)
Ta = 2y,
Similarly the modified v-velocity correction equation is
vr;=dr (P13~ P19 (6.48)
where d, ;= A (6.49)
Yoag - 2ay,

The discretised pressure correction equation is the same as in SIMPLE, except
that the d-terms are calculated from equations (6.47) and (6.49). The sequence
of operations of SIMPLEC is identical to that of SIMPLE (see section 6.5).

The PISO algorithm, which stands for Pressure Implicit with Splitting of
Operators, of Issa (1986) is a pressure—velocity calculation procedure developed
originally for non-iterative computation of unsteady compressible flows. It has
been adapted successfully for the iterative solution of steady state problems.
PISO involves one predictor step and two corrector steps and may be seen as
an extension of SIMPLE, with a further corrector step to enhance it.

Predictor step

Discretised momentum equations (6.12)—(6.13) are solved with a guessed or
intermediate pressure field p* to give velocity components #* and v* using
the same method as the SIMPLE algorithm.

Corrector step 1

The »* and v* fields will not satisfy continuity unless the pressure field p* is
correct. The first corrector step of SIMPLE is introduced to give a velocity
field (u**, v**) which satisfies the discretised continuity equation. The result-
ing equations are the same as the velocity correction equations (6.21)—(6.22)
of SIMPLE but, since there is a further correction step in the PISO algo-
rithm, we use a slightly different notation:

PE=p*+p

w** =u* + o

R =%+ 0
These formulae are used to define corrected velocities #** and v**:

w¥i=uly+d; (i 7—pry) (6.50)

ok =0f;+d (151~ 077 (6.51)
As in the SIMPLE algorithm equations (6.50)—(6.51) are substituted into
the discretised continuity equation (6.29) to yield pressure correction
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equation (6.32) with its coefficients and source term. In the context of the
PISO method equation (6.32) is called the first pressure correction equation.
It is solved to yield the first pressure correction field p’. Once the pressure
corrections are known, the velocity components #** and v** can be obtained
through equations (6.50)—(6.51).

Corrector step 2

To enhance the SIMPLE procedure PISO performs a second corrector step.
The discretised momentum equations for #** and v** are

a;guts=2aus, + (PF5 7 - pT5) A5+ big (6.12)
ap o= Ya,0% + (5 —pTHAL + by (6.13)

A twice-corrected velocity field (u#***, v*¥*) may be obtained by solving the

momentum equations once more:

a; gu¥5*= Zasf+ (NS — 05 A, 5

+b, 4

(6.52)

ay %= Za ok F+ (0T - pT) AL + by (6.53)

Note that the summation terms are evaluated using the velocities #** and

v*¥ calculated in the previous step.

Subtraction of equation (6.12) from (6.52) and (6.13) from (6.53) gives

Xa(uy — uy) , ,
ufF* =ulh+ =—————=+d, ;(p/’1.7— 117 (6.54)
di,]
Ya, (v — vy
ol = ol =+ dy (P~ 11y (6.55)
ﬂ]’j
where p” is the second pressure correction so that p*** may be obtained by
p*** =p** +p” (6.56)

%K Fk Kk

Substitution of #*** and v
yields a second pressure correction equation

in the discretised continuity equation (6.29)

arpgp7y=ap g fe g+ g g+ A g7 e A ap T b7 g

(6.57)

with arg= ﬂ]+1,]+ ary,y + ar y+1 + ar g1, and the n

eighbour coefficients are

a

as follows:
arv1,y a1,y ar g+1 ar g1 b},,]
A A
(pdA)isr g | (pdA)ig | (pdA)pjsr | (pdA);, (%j Zawyt — ) — [%] Za (Wt — )
iy +1,7

NN

A
T [”—] Zanb(vtz*—v?f»—(
1,j

) zdnb(vfljk - vfb)
1,j+1

In the derivation of (6.57) the source term

[(pAu*¥); 3 = (PAU**),11 7+ (PAV**), ; = (PAV*™) 111]

is zero since the velocity components #** and v** s

atisfy continuity.
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Figure 6.8 The PISO algorithm

Equation (6.57) is solved to obtain the second pressure correction field p”,
and the twice-corrected pressure field is obtained from

PERE = pRE L = gk (6.58)

Finally the twice-corrected velocity field is obtained from equations
(6.54)—(6.55).

In the non-iterative calculation of unsteady flows the pressure field p
and the velocity field #*** and v*** are considered to be the correct «, v and
p. The sequence of operations for an iterative steady state PISO calculation
1s given in Figure 6.8.

kK

( START )

Initial guess p*, u*, v¥, ¢*

\

Perform STEPS 1-3 of SIMPLE algorithm
— Solve discretised momentum equations
— Solve pressure correction equation

— Correct pressure and velocities

p*, u*, v¥, p’
\

STEP 4: Solve second pressure correction equation

. ” ” . . ”
ayy PIy= @,y Pilay+ @pa, g Pt @i Pleat s P+ b7

\

STEP 5: Correct pressure and velocities

Aok ok _ ok
P =P+ P+ P
San(UhF - Ui
skk _ ok no(Unp = Unp,
W = Uy (B )+ (s~ )

kK
Zan(Vas = Viv)

‘/7,** = VT, +dj (Pl = pi)+ +diy (P = pi)

a;

\
Set Set

p*=p,u*=u R
p=p

VE=v, 9% =¢ U= grEE

V=V***

P, u, v, 0%

\

STEP 6: Solve all other discretised transport equations

A= 8 s+ P+ A G + @i Gruea + Dy

o

- Convergence?
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“ General

comments on
SIMPLE, SIMPLER,
SIMPLEC and PISO

The PISO algorithm solves the pressure correction equation twice so the
method requires additional storage for calculating the source term of the sec-
ond pressure correction equation. As before, under-relaxation is required
with the above procedure to stabilise the calculation process. Although
this method implies a considerable increase in computational effort it has
been found to be efficient and fast. For example, for a benchmark laminar
backward-facing step problem Issa e al. (1986) reported a reduction of CPU
time by a factor of 2 compared with standard SIMPLE.

The PISO algorithm presented above is the adapted, steady state version
of an algorithm that was originally developed for non-iterative time-
dependent calculations. The transient algorithm can also be applied to steady
state calculations by starting with guessed initial conditions and solving as a
transient problem for a long period of time until the steady state is achieved.
This will be discussed in Chapter 8.

The SIMPLE algorithm is relatively straightforward and has been success-
fully implemented in numerous CFD procedures. The other variations of
SIMPLE can produce savings in computational effort due to improved con-
vergence. In SIMPLE, the pressure correction p is satisfactory for correct-
ing velocities but not so good for correcting pressure. Hence the improved
procedure SIMPLER uses the pressure corrections to obtain velocity cor-
rections only. A separate, more effective, pressure equation is solved to yield
the correct pressure field. Since no terms are omitted to derive the discre-
tised pressure equation in SIMPLER, the resulting pressure field corre-
sponds to the velocity field. Therefore, in SIMPLER the application of the
correct velocity field results in the correct pressure field, whereas it does not
in SIMPLE. Consequently, the method is highly effective in calculating the
pressure field correctly. This has significant advantages when solving the
momentum equations. Although the number of calculations involved in
SIMPLER is about 30% larger than that for SIMPLE, the fast convergence
rate reportedly reduces the computer time by 30—-50% (Anderson et al., 1984).
Further details of SIMPLE and its variants may be found in Patankar (1980).

SIMPLEC and PISO have proved to be as efficient as SIMPLER in
certain types of flows but it is not clear whether it can be categorically stated
that they are better than SIMPLER. Comparisons have shown that the
performance of each algorithm depends on the flow conditions, the degree
of coupling between the momentum equation and scalar equations (in
combusting flows, for example, due to the dependence of the local density on
concentration and temperature), the amount of under-relaxation used, and
sometimes even on the details of the numerical technique used for solving
the algebraic equations. A comprehensive comparison of PISO, SIMPLLER
and SIMPLEC methods for a variety of steady flow problems by Jang ez al.
(1986) showed that, for problems in which momentum equations are not
coupled to a scalar variable, PISO showed robust convergence behaviour and
required less computational effort than SIMPLER and SIMPLEC. It was
also observed that when the scalar variables were closely linked to velocities,
PISO had no significant advantage over the other methods. Iterative methods
using SIMPLER and SIMPLEC have robust convergence characteristics
in strongly coupled problems, and it could not be ascertained which of
SIMPLER or SIMPLEC was superior.
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m Worked examples

Figure 6.9

of the SIMPLE
algorithm

To illustrate the workings of the SIMPLE algorithm we give two detailed
examples. To restrict the number of individual calculations we limit our-
selves to one-dimensional flows as we have done in Chapters 4 and 5. In the
first example we show how to update a velocity field in the case of a friction-
less, incompressible flow through a duct of constant cross-sectional area.
This problem has a trivial solution of constant velocity, but the example
shows how an initial guess with varying velocities along the length of the
duct is updated to satisfy mass conservation using the pressure correction
equation. The second example looks at the frictionless, incompressible flow
through a planar, converging nozzle. The nozzle shape cannot be accurately
represented in the Cartesian x—y coordinate system that we have used until
now. However, by making the assumption that the flow is unidirectional and
all flow variables are uniformly distributed throughout every cross-section
perpendicular to the flow direction, we can develop a set of one-dimensional
governing equations for the problem. These exhibit the same pressure—
velocity coupling issues as the two- and three-dimensional Navier—Stokes
equations. Iterative solution of the discretised momentum equation and the
pressure correction equation is needed to obtain the velocity and pressure
field. We check the accuracy of the computed solution for our second
example against the well-known Bernoulli equation.

We consider the steady, one-dimensional flow of a constant-density fluid
through a duct with constant cross-sectional area. We use the staggered grid
shown in Figure 6.9, where the pressure p is evaluated at the main nodes
I = A, B, C and D, whilst the velocity « is calculated at the backward
staggered nodes 1 = 1, 2, 3 and 4.

N e e e ) e

| T j T j T j T )

1/2 A 2 B 3 C 4 &\EJ 5
Area A Inlet boundary Outlet boundary

As a starting point we assume that we have used a guessed pressure field
p* in the discretised momentum equation to obtain a guessed velocity field
u*. In this example we demonstrate the guess-and-correct procedure that
forms the basis of the SIMPLE algorithm. Equation (6.32) is applied to
generate pressure corrections p’, which in turn yield velocity corrections «’
by means of

w'=dp;—prw) (6.59)
and hence the corrected velocity field
u=u*+u (6.60)

Problem data
The problem data are as follows:

+ Density p = 1.0 kg/m? is constant.
* Duct area A is constant.
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e Multiplier 4 in equation (6.59) is assumed to be constant; we take 4 = 1.0.

* Boundary conditions: #; = 10 m/s and p, =0 Pa.

* Initial guessed velocity field: say u¥ = 8.0 m/s, u¥ =11.0 m/s and
u¥=7.0m/s.

Use the SIMPLE algorithm and these problem data to calculate pressure
corrections at nodes / = A to D and obtain the corrected velocity field at
nodes i = 2 to 4. In this very straightforward problem with constant area
and constant density it is easy to see that the velocity must be constant
everywhere by continuity. Hence, we will be able to compare our computed
solution against the exact solution u, = u; = u, = 10 m/s.

The pressure correction equation for this one-dimensional situation is
equation (6.32):

appp=aypy+ agpp+ b’
where ay, = (pdA),, ap = (pdA),, ap = ay + ay and b’ = (pu*A), — (pu*A),

Nodes B and C are internal nodes.

Node B

ay = (pdA),, = (pdA),=1.0x1.0x A =1.04
ap=(pdA), = (pdA); =1.0x1.0x A =1.04
ap=ay+ay;=104+1.04=2.04
v = (pu*A), — (pu*A), = (pu*A), — (pu*A)
=(1.0x8 xA)—(1.0x11.xA)=-3.04

The discretised pressure correction equation at node B is
2.0A)p5=(1.0A)p ]+ (1.04)ps + (=3.0A)

The area A cancels on the left and right hand sides, which yields
2pp=pi+pc—3

Node C

ay = (pdA),, = (pdA); =1.0x1.0x A=1.04
ap=(pdA),=(pdA);=1.0x1.0x A=1.04
ap=ay+ap=104+1.04=2.04
¥ = (pu*A), — (pu*A), = (pu*A); — (pu*A),
=(1.0x11.xA)—(1.0x7.x A)=4.04
The discretised pressure correction equation at node C is

(2.0A4)p¢ = (1.0AYp; + (1.0A)pj + (+.04)
2pc=ppt+pptd

Nodes A and D are boundary nodes.

Node A

We cut the link to the west boundary side by setting the relevant coefficient
to zero and introduce the appropriate flux, in this case the mass flow rate into
the control volume through the boundary side, as a source term 4’
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Ay = 0.0
ap = (pdA), = (pdA), = 1.0 X 1.0 X A = 1.04
ap=ay+ag=00+1.04=104

b= (pu*A)m - (p”*A)L + (puA)lmumlﬂm/ = _(P”*A)z + (P”A)l =
= (1.0 x 8. % A) + (1.0 x 10. x A)
=2.04

Note that the given velocity at node 1 has been used in the calculation of the
additional source contribution to »’. Using the above we obtain the discre-
tised pressure correction equation at node A as

(L.0A)p, =0+ (1.0A4)p5 + (2.0A4)
pi=ps+2.0

Node D

The boundary condition at node D is fixed pressure p,, = (). Since we know
the pressure we do not need a pressure correction: hence at node D we have

p5=0.

Thus we need to solve the following system of four equations for the four
pressure corrections:

Pi=ps+2
2pp=pi+pc—3
2pe=pptppt+4
5=0

We use p/,= 0 directly in the pressure correction equation for node C, which
becomes

2pc=pp+4

This leaves a system of three equations with three unknowns. In matrix form
the pressure correction equations are

1 -1 0], 2
-1 2 =1||p|=1-3
0 -1 2||pt 4

Solution of this set of equations gives
p1=4.0,p;=2.0and p/ = 3.0 (with p/, = 0 as before).
We obtain corrected velocities by combining (6.59) with (6.60):
u=u*+dp;—pr)
Substitution of the problem data and the computed values for p” yields
Velocity node 2:  u, =uf+d(p;— pg) =8.0+1.0x[4.0—2.0]=10.0 m/s
Velocity node 3:  uy=u¥+d(pp—pl)=11.0+ 1.0 x[2.0 - 3.0]=10.0 m/s
Velocity node 4:  u,=uf+d(p(— p)) =7.0+ 1.0 x[3.0 —0.0] = 10.0 m/s

This shows how the guess-and-correct procedure gives the exact velocity
field in a single iteration for this very simple example. In more general flow
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problems the pressure and velocity fields are coupled, so the pressure
correction equation must be solved along with the discretised momentum
equations. Furthermore, we note that the value of d in expression (6.59) for
the velocity corrections was assumed to be constant. Normally, the value of
d will vary from node to node and must be calculated with (6.23) and (6.28)
using control volume face areas and central coefficient (ap) values from the
discretised momentum equations. This process will be illustrated in the next
example.

A planar two-dimensional nozzle is shown in Figure 6.10. The flow is steady
and frictionless and the density of the fluid is constant.

Figure 6.10 Geometry of planar . grga )
N 5m
2D nozzle -
S~ Area
Stagnation > 0.1 m?
pressure 10 Pa
————— =
,,,,, . Static
pressure O Pa
=
>

2.0m

Use the backward-staggered grid with five pressure nodes and four
velocity nodes shown in Figures 6.11a—b. The stagnation pressure is given at
the inlet and the static pressure is specified at the exit. Using the SIMPLE

Figure 6.11 (a) The grid for :"etggundzary
. w=0.0m
prfassure cont.rol volumes; (b) the outet bounciy
grid for velocity control volumes \ A od e
Stagnation /

pressure 10 Pa
A

(a)

Inlet boundary
Ay=0.5m?

Stagnation

pressure 10 Pa

Qutlet boundary
Ag=0.1m?
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algorithm write down the discretised momentum and pressure correction
equations and solve for the unknown pressures at nodes / = B, C and D
and velocities at nodes 7 = 1, 2, 3 and 4. Check whether the computed velo-
city field satisfies continuity and evaluate the error in the computed pressure
and velocity fields by comparing with the exact solution.

Problem data

e The density of the fluid is 1.0 kg/m?.

e @rid spacing: nozzle length L = 2.00 m. The grid is uniform so
Ax=L/4=2.00/4=0.5m.

 Cross-sectional area at the inlet 4 , = 0.5 m” and at the exit is
Ap=0.1 m% The area change is a linear function of distance from
the nozzle inlet. The table below gives the cross-sectional areas at all
velocity and pressure nodes.

* Boundary conditions: at inlet we assume that the flow entering the
nozzle is drawn from a large plenum chamber; the fluid has zero
momentum and the stagnation pressure at inlet p, = 10 Pa. The static
pressure at exit p, = 0 Pa.

 Initial velocity field: to generate an initial velocity field for this problem
we guess a mass flow rate say 7 = 1.0 kg/s and use u = m/(pA) along
with the cross-sectional areas at velocity nodes to compute the initial
velocity field:

uy = 1/ (pAy) = 1.0/(1.0 X 0.45) = 2.22222 m/s
uy = 1/ (pA;) = 1.0/(1.0 x 0.35) = 2.85714 m/s
uy =/ (pA;) = 1.0/(1.0 x 0.25) = 4.00000 m/s
uy =/ (pAy) = 1.0/(1.0 X 0.15) = 6.66666 m/s

N.B. five decimal places are shown throughout this example; the
calculations have been performed with double precision accuracy.

* Initial pressure field: to generate a starting field of guessed pressures
we assume a linear pressure variation between nodes A and E. Thus,
p*=p,=10.0 Pa, p%=7.5Pa, p¥=5.0 Pa, pf=2.5Paand
pr=0.0 Pa (given boundary condition).

The exact solution to this steady, one-dimensional, incompressible, friction-
less flow problem can be obtained using Bernoulli’s equation: p, = py +
%pu}\,- =py + %pmz/ (pAy)*. From the problem data we have p, = 10 Pa,
p=1kg/m’and N=E, so Ay =A,=0.1 m? which yields 7 = 0.44721 kg/s.

The nodal pressures and velocities are given in the table below.

Nozzle geometry and exact flow field using Bernoulli’s equation

Node A (m?) p (Pa) Node A (m?) u (m/s)
A 0.5 9.60000 1 0.45 0.99381
B 0.4 9.37500 2 0.35 1.27775
C 0.3 8.88889 3 0.25 1.78885
D 0.2 7.50000 4 0.15 2.98142
15 0.1 0
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The governing equations for steady, one-dimensional, incompressible, fric-
tionless equations through the planar nozzle are as follows:

d
Mass conservation: d—(pAu) =0 (6.61)
x
d d
Momentum conservation: puA—u =42 (6.62)
dx dx

These equations are familiar from introductory fluid mechanics texts. A
derivation has also been given in Appendix E.

Discretised u-momentum equation

The discretised form of momentum equation (6.62) is

A
(pud),u, — (puA),u, =LAV
Ax

where the right hand side represents the pressure gradient integrated over
the control volume AV and Ap = p,, — p,.

In standard notation the discretised momentum equation for this one-
dimensional problem can be written as

apu=apuiy+ apuf+ S,

If we use the upwind differencing scheme the coefficients may be
obtained from (see Section 5.6)

ay =D, +max(F,, 0)
ap=D,+ max(0, —F)
ﬂP=dW+aE+(Fe_Fm)

The flow is frictionless so there is no viscous diffusion term in the governing
equation, and hence D, = D, =0. I, and F, are mass flow rates through the
west and east faces of the #-control volume. We compute the face velocities
needed for F, and F, from averages of velocity values at nodes straddling
the face and use the correct values of the west and east face area given in
the above table. At the start of the calculations we use the initial velocity
field generated from the guessed mass flow rate. For subsequent iterations
we use the corrected velocity obtained after solving the pressure correction
equation.

The source term .S, contains the pressure gradient integrated over the
control volume:

S, =%x AI/=%><AMAx =Ap X %(A,,, +A,)
X ¥

Since the geometry has a varying cross-sectional area we use an averaged area
to calculate AV. At first glance this looks like a very crude approximation,
but it is possible to show that the accuracy order of .S, is no worse than the
upstream differencing used for the momentum flux terms.

In summary the coefficients of the discretised u-equations are given by

FW = pAWuIU and Fé’ = pAL'uf
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[lpzdw‘{‘ﬂ];'i‘(Ff_Fm)
Su::A¢ XG%CAW-+/4J::‘AP ><‘4}’

The parameter d required in the pressure correction equations is calculated

at this stage from
A,, A, + A,
4= = “y+4)

ap 26113

Pressure correction equation

The discretised form of the continuity equation in this one-dimensional
geometry is

(puA)e - (P“A)m =0
The corresponding pressure correction equation is
appp=aypy+appp+ 0’
where ay = (pdA),, ap = (pdA),
b'=(Fy-F¥)

Values of the parameter 4 come from discretised momentum equations (see
above and Section 6.4).

In the SIMPLE algorithm the pressure corrections p” are used to compute
the velocity corrections #” and the corrected pressure and velocity fields using

W =d(pr=pr+)
p=p*+y

w=u*+u

Numerical values — momentum equation
First we consider the internal nodes 2 and 3.
e Velocity node 2

F, = (puA), = 1.0 X [(u + 1,)/2] X 0.4
= 1.0 X [(2.2222 + 2.8571)/2] % 0.4 = 1.01587

F, = (puAd), = 1.0 X [(u, + u;)/2] x 0.3
= 1.0 X [(2.8571 +4.0)/2] X 0.3 = 1.02857

ay=F,=101587
ap = 0

ap=ay+ap+(F.— F,)=1.01587 + 0 + (1.02857 — 1.01587)
= 1.02857

S,=APX Ay, =(pp—pc) X A, =(7.5-5.0)x 0.35=0.875
The discretised momentum equation at node 2 is
1.02857u, = 1.01587u; + 0.875

We also need to calculate the parameter 4 at this node for later use in
the pressure correction equation:

dy=Ay/ap=0.35/1.02857 = 0.34027



204

CHAPTER 6 ALGORITHMS FOR PRESSURE—-VELOCITY COUPLING

Velocity node 3

We leave it as an exercise for the reader to check that application of the
above procedure at the control volume around node 3 yields

1.06666u; = 1.02857u, + 0.625
and

dy=Ay/ap=0.25/1.06666 = 0.23437

Next we come to momentum control volumes 1 and 4, which need special
treatment because they both contain a boundary face.

Velocity node 1

The stagnation pressure p, = 10 Pa is given in a plenum chamber
upstream from the inlet where the fluid is at rest. To carry out the
calculations we need conditions at the actual inlet plane of the
momentum control volume 1, which coincides with pressure node A.
At this location the velocity is non-zero and the actual pressure is lower
than the stagnation pressure due to acceleration of the flow as it enters
the nozzle. We denote the (as yet unknown) velocity at A by 4 and use
Bernoulli’s equation to express the static pressure at A, which is needed
in the source term S, in terms of p, and u

1
pa=po=5(pu) (6.63)
Next we write # 4 in terms of the velocity #; using continuity:
uy=u A/ Ay (6.64)
Combining (6.63) and (6.64) yields
2
1 A
— 2| 11
L= ——pu?| L 6.65
ba=Do 2P I[AAJ (6.65)

Now we may write the discretised momentum equation for u-
momentum control volume 1 using the upwind scheme:

Fouy = Fouy=(py—pp) X A (6.66)

» 18 calculated using the estimate #, from equation (6.64): i.e.
F, = puyA, = puA,.
Substitution of expressions (6.64) and (6.65) into (6.66) gives

Fouy = FuAd /A, =[(po _%P”%(Al/AA)Z) —ppl XA, (6.67)

Some rearrangement and placing all the terms involving pressures on
the right and those involving velocities on the left hand side yields

[F,— F,A)/ A+ F, X%(AI/AA)Z]”I =(po—pp)A (6.68)

Hence, the central coefficient ap for this node is ap = F, — F, A,/ A+
F, x3(A4,/A4,)*. The first two contributions on the right hand side of
this formula come from the mass flux terms on the left hand side of
discretised momentum equation (6.66). The third term is an extra
contribution arising from our choice to specify the stagnation pressure at
inlet (this extra term would be omitted if a value of the szatic pressure
was specified at inlet instead).
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Expression (6.68) can be used in that form, but in these calculations
we have chosen to place the negative contribution to coefficient 4, on
the right hand side. Hence

[F,+ F, X (A /A ) Tuy = (po = pp)Ay + Fpdy/ Ay x ul! (6.69)
where 1" is the nodal velocity at the previous iteration

This is termed the deferred correction approach and can be effective in
stabilising the iterative process if the initial velocity field is based on a
very poor guess (see also Chapter 5 — QUICK and TVD).

Now we calculate

uy=uA/ Ay =2.22222x0.45/0.5=2.0
F,=(puA),,=puA,=10x2.0x05=1.0

The exit mass flux F, is computed in the same way as for the internal
nodes:

F.= (puA), = 1.0 X [(, + 1,)/2] x 0.4
=1.0x[(2.2222 + 2.8571)/2] x 0.4 = 1.01587

Ay = 0

ap= 0

ap=F,+ F, x 34,/ A7 = 101587 + 1.0 x 0.5 x (0.45/0.5)
=1.42087

In the source term we apply p, = 10 Pa and the initial velocity

u‘l’l‘l =2.22222 m/s.

S, = (po = pp) Ay + F(A/ A ) X utl
— (10 =7.5) % 0.45 + 1.0 x (0.45/0.5) x 2.22222
=3.125

The discretised momentum equation at node 1 is therefore
1.42087u, = 3.125
The parameter 4 at this node is

dy = Ay/ap=0.45/1.4209 = 0.31670

e Velocity node 4
F,=(puA), = 1.0 X [(u3 + uy)/2] x 0.2 = 1.06666

At the east boundary of momentum control volume 4 we have a fixed
pressure, but we do not have two velocities that straddle the east
boundary. To compute the mass flux across this boundary we impose
continuity:

F. = (pud),

At the first iteration we can use the assumed mass flow rate, so we set
F,=1.0 kg/s. Thus,

ay=F, = 1.06666
ap = 0

ap=ay+ag+ (F,— F,)=1.06666+ 0 + (1.0 — 1.06666) = 1.0
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In the momentum source term we apply the given exit boundary
pressure p; =0 Pa:

S, =APX A,,=(pp—pr) X Ay=(2.5-0.0)x0.15=0.375
The discretised momentum equation at node 4 is

1.0z, = 1.0666u; + 0.375
The parameter 4 at this node is

dy=Ay/ap=0.15/1.0=0.15

To summarise, the z-momentum equations using upwind differencing are as
follows:

1.42087u; = 3.125

1.02857u, = 1.01587u; + 0.875
1.06666u; = 1.02857u, + 0.625
1.00000u, = 1.06666u; + 0.375

These equations can be solved by forward substitution starting at node 1.
The solution is

u; m/s u, m/s uzm/s uym/s

2.19935 3.02289 3.50087 4.10926

These are the guessed velocities used in the SIMPLE pressure correction
procedure. Therefore star (*) superscripts are used to refer to these u-values
in the pressure correction calculations below.

The d values are as follows:

d, d, ds dy
0.31670 0.34027 0.23437 0.15000

Numerical values — pressure correction equation

The internal nodes are B, C and D.

e Pressure node B
ay = (pdA); =1.0 x0.3167 x 0.45 = 0.14251
ap=(pdA),=1.0x0.34027 x 0.35=0.11909
F¥=(pu*A), =1.0x2.199352 x 0.45 = 0.98971
F¥=(pu*A), =1.0 % 3.022894 x 0.35 = 1.05801
ap=ay+a;=0.1425140.11909 = 0.26161
b =F%—F*=0.98971 — 1.05801 = —0.06830

The pressure correction equation at node B is

0.26161p; = 0.14251p 4+ 0.11909p5 — 0.06830

o Pressure nodes C and D

We leave it for the reader to check that the corresponding pressure
correction equations for nodes C and D are
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0.17769p¢ = 0.11909p % + 0.058593p 7, + 0.18279
0.081093p7, = 0.058593p( + 0.02249p ;. + (0.25882
Nodes are A and E are boundary nodes so they need special treatment.
*  Pressure nodes A and E
The pressure corrections are set to zero for both nodes:
24=0.0
pr=0.0

At node E this follows the practice of Example 6.1, because the static
pressure is given at the nozzle exit. If the static pressure p 4 at inlet was
given this would also apply at node A without reservation. However, in
this problem we are working with a given stagnation pressure, S0 we
need to be careful. We note that p , is fixed by Equation (6.65) if the
stagnation pressure p, and velocity u; are known. At the stage in the
SIMPLE algorithm where we start to solve the pressure correction
equations, we have available the guessed velocity ¥ as a result of solving
the discretised momentum equation. Whilst it is true that this velocity is
constantly updated as the iterations proceed, we may regard that at each
iteration level the static pressure p , is temporarily fixed by p, and the
current value of # ¥, thus justifying the use of p’; = 0.0.

Substitution of p% = 0.0 and p = 0.0 into the pressure correction equations
for internal nodes B, C and D yields the following system of equations:

0.26161p% = 0.11909p, — 0.06830
0.17769p% = 0.11909p + 0.058593p/, + 0.18279
0.081093p}, = 0.058593p7, + 0.25882

These three equations can be solved to give the pressure correction at nodes
B, C and D. The resulting solution is

’

Pl 13 P ) P
0.0 | 1.63935 | 4.17461 | 6.20805 | 0.0

Corrected nodal pressures are now calculated using these pressure
corrections:

pp=p5+pp=7.5+1.63935=9.13935
pe=pE+pc=>5.0+4.17461 = 9.17461
pp=pF+pr=2.5+6.20805=8.70805
Corrected velocities at the end of the first iteration are
w=u¥+di(p,—pp) =2.19935+0.31670 x [0.0 — 1.63935] = 1.68015 m/s
wy=u¥+dy(py—p¢)=3.02289 4+ 0.34027 x [1.63935 — 4.17461] = 2.16020 m/s
uy=u¥+dy(p;—pp)=3.50087 +0.23437 x [4.17461 — 6.20805] = 3.02428 m/s
uy=u¥+dp,—pr)=4.10926 + 0.15 x [6.20805 — 0.0] = 5.04047 m/s
We can also calculate the corrected nodal pressure at A using equation (6.65):

4= po—pub(A1/ A, =10~ 1 x 1.0 x (168015 x 0.45/0.5)* = 8.85671
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First, we check whether the velocity field satisfies continuity. The mass flow
rates puA calculated at u-nodes are

Continuity check
Node 1 2 3 4
puA 0.75607 0.75607 0.75607 0.75607

The exact mass flow rate from Bernoulli’s equation is 0.44721 kg/s, so the
error in the computed mass flow rate is +69%. This is not a problem, because
we would not expect the solution after one iteration to be accurate. Never-
theless, the fact that the mass flow rate at all four velocity nodes is exactly the
same highlights an important feature of SIMPLE, which also applies in
more complex multi-dimensional problems: the algorithm aims to supply
a continuity-satisfying velocity field at the end of each iteration cycle. The
close link with this key conservation principle has proved to be a major
strength of the SIMPLE algorithm and its variants.

The computed velocity solution at the end of an iteration cycle is not yet
in balance with the computed pressure field, i.e. momentum is not yet con-
served. Of course this is due to the fact that the entries in the discretised
momentum equations were computed on the basis of an assumed initial
velocity field. Therefore, we need to perform iterations until both continuity
and momentum equations are satisfied.

Under-relaxation

In the iteration process the SIMPLE algorithm requires under-relaxation.
For the next iteration we use under-relaxation factors for both velocity and
pressure (say 0.8 for both) and start the next solution cycle with the follow-
ing velocity and pressure fields:

Upery = (1 - 08) Xty + 0.8 x Uealculated

Duew = (1 - 08) X Do+ 0.8 x Dealeutated

The velocity field for the next iteration is

u; m/s u, m/s uzm/s uym/s

1.78856 2.29959 3.21942 5.36571

As explained in section 6.4, equations (6.36) and (6.37), ap, S, and d values
of the discretised momentum equations are also under-relaxed. Note that,
for illustration purposes, these under-relaxation measures were not included
in the ap, S, and d values of the discretised momentum equations shown
earlier. In practice under-relaxation is used from the start of the calculation:
hence the resulting solution with the above under-relaxation measures would
be slightly different from the one shown.

Iterative convergence and residuals

If we substitute the under-relaxed velocity and pressure fields into the
discretised momentum equations they will not satisfy the equations unless
by chance we have computed the final solution in one iteration (e.g. due to
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a fortunate choice of initial velocity and pressure fields). For example, the
discretised momentum equation at node 1 in the next iteration is

1.20425u, = 1.98592

The difference between the left and right hand sides of the discretised
momentum equation at every velocity node is called the momentum
residual. Substituting the current velocity value of u; = 1.78856 yields:

u-momentum residual at node 1 =1.20425 x 1.78856 — 1.98592 = 0.16795

If the iteration sequence is convergent this residual should decrease to show
an improving balance between the computed velocity and pressure fields.
Ideally, we would like to stop the iteration process when mass and momen-
tum are exactly balanced in the discretised pressure correction and momen-
tum equations. In practice, the finite precision of number representation
in computing machinery would make this impossible and, even if it were
possible to compute with very high precision, this would take far too much
computing time. Our aim is to truncate the iterative sequence when we are
sufficiently close to exact balance that further improvement is of limited
practical value.

We calculate momentum residuals at all velocity nodes and monitor the
sum of absolute values of the residuals as an indication of satisfactory progress
of the calculation sequence. We note that residuals can be positive as well
as negative. Using the sum of absolute values prevents spurious indication
of convergence due to cancellation between positive and negative contribu-
tions. We accept the solution when the sum of absolute residuals is less than
a predetermined small value (say 107). It should be noted that this is a weak
test to determine the point where the iterative sequence can be truncated.
A decreasing sum of residuals could be due to residuals that decrease by
roughly the same amount at every node or due to a small number of decreas-
ing residuals in conjunction with others that do not decrease much at all. In
a grid with a large number of nodes a few increasing residuals might even
be hidden amongst a much larger number of strongly decreasing residuals.
Nevertheless, summed residuals calculations are routinely used as conver-
gence indicator in fluid flow calculations. For a further discussion of the use
of residuals and iterative convergence the reader is referred to Chapter 10.

Application of under-relaxation factors of 0.8 for both # and p and allowing
a maximum sum of absolute momentum residuals of 10~ yields convergence
in 19 iterations. The solution is given in the table below

Converged pressure and velocity field after 19 iterations

Pressure (Pa) Velocity (m/s)
Computed Exact Error (%) Node Computed Exact Error (%)
9.22569 9.60000 -3.9 1 1.38265 0.99381 39.1
9.00415 9.37500 —4.0 2 1.77775 1.27775 39.1
8.25054 8.88889 -7.2 3 2.48885 1.78885 39.1
6.19423 7.50000 -17.4 4 4.14808 2.98142 39.1
0 0 -
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Figure 6.12 Predicted mass flow
rate with different grids

The converged mass flow rate for this five-node grid is 0.62221 kg/s, which
is 399% higher than the exact value. By refining the grid we can get progres-
sively closer solution to the exact solution. Using grids with 10, 20 and
50 nodal points yields mass flow rates of 0.5205, 0.4805 and 0.4597 kg/s,
respectively. This illustrates how the error in the solution can be reduced by
systematic grid refinement. If the grid is further refined to say 200, 500 and
1000 grid nodes the computed mass flow rate converges to the exact solution
of 0.44721 kg/s. This is graphically illustrated in Figure 6.12.
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Some comments on exit boundary conditions

Finally, we briefly discuss the issue of the downstream boundary condition.
In Example 6.1 the exit pressure was set to pp, = 0. Solution of the pressure
correction equations yields the pressures at nodes other than D as gauge
pressures (relative to pp). Say the absolute pressure at D had a non-zero
reference value p 4, p = p,.s at this location. The absolute pressure field
at node N can be found by adding the absolute pressure at D to the gauge
pressure at N: p o v = Prer + Pauge v+ 1f the absolute pressure is known at
some other reference location R in the computational domain (4, z = pr.r)
the absolute pressure at node N can be obtained by means of p 4, x = pry+
(P Gauge, N = DGange,r)- In constant-property flows the actual value of p,,/is imma-
terial, since pressure differences appear in the source terms in the discre-
tised momentum equations. When we solve problems involving fluids with
properties that depend on the absolute pressure (e.g. compressible flows) we
modify the SIMPLE algorithm by including one more iterative structures to
update the fluid properties as new absolute pressures become available.

As we have seen in section 2.10 it is also possible to use an outflow
boundary condition at the downstream boundary in conjunction with a given
inlet velocity. The outflow boundary condition requires the gradient of the
velocity to be zero at the downstream boundary. This can be implemented
by equating the velocities at the two nodes that straddle the boundary, i.e. by
setting

Us = Uy (6.70)
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Summary

In Example 6.1 we have seen that a fixed pressure boundary condition is
implemented by setting the pressure correction to zero, which reduces the
original system of pressure correction equations by one equation. Equation
(6.70) cannot provide a pressure, so if this zero velocity gradient boundary
condition was used in Example 6.1 we would have only three pressure
correction equations for nodes A, B and C, but four (unknown) pressure
corrections p’y, p%, pe, pp. Thus, it appears as if we are one equation short.
To overcome this problem we note again that pressure differences are
important in the discretised momentum equation and use the above device
of setting an arbitrary reference pressure at the exit plane: pj, = p,,» For the
sake of expediency it is easiest to set p;, = p,,,= 0. Having fixed the pressure
we may set the pressure correction equal to zero, solve the pressure correc-
tion equation as in the above examples and obtain the pressure solution as a
gauge pressure.

The most popular solution algorithms for pressure and velocity calculations
with the finite volume method have been discussed. They all possess the
following common characteristics:

* The problems associated with the non-linearity of the momentum
equations and the coupling between transport equations are tackled by
adopting an iterative solution strategy.

* Velocity components are defined on staggered grids to avoid problems
associated with pressure field oscillations of high spatial frequency.

* In the staggered grid arrangement velocities are stored at the cell faces
of scalar control volumes. The discretised momentum equations are
solved on staggered control volumes whose cell faces contain the
pressure nodes.

e The SIMPLE algorithm is an iterative procedure for the calculation of
pressure and velocity fields. Starting from an initial pressure field p* its
principal steps are:

— solve discretised momentum equation to yield intermediate velocity
field (u*, v¥)

— solve the continuity equation in the form of an equation for pressure
correction p’

— correct pressure and velocity by means of

pr7=piyt 01y
wg=wig+diz(pia g =1 7)
v, = VTt prga =119
— solve all other discretised transport equations for scalars ¢
— repeat until p, u, v and @ fields have all converged.
* Refinements to SIMPLE have produced more economical and stable
iteration methods.
e The steady state PISO algorithm adds an extra correction step to
SIMPLE to enhance its performance per iteration.
* It is unclear which of the procedures is the best for general-purpose
computation.

e Under-relaxation is required in all methods to ensure stability of the
iteration process.



Chapter seven Solution of discretised equations

m Introduction In the previous chapters we have discussed methods of discretising the
governing equations of fluid flow and heat transfer. This process results in
a system of linear algebraic equations which needs to be solved. The com-
plexity and size of the set of equations depends on the dimensionality of the
problem, the number of grid nodes and the discretisation practice. Although
any valid procedure can be used to solve the algebraic equations, the avail-
able computer resources set a powerful constraint. There are two families
of solution techniques for linear algebraic equations: direct methods and
indirect or iterative methods. Simple examples of direct methods are
Cramer’s rule matrix inversion and Gaussian elimination. The number of
operations to the solution of a system of N equations with N unknowns by
means of a direct method can be determined beforehand and is of the order
of N*. The simultaneous storage of all N? coefficients of the set of equations
in core memory is required.

ITterative methods are based on the repeated application of a relatively
simple algorithm leading to eventual convergence after a — sometimes large
— number of repetitions. Well-known examples are the Jacobi and Gauss—
Seidel point-iterative methods. The total number of operations, typically of
the order of N per iteration cycle, cannot be predicted in advance. Stronger
still, it is not possible to guarantee convergence unless the system of equations
satisfies fairly exacting criteria. The main advantage of iterative solution
methods is that only non-zero coefficients of the equations need to be stored
in core memory.

The one-dimensional conduction example in Chapter 4, section 4.3, led
to a tri-diagonal system — a system with only three non-zero coefficients per
equation. When QUICK differencing is applied to a convection—diffusion
problem this gives rise to a penta-diagonal system that has five non-zero
coefficients, which is somewhat more complex to deal with. Nevertheless,
the finite volume method usually yields systems of equations, each of which
has a vast majority of zero entries. Since the systems arising from realistic
CFD problems can be very large — up to 100 000 to 1 million equations — we
find that iterative methods are generally much more economical than direct
methods.

Thomas (1949) developed a technique for rapidly solving tri-diagonal
systems that is now called the Thomas algorithm or the tri-diagonal matrix
algorithm (TDMA). The TDMA is actually a direct method for one-
dimensional situations, but it can be applied iteratively, in a line-by-line
fashion, to solve multi-dimensional problems and is widely used in CFD
programs. It is computationally inexpensive and has the advantage that it
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requires a minimum amount of storage. In this chapter the TDMA is
explained in detail in sections 7.2 to 7.5.

The Jacobi and Gauss—Seidel methods are general-purpose point-iterative
algorithms that are easily implementable, but their convergence rate can be
slow when the system of equations is large. They were not initially consid-
ered suitable for general-purpose CFD procedures. However, more recently
multigrid acceleration techniques have been developed that have improved
the convergence rates of iterative solvers to such an extent that they are now
the method of choice in commercial CFD codes. Point-iterative techniques
and multigrid accelerators will be described in sections 7.6 and 7.7. This
chapter closes with a brief discussion of alternative methods.

The TDMA . ) o
Consider a system of equations that has a tri-diagonal form
o) =C, (7.1a)
= B9 + Dygpy — 0,05 =C, (7.1b)
= B3¢2+ D3¢s — 30,4 = g3 (7.1c)
=C, .

= Bi9s + Dypy — 0495

- ﬂn¢n71 + Dn¢n - an¢n+l = Cn (71”)
¢n+1 = Cﬂ+1 (71”"’1)

In the above set of equations ¢; and ¢,,; are known boundary values. The
general form of any single equation is

B9+ Dy = 011 = G (7.2)
Equations (7.1b—#) of the above set can be rewritten as
B
-~ + = + = 733
> D2¢3 D2¢1 Dz (7.3)
Bs
=By, + 3 + = 7.3b
93 D, % 6, D, ) D3 (7.3b)
B
b= Lo+ Prp 4 (7.3¢)

D, D, D,

o B C
W= P P, 7.3n-1
(b D¢+1 D¢ 1 D (7.3n-1)

n n n

These equations can be solved by forward elimination and back-substitution.
The forward elimination process starts by removing ¢, from equation
(7.3b) by substitution from equation (7.3a) to give

O3 = | |9t (7.4a)
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If we adopt the notation

4,=% and =Py & (7.4b)

D, D, D,

equation (7.4a) can be written as

o5 B;C3 + C;
_ 3 Pitat & 7.4
" ( ﬁ3A2j¢4 [Ds—ﬁsAzj (74

If we let

C;+C
A, . and C§=—'83 S
D; - B34, D; - B34,
equation (7.4c) can be recast as
03 =As0,+ C3 (7.5)

Formula (7.5) can now be used to eliminate ¢; from (7.3¢) and the procedure
can be repeated up to the last equation of the set. This constitutes the
forward elimination process.

For the back-substitution we use the general form of recurrence
relationship (7.5):

¢;=A4;0;,+C] (7.6a)
where
a4
A=—T (7.6b)
! D'—ﬁjA-1
C/= @]1 (7.6¢)
] ﬁ/ j—1

The formulae can be made to apply at the boundary pointsj=1andj=n+1
by setting the following values for A and C”:

Al =0and Cl ¢1
n+] =0and Cn+1 ¢n+]

In order to solve a system of equations it is first arranged in the form of
equation (7.2) and ¢, 8, D; and C,; are identified. The values of 4;and Care
subsequently calculated startmg at j=2and going up to j = using (7. 6b C).
Since the value of ¢ is known at boundary location (# + 1) the values for ¢,
can be obtained in reverse order (¢,, @,_1, @,_2, - .., ¢;) by means of the
recurrence formula (7.6a). The method is simple and easy to incorporate into
CFD programs. A Fortran subroutine for the TDMA is given in Anderson
et al. (1984).

In the above derivation of the TDMA we assumed that boundary values
¢, and ¢,,; were given. To implement a fixed gradient (or flux) boundary
condition, e.g. at j = 1, the coefficient f3, in equation (7.1b) is set to zero and
the flux across the boundary is incorporated in source term C,. The actual
value of the variable at the boundary is now not directly used in the formu-
lation. The absence of the first or the last value does not pose a problem in
applying the TDMA, as will be illustrated in examples below.
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Application of

the TDMA to two-

dimensional problems

Figure 7.1 Line-by-line
application of the TDMA

Application of
the TDMA to
three-dimensional
problems

The TDMA can be applied iteratively to solve a system of equations for
two-dimensional problems. Consider the grid in Figure 7.1 and a general
two-dimensional discretised transport equation of the form

apOp=ayQy+ apPp+ asPs+ ayPy+b (7.7)
North
n
L L
L L
L L
5
L L
- 4
L L
West 3 East
L L
2
South

® Points at which values are calculated

B Points at which values are considered to be
temporarily known

X Known boundary values

To solve the system the TDMA is applied along chosen, e.g. north—south
(n—s), lines. The discretised equation is rearranged in the form

—asQs+apPp—anOy=ayPy+apPp+b (7.8)

The right hand side of (7.8) is assumed to be temporarily known. Equation
(7.8) is in the form of equation (7.2) where ;= ay, ;= a5, D;=apand C; =
ay @+ ap@p+ b. Now we can solve along the n—s direction of the chosen line
for values j =2, 3,4, . . ., n as shown in Figure 7.1.

Subsequently the calculation is moved to the next north—south line. The
sequence in which lines are moved is known as the sweep direction. If we
sweep from west to east the values of ¢y to the west of a point P are known
from the calculations on the previous line. Values of @ to its east, however,
are unknown so the solution process must be iterative. At each iteration cycle
¢ 1s taken to have its value at the end of the previous iteration or a given
initial value (e.g. zero) at the first iteration. The line-by-line calculation pro-
cedure is repeated several times until a converged solution is obtained.

For three-dimensional problems the TDMA is applied line by line on a
selected plane and then the calculation is moved to the next plane, scanning
the domain plane by plane. For example, to solve along a n—s line in the x—y
plane of Figure 7.2, a discretised transport equation is written as

—asPs+ apPp—anPn=ayOy+agQp+agdp+ardr+b (7.9)
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Figure 7.2 Application of the
TDMA in a three-dimensional
geometry

B Examples

Figure 7.3 The grid for
Example 7.1

The values at /7 and E as well as those at B and 7 on the right hand side of
Equation (7.9) are considered to be temporarily known. Using the TDMA,
values of ¢ along a selected north—south line are computed. The calculation
is moved to the next line and subsequently swept through the whole plane
until all unknown values on each line have been calculated. After completion
of one plane the process is moved on to the next plane.

North

| — East

South —

Bottom

In two- and three-dimensional computations the convergence can often
be accelerated by alternating the sweep direction so that all boundary
information is fed into the calculation more effectively. To solve along an
east—west line in the present three-dimensional case the discretised equation
is rearranged as follows:

—ay Pyt apPp— apQp=asPs+ anPy+agdp+ardr+b (7.10)

We consider the one-dimensional steady state conductive/convective heat
transfer from a bar of material discussed first in Example 4.3 of section 4.3. The
geometry is shown in Figure 7.3. The temperature on the left hand boundary
is taken to be 100°C and the right hand side boundary is insulated so the heat
flux across it is zero. Heat is lost to the surroundings by convective heat
transfer. Solve the matrix equation (4.49) for this problem using the TDMA.

Tg= 1‘OO°C 1 | 2 | 3 ‘ 4 ‘ 5 q=0
\ ® E===== O===== 1 ° ‘ ° ; o D
|82, | ox | o \ |av2, |

|
The matrix equation found in section 4.3 was

20 =5 0 0 0][¢] [1100
=5 15 =5 0 0| 100
0 -5 15 =5 0||¢s| =] 100 (4.49)
0 0 -5 15 —5||¢, 100
0 0 0 =5 10| 100

The general form of the equation used in the TDMA is
B9+ D¢ 0511 = C; (7.2)
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Nodes 1 and 5 are boundary nodes so we set §; =0 and o = 0. The ¢ at the
boundaries is not used; the boundary conditions enter into the calculation
through the source terms C;.

To show the results most clearly the values of o, B, D and C are given
for each node in Table 7.1, and A, and C’, calculated using the recurrence
formulae (7.6b) and (7.6¢), are given in Table 7.2.

Table 7.1
Node B; D; o (of A, C;
1 0 20 5 1100 0.25 55
2 5 15 5 100 0.3636 27.2727
3 5 15 5 100 0.3793 17.9308
4 5 15 5 100 0.3816 14.4735
5 5 10 0 100 0.00 21.3009
Table 7.2 Specimen calculation
Aly= % Cl= M
J J
D= Bidi D= B
5 , 0+1100
A = =0.25 Chi= =55
(20— 0) (20— 0)
5 ,  5x55+100
,=—=10.3636 Cy=——=27.2727
(15 —5x0.25) (15 —5x0.25)
5 , 5x27.2727 4+ 100
j=——=10.3793 Ci=—=17.9308
(15 -5 x%0.3636) (15 -5 % 0.3636)
5 , 5x17.9308 + 100
,=——=10.3816 Ci=————=144735
(15 -5 x%0.3793) (15 =5 x%0.3793)
, 5% 144735+ 100
A;=0 Cl=——=21.3009

(10 = 5% 0.3816)

Solution with the back-substitution formula (7.6a), ¢, = A9, + C, gives

J
¢s=0+21.30
=21.30

¢4=0.3816 x 21.30 + 14.4735
=22.60

¢3=0.3793 x 22.60 + 17.9308
=26.50

¢, =0.3636 x 26.50 + 27.2727
=36.91

¢1=0.25%x36.91+ 55
=64.23
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Figure 7.4 Boundary conditions
for the two-dimensional heat
transfer problem described in
Example 7.2

In Figure 7.4 a two-dimensional plate of thickness 1 cm is shown. The
thermal conductivity of the plate material is # = 1000 W/m.K. The west
boundary receives a steady heat flux of 500 kW/m? and the south and east
boundaries are insulated. If the north boundary is maintained at a tem-
perature of 100°C, use a uniform grid with Ax = Ay = (.1 m to calculate the
steady state temperature distribution at nodes 1, 2, 3, 4, . . . etc.

0.3 m
North
Temperature 100°C
N
| | N
4 I8 |12
i i
West| ___d____4____|.___ A RN\ East
N | |
< 3 ! 7 ! 11
E | |
| I °
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© | |
% I I
| |
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| |
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AX |
I 1
N\ \
AR
Insulated
Line 1 South Line 2 Line 3

The two-dimensional steady state heat transfer in the plate is governed by

S PRI DA R (7.11)
ov| Ox dy| dy

This can be written in discretised form as

dPTP = ﬂ[,VTw'f‘ aETE + “STS + ClNTN (7123)
where
k k k k
aVV:_Am ﬂE:_A‘, ﬂS:_AS aN:_An (712b)
Awx Ax Ay Ay
ap= du/+ ap+ ag +ay (712C)

In this case, the values of all neighbour coefficients are equal:

1000
Ay=ap=ay=dag= W x (0.1 x0.01)=10

At interior points 6 and 7

ap= dn/“r‘ arp + ag + ay = 40
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so the discretised equation at point 6 is
40T6 = IOTZ + IOTI() + IOTS + 10T7

All nodes except 6 and 7 are adjacent to boundaries.
At a boundary node the discretised equation takes the form

ﬂpr = dwTW'+ dETE + ﬂsTS + dNT;V + Su
ap=awy+ap+ ag +ay— Sp

The boundary conditions are incorporated into the discretised equations
by setting the relevant coefficient to zero and by the inclusion of source
terms through S, and S,. Otherwise, the procedure is the same as in the
one-dimensional Example 7.1. We demonstrate the approach by forming the
discretised equations for boundary nodes 1 and 4.

At node 1

West is a constant flux boundary; let 4, be the contribution to the source
term from the west:

Ay = 0
by=q, . A =500 x 10°x (0.1 x 0.01) = 500

South is an insulated boundary; no flux enters the control volume through
the south boundary:

ﬂSZO
bS:O

Total source

S, =by+bg=500
S,=0

The discretised equation at node 1 is
207, =107, + 1075 + 500

At node 4
West is a constant flux boundary

Ay = 0
b= 500  10° x (0.1 X 0.01) = 500

North is a constant temperature boundary

ay = 0
2k
by = A, % 100 = 2000
Ay
2k
Sp = A, =20
N Ay

Total source

S, = by + by = 500 + 2000 = 2500
S, =-20
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Now we have

a,=as+ag—Sp=10+10+20=40
S, = 2500

The discretised equation at node 4 is
407,=1075+ 1075 + 2500

The coefficients and the source term of the discretisation equation for all
points are summarised in Table 7.3.

Table 7.3

Node ay ag ay ag ap S,
1 10 0 0 10 20 500
2 10 10 0 10 30 500
3 10 10 0 10 30 500
4 0 10 0 10 40 2500
5 10 0 10 10 30 0
6 10 10 10 10 40 0
7 10 10 10 10 40 0
8 0 10 10 10 50 2000
9 10 0 10 0 20 0
10 10 10 10 0 30 0
11 10 10 10 0 30 0
12 0 10 10 0 40 2000

Let us apply the TDMA along north—south lines, sweeping from west to
east. The discretisation equation is given by

_dSTS + ﬂPTP - “NTN = (l”/TW'f‘ dETE +b (713)

For convenience the line in Figure 7.4 containing points 1 to 4 is referred to
as line 1, the one containing points 5 to 8 as line 2, and the one with points 9
to 12 as line 3. All west coefficients are zero at points 1, 2, 3 and 4: hence the
values to the west of line 1 do not enter into the calculation. East values
(points 5, 6, 7 and 8) are required for the evaluation of C. They are unknown
at this stage and are assumed to be zero as an initial guess. The values of ¢,
B, D;and C; can be calculated using equations (7.2) and (7.13). Now we have
o;=ay, B; = as, D;=apand C; = ay Ty + apTy + S,. The values of o, B,
D and C; and A, and C; for llne 1 are summarlsed in Table 7.4 and the
calculanons for A and C in Table 7.5.

Table 7.4
Node B; D; o; C; 4; Cj
1 0 20 10 500 0.5 25
2 10 30 10 500 0.4 30
3 10 30 10 500 0.385 30.769
4 10 40 0 2500 0 77.667
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Table 7.5

’ D= BiA;y ! D; = BiA;y

- 10 —05 Ci=0+500=25
(20-0) (20 -0)

= 10 _ 04 o 10><25+5002
(30 -10x0.5) (30 —10x0.5)

3=L=0.385 C§=M=30.769
30-10x0.4) (30-10x0.4)

4,20 Cl - 10 x 30.769 + 2500 _ 667

T (40-10%0.385)

Solution by back-substitution gives

T, =0+ 77.667
=77.67

T, =0.385 X 77.667 + 30.769
=60.67

T, =0.4 % 60.67 + 30
=54.27

T, =0.5x 54.268 + 25
=52.13

The TDMA calculation procedure for line 2 is similar to line 1. Here the
values to the west are known from the calculations given above and the
values to the east are assumed to be zero. We leave the detailed calculations
as an exercise for the reader. The values of ¢, 8, D; and C; for points 5, 6, 7
and 8 are summarised in Table 7.6.

Table 7.6
Node B, D, o; (of
5 0 30 10 521.3
6 10 40 10 542.6
7 10 40 10 606.5
8 10 50 0 2776.7

The TDMA solution for line 2 is 75 =27.38, Ty = 30.03, 75 = 38.47 and
Ts=63.23. We can now proceed to the third line containing points 9, 10, 11
and 12. The values of @, 8, D;and C; are summarised in Table 7.7.
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Table 7.7
Node B; D, o C
9 0 20 10 273.8
10 10 30 10 300.3
11 10 30 10 384.7
12 10 40 0 2632.3

At the end of the first iteration we have the values shown in Table 7.8 for
the entire field.

Table 7.8 Values at the end of first iteration
Node 1 2 3 4 5 6 7 8 9 10 11 12

T 5213 5427 60.67 77.67 2738 30.03 3847 63.23 3279 3821 51.82 78.76

The entire procedure is now repeated until a converged solution is
obtained. In this case after 37 iterations we obtain the converged solution
(total error less than 1.0) shown in Table 7.9.

Table 7.9 The converged solution after 37 iterations
Node 1 2 3 4 5] 6 7 8 9 10 11 12

T 260.0 2422 2056 1463 2227 211.1 1781 129.7 2121 196.5 166.2 124.0

7.5.1 Closing remarks

We have discussed the solution of systems of equations with the TDMA.
This algorithm is highly economical for tri-diagonal systems. It consists of a
forward elimination and a back-substitution stage:

*  Forward elimination
— arrange system of equations in the form of (7.2):
B¢+ D~ 49,11 =G

calculate coefficients o, 3, D;and C;

starting at j = 2 calculate 4; and C; using (7.6b—c):
A= 04/ (D;= A )" and  Ci=(BCLi+ C)/(D; = fiAdi )™
repeat forj=3toj=mn

*  Back-substitution
— starting at j =z obtain ¢, by evaluating (7.6a):
¢=A;¢1 + C;

— repeat for j=n— 1 toj =2 giving ¢,_; to @, in reverse order
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Point-iterative
methods

For two- and three-dimensional problems, the TDMA must be applied iter-
atively in a line-by-line fashion, but the spread of boundary information into
the calculation domain can be slow. In CFD calculations the convergence
rate depends on the sweep direction, with sweeping from upstream to down-
stream along the flow direction producing faster convergence than sweeping
against the flow or parallel to the flow direction. Convergence problems can
be alleviated by alternating the sweep directions, which is particularly useful
in complex three-dimensional recirculating flows, where the dominant flow
direction is not known in advance. When overall stability considerations
require coupling between the values over the whole calculation domain the
TDMA can be unsatisfactory for the solution of discretised equations.

Higher-order schemes for the discretisation process will link each dis-
cretisation equation to nodes other than the immediate neighbours. Here,
the TDMA can only be applied by incorporating several neighbouring
contributions in the source term. This may be undesirable in terms of stab-
ility, can impair the effectiveness of the higher-order scheme, and may hinder
the implicit nature of the scheme if it is applied in an unsteady flow (see
Chapter 8). In the specific case where the system of equations to be solved
has the form of a penta-diagonal matrix, as may be the case in QUICK and
other higher-order discretisation schemes, there is an alternative solution: a
generalised version of the TDMA| known as the penta-diagonal matrix algo-
rithm, is available. Basically a sequence of operations is carried out on the
original matrix to reduce it to upper triangular form, and back-substitution
is performed to obtain the solution. Details of the method can be found in
Fletcher (1991). The method is, however, not nearly as economical as the
TDMA.

Point-iterative techniques are introduced by means of a simple example.
Consider a set of three equations and three unknowns:

le +x2 +x3 =7
X1 — X +2x3=5

In iterative methods we rearrange the first equation to place x; on the left
hand side, the second equation to get x, on the left hand side, and so on. This
yields

x1=(7—x2—x3)/2
vy= (243, +x3)/3 (7.15)
x3=(5—x1+x2)/2

We see that unknowns x;, v, and x; appear on both sides of (7.15). The system
of equations can be solved iteratively by substituting a set of guessed initial
values for &y, x, and x; on the right hand side. This allows us to calculate new
values of the unknowns on the left hand side of (7.15). The next move is to
substitute the new values back into the right hand side and evaluate the
unknowns on the left hand side again, which are, if the procedure converges,
closer to the true solution of the system of equations. This process is
repeated until there is no more change in the solution.

One condition for the iteration process to be convergent is that the
matrix must be diagonally dominant (see discussion on boundedness in
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7.6.1

section 5.4.2). When general systems of equations are solved it is sometimes
necessary to rearrange the equations, but the finite volume method yields
diagonally dominant systems as part of the discretisation process, so this
aspect does not require special attention.

The Jacobi and Gauss—Seidel methods apply slightly different substitutions
on the right hand side. Below we describe the main features both methods.

Jacobi iteration method

In the Jacobi method, the values (", +{) etc. on the left hand side at iteration
() — indicated here by the bracketed superscript — are evaluated by substi-
tuting in the right hand side the last known values x{*™)) x{"V etc., which
were obtained at iteration (£ — 1). In the above example, let us use x{” = x{")
= «{) = 0 as the initial guess. Substitution of these values in the right hand

side of (7.15) gives
2V=3500 x=0.667 «{)=2.500

For the second iteration we substitute these values in the right hand side of
(7.15). If we repeat the process we obtain the results given in Table 7.10.

Table 7.10 Solution of system of equations (7.14) with Jacobi method

ITteration 0 1 2 3 4 5 .. 17
number

X 0 3.5000 19167 1.6250 1.2292 1.1563 ... 1.0000
%) 0 0.6667 2.6667 1.6667 2.1667 19167 ... 2.0000
X3 0 2.5000 1.0833 2.8750 2.5208 2.9688 ... 3.0000

After 17 iterations we obtain x; = 1.0000, x, = 2.0000, x; = 3.0000 and
detect no further change in the solution with increase of the iteration count.
Substitution of these values into the original system (7.14) shows that this
result is accurate to all 4 decimal places given in the answer.

To generalise the procedure we consider a system of # equations and 7
unknowns in matrix form, A . x = b, or in a form where the coefficients of
matrix A can be seen explicitly:

N a;x=b; (7.16)

In all iterative methods the system is rearranged to place the contribution
due to «; on the left hand side of the /th equation and the other terms on the
right hand side:
n
4y == Y agy, (=1,2,...,n) (7.17)

J=1

We divide both sides by coefficient «; and indicate that, in the Jacobi
method, we evaluate the left hand side at iteration (k) using values on the
right hand side of &; at the end of the previous iteration (£ — 1):
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7.6.2

n(_g,. b
xg.") = 2[—”]3@(}‘"1) +—| (=1,2,...,n) (7.18)
@i

Equation (7.18) is the iteration equation for the Jacobi method in
the form used for actual calculations. In matrix form this equation can be
written as follows:

x®=T.x*D+c (7.19a)

where T = iteration matrix
and ¢ = constant vector

The coefficients 7}; of the iteration matrix are as follows:

S e
Ty=y % (7.19b)
0 ifi=jy
and the elements of the constant vector are
b.
¢ =— (7.19¢)
a

Gauss—Seidel iteration method

We begin our discussion of the Gauss—Seidel method by reconsidering equa-
tion (7.15). In the Jacobi method the right hand side is evaluated using the
results of the previous iteration level or from the initial guess. If all the right
hand sides could be evaluated simultaneously there would be no further
discussion, but in most computing machines the calculations are performed
sequentially. Hence, at the first iteration we start the sequence of calculations
by using the initial guesses %" = 0 and x{” = 0 to obtain

=7 =0 =2 0)/2=(7-0-0)/2=3.5

Next we evaluate the second equation, x, = (2 + x; + x3)/3. We notice that
it contains x; and x5 on the right hand side. The Jacobi method uses +{" = 0
and x(')) =0 from the initial guesses, but we note that in a sequential Calcula—
tion we have just obtained an updated value of x;, namely »{" = 3.5. The
Gauss—Seidel method proceeds by making direct use of this recently avail-
able value and calculates

2D =2+ +20)/3=(2+3.5+0)/3=18333

To evaluate the third equation, x; = (5 — x; + x,)/2, the Gauss—Seidel

method continues to use the most up-to-date values on the right hand side
that are available, i.e. ¥ = 3.5 and +{" = 1.8333:

2= (5= 20+ 21)/2 = (5 3.5 + 1.8333)/2 = 1.6667

The second and subsequent iterations follow the same pattern. The results
are shown in Table 7.11.
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7.6.3

Table 7.11 Solution of system of equations (7.14) with Gauss—Seidel method

Tteration 0 1 2 3 4 5 13
number

% 0 3.5000 1.7500 1.3333 1.1181 1.0475 1.0000
X, 0 1.8333 1.8056 1.9537 1.9761 1.9922 2.0000
x3 0 1.6667 2.5278 2.8102 2.9290 2.9724 3.0000

The final result is obtained after 13 iterations. Ralston and Rabinowitz
(1978) note that the Gauss—Seidel method is preferable to the Jacobi method,

because it converges faster.

We can easily generalise the above example and state the iteration equa-

tion for the Gauss—Seidel method:

(k)_ii T | 4 i % | an B
Y= Y Y

=1 i i1\ i i

In matrix form we have

x# =T x® + T x* D+ ¢

The coefficients of matrices T; and T} are as follows:

aig .
—— ifi>jg

lej = aj;
0 ifi<y
0 ifixy

=J a
Ty=_% i<

aj;

and the elements of the constant vector are as before:

Relaxation methods

(i=1,2,...,n)

(7.20)

(7.21a)

(7.21b)

(7.21c)

(7.21d)

The convergence rate of the Jacobi and Gauss—Seidel methods depends on
the properties of the iteration matrix. It has been found that these can be
improved by the introduction of a so-called relaxation parameter ¢. Consider
the iteration equation (7.18) for the Jacobi method. It is easy to see that it can

also be written as

a

7
L —dy - bi :
oo B[l ra

j=1 \ i i

(7.22)
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We try to modify the convergence rate of the iteration sequence by multi-
plying the second and third terms on the right hand side by the relaxation
parameter

i

LA b
0 = D 4 g Z(ﬁjxj’“u—’ (=1,2,...,m) (7.23)

j=1 a i

If we use =1 1n (7.23) we get back to the original Jacobi method (7.18), but
different values of parameter o will yield different iterative sequences. When
we choose 0 < o< 1 the procedure is an under-relaxation method, whereas
o > 1 is called over-relaxation.

Before proceeding to apply (7.23) we verify that introduction of the
relaxation parameter o changes the iteration path without changing the final
solution. First we compare the expression in the square brackets of (7.23)
with matrix equation (7.16). If the iteration sequence converges, the vector
x#==) will contain the correct solution of the system, so

n
> aat = b, (i=1,2,...,n)
=

Dividing both sides by coefficient 4; and some rearrangement yields
by iﬁx“’*m) =0 (i=1,2,...,n) (7.24)
ﬂl‘l‘ ]:1 d“ ] ’ T ’

After k iterations the intermediate solution vector x](’e) is not equal to the
correct solution, so

n
Y £ b, (G=1,2,...,n) (7.25)
Jj=1

We define the residual »*) of the ith equation after  iterations as the dif-
ference between the left and right hand sides of (7.25):

n

M0 =b,- Y au® (G=1,2,...,n) (7.26)

j=1

If the iteration process is convergent the intermediate solution vector xj(-k)
should get progressively closer to final solution vector x](.kﬁ‘”) as the iteration
count k increases, and hence the residuals 7% for all # equations should also
tend to zero as £ — oo. Finally, we note that the expression in the square
brackets of (7.23) is just equal to the residual »* after £ — 1 iterations

divided by coefficient a;;:

(k1)

al®) = 1 a[ d } (i=1,2,...,n) (7.27)

a

i

This confirms that the introduction of relaxation parameter o does not affect
the converged solution, because all residuals * in the square brackets of
(7.27) will be zero when & — oo.

Next we note that, in terms of the iteration matrix form (7.19a—c) of the
equation, the introduction of the relaxation parameter in (7.23) implies the
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following changes to the coefficients 7}; of the iteration matrix and constant

vector [
—oli e
T;= @i (7.28a)
(1-0) ifi=j
b;
= o (7.28b)
a

Thus, we have demonstrated that the relaxation parameter alters the itera-
tion path through changes in the iteration matrix, without altering the final
solution. This suggests that relaxation may be advantageous if we select an
optimum value of & that minimises the number of iterations required to
reach the converged solution.

To see if this works in practice we perform the Jacobi iteration scheme
with relaxation (7.23) for the example system (7.14) using the same initial
guess as before: 1) = 1V = x{¥) = 0 with = 0.75, 1.0 and 1.25. We find that
the process converges to the correct solution x; = 1, x, = 2, x; = 3 after 25, 17
and 84 iterations, respectively. It appears that or= 1 is the optimum value for
the Jacobi method and that there is not much to be gained by changes of «
(at least not for this sample problem).

In spite of this slightly disappointing result we try out the relaxation con-
cept on the Gauss—Seidel method. In this case the iteration equation after £
iterations can be rewritten as

(k)_x(k 1)4_2( J(k)+2[ ] il 1)+b

(i=1,2,...,n)

If we introduce the relaxation parameter « as before, this yields

i—1
b;
2 = ) 0{ O Z x4 }
i a; a;

(i=1,2,...,n) (7.29)

This is the iteration sequence for the Gauss—Seidel method with relaxa-
tion. We leave it as an exercise for the reader to verify that iteration of the
sequence (7.29) using coefficients and the right hand side of example system
(7.14) with o = 0.75, 1.0 and 1.25 yields convergence after 21, 13 and 27
iterations, respectively. It seems, once again, that no improvement is pos-
sible, but a slightly more careful search reveals that the iteration sequence
converges to 4 decimal places within 10 iterations for slightly over-relaxed
values of « in the range 1.06 to 1.08.

Unfortunately, the optimum value of the relaxation parameter is problem
and mesh dependent, and it is difficult to give precise guidance. Nevertheless,
through experience with a particular range of similar problems it is, at least
in principle, possible to select a value of & which gives a better convergence
rate than the basic Gauss—Seidel method. The well-known successive
over-relaxation (SOR) technique is based on this principle.



7.7 MULTIGRID TECHNIQUES 229

ﬂ Multigrid

techniques

Figure 7.5 Residual reduction
pattern with a line-by-line
iterative solver using different
grid resolutions

We have established in earlier chapters that the discretisation error reduces
with the mesh spacing. In other words, the finer the mesh, the better the
accuracy of a CFD simulation. Iterative techniques are preferred over direct
methods because their storage overheads are lower, which makes them more
attractive for the solution of large systems of equations arising from highly
refined meshes. Moreover, we have seen in Chapter 6 that the SIMPLE
algorithm for the coupling of continuity and momentum equations is itself
iterative. Hence, there is no need to obtain very accurate intermediate solu-
tions, as long as the iteration process eventually converges to the true
solution. Unfortunately, it transpires that the convergence rate of iterative
methods, such as the Jacobi and Gauss—Seidel, rapidly reduces as the
mesh is refined.

To examine the relationship between the convergence rate of an iterative
method and the number of grid cells in a problem we consider a simple
two-dimensional cavity-driven flow. The inset of Figure 7.5 shows that the
computational domain is a square cavity with a size of I cm X 1 cm. The lid
of the cavity is moving with a velocity of 2 m/s in the positive x-direction.
The fluid in the cavity is air and the flow is assumed to be laminar. We use a
line-by-line iterative solver to compute the solution on three different grids
with 10 X 10, 20 x 20 and 40 % 40 cells.

To obtain a measure of the closeness to the true solution of an intermedi-
ate solution in an iteration sequence we use the residual defined in (7.26) for
the sth equation. The average residual 7 over all # equations in the system
(i.e. an average over all the control volumes in the computational domain
of a flow problem) is a useful indicator of iterative convergence for a given
problem:

1 n
Fz_zlm (7.30)
o

If the iteration process is convergent the average residual 7 should tend to
zero, since all contributing residuals 7; — 0 as # — oo. The average residual

10° U=2m/s—

107

1072

u-velocity residual

40 x 40 grid

20 x 20 grid

\ 10 x 10 grid

1073
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for a given solution parameter, e.g. the u-velocity component, is usually
normalised to make it easier to interpret its value from case to case and to
compare it with residuals relating to other solution parameters (e.g. v- or
w-velocity or pressure, which may each have very different magnitudes).
The most common normalisation is to consider the ratio of the average
residual after £ iterations and its value at the first iteration:

)

RY =— (7.31)

norm — —
71

In Figure 7.5 we have plotted the normalised residual of the #-momentum
equation against the iteration number. The solution is aborted when the
normalised residuals for all solution variables (velocity and pressure in this
case) fall below 107°. We note that the 10 X 10 mesh solution converges in
161 iterations, whereas the 20 X 20 and 40 X 40 mesh solutions take 331 and
891 iterations to converge, respectively. Within the CFD code it is possible
to improve the convergence rate by adjusting solution parameters, including
relaxation parameters, but for the sake of consistency all solution parameters
were kept constant. The pattern of residual reduction is evident from the
diagram. After a rapid initial reduction of the residuals their rate of decrease
settles to a more modest final value. It is also clear that the final conver-
gence rate is lowest for the finest mesh. If we tried an even finer mesh,
it would take even longer to converge.

Multigrid concept

To simplify the explanation of the multigrid method we use matrix notation
and first revisit the definition of the residual. Consider the following system
of equations arising from the finite volume discretisation of a conservation
equation on a flow domain:

A.x=b (7.32)

The vector x is the true solution of system (7.32).

If we solve this system with an iterative method we obtain an intermediate
solution y after some unspecified number of iterations. This intermediate
solution does not satisfy (7.32) exactly and, as before, we define the residual
vector r as follows:

A.y=b-r (7.33)

We can also define an error vector e as the difference between the true solu-
tion and the intermediate solution:

e=x-y (7.34)

Subtracting (7.33) from (7.32) gives the following relationship between the
error vector and the residual vector:

A.e=r (7.35)

The residual vector can be easily calculated at any stage of the iteration pro-
cess by substituting the intermediate solution into (7.33). We can imagine
using an iterative process to solve system (7.35) and obtain the error vector.
For this it might be useful to write the system in the iteration matrix form:

eW=T.etD+c (7.36a)
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7.7.1

Since the coefficient matrix A is the same for systems (7.32) and (7.35), the
coefficients 7}; of the iteration matrix are equal to those of the chosen itera-
tion method, i.e. the Jacobi method or Gauss—Seidel method without or with

relaxation. The elements of the constant vector are, however, different:
¢ =—" (7.36b)

In practice, if we tried to solve system (7.35) using the same iteration method
as we used for the original system (7.32) we would not find that this
made any difference in terms of convergence rate. However, system (7.35) is
important, because it shows how the error propagates from one iteration to
the next. Moreover, its equivalent (7.36) highlights the crucial role played by
the iteration matrix. As we saw earlier when we introduced the relaxation
technique, the properties of the iteration matrix determine the rate of error
propagation and, hence, the rate of convergence.

These properties have been extensively studied along with the math-
ematical behaviour of the error propagation as a function of the iterative
technique, mesh size, discretisation scheme etc. It has been established that
the solution error has components with a range of wavelengths that are
multiples of the mesh size. [teration methods cause rapid reduction of error
components with short wavelengths up to a few multiples of the mesh size.
However, long-wavelength components of the error tend to decay very
slowly as the iteration count increases.

This error behaviour explains the observed trends in Figure 7.5. For the
coarse mesh, the longest possible wavelengths of error components (i.e. those
of the order of the domain size) are just within the short-wavelength range
of the mesh and, hence, all error components reduce rapidly. On the finer
meshes, however, the longest error wavelengths are progressively further
outside the short-wavelength range for which decay is rapid.

Multigrid methods are designed to exploit these inherent differences of
the error behaviour and use iterations on meshes of different size. The short-
wavelength errors are effectively reduced on the finest meshes, whereas the
long-wavelength errors decrease rapidly on the coarsest meshes. Moreover,
the computational cost of iterations is larger on finer meshes than on coarse
meshes, so the extra cost due to iterations on the coarse meshes is offset by
the benefit of much improved convergence rate.

An outline of a multigrid procedure

We now give a short description of the principles of a two-stage multigrid
procedure:

Step I: Fine grid iterations. Perform iterations on the finest grid with mesh
spacing / to generate an intermediate solution y” to system A’ . x = b with
true solution vector x. The number of iterations is chosen sufficiently large
that the short-wavelength oscillatory component of the error is effectively
reduced, but no attempt is made to eliminate the long-wavelength error
component. The residual vector r” for the solution on this mesh satisfies
r" =b — A" . y" (see equation (7.33)) and the error vector e’ is given by
e/ =x — y" (see equation (7.34)). We have also established that the error and

residual are related as follows: A’ . e" = r' (see equation (7.35)).
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7.7.2

Step 2: Restriction. The solution is transferred from the fine mesh with spac-
ing / onto a coarse mesh with spacing ¢/, where ¢ > 1. Due to the larger mesh
spacing of the coarse mesh the long-wavelength error (on the fine mesh)
appears as a short-wavelength error on the new mesh and will reduce rapidly.
The process of transferring can be simplified if we use a coarse mesh with
twice the mesh spacing of the fine mesh. Instead of solving for the solution
vector y* we work with the error equation A” . e = v on the coarse mesh
starting with an initial guess of e = 0. To perform the solution process we
need values of the residual vector and the matrix of coefficients. Given the
values of r on the fine mesh we must use a suitable averaging procedure to
find the residual vector r* on the coarse mesh. The coefficients of matrix A"
can be recomputed from scratch on the coarser mesh or evaluated from the
fine mesh coefficient matrix A" using some form of averaging or interpola-
tion technique. The cost per iteration on the coarser mesh is small, so we
can afford to perform an adequate number of iterations to get a converged
solution of the error vector e

Step 3: Prolongation. After obtaining the converged solution of error vector
e for the coarse mesh we need to transfer it back to the fine mesh, but note
that we have fewer data than points in the fine mesh. We use a convenient
interpolation operator (e.g. linear interpolation) to generate values for the
prolonged error vector €’” at intermediate points in the fine mesh.

Step 4: Correction and final iterations. Once we have calculated the prolonged
error vector €” we may correct the intermediate fine grid solution: y”#"* =
y" + €’". Because the long-wavelength error has been eliminated, this
improved solution is closer to the true solution vector x. However, several
approximations were made, so we perform a few more iterations with the
improved solution to iron out any errors that may have been introduced
during restriction and prolongation.

The above description is for the two-stage procedure (one fine mesh, one
coarse mesh). In practice, however, the restriction is carried out into a
number of increasingly coarse levels. Then prolongation procedures are also
performed at each stage back to the starting mesh.

An illustrative example

Consider solving a one-dimensional conduction equation for an insulated
metal rod which has internal heat generation. The governing equation is

EVA

dx?

k

+g=0

The dimensions and other data are as follows: length of the rod is 1 m, cross-
sectional area of the rod is 0.01 m? thermal conductivity # = 5 W/m.K,
generation g = 20 kW/m?, the ends are at 100°C and 500°C. We are inter-
ested in obtaining a solution, say, using a grid of 20 cells giving a spacing of
Ax =0.05 m, which we name Grid 1.

Figure 7.6 shows Grid 1 along with the boundary conditions marked at
each end. It is not necessary here to describe how discretisation equations
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Tx=100°C Ts = 500°C
A 1 2 3 4 5 17 18 19 20 | B
—t-o|- o {1+ 0 -0 -0 |e-|—e 10606 o -0 -—0 10 & -06—| 0 |—&-(—

‘4—»’ 6x=0.05

Figure 7.6 'The 20 node grids
used to solve the problem — are obtained for this problem; the procedure is similar to Example 4.2.

Grid 1 Table 7.12 gives a summary of coefficients of the discretisation equations at
nodes 1,2, 3, ..., 20.

Table 7.12 Coefficients of the discretisation equation at each point

Node ay ag S, S, ap
kA 2kA 2kA
1 (first node) 0 — qAdx + T, -—  agptag—S,
o ox Ox
kA kA
2.’ 300519 — — qA0x 0.0 aw+ag—S
(internal nodes) &, S v
kA 2kA 2kA
20 (last node) — 0 qAox + —Ty —— ay+ap—3S,
o ox Ox

We use the expressions in Table 7.12 to compile the numerical values
of coefficients in Table 7.13 and to construct the matrix equation A . x = b,
where solution vector x contains the temperatures at the nodes of Grid 1.

Table 7.13 Numerical values of the coefficients of the discretisation equation

Node ay ag S, S, ap
1 0 1.0 210 -2.0 3.0
2,3,...,19 1.0 1.0 10 0.0 2.0
20 1.0 0 1010 -2.0 3.0

The matrix equation is

30 -10 0 0 17 210
0020 <10 . .0 |l x 10
0 -10 20 -1.0 . . 0 || x 10

L =] (7.37)
1.0 20 —1.0||xp 10

=1.0 3.0y 1010

The matrix of coefficients is tri-diagonal, so we can use the TDMA to obtain
a solution in a single pass. The result is given in Table 7.14 to enable later
verification of the multigrid solution.



234

CHAPTER 7 SOLUTION OF DISCRETISED EQUATIONS

Table 7.14 The TDMA solution

1

2

3

4

5

6

Grid 1 — Temperature at nodes

7 8 9 0 1 12 13 14 15 16 17 18 19 20

160 270 370 460 540 610 670 720 760 790 810 820 820 810 790 760 720 670 610 540

Step 1: Fine grid iterations
We use the Gauss—Seidel iteration (7.20) to solve these equations. We
simply initialise the temperature to 150°C everywhere as an initial guess to
start the iterative process (a field closer to the final solution will not highlight
the benefit of the method). The solution vector y” after five Gauss—Seidel
iterations is shown below:

(1 [116.755]
7 141.994
s 160.427
= - (7.38)
] [468.130]
The residual vector r =b — A" . y" at this stage is
41 T 2101 [ 3.0-10 0 0 [ ;] [1.728]
rh 0] [-1.0 20-10 . . . 0 ||| [3.193
7 10 0 -1.0 20-1.0 . . 0 || )] [4658
gl |2 I O |
o 10 10 20 <10]|y| | 7461
Lk L1010 | . =10 3.0]|yy] [0.000

The total r.m.s. residual value is 14.951. If the iteration process is continued
the residual vector will reduce slowly until the convergence criterion is
achieved. Figure 7.9 at the end of this section shows the pattern of conver-
gence for the Gauss—Seidel iteration. Using a sum of r.m.s. residuals less
than 107° as the convergence criterion, the final solution is achieved after 664
iterations. The converged solution is of course indistinguishable from the
TDMA solution in Table 7.14.

Step 2: Restriction

To apply the multigrid method we have to construct a coarse grid first. The
simplest method is to construct a grid which has half the number of cells.
Figure 7.7 shows the fine mesh and the proposed coarse meshes drawn one
beneath the other. The first coarse mesh uses 10 cells with a spacing of 0.1 m
and is named Grid 2. The next coarse mesh — Grid 3 — consists of 5 cells with
a spacing of 0.2 m.

If the fine grid mesh spacing is %, a mesh using half the number of
cells would have a mesh spacing of 2/. In the multigrid literature the mesh
spacing is indicated by means of superscripts. In this notation the residual
vector we have on the fine mesh is r”.
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Figure 7.7 Grids used to solve

the problem

Now we need to interpolate the residual vector from a fine grid to a coarse
grid. Since the nodes of Grid 2 are exactly mid-way between those of Grid 1
we can interpolate by simple averaging of ' to obtain the residual vector r*
for the coarse grid. The values are summarised in Table 7.15. Note that only
3 decimal places of the actual numbers are shown in the table. As mentioned
earlier, this transfer process is known as ‘restriction’.

Table 7.15 Fine mesh and coarse mesh residuals showing restriction process of transfer from fine Grid 1 to coarse Grid 2

1

1.728 3.193 4.658 5976 7.075

2.460

2

3

2
5.317

4

5

Fine mesh (Grid 1) residuals — (v")

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
33.962 22385 7.461 0.000

Coarse mesh (Grid 2) residuals — after restriction (r’*)

3
7.506

4 5 6 7 8 9 10
28.173 3.731

In matrix form the Grid 2 residual vector after ‘restriction’ is

3] [ 2.460]
3t 5.317
3t 7.506

2h —

2| (28173
EIRER

Note that we have only 10 values now. The error in the coarse mesh satisfies
the equation A% . €% = r?. We have calculated the vector r?, but we also
need the matrix A% to solve this equation to obtain €. In the multigrid
literature there are numerous techniques which use elegant interpolation
operators to evaluate A%, For this example problem we do not interpolate
the coefficient matrix, but calculate the coefficients of the coarse grid matrix
exactly using the expressions in Table 7.12. Thus, we obtain the following

matrix equation for the error vector e*:
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[ 15-05 0 . . 0[e] [ 2.460]
-05 1.0-05 0 01|es 5.317
0-05 1.0 -05 0] e3 7.506

= (7.39)

~05 1.0 0.5||e2"| [28.173
I 05 15||egt] | 3730

We now solve system (7.39) with an initial guess of ¥ = (0,0, 0, ..., 0)
using the Gauss—Seidel iteration procedure. Since the iterations are now
on a coarser mesh, the rate of residual reduction is faster and the cost per
iteration is much lower. After 10 iterations on this coarse mesh we obtain the
error vector €* on the first coarse mesh (Grid 2) as

[ [ 19.156]
oY 58.310

e 96.049
=l (7.40)

el 158.591
_elz(’}_ | 55.351]
Since we have only performed 10 iterations this solution is partially converged

and there will be a residual: # =r2  — A% . e*. Its values are given in
Table 7.16 along with interpolated Grid 3 residuals r*" after restriction.

Table 7.16 Residuals on Grid 2 and restricted residuals on Grid 3

Coarse mesh (Grid 2) residuals 7

1 2 3 4 5 6 7 8 9 10
2.881 4.609 5.929 . . . . . 0.9192 0.000

Coarse mesh (Grid 3) residuals v*" — after restriction

1 2 3 4 5
3.745 6.277 6.204 3.615 0.459

Now the residuals #** have been transferred to an even coarser grid with
five nodes (see Figure 7.7) to yield residual r**. Then we solve for the error
e* on Grid 3 using the system of equations A* . e = r* where the co-
efficients of A* are again calculated from scratch using the expressions in
Table 7.12. As the cost per iteration is very low we can afford to do more
iterations on Grid 3 to achieve very effective error reduction. After 10 itera-

tions we get the solution in Table 7.17 for error vector e*".

Table 7.17
Grid 3 — solution (error vector ™ on Grid 3)
1 2 3 4 5
23.408 55.831 63.731 47.205 16.348

This coarsening procedure could be continued, but in this illustrative
example we stop the process of restriction at the five-node grid.
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Step 3: Prolongation

The next step is to go backwards transferring error vectors from each coarse
grid to the next fine grid level. This is called the prolongation process. Linear
interpolation or any other interpolation scheme could be used to construct
fine grid values from the coarse grid values. Using linear interpolation some
sample values are

e’ =(0.75¢}")
¢’ = (0.75¢ + 0.25¢3) (7.41)
e’2=(0.25¢1" + 0.75¢5")

and so on.

It should be noted that we use a prime to indicate the prolonged error vec-
tor €’* on Grid 2 to distinguish it from the error vector e**. Furthermore, for
the nodes closest to the boundary we have used the fact that the value of the
problem variable is known so the error on the boundary is zero. The calcu-

lations of (7.41) yield the following values for the prolonged error vector e’

¥ [17.556]
¥ 31514
2| |47.726

’2h

e[ 24.062
3| 12261

The prolonged error vector €”

2 is now used to correct the original error vec-

tor €* (7.40) on Grid 2:
ezzlrre[/ed = e2/1 + e’Zh (742)
This yields

[e?] [ 19.156] [17.556] [ 36.713]
s 58.310 31.514 89.825
ed 96.049 47.726 143.775

| 158591 | |24.062] |182.654
et | | 55351] [12261] | 67612

At this stage it is usual to do some smoothing iterations before transferring
this error vector to the grid above this level. First we perform two Gauss—
Seidel smoothing iterations and obtain the following corrected and smoothed
error vector on Grid 2:

e [ 32.639]
ed 95.749
2| |152.494

2| |188.283
et | | 65.248]
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Figure 7.8 Schematic of the V-
cycle multigrid procedure used
in the example

This result is next used to compute the prolonged error vector €’ on Grid 1
by linear interpolation using the process outlined in (7.41), but replacing
superscripts 24 by & and 44 by 2k:

Tl [24.479]
| |48.416
| 179.971
eh | 196.007

ey | |48.936]

Step 4: Correction and final iterations
Finally, the prolonged error vector e is used to compute the corrected inter-
mediate solution y on Grid 1:

Yeorrected =Y + eh (7433)
Thus,

i [116.755| [24.479] [141.235]
2 141.994 48.416 190.411
V3 160.427 79.971 240.399

= |+ = - (7.43b)

| 1394392] 96007 |490.399
] 468130 [48.936] [517.067)

Comparison of the corrected solution (7.43b) with intermediate solution
(7.38) and the TDMA solution in Table 7.14 shows that the multigrid pro-
cedure has considerably reduced the error. Substitution of the corrected
solution into r =b — A . y gives an r.m.s. residual of 8.786, which is lower
than the previous r.m.s. residual on Grid 1, which was 14.951. Since inter-
polation errors are involved in the restriction and prolongation processes we
cannot expect to achieve the true solution in one multigrid cycle. In order to
improve the solution further we do more iterations on the fine mesh (say
two) and repeat the ‘fine grid—coarse grid’ procedure until convergence is
achieved. We proceed by using the three-grid procedure and go backwards
and forwards as many times as is needed to reduce the r.m.s. residual to
107°. This multigrid cycle is called a three-grid V-cycle. The process steps
are illustrated in Figure 7.8 along with annotations of the number of itera-
tions at each level inside the circles. The diagram also reveals the origin of
the term ‘V-cycle’.

20-cell grid
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Figure 7.9 Residual
reduction pattern with

ordinary Gauss—Seidel iterations
and multigrid Gauss—Seidel

iterations

7.7.3

The pattern of convergence achieved by repeating the V-cycle of 2 fine
grid iterations, 10 and 10 coarse grid iterations is shown in Figure 7.9. The
multigrid procedure is fast and effective, since it converges in 60 fine grid
iterations, which compares favourably with the ordinary Gauss—Seidel
method, which takes 664 iterations to achieve the same residual value. Even
after allowing for extra computational effort due to the coarse grid iterations,
the order-of-magnitude improvement of the convergence rate by the multi-
grid procedure is clearly beneficial. When multigrid acceleration techniques
are applied to 2D and 3D problems the convergence gains obtained are very
attractive, which explains their popularity among CFD users.
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Multigrid cycles

Multigrid techniques can be used in conjunction with any iterative technique.
In our simple example we have illustrated the main concepts of the multigrid
methods. In practical CFD calculations the multigrid transfer process is
more sophisticated and different cycles of coarsening and refinement are
used with special schedules of restriction and prolongation at different
refinement levels. Common choices of multigrid cycles are the so-called V-,
W-and F-cycles, which are illustrated in Figure 7.10.

The simple V-cycle shown in Figure 7.10a consists of two legs. The cal-
culation starts at the finest level. Iterations at any level are called relaxation.
After a few relaxation sweeps on the finest level the residuals are restricted
to the next coarse level and after relaxation on that level the residuals are
passed on to the next coarse level, and so on until the coarsest level is
reached. After final relaxation on the coarsest level the prolongation steps are
performed on the upward leg of the V-cycle until the finest level is reached.

In the W-cycle additional restriction and prolongation sweeps are used at
coarser levels to obtain better reduction of long-wavelength errors. A typical
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Figure 7.10 Illustration of
different multigrid cycle
strategies: (a) V-cycle,

(b) W-cycle and (c¢) F-cycle

(c)

x Restriction
/ Prolongation

pattern is illustrated in Figure 7.10b. The flexible cycle or ‘F-cycle’ is very
similar to the W-cycle, but has a different pattern of coarse-level sweeps as
illustrated in Figure 7.10c.

In the technique known as the full multigrid (FMG) method the calcula-
tions do not start at the finest grid, but instead at the coarsest level. Solutions
are transferred to successively finer grid levels and on the finest level the
prolonged solution is used as the initial guess for start of the iterative pro-
cess. This solution process could be accelerated further using any of the
cycling procedures. For example, V-cycles could be used at each successive
refinement level, as illustrated in Figure 7.11.
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Figure 7.11 Cycling strategy
used in full multigrid method

7.7.4

Figure 7.12 A 2D Cartesian
mesh — the coarse grid is
constructed by deleting alternate
grid lines or combining groups of
four control volumes

Level 1

Grid generation for the multigrid method

As illustrated in the above example, grid generation is required to create the
coarse grids. The most straightforward method is to combine control vol-
umes or regenerate the mesh using half the number of nodes of the mesh
above that level. For 2D structured grids, such as the Cartesian grid shown
in Figure 7.12, coarse grids can be readily generated by deleting alternate
grid lines. Thus one coarse grid control is constructed from every four fine
grid control volumes. This can easily be extended to 3D meshes using eight
fine grid control volumes per coarse grid control volume.

In the above example we computed the coarse grid system matrix and
other required quantities using actual geometrical properties of the coarse
mesh (Table 7.12). This type of multigrid procedure is called a geometric
multigrid procedure. In the other variation to this method, the coefficients
are not recomputed from the grid geometry to save calculation effort, but
approximated as linear combinations of coefficients of the fine grid equations.
Such multigrid methods are called algebraic multigrid and are widely
used in commercial CFD solvers. The technique known as the additive
correction multigrid (ACM) strategy of Hutchinson and Raithby (1986) is
also a popular multigrid method used in many CFD procedures.
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Summary

Multigrid acceleration of the Gauss—Seidel point-iterative method is cur-
rently the solution algorithm of choice for commercial CFD codes. The rate
of convergence of this procedure can be optimised by specific choices for:
(1) interpolation of the residual vector and coefficient matrix from fine to
coarse meshes during restriction, (ii) interpolation of the error vector from
coarse to fine meshes during prolongation, (iii) cycles of coarsening and
refinement with special schedules of restriction and prolongation at different
refinement levels. For further details of more advanced multigrid procedures
the reader should consult the appropriate literature (see e.g. Wesseling,
1992; Briggs, 1987). There are also several excellent learning resources avail-
able on the Internet for multigrid methods: see for example the multigrid
network MGNET at http://www.mgnet.org/.

Several other solution algorithms are available for CFD problems with
discretised equations that contain a large number of contributions from sur-
rounding nodes. The Strongly Implicit Procedure (SIP) due to Stone (1968),
in particular with the improvements suggested by Schneider and Zedan
(1981), is more suitable in this case. Details are not presented here in the
interest of brevity and the interested reader is referred to Anderson et al.
(1984). Another solution procedure which is being used in CFD calculations
is the conjugate gradient method (CGM) of Hestenes and Stiefel (1952).
This method is based on matrix factorisation techniques. Improvements
by Reid (1971), Concus et al. (1976) and Kershaw (1978) ensure accelerated
convergence in the CFD calculations. The CGM requires greater storage
than other iterative methods described earlier. Further details of the method
can also be found in Press ez al. (1992).



Chapter eight

The finite volume method for
unsteady flows

m Introduction

a One-dimensional

unsteady heat
conduction

Having finished the task of developing the finite volume method for steady
flows we are now in a position to consider the more complex category of
time-dependent problems. The conservation law for the transport of a scalar
in an unsteady flow has the general form

g(p@ + div(pug) = div(T grad ¢) + 5, (8.1)
!

The first term of the equation represents the rate of change term and is zero
for steady flows. To predict transient problems we must retain this term in
the discretisation process. The finite volume integration of equation (8.1)
over a control volume (CV) must be augmented with a further integration
over a finite time step Az. By replacing the volume integrals of the convective
and diffusive terms with surface integrals as before (see section 2.5) and
changing the order of integration in the rate of change term we obtain

t+Ar t+Ar
J Jg(p@dt dr+ J Jn.(puq))d/l dt
CV 1 1 A
1+AL 1+A1
= J Jn.(Fgrad $)dA | dr + J JS¢dth (8.2)
1 A t CV

So far we have made no approximations but to make progress we need tech-
niques for evaluating the integrals. The control volume integration is essen-
tially the same as in steady flows and the measures explained in Chapters 4
and 5 are again adopted to ensure successful treatment of convection, diffusion
and source terms. Here we focus our attention on methods necessary for the
time integration. The process is illustrated below using the one-dimensional
unsteady diffusion (heat transfer) equation and is later extended to multi-
dimensional unsteady diffusion and convection—diffusion problems.

Unsteady one-dimensional heat conduction is governed by the equation

a9 ar
—_— = b— S 8.3
P 8x[ 07xj+ (8.3)
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Figure 8.1
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In addition to the usual variables we have ¢, the specific heat of the material
(J/kg.K).

Consider the one-dimensional control volume in Figure 8.1. Integration
of equation (8.3) over the control volume and over a time interval from 7 to
1 + At gives

t+AL 1+A t+AL
J Jpcﬂdth= J Ji k8—T dvde+ J JSdth (8.4)
o or| ov

t CV t CV t CV
This may be written as

e [ t+Ar t+At

oT oT oT
j Jpc—dz dV= J kA— | — | kA—| |dz

or ox ox
w ! 1 4 w

t+At
+ J SAV dr (8.5)

1

In equation (8.5), A is the face area of the control volume, A} is its volume,
which is equal to 4Ax, where Ax = v, is the width of the control volume,
and S is the average source strength. If the temperature at a node is assumed
to prevail over the whole control volume, the left hand side can be written as

t+Ar

J J pc?dl AV = p(Tp— THAV (8.6)
it
CV t

In equation (8.6) superscript ‘0’ to refers to temperatures at time #; tempera-
tures at time level 1 + Ar are not superscripted. The same result as (8.6)
would be obtained by substituting (7, — T'5)/ At for dT/ ok, so this term has
been discretised using a first-order (backward) differencing scheme. Higher-
order schemes, which may be used to discretise this term, will be discussed
briefly later in this chapter. If we apply central differencing to the diffusion
terms on the right hand side equation (8.5) may be written as

t+At
T,—T To—Ty
pe(Tp— THAV = J (IeeA £ ”] - [/emAu] dr

Xpr Xpp
t

t+Ar
+ jSAth (8.7)

1
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To evaluate the right hand side of this equation we need to make an assump-
tion about the variation of 7, T and 7y, with time. We could use tempera-
tures at time 7 or at time 7 + A¢ to calculate the time integral or, alternatively,
a combination of temperatures at time # and ¢ + Az. We may generalise the
approach by means of a weighting parameter 6 between () and 1 and write
the integral /; of temperature 7'» with respect to time as

t+AL
Ip= J T dt =[6Tp+ (1 — ) T]At (8.8)
!

Hence

6 |0 1/2 1
Ip | TpAr | N(Tp+ Tp)At | Tpit

We have highlighted the following values of integral 7, if 8 = 0 the tem
perature at (old) time level 7 is used; if 6 = 1 the temperature at new time
level 1 + At is used; and finally if 6 = 1/2, the temperatures at 7 and ¢ + Ar
are equally weighted.

Using formula (8.8) for 7}, and T} in equation (8.7), and dividing by AA¢
throughout, we have

p{ T Tﬁ] e e{kg(n— Tr) kol T m]

At 5x 'PE 6x wp

+SAv  (8.9)

- 9{/@@— T (T}~ Tfn] g

Ok py; O yyp

which may be rearranged to give
Ax k, k.,
pc—+ 0| —+ Tp
Ar 5xPE 5xWP

= 5165 [0T:+(1-0)Tg + ;”’ [6Ty+ (1 =0T}

Xpr: Xwp

k. —(1-0) ky

Opy Xwp

A _
+[pt‘zx—(1 ~ 9 }T£+SAx (8.10)
A

Now we identify the coefficients of 7} and T} as ay and a; and write
equation (8.10) in the familiar standard form:

+lab— (1~ O)ay—(1 - OaglTh+b @.11)

where

| ap=0(ay+ap)+ap |
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8.21

and
. Ax
ap=pc—
r=p At
with
1277 arp b
k k -
k 2 SAx
Oyyp Oxpy;

The exact form of the final discretised equation depends on the value of 6.
When 6 is zero, we only use temperatures 75, 7}, and 77 at the old time
level 7 on the right hand side of equation (8.11) to evaluate 7 at the new time
and the resulting scheme is called explicit. When 0 < 8 < 1 temperatures at
the new time level are used on both sides of the equation and the resulting
schemes are called implicit. The extreme case of 8 = 1 is termed fully
implicit and the case corresponding to 6 = 1/2 is called the Crank—
Nicolson scheme (Crank and Nicolson, 1947).

Explicit scheme
In the explicit scheme the source term is linearised as 4 = .S, + 5,75. Now

the substitution of 8= 0 into (8.11) gives the explicit discretisation of the
unsteady conductive heat transfer equation

| apTp=ayThy+ agTh+[ap— (ay+ap— S)TH+S, (8.12)
where
and
) Ax
ap=pc—
rep At
Ay ar
k/]) k€
6xWP 6xPE

The right hand side of equation (8.12) only contains values at the old time
step so the left hand side can be calculated by forward marching in time. The
scheme is based on backward differencing and its Taylor series truncation
error accuracy is first-order with respect to time. As explained in Chapter 5,
all coefficients need to be positive in the discretised equation. The coefficient
of T may be viewed as the neighbour coefficient connecting the values
at the old time level to those at the new time level. For this coefficient to be
positive we must have ap — a;y — ap > 0. For constant 4 and uniform grid
spacing, Oxpp = Oxyp = Ax, this condition may be written as
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8.2.2

Ax 2k

ptE > E (8133)
or
(Av)y’
At < pe " (8.13b)

This inequality sets a stringent maximum limit to the time step size and rep-
resents a serious limitation for the explicit scheme. It becomes very expen-
sive to improve spatial accuracy because the maximum possible time step
needs to be reduced as the square of Ax. Consequently, this method is not
recommended for general transient problems. Explicit schemes with greater
formal accuracy than the above one have been designed. Examples are the
Richardson and DuFort—Frankel methods, which use temperatures at more
than two time levels. These methods also have fewer stability restrictions
than the ordinary explicit method. Details of such schemes can be found in
Abbot and Basco (1990), Anderson ez a/ (1984) and Fletcher (1991). Never-
theless, provided that the time step size is chosen with care, the explicit
scheme described above is efficient for simple conduction calculations. This
will be illustrated through an example in section 8.3.

Crank—Nicolson scheme
The Crank—Nicolson method results from setting 8= 1/2 in equation (8.11).

The source term is linearised as b = S, + %S pTp+ %S pT5. Now the discre-
tised unsteady heat conduction equation is

Ty+ Ty Ty+Tj
ﬂPTP=ﬂE|:u:| + dwr[u}

2 2
arp Ay 1
+lap————|Tp+S,+=S,T; 8.14
[” 2 2} 27 19
where
1 ) 1
aP:E(a"V+aE)+dP_ESf’
and
) Ax
ap=pc—
P=pP AL
Ay ar
k, k,
an/]; 5xPE
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8.2.3

Since more than one unknown value of 7 at the new time level is present
in equation (8.14) the method is implicit, and simultaneous equations for
all node points need to be solved at each time step. Although schemes with
% < 6 <1, including the Crank—Nicolson scheme, are unconditionally stable
for all values of the time step (Fletcher, 1991), it is more important to ensure
that all coefficients are positive for physically realistic and bounded results.
This is the case if the coefficient of 7' satisfies the following condition:

ap+ ay
ﬂ;{%}

which leads to

A 2
Ar< pKT" (8.15)

This time step limitation is only slightly less restrictive than (8.13) associated
with the explicit method. The Crank—Nicolson method is based on central
differencing and hence it is second-order accurate in time. With sufficiently
small time steps it is possible to achieve considerably greater accuracy than
with the explicit method. The overall accuracy of a computation depends
also on the spatial differencing practice so the Crank—Nicolson scheme is
normally used in conjunction with spatial central differencing.

The fully implicit scheme

When the value of @is set equal to 1 we obtain the fully implicit scheme. Now
the source term is linearised as b = .S, + SpTp. The discretised equation is

| ﬂPTP=dH/TWJF ﬂETEJFﬂI”)T][; +Su (8.16)
where
| ap=ap+ay+ap—S, |
and
b= p Ax
ap= pPc—
At
with
aw ag
k., k,
Oxyp Oxpy

Both sides of the equation contain temperatures at the new time step, and
a system of algebraic equations must be solved at each time level (see
Example 8.2). The time marching procedure starts with a given initial field
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lllustrative
examples

of temperatures 7'°. The system of equations (8.16) is solved after selecting
time step Az. Next the solution 7 is assigned to 7 and the procedure is
repeated to progress the solution by a further time step.

It can be seen that all coefficients are positive, which makes the implicit
scheme unconditionally stable for any size of time step. Since the accuracy of
the scheme is only first-order in time, small time steps are needed to ensure
the accuracy of results. The implicit method is recommended for general-
purpose transient calculations because of its robustness and unconditional
stability.

We now demonstrate the properties of the explicit and implicit discretisa-
tion schemes by means of a comparison of numerical results for a one-
dimensional unsteady conduction example with analytical solutions to
assess the accuracy of the methods.

A thin plate is initially at a uniform temperature of 200°C. At a certain time
¢t =0 the temperature of the east side of the plate is suddenly reduced to 0°C.
The other surface is insulated. Use the explicit finite volume method in con-
junction with a suitable time step size to calculate the transient temperature
distribution of the slab and compare it with the analytical solution at time
(1) t=40s, (i1) = 80 s and (iii) # = 120 s. Recalculate the numerical solution
using a time step size equal to the limit given by (8.13) for 7 =40 s and com-
pare the results with the analytical solution. The data are: plate thickness
L =2 cm, thermal conductivity #=10 W/m.K and pc = 10 x 10° J/m? K.

The one-dimensional transient heat conduction equation is

a o or
o _9f,oT 8.17
P ax[ 8x] (8.17)

and the initial conditions are
T=200atr=0
and the boundary conditions are

T
a—=Oatx=0,t>0
X
T=0atx=L,r>0
The analytical solution is given in Ozisik (1985) as

n+l

do t) 42( D exp(—wlﬁt) cos(4,x) (8.18)

2n—1
where A4, = @n=Dm

and = k/pc

The numerical solution with the explicit method is generated by dividing
the domain width Z into five equal control volumes with Ax = 0.004 m. The
resulting one-dimensional grid is shown in Figure 8.2.
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Figure 8.2 Geometry for
Example 8.1
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The discretised form of governing equation (8.17) for an internal control
volume using the explicit method is given by (8.12). Control volumes 1 and
5 adjoin boundaries, so the links are cut in the direction of the boundary and
the boundary fluxes are included in the source terms. At the control volume
1, the west boundary is insulated: hence the flux across that boundary is zero.
We modify equation (8.9) where the physics can be most easily discerned.
The discretised equation at node 1 becomes

oo L=

Ax = {i(T,g— T;;)} -0 (8.19)
Ar

Ax

For time # > 0, the temperature of the east boundary of control volume 5 is
constant (say 7). The discretised equation at node 5 becomes

pchx = k
At Ax/2

k
(T~ Tﬂ)} - {A—(Tﬁ - Tﬂ,/)} (8.20)
X

All discretised equations can now be written in standard form:

apTp=ayTiy+apTi+[ap—(aw+aplTh +S, (8.21)
where
) Ax
ap=ap=pc A
and
Node ay ag S,
1 0 k/Ax 0
2,3, 4 k/Ax k/Ax 0
2k
5 k/Ax 0 — (T = T%)
Ax

The time step for the explicit method is subject to the condition that

2

Ar< LG
2k
1 5(0.004)?
As < 0% 10°(0.004)
2x10

At<8s



8.3 ILLUSTRATIVE EXAMPLES 251

Table 8.1
Time

t=0s

t=2s

1=4s

Let us select A =2 s. Substituting numerical values we have

ko100
Ax  0.004

0.004 — 20000

A
pe=t =10 10° x
At

After substitution of numerical values and some simplification the discretisa-
tion equations for the various nodes are

Node 1: 2007, =25T4+ 1757}
Nodes 2—4:  2007T,=25T},+ 25T4+ 1507} (8.22)
Node 5: 2007, = 25T}, + 125T%

Starting with the initial condition where all the nodes are at a temperature
of 200°C, the solution at each time step is obtained using equations (8.22).
Although the calculations are not complicated, their number is large and
they are most effectively carried out by a computer program. Table 8.1 gives
a sample of the calculations for the first two time steps.

Specimen calculations for the explicit method

Node 1
T9=200

20071 =25 x 200
+ 175 x 200

T =200

20072 =25 x 200
+ 175 x 200

T3 =200

Node 2 Node 3 Node 4 Node 5

T9=200 T9=200 T9 =200 T9=200

20075 =25 x 200 20074 = 25 x 200 2007 =25 % 200 20071 =25 x 200
+25 %200 +25 %200 +25 %200 + 125 % 200
+ 150 x 200 + 150 x 200 + 150 x 200

T} =200 T} =200 T} =200 T =150

20073 =25 x 200 2007% =25 x 200 20072 =25 x 200 2007% =25 % 200
+25x200 +25x%x200 +25x 150 + 125 % 150
+ 150 x 200 + 150 x 200 + 150 x 200

T3%=200 T% =200 T3=193.75 T:=118.75

Note: Subscripts denote the node number, superscripts denote the time step

Table 8.2 shows the results for 10 consecutive time steps and Table 8.3
shows the numerical and analytical results at times 40, 80 and 120 s. As can
be seen from the error analysis, the results are in good agreement with the
analytical solution. I'igure 8.3 shows the comparison in a graphical form.

Figure 8.4 shows the solution for time 7 =40 s with a time step of 8 s. The
previous result with a step size of 2s and the exact solution are also shown for
comparison. We conclude that a time step equal to the limiting value of 8 s
gives a very inaccurate and unrealistic numerical solution that oscillates
about the exact solution.
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Table 8.2 Results for Example 8.1 (explicit method)

Time
step Time (s) x = 0.0
0 0 200
1 2 200
2 4 200
3 6 200
4 8 200
5 10 199.98
6 12 199.94
7 14 199.83
8 16 199.65
9 18 199.37
10 20 198.97
Table 8.3
Time = 40 s

Node Numerical Analytical

1 188.64
2 176.41
3 148.29
4 100.76
5 35.94

188.39
175.76
147.13
99.50
35.38

Figure 8.3 Comparison of

numerical and analytical

solutions at different times

Node number

1 2 3 4 5
x=0.002 x=0.006 «x=00 x=0014 «x=0.06 «=0018
200 200 200 200 200 200
200 200 200 200 150 0
200 200 200 193.75 118.75 0
200 200 199.21 185.16 98.43 0
200 199.9 197.55 176.07 84.66 0
199.98 199.62 195.16 167.33 74.92 0
199.94 199.11 192.24 159.26 67.74 0
199.83 198.35 188.98 151.94 62.24 0
199.65 197.36 185.52 145.36 57.89 0
199.37 196.17 181.98 139.45 54.35 0
198.97 194.79 178.44 134.12 51.40 0
Time = 80 s Time = 120 s
% error Numerical Analytical % error Numerical Analytical % error
—0.13 153.33 152.65 —0.43 120.53 119.87 —0.55
—0.36 139.05 138.36 —0.50 108.82 108.21 —-0.56
—0.79 111.29 110.63 —-0.59 86.47 85.96 —0.58
-1.26 72.06 71.56 —0.69 55.58 55.25 —0.60
—-1.57 24.96 24.77 —-0.75 19.16 19.05 —0.59
200 ‘ ‘
t=40s
Time step 2 s
150 T B= ‘tiioj |
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Figure 8.4 Comparison of
results obtained using different
time step values
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Solve the problem of Example 8.1 again using the fully implicit method and
compare the explicit and implicit method solutions for a time step of 8 s.

Let us use the same grid arrangement as in Figure 8.2. The fully implicit
method describes events at internal control volumes 2, 3 and 4 by means of
discretised equation (8.16). Boundary control volumes 1 and 5 again need
special treatment. Upon incorporating the boundary conditions into equa-
tion (8.9) we get for node 1

Tp—T} k
pcqu =| —(T;=Tp| -0 (8.23)
At Ax
and for node 5
(Tp—Tp) k k
5 Ax = Tp—=Tp)| —| —(Tp—T 8.24
P Ar Ax/Z( 52— 1p) Ax( p—1Tw) (8.24)
The discretised equations are written in standard form:
ﬂPTP = d”/TWJF ﬂETE + (l;;T[{; + S” (8.25)
where
ap = ﬂ”/"l' [lE+ ﬂ;))_SP
and
. Ax
ap=pc—
P=p Ar

and
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Table 8.4
Time = 40 s
Node Numerical Analytical
1 187.38 188.38
2 176.28 175.76
3 150.04 147.13
4 103.69 99.50
5 37.51 35.38

Node ay ag Sp S,
1 0 k/Ax 0 0
2,3,4 k/Ax k/Ax 0 0
2k 2k
5 k/Ax 0 -— —T5
Ax Ax

Although the implicit method permits large values for the time step Az, we
will use reasonably small time steps of 2 s to ensure good accuracy. The grid
spacing and other data are as before so again we have

k 10

— = ———=2500
Axr 0.004

0.004 — 20000

A
pc—x =10 x 10° x
At

After substitution of numerical values and the necessary simplification the
discretised equations for the various nodes are

Node 1: 225T,=25T; + 2007}
Nodes 2—4:  250Tp=25T} + 25T+ 2007
Node 5: 275Tp= 25T+ 20074 + 507

Noting that 7 = 0, the set of equations to be solved at each time step is

25 =25 0 0 0l[7y] [2007y

25 250 =25 0 oO||7,| |2007
0 -25 250 -25  Of| 73| =]|2007%¢ (8.26)
0 0 -25 250 -25||7,| 20077
0 0 0 -25 275|715 |2007¢

The matrix form emphasises that the equations for each point contain
unknown neighbouring temperatures. The explicit scheme involves a
straightforward evaluation of a single algebraic equation to find each new
nodal temperature, but the fully implicit method requires the (more expen-
sive) solution of system (8.26) at each time level. The values of temperature
at the previous time level are used to calculate the right hand side. Table 8.4
and Figure 8.5 show that the numerical results again compare favourably
with the analytical solution.

Time = 80 s Time = 120 s
% error Numerical Analytical % error Numerical Analytical % ervor
0.51 153.72 152.65 —-0.70 121.52 119.87 -1.42
-0.29 139.79 138.36 —-1.03 109.78 108.21 -1.24
-1.97 112.38 110.63 —1.57 87.33 85.96 -1.59
—4.20 73.09 71.56 -2.13 56.20 55.25 -1.71
—6.02 25.38 24.77 —2.46 19.39 19.05 -1.78
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Figure 8.5 Comparison of
numerical results with the
analytical solution (implicit
method)

Figure 8.6 Comparison of
implicit and explicit solutions
for Ar=8s
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In Figure 8.6 we give the solution at 7 = 40 s obtained using the implicit
and explicit method with a time step of 8 s along with the analytical solution.
Whereas the explicit method gives unrealistic oscillations at this step size,
the implicit method gives results that are in reasonable agreement with
the exact solution. This clearly illustrates a key advantage of the implicit
method, which tolerates much larger time steps. However, we stress that
good solution accuracy can, of course, only be achieved with small time
steps.

200 T
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- Time step 8 s
Implicit
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3
o .
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® 100 [—
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m Implicit method

for two- and
three-dimensional
problems

The fully implicit method is recommended for general-purpose CFD com-
putations on the grounds of its superior stability. We now quote its extension
to calculations in two and three space dimensions. Transient diffusion in
three dimensions is governed by

028 i{r@J L9 [r%] 9 [r@] s (8.27)
ot ox| Oox dy| dy dz| Oz

A three-dimensional control volume is considered for the discretisation. The
resulting equation is

apOp=ayPy+apPp+asds+aydy+agdp+ardr+apdp+S, (8.28)

where

ﬂP=dW+ﬂE+ﬂS+ﬂ]V+ﬂB+dT+ﬂ};_SP

ap=pc—-
P=pP Ar

The neighbouring coefficients are aj, ap in one-dimensional problems,
and ayy, ag, ag, ay in two and ayy, ap, ag, ay, ap, ap in three dimensions;
b=(S,+S,0p) is the linearised source. A summary of the relevant neighbour
coefficients is given below:

ay ar as an ap ar
r,A4, | I.A

1D - - — -
Oxyyp Oxpy
r,4, | T4, | Iid | T4,

2D - -
Owyyp Oxpy; Oysp Oypn

3D FWAW FeAe FXAS rnAn rbAb rtAt

Oxyyp Oxpp dysp Oypy Ozpp Ozpr

The following values for the volume and cell face areas apply in the three cases:

1D 2D 3D
AV Ax AxAy AxAyAz
A,=A, 1 Ay AyAz
A,=A, — Ax AxAz
A=A, - - AxAy
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Discretisation

of transient
convection—
diffusion equation

In the fully implicit discretisation approach outlined above for multi-
dimensional diffusion problems, the term arising from temporal discretisation
appears as (i) the contribution of a} to the central coefficient ap and (ii) the
contribution of @ @p as an additional source term on the right hand side. The
other coefficients are unaltered and are the same as in the discretised equa-
tions for steady state problems. Using this as a basis the discretised equations
for transient convection—diffusion equations are also simple to obtain. The
unsteady transport of a property ¢ is given by

ai(p(])) + div(pug) = div(T" grad ¢) + S, (8.29)
t

The hybrid differencing scheme was recommended in Chapter 5 on the
grounds of its stability as the preferred method for treatment of convection
terms, so here we quote the implicit/hybrid difference form of the transient
convection—diffusion equations.

Transient three-dimensional convection—diffusion of a general property ¢
in a velocity field u is governed by

00 , Apud) , Apvd) | Apwo)
ot o dy oz

:E(F%J +i{l"%] +2(F@J +.5 (8.30)
ox| ox | dy|l dy) dz| o=z

The fully implicit discretisation equation is

apPp=apyPy+ agPp+ asPs+ayy
+agdp+ardr+apdp+ S, (8.31)
where
ap=awy+ag+as+ay+ag+tar+ap+AF-Sp
with
. _ PrAV
ap=—"""
At
and
5AV=Su+Sp¢p

The neighbour coefficients of this equation for the hybrid differencing
scheme are as follows:
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In the above expressions the values of F and D are calculated with the fol-
lowing formulae:

Face » e s n b t
F (pu)pA, — (pu)A, — (po)A,  (pv), A,  (pw)d,  (pw).A,
FW Fe Fx Fn Fh I-‘t
D A, A, A, A, A, Al
Oyyp Opy Oysp Opy Ozpp Ozpr

The volumes and cell face areas given in section 8.4 apply here as well.

Other schemes such as linear upwind, QUICK or TVD may be incorpor-
ated into these equations by substituting the appropriate expressions for the
coefficients, as will be demonstrated in the following example.

m Worked example of transient convection—diffusion using QUICK differencing

Consider convection and diffusion in the one-dimensional domain sketched
in Figure 8.7. Calculate the transient temperature field if the initial temper-
ature is zero everywhere and the boundary conditions are ¢ =0 at v = 0 and
0¢/dx =0 at x = L. The data are L =1.5m, =2 m/s, p = 1.0 kg/m* and
I' = 0.03 kg/m.s. The source distribution defined by Figure 8.8 applies at
times ¢ > 0 with a =—-200, 5 = 100, x; = 0.6 m, x, = 0.2 m. Write a computer
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Figure 8.7

Figure 8.8 Geometry and
the source distribution for
Example 8.3

program to calculate the transient temperature distribution until it reaches a
steady state using the implicit method for time integration and the Hayase
et al. variant of the QUICK scheme for the convective and diffusive terms,
and compare this result with the analytical steady state solution.

u u=2.0m/s u
— - r —

| |

T 1
x=0 x=1L
=0 ¢/9x =0

S

ax+b

X1

Transient convection—diffusion of a property ¢ subjected to a distributed
source term is governed by
d d d(_ad

(P9) , (pu@:_[F _¢] s

(8.32)

ot ox ox| Ox

We use a 45-point grid to sub-divide the domain and perform all calculations
with a computer program. It is convenient to use the Hayase ez a/. formula-
tion of QUICK (see section 5.9.3) since it gives a tri-diagonal system of
equations which can be solved iteratively with the TDMA (see section 7.2).

The velocity is # = 2.0 m/s and the cell width is Ax = 0.0333 so F'= pu =
2.0 and D =T/Ax = 0.9 everywhere. The Hayase ¢ al. formulation gives ¢
at cell faces by means of the following formulae:

1
0.=p+ g(z‘/)E = 20p— ¢p) (8.33)

1
0, =0y + §(3¢P = 20w — Ouw) (8.34)

The implicit discretisation equation at a general node with Hayase e/ al’s
QUICK scheme is given by

g — 99Ax

1
Ar +Fe|:¢P+§(3¢E_2¢P_¢W):|

1
- Fm|: O+ 5(3 Op— 20y — ¢WW):|
=DJ(¢z— ¢p) — D, (®p — O1) (8.35)

The first and last nodes need to be treated separately. At control volume 1
the mirror node approach, introduced in section 5.9.1, can be used to create
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a west (/) node beyond the boundary at x = (). Since ¢, = 0 at this bound-
ary (A) the linearly extrapolated value at the mirror node is given by
— (8.36)
and the diffusive flux at the boundary by
o0 D¥*
T2 ==2990— 80, — ¢1) (8.37)
ox 3
A
where D¥=T"/Ax
The discretisation equation at node 1 may be written as
p(¢p — Pp)Ax 1
Tt B Gp (30— 0p) |~ Fady
At 8
D}
=D¢p— ¢p) - 7(9(1’1» =80, - ¢p) (8.38)
At the last control volume, the zero gradient boundary condition applies so
the diffusive flux through the boundary B equals zero and the value ¢ at the
boundary is equal to the upstream nodal value, i.e. ¢ = @p. The discretisa-
tion equation for control volume 45 becomes
(9p — 9p)Ax 1
PRer” 0908 +Fp0p— L, O+ < B0p = 20w — Gywy)
At 8
=0-D,(¢r— 9w) (8.39)
These discretisation equations (8.35), (8.37) and (8.40) are now cast in
standard form:
apPp=ayQy+agPp+apPp+S, (8.40)
with
dP:ﬂW+dE+d;’+(Fe_Fw)_SP
,_ PAx
ﬂ —
Y
and
Node ay ag Sp S,
D% 8 8 1
1 0 D,+— —| =Di+Fy =D + Fy |04+ —F0p—30)
3 3 3 8
1 1
2 D, +F, D, 0 ng(3¢p— ) +§Fe(¢W+ 2¢p = 30p)
1 1
3-44 D)., 3 17 D, 0 gFm(3¢P = 20w — Gww) + gFe(¢W+ 2¢p = 30%)
1
45 Dw+Fw 0 0 g w(3¢P_2¢W_¢WW)
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The discretisation equation for control volume 2 has been adjusted to take
into account the special expression that was used to evaluate the convective
flux through the cell face it has in common with control volume 1.

A time step Az = 0.01 s is selected, which is well within the stability limit
for explicit schemes, so we can look forward to reasonably accurate and
stable results with the implicit method. At any given time level substitution
of numerical values gives the coefficients summarised in Table 8.5.

Table 8.5
Node ay ap ap Total source Sp ap
1 0 1.2 333 4.4¢,+0.25(0p — 30) + 3.330p -44 893
2 29 09 333 0.25(5¢p— 3¢z +3.330p 0 7.13
3-44 29 09 333 025G5¢0p— @y — Oy —305) +3.330p 0 7.13
45 29 0 3.33  0.25(30p — 20y — Qyy) + 3.330p 0 6.23

Starting with an initial field of ¢p = 0 at all nodes, the set of equations
defined by the coefficients and source contributions in Table 8.5 is solved
iteratively until a converged solution ¢@p is obtained. Subsequently, the @p-
values at the current time level are assigned to ¢g and the solution proceeds
to the next time level. To monitor whether the steady state has been reached
we track the difference between old and new ¢p-values. When this attains a
magnitude less than a prescribed small tolerance (say 10~%) the solution is
regarded as having reached the steady state.

The analytical solution

To find the exact steady state solution of (8.32) its time derivative is set to
zero and the resulting ordinary differential equation is integrated twice with
respect to x. The even periodic extension of the source distribution on an
interval (—L, L) is represented by means of a Fourier cosine series, which
gives the forcing function in the differential equation. Under the given
boundary conditions the solution to the problem is as follows:

- - L . [ nmx
(D(x) = Cl + 61261A —%(Px + 1) - Edn[ﬁjlp SIH(T]
2
Y L N L Py | 1E (8.41)
L L L
pu a — nr )’
=— =0 L 24| 22
P= = CZ_PZePL+ Z{em cos(nn)/[P + [ 7 J ]
4 < )’
_ 0
Cl——C2+p+ nX{u,,/{P% (TJ }

with

and
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and

() + xp)(ax; + b) + b,
2L

2L ﬂ(xl +x2)+b nimx,
a, = Ccos
e’ ¥, L

axy+b ni(xy + x;)
—la+ cos
X L

The analytical and numerical steady state solutions are compared in
Figure 8.9. As can be seen, the use of the QUICK scheme and a fine grid for
spatial discretisation ensures near-perfect agreement.

ay =

Figure 8.9 Comparison of the 14 T T
numerical results with the

analytical solution Iy ]

6 \ .

QUICK numerical solution

™

Exact solution

| | | | | | |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance (m)

Solution
procedures for

unsteady flow

calculations

8.7.1 Transient SIMPLE

Algorithms such as SIMPLE, described in Chapter 6 for the calculation of
steady flows, may be extended to transient calculations. The discretised
momentum equations will now include transient terms formulated with the
procedure described in section 8.5. An additional term is also required in the
pressure correction equation. The continuity equation in a transient two-
dimensional flow is given by

9P, Apu) | Ap) _ (8.42)
ot ox dy
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8.7.2

The integrated form of this equation over a two-dimensional scalar control
volume becomes

(ppA—tpp) AV +[(pud), — (puAd),] + [(puAd), — (puA)] =0 (8.43)

The pressure correction equation is derived from the continuity equation
and should therefore contain terms representing its transient behaviour. For
example, the equivalent of pressure correction equation (6.32) for a two-
dimensional transient flow will take the form

argP1 7= Ay gDl g+ Ar-1 gP1-1.9+ Ar g1 Pl g1+ ar 7Pl 1 + b5 (8.44)
where
Ary=dpgtapyytapgatagg

and

(pp— pp)AV

bi 3= (pu*A); 73— (pu*A);1 7+ (pv*A); ;= (pv*A); 1y + Ar

with neighbour coefficients

ar,y are1,y arg-1 ar g+1

(pdA); 5 | (pdA);1 7| (pdA);; | (PdA); 11

The extension to three-dimensional flows includes the same extra term in the
source.

In transient flow calculations with the implicit formulation, the iterative
procedures described for steady state calculations employing SIMPLE,
SIMPLER or SIMPLEC are applied at each time level until convergence is
achieved. Figure 8.10 shows the algorithm structure.

The transient PISO algorithm

The PISO algorithm is a non-iterative transient calculation procedure. It
relies on the temporal accuracy gained by the discretisation practice, in
particular the operator splitting technique (Issa, 1986). In the transient
algorithm all time-dependent terms are retained in the momentum and con-
tinuity equations. This gives the following additional contributions to the
momentum and pressure correction equations in the transient form of PISO:

* add ap= ppAl/ At to the central coefficients of the discretised - and
v-momentum equations (6.12)—(6.13) and (6.52)—(6.53) respectively

e add apup and apvp to the source terms of the #- and v-momentum equations

* add (pp— pp)AV/ At to the source term of both the first and second
discretised pressure correction equations

Otherwise the basic equations and steps involved in the transient version of
the PISO algorithm are the same as those set out in section 6.8. The PISO
procedure explained there is carried out at each time level to calculate the
velocity and pressure fields. Issa (1986) shows that the temporal accuracy
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Figure 8.10 Transient flow ( START )

SIMPLE algorithm and its
variants

[

| Initialise u, v, p and ¢ |

/

| Set time step At |

u, v, pand ¢

Let t=t+ At
u=u,v°=v, p°=p, ¢°=¢

SIMPLE or SIMPLER or SIMPLEC
(section 6.4) (section 6.6) (section 6.7)
Iteration process until convergence

No

achieved by the predictor—corrector process for pressure and momentum is
third-order (A+?) and fourth-order (At*) respectively. Therefore, the pressure
and velocity fields obtained at the end of the PISO process with a suitably
small time step are considered to be accurate enough to proceed to the next
time step immediately and the algorithm is non-iterative.

Since the algorithm relies on the higher-order temporal accuracy gained
by the splitting technique, small time steps are recommended to ensure accur-
ate results. If necessary, a higher-order temporal differencing scheme may be
incorporated in the algorithm for improved performance, such as a second-
order implicit scheme that uses three time levels # + 1, #, n — 1 at intervals
of Ar. We may use the gradient at time level z of the quadratic profile passing
through 7,,,,, T, and T,,_; to evaluate d7/dt. The resulting time discretisa-
tion with second-order accuracy is

ar 1

=BT AT T (8.45)

Incorporation of the scheme to formulate discretised equations is relatively
straightforward. The values at time level » and # — 1 known from previous
time steps are treated as source terms and are placed on the right hand side
of the equation.
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Steady
state calculations
using the pseudo-

transient approach

A brief
note on other
transient schemes

The PISO method has yielded accurate results with sufficiently small
time steps (see e.g. Issa et al, 1986; Kim and Benson, 1992). Since the PISO
method does not require iterations within a time level it is less expensive than
the implicit SIMPLE algorithm. CFD simulation of flow and heat transfer
in internal combustion engines requires transient calculations that are
inevitably time consuming and expensive, especially with three-dimensional
geometries. Ahmadi-Befrui ez a/ (1990) have presented a version of PISO
known as EPISO suitable for predicting engine flows.

It was mentioned in Chapter 6 that under-relaxation is necessary to stabilise
the iterative process of obtaining steady state solutions. The under-relaxed
form of the two-dimensional #-momentum equation, for example, takes the
form

a;, a; o
olc_]ui'y =Xyttt (P11, 7= prpAig+ big+ {(1 - Otu)(;—]} u(j.’] ) (8.46)
Compare this with the transient (implicit) z-momentum equation
pl AV pLAV
[”i,] + lZ; W, 5= Sty + (i = pr DA g+ b g+ —L—u! 5 (8.47)

In equation (8.46) the superscript (z — 1) indicates the previous iteration
and in equation (8.47) superscript o represents the previous time level. We
immediately note a clear analogy between transient calculations and under-
relaxation in steady state calculations. It can be easily deduced that

&g _ PLAY

1-—
(I-a) n

(8.48)

u

This formula shows that it is possible to achieve the effects of under-relaxed
iterative steady state calculations from a given initial field by means of a
pseudo-transient computation starting from the same initial field by taking
a step size that satisfies (8.48). Alternatively steady state calculations may be
interpreted as pseudo-transient solutions with spatially varying time steps.
The pseudo-transient approach is useful for situations in which governing
equations give rise to stability problems, e.g. buoyant flows, highly swirling
flows and compressible flows with shocks.

Other transient flow calculation procedures such as MAC (Harlow and Welch,
1965), SMAC (Amsden and Harlow, 1970), ICE (Harlow and Amsden, 1971)
and ICED-ALE (Hirt ef al., 1974) are available to the user. The calculation
methodology of this class of schemes includes the direct solution of a Poisson
equation for the pressure as a central feature of the algorithm. The overall
calculation process is different from the techniques explained here and the
interested reader is referred to cited references for more details. The well-
known engine prediction code KIVA uses the ICED-ALE method as the
core solution procedure. The method has been shown to be reliable for pre-
dicting practical internal combustion engine flows and is widely used for
internal combustion engine research (see Amsden ez al., 1985, 1989; Zellat
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Table 8.6

Scheme

Explicit

Crank—Nicolson

Implicit

Summary

et al., 1990; Blunsdon ez al., 1992, 1993). Kim and Benson (1992) compared
the PISO method with the SMAC algorithms for the prediction of unsteady
flows and reported that SMAC was more efficient, faster and more accurate
than PISO. The MAC/ICE class of methods are, however, mathem-
atically complex and not widely used in general-purpose CFD procedures.

Techniques for the solution of transient flow problems were developed
by considering the unsteady diffusion and convection—diffusion equations.
We distinguish between the following time-stepping algorithms for the
computation of a variable ¢ at a new time level:

* explicit — uses only ¢ from the previous time level

* Crank-Nicolson — uses a mixture of ¢ from the previous time level and
¢ at a new time level

* implicit — uses mainly surrounding @-values at the new time level

The stability and accuracy properties of each of the schemes are given in
Table 8.6 and described below.

Stability Accuracy Positive coefficient criterion

Conditionally stable First-order At

Unconditionally stable Second-order Ar <

2
Py
r

p(Ax)?
T

Unconditionally stable First-order Always positive

* For robust general-purpose transient CFD calculations the implicit
scheme is recommended. The unconditional stability of this and the
Crank—Nicolson scheme is, however, bought at the price of having to
solve a system of equations at each time level. In two- and three-
dimensional calculations this requires intermediate iterative stages.

e The (fully implicit) transient discretisation equations for diffusion
and convection—diffusion are practically the same as those of steady
problems apart from minor changes to the central coefficient ap and
the source term 4p:

al=a¥+apand bY) = b9+ app with ap= ppAV/AL

The superscript (¢) refers to the transient form and (s) to the steady form.

* In addition to the above modifications to the momentum equations in
SIMPLE its pressure correction equation also requires an addition of
(pp— pp)AV/ At to the source term bp. The time-stepping procedure
creates an extra loop outside the main iteration cycles of SIMPLE.

e The time accuracy of the second corrector step of PISO makes it very
attractive for non-iterative transient calculations.

* The similarity between the under-relaxed iterative solution and the
pseudo-transient solution was highlighted. The pseudo-transient
strategy has been widely used to combat stability problems in flows
with complex physics.



Chapter nine Implementation of boundary

conditions

m Introduction ) . .
All CFD problems are defined in terms of initial and boundary conditions.
It is important that the user specifies these correctly and understands their
role in the numerical algorithm. In transient problems the initial values of all
the flow variables need to be specified at all solution points in the flow domain.
Since this involves no special measures other than initialising the appropriate
data arrays in the CFD code, we do not need to discuss this topic further.
The present chapter describes the implementation in the discretised equations
of the finite volume method of the most common boundary conditions:

e inlet

* outlet

o wall

e prescribed pressure

* symmetry

 periodicity (or cyclic boundary condition)

In constructing a staggered grid arrangement we set up additional nodes
surrounding the physical boundary, as illustrated in Figure 9.1. The calcu-
lations are performed at internal nodes only (/ =2 and 7 = 2 onwards). Two
notable features of the arrangement are (i) the physical boundaries coincide
with scalar control volume boundaries and (ii) the nodes just outside the inlet
of the domain (along 7/ =1 in Figure 9.1) are available to store the inlet con-
ditions. This enables the introduction of boundary conditions to be achieved
with small modifications to the discretised equations for near-boundary
internal nodes.

In Chapters 4 and 5 we saw that boundary conditions enter the discretised
equations by suppression of the link to the boundary side and modification
of the source terms. The appropriate coefficient of the discretised equation
is set to zero and the boundary side flux — exact or linearly approximated —
is introduced through source terms .S, and .S,. We will frequently make use
of this device to fix the flux of a variable at a cell face, but we also need a tech-
nique to cope with situations where we need to set the value of a variable at
a node. This can be done by introducing two overwhelmingly large source
terms into the relevant discretised equation. For example, to set the variable
¢ at node P to a value ¢, the following source term modification is used in
its discretised equation:

S,=-10" and S,=10"¢, 9.1)
With these sources added to the discretised equation we have
(ap+10)0,= 5 4,9, + 106, 9.2)
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Figure 9.1 The grid
arrangement at boundaries

Inlet boundary
conditions
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at a boundary
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The actual magnitude of the number 10% is arbitrary as long as it is very
large compared with all coefficients in the original discretised equation.
Thus if ap and a,, are all negligible the discretised equation effectively
states that

Op = 9.3)

which fixes the value of ¢ at P.

In addition to setting the value of a variable at internal nodes this
treatment is also useful for dealing with solid obstacles within a domain by
taking ¢, = 0 (or any other desired value) at nodes within a solid region. The
system of discretised flow equations can be solved as normal without having
to deal with the obstacles separately.

Details of the modifications needed to implement the listed boundary
conditions will be further explained in the text to follow. We make the
following assumptions: (i) the flow is always subsonic (M < 1), (ii) k—€
turbulence modelling is used, (iii) the hybrid differencing method is used
for discretisation and (iv) the SIMPLE solution algorithm is applied.

The distribution of all flow variables needs to be specified at inlet bound-
aries. Here we discuss the case of an inlet perpendicular to the x-direction.
Figures 9.2 to 9.5 show the grid arrangement in the immediate vicinity of an
inlet for #- and v-momentum, scalar and pressure correction equation cells.
The flow direction is assumed to be broadly from the left to the right in the
diagrams. As mentioned, the grid extends outside the physical boundary and
the nodes along the line /=1 (or 7 = 2 for u-velocity) are used to store the inlet
values of flow variables (indicated by w,,, v;,, @, and p/,). Just downstream of
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Figure 9.2 u-velocity cell at the
inlet boundary

Figure 9.3 ov-velocity cell at the
inlet boundary
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this extra node we start to solve the discretised equation for the first internal
cell, which is shaded.

The diagrams also show the ‘active’ neighbours and cell faces which are
represented in the discretised equation for the shaded cell assuming that
hybrid differencing is used. For instance, in Figure 9.2 the active neighbour
velocities are given by means of arrows and the active face pressures by open
circles. The figures indicate that all links to neighbouring nodes remain
active for the first u-, v- and @-cell, so to accommodate the inlet boundary
condition for these variables it is unnecessary to make any modifications to
their discretised equations. Figure 9.4 shows that the link with the boundary
side is cut in the discretised pressure correction equation by setting the
boundary side (west) coefficient ;; equal to zero. Since the velocity is known
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Figure 9.4 Pressure correction
cell at the inlet boundary

Figure 9.5 Scalar cell at the

inlet boundary
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at inlet, it is also not necessary to make a velocity correction here and hence
we have

wh = uy 9.4)

in the source associated with discretised pressure correction (6.32).

Reference pressure

The pressure field obtained by solving the pressure correction equation does
not give absolute pressures (Patankar, 1980). It is common practice to fix the
absolute pressure at one inlet node and set the pressure correction to zero at
that node. Having specified a reference value, the absolute pressure field
inside the domain can now be obtained.
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M Outlet boundary

conditions

Figure 9.6 u-control volume at
an outlet boundary

Estimation of k and ¢ at inlet boundaries

The most accurate simulations can only be achieved by supplying measured
inlet values of turbulent kinetic energy £ and dissipation rate €. However, if
we perform outline design calculations such data are often not available. In
this case commercial CFD codes often estimate £ and € with the approximate
formulae described in section 3.7.2, based on a turbulence intensity — typically
between 1% and 6% — and a length scale.

Inlet boundaries perpendicular to the y-direction

The above procedure is, of course, not restricted to an inlet boundary per-
pendicular to the x-direction. When we have an inlet perpendicular to the
y-direction the velocity component v, for which inlet value v,, is available at
7 = 2, takes the place of velocity component # and the calculations start
at j = 3. The inlet values of the remaining variables are stored at 7 =1 and
solution starts at ¥ = 2. They are otherwise treated as above.

Outlet boundary conditions may be used in conjunction with the inlet
boundary conditions of section 9.2. If the location of the outlet is selected far
away from geometrical disturbances the flow eventually reaches a fully devel-
oped state where no change occurs in the flow direction. In such a region we
can place an outlet surface and state that the gradients of all variables (except
pressure) are zero in the flow direction. It is normally possible to make a
reasonably accurate prediction of the flow direction far away from obstacles.
This gives us the opportunity to locate the outlet surface perpendicular to
the flow direction and take gradients in the direction normal to the outlet
surface equal to zero.

Figures 9.6 to 9.9 show grid arrangements near such an outlet boundary.
We have shaded the last cells upstream of the outlet, for which a discretised
equation is solved, and, as before, highlighted the active neighbours and faces.
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Figure 9.7 v-control volume at
an outlet boundary

Figure 9.8 p’-control volume at
an outlet boundary
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If NI is the total number of nodes in the x-direction, equations are solved
for cells up to I (or 7) = NI — 1. Before the relevant equations are solved the
values of flow variables at the next node (N7), just outside the domain, are
determined by extrapolation from the interior on the assumption of zero gradi-
ent at the outlet plane. For the v- and scalar equations this implies setting
Onr,; = Onir,jand Qny 5= Py 5 Figures 9.7 and 9.9 show that all links are
active for these variables so their discretised equations can be solved as normal.

Special care should be taken in the case of the u-velocity. Calculation of u
at the outlet plane : = NI by assuming a zero gradient gives

UNT g = UNI-1, 7 9.5)

During the iteration cycles of the SIMPLE algorithm there is no guarantee
that these velocities will conserve mass over the computational domain as a
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Figure 9.9 Scalar cell at an
outlet boundary
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whole. To ensure that overall continuity is satisfied the total mass flux going
out of the domain (M,,,) is first computed by summing all the extrapolated
outlet velocities (9.5). To make the mass flux out equal to the mass flux M,,
coming into the domain all the outlet velocity components uy; ; of (9.5) are
multiplied by the ratio M;,/M,,,. Thus the outlet plane velocities with the
continuity correction are given by

_ Min
Unpg=Uni-, 5 X (9.6)
Mout
These values are subsequently used as the east neighbour velocities in the
discretised momentum equations for uy,_; .

The velocity at the outlet boundaries is not corrected by means of
pressure corrections. Hence in the discretised p’-equation (6.32) the link
to the outlet boundary side (east) is suppressed by setting a; = 0. The
contribution to the source term in this equation is calculated as normal,
noting that ¥ = u; no additional modifications are required.

The wall is the most common boundary encountered in confined fluid flow
problems. In this section we consider a solid wall parallel to the x-direction.
Figures 9.10 to 9.12 illustrate the grid details in the near-wall regions for the
u-velocity component (parallel to the wall), for the v-velocity component
(perpendicular to the wall) and for scalar variables.

The no-slip condition (z = v = 0) is the appropriate condition for the
velocity components at solid walls. The normal component of the velocity
can simply be set to zero at the boundary (7 = 2), and the discretised momen-
tum equation at the next v-cell in the flow (7 = 3) can be evaluated without
modification. Since the wall velocity is known it is also unnecessary to
perform a pressure correction here. In the discretised p’-equation (6.32) for
the cell nearest to the wall the wall link (south) is, therefore, cut by setting
ag =0, and we take v¥ = v, in its source term.
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For all other variables special sources are constructed, the precise form
of which depends on whether the flow is laminar or turbulent. In Chapter 3
we studied the multi-layered structure of the near-wall turbulent boundary
layer. Immediately adjacent to the wall we have an extremely thin viscous
sub-layer followed by the buffer layer and the turbulent core. The number
of mesh points required to resolve all the details in a turbulent boundary
layer would be prohibitively large, and normally we employ the ‘wall func-
tions’ introduced in Chapter 3 to represent the effect of the wall boundaries.

The implementation of wall boundary conditions in turbulent flows starts
with the evaluation of

v \ip '

where Ay, is the distance of the near-wall node P to the solid surface (see
Figure 9.10). A near-wall flow is taken to be laminar if y* < 11.63. The wall
shear stress is assumed to be entirely viscous in origin. If y* > 11.63 the flow
is turbulent and the wall function approach is used. The criterion places the
changeover from laminar to turbulent near-wall flow in the buffer layer
between the linear and log-law regions of a turbulent wall layer. The exact
value of y* = 11.63 is the intersection of the linear profile and the log-law, so
it is obtained from the solution of

1
V" =—In(Ey") (9.8)
K

In this formula x is von Karman’s constant (0.4187) and £ is an integration
constant that depends on the roughness of the wall (see section 3.4.2). For
smooth walls with constant shear stress £ has a value of 9.793.

Laminar flow/linear sub-layer

The wall conditions described under this heading apply in two cases: for
solutions of (1) laminar flow equations and (ii) turbulent flow equations when
9" < 11.63. In both cases the near-wall flow is taken to be laminar. The wall
force is entered into the discretised #-momentum equation as a source. The
wall shear stress value is obtained from

T, = Sz 9.9
it 9.9)
where up is the velocity at the grid node. Figure 9.13 illustrates that this
formula is based on the assumption that the velocity varies linearly with
distance from the wall in a laminar flow.
The shear force F\ is now given by

Fc = _TmACL'H
u
=—p-— A (9.10)
Ayp
where A, is the wall area of the control volume. The appropriate source
term in the #-equation is defined by
u
Sp=——Acu (9.11)
Ayp
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Figure 9.13 Velocity
distribution at a wall

Velocity
profile

‘ o
5

Ayp

Heat transfer from a wall at fixed temperature 7, into the near-wall cell in
laminar flow is calculated from

Cp(Tp—-T,
o= BE T ©0.12)
o Ay

where C) is the specific heat of the fluid, 7 is the temperature at the node P
and o'is the laminar Prandtl number. It is easy to see that the corresponding

source terms for the temperature equation are given by

C CpT,

Sp= _E_PA(M and S, = Bor
oAyp o Ayp

A fixed heat flux enters the source terms directly by means of the normal
source term linearisation:

4.=S,+5S,Tp 9.14)

For an adiabatic wall we have, of course, S, =.5,=0.

Ace (9.13)

Turbulent flow

If the value of y* is greater than 11.63 node P is considered to be in the
log-law region of a turbulent boundary layer. In this region wall function
formulae (3.49) and (3.50) associated with the log-law are used to calculate
shear stress, heat flux and other variables. The formulae have been applied
in many different ways but Table 9.1 gives the optimum near-wall relation-
ships from extensive computing trials.

These relationships should be used in conjunction with the universal
velocity and temperature distributions for near-wall turbulent flows in

(3.49)—(3.50):
ut = l1n(Ey+) (3.49)
K

and

T+ = o'T{m + p{%ﬂ (3.50)
T
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Table 9.1 Near-wall relationships for the standard k—¢& model

o Momentum equation tangential to wall

wall shear stress 7, = pCy/*k} 2up/u* (9.15)

wall force F, = =7, Ac,y=—(pC} ki up/u*) Acy, (9.16)
e Momentum equation normal to wall

normal velocity = 0
o Turbulent kinetic energy equation

net k-source per unit volume = (T,up — pC/*k ut)AV/Ayp  (9.17)
e Dissipation rate equation

set nodal value &, = C‘z/4k})/2/(KAyp) (9.18)
o Temperature (or energy) equation

wall heat flux ¢, = ~CppC L kY (Tp— T,)/ T* (9.19)

In these equations the values of k and £ are as given in (9.8), o7, is the
laminar (or molecular Prandtl number, 0y, is the turbulent Prandtl number
(= 0.9), and function P(o;,/0y,) is called the ‘pee-function’, which can be
evaluated using the following expression derived by Jayatilleke (1969):

0.75
Pl 2904 [ Z1|
O_T,z O-T,[

x 11+ 0.28 exp| —0.007| 224 (9.20)
O-T,t

In order of their appearance in Table 9.1 variables are treated as follows in
their discretised equations:

o u-velocity component parallel to the wall. The link with the wall (south) is
suppressed by setting ag = 0, and wall force F| from (9.16) is introduced
into the discretised #-equation as a source term, so

1/47,1/2
Sp=-PC ©9.21)
u+

e k-equation. The link at the boundary is suppressed; we set ag = 0.

In the volume source (9.17) the second term contains #°/2. This is
linearised as £5'/% . kp, where k¥ is the k-value at the end of the previous
iteration, which yields the following source terms .S, and .S, in the
discretised k-equation:

C3/4/€*1/2 +
—’)“A—””AV and Suz%m/ (9.22)
)P )P

S,=
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e g&equation. In the discretised &-equation the near-wall node is fixed to
the value given by (9.18) by means of setting the source terms .S, and .S,
as follows:

C[{‘l/4kl%’/2

S,=-10" and S,=
KAyp

x 10% (9.23)

o Temperature equation. The link with the wall is suppressed in the
T-equation by setting the boundary side coefficient ag to zero. The
wall heat flux is calculated using equation (9.19) and introduced by
means of the following source terms:

_ pCIREC PC K CoTun

Sp= TAce// and S, = T+ Acr (9.24)

A fixed heat flux enters the source terms directly by means of the normal
source term linearisation:

4,=5,+S,T (9.25)

For an adiabatic wall we have S, =5, =0, as before.

Rough walls

In the wall function approach described above, changeover from laminar to
turbulent flow as the distance from the wall increases was assumed to occur
at y*=11.63, which is the solution of equation (9.8) with £ =9.8. This cri-
terion applies to smooth walls; if walls are not smooth £ should be adjusted
accordingly and a new limiting value of y* would result. £ may be estimated
on the basis of measured absolute roughness values. Schlichting (1979),
among others, gives further details.

Moving walls

Note that it has been tacitly assumed that the wall is stationary. Wall move-
ment in the y-direction is felt by the fluid by a change in the wall shear stress.
Its value is adjusted by replacing velocity up by the relative velocity up— u
This modifies the laminar wall force formula (9.10) as follows:

wall

F= e ) (9.26)
Ayp

and the turbulent wall force formula (9.16) as

Cl/4/€1/2 _
Fs - _ P u ~p u(_:/ll’ umall) Acell (927)

The relevant source terms (9.11) and (9.21) are similarly adjusted.
Wall motion also alters the volume source term of the k-equations, which
becomes

[Tm(uP - uzva]l) - pcfl/4k%’/2u+]A V/A)/P (928)

It should be noted that the wall functions described above have been derived
on the basis of the following assumptions:
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The constant
pressure

boundary condition

Figure 9.14 p’—cell at an inlet

boundary

* the velocity is parallel to the wall and varies only in the direction normal
to the wall

* no pressure gradients in the flow direction

* no chemical reactions at the wall

* high Reynolds number

If any one of these assumptions does not hold, the accuracy of the predic-
tions using this wall function approach may be reduced or even seriously
compromised.

The constant pressure condition is used in situations where exact details of
the flow distribution are unknown but the boundary values of pressure are
known. Typical problems where this boundary condition is appropriate
include external flows around objects, free surface flows, buoyancy-driven
flows such as natural ventilation and fires, and also internal flows with
multiple outlets.

In applying the fixed pressure boundary the pressure correction is set to
zero at the nodes. The grid arrangement of the p’-cells near a flow inlet and
outlet is shown in Figures 9.14 and 9.15.
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A convenient way of dealing with a constant pressure boundary condition
is to fix pressure at the nodes just inside the physical boundary, as indicated
in the diagrams by solid squares. The pressure corrections are set to zero by
taking S, = 0.0 and S, = —10*, and the nodal pressure is set to the required
boundary pressure p;,. The u-momentum equation is solved from i = 3 and
v-momentum and other equations from /= 2 onwards. The main outstanding
problem is the unknown flow direction, which is governed by the conditions
inside the calculation domain. The u-velocity component across the domain
boundary is generated as part of the solution process by ensuring that con-
tinuity is satisfied at every cell. For example, in Figure 9.14 the values of #,
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Figure 9.15 p’-cell at an outlet

boundary
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and of v, and v, emerge from solving the discretised #- and v-momentum
equations inside the domain. Given these values we can compute u, by
insisting that mass is conserved for the p’-cell. This yields
_ (pud), — (poA) + (pu),
u, = (9.29)
(pA),
This implementation of the boundary condition causes the p’-cell nearest to
the boundaries to act as a source or sink of mass. The process is repeated for
each pressure boundary cell. Other variables such as v, T, k and € must be
assigned inflow values where the flow direction is nt0 the domain. Where the
flow is outwards their values just outside the domain may be obtained by
means of extrapolation (see section 9.3).

There are several variations that can be useful in practical circumstances.
Some codes apply (i) a condition at inlet that fixes the stagnation pressure of
the inlet flow just outside the domain (at = 1) instead of the static pressure
just inside the domain (at 7 = 2) and/or (ii) the extrapolation procedure at
outlets for all variables including .

The conditions at a symmetry boundary are: (i) no flow across the boundary
and (i1) no scalar flux across the boundary. In the implementation, normal
velocities are set to zero at a symmetry boundary, and the values of all other
properties just outside the solution domain (say / or i = 1) are equated to
their values at the nearest node just inside the domain (/ or i = 2):

$17= 025 (9.30)

In the discretised p’-equations the link with the symmetry boundary side is
cut by setting the appropriate coefficient to zero; no further modifications are
required.
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Periodic or
cyclic boundary
condition

Figure 9.16 An example of a
cyclic boundary condition

Potential pitfalls
and final remarks

Periodic or cyclic boundary conditions arise due to a different type of
symmetry in a problem. Consider for example swirling flow in the cylindrical
furnace shown in Figure 9.16. In the burner arrangement gaseous fuel is
introduced through six symmetrically placed holes and swirl air enters
through the outer annulus of the burner.

Fuel

+ , [
W’E%{G}iﬂ}ifz

air

Burner details
(enlarged)

This problem can be solved in cylindrical polar co-ordinates (z, 7, 6) by
considering a 60° angular sector as shown in the diagram, where # refers to
r—z planes in the @-direction. The flow rotates in this direction, and under
the given conditions the flow entering the first £-plane of the sector should
be exactly the same as that leaving the last #-plane. This is an example of
cyclic symmetry. The pair of boundaries # =1 and £ = NK are called periodic
or cyclic boundaries.

To apply cyclic boundary conditions we need to set the flux of all flow
variables leaving the outlet cyclic boundary equal to the flux entering the
inlet cyclic boundary. This is achieved by equating the values of each vari-
able at the nodes just upstream and downstream of the inlet plane to the
nodal values just upstream and downstream of the outlet plane. For all vari-
ables except the velocity component across the inlet and outlet planes (say w)
we have

(bl,]: ¢NK—1,] and (DJ\TK,]: ¢z,] (9.31)

For the velocity component across the boundary we have

W) y=wyg-1,7 and Wk 7= w5 g (9.32)

Flows inside a CFD solution domain are driven by the boundary conditions.
In a sense the process of solving a field problem (e.g. a fluid flow) is nothing
more than the extrapolation of a set of data defined on a boundary contour or
surface into the domain interior. It is, therefore, of paramount importance
that we supply physically realistic, well-posed boundary conditions, other-
wise severe difficulties are encountered in obtaining solutions. The single,
most common cause of rapid divergence of CFD simulations is the inappro-
priate selection of boundary conditions.

In Chapter 2 we summarised a set of ‘best’ boundary conditions for
viscous fluid flows, which included the inlet, outlet and wall condition. Their
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Figure 9.17 Configurations for
a simple duct flow

finite volume method implementation was discussed in sections 9.2 to 9.4,
and in sections 9.5 to 9.7 we developed three further conditions, constant
pressure, symmetry and periodicity, which are physically realistic and very
useful in practical calculations. These are by no means the only boundary
conditions. Commercial CFD packages may include time-dependent move-
ment of boundaries, facilities to include rotating and accelerating boundaries
and special conditions for transonic and supersonic flows. It would be beyond
the scope of this book to discuss the ways of implementing all of them.

A simple illustration of poor selection of boundary conditions might be an
attempt to generate a steady state solution in a domain with wall boundaries
and a flow inlet but without an outlet boundary. It is obvious that mass
cannot be conserved in the steady state and CFD calculations will ‘blow up’
swiftly. This almost trivial example also suggests that certain types of
boundary conditions must be accompanied by particular other ones. We now
briefly state some permissible combinations in subsonic flows:

e walls only

e walls and inlet and at least one outlet

» walls and inlet and at least one constant pressure boundary
» walls and constant pressure boundaries

Figure 9.17 illustrates these configurations for a simple duct flow.

Inlet S Outlet
N\
Inlet Constant
pressure
Constant Constant
pressure \ / pressure

Particular care must be taken in applying the outlet boundary condition.
It can only be used if all flows entering the calculation domain are given by
means of inlet boundary conditions (i.e. velocity and scalars fixed at inlet)
and is only recommended for flow domains with a single exit. Physically the
exit pressures govern the flow split between multiple outlets so it is better
to specify this quantity at exits than (zero-gradient) outlet conditions. It is
not permitted to combine an outlet condition with one or more constant
pressure boundaries, because the zero-gradient outlet condition specifies
neither the flow rate nor the pressure at the exit, thus leaving the problem
under-specified.

We have glossed over a number of very complex problems by only
considering subsonic flows. We merely warn the CFD user to tread very
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Figure 9.18 Velocity profiles at
different locations downstream of
an obstacle

carefully when attempting to tackle flows that may have regions of transonic
and supersonic flows.

Accuracy limitations of the individual boundary conditions have already
been pointed out before. Here we note a small selection of the more subtle
pitfalls of practical CFD that need to be avoided to ensure that simulation
accuracy is optimal:

*  Positioning of outlet boundaries. If outlet boundaries are placed too close
to solid obstacles it is possible that the flow has not yet reached a fully
developed state (zero gradients in the flow direction), which may lead to
sizeable errors. Figure 9.18 gives typical velocity profiles downstream of
an obstacle, which illustrate the potential hazards.

Totally unrealistic Poor Good
solution accuracy accuracy

Fully
developed
flow

Flow
development

Recirculation

1>>10h ‘

If the outlet is placed close to an obstacle it may range across a wake
region with recirculation. Not only does the assumed gradient condition
not hold, but there is an area of reverse flow where the fluid enters the
domain whilst we had assumed an outward flow. Of course, we cannot
trust the solution if this condition arises. Somewhat further downstream
there may not be reverse flow, but the zero-gradient condition does not
hold since the velocity profile still changes in the flow direction. It is
imperative that the outlet boundary is placed much further downstream
than 10 heights downstream of the last obstacle to give accurate results.
For high accuracy it is necessary to demonstrate that the interior
solution is unaffected by the choice of location of the outlet by means
of a sensitivity study for the effect of different downstream distances.

e Near-wall grid. The most accurate way of solving turbulent flows in a
general-purpose CFD code is to make use of the good empirical fits
provided by the wall function approach. To obtain the same accuracy
by means of a simulation which includes points inside the (laminar)
linear sub-layer the grid spacing must be so fine as to be uneconomical.
The criterion that y* must be greater than 11.63 sets a lower limit
to the distance from the wall Ay, of the nearest grid point. The main
mechanism for accuracy improvement available to us is grid refinement,
but in a turbulent flow simulation we must ensure that, whilst refining
the grid, the value of y* stays greater than 11.63 and is preferably
between 30 and 500.
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Figure 9.19 A non-symmetric
flow situation in a cylindrical
geometry

It is very often impossible to ensure that this is the case everywhere
in a general flow; one pertinent example is a flow with recirculation.
Near the reattachment point the velocity component parallel to the
wall is zero, so by virtue of the criterion that y* must be greater than
11.63 the simulation reverts to the laminar case. There are additional
problems associated with the £—& model in these regions that give rise
to further, even more important inaccuracies. Nevertheless, the point
that it is difficult to keep y* above its lower limit is well illustrated.

o Misapplication of the symmetry condition. It is important to realise that
geometric symmetry of the flow domain does not always imply that the
flow possesses the same symmetry. An example shown in Figure 9.19 is
the flow through a circular pipe with a side jet.

Flow
in

Flow C > / Flow
in ! out

In spite of the fact that the domain has axisymmetry the occurrence
of the cross-flow jet makes the flow non-axisymmetric. Although it is
tempting to solve the problem in cylindrical polar co-ordinates, the flow
solution will be inaccurate because flow may not cross the centreline.

We have discussed the implementation of the most important boundary
conditions. Moreover, we have outlined suitable combinations of boundary
conditions and highlighted particular problem areas. It is of crucial import-
ance that the CFD user has a good understanding of all the relevant issues as
a first step towards accurate flow simulations with the finite volume method.



Chapter ten Errors and uncertainty in

CFD modelling

In this chapter we review:

*  Why it is important to know about the error and uncertainty in CFD
calculations

e Definitions and causes of error and uncertainty

e Methods to quantify error and uncertainty in CFD results: verification
and validation

* Best practice in CFD as a systematic approach, which seeks to achieve
the highest possible level of confidence in CFD simulation results for
the available resources

m uEI:I::a::‘; During the 199Qs the })eneﬁts of QFD were recogr}is?d by large coyporati.ons,
in CFD  small and medium-sized enterprises alike, and it is now used in design/

development environments across a wide range of industries. This has

focused attention on ‘value for money’ and the potential consequences of

wrong decisions made on the basis of CFD results. The consequences of

inaccurate CFD results are at best wasted time, money and effort and at

worst catastrophic failure of components, structures or machines. Moreover,

the costs of a CFD capability may be quite substantial:

» Capital cost of computing equipment

e Direct operating cost: software licence(s) and salary of CFD specialist(s)

e Indirect operating costs: maintenance of computing equipment and
provision of information resources to support CFD activity

The value of a modelling result is clear — time savings in design and product
improvement through enhanced understanding of the engineering problem
under consideration — but rather harder to quantify. The application of CFD
modelling as an engineering tool can only be justified on the basis of its
accuracy and the level of confidence in its results. With its roots in academic
research, CFD development was initially focused on new functionality and
improved understanding without the need to make very precise statements
relating to confidence levels. Engineering industry, however, has a long tradi-
tion of making things work within the limitations of the current state of know-
ledge, provided that the confidence limits are known. Assessment of uncertainty
in experimental data, for example, is a well-established practice, and the rel-
evant techniques (should) form part of every engineer’s basic education.

To address the issue of trust and confidence in CFD the fraternity has
now carried out extensive reviews of the factors influencing simulation results
and developed a systematic process, akin to the estimation of uncertainty in
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experimental results, for the quantitative assessment of confidence levels.
This has led to the formulation of a number of guidelines for best practice in
CFD, the most influential of which are the ATAA (1998) and ERCOFTAC
(2000) guidelines. In this section we give a review of the most important concepts
in the study of errors and uncertainty in CFD and summarise the recom-
mendations for the conduct of CFD simulations contained in the two guides.

In the context of trust and confidence in CFD modelling, the following
definitions of error and uncertainty have now been widely accepted (ATAA,

1998; Oberkampf and Trucano, 2002):

e Error: a recognisable deficiency in a CFD model that is not caused by
lack of knowledge. Causes of errors, defined in this way, are:

(1) Numerical errors — roundoff errors, iterative convergence errors,

discretisation errors

(i1) Coding errors — mistakes or ‘bugs’ in the software

(ii1) User errors — human errors through incorrect use of the software

e Uncertainty: a potential deficiency in a CFD model that is caused by
lack of knowledge. The main sources of uncertainty are:

(1) Input uncertainty — inaccuracies due to limited information or
approximate representation of geometry, boundary conditions,
material properties etc.

(i1) Physical model uncertainty — discrepancies between real flows and
CFD due to inadequate representation of physical or chemical
processes (e.g. turbulence, combustion) or due to simplifying
assumptions in the modelling process (e.g. incompressible flow,
steady flow)

Coding and user errors are the most insidious forms of errors. The well-
publicised failure on 23 September 1999 of NASA’s Mars Climate Orbiter
space mission was subsequently attributed to incompatibility between pieces
of software written in ST and Imperial units, which shows that coding errors
can catch out even the most sophisticated users and organisations. User error
may be reduced or eliminated to a large extent through adequate training and
experience. Systematic reduction of coding and user errors falls within the
remit of software engineering/quality assurance. For the purposes of this
introduction we assume that the code is correct and that user error is negli-
gible. We focus our attention on the remaining unavoidable causes of errors
and uncertainty and highlight their effects on CFD results. We describe the
procedures for verification and validation of CFD aimed at quantitative
assessment of errors and uncertainty in its results. Finally, we give a sum-
mary of available guidelines for best practice and make recommendations for
the reporting of CFD model results.

CFD solves systems of non-linear partial differential equations in discretised
form on meshes of finite time steps and finite control volumes that cover the
region of interest and its boundaries. This gives rise to three recognised
sources of numerical error:

¢ Roundoff error
* Iterative convergence error
¢ Discretisation error
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We briefly discuss each of these causes of error in turn and highlight methods
to control their magnitude.

Roundoff errors

Roundoff errors are the result of the computational representation of real
numbers by means of a finite number of significant digits, which is termed
the machine accuracy. Roundoff errors contribute to the numerical error in
a CFD result. These can generally be controlled by careful arrangement
of floating-point arithmetic operations to avoid subtraction of almost equal-
sized large numbers or addition of numbers with very large difference in
magnitude. In CFD computations it is common practice to use gauge
pressures relative to a specified base pressure (e.g. in incompressible flow
simulations a zero pressure value is set at an arbitrary location within the
computational domain). This is a simple example of error control by good
code design, since it ensures that the pressure values within the domain are
always of the same order as the pressure difference that drives the flow.
Thus, the calculation with floating-point arithmetic of pressure differences
between adjacent mesh cells is not spoilt by loss of significant digits as would
be the case if they were evaluated as the difference between comparatively
large absolute pressures.

Iterative convergence errors

Figures 6.6—6.8 show that the numerical solution of a flow problem requires
an iterative process. The final solution exactly satisfies the discretised flow
equations in the interior of the domain and the specified conditions on its
boundaries. If the iteration sequence is convergent the difference between
the final solution of the coupled set of discretised flow equations and the cur-
rent solution after # iterations reduces as the number of iterations increases.
In practice, the available resources of computing power and time dictate that
we truncate the iteration sequence when the solution is sufficiently close to
the final solution. This truncation generates a contribution to the numerical
error in the CFD solution.

Before moving on we briefly consider methods used in CFD codes to
truncate the iterative process. To determine whether it is worth making
additional effort to get closer to the final solution we would ideally like a
truncation criterion in the form of a single number that can be tested against
a pre-set tolerance. There are several different ways of constructing practic-
ally useful truncation criteria in CFD, but by far the most common one is
based on so-called residuals. The discretised equation for general flow vari-
able ¢ at mesh cell 7 can be written as follows:

(@pdp); = | 2y | + 0, (10.1)
nb ;
where subscript 7 indicates the control volume
The final solution will satisfy equation (10.1) exactly at all cells in the mesh,
but after £ iterations there will be a difference between the left and right

hand sides. The absolute value of this difference at mesh cell 7 is termed
the local residual R?:
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where superscript (#) indicates the current iteration count

To get an indication of the convergence behaviour across the whole flow
field, we define the global residual R?, which is just the sum of the local resid-
uals over all M control volumes within the computational domain. After &
iterations we have

M
(R)® =D (ROW = Z

=1 =1

(10.3)
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Note that the absolute value in the definition of the local residual prevents
cancellation of positive and negative contributions of similar size, which
would result in a zero global residual whilst some or all of the local residuals
are non-zero.

Inspection of equation (10.3) shows that the magmtude of the global
residual R? decreases as we get closer to the final solution, since the size of
the local residuals should decrease in a converging sequence. Thus, it would
seem that R? might be a satisfactory single number indicator of convergence.
However, the global residual will be larger in simulations where the flow
variable ¢ has a larger magnitude, so we would need to specify different
truncation values for R?. This can be resolved if we use a global residual that
is scaled to take out the magnitude of ¢. Thus, we define the normalised
global residual R ¢ for flow variable ¢ after £ iterations as follows:

(RO® = (RO Frg (10.4)
where F ro 15 the normalisation factor

The normalisation factor F ro 15 a reference level of the residuals for flow
variable ¢. Three common normalisation methods are given below:

ﬁRq) = (k¢)<k“) = (]é]q\))(“ = (ﬁ¢)(k)/(ﬁ¢)(kww) (10.5a)

inlet cells inlet cells
Fro= D, (pAU .n),¢,= (RH©=(R)W /> (pAU.n);¢, (10.5b)
J J
M
Fro= 2,

=1
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=1
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In definition (10.5a) the global residual is normalised by its own size at
iteration & (ky # 1 and usually < 10). In (10.5b) the total rate of flow of ¢ into
the domain is used as the normalising factor. Finally, definition (10.5c) uses
the absolute value of the left hand side of equation (10.1) summed over all
mesh cells. The three different choices of normalisation factor each have
advantages and disadvantages in specific cases. Whichever definition is used,
the normalised global residual is always equal to zero when the final solution
is reached. Moreover, R ¢ does not require case-by-case adjustment, so it is
a satisfactory average measure of the discrepancy between the final solution
and the computed solution after & iterations.
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In commercial CFD codes the convergence test in the iterative sequences
(see Figures 6.6—6.8) involves specification of tolerances for the normalised
global residuals for mass, momentum and energy. An iteration sequence is
automatically truncated when all these residuals are smaller than their pre-
set maximum value. Default values for the tolerances, which have been
determined by systematic trials to give acceptable results for a wide range of
flows, are supplied by the code vendors. For high-accuracy work it may be
necessary to reduce the values of these tolerances from their default values to
control and reduce the magnitude of the contribution to the numerical error
due to early truncation of the iterative sequence.

Discretisation errors

Temporal and spatial derivates of the flow variable, which appear in the
expressions for the rates of change, fluxes, sources and sinks in the govern-
ing equations, are approximated in the finite volume method on the chosen
time and space mesh. We have shown in Chapters 4 and 5 that this involves
simplified profile assumptions for flow variable ¢, and Appendix A shows
that this practice corresponds to the truncation of a Taylor series. The dis-
cretisation error is associated with the neglected contributions due to the
higher-order terms, which gives rise to errors in CFD results. Control of the
magnitude and distribution of discretisation errors through careful mesh
design is a major concern in high-quality CFD. In theory, we can make the
discretisation error arbitrarily small by progressive reductions of the time
step and space mesh size, but this requires increasing amounts of memory
and computing time. Thus, the ingenuity of the CFD user as well as
resource constraints dictate the lowest achievable level of the contribution to
the numerical error due to the simplified profile assumptions.

Input uncertainty is associated with discrepancies between the real flow and
the problem definition within a CFD model. We consider data inputs under
the following headings:

e Domain geometry
* Boundary conditions
e Fluid properties

Below we give examples of the factors that can lead to uncertainty in CFD
results for each of these three categories of input data.

Domain geometry

The definition of the domain geometry involves specification of the shape
and size of the region of interest. In industrial applications this may come
from a CAD model of, say, a flow duct. It is impossible to manufacture the
duct perfectly to the design specifications; manufacturing tolerances will
lead to discrepancies between the design intent and a manufactured part.
Furthermore, the CAD model needs to be converted to be suitable within
CFD. This conversion process can lead to discrepancies between the design
intent and the geometry within CFD. Similar comments apply to the surface
roughness. Finally, the boundary shape in CFD is a discrete representation
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of the real boundary, e.g. by means of straight lines or simple curves con-
necting boundary nodes. In summary, the macroscopic and microscopic
geometry within the CFD model will be somewhat different from the real
flow passage, which contributes to input uncertainty in the model results.

Boundary conditions

Apart from the shape and surface state of solid boundaries, it is also neces-
sary to specify the conditions on the surface for all other flow variables, such
as velocity, temperature, species etc. It can be difficult to acquire this type of
input to a high degree of accuracy. Simple assumptions, e.g. given tempera-
ture, given heat flux, adiabatic wall, are often made in the computations; the
accuracy of these will affect the calculation result.

The choice of type and location of open boundaries through which flow
enters and leaves the domain is a particular challenge in CFD modelling.
Boundary conditions are chosen from a limited set of available boundary
types. In Chapter 2 we reviewed the main conditions at flow inlets: (a) fixed
pressure, (b) fixed mass flow rate, or (c¢) given distributions of velocity and
turbulence parameters. At flow outlets we can specify (i) pressure in con-
junction with any of the inlet conditions or (ii) an outflow boundary con-
dition (zero rate of change in the flow direction for all flow variables) in
conjunction with specified mass flow rate (b) or velocity (c).

There must be compatibility between the chosen open boundary condi-
tion type and the flow information available on the chosen surface location.
In some cases, we only have partial information, e.g. average velocity and
some indication of velocity distribution but no information on the turbulence
parameters. Missing information must now be generated on the basis of past
experience or inspired guesswork. In other cases, the assumed boundary
condition may only be approximately true. For example, the pressure is
assumed to be uniform on a fixed pressure boundary, but might actually be
somewhat non-uniform. A contribution to the input uncertainty is associated
with the inaccuracy of all assumptions involved in the process of defining the
boundary conditions.

The location of the open boundaries must be sufficiently far from the area
of interest so that it does not affect the flow in this region. Solution economy
on the other hand dictates that the domain should not be excessively large,
so a compromise must be found, which may cause discrepancies between
the real flow and the CFD model, resulting in a contribution to the input
uncertainty.

Fluid properties

All fluid properties (e.g. density, viscosity, thermal conductivity) depend
to a greater or lesser extent on the local value of flow parameters, such as
pressure and temperature. Often the assumption of a constant fluid property
is acceptable provided that the spatial and temporal variations of the flow
parameters influencing that property are small. The application of this
assumption also benefits solution economy, since CFD models converge
more quickly if fluid properties remain constant; however, errors are intro-
duced if the assumption of constant fluid properties is inaccurate. If the fluid
properties are allowed to vary as functions of flow parameters we have to
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contend with errors due to experimental uncertainty in the relationships
describing the fluid properties.

Limited accuracy or lack of validity of submodels

CFD modelling of complex flow phenomena, such as turbulence, combustion,
heat and mass transfer, involves semi-empirical submodels. They encapsulate
the best scientific understanding of complex physical and chemical pro-
cesses. The submodels invariably contain adjustable constants derived from
high-quality measurements on a limited class of simple flows. In applying the
submodels to more complex flows we extrapolate beyond the range of these
data. Doing this, it is tacitly assumed that the physics/chemistry does not
change too much, so that (i) the submodel still applies and (ii) the values of
adjustable constants do not need to change. There are several reasons why
the application of submodels brings uncertainty in a CFD result:

* A complex flow may involve entirely new and unexpected
physical/chemical processes that are not accounted for in the original
submodel. In the absence of a better submodel, the user has no option
but to work with a less sophisticated description of the flow.

* In spite of the availability of a more comprehensive submodel, the user
may deliberately select a simpler submodel with a less accurate account
of physics/chemistry, e.g. to save time in computations.

* A complex flow may include the same mixture of physics/chemistry as
the original simple flows, but not exactly in the same blend, requiring
adjustments of the submodel constants.

* The empirical constants within the submodels represent a best fit of
experimental data, which will themselves have some uncertainty.

To clarify some of these points, we discuss the causes of physical model un-
certainty in the k—¢€ turbulence model, which was introduced in Chapter 3.
It is a two-equation turbulence model with five adjustable constants: C,,
O,, 0, C},, C,,.. This model is semi-empirical, since the values of these five
constants have been calibrated to match results for decay of isotropic
turbulence and properties of thin shear layers such as boundary layers where
turbulence production and dissipation are nearly in balance. The 4—& model
is used as an industry standard since it is comparatively cheap to run and
gives acceptable results in many cases. Its performance has been assessed
extensively and its flaws are well documented. It performs well for flows that
are fairly close to the cases used to calibrate the model constants, but is less
accurate when tackling flows with more complex strain fields, e.g. boundary
layers with large adverse pressure gradients, separated and reattaching flows,
strongly swirling flows etc. In such flows some of the physical processes
that affect turbulence parameters and, hence, the entire flow field are not
captured within the #—€ modelling framework. This leads to a contribution
to physical modelling uncertainty.

The standard k—& model includes the wall function approach. This is a
computationally economical method, which avoids having to resolve the
entire boundary layer profile by representing the properties of near-wall
turbulent boundary layers by means of algebraic relationships. The log-law
is itself an empirical description of flow behaviour. Moreover, the constant £
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in log-law equation (3.49) must be adjusted to account for the roughness of
the wall surface. As noted in section 3.7.2, there are stringent requirements
on the placement of near-wall grid points, which should be located at a
non-dimensional distance from the wall within the range 30 < y* < 500. In
a complex 2D or 3D flow with separation and reattachment it is impossible
to satisfy the y* requirements everywhere, and there will be local violations
that may also affect downstream flow development, giving rise to further
contributions to the physical model uncertainty.

Finally, we have already noted that the log-law only describes turbulent
boundary layers with modest pressure gradients at high Reynolds numbers.
Additional techniques have since been developed to cope with low Reynolds
number turbulence and flows where it is deemed necessary to resolve the entire
boundary layer profile. In Chapter 3 we discussed low Reynolds number k—¢
models. Currently, the most popular method is to use the two-layer model
whereby the properties of the near-wall region are not evaluated by means of
algebraic relations, but extracted from the solution of a one-equation turbu-
lence model. In this case the near-wall grid points must be positioned such
that y* < 1 and at least 10—20 points are employed to resolve the boundary
layer profile. Careful attention must be paid to meshing detail to avoid
violation of these requirements.

Other turbulence modelling options within commercial CFD codes
include one-equation models (e.g. the Spalart—Allmaras model), other two-
equation models (e.g. the k—® model), the Reynolds stress model (RSM)
and large eddy simulation (LES). They all contain adjustable constants and,
hence, they can only capture exactly the class of flows that were used to
calibrate their values. Besides turbulence models, commercial CFD codes
also contain a range of submodels for other important applications areas,
e.g. combustion. Each submodel will contain empirical constants that have
limited validity. In summary, the empirical nature of the submodels inside
a CFD code, the experimental uncertainty of the values of the submodel
constants and the appropriateness of the chosen submodel for the flow to
be studied together determine the level of errors in the CFD results due to
physical model uncertainty.

Limited accuracy or lack of validity of simplifying assumptions

At the start of each CFD modelling exercise it is common practice to estab-
lish whether it is possible to apply one or more potential simplifications.
Considerable solution economy can be achieved if the flow can be treated as:

e Steady vs. transient

¢ Two-dimensional, axisymmetric, symmetrical across one or more planes
vs. fully three-dimensional

* Incompressible vs. compressible

* Adiabatic vs. heat transfer across the boundaries

e Single species/phase vs. multi-component/phase

In many cases it is relatively easy to see if a simplification is justifiable to good
accuracy. For example, the validity of the incompressible flow assumption
depends on the value of the Mach number M. The differences between
incompressible and compressible CFD simulations are slight when A1 < 0.3.
As M gets closer to unity the discrepancy between the two approaches grad-
ually becomes larger, and hence the physical model uncertainty associated



10.5 VERIFICATION AND VALIDATION 293

m Verification and

validation

with the incompressible assumption will increase. Near M =1 a CFD result
based on the incompressible flow assumption becomes meaningless, since
shocks cannot be reproduced.

In other cases, matters are less straightforward. Many flows exhibit geo-
metrical symmetry about one or two planes. However, unless the inlet flow
possesses the same symmetry, a model simplification based on geometrical
symmetry will be inaccurate. Some flows through symmetrical passages are
sensitively dependent on inflow conditions, e.g. the flow through gradual
area enlargements (diffusers). It is tempting to simplify a CFD model by
approximating an almost uniform inflow into a symmetrical domain by
means of a uniform one. However, if the divergence angle of a planar diffuser
is within the range 20°-60° the small asymmetry in the incoming flow will
be amplified and cause the flow to attach to one of the side walls accom-
panied by reverse flow on the opposite wall. This will, of course, lead to
major discrepancies between the real flow and a CFD result based on the
symmetry assumption.

A different type of problem is encountered when we consider the steady,
uniform oncoming flow around a cylinder with axis perpendicular to the
flow. For a very wide range of velocities, a periodic wake flow develops
behind the cylinder, known as the von Karman vortex street. Simulations
with steady flow and/or symmetry assumption would fail to capture this
phenomenon, with attendant loss of simulation accuracy.

The accuracy and appropriateness of all simplifying assumptions for
a given flow determine the size of their contribution to physical model
uncertainty.

Once it is recognised that errors and uncertainty are unavoidable aspects
of CFD modelling, it becomes necessary to develop rigorous methods to
quantify the level of confidence in its results. In this context, the following
terminology due to ATAA (1998) and Oberkampf and Trucano (2002) has
now been widely accepted:

* Verification: the process of determining that a model implementation
accurately represents the developer’s conceptual description of the
model and the solution to the model. Roache (1998) coined the phrase
‘solving the equations right’. This process quantifies the errors.

* Validation: the process of determining the degree to which a model is
an accurate representation of the real world from the perspective of the
intended uses of the model. Roache (1998) called this ‘solving the right
equations’. This process quantifies the uncertainty.

Below we discuss the methods of verification and validation.

Verification

The process of verification involves quantification of the errors. Since we are
ignoring computer coding errors and user errors, we need to estimate the
roundoff error, iterative convergence error and discretisation error.

*  Roundoff error can be assessed by comparing CFD results obtained
using different levels of machine accuracy (e.g. in single precision,
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7 significant figures in Fortran; or double precision, 16 significant
figures in Fortran).

o [terative convergence error can be quantified by investigating the effects
of systematic variation of the truncation criteria for all residuals on
target quantities of interest, e.g. the computed pressure drop or mass
flow rate in an internal flow, the force on an object in an external flow,
the velocity at one or more locations of interest. Differences between the
values of a target quantity at various levels of the truncation criteria
provide a quantitative measure of the closeness to a fully converged
solution.

e Discretisation error is quantified by systematic refinement of the space
and time meshes. In high-quality CFD work we should aim to
demonstrate monotonic reduction of the discretisation error for target
quantities of interest and the flow field as a whole on two or three
successive levels of mesh refinement. We briefly describe the
methods used for discretisation error estimation.

We assume that the numerical solution satisfies the following conditions
(Roache, 1997):

* The flow field is sufficiently smooth to justify the use of Taylor series
expansions (i.e. no discontinuities in any of the flow variables)

e The convergence is monotonic (i.e. if the value of a target quantity
increases/reduces by an amount X upon going from a coarse mesh to a
medium mesh, its value should again increase/reduce upon going from
the medium mesh to a fine mesh and the magnitude of the change
should be smaller than the magnitude of X)

* The numerical method is in its asymptotic range (i.e. the leading term
of the Taylor series expansion dominates the truncation error
behaviour)

If we consider the numerical solution of a steady flow problem under the
stated conditions we can write the following estimate of the error £ in a
target quantity U as a function of a reference size / of the control volumes
inside the mesh:

EU(}Z) = Uexatl -U=CW (106)
where C is a constant and p is the order of the numerical scheme

For two meshes with refinement ratio » = 4,/k, and solutions U, and U, it is
easy to show that the estimate of the discretisation error can be written in
terms of the difference U, — U, between the two solutions:

_U-0
EU,] —U (1073)
U,-U
Ey,=r| 21 (10.7b)
: 1—#

where £y, is the error in the coarse solution and
Ey;, is the error in the fine mesh solution

Similar grid refinement techniques can be used to estimate the discretisation
error due to the finite time step size. Roache (1997) also gave an error estimate
for fully implicit transient solutions based on an additional explicit solution
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using the original time step size, which is much more economical than time
step refinement.

Roache (1997) noted that the estimates of equations (10.7a-b) are approx-
imate and do not constitute bounds on the discretisation error. He proposed
a so-called grid convergence indicator (GCI) to quantify the numerical error
in a CFD solution:

GCIU:FSEU (108)
where Fj is the safety factor

A conservative value of safety factor Fg = 3 is suggested.

Roache also noted that it should not be taken for granted that the actual
truncation error in a numerical solution will decay exactly in accordance with
the formal order p of accuracy of the basic numerical scheme. He gave
several examples where his investigations had shown this not to be the case
due to seemingly minor flaws in the numerical method, and advocated using
the observed order of truncation error decay on three successively refined
meshes. For constant refinement ratio 7 = /,/h, = h;/h, the observed order p
of the truncation rate decay can be found as follows:

~_ U3_ U2 ,
p= ln(—U2 - Ul]/ln( ) (10.9)

where U, — U, is the difference between the solutions on the
medium and coarse mesh

and U; — U, is the difference between the solutions on the fine and
medium mesh

In codes with flaws the observed value of truncation error reduction rate p
is always smaller than the formal order of accuracy p of the underlying
numerical schemes. In high-quality studies using two or more levels of
refinement, it is recommended that discretisation error formulae (10.7a-b)
should be evaluated using the observed value p from equation (10.9) and
used in conjunction with a reduced safety factor F'g¢ = 1.25 in grid conver-
gence index formula (10.8).

Finally, we note that the above methods merely estimate the numerical
error of the code as it is and do not test whether the code itself accurately
reflects the mathematical model of the flow envisaged by the code designer.
Oberkampf and Trucano (2002), therefore, argued that a complete pro-
gramme of verification activities should always include a stage of systematic
comparison of CFD results with reliable benchmarks, i.e. highly accurate
solutions of (usually simple) flow problems, such as analytical solutions or
highly resolved numerical solutions.

Validation

The process of validation involves quantification of the input uncertainty
and physical model uncertainty.

o Input uncertainty can be estimated by means of sensitivity analysis
or uncertainty analysis. This involves multiple test runs of the CFD
model with different values of input data sampled from probability
distributions based on their mean value and expected variations.
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The observed variations of target quantities of interest can be used to
produce upper and lower bounds for their expected range and, hence,
are a useful measure of the input uncertainty. In sensitivity analysis the
effects of variations in each item of input data is studied individually.
Uncertainty analysis, on the other hand, considers possible interactions
due to simultaneous variations of different pieces of input data and
uses Monte Carlo techniques in the design of the programme of CFD
test runs.

e Oberkampf and Trucano (2002) stated that quantitative assessment of
the physical modelling uncertainty requires comparison of CFD results
with high-quality experimental results. They also noted that meaningful
validation is only possible in the presence of good quantitative estimates
of (i) all numerical errors, (ii) input uncertainty and (iii) uncertainty of
the experimental data used in the comparison.

Thus, the ultimate test of a CFD model is a comparison between its output
and experimental data. However, the way in which such a comparison should
best be carried out is still a subject of discussion. The most common way of
reporting the outcome of a validation exercise is to draw a graph of a target
quantity (say, the discharge coefficient of an orifice, the force on an object in
the flow) on the y-axis and a flow parameter (say, flow velocity or Reynolds
number) on the y-axis. If the difference between computed and experimental
values looks sufficiently small the CFD model is considered to be validated.
The latter judgement is rather subjective, and Coleman and Stern (1997)
proposed a more rigorous basis for validation comparisons drawing on the
practice of estimating uncertainty in experimental results involving several
independent sources of uncertainty. They suggested that the errors should
be combined statistically by calculating the sum of squares of estimates of
numerical errors, input uncertainty and experimental uncertainty to form an
estimate of validation uncertainty. A simulation is considered to be validated
if the difference between experimental data and CFD model results is smaller
than the validation uncertainty. The level of confidence in the CFD model is
indicated by the magnitude of the validation uncertainty.

Oberkampf and Trucano (2002) pointed out that this approach would
have the slightly paradoxical implication that it is easier to validate a CFD
result with poor-quality experimental results containing a large amount of
scatter. They suggested an alternative validation metric, which includes a
statistical contribution, the influence of which decreases as the variance
of the experimental data decreases with increase of the number of repeat
experiments. Thus, the metric indicates increased levels of confidence in a
validated CFD code if (i) the difference between the experimental data and
CFD results is small and (ii) the experimental uncertainty is small.

Irrespective of their individual merits, both methods provide a more
objective basis for validation comparisons, but interested readers are directed
to watch out for further developments since this topic is still in its early
stages.

Data sources for verification and validation

By now it should be clear that the accuracy of a CFD result cannot be taken
for granted, and verification and validation are mission-critical elements of
the confidence-building process. For this we require experimental data with
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(i) comprehensive documentation of problem geometry and boundary con-
ditions, (i) detailed measurements of distributions of flow properties, such
as velocity components, static/total pressure, temperature etc., and (iii)
complementary overall measurements, e.g. mass flow rate, overall pressure
drop etc. Naturally, we should limit ourselves to information from trusted
sources to generate a sufficiently credible validation. Several public-access
databanks have now emerged to support CFD validation work. The most
prominent ones are:

* ERCOFTAC: http://ercoftac.mech.surrey.ac.uk/ — the leading
database with links to refereed experimental datasets and high-quality
CFD simulations including LES and DNS

e NASA: http://www .larc.nasa.gov/reports/reports.htm/ — NACA and
NASA reports in downloadable form

* Flownet: http://dataserv.inria.fr/flownet/ — EU database

* Opverview of current validation resources:
http://www.cfd-online.com/Resources/refs.html

The following journals have been useful to authors in the past:

o Annual Review of Fluid Mechanics

o Journal of Fluid Mechanics

o AIAA Journal

o Journal of Fluids Engineering, Transactions of the ASME

o Journal of Heat Transfer, Transactions of the ASME

o International Journal of Heat and Mass Transfer

o International Journal of Heat and Fluid Flow

o Combustion and Flame

o Physics of Fluids

o Experiments in Fluids

o International Journal of Wind Engineering and Industrial Aerodynamics

e Journal of Power Engineering, Transactions of the ASME

o Journal of Turbomachinery, Transactions of the ASME

*  Proceedings of the IMechE, Part C: Journal of Mechanical Engineering
Science

If suitable experimental results for a comprehensive validation are not avail-
able, it will be necessary to identify a dataset for a closely related problem. If
the problem chosen for validation is sufficiently close to the actual problem
to be studied, we should be able to apply roughly the same CFD approach in
both cases. However, we have already seen that some flow problems can be
very sensitive to apparently minor changes in the boundary conditions or
problem geometry. So care must be taken in the formulation of validation
cases, and past experience should play an important role in the justification
of the chosen approach.

In the absence of high-quality measurements, we may have to settle for
comparison of CFD output against other data in academic or industrial
journals. The Engineering Science Data Unit (ESDU) database also provides
a particularly comprehensive collection of carefully refereed engineering
design information with many fluid flow data items (http://www.esdu.com/
— readers should be aware that a subscription fee is payable for access to this
database). Finally, it should be noted that a sufficient level of confidence
in CFD simulations can only be achieved through rigorous verification
and validation. If the search for validation data draws a complete blank it is
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Guidelines for
best practice
in CFD

essential that a reasonable programme of experimentation be undertaken
alongside CFD to provide solid foundations for design recommendations.

Our review of the subject has shown that the scope for errors and uncertainty
in the study of complex industrial systems with CFD is huge, due to the
large variety of user inputs and modelling choices that must be made. The pur-
pose of verification and validation activities is the quantification of errors and
uncertainty. Best practice guidelines, on the other hand, seck to define routes
to maximise the accuracy and level of confidence in CFD models within the
constraints of existing knowledge and available resources. We review the two
most influential sets of guidelines, ATAA (1998) and ERCOFTAC (2000),
which set out the main rules for the conduct of CFD modelling studies
with a view to confidence building in industrial applications. In the pre-
vious material of this section we have broadly followed the development
of the concepts of error, uncertainty, verification and validation in these
references. Here we highlight some further aspects of the two sets of guide-
lines that have not already been covered in this section.

AIAA guide (1998)

The ATAA guide was the first to be compiled and gives particular emphasis
to CFD in complex systems. It develops the foundations of quality assurance
and software engineering in CFD through cross-references with sources in
other fields and explains the approach to verification and validation for
confidence building in CFD results. In addition to this, two further issues
are raised that require careful attention:

* The ATAA guide notes that the processes of verification and validation
can only demonstrate satisfactory performance of a CFD code for
specific instances of its use through comparisons of the code output
with high-quality benchmark solutions and high-quality experiments.
This notion stems from the complexity of industrial fluid flow problems
and the wide range of numerical parameters that need to be selected as
user inputs to generate CFD results.

This cautious position implies that, given the present state of the art, it
is not possible to validate a CFD code for a new real-life industrial flow
problem without high-quality experimental data for this actual problem. In
our summary of validation we have suggested that we would probably be
confident of a satisfactory outcome of a CFD model of a new, real-life prob-
lem if we had demonstrated satisfactory performance in a case that is in some
sense sufficiently close. We believe that this is justifiable if there is a sub-
stantial peripheral knowledge base available, e.g. in the form of background
knowledge of the fundamentals of fluid dynamics and associated topics,
experimental data and operating experience with existing designs or similar
devices on the market. In an industrial setting this is often the case and can
be exploited to help decide which problem is sufficiently well understood
and close to a new flow problem to help with validation activities.

The AIAA guide also contains specific recommendations for the conduct
of modelling studies in cases with complex systems for which it is recognised
that it is impossible or too expensive to obtain high-quality data on the full
system. Below we summarise the approach:
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* The credibility of the predictions of a CFD model is directly affected
by the level of complexity of the problem to be tackled. Real-life flow
problems include many sources of complexity associated with multi-
dimensional and/or unsteady flow, geometric complexity, complex flow
physics and/or chemistry. It is unrealistic to expect the same level of
confidence for CFD models of very complex systems (aeroengine,
furnace etc.) and of simple unit problems (e.g. internal flow through
a straight pipe or orifice, external flow around an aerofoil or obstacle).
The ATAA guide suggests that a building block approach be applied
to the modelling of complex systems. The complexity of the full system
is reduced by decomposition into simpler sub-systems. This process
of complexity reduction is carried through in successive stages and
ends with the identification of a series of simple unit problems for
which high-quality experimental data are available and, therefore,
comprehensive validation is possible. Lessons learnt in connection
with the conduct of CFD simulations (numerical parameter choices,
meshing practice etc.) should be implemented as the study progresses
back upwards through the various stages of sub-systems in the direction
of increased complexity. At each stage CFD results are compared with
experimental data to refine the modelling approach, whilst taking note
that problem definition and measured data are likely to be less precise
as we approach the real-life flow system.

Thus, the ATAA guide provides a comprehensive strategy for the modelling
of complex industrial flow problems, which (i) builds on strong founda-
tions of well-validated simple unit problems, (ii) systematically increases
the complexity of the models, (iii) incorporates all learning experiences and
(iv) exploits the maximum number of opportunities for validation on the way
from simple unit problems to the full problem.

ERCOFTAC guidelines (2000)

The ERCOFTAC guidelines provide an authoritative set of best practice
rules for the conduct of less complex flow problems. The focus is on the pre-
diction of single phase fluid flow and heat transfer and methods to quantify
and minimise all sources of error and uncertainty. The document contains an
extended section on the application of classical turbulence models, i.e. those
based on Reynolds-averaged Navier—Stokes equations. The guide is aimed
at less experienced users, and its practical implementation in CFD modelling
is facilitated by the provision of extensive checklists. Moreover, eight case
studies are presented with application of the guidelines and demonstrations
of the achievable accuracy in flows ranging in complexity from a sudden pipe
expansion to a low-speed centrifugal compressor.

We would encourage all readers to strive to develop a high-quality CFD
approach based on the ATIAA and ERCOFTAC guidelines and urge them
to consult both references and further industry-specific guidelines such
as MARNET-CFD (https://pronet.wsatkins.co.uk/marnet/guidelines/
guide.html), Chen and Srebric (2001, 2002) and Srebric and Chen (2002)
for more detailed advice. Moreover, we also draw attention to emerging
networks, such as QNET (http://www.qnet-cfd.net/) and eFluids (http://
www.efluids.com/), devoted to the dissemination of information relating to
fluid mechanics as well as best practice in CFD.
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Reporting/
documentation

of CFD simulation
inputs and results

In order to open up CFD simulations to independent scrutiny within indus-
trial organisations it is essential to have a comprehensive and uniform system
of reporting. This is also useful as a basis for archiving simulations for future
use with the ultimate aim of preserving past learning experiences and spread-
ing best practice throughout groups of users within an organisation. First we
suggest a list of items necessary for documentation of user input.

Input documentation

e General description of the problem and purpose of CFD simulation

* Code chosen for solution of problem

e Computing platform used for run

e Schematic diagram of the region of interest with all key dimensions,
flow inlets and outlets

e Boundary conditions — include comments on/justifications of
assumptions made and known areas of approximation or lack of
information

 Initial conditions for transient flow simulations or field initialisations for
steady flow studies

e Fluid properties — include comments/justifications of assumptions and
data sources

*  Modelling option selections: (i) laminar/turbulent + turbulence model +
near-wall treatment, (ii) combustion model, (iii) other physical models —
with comments/justifications on selections

e Grid design: temporal mesh, space mesh including one or more
diagrams of the grid that are sufficiently clear to illustrate the approach
to mesh design — also give written comments on compromises and
details of grid-independence study

e Solution algorithm choices — particularly non-default choices; note that
default settings may change as a CFD code evolves, so a comprehensive
summary of all the main selections (first/second-order schemes,
multigrid options, segregated/coupled solver etc.) is preferable for
long-term archiving

e TIterative convergence criteria choices: settings of truncation levels for
residuals and choice of additional target quantities for convergence
monitoring

* Brief summary of particular aspects of simulation design that required
special attention to get simulation to work and to get accurate results,
also noting unresolved problem issues

Next, we list items to assist scrutiny and confidence building in result
analysis and reporting.

Result interpretation and reporting

Alongside options for alphanumeric output, commercial CFD codes have
the ability to produce a wide variety of result visualisations, such as:

» Velocity vector plots

» Streaklines and particle paths
e Contour plots of flow variable
e Profile plots
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* Grid display
* View manipulation

It is important to note that high-quality presentation is not necessarily syn-
onymous with high-quality results. Less experienced users should not be
taken in by the power of the post-processing capabilities of a CFD code.
Before communicating the findings of a CFD study and drawing conclusions
it is essential that the quality of the results is checked thoroughly by verifica-
tion and validation. Below, we summarise the main elements to be checked
and documented:

o Verification study: give estimates of numerical errors. For high-accuracy
work all key target quantities should be shown to be independent of
iterative convergence criterion and mesh. Diagrams of spatial
distributions of residuals can help illustrate regions of unacceptably high
residuals even if global residuals are sufficiently low to indicate iterative
convergence. Identify where compromises were necessary if the results
are still grid dependent.

*  Quantification of input uncertainty: the main problem is generally
specification of the boundary conditions; where necessary also consider
fluid properties.

o Validation study: summarise method used to validate CFD approach;
outline how the ATAA building block approach was applied if a complex
system is studied; give comments on how improved match with
experimental data was achieved by changes to the modelling strategy.

o Further confidence in the results can be built by analysis of the results
using basic knowledge of fluid dynamics and conservation laws. This
might involve consistency checks to identify where results are different
from expectations. An obvious check would be a test of global mass,
momentum, energy and species conservation by balancing the fluxes in
and out of the region of interest with the sum of all sources and sinks
inside the domain.

We have previously noted that time constraints and computer resources
often determine the acceptable degree of convergence of a CFD simulation.
This means that global conservation checks will not show exact balance of
all the relevant fluxes and rates of creation and destruction. However, a
significant departure from global conservation indicates problems.

Whilst we have made it clear that the only true quality check is validation,
it is advisable to apply a range of common-sense quality tests where new flow
problems are investigated. These can be based on a general understanding
of fluid mechanics and/or specific knowledge of the application that is being
studied. Here we give some items (trivial and profound) that might be
checked when the outcome of a CFD simulation is evaluated:

e Fluid flows from high to low pressure (in pressure-driven flows)

» Static pressure decreases when velocity increases (Bernoulli’s theorem
for inviscid flows)

* Friction losses cause a decrease of total pressure in the direction of flow
(viscous flow)

* Entropy must increase in the flow direction in a flow without heat
transfer (consequence of second law of thermodynamics)

e The speed of a fluid near a stationary wall is smaller than the speed
further away from the wall (boundary layer formation)
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* Flow adopts a fully developed state after a sufficiently long distance in a
straight duct with constant cross-section

* Boundary layers rapidly separate under the influence of an adverse
pressure gradient (pressure increases in the direction of flow outside the
boundary layer)

e Flows will usually separate at corners

e Ifa flow separates there is always recirculation

* A flow emerging into a large expanse of fluid from a small hole generally
forms a jet

e Pressures are higher at the outside of a bend (or curved streamline) and
lower at the inside due to centrifugal forces

e Pressure increases with depth in a liquid due to gravity

* Heat flows from regions of high to low temperature

* Hot fluid rises and cold fluid sinks under the influence of gravity

e Turbulence is generated in regions with sheared flow, i.e. where velocity
gradients are high

It is obviously not possible to give a comprehensive list of items, and we
should aim to develop specific checks for the flow problem to be studied
based on our knowledge of fluid dynamics, heat transfer etc. and compre-
hensive research of the background to the problem.

Trust and confidence are essential issues in industrial applications of CFD
modelling. In this chapter we have defined:

e Errors: deficiencies in a CFD model that are not caused by lack of
knowledge

* Uncertainty: deficiencies in a CFD model that are caused by lack of
knowledge

The main sources of errors are:

e Numerical errors: roundoff, truncation of iterative sequences,
discretisation error

e Coding errors

e User errors

In our discussion of iterative convergence we have introduced the definition
of the most commonly used convergence indicator: the normalised global
residual. We have also touched on the importance of good mesh design for
the control of the level and distribution of discretisation errors.

The main sources of uncertainty are:

e Input uncertainty: model deficiencies associated with limited or
inaccurate knowledge of domain geometry, boundary conditions or fluid
properties

e Physical model uncertainty: model deficiencies due to limited accuracy
or lack of validity of submodels or simplifying assumptions

We have given examples of each of these sources of modelling error and
uncertainty and discussed their effect on CFD results. To quantify the
errors and uncertainty in CFD results we have defined the processes of
verification and validation:
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* Verification: the process of determining the match between the CFD
results and the conceptual model of the fluid flow to quantify errors

* Validation: the process of determining the match between the CFD
results and the real flow problem to quantify uncertainty

Given the dominant contribution of discretisation errors in many practical
CFD simulations we have stressed the important role played by systematic
mesh refinement studies in the verification process, resulting in the follow-
ing estimates of error in a fine and coarse solution:
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Ey =22—Y (10.7a)
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We have also introduced the grid convergence index proposed by Roache:
GCI, = FsEy; (10.8)

and discussed his proposal to use the actual order p of discretisation error
decay, which can be obtained from a grid-refinement study using two
refinement levels (i.e. three grids):

(U0
= ln(—U2 0 ]/hl(?) (10.9)

We have outlined the crucial part played by validation and given pointers to
trusted, high-quality sources of experimental data that can be used for the
validation of CFD codes and models.

Finally, we have summarised brief extracts from the prominent ATAA
and ERCOFTAC guidelines for best practice in CFD, which have been
developed to help users get the best possible results out of CFD with avail-
able computing resources. We have also made some recommendations for
uniform reporting and documentation of CIFD models and their results.



Chapter eleven

Methods for dealing with

complex geometries

m Introduction

Figure 11.1 Cartesian grid
arrangement for the prediction
of flow over a half cylinder

Techniques of solving fluid flow equations shown in earlier chapters were
based on discretisation procedures using the Cartesian co-ordinate system.
This is the simplest context, which allowed us to introduce the funda-
mentals of the finite volume method in a form that is easiest to understand.
Extension of the methods developed in Chapters 4 to 6 to other orthogonal
co-ordinate systems (cylindrical, axisymmetric three-dimensional or spher-
ical co-ordinates) is relatively straightforward, provided that we write down
the governing equations using the appropriate form of the div and grad
operators for the chosen co-ordinate system (see Bird ez a/. (2002) for relevant
operator definitions). However, many engineering problems involve com-
plex geometries that do not fit exactly in Cartesian co-ordinates or one of
the other systems. When the flow boundary does not coincide with the
co-ordinate lines of a structured grid, we could proceed by approximating
the geometry. This is illustrated in Figure 11.1, where we consider a two-
dimensional calculation of the flow past a half cylinder.
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The only way to represent the curved surface of the half cylinder in a
Cartesian co-ordinate system is to use a stepwise approximation. Such an
approximate boundary description is tedious and time consuming to set up.
Moreover, the cells inside the solid part of the cylinder do not take part in
the calculations, so they need to be blocked out, which represents a waste of
computer storage and resources. Finally, the stepwise representation of the
smooth cylinder wall introduces errors in the computation of wall shear
stresses, heat fluxes etc. These errors can be reduced by introducing a very
fine Cartesian mesh to cover the wall region, but the structure of grid lines
causes further wastage of computer storage due to unnecessary refinement in
interior regions where this is of minimal interest.
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Body-fitted co-
ordinate grids for
complex geometries

This example clearly shows that CFD methods based on Cartesian or
cylindrical co-ordinate systems have limitations in irregular geometries.
Practically important flows with complex geometry are plentiful and include
building configurations, furnaces, modern pent-roof combustion chambers
in internal combustion (IC) engines, intake and exhaust ports and flow pas-
sages, flow past aerofoils, gas turbine combustors, turbomachinery and many
more. In such cases it would obviously be much more advantageous to work
with grids that can handle curvature and geometric complexity more naturally.

CFD methods for complex geometries are classified into two groups:
(i) structured curvilinear grid arrangements and (ii) unstructured grid
arrangements. A Cartesian grid is an example of a structured method. In
a structured grid arrangement:

* Grid points are placed at the intersections of co-ordinates lines

* Interior grid points have a fixed number of neighbouring grid points

e @Grid points can be mapped into a matrix; their location in the grid
structure and in the matrix is given by indices (/, 7 in two dimensions
and /, 7, K in three dimensions)

Structured curvilinear grids or body-fitted grids are based on mapping of
the flow domain onto a computational domain with a simple shape. These
techniques can deal effectively with flows such as the above half-cylinder
problem. Unfortunately, it proves to be quite difficult to find viable map-
pings when the geometry becomes very complex. In these cases it is often
advantageous to be able to sub-divide the flow domain into several different
sub-regions or blocks, each of which is meshed separately and joined up
correctly with its neighbours. This leads to so-called block-structured
grids, which are considerably more flexible than Cartesian or body-fitted
meshes. The basics of body-fitted and block-structured grid methods are
summarised in sections 11.2-11.5.

For the most complex geometries it may be necessary to use many blocks,
and the logical extension of this idea is the unstructured grid, where each
mesh cell is a block. This gives unlimited geometric flexibility and allows the
most efficient use of computing resources for complex flows, so this tech-
nique is now widely used in industrial CFD. We examine the main elements
of the finite volume method for unstructured grids in some more detail in
sections 11.6—-11.11.

Methods based on body-fitted grid systems have been developed to deal with
curved boundary flows such as the flow over an aerofoil (Rhie and Chow,
1983; Peric, 1985; Demirdzic et al., 1987; Shyy et al., 1988; Karki and
Patankar, 1988). There are two types of body-fitted co-ordinate system:
(1) orthogonal curvilinear co-ordinates and (ii) non-orthogonal co-ordinates.
In an orthogonal mesh the grid lines are perpendicular at intersections.
Figure 11.2 shows an example of an orthogonal curvilinear mesh for the
calculation of flow around an aerofoil.

In Figure 11.3 we present a non-orthogonal body-fitted grid for the
half-cylinder problem mentioned above. Here the grid lines do not intersect
at 90° angles. In both types of body-fitted grid all the domain boundaries
coincide with co-ordinate lines, so geometrical details can be incorporated
accurately without the need for stepwise approximations. Furthermore, as
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Figure 11.2 An example of
an orthogonal curvilinear mesh
for calculating flow around an
aerofoil

Source: Haselbacher (1999)

Figure 11.3 Use of a non-
orthogonal body-fitted grid
arrangement for the prediction
of flow over a cylinder

Cartesian vs.
curvilinear grids
— an example
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Figure 11.2 demonstrates, the grid can be refined easily to capture important
flow features, e.g. in regions with large gradients such as boundary layers.

Figure 11.4 shows part of a heat exchanger tube bank where CFD can be
used to predict the flow field. Considering symmetry, only the shaded region
of the geometry needs to be considered. Figure 11.5a shows a Cartesian grid
arrangement to predict this flow. We use a 40 X 15 mesh, block the cylinder
oft with dead solid wall cells that do not take part in the calculation, and
approximate the surface by means of steps. Figure 11.6a illustrates a non-
orthogonal body-fitted grid for the same problem with the same number of
cells (i.e. 40 x 15). Now the whole grid occupies the computational domain
and the cylinder surfaces can be more accurately represented. Comparison
of Figures 11.5a and 11.6a confirms that only about 75% of the cells in the
Cartesian grid are available to represent the flow region; the remaining 25%
are wasted in dealing with the objects.

The resulting velocity predictions are shown in Figures 11.5b and 11.6b,
respectively. The latter shows much improved definition of the flow in the
regions with large curvature near the inlet and outlet. This clearly demon-
strates the advantage of the body-fitted grid: computational resources are
utilised more efficiently, so flow details can be captured with coarser grids
compared with Cartesian-based methods (see Peric, 1985; Rodi ez a/., 1989).
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Figure 11.4 Flow over a heat
exchanger tube bank (only a part
shown)

Figure 11.5 (a) Cartesian grid
using an approximated profile
to represent cylindrical surfaces;
(b) predicted flow pattern using
a 40 x 15 Cartesian grid

Figure 11.6 (a) Non-orthogonal
body-fitted grid for the same
problem; (b) predicted flow
pattern using a 40 x 15
structured body-fitted grid
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Curvilinear
grids —
difficulties

Body-fitted grids have significant advantages over their Cartesian equiva-
lents, but there is a price to pay for the geometric flexibility: the governing
equations in curvilinear co-ordinate systems are much more complex. Detailed
discussions of the available methods of formulating the governing equations
can be found in Demirdzic (1982), Shyy and Vu (1991) and Ferziger and
Peric (2001). The main difference between the different formulations lies
in the grid arrangement and in the choice of dependent variables in the
momentum equations. In CFD procedures based on body-fitted co-ordinates
the use of non-staggered or co-located grid systems for velocities is increas-
ingly preferred to staggered grids, which require additional storage allocations.
However, special procedures are needed for non-staggered grids to ensure
proper velocity and pressure coupling and prevent the occurrence of checker-
board pressure oscillations identified in section 6.2. Unstructured grids also
use these co-located grid arrangements, and we discuss them further in
section 11.14.

In addition to the greater complexity of the equations, it should be noted
that body-fitted grids are still structured, so grid refinement is generally not
purely local. For example, in Figure 11.2 the refinement needed to resolve
the boundary layers and trailing edge geometry persists elsewhere in the
interior mesh. This shows up as regions of increased mesh density above,
below and downstream from the aerofoil roughly along three lines that
originate from the trailing edge. The number of mesh cells in the down-
stream direction is particularly large, which represents a waste of computer
storage.

Use of orthogonal and non-orthogonal body-fitted grids allows us to
capture the geometric details, but there can be difficulties associated with
their creation. To generate meshes that include all the geometrical details, it
is necessary to map the physical geometry into a computational geometry.
Mathematical details of the mapping process are not presented here; the
interested user should consult the relevant literature for details (see Thomson,
1984, 1988). An example of the mapping process for a part of a tube bank
is shown in Figures 11.7a-b. For this comparatively simple geometry it is
straightforward to develop a viable mapping, but when the domain geome-
try is more complex and/or involves a large number of internal objects this
can be a very tedious task.

Figures 11.8a-b illustrate the difficulties of generating a body-fitted grid
for a pent-roof IC engine combustion chamber by mapping the cylinder
geometry into a single three-dimensional hexahedral block (Henson, 1998).
Valve details were created by carefully mapping the circular valves to square
regions. In addition, the grid had to accommodate piston bowl details, shown
on the surface mesh of Iigure 11.8a. Various smoothing techniques were
used to improve the grid distributions, but the final grid still contains regions
with very acute angles and cells with undesirable aspect ratios, even after
smoothing. The four regions with dense surface mesh are the result of the
need to accommodate valve and pent-roof details. These groups of highly
skewed cells can lead to stability problems for CFD solvers. Such bad regions
in a mesh may have to be manually adjusted.

Therefore, in spite of their undoubted advantages over simple Cartesian
grids, the following problems are encountered with general orthogonal and
non-orthogonal structured grids:
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Figure 11.7 Mapping

of physical geometry to
computational geometry in
structured meshes: (a) physical
grid in x, y co-ordinates; (b) the
mapped structure for (a) in the
computational domain
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Figure 11.8 A structured
non-orthogonal mesh for a
pent-roof i.c. engine geometry
z
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+ Stll difficult and time consuming to generate

e If the solution domain cannot be readily mapped into a rectangle (in 2D)
or rectangular parallelepiped (in 3D) this can result in skewed grid lines
causing unnecessary local variations

* Unnecessary grid resolutions can result in cases where mapping is
difficult

* Mapping is sometime impossible with complex 3D geometries with
internal objects/parts
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m Block-structured

grids

Figure 11.9 Block-structured
mesh for a transonic aerofoil.
Inset shows cut cells near aerofoil
surface. Also note additional grid
refinement in the flow region

to capture a shock above the
aerofoil

Source: Haselbacher (1999)

To overcome the problems associated with structured grid generation for
complex geometries, block-structured CFD methods have been developed.
In a block-structured grid, the domain is sub-divided into regions, each
of which has a structured mesh. The mesh structure in each region can be
different, and it is even possible to use different co-ordinate systems. Such
meshes are more flexible than (‘single block’) structured meshes described
in the previous sections. The block-structured approach allows the use of
fine grids in regions where greater resolution is required. The interfaces
of adjacent blocks may have grids on either side that are matching or non-
matching, but, either way, they must be properly treated in a fully conserva-
tive manner. In some codes the solvers are applied in a block-wise manner
(block by block with overall final iterations to unify boundary conditions)
and local refinement is possible block-wise. Block-structured grids with
overlapping regions are called composite grids or chimera grids. Figure 11.9
shows a Cartesian block-structured grid used for the calculation of flow
over an aerofoil. The resulting grid structure combines the advantages of
Cartesian grids — easy to generate, equations simple to discretise and solve —
with the ability of curvilinear grids to accommodate curved complex bound-
aries (see Courier and Powell, 1996).

H
H

Block-structured meshes are extremely useful in handling complex
geometries that consist of several geometrical sub-components such as the IC
engine pent-roof cylinder and inlet port geometry. Figure 11.10 demon-
strates the improvement of grid quality that was achieved by applying the
block-structured meshing in the engine code KIVA-3V to define separate
blocks for mesh inlet ports, valve regions and the engine cylinder (generated
using the pre-processor of Kiva 3V: see Amsden, 1997).
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Figure 11.10 Block-structured
mesh arrangement for an engine
geometry, including inlet and
exhaust ports, used in engine
simulations with KIVA-3V

m Unstructured

grids

Figure 11.11 A triangular grid
for a three-element aerofoil
Source: Haselbacher (1999)

An unstructured grid can be thought of as a limiting case of a multi-block
grid where each individual cell is treated as a block. The advantage of such
an arrangement is that no implicit structure of co-ordinate lines is imposed
by the grid — hence the name unstructured — and the mesh can be easily
concentrated where necessary without wasting computer storage. Moreover,
control volumes may have any shape, and there are no restrictions on the
number of adjacent cells meeting at a point (2D) or along a line (3D). In prac-
tical CFD, triangles or quadrilaterals are most often used for 2D problems
and tetrahedral or hexahedral elements in 3D ones. Figure 11.11 shows a tri-
angular unstructured mesh for the calculation of a 2D flow over an aerofoil.
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Figure 11.12 An example of an
unstructured mesh with mixed

elements

Discretisation
in unstructured
grids

In unstructured grid arrangements we are not restricted to one particular
cell type, but it is possible to use a mixture of cell shapes. In 2D a mixture
of triangular and quadrilateral elements can be used to construct the grid. In
3D flow calculations combinations of tetrahedral and hexahedral elements
are frequently used. Such grids are called hybrid meshes. Figure 11.12
shows an example of a hybrid unstructured grid for the calculation of flow
in a tube bank where quadrilateral cells have been used near solid walls to
provide better resolution of the viscous effects in the boundary layers and
an expanding triangular mesh structure elsewhere to utilise the resources
efficiently.

The most attractive feature of the unstructured mesh is that it allows
the calculation of flows in or around geometrical features of arbitrary
complexity without having to spend a long time on mesh generation and
mapping. Grid generation is fairly straightforward (especially with triangu-
lar and tetrahedral grids), and automatic generation techniques, originally
developed for finite element methods, are now widely available. Further-
more, mesh refinement and adaption (semi-automatic mesh refinement
to improve resolution in regions with large gradients) are much easier in
unstructured meshes. In the sections to follow we explore the unstructured
methodology in more detail as it is now the most popular technique and is
included in all commercial CFD codes on the market today.

Unstructured grids are the most general form of grid arrangement for
most complex geometries. Here we present a brief outline of discretisation
techniques for unstructured grids with arbitrary cell shapes, which may be
bounded by any number of control surfaces. We limit ourselves to the devel-
opment of the main ideas; interested readers should consult the literature for
further details of the methodology.

There are two ways of defining control volumes in unstructured meshes:
(i) cell-centred control volumes and (ii) vertex-centred control volumes.
These two variants are illustrated in Figure 11.13 for a 2D problem.

In the cell-centred method the nodes are placed at the centroid of the
control volume, as shown in Figure 11.13a. In the vertex-centred method
the nodes are placed on the vertices of the grid. This is followed by a process
known as median-dual tessellation, whereby sub-volumes are formed by
joining centroids of the elements and midpoints of the edges, as illustrated in



11.7 DISCRETISATION IN UNSTRUCTURED GRIDS 313

Figure 11.13 Control volume
construction in 2D unstructured
meshes: (a) cell-centred control
volumes; (b) vertex-based control
volumes

CLY

ST S
B iy

(a) (b)

Figure 11.13b. The sub-volume surrounding a node then forms the control
volume for discretisation. Both cell-centred and vertex-centred methods are
used in practice. We develop the ideas of discretisation in unstructured grids
for the cell-centred method, which is simpler to understand, and, since a
control volume always has more vertices than centroids, it has slightly lower
storage requirements than the vertex-centred method.

The discretisation in unstructured meshes can be developed from the
basic control volume technique introduced in earlier chapters, where we
used the integral form (2.40) of the conservation equation as the starting
point:

J&i(pq))d v+ jdiv(pq)u)d V= J div(T" grad ¢)dV + JSd,dV (11.1)
CV ! CV CV CV

The volume integration in the transient term on the left hand side and
the source term on the right hand side can be conveniently evaluated as the
product of the volume of the cell and the relevant centroid value of the
integrand. The time integration can be treated using the explicit or implicit
techniques developed in Chapter 8.

Equation (11.1) also contains terms with the divergence of the convective
flux (p@u) and of the diffusive flux (I" grad ¢). In the absence of a specific
co-ordinate system these terms need careful treatment. We recall Gauss’s
theorem (2.41), which is applicable to any shape of control volume:

JdivadeJn.adA (11.2)
cv A

The surface integration must be carried out over the bounding surface A
of the control volume CV. The physical interpretation of n . a is the com-
ponent of the vector a in the direction of the outward unit vector n normal
to infinitesimal surface element d.A.

Some simple 2D examples of different shapes of control volumes are
shown in Figure 11.14. We note that the bounding surface or control surface
of each 2D control volume is a closed contour formed by means of a series of
finite-sized straight line elements, the area of which is denoted by AA4. In 3D
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Figure 11.14 Typical 2D
control volumes with varying
number of surface elements

the control volume would be bounded by triangular or quadrilateral surface
elements.

+ AA

AA | n;
AA

Application of Gauss’s theorem to equation (11.1) gives

Al

CV

p¢dVJ + Jn.(pd)u)d/l: Jn‘(l" grad ¢)dA + JS‘,,dV (11.3)
A A CV

Note that A is the area of the entire control surface in equation (11.3) and dA4
indicates an infinitesimal surface element. The area integrations are carried
out over all line segments (2D) or surface elements (3D), so they can be
written as follows:

d
E( qudeJ + ) Jni . (pou)dA

all surfaces
AA,;

v
= ) fn,-.(l"grad P)dA + JSq,dV (11.4)
all surfaces Cv
For steady flows we have
Jn.(p(])u)dA: Jn.(rgrad @)dA + JS(pdV (11.5)
A A cv

and hence

Y Jn,..(pq)u)dA: D Jni.(rgrad¢)dA+jS¢dV (11.6)

all surfaces all surfaces
AA AA

cv
To evaluate the control surface integrations we need expressions for flux
vectors (pgu) and (I" grad @) as well as geometric quantities n; and AA;. In
sections 11.7 and 11.8 we develop special expressions for the diffusive flux
n, . (I' grad ¢) and convective flux n; . (p¢u) across line segments or surface
elements. Here we show how the outward normal vector n, and surface ele-
ment area AA; can be calculated using simple trigonometry and vector algebra
from the vertex co-ordinates of the unstructured grid.

A typical cell-centred arrangement is shown in Figure 11.15 along with
the notations we will use to describe the discretisation procedure.
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Figure 11.15 Cell-centred
control volume arrangement

Figure 11.16 A face of a control
volume and the normal unit
vector

In this figure point P is the centroid of the control volume for which we
develop the discretisation process. Point A4 is the centroid of the adjacent
control volume and e is a unit vector along the line joining P and A. The
face separating the two control volumes is identified as ‘/’, and ab is a line
joining vertices « and b, which are shared by the two control volumes. The
co-ordinates of points « and b are (x,, y,) and (x;, y,) respectively. Unit vectors
n and e, are, respectively, the outward normal vector and tangent vector to
face i.

We now calculate the required geometry parameters for equations (11.4)
and (11.6) as follows. Consider the control volume face shown in Figure 11.16.

Face (i)

a (Xa Ya)

The area of the face is given by
A= [(Ax)* + (Ay)
where Ax =ux, —x, and Ay =y, -y,
The normal unit vector to the surface is defined by
——i-—] (11.7)
In the absence of a grid structure it is necessary to create a data structure for

the geometry information along with a method of identifying the relationship
between vertices, cell indices, relevant edges and neighbouring cell indices.



316

CHAPTER 11 METHODS FOR DEALING WITH COMPLEX GEOMETRIES

Discretisation of
the diffusion term

In equations (11.4) and (11.6) the diffusion term has been written as a sum
over all the surface elements that make up the bounding surface of a control
volume:

z J n, . (" grad ¢)dA

all surfaces
AA

The area integration for each of the elements is approximated by the dot
product of the outward unit normal vector n; and a representative diffusive
flux vector (I" grad ¢) for the control surface element AA4,. The latter can be
approximated easily using the central differencing method along line PA.
Thus,

J n,. (T grad ¢)d4 = n, . (T grad 9)AA, = F[‘PAA;;PJA/L (11.8)

A,

In equation (11.8) A& is the distance between the centroids A and P. It should
be noted that central difference (11.8) is only accurate if the line joining
nodes P and A and the unit normal vector n, are in the same direction, so the
approximation is only correct if the mesh is fully orthogonal. Generally, in
unstructured meshes the lines connecting centroids P and A are not parallel
to the unit normal vector n;, as shown in Figure 11.15. This is known as mesh
skewness or non-orthogonality. The flux calculation (11.8) therefore has to
be corrected by adding a contribution arising from non-orthogonality. There
are different ways to correct the flux (e.g. Davidson, 1996, Mathur and Murthy,
1997, Haselbacher, 1999; Kim and Choi, 2000; Ferziger and Peric, 2001),
but the most common form is to introduce a term known as cross-diffusion,
which is treated as a source term when the discretised equation is assembled.

We follow Mathur and Murthy (1997) and develop an expression for the
cross-diffusion term by introducing co-ordinates & along the line joining P
and A, and 1 along the face of the control volume (i.e. along the line joining
vertices @ and /). Figure 11.17a shows that the outward unit normal vector
n, is perpendicular to the tangential co-ordinate 7. Thus, the term grad ¢ can
be expressed in terms of x, y coordinates or 7, 1 coordinates as follows:

grad (])Z@i +%] zﬁnﬁ-%en
dx dy dn an
where n and e, are unit vectors along normal and tangential directions.

As an aside we note that the normal unit vector n and the two other unit
vectors e and e, in the directions of & and 7, respectively, can be calculated
from stored x- and y-co-ordinates of control volume nodes and vertices as
follows (see Figures 11.16 and 11.17a):

(11.9)

A A - -
n=—Lgo Sty YT ey TRy (11.10)
AA,  AA° An An
Xqa=%p .  Ya—Jpr.
ez= i+ 11.11
¢ AZ AZ j ( )
e _N T X Vo™ (11.12)

" An An
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Figure 11.17 Definition sketch
for evaluation of cross-diffusion
term

Before developing an expression for the cross-diffusion term, we note that
the central difference on the right hand side of Equation (11.8) is of course
only actually an approximation of d¢/ d, whereas the left hand side actually
requires n . grad ¢ = d¢/In. If the mesh is orthogonal d¢/dE = dp/ In and
the central difference approximation is correct, but if the mesh is non-
orthogonal d¢/ d& may be very different from d¢/ dn.

Figures 11.17b—c show that d¢/ d& corresponds to the length of the pro-
jection of vector grad ¢ in the direction of £. Using the expression (11.9) we
can also represent grad ¢ as the vector sum of the two components (Jd¢/ dn)n
and (d¢/ In)e,, as shown in Figure 11.17b. To get an improved estimate for
the normal flux n . grad ¢ = d@/ In we examine the relationship between the
projection of grad ¢ in the direction of &, i.e. d¢/dE, and the projections
in that direction of the two components (d¢/dn)n . ez and (d¢/dn)e,, . e: of
grad ¢@. Figure 11.17 illustrates how the lengths of the projections of the
two component vectors can be calculated if the angle between the n- and &-
directions is denoted by 6:

—n.egzg cos(6) (11.13)
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and

jz e,. eg——j—z sin(6) (11.14)

The magnitude of the component of grad ¢ in the direction of & is just d¢/ d&,
which is also equal to the sum of the two projections (11.13) and (11.14).
Hence,

07(]) 3(])
95 an
We remember that n . grad ¢ = d@/dn and rearrange (11.15) to obtain the

following expression for the normal component of the diffusive flux required
in equation (11.8):

(0)——¢sm(6) (11.15)
an

dJdp ad 1 d
¢ @ —¢ tan(6) (11.16)
on & cos(6) 311
The two gradients of the transported quantity ¢ on the right hand side of
expression (11.16) may both be approximated using central differencing:

n.grad ¢ =

%: ¢/1_¢P (11 17)
o AL '
46— 9, (AL18)
on  An

where AE = dp, is the distance between points A4 and P
and An =d,,; is the distance between vertices @ and b (= AA,)

In the literature ¢/ d& and d¢/ odn are called the direct gradient and cross-
diffusion, respectively. Substitution of central difference approximations
(11.17) and (11.18) into equation (11.16) yields

AA,; -
n.grad g A= 2D 8170 A 4 (o) 2 (11.19)
COS(O) A& An
It is straightforward to see in Figure 11.17 that
1 1 n.n
= = (11.20)
cos(f) n.e: n.e;
and
0 .
tan(g) = SO __e-ey (11.21)
cos(9) n.e;
Thus, (11.19) can be written in vector form as follows:
.nAA; ¢, ¢p .e,AA; ¢, —
n.grad pAd =2 PAA 010 _ec.nBA 0= gy 5,

n.e; A& n.e; An

Direct gradient term Cross-diffusion term

The factors n . nAA4;/n . ez and e; . e,A A,/n . e can be calculated from
the grid geometry. An alternative derivation to obtain equation (11.22) is
presented in Appendix F.
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Usually the cross-diffusion term is treated as a source term in the discret-
ised form. Therefore separating the cross-diffusion term equation (11.22) is
written as

n.nAA ¢,— ¢p

n.grad pAA =" "—TTAT P 4 g

(11.23)
n.e: AL

To evaluate the cross-diffusion term the gradient of ¢ along the line b is
required. There are number of methods used for this calculation. One possibil-
ity is to interpolate nodal values of ¢ to calculate ¢, and ¢, and use them to cal-
culate the gradient. Simple averaging over neighbouring nodes would lead to

_Opt it Pt ..
N

9, (11.24)

where N is the number of nodes surrounding the vertex a. Alternatively a
distance-weighted average may be used, which is more accurate but more
expensive to compute.

The gradient reconstruction methods described in the next section could
also be used to evaluate the gradient at vertices, and then linear interpolation
may be used to get the gradient at the face centre.

It can be seen that when the grid is orthogonal the unit vector ez and
the unit normal n are the same. Moreover, unit vectors e; and e, are per-
pendicular, so their dot product is zero and, hence, the cross-diffusion term
in equation (11.22) vanishes. Now, the flux is given by equation (11.8).

In summary, for unstructured grids the diffusion flux through each
control volume face is evaluated as follows:

n. F grad ¢ AAl = Di(¢/1 - ¢P) + Sfor/m',i (1 125)

where
I'n.
Di =— n.a AAZ
Aén . e;

and

SD—[russ i _r e§ . enAAi ¢h — ¢d

' n.e; An

It should be noted that the diffusive flux parameter D, has dimensions (kg/s)
of a mass flow rate. This is different from the diffusion conductance D
(units kg/m?.s) that was used in Chapters 4 to 6, since D, includes the
control surface element area AA,.

Figure 11.18 shows that there is a further error term due to the fact that
the central differences involved in the control surface element integration are
only second-order accurate if they are evaluated using the midpoint value of
n . grad pAA,. This is not the case if the lines P4 and 4/ do not intersect at
the midpoint m of ab when the grid is non-orthogonal. This error increases
with increasing skewness and aspect ratio, so it is important that every effort
is made to control skew and aspect ratios in unstructured grids.
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Figure 11.18 Geometric
sketch for skewed grid with
misalignment between midpoint
m of line ab and intersection
point of lines PA and ab

Discretisation
of the convective
term

L

mis the midpoint of line ab

a

The convective term of equations (11.4) and (11.6) is

D Jn,-.(p¢u)d/1 (11.26)

all surfaces
AA

The area integral is evaluated as a sum of integrals over all control surface
elements AA,. Each of these integrals is approximated by the dot product
of the outward unit normal vector n; and a representative convective flux
vector ( p¢u) multiplied by control surface element area AA4;. We define con-
vective flux parameter F;, which is equal to the mass flow rate normal to the
surface element:

F.= jni.(pu)dAEni.(pu)AAi (11.27)
Ad,

Again we note that the units of the convective flux parameter F; are those of
a mass flow rate (kg/s), in contrast to the dimensions of the convective mass
flux per unit area F" used throughout Chapters 5 and 6, which has units
kg/m?.s.

The last step in equation (11.27) involves an approximation of the inte-
grand by means of a single representative velocity. A second-order accurate
calculation of F; using a single value is midpoint rule integration, which
requires the velocity vector u at the centre of the face i. In staggered grid
arrangements the face velocities are available from the momentum equation
and stored at face centres. On the other hand, in co-located grids it is neces-
sary to use interpolated face velocity components for the calculation of mass
flux through the face. Special interpolation techniques are employed to over-
come the ‘checker-board’ pressure problem for a co-located arrangement.
We postpone discussion of these details until section 11.14.

On the assumption that we somehow have a suitable interpolated value
for the face velocity we can write the convective flux of transported quantity
¢ across the control surface in terms of the product as F;¢;:

)y fni.(p¢u)dA= 2 Fo, (11.28)

all surfaces all surfaces
AA

where ¢; is the value of ¢ at the centre of surface area element 7.
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As before, we also need to develop methods to generate face centre values
¢, of the transported quantity which satisfy the requirements of conserva-
tiveness, boundedness and transportiveness that were formulated in Chapter
5. It should be noted that the treatment for general flow variable ¢ is also
applicable to velocity components #, v and » without change.

Upwind differencing scheme in unstructured grids

To calculate the convective flux we may utilise the upwind approach, which
was introduced in section 5.6. The convective flux is F;¢;:

For F;>0 ¢;=¢p
For I;<0 ¢;=¢,

This is exact if the flow vector u is also in the direction of PA (see Figure 11.15).
In a general situation the velocity vector may or may not be in the direction
of PA. We have also established in earlier discussions that when the flow
vector is not in the direction of discretisation (i.e. PA) the upwind scheme
gives false diffusion. This strongly suggests that we should consider using
a higher-order scheme or a TVD scheme for the calculation of the convec-
tive flux.

Higher-order differencing schemes in unstructured grids

Recall that in 1D Cartesian grids the linear upwind differencing scheme
given by equation (5.65) is

- 1
0.= 00+ (—q’f’ —n )EM

where (¢p — @)/ Ax is the gradient at P and Ax/2 is distance from P to the
face e. The scheme uses an upwind-biased estimate of the gradient at P to
calculate the face value ¢, = @,. This can be extended formally to unstructured
meshes by using a Taylor series expansion of ¢ about the centroid P:

¢(x, ) = ¢p+ (V9)p . Ar + O(|Ar[) (11.29)

where (V@)p is the gradient of ¢ at point P.

If we take Ar as the distance vector from P to the face (see Figure 11.15)
then the face value of the transported quantity ¢ can be evaluated by means
of

¢:=¢p+ (Vo). Ar (11.30)
Equation (11.29) indicates that the magnitude of the neglected terms is
proportional to the square of the distance between node P and the face 7, so
this is a second-order approximation.

To use equation (11.30) in an unstructured grid to calculate ¢; we need
V¢ at the point P. In the literature there are several methods available to
calculate this quantity. One popular method is to use the so-called least-
squares gradient reconstruction at P.

Referring to Figure 11.19, the values of the transported quantity ¢ at each
node surrounding the centre may be expressed as follows:

0 0
o=¢+ [8_¢] (2, — x9) + [—¢] i—20) (11.31)
¥ |, dy

0
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Figure 11.19 A control volume
and its neighbour nodes

Written in another form

¢i=0pt i Ax;+ 2 Ay; (11.32)
dx dy
0 0
For each node surrounding ‘0’ we have
o == % Axy + % Ay, (11.33a)
dx dy
0 0
@—@Fzéﬂ mr%é? Ay, (11.33b)
dx dy
0 0
%—@F=£9 mrkfg Ay; (11.33¢)
dx dy
0 0
On— 9= L Axy + % Ayn (11.33n)
ox . dy .

This set of equations can be assembled into a matrix equation as follows:

Axy Ay % 01— o

Ax, Ay, ox 0 0, —

Ax; Ay =1 0= (11.34)
: : 2] :

Axy Ayy dy 0 On — B

This represents an overdetermined system of linear equations, in the form
AX =B, which may be solved for X =[d@/ dx|, dp/ dy|,] using the least-squares
approach. Multiplying both sides of the equation by transpose A’ we obtain

ATAX =ATB (1135)

Then ATA becomes a 2 X 2 matrix that can be easily inverted to solve for X.
Since matrix A depends on geometry only, this calculation needs to be done
once for each node. The required gradient vector is obtained from

X = (ATA)'A’B (11.36)
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Figure 11.20 Upwind dummy
node reconstruction for higher-
order schemes

Anderson and Bonhaus (1994) commented that this procedure can be very
inaccurate when the grid is highly stretched. For such applications these
authors recommended the QR decomposition method. Details of the QR
decomposition method can be found in Golub and Van Loan (1989). Further
details on gradient reconstruction can be found in Haselbacher and Blazek
(2000).

TVD schemes in unstructured grids

The concept of TVD schemes for the calculation of convective fluxes was
introduced in Chapter 5. As explained there, higher-order schemes such as
QUICK can be accommodated in the TVD framework, which is the most
general form of discretisation scheme. Darwish and Moukalled (2003) have
provided a detailed discussion on the use of TVD schemes in unstructured
meshes. Here we summarise their development.

In the usual notation for Cartesian grids it was shown, in section 5.10, that
for the positive flow direction, the face value of ¢ using a TVD scheme may
be written as

()
2

where 7 1s the ratio of the upwind-side gradient to the downwind-side gradi-
ent given by

0i=0¢p+—Ax— ¢») (11.37)

Il (11.38)

Or = p
Here E is the downstream node and ¥ is the upstream node. In relation to a
face of an unstructured cell A is equivalent to E.

However, in unstructured grid arrangements the value of 7 cannot be
written in the same way because the upstream nodal value (assuming flow
is positive along P to A) equivalent to W is not available. We need to con-
struct an upstream ‘dummy’ node B as shown in Figure 11.20 to be able to use
the standard approach. Details of such procedures can be found in Whitaker
et al. (1989) and Cabello ez al. (1994). The value ¢ at dummy node B might
be calculated by averaging over nearby nodal values. Thus, if ¢, was available

) (11.39)
01— Op

S
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Figure 11.21 Selection of
upstream and downstream nodes
depending on flow direction

m Treatment of

source terms

In the absence of ¢z, Darwish and Moukalled (2003) recommend

,e [ (2Vop . rpy) _ 1}

11.40
04— p (140

Here rj, is the distance vector between nodes P and A. The flow can be from
P to A or from A to P. To generalise the above expression we should adopt
the notation ‘U’ for upstream and ‘D’ for downstream:

e {(2V¢P~r1’A) _ 1:| (11.41)
¢~ Pu
The TVD expression for convective flux can also be written as
y(r)
6= ¢y + T(¢D - ou) (11.42)

where U denotes the upstream node and D denotes the downstream node.
Depending on the direction of the flow vector along the line joining centroids
of the cells, the upstream and downstream points have to be selected appro-
priately and allocated to P and A: see Figure 11.21. The interested reader
should consult Darwish and Moukalled (2003) for further details.

Finally the source term in equation (11.4) is treated in the same way as we
did in Cartesian coordinates:

deVz SAV (11.43)
CV

where AJ)7is the volume of the control volume
S is the average of .S over the control volume

A second-order accurate approximation of integral (11.43) is obtained
using the midpoint rule, which replaces the average .S by the nodal value
of the source function S evaluated at the centroid of the control volume.
The source term is introduced to the discretised equation as before by using
SAV =S, = S,0p. In 2D the volume is the area of the cell multiplied by
unit dimension in the direction normal to the 2D plane. In 3D AV is the vol-
ume of the control volume and can be calculated using standard geometrical
relationships and vector algebra. Kordula and Vinokur (1983), for example,
give a method to calculate volumes in an efficient manner.
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Assembly of
discretised
equations

The diffusion flux through a face is

Di((PA - (PP) + SD—ﬂass,i (1 144)

Using a TVD scheme for convective flux and treating the TVD contribution
as deferred correction as outlined in Chapter 5, the convective flux through
a face is

Filoy+ yw(r)(9p — ¢0)/2] (11.45)
The source term for the volume is
S, +3S,0p (11.46)
When these are substituted into steady flow equation (11.4)
Jn.(p(])u)dA: Jn.(rgrad ¢)dA + JSq,dV (11.47)
A A cv
we obtain

> Flou+ v0p—00)/21= D [Dibs— 85+ Spaes]

all surfaces all surfaces
+(S, +S,00) (11.48)

In the above equation A stands for the centroid of each control volume
surrounding the point P. For the convective terms U and D have to be
appropriately allocated to P and 4 depending on the flow direction across the
face. The use of vector algebra in the derivation of the relevant equations,
in conjunction with the definitions of the unit normal vectors and velocity
vectors, takes care of the flow direction. We automatically recover the correct
magnitude and sign of F;.
The above equation can be rearranged as

ﬂP(PP = zﬂnb nb + Su + SuDC+ 2SD—L‘)‘1;xx,i (1 149)
where ap=Ya,,— Sp+ 2F;

Here SP€ is a source term arising from deferred corrections from TVD or
higher-order schemes (see section 5.10). .5}, is the source term due to
cross-diffusion and X F; is the mass imbalance over all faces. Note that the
system of equations arising from the discretisation process is no longer a
banded matrix, since, depending on the shape of the control volume, the
nodes for transported quantity ¢ may be connected to an arbitrary number
of neighbouring nodes in an unstructured mesh. Solution of the system
therefore requires techniques such as the multigrid method described in

Chapter 7 or the conjugate gradient method.

Application of the unstructured equations to Cartesian grids

We solve a source-free 1D convection—diffusion problem shown in Fig-
ure 11.22 using upwind differencing to demonstrate that we can recover
the Cartesian discretised equations presented in section 5.6 from equation

(11.48).



326

CHAPTER 11 METHODS FOR DEALING WITH COMPLEX GEOMETRIES

Figure 11.22 A 1D fluid flow

problem

1 Wl %» lP %» lE —
% %t
| A >]

The essential parameters used in equation (11.48) are control volume width
= A, the distance between nodes A = Ax. For equally spaced control vol-
umes the distance between nodes is the same, i.e. Axpp = Awyp = Ax. The
outward normal vector for the east face is

n,=1i+0j

The vector e for the line PE is
epp=1i+0j

and the area of the east face is
AA,=1.0

The outward normal vector for the west face is
n, =-1i+0j

The vector e for the line PWVis
epy=—1i+0j

The area of the west face is
AA,=1.0

and the convection velocity vector is
u=ui+0j

We use the standard notation for fluid properties adopted in the previous
chapters: the diffusion coefficient is denoted by I'" and the density by p.
Since the faces of the control volumes are perpendicular to the lines
joining nodes, no cross-diffusion terms arise in this orthogonal grid. Hence,
Sp_eress = 0 and there is no source term. Thus, the diffusion flux is given by

(11.22):
n . I" grad ¢AA; = D¢ — ¢p)

n.n

r
where D, =— AA;

X n.eg

Diffusion flux parameters D, for the west and east faces from equation
(11.24) are

p oL (it0j). (1i+0) T
Ax (1i+0j).(1li+0j)  Ax
szi (-li+ 1) . (-1li+ 1j) l.OzL
Ax (-li+1j). (-li+ 1j) Ax

=D

=D

The mass flow rate through the east face is

F.=p(li+0j). (wi+0j)l.0=pu=F
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Figure 11.23 A 2D Cartesian

grid arrangement

and the mass flow rate through the west face is
F,=p(=1i+0j). (ui+0j)1.0=—pu=-F
Let us use the upwind scheme; then y(r) =0 in equation (11.48) and

D> Elou+w((du—0p)/21= D, Didi— o)

all surfaces all surfaces
+ (S, +S,0p) (11.50)

Now if we apply equation (11.48) with the parameters calculated above we
obtain

[F.(¢p+0)+ Fo( @+ 0)] = [Ddr — ¢p)] + [D,( @y — ¢p)]
+ (S, +S,0p) (11.51)

F5¢P + F117¢W: De¢E - De(bP + DW¢W_ DW¢P + (Su + Sp¢P) (1152)

Equation (11.52) can be rearranged in the form

apPp=ayPy+apdp+.S, (11.53)
WhCI‘C(lW=DW—FW dE=DL‘ dP=dW'+dE_S[7+(Fe+Fm)

At first sight the above expressions for the coefficients appear to be slightly
different from those in (5.30). However, since F,,=—F and F, = F, we obtain
discretised equation (5.31). Thus, we have

awy=D+F ap=D ap=ay+ay—S,+(F-F)

It is important to note that F, has a magnitude and a sign in these unstruc-
tured grid calculations. In fact, it is negative (—F') in this example, so equa-
tion (11.52) is the same as equation (5.29) in Chapter 5, where I, was treated
as a magnitude, i.e. an unsigned quantity. The use of vector algebra in the
derivation of the relevant equations allows us to recover the correct magni-
tude and sign of F,.

We show that Cartesian 2D expressions can also be recovered with rela-
tive ease. Consider the 2D situation shown in Figure 11.23.
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Table 11.2

East face

F (li+05) . (1i+ O])

Ax (1i+0j) . (li+ 10])

North face

_ T (0i+1j). (0i+1j)
C Ay (0i+1j) . (0 + 1j)

iy = ==/A\y L=

The essential parameters used in equation (11.48) are:

Control volume width in x-direction: A& = Ax for the lines PE and WP
Control volume width in y-direction: An = Ay for the lines PN and SP

For equally spaced control volumes the distance between nodes is the
same, i.e. Axpy = Awyp = Ax in the x-direction and Aypy = Aygp = Ay in
the y-direction. Relevant unit vectors and the area for each side of a cell are
summarised in Table 11.1.

Table 11.1

Cell face Outward normal  Vector e; for the line Area of cell face
vector to cell face between P and node

East (¢) n, = li+0j Line PE: epp;=1i+ 0j AA, = Ay
West (w) n,=-1i+0j Line PW: epyy=-1i+0j AA,=Ay
North (#) n,=0i+1j Line PN:epy=0i+1j AA,=Ax
South (s) n,=0i-1j Line PS: epg=0i — 1j AA = Ax

The convection velocity vector is the same at all faces: u = ui + vj, where
u and v are both positive everywhere.

The other notation is just as standard: the diffusion coefficient is denoted
by I' and the density by p. The normal vectors of the east, west, north and
south control surfaces of the control volume coincide with the lines con-
necting the nodes straddling these faces, so again the cross-diffusion term is
zero in this orthogonal grid. The values of the diffusion flux parameter for
the east, west, north and south faces from equation (11.24) are shown in
Table 11.2.

Diffusion flux parameter D; for each face
West face

F (-li+05).(— 11+0]) FA
Ax " ar Chia ) i) Y Ay

South face

r ' (0i—1j).(0i-1j) r
D,=— Ax=—
Ay Ay (0i—1j) . (0i - 1j) Ay

Table 11.3 shows the mass flow rates through each face, which are calcu-

lated using F;=n . (pu)AA4;.
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Table 11.3
Mass flow rate F; through each face
East face West face
F,=p(li+0j). (ui+ vj)Ay = puly F,=p(=1i+0j) . (ui+vj)Ay =—puly
North face South face
F,=p(0i+1j). (ui+ vj)Ax = pvAx F,=p(0i—1j) . (ui+ vj)Ax =—povAx

As in the 1D example we use the upwind scheme, y/(r) = 0.
Now we apply equation (11.48):

> Elou+ v @u—0p)/21= X, [Dis— Op) + Spors]

all surfaces all surfaces

+ (S, +.5,0p) (11.54)

If we substitute the information we have generated above, we obtain

[F.(¢p+0)+ F (0 + 0) +