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Abstraction
Deep learning allows computational models that are composed of multiple
processing layers to learn representations of data with multiple levels of abstraction.

These methods have dramatically improved the state-of-the-art in speech
recognition, visual object recognition, object detection and many other domains
such as drug discovery and genomics.

Deep learning discovers intricate structure in large data sets by using the
backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the
representation in the previous layer.

Deep convolutional nets have brought about breakthroughs in processing images,
video, speech and audio, whereas recurrent nets have shone light on sequential data
such as text and speech.



Deep Learning

• Definition
• Applied Domains

• Speech recognition, …
• Mechanism
• Networks

• Deep Convolutional Nets (CNN)
• Deep Recurrent Nets (RNN)



Applied Domains

• Speech Recognition
• Speech à Words

• Visual Object Recognition
• ImageNet (car, dog)

• Object Detection
• Face detection
• pedestrian detection

• Drug Discovery
• Predict drug activity

• Genomics
• Deep Genomics company



• Limited in their ability to process natural data in their raw form. 

• Feature!!!
• Coming up with features is difficult, time-consuming, requires expert knowledge.

• When working applications of learning, we spend a lot of time tuning the features.

Conventional Machine Learning



Representation Learning

• Representation learning
• A machine be fed with raw data

• Automatically discover representations

• Deep-learning methods are representation-learning methods
with multiple levels of representation
• Simple but non-linear modules à higher and abstract representation

• With the composition of enough such transformations, very
complex functions can be learned.

• Key aspect
• Layers of features are not designed by human engineers.

• Learn features from data using a general-purpose learning procedure.



Image Features



Audio Features
• 20 basic audio structure



Advances
• Image recognition

• Hinton, 2012, ref. 1; LeCun, 2013, ref. 2; LeCun, 2014, ref. 3; Szegedy, 2014, ref. 4

• Speech recognition
• Mikolov, 2011, ref. 5; Hinton, 2012, ref. 6; Sainath, 2013, ref. 7

• Many domains
• Predicting the activity of potential drug molecules. Ma, J., 2015, ref. 8
• Analysing particle accelerator data. Ciodaro, 2012, ref. 9; Kaggle, 2014, ref. 10
• Reconstructing brain circuits. Helmstaedter, 2013, ref. 11
• Predicting the effects of mutations in non-coding DNA on gene expression and disease. Leung, 2014, ref. 12; Xiong,

2015, ref. 13
• Natural language understanding(Collobert, 2011, ref. 14)

• Topic classification.
• Sentiment analysis.
• Question answering. Bordes, 2014, ref. 15
• Language translation. Jean, 2015, ref. 16; Sutskever, 2014, ref. 17



Outline

• Supervised learning
• Backpropagation to train multilayer architectures 
• Convolutional neural networks 
• Image understanding with deep convolutional networks 
• Distributed representations and language processing 
• Recurrent neural networks 
• The future of deep learning



Supervised Learning
• Procedures

• datasetà labelingà training (errors, tuning parameters, gradient descent)à testing

• Stochastic gradient descent (SGD, Bottou, 2007, ref. 18)
• Showing input vector, computing outputs and errors, computing average gradient, adjusting weights accordingly

• Repeating for many small sets until objective function stop decreasing

• Why stochastic: small set gives a noisy estimate of the average gradient over all examples

• Linear classifiers or shallow classifiers (must have good features)
• input space à half-spaces (Duda, 1973, ref. 19): cannot distinguish wolf and Samoyed in same position and background

• kernel methods (Scholkopf, 2002, ref. 20; Bengio, 2005, ref. 21): do not generalize well

• Deep learning architecture
• multiple non-linear layers (5-20): can distinguish Samoyeds from white wolves



Backpropagation to Train Multilayer Architectures 
• Key insight: (ref. 22-27)

• Nothing more than a practical application of the chain rule for derivatives.

• Feedforward neural networks
• Non-linear function: max(z, 0) (ReLU, Begio, 2011, ref. 28), tanh(z), 1/(1+exp(-z))

• Forsaken because poor local minima
• Revived around 2006 by unsupervised learning procedures with unlabeled data

• In practice, local minima are rarely a problem. (Dauphin, 2014, ref. 29; LeCun, 2014, ref. 30)
• CIFAR match: Hinton, 2005 ref. 31; Hinton, 2006, ref. 32; Bengio, 2006, ref. 33; LeCun, 2006, ref. 34; Hinton,

2006, ref. 35
• Recognizing handwritten digits or detecting pedestrians (LeCun, 2013, ref. 36)
• Speech recognition by GPUs with 10 or 20 times faster (Raina, 2009, ref. 37; Hinton, 2012, ref. 38; Dahl, 2012, ref.

39; Bengio, 2013, ref. 40)

• Convolutional neural network (ConvNet, CNN)
• Widely adopted by computer-vision community: LeCun, 1990, ref. 41; LeCun, 1998, ref. 42



BP Key Insight

b. The chain rule of derivatives tells us how two small effects (that of a small change
of 𝑥 on 𝑦, and that of 𝑦 on 𝑧) are composed. A small change ∆𝑥 in 𝑥 gets transformed
first into a small change ∆𝑦 in 𝑦 by getting multiplied by 𝜕𝑦 𝜕𝑥⁄ (that is, the
definition of partial derivative). Similarly, the change ∆𝑦 creates a change ∆𝑧 in 𝑧.
Substituting one equation into the other gives the chain rule of derivatives — how ∆𝑥
gets turned into ∆𝑧 through multiplication by the product of 𝜕𝑦 𝜕𝑥⁄ and 𝜕𝑧 𝜕𝑥⁄ . It
also works when 𝑥, 𝑦 and 𝑧 are vectors (and the derivatives are Jacobian matrices).

• The derivative (or gradient) of the objective with respect to the input of a module can
be computed by working backwards from the gradient with respect to the output of
that module (or the input of the subsequent module).



Multilayer neural network

a. A multilayer neural network (shown by the connected dots) can distort the input space to make
the classes of data (examples of which are on the red and blue lines) linearly separable. Note how
a regular grid (shown on the left) in input space is also transformed (shown in the middle panel)
by hidden units. This is an illustrative example with only two input units, two hidden units and
one output unit, but the networks used for object recognition or natural language processing
contain tens or hundreds of thousands of units. Reproduced with permission from C. Olah
(http://colah.github.io/).



Feedforward
c. The equations used for computing the forward pass in a neural net with two
hidden layers and one output layer, each constituting a module through which
one can backpropagate gradients. At each layer, we first compute the total
input z to each unit, which is a weighted sum of the outputs of the units in the
layer below. Then a non-linear function f(.) is applied to z to get the output of
the unit. For simplicity, we have omitted bias terms. The non-linear functions
used in neural networks include the rectified linear unit (ReLU), commonly
used in recent years, as well as the more conventional sigmoids, such as the
hyberbolic tangent (tanh), logistic function.

• ReLU: 𝑓 𝑧 = max 𝑧, 0
• Hyberbolic tangent: 𝑓 𝑧 = ./0 / 1./0 12

./0 2 3./0 12

• logistic function: 𝑓 𝑧 = 4
43./0 12



Backpropagation

d. The equations used for computing the backward pass. At each hidden
layer we compute the error derivative with respect to the output of each
unit, which is a weighted sum of the error derivatives with respect to the
total inputs to the units in the layer above. We then convert the error
derivative with respect to the output into the error derivative with respect
to the input by multiplying it by the gradient of 𝑓(𝑧). At the output layer,
the error derivative with respect to the output of a unit is computed by
differentiating the cost function. This gives 𝑦7 − 𝑡7 if the cost function for
unit 𝑙	is 0.5 𝑦7 − 𝑡7 >, where 𝑡7 is the target value. Once the 𝜕𝐸 𝜕𝑧@⁄ is
known, the error-derivative for the weight 𝑤B@ on the connection from
unit 𝑗 in the layer below is just 𝑦B 𝜕𝐸 𝜕𝑧@⁄ .



Convolutional Neural Networks 
• Local connections

• local values are correlated

• Shared weights
• local statistics are invariant to location

• Pooling
• merge similar features into one

• The use of many layers
• many layers of convolutional, non-

linearity and pooling

Mathematically, the filtering operation performed by a feature map
is a discrete convolution, hence the name.



Inside A Convolutional Network

The outputs (not the filters) of each layer (horizontally) of a typical convolutional network architecture applied to the image
of a Samoyed dog (bottom left; and RGB (red, green, blue) inputs, bottom right). Each rectangular image is a feature map
corresponding to the output for one of the learned features, detected at each of the image positions. Information flows
bottom up, with lower-level features acting as oriented edge detectors, and a score is computed for each image class in
output. ReLU, rectified linear unit.



LeNet-5
• LeNet-5 (LeCun, 1998)

• C1: 5*5 units à 1 unit; 32*32 à 28*28; 5*5*6*1+*6=156 parameters; 
(5*5+1)*6*(28*28)=122,304 connections; 1 map à 6 maps

• S2: 2*2 units à 1 unit; 28*28 à 14*14 (no overlap); 2*6=12 parameters;
(2*2+1)*6*(14*14)=5,880 connections; 1 map à 1 map

• C3: 6 or some maps à 1map

• …

• http://yann.lecun.com/exdb/lenet/



ConvNets VS Visual Neuroscience
• Lower-level à higher-level

• LGN-V1-V2-V4-IT ventral pathway (Hubel, 1962, ref. 43; Felleman, 1991, ref. 44)

• Time-delay neural networks (ref. 45-48)
• Document reading, object detection, … (ref. 49-52)



DeepFace Architecture

Methods LFW 10-fold average precision networks datasets

DeepFace [Taigman, CVPR2014] 97.35% 3 4,000,000

DeepID [Sun, CVPR2014] 97.35% 25 200,000

DeepID2 [Sun, NIPS2014] 99.15% 25 200,000

DeepID2+ [Sun, CVPR2015] 99.47% 25 290,000

WSTFusion [Taigman, CVPR2015] 98.37% - 1,000,000

VGGFace [Parkhi, BMVC2015] 98.95% 1 2,600,000

FaceNet [Schroff, CVPR 2015] 99.67% 1 200,000,000



Image Understanding with Deep Convolutional Networks 
• Application

• Traffic sign recognition, detect of pedestrians, … (ref. 36, ref. 50-51, ref. 53-58)

• Face recognition (Deepface, Facebook, Taigman, CVPR, 2014, ref. 59)

• Autonomous mobile robots and self-driving cars (Hadsell, 2009, ref. 60; Farabet, 2012, ref. 61)

• Natural language understanding (Collobert, 2011, ref. 14)

• Speech recognition (sainath, 2013, ref. 7)

• ConvNets in computer version
• ImageNet (Hinton, 2012, ref. 1; Srivastava, 2014, ref. 62)

• Other detection tasks (ref. 4, ref. 58-59, ref. 63-65)

• ConvNets-based product and service
• Google, Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe

• ConvNets chips
• NVIDIA, Mobileye, Intel, Qualcomm and Samsung



From Image to Text

Captions generated by a recurrent neural network (RNN) taking, as extra input, the representation extracted by a deep convolution neural
network (CNN) from a test image, with the RNN trained to ‘translate’ high-level representations of images into captions (top). Reproduced
with permission from ref. 102. When the RNN is given the ability to focus its attention on a different location in the input image (middle
and bottom; the lighter patches were given more attention) as it generates each word (bold), we found that it exploits this to achieve better
‘translation’ of images into captions.



Distributed Representations and Language Processing 
• Advantages

• Learning distributed representations enable generalization to new combinations of the values of learned features 
beyond those seen during training (for example, 2n combinations are possible with n binary features). (Bengio, 2009,
ref. 68; Montufar, 2014, ref. 69)

• Composing layers of representation in a deep net brings the potential for another exponential advantage (exponential 
in the depth). (Montufar, 2014, ref. 70)

• Applications
• Neural language models predict the next word in a sequence (Begnio, 2001, ref. 71)

• Such representations are called distributed representations because their elements (the features) are not mutually 
exclusive and their many configurations correspond to the variations seen in the observed data. 

• ref. 14, ref. 17, ref. 72-76



Visualizing The Learned Words Vectors

On the left is an illustration of word representations learned for modelling language, non-linearly projected to 2D for
visualization using the t-SNE algorithm (ref. 103). On the right is a 2D representation of phrases learned by an
English-to-French encoder–decoder recurrent neural network (ref. 75). One can observe that semantically similar
words or sequences of words are mapped to nearby representations. The distributed representations of words are
obtained by using backpropagation to jointly learn a representation for each word and a function that predicts a target
quantity such as the next word in a sequence (for language modelling) or a whole sequence of translated words (for
machine translation) (ref .18, ref. 75).



Recurrent Neural Networks
• It is better to use RNNs for tasks that involve sequential inputs, such as speech and language.
• Trained by backpropagation (ref. 81-82)
• Backpropagation gradients typically explode or vanish (ref. 77-78)
• Application:

• Predict next character in the text (Stutskever, 2012, ref. 83)

• Predict next word in a sequence (Lakoff, 2008, ref. 84)

• English-French encoder-decoder network (ref. 17, ref. 72, ref. 76, ref.84-85)

• Very deep feedforward networks: difficult to learn story information very long. (ref. 78)
• Long short-term memory (LSTM) networks: memory cell (Hochreither, 1997, ref. 79)

• More effective than conventional RNNs (Hinton, ref. 87)

• Neural Turning Machine (Graves, 2014, ref. 88) and Memory networks (Weston, 2014, ref. 89)
• Memory networks can answer questions that require complex inference (Weston, 2015, ref. 90)



Memory Networks Answer questions
• 15-sentence version of The Lord of the Rings

• Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the ring. Bilbo went back to the Shire. Bilbo left the ring 
there. Frodo got the ring. Frodo journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died. Frodo went back to the 
Shire. Bilbo travelled to the Grey-havens. The End. 

• Question1:Where is the ring? 
• Answer: Mount-Doom

• Question2: Where is Bilbo now?
• Answer: Grey-havens

• Question3: Where is Frodo now? 
• Answer: Shire



Recurrent Neural Network (RNN) and Unfolding

A recurrent neural network and the unfolding in time of the computation involved in its forward computation.
The artificial neurons (for example, hidden units grouped under node s with values st at time t) get inputs from other
neurons at previous time steps (this is represented with the black square, representing a delay of one time step, on the
left). In this way, a recurrent neural network can map an input sequence with elements xt into an output sequence with
elements ot, with each ot depending on all the previous xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used
at each time step. Many other architectures are possible, including a variant in which the network can generate a
sequence of outputs (for example, words), each of which is used as inputs for the next time step. The backpropagation
algorithm can be directly applied to the computational graph of the unfolded network on the right, to compute the
derivative of a total error (for example, the log-probability of generating the right sequence of outputs) with respect to
all the states st and all the parameters.



The Future of Deep Learning
• Unsupervised learning

• Had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the 
successes of purely supervised learning. (ref. 91-98)

• Human and animal learning is largely unsupervised, we expect unsupervised learning to become 
far more important in the longer term. 

• Computer vision
• Combine ConvNets and RNNs and use reinforcement learning (ref. 99-100)

• Natural language understanding
• RNNs: when they learn strategies for selectively attending to one part at a time. (ref. 76, ref. 86)

• Representation learning with complex reasoning
• New paradigms are needed to replace rule-based manipulation of symbolic expressions by 

operations on large vectors. (ref. 101)



Important Reference
• Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional

neural networks. In Proc. Advances in Neural Information Processing Systems 25 1090–1098
(2012).
• This report was a breakthrough that used convolutional nets to almost halve the error rate for object

recognition, and precipitated the rapid adoption of deep learning by the computer vision community.

• Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition. IEEE
Signal Processing Magazine 29, 82–97 (2012).
• This joint paper from the major speech recognition laboratories, summarizing the breakthrough achieved with

deep learning on the task of phonetic classification for automatic speech recognition, was the first major
industrial application of deep learning.

• Sutskever, I. Vinyals, O. & Le. Q. V. Sequence to sequence learning with neural networks. In
Proc. Advances in Neural Information Processing Systems 27 3104–3112 (2014).
• This paper showed state-of-the-art machine translation results with the architecture introduced in ref. 72, with

a recurrent network trained to read a sentence in one language, produce a semantic representation of its
meaning, and generate a translation in another language.



Important Reference II
• Glorot, X., Bordes, A. & Bengio. Y. Deep sparse rectifier neural networks. In Proc. 14th

International Conference on Artificial Intelligence and Statistics 315–323 (2011).
• This paper showed that supervised training of very deep neural networks is much faster if the hidden layers are

composed of ReLU.

• Hinton,G.E.,Osindero,S.&Teh,Y.-W.Afastlearningalgorithmfordeepbelief nets. Neural Comp.
18, 1527–1554 (2006).
• This paper introduced a novel and effective way of training very deep neural networks by pre-training one

hidden layer at a time using the unsupervised learning procedure for restricted Boltzmann machines.

• Bengio,Y.,Lamblin,P.,Popovici,D.&Larochelle,H.Greedylayer-wisetraining of deep networks.
In Proc. Advances in Neural Information Processing Systems 19 153–160 (2006).
• This report demonstrated that the unsupervised pre-training method introduced in ref. 32 significantly

improves performance on test data and generalizes the method to other unsupervised representation-learning
techniques, such as auto-encoders.



Important Reference III
• LeCun,Y.etal. Handwrittendigitrecognitionwithaback-propagationnetwork. In Proc. Advances in

Neural Information Processing Systems 396–404 (1990).
• This is the first paper on convolutional networks trained by backpropagation for the task of classifying low-

resolution images of handwritten digits.

• LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998).
• This overview paper on the principles of end-to-end training of modular systems such as deep neural networks

using gradient-based optimization showed how neural networks (and in particular convolutional nets) can be
combined with search or inference mechanisms to model complex outputs that are interdependent, such as
sequences of characters associated with the content of a document.

• Bengio,Y.,Ducharme,R.&Vincent,P.Aneuralprobabilisticlanguagemodel.In Proc. Advances in
Neural Information Processing Systems 13 932–938 (2001).
• This paper introduced neural language models, which learn to convert a word symbol into a word vector or

word embedding composed of learned semantic features in order to predict the next word in a sequence.



Important Reference IV
• Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780

(1997).
• This paper introduced LSTM recurrent networks, which have become a crucial ingredient in recent advances

with recurrent networks because they are good at learning long-range dependencies.



Thank you!


