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Preface 

The goal of this book is to provide the reader with the basic engineering no
tions of controlling a satellite. In the author's experience, one of the most important 
facts to be taught from the beginning is practical engineering reality. Theoretical, 
"nice" control solutions are seriously hampered when practical problems (e.g., sen
sor noise amplification, unexpected time delays, control saturation effects, structural 
m9des, etc.) emerge at a later stage of the design process. The control algorithms 
must then be redesigned, with the inevitable loss of time and delay of the entire pro
gram. Early anticipation of these effects shortens the design process considerably. 
Hence it is of utmost importance to analyze different concepts for engineering solu
tions of spacecraft control tasks in the preliminary design stages, so that the correct 
one will be selected at the outset. This is why several approaches may be suggested for 
a given control task. 

Part of the material in this textbook has been used as background for a single
semester course on "Spacecraft Dynamics and Control" - offered since 1986 at the Tel 
Aviv University and also more recently at the Israel Institute of Technology, the Tech
nion, Haifa. All the material in this book is appropriate for a course of up to two 
semesters in length. The book is intended for introductory graduate-level or advanced 
undergraduate courses, and also for the practicing engineer. A prerequisite is a first 
course in automatic control, continuous and sampled, and a first course in mechanics. 
This, in tum, assumes knowledge of linear algebra, linear systems, Laplace trans
forms, and dynamics. 

A sequential reading of the book is advised, although the chapters are for the most 
part self-contained. A preliminary overview is recommended in order to acquire a 
feeling for the book's contents; this will help enormously in the second, and deeper, 
reading. 

Modem spacecraft control concepts are based on a vast choice of physical phenom
ena: single- and dual-spin stabilization; gravity gradient attitude control; three-axis 
stabilization; momentum-bias stabilization; and solar, magnetic, or reaction torque 
stabilization. It is important to master the essential qualities of each before choosing 
one as an engineering solution. Therefore, the various concepts are treated, analyzed, 
and compared in sufficient depth to enable the reader to make the correct choices. 

Appendix B and Appendix C detail the space onboard hardware that is essential to 
any practical engineering solution. Technical specifications of various control items 
are listed for easy reference . 

xv 
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CHAPTER 1 

Introduction 

1.1 Overview 

Space technology is relatively young compared to other modem technolo
gies, such as aircraft technology. However, in only forty years this novel domain has 
achieved a tremendous level of complexity and sophistication. The reason for this is 
simply explained: most satellites, once in space, must rely heavily on the quality of 
their onboard instrumentation and on the design ingenuity of the scientists and engi
neers who produced them. Recent achievements of repairing satellites while in orbit 
testify to the complexity involved in space technology. The desire of humans to con
quer space within the solar system will surely encourage new technological achieve
ments that are not yet imagined. 

The technical fields in which satellites are used are numerous - telecommunica
tions, scientific research, meteorology, and others. According to the specific task for 
which they are designed, satellites are very different from one another. They may be 
in orbits as low as 200 km or as high as 40,000 km above the earth; other spacecraft 
leave the earth toward planets in the solar system. Satellites may be very heavy: an 
inhabited space station, for example, could weigh several tons or more. There also 
exist very light satellites, weighing 20 kg or less. Small satellites may be relatively 
cheap, of the order df a million dollars apiece. Despite their differences, satellites 
possess fundamental features that are common to all. The physical laws that govern 
their motion in space and their dynamics are the same for all spacecraft. Hence, the 
fundamental technologies that evolved from these laws are common to all. 

A satellite's life begins with the specific booster transferring it to some initial 
orbit, called a transfer orbit, in which the satellite is already circling the earth. For a 
satellite that will stay near earth, the next stage will be to "ameliorate" the orbit; this 
means that the satellite must be maneuvered to reach the precise orbit for which the 
satellite was designed to fulfill its mission. Next, the satellite's software must check 
for the proper functioning of its instrumentation and its. performance in space, as 
well as calibrate some of the instruments before they can be used to control the satel
lite. The final stage is the one for which the satellite was designed and manufactured. 

These stages will be discussed in the next section. Understanding the meaning of 
each stage will help one to understand the infrastructure of the control system of any 
satellite. Throughout the text, the terms "satellite" and "spacecraft" (sic for short) 
will be used interchangeably. The terms "geosynchronous" and "geostationary" will 
be used interchangeably to describe the orbit of a satellite whose period can be made 
exactly equal to the time it takes the earth to rotate once about its axis. 

1.2 Illustrative Example 

In this section, a geosynchronous communications satellite will be described 
in its different life stages. The U.S. Intel sat V and the European DFS Kupernikus 
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2 1 I Introduction 

(Bittner et ale 1987) are good examples of a common, medium-sized satellite. Satel
lites of this type consist of the following main structural parts. 

(1) A central body consisting of a cubelike structure with dimensions of about 
1.5x2 m. 

(2) Solar arrays extended in the N-S direction (YB axis), with panel dimensions 
of about 1.5 x 7 m. 

(3) An antenna tower directed toward the earth (ZB direction) carrying different 
communication payloads such as global and beacon horns, feed systems for 
communication, hemi/zone and spot reflectors, TM/TC (telemetry/tele
command) antenna, and others. 

(4) Controllers (such as reaction thrusters) and attitude sensors (such as sun 
sensors) located over the central body and the solar panels. 

1.2.1 Attitude and Orbit Control System Hardware 

It is important to list the typical attitude and orbit control system (AOCS) 
hardware of a geostationary satellite in order to understand and perceive from the 
beginning the complexity of the problems encountered. This hardware may include: 

(1) a reaction bipropellant thrust system, consisting of one 420-N thruster used 
for orbit transfer and two independent (one redundant) low-thrust systems 
consisting of eight lO-N thrusters each; 

(2) two momentum wheels (one redundant) of 35 N-m-sec each; 
(3) two infrared horizon sensors (one operating and one redundant); 
(4) four fine sun sensors (two redundant)~ 
(5) twelve coarse sun sensors for safety reasons (six redundant); 
(6) two three-axis coarse rate gyros; and 
(7) two three-axis integrating gyros. 

An illustration of the partial control hardware of a typical geostationary communi
cations satellite is given in Figure 1.1. Much of the control hardware is redundant in 
order to guarantee a reliable control system despite potential hardware failures. 

(Reaction thrusters Gyros ! 
not shown) YB -Solar array axis 

Figure 1.1 Principal arrangement of AOCS equipment; adapted 
from Bittner et aI. (1987) by permission of IFAC. 
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1.2/ Illustrative Example 

Table 1.1 Typical sequence stages up to the normal mode 
acquisition stage 
(adapted from Bittner et aI. 1987 by permission of IFAC) 

Event 
iNo. 

Stage Tune Event 

I LaundI Stage T. ARlANE 00-011; Ignition of first stage 

2 T.+ 1009 s Reorientation for payload separation 

3 T..,=T.+ 1122 s SIC separation; start of SIC sequence 

4 GfO Stage T..,+ 9 min Start of AOCS Sequences 

5 Preparation TSI!P+ 10m+20s AUlODIaIic beginDing of Sun-as:qaisition, 

6 toABMStage T..,+ 11m to TSI!P+ 34 Sun pointing. x-axis pointing to the Son, 
(Apogee Boost min roD rate=O,S· Is 

7 
Motor) 

T ... +lb+Sm Solar paneIs deployment 

8 T,=TSl!P+37h+llm+34s Apogee No.4 passage 

9 T,-lSOm Start gyro calibmtion 

10 T,-I60m GyrocaIibmtion finished 

11 T,-I6Om Start GTO Eartb acquisition 

12 T,-6Om SS-bias functions loaded from ground 

13 IstABM T,-24m Apogee Boost Motor (ABM) > ignition 

14 T,+2Sm Apogee boost terminntion 

IS T,+28m Ground CDmand of Sun acquisition mode 

16·30 2nd and 3rd T..,+129b+48m Repetition of GfO Eartb capture for second and fourth 
ABM apogee boost maneuver until SIC in qnasi-synchronous 

orbil 

31 Preparation to T,=T ... +l29h+48m+ Start of Geosynchronous Orbit Eartb acquisition 
NonnalMode 18h 

32 (Mission Stage) T, GEO Eartb AgpJisition command, finally Eartb 
pointing takes place; y-axis perpendicnIar to orbital . plane. 

33 T,+30m Command for wheel run-up 

34 T,+4Sm Wheel at nominal speed. 

35 T,+50m Station keeping to reduce initial errors of acquisition 
loops 

36 T,+SSm Transition to normal mode as soon as angnIar and rate 
values within prescn"bed limits. 

1.2.2 Mission Sequence 

3 

The mission events - from launch to in-orbit operation - may be summar
ized as follows. First is the launch into a geosynchronous transfer orbit (OTO), with 
perigee and apogee (low and high altitude) of 200 km and 35,786 km, respectively. 
This is followed by the transfer from OTO to geostationary orbit (OEO), where peri
gee and apogee both are 35,786 km and the orbit inclination and eccentricity are 
close to null. Next is the preparation and calibration of the AOCS before the useful 
OEO mission can start, followed by the actual OEO mission stage. Table 1.1 contains 
an outline of the typical major events and times related to the pre-mission stages. 
The significance of each event will become clear in the chapters to follow. 

Figure 1.2 illustrates some of the principal stages in the geostationary transfer 
orbit. After separation from the launcher, the satellite is commanded into a sun 
acquisition mode with the -XB axis pointing toward the sun. After completion of 
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ABM- Apogee Boost Motor 

-XB __ ---~ 

Sun acquisition 

'-ABM 
"''-firing , 

Earth acquisition 
& preparation for 

ABM 

1 / Introduction 

Figure 1.2 Sequence for injecting a satellite into the geostationary orbit. 

this stage, the solar panels are partially or fully deployed. If fully deployed, they can 
be rotated about their axis of rotation toward the sun in order to maximize power 
absorption. 

The satellite stays in this cruise mode until the first apogee boost motor (ABM) 
orbit is approached. In the first and the subsequent ABM orbits, several hours be
fore the ABM firing at the apogee, the gyros' calibration maneuvers are initiated. 
Less than an hour before any ABM firing, earth acquisition is initiated with the +ZB 
axis now pointed toward the earth, followed by preparation for the ABM firing 
stages. After ABM firings ranging from several to more than 30 minutes, the satel
lite is commanded to GTO cruise, sun-pointing. After the last ABM firing, the satel
lite is prepared for GEO operation. Some of the first maneuvers in GEO are shown 
in Figure 1.3. See also Bittner et al. (1989). 

In the first GEO, earth acquisition is performed, meaning that the +ZB axis of 
the satellite is directed toward the earth center of mass, thus allowing the normal 
GEO cruise. The momentum wheel is spun to its nominal angular velocity to provide 
momentum bias attitude control. In this stage, the satellite is brought to its nominal 
geographical longitude. The orbit is then corrected for any remaining inaccuracies in 
inclination and eccentricity (to be explained in Chapters 2 and 3). 

Sun pointing XB 
mode 

End of last 
ABMfiring 

8 

Figure 1.3 Principal stages in the first geostationary orbit (GEO). 
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1.3 / Outline oj the Book 

When in the mission orbit, the following tasks are fulfilled in normal mode: 

(1) pitch control by momentum wheel in torque mode control; 

5 

(2) roll/yaw control by the WHECON principle (to be explained in Chapter 8) 
- roll control by horizon sensor and yaw control by momentum bias (see 
Dougherty, Scott, and Rodden 1968); and 

(3) momentum management of the wheel, which keeps the momentum of the 
wheel inside permitted bounds. 

In addition, "station keeping" maintains the sic within prescribed limits (of the 
order of ±O.OSO) about the nominal longitude station position, and also within the 
same permitted deviation in the inclination of the mission orbit. Station keeping 
involves both north-south and east-west correction maneuvers. 

1.3 Outline of the Book 

The chapters of this book have been arranged to give the reader an inte
grated view of the subject of attitude and orbit control. Chapters 2 and 3 deal with 
the satellite orbit dynamics and control. The remaining chapters treat the attitude 
dynamics and control of satellites. 

Chapter 2 develops the classical equations of motion of ideal Keplerian orbits. 
It then presents Gauss's and Lagrange's planetary equations, with which the per
turbed orbit motion of a satellite can be analyzed. Chapter 3 covers basic orbital 
control concepts including control and station keeping of geostationary satellites. 

Chapter 4 is devoted to the basic equations of rotational motion about some axis 
through its center of mass. The usual notions of angular momentum and rotational 
kinetic energy are introduced, defining the rotational state of a body. Next, Euler's 
moment equations are stated as a preliminary to analyzing the angular stability of a 
rotating body with or without the existence of internal energy dissipation. This chap
ter also develops the linearized angular equations of motion of a nonspinning space
craft, which are necessary when designing a feedback attitude control system. 

Chapter 5 deals with gravity gradient stabilization of a sic. Gravity gradient con
trol is a passive means of stabilizing the attitude of the satellite. In principle, gravity 
gradient attitude control is undamped. This chapter analyzes passive and active 
damping, and emphasizes the inaccuracies in attitude stabilization that arise in re
sponse to environmental conditions. 

Chapter 6 deals with single- and dual-spin stabilization. The single-spin stabiliza
tion mode is frequently used to keep the direction of the thrust vector constant in 
space during the orbit change process. This chapter discusses the minimum spin rate 
needed to keep the thrust direction within permitted bounds, despite parasitic dis
turbing torques acting on the sic. Also analyzed are active nutation control and de
spinning of the satellite at the end of the orbit change process together with the de
nutation stage. The mass of fuel consumed is evaluated analytically for both active 
nutation control and despin-denutation control. A design example is included . 

The single-spin property is also used in the context of attitude stabilizing the spin 
axis of the sic perpendicular to the orbit plane, thus allowing an attached communi
cations payload to scan the earth continuously and so provide the communications 
link. Due to parasitic disturbing torques acting on the sic, nutational motion is 
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excited and must be constantly damped. Depending on the specific moments of 
inertia of the sic, either passive or active damping is added to the attitude control of 
the satellite; various damping schemes are analyzed. 

Dual-spin stabilization was developed in order to increase the efficiency of com
munication of spinning satellites by enabling the communications antenna to be 
continuously directed toward the earth. In this control concept, passive nutation 
damping can be achieved by energy dissipation. The stabilizing conditions are explic
itly stated. 

Chapter 7 is concerned with attitude stabilization and maneuvering of spacecraft 
stabilized in three axes. In these satellites, there is no constant angular momentum 
added to the sic to keep the direction of one of its axes stabilized in space, so atti
tude control is achieved by simultaneously controlling the three body axes. For small 
attitude-angle maneuvering, the common Euler angles are a clear way to express the 
attitude of the satellite with reference to some defined frame in space. However, for 
larger attitude changes, the attitude kinematics are expressed much more effectively 
with the direction cosine matrix and the quaternion vector. The chapter begins with 
a thorough discussion of control laws for attitude control. 

Momentum exchange devices are used to provide the control torques for accurate 
attitude control. These devices, called reaction and momentum wheels, are intro
duced and modeled for use in this and subsequent chapters. If an external inertial 
disturbance acts on an attitude-controlled satellite, then excess angular momentum 
is accumulated in the controlling wheels. A control scheme using magnetic torqrods 
to dump this momentum from the wheels is analyzed and simulated. 

Attitude sensors and controllers are inherently noisy. When designing a control 
loop, these noises must be taken into consideration using statistical linear control 
theory. Tradeoffs in the design process due to such noises are stated. In order to aug
ment the reliability and the control capability of a complete three-axis ACS, more 
than three reaction wheels are sometimes used. Chapter 7 analyzes optimal distribu
tion of the computed control torques among the different wheels. Time-optimal atti
tude maneuvers about a single body axis are also analyzed. The last section of Chap
ter 7 deals with specifying technical characteristics of the reaction wheel based on 
mission requirements of the attitude control system (ACS). 

Chapter 8 is concerned with momentum-biased satellites. A momentum wheel 
added to the satellite provides inertial stabilization to the three-axis stabilized sic 
about one of its axes. The inertial stabilizing torque is achieved with the momentum 
produced in the momentum wheel. Unfortunately, environmental disturbances tend 
to destabilize the sic by increasing the nutational motion, which thus must be actively 
controlled. There are three essential schemes for controlling nutational motion: mag
netic damping, reaction propulsion damping, and - for high-altitude-orbit satellites 
such as geostationary satellites - solar torque control. These schemes are analyzed 
and compared. 

Chapter 9 reviews the use of propulsion reaction hardware for attitude control. 
Only reaction thrusters can provide the high torques necessary in different attitude 
control tasks during orbit changes. The attitude stabilization scheme using reaction 
thrusters is stated and analyzed. Attitude maneuvering can likewise use reaction 
thrust torques. The achievable accuracies depend largely on the minimal impulse 
bit that a thruster can deliver. Also, since the torques delivered are with constant 
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amplitude, the reaction pulses must be width- or frequency-modulated. Both modu
lation schemes are analyzed, and design examples are given. 

Chapter 10 introduces the dynamics of structural modes and fuel sloshing dy
namics. The chapter provides simplified analyses of solar panels and fuel sloshing, 
as well as rules-of-thumb for obtaining the simplified models so necessary in the ini
tial design stage of an ACS. Also, given these initial models, the reader is shown how 
to approximate the maximum obtainable bandwidths of the system. 

Appendix A is a short introduction to attitude transformations in space. It deals 
with Euler angle transformations, the direction cosine matrix, the quatermon vector, 
the relations among them, and attitude kinematics in general. Appendix B is a con
cise introduction to attitude measurement hardware. It is of the utmost importance 
to have a clear knowledge of such sensor characteristics, as their noise behavior in
fluences achievable accuracies. The hardware treated includes horizon sensors (static 
or scanning), analog and digital sun sensors, star sensors, and angular rate sensors; 
characteristics data sheets are shown for various existing products. Appendix C de
scribes a variety of control hardware, such as propulsion systems, magnetic torq
rods, reaction wheels, and solar panels and flaps for achieving solar control torques. 

1.4 Notation and Abbreviations 

Vectors will be expressed by bold letters: V, 'Y' Matrices will be denoted by 
square brackets, and the name of the matrix inside the brackets in capital bold let
ters: [A). Scalar variables are expressed using italicized letters: V, 'Y. The scalar "dot" 
product of two vectors will be expressed by a solid dot: aob. The vector "cross" 
product will be denoted by a boldface cross: a x b. Multiple products will likewise be 
denoted by solid dots and boldface crosses: ao(bxc); ax(bxc). The MKS system 
of units is used throughout the book. 

The following abbreviations will be used: ACS 51 attitude control system; AOCS 51 

attitude and orbit control system; em 51 center of mass; ES 51 earth sensor; LP slow 
pass; MW 51 momentum wheel; RW 51 reaction wheel; sic 51 spacecraft; ss 51 steady 
state. 
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CHAPTER 2 

Orbit Dynamics 

2.1 Basic Physical Principles 

Orbital mechanics, as applied to artificial spacecraft, is based on celestial me
chanics. In studying the motion of satellites, quite elementary principles are necessary. 
In fact, Kepler provided three basic empirical laws that describe motion in unper
turbed planetary orbits. Newton formulated the more general physical laws govern
ing the motion of a planet, laws that were consistent with Kepler's observations. 

In this chapter, the dynamical equations of motion for ideal, unperturbed Kep
lerian orbits - and subsequently for realistic, perturbed orbits - will be analyzed. 
Kepler's laws of motion describe ideal orbits that do not exist in nature. Perturbing 
forces and physical anomalies cause spacecraft orbits to have strange properties; in 
most cases these cause difficulties for the space control engineer, but in other cases 
these properties may be of enormous help. 

Keplerian orbits are treated in Sections 2.1-2.6. For further reading on this sub
ject, Kaplan (1976) or Thomson (1986) may be consulted. Perturbed non-Keplerian 
orbits are treated in Sections 2.7-2.9 (see also Deutsch 1963, Alby 1983, and Battin 
1990). 

2.1.1 The Laws oj Kepler and Newton 

Kepler provided three empirical laws for planetary motion, based on Brahe's 
planetary observations. First, the orbit of each planet is an ellipse with the sun located 
at one focus. Second, the radius vector drawn from the sun to any planet sweeps out 
equal areas in equal time intervals (the law of areas). Third, planetary periods of 
revolution are proportional to the [mean distance to sun]3/2. 

Newton provided three laws of mechanics and one for gravitational attraction. 
Most analysis of celestial and spacecraft orbit dynamics is based on Newton's laws, 
formulated as follows. 

(1) Every particle remains in a state of rest, or of uniform motion in a straight 
line with constant velocity, unless acted upon by an external force . 

(2) The rate of change of linear momentum of a body is equal to the force F 
applied on the body, where p = mv is the linear momentum and 

F _ dp _ d(mv) 
-dt-(jf· (2.1.1) 

In this equation, m is the mass of the body and v is the velocity vector. For 
a constant mass, this law takes the simplified form 

F=ma, (2.1.2) 

where a = dvldt is the familiar linear acceleration. 
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2.1/ Basic Physical Principles 9 

(3) For any force FI2 exerted by particle 1 on a particle 2, there must likewise 
exist a force F21 exerted by particle 2 on particle 1, equal in magnitude and 
opposite in direction: 

(2.1.3) 

(4) Any two particles attract each other with a force given by the expression 

F= Gmlm2r 
r3 ' 

(2.1.4) 

where r is a vector of magnitude r along the line connecting the two particles 
with masses ml and m2, and G = 6.669 X 10-11 m3/kg_s2 is the universal con
stant of gravitation. This is the famous inverse square law of force; the mag
nitude of the force is F= Gmlm2lr2. 

2.1.2 Work and Energy 

If a force F acting on a body causes its displacement by a distance dr, then 
the incremental work done by the force on the body is defined as 

dW=F-dr, (2.1.5) 

where F-dr is a scalar "dot" product. This illustrates that only the component of F 
in the direction of dr is effective in doing the work. The total work done by the force 
on the body is equal to the line integral 

WI2 = 1 F-dr = f 2F-dr (2.1.6) 
C '. 

(see Figure 2.1.1). 
The work done on a body changes its kinetic and potential energies. With respect 

to kinetic energy, the total work done on a body by moving it along the line c from 
PI to P2 in Figure 2.1.1 is given by 

= m (vf - vr) = T2 - T I , (2.1.7) 
2 

which is the difference in kinetic energies at r2 and at fl; T = {mv2 )12, and 

o 
Figure 2.1.1 Line integral of force and work. 
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dW=dT. (2.1.8) 

With respect to potential energy, in conservative force fields there exists a scalar 
function U such that F = -grad U(r). In such fields, if the work is done from PI to 
P2 then 

WI2 = f.rlF_dr = f.roF-dr+ f.rlF_dr 
r. r. ro 

= {OF_dr_ f.roF-dr = U(rl)-U(f2), 
r. rl 

(2.1.9) 

where the scalar U(r) is defined as the potential energy at r. Hence 

dW=-dU. (2.1.10) 

As is well known, the work done in a conservative force field is independent of the 
path taken by the force, and is a function only of the final position. 

From Eq. 2.1.8 and Eq. 2.1.10 follows the law of conservation of energy: 

dT+dU= 0 and T+U=const =E; (2.1.11) 

E is called the total energy. For a conservative force field, the total energy is con
stant. This is the principle of conservation of energy. 

2.2 The Two-Body Problem 

The two-body problem is an idealized situation in which only two bodies 
exist that are in relative motion in a force field described by the inverse square law 
(Eq. 2.1.4). In order to obtain simple analytical results for the motion of celestial 
bodies or spacecraft, it is assumed that additional bodies are situated far enough from 
the two-body system, thus no appreciable force is exerted on them from a third body. 

In Figure 2.2.1, m2 exerts an attraction force FI = mlrl on mit and ml exerts a 
force F2 = m2r2 on m2: 

.. r2- rl 
FI = mlrl = Gml m2

1 
13; 

f2- f l 
(2.2.1) 

.. fl-r2 
F2 = m2f2 = Gmlm21 13 = -Fl. 

rl-r2 
(2.2.2) 

From Eq. 2.2.1 and Eq. 2.2.2 we find that 

o 

Figure 2.2.1 Displacement vectors in a two-body system. 
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2.3 / Moment 0/ Momentum 11 

and, since r = r2-rJ, 

(2.2.3) 

Equation 2.2.3 is the basic equation of motion for the two-body problem. Some 
properties of the two-body system will be discussed next. 

The center of mass (cm) of the two-body system can be found from the equation 
~ mjfj = 0; it follows that faml - fbm2 = O. In Figure 2.2.1, fe is the radius vector 
from the origin of the reference frame to the cm of the two-body system, and fa and 
fb are (respectively) the distances of ml and m2 from the cm. We observe that ra = 
re-fl and fb = r2-re' or (equivalently) that ml(fe -fl)-m2(f2-i'c) = O. Hence 

(2.2.4) 

After two differentiations of Eq. 2.2.4 with time, and taking into consideration Eq . 
2.2.1 and Eq. 2.2.2, we find that 

fe = const. (2.2.5) 

The last equation means that although the cm is not accelerated, the system can be 
in rectilinear motion with constant velocity. 

Using once more the definition of the center of mass of the two-body system, we 
find that fb = ra(m l lm2) and f = fa(l+ml lm2). After differentiation, we obtain 

(2.2.6) 

If ml » m2, then fa = f(m2Iml) -+ 0 and fb = f. The self-evident conclusion is that 
the much smaller body m2 has no influence on the motion of the much larger body 
ml, which can be seen as an inertial body as far as the small body is concerned. 

2.3 Moment of Momentum 

In Figure 2.3.1, f is the position vector of a particle m that moves in a force 
field F. The moment of the force F about the origin 0 is 

M=rxF. (2.3.1) 

The moment o/momentum (also called angular momentum) about 0 is defined as 

Figure 2.3.1 The moment produced by a force. 
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Figure 2.3.2 Radial and transverse components of a body velocity. 

h = m(rxv) = rx(mv) = rxp, (2.3.2) 

where mv = p is the linear momentum of the particle. Next, we have 

dh d . d 
- = -d (rxmv) = rx(mv)+rx-

d 
(mv) & t t 

d 
= vx(mv)+rx dt (mv) =O+rxF =M. (2.3.3) 

The last equation states the very important fact that the moment acting on a particle 
equals the time rate of change of its angular momentum. This statement is also true 
if the mass m is variable or if the force is nonconservative. 

If the motion of a body takes place in a force field characterized by the inverse 
square law, then the moment of momentum of the body remains constant. To show 
this, consider Figure 2.3.2. The central force is located at the origin O. The cen
tral force F acts along the radius vector r from 0 to the body with mass m. Since r 
is collinear with F, rxF = M = O. Using Eq. 2.3.3, for a mass of unity we find that 
dhldt = 0 and h = rxv = const. The vector h is called the specific angular momen
tum; it is perpendicular to both r and v, and is also constant in space. This means 
that the motion of the particle takes place in a plane. 

In Figure 2.3.2 we define ex as the direction of the vector v relative to r, and (3 as 
the direction of v relative to the local horizontal. Since h = r X v is a vector cross 
product, h = rv sin(ex) = rv cos({3). However, since Vy = v cos({3) is the component 
of v perpendicular to r, the absolute value of the angular momentum is 

h = rvcos({3) = rvy = r r- = r -. (
dO) 2 d(J 
dt dt 

(2.3.4) 

2.4 Equation of Motion of a Particle in a Central Force Field 

2.4.1 General Equation of Motion of a Body in Keplerian Orbit 

Because the motion takes place in a plane, it is easier to solve the equation 
of motion in polar form. In Figure 2.4.1, i and j are unit vectors in the directions (re
spectively) of r and of Vy , the component of the velocity vector perpendicular to the 
radius vector r. Since r = ir, we find that 
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2.4 I Equation of Motion of a Particle in a Force Field 

M 

Figure 1.4.1 Radial and transverse components of motion in a plane. 

di _ di dB _ . () 
dt - dB dt - J , 

dj dj dB • dB 
-=--=-1-
dt dB dt dt' 

dr di . dr dB . dr and 
dt = dt r+ I dt = r dt j + 1 dt ' 

d
2
r = dr (. dB)+rCi(dB)2 +j d

2
B)+ d

2
r i+ dr dB. 

dt 2 dt J dt t dt dt 2 dt 2 dt dt J 

= if d
2
r _r[dB]2)+jf2 dr dB +rd

2
B) = -~i = F(r) 

tdt2 dt t dt dt dt 2 r2 

with J.' = OM. It follows that 

2 dr dB +rd
2
B = .!.~(r2 dB) = 0 

dt dt dt 2 r dt dt 

and hence 

h = r2 dB = const 
dt 

(see also Eq. 2.3.4). It also follows that 

d
2
r _r(dB)2 = _~. 

dt 2 dt r2 

13 

(2.4.1) 

(2.4.2) 

(2.4.3) 

Equation 2.4.3 is nonlinear and cannot be solved directly, but substitution of the 
variable r by lIu allows an analytical closed-form solution. If r = lIu then 

dr 1 du I 1 du dB 
dt = - u2 dt = -"'U2 dB dt . (2.4.4) 

From Eq. 2.4.2, h = r2(dBldt), hence also dBldt = hu2. It follows that 

dr = __ 1 dB du = _hdu. 
dt u2 dt dB dB' 

d
2
r = -h~ du = -h..!!..... du dB = -h d

2
u dB = _h2 2 d

2
u 

dt 2 dt dB dB dB dt dB2 dt U dB2· 

Use Eq. 2.4.6 in Eq. 2.4.3 to obtain 

(2.4.S) 

(2.4.6) 
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d 2u I _h2u 2 ____ h 2u4 = _p.u2 or 
d0 2 u 

d 2u P. 
d02 +u= h 2 ' 

(2.4.7) 

which is a second-order linear equation for u whose solution is harmonic in 0: 

p. 
u = /i2+ccos(O-Oo). (2.4.8) 

If 0 = 00 , then u = umax and r = rmin = lIumax • 

To find the integration constant c, we use the energy equation (Eq. 2.1.11) for a 
unit mass m = 1. In this case E = v212 - p./r. This relation for E is called the total 
energy per unit mass. The terms v212 and p./r are identified (respectively) as the 
kinetic and potential energy of the unit mass. Observing Figure 2.4.1, we can write 

(2.4.9) 

Taking a derivative of Eq. 2.4.8 yields du/dO = -csin(O-Oo), so that together with 
Eq. 2.4.9 we have 

v
2 

= [c2+ !~ CCOS(O-OO)+(:2 y]h2, 
and E becomes: 

h2 1 p.2 
E=-c2

---. 
2 2 h 2 

From the last equation, it follows that 

p.~2 C=- 1+2E-. 
h2 p.2 

If we define the eccentricity as e = ../1 + 2E(h2/p.2) then 

p.2 
E= (e 2-1)-

2h2 ' 

(2.4.10) 

(2.4.11) 

(2.4.12) 

which is an important relationship between the eccentricity and the total energy of 
a Keplerian orbit. 

Substitution of u for I/r leads to the final equation for Keplerian orbits: 

h 2/p. p 
r = =; (2.4.13) 

I +e cos(O-Oo) 1 +e cos(O-Oo) 

here p = h 2/p. is a geometrical constant of the orbit called the semi-latus rectum or 
the parameter. Equation 2.4.13 is the equation of a conical section. This is the gen
eral orbit equation from which different kinds of orbits evolve - namely, circular, 
elliptic, parabolic, and hyperbolic. Motion under a central force results in orbits that 
are one of these conical sections. Such Keplerian orbits will be analyzed next. 
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2.4.2 Analysis of Keplerian Orbits 

Circular Orbits 
For circular orbits, the eccentricity is null (e = 0) and r, the magnitude of the 

radius vector of the orbit from the focus, is constant: r = p = h2/p. = [rv cos(/3)]21p.. 
But in a circular orbit /3 = 0 (the velocity of the body is perpendicular to the radius 
vector r), so it follows that 

v2 = p.lr (2.4.14) 

and the velocity is also constant. The energy is then E = -p.2I2h2 < O. 

Elliptic Orbits 
For elliptic orbits 0 < e < 1, and the energy is E = (e 2 -1)p.2/2h2 < O. The 

point on the ellipse at 8 = 00 (point A in Figure 2.4.2) is called the periapsis, and the 
radius vector from the prime focus F of the ellipse to the periapsis is the minimum 
radius vector from the focus to any other point on the ellipse. Its value is found from 
Eq. 2.4.13 to be 

rp = p/(l +e). (2.4.15) 

For orbits around the earth, which is considered to be located at the prime focus F, 
the periapsis is called perigee; rp is the perigee distance from the focus. For orbits 
around the sun, the periapsis is called perihelion . 

If 8 = 1800 then for point B in Figure 2.4.2 we have 

ra = p/(I-e). (2.4.16) 

Point B is called the apoapsis and is the point on the ellipse with the maximum dis
tance from the focus located at F; ra denotes the apoapsis radius vector. The apoap
sis of an elliptic orbit in the solar system is called aphelion. The apoapsis of an earth
orbiting spacecraft is called its apogee. In this textbook, the "apogee" and "perigee" 
terminology for the apoapsis and peri apsis will be used exclusively. 

From Eq. 2.4.15 and Eq. 2.4.16, ralrp = (l+e)/(I-e), from which it follows that 

Apogee Perigee 
B, ,A , , 

, , , 
i.< ____ --<!2L.1<!4'--___ -. .. :: 

Figure 2.4.2 Geometric definitions of the elliptic orbit. 

(2.4.17) 
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On the ellipse, the major axis is equal to 2a = ra+rp = 2pl(l-e2), hence 

p = a(1-e2) = h2/1L; (2.4.18) 

a will be called the semimajor axis. 
From Eq. 2.1.11 and Eq. 2.4.12, the total energy of a body with unit mass in the 

orbit will be: 

v2 /L (e2-1)/L2 (e 2 -1)1L (e 2-1)/L /L 
E = 2" --,: = 2h2 = 2p = 2a(1-e2) = - 2a' (2.4.19) 

from which it follows that 

v2 IL /L 
2=-':-2a· 

The condition for an orbit to be elliptic becomes 

v2 IL -<-
2 r 

(2.4.20) 

(2.4.21) 

From Eq. 2.4.19 and Eq. 2.4.12, the energy is equal to -1L12a, which is called the 
energy constant. 

For an ellipse, we know that c = ae. In Eq. 2.4.18 we found that p = a(1- e2). 
It is also easily shown that 

b = .../a2-c2 = .../a2-a2e2 = a.../l-e2. 

Yet a = pl(l-e2), so it follows that 

p"'/l-e2 p 
b- - . 

- 1-e 2 - .../1- e2 ' 

b is called the semiminor axis of the elliptic orbit. Moreover, 

pe 
c=--

l-e2 ' 

(2.4.22) 

(2.4.23) 

where c is the distance between the prime focus F and the geometrical center of 
·the ellipse (see Figure 2.4.2). 

Parabolic Orbits 
Parabolic orbits are of no practical importance. Their special feature is that 

E = 0 and e = I, from which it follows that 

p p 2r 
r = r = -, and r = p. 

l+cos(8), p 2 l+cos(8) 

From the equality E = 0 it follows that a --+ 00 and also that 

v2 = 2/L/r. (2.4.24) 

The velocity in Eq. 2.4.24 is the escape velocity necessary to leave the parabolic orbit 
around the central body located at F in Figure 2.4.2, which also means that the sic 
can approach new attracting central bodies, such as the moon. It is interesting also 
to notice that this escape velocity is larger by a factor of only V2 than the velocity of 
a circular orbit at the same distance r from F. 
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Figure 2.4.3 Geometry of the hyperbolic orbit. 

Hyperbolic Orbits 
For this important class of orbits, the total energy E is positive, E> O. This 

means that the kinetic energy of the satellite is larger than its potential energy, so 
that the sic is able to leave the gravitational attraction field of the central body. A 
satellite moving on a hyperbolic orbit does not revolve about the central body. 

Because E> 0, it follows from Eq. 2.4.19 that a = -p,1(2E) < O. If we want to 
stay with a>O, then Eq. 2.4.18 must be changed slightly to p=a(e2 -1), so that 
p> 0 and 

a(e2 -1) p 
r= = . 

1 + e cos(8) 1 + e cos(8) 
(2.4.25) 

However, as r increases to infinity, 1 + e cos(8) must decrease to zero since p is con
stant for a given orbit. In this situation (see Figure 2.4.3), the equation of the asymp
totes becomes 

cos(8oo ) = cos(8as) = -lie. (2.4.26) 

Because f = -rr-8oo = -rr12-012 implies -rr/2 + 0/2 = 800 , we have 

cos(~ +f) = cos(8",,) = -~ = -sin(~)sin(I) 
and, finally, 

. (0) 1 
Sin '2 =e' (2.4.27) 

Hyperbolic orbits are useful for transplanetary spacecraft voyages. Their behavior 
at r-+ 00 is of special interest (Kaplan 1976); see Figure 2.4.4. Consider the moment 
of momentum at a point x very far away from the focus F. We have h = Vr sin(a) = 
V.1 = V"".1. The total energy at infinity is 

V~ p, p, 
E=---=--

2 roo 2a' 
so that 

p, 
a = - v.2 ' 

00 

(2.4.28) 
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Figure 2.4.4 Geometry of the hyperbolic orbit for transplanetary voyages; 
adapted from Kaplan (1976) by permission of John Wiley & Sons. 

But also p = a(e2 -1), so 

p. V~A2 h2 

p=-(e2-1)=--=-VJ p. p. 
and 

If A and Veo are known, we can find a, e, and also 0: 

(2.4.29) 

V.4A2 
e2 = 1 + ~. (2.4.30) 

P. 

The practical meaning of these equations is as follows. A sic navigating toward 
a far planet has a known velocity Veo. Also, knowledge of its direction of motion 
allows us to calculate A. The parameters of the orbit that the sic will follow can be 
obtained from Eq. 2.4.28 and Eq. 2.4.30. In a similar way, the sic can be forced to 
approach the planet in a desired orbit path by appropriately manipulating A and Vex>' 
For more about interplanetary transfers, the reader is referred to Kaplan (1976) and 
Battin (1990). 

2.5 Time and Keplerian Orbits 

2.5.1 True and Eccentric Anomalies 

The location of a body in any orbit can be described either in terms of its 
angular deviation from the major axis or by the time elapsed from its passage at the 
perigee. We use Figure 2.5.1 to help define the true and the eccentric anomalies of an 
ellipse. The true anomaly 8 is defined as the angle between (i) the major axis pointing 
to the perigee and (ii) the radius vector from the prime focus F to the moving body. 
To define the eccentric anomaly, we draw an auxiliary circle with radius Q centered 
at the middle of the major axis. The eccentric anomaly", is then defined as shown in 
Figure 2.5.1. 
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Perigee 
+-------~~~~~~ 

Figure 2.5.1 Geometry for finding the relationship between (J and!/t. 

19 

In this section we shall find some important relationships between the true and 
the eccentric anomalies. Referring to Figure 2.5.1, we have: x + y = ae = c, x = 
a cos(1f;), and y = rcos(180 - B) = -rcos«(); hence x+ y = a cos(1f;) - rcos«() = ae . 
Using Eq. 2.4.13: 

(
.1. a(l-e2)cos«() ae+acos«() 

a cos '1') = ae + = and 
1+ e cos«() 1+ e cos«() 

( .1.) e+cos«() . (.1.) sin«().../I-e2 
cos 'I' = ,SIn 'I' = , 

1+ e cos«() 1+ e cos«() 
(2.5.1) 

«() cos(~)-e . «() sin(1f;).../I-e2 
cos = ,SIn = . 

I-ecos(~) l-ecos(1f;) 
(2.5.2) 

Also (cf. Deutsch 1963), 

tan(%)= J~~: tan(~). (2.5.3) 

The importance of these equations will become apparent in the following sections. 
Another important relation may be derived from Figure 2.5.1: substitute cos«() from 
Eq. 2.5.2 into Eq. 2.4.13 to obtain 

r=a[l-ecos(1f;»). (2.5.4) 

2.5.2 Kepler ~ Second Law (Law oj Areas) and Third Law 

In Figure 2.5.2, the radius vector r sweeps in a differential period of time the 
differential area .!1A = (i1()rr)/2, from which we can derive 

dA = .!.(r2 dB) =.!.h = const; (2.S.Sa) 
dt 2 dt 2 

in other words, the time rate of change in area is constant, which is Kepler's second 
law. After integration of this equation, the area swept amounts to 

A = tht. (2.S.Sb) 

Because the area of an ellipse is A = rab, if the time period of the orbit is t = T 
then, according to Eq. 2.S.Sb, 
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Figure 2.5.2 Geometry for deriving the law of areas. 

T = 2A = 27rab = 27rab = 27ra2~ = 27r (;3 = 27r 
h ..fiiP. ..,fa(l-e2)1L ..,fa(l-e2)p. ...J ---,; n' 

(2.5.6) 

Equation 2.5.6 is the third law of Kepler, stating that the orbital period is propor
tional to a3

/
2. The term n denotes mean motion, and M = n(t - tp ) is called the mean 

anomaly; M enables calculation of the time elapsed from the perigee passage at time 
tp ' given the true anomaly 0. 

2.5.3 Kepler's Time Equation 

Knowledge of the true anomaly 0 allows us to find the value of the eccentric 
anomaly 1/;. Knowing 1/;, the elapsed time from the periapsis passage can be com
puted. For that purpose, the law of areas is used in the following way. In Figure 
2.5.3, we observe that tM = (Tl7rab)S(LOM), where S stands for the area of planar 
surface and tM = t- tp. Hence 

S(LOM) = !!...S(LOM') and 
a 

S(LOM') = 21/; (7ra2)-S(OQM') = 21/; 7ra2-.!..acsin(I/;) 
7r 7r 2 

= ~(7ra2)--21 a2esin(I/;) = 1/;2 a2-.!..a2esin(I/;), 
27r 2 

M' 

Perigee 

L 

Figure 2.S.3 Derivation of Kepler's time equation. 
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so it follows that 

1M =~!!.. a
2 

[l/I-e sin(l/I») = ..I..[l/I-e sin(l/I)]; 
-rrab a 2 2-rr 

(2.5.7) 

recall that tM = t-Ip and tp is the passage time from the perigee. We can also write 
Eq. 2.5.7 in the more compact form 

(2.5.8) 

Knowing the eccentricity e and the true anomaly 8, we can find the eccentric anomaly 
l/I by Eq. 2.5.1 and the elapsed time t-tp from the perigee passage using Eq. 2.5.7. 

A different problem is to find the position of a satellite 8 at any time, given the 
orbital parameters. The mean anomaly is found from Eq. 2.5.8, but unfortunately 
this equation is not solvable in closed form; it must be solved numerically. After 
solving for l/I, 8 can be found from Eq. 2.5.2. 

EXAMPLE 2.5.1 Let us take as an example a Molniya-type satellite orbit, with an 
apogee altitude of 40,000 km and a perigee altitude of 500 km. We need to compute 
the fraction of time that the satellite remains in its operational range of ±30° from 
the apogee. 

For this orbit, e = 0.7417 (Eq. 2.4.17). The orbital period is equal to T = 43,243.3 
sec (Eq. 2.5.6). The mean motion n = 116,882.3882 rad/sec (Eq. 2.5.6). The oper
ational range is ±30° from the apogee. This means that the satellite is outside the 
operational range for \8\ < 1500 from the perigee. Next, we shall compute the time 
for which the satellite is not in the operational range, M = n(t-tp)' If 8 = 150

0 
then 

l/I = 110.340 (Eq. 2.5.1). Use Eq. 2.5.8 to find M = 1.2295, from which we also find 
t-t

p 
= 8,461.87 sec. Finally, the operative time period is T-2(t-tp ) = 26,319.645 

sec, which is more than 60% of the orbital time period. 

A solution of Eq. 2.5.8 in the form of a trigonometric series was developed by 
Lagrange (see Pritchard and Sciulli 1986): 

GO 1 
l/I=M+2}'; -In(ne)sin(nM), 

n=l n 
(2.5.9) 

where In is a Bessel function of the first kind of order n. The true anomaly can also 
be expressed directly in the series form: 

8 = M+ [2e- e:] Sin(M)+ie2 sin(2M)+ !~ e3 sin(3M). (2.5.10) 

Equation 2.5.7 is valid for motion in an elliptic orbit. For a hyperbolic orbit (in 
which e> 1), we must define sinh(~) = [.Je2 -1 sin(8)]/[l +e cos(8)], and Kepler's 
time equation takes the form 

esinh(~)-~ = nhyp(t- tp) = M, (2.5.11) 

with nhyp = .Jp.la3 • The subscript "hyp" stands for hyperbolic. 

'--. -.:~' -
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As in the previous case of an elliptic orbit, given the eccentricity e and true anom
aly 0, we can find the mean anomaly M. In fact, by integrating Eq. 2.4.2 with time, 
we can obtain equations that relate the time t-tp directly with the true anomaly 0 
for both elliptic and hyperbolic orbits. From Eq. 2.4.2, 

p 2dO 
[1 0)]2 = dt.,fiiP. = dt../a(1-e2)p, +ecos( 

(see Thomson 1986). Integrating the left side of the equation with 0 and the right side 
of the equation with time, we can obtain the following final equations for elliptic 
and hyperbolic orbits: 

tell = _a_
3/

_
2 [2 arctan[J_l-_e tan (!)] __ e--:..J~I_-_e_2_s_in-:-(,-()_)] 
~ l+e 2 l+ecos«() 

for e < l,and 

a3/ 2 [e..Je2-1 sin«() 
th =--

yp ~ l+ecos«() 

for e> 1. 

In ..Je+f +..Je=I tan«()12)] 
..je+ 1 - ..je-l tan«()I2) 

(2.5.12) 

(2.5.13) 

This completes our analytical treatment of Keplerian planar orbits. It is important 
to summarize the parameters that represent the orbital motion in a plane. The physi
cal parameters sufficient to define an orbit are its total energy E and its momentum h. 
The geometric parameters sufficient to define the orbit are the semimajor axis a and 
the eccentricity e. The mean anomaly M enables finding the location of the moving 
body in the orbit with time. In the next section we shall find that three more parame
ters are necessary to define an orbit in space. 

2.6 Keplerian Orbits in Space 

2.6.1 Definition of Parameters 

For earth-orbiting spacecraft, it is common to define an inertial coordinate 
system with the center of mass of the earth as its origin (a geocentric system) and 
whose direction in space is fixed relative to the solar system. Astronomical measure
ments have shown that this system can be a suitable inertial system for practical pur
poses. The earth moves in an almost circular orbit around the sun with a long period 
(a whole year), so its motion is practically unaccelerated for our purposes, and the 
reference system can be accepted as being inertial or Galilean. 

The Z axis is the axis of rotation of the earth in a positive direction, which inter
sects the celestial sphere at the celestial pole. The X-V plane of this coordinate sys
tem is taken as the equatorial plane of the earth, which is perpendicular to the earth's 
axis of rotation. 

The direction of the axis of rotation of the earth relative to the inertial star system 
is not constant, since it is perturbed by forces due to the sun and the moon. The con
sequences are a precessional motion due to the sun (with a period of 25,800 years 
and an amplitude of 23.5°), together with a superimposed periodic nutational motion 
due to the moon (with a period of 18.6 years and an amplitude of 9"21). 

Next, we shall define the inertial X axis of the geocentric inertial system. As is well 
known, the earth's equatorial plane is inclined to the ecliptic plane, which is the 
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Summer 
solstice 

=-....L-~~ "J Winter 
solstice 

1st day of 
autumn 

Vemal equinox vector 

Figure 2.6.1 Vernal equinox inertial direction. 
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plane of the earth orbit around the sun, by an angle of 23.5 0 (see Figure 2.6.1). Both 
planes intersect along a line that is quasi-inertial in space with respect to the stars. 
The X axis of our inertial system coincides with this line, which is called the vernal 
equinox vector (or direction) and which intersects the celestial sphere at a point 
named the first point 0/ the Aries <YO, or the vernal point. The third axis Y completes 

an orthogonal right-handed system. 
Unfortunately, both the equatorial plane and the ecliptic plane move slowly with 

respect to the true celestial inertial coordinate system, centered in the center of mass 
of the solar system. The planets affect the orientation of the ecliptic plane in the slow 
rotational motion of planetary precession. As the Z axis precesses, so does the equa
torial plane, which is perpendicular to it. The conclusion is that the geocentric iner
tial system moves slowly relative to the stars, and it is necessary to define the system 
with reference to a certain date. For instance, it was once common to classify the 
stars relative to the geocenter inertial system as defined on January 1,1950. Today, it 
is common to use as reference the geocentric system for the year 2000. 

Having defined the geocentric coordinate system, we can now discuss the three 
additional parameters necessary to position an orbit in space. In Figure 2.6.2 (see 
also Bate, Mueller, and White 1971 or Bernard 1983), the plane of the orbit is inclined 

Descending 
node ~ 

v 

y 

Figure 2.6.2 Parameters that define location of orbits in space. 
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to the X-Y plane - which is also the equatorial plane of the earth - by an angle i, the 
inclination of the orbit. The orbital plane and the equatorial plane intersect at the 
node line. The angle in the equator plane that separates the node line from the X..,. 
axis is called the right ascension, D. In the orbit plane, r is the radius vector to the 
moving body; rp is the radius vector to the perigee of the orbit. The angle between rp 
and the node line is w, the argument of perigee. These three parameters, together 
with the three parameters (a, e, and M) of the orbit in the plane, complete a system 
of six parameters that suffices to define the location in space of a body moving in any 
Keplerian orbit. These parameters are known as the classical orbit parameters, which 
are redefined as follows: 

(1) a, the semimajor axis; 
(2) e, the eccentricity; 
(3) i, the inclination; 
(4) D, the right ascension of the ascending node; 
(5) w, the argument of perigee; and 
(6) M = n(t-to), the mean anomaly (where n is the mean motion). 

It is convenient to define the vector [a] = [a e i D w M]T. 
Although the classical parameters completely define an orbit in space, some of 

them (e.g. 0) are poorly defined if the inclination angle i is very small, as with geo. 
stationary orbits (Section 2.9.1). In such cases, a variation of the six listed parameters 
will be preferred. Orbits with very small inclinations are called equatorial orbits. 

The six parameters are convenient for defining an orbit in space in the inertial sys. 
tern defined by its three axes X..,., Y, and Z, as shown in Figure 2.6.2. However, it can 
also be useful to express the location of a moving body in other parameters, such as 
Cartesian or polar. 

2.6.2 Transformation between Cartesian Coordinate Systems 

The following basic information will be useful through the entire textbook 
in many different variations. In Figure 2.6.3, R is the radius vector of a point relative 
to the origin of both Cartesian systems [I, J] and [i,j]. System [i,j] is rotated by an 
angle D with respect to system [I, J]. The components of R are respectively X; Yand 
X,Y in both systems. See also Appendix A. Here, I,J are unit vectors in [X, Y] and 
i,j are unit vectors in [x,y]. For a transformation in the plane, 

R =XI+YJ =xi+yj. (2.6.1) 

J 

Figure 2.6.3 Two-dimensional coordinate transformation. 
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2.6/ Keplerian Orbits in Space 

By taking the scalar product of the vector R and the unit vector i, we have 

XI·I+YJ·I =xl·i+yj·i. 

2S 

Since 1.1 = cos(O), J·i = sin(O), 1.1 = 1, and i.j = 0, it follows that x = Xcos(O)+ 
Ysin(O). Similarly, by taking the scalar product ofR and the unit vector j, we obtain 

XI.j+YJ·j =xl.j+yj.j. 

Since I. j = -sin(O), J. j = cos(O), I· j = 0, and j. j = 1, we have y = X[ -sin(O)) + 
Ycos(O). 

The rotation is about an axis K, perpendicular to both the I and J axes. Looking 
on that transformation as a three-dimensional transformation in space with Z along 
the K axis and z along the k axis, we have Z = z. Finally, we get 

[~]=[~~n~ :~~ mn (2.6.2) 

see also Appendix A. This three-dimensional transformation can be performed as 
many times as necessary to achieve a desired overall transformation in space around 
different axes. For simplicity, let us define this transformation by the angle 0 as [r] = 
[A(O)][R]. 

For example, suppose we wish to perform three subsequent transformations from 
inertial coordinates X, Y, and Z to orbit coordinates P, Q, and W as defined in Fig
ure 2.6.2. (P is a unit vector directed from the center of the orbit to the perigee, W is 
a unit vector along the momentum axis ofthe orbit, b = rxv, and Q = PxW.) The 
transformation proceeds as follows: 

(2.6.3) 

In this equation, c_ and s_ stand for COL and sin_, and w, i, and 0 are as defined 
in Figure 2.6.2; [Ad (_)) stands for a transformation matrix about an axis d by an 
angle _. 

In the following sections, it will be necessary to define what is known as a local 
coordinate system. In this system, R is a unit vector along the radius vector r, W is a 
unit vector along the momentum vector b, and S completes a right-handed orthog
onal coordinate system. In this system, the third rotation is by an angle 8 + w, the 
argument ofthe location ofthe body from the ascending node. The overall transfor
mation is found to be 

[1] = IA'(W+9)][Ax(i)][A'(O){~] = 



. , 

.••• ">: ••• 
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[ 

c(w + 8) cll- ci s(w+8)sll 
= -s(w+ 8) cll-ci sll c(w+8) 

s;sll 

c(w + 8) sll +s(w + 8) ci cll 
-sew + 8) sll + c(w + 8) ci cll 

-sicll 

2.6.3 Trans/ormation/rom a = [a e ill w M]T to [v, r] 

2 I Orbit Dynamics 

S(W+8)Si][X] 
C(w;i8)S; ;. 

(2.6.4) 

Here our problem is to find the Cartesian coordinates of a satellite in the 
inertial frame defined by X'Y', Y, and Z (shown in Figure 2.6.2) given the six classical 
orbit parameters a, e, i, ll, w, and M. Since a Keplerian orbit is in a plane, we can 
define a coordinate system x, y in a plane with z = 0; see Figure 2.6.4. In this figure, 

x = a cos(1/;)-c = acos(1/;)-ae and 

y = [b sin(1/;)a]/a = a sin(1/;).Jl-e2 , 
(2.6.5) 

where r = ix+ jy. Also, for a plane orbit, Z = O. The term V can be found by using the 
Kepler equation for a given M = nt, since V -e sin(v) = M = nt. To find V, a simple 
numeric procedure (based on successive approximations) may be used if e < 1: 

Vo = M = n(t - to) (to = time of passage at the perigee); 

VI =M+esin(vo); V2=M+esin(v I ); ••• ; v n+1 =M+esin(vn). 

This sequence converges for e < 1. For e> 1, a different procedure is necessary for 
convergence (see e.g. Battin 1990, Chobotov 1991). Given V, from Eq. 2.6.5 we can 
solve for components x and y of the satellite in the orbit coordinate system shown in 
Figure 2.6.4. 

To find r and dr/dt (see Figures 2.6.2 and 2.6.4), let us put i 53 P and j 53 Q; then 

r = a[cos(1/;)-e]P+a..Jl-e2 sin(1/;)Q =xi+yj =xP+yQ (2.6.6) 

(Bate et aI. 1971, Bernard 1983). The inverse transformation of Eq. 2.6.3, with x, y, 
and z known, takes the following form: 

[ ~] = IA.(!llrIIAx(ilrIIA.(WW{ ~ ]: 

x, Y, and Z are the inertial coordinates of the moving satellite. 

Figure 2.6.4 Transformation from orbit parameters 
to Cartesian inertial frame coordinates. 

(2.6.7) 
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2.6/ Kepierian Orbits in Space 

To calculate the velocity vector, 

dr dr dit 
v = dt = dit dt ' 

we must first find dit Idt from Kepler's time equation: 

dM dv dit 
dt = n = dt -ecos(it) dt ' 

from which, together with Eq. 2.5.4, we derive 

dit n an 
dt = l-ecos(it) = r· 

Differentiating Eq. 2.6.6, we use Eq. 2.6.8 to obtain 

dr a2n. ~ -d = v = -[ -sm(it)P+v1- e2 cos(it)Q] 
t r 

27 

(2.6.8) 

(2.6.9) 

(see also Deutsch 1963, Balmino 1980). We have thus found v = dr/dt also. Knowing 
the components of v on the P and Q axes, we can use once more the transformation 
in Eq. 2.6.3 to find the velocity components in the inertial coordinate system. The 
inverse transformation will be similar to that of Eq. 2.6.7. 

2.6.4 Transformation from [v, r] to a = [a e ; {} w M]T 

If r and v are known in their Cartesian coordinates X, Y, Z, Vx , Vy , and ~, 
then the classical orbit parameters can be easily computed. From Eq. 2.4.20 we find 

(2.6.10) 

(Bate et al. 1971, Chobotov 1991), and from h = rxv = IhlW we can find i and o. 
To find i we use the relation 

cosO) = hz/lhl. (2.6.11) 

To find 0 with the correct sign, we use the relations 

h -h 
sin(O) = x and cos(O) = ~; (2.6.12) 

.../h;+h} h;+h; 

i and 0 are then known. The terms hx, hy, and hz are the components of h, calculated 
from the Cartesian coordinates of v and r by calculating the vector product r x v. 

Since p = h 2/p. = a(1-e2), it follows that 

(2.6.13) 

Next, we must calculate,p. Having found a and e, and knowing Irl from the coordi
nates of r, we can calculate cos(,p) from Eq. 2.5.4: 

,p = cos-J[ a:!r l]. (2.6.14) 

From Eq. 2.5.4, Eq. 2.6.6, and Eq. 2.6.9, we easily find that 
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. roy roy 
sm(,p) = -2- = c;; . 

a ne evp.a 
(2.6.15) 

From Eq. 2.6.14 and Eq. 2.6.15 we can now calculate,p with its correct sign. We can 
find the true anomaly 8 from Eq. 2.5.2 and the mean anomaly M from Kepler's time 
equation (Eq. 2.5.8). 

We are left with one more unknown parameter, the argument of perigee w. To 
find it, we use the transformation of Eq. 2.6.7, in which x and yare the components 
of r in the plane of the orbit: 

x = rcos(8); y = rsin(8). (2.6.16) 

The components of r in space are known: X, Y, and Z. Having already found the 
inclination angle i and the right ascension of the ascending node D, we can find the 
argument of perigee w from the transformation in Eq. 2.6.7. Inserting x, y, X, Y, and 
Z in the equation yields the following equalities: 

8) 
Xcos(D)+Ysin(D) 

cos( w + = ----'------'----'
r 

(2.6.17) 

(Bernard 1983). From the equalities in Eqs. 2.6.17 we can finally calculate w, since 8 
can be found from Eq. 2.5.2. 

2.7 Perturbed Orbits: Non-Keplerian Orbits 

2.7.1 Introduction 

In previous sections, ideal Keplerian orbits were treated under the basic 
assumptions that the motion of a body in these orbits is a result of the gravitational 
attraction between two bodies. This ideal situation does not exist in practice. In the 
solar system, it is true that the mass of the sun is 1,047 times larger than that of the 
largest planet (Jupiter), but still there exist eight additional planets perturbing the 
motion of each individual planet in its particular orbit. In fact, the two-body prob
lem of motion is an idealization, and additional forces acting on any moving body 
must be taken into account. The perturbing forces caused by the additional bodies 
are conservative field forces, already encountered in Sections 2.1.2 and 2.2. In the 
case of high-orbit satellites (e.g. geostationary satellites), the effects of the conserva
tive perturbing forces of the sun and the moon on the motion of the satellite cannot 
be ignored, as we shall see in Section 2.8.3. Their major contribution is to change the 
inclination of the geostationary orbit. 

There are also nonconservative perturbing forces, such as the solar pressure. In 
the case of geostationary orbits, solar pressure tends to change the eccentricity of the 
orbit. Another. nonconservative force that disturbs the motion of a satellite is the 
atmospheric force (also called atmospheric drag), which is pertinent to low-altitude 
orbits circling the earth. Such forces tend to decrease the major axis of the orbit, 
eventually causing a satellite to fall back to the earth's surface. There are many other 
perturbing forces that cause ideal Keplerian orbits to acquire strange properties. 
These forces may strongly affect the orbital motion of spacecraft, and will be treated 
in the remaining part of this chapter. 
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2.7 I Perturbed Orbits: Non-Keplerian Orbits 29 

2.7.2 The Perturbed Equation 0/ Motion 

Equation 2.2.3 is the basic dynamical equation of motion for a Keplerian 
orbit. It can be rewritten in the following form: 

d 2r r 
-- = -p.- = 'YK dt 2 r3 

with initial conditions r(O), v(O). For Keplerian orbits, 

da = de = dO = dw = di = O. 
dt dt dt dt dt ' 

dM 
dt =n. 

(2.7.1) 

(2.7.2) 

For the general case, including perturbing forces of any kind, the equation of motion 
of the satellite becomes: 

d 2r 
dt 2 ='YK+'Yp' (2.7.3) 

with initial conditions r(to) = ro and v(to) = Yo. Here 'YK and 'Yp stand (respectively) 
for the Keplerian and perturbing accelerations caused by the Keplerian and perturb
ing forces. 

Equation 2.7.3 is the general equation for the motion of a body in any orbit. In 
the following analysis, the perturbation acceleration (force) 'Yp is to be appreciably 
smaller than the Keplerian acceleration (force) 'YK' According to Section 2.6.4, 
knowing the radius vector r and the velocity vector v at any time allows us to find the 
orbit parameters a, e, i, 0, w, and M, which together define the vector ex. Suppose 
that, at any time to, the perturbing acceleration 'Yp is removed. Since we know r(to) 
and v(to), we can find the evolving Keplerian orbit, called the oseulating orbit,' its 
parameters are ex = [a e i 0 w M]T. See Figure 2.7.1. In fact, the orbit parameters are 
dependent also on time, since the perturbing acceleration is dependent on the radius 
vector r, the velocity vector v, and the time: 'Yp = 'Yp(r, v, t). For example, the moon's 
perturbing acceleration on the sic depends on the moon's position in its orbit relative 
to the earth. 

The equations of motion become 

dv dr dt = F(r, v, t) and dt = v. (2.7.4) 

According to Section 2.6.3, the vectors r(l) and v(t) can be expressed in terms of 
the vector ex defined previously, whose elements are the six classical orbit parameters. 
We have r = r(aj, t) and v = v(aj, I). Accordingly, the vector equations of Eq. 2.7.4 
can be decomposed into their Cartesian coordinates in terms of ai as follows: 

Figure 2.7.1 Definition of true and osculating orbits. 
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30 2 / Orbit Dynamics 

(2.7.5) 

The first three of Eqs. 2.7.5 describe the Cartesian components of the body accelera
tion dV/dt; the last three describe the components of the velocity vector v = dr/dt. 

Finally, an inverse to the set of Eqs. 2.7.5 can be obtained: 

~~ = Fa(a, e, i, n, w, M, I), 

~~ = Fe(a, e, i, n, w, M, I), 

d
di = F;(a, e, i, n, w, M, I), 

I . 

~~ = Fo(a, e, i, n, w, M, I), 

~~ = F",(a, e, i, n, w, M, I), 

~ =FM(a,e,i,n,w,M,t). 

(2.7.6) 

In Eqs. 2.7.6, for Keplerian orbits with 'Yp = 0, the first five expressions are equal to 
zero; the last one is constant, dM/dl = n. 

In the balance of this chapter, we shall look for the solution of Eqs. 2.7.6 for non
Keplerian orbits with different kinds of perturbing forces. 

2.7.3 The Gauss Planetary Equations 

Before we can solve Eqs. 2.7.6, we must find a general formulation for the 
right sides of these equations expressing arbitrary perturbing forces (accelerations). 
When these formal expressions are included, Eqs. 2.7.6 are known as the Gauss 
equations. 

To find the solutions of Eqs. 2.7.6, we shall decompose the perturbing force (accel
eration) along the axes of a moving Cartesian frame defined in the following way (see 
Figure 2.7.2): R - along the radius vector r; S - in the local plane of the osculating 
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Figure 2.7.2 Definition of an orthogonal axis frame for the perturbing 
forces; adapted from Bernard (1983) by permission of Cepadues-Editions. 
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orbit, perpendicular to R, and in the direction of the satellite motion; W - perpen
dicular to both Rand S, in the direction of the momentum vector R x S. Any per
turbing acceleration (force) can then be expressed as 

'Yp = RR+SS+ WW (2.7.7) 

(Bernard 1983). 
We shall exemplify the derivation of the Gauss equation for do/dt. Remember 

(cf. Eq. 2.1.6) that E = f F -dr = f F -v dt, so that 

dE 
dE= F-vdt => dt = F-v. 

Since (according to Eq. 2.4.19) E = -po/20, we find that 

dE po do 
dt = 202 dt = V-(-Yp+'YK)· 

However, in a Keplerian orbit, E is constant, so the last equation reduces to 

(2.7.8) 

The velocity vector v can be decomposed along the unit vectors Rand S. If ~ is 
the angle between v and the unit vector S, then v = v sin(I3)R + v cos(~)S, leading to 

~~ = Rv sin(~) + Sv cos(~). (2.7.9) 

To find ~, consider Figure 2.3.2. In this figure, the radial velocity is along the radius 
vector r, and sin(~) = (l/v)(drJdt). However, 

dr dr dB dr h 
dt = dB dt = dB r2 . 

Since h = r 2(dBJdt), from Eq. 2.3.4 and Eq. 2.4.13 we have 

dr dr ..;pp. pe sin(O) .;pp. ..;pp.e sin(O) 

dt = dO -;:2 = [1 + ecos(O)]2 r2 = p 
and 

sin(,8) = e sin(O) ri. 
v V-P 
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We would like to express sin(,s) and cos(,s) in terms of the orbital parameters. Use 
of Eq. 2.4.20 leads to the' following expressions for sin(,s) and cos(,s): 

• R esin(8) 
sm(~) = --;=====~ 

.../1 + 2e cos( 8) + e2 
(
R) l+ecos(8) 

cos ~ = r.:=:===~==:: 
.../1 + 2e cos( 8) + e2 

(2.7.10) 

Substituting Eq. 2.7.10 into Eq. 2.7.9 and using Eq. 2.7.8, we easily obtain the final 
result: 

da 2 - = .~ (esin(8)R+[l+ecos(8)]S). 
dt nvl-e2 

Equation 2.7.11 is the Gauss equation for da/dt. 

(2.7.11) 

In a similar way, the remaining expressions for Eqs. 2.7.6 can be developed (see 
e.g. Escobal1965, Bernard 1983). The resulting Gauss equations are: 

de Vl-e 2 

-d = (sin(8)R + [cos(,p) + cos(8)]S), (2.7.12) t na 

di 1 r 
-d = ~ cos(8+w)W, 

t na l-e2 a 

dO = 1 r sin(8+w) w: 
dt na.../l- e2 a sin(i) , 

~; = ~ [-RCOS(8)+[1+ l+e~OS(8)]sin(8)S- ~~ cos(i»). 

d:: =n+ l:a:2

f(1+:::S(8) +COS(8)]R-[I+ l+e~OS(8)]sin(8)SJ. 

(2.7.13) 

(2.7.14) 

(2.7.15) 

(2.7.16) 

Equations 2.7.11-2.7.16 show that if the penurbing force vector is known then the 
differential changes of all six orbit parameters can be calculated analytically. The 
force vector can be conservative or nonconservative. For a known perturbing vector 
"Yp and initial conditions ofthe vector «(to), the Gauss equations can be continuously 
integrated to calculate the evolution with time of the classical orbit parameters. As 
an example, let us calculate the influence of aerodynamic forces acting on a satellite's 
major axis (daldt). 

EXAMPLE 2.7.1 Differential Change of a Due to Perturbing Aerodynamic Forces 
For low-orbit satellites, the air density is high enough to produce a perturbing force, 
which in turn tends to decrease orbit altitude. Suppose that the orbit is circular, and 
that the density p of the air is constant for the entire orbit period. The perturbing 
force Fp due to atmospheric drag will be Fp = iPV2CdS. where v is the satellite veloc
ity. Cd is the drag coefficient of the satellite, and S is the equivalent satellite surface 
in the direction of motion of the satellite. The perturbing acceleration will be "Yp = 
Fp/ms, with ms the mass of the satellite. In a circular orbit, Fp is opposite to the 
direction of motion of the satellite, so that 

and 
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The term CdS/(2mS) is known as the ballistic coefficient. Using also Eq. 2.7.8 and 
Eq. 2.4.14, we find that 

da CdS - = -p..{tiP.-. (2.7.17) 
dt ms 

This equation illustrates that the rate of decrease of the semimajor axis a is linearly 
proportional to both the air density p (which depends on the altitude of the satellite 
and on the atmospheric temperature) and the geometric properties of the satellite, 
but is inversely proportional to its mass. To maintain a constant altitude, the satellite 
must provide a force to balance the perturbing force Fp , with an inevitable fuel con
sumption. The necessary fuel mass will be discussed in Section 3.3.3. 

2.7.4 Lagrange's Planetary Equations 

For cases where the perturbing force is conservative - that is, derived from a 
scalar function Fp = -grad U(r) (see Section 2.1.2) - the Gauss equations can be sim
plified. The development of the Lagrange equations for the differential change of the 
six orbit parameters can be found in Escobal (1965) and Balmino (1980). The results 
are summarized as follows: 

da 2 au 
dt = na aM' 

(2.7.18) 

de l-e2 au ~ au 
dt = na2e aM na2e a",' 

(2.7.19) 

di = -I [au +cos(i) au], 
dt na2.JI-e2 sin(i) aD a", 

(2.7.20) 

dO 1 au 
Cit = na2.JI-e2 sin(i) ai ' 

(2.7.21) 

d", ~ au cos(i) au 
Cit = na2e ae na2.JI-e2 sin(i) ai ' 

(2.7.22) 

dM 2 au l-e2 au 
dt = n- na Ta- na2e Te· (2.7.23) 

Equations 2.7.18-2.7.23 are the classical form of Lagrange's planetary equations. 
Since numerous perturbing forces are conservative, the Lagrange equations are fre
quently used in the analysis of non-Keplerian orbits. The Lagrange equations can also 
be integrated with time to calculate the evolutions of the classical orbit parameters. 

2.8 Perturbing Forces and Tbeir Influence on tbe Orbit 

2.B.l Definition 0/ Basic Perturbing Forces 

Before we can use the Gauss and the Lagrange equations for evaluating per
turbations of Keplerian orbits, we must clearly define the perturbing accelerations 
(forces) acting on the satellite. 



. : ... ::, 

34 2 / Orbit Dynamics 

One of the most important perturbing forces on earth-orbiting satellites arises 
from the nonhomogeneity of the earth. The earth globe is not a perfect sphere, and 
neither is its mass distribution homogeneous. These physical facts produce perturb
ing accelerations on the moving body. The consequences of these accelerations are 
variations of the orbital parameters of earth-orbiting satellites. Analysis of these 
perturbing forces will be performed in Section 2.8.2 . 

As already mentioned, a true Keplerian orbit is obtained for a two-body system. 
The existence of additional celestial bodies produces perturbing forces with the heavy 
consequence that a three- (or more) body problem must be solved. For such prob
lems, a closed-form analytical solution might not exist. Moreover, we shall see in 
Section 2.8.3 that the gravitational perturbing forces of the sun and the moon cause 
serious complications in high-altitude geostationary orbits. 

The solar pressure exerted by the sun on large satellites can be ignored in low
altitude orbits, where aerodynamic perturbing forces predominate. For high-altitude 
orbits, where aerodynamic forces are negligible, the perturbing solar pressure forces 
cannot be ignored; this will be analyzed in Section 2.8.4. On the other hand, for 
interplanetary voyages, the solar pressure may be used to obtain accelerating forces 
on the satellite. This is the "solar sail" mode of interplanetary voyages, which will 
not be treated in this book. 

2.8.2 The Nonhomogeneity and Oblateness 0/ the Earth 

Because the force exerted by the earth on a body outside its sphere is a 
conservative force, it can be derived from a gradient of a scalar potential function 
U(r) = -pJr. This would be completely true ifthe earth were modeled as a mass con
centrated in a single point, or as a homogeneous sphere. Unfortunately, this is not 
the case: the earth is an oblate body, and its mass distribution is not homogeneous. 
Correction factors must therefore be added to the scalar potential function. 

It is convenient to express the corrected potential of the earth in the following 
form: 

II-U(r, r/J, A) = --+ B(r, r/J, A), r 
(2.8.1) 

where B(r, r/J, A) is the appropriate spherical harmonic expansion used to correct the 
gravitational potential for the earth's nonsymmetric mass distribution; see Figure 
2.8.1. If we define Re as the mean radius of the earth at the equator, then 

Z Polar Axis 

P 

y 

x 
Figure 2.8.1 Coordinates for the derivation 
of the earth's external gravitational potential. 
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(2.8.2) 

Equation 2.8.2 is the infinite series of the geopotential function at any point P out
side the earth's sphere when r, q" and A are its spherical coordinates (Kaplan 1976, 
Wertz 1978, Chobotov 1991). The parameters are defined as follows: 

r - geocentric distance of point P; 
q, - geocentric latitude; 
A - geographical longitude; 
Re - mean equatorial radius of the earth; 
sq, = sin(q,); 
cos rnA and sin rnA - harmonics in A; 
Jnm - zonal harmonic coefficients; 
I n - zonal harmonic coefficients of order 0; 
Pnm - associated Legendre polynomial of degree n and order rn; 
Pn - Legendre polynomial degree n and order 0; 
enm - tesseral harmonic coefficients for n ¢ m; and 
8nm - sectoral harmonic coefficients for n = m. 

From 2.8.2 we see that the zonal harmonics depend on the latitude only. These 
coefficients are a consequence of the earth's oblateness. The tesseral harmonics rep
resent longitudinal variations of the earth's shape. Values of the listed coefficients 
are obtained from satellite observapons and appropriate measurements; these values 
are time-dependent. Some values for the WGS (World Geodetic Survey) model for 
the year 1984 are: 

J2 = 1,082.6 x 10-6, J3 = -2.53 X 10-6, J4 = -1.61 X 10-6, 

e21 = 821 = 0, e22 = 1.57 x 10-6
; 

822 = -0.9 X 10-6, e31 = 2.19 x 10-6, 831 = 0.27 X 10-6, 

e32 = 0.31 x 10-6, 832 = -0.21 X 10-6• 

It is important to realize that the successive coefficients enm and Snm do not neces
sarily decrease; however, the factor (Re1r)n tends to diminish each term of the series 
in Eq. 2.8.2. (Additional series expansion models of the geopotential function can 
be found, e.g., in Campan 1983.) Comparison of these coefficients shows that the 
magnitude of J2 is at least 400 times larger than the other I n coefficients, which can 
be disregarded for many engineering purposes. Given this, the potential function 
U(r, q" A) of Eq. 2.8.1 takes the simplified form 

U= -- 1- ~ -.!.. JnPn(st/J) =-[Uo+UJ2 +Un +",], JL [ c:o (R )n ] JL 
r n=2 r r 

(2.8.3) 

Writing P2 and P3 explicitly, for the simplified potential function we have 

Uo = -1; UJ2 = (~e YJ2I(3Sin2q,-I); Un = (~e YJ3I(5Sin3q,-3sinq,). 
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Approximating U in the Lagrange equations with Un yields some important results 
for the perturbing J2 coefficient (Borderies 1980). 

Before Un can be used to derive Eqs. 2.7.18-2.7.23 explicitly, sin2 4> must first be 
expressed in terms of orbital parameters. At any point on the orbit in Figure 2.6.2, 
4> is identified as the geographic latitude. In the right spherical triangle formed by the 
angles i, 4>, and w+8, the following equality holds: sin(4)) = sin(i)sin(w+8). Using 
this equality in the expression for Un, some lengthy trigonometric manipulations 
result in the final expression 

JL(Re)2 [1 3. 2('] 1 2 -3/2 Un=(i (1 J2 '2-4'SIO I) ( -e) . (2.8.4) 

With this result, the explicit calculation of Eqs. 2.7.18-2.7.23 is easily performed, 
yielding 

(2.8.5) 

This means that the average change of the parameters 0, e, and i per orbit is null (see 
Example 2.8.3). We also have 

dO 3 nJ2 cos(i) (Re)2 = n 
di = 2 (l-e 2)2 a !h 

dw 3nJ2[1- 5 cos2(i)] (Re)2 = n 
di = 4(I-e2)2 0 w' 

dM =n+ 3nJ2[3cos
2
(i)-I] (Re)2 =n 

dt 4(l-e2)3/2 a M' 

With known initial conditions, Eqs. 2.8.5-2.8.8 can be written as 

o = Oo+n~(t-to), 
w = wo+nw(t-to), 

M=Mo+nM(t-tO) 

(2.8.6) 

(2.8.7) 

(2.8.8) 

(2.8.9) 

(EscobaI1965). In Eqs. 2.8.9, some of the orbital parameters change with time. The 
following examples illustrate the significance of these changes. 

EXAMPLE 2.8.1 Basic Parameters for Sun-Synchronous Orbits For those low
orbit nadir-pointing satellites (such as the French Spot satellite) that carry earth
scanning optical instrumentation, it is imperative that during the surveying stage 
the sun be behind the satellite, so that the best sun-satellite-target conditions are 
achieved. With heliosynchronous orbits, this optimal condition is achieved con
stantly. The idea is to obtain an orbit with the secular rate of the right ascension 0 
of the ascending node (no) equal to the right ascension rate of the mean sun; namely, 
dO/dt = 360o/yr = 0.986°/day = no and 0 = 0 0 + [0.986°/day](t-to)· 
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To satisfy Eq. 2.8.6, the three parameters a, e, and i must be chosen judiciously. 
In order to survey most of the globe, including the polar regions, the inclination of 
the orbit must be as high as possible. The altitude of the orbit near the surveyed re
gion must be low enough to obtain good optical resolution. Suppose ha = 1,000 km 
and hp = 500 km; then e = 0.03057. Using Eq. 2.8.6 we find that the inclination 
should be i = 98.368°. In this special case of a heliosynchronous orbit, the perturb
ing acceleration caused by the J2 term helps to obtain a "useful perturbed" orbit. 

EXAMPLE 2.B.2 Constant Perigee Argument In telecommunications satellite sys
tems based on elliptic orbits (e.g., the Molniya-type- satellites), it is important that 
the perigee remain constant relative to the line of nodes, so that the apogee remains 
above the region of communication. This condition is achieved by setting n", = O. In 
Eq. 2.8.7, this corresponds to i = 63.43°, which is called the critical inclination. 

EXAMPLE 2.B.3 Write the perturbed equations of motion of a satellite, taking 
into account the J2 zonal harmonic coefficient only. 

Solution According to Eq. 2.8.3, the gravitational potential function is 
approximated by 

U= ~ [Uo+UJ2 ] = ~ [-1+( ~e rJ2~[3Sin2(q,)-I]J. 
In this equation, the perturbing potential function is dependent only on the elevation 
of the satellite 'above the earth's equatorial plane. In the inertial coordinate system, 

sin(q,) =.=. = Z 
r .JX2+y2+Z2 

The gravitational forces acting on the satellite are obtained from the relation F = 
-grad U(x,y, z). Namely, we find that 

Fz = - ~~ = #L[ - rZ3 +AJ2(ls ;~ -9 r
Z
,)]. 

where AJ2 = tJ2R; and Re is the mean radius ofthe earth at the equator. Integration 
of these equations in the Cartesian inertial axis frame for kno~n initial conditions of 
the vectors reO) and v(O) will give us the motion in the disturbed Keplerian orbit, in 
which the right ascension 0 and the argument of perigee", will not be constant but 
instead will evolve according to Eq. 2.8.6 and Eq. 2.8.7. 

To exemplify the results, let us simulate the motion of a satellite in an orbit hav
ing the following classical orbit parameters: a = 12,000 kIn, e = 0.3, i = 200

, n = 400
, 

w = 600
, and () = 800

• To integrate the equations of motion (Eqs. 2.7.4), we first need 
to find the initial conditions of r(O) and v(O) in Cartesian coordinates. This is easily 
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Figure 2.8.2 Time histories of X, Y, Z, and a. 
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Figure 2.8.3 Time histories of e, i, 0, and w. 

done by using the procedure of Section 2.6.3. We find that X(O) = -10,121.0 km, 
Y(O) = -308.219 km, Z(O) = 2,281.8 km, Vx(O) = -1.929 km/sec, Yy(O) = -6.184 
km/sec, and Vz(O) = -1.727 km/sec. The time histories are given in Figure 2.8.2 and 
Figure 2.8.3. 

Some important conclusions can be derived from this example. First, although 
the classical orbit parameters a, e, and i do change slightly with time, their average 
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change per orbit is null as expected from the equalities in Eq. 2.8.5. On the other 
hand, the average values of D and w shown in Figure 2.8.3 do have a net change with 
time, exactly as predicted by Eq. 2.8.6 and Eq. 2.8.7. In Figure 2.8.3, 

no = dD/dt = -13.17 x 10-6 deg/sec = -0.2297 X,J0-6 rad/sec and 

n", = dw/dt = +25.16 x 10-6 deg/sec = 0.438 x 10-6 rad/sec, 

as expected. 

2.8.3 A Third-Body Perturbing Force 

A third body, like the sun or the moon, creates a perturbing force with re
spect to an earth-orbiting satellite that can change appreciably the parameters of 
its nominal Keplerian orbit. The two-body problem treated in the beginning of this 
chapter can be generalized to the much more difficult n-body problem in the fol
lowing way. 

In a system consisting of n bodies, the sum of the forces acting on the ith body 
will be 

j=n m.m. 
F;=G ~ -TL(Fj-F;), i¢j. (2.8.10) 

j=1 'ij 

According to Newton's second law of motion (Eq. 2.1.1), for constant masses F; = 
m;(d2r;/dt2

), from which it follows that 

d 2F' j=n m. 
I-G~ J( ) •• -d 2 - ~ -3 Fj-F;, l¢}. 

t j=1 'ij 
(2.8.11) 

In Figure 2.8.4, ml stands for the earth and m2 for the satellite. Extracting these two 
masses from the summation in Eq. 2.8.11, the accelerations for ml and m2 become 

d 2 FI m2" j=n m· 
-d 2 = G-3 (F2- FI)+G ~ ~(Fj-FI)' 

t r l2 j=3 'Ij 
(2.8.12) 

d 2F2 ml j=n m· 
-d 2 =G-3 (FI- F2)+G ~ -+(Fj- F2) 

t '21 j=3 r2j 
(2.8.13) 

(Battin 1990). These are the equations of motion with respect to the inertial coordi
nate axes. As in Section 2.2, we define F = F2 - FI = F12; also, F2j = Pj and Flj = Fpj. 
If we choose ml = Me to be the mass of the earth, m2 = ms to be the mass of the satel
lite, and mj = mpj to be the mass of the j perturbing body, and if we locate the origin 

z 

Figure 2.8.4 Simplified model for the 
n-body dynamics perturbing function. 
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Figure 2.8.5 Addition of a perturbing third body; reproduced 
from Campan (1983) by permission of Cepadues-Editionso 

of the inertial frame at the center of the earth (r) = 0), then subtraction of Eq. 2.8.12 
from Eq. 2.8.13 leads to the final result: 

d
2
r r j=n [po r'J 

d 
2 +G3"(Me+ms)=G.~ mpj -1-- r; . 

t r J=3 Pj rpj 
(2.8.14) 

This equation is identical to Eq. 2.2.3 if no third body exists. The perturbing acceler
ation due to the n - 2 perturbing bodies becomes 

j=n [po r oj 
'Yp = .~ JLpj -t- r~ , 

J=3 PJ PJ 
(2.8.15) 

where JLpj = Gmpj. 
Figure 2.8.4 is adapted in Figure 2.8.5 to the special case of the three-body prob

lem. The earth is at the origin 0, '" is the angle between the radius vectors to the 
satellite ms and to the perturbing body mp ' and p is the vector from the satellite to 
the perturbing body. The perturbing acceleration becomes 

( 
p rp) 'Yp = 3"-3 JLp' 
p rp (2.8.16) 

where JLp = Gmp' the gravity constant of the jth perturbing body. Equation 2.2.3 is 
replaced with the following equation: 

(2.8.17) 

With some "relieving" assumptions, Eq. 2.8.17 can be analytically solved for the 
three-body system. 

It can be shown that the perturbing acceleration satisfies the equality 'Yp = 
-iJUp/or, where Up has the form 

Up = JLp(.!..-~r.rp) 
P rp 

(2.8.18) 

(Battin 1990). According to Figure 2.8.5, 

Also 

(2.8.19) 

------\ 
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and 
1 1 [r r2]-1/2 - = - 1-2- cos(ir) + 2' . 
p rp rp rp 

Since rlrp« 1, we find that 

- "" - 1 + - cos(ir) - --+ -- cos2(ir) . 1 1 [r 1 r2 3 r2 ] 
p rp rp 2 rJ 2 rJ 

Substitute lip and r-rplrt into Eq. 2.8.18 to obtain 

Up = /Lp [1-!(.!.-.)2 + !(.!.-.)2 COS2(W)]. 
rp 2 rp 2 rp 

The complete expression in terms of Legendre polynomials is 

Up = /Lp ~ - Pn[cos(ir)]. CD (r)n 
rp n=2 rp 

It is interesting to mention that . 

IL~ I = 8.6 X 10-14 sec-2 and /L~ I = 3.96 X 10-14 sec-2• 
rp moon rp sun 

41 

(2.8.20) 

(2.8.21) 

(2.8.22) 

The values established here will be used in Section 2.9 to derive the inclination drift 
for perturbed high-altitude geostationary satellites. 

2.8.4 Solar Radiation and Solar Wind 

Solar radiation comprises all the electromagnetic waves radiated by the sun 
with wavelengths from X-rays to radio waves. The solar wind consists mainly of ion
ized nuclei and electrons. Both kinds of radiation may produce a physical pressure 
when acting on any surface of a body. This pressure is proportional to the momen
tum flux (momentum per unit area per unit time) of the radiation. The solar radia
tion momentum flux is greater than that of the solar wind, by a factor of 100 to 1,000, 
so solar wind pressure is of secondary importance. 

The mean solar energy flux of the solar radiation is proportional to the inverse 
square of the distance from the sun. The mean integrated energy flux at the earth's 
position is given by 

F. = 1,358 W/m2• 

e 1.0004+ 0.0334 cos(D) 

Here D is the "phase" of the year, which is calculated ~s starting on July 4, the day 
of earth aphelion (Wertz 1978). This is equivalent to a mean momentum flux of P = 
Fek = 4.5 X 10-6 kg-m-1-sec-2, where c is the velocity of light. 

The solar radiation pressure IF R I is proportional to P, to the cross-sectional area 
A of the satellite perpendicular to the sun line, and to a coefficient Cp that is depen
dent on the absorption characteristic of the spacecraft: 

(2.8.23) 

The value of Cp lies between 0 and 2; Cp = 1 for a black body, a perfectly absorbing 
material, whereas Cp = 2 for a body reflecting all light back toward the sun. 
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2.9 Perturbed Geostationary Orbits 

2.9.1 Redefinition of the Orbit Parameters 

Geosynchronous orbits are orbits with orbital period equal to the period of 
revolution of the earth about its own axis of rotation. The motion of a satellite on 
such orbits is synchronized with the rotational motion of the earth. For these orbits, 
there is no restriction on their inclination and eccentricity. With reference to an 
inertial frame, the period of rotation of the earth is the sidereal day, equal to 1's = 
86,400/(1 + 1/365.25) = 86,164.1 sec, from which follows that the semimajor axis of 
a geosynchronous satellite is a = 42,164.157 km. 

The geostationary satellite orbit is a geosynchronous orbit that has some special 
characteristics. Namely, its inclination is null or close to null (of the order of zero to 
several degrees), and the eccentricity too is very small, of the order of 10-4• The geo
stationary orbit characterizes a mission where it is important to keep the satellite 
fixed in apparent position relative to the earth. For such equatorial orbits, the right 
ascension n is ill-defined; hence, redefinition of the six classical orbit parameters is 
necessary. 

The orbit in Figure 2.9.1 is close to being equatorial, so n, w, and (J can be assimi
lated in a single argument, a = n + w + (J, which is the sidereal angle of the satellite. 

z 

Orbital pole 

y 

Figure 2.9.1 Orbital parameters in space for a geostationary orbit. 

Sat 

y 

Figure 2.9.2 Orbital parameters of a OEO 
spacecraft in the equatorial plane. 
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To define this argument, the equatorial plane of the earth and the inertial X..,.-Y co
ordinate system are shown in Figure 2.9.2, where 80 is the angle between the vernal 
equinox X..,. and the Greenwich longitudinal meridian; this is the sidereal angle of 
the Greenwich meridian. Instead of the mean anomaly (see Section 2.6.1) we shall 
use the mean longitude, defined as 1m = 0+w+M-80 (t). The inclination i and the 
eccentricity e will be redefined as vectors in the X..,.-Y plane. 

In Figure 2.9.1, with a very small inclination i, we can suppose that the parameters 
0, w, and 8 are virtually in the same plane. There are two different definitions of the 
inclination vector i. Some authors (Legendre 1980, Alby 1983) define the inclination 
vector as a vector aligned with the node line and whose norm is equal to the value i 
of the inclination. (The second definition will be discussed later.) With the first defi
nition, the inclination vector has components ix and iy that are proportional to the 
right ascension 0; see Eq. 2.9.3 and Eq. 2.9.4. 

In geostationary orbits, the eccentricity is also very small, so that the locations of 
the perigee and the apogee become rather doubtful. The eccentricity e is also re
defined as a vector e, aligned along the radius vector pointing from the location of 
the center of the attracting body to the perigee; e is dependent on wand O. The com
ponents of e are ex and ey, aligned (respectively) along the X..,. and Y inertial axes. 
With these definitions (see also Figures 2.9.1 and 2.9.2), the six orbit parameters take 
the following form: 

a, 

ex = ecos(w+O), 

ey=esin(w+O), 

ix = i cos(O), 

iy = i sin(O), 

1m =M+w+0-80 (t), 

(2.9.0) 

(2.9.1) 

(2.9.2) 

(2.9.3) 

(2.9.4) 

(2.9.5) 

where 80 (t) is the Greenwich (meridian) sidereal time and 1m is the angular location 
of the satellite relative to the Greenwich meridian. This parameter is a geographical 
longitude expressed in terms of the classical orbit parameters and the Greenwich 
sidereal time . 

The second definition for the inclination is based on the orbital pole, which is a 
unit vector perpendicular to the orbit plane (Soop 1988); here, sin(i) is the compo
nent of the orbital pole on the equatorial plane. For small inclinations, sin(i) == i. 
With this approximation, the inclination vector is expressed as 

ix = i sin(O), 

iy = -i cos(O). 

The components ix, iy, ex, and ey will be put in vector forms: 

i = [!;]: e=[~l 
2.9.2 Introduction to Evolution o/the Inclination Vector 

(2.9.6) 

(2.9.7) 

In this section we shall develop the equations for the inclination vector evo
lution caused by perturbing forces. The primary causes of this evolution are the sun's 
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z Sun 

Figure 2.9.3 Solar attraction that causes inclination perturbation; 
adapted from Soop (1983) by permission of European Space Agency. 

and the moon's attracting forces, and also the J2 coefficient of the gravitational poten
tial function of the earth (pocha 1987). Before proceeding with the analytical details, 
we should like to have some physical insight into the problem at hand. 

Figure 2.9.1 showed a geostationary orbit located in the equatorial plane of the 
earth. In winter, the sun will be located to the south side of the orbit; in summer, to 
the north side, as in Figure 2.9.3. Exactly in midspriog and in midautumn, the sun 
will be in the orbital plane. The last case is illustrated in Figure 2.9.4. 

At midwinter and midsummer, the sun is in the Y-Z plane of the inertial system, 
above or below the geostationary orbit plane. In Figure 2.9.3, the sun exerts a mean 
gravity force F on the satellite directed toward its center of mass. During half the 
day, when the sun is to the north of the orbit plane, a positive average attracting 
force F + AF is exerted on the satellite. During the second half of the day, an average 
force F - AF is exerted on the satellite, since the satellite is now more distant from 
the sun and so less attracted to it (see Soop 1983). The net effect is that the remaining 
average moment on the orbit about the X<y> axis will lead to a movement of the orbital 
pole about the Y axis, toward the positive X<y> axis. This is equivalent to the increase 
of the inclination i. In the other half of the year, when the sun is to the south of the 
orbit plane, the net moment applied on the orbit has the same direction as in the first 
part of the year, and an additional increase of the inclination follows. Exactly in mid
spring and midautumn, the sun is in the equatorial plane, so that no moment is applied 
on the orbit and the change in the inclination is null. Between the seasons, smaller 
changes of the inclination are induced, but the gravitational force of the sun exerted 
on the satellite causes an overall net increase of the inclination. 

Figure 2.9.4 The sun and the moon as attracting bodies in spring; 
adapted from Soop (1983) by permission of European Space Agency. 
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The same effect is produced by the moon. The gravitational force exerted by the 
moon on the satellite has the similar effect of increasing the inclination. Although 
the moon is much smaller than the sun, its effect on the satellite is stronger because it 
is so much closer to the earth (see Section 2.8.3). The perturbation effects of both the 
sun and the moon are added vectorially. 

The moon's orbit about the earth is inclined about 5.30 to the ecliptic plane. The 
orbital period of the moon about the earth is approximately 28 days. The difference 
in orbital periods of the moon and the sun about the earth makes analytical compu
tation of the inclination evolution extremely complicated. As can be seen in Figure 
2.9.4, if both the sun and the moon are to the right of the earth then the gravitational 
forces they exert on the sic have the same direction. When the moon is on the left 
of the earth, as is shown in the figure, the forces applied by the moon and the sun 
tend to cancel each other. Hence, different geometric relations induce different rates 
of inclination drift. 

2.9.3 Analytical Computation oj Evolution oj the Inclination Vector 

Our analytical computation follows closely the presentation in Alby (1983). 
The model of the inclination vector i to be adopted is that of the definitions given by 
Eq. 2.9.3 and Eq. 2.9.4, which means that i lies on the line of nodes. Since a third
body attraction force is a conservative force, the Lagrange equations are easier to 
use. The potential function Up is independent of the perigee argument, but does de
pend strongly on the right ascension 0 of the satellite orbit. Only the out-of-plane 
component of the perturbing force can produce a moment on the orbit that will force 
the orbital pole to move toward the X'l' axis, thus increasing the inclination. The 
value of this out-of-plane component depends on O. Using the Lagrange equations 
(Eq. 2.7.20 and Eq. 2.7.21) for dildt and dOldt and with Up standing for the per
turbing potential function, we can write the following approximated relations for 
orbits with very small inclination and eccentricity: 

di _ -1 aup 

dt - ina2 ao ' 
dO _ 1 aup 

Tt - ina2 a;' 
Differentiating Eq. 2.9.3 and Eq. 2.9.4 yields 

dix di (n) dO.. n) Tt = dt cos U -Tt' sm(u , 

diy di. n dO. n Tt = dt sm(u)+Tt'COS(u). 

Together with Eq. 2.9.8 and Eq. 2.9.9, we have 

dix _ cos(O) aup sin(O) aup 
Tt - - ina 2 aD -fU.j2T;' 

diy = -sin(D) aup + cos(D) aup . 
dt ina2 aD na2 ai 

(2.9.8) 

(2.9.9) 

(2.9.10) 

(2.9.11) 

(2.9.12) 

(2.9.13) 
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Since Up is a function of the inclination, the following relation holds: 

_ aup . aup . 
aup - ~dlx + ~dlr 

vlx vly 
(2.9.14) 

Because ix and iy are related through i and 0, it follows (together with Eq. 2.9.3 and 
Eq. 2.9.4) that 

(2.9.15) 

aup _ aup aix aup aiy _ -a up . . aup . 
ao - ai

x 
ao + aiy ao - ~' sm(O)+ aiy I cos(O), 

aup _ aup aix aup aiy _ aup (0) aup . n 
--;-:- - ~-;:-+~-;:- - ~cos +~sm(u). 

vi vlx vi aly al vlx vly 

If we substitute Eqs. 2.9.15 into Eq. 2.9.12 and Eq. 2.9.13, the final equations follow: 

dix _ -1 aup 

dt - no2 aiy , 

diy _ 1 aup 

dt - no2 aix ' 

(2.9.16) 

where a is the semimajor axis of the orbit, n the mean motion, and Up the perturbing 
potential function. In this case, the perturbing function is due to the gravity forces 
applied by the moon and the sun on the satellite. The perturbing function caused by 
a third-body perturbing force was analyzed in Section 2.8.3 (see Figure 2.8.5 and 
Eq. 2.8.21). In order to solve Eqs. 2.9.16, we must first expand Eq. 2.8.21 and find the 
needed partial derivatives. The solution of the equations follows. 

In Figure 2.8.5, we define rx , ry , rz, rpx, rpy, and rpz as the vector components of r 
and rp. The satellite vector components can be found by the inverse of Eq. 2.6.4. If 
these components are normalized to the norm of the respective vector then they are 
called the direction cosines (see Appendix A). The direction cosine components OX' 

Oy, 0z' 0PX' 0py, and 0pz are the components of the unit vectors r/lrl and rp/lrpl. They 
are necessary in order to find the value of cos(~) in Eq. 2.8.21. To begin with, they 
can be found by taking the inverse of Eq. 2.6.4, in which R is a unit vector in the 
direction of r. For a nearly circular orbit, 8+£.1 can be written as 

£.1+8 = w+M+O-O = a-O. 

With this definition, a = £.I + M + 0 is the argument of the location of the satellite 
relative to the X<y> axis, the vernal equinox (see Figure 2.6.2). Inversion of Eq. 2.6.4 
will provide the direction cosines of the vector r in the inertial reference frame. The 
resulting values are: 

Ox = cos(w+8) cos(O)-sin(w +8) sin(O) cos(i) 

= cos(a-O) cos(O)-sin(a -0) sin(O) cos(i), 

Oy = cos(w+8) sin(O)+sin(w+8) cos(O) cos(i) 

= cos( a - 0) sin(O)+ sin( a-D) cos(O) cos(i), 

Oz = sin(w + 8) sin(i) = sin(a - 0) sin(i). 

(2.9.17) 

For a geostationary orbit, the inclination is close to null, so sin(i) "" i. Thus, using 
the definitions in Eq. 2.9.3 and Eq. 2.9.4 for ix and iy, we have 
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ax = cos(a), 

ay = sin(a), 

az = ixsin(a)-iycos(a). 

But cos(v) = axaxp + ayayp + azazp, so 

cos2(V) = (axp cos(a)+ ayp sin(a)+ azp[ix sin(a)-iy cos(a)])2. 

To find dixldt, we must first derive 

aup _ aup a cos2(v) 
aiy - a cos2(v) aiy 

From Eq. 2.8.21: 

aup _ 3 p.pr2 
a cos2(v) - IT' 
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(2.9.18) 

(2.9.19) 

(2.9.20) 

where p.p is the gravity coefficient of the perturbing body (the sun or the moon). 
Next, from Eq. 2.9.19 and assuming a very small inclination (i ... 0): 

acos2(v) . 

a. = -[axpazp+axpazpcos(2a)+aypazpsm(2a)). 
Iy 

(2.9.21) 

The final results, as obtained by Alby (1983), become: 

dix _ 3 p.pr2 . 
-d - -2-2-3 [axpazp+axpazpcos(2a)+aypazpsm(2a)]. (2.9.22) 

t na rp 

Equation 2.9.22 is the result for dixldt. In a similar procedure, we can also find 

diy _ 3 p.pr2 . 
-d - --2-3 [aypazp-aypaZpcos(2a)+axpazpsm(2a)). (2.9.23) 

t 2 na rp 

In the last two equations, a = r for a geostationary circular orbit. Let us define 

We find that 

Kmoon = 5.844 X 10-3 deg/day, 

Ksun = 2.69 X 10-3 deg/day. 

Finally, we must interpret the meaning of the last two equations. For this we adapt 
Figures 2.9.1 and 2.9.3 to the geostationary satellite case, including both the sun and 
the moon orbits; see Figures 2.9.5 and 2.9.6. 

Relative Motion between Earth, Sun, and Moon 
The eccentricity of the apparent sun orbit about the earth is es = 0.016726, 

and that of the moon is em = 0.0549. As a convenient aid to obtaining meaningful 
results, we shall assume that the orbits of the perturbing bodies are circular orbits, 
ep = 0, with constant inclinations ip • 

In Figures 2.9.5 and 2.9.6, the inclination of the apparent orbit of the sun about 
the earth is is = 23.45°, and the average inclination of the moon orbit to the ecliptic 
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Figure 2.9.5 Apparent motion of the sun and the moon; reproduced 
from Agrawal (1986) by permission of Prentice-Hall. 

Figure 2.9.6 Orbital parameters of the moon orbit; reproduced 
from Agrawal (1986) by permission of Prentice-Hall. 

orbit is 5°8' (this value ranges from im = 4°59' to 5°18'). The moon orbits the earth 
with a period of 27.3 days, and the earth orbits the sun with a period of 365.25 days. 
The ecliptic and the lunar poles are directional vectors perpendicular to the ecliptic 
and lunar orbit planes. The lunar pole precesses about the ecliptic pole with a period 
of 18.6 years and an average cone angle of 5.133°. The earth axis precesses about the 
ecliptic pole with an angle of 23.45° and a period of 25,800 years. 

Equations 2.9.18, when referring to the perturbing bodies, require knowledge of 
the inclination ip of their orbits and the right ascension Op of the ascending node. 
The right ascension of the ecliptic orbit is null, by definition. The right ascension Om 
of the moon orbit is analytically easier to express through the right ascension angle 0 
of the moon orbit in the ecliptic orbit from the vernal equinox axis; see Figure 2.9.6. 
The parameter 0 has an appropriate analytical expression (Agrawal 1986): 

o [deg] = 178.78-0.052951, (2.9.24) 

where 1 is the number of days since January I, 1960. 
Using spherical trigonometry for the spherical triangle in Figure 2.9.6, we find that 

cos(im) = cos (is) cos(ism) - sinUs) sin(ism) cos(O), 

sin (Om) = [sin(ism) sin(O)]/sin(im)' 
(2.9.25) 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 

. , 

I 
I 
I 

.. ; 

I 
I 
I 
I 
I 

.i 

I 
:/j 

o··j 

\ 
~ 
j 

I 
.. 

I 1 
.. : ; 

I 
1 
:1 

I 
l 
; 
) 

I ~) 

4~ 
. .i 
.• oj 

I 
I 
I 

2.9/ Perturbed Geostationary Orbits 49 

In these equations, im is the inclination of the moon orbit to the equatorial plane, 
ism is the inclination of the moon orbit rel~tive to the ecliptic orbit plane, and 0 is 
known from Eq. 2.9.24. The value of im for calendar dates can be found in celestial 
almanacs; it may also be approximated by the following equation, which is accurate 
enough for our demands: 

im [deg] = 23.736+5.133 sin[wm(t-2,OOl.7433)], (2.9.26) 

where Wm is the frequency of the motion of the lunar pole with a time period of 18.6 
years, and t is the calendar time expressed in years. 

Computation 0/ the Inclination Derivatives 
With the preceding definitions of celestial motion of the moon about the 

earth, and given the apparent motion of the sun about the earth, we can return to our 
initial problem of computing the inclination derivatives of Eq. 2.9.22 and Eq. 2.9.23. 
In these two equations, sin(2a) and cos(2a) are fast harmonic motions with period 
of half a solar day and a null average. Since we are interested only in the secular in
clination derivatives, harmonic terms in 2a shall be ignored. With this assumption, 
Eq. 2.9.22 and Eq. 2.9.23 become (respectively) 

(2.9.27) 

(2.9.28) 

where axp, azp, and ayp are as given in Eqs. 2.9.17 for the perturbing bodies' orbits. 
In order to simplify the analytical treatment, we suppose that the orbits of the per
turbing bodies are circular. In this case, wp+9p = wp+Mp in Eq. 2.9.17 and Eq. 
2.9.18. Set '\p = wp + Mp. This, together with Eqs. 2.9.17, transforms Eq. 2.9.27 and 
Eq. 2.9.28 as follows: 

~; I = iKp[ -sin(Op) sin(2ip)+ 2 sin(2'\p) sin(ip) cos(Op) 
p + cos(2'\p) sin(Op) sin(2ip)]' (2.9.29) 

~: I = iKp[COS(Op) sin(2ip) + 2 sin(2'\p) sin(ip) sin(Op) 
p + cos(2'\p) cos(Op) sin(2ip)]. (2.9.30) 

The results in Eq. 2.9.29 and Eq. 2.9.30 are taken from Alby (1983). These are the 
final equations we sought. They contain almost constant elements like ip and Op as 
well as harmonic terms in 2'\p. 

We are especially interested in the secular term of the inclination derivative, which 
means that we can ignore harmonic terms in '\p. In this case, the equations become 

dix H 3 K . (n . 2·) 0 dt = = -i mOOD SID Um) SID( 1m + , 

di, _ K _ 3 K (n· (2·) 3 K . (2·) dt - - i moon cos um) SID 'm + i SUD SID Is· 

(2.9.31) 

(2.9.32) 

In these equations, is is constant. The evolutions of Om and im are given by Eq. 2.9.25 
and Eq. 2.9.26. 

moshaver10
Text Box
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Table 2.9.1 Evolution of inclination derivatives 

year II ;m llm H K N lld 
1990 319.1 27.5 -7.3 0.08 0.92 0.92 84.8 

1991 299.7 26.2 -10.2 0.11 0.89 0.89 82.8 

1992 280.3 24.5 -12.2 0.13 0.86 0.87 81.5 

1993 261.1 22.8 -13.2 0.13 0.83 0.84 81.1 

1994 241.7 21.2 -12.6 0.12 0.79 0.80 81.6 

1995 222.3 19.8 -10.2 0.09 0.77 0.78 83.3 

1996 203.1 18.9 -6.2 0.05 0.76 0.76 86.1 

1997 183.7 18.6 -1.0 0.01 0.75 0.75 89.3 

1998 164.4 18.8 4.3 -0.04 0.76 0.76 92.7 

1999 145.1 19.6 8.8 -0.08 0.77 0.77 95.7 

2000 125.7 20.9 11.8 -0.11 0.79 0.80 97.8 

2001 106.4 22.5 12.9 -0.13 0.82 0.83 98.8 

2002 87.1 24.2 12.6 -0.13 0.85 0.86 98.7 

2003 67.7 25.8 10.9 -0.12 0.89 0.89 97.6 

2004 48.4 27.3 8.4 -0.11 0.91 0.92 95.9 

2005 29.1 28.3 5.3 -0.06 0.93 0.94 93.7 

2006 9.8 28.8 1.8 -0.02 0.94 0.95 91.3 

2007 350.4 28.8 -1.8 0.02 0.94 0.94 88.7 

2008 331.1 28.1 -5.3 0.06 0.93 0.93 86.2 

2009 311.8 27.0 -8.5 0.10 0.91 0.91 84.3 

2010 292.4 25.5 -11.1 0.12 0.88 0.89 82.3 

The angle between H and K is of importance during the stage in which the incli
nation of the satellite orbit is to be controlled (see Chapter 3). We define 

Od = arctan(KI H). (2.9.33) 

The norm of the terms of the inclination derivative is also important: 

(2.9.34) 

The values of 0, Om, im , H, K, N, and Od are given in Table 2.9.1, and graphed in 
Figures 2.9.7. For the perturbing moon, the period of the harmonic term of the de
rivative is 13.66 days with an amplitude of 0.0035°; for the perturbing sun, the period 
will be of 182.65 days with an amplitude of 0.023°. 

In order to find the inclination vector evolution, Eq. 2.9.29 and Eq. 2.9.30 must be 
integrated with time. The results for a period of 400 days (beginning January 1990) 
are shown in Figure 2.9.8. The short-period second harmonics of the sun's and moon's 
motions are clearly seen in these figures. 

2_9.4 Evolution of the Eccentricity Vector 

As in the previous section's treatment of the inclination vector's evolution, 
here also it is instructive first to describe the physical mechanism of the eccentricity 
vector's evolution (see Pocha 1987). 
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Figure 2.9.7 Long-period inclination vector drift of ix • iF' i. and ad' 
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The sun applies pressure on the satellite that results in an acceleration ofthe sic in 
the sun-satellite direction. This solar pressure on the geostationary satellite produces 
a long-period cyclic perturbation in the orbit eccentricity, with no change in the semi
major axis. Suppose that the orbit is initially circular. The effect of the solar pressure 
on the satellite, integrated over the lower part of the orbit, may be approximated by 
a differential increment AV at point 1 added to the nominal circular velocity Vc. The 
solar pressure exerted on the satellite during the opposite part of the orbit produces 
the same increment in velocity and in the same direction, but located now at point 2, 
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Figure 2.9.8 Short-period inclination vector drift of ix, iy , and Iii. 

so that tlV is now opposite to Ve' The increment of velocity at point 1 tends to in
crease the altitude of the orbit at point 2. which is similar to creating an apogee at 
point 2. On the other hand. the decrease in velocity at point 2 tends to reduce the 
altitude of the orbit at point 1; this decrease of altitude has the effect of creating a 
perigee. The net result is that a small eccentricity vector has been created. with its 
direction perpendicular to the solar radiation direction; see Figure 2.9.9 . 

Let us assume that the area/mass ratio and reflectance of the satellite are constant 
over a long annual period, that the sun is in the equatorial plane. and that the dis
tance of the sun to the satellite is constant over the year. With these assumptions. the 
eccentricity vector will increase by constant increments perpendicular to the sun pres
sure direction over constant time periods. Because the sun has an apparent circular 
motion around the earth. the tip of the eccentricity vector will describe a circle. called 
the eccentricity circle; see Figure 2.9.10. As we shall see in this section. the radius of 
this circle depends on the solar pressure p. and also on the physical properties of the 
reflectance CPt the value of which lies between 0 and 2 (see Section 2.8.4). 

The analytical development would be similar to that followed for the inclination 
vector derivatives in Section 2.9.2. However. only the final results for the eccentricity 
evolution (as developed by Alby 1983) are given here: 
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Figure 2.9.9 Solar pressure perturbation and the eccentricity evolution; 
reproduced from Pocha (1987) by permission of D. Reidel Publishing Co. 

~ci1¥0 Occupied 
focus 

Figure 2.9.10 Evolution of the eccentricity vector; reproduced 
from Pocha (1987) by permission of D. Reidel Publishing Co. 

dex 1 aup 

dt = - na2 aey , 

dey _ 1 aup 

dt - na2 aex ' 
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(2.9.35) 

(The geometry of the evolution of the eccentricity vector is shown in Figure 2.9.12.) 
To solve these equations, we need an analytical expression for the perturbing func
tion Up. 

Solar Radiation Perturbing Function 
The perturbing acceleration will be 'Yp = Cp(As/Ms)PS, where S is a unit 

vector in the sun-satellite direction and where A, M, and Cp denote (respectively) 
area, mass, and the coefficient of specular reflection. We now define the factor a, 
which depends on the radiation pressure and on the physical properties of the satel
lite: a = Cp(As/Ms)P. With this definition, the perturbing function becomes 

Up = -arcos(l», (2.9.36) 
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where r is the earth-satellite distance. We denote by r the vector from the center of 
mass (cm) of the earth to the satellite, r = [rx ry rz]T. For a geostationary satellite the 
inclination is null (i = 0), and the elements of r can be approximated as 

rx= rcos(w+1l+0), 

ry = r sin(w+1l+0), 

rz=O. 

According to Eq. 2.5.4, r = a[l-e cos(Y;)]. For low-eccentricity orbits, 

0"" M+2esin(M)+te 2 sin(2M)+ ... 

(2.9.37) 

(see Wertz 1978). Retaining the first two members of the series and defining a = 
w+ll+M, we have 

rx = a[cos(a)-1.5ex+0.5excos(2a)+0.5ey sin(a)], 

ry = arsine a) -l.Sey + 0.5ex sin(2a) - 0.5ey cos(2a)], (2.9.38) 

rz=O. 

Let us define the sun-earth vector S as S = [sx Sy sz]T. In this case, in the geosta
tionary orbit plane with the sun in the orbital plane, cos(o) = rxsx+rysr Together 
with Eqs. 2.9.35 and Eq. 2.9.36, we have 

dex q [1. 1 3 ] 
dt = na '2sxsm(2a)-'2sycos(2a)-'2sy , 

dey q [1. 1 3 ] - = - --s sm(2a) - -s cos(2a) + -s . dt na 2 y • 2 x 2 x 

(2.9.39) 

'Because we have assumed the apparent sun orbit to be circular and in the equatorial 
plane of the earth (see Figure 2.9.11), it follows that Sx = COS(A) and Sy = sin(A) with 
dAldt =0.9856°/day =ws.1t also follows that Eqs. 2.9.39 contain short-term periods 
of one day and a long-term period of one year. If we neglect the one-day short-term 
periods, the equations become 

dex 3 q • 
-=---sm(A) 
dt 2 na' 

dey 3 q 
dt = '2 na cos(A). 

y 

Figure 2.9.11 Relative position of the sun and the earth in the equatorial 
plane; reproduced from Alby (1983) by permission of Cepadues-Editions. 

(2.9.40) 
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These equations show that the eccentricity derivatives are proportional to a, which 
depends on the mass of the satellite as well as on the surface reflectance and the 
effective area directed toward the sun. This area is not constant, and depends on the 
geometry of the satellite. In order to obtain some reasonable and simplified results, 
we assume that Cp and As are constant, or that they have some average value during 
the one-year time period. 

Eccentricity Vector Evolution 
With the foregoing assumptions, time integration of Eqs. 2.9.40 yields the 

following equations for the eccentricity vector: 

ex(t) = ex(to)+Reelcos['\(t)]-cos[.\(to)]J, 

ey(t) = ey(to) + Reelsin['\(t>1 -sin['\(to)]J, 
(2.9.41) 

where the natural eccentricity radius Ree = t(ulna",s)' For the geostationary orbit, 
Ree = 1.115 X 10-2 Cp(AsIMs). During a one-year period, the eccentricity radius de
scribes a circle with radius Ree whose center is located at 

Cx = ex(to) - Ree cos[.\(to>1, 

cy = e(to) - Ree sin[.\(to>1; 

see Figure 2.9.12. 

(2.9.42) 

To get an idea of practical values for Ree, suppose Cp = 1.5,As = 10 m2, andMs = 
1,500 kg. Then Ree = 1.115 X 10-4• The value of the eccentricity vector depends also 
on cx , cy, and the initial value of eo. In Chapter 3, we shall see that for a geostationary 
satellite the need to actively control the eccentricity will depend on Re~' 

This completes our simplified discussion of the evolution of the eccentricity vec
tor. However, note that additional moon-sun perturbing forces (creating only very 
small perturbing effects) have been ignored. If taken into account, the intermediate 
moon gravity perturbation would create moon period waves superposed on the ec
centricity circle of Figure 2.9.12. Figure 2.9.13 shows the evolution of the norm of the 
eccentricity vector for a period of 725 days, beginning January 1995. For this special 
case, Cp(AsIMs) = 0.037, and the additional moon-sun and earth gravitation per
turbations have been included. 

Sun 

Figure 2.9.12 Evolution of the eccentricity vector; reproduced 
from Alby (1983) by permission of Cepadu~-Editions. 
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Figure 2.9.13 Evolution of the norm of the eccentricity vector 
beginning January 1995. 

2.9.5 Longitudinal Acceleration Due to Oblateness of the Earth 

In Section 2.9.1 we defined the mean longitude 1m of a satellite relative to 
some reference geographic longitudinal meridian (e.g., the Greenwich meridian). In 
an ideal Keplerian geostationary orbit, the satellite should remain indefinitely at its 
initial geographic position. Unfortunately, different perturbing forces cause the sat
ellite to deviate from its initial location relative to the earth. The primary perturbing 
force is due to the ellipticity of the earth equatorial plane. The tesseral terms in the 
harmonic expansion of the earth's gravitational potential function are responsible 
for that ellipticity (see Section 2.8.2 and Eq. 2.8.2). This effect is illustrated in Fig
ure 2.9.14. 

In the equatorial plane, the earth's gravitational acceleration can be decomposed 
into a Keplerian term 'YK and into a tangential term'YT, which is in fact the perturb
ing acceleration that tends to accelerate the satellite along the nominal orbit path. 
The value and the direction of 'YT depend on the earth's geographic longitude corre
sponding to the location of the satellite. In Figure 2.9.14, points 1, 2, 3, and 4 are 
eqUilibrium points on the orbit, since at these points 'YT is null. However, only points 
I and 3 are stable eqUilibrium points, as will be shown later in this section. (The ana
lytical derivation of the longitudinal perturbing acceleration can be found in the lit
erature, and will not be derived here.) 

4 2 

3 

Figure 2.9.14 Perturbing longitudinal acceleration. 
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Figure 1.9.15 Longitudinal drift acceleration due to earth's ellipticity; 
adapted from Agrawal (1986) by permission of Prentice-Hall. 
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It is common in this context to designate the longitude of the satellite by A. The 
first-order approximation, taking into account only the first tesseral harmonic term, 
leads to the simple differential equation 

d 2A (jf = -0.00168 sin2(A-As) deg/day2. (2.9.43) 

The two stable longitude points 1 and 3 in Figure 2.9.14 are located at As = 75 0 and 
255 0 E. Taking into consideration higher tesseral harmonic terms, Eq. 2.9.43 is some
what altered, and the stable points move to As = 73.90 and 256.3 0 E; see Figure 2.9.15. 

To show the stability of points 1 and 3 in Figure 2.?.14, suppose that the satellite is 
located at 75 0 E and a small drift of the satellite is sensed toward the east direction. 
In this case, a negative longitudinal acceleration will force the satellite to move back 
toward the west direction. Should the small drift of the satellite be to the left of the 
stable point, a positive longitudinal acceleration would force the satellite to move 
toward the stable point to the east. The same arguments hold for a location close to 
the stable longitude point at 255 0 E. 

To show the instability of points 2 and 4 in Figure 2.9.14, suppose that the satel
lite is drawn to the right of the 1650 E equilibrium point in Figure 2.9.15. In this case, 
a positive longitude acceleration will tend to drive the satellite more to the east, and 
the positive acceleration will increase until the satellite reaches the stable longitude 
position at 255 0 E . 

2.10 Euler-Hill Equations 

2.10.1 Introduction 

In the previous sections of this chapter, the motion of il satellite in any orbit 
was expressed in the inertial coordinate frame with its Cartesian coordinates. The 
distance between two satellites moving on two different orbits could be calculated by 
use ofthose coordinates. However, there are special situations in which two satellites 
move in almost identical orbits and are very near to each other. In these cases, it is 
easier to analyze the evolution of the distance between the two satellites by defining 
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a coordinate system that is not inertial. Rather, this system's origin is fixed at the 
center of mass of one of the satellites and is moving with it. The coordinates of the 
other satellite are calculated in this moving coordinate frame. These equations de
scribe the relative motion of satellites in neighboring orbits. With some constraints 
(to be stated in Section 2.10.2), the equations of motion of the second satellite are 
developed with respect to the moving frame, and are called the Euler-Hill equations 
or simply the Hill equations. 

These equations can be used in many special problems to obtain elegant analytical 
solutions. Some examples of problems easily solved by use of the Hill equations are: 
(1) the influence of small perturbations on satellites, such as drag forces; (2) the rela
tive motion of two neighboring satellites moving in two almost identical orbits but 
having slightly different velocity vectors at some epoch; and (3) the very important 
rendezvous problem between two spacecraft. 

2.10.2 Derivation 

To obtain the Hill equations, we must first define the moving frame in which 
the equations of relative motion of a neighboring spacecraft are to be developed. See 
Figure 2.10.1. 

If fl and f2 are (respectively) the distances of the reference and the second satellite 
from the central body M in Figure 2.10.1, then the relative distance between the sat
ellites is p = f2 - fl. Since i\ = -p.fl/rr and by definition '2 = -p.r2/ri + f, where f2 

can be expressed in terms of fl and of p, for small p the relative acceleration, seen in 
the rotating frame, becomes 

_ p.[ (fl )fl] 2 • P = 3" -p+3 _op - +f+O(r ). 
rl rl rl (2.10.1) 

If we assume an almost circular orbit (a very small eccentricity e), and if we neglect 
terms of order e2 and p2 and products of p and e, then Eq. 2.10.1 becomes, in terms 
of components of relative motion, 

x-2ny-3n 2x=!x, 

Y+2nx=/y, 

(2.10.2) 

(2.10.3) 

z+n2z =!z (2.10.4) 

(Breakwell and Roberson 1970; Kaplan 1976). Here x and y, as defined in Figure 
2.10.1, are the plane distances between the two neighboring satellites, while z is the 

Reference 
/orbit 

b. 

Figure 1.10.1 Relative positions of two satellites 
in two neighboring orbits. 
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off-plane distance; n is the almost constant angular velocity of the reference orbit, 
which we have assumed to be nearly circular. Equations 2.10.2-2.10.4 can be Laplace
transformed. 

The solution of the third expression, Eq. 2.10.4, is independent from the first two. 
Hence, its solution is simply 

() 
sZo+zo fz(s) 

zs = +--. 
s2+n2 s2+n2 (2.10.5) 

If we assume that for practical purposes fz is an impulse function of strength fz' then 

z(t) = Zo cos(nt) + to sin(nt) + fz sin(nt). (2.10.6) 
n n 

Equation 2.10.2 and Eq. 2.10.3 must be solved simultaneously: 

[ 
xes)] 1 [S2 2ns ] [SXo+xo-2nyo+ fx(S)] 
yes) = s2(s2+n2) -2ns s2-3n2 sYo+Yo+ 2nxo+fy(s)' (2.10.7) 

For practical purposes we assumed fx and fy to be impulsive forces, so the time
domain solution of Eq. 2.10.7 becomes 

( ) 
_ [ • I' ] sin(nt) 

x t - xO+JX --n 

- [3Xo+ 2 <Yo: f y)] cos(n/)+ ! (yo + fy) + 4xo, (2.10.8) 

sin(nt) 
yet) = [4(yo+ f y)+6nxo] n 

+!(xo+ fx) cos(nt)+ Yo-!(xo+ fx)-3<Yo+ fy+2nxo)t. (2.10.9) 
n n 

In these last two equations, xo'/x and yo,fy always appear in pairs, indicating that 
the initial velocity conditions and the impulsive forces have equivalent influence on 
satellite motion. In terms ofthe initial relative velocity vector Vo (see Figure 2.10.1.b), 
Eqs. 2.10.8-2.10.9 can be rewritten as . 

x(t) = Vo Isin(a) sin(nt)+ 2 cos(a)[cos(nt)-l]), (2.10.10) 
n 

yet) = Vo 12 sin(a)[cos(nt)-1]-4cos(a) sin(nt) + 3(nt) cos(a»). (2.10.11) 
n 

(Notice that Yo < 0 in Figure 2.10.1.b.) 
When using these equations we have to remember that x(t) and z(t) must be as

sumed to be small; this is not true of yet), which does not appear explicitly in the Hill 
equations. Moreover, yet) is in the direction of motion of the satellite, so that y is in 
fact a part of an arc on the orbit, of length ,)8, where 8 is shown in Figure 2.10.1.b. 
These equations can be used in different ways, including application to the rendez
vous problem. The following example treats a related case, and will clarify the use 
of the Hill equations. 

.':' .. _.':-.'.'_:.: 
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EXAMPLE 2.10.1 Suppose that a satellite has been put on its final orbit by an apo
gee boost motor (ABM). The satellite and the ABM are then separated by giving the 
ABM a small velocity opposite to the initial direction of motion of both bodies, Yo = 
-Vo cos(ex), with ex = 0 nominally, so that the ABM will be removed to a safe dis
tance from the satellite. The velocity imparted to the ABM body may contain a para
sitic component in the x direction, Xo = Vo sin(ex). Could this parasitic velocity lead 
to a crash meeting between the two bodies at any future time? 

Solution Assume that both bodies remain in the same plane after separa
tion, which means that z(O) == Zo = o. Also, Xo = Yo = Zo = O. However, x(O) == Xo ¢ 0 
and yeO) == Yo ¢ O. In a first check, suppose that an initial velocity in only the x direc
tion has been imparted to the ABM: ex = 90°, Vo = 0.01 m/sec. Then Eq. 2.10.10 and 
Eq. 2.10.11 become 

() v. sin(nt) 
x t = 0--

n 
2V. 

and yet) = _0 [cos(nt)-I]. 
n 

We must check if pet) in Figure 2.10.1.b can ever become null. To satisfy x(t) = 
yet) = 0 simultaneously, it is necessary that nt = 2m7r, m = 1,2,3, ..•. Observe the 
development of pet) in Figure 2.10.2. On the x-y phase plane, it is clear that the 
motion of the ABM body about the satellite is harmonic; at the end of each orbital 
period, the two bodies collide. 

Next, let us suppose that ex = 0°. In this case x(t) = (Voln)2[cos(nt) -1], so x(t) is 
null at nt = 27C'm for m = 1, 2, 3, ... ; y(t) = (Voln)[ -4 sin(nt)+3(nt)], so yet) cannot 
be null at nt = 27C'm because of the 3(nt) term (except at nt = 0, which is a trivial 
solution). Hence no collision is to be expected. 

The minimum distance between the satellite and the separated ABM depends on 
the velocity vector initial conditions, Vo in Figure 2.10.1. Figure 2.10.3 shows the 

10r---~-------.--------~--~--~----'---~--~ 

j 

i __ 1 

-1 o 1 4 6 8 

x[m] 

Time [sec] x 104 

Figure 2.10.2 Relative distance p(f) between the two separated 
bodies with initial conditions Vo = 0.01 m/sec and ex = 90°. 
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100 
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x[m] 
1~.---.----.--_.----r---4----.--~----.---.---~ 

100 .. I .... _J.~L ... _L_. L Ii! ' i ' :§: !! I ! : ~ 
~ ~ ...+._.t--- : --+-- .... ' 

Time [sec] x 104 

Figure 2.10., Relative distances between the two separated 
bodies with initial conditions Vo = 0.01 m/sec and ex = 77°. 
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80 
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Time [sec] x 104 

Figure 2.10.4 Relative distances between the two separated 
bodies with initial conditions Vo = 0.01 m/sec and ex = 77°, 
81.456°, 83°, 85.08°, and 90°. 
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evolution of the relative distance components with initial conditions Vo = 0.01 m/sec 
and a = 77°. The minimal distance is 15 m. In this example, n = 0.001 rad/sec, which 
is equivalent to a circular orbit with altitude of h = 981.39 km." The minimal distance 
can be augmented also by increasing Vo. 

In the general case, there might be values of a ¢ 90° for which both x(t) andy(t) 
are null simultaneously. thus leading to collision. By numerical computation, it was 
found that a value of either a = 81.456° or a = 85.08° for the direction of the initial 
relative vector velocity will null x(t) and y(t) simultaneously in Eq. 2.10.10 and Eq. 
2.10.11. This happens at nt = 15.3. The relative distances p(t) are shown in Figure 
2.10.4 for a = 77, 81.456, 83, 85.08, and 90 degrees . 

Example 2.10.1 suggests that when the separation stage between the two bodies is 
designed, care must be taken to prevent a catastrophic collision. However, since the 
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62 2 / Orbit Dynamics 

two separated bodies normally have different aerodynamic profiles, it is natural that 
they will be acted upon by different aerodynamic drag forces, thus increasing the dis
tance between them. 

2.11 Summary 

Chapter 2 dealt with the dynamics of spacecraft orbits. First, the classical 
Keplerian orbit was treated and analyzed. A second purpose of the chapter was to 
state the different forces that tend to perturb the ideal Keplerian orbits. The influence 
of these forces on the classical parameters of practical orbits was exemplified with a 
detailed treatment of geostationary orbits. The effects of these perturbing forces on 
the orbit can be annoying (as when a geostationary orbit must be maintained), but 
are sometimes welcomed by the spacecraft engineer (as in the case of achieving a 
heliosynchronous orbit). The Hill equations were also presented, and their use exem
plified by calculating the collision hazard between two artificially separated bodies. 
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CHAPTER 3 

Orbital Maneuvers 

3.1 Introduction 

From the moment that a satellite is launched into its initial orbit, commonly 
called a transfer orbit, multiple orbital changes must be performed. Changes of the 
transfer orbit are necessary in order to obtain the desired final orbit because a launch 
vehicle usually cannot put the satellite in its final orbit. Even if it were possible, a 
satellite launch that placed the sic in its final orbit would not be optimal from the 
point of view of fuel consumption (see Duret and Frouard 1980). 

Fuel consumption is a crucial factor in orbital maneuvers. Any orbital change is 
accompanied by a velocity change of the satellite, which necessitates a certain quan
tity of fuel consumption. As we shall see in this chapter, minimization of fuel con
sumption is essential because the weight of the useful payload that can be carried to 
the desired orbit depends on this minimization. 

This chapter wiIl also consider different kinds of orbit maneuvers and changes. 
For instance, orbits may be adjusted by single or multiple thrust impulses. It will be 
seen that with a single thrust impulse, very limited kinds of orbit changes can be 
achieved, whereas mUltiple thrust impulses can effect any desired orbit change. It is 
comparatively easy to analyze the change in orbit parameters due to an impulsive 
thrust; the analytical treatment usually ends with a closed-form solution. Unfortu
nately, an impulsive thrust is an idealization that cannot be met in practice. 

Thu.s, another way of viewing orbital maneuvers concerns the duration of the 
thrust. During an orbit change, thrust is applied for a length of time (sometimes 
hours) that depends on the thrust magnitude (see Redding 1984). What we call an 
~mpulsive thrust depends very much on the thrust duration relative to the orbit's 
natural period. The principal drawback in applying a non impulsive thrust is that the 
application of a finite-time thrust is accompanied by a nonconstant thrust direction 
during burns. The nonconstant thrust direction results in a velocity loss because only 
a component of the thrust acceleration, rather than its entire value, acts along the 
mean thrust direction (see Robins 1966). 

The classical analysis of orbit dynamics, treated in Chapter 2, is sufficient for the 
purpose of introducing basic notions of orbit maneuvering and adjustments, with 
the practical approximation that the applied thrust is impulsive. Once in its opera
tionalorbit, the satellite is subject to different disturbance forces. In order for the 
satellite to perform its mission successfully, the orbit must be corrected accordingly. 
Such corrections are also treated in this chapter. The propulsion equation (Eq. C.2.S) 
developed in Appendix C is important to this chapter because it shows the mass of 
consumed fuel necessary to change the velocity of a satellite during any orbit maneu
ver. Appendix C also details the hardware of propulsion systems. 

64 

I 
I 
n 
o 
I 
I 
o 
I 
o 
I 
o 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 

," . 

I 
.. 

I 
I 
I i. 

I 
I 

.. J 

I :.,_?1 

.. "j 

I 
-~ ~~) 

I 
I 
I 
I .~ 

" 

..•. 

I 
I 
I 

3.2 / Single-Impulse Orbit Adjustment 65 

Figure 3.2.1 Change of the apogee radius vector. 

3.2 Single-Impulse Orbit Adjustment 

Single-impulse orbit adjustment is a very restricted class of orbital maneu
vers. Nevertheless, it is commonly used to circularize elliptic orbits or to change the 
eccentricity of an orbit, the altitudes of the perigee or the apogee, or the argument 
of perigee measured from the line of apsides of the initial orbit. These cases will be 
described in this section. 

3.2.1 Changing the Altitude of Perigee or Apogee 

In this case, the radius vector of the apogee will be changed from ral to ra2 
(see Figure 3.2.1). For known orbits 0 1 and O2, the velocities Vpl and Vp2 at the peri
gee - which is common to both orbits - can be computed, since the initial ral and the 
desired ra2 are also known. Using Eq. 2.4.20, we can write 

(3.2.1) 

In Eqs. 3.21, since 'a2 > ral it follows that Vp2 > ~Io and 4V = ~2 - Vpl is the velocity 
impulse to be added to the satellite at the perigee that is common to both orbits in 
order to increase the apogee radius vector to ra2· 

3.2.2 Changing the Semimajor Axis at and Eccentricity et 
to az and ez 

In Figure 3.2.2, the velocity vector at the apogee of 010 which is perpendic
ular to ral' can be expressed as 

Figure 3.2.2 Change of Q and e of a Keplerian orbit. 
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(3.2.2) 

For the final orbit 02, r2 = r a) at the apogee of 0). To find the velocity vector V2, 
we write 

2 [1 1] [1 1] [1 1] V2 = 2p. r2 - 2a2 = 2p. ra) - 2a2 = 2p. a)(l + e) - 2a2 • (3.2.3) 

Next, we must find the direction of V2• For this we use Eq. 2.4.18 and the defini
tion in Section 2.3 of the momentum h = rv COS(J32)' We obtain p = a2(l - ei) = 
[rat V2 COS(J32)]2/ p., from which it follows that 

2 _ p.a2(1-ei) 
cos (132) - 2 2 1 2 • (3.2.4) 

v2a) ( +e» 

Knowing the velocity vector V2, we can calculate the velocity vector change AV to 
be added to Va) so that V2 is achieved. In Figure 3.2.2, V2, va), and 132 are known, 
from which it is easily found that 

AV = "'[V2 COS(J32) - va)J2+ v~ sin2(J32); sin('Y) = sin(J32)v2/AV. (3.2.5) 

Equation 3.2.5 is the desired result, because it gives the velocity vector change AV to 
be added at the apogee of the initial orbit °1, 

EXAMPLE 3.2.1 The initial orbit is defined as: al = 5Re; el = 0.7. The final orbit is 
defined as: a2 = lORe; e2 = 0.3. Here Re = 6,378.6 km, the mean radius of the earth 
at the equator. The initial mass of the satellite is 1,000 kg. Given Isp = 200 sec, what 
is the required propellant mass for the orbit change? (/sp denotes "specific impulse"; 
see Appendix C.) 

Solution We find that Val = 1.485 km/sec, V2 = 2.9078 km/sec, and 132 = 
15.23°, from which it follows that AV = 1.526 km/sec and 'Y = 30.87°. Using Eq. 
C.2.5, we calculate that m prop = 540.1 kg. This is the minimum mass of propellant 
that the satellite needs in order to achieve the desired orbit change . 

In this example, the desired change in the parameters al and e) could be achieved. 
However, not all specifications on a2 and e2 are attainable. In the general case of 
Example 3.2.1, given a) and e), there exist limits on the values of a2 and e2 that can 
be achieved with a single-impulse thrust adjustment. 

In Figure 3.2.3, the orbit change is performed anywhere on the original orbit 010 
say, at fl' From Eq. 2.4.20 we can find the velocity V2, whose square must be a posi
tive value: 

v~ p. p. 
-=---~o => 2a2~rl' 
2 rl 2a2 

Moreover, using Eq. 2.4.18 for the target orbit °2, we can write 

h~ = p.a2(I-ei) = [V2r)COS(J32)]2, 

from which it follows that 

(3.2.6) 
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Figure 3.1.3 The general case of changing a and e. 

2({3) 1'02(I-ei) 1'02(l-ei) 1 
cos 2 = 2 2 = ) S (3.2.7) 

r. v2 rl(21' _1:. 
r. 02 

or (alternatively) a2(1- ei} ::: 2r. - rl/a2. We must solve the quadratic inequality 

rl- 202r. + o~(l- ei) s O. 

The roots of r. are 

r.1t r.2 = t[2a2± "4a~-40~(l-em = a2±a2e2· 

The inequality in Eq. 3.2.8 can be written as 

[r.-rll)[r.-r.2] = [r.-a2(1 +e2)][r.-a2(l-e2)] s 0; 

this inequality holds if 

rp2 = a2(l-e2) < r. < a2(1 +e2) = ra2· 

(3.2.8) 

(3.2.9) 

(3.2.10) 

(3.2.11) 

Equation 3.2.11 is described graphically in Figure 3.2.4, in which ra. and rp. are 
the apogee and perigee radius vectors of the initial orbit 0.; r a. = a. (1 + e.) and rp. = 
o.(l-e.). The screened region in the figure shows the range of achievable parame
ters 02 and e2 for °2, related to the given parameters o. and e. of 0 •. This region is 
bounded by the two inequalities of Eq. 3.2.11 and the two extreme values of rlt which 
are ra. and rp •. 

The selection of the point in the orbit at which the impulsive velocity change is 
to be performed depends on different operational constraints. However, Eq. 3.2.6 

Figure 3.1.4 Limits on achievable a2 and e2 for given a. and e •. 
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clearly shows that V2 will be minimal for the maximum possible value of rl. After rl 
is chosen, we can compute Vh V2, (3h and (32' from which av is found: 

av2 = v~+ v~ -2VIV2 COS«(3I-(32). (3.2.12) 

EXAMPLE 3.2.2 The orbit parameters of al = 3Re and el = 0.1 are to be changed 
to a2 = lORe and e2 = 0.5. 

Solution As before, Re is the mean radius of the earth. Using the inequal
ity in Eq. 3.2.11 yields rl = a2(1-e2) < ral = 3Re{l +el); hence, a2 < 3Re(l.l)/0.5 = 
6.6Re. In the same way we find that a2> 3Re(0.9)/1.5 = 1.8Re. Hence 6.6Re > a2 > 
1.8Re and so a2 = lORe cannot be achieved. If a2 is the more important parameter to 
be achieved, then e2 must be redefined in order for the inequality in Eq. 3.2.11 to be 
satisfied. In this case, the minimum value of e2 would be 0.67. 

3.2.3 Changing the Argument of Perigee 

In Section 2.6.1 (see also Figure 2.6.2), the angle w was defined as the argu
ment oj perigee. There is a variety of communications satellite systems using ellip
tical orbits (e.g., the Molniya system; see Pritchard and Sciulli 1986) for which the 
apogee footprint on the earth surface must remain fixed at a certain geographicallat
itude. This situation occurs for satellite orbits having an inclination angle of 63.435° 
(see Example 2.8.2). Moreover, depending on the initial satellite launch parameters, 
the initial perigee argument might not be located at the correct geographical latitude. 
Alignment and adjustments of the argument of perigee then become imperative. 

Suppose we wish to change the perigee argument by an amount a without alter
ing the remaining two planar parameters of the orbit, the semimajor axis a and the 
eccentricity e. The orbit maneuver is performed in-plane. The two orbits nave a com
mon point at P, and rl = r2 = r. Since the shapes of the two orbits remain unchanged, 
their angular momentums h are equal and hence PI = P2 = a(l-e2) = h 2/p.. This 
means that, according to Eq. 2.3.4, (31 = (32 = (3 in Figure 3.2.5.b. 

The argument between the two apsides is a, which is also the desired change in 
the perigee argument. As the shapes of the two orbits are identical and rl = r2, ac
cording to Eq. 2.4.13 we have 151 = 152 = 0 in Figure 3.2.5.b, a = 20, and V2 = VI = V. 

8. b. 

Figure 3.2.5 Geometry for changing w. the argument of perigee. 
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In order to find the required change in the velocity vector AV we must find V and (3, 
since AV = 2Vsin({3) in Figure 3.2.5.b. 

The equations needed to solve this problem are: 

p = a(l- e2) = v2
r2 cos

2
({3) 

/L ' 

p 
r= , 

l+ecos(o) 

2 2/L /L v =---. r a 

These equations yield 

2 2/L /L 2/L[1 ~ /L /L [1+e2+2ecos(o)] 
v = --- = - +ecos(o)]-- = 

rap a a l-e2 ' 
(3.2.13) 

2(R) _ /La(1-e2) _ [1 +e COS(O)]2 
cos fJ - - • 

v2r2 l+e2+2ecos(o) 
(3.2.14) 

From Eq. 3.2.14 we find that 

• 2 _ 2 _ e 2 sin2(o) 
sm ({3) - I-cos ((3) - 1 2 2 (0) +e + ecos 

(3.2.15) 

Finally, from Eq. 3.2.13 and Eq. 3.2.15 we obtain 

AV = 2v sin({3) = 2 J a(l ~e2) e sin( ~). (3.2.16) 

Equation 3.2.15 and Eq. 3.2.16 determine the vector AV that must be added to the 
velocity vector V at point P in order to change the perigee argument by an amount cx. 

3.2.4 Restrictions on Orbit Changes with a Single Impulsive AV 

As exemplified in Section 3.2.3, applying a single impulsive thrust is not suffi
cient to intentionally change all the parameters of the planar orbit; certain restrictions 
apply. Table 3.2.1 summarizes the restrictions on coplanar transfer orbit changes . 

Table 3.2.1 Coplanar transfer orbit restrictions 
(reproduced from Deutsch 1963 by permission of Prentice-Hall) 

IElement changed FIXed elements Restrictions 

Ia e,m Impossible 

ja, e, m None I+D>~> 1-D a2 
e, m a (:~r +1-2(*)cos(Am»o 

ja,m I a. I 

e I +D > a2 > I-D 

a, e m (a. ) a. 1 ( a.) 1+ -e.-e2 ~-~ + e2--e. - a2 a2 - a2 

~ a,m None 

~ I.e None 
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In Table 3.2.1, 

2 (al)2 2 2 al D = - el + e2 - 2-el e2 cos(Aw) 
a2 a2 

and 

DI=e[(:~y +1-2(:~)COS(AW)r2 . 
(Deutsch 1963 gives a table summarizing restrictions on changes for noncoplanar 
orbits also.) 

3.3 Multiple-Impulse Orbit Adjustment 

A principal characteristic of - and a major restriction on - single-impulse 
orbital adjustment is that the initial and the final orbits will always have at least one 
common point. The physical reason for this is that, after application of the AV im
pulse at some location in the orbit, the altered orbit will repeat itself and pass over 
the same point at which the AV impulse was applied. The only way to achieve a final 
orbit that does not intersect the initial orbit is to apply mUltiple thrust impulses. 
Such multiple adjustments also eliminate the drawback of the restrictions treated in 
Sections 3.2.2 and 3.2.4. 

3.3.1 Hohmann Transfers 

The Hohmann transfer between orbits was originally intended to allow a 
transfer between two circular orbits with the minimum consumption of fuel, which 
is equivalent to a transfer with the minimum total AV. From this point of view, the 
Hohmann transfer is optimal, as long as the ratio of the large to the small radius of 
the two circular orbits is less than 11.8 (see Kaplan 1976, Prussing 1991). Once more, 
it is assumed that the applied thrust is impulsive, which means that the added velocity 
changes are instantaneous. 

According to the Hohmann orbital transfer principle, changing a circular orbit 
0 1 of radius rl to a coplanar and concentric circular orbit O2 of radius '2 requires an 
initial transfer of the first orbit to an intermediate transfer orbit (TO). The TO's peri
gee radius vector must equal the radius of 0 1 (rp = rl)' and its apogee radius vector 
must equal the radius of O2 (ra = r2); see Figure 3.3.1. 

At any point in the orbit 0 1, an impulsive thrust is applied such that the additional 
velocity AVI wiII raise the energy of the initial orbit to that of an elliptic orbit with 

Figure 3.3.1 Hohmann transfer between two circular orbits. 
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3.3 I Multiple-Impulse Orbit Adjustment 71 

rp = r) and ra = r2' The velocity of the circle orbit 0) is v) = ...JlLlr) (see Eq. 2.4.14). 
Knowing ra and rp of the transfer orbit TO, we can use Eq. 2.4.20 to find the velocity 
at its perigee: 

21L(.!. __ 1 ) = 
r) 20 

(3.3.1) 

It follows that the velocity to be added at the perigee in the direction of motion of 
the orbit 0) is 

.1v) = vp-v) = r; [j 2+r2 -1]. (3.3.2) 
~r; r) r2 

At the apogee of the TO, an additional change .1V2 is added so that the velocity of 
the satellite will be increased to that of the circular orbit O2 with velocity v2 = ...JILl r2 . 
We will calculate that change as follows. First, we must find the velocity of the satel
lite at the apogee of the TO: 

(3.3.3) 

The velocity to be added at the apogee (in the direction of motion of the satellite) 
will then be 

.1V2 = V2-va = r;; [1-J 2+r) ]. (3.3.4) 
~~ r) r2 

Finally, the total change in velocity to be given to the satellite is 

(3.3.5) 

Kaplan (1976) contains a proof that this calculated .1V is optimal in the sense of 
minimizing .1V, which is the same as minimizing the fuel consumption. In the case 
where the transfer is from O2 to 0), the velocities will be added in the direction oppo
site to the motion of the satellite. 

3.3.2 Transfer between Two Coplanar and Coaxial Elliptic Orbits 

Exactly as in the previous section, the transfer is performed in two stages 
via a transfer orbit; see Figure 3.3.2. The minimum-energy transfer between the two 
orbits consists of .1v) at the perigee of the 0) orbit and .1v2 at the apogee of the ellip
tic transfer orbit. With known raJ, rph ra2' and rp2' the semimajor axis of the TO 

Figure 3.3.2 Transfer between two elliptic orbits. 
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will be aTO = t(rpI +ra2), with raTO = ra2 and rpTO = rpl. Following the same deriva
tion as in Section 3.3.1, we obtain 

..1 V = ..1VI + ..1V2. 

In Sections 3.3.1 and 3.3.2, only two thrust impulses are used to obtain the desired 
changes in orbit parameters. In the present section, the initial and final orbits re
main coaxial. If the major axis of the final orbit is to be rotated relative to the initial 
major axis, then an additional thrust can be applied (see Section 3.2.3). Using mul
tiple thrust impulses enables an infinite number of orbit adjustments, including non
coplanar transfers. 

Depending on the characteristics of the orbital change, the associated fuel con
sumption can be quite high. In the preliminary design stage, a minimum quantity of 
fuel must be calculated for the satellite to fulfill its mission. Orbit changes related to 
geostationary orbits will be dealt with in Section 3.4. 

3.3.3 Maintaining the Altitude of Low-Orbit Satellites 

As pointed out in Example 2.7.1, the semimajor axis a tends to decrease 
owing to atmospheric drag. The drag depends on atmospheric density conditions and 
on the satellite size, weight, and altitude, and can easily be estimated in advance. In 
order to keep the altitude of a circular orbit within prescribed limits, AV maneuvers 
in the direction of the satellite motion are executed when the altitude reaches the 
specified limits. In the preliminary stages of satellite technical definition and plan
ning, it is important to estimate the mass of fuel necessary for these maneuvers. The 
estimation is very simple. 

Suppose that an average disturbing drag force Fd is expected. Using Eq. C.2.4. 
Fd for very small ..1V changes can be expressed as mr = mj(I-..1VIgIsp), where mr 
(resp. mj) is the final (initial) mass of the satellite after (before) fuel expenditure. 
This equation can be written in the alternative form 

(mj-mr)gIsp = ..1mpropgIsp = mj..1V, (3.3.7) 

where ..1mprop is the consumed propellant mass. For a finite increment ..1V, Newton's 
second law can be written as F = m(..1V/At). In our case, F = Fd • Together with Eq. 
3.3.7 this yields 

Fd..1t = ..1mpropgIsp. (3.3.8) 

In Eq. 3.3.8, ..1mprop is the consumed propellant mass for the time interval ..1t with 
an assumed atmospheric drag of Fd• 

As an example, suppose that the expected disturbance acting on a satellite located 
in a circular orbit of h = 450 km is Fd = 10-3 N. If Isp = 250 sec, how much fuel mass 
will be expended in one year? The answer is: 

Fd x 3,600 x 24 x 365 
..1mprop = 9.81 x 250 = 12.8 kg/yr. 
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3.4 Geostationary Orbits 

3.4.1 Introduction 

There are two major stages in the life of a geostationary satellite. The first 
one is the transfer of the satellite from the geosynchronous transfer orbit (GTO) to 
the final geostationary orbit (GEO) in which the satellite is intended to perform its 
mission. This critical stage may last between one and four weeks. The second stage 
is the mission stage, which is generally expected to last more than ten years. 

In the first stage, the satellite is put into the GTO by the launch vehicle. The quan
tity of fuel needed to transfer the satellite from the GTO to the GEO usually approx
imates the dry weight of the satellite. The quantity of fuel needed to keep the satellite 
in its mission orbit during the next ten years amounts to 10070-20070 of its dry weight, 
or about 2070 per year. This means that wasting 2070 ofthe fuel during a GTO-to-GEO 
transfer is equivalent to the loss of one year of communications service. This is a tre
mendous monetary loss, which is why the design of geostationary communications 
missions has drawn so much attention over the last decade. See Duret and Frouard 
(1980), Belon (1983), Soop (1983), and Pocha (1987). The minimization of fuel con
sumption during orbital changes is also closely connected to the accuracy with which 
the AV is delivered to the satellite; this is discussed in Section 6.2. 

3.4.2 GTO-to-GEO Transfers 

As mentioned in the previous chapter, GEOs are circular orbits located in 
the earth's equatorial plane. In order to launch the satellite directly into this plane, 
the site of the launch vehicle must also be located in the equatorial plane. Unfortu
nately, no such launch sites exist and a price in fuel must be paid for that drawback. 

Figure 3.4.1 shows a hypothetical launch site. Launch sites are located at different 
geographic latitudes. Different launch vehicles use slightly different launch profiles, 
but they all put the geostationary satellite in an orbit with quite similar parameters: 
a perigee altitude of 180-200 km and an apogee located in the equatorial plane at the 
geostationary altitude of ha = 35,786.2 km above earth. 

The Delta vehicle launch site is located at Cape Canaveral, Florida, at a latitude 
of 28.5°, so the minimal achievable GTO inclination is 2~.5°. The Ariane vehicle 
launch site is located at Kourou, French Guyana, at a latitude of 5.2°; from this 

Figure 3.4.1 launch trajectory; adapted from Pocha 
(1987) by permission of D. Reidel Publishing Co. 
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Figure 3.4.2 Transfer from GTO to GEO. 

launch site, owing to different mission constraints, a GTO with inclination of 7° is 
usually achieved. The difference in inclinations has a pronounced effect on fuel con-
sumption in a GTO-to-GEO transfer. . 

The GTO is designed so that the initial perigee and the apogee lie in the equatorial 
plane, or close to it, depending on physical and technical constraints. There are two 
tasks to be achieved: first, the elliptic orbit of the GTO must be circularized; second, 
the initial inclination must be zeroed. Each task can be performed individually and 
in any order, or a combined single I1V maneuver can transfer the GTO to the final 
GEO. In Figure 3.4.2, the apogee of the GTO is in the plane of the GEO; VI is the 
velocity vector at the apogee of the GTO that lies in the plane of the GEO, and V2 

is the velocity vector of the circular GEO. 
From a technical point of view, fuel consumption for the different approaches 

will ideally be the same. The problem is that, during the orbit change maneuver, the 
attitude control system of the satellite does not allow a I1V application in the cor
rect nominal direction (see Section 3.4.3). An average attitude error of as little as 
one or two degrees may cause intolerably excessive fuel consumption. This point 
will be clarified in the next section. Meanwhile, let us proceed to the inclination cor
rection maneuver. 

Zeroing the Inclination of the Initial GTO 
As seen in Figure 3.4.2, the apogee of the GTO lies in the plane of the GEO. 

Maneuvering at the apogee is the cheapest location from the point of view of fuel 
consumption, because the velocity at this location is the lowest in the orbit. Dealing 
with the inclination only is equivalent to changing the spatial attitude of the orbit 
plane by an angle i, with no other orbit parameter alterations. This applies to any 
equatorial orbit, whether geostationary or not. 

In Figure 3.4.3, the initial and final velocities ~ and Vr are equal. Only the direc
tion of Vi needs to be changed, so that the inclination i is zeroed. Here Vr = ~ = Va, 
where Va denotes velocity at apogee, so 

Vf 

~AV 
Vi 

Figure 3.4.3 Inclination maneuver. 
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~VI =2Vasin(ti). (3.4.1) 

To find the fuel consumption mass, use Eq. C.2.5. 

Circularization oj the GTO 
Once the initial GTO orbit is brought to the GEO inclination, it must be cir

cularized. The apogee is initially at the geostationary altitude, with ra = 42,164.2 km . 
The perigee is at an approximate altitude of 200 km. To raise the perigee altitude to 
geostationary altitude, ~ V2 = Ycir - Va is to be applied at the apogee of the orbit, with 
a direction parallel to the velocity vector of the apogee. The term Vcr denotes the 
velocity of the GEO circular orbit, and Va is the velocity at the apogee of the GTO. 
The ra and rp ofthe initial GTO are known: ra = ha+Re and rp = hp+Re, with 2a = 
ra+rp and rcir = ra' Hence, using Eq. 3.3.4, we find that 

~V2 = ~ (1- 2r
p

). (3.4.2) 
~r;; rcir+rp 

Maneuvering from the GTO to the GEO via two individual orbital changes is not 
economical from the perspective of expended fuel, as in this case ~V= ~VI +~V2' 

Combined G TO-fo-GEO Maneuver 
In order to perform the overall maneuver with minimum addition of veloc

ity to the satellite, a combined maneuver is performed so that the in-plane maneuver 
(circularization of the GTO) and the out-of-plane maneuver (zeroing the inclina
tion) are carried out in one ~V stage, as in Figure 3.4.4. In this case, 

(3.4.3) 

A numerical example will clarify the quantities of fuel involved in these maneuvers. 

V GEO =3.07465 kmls 

~ 
= 1.596km/s 

Figure 3.4.4 Combined GTO-to-GEO maneuver; 
velocity vector diagram at apogee burn. 

EXAMPLE 3.4.1 Suppose first that a launch from Kourou is attempted, i = 7°. The 
mass of the satellite in the initial GTO orbit is 2,000 kg. The GTO has a perigee alti
tude of 200 km, and Isp = 300 sec. In this case, according to Eq. 2.4.20 and Eq. 3.4.1, 
for the GTO inclination cancellation we have ~VI = 194.97 m/sec. For the GTO-to
GEO maneuver (Eq. 3.4.2), ~V2 = 1,477.76 m/sec. The overall ~V = 1,672.73 m/sec. 
For a combined maneuver (Eq. 3.4.3), ~Vcom = 1,502.4 m/sec. 

Fuel consumption for the first case, using Eq. 3.4.1 and Eq. 3.4.2, amounts to 
~m = 867 kg. Fuel consumption for the combined maneuver is only ~mcom = 800 kg, 
a difference of 67 kg. (For the Cape Canaveral launch, ~Ycom = 1,803.2 km/sec and 
~mcom = 916.2 kg.) 
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Figure 3.4.5 Division of ilV for optimizing the orbit 
change under attitude error constraints. 

3.4.3 Attitude Errors During GEO-to-GEO Transfer 

3 / Orbital Maneuvers 

In general, the GTO-to-GEO orbital maneuver is executed in more than one 
firing. The AV is added vectorially to the initial velocity vector at the apogee; how
ever, because of attitude errors during the AV process, the obtained orbit will not be 
the desired one. The correction of this orbit might be very expensive in fuel if the AV 
is not correctly divided into two or more smaller AVs. Figure 3.4.5 shows the division 
of AV into AVI = aAV and AV2 = bAY. 

In Figure 3.4.5, AV is to be added vectorially to Vi so that the nominal Vf can be 
achieved. However, if an average attitude error ~a exists during the firing stage then 
the achieved velocity vector will not coincide with the nominal Vf • In this case, an 
additional correcting maneuver must be performed (with a corresponding expendi
ture of fuel). The AVad to be added is 

AVad = 2AV sin(~a/2) . (3.4.4) 

The problem is to divide the AV into two parts, AV = aAV +bAV, such that the veloc
ity loss is minimized. In Figure 3.4.5, 

Hence 

h = aAV~a, c = v'[aAV]2+h2 = aAVv'I+~a2, 
d = v'[bAV]2+h2 = AVv'b2+[a~a]2, and a+b = 1. 

d = AVv'[l-a]2+a2~a2 = AVv'a2[1+~a2]+ 1-2a, 

c+d = AV[av'1 +~a2+v'a2(1 +~(2)+ 1-2a] . 

There are two velocity terms that define the loss in AV due to attitude error during 
the firing stage. The first one is obviously fVI = (c+d-a-b)AV, and the second is 
fV2 = d~a. Because a+b = I, we have 

f VI = AV[ a.Jl + ~a2 + v""a-2(-I-+-~-a-2)-+-I---2-a -1]. (3.4.5) 

Moreover, 

fV2 = d~a = AV~av'a2[1 + ~a2] + 1-2a, (3.4.6) 

fV = fVI + fV2 = AV[av'1 + ~a2 + (1 + ~a)v'a2(l + ~(2) + 1-2a -I]. (3.4.7) 

Here fVis the total velocity loss due to attitude errors during the AVI and AV2 firings. 
Only one parameter, a, can minimize fV: 
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Table 3.4.1 Division of i1V for the purpose of 
minimizing fuel loss due to attitude errors 8a 

00. a h e.% ~% e =[eV II1J1) 0/0 
[deg] 

O. 1. O. O . o. O. 

0.5 0.93 0.07 0.05 0.06 0.11 

I. 0.91 0.09 0.15 0.17 0.31 

I.S 0.89 O.ll 0.26 0.31 0.57 

2. 0.87 0.13 0.4 0.47 0.87 

4. 0.81 0.19 1.04 1.37 2.4 

6. o.n 0.23 1.78 2.57 4.35 

8. 0.73 0.27 2.57 4.03 6.6 

10. 0.69 0.31 3.38 5.72 9.1 

dEY =..Jl+8a2 +(1+8a) 2a(I+8a
2
)-2 =0. 

da 2.J a2(1 + 8(2)+ 1-2a 

Define A = 1 + l5a2 and B = [1 + l5a]2. We must solve the quadratic equation 

77 

[1-B]A2a2+2A[B-l]a+A-B = 0, (3.4.Sa) 

from which the minimizing a can be solved: 

a= 1+~a2[1- j 2!~a l (3.4.Sb) 

The results for some values of l5a are given in Table 3.4.1 and in Figure 3.4.6. 
In Table 3.4.1, we see that as the attitude error 8a increases, a decreases. This 

means that a larger part of the entire i1V must be postponed for the second apogee 
firing. The term E in the last column is the ratio of the total loss EV to the total nomi
nal i1V; for l5a = 4°, the EVloss will be 2.4070 of i1V. This is definitely not a negligible 
value. In medium-sized geostationary satellites, moving the satellite from the GTO 

a eV % 
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Figure 3.4.6 The ratio factor Q for minimizing 
EV losses during GTO-to-GEO transfer. 
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to the GEO orbit is accompanied by fuel consumption of about 500 kg, 2.40/0 of 
which would amount to a loss of about 12 kg. Since the annual fuel consumption for 
such a satellite is about 10 kglyr, this means that one year of mission life would be 
wasted by an average attitude error of 4° (see Section 3.5.3). 

With one-shot firing in the GTO-to-GEO maneuver, the same attitude error would 
(according to Eq. 3.4.4) yield a fuel loss of (2 x 500) sin(2°) = 34.9 kg. This corre
sponds to a loss in mission life of about 3.5 years. A good attitude control design 
should aim to achieve errors of the order of 2° or less. Even with this accuracy and 
with two apogee firings, there will be a loss of (0.869 x 500)/100 = 4.34 kg, which 
is not insignificant. 

3.4.4 Station Keeping 0/ Geostationary Satellites 

As we have seen in Chapter 2, the basic parameters of the geostationary 
orbit change with time owing to perturbing forces, such as the moon and sun at
traction forces, solar pressure, and lateral forces caused by the earth's nonhomoge
neity. The primary parameters that change are the inclination, the eccentricity, and 
the longitude of the satellite relative to its nominal geographic longitude. Hence sta
tion keeping (SK) of geostationary orbits consists primarily of the following orbit 
adj ustments: 

(1) longitude (east-west) SK; 
(2) inclination (north-south) SK (see Section 3.5.1); and 
(3) eccentricity corrections, if necessary (see Section 3.5.2). 

The remainder of this section will be devoted to a detailed account of longitude sta-
tion keeping. . 

Figure 3.4.7 shows a satellite that is situated nominally at the longitude AO but is 
allowed to move inside the limits ±AA. (See also Agrawal 1986, Pocha 1987.) The 
perturbing longitudinal acceleration X is known from Figure 2.9.15 and Eq. 2.9.43. 
Because of this acceleration, the longitude of the satellite evolves in a parabolic tra
jectory. Suppose that the satellite is initially situated at (Ao - AA, Ao). To keep it in
side the permitted longitude limits, the satellite is given a linear velocity change AV 
when it reaches the western limit with an angular velocity -Ao (see Figure 3.4.7), so 
that it is transferred once more to its initial location (AO - AA, Ao). Our task is to com
pute the drift velocity Ao for a given IXI and required limit AA. We will then calculate 

-1..0 -' --

Figure 3.4.7 Phase trajectory for longitude 
station keeping (E-W SK). 
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the time interval T between two consecutive E-W SK maneuvers, as well as the ~v 
added during each maneuver. 

Computation oj '\0 
In the following derivation, suppose that the longitudinal acceleration is 

negative: 

Then 
~ = Xt+~o = -IXI/+~o, 

from which it follows that 

.. t 2 • 
-IAI"2+Ao/+Ao = A. 

(3.4.9) 

(3.4.10) 

At time 11, A = 0, so that -IXl/1 = -~o and tl = ~o/IXI. This is the time it takes for 
the longitude to evolve from Ao-~A to Ao+~A. The complete cycle will take place 
in a period of 

Ao 
Ir = 2/1 = 2

1XI
' (3.4.11) 

In the period I It A has changed from Ao - 4A to Ao + ~A, so 
'2 '2 .. Ao Ao 

-IAI 2X2 + IXI-~A = ~A, 

from which it follows that ~~ = 2~A IX 12. Finally, 

~o = 2..J4AIXI· 

Computation oj the Time Interval T between 
Two E-W SK Maneuvers 

(3.4.12) 

It is important to calculate the time interval between successive maneuvers. 
This interval T is the time required for the longitudinal velocity to change from ~o 
to -~o. From Eq. 3.4.9 we have -~o = -IXIT+Ao, so 

2~0 
T= IXI = tr· (3.4.13) 

Using Eq. 3.4.12, we conclude that 

T=4J~~ . (3.4.14) 

The sic motion during T changes the drift rate from ~o to -Ao. Next, we must find 
the required velocity change ~V for a maneuver that will change the angular velocity 
from -~o to Ao. 

Computation oj the Velocity Change 4V 
The ~v required is calculated by using Eq. 2.4.20 and Eq. 2.5.6. First, dif

ferentiating Eq. 2.4.20 while keeping r constant during the ~V process, we obtain 
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Aa 
2VAV=P.-2 . 

a 

Next, we differentiate Eq. 2.5.6; this yields 

An = _1 Vii Aa. 
2 a2,5 

Substituting Aa from Eq. 3.4.15, we have 

An=-3~AV. 
.JQP. 

Finally, 
.JQP. a2n 

AV = ---An = ---An, 
3v 3v 

which is our desired result. Also, An = A,t 

3 / Orbital Maneuvers 

(3.4.15) 

(3.4.16) 

(3.4.17) 

(3.4.18) 

For the geostationary satellite, a = 42,164.2 km, n = 211'1(23.9 x 3,600) rad/sec, 
and V = 3.0746 km/sec. Using these values in Eq. 3.4.18, we obtain 

AV = 14,019.23An km/sec, (3.4.19) 

where An is proportional to the longitudinal drift rate change A..\. If An is defined in 
units of deg/day and AV in units of m/sec, then 

V - 14,0l9.24(l,OOOA..\) - 2 83A\ 1 A - -. 1\ m sec. 
(180/11')24(3,600) 

For one maneuver, A..\ = 2..\0; hence, 

AVlmaneuver = 5.66..\0 m-sec-I/maneuver = 1l.32[j-'IAA]o,s m-sec-1/maneuver. 

Since we know the time interval T between maneuvers (Eq. 3.4.14), we can find the 
necessary AV per year: AVlyr = 5.66"\0(365/T) m-sec-1/yr. After substitution of ..\0 
and T from Eq. 3.4.12 and Eq. 3.4.14, respectively, we obtain 

AVlyr = 1,032.951-'1 m-sec-1/yr = 1.74sin[2(A-As)) m-sec-1/yr. (3.4.20) 

This equation shows also that the AV necessary to keep the satellite inside the AA 
limits is independent of the limit AA, and is dependent only on the geographic longi
tude of the satellite . 

3.5 Geostationary Orbit Corrections 

Figure 3.5.1 shows the possibility of correcting the parameters of the orbit 
by sequentially adding velocity components: (1) AVR, along the radius vector to the 
satellite; (2) AVN, normal to the orbit plane; and (3) AVT , tangential to the velocity 
vector. We first calculate the change of the inclination vector i as a result of an im
pulsive change AVN at the location of the satellite designated by the radius vector R. 

The orbital pole I is defined by the vector product VT X R, where VT is the tan
gential velocity of the circular orbit. The vector change of the orbit momentum, as 
a result of the impulsive AVN, will be AVNxR. In a circular orbit, VT is perpendic
ular to R. Hence, for small inclination changes, Ai = AVNIVT • Define ex = 0+",+9. 
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z 

a.=O+c.o+8 

Figure 3.S.1 Geometry for achieving a 
change of the inclination vector I. 

81 

According to the definitions of the inclination vector given in Eq. 2.9.3 and Eq. 
2.9.4, we can write the changes of the inclination vector as 

. ~VN 
~Ix = V

T 
cos(a), (3.5.1) 

. ~VN. ) 
~Iy= V

T 
sm(a (3.5.2) 

(Robert and Foliard 1980, Alby 1983). In a similar way, we can find that 

2~VT ~VR . 
~ex = -v;- cos(a)+ V

T 
sm(a), (3.5.3) 

2~VT . ~VR 
~ey = -v;- sm(a)- V

T 
cos(a), (3.5.4) 

I 
-2~VR 

~m=--""::":" 
VT 

(3.5.5) 

where 1m is the mean longitude. 
Note that ~VR is seldom used to correct the eccentricity vector, because it is less 

than half as effective as ~VR used for the same purpose. The meaning of the angle a 
in the foregoing equations will be clarified in the next section. 

3.5.1 North-South (Inclination) Station Keeping 

The angUlar location a of the satellite in its orbit has an important meaning: 
a is the right ascension of the location of the satellite with respect to the vernal equi
nox vector. Suppose that a = O. Then ~VN/VT will increase proportionally the com
ponents of the inclination vector, Eq. 2.9.3 and Eq. 2.9.4, such that the ~i will be 
collinear with the inclination vector i. In some respects this is the optimal location 
for changing the inclination, and the only location for zeroing the inclination using a 
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ex 

Figure 3.5.2 Correction of the initial inclination vector 10 ; 

adapted from Robert and Foliard (1980) by permission of 
Centre National d'Etudes Spatiales. 

single impulsive change of velocity. But this is not always the case. If the inclination 
correction is to be performed at ex ¢ n, then the following considerations hold. 

In Figure 3.5.2, an initial inclination vector io is shown (see also Robert and Foli
ard 1980; Slavinskas et al. 1988). As we shall see, it is sometimes necessary to change 
the initial inclination vector io to a desired inclination vector it using a single impul
sive tlV. This can be done at will by performing the tlV impulsive correction at the 
proper location - defined by the angle ex - in the orbit, as shown in Figure 3.5.2. The 
final inclination vector it is determined according to the inclination correction strat
egy; this strategy is shown in Figure 3.5.3. 

The mission-permitted inclination circle limits the maximum permitted drift of 
the inclination vector .. For geostationary satellites, the required radius of this circle 
ranges from 0.050 to 0.10. For practical reasons, such as uncertainties in the deter
mination of the inclination vector, the limits of the operational circle are somewhat 
reduced in order to compensate for the disabilities of the attitude control system. 
The strategy for keeping the inclination inside the permitted limits is as follows. 

Suppose that, at some epoch, the inclination vector is located at point 1 in Fig
ure 3.5.3. The evolution of the inclination vector (as explained in Section 2.9.3) will 
follow the path shown in the figure. When it reaches the operationally permitted 

Operationally 
pennitled 
inclination circle. 

inclination circle 

Figure 3.5.3 Strategy for keeping the inclination vector 
inside the permitted inclination circle; adapted from 
Belon (1983) by permission of Cepadues-Editions. 
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(dotted) circle, the inclination vector should be corrected by ~il so that the final vec
tor will reach point 3 on the same circle. The direction of the correcting vector ~i 
must take into account the average direction angle Od of the natural evolution of the 
inclination (see Eq. 2.9.33) that can be predicted analytically by the analysis in Sec
tion 2.9.3, so that correction of the evolution of the inclination vector will be optimal 
with regard to both fuel consumption and maximizing the time between corrections. 
As seen in Figure 3.5.3, when the inclination vector reaches the permitted boundary, 
the correcting strategy is not designed to null the inclination. Rather, to perform the 
correct change of the inclination vector, the straightforward vector addition process 
shown in Figure 3.5.2 is used. 

In Figure 3.5.3, the initial inclination vector is known and is heading toward point 
2. We wish to redirect the vector toward point 3. Knowing the distance between 
points 2 and 3, we can calculate ~VN. Recall that VT is the velocity component that is 
tangential to the circular geostationary orbit; VT = 3.07 km/sec. Since the arguments 
o of io and i l are known from Figure 3.5.2, the right ascension a at which the ~VN 
correction is to be applied can be easily computed. In practical situations, the time 
periods between corrections range from 5 to 15 days. 

In practice, there are additional operational constraints that influence the SK strat
egy, such as the field of view of the sun sensors used for attitude control during sta
tion keeping. With this constraint, the N-S station keeping cannot always be per
formed at the optimal location in the orbit (the argument a = 0 + '" + 8 in Figures 
3.5.1 and 3.5.2), thus precluding optimal control from the point of view of mini
mizing fuel consumption. A programmed N-S SK algorithm based on the PEPSOC 
package (Soop and Morley 1989) has been prepared for the AMOS} geostationary 
satellite by M. Regenstreif (MBT, Israel Aircraft Industries). Figure 3.5.4 shows a 
time history of the inclination vector i (beginning january 1,1997) obtained by adapt
ing the PEPSOC package. 

We should note that it is possible to leave the inclination uncontrolled; in six 
years, the inclination would change (roughly) between -3 and +3 degrees. However, 
this would require that the ground station antenna track the satellite continuously. 

11 YEAR INCLINATION 

Figure 3.5.4 Time history of the controlled 
inclination vector i for an ll-year period. 
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Figure 3.5.5 Eccentricity correction geometry; adapted from Legendre 
(1980) by permission of Centre National d'Etudes Spatiales. 

3.5.2 Eccentricity Corrections 

To correct the eccentricity, Eq. 3.5.3 and Eq. 3.5.4 are used. Figure 3.5.5 
shows the geometry of the eccentricity correction. The calculation of the right ascen
sion a at which .!lVT is applied is performed by inspection of Figure 3.5.5. The same 
is true for finding the value of .!lVT • However, the strategy for eccentricity correc
tions might be different from that of the inclination corrections. 

As explained in Section 2.9.4, the value of the natural eccentricity radius depends 
on the geometrical and physical characteristics of the satellite. If the eccentricity ra
dius happens to be smaller than the required eccentricity specification, all we need 
do is locate the center of the eccentricity circle at the origin. From here on, the evo
lution.of the eccentricity will be a circle of radius e that is smaller than the demands 
of the operational requirements. If the eccentricity does evolve beyond the permitted 
bounds, it can be corrected in the same way as the initial eccentricity was corrected 
(see also Gantous 1986). 

11 YEAR ECCENTRICITY KEEPING 

5r-----------~----------, 

4 

3 

2 

·2 

·3 

·4 

·~5:---------=~'!-'------------:!5 

e. 

Figure 3.5.6 Time history of the controlled 
eccentricity vector e for an ll-year period. 
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Based on the PEPSOC package, an E-W SK control algorithm has also been pre
pared for the AMOS] geostationary satellite by M. Regenstreif. A controlled eccen
tricity vector e time history for an ll-year period (beginning January 1, 1997) is shown 
in Figure 3.5.6 . 

3.5.3 Fuel Budget for Geostationary Satellites 

The fuel budget for satellites with different missions is calculated in light of 
the two basic phases in the life of the satellite: (I) maneuvers from the transfer orbit 
to the final mission orbit; and (2) correcting adjustments in the Illission orbit. 

The primary factor that causes changes in the classical parameters of low orbits is 
atmospheric drag, especially at altitudes below 500 km. In order to keep the altitude 
of a satellite inside defined boundaries, the orbit control system must provide ade
quate velocity corrections (see Example 2.7.1 and Section 3.3.3). For higher-altitude 
satellites, solar pressure predominates. The exact mass of fuel to be reserved for 
keeping the satellite's orbit with predefined limits depends on the nominal orbit defi
nitions, which vary widely from sic to sic. Consequently, different parameters will 
influence the estimation of fuel to be carried in the satellite for the necessary orbital 
corrections. With geostationary satellites, the perturbing forces influencing the fuel 
budget estimation are well defined, as we have seen in previous sections. 

It is instructive to summarize the resulting fuel budget. It is more practical to 
express the budget in terms of AV, since the fuel mass to be expended depends On the 
initial mass ofthe satellite. We shall take into consideration only the most important 
factors for fuel consumption: GTO-to-GEO maneuvers, inclination correction (N-S 
SK), and longitude correction (E-W SK). There may be other reasons for orbit cor
rections (e.g., eccentricity evolution, stcltion repositioning, de-orbit of the satellite 
at the end of its life, etc.), but their influence On the fuel budget is minor and so will 
not be taken into account here. 

The necessary AV for inclination corrections depends on the year epoch (see Table 
2.9.1). Hence, we shall use an average value for the years for which fuel consump
tion is to be estimated. The AV for E-W station keeping depends on the nominal 
geographic longitude of the satellite. The fuel mass will be calculated for a sic with 
an initial mass of 2,000 kg and for Isp = 300 sec. We also assume that the initial GTO 
has a perigee altitude of 200 km. The AV necessary to transfer this GTO to the final 
GEO depends on the inclination of the GTO. We shall assume the two most-used 
GTO inclinations, 7° and 28.5°. 

Using Eq. 2.4.20, we have Va7 = Va28•5 = 1.596 km/sec and VGEO = 3.07466 km/sec. 
Using Eq. 3.4.3, we find that AV7 = 1.5024 km/sec and AV28•S = 1.837 km/sec. For a 
satellite to be operational for 10 years (beginning 1995) the average annual inclina
tion corrections will amount to 0.8115 deg/yr; see Table 2.9.1. Using Eq. 3.4.1 shows 
that AV = 43.54 m-sec-I/yr = 435.4 m-sec-I/(10 yr). 

For longitude station keeping, we shall assume that the satellite is located either 
at 120° E or at 300° E, where the lateral perturbing acceleration is at its maximum 
(see Eq. 3.4.20). With this assumption, AV = 1.74 m-sec-I/yr = 17.4 m-sec-I/(I0 yr). 
The approximate total AVand propellant mass for the two assumed 10-year orbits 
is thus 
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AVTOT7 = 1,955.8 m/sec, mprop7 = 800.0 kg; 

AVTOT28.S = 2,289.8 m/sec, mprop28.S = 1,081.4 kg. 

3.6 Summary 

The present chapter dealt with classical orbital maneuvers and adjustments. 
It was shown that with multi-impulse corrections, any orbit change can be achieved. 
However, the strategy of corrections must be such as to achieve the orbit changes 
with minimum consumption of fuel. Note that the expected fuel consumption should 
be calculated in the early design stages of the attitude and orbit control system, be
cause the additional mass of the fuel will have a strong influence on the design of the 
satellite structure. 
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CHAPTER 4 

Attitude Dynamics and Kinematics 

4.1 Introduction 

The dynamics of spacecraft orbits was treated in Chapter 2. Understanding 
the natural motion of an orbiting sic was necessary before we could deal with the 
control of orbits, the subject of Chapter 3. A similar progression will be followed in 
our study of first the dynamics and then control of the attitude motion of spacecraft. 

Such basic physical notions as angular kinetic energy, angular momentum, and 
moment about the mass center will be stated and used in the derivation of the funda
mental laws of angular motion, which are based on Euler's moment equations. In 
this chapter we state the angular dynamical equations of motion for spinning and 
nonspinning rigid bodies. Based on these equations, the attitude control of space
craft, with different conceptual principles, will be treated in Chapters 5-9. In Chap
ter 10, structural and sloshing dynamics are appended to the equations of motion 
for a rigid body. 

4.2 Angular Momentum and the Inertia Matrix 

Let us suppose that a rigid body is moving in an inertial frame. This motion 
can be described by the translation motion of its center of mass (cm), together with a 
rotational motion of the body about some axis through its center of mass. 

In the following analysis we shall use the well-known operator equation acting on 
a given vector A, 

!AII = ~~ IB +wxA, (4.2.1) 

which simply states that the rate of change of the vector A as observed in the fixed 
coordinate system (I - "inertial" in our case) equals the rate of change of the vector 
A as observed in the rotating coordinate system (B - "body" in our case) with angular 
velocity w, plus the vector product w X A (see Goldstein 1964, Thomson 1986). This 
differentiation law will be used in many applications and in several different contexts . 

In Figure 4.2.1, suppose that an orthogonal triad axis frame has its origin 0 lo
cated at the center of mass of the body; i, j, k are the respective unit vectors along the 
body frame axes. For any particle m; in the body B, R; = Ro + r;, so that 

(4.2.2) 

where w denotes the angular velocity vector of the body B with respect to the inertial 
frame. The moment of momentum of a body particle m; is 

h; = r;xm;R; = r;xm;(Ro+f;+wxr;) (4.2.3) 

(cf. the discussion in Section 2.3). However, by definition we have f; = 0 in a rigid 
body, so in this case it follows that 
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Figure 4.2.1 Angular motion of a rigid body. 

h j = rjXmj(Ro+wXrj) = -vOXmjrj+rjXmj(wXrj). (4.2.4) 

To find the angular momentum of the entire body, we shall sum the momentum com
ponents of all the mass particles: 

(4.2.5) 

Since the angular motion is about the center of mass, l:m; mjrj = 0 holds. Finally: 

h = l,;rjx(wxrj)mj. (4.2.6) 

After performing the vector triple product, we get the following equations: 

h = i[Wx };(yl+zl)mj-wy };Yjxjmj-wz }; XjZjm,] 
ml ml ml 

+ k[wz };(xl+ yhmj-wx }; xjzjmj-Wy };YjZjm,]. (4.2.7) 
m; m, m; 

In Eq. 4.2.7, Xj,Yj, Zj are the coordinates of a particle i in the body axis frame and 
WX , wy, Wz are the angular velocity components around the i,j, k body axes. The sum
mations of the squared coordinate components are easily identified as the three mo
ments of inertia of the body about its three orthogonal axes. The summations of the 
products of the coordinate components are identified as the products of inertia. With 
these definitions, Eq. 4.2.7 takes the following form: 

h = i[wxIxx-wyIXY -wzIxzJ+ j[wyIyy-wxIyx-wzIyzJ + k[wzIu -wxIzx-wyIzyJ 

= ihx+ Jhy+khz; (4.2.8) 

h is the angular momentum vector of the rigid body. 
If we define the angular velocity vector as: W = [wx Wy wzJT, then Eq. 4.2.8 can be 

put in the matrix form 

[ 

lxx -Ixy 
h = -Iyx Iyy 

-lu -lzy 
(4.2.9) 

From symmetry considerations, it is easily deduced that Ixy = Iyx, Ixz = Izx , and 
IyZ = IloY" [IJ is the inertia tensor, or inertia matrix. 
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4.3 Rotational Kinetic Energy of a Rigid Body 

Let us consider a rigid body moving in space together with a set of body 
axes whose origin coincides with the body's center of mass. To begin with, if T is 
the body's kinetic energy then Il.T = 0.5v2(ll.m). According to Figure 4.2.1 and using 
Eq. 4.2.1, V; = vo+ w X r;; hence 

vr = Vi-V; = V5+ 2vo-(w x r;) + (w x r;)-(w x ri). (4.3.1) 

To find the kinetic energy, 

T= -i IM v2dm = -i I v5dm+~ I Vo-(wXr)dm+-i I(wxr)-(wXr)dm 

= -iV5M+Vo-wX f rdm+-i I(wxrHwXr)dm 

= ~ranSI+VO-WXo+-i I(wxr)-(wXr)dm 

= ~ransl + Trot· (4.3.2) 

By definition, the angular motion is about the center of mass of the rigid body, so 
f r dm = O. From Eq. 4.3.2, the rotational kinetic energy is 

Trot = -i I)wXrHwXr)dm 

_If. 2 2 2 - 2" M[(wyZ-WzY ) +(wzx-wxz) +(wxY-wyx) ]dm. 

After integrating over the mass of the body M and using the definitions of moments 
of inertia and products of inertia from the previous section, we find that 

Trot = t[w;lx+ w;ly + w:lz - 2wywxl,x - 2wywZIU - 2wzwxl zx] 

= Hwx(wxlx-wzlzx-w,Iyx) 

+ w,(wyly - wzI,z- wxlyx ) + wz(wzlz - w,lZy - wxlzx)]· 

This may be written in matrix form as 

Trot = twT[I]w, 

(4.3.3) 

(4.3.4) 

where the rotational kinetic energy is expressed in terms of the inertia matrix. 
It is important to emphasize that together the angular momentum and the rota

tional kinetic energy completely define the rotational dynamic state of a rigid body. 

4.4 Moment-of-Inertia Matrix in Selected Axis Frames 

4.4.1 Moment 0/ Inertia about a Selected Axis in the Body Frame 

It is generally possible to compute the moment of inertia of the body about 
any axis ~ passing through the center of mass of the body. In this case, 7;.ot = tl~w2. 
Using also Eq. 4.3.3, we find that 
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4.4 I Moment-ol-Inertia Matrix in Selected Axis Frames 

Figure 4.4.1 Coordinate axes of the X, Y, Z inertial 
system and of the XB, VB' ZB body frame. 

IE ",2 = w:lx + "';Iy + ",;Iz - 2"'y"'xlyx - 2"'yWzlzy - 2"'~"'xlu. 
Equation 4.4.1 can be put in a more convenient form as follows: 

IE = (:x y Ix+( "': r Iy+( "': r I~ 
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(4.4.1) 

(4.4.2) 

The inertial and the body axis frames are shown in Figure 4.4.1. The If axis is the 
direction of the rotational axis of the body with angular velocity",. The angular ve
locity vector", has components "'x, wy , W~ along the XB, YB, ZB body axes. We can 
define ax = "'xlw, ay = "'yl"', and a~ = w~/"" whicb are the direction cosines of the 
vector", in the body frame (see Appendix A). Given these definitions, Eq. 4.4.2 can 
be written in the more compact form 

IE = a·#x+a;ly+a:/~-2aya~/~y-2axa~/x~-2axaylyx. (4.4.3) 

Considering the complexity of these equations - which is due to the existence of 
the products of inertia - it is attractive to choose a body axis frame in which all prod
ucts of inertia vanish. The control engineer generally prefers a satellite in which there 
are negligible products of inertia, as it is easier to design the attitude control systems 
for such satellites. The existence of parasitic products of inertia can then be treated 
as mere disturbances to be taken into account in the design stage of the attitude con
trol systems. In the next section we show how to choose a body axis frame in which all 
products of inertia are practically eliminated. (There do exist special circumstances 
in which small products of inertia are advantageously used for some special control 
tasks; see Section 8.8.5.) 

4.4.2 Principal Axes oj Inertia 

The problem at hand is to transform the general inertia matrix, Eq. 4.2.9, 
into a diagonal one. Transformation of a nondiagonal real square symmetric matrix 
into a diagonal one is a common procedure that is treated in linear algebra (see Hilde
brand 1968). For our case of an orbiting satellite (see Kaplan 1976), we shall give the 
results but not the mathematical details of the transformation. 
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The components of the angular velocity", in the initial body axis frame are labeled 
Wx , wY' wz • To obtain a new axis frame in which the inertia matrix will be diagonal, 
an axis rotation must be performed. In the new axis frame, the components of", will 
be changed to ",' by the vector transformation", = [A]",'. Returning to Eq. 4.3.4, 
we can write 

(4.4.4) 

The matrix [A] is the transformation matrix from the old orthogonal axis frame to 
the new orthogonal axis frame, in which the inertia matrix will be diagonal. 

The eigenvalues Ai of the inertia matrix [I] are the principal moments of inertia, 
the elements of the diagonal matrix [1']. They can be found by evaluating det([I]
A[I]) = 0, where [1] is the diagonal unit matrix. The eigenvectors eJ, e2, e3 of [I] are 
the column vectors of the transformation matrix [A]: 

[

elx e2x e3X] 
[AJ = ely e2y e3y . 

elz e2z e3z 

(4.4.5) 

To find the eigenvectors ej. we solve the set of i equations Ajej = [I]ej, i = 1,2,3. 
To summarize, the diagonal terms of the diagonal intertia matrix are known as the 
principal moments of inertia, and the corresponding new axes are called principal 
axes. The three principal axes include the axes of maximum and minimum inertia, 
referred to as the major and minor axes, respectively. 

EXAMPLE 4.4.1 Suppose that the inertia matrix is given by 

[lJ = [~~O ~~O ~] N-m-sec2. 
o 0 40 

To find the eigenvalues Ai' we solve for det([I]-[I]AI = O. We find that AI = 13.82, 
A2 = 36.18, and A3 = 40, which are also the principal moments of inertia in the new 
axis frame. 

To find the eigenvector eJ, we write [I]el = AIel and obtain the following three 
equations: 

(20-13.82)el x - lOelY+ Oelz = 0, 

-lOelx+(30-13.82)ely+ Oeh: = 0, 

Oetx+ Oely+(40-13.82)elz =0. 

Clearly elz = O. To find el x and ely, put elx = Cit from which it follows that ely = 
cl(20-13.82)/1O = 0.618cl. Finally, 

" ~ [ O.~8C' ] ~ [ O~~~~61 
(The norm of el has been normalized to unity.) 
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In a similar way, e2 and e3 are found to be 

e2 = [-0.52571 0.85066 O]T and e3 = [0 0 1]T, 

and the matrix [A] is 

[

0.85066 

[A] = 0.~27 
-0.52571 0] 
0.85066 O. 

o 1 
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From", = [A]",', we find after inversion of [A] that ",' = [Ar)",. However, since [A] 
is orthogonal, we also have the more direct solution ",' = [A] T (0). It is also easy to 
check that 

[

13.82 0 0 ] 
[I'] = [A]T[I][A] = ~ 36~18!, 

which is diagonal as expected. 

The columns of [A] are the direction cosines of the principal axes with respect to 
the initial body axes XB, YB, ZB. The direction cosine matrix in Example 4.4.1 shows 
that, in order to obtain the principal axes, the original axes must be rotated about 
the ZB axis only. The ZB-axis moment of inertia does not change. From now on, the 
body axis frame is assumed to be for principal axes, unless otherwise stated. With 
this assumption, Eq. 4.2.8, Eq. 4.3.3, and Eq. 4.4.2 are greatly simplified. 

4.4.3 Ellipsoid of Inertia and the Rotational State of a 
Rotating Body 

With the body axes chosen to be principal axes, Eq. 4.4.2 becomes: 

IE =. C; y lx+( "':, y Iy +(:: )\. (4.4.6) 

As depicted in Figure 4.4.2, the moment of inertia about any instantaneous axis of 
rotation IE will be 

(4.4.7) 

Figure 4.4.2 Ellipsoid of inertia. 
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Such values can be calculated for any direction of 1~ defined in the body axis frame 
by its direction cosines. With the resulting values drawn graphically onto the body 
axis frame, a closed surface will emerge, called an ellipsoid of inertia (Figure 4.4.2). 
Equation 4.4.7 can be put in the following form: 

222 _ ax Oy az _ 2 2 2 
1- -Ix+-IY +-

1 
Iz-X Ix+Y Iy+Z Iz, (4.4.8) 

IE I~ ~ 

which is the general equation of an ellipsoid with axes dimensions 1/.JJ;, 1/VI;, and 
1/.JJ;. 

The angular momentum for principal moments of inertia can be found from Eq. 
4.2.8. The angular momentum, together with the rotational kinetic energy, describes 
the dynamic state of the rotating body: 

h2 = I;w;+I;w;+I;w:. 

With principal moments of inertia, Eq. 4.3.3 reduces to 

27;.01 = Ixw;+ Iyw; + Izw:. 

(4.4.9) 

(4.4.10) 

From here on, for notational simplicity it will be understood that T stands for 7;.01' 
The preceding two equations can be written in normalized form as 

w2 w2 w2 
x y z-1 

-(h-I-'"I'-x)""="2 + (hIIy)2 + (hlIz)2 - , (4.4.11) 

2 2 2 
~ + ~ + ~ -1 

(.../2 Tllx ) 2 (.../2TlIy )2 (.../2TII:i - . 
(4.4.12) 

These equations describe ellipsoids of the angular momentum and of the rotational 
kinetic energy, with the components of the angular velocity vector w as variables. 

For any given free body with known rotational kinetic energy T and momentum 
h, all instantaneous values of moment of inertia and of angular velocity are defined 
by the two ellipsoids. Any w that satisfies the momentum ellipsoid of Eq. 4.4.11 must 
also satisfy the kinetic energy ellipsoid of Eq. 4.4.12. Hence, both ellipsoids intersect 
along a curve that is the locus of all possible wS satisfying both equations. This curve 
is called a polhode, and is shown in Figure 4.4.3. For different angular momentum 
and rotational kinetic energy, different polhodes will be generated. 

Polhode 

Momentum 
i/ ellipsoid 

Kinetic energy 
ellipsoid 

Figure 4.4.3 Satisfaction of both momentum 
and kinetic energy ellipsoids: the polhode. 
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4.5 Euler's Moment Equations 

We found in Section 2.2 that a moment, acting on a body about its center of 
mass, equals the time rate of change of its angular momentum. In this section we 
will examine the rotational motion of a body caused by the applied moment. 

Using once more the identity of Eq. 4.2.1 for the angular momentum vector h, 
we can write 

M = iiI = IiB+(a)Xb. (4.5.1) 

This is the well-known Euler's moment equation. In this equation, the subscript "I" 
indicates a derivative in the inertial frame, while the subscript "B" indicates a deriva
tive in the rotating body frame. 

Assuming that XB, YB, ZB are the principal axes of inertia and performing the 
vector product, we obtain the three scalar equations 

Mx = Ixwx + WyW~(I~ - Iy), 

(4.5.1') 

M~ = I~w~+wxwy(Iy-Ix)' 

These equations are nonlinear, so they do not have an analytical closed-form solu
tion. However, they can be solved under some relieving conditions as follows. 

4.5.1 Solution oj the Homogeneous Equation 

The homogeneous equations will be solved under the assumption that the 
rotating body is axisymmetric, with, for instance, Ix = Iy• Suppose also that the body 
is spinning about the ZB axis, which is the axis of symmetry, with a constant angular 
velocity W~ = const = n. 

For this situation, the simplified Euler equations have an analytic solution, and 
we can find the time-domain angular motion of the body for any initial conditions. 
The equations become: 

Ixwx+wyn(I~-Iy) = 0, 

(4.5.2) 

w~I~ = O. 

The third of Eqs. 4.5.2 simply means that W~ = n = const, which has already been 
stated. The first two equations are linear, and if we define A = n(l~ - Ix)/Ix then they 
can be put in the following form: 

WX+AWy=O, 

Wy-AWx=O. 
(4.5.3) 

If we multiply the first equation by WX , multiply the second by wy , and add the first to 
the second, we have wxwx+wyWy = 0, from which follows the important result 

(4.5.4) 

Wxy is the component of angular velocity in the XB-YB plane of the rotating body. 
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Because Wt is also constant, we find that the norm of the angular velocity remains 
constant also: 

Iwl = ../w;y+w; = .Jw;+w;+w; = const. 

From Eq. 4.5.3, we can find relations between the initial conditions of wx , wy , and 
their derivatives as follows: 

wx(O) = -AWy(O), 

wy(O) = +AwAO). 
(4.5.5) 

From this stage, the solution of the homogeneous equation is a standard process. 
Let us differentiate the first of Eqs. 4.5.3 with time; this yields 

.. +'. .. + \2 0 Wx I\Wy = Wx 1\ Wx = . 
Taking the Laplace transform, together with Eqs. 4.5.5 we have 

wx(O)+swAO) 
wAs) = S2 + A2 • 

The time-response solution of Eq. 4.5.7 is 

wx(O) . 
wx(t) = wAO) cos(M) + -A- sm(M). 

In a similar way, integrating the second of Eqs. 4.5.3, we find that 

-wx(t) . w,r(O) 
wy(t) = -,x- = wAO) sm(,xt) - -,x- cos(,xt). 

(4.5.6) 

(4.5.7) 

(4.5.8) 

(4.5.9) 

By adding Wx and Wy in quadrature in the XB-YB plane equations of angular motion 
of the rotating body, we can write 

wxy(t) = wx + jWy = wx(O)[cos(M)+ j sin(M)]+ wx~O) [sin(M)-j cos(M)] 

= [wAO) - j wx~O) ]rCOS(M)+ j sin(M)] 

= [wx(O)+ jWy(O)]e j
.\( = wXy(O)e j .\(, (4.5.10) 

where j = ..r=r. It is important to remember that the final result in Eq. 4.5.10 has 
been derived under the assumption that the body axes were chosen to be principal 
axes - so that no products of inertia exist - and that the body is axisymmetric, Ix = Ir 

4.5.2 Stability of Rotation for Asymmetric Bodies about 
Principal Axes 

In the previous discussion we assumed an axisymmetric body, with Ix = Iy • 

In the present section, this assumption is relieved. We wish to find conditions for 
stability about any principal axis with no external moments acting on the body. For 
that purpose we use Eqs. 4.5.1' with Mx = My = M t = O. Let us suppose that stability 
conditions for rotation about the ZB body axis are sought. In this case let W

t 
= n + E, 

where E is a small disturbance; wt = n+e = e. If E -.0 then Eqs. 4.5.1' become: 
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Ixwx + wyn(/Z - Iy) = 0, 

Iywy+wxn{lx-If.) = 0, 

If.E+wxwy{ly-Ix) = o. 
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(4.5.11) 

The first two equations are linear, and a second differentiation of the first together 
with the second yields 

wx+n2 If.-Iy If.-Ix Wx = o. 
Iy Ix 

(4.5.12) 

Taking the Laplace transform of Eq. 4.5.12, we have 

[
S2 + n2 If. - Iy If. - Ix]wx(S) =0 => S2 + {j2 = 0 with 

Iy Ix 

s2=_n2Iz-IyIz-Ix =_{j2 and {j=n[(I_Iz)(I_Iz)]1/2. 
Iy Ix Ix Iy 

(4.5.13) 

For stability we need {j to be real, which means that the conditions for stability are 

Iz > Ix, Iy or Iz < Ix, Ir (4.5.14) 

In words, if a body is spinning about its axis of minimum (or maximum) moment of 
inertia then the angular motion will be stable about these axes. But suppose that the 
body is spinning about the axis with the intermediate value of moment of inertia and 
so Eq. 4.5.14 is not satisfied. This means that 

(4.5.15) 

In this case {j will be imaginary, so that one of the roots of the determinant of Eq. 
4.5.12 will be positive and real (unstable), and the second will be negative and real 
(stable). 

These conclusions hold for the trivial case where the momentum of the body is 
constant (no applied external moments on the body) and the rotational kinetic energy 
is constant. In practical situations. these assumptions do not generally hold, as will 
be explained in Section 4.6.2. 

4.5.3 Solution 0/ the Homogeneous Equation for Unequal Moments 
0/ Inertia 

In Section 4.5.1, the homogeneous equations were solved for the case where 
two of the principal moments of inertia were equal. If these two moments of inertia 
are not equal but do have close values then the solution may still be valid from an 
engineering point of view, but care must be taken to avoid wrong conclusions. 

An exact solution can be found for the case ,of distinct moments of inertia. In this 
case, the solution of Eqs. 4.5.1' will result in elliptic functions, which are not easy to 
use for practical purposes. The complete solution for distinct moments of inertia will 
not be pursued in this textbook; the reader is referred to Thomson (1986) for further 
reading on the subject. 
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Figure 4.6.1 Body and space cones for Ix < Iz; adapted from 
Thomson (1986) by permission of Dover Publications, Inc. 

4.6 Characteristics of Rotational Motion of a Spinning Body 

4.6.1 Nutation of a Spinning Body 

As we saw in Section 4.5.1, if the body is in rotational motion caused by ini
tial conditions but not under the influence of external moments, then the norm of the 
angular velocity remains constant, Iwi = const (see also Eq. 4.5.4). Moreover, since 
there are no applied moments on the body, M = iiI =0, it follows from Eq. 4.5.1 that 
hI = const; the momentum vector is constant in inertial space. 

In this section the angular momentum and the angular velocity vectors will be re
solved into two components, one in the XB-YB plane and another along the ZB body 
axis (assume once more that the body is symmetric, Ix = Iy): w = wxy + W z and b = . 
Ixwxy + Izwz• Since W and b have components in the same directions (wxy and wz), it is 
evident that b, w, and Wz are coplanar. But since the momentum vector h is constant, 
its direction is fixed in space. The vector wxy rotates in the XB-YB body plane, so the 
angular velocity vector w must also rotate about h; see Figure 4.6.1. 

We now define the angles 8 and 'Y as follows: 

h Iw 
tan(8) = ...E... = 2.....E.., (4.6.1) 

hz Izwz 

Wxy tan('Y) = -; (4.6.2) 
Wz 

8 is called the nutation angle. From Eq. 4.6.1 and Eq. 4.6.2 it follows that 

Ix 
tan(8) = - tan('Y). (4.6.3) 

I z 

From this we conclude that 

8 > 'Y if Ix> I z, 

8 < 'Y if Ix < I z• 
(4.6.4) 

As is evident from Figures 4.6.1 and 4.6.2, the body cone "rolls" on the space 
cone, which is fixed in space. The ZB-W plane rotates about the b vector, which is 
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Space cone 

Figure 4.6.2 Body and space cones for Ix> I:; adapted from 
Kaplan (1976) by permission of John Wiley & Sons. 
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also fixed in space. Whenever the body ZB axis deviates from the momentum vector 
h, the body is said to nutate. This nutation forces the spin axis to deviate from the 
nominal desired direction. Keeping the nutation angle small is one of the important 
tasks of attitude control systems, to be discussed in subsequent chapters. 

4.6.2 Nutation Destabilization Caused by Energy Dissipation 

As seen in Section 4.4, the angular kinetic energy about any momentary axis 
e can be written as 

h2 

T= 7;.01 = 0.5If w2 = 0.51;' (4.6.5) 

With no applied moments on the spinning body, the momentum h will remain con
stant. As already mentioned, the value of I~ depends on the direction of the axis of 
rotation in the body axes frame (Eq. 4.4.7). Since also h is constant: 

h 2 

Tmax = 0.5- (at the minor axis); (4.6.6) 
I min 

h2 

Tmin = 0.5-- (at the major axis). 
Imax 

(4.6.7) 

According to Eq. 4.6.6 with h constant, if the body spins about the minor axis and 
there is some internal energy dissipation that tends to decrease the rotational kinetic 
energy to its minimum, then the body will transfer the spin of rotation to the major 
axis in order to satisfy Eq. 4.6.7. (This phenomenon was identified in the satellite 
Explorer I, which became rotationally unstable; see Bracewell and Garriott 1958.) 

From Eq. 4.2.8, for the symmetrical body case Ix = Iy and with no products of 
inertia: 

h2 = [w;+w;]I;+w;I;. (4.6.8) 

From Eq. 4.3.3, 

2T = [w; + w;JIx + w;I~. (4.6.9) 

Multiply Eq. 4.6.9 by Ix and subtract from Eq. 4.6.8 to obtain 
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h 2-2TIx=w;Iz(/z-Ix). (4.6.10) 

By definition, cos(8) = hzlh = Izwzlh; hence 

2TIx=h2_h2cos2(8)Iz;Ix. (4.6.11) 
z 

Differentiating this equation with time yields 

2tIx = -h22 cos(O)[ -Sin(O)]8(1- ~:). 
and finally we get 

t= ~: COS(8)Sin(O)G: -1)8. 

Equation 4.6.12 is very important. It entails that: 

(4.6.12) 

(I) If t < 0 and Iz > Ix then 8 < 0, which implies nutation stability since an ini
tial nutation angle, under the influence of the energy dissipation inside the 
body, will decrease to zero under ideal conditions. 

(2) If t < 0 and Iz < Ix then 8 > 0, which implies nutation instability (!) since 
an initial nutation angle, under the influence of energy dissipation inside the 
body, will increase until the spin is transferred to the major axis. 

These conclusions confirm our claim in Section 4.6.1 that, in the presence of energy 
dissipation, a spinning body is in stable angular motion only if the spin is about the 
major axis. , 

As we shall see in future chapters, inertial stabilization 9Y spinning the satellite 
is common in many practical applications. 'the first Pioneer satellites were spin
stabilized; this is a cheap and efficient solution. However, with further development 
of space technology and sophistication of space instrumentation, the space com
munity understood that more ingenious, and higher-quality, space tasks could be 
achieved by using "three-axis-stabilized" satellites. Roughly speaking, this means 
that the satellite is not spinning about one of its body axes for the achievement of at
titude stabilization. In the following sections we shall develop the attitude kinematics 
and dynamics equations of motion of nonspinning three-axis-stabilized satellites. 

4.7 Attitude Kinematics Equations of Motion for a 
Nonspinning Spacecraft 

4.7.1 Introduction 

It is useful to clarify some notions about attitude kinematics in space before 
proceeding (in the next section) to the derivation of the attitude dynamics equations 
of motion for three-axis-stabilized satellites . 

The choice of an axis system is closely related to the satellite's tasks. It is not un
common for a sic to be transferred from one reference coordinate system to another 
system that is more appropriate for the particular tasks that are pertinent to a given 
period of the satellite's life. For instance, a spacecraft voyaging toward some planet 
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in the solar system will begin its life in a reference coordinate system moving with the 
initial orbit that circles the earth. Next, on the way toward the planet, an inertial co
ordinate system will be used for its attitude definition in space. Finally, close to the 
phtnet, a third reference coordinate system will be chosen, similar to the first one but 
this time attached to the orbit circling the planet. 

4.7.2 Basic Coordinate Systems 

In this section we make use of the material presented in Appendix A con
cerning methods of attitude determination in space. We must first define the refer
ence coordinate frame in which the satellite is to be three-axis attitude-stabilized. 
Different reference axis frames are chosen for different sic tasks. 

For planet-orbiting sic, including the earth-orbiting craft, it is most convenient 
to define the orbit reference frame as follows. In Figure 4.7.1, the origin ofthis orbit 
reference frame moves with the cm (center of mass) of the satellite in the orbit. The 
ZR axis points toward the cm of the earth (the subscript "R" stands for reference) . 
The XR axis is in the plane of the orbit, perpendicular to the ZR axis, in the direc
tion of the velocity of the spacecraft. The YR axis is normal to the local plane of the 
orbit, and completes a three-axis right-hand orthogonal system. The term "'RI is the 
angular velocity vector of this frame, relative to the inertial axis frame defined in 
Section 4.7.3. 

The inertial axis frame has its origin at the cm of the earth. The satellite's axis 
frame is defined by XB, YB, and ZB (where, as before, the subscript "B" denotes 
body). The satellite's attitude with respect to any reference frame is defined by a 
direction cosine matrix [A1, by its quaterruon vector q, or by the Euler angles (see 
Appendix A). In our treatment, the Euler angles are defined as the rotational angles 
about the body axes as follows: tb, about the XB axis; 8, about the YB axis; and "', 
about the ZB axis. 

The direction cosine matrices can be expressed in terms of the Euler angles. Ac
cording to the different order of rotation of the axes of the moving body with respect 
to the reference frame, there may be.as many as 12 direction cosine matrices ex
pressed in trigonometric functions of the Euler angles. Some of these matrices are 
detailed in Appendix A. 

Figure 4.7.1 Definition of the orbit reference frame. 
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4.7.3 Angular Velocity Vector of a Rotating Frame 

Two important factors in satellite kinematics are (1) the angular velocities 
of the body axis frame with respect to the reference axis frame and (2) the velocity of 
the body axis frame with respect to the inertial axis frame. In general, the angular 
velocity vector of the body frame relative to the reference frame is denoted by WBR = 
pi + qj + rk, and the angular velocity vector of the reference frame relative to the 
inertial frame is denoted as WRI = wRlxlx+wRlyly+wRlzlz. When WRI is expressed in 
the body frame, it takes the form WRIB = wRIBxi + WRIByj + wRIBzk. With these defini
tions, the velocity vector of the body frame relative to the inertial frame becomes 

WBI = WBR + WRIB' (4.7.1) 

The angular velocity vector WBR is of importance, because it allows us to calculate 
the Euler angles of the moving body with respect to any defined reference frame in 
space. To begin with, suppose that the initial body axes were aligned with the refer
ence axes XR , YR , and ZR' We shall illustrate the procedure for calculating the Euler 
angles from the body angular velocity vector for some common and useful orders of 
attitude transformations. 

Angular Velocities for the Transformation I/; --+ 0 --+ q, 
When we choose the order of axes transformation as I/; --+ 0 --+ q, (with axes 

order of rotation 3 --+ 2 --+ I), [A.pl is the first angular rotation about the ZB body axis 
to be performed. The next rotation will be about the new YBt axis by an angle 9, and 
so on. Finally: 

[A.poct>l = [Act>)[Ao)[A.pl. (4.7.2) 

Performing the matrix multiplications in Eq. 4.7.2, we find that 

[ 

c8 cl/; c8 sl/; -sO ] 
[A32d = [A.poct>l = -cq,sl/;+sq,s9cl/; cq,cl/;+sq,s8sl/; sq,c8 

sq, sl/; + cq, s8 cl/; -scp cl/; + cq, s9 sl/; cq, c8 
(4.7.3) 

(see Appendix A), where c and s denote cos and sin, respectively. Equation 4.7.3 is 
a direction cosine matrix expressed in the Euler angles, and it shows the rotation of . 
the body axes relative to the reference axis frame. 

In the process of angular rotation - for instance, rotation about the ZB axis - a 
derivative of the I/; angle, dl/;/dt, is sensed about the same axis. We shall next find the 
relationships between the Euler angles and their derivatives as well as the angular 
velocity vector of the body in its rotational motion. 

The first rotation, about the ZB axis (axis 3), leads to the derivative dl/;/dt about 
the ZB axis; this derivative is subject to three successive angular transformations: 1/;, 
8, and finally one about XB2 by the angle cpo The second transformation, about the 
YBt axis (axis 2) by the Euler angle 8, produces the derivative d8/dt, which is subject 
to two angUlar rotations: first about YB2 by an angle 8 and then about XB3 by the 
angle q,. The last rotation, about the axis XB3 (axis I), produces the derivative dq,/dt. 
This derivative is subject to only one attitude transformation before final angular 
position of the body coordinate system is reached relative to the reference coordi
nate system. 
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These derivatives are transformed to the body angular rates p, q, and r by the fol
lowing equation: 

[ ~ ] = - = IA.l!A'l!A,{ ~] + IA.nA.{ ~] + IA.{ ~ ]. 
After performing the matrix multiplications we get 

p = 4>-~ sin(8), 

q = 8 cos(t/»+~ cos«(I) sin(t/», 

r = ~ cos(8) cos(t/»-8 sin(t/». 

These equations can be solved for 4>, 8, and ~ as follows: 

4> = p + [q sin(t/» + r cos(t/»] tan(8), 

8 = q cos(t/» - r sin(t/», 

~ = [q sin(t/»+ r cos(t/»] sec(8). 

(4.7.4) 

(4.7.5) 

(4.7.6) 

The first and last of Eqs. 4.7.6 show a singularity at 8 = 90°. This is the reason 
why, in certain engineering situations, a special order of rotation might be preferred. 
In some gyroscopic inertial systems, for instance, this singularity might cause the 
phenomenon called gimbal lock. It will be shown in Section 4.7.5 that such singulari
ties do not occur in quartemion terminology. 

Measurements of the body axes angular rates p, q, and r relative to the reference 
frame, together with knowledge of the initial conditions of the Euler angles, allow us 
to integrate with time the set of Eqs. 4.7.6. We thereby obtain the Euler angles t/I, 8, 
and t/> by which the body frame is rotated relative to the reference frame. It is also 
important to note that p, q, and r are not necessarily inertial angular velocities. This 
fact will be treated in future sections. Results similar to Eqs. 4.7.5 and Eqs. 4.7.6 can 
be found for different orders of rotation about the body axes, as presented in Ap
pendix A. Two such results will be described next. 

Angular Velocities/or the Trans/ormation (I -+ t/> -+ t/I 
The results for the transformation with the order of rotations 8 -+ t/> -+ t/I 

about the axes 2 -+ 1 -+ 3 are as follows: 

p = 8 cos(t/» sin(t/I)+<b cos(t/I), 

q = 8 cos(t/» cos(t/I)-4> sin(t/I), 

r= -8 sin(t/»+~. 

From Eqs. 4.7.7 we also find that 

8 = [psin(t/I)+qcos(t/I)]/cos(t/», 

4> = p cos( t/I) - q sin( t/I), 

~ = [psin(t/I)+qcos(t/I)]tan(t/»+r. 

(4.7.7) 

(4.7.8) 
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Angular Velocities/or the Trans/ormation cf> -+ 0 -+ y, 
Using the methods described previously generates the following results for 

the angular velocities of the transformation order 1-+ 2 -+ 3: 

p = cos(y,) cos(o)cb + sin(y,)O, 

q = -sin(y,) cos(8)cb+ cos(y,)O, 

r = sin(O)cb + if;. 
After some simple algebraic operations, we have also 

0= p sin(y,)+q cos(y,), 

cb = [p cos(y,)-q sin(y,)]/cos(O), 

if; = r- [p cos(y,)-q sin(y,)] tan(O). 

(4.7.9) 

(4.7.10) 

We should note that, for very small Euler angles, Eqs. 4.7.6, Eqs. 4.7.8, and Eqs. 
4.7.10 show that p "'" cb, q"'" 0, and r "'" if; (see Appendix A). These approximations will 
be used in the derivation of the linearized attitude dynamic equations of the satellite. 

4.7.4 Time Derivation of the Direction Cosine Matrix 

Knowledge of direction cosine matrix elements is equivalent to knowing the 
attitude of the sic relative to the reference frame in which the transformation matrix 
[A] is defined. In general, for a rotating body, the elements of this matrix change 
with time. In Wertz (1978) it is shown that: 

! [A] = [OHA], (4.7.11) 

with 

[01=[ -:, "'z -00 ] 
0 i· "'y -"'x 

(4.7.12) 

The terms "'x, "'y, "'z are angular velocities about the body coordinate axes. The 
preceding equations are used when the angular velocity vector of the body can be 
measured (by inertial measurement instrumentation) to find the evolving direction co
sine matrix. Numerical integration of Eq. 4.7.11 requires knowledge of the initial con
ditions of [A(O)]. Integration of this equation system is excessively time-consuming 
and hence seldom carried out. The integration of the quaternion vector (introduced 
in Appendix A) is much more efficient and thus much more common. 

4.7.5 Time Derivation of the Quaternion Vector 

As with the previous case, a differential vector equation for q can be written 
if the angular velocity vector", of the body frame is known with respect to another 
reference frame. The differential equations of the quaternion system become 

! q = -i[O']q, (4.7.13) 
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with [0'] defined as 

[0'] = f -~z 
"'y 

-"'x 
In this case also, knowing the initial condition of q(O), the numerical integration of 
the system of Eq. 4.7.13 will provide us with the time evolution of the quaternion 
vector q. 

4.7.6 Derivation oj the Velocity Vector "'RI 

In deriving the attitude dynamics equations of a sic, it is important to know 
the inertial velocity vector ""BI of the satellite, which is evaluated by inertial measur
ing instrumentation such as precision rate integrating gyros. In order to find the evo
lution of the Euler angles of the satellite in the orbit reference frame, we must know 
"'BR from the equality in Eq. 4.7.1: "'BR = "'BI-""RIB' In this section we derive the 
angular velocity vector ""RI of the orbit reference coordinate frame with respect to 
the inertial coordinate frame, as defined in Section 4.7.3 and in Figure 4.7.1 and Fig
ure 4.7.2; we shall then express this vector in the body coordinate frame as ""RIB' 

In Figure 4.7.2, the orbit reference frame is defined by the triad of unit vectors 
i, j, k. The definition ofthese unit vectors, based on the radius vector r and the veloc
ity vector v of the orbit, is as follows: 

r 
k = -111' 
. vxr 
J = Ivxrl' 

i =jxk. 

(4.7.14) 

Next, we determine the angular velocities about the i, j, and k axes. As in Section 
2.4, for a positive clockwise rotation 6 about j we have 

di di d6 
-=--=-kw· 
dt d6 dt J' 

Figure 4.7.2 Derivation of WRI' 
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since obviously dildo = -k. Finally, 

di 
"'j = - dt ok. 

Repeating the last procedure, we find also that 

dj dk 
"'I = dt ok = -"di 0j , 

di dk . 
"'J = - dt ok = "di 0

" 

di dj . 
"'k = -oj = --0'. dt dt 

Together with Eqs. 4.7.14, we have 

dk. 1 dr vxr 
"'i = -di oJ = 1FT dt °lvxrl 

1 1 
= Irllvxrl vo(vxr) = Irllvxrl vxvor = 0 

(4.7.15) 

(4.7.16) 

(see Kaplan 1953 for relationships between vector and scalar products). In a similar 
way, we can find 

dk • 1 (vxr)x(-r) 1 [(rov)r-(ror)v] 
"'J = "di

0

' = -1FTVo 
Iv x rllrl = -1FTVO 

Irllv X rl 

-1 2 
= r 21vxrl vo[(rov)r-(r v)]. (4.7.17) 

For a circular orbit, v is perpendicular to r; hence Ivxrl = vr and rov = O. Finally, 

(4.7.18) 

where "'0 is the angular orbital velocity of the sic (see also Eq. 2.5.6). 
In order to find "'k, we calculate as follows: 

dj . 1 d ( ) . 1 [ . .] • "'k=--O'=---O- vxr 0,=--- vxr+vxr o. 
dt Ivxrl dt Ivxrl 

1. . 1. (vxr)X(-r) 
=--1 -I [vxr+O]oa =--1 -I[vxr]o III I vxr vxr r vXr 

= Ivx!12 lr l [rxr]o[(vxr)xr]. (4.7.19) 

In Keplerian orbits, there are no out-of-plane accelerations and so "'k = O. Finally, 
for a circular orbit, 

(4.7.20) 
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4.8 Attitude Dynamics Equations of Motion for a 
Nonspinning SatelUte 

4.8.1 Introduction 

The attitude dynamics equations will be obtained from Euler's moment equa
tion (Eq. 4.5.1). In Section 4.5, the body was presumed to be rigid, with no moving 
elements inside it. However, in the present derivations we will allow for the existence 
of rotating elements inside the satellite - known as momentum exchange devices -
and for other kinds of gyroscopic devices. The most common momentum exchange 
devices are the reaction wheel. the momentum wheel. and the control moment gyro. 
In this textbook, only the first two will be used for attitude control. (These devices 
will be described in Chapter 7.) Meanwhile, we must remember that these rotating 
elements have their own angular momentum, which becomes a part of the momen
tum of the entire system in Euler's moment equations. 

Returning to Eq. 4.5.1, M is the total external moment acting on the body, which is 
equal to the inertial momentum change of the system. External inertial moments are 
products of aerodynamic, solar, or gravity gradient forces, or of magnetic torques 
or reaction torques produced by particles expelled from the body, such as hydrazine 
gas or ion particles (see Appendix C). 

4.8.2 Equations 0/ Motion for Spacecraft Attitude 

Equation 4.5.1 may be rewritten as follows: 

T=b.=b+CI)xh. (4.8.1) 

For practical reasons, T was substituted for M. It is also understood that in this equa
tion b denotes differentiation of b in the body frame. We shall break down the exter
nal torque T into two principal parts: Tc' the control moments to be used for con
trolling the attitude motion of the satellite; and Td , those moments due to different 
disturbing environmental phenomena. The total torque vector is thus T = Tc+Td' 

The momentum of the entire system will be divided between the momentum of 
the rigid body bB = [hx hy h~]T and the momentum of the moment exchange devices' 
bw = [hwx hw, hw~]T. Finally, b = hB + bw' With these definitions, the general equa
tions of motion become 

T = Tc+Td = [Jix+Jiwx+(wyh~-wzhy)+(wyhw~-w~hwy)]i 
+ [Ji,+ hwy + (wzhx-wxh~)+ (wzhwx -wxhw~)]j 

+ [Jiz+ hwz + (wxh,-wyhx)+(wxhwy-wyhwx)]k. (4.8.2) 

Here, I, j, k are the unit direction vectors of the body axis frame. In Eq. 4.8.2, the 
body momentum components hx' hy, h~ are defined as in Eq. 4.2.8, and contain all 
the moments and products of inertia. The terms hwx, hwy, hw~ are the vector compo
nents of the sum of the angular momentum of all the momentum exchange devices 
(see Section 7.3). Equation 4.8.2 summarizes the full attitude dynamics that must be 
implemented in the complete six-degrees-of-freedom (6-DOF) simulation necessary 
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for analyzing the attitude control system. Care must be taken in deriving the vector 
w, since it must be expressed in the correct coordinate frame. 

4.8.3 Linearized Attitude Dynamics Equations 0/ Motion 

In the first phase of the design stage, it is important to transform Eq. 4.8.2 
into a more easily treatable form. If the design problem at hand allows working with 
principal axes, then the products of inertia may be eliminated from the dynamic 
equations, thus simplifying them considerably. Moreover, the angular motion can be 
approximated by infinitesimal angular motion, which means small Euler angles and 
angle derivatives. With these assumptions, the dynamics equations can be Laplace
transformed, thus gaining the important advantage of using linear control theory. 

Gravity Gradient Moments 
Before we can write the linearized attitude dynamic equations of motion, we 

must state and analyze one important external moment, that is, the gravitational 
moment. This moment is inherent in low-orbit satellites, and cannot be neglected 
when dealing with passively attitude-controlled satellites. A short description of the 
dynamics of these moments follows. 

An asymmetric body subject to a gravitational field will experience a torque tend
ing to align the axis of least inertia with the field direction. A full development of the 
gravitational moments equations can be found in Greensite (1970). Only an outline 
of the development, with the final results, is gi¥en here. For the following discus
sion, we suppose that the moving satellite is at a distance Ro from the center of mass 
of the earth. 

The orbit reference axis frame is defined as in Section 4.7.2 and Figure 4.7.2. In 
Figure 4.8.1, i R, jR' kR are the unit vectors of the reference axis frame. The origin of 
the reference frame is located in the cm of the body. The attracting gravity force is 
aligned along the kR axis; p is the distance between the cm of the body and any mass 
element dm in the body; and iB,h, kB are the unit vectors of the body coordinates 
axis frame (not shown in the figure). 

We can find the components of the vector R = -RokR in the body axes by using 
anyone of the Euler angle transformations of Section A.3 - for instance, the trans-

Figure 4.8.1 Gravitational moments on an asymmetric spacecraft. 
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formation [AII-6.p] of Eq. A.3.6. The components of the vector R in the body axes 
will be labeled Rx, Ry, and R z. We have 

[~]=[A"·{_U 
It follows that 

Rx= Rosin(8) =al3(-Ro), 

Ry = -Ro sin(l/» cos(8) = a23(-Ro), 

Rz = -Ro cos(l/» cos(8) = a33(-Ro). 

(4.8.3) 

(4.8.4) 

Define the gravity gradient vector as G = [Gx Gy Gz]T. The force exerted on a 
mass element due to gravity is dF = -[(JL dm)llrl3]r, where r = R + p is the distance 
from the earth's cm to the mass dm. Since p «Ro, the moment about the cm of the 
body becomes 

JLdm 
dG = pxdF = -lfj'lpxr, (4.8.5) 

where p is tlte radius vector from the body center of mass to a generic mass element 
dm. With p «< R o, lIr 3 can be approximated as 

1 1 [ 3Rep] 
-,:J "" R~ 1 - Ra . (4.8.6) 

Integration of Eq. 4.8.5 over the entire body mass, together with Eq. 4.8.6, leads to 

3JL J. G = RS [Rep][pxRJdm. 
o M 

(4.8.7) 

After calculating the scalar and vector products, a procedure similar to that of Sec
tion 4.2 is used to obtain the final results: 

3JL . 2 3JL 
Gx = 2R3 (Iz-Iy) sm(21/»cos (8) = R3 (/z -Iy)a231l33' 

o 0 

3JL. -31' 
Gy = 2R3 (Iz-Ix)sm(28)cos(l/» = }i3(Iz-Ix)al3 a33' (4.8.8) 

o 0 

Gz = ;;3 (/x-1y) sin(28) sin(l/» = -;~ (/x-1y)aI3a23. 
o 0 

These are the gravity gradient moment components of G. As is easily seen, the grav
ity moment vector G can be expressed not only in terms of Euler angles but also in 
terms of elements of the direction cosine matrix, which is the transformation of the 
attitude angles of the body axis frame to those of the reference axis frame. 

Equations 4.8.8 can be simplified by linearization for a body in a circular orbit 
using small-angle approximations for I/> and O. We have previously found that the 
lateral velocity of a body in a circular orbit of radius Ro is v = .J JLI Ro (see Section 
2.4.2); thus the angular orbital velocity of the body (also called orbital rate or fre
quency) becomes "'0 = vlRo = .JJLIR~. Hence Eqs. 4.8.8 take the approximate form 
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Gx = 3w;U:~ - ly)r/>, 

Gy = 3w;(/z - Ix) 8, 

Gz=O. 

(4.8.9) 

The linear components of the moment vector G in Eqs. 4.8.9 are used for the deriva
tion of the linearized attitude dynamics equations. 

Linearized Attitude Dynamics Equations of Motion 
In Eq. 4.7.1, "'BI is the inertial angular velocity of the body. In order to sim

plify the notation, set", = "'BI. To find", we use Eq. 4.7.1 and Eqs. 4.7.7. However, 
"'RI is to be expressed in the body frame and so will be renamed "'RIB. For small Euler 
angles, the following relation exists: 

[
:::::] = [~y; ~ ~8][_~0] = [-?~o]. 
WRIBz 8 -r/> I 0 r/>wo 

(4.8.10) 

With known "'RIB (Eq. 4.8.10), '" = WBI = "'BR + "'RIB becomes 

(4.8.11) 

I 

According to Eqs. 4.7.5, Eqs. 4.7.7, or Eqs. 4.7.9, p, q, and r can for small Euler 
angles be approximated as p'" cb, q.., 0, and r..,';;. With these approximations, Eq. 
4.8.11 becomes 

[
wx] [cb-Y;wo] 

~ = :;:~o . 
From Eq. 4.8.12 it easily follows that 

wx=ii>-wo';;' 

Wy = 8, 
Wz = ft+wocb. 

(4.8.12) 

(4.8.13) 

In future chapters, we shall also be concerned with momentum-biased satellites. 
In this type of satellite, a constant momentum bias hwyo is applied along the YB axis 
to give inertial angular stability about the YB axis of the sIc (see Chapter 8). With 
this assumption, Eq. 4.8.2 - together with Eqs. 4.8.9, Eq. 4.8.12, and Eqs. 4.8.13 -
become the desired linearized attitude dynamics equations of motion: 

•• 2 • • 
Tdx + Tcx = Ixr/>+4wo(/y-Iz)r/>+wo(/y-IZ-Ix)y;+hwx-wohwz 

• .• •. 2 • 
- y;hwyo - r/>wohwyo - Ixy8 - lxz y; - lxzwo y; + 21YZ w0 8, 

- 2 • 
Tdy + Tcy = lyO + 3wo (/x - Iz}8 + hwy 

.• • 2 '.. 2 
- lxy( r/> - 2wo y; - wor/» + lyz( -y; - 2wor/> + Wo y;), 

(4.8.14) 

.. • 2 • 
Tdz + Tcz = lzy;+wo(/z+lx-Iy)r/>+wo(/y-Ix)y;+hwz+wohwx 

• •.••• 2 
+r/>hwyo -y;wohwyo - lyzO - Ixzr/>-2wolxyO -wolxzr/>· 
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In Eqs. 4.8.14, hwx' h wy, hwz are the momentum components of the wheels with axes 
of rotation along the XB, VB, and ZB body axes of the satellite; hwx = Iwxwwx, hwy = 
I.,;ywwy + hwyo, and hwz = Iwzwwz' where Iwx, Iwy , Iwz are the moments of inertia of 
the individual wheels and Wwx, Wwy' Wwz are the angular velocities of the wheels. The 
terms hwx, h wy, hwz are the angular moments that the wheels exert on the sic along 
the body axes. If wwx is the angular acceleration of the XB axis wheel, then hwx = 
Iwxwwx is the negative of the angular moment that the XB wheel exerts on the satellite 
about its XB axis. The same applies for the YB and ZB axes wheel components. Atti
tude control of a sic can be achieved by controlling these angular accelerations, which 
are internal torques exerted on the satellite. If, in addition, external (inertial) torques 
such as magnetic or reaction torques are applied to the satellite, they are incorporated 
in TI.'" the vector of control torques. 

In general, as we shall see in later chapters, the rotation axes of the wheels are not 
necessarily aligned along the satellite's body axes. Moreover, there may be more (or 
less) than three wheels in the satellite. In such cases, the momentum and the angular 
acceleration of the wheels will be transformed to the body axes, so that they comply 
with Eqs. 4.8.14. If the body coordinate axes are principal axes then the products of 
inertia are canceled, and Eqs. 4.8.14 are reduced to the minimum possible number 
of terms. 

4.9 Summary 

The purpose of this chapter was to state and analyze the attitude dynamics 
equations of spinning and nonspinning satellites: The equations were first written 
and used in their nonlinear form, and then manipulated to their linear form in order 
to simplify the analysis and design of the attitude control system in the following 
chapters. 

Satellites can be either three-axis attitude-stabilized or, by taking advantage of 
the spin stabilizing effect, single-axis stabilized. Both cases will be analyzed in Chap
ters 5-8. 
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CHAPTER 5 

Gravity Gradient Stabilization 

5.1 Introduction 

The present and remaining chapters deal with attitude control of spacecraft,' 
this section serves as an introduction to all of them. The expression attitude control 
has the general meaning of controlling the attitude of the satellite. In practice, there 
exist a multitude of variations to this simple and apparently straightforward expres
sion. The following are some examples of primary control tasks for which the atti
tude control system is responsible. 

(1) In orbital maneuvering and adjustments, the attitude of the satellite must be 
pointed and held in the desired flV direction. 

(2) A spin-stabilized satellite may be designed to keep the spin axis of its body 
pointed at some particular direction in space. 

(3) A nadir-pointing three-axis-stabilized satellite must keep its three Euler an
gles close to null relative to the orbit reference frame; this is true of most com
munications satellites. 

(4) In earth-surveying satellites, the attitude control system is designed to allow 
the operative payload to track defined targets on the earth's surface. 

(5) A scientific satellite observing the sky must maneuver its optical instruments 
toward different star targets on the celestial sphere in some prescribed pat
tern of angular motion. 

The few examples listed and the many others not mentioned suggest a multitude of 
different tasks and missions to be performed by the attitude control system. How
ever, we shall see that some features are common to all such systems. 

An important distinction for attitude control concepts is between passive and 
active attitude control. Passive attitude control is attractive because the hardware 
required is less complicated and relatively inexpensive. Natural physical properties 
of the satellite and its environment are used to control the sic attitude. However, the 
achievable accuracies with passive attitude control are generally much lower than 
those that are possible with active attitude control, which uses sophisticated (and 
much more expensive) control instrumentation. 

Another important distinction is between attitude-maneuvering and nadir-pointing 
(earth-pointing) stabilized satellites. The attitude control hardware and the appro
priate design concepts used in these two classes are quite different. In fact, there are 
many possible classifications of satellite control schemes. Our approach will be to 
present the material following the basic line of advancing from the simpler to the 
more elaborate attitude control schemes. 

The attitude and orbit control of a satellite is performed with the aid of hard
ware that can be classified as either attitude determination or control hardware. The 
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attitude determination hardware enables direct measurement (or estimation) of the 
sic attitude with respect to some reference coordinate system in space. Examples of 
attitude determination hardware are earth sensors, sun and star sensors, and inte
grating gyros (see Appendix B). Control hardware provides translational and angu
lar accelerations so that the orbit and the location of the satellite within that orbit, 
as well as its angular attitude, can be varied at will. Control hardware includes reac
tion and momentum wheels, control moment gyros, reaction thrusters, and magnetic 
torquers (also called torqrods); see Appendix C. 

5.2 The Basic Attitude Control Equation 

Generally speaking, the satellite attitude dynamics equations (see Section 
4.5) are three second-order nonlinear equations. Automatic control theory does not 
provide exact analytical solutions and design procedures for such dynamic plants, so 
linearization of these equations is necessary if the satellite control engineer wishes to 
use standard automatic control techniques. Linearization for small Euler angles was 
presented in Section 4.8.3. The attitude dynamics equations need not be based on the 
Euler angles only, as in Eqs. 4.8.14. Suppose that one of the body axes of the satel
lite is to be aligned with the sun's direction; in this case, the projection of the sun 
vector into two correctly defined perpendicular planes in the satellite body are the 
attitude errors to be controlled. The appropriate equations for this control task can 
also be linearized. 

In Eqs. 4.8.14 it is clearly shown that (in automatic control terminology) the 
"plant," with respect to a single satellite-body axis, consists of two integrators. To 
control such a system, "control torques" are necessary. These torques can be pro
duced actively with control hardware instruments, or by natural effects such as grav
ity gradient moments. The control torques to be activated are always a function of 
the attitude errors. Since we are dealing with second-order systems, some damping 
control must also be provided for improved stability. This means that the control 
torques will have to include a term that is dependent on the attitude rates to be mea
sured or estimated. If, in addition, the steady-state error is to be nulled, then an inte
gral of the attitude error can be added to the control torque equation. 

Control torque equations can be written in the following form: 

Tc; = KP;(er)+Kdr!!-(er)+Ki;J(er)dt, i = 1,2,3, 
dt 

(5.2.1) 

for each of the three body axes. These are the well-known PID controller equations 
(for control gains that are Kp proportional, Ki integral, and Kd derivative). The 
goal of controlling a satellite's attitude is met by optimally defining and mechanizing 
the physical errors for the different attitude control tasks. 

In practice, the attitude dynamics equations of the satellite are more complicated 
than those shown in Eqs. 4.8.14. There may exist side effects such as structural dy
namics of the body or of the appended solar panels, sloshing effects in the fuel tanks, 
and sensor noise. Although the basic form of Eq. 5.2.1 remains unaffected, the con
trol equations will need "filters" to handle these complicating effects. 
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5.3 Gravity Gradient Attitude Control 

5.3.1 Purely Passive Control 

We shall first derive the linearized angular equations of motion and the sta
bility conditions for purely passive gravity gradient (GG) attitude control. The dy
namics of motion for GG can be derived from Eqs. 4.8.14; since the system is pas
sively controlled, T~x, T~y, Ta., hwx' hwy, and hWl do not exist. The equations thus 
reduce to: 

•. 2 • 
Tdx = Ix</J+4wo(/y-ll)</J-wo(/x+ll-Iy)t/t, 

.. 2 • 
Tdl = Ilt/t+ wo(/y-Ix)t/t + WO(/l+ Ix - Iy)</J, (5.3.1) 

.. 2 
Tdy = Iy 8+ 3wo(/x- l l)8. 

In Eqs. 5.3.1, angular motion can be activated only by disturbing torques and initial 
angles of the Euler angles and their derivatives. For ease of notation, we define 

uy = (Ix - Il )! Iy, Ux = (/y - Il)1 lx, Ul = (/y - Ix)! Il . (5.3.2) 

Stability about the VB Body Axis 
By Laplace-transforming the third of Eqs. 5.3.1, the characteristic equation 

for the motion about the VB axis becomes 

S2 + 3w;(/x - Il)lly = O. (5.3.3) 

Equation 5.3.3 has one unstable root if Ix < I .. , so the condition for stability becomes 

(5.3.4) 

There is no damping factor in this second-order equation, so it follows that for any 
initial condition or nonzero disturbance Tdy , the satellite will oscillate in a stable mo
tion about the YB axis with an amplitude proportional to the initial condition 8(0) 
and the level of the disturbance Tdy about this axis. Note that the third of Eqs. 5.3.1 
is independent of the first two. 

Stability about the X Band ZB Body Axes 
Using the definitions in Eq. 5.3.2, the first two of Eqs. 5.3.1 become 

.. 2 . _ Tdx 
</J+4woux</J-wo(1-ux)t/t - Ix ' 

.. 2 • _ Tdl 
t/t+wou .. Vt+wo(1-u .. )</J - T· .. 

(5.3.5) 

It is important to keep in mind that the values of Ux and u .. are limited and that they 
are smaller than unity. To show this we make use of the definition of moments of 
inertia: 

U
x 
= Iy - I .. = f (x2 + Z2) dm - f (x

2 + y2) dm = f (Z2 - y2) dm < 1. (5.3.6a) 
Ix f(y2+ z 2)dm f(z2+ y 2)dm 

In the same way, it may be shown that 

(1 .. < 1 and (1y < 1. (5.3.6b) 
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After taking the Laplace transform of Eqs. 5.3.5, their determinant is found to be 

S4 + w;[30'x + O'xO'z+ 1]s2+4w!O'xO'z = o. (5.3.7) 

We shall next derive the stability conditions for Eq. 5.3.7. Its solution in terms 
of S2 is 

(5.3.8) 

If s) is a root of Eq. 5.3.7 then so is -s). For s) to be a root with no positive real part, 
it is necessary that s) be imaginary (S2 < 0) and also that the term under the radical be 
positive. This means that the following three conditions must be fulfilled: 

30'x+ O'xO'z + 1 > 4.JO'xO'z, 

O'xO'z> 0, (5.3.9) 
30'x+ O'xO'z + 1 > O. 

Remember also the first condition: Ix> Iz. From Eq. 5.3.6a it also follows that 

ly<lx+lz· (5.3.10) 

The inequalities of Eqs. 5.3.9 may be translated to the O'x-O'z plane as in Figure 
5.3.1, where the regions for stability (and instability) about the X

B 
and ZB axes are 

displayed. To find these regions, we first mUltiply both sides of the inequality of Eq. 
5.3.10 by (Ix - I z)· By simple algebraic manipulation, and remembering the condition 
Ix> Iz for stability of the YB (pitch) axis, we find that Ii - I; > Ixly - Iylz or 

Iz(ly - Iz) = Iylz - Iz
2 > Ixly - Ii = Ix(/y - Ix), 

from which it follows that 

O'x = (Iy - Iz)/lx > (Iy - Ix)! Iz = O'z 

or, finally, 

Figure 5.3.1 Stability regions for GG-stabilized satellites; adapted 
from Kaplan (1986) by permission of John Wiley & Sons. 

(5.3.11) 
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Next, we find the regions on the ux-u: plane where the satellite is in stable attitude 
conditions. The condition of Eq. 5.3.11 is the region below the line Ux = (I: in Fig
ure 5.3.1, wherein the four quadrants are labeled I to IV. The second inequality in 
Eqs. 5.3.9 excludes regions II and IV as stability regions, because in these regions 
U:Ux < o. We are left with half of the regions I and III, which lie below the line Ux = 
u:. However, in region III there is an additional forbidden area due to the first in
equality in Eqs. 5.3.9. Squaring both sides of this inequality yields 

(5.3.12) 

The plot of the solution to this inequality is located in region III. Since luxl < 1 and 
also 10':1 < 1, we shall look for the values of this function on the boundaries (Ix = -1 
and Uz = -1, and also on the Ux axis, for which Uz = O. The results are: 

(ux , uz) = (-1/3,0), 

(ux , uz) = (-0.0505, -1), 

(ux , uz) = (-1, -0.202). 

These three points of the inequality function are also shown in Figure 5.3.1. The 
region below this function pertains to the nonstable solution of the passive gravity 
gradient attitude control. The remaining subregion B in III is permitted from the 
point of view of stability, but is seldom used owing to practical structural difficulties. 
Subregion A in region I is a stable region normally used in practical designs of GG
stabilized spacecraft. 

Constraints on the Moments of Inertia in Subregion A It is important to 
translate the stable Ux-U: regions into constraints on the moments of inertia of the 
satellite. One of these constraints has already been stated: Ix> Iz. In region I, ux > 0 
and 0': > O. In subregion A, ux > u:. According to the definitions in Eq. 5.3.2 and the 
inequality in Eq. 5.3.4, it follows that 

Iy> Ix > I:. (5.3.13) 

Remember that the inequality of Eq. 5.3.10 must also hold in the GG-stable region A. 
Equation 5.3.10 and the inequalities of Eq. 5.3.13 are constraints on the moments 

of inertia for which gravity gradient attitude stability can exist. At first it appears 
that any arbitrary choice of moments of inertia satisfying these inequalities will re
sult in an attitude-stable system. Unfortunately, the inequality Iy < Ix + I: of Eq. 
5.3.10, which applies to the stability subregion A in Figure 5.3.1, is a difficult con
straint to accommodate from a structural standpoint (see Runavot 1980, William 
and Osborn 1987). The reason is as follows. Suppose that an angular motion with a 
small amplitude is permitted about the YB body axis, despite the existence of external 
disturbances. In this case, Ix-Iz must be as large as possible (see Eq. 5.3.17). Let Ix = 
100 kg_m2 and I: = 10 kg-m2• In this case, the constraint on Iy will be 110> Iy> 100, 
which may be difficult to realize structurally. 

Constraints on the Moments of Inertia in Subregion B In region III, UX < 0 
and u: < o. According to the definitions in Eq. 5.3.2 and the inequality of Eq. 5.3.4, 
it follows that 

(5.3.14) 
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In subregion B we also have the inequality Ix < Iy + I~. In the following section we 
analyze stability conditions for some singular cases . 

5.3.2 Time-Domain Behavior of a Purely Passive 
GG-Stabilized Satellite 

To find the attitude time response of a passive GG-stabilized satellite, we 
shall use the linearized Eqs. 5.3.1. With this relieving condition, the time response is 
easily found with the aid of Laplace transforms. 

Time Response about the Y B Pitch Axis 
The motion of the satellite about the pitch axis depends on the initial condi

tions of the pitch angle 8 and its derivative, and also on the external disturbances 
Tdyo In terms of the Laplace variable "s" we have 

8( _ Tdy s8(0)+0(0) 
s) - 2 2 + 2 2 • (5.3.15) Iys(s +3wo uy) s +3wouy 

The value of uy depends on Ix and I~. We shall examine several cases. 
Case A: For Ix < I~, uy will be negative and one of the roots of Eq. 5.3.15 will be 

unstable. The pitch angle will diverge exponentially with time. 
Case B: For Ix = I~, which is the neutral case of stability, uy will be zero and the 

time response becomes 
7: 12 

8(/) = 8(0)+0(0)/+ ~~ . (5.3.16) 
y 

Case C: For Ix > I~, uy will be positive, and an oscillatory motion is to be expected 
for an external disturbance Tdy: 

7: 
8(/) = d~ [l-cos(wo.J3c1;t)] = C[l-cos(wo.J3c1;t)], (5.3.17) l y 3wo uy 

where C= Tdy/[3w~(lx-/~)]. The time behavior is a biased harmonic motion, with 
a constant average level of amplitude C. The frequency of oscillation depends on the 
relative values of Ix, Iy, and I~, and also on the orbital rate WOo The amplitude of 
oscillation depends on the external disturbance Tdy , and is inversely proportional to 
the difference Ix - I~. This means that the only way to limit the amplitude of oscilla
tion is by choosing appropriate values for the satellite's moments of inertia. The co
efficient of the Sl term is zero in the determinant of Eq. 5.3.15, so the harmonic mo
tion will be undamped. In the design of a GG-stabilized satellite, it will be necessary 
to add some passive or active damping. 

Time Response in the XB-ZB Plane 
To solve Eqs. 5.3.5 in the time domain, we take the Laplace transforms with 

initial conditions. This leads to the following equations: 

(s2+4w~ux)cf>-swo(l-ux)1f = ~x +scf>o+4'>o-wo(l-ux)1fo, 
x 

(5.3.18) 
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where q,o, 4>0, 1/;0' 1/;0 are the initial conditions. The equations can be rewritten in ma
trix form as 

(5.3.19) 
22· 

[ 
s +4woux -S~o(1 ~Ux)] [4>(S)] = [TdxlIx+S4>o+4>o-Wo(l- ux)~o]. 
swo(1-u~) s +WoU~ 1/;(s) TdtlIt+wo(1-Ut)q,o+s1/;o+1/;o . 

The solutions of q,(s) and 1/;(s) are 

[
q,(S)] 1 [S2+ W;Ut swo(1-Ux)] 
1/;(s) = ,;1(s) -swo(1-ut ) s2+4w;ux 

[ 
Tdx/ Ix + sq,o + 4>0 - wo(1- Ux)1/;o] x . , 
Td~IIt +wo(l-u~)4>o+s1/;o+ 1/;0 

(5.3.20) 

where ,;1(s) = S4 + s2w;[3ux + I + UXut ] + 4w!uxut . 
Time-domain analysis in the XB-ZB plane is more complicated because the deter

minant in Eq. 5.3.20 is of the fourth order. Hence we shall first analyze some singu
lar and simpler cases for stability; later we will attempt to solve the general case in 
the time domain. 

Symmetrical Case: Ix = Iy In this special case Ut = 0, and the determinant 
in Eq. 5.3.20 becomes simpler: ,;1'(s) = s2[s2+ w;(3ux +I)]. The two integrators out
side the brackets indicate neutral stability. However, for stability of the remaining 
part of the determinant, the roots of the second-order term must be imaginary, which 
means that 3ux +1 = 3(Iy-I~)/lx+l > O. In terms of the moments of inertia (and 
since, by definition, Ix = Iy), the condition for stability of the second term in brack
ets becomes 

It I~ 4 -=-<-. 
Ix Iy 3 

(5.3.21) 

If the inputs are disturbances of constant magnitude, then 

q,(s) _ Tdx(S2 + w;uz) + Tdz(1- ux)wo 
- Ixs3[s2+(3ux+l)w~] Izs2[s2+(3ux+l)w~]' 

-Wo Tdx(1- O'z) Tdt(S2 + 4w;O'x) 
1/;(s) = Ixs2[s2+(30'x+l)w~] + I~s3[s2+(30'x+l)w~]· 

(5.3.22) 

Both q,(t) and 1/;(1) will have divergent and oscillatory terms in their time response. 
Hence, the symmetrical satellite with Ix = Iy cannot be passively stabilized. 

Symmetrical Axis in the Direction of Satellite Motion: Iy = If. In this sin
gular case, O'x = 0 and ,;1(s) = S2[s2+w;]. As in the previous case, for constant-value 
disturbances about the X B and ZB axes, the yaw and the roll Euler angles will have 
divergent and oscillatory motions in their time responses. 

General Case: Time Behavior of a GG Stable Spacecraft in Region lor III 
As stated in Section 5.3.1 and as shown in Figure 5.3.1, both Ux and af. are positive in 
region I. Because there are no damping factors in the determinant of Eq. 5.3.20 (the 
coefficients of Sl and s3 are nUll) and since the inequalities of Eq. 5.3.13 or Eq. 5.3.14 
must be satisfied for stable gravity gradient attitude control, the determinant will 
consist of two oscillatory roots: 
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A(s) = (s2+"'h(S2+",~) = s4+("'l+"'~)S2+"'l",~; (5.3.23) 

"'I and "'2 can be found by equating terms in the determinant of Eq. 5.3.20. 
For constant disturbances Tdx and Td~ and in accordance with Eq. 5.3.20, the time 

responses of t:/>(t) and 1/I(t) can be derived from the inverse Laplace transforms of 

t:/>(s) = Tdx(S2 + ",:u~) + Td~"'o(l- ux) and 
Ix s(S2 + "'lHs2 + "'~) 1~(s2 + "'lHs2 + "'~) 

-Tdx"'o(l-ux) Td~(S2+4"':ux) 
1/I(s) = Ix(s2 + "'l)(S2 + "'~) + l~s(S2 + "'l)(S2 + "'~) . 

(5.3.24) 

The time responses of both 1/I(t) and t:/>(t) will consist of two harmonic terms with 
natural frequencies "'I and "'2 superimposed on a bias of constant magnitude. The 
value of this bias will be calculated in the next section. 

Equations 5.3.24 hold for small disturbances and initial attitude conditions, be
cause they emerge from the linearized Eqs. 4.8.9. In practice, for the exact physical 
model, the time-domain simulation will use a set of nonlinear equations for which, 
in general, a closed-form solution does not exist. 

EXAMPLE 5.3.1 In this example, a small satellite is assumed with moments of 
inertia Ix = 6, Iy = 8, It, = 4 kg-m2

• The sic is moving in a circular orbit of altitude 
h = 800 km. In order to achieve small attitude errors despite external disturbances 
about the YB axis - which is the primary disturbance acting on the satellite owing to 
aerodynamic forces in its direction of motion (see Example 2.7.1) - a mechanical boom 
has been extended along the ZB axis, so that the moments of inertia about the X B 
and YB axes are increased to Ix= 80, Iy = 82 kg_m2

• The time response for an initial 
condition of 1/1(0) = 5° is shown in Figure 5.3.2. For this orbit, "'0 = 0.00104 rad/sec. 

Time [ sec] X 104 

Figure 5.3.2 Time behavior for the initial condition tHO) = 5°. 
\ 
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From Eqs. 5.3.2 we have Ux = (82-4)/80 = 0.975 and Ut = (82-80)/4 = 0.5. We 
can compute WI and W2 from Eq. 5.3.20 and Eq. 5.3.23 to find that: WI = 1.9784wo = 
0.002054 rad/sec, with a time period of TI = 3,059 sec; W2 = 0.7058wo = 0.0007327 
rad/sec with T2 = 8,575 sec. From Eq. 5.3.20 with Tdx = Tdt = 0, for an initial con
dition of 1/1(0) only we have 

I/>(s) = -w;ut(l- ux)1/I(O)/~(s), 
(5.3.25) 

1/I(s) = S[S2+w;(l +uxuz+ 3ux-ut)1l/I(0)/~(s). 

As we will see in the next section, achieving a low sensitivity to disturbances about 
the YB axis requires that we choose Ix» It. In Eqs. 5.3.24, we immediately perceive 
that the sensitivity of !/J to disturbances about the ZB axis is greater than its sensitivity 
to disturbances about the XB axis, by a factor of Ix/lz (about 10 to 20). (Because of 
the inequality of Eq. 5.3.10, this is not true for the sensitivity of 1/>.) 

Another important fact concerning GG stability about the ZB axis can be deduced 
from Eqs. 4.8.8 and the linearized Eqs. 4.8.9: the gravity gradient moments about 
the ZB axis are almost null for a nadir-pointing satellite (8,1/> "" 0). This means that 
it is very difficult to GG-stabilize the ZB axis against initial conditions in !/J(O) and 
~(O) without active damping. 

Returning to Eqs. 5.3.25 with the data of our present example, we find: 

I/>(s) = 0.00366wo[S2+(1.;784Wo)2 S2+(0.;058wo)2 ]!/J(O), 

S[S2+ 3.9125w;]!/J(0) s1/l(O) 
!/J(s) = [s2+(1.9784wo)2][S2+(0.7058wo)2] "'" s2+(0.7058wo)2. 

The time responses become 

I/>(t) = [0.001849 sin(1.978wot) - 0.005186 sin(0.7058wot)]!/J(0), 

!/J(t) "'" [cos(0.7058wot)]!/J(0). 
(5.3.26) 

The time-domain behavior of the system expressed by Eqs. 5.3.1 is shown in Figure 
5.3.2. They agree fairly well with Eqs. 5.3.26. 

A complete 6-00F simulation has been carried out to show the time responses of 
the Euler angles due to constant disturbances Tdx or Tdt . The results are shown in 
Figures 5.3.3 and 5.3.4, respectively. According to Eqs. 5.3.24, with Tdt = 0 we have 

TdAs2 + 0.5w;) Tdx 
I/>(s) = Ixs(s2 + 1.97842wt)(S2 + 0.70582wt) "'" Ix s(s2 + 1.97842wt) , 

-TdxWoO.5 
!/J(s) = Ix(s2 + 1.97842wt)(s2 + 0.70582wt) . 

Taking the inverse Laplace transform for Tdx = 10-5 N-m gives the following time 
responses: 

1/>(1) = 1.699[I-cos(1.9784wot)] deg, 

"'(1) = 0.4917 sin(1.9784wo t) -1.378 sin(0.7058wo t) deg. 

The time responses for the complete 6-00F simulation are shown in Figure 5.3.3. 
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Figure 5.3.3 Time behavior of q,(/), 8(/), and "'(I) for Tdx' 

For disturbances Td~ about the ZB axis (and with Tdx = 0), we find: 

Td~Wo (80-82+4) 
cp(s) = Ix<s2+1.97842wt)(s2+0.70S82wt) 4 

Td~(S2+4w;0.97S) Td~ 
1/I(s) = I~s(s2+1.97842wt)(s2+0.70S82"'t) = I~s(s2+0.70582wt)· 

121 

The time response of 1/1(1) is of importance in this case, because I~ is comparatively 
much smaller than the other moments of inertia. Hence, a much larger sensitivity 
to disturbances is to be expected. It is easily found that, for a disturbance of Td~ = 
10-5 N-m, the time response will be 

1/1(1) = 267[I-cos(0.70S8wot)] deg. 

We conclude that GG stabilization does not provide enough immunity against dis
turbances about the ZB axis. Moreover, a large change of the Euler yaw angle leads 
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Figure 5.3.4 Time behavior of <1>(1),8(1), and 1/1(1) for Tdz ' 

to a slow interchange of the Ix and Iy between them: Ix becomes larger than Iy, and 
instability ofthe GG system follows. This phenomenon is seen in Figure 5.3.4, which 
shows the time responses for this example. Fortunately, disturbance torques about 
the ZB axis are generally smaller than those about the other two body axes. 

5.3.3 Gravity Gradient Stabilization with Passive Damping 

As we have seen in previous sections, the gravity gradient stabilizes the sic 
in the sense that there remains an amplitude-bounded harmonic angular motion 
about an average bias value. In order to obtain a useful system, the harmonic oscil
latory angular motion must be damped and reduced to a minimum. The existence of 
external disturbances initiates the oscillatory motion and, with passive damping, the 
time to appreciably decrease the oscillatory motion might be very long. However, 
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since passive damping equipment is comparatively inexpensive, it is still occasionally 
used (Clopp and Osborn 1987, Hughes 1988). 

Passive Dampers 
Several kinds of passive dampers are mentioned in the literature (see Fleeter 

and Warner 1989, Hughes 1988). A short description of each kind follows. 
Point-mass damper: The principle of this very simple damper is to use a mass

springldashpot damper mounted inside the satellite. The energy dissipated in the 
damper helps to damp the oscillatory motion of the satellite. For a complete analyti
cal treatment of this damping system, see Kaplan (1976) and Hughes (1988). 

Dampers mounted on external spring's boom: The extended boom that increases 
the moments of inertia in order to achieve desired GG stabilization can be mounted 
on a large external spring. On the tip of the spring, which has a helical form, a fluid 
damper can be mounted to increase the internal energy dissipation inside the satellite 
so that a damping effect is produced. The analytical treatment of this kind of damper 
is quite complicated because of the nonlumped character of the spring. 

Magnetic hysteresis rod damper: If a rod of magnetically permeable material is 
located inside the satellite, then the angular motion of the satellite with respect to the 
earth's magnetic field will induce magnetic hysteresis losses. Magnetic hysteresis rods 
have been used on many satellites. Unfortunately, the strength of the earth's mag
netic field is proportional to II R3, so this mode of damping is effective only for rather 
low orbits (see Fleeter and Warner 1989). 

Damping by boom articulation: Many GG designs are based on a suitable mech
anism at the hinges that join the augmenting booms to the satellite's body (Fleeter 
and Warner 1989). This mechanism usually has two degrees of freedom and so pro
vides damping about two axes; this enables damping of both the pitch and the roll 
angles. Damping of the yaw axis is much more difficult to achieve. 

Wheel damper: A wheel, immersed in a container holding a viscous fluid, can be 
effective in damping the angular motion of a satellite. If we align the axis of rota
tion of the free wheel with (say) the YB axis then the pitch oscillatory motion can be 
damped. Likewise, for a wheel whose axis of rotation is aligned with the X B axis, the 
roll oscillatory motion can be damped. 

Design of a GO-Stabilized Satellite Based on a Wheel Damper 
In order to understand the effectiveness of such passive dampers, a com

plete analytical treatment of the wheel damper follows . 

Dynamic Equations o/the Damper First, we shall write the dynamic equa
tions for a satellite with a GG control system that uses a passive wheel for damping 
purposes (see Bryson 1983). The third of Eqs. 5.3.1 can be augmented with the ex
pression for the rotational dynamics of the wheel damper (Eq. 4.8.14b) as follows: 

.• 2 • 
8Iy+3wo(/x-lz)8+ww/w = Tdy, 

Iwww=D(8-ww) =DOw , 
(5.3.27) 

where D is the damping coefficient of the fluid in which the wheel is immersed, Iw is 
the moment of inertia of the wheel, and Ow is the angular velocity of the wheel relative 
to the body of the satellite; The system of equations can be written in matrix form as 
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[ S2+3W~(1y S(/wIIy)][ 9(s) ] = [Tdy IIy+S9(0)+8(0)]. 
-Ds sIw+D ww(s) -DO(O) 

(5.3.28) 

The characteristic equation is 

.1(s) = Iw S3 + D( ~; + 1 )S2 + 3Iww~(1ys + 3Dw~(1y, (5.3.29) 

and the solution for a step disturbance Tdy is 

[ 
9(s) ] = _1_[SIw+ D -S(/wIIy)][Tdyl(/yS)+S9(0)+8(0)]. (5.3.30) 

ww(s) .1(s) Ds s2+3w~(1y -DO(O) 

The solution for the pitch angle becomes 

o _ (sIw+D)[Tdyl(Iys)+s9(0)+8(0)]+s(/wIIy)DO(0) 
00- .100 ' (5.3.31) 

and the steady-state error for the constant disturbance Tdy is 

Oss = lim sTdy(sIw+D) = 2 Tdy . 
s-+O Iys.1(s) 3wo(/x- I z) 

(5.3.32) 

Equation 5.3.32 shows that the steady-state error in the pitch angle is inversely 
proportional to the difference Ix - Iz• For known maximum external disturbances, 
given a specified acceptable error in Oss and an orbital rate wo' the needed difference 
in moments of inertia is easily calculated. Satellites are generally built with homo
geneously distributed masses, which means that the three principal moments of iner
tia are of the same order of magnitude and differ by a factor of only two or three. In 
order to achieve a large difference Ix - Iz in a GG-stabilized sic, Ix must be much 
larger than I z• Consequently, a moment of inertia-augmenting boom must be added 
to the satellite. 

EXAMPLE 5.3.2 A basic satellite has the following moments of inertia: Ix = 6, 
Iy = 8, Iz = 4 kg_m2• For a circular 800-km-altitude orbit, Wo = 0.001038 rad/sec. 
According to Eq. 5.3.32, for an expected constant disturbance of 10-5 N-m the error 
in pitch will be Oss = 88.67°, which of course is unacceptable. The only way to de
crease the steady-state error in pitch is to increase Ix. If a boom augmenting Ix (and 
also, inevitably, Iy) by .11 = 74 kg_m2 is appended to the satellite, aligned with the 
ZB axis, then Ix will increase to Ix = 80 kg-m2 (=201.). The steady-state error will 
decrease to Oss = 2.33°, which is an acceptable error. 

In Example 5.3.2, without the damping wheel discussed previously, an initial har
monic motion (due to initial conditions and transients) will oscillate constantly about 
the steady-state pitch error. 

Design of the Damper The characteristic equation of the system, Eq. 
5.3.29, can be arranged as follows using the root-locus design method (see Bry
son 1983): 
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Figure 5.3.6 Damping of the oscillatory angular motion 
about the Y B axis. 

5.3.4 Gravity Gradient Stabilization with Active Damping 

We have seen in the last section that stabilization about the ZB axis is quite 
difficult owing to the absence of adequate gravity gradient moments about this axis 
(see also Figure 5.3.4). Some sophisticated boom structures have been proposed to 
magnify the GG moments about the ZB axis, but they did not fulfill expectations. A 
more logical way to obtain a better stabilization of the ZB axis against external dis
turbances is to use magnetic torqrods, which - by interacting with the earth's mag
netic field - can produce the needed moments to counteract the disturbances. If B 
is the earth's magnetic field vector and if M is the magnetic dipole value produced by 
energizing the current-carrying coils inside the satellite, then the mechanical moment 
exerted on the body will be 

T=MXB=[~X 1ty !z]. 
Bx By Bz 

(5.3.34) 

Suppose we wish to achieve a control torque vector T". The vector product of 
Eq. 5.3.34 can be put in the form 

-BY][MX] ; Z:. (5.3.35) 

The value of Tc is computed according to Eq. 5.2.1, assuming that the attitude errors 
can be measured. The problem we are left with is finding the magnetic control dipole 
to be produced in the satellite with the three magnetic torqrods Mx, My, M z. We need 
to find the inverse of Eq. 5.3.35, but the inverse does not exist because the matrix is 
singular. This means that it is impossible to achieve control of the three body axes by 
means of the created magnetic dipole vector in the satellite. (See also Section 7.4.) 
The physical reason is that Eq. 5.3.34 is a vector product, so no moment can be 
achieved about the direction of B. Control about two body axes should, however, 
be possible. In our case, the YB axis will be controlled by the gravity gradient mo
ments about the YB axis, and the satellite can be stabilized about the XB and ZB axes 
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Figure 5.3.5 Root-locus representation 
of the damper and satellite dynamics. 
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(5.3.33) 

where sp = jwo.J3U; and Sz = sp/.Jl + Iwlly- It follows immediately that sp> sz. In 
Eq. 5.3.33, the root-locus gain is K = D(1/ Iw + 1/ Iy). The complete feedback system 
consists of one integrator, two imaginary zeros, and two imaginary poles, all on the 
imaginary axis. The root-locus plot is shown in Figure 5.3.5. 

Even for a very large moment of inertia of the wheel (compared to the moments 
of inertia of the satellite body only) of Iw::::; 1 kg-m2, and with Iy = 82 kg-m2 for the 
example at hand, the imaginary zeros and poles are located quite close to each other. 
This means (see Figure 5.3.5) that the maximum achievable damping factor ~ will be 
very low, with no dependence on D. The value of D must be chosen such that, for 
the given moments of inertia Iw and Iy, the maximum damping coefficient may be 
obtained. A fast "cut-and-try" procedure using the root-locus method allows finding 
the damping factor D that will maximize the damping coefficient of the GG attitude 
control system. The intermediate results are shown in Table 5.3.1, with the selected 
Iy = 82 kg-m2, for which wp = 1.91 X 10-3 rad/sec. 

Table 5.3.1 shows that, witli a moment of inertia of the wheel Iw = 1 kg_m2, the 
maximum obtained damping coefficient is ~::::; 0.0031 with D = 0.002. This is a very 
low damping factor. Let us designate as TO.I the time needed to damp the initial oscil
lation to 1/10 of its value; we can write e-EwpTo.1 = 0.1 and ~wpTo.I = ~wo.J3U;To.1 = 
2.3. In the case of Example 5.3.2, uy = (80-4)/82 = 0.9268. Since Torb = 27r/wo' we 
have ~27r1.677(To.IITorb) = 2.3, so that TO.IITorb = 70.4. In other words, about 70 
orbit periods are necessary to damp initial oscillatory motion to 1/10 of its value. A 
6-00F .simulation of this design example is shown in Figure 5.3.6. 

Table 5.3.1 Design stages of the passive damper 

1()J D 2.0 1.0 0.75 1.0 2.0 3.0 

I,,. [kg- m~ 0.4 0.4 0.4 1.0 1.0 1.0 

1()J K 5.02 2.51 1.88 1.01 2.02 3.04 

1()J l; 0.75 1.1 1.2 2.6 3.1 2.6 
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with the aid of two magnetic torqrods aligned along the XB and ZB body axes. In 
this terminology, Tcx = -ByMl, and Tcl. = ByMx. Finally, 

Ml, = -TcxlBy and Mx = TCl,IBy- (5.3.36) 

Using Eqs. 5.3.36, we can actively control the XB and ZB axes while the YB axis is 
purely GG-stabilized. Unfortunately, calculation of 1'cx and Tcl. necessitates attitude 
measurements or estimation of the roll (q,) and the yaw (t/I) Euler angles. For this 
simple control law, the earth's magnetic field must be known or measured with the 
aid of a magnetometer. As discussed in Martel, Pal, and Psiaki (1988), it is possible 
to estimate the three Euler angles with the aid of a three-axis magnetometer, and this 
equipment is quite simple and comparatively cheap. 

EXAMPLE 5.3.3 Using the same satellite as described in Example 5.3.1, a gravity
gradient stabilization of the satellite is ameliorated by using two magnetic torqrods. 
Figure 5.3.7 shows the attitude errors. The sic is well stabilized about the ZB axis, 
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Figure 5.3.7 Euler angle responses to a disturbance about the ZB axis. 
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Figure 5.3.8 Magnetic moments about the three body axes 
induced by Tdz' 

despite the high disturbance about this axis of Tdt = 10-5 N-m. Figure 5.3.8 shows 
the moments produced with the magnetic torqrods. However, a part of the Tdt has 
been transferred to the YB axis (see Eq. 5.3.35). The magnetically induced moment 
is Tmby = -BtMx + BxMt . In steady state, Mx = TdtlBy and M t = TdxlBr Hence, 
Tmby = -BzTdtIBy+BxTdxIBr This is an additional disturbance that must be taken 
into consideration when designing the YB axis damper and calculating the needed 
boom moment of inertia. In spite of the disturbance about the ZB axis, the yaw and 
roll Euler angles are now well controlled. However, the YB axis, which is only pas
sively damped, responds to this produced moment as in Figure 5.3.7. The additional 
moment Tmby is shown in Figure 5.3.8. Because the earth's magnetic field compo
nents are harmonic with the orbital frequency (see Section 7.4.2), the induced dis
turbance about the YB axis is not constant and so cannot be damped very efficiently 
with a passive damper: the disturbance periodically induces oscillations about the 
YB axis, and there is not enough time to damp them between orbital periods. Martel 
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et al. (1988) have suggested a novel control technique to alleviate this problem; this 
technique is described in the next section. 

S.3.S GG-Stabilized Satellite with Three-Axis Magnetic 
Active Damping 

There is a possibility, despite the theoretical difficulties treated in the pre
vious section, of damping all three body axes by active control with three magnetic 
torqrods aligned along the principal body axes. In this scenario, the principle of per
pendicularity is used (see also Section 7.5.2). 

As already mentioned, Eq. 5.3.35 has no inverse, and Mx , My, M: cannot be found 
exactly. Let us return to the basic magnetic moment equation (Eq. 5.3.34), and mul
tiply (using vector product) both sides by B. Using the scalar identity for the vector 
product, we have 

BxTe = Bx(MxB) = (B·B)M-(B.M)B. (5.3.37) 

Suppose that the magnetic dipole vector M, applied inside the satellite, it always per
pendicular to the earth's magnetic vector B (this is not actually true). If this condition 
is satisfied, then the scalar dot product B.M equals zero and Eq. 5.3.37 reduces to 

M = (B x Te)/ B2, (5.3.38) 

where B is the norm of B. The basic stability is achieved by the gravity gradient attri
butes of the extended boom, with damping provided by the active damping scheme 
described here. Since this control law is not exact, any potential design must be care
fully checked by numerous simulations under different disturbance conditions. More
over, since the earth's magnetic field characteristics for variously inclined orbits might 
be quite different, the design of the active magnetic damper should reflect these dif
ferences. Accuracies of the order of 2° are achievable with this technique. 

EXAMPLE 5.3.4 In this example, the sl;ltellite has the following moments of iner
tia: Ix = SO, Iy = 52, I: = 3 kg-m2• The satellite must be capable of withstanding ex
ternal disturbances ofthe order of Tdx = Td: = 10-6 N-m and Tdy = 10-5 N-m. A sim
ple PD (proportional-derivative) controller is used for all axes to achieve for each a 
basically second-order closed loop with a natural frequency Wn = 0.05 rad/sec and a 
damping factor ~ = 0.9. The time responses of the attitude errors are shown in Fig
ure 5.3.9, and those of the activated magnetic dipole vector M inside the satellite in 
Figure 5.3.10. 

5.4 Summary 

In this chapter we explored gravity gradient stabilization. The attitude accu
racy that can be achieved is quite poor with purely passive damping, on the order 
of 10°-300

, but can be improved to the order of 2°_10° by adding active damping. 
Gravity gradient stabilization is feasible for relatively low-orbit satellites. 
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CHAPTER 6 

Single- and Dual-Spin Stabilization 

6.1 Introduction 

As discussed in Chapter 4, a body spinning about its major or minor axi.s 
will keep the direction of its spinning axis fixed with respect to the inertial space. This 
direction, according to Euler's moment equations of angular motion, will change 
only if external moments are applied about its center of mass and perpendicularly to 
the spin axis. 

Almost all spacecraft employ the spin effect during part or all of their lifetime in 
space. Many satellites are spin-stabilized during the orbital maneuvering stage (e.g., 
in the transfer from the initial orbit to the final mission orbit) so that parasitic torque 
disturbances, produced by the high thrust of the apogee boost motor, do not appre
ciably change the nominal direction of the additional vector velocity llV imparted to 
the satellite. The dynamic attributes of spinning bodies are used also to stabilize sat
ellites' attitude within the final mission orbit. Spin stabilization was used in the first 
communications satellites in the early sixties, and in a large number of modem satel
lites (see e.g. Fagg and MacLauchlan 1981, Fox 1986). 

Single-spin attitude stabilization is a very simple concept from the perspective of 
attitude control, but it has some crucial drawbacks with respect to communication 
efficiency. PUal-spin three-axis attitude stabilization, w~ich is an extension of the 
single-spin stabilization principle, alleviates the communication deficiency. We shall 
find conditions under which passive nutation damping is feasible for dual-spin sta
bilized spacecraft. 

6.2 Attitude Spin Stabilization during the llV Stage 

As already mentioned, a common way to stabilize the attitude of a sic dur
ing orbital maneuvering (the llV stage) is to spin-stabilize the axis along which the 
propulsion thruster is aligned. Unfortunately, the direction of the applied thrust 
does not pass exactly through the center of mass (cm) of the satellite, and a parasitic 
torque results that tends to change the nominal attitude of the spin axis. Since the 
thruster is fixed to the satellite's body, change of the attitude of the satellite will in
duce an error in the application of llV, with the result that the required new orbit 
parameters will not be achieved (see Section 3.4.3). Moreover, the existence of a dis
turbing torque on the spinning body will induce a nutational motion about the spin 
axis, so that the added vector llV will have a time average that is different from the 
required nominal change in the velocity vector. 

Suppose that the thrust F in Figure 6.2.1 is not aligned exactly with the nominal 
ZB axis, so that an alignment error {3 remains between the thrust vector and the ZB 
axis during the firing. Consequently, a transverse thrust component will induce a 
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Figure 6.2.1 tlV direction dispersion due to torque disturbances. 

parasitic moment about the cm of the satellite, depending also on the distance dcm 
between the cm and the intersection of the thrust vector with the ZB axis. The level 
of the disturbing torque will be 

Td = Fdcm sin(I3). (6.2.1) 

Because of this torque, a nutational motion will be excited, and an average com
ponent fAV will be produced in a direction normal to the motion of the satellite. This 
fAV component will be lost for the linear increase in the velocity of the satellite in 
the desired nominal direction. The loss in velocity (with a consequent loss of fuel) 
will amount to: 

AV\oss = AV[1-cos(8ay»)· (6.2.2) 

The average nutation angle 8ay depends on the disturbing torque Td (Eq. 6.2.1) and 
also on the initial angular momentum l1.w1. = h1. imparted to the satellite. To compute 
8ay we use Euler's moment equations of motion, Eqs. 4.5.1'. To linearize these equa
tions, some practical assumptions are in order. With no moments about the ZB axis, 
W1. may be assumed to be constant during the entire AV period. To simplify the analy
sis, suppose also that the disturbing torque Td acts only about the XB axis and that 
the satellite is axisymmetric about the ZB axis, Ix = Iy- With these assumptions, the 
third of Eqs. 4.5.1' leads to W1. = n = W1.(O) = const, and the solution of the first two 
of Eqs. 4.5.1' results in 

Ixwx(t) = hx(t) = ~d sin(M), 

Td 
Iywy(t) = Ixwx(t) = hy(t) = T[l-cos(M», 

where A = w1.(O) (/1. - Ix)lIx' 

(6.2.3) 

(6.2.4) 

The amplitude of the momentum component in the lateral XB-YB plane of the 
satellite is 

h - I 2 2 V2Td .1 V2Td , [r.--__,.-
xy(t)=-vhx+hy =-A--v I -cos(M) = w1.(/1.

lI
x-

1
) vl-cos(M). (6.2.5) 

To find the nutation angle 8 we use Eq. 4.6.1, which becomes 
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(6.2.6) 

We can also find the average value of the nutation angle. For small values of (J -

which is a logical assumption, since we are interested in keeping a small nutation 
error in the flV stage - the nutation angle can be approximated as 

(J 2Td I' (At)1 =::0 2 SlO-. 
w~Iz(l~/lx-1) 2 

(6.2.7) 

From Eq. 6.2.5, (J is always positive because of the square-root radical; see also the 
nutation angle in Figures 6.2.2 and 6.2.3. After averaging Isin(At/2)1 over one cycle, 
we obtain the final result for the averaged value of the nutation angle: 

(6.2.8) 

From Eqs. 6.2.6-6.2.8 it is apparent that (J is inversely proportional to w;, an impor
tant result that is demonstrated in the following example. 

EXAMPLE 6.2.1 A satellite has the following moments of inertia: Ix = Iy = 100 
kg-m2; I~ = 40 kg_m2• Suppose that a disturbance torque of 10 N-m acts on the satel
lite about the X B body axis. Using Eq. 6.2.8, we find that if Wz = wz(O) = 10 rad/sec 
then (Jav = 0.304 0 , which is in good agreement with the time-simulation results shown 
in Figure 6.2.2. 

If we decrease the spin velocity to Wz = wz(O) = 4 rad/sec, Eq. 6.2.8 predicts an 
average nutation angle of (Jav = 1.9°, also in good agreement with the simulation re
sults in Figure 6.2.3. 
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EXAMPLE 6.2.2 The linear velocity of a spin-stabilized satellite has been aug
mented with an ABM capable of T= 400 N. The thrust may deviate by fJ = 0.8° 
froin the nominal ZB axis, thus causing a transverse torque disturbance of Td = 
400dcm sin(0.8°). If dcm = 1 m, then Xd = 5.58 N-m. The moments of inertia of the 
satellite are Ix = Iy = 500 kg_m2 and Iz = 200 kg-m2• The loss in the increase of veloc
ity due to the torque disturbances must be less than 0.5070 of the nominal .1V. What 
is the spin angular velocity Wz to be imparted to the satellite in order to prevent the 
loss from being greater than 0.50/01 . 

Solution From Eq. 6.2.2, limiting losses to less than 0.5% of .1V requires 
maintaining a 8av < 5.7° during the .1V stage. Using Eq. 6.2.8, we find that Wz >. 
0.766 rad/sec is necessary. 

The angular velocity Wz cannot be increased arbitrarily, because providing the sat
ellite with a large angular momentum is accompanied by a larger quantity of fuel 
expenditure. Moreover, if the satellite is to be three-axis attitude-stabilized in its mis
sion phase, the same angular momentum must be removed at the end of the .1V 
phase, with an additional quantity of fuel to be provided for that task. As we shall 
see in the following section, removing the initial angular momentum could consume 
a lot of fuel. 

6.3 Active Nutation Control 

Owing to geometrical constraints, a satellite in the transfer orbit stage spins 
about its minor axis (the axis with a minimum moment of inertia). As discussed in 
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Relay 

Satellite 
angular 
dynamics 

a. 

0) 

Filter gain 
db 

Figure 6.3.1 ANC system: (a) basic control system; 
(b) bandpass nutation filter. 

b. 

Section 4.5.2, a body spinning about its maximum or minimum moment of inertia is 
dynamically stable in the absence of internal energy dissipation. However, if such 
dissipation does exist then a body spinning about its minor axis becomes dynami
cally unstable (Section 4.6.2). Active nutation control (ANC) is necessary in order 
to ensure attitude stability of the spinning satellite during the velocity vector change 
phase (AV). 

Assuming that the body is spinning about its ZB axis, a very simple and effective 
control logic for accomplishing ANC is to measure the components of the nutational 
angular motion and then to apply torques about the transverse axis X B (or YB, or 
both) proportional to the signs of Wx or Wy as shown in Figure 6.3.l.a. A filter is gen
erally used to extract, from the measured angular rate components Wx and/or wy ' 

that part belonging to the nutation frequency: WnUlx and/or wnulY' The basic charac
teristics of such a filter are shown in Figure 6.3.l.b. 

The ANC bandpass filter must be designed so that, despite the changes inherent in 
the nutation frequency Wnut' the filter remains effective during the entire AV stage. 
The' nutation frequency may change appreciably during the apogee boost stage, be
cause fuel consumption causes the moments of inertia of the satellite to decrease and 
hence the nutation frequency changes also. At least one differentiation is imperative 
in this filter in order to prevent constant biases, like those of the rate gyros measur
ing the angular velocity of the satellite, from causing augmentation of the nutation 
angle. The control law becomes: 

Tcx = -Ff:l. sign(wnulx), 

Tcy = -Ff:l. sign(wnuty)' 
(6.3.1) 

In this equation, F is the level of the reaction thrust and f:l. is the torque arm of the 
thruster. 

Moreover, existing time delays and nonlinearities (such as dead zones) of the en
gineering hardware complicate the dynamics of the ANC system, and must be care
fully taken into account in the final design stage. See Grasshoff (1968), Devey, Field, 
and Flook (1977), and Webster (1985). 

EXAMPLE 6.3.1 A satellite has the following moments of inertia: Ix = 100, ly = 140, 
I, = 40 kg-m2• The sic spins about its minor axis with a frequency w, = 10 rad/sec. 
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Figure 6.3.2 Nutational destabilization due to energy dissipation. 

Because of energy dissipation (or for whatever physical reason, as explained in Sec
tion 4.6.2), the system is nutationally unstable. Equations 4.5.1' have been adapted 
to exhibit energy dissipation dynamics due to fuel sloshing (see Grumer et ale 1992). 
The simulated unstable nutational motion is shown in Figure 6.3.2. An ANC system 
must be designed in order to prevent nutational destabilization of the spinning satel
lite. Rate gyros are used to measure the angular rates of the satellite. The thrust level 
is F = 12 N, with a torque arm of A = 0.5 m. 

Solution First, the nutation frequency must be computed. According to 
Eq. 4.5.13, "'nut = 6.445 rad/sec, so a bandpass filter around this frequency will be 
incorporated into the ANC system. Using the control law of Eq. 6.3.1 together with 
the bandpass filter, a simplified ANC system can prevent nutational destabilization. 
In order to have an effective filter despite uncertainties in "'nut, we select "'I = 3 rad/ 
sec and "'2 = 10 rad/sec, as defined in Figure 6.3.l.b. Hysteresis is included in the 
relay to prevent unnecessary activation of the reaction pulses when the nutation level 
reaches an acceptable amplitude level. 

In this example only the 7;:y control was implemented, in order to emphasize the 
fact that nutational angular motion can be controlled by activating control torques 
about only one of the lateral axes of nutation. The time histories of the actively con
trolled spin motion are shown in Figure 6.3.3 (overleaf). The ANC also damps the 
initial nutational motion of "'x(O) and "'y(O). 

6.4 Estimation of Fuel Consumed during Active Nutation Control 

One of the important causes of energy dissipation during the apogee boost
ing stage with liquid fuel is the sloshing ofthe liquid. The energy dissipation level de
pends on the angular spin velocity of the satellite and on many other geometrical 
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Figure 6.3.3 Effects of ANC system for preventing nutational 
destabilization and decreasing the initial nutational motion. 

parameters of the spinning system; see Garg, Farimoto, and Vanyo (1986). In the 
following analysis, we assume that the energy dissipation rate t has already been 
estimated. 

We use the energy sink equation presented in Section 4.6.2: 

(J = 2ITIst 2' (6.4.1) 
sin(2D)(/s - Ir)h 

where Is and IT are the spin and the transverse (lx,ly) moments of inertia, respec
tively, assuming a symmetrical body in which Ix = Iy = Ir and Is = 11.. The term () de
notes the nutation angie, and h is the amplitude of the angular momentum of the 
spinning satellite: 

h 2 = wjll+ (w;+w;)/r. = h§+tan2«()hj = hj[l +tan2«()). (6.4.2) 

However, sin(D) = hTlh, so it follows that (Jcos«() = hTlh. With the assumption that 
h is constant, we have 

(J = hT 
h cos«() 

(6.4.3) 

Inserting this equality into Eq. 6.4.1 leads to 

hT _ 2ITIst 
h cos«() - sin(2()(/s - Ir)h 2 • 

(6.4.4) 

In order to counteract the produced angular moment hn we need to apply a thrust 
that will produce a torque Ffl., where F is the force and fl. is the torque arm. Accord
ing to Appendix C and Eq. C.2.3, 

(6.4.5) 
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Equation 6.4.5 expresses the transverse torque needed to control the nutation angle. 
Inserting Eq. 6.4.5 into Eq. 6.4.4, for small nutation angles 8 we obtain 

. ITIst m =:, (6.4.6) 
(Is - Ir) sin(8)gIsphA 

where h2 = hj[1 +tan2(B)] with hs = Isws. With the last equality, Eq. 6.4.6 becomes 

.:. = ______ I..;...T...;;Is'-t_~;:=======- = It. m (6.4.7) 
. (Is-Ir)sin(B)gIspA(lsws)vl+tan2(8) [Is/Ir-I]gIspA tan(8)ws 

Equation 6.4.7 is the final equation sought. For a given sic with known moments 
of inertia, spin velocity, torque arm, and (most important) a roughly estimated in
ternal energy dissipation rate, this equation enables us to compute the amount of 
fuel necessary to keep the nutation angle below some predetermined maximum level. 
Equation 6.4.7 clearly shows that the rate of fuel consumption is linearly propor
tional to the rate of energy dissipation, which in tum is a complex function of the 
nutation angle 8 and the spinning frequency Ws (see Garg et al. 1986). 

EXAMPLE 6.4.1 A satellite has the following physical characteristics: 

Ir = 50 kg_m2, Is = 100 kg-m2
, Isp = 200 sec, 

A = 0.5 m. dT/dt = 10-2 W, Ws = 2 rad/sec. 

What is the rate of fuel consumption required to ensure that the ANC will maintain 
a nutation angle smaller than 1°? 

Solution Inserting the listed data into Eq. 6.4.7, we find that 

m = 1.0194 x 10-3 10-:
0 

= 2.91 x 10-4 kg/sec. 
2 tan( ) 

In these conditions, one hour of ANC control will cost 1.046 kg of fuel, which is not 
negligible. 

In practice, evaluation of dm/dt with Eq. 6.4.7 is more complicated, because 
dT/dt is a function of ws, 8, and other geometric parameters of the fuel tank. The 
time constant T of nutational stability is expressed as lIT = 8/8. For small nutation 
angles, Eq. 6.4.1 leads to the following approximate value: 

(6.4.8) 

6.S Despinning and Denutation of a Satellite 

A significant number of today's satellites are three-axis attitude-stabilized in 
their final mission orbit. The primary benefit in spinning the satellite is to achieve an 
efficient orbit transfer in the presence of parasitic external disturbances during the 
velocity augmentation phase. However, once in the final mission orbit, the satellite 
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Figure 6.S.1 Simple reaction control system. 

must be "despun" in order to become three-axis-stabilized. In fact, a spinning satel
lite always has some nutational angular motion resulting from initial attitude condi
tions or external disturbances produced by misalignment of the thruster's axis. In 
this section we develop a control law for despinning and denutating a satellite. Al
though not optimal from the perspective of fuel consumption, this technique mini
mizes the time of denutation. 

Figure 6.5.1 depicts a simple but complete reaction control system that can pro
vide both positive and negative moments about the three body axes. Thrusters 2 and 
5 can provide negative and positive torques respectively about the XB axis. Thrust
ers 1 and 6 provide positive torque about the YB axis, while 3 and 4 provide nega
tive torques about the same axis. Thrusters 1 and 4 provide a positive torque about 
the ZB axis, while 3 and 6 provide the necessary negative torque. A combination of 
thrusters I, 3, 4, and 6 can provide the necessary simultaneous torques about both 
YB and ZB axes. 

We shall again make use of Euler's equations. For a satellite that is symmetric 
about the ZB axis, the third of Eqs. 4.5.1' can be separated from the first two. In this 
way, the denutation and the despinning processes can be analyzed individually. 

6.5.1 Despinning 

The third of Eqs. 4.5.1' can be written as 

h~ = -2FAz, (6.5.1) 

where F is the thrust level and Az is the torque arm of the spin axis. The solution is 
simply 

(6.5.2) 

The thrusters are stopped when the angular momentum decreases below some pre
determined level- the "dead zone" (DZ in Figure 6.5.2). It is assumed that the angu
lar rates of the satellite are measured or estimated with some adequate sensors. The 
spin velocity about the ZB axis is maintained within the desired (or practically achiev
able) dead zone by activating short positive or negative pulses from the thrusters, 
depending on the direction of the residual angular momentum about the spin axis. 

The time required to remove the initial angular spin momentum is simply 

(6.5.3) 
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Figure 6.5.2 Time domain history for despinning of a satellite. 

where N; denotes the number of operational thrusters about the ZB axis. In Figure 
6.5.1, N; = 2. The time for despinning the body is also inversely proportional to F 
and Az. Figure 6.5.2 displays the time behavior according to Eq. 6.5.2. 

To compute the fuel mass expended during the despinning phase, remember that 
F= mgIsp = (dm/dt)gIsp' If N; thrusters are used in the despinning process, then 
dm = (N;Fdt)/gIspo For small changes of the overall mass of the satellite system, in
cluding the fuel, we find that 

NjFtOESP NjFhz(O) hz(O) 
mFUEl = gl = 110.1 J:'A I = I A sp JY;r~zg sp g sp~z 

(6.5.4) 

(cf. Eq. 3.3.8). 

EXAMPLE 6.5.1 Assume a satellite with 1'1. = 100 kg-m2
, "1'1.(0) = 10 rad/sec, Isp = 

200 sec, and Az = 1 m. Let F = 5 Nand N; = 2. In this case, tOESP = (100 x 10)/ 
(2 x 5 xl) = 100 sec. The consumed mass of fuel becomes 

mFUEl = (100 x 10)/(9.81 x 200 x 1) = 0.51 kg. 

6.5.2 Denutation 

The denutation control will be based on the bang-bang principle, which in 
this case will not be optimal for conserving fuel. To simplify the analysis, we sup
pose that the satellite is axisymmetrical, Ix = Iy; according to Section 4.5.1, there is a 
phase delay of 90° between the XB and YB axes' nutation rates. See also Figure 6.5.3. 

In this simple control system, the angular rates are first measured; then torque 
commands that are proportional to the signs of "1x and "1y are applied about the X B 

and Y B axes, respectively: 

1'cx = -sign("1x)FAx, 

Tcy = -sign("1y)FAy. 
(6.5.5) 

As in our treatment of the despinning phase, we shall compute the time to cancel the 
initial nutation of the spinning system as well as the mass of fuel consumed. 

To compute the denutation time, let us first define the four regions designated in 
Figure 6.5.3. In region I, both "1x and "1y are positive; in region II, "1x is positive and 
"1y is negative; and so on. Consequently, in region I we need negative torques about 
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Figure 6.5.3 Denutation process and control command. 

IT 

Figure 6.5.4 Torque control in the 
lateral XB-YB plane of the satellite. 

both the XB and the YB axes. Since these torques are perpendicular to each other (see 
Eigure 6.5.4), the net torque, which is the vector addition of both, has the value of 
Txy = ..JT}+ T}. Also, the direction of Txy is inclined 45° to both the X B and YB axes. 
In Figure 6.5.4, wxy is the nutation angular velocity vector revolving in the XB-YB 
plane (see also Section 4.6.1). The denutation process is 1000/0 effective only when 
Txy and wxy are collinear, which happens for only an infinitesimal period of time. If, 
for simplicity, we let Tx = Ty, then Txy = Y2Tx. The denutation efficiency depends on 
cos(a), where a is the angle between Txy and wXy" We can speak of an average torque 
in anyone of the four regions in Figure 6.5.4. 

For instance, in region I we have 

1 f"./4 2 f"./4 
'Fav = -2 cos(a)Txy da = - cos(a)Y2FAx da. 

7r / -"./4 7r -"./4 
(6.5.6) 

After integration, 

(6.5.7) 

I· 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.{ 

1 
.. ::j 

1 
:-, 

.j 

1 

6.5 / Despinning and Denutation oj a Satellite 143 

The same results can be obtained in anyone of the remaining three regions of Figure 
6.5.3 and Figure 6.5.4. The meaning of Eq. 6.5.7 is that by simultaneously activating 
two thrusters - one producing a torque about the XB axis and the other about the YB 
axis - we achieve a torque not of 2(FAx) but only of (4I1r)(FAx). This is the loss in 
torque due to the way in which denutation control is realized. To minimize fuel con
sumption, the denutating torques must be activated only when a =0, but then the 
denutation time period will increase accordingly. 

The denutation can also be performed with one thruster only, albeit with the detri
mental effect of increasing the denutation time. If Nj denotes the number of thrusters 
taking part in the denutation phase, then 

_ hxy(O) _ hxy(O) (2) 
tOENU - ---r:.:- - (4hr)FAx N j , (6.5.8) 

where hxy(O) is the initial momentum in the lateral plane of the satellite. 
To compute the mass of fuel needed to denutate the satellite, once again we use 

NiF= Ni(dm/dt)gIsp. Since dt = tOENU and hxy(O) are already known, the expended 
fuel amounts to 

1rhxy(O) ( 2 ) NjF dt = Ni dm gIsp = NjFtOENU = NjmoENugIsp = NjF 4FAx N; , 

from which it follows that 

1rhxy(O) 
mOENUTOT = mOENUNj = 2g1 Ax (6.5.9) 

sp 

In Eq. 6.5.9, mOENU is the mass of fuel expelled by one thruster and mOENUTOT is the 
total fuel expelled while denutating the satellite. 

EXAMPLE 6.5.2 Suppose that, for the satellite in Example 6.5.1, "'x(O) = 2 rad/ 
sec and Ix = 200 kg-m2• Evaluate the time of denutation and the mass of fuel neces
sary to denutate the satellite. Two thrusters are used, one each for the XB and YB 
body axes. 

Solution Equation 6.5.8 gives IOENU =(7r x 200 x 2)/(4 x 5 x 1)=62.83 sec. 
Equation 6.5.9 yields mOENUTOT = (200x2 x 1r)/(4x9.81 x200x 1) = 0.16 kg . 

A complete simulation is shown in Figure 6.5.5 (overleaf). This is an idealized sit
uation, in which different time delays in the control loop have been ignored. More
over, rate measurements in realistic applications are accompanied by noise, which 
must be taken into consideration; a noise filter will cause additional delays in the 
control loop. A good open-loop transjer junction can be achieved by use of stan
dard classical control techniques in the frequency domain. As in the ANC system of 
Figure 6.2.1, a dead zone is added to prevent "chatter" and unnecessary fuel consump
tion. For the simulation in Figure 6.5.5, wz(O) = 5 rad/sec and wx(O) = 0.5 rad/sec; 
only the Wx and Wz rates are measured. The remaining angular rates after denutation 
and despinning are 0.02 rad/sec, as expected in light of incorporating a dead zone of 
0.02 rad/sec. 
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Figure 6.5.5 Despinning and denutation with an angular rate control 
dead zone of 0.02 rad/sec. 

6.6 Single-Spin Stabilization 

In the previous sections, spin was used to attitude-stabilize the satellite dur
ing its linear velocity augmentation in the transfer between orbits. In this section, the 
satellite will be spin-stabilized in its final, lifetime "mission" orbit. In Section 6.5, the 
satellite spin axis was in the direction of motion. If the same spin is to be utilized in 
the mission orbit, the spin axis must be first precessed until it becomes perpendicular 
to the orbit plane. With no external disturbances acting on the satellite, the satellite 
spin axis will be inertially stable. Any external disturbances acting perpendicularly to 
the spin axis will initiate an angular nutation motion, which may be damped in a 
number of different ways. As with the passive gravity gradient control of satellite 
attitude, we can use point-mass dampers, magnetic hysteresis rod dampers, boom 
articulation, and so on (see Section 5.3.3). 

6.6.1 Passive Wheel Nutation Damping 

In this section, we demonstrate one passive way to damp the nutation of a 
single-spin-stabilized satellite. Figure 6.6.1 shows a sic spinning about its ZB body 
axis. A nutation angle () is to be damped by use of a wheel damper (immersed in vis
cous liquid) whose axis of revolution is aligned with the YB axis (see Bryson 1983). 

In the configuration of the system in Figure 6.6.1, there are two free bodies that 
can be in angular motion. The total angular momentum is composed of the individ
ual momentum of the wheel and that of the spinning body: h = hB + hw' The angu
lar rates of the body about the three orthogonal axes XB, YB, ZB are (respectively) 
WX, wy , Wz • The angular velocity of the wheel about its spin axis, and relative to the 
body. is n. As there is only one wheel in the satellite's body, hw = j(wy + O)Iw , where 
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h 

Figure 6.6.1 Wheel damper for a spin-stabilized satellite. 

Iw is the moment of inertia of the wheel and j is the unit direction vector along the 
YB body axis. The total angular momentum of the system becomes 

h = iwxIx+j[wy(Iy +Iw) +IwO]+kwzIz· 

If we assume that Iy» Iw, Ix = Iy = h, and Iz = Is, then 

h "'" iwxIx+j[wyIy+Iw01+kwzIz· 

Next, we use Euler's equation (Eq. 4.5.1) and obtain 

Il lx = 0 = WxIT + wywz(/s-h)-wzIwO, 

Illy = 0 = wyh + OIw + wzwx(h - Is), 

" lz = 0 = wzIs+wxwy(/y-Ix)+wxIwO. 

Since Ix = Iy and Wz = Ws, Eqs. 6.6.3 become 

· Is-h Iw 
Wx+WyWZ~-WZ IT 0 = 0, 

· h-Is· Iw 
wy+wxwz IT +0 Ir = 0, 

· Iw wz+wx-O=O. 
Is 

(6.6.1) 

(6.6.2) 

(6.6.3) 

(6.6.4) 

From Eqs. 6.6.4 we conclude that Wz = Ws = const, since WxO (/w I Is) is negligible. 
Then we write the angular equation of motion of the wheel: 

Tw = (wy+O)Iw+OD = 0, (6.6.5) 

where D is the damping coefficient of the liquid in which the wheel is immersed. Be
cause no external torque is applied on the wheel, Tw = O. The first two of Eqs. 6.6.4, 
together with Eq. 6.6.5, can be put in the matrix form 

[ 

s -ws[(h-/s)lh1 -ws(1 Ih)][W ] 
ws[(h-Is )lIr1 s S(/w;h) ~ = o. 

o s s+DlIw 0 

(6.6.6) 
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Figure 6.6.2 Stability of the damped system from root-locus considerations. 

Define ots = [(fr - Is)! fr]ws as the nutation frequency in the body frame, and set E = 
Iw l fr and (J = Dllw. With these definitions, the matrix in Eq. 6.6.6 takes the form: 

[
:s -:s -::s][:;] = o. 
o S S+(J n 

To assure stability, we must check the determinant ~(s) = O. We find that 

~(s) = s3(1-e)+s(otj-otsews)+us2+ot§u = 0, or 

s(1-e)[s2+ ot§ (1- ews )]+(S2+ ot§)u=0. 
l-e ots 

(6.6.6') 

This characteristic equation can be arranged in root-locus form (Bryson 1983) as 
follows: 

2 2 
1+ u s +ots 

l-e [2 2[ Islw ]] 
s s +ots 1+ (/s-fr)(fr-/w) 

where 

It follows easily that 

Is> IT = 011 > ots, 

Is < fr = 01) < ots. 

2 2 
1 (J S +ots = + , 

l-e s(S2+ot~) 
(6.6.7) 

The stability conditions may be analyzed in the root-locus plane of the configura
tion in Figure 6.6.2. From these root-locus considerations it is easily seen that, for 
Is> IT, the roots are in the stable region with (J < O. The system becomes nutation
ally unstable for Is < fr. The conclusion is that passive damping with a damper wheel 
is possible only if the spin axis is the major axis. See also Section 4.6.2. 

6.6.2 Active Wheel Nutation Damping 

It is also possible to damp a spinning spacecraft about its minor axis with 
an actively commanded wheel, where the damper wheel is torqued by an electrical 
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-roy 

Figure 6.6.3 Dynamics of a DC electrical motor, in 
conjunction with the satellite. 
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motor. For such a system, we must first write a linear model of the electrical motor
satellite system. 

In Figure 6.6.3, a direct current (DC) motor is used; R is the armature resistance 
of the motor on whose rotor the flywheel is aligned, KM is the torque coefficient, and 
lw is the total moment of inertia of the rotor. The i term is the current in the motor, and 
T M = iKM , where T M is the torque produced by the motor on the rotor axis. The same 
torque, but opposite in sign, is applied on the satellite's body. The angular velocity of 
the damper wheel relative to the body is n. 

The dynamic equations of the electrical motor are 

TM = KMi -lw(wy + 0), (6.6.8) 
eM = iR+Kvn, 

where eM is the input voltage to the electrical motor. Equations 6.6.8 can be combined 
to yield (N = Kv = KM in MKS units) . 

. N 2n N 
lw(wy+n)+~ = ReM' (6.6.9) 

This equation is now added to the first two of Eqs. 6.6.4 to yield the final system: 

· ls-/r Iw 
wx+WyWS~-Ws IT n =0, 

· /r-ls· lw ' 
Wy + wxws~ + n /r = 0, 

· . N 2 N 
n+Wy+ R1w n = RlweM' 

(6.6.10) 

Define 'Y = N21Rlw and ~ = NIRlw; as before, as = [(/r-Is)//r]ws and E = Iw/lT' 
With these definitions, Eqs. 6.6.4 can be put in matrix form as follows: 

(6.6.11) 

From Eq. 6.6.11 we can find the transfer functions wx(s)/eM(s) and wy(s)/eM(s). If 
one of the lateral angular velocities (e.g. wx ) can be measured, then a proportional 
error signal can be applied to the electrical motor (eM = Kwx ) in order to provide 
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Figure 6.6.4 Root locus for Eq. 6.6.12: L(s) = K's/[(s2+a~)(s+'Y)]. 

nutational stability also for the case in which the spin is about the axis with mini
mum moment of inertia, Is < fr. 

With the assumption that Iw« fr (which is normally the case in a practical sys
tem), it is easily found from Eq. 6.6.11 and the equality eM = Kwx that the open-loop 
transfer function of the nutation controller will be 

L(s) = K wx(s) "" KNIsws s = K' s , 
eM(s) RIf (S2+ a j)(S+'Y) (S2+ a j)(S+'Y) 

(6.6.12) 

where K' = KNIsws/(Rff.>. 
The roots of the characteristic equation of the closed loop are the roots of the 

polynomials in the numerator, of 1 + L(s). From root-locus considerations (see Fig
ure 6.6.4), we conclude that the roots of the closed loop will be stable for any as, 
which means for Is > IT and also for Is < IT' 

6.7 Dual-Spin Stabilization 

The communication efficiency of a single-spin-stabilized satellite is very low. 
In fact, since the communications antenna spins together with the satellite body, the 
communications beam scans the earth globe for only a short time in one spin cycle. 
Most of the time the beam is directed toward outer space, where no use is made of 
the emitted communication energy. 

A much better technique involves using a dual-spin stabilization concept. This is 
based on the principle that one part of the satellite is spinning fast in order to provide 
the necessary stabilizing angular momentum, while the second part revolves once per 
orbit so that the communication payload is constantly pointing toward the earth. 
The communication payloads are placed in the part of the satellite called the plat
form, and the rotating part is called the rotor. The attitude control of the Hughes 
INTELSAT VI, which is one of the largest communications satellites ever built, is 
based on the dual-spin principle. 

6.7.1 Passive Damping of a Dual-Spin-Stabilized Satellite 

The fuel needed to stabilize the sic in its different life stages may be located 
in the platform or the rotor part of the satellite. Since both platform and rotor will 
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h 

Figure 6.7.1 Dual-spin-stabilized satellite; reproduced 
from Agrawal (1986) by permission of Prentice-Hall. 
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generally exhibit some kind of energy dissipation, destabilization due to nutation 
should be expected and hence nutation damping control is imperative. In this section 
we will specify the conditions under which passive damping can be effective (see also 
lorillo 1965, Likins 1967, Agrawal 1986). 

To find the conditions for nutational stability, our analysis begins with the expres
sions of rotational kinetic energy T and the angular momentum H. For the special 
configuration of a dual-spinning sic (see Figure 6.7.1), these expressions take the form 

T= H/rwt+IRWi+lpw~], 
H2 = [/pwp+IRwR]2+(Irwr]2, 

(6.7.1) 

where the subscript T denotes momentum in the transverse plane and P and R de
note plat/orm and rotor. respectively. With no external disturbances, if = 0, so 

2ifH = 0 = 2(1pwp+ IRwR][/pwp+ IRwR] + 211wr wt; 
hence, 

(6.7.2) 

Differentiation of T with time leads to 

t= tR+tp = IrWrWT+IRWRWR+lpwpwp. (6.7.3) 

Substituting Eq. 6.7.2 into Eq. 6.7.3 yields 

t= -lp[wn-wp]wp-IR[wn-WR]WR = -lpApWp-IRARWR· (6.7.4) 

From Eq. 6.7.2 and Eq. 6.7.3 it follows that Ipwp= -tplAp and IRwR = -tRIAR· 
Together with Eq. 6.7.3, we have 

(6.7.5) 

where Wn = (/pwp + IRwR)//r, Ap = Wn - Wp, and AR = Wn - WR. On the other hand 
(see Section 4.6.2), for HT defined as HT = ITwT, we have sin(9) = /rwTIH. Differ
entiating yields 

I . 
fJ cos(9) = T;;T. (6.7.6) 
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Using Eq. 6.7.5, we finally obtain 

8 = lrwr WT = /rWTWT = 2/r W [tp + tR]. 
Hcos(8) WT Hcos(8)[Hsin(8)(lIIr)] H2 sin(28) n Ap AR (6.7.7) 

Nutational stability requires 8 < 0, which implies - using Eq. 6.7.7 - that 

t p tR 
Ap + AR < O • (6.7.8) 

This means that, for stability, the sum of the energy dissipation in the rotor and in 
the platform must be negative. This is a necessary condition, but it is not sufficient. I Obviously, IRwR» Ipwp. This leads to 

In the same way, 

Ipwp+IRwR [IR] 
AR=Wn-WR= IT -wR= IT -I WR' 

Given the two last approximations, the condition in Eq. 6.7.8 becomes 

t p tR 1 [ t p tR] 0 
Ap + AR = WR IRIIT + IRI/r-I < (6.7.9) 

(obviously, for energy dissipation both t p and tR must be less than zero.) Two dis
tinct cases must be checked for stability. 

Case A: IR > Jr. In this case, Eq. 6.7.9 is always satisfied. The satellite part in 
which the energy dissipation takes place is of no importance. This means that the 
passive nutation damper can be placed anywhere inside the satellite. 

Case B: IR < IT' In this case, the second term on the right-hand side of Eq. 6.7.9 
is positive. In order to effect nutational stability, the energy dissipation must take 
place in the platform. Moreover, we can find by what factor the energy dissipation 
rate in the platform must be larger than that in the rotor part of the satellite. From 
Eq. 6.7.9, the result is 

/tp/ > 1 tR(IRI/r) I . 
IRI/r-I (6.7.10) 

This means that, in order to stabilize the nutational motion, the dissipation capacity 
of a platform-mounted passive damper must satisfy Eq. 6.7.10. 

6.7.2 Momentum Bias Stabilization 

Dual-spin stabilization is closely connected to momentum bias stabiliza
tion. For nadir-pointing spacecraft (e.g., communications, meteorological, earth
scanning, etc.), this form of attitude stabilization is most effective. There are many 
variations on attitude control concepts associated with momentum-biased satellites. 
Chapter 8 will be dedicated to this important class of attitude control stabilization 
schemes. 
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6.8 Summary 
Owing to its simplicity and efficiency, single-spin stabilization has been used 

extensively. For higher attitude accuracy, some passive or active nutation stabiliza
tion is necessary, especially if energy dissipation is part of the dynamics of the satel
lite. Attitude control and stabilization of a single-spin-stabilized spacecraft usually 
need some angular rate measurements. From the perspective of communications, 
however, dual-spin stabilization is notably superior. 
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CHAPTER 7 

Attitude Maneuvers in Space 

7.1 Introduction 

In the previous chapters dealing with satellite attitude control, the primary 
task of the control system was to stabilize the attitude of the satellite against external 
torque disturbances. Such disturbances are produced by aerodynamic drag effects, 
solar radiation and solar wind torques, parasitic torques created by the propulsion 
thrusters, and so on. We discussed gravity gradient stabilization, which succeeds be
cause such torques tend to align the axis of least inertia with the nadir direction. Atti
tude controls that are based on spin have similar features: the spin principle tends to 
keep one axis of the satellite inertially stabilized in space. However, even for space
craft that in their final mission stage are to be stabilized to some constant attitude 
relative to a reference frame, a number of prior tasks must be performed in which 
the satellite's attitude is maneuvered (see the introductory example in Chapter 1). 

The primary mission tasks of some satellites require attitude maneuvers through
out their lifetime. Two well-known examples are the Space Telescope (Dougherty 
et al. 1982) and the Rosat satellite (Bollner 1991), scanning the sky for scientific ob
servations. The capability to attitude-maneuver a satellite is based on using control 
torques. Control command laws using such torques are the subject of this chapter. 

7.2 Equations for Basic Control Laws 

In this section we shall write and analyze the control law equations, ex
pressed in different attitude error terminologies. The most common include Euler 
angles for small attitude commands and, for large attitude maneuvers, direction co
sine error and quaternion error terminologies. 

7.2.1 Control Command Law Using Euler Angle E"ors 

The simplest torque control law is based on Euler angle errors. Suppose that 
the Euler angles, as defined in Section A.3, can be measured by the sic instrumenta
tion. As can be seen from Eqs. 4.8.14, for a satellite with a diagonal inertia matrix 
and small Euler angle rotations, the attitude dynamic equations can be approxi
mated as 

Tdx+ Tcx = IxCf" 

Tdy + Tcy = lyO, 

Tdz + Tcz = lz if;. 

(7.2.1) 

For such a simplified set of equations, the three-axis attitude dynamics can be sepa
rated into three one-axis second-order dynamics equations. 
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The simplest control law for stabilizing and attitude-maneuvering such a system 
may be stated as follows: 

Tcx = Kx(q,eom -q,)+Kxd~ = Kxq,E+Kxd~' 
Tcy = Ky(8eom -8)+ KYdO = Ky8E + KYdO, 

Tcz =Kz(1/Ieom-1/I)+Kzd~ =Kz1/lE+Kzd~' 

(7.2.2) 

where q,eom, Beom, 1/Ieom and q,E, 8E, 1/IE are the Euler command and error angles, re
spectively; ~, 0, ~ are the Euler angular rates. 

Designing such a second-order control system is a trivial automatic control prob
lem, treated in many basic texts on linear control theory (see e.g. D'Azzo and Houpis 
1988 and Dorf 1989). All we need do is determine Kx, Kxd, Ky, ... so that the three 
one-axis control systems about the XB' YB , ZB body axes have the desired dynamic 
characteristics, such as natural frequency Wn and damping coefficients ~, which will 
preferably be equal for all axes. 

The problem is less trivial when large attitude maneuvers are considered, for three 
principal reasons. First, the simplified dynamics model of Eqs. 7.2.1 does not hold 
for large attitude maneuvers (see Eqs. 4.8.14). For attitude control systems requiring 
high accuracies and very short settling time, such terms as Ixyij and wo(ly-Iz-Ix)~ 
cannot be ignored; they must be taken into account in the design stage. Second, there 
is a control problem with regard to saturation - that is, the maximum achievable 
torques and angular velocities that the control driver can deliver to the satellite. These 
control difficulties necessitate the application of nonlinear automatic control design 
procedures (Junkins and Turner 1986); see Section 7.6. 

The third reason is that, for large Euler attitude angles, the attitude kinematics 
equations can become singular. For example, in the Euler angle rotation B -+ q, -+ 1/1 
(see Eqs. 4.7.8), the Euler kinematics equations become singular as q, approaches 
90°. As we shall see, this drawback can be alleviated by using more effective kine
matics expressions for the attitude control laws. 

7.2.2 Control Command Law Using the Direction Cosine 
E"orMatrix 

Suppose that the attitude of the satellite is expressed in terms of the direc
tion cosine matrix (AsJ relative to the reference frame in which the attitude ma
neuver is to be commanded and achieved (see Appendix A). It is of no importance 
whether the reference frame is inertial or rotating with the orbit, so long as all 
the measurements and matrix transformations are performed in the same reference 
frame. Suppose then that a vector a has the components at> a2, a3 in the reference 
frame a = [al a2 a3]T, and that the satellite is to be maneuvered so that its final direc
tion cosine matrix will coincide with a known and defined matrix (AT]' called the 
target matrix. 

According to the analysis in Appendix A, the vector a can be expressed in the sat
ellite frame and in the target frame as as and aT (respectively) in the following way: 

as = [AsJa, 

aT= [AT]a. 

(7.2.3) 

(7.2.4) 
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Combining both equations, we have 

as = [As)[ATrlaT = [As)[AT]TaT = [AE]aT' (7.2.5) 

The matrix [AE], as defined in Eq. 7.2.5, has the following meaning: if the com
ponents of two noncollinear vectors a are identical in both the satellite frame Sand 
the target frame T, then it is obvious that these frames coincide and that the satellite 
body axes have reached the desired target attitude in space. Hence, [AE] is the direc
tion cosine error matrix. When this matrix becomes the unit matrix, [As] = [AT] and 
the satellite has reached the desired attitude in space. To clarify the meaning of this 
statement, let us write explicitly the matrix multiplication of Eq. 7.2.5: 

[ 

aus al2S a13S][ aUT a2IT a3IT] [aUE al2E a 13E ] 
[AE] = a21S a22S a23S al2T a22T a32T = a21E a22E a23E • 

a31S a32S a33S a13T a23T a33T a31E anE a33E 

(7.2.6) 

For the last matrix to become diagonal, the off-diagonal elements must be zeroed 
and the diagonal elements must become unity. 

To understand the meaning of zeroing the off-diagonal elements, let us examine 
Figure 7.2.1 and interpret correctly the meaning of the elements aijE in Eq. 7.2.6. For 
example, al2E is the scalar dot product between the Xs and the YT axes; in Eq. A.2.2, 
al2E = XS·YT· Hence, al2E = 0 is equivalent to making the Xs axis perpendicular to 
the YT axis by increasing the angle IX in Figure 7.2.1. This may be achieved by rotat
ing the satellite about the Zs axis until the follOwing equality is satisfied: 

(7.2.7) 

In the same way, it is easily seen that zeroing a13E is equivalent to the scalar dot 
product 

(7.2.8) 

which means geometrically that the satellite is to be rotated about its Ys axis until the 
Xs. satellite axis becomes perpendicular to the ZT target axis. Finally, rotation of the 
satellite about the Xs axis will make the Ys axis perpendicular to the ZT axis, thus 
zeroing a23E: 

(7.2.9) 

By similar reasoning, it can be shown that if both the target and the satellite axis 
frames coincide, then the elements of [AE] that lie below the matrix diagonal are 

Zs 

Figure 7.2.1 Geometrical interpretation of 
zeroing the off-diagonal elements of [AE]. 
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also zeroed. Thus, with the completion of the maneuver, the error matrix becomes 
the unit diagonal matrix. 

Simultaneous satisfaction of Eq. 7.2.7, Eq. 7.2.8, and Eq. 7.2.9 tends to rotate the 
satellite axis frame so that it coincides with the desired target axis frame, thus achiev
ing the desired attitude maneuver in space. Since the basic attitude dynamics of the 
satellite consists of two integrations per axis, rate terms must be used in order to sta
bilize the three axes, as in Eqs. 7.2.2. Finally, similarly to Eqs. 7.2.2, the following 
control laws can be written: 

Tex = Kxa23E + KxdP, 

Tey = KyaI3E+Kydq, (7.2.10) 

Tez = Kzal2E + Kzdr. 

In Eqs. 7.2.10, aij can be replaced with -aJ; to obtain the same control results. The 
terms p, q, r are the angular velocities of the body axes in the reference axis frame. 
used for damping purposes. 

In the beginning of the maneuver, the error elements may be quite large, depend
ing on the initial attitude orientation of the satellite relative to the target reference 
frame. At the final stages of the attitude maneuver, when the sic axes are closely 
aligned with the target reference frame axes, the error elements a12E, aUE, and a23E 
approach the errors of the Euler angles. As mentioned in Appendix A, all the Euler 
transformations in Eqs. A.3.6-A.3.12 can be approximated to the transformation 
Eq. A.3.13 for small Euler angles. Therefore al2E - "'E' al3E - -BE' and a23E - lPE as 
expected. Hence, at the final stage of the large attitude maneuver in space, the small
angle approximation (Eq. 7.2.1) is justified. As in Section 7.2.1, the control gains 
should be devised so that, at the end of the large maneuver in space, the time re
sponses will be well behaved. Also, sufficient stability margins in the frequency do
main must be procured. These gains are dependent on the physical characteristics of 
the satellite (the inertia matrix). 

7.2.3 Control Command Law about the Euler Axis 0/ Rotation 

The direction cosine matrix can be used in a similar way as in Section 7.2.2 
to achieve a large attitude maneuver about the Euler axis of rotation (as defined in 
Section A.4). Using Eq. A.4.6, we can find the Euler angle about this axis with re
spect to the initial error matrix [AE); namely, 

cos(a) = tltrace([AE])-I}. (7.2.11) 

Using also the results in Eqs. A.4.lOa-A.4.l0c, we derive the following control com
mand law: 

Tex= -tKx(a32E- a23E)+KxdP, 

Tey = -tKy(aI3E- a3IE)+Kydq, (7.2.12) 

Tez = -tKz(a2IE- a I2E)+Kzdr. 

Since the initial and final attitude orientations of the satellite are known in advance, 
using Eqs. 7.2.12 will enable rotation about the Euler axis of rotation, thus minimiz
ing the angular path that will be traversed by the satellite in its angular motion. 
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This control law does have one shortcoming: the six off-diagonal elements of the 
error matrix must be computed continuously. This is done by integrating Eq. 4.7.11 
in order to find [As]. At least six elements must be found by any integration algo
rithm in the onboard computer. The matrix [AT] is known by definition and so, 
finally, the error matrix (Eq. 7.2.6) must be computed. All these calculations result 
in a large number of operations for the onboard computer to perform in real time. 
However, the computational burden can be reduced by making use of quaternion 
terminology (see Section A.4). 

7.2.4 Control Command Law Using the Quatemion Error Vector 

In the previous section we defined the direction cosine matrix and gave con
trollaws in terms of the elements of this matrix. There exists an equivalent quater
nion error vector that expresses the attitude error between (i) the satellite attitude 
direction in space and (ii) the target direction toward which the satellite is oriented 
at the end of the attitude maneuver. To find this quaternion error vector we refer to 
Section A.4.4 as well as Glaese et al. (1976), Schletz (1982), and Wertz (1986). 

According to Eq. A.4.20, we can write 

[A(qE)] = [A(qT)J[A(qs)rl = [A(qT)J[A(qgl)]. (7.2.13) 

In quaternion notation, Eq. 7.2.13 leads to 

qT1J [-qSIJ qT2 -qS2 
qT3 -qS3' 

qT4 qS4 

(7.2.14) 

where qE, qT, and qs are (respectively) the error, target, and spacecraft quaternions. 
As explained in Section A.4.3, there is a one-to-one equivalence between the di

rection cosine matrix elements and the elements of the quaternion vector. The rela
tions are given in Eqs. A.4.l6. Inserting these relations into Eqs. 7.2.12, we obtain 
the following attitude control laws: 

1'cx = 2KxqlEq4E+KxdP, 

1'cy = 2KyQ2Eq4E+Kydq, 

1'cl. = 2Kl.Q3E Q4E + Kt,dr. 

(7.2.15) 

As in Section 7.2.3, the spacecraft quaternion vector is obtained by integrating 
Eqs. 4.7.13. Only three elements need to be integrated - namely, QIS, Q2S, and Q3S _ 
since Q4S is known from the relation Iql = 1. Performing the computation of qE in Eq. 
7.2.14 requires fewer algebraic operations than computing the elements in [AE]. This 
is one reason why the control law of Eqs. 7.2.15 is preferred to that of Eqs. 7.2.12, 
although they are equivalent from a physical point of view. See also Wie, Weiss, and 
Arapostathis (1989). 

7.2.S Control Laws Compared 

In order to compare the qualities of the different torque control laws, a 6-
DOF (six-degrees-of-freedom) time-domain simulation has been carried out for each 
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law. Since the control error definitions for the compared laws are different, some 
common variables need to be chosen. The Euler angles are the most natural physi
cal variables to be compared where attitude control of the satellite is concerned. The 
evolution of the error angle a in Eq. 7.2.11 about the Euler axis of rotation is an
other indication of the quality of the control laws, because it shows the overall angle 
path that the satellite traverses during the man.euver. Its integral, named EULERINT 
(= fa dt), is shown in the figures to follow as the definitive criterion for comparing 
the different attitude control laws. 

We present a simulated case for which the moments of inertia of the satellite are 
Ix = 1,000, Iy = 500, Iz = 700 kg-m2• There are no control torque limits. The con
trol gains are assumed to be identical for all the control laws compared. The open
loop transfer functions of the three axes are designed to obtain closed-loop natural 
frequencies of Wn = 1 rad/sec and closed-loop damping factors of ~ = 1. Given the 
listed moments of inertia, the proportional and derivative gains become: Kx = 1,000, 
Kxd = 2,000, Ky = 500, Kyd = 1,000, Kz = 700, and Kzd = 1,400. The satellite is 
submitted to step angular commands, starting at to = 1 sec. 

Figures 7.2.2 show time-domain responses for the Euler angles error control law 
as explained in Section 7.2.1 (Eqs. 7.2.2) - namely, responses ofthe Euler angles and 
also ofthe integral of the Euler axis rotation error (Figure 7.2.2.d). For comparison, 
the time-domain responses for the quaternion error control law explained in Section 
7.2.4 (Eqs. 7.2.15) are shown in Figures 7.2.3. In these time-domain responses, the 
attitude commands are: "'com = -6°, 8eam = _4°. and tPcom = 4°. For these compar
atively small attitude commands. the time responses for the two control laws are 
almost identical: EULERINT = 16.2 deg-sec (cf. Figures 7.2.2.d and 7.2.3.d). As 
explained in Section 7.2.2 and Appendix A. this results because. for small attitude 
changes. the direction cosine attitude errors approach the Euler angle errors. 
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Figure 7.1.1 Euler angle step responses using the Euler angle error 
control law: "'com = _6°, 8com = _4°, and ,pcom = 4°. 
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Figure 7.1.3 Euler angle time responses using the quaternion error 
control law: "'com = _6°, 8com = _4°, and tPcom = 4°. 

This approximate identity does not hold for large attitude maneuvers. The same 
simulations were repeated for the much larger attitude commands "'eom = -60°, 
8eom = -40°, and tPcom = 40°. Comparison between the time responses for the Euler 
angles control law (Figures 7.2.4) and for the quaternion control law (Figures 7.2.5) 
shows the clear superiority of the latter. In the first place, with the quaternion con
trollaw, the Euler attitude angles are well behaved and resemble their time responses 
for small attitude commands. Moreover, an oscillating behavior is observed for the 
Euler angles control law, where also the angular path of the Euler axis of rotation 
angle a is much larger. 

The criterion factor EULERINT, which is the integral of the Euler axis-of-rotation 
error, is shown as part of Figure 7.2.4 and Figure 7.2.5 for large attitude maneuvers. 
For the simpler Euler angles control law , EULERINT = 262; for the quaternion con
trollaw, EULERINT = 157. This underscores the quaternion efficiency with respect 
to minimizing the length of the total angular path followed by the sic in space. 

7.2.6 Body-Rate Estimation without Rate Sensors 

The three angular rates about the body axes of the spacecraft are included in 
the torque control laws of Eqs. 7.2.2, Eqs. 7.2.10, Eqs. 7.2.12, and Eqs. 7.2.15. In 
general, these rates can be obtained from rate gyro measurements or other equiva
lent instrumentation. Sometimes, in order to simplify the hardware of the attitude 
control system (ACS), such instrumentation is unavailable or, if it does exist, may
in order to prolong the life of the gyroscopic hardware - be reserved for those cases 
where (for example) highly accurate measurement of the attitude rates is mandatory 
in order to obtain the precise attitude of the sic by integrating those rates. 
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Figure 7.2.4 Euler angle step responses using the Euler angle error 
control law: "'com = _60°, Bcom = _40°, and q,com = 40°. 
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Figure 7.2.5 Euler angle time responses using the quatemion error 
control law: "'com = _60°, Beam = _40°, and q,com = 40°. 
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When the angular rates are not measured directly, they can be estimated from 
knowledge of the quaternion vector or the direction cosine matrix, which are ob
tained from attitude position measurements using horizon, sun, or star sensors. In 
this section we estimate the body rates p, q, and r from the quaternion vector qs. We 
will use Eqs. 4.7.13, which can be rewritten in the slightly different form 
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ql=HQ{~l ;=1 ..... 4 

(see Glaese et a1. 1976). 
With the definition 

[ 

qS4 

[Q] = qS3 
-qS2 

-qsl 

qS2j 
-qsl , 

qS4 

-qS3 

(7.2.16) 

(7.2.17) 

Eqs. 7.2.16 describe four equations with three unknowns. The matrix [Q] is not 
square and has no conventional inverse. But there does exist a left pseudoinverse 
matrix [Qd that can solve the problem. First define ",IR = [p, q, r], where p, q, rare 
the body rates relative to the chosen reference frame. From Eq. 7.2.16, the solution 
for "'BR becomes 

"'DR = 2[Qd4;, 

where [Qd is the left pseudoinverse matrix: 

[Qd = ([Q]T[Q])-I[Q]T. 

Since ([Q]T[Q]) = [1], it follows that [Qd = [Q]T, so 

[
P] [QS4 QS3 
Q = 2 -QS3 QS4 

r QS2 -Qsl 

-qS2 -QSI] r::~j 
QSI -QS2 • • 

QS3 
QS4 -QS3 . 

QS4 

(7.2.18) 

(7.2.19) 

(7.2.20) 

In Eq. 7.2.20, the spacecraft quaternion elements need to be differentiated. Since the 
calculated quaternion elements - obtained from position measurement sensors - are 
always noisy, their differentiation must be performed with adequate noise filters that 
are compatible with the bandwidth of the automatic control loops about the three 
body axes. 

7.3 Control with Momentum Exchange Devices 

The control torque laws of Section 7.2 assume the existence of control hard
ware that can generate the commanded torques. There are at least four distinct means 
of producing torque for the attitude control of spacecraft, based on: 

(1) earth's magnetic field; 
(2) reaction forces produced by expulsion of gas or ion particles; 
(3) solar radiation pressure on spacecraft surfaces; and 
(4) momentum exchange devices (rotating bodies inside the sic). 

The first three techniques listed are inertial controllers, in the sense that they change 
the overall inertial angular momentum of the satellite. Such controllers produce 
torques labeled Tc in Eq. 4.8.2. 
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Magnetic techniques provide continuous and smooth control. However, the level 
of torques that can be achieved with magnetic torqrods is normally low (in the range 
of 1-10 mN-m) and generally insufficient for fast attitude maneuvers (see also Section 
7.4). Magnetic torques are also dependent on the chosen orbit inclination, on the 
altitude above earth of the satellite, and so on. Moreover, magnetic control is ex
cluded for spacecraft not revolving about the earth, since it is based on the earth's 
magnetic field. 

Reaction controllers are not linear, in the sense that they provide reaction torques 
of constant amplitude and modulated time duration. The level of control torques 
that can be achieved with reaction pulses is almost unbounded. However, no smooth 
control can be achieved owing to the inherent impulsive nature of reaction thrusters 
(see Chapter 9). 

Torques obtained from solar pressure cannot be used for attitude maneuvering 
since the level of torques that can be produced (when the sic sees the sun) are of 
the order of tens of /LN-m only, which are clearly insufficient for attitude maneuvers. 
Moreover, they cannot produce torques about the three sic axes. However, solar 
torques are sometime used in geostationary satellites to counteract the parasitic solar 
disturbances acting on the sic and to provide active nutation damping to momentum 
bias-controlled satellites (see Section 8.6). 

The remaining option is based on rotating masses inside the spacecraft body, so 
that angular momentum is transferred between different parts of the satellite without 
changing its overall inertial angular momentum. The resulting torque control devices 
are called momentum exchange devices, and include reaction wheels, momentum 
wheels, and control moment gyros (CMGs). 

For very accurate attitude control systems and for moderately fast maneuvers, 
the reaction wheels are preferred because they allow continuous and smooth control 
with the lowest possible parasitic disturbing torques (see Appendix C). The level 
of torque that can be achieved with reaction wheels is of the order of 0.05-2 N-m. 
With control moment gyros (used in manned spacecraft), torques of 200 N-m are 
achievable. However, such CMGs are very heavy and are seldom used in the ACS 
of ordinary-sized satellites. (For more about the use of CMGs see Kaplan 1976 or Oh 
and Valadi 1991.) In this section we will focus on reaction wheels. 

7.3.1 Model of the Momentum Exchange Device 

Inside a spacecraft, a symmetrical rotating body produces angular torque 
when accelerated about its axis of rotation. The rotating body may have an initial 
constant momentum hw. Since this momentum is internal to the spacecraft, its in
crease does not change the overall momentum of the system but instead merely trans
fers the momentum change (with negative sign) to the spacecraft (see Eq. 4.8.2). This 
is the principle of conservation of angular momentum. ' 

The reaction wheel can be mounted in the satellite with its rotational axis in any 
direction relative to the satellite's axis frame. The momentum vector of all the mo
mentum exchange devices inside the satellite body can be expressed with reference to 
the axes of the spacecraft body frame as bw = [hwx hwy hwz]T. For controlling the 
attitude in space, at least three reaction wheels are required. With this modification, 
Eqs. 4.8.14 were obtained for the general case of a satellite containing any number 
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Figure 7.3.1 Basic model of a momentum exchange device. 

of momentum exchange devices whose axes of rotation are not all coplanar and at 
least three of whose axes are noncollinear. In those equations, any device's momen
tum change (e.g. !twx) will produce an equal angular torque on the body about its XB 
body axis, but opposed in direction. 

In the simplified Eqs. 7.2.2 of Section 7.2.1, for instance, the following control 
torque commands will be applied: 

!twx = Tex = Kx(<Pcom -q,)+ Kxdcb, 

hwy= Tey=Ky(Ocom-(J)+KydO, 

hwz = Tez = Kz(1/;com-1/;)+Kzd l/t. 
(7.3.1) 

The required angular torques can be achieved by accelerating the rotor of electrical 
motors whose axes of rotation are aligned with the body axes XB, YB, ZB; on their 
rotating axes are assembled flywheels having moments of inertia labeled Iwx, Iwy, Iwz' 
Of course, reality is not so simple, as will be seen in the analysis that follows. A com
plete dynamic model for the electrical motor to be used as the torque controller is 
shown in Figure 7.3.1. See also Section 6.6.3 for a similar, but incomplete, analysis. 

In Figure 7.3.1, V is the input voltage to the electrical motor, RM is the electrical 
resistance of the motor armature, and KM is the torque coefficient of the motor. The 
term Iw denotes the overall moment of inertia of the rotor including the flywheel, 
the task of which is to produce the desired torque, and Is is the moment of inertia 
of the satellite. Finally, "'REL is the angular velocity of the rotating part of the motor 
relative to the stator and (equivalently) to the satellite body, since the stator is fixed 
to the body of the spacecraft. 

The primary task of the electrical motor is to provide the necessary angular torque 
to the satellite. Assume there are no external disturbances Td and no inertial control 
torques acting on the satellite. With this assumption, according to Euler's moment 
equation of angular motion we have 

(7.3.2) 

This means that, in order to apply a torque on the body about some axis, a torque in 
the opposite direction must be produced by the rotor of the electrical motor. Thus, 
hs = -!two 
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The block B in Figure 7.3.1 is the viscosity damping coefficient sensed by the 
rotor, and the damping torque is proportional to the angular velocity of the rotor 
relative to the satellite body frame. The block describing the coulomb and dry fric
tion will be omitted in the analysis so as to enable a linear transfer function of the 
complete dynamical model, including the satellite dynamics. With these assumptions 
it is easily found that 

S(KRMM) hw Iwww 
-=--=----..!-..:.::..:~---
V V s+(-1 +~)(KvKM +B)' 

Iw Is RM 

(7.3.3) 

Equation 7.3.3 indicates that a step in the input voltage to the electrical motor does 
not produce a pure angular torque, because there is a time constant in the denomi
nator and a differentiator in the numerator. With the valid assumptions that B .... 0 
and Iw« Is, Eq. 7.3.3 reduces to 

Iw s-
hw Kv -=-----V IwRM . 

I+s KVKM 

(7.3.4) 

Our true interest is in obtaining an immediate torque hw as a response to a torque 
command Te. The set-up in Figure 7.3.2 helps to achieve this characteristic: there is a 
feedback path from the motor current, which is proportional to the torque provided 
by the electrical motor. The transfer function between the torque command Te and 
the achieved angular torque hw becomes: 

K 
hw SRM -=----.:.::...---
Te 1+~(I+KvKM)' 

SRM Klw 

If we choose K» KvKMlIw then 

Figure 7.3.1 Use of a momentum exchange device in the 
torque command mode. 

(7.3.S) 
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hw 1 
Te = l+s(RM IK)· 

(7.3.6) 

This is the basic equation that converts an electric motor into what is known as a 
reaction wheel (RW) or a momentum wheel (MW). The added electronics complete 
the reaction wheel assembly (RWA). See Appendix C for technical information on 
reaction wheels. 

In Eq. 7.3.6 there is still a small time constant, which for a good RWA may be of 
the order of milliseconds and thus can be neglected for practical purposes. Equation 
7.3.6 gives a linear model for the momentum exchange device. Technically, such a 
device has torque and velocity limitations; when the attitude control of a satellite is 
designed, these limitations must be taken into consideration. The first stage in the 
design process is to size the wheel correctly, which means, first of all, deciding about 
the maximum torque and momentum that the wheel should be able to provide (see 
Section 7.7). In a later stage we will see that there is another characteristic deserving 
special attention: the inherent torque noises, cogging and ripple torque, that are due 
to the nonlinear physical components (e.g. stator and rotor poles) that compose the 
wheel. In future analysis, it will be explicitly stated if the linear model used for the 
wheel is sufficient or if additional disturbing elements must be added to it. 

In the linearized dynamic model of the satellite, Eqs. 4.8.14, the linear model of 
the momentum exchange device is used with the additional assumption that the small 
time constant of the wheel assembly in Eq. 7.3.6 can be ignored, so that hw "" Te. 

-~ 7.3.2 Basic Control Loop jor Linear Attitude Maneuvers 

. The simplest attitude maneuver control loop is shown in Figure 7.3.3. For 
--Small attitude maneuvers around y; .;, 0, (J "" 0, and q, "" 0, the quaternion, direction 
cosine, and Euler axis error control laws reduce to the simplest Euler angle error 
control law, Eqs. 7.2.2. With K) = K2 = 0 in Figure 7.3.3, the transfer function be
tween the error e and the attitude command (Jeorn is easily found to be 

e s(s+~:) 
(Jeorn = 2 (Kd S + K) . 

S + Is 

9 

Figure 7.3.3 Basic one-axis attitude control loop with null steady-state 
error for position, velocity, and parabolic input commands. 

(7.3.1) 
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For a step command 8eom(s) = 18coms l/s, we find that 

- I· (t) -Ii 18comsls2(Xdlls) - 0 ess - 1m e - m - . 
t .... GO s .... o s(KlIs) 

(7.3.8) 

However, if a velocity input is expected then, with this control configuration, the 
steady-state error will not be null. For a velocity input 8(t) = 18eomv lt, the steady-state 
error will become 

lim e(t) = 18eomv l XXd . (7.3.9) 
t .... GO 

There are two ways to decrease this steady-state error to zero: (1) we can incorpo
rate an electronic integration in the loop; or (2) we can also add a feedforward com
mand that is proportional to the differentiation of the input command 8eam and to Kl 
in Figure 7.3.3. This latter approach is preferred because 8eom is a known function of 
time, the differentiation of which (Beom) is also known analytically. Moreover, no 
noise is added to the input of the control loop. The error response for the velocity in
put 8eom(s) = 18eomvl/s2 becomes 

IsS2(1+ Kd-Kl) 
e sIs 

8eom = Iss2+Xd S +K . 
(7.3.10) 

Using the final-value theorem of the Laplace transforms in Eq. 7.3.10 with Kl = Kd , 

we have 

( I· Ii 18comv l S3 0 
ess t) = 1m e(t) = m 2 2 (II/, )(K K) = . 

t-GO 5 .... 0 S S + s dS+ 
(7.3.11) 

However, for a parabolic command input, the steady-state error will still remain 
finite. Another feed forward command can be added in order to eliminate this steady
state error. As in the previous discussion, we can feedforward an input proportional 
to 8com(t) with a gain K2• An analysis similar to the foregoing shows that if K2 = Is 
then the steady-state error for a parabolic attitude command will be null. 

At this point we should mention the error due to the nonlinear characteristics of 
the wheel. The wheel remains at rest so long as the commanded torque does not over
come the coulomb friction level; hence, an angular error will appear because the 
wheel does not react until the torque overcomes the friction. Therefore, the addi
tional steady-state error will be: ess = Tfriel K, where Tfrie is the friction torque of the 
wheel at zero angular velocity. 

In this section it was assumed that the attitude input commands were small, so 
that the reaction wheel assembly works in its linear region. A time-optimal control 
solution will be analyzed in Section 7.6 for large attitude maneuvers in which torque 
and velocity saturation levels of the wheel assembly are reached. Saturation by mo
mentum accumulation will be discussed next . 

7.3.3 Momentum Accumulation and Its Dumping 

One drawback of a momentum exchange device is that it cannot indepen
dently remove the angular momentum that accumulates, owing to external distur
bances, in the satellite system. As we know, according to Euler's moment equations, 
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Figure 7.3.4 Momentum saturation and dumping of the reaction wheel. 

any external torque disturbance acting on the body augments the angular momen
tum of the whole spacecraft system. With no active attitude control, the body accu
mulates an angular velocity as the angular momentum of the sic increases, changing 
the attitude of the spacecraft. However, if reaction wheels are used to stabilize the 
sic attitude, then the accumulated angular momentum will be transferred to the 
wheels. With harmonic external disturbances, the stored momentum will also be har
monic; as long as its level stays well inside the momentum saturation limits of the 
wheels, no control problem arises. However, with constant external disturbances, 
the momentum of the wheels will increase without limit, thus saturating them and 
precluding their ability to provide the necessary control torques. The unwanted accu
mulated momentum in the wheel must be removed from the momentum exchange 
device, a process called dumping of the momentum. 

In the present analysis, we assume that the time constant in Eq. 7.3.6 is close to 
null, so that the controlling torque hw equals the commanded control torque Tc. The 
set-up for the simp,lified dynamics of the spacecraft, the external disturbances, and 
the wheel controlling torque are shown in Figure 7.3.4. In this figure, with Kw = 0 
(i.e., without the dumping control), an error control torque Tc will be required to 
counteract a constant disturbance Td • But, as assumed and as shown in Figure 7.3.4, 
hw = 7;,. If the open-loop transfer function is defined as 

L- ( ) = [Kds+K] [s+Kw] 
ID s Iss2 S' 

then 

(7.3.12) 

Hence, for a constant disturbance Td = ITdl/s, 

. Kds+K 
hw(s) = ITdl J, 3 [K K][ K] . 

SS + dS+ s+ w 
(7.3.13) 

Also, 
h s = hw(s) = ITdl Kds+K 

w( ) s s Iss3+[Kds+K][s+Kw ]' 
(7.3.14) 

To find the steady-state value of hw(t), we apply the final-value theorem: 

lim hw(t) = lim slTdl 3 [Kds+K]. (7.3.15) 
1 ... 00 S"'O s Iss +[Kds+K][s+Kw ] 
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If Kw = 0, which means that the momentum of the wheel is not actively controlled 
and consequently not limited, we find that hw(t)ss = lim, ...... hw(t) = co; that is, the 
momentum accumulating in the wheel will increase infinitely. To be more specific, 
as t-+co: 

hw(t)-+ITdl t . (7.3.16) 

However, if we choose Kw ¢ 0 then 

. ITdl 
hw(t)ss = hm hw(t) = -K • 

1-+00 W 
(7.3.17) 

The gain coefficient Kw requires some explanation. The variable hw is measured 
and an external torque to the spacecraft, proportional to hw, is applied about the 
axis of rotation of the wheel. This external torque can be produced by reaction or 
magnetic means (see also Section 7.5). There must be applied an external inertial 
torque that cannot be supplied by the reaction wheel itself, as explained previously 
with regard to Euler's moment equations of motion. This is also observed in the 
block diagram of the control system in Figure 7.3.4: note that the dumping torque 
hwKw is applied ~jrectly to the dynamics of the satellite. If the commanded torque 
hwKw were erron~ously applied via the wheel itself, then the transfer function of Eq. 
7.3.14 would be different and the added hwKw term would no longer be effective for 
dumping the excess momentum in the momentum exchange device. 

7.3.4 A Complete Reaction Wheel-Based ACS 

I Three reaction wheels, with each one's rotational axis parallel to one of the 
satellite's body axes, make up the simplest control syst~m. As the three body axes' 
dynamics are separated, the design can be carried out independently for each axis. 
However, if one of the assemblies becomes damaged then the satellite's attitude can 
no longer be adequately controlled. For this reason, a fourth RWA is installed in 
order to increase the reliability of the entire system (Fleming and Ramos 1979, Jun
kins and Turner 1986). The additional wheel is installed with its axis "off" the three 
principal sic axes, enabling (reduced) torque control about anyone of those axes. 
Thus, the incapacity of anyone of the RWAs aligned with the satellite's principal 
axes can be compensated by the torque capabilities of the fourth wheel. 

In this section we will analyze one possible geometrical configuration of a control 
system based on four reaction wheels; see Figure 7.3.5. The rotational axes of the 
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Figure 7.3.S Attitude control system with four reaction wheels. 
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four wheels are inclined to the XB-YB plane by an angle f3. Because of th.is inclina
tion, each wheel can apply torques and momentum in the ZB direction also. The 
torques delivered by the wheels are called T; (i = 1, ... ,4). The torques produced 
along the three body axes are fex, fey, Tez . Thus we have the following relations: 

[

A J [ J [ J[Tll [TIl 
Tex Tcx1cf3 1 0 -lOT T 
~ey = Tcy /cf3 = 0 1 0 -1 T: = [Aw] ~ = [Aw]T. 

Tez Tez lsf3 1 1 1 1 T4 T4 

(7.3.18) 

Here, cf3 = cos(f3) and sf3 = sin(f3), with f3 the inclination angle of the wheel axes to 
the XB-YB body plane. 

The control vector Te is computed by anyone of the control laws described in Sec
tion 7.2. We need to calculate the components T;, which are the control torques to be 
applied by each one of the four wheels. Unfortunately, the matrix [Aw] in Eq. 7.3.18 
is not square, and cannot be inverted. To find the vector components of Ti , we must 
assume some optimizing criterion. For instance, we might wish to minimize the norm 
of the vector T = [TI T2 T3 T4]T, for which we define the Hamiltonian H as 

4 

H= "E Tl. 
i=1 

By definition, 

fex= TI-Tj , 

tey= T2-T4 , 

fez = TI+T2+T3+T4· 

Let us define the functions 

gl = TI -T3-Tex, 

g2 = T2-T4- tc:y, 

g3 = TI +T2+T3+T4-fez· 

The Lagrangian will be 

L = H+Algl+A2g2+A3g3+A4g4, 

and the conditions for minimizing H will be: 

aL 
aT

I 
=2TI+AI+A3=0, 

aL 
aT

2 
= 2T2+A2+A3 = 0, 

aL 
- =2T3-AI+A3 =0, 
aT3 

aL 
aT

4 
= 2T4-A2+A3 = o. 

(7.3.19) 

(7.3.20) 

(7.3.21) 

(7.3.22) 

(7.3.23) 
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From Eqs. 7.3.23 we derive the final condition: 

!J.T= TI-T2+T3-T4 = 0, 

so that Eq. 7.3.18 may be rewritten in the following matrix form: 

~I ~I][~:] 
I I I T3 ' 

-I I -I T4 

o 

The square matrix in Eq. 7.3.25 has an inverse, which is easily found to be 

[] [ 
1 1][.] TI 102'2' Tcx 

T2 =! _0 I t -_1 t ~Cy. 
T3 2 lOt 2 TC1-
T4 0 -1 t -t 0 

169 

(7.3.24) 

(7.3.25) 

(7.3.26) 

Equation 7.3.26 provides the needed transformation between the three body axes' 
command control torques and the four wheels' command control torques. The same 
result can be obtained by a right pseudoinverse transformation (see Wertz 1986). 
This transformation is defined by: [AwR ) = [Aw)T([Aw)[Aw)T)-1 and leads to the 
same minimization of H in Eq. 7.3.19. 

For the case where only three reaction wheels are used, with their axes of rotation 
not parallel to the three body principal axes, the body-to-wheel torque transforma
tion is a 3 x 3 matrix. Assuming that the wheel axes are not collinear and not all in 
the same plane, the transformation matrix has the form 

[

TI] [awlI a
w

21 aW3i][Tcx] 
T2 = a w l2 aw22 a w32 Tcy· 
T3 a wl3 a w23 a w33 TC1-

In this matrix, the awij elements are the direction cosines of the wheel axes with refer
ence to the body frame. 
. Some clarification of Eq. 7.3.26 is needed. When an attitude maneuver is per
formed, the body axes command torques are divided between the four reaction 
wheels. Equation 7.3.19 assures that the norm ofthe wheel torque commands is min
imized. The torque produced by a reaction wheel is proportional to the current in the 
stator of the motor. On the other hand, the power consumption in the RWA is pro
portional to the square of the current in the motor of the RW. Thus, our division of 
the control torque among the four reaction wheels also assures minimization of the 
electrical power consumption of the four RWAs. Unfortunately, this is not the entire 
story; we must also determine what happens to the momentum of the four wheels. 
As we shall see, it is important to minimize also the norm Ibwl = ~ h;i' Can we mini
mize both norms simultaneously? The answer will be given in the next section. 

7.3.5 Momentum Management and Minimization of the I b w I Norm 

Viscosity torques produced on the constantly rotating rotor of the wheel 
increase power consumption of the RWA electronics. Of course, saving electrical 
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power in all spacecraft subsystems is of utmost importance. Moreover, for satis
factory operation of a reaction wheel, under normal conditions its angular velocity 
should be as far as possible from saturation. These considerations dictate that, at the 
end of any attitude maneuver, the norm of the wheel angular velocities should be 
minimized. 

If the four wheels are activated in their linear range - which means that no torque 
or momentum saturation levels are reached - and if no coulomb friction exists, then 
the angular velocities of each wheel at the end of any attitude maneuver will remain 
null (if they were so at the begimllng of the maneuver). However, depending on the 
character of the attitude maneuver, if one ofthe foregoing conditions does not hold 
then the angular velocity norm of the four wheels will not be null at the end of the 
attitude maneuver. 

Instead of controlling the attitude of the satellite with control torques as com
puted in Eqs. 7.2.2, we can control its attitude with angular momentum commands 
(see Fleming and Ramos 1979). In this case, instead of minimizing the norm of the 
control torque vector, we should minimize the norm of the control momentum vec
tor. The results of the previous section will hold also for this control momentum 
case. In Eq. 7.3.25 and Eq. 7.3.26, tex> 'icy, tez' Th T2, T3, T4 can be exchanged with 
hex' hey, hez' hI> h2' h3' h4' respectively, where hWJ = IwJwwh hW2 = Iw2ww2, and so on. 
As for the control torque law, here again minimization of the momentum norm re
quires the following condition: 

tJ.hw = hWJ - hW2 + hW3 - hW4 = o. (7.3.27) 

Our task now is to measure tJ.hw and to feed this error back to the commanded T;s, 
so that tJ.Tof Eq. 7.3.24 and tJ.hw of Eq. 7.3.27 are simultaneously satisfied. See Fig
ure 7.3.6 for the control set-up of the four-wheel configuration. The analysis to fol
low is due to E. Zemer (MBT, Israel Aircraft Industries). 

It is important that the control of tJ.hw not produce any change in the commanded 
body control torques tex> 'icy, tez' which means that the following additional condi
tion must be fulfilled: 

[ 

tJ.'icx] [ tJ.TcJ 1 [ tJ.hwKJ 1 A tJ.Te2 tJ.hwK2 
~i~ = [Aw] tJ.Tc3 = [Aw] tJ.hwK3 = O. (7.3.28) 

tJ.Tc4 tJ.hwK4 

Tex 
cp 

TI +,.... 
>1 

1 I C!)wl 
~ 

~ Iw S -
T2 + 1 C!)w2 

Tcy 
cp 

Tcz 
sp 

lAw] + --~ IwS 
~ T3 

-'" 1 C!)w3 

+~ IwS 
T4 

" 1 C!)w4 
~ 

~ Iw S 

fATc; =[-1] i Kllh .. I· 

Figure 7.3.6 Momentum management control of the four reaction wheels. 
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7.3 I Control with Momentum Exchange Devices 

Using the definition of [Aw] in Eq. 7.3.18. we obtain 

ahwKt - ahwK2 = O. 

ahwK2 - ahwK4 = O. 

I1hwKt + I1hwK2 + ahwK3 + ahwK4 = O • 

These equations are satisfied for 

Kt=K. K2=-K. K3=K. K4=-K. 

This is our final result. which can also be put in the form 
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(7.3.29) 

(7.3.30) 

aTr:j=[-I]iK.ahw• i=I ..... 4. (7.3.31) 

with ahw as defined in Eq. 7.3.27. 
In the present analysis. the wheel configuration of Figure 7.3.5 was taken as a de

sign example. The same analysis could be carried out for any other "skewed" four
wheel configuration. in which no three wheel axes are coplanar and no two axes are 
collinear (see e.g. Azor 1993) . 

It remains to determine the value of K. Suppose that there is a nonzero initial con
dition in one of the wheel's angular velocities. The response of .ahw to that initial 
condition will be: 

ahw(s) = Wwt(O) 1 = Wwt(O) . 
s 1+4KI(/ws) s+4Kllw 

(7.3.32) 

We must choose the time constant Iw/4K so that it will be slower than that of the 
slowest attitude control loops. 

A 6-DOF simulation was carried out to demonstrate the practicability of the mo
mentum management control. In these simulations. the quaternion error control law 
was used (Eqs. 7.2.15). The moments of inertia [kg-m2

] of the satellite were chosen 
to be Ix = 1.000.ly = 500.lz = 700. and Iw = 0.1. The maximum torque that the reac
tion wheels can deliver is 0.5 N-m. The attitude control of the system was checked 
for the step angular inputs of: "'com = 1°. Bcom = 2°. and tPcom = _5°. The results are 
shown in Figures 7.3.7-7.3.9. 

Figure 7.3.7 shows the Euler angle time responses for the sys~m without torque 
saturation (Figure 7.3.7.a) and the response for the same comnnlhd inputs with torque ,..".!:~_ 
saturation of 0.5 N-m (Figure 7.3.7.b). Because of the limited torque capabilities of 
the reaction wheels. the time to reach the desired steady-state response increases dras-
tically; see also Section 7.3.6. 

Figure 7.3.8 shows the norms of the angular momentum of the four wheels. both 
without and with the momentum management feedback loop. Without momentum 
management (Figure 7.3.8.a). the norm of the angular momentum of the four wheels 
at steady state is 9.63 N-m-sec. With the momentum management feedback loop 
(Figure 7.3.8.b), the same norm is decreased to 0.182 N-m-sec after 55 sec. The min
imizing factor ahw is also shown. With no momentum management (Kw = 0). it 
is seen that ahw = 1.93 N-m-sec at steady state (Figure 7.3.8.a). With momentum 
management (Kw = 0.2). ahw is reduced practically to zero (Figure 7.3.8.b). 

The individual angular velocities of the four wheels. without and with momen
tum management. are shown in Figure 7.3.9.a and Figure 7.3.9.b. respectively. It is 
important to emphasize that the wheel momentum vector in Figure 7.3.9.a has not 

moshaver10
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Figure 7.3.7.a Attitude time responses without torque limitations. 

changed, since no external torques were applied on the satellite. Only the division of 
the angUlar momentum between the wheels on the same axis was altered . 

7.3.6 Effect of Noise and Disturbances on ACS Accuracy 

For accurate attitude control systems and moderately fast maneuvers, reac
tion wheels are well suited because they allow continuous and smooth control with 
comparatively low parasitic disturbing torques (see Appendix C). However, such 
disturbances have a strong influence on the quality of the attitude control, so we 
must take care to minimize their influence. The quality of the momentum exchange 
device is not the only factor that determines the capacity of the control design to 
achieve the desired attitude accuracy and stability. Attitude sensors are no less re
sponsible for the quality and attitude accuracy of the ACS. Noise that is inherent in 

. the various system sensors also influences the attitude accuracies that can be achieved. 
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Figure 7.3.7.b Attitude time responses with torque limitations. 

In this section we analyze the influence of disturbing torques and sensor noise on the 
overall behavior of the ACS, and examine some of their conflicting implications for 
the control loop bandwidth. 

Principal Types of Attitude Control Sensors 
Extremely accurate attitude control is required in spacecraft whose payloads 

are, for example, observation telescopes that operate in different light spectra (Boorg 
1982, Dougherty et al. 1982). For such telescopes, attitude stability of several arc-sec/ 
sec and positioning accuracy of 0.010 (or less) are commonly required. These stan
dards must be achieved in spite of parasitic disturbances and sensor nOIse . 

Figure 7.3.10 (p. 178) shows a block diagram of the basic scheme of the attitude 
control feedback system, including the inherent parasitic noise sources that render 
the control engineer's life difficult. In this figure, it is easily perceived that there are 
actually two dynaptic states that must be controlled: (1) the attitude angle 8; and 
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Figure 7.3.8.a Time histories of the norm of the angular momentums 
of the four wheels without momentum management. 

(2) its attitude stability 8, which in some cases may be the more important variable. 
In order to control attitude and its stability, two principal types of attitude deter
mination hardware are used: attitude sensors and angular velocity sensors (see also 
Appendix B). 

Attitude Sensors The most common attitude sensor for earth-orbiting sat
ellites is the earth sensor, which optically senses the globe contour and uses this in
formation to calculate the attitude of the sic with respect to the earth. Expected ac
curacies of these instruments are of the order of 0.020 for expensive versions and 
0.50 for cheaper ones. Earth sensors have the drawback of being noisy, with RMS 
noise levels of about 0.03° or higher . 

Sun sensors also are quite common on earth-orbiting satellites. For such satellites 
they are more accurate than earth sensors because they are based on measuring the 
angular distance from the sun disc, which is smaller than the earth disc. Sun sensors 
are also very efficient for spacecraft that are not orbiting the earth. Accuracies of 
about 0.010 can be achieved with very expensive instruments. The statistical noise 
level is quite low, of the order of 0.010 (RMS), depending also on the dynamic range 
of the instrument's output. 

The star sensor is currently the most accurate attitude sensor, allowing accuracies 
of the order of 1 arc-sec. Unfortunately, star sensors are very expensive and less reli
able than earth and sun sensors. The instrumentation is quite complex and difficult 
to handle, and their operation depends on complicated algorithms. For these rea
sons, star sensors are used as a last resort (see Pircher 1989). 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
u 
I 



I 
I 
I 
I 

·::l 

I 
I 

_._i .. 
. -, 

I 
I 
I . 

I 

I 
I 

i 

I 

I ~ , 
, 
t 
I 

I :'J 
.:) 

j 
.. J 

I 
:.:1 

I 
I 

::1 

I 
I .~ 

j 

I 
! 

I 
I 

7.3 / Control with Momentum Exchange Devices 

CASE 61,GM=O. 2 
IlHWI . . . . . . . . 

~ ui · .. · .... ·~ ........ ·~ .. · .... ··~ ........ ·~ ........ ·l ........ ·~ ........ ·l ........ ·~ ........ · ......... 
~ 

...... . . . . . . . . 

~ •........•........ L ....... : ....... ' ......................... . 

Nt 
~ 

B. 

SORTWW 

24. 3'Z. 40. 48. 66. 64. 72. Ill. 

Time [sec] 

+ r:J Q ...... ) ... ) ......... ~ ......... ~ ...... ) ......... ~ ......... ~ ......... ~ ......... ~ ....... .. 
+ : ~: ~ ~: ~ : . .... . . ... . 

B. 16. 66. 64. 72. Ill. 

Time [sec] 

Figure 7.3.B.b Time histories of the norm of the angular momentums 
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Angular Velocity Sensors Rate integrating gyros (RIGs) are commonly 
used and very accurate; integrating the rate sensor output enables precise estima
tion of satellite attitude (Dougherty et al. 1982). Moreover, use of this instrument is 
not dependent on the sic orientation in space. This is an advantage over horizon, 
star, and sun sensors, whose signal source must be within their optical fields of view 
(FOV), thereby reducing the spacecraft envelope of useful attitudes. 

Conventional rate sensors are in principle less accurate than RIGs. They are used 
for rate sensing in various control tasks, including rate control (see Section 6.3) and 
damping in the ACS (Section 6.6.3). In general, the choice of particular sensors for 
attitude control will depend on the required accuracy and also on the specific tasks to 
be fulfilled by the spacecraft. 

Conventional Altitude Control Configuration -
Statistical Error Analysis 
Figure 7.3.10 (p. 178) shows a control configuration using an attitude sensor 

of any kind together with a rate sensor. The parasitic noises pertaining to the sensors 
are indicated as WNRS for the rate sensor noise and WNps for the attitude position 
sensor noise. In this case, the reaction wheel introduces its inherent torque noise, 
WNRW (see Bosgra and Smilde 1982). 

In the following analysis, it is theoretically possible to deal with ideal white noise, 
whose power spectral density (PSD) function is uniform and of amplitude WN_. In 
nature, white noise does not exist; likewise, the noise existing in engineering prob
lems is colored. We will assume a colored noise, which is the output of a first-order 
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Figure 7.3.9.a Angular velocities of the four wheels without 
momentum management. 

filter with corner frequency of Wc at whose input was incorporated a white noise 
source. With this definition, the relation between the amplitude WN_ of the white 
noise source and the mean square (MS) value x 2 of the colored noise at the output 
of the filter is x 2 = 0.5 x WN_ x Wc' With this definition, x is the root mean square 
(RMS) value of the filter's output. 

As discussed in Section 7.3.1, hw is the idealized output of the reaction wheel as
sembly. In order to simplify the analysis, the torque disturbances, which generally 
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Figure 7.3.9.b Angular velocities of the four wheels with 
momentum management. 
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have harmonic characteristics (Bosga and Prins 1982, Bosga and Smilde 1982), have 
been modeled here as colored noise with a corner frequency "'c; sensor noise is also 
modeled as colored noise. The corner frequencies for the three noise sources are not 
equal, but for convenience have been designated by the general term "'c' The RMS 
values of the colored noises will be labeled RWT N (reaction wheel torque noise), PSN 

(position sensor noise), and RSN (rate sensor noise). 
Sensor noise and torque disturbances induce statistical errors in both the position 

attitude (J and its stability, the time derivative e. These errors are functions of the 
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Figure 7.3.10 Conventional attitude control configuration with 
sensor noise and torque wheel disturbances. 

bandwidth of the attitude control system, which can be represented in terms of the 
natural frequency Wn and the damping coefficient ~ of a second-order pole. We make 
use of standard principles of statistical design for computing the RMS amplification 
from random sensor noises and parasitic control torques to the position and attitude 
outputs of the ACS (James, Nichols, and Phillips 1955, Solodovnikov 1960). The 
amplification of sensor noise to the input of the torque control command Tc in Fig
ure 7.3.10 is also important. Exaggerated amplification of sensor noise may saturate a 
physical torque actuator (controller), thus precluding normal operation of the feed
back control loop. 

Let us deal first with noise amplification of the rate sensor (RS) noise. Given a 
white noise of amplitude WNRS, the RMS value RSN at the output of the coloring 
filter can be obtained from the relation RS~ = 0.5(WNRS wc)' The procedure for cal
culating the mean square (MS) value of amplified noise at different outputs of the 
feedback control system of Figure 7.3.10 is as follows. 

Amplification of RS Noise First, compute the transfer function: 

(7.3.33) 

We find (see also James et al. 1955, Solodovnikov 1960) that 

(7.3.34) 

where WNRS is the amplitude of the rate sensor white noise, O~ is the mean square of 
the amplified colored noise at 0, and RSN is the RMS value of the RS colored noise. 

For noncolored white noise, Wc-"CO. Hence Eq. 7.3.34 reduces to 

O~ -.. WNRSWn~' (7.3.35) 

To find the amplification of the RSN to the attitude position (), one integration is 
added in Eq. 7.3.33, yielding 
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Once more, for white noise we have 

8~- WNRS~. 
Wn 
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(7.3.36) 

(7.3.37) 

Amplification of PS Noise Next we ascertain the statistical amplification 
of the PS (position sensor) noise. In this case, 

8 s 

WNps = [1+~S+ S:][I+...!...] . 
Wn Wn We 

(7.3.38) 

The mean square of the amplified colored noise in 8 will be 

(7.3.39) 

For noncolored white noise, the mean square of the amplified noise becomes 

.\2 _ WNpsw! 
UN - 4~ . (7.3.40) 

Also, for the amplified noise in the angular position 8, we have 

For white noise, 

82 _ WNpswn 
N- 4~ 

Amplification of the PS noise at the control torque input Tc will lead to 

(7.3.41) 

(7.3.42) 

(7.3.43) 

Amplification of RWT Noise Finally, we treat the reaction wheel parasitic 
statistical disturbance torques: 

(7.3.44) 
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As in the previous case, the amplified RW torque noise at 0 will be 

'2 WNRW RWT~ 
ON=2 2=2 l: 2' 

Is4~wn 1 2~wn Wn Is2wnwe 1 2"wn Wn +--+2" +--+-
We We We W2 

(7.3.45) 

With noncolored white noise, 

1\2 WNRw 
UN = I§4~wn . (7.3.46) 

To find the statistical amplification of the RWT N disturbances to the position 0, we 
use the same procedure as in the previous stages of this analysis: 

Finally, for white noise: 

2 WNRw 

9N = I§4~w~' 

Design Tradeo.tJs in Choosing the ACS Bandwidth 

(7.3.47) 

(7.3.48) 

Various engineering realities and physical constraints influence the choice of 
the natural frequency Wn of the attitude feedback control system. Four such factors 
are listed as follows. 

(1) The bandwidth frequency of the attitude tracking control system is generally 
determined by the speed required of the satellite's payload in response to a 
defined attitude command. Consequently, a high corner frequency We of the 
attitude control loop is desired. 

(2) As seen in the preceding equations, sensor noise tends to spoil the quality of 
the attitude 9, and also of its stability 0, by factors of Wn and w~, respectively 
(see e.g. Eq. 7.3.40 and Eq. 7.3.42). This means that, if we wish to be less 
sensitive to sensor noise, a lower bandwidth (wn) of the attitude control loop 
is imperative. 

(3) According to Eqs. 7.3.46-7.3.48 and taking into account the statistical torque 
disturbances of the reaction wheel, the quality of the attitude and its stabil
ity are inversely proportional to the comer frequency We of the attitude con
trolloop. This means that, in order to decrease the influence of the disturb
ing torques, the bandwidth of the attitude control loop must be increased. 

(4) Structural "bending" modes and liquid slosh dynamics, to be analyzed in 
Chapter 10, also tend to limit the bandwidth that can be achieved for the 
attitude control loops. 

Such contradictory demands on the bandwidth Wn of the attitude control loop will 
necessitate some tradeoffs in devising an optimal ACS. For example, suppose our 
goal is to maximize the quality of 9, despite the known (or expected) position sensor 
noise WNps and the torque noise disturbances WNRW of the reaction wheel assembly. 
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COnopt 

Figure 7.3.11 Tradeoff for achieving minimum 
noise level at the position output 8. 
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Suppose also that the noises are quasiwhite when compared to the corner frequency 
of the attitude control transfer function, "'e »> "'n. Figure 7.3.11 shows (J~/WNps and 
(J~/WNRW. The total mean square output amplitude of the disturbing noise will be 
(J~/TOT = (J~/WNps + (J~/WNRW. The minimum value of (J~/TOT will occur for some op
timizing value of "'n. 

ACS without a Position Sensor 
As we have seen, attitude accuracy depends very much on the accuracy of 

the attitude position sensor. For instance, the accuracy of a good earth sensor is of 
the order of 0.03°-0.2° (RMS). However, continuous use of an earth sensor is pre
cluded if the satellite is to be aimed at objects located in geometrical configurations 
for which the earth is outside the sensor's field of view. Use of the star sensor is not 
practical when fast and large maneuvers are performed in space. For such situations, 
precise inertial measuring units (lMUs) are used. 

Integrating the measured body rates by anyone of the techniques described in 
Sections 4.7.3-4.7.5 allows us to obtain the position of the spacecraft in terms of 
Euler angles, a direction cosine matrix, quatemion vectors, or any other attitude 
presentation. Even with perfect RIGs, we still need some attitude position sensor to 
measure accur~tely the initial conditions required for use of the gyros' rate integra
tion algorithm. Star sensors, if available, can be used for this purpose. For fast and 
large attitude maneuvers, it is common to use earth sensors together with some addi
tional accurate sensor, such as a digital sun sensor (see Appendix B), to compute the 
initial attitude conditions required by the angular rate integration process. From here 
on, the ACS relies on the rate integrating gyros only, as shown in Figure 7.3.12. 

In the following derivation, the only sensor noise is RIG noise. The accuracy 
of the satellite's attitude position is a function of this noise and of the RW torque 
disturbances. 

Amplification of RIG Noise According to Figure 7.3.12, 

1 2~s +-
(J "'n 

WNRS = S[I+~][I+ 2~s + s:] . 
"'e "'n "'n 

(7.3.49) 
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Figure 7.3.12 Attitude control system based on rate integrating gyros 
(the subscript m denotes "measured"). 

It follows that 

For white noise, We -+ 00 and 

02 WNRS wn[l+4e1 
N-+ 4~ 

(7.3.50) 

(7.3.51) 

Computation of the mean square amplification of the RS noise with respect to the 
attitude position () is not straightforward. The reason is as follows. Because 

() 

2~s 
1+-

Wn 
(7.3.52) 

we have ()~ -+ 00, since the transfer function in Eq. 7.3.52 contains an integration. 
This phenomenon is due to (finite) sensor noise at very low frequencies. The physi
cal interpretation is that, at such low frequencies, the sensor noise becomes the drift 
factor of the sensor. The lack of a true (physical) attitude position sensor causes the 
drift to be integrated by the kinematic integrator, and the attitude position error aug
ments without bound. In order to obtain a reasonable useful model for the analysis 
at hand, the constant drift term of the sensor's noise must be eliminated by intro
ducing a differentiator - accompanied by an additional first-order filter - into the 
model. The sensor noise model then becomes 

RS
N

= WNRSs . 
[1 +s/wcd[l +s/wc21 (7.3.53) 

From this model we obtain the required transfer function: 
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(7.3.54) 

EXAMPLE 7.3.1 So far, the control system of Figure 7.3.10 has been simulated to 
show the dependence of the variables 8, 9, and Tc on statistical noise of the sensors 
and of the torque controller. For the example at hand: 

Is = 600 kg-m2
, "'0 = 0.15 rad/sec, "'e = 100 rad/sec, 

PSN = 0.1° (RMS), RWT N = 0.2 N-m (RMS). 

The time-domain results are given in Figures 7.3.13-7.3.15. They agree well with 
the relevant Eq. 7.3.39 for Figure 7.3.13, Eq. 7.3.41 and Eq. 7.3.43 for Figure 7.3.14, 
and Eq. 7.3.45 and Eq. 7.3.47 for Figure 7.3.15. The results are summarized in Table 
7.3.1. The difference between the analytical and the simulation results is due to the 
finite simulation time 1j = 400 sec and to the finite integration time of 0.001 sec. 
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Figure 7.3.13 Response of the rate state ON and its RMS value 
to position sensor noise. 
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Figure 7.3.14 Responses of the position state ON. the control 
torque TeN. and their RMS values. 

Table 7.3.1 Comparison between analytical and 
time-simulation results 

9N(RMS) 9N(RMS) TcN(RMS) 9N(RMS) 
PSN(RMS) PSN(RMS) PSN(RMS) RWN(RMS) 

~q.( ... ) 4.1 10.3 0.03 13.5 3.04310'" 
Simulation 3.9410-3 0.02 13.49 2.72610'" 

9N(RMS) 
RWN(RMS) 

2.0210.3 

1.82 10.3 
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Figure 7.3.1S Time response of ON. ON' and their RMS values 
due to RW disturbing torque noise. 

7.4 Magnetic Attitude Control 

7.4.1 Basic Magnetic Torque Control Equation 
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Interaction between a magnetic moment generated within a spacecraft and 
the earth's magnetic field produces a mechanical torque acting on the spacecraft: 

T8 = Mx8, (7.4.1) 
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where M is the generated magnetic moment inside the body and B is the earth's mag
netic field intensity. Equation 7.4.1 can be written in matrix form as 

[

Ix ly It ] 
TB= Mx My Ml. . 

Bx By Bl. 
(7.4.2) 

Equation 7.4.2 can be rewritten as 

[
TBX] [0 Bl. -BY][Mx] TBy = -Bl. _0 Bx My. 
TBl. By Bx 0 Ml. 

(7.4.3) 

For a desired torque TB = Tc to be applied on the spacecraft, we must generate the 
magnetic moment vector M = [Mx My Ml.]T. However, we cannot invert the matrix 
in Eq. 7.4.3 because this matrix is singular (see also Section 5.3.4). The solution to 
our problem lies in replacing one of the magnetic torqrods with, for instance, a reac
tion wheel. By exchanging the YB magnetic torqrod with a RW, Eq. 7.4.3 is accord
ingly changed to 

[
TBX] [0 0 -BY][Mx] TBy = -Bl. 1 Bx hwy. 
TBl. By 0 0 Ml. 

(7.4.4) 

The matrix in Eq. 7.4.4 does have an inverse, so 

[
Mx] [0 0 By ][Tcx] hwy = ~J ~By . Bi ByBz Tcy. 
Ml. By 0 0 Tcl. 

(7.4.5) 

Equation 7.4.5 is the basic equation for magnetic attitude control. In this equation 
Bx, By, Bl. are the three components of the earth's magnetic field intensity, measured 
in the satellite body axes frame. 

There is also the possibility of replacing the XB or ZB axis magnetic torqrod with 
a reaction (or momentum) wheel. For the second option, a reaction wheel with its 
axis aligned along the ZB body axis, the control equations become . 

[
MX] 1 [0 -B

z 0 ][Tcx] My = B2 Bz 0 0 Tcy . 
hwl. z BxBz ByBZ B; Tcz 

(7.4.6) 

A simple model of the earth's magnetic field approximates it as a dipole, passing N-S 
through the center of the earth's globe but deviating from the Z axis by 17° (see Mc
Elvain 1962). More sophisticated models are based on series expansions (Wertz 1986). 

7.4.2 Special Features 0/ Magnetic Attitude Control 

The earth's magnetic field intensity is proportional to ml R 3, where R is the 
distance from the center of the earth and m is the magnetic dipole strength (m = 
8.1 x 1015 Wb-m in 1962, but m = 7.96 X 1015 Wb-m in 1975). Thus, the strength of 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.' '.~ .. .... , 

: ...... ; 

. ~ 

.:j 
:: 

:) 

.) 

; 
j 

:'. ~",? 

··::'~l 
! 
; 

, 

7.4 I Magnetic Attitude Control 187 

the magnetic field decreases strongly with the altitude of the satellite. In order to 
compensate for this loss in magnetic field intensity, the maximum obtainable mag
netic dipole moment of the magnetic torqrods must be increased accordingly, with 
an inevitable increase in dimension and weight. To get an idea of the level of mag
netic moment required to achieve a defined mechanical torque, Eq. 7.4.1 may also 
be written in the following form: TB = MB sin(a), where a is the angle between the 
earth's magnetic field and the artificial magnetic dipole moment produced inside the 
satellite. Assume an average angle of a = 30° during the attitude control stage. In 
this case, TB = 0.5Mml R3. At an altitude of 400 km, the mechanical torque on a sat
ellite from a magnetic torqrod capable of a magnetic moment M = 100 A-m2 will 
be only TB = 1.28 X 10-3 N-m. The same magnetic torqrods will provide only TB = 
5.23 X 10-6 N-m at a geostationary altitude of h = 35,786 km. To obtain a torque 
of about 10-3 N-m at this high altitude would require a magnetic torqrod capable 
of 24,474 A-m2, which is obviously not a practical possibility. Fortunately, geosta
tionary satellites encounter disturbances of only about 15 x 10-6 N-m, so magnetic 
torqrods capable of 350 A-m2 are sufficient for stabilization. (See also Chapter 8.) 
These numbers show clearly why an attitude control system based on magnetic con
trol torques cannot achieve fast attitude maneuvers, especially at very high altitudes. 
With low-orbit satellites, it it still possible to achieve moderately fast attitude maneu
vers using magnetic control. 

Another drawback in magnetic attitude control is the dependence of the earth's 
useful magnetic field on orbit characteristics, and also on the location of the satellite 
within the orbit. A simplified model of the earth's magnetic field, as related to the 
orbit reference frame (see Section 4.7.2), is given in McElvain (1962). For the con
venience of the reader, this model is reproduced here: 

[
Bxo] [COS{a-l1m)Sin(~m)] m Byo = R3 cos{~m) . 
B zo -2 sin(a -11m) sin(~m) 

(7.4.7) 

In Eq. 7.4.7, a = W + 9 of Figure 2.6.2, 11m is a phase angle measured from the ascend
ing node of the orbit relative to the earth's equator to the ascending node of the orbit 
relative to the geomagnetic equator, and ~m is the instantaneous inclination of the 
orbit plane to the geomagnetic equator. The functions 11m and ~m are both time
varying, but if wo » We then they can be assumed as constant over a small number of 
orbits (wo and We denote the orbital and the earth's rotation frequencies). For equa
torial orbits, ~m is constant (17° in 1962) and 11m = wot. In Eq. 7.4.7, it is clearly seen 
that the X and Z components of the earth's magnetic field intensity in the orbit refer
ence frame are harmonic functions of the orbital period, whereas the Y component 
is a slowly varying function that can become negative for ~m > 90° or for orbits with 
inclination greater than 90° -17° = 73°. This is important when we consider Eq. 7.4.5 
and Eq. 7.4.6. For the control equation (Eq. 7.4.5), Mx = TczlByo If By does not 
change sign then there are no singularity problems in computing Mx; the same is true 
for Mz• On the other hand, using the control configuration defined by Eq. 7.4.6, with 
the reaction wheel axis aligned with the ZB body axis, a singularity problem arises 
periodically when computing Mx and My since Bz changes sign, thus complicating 
the control algorithm. Moreover, according to Eq. 7.4.7, for an orbit inclined 40° 
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the maximum amplitudes of the harmonic components of Mx and M z vary by a fac
tor of at least 2, which renders the attitude magnetic control laws time-varying. In 
any case, a three-axis magnetometer is necessary when the magnetic control law is 
implemented. 

As already mentioned, the magnetic field intensity is strongly dependent on the 
inclination of the orbit. For a dipole model of the earth's magnetic field, the magni
tude of the field intensity is given by: 

IBI = ; "1 + 3 sin2(A), (7.4.8) 

where A is the elevation angle with respect to the plane that is perpendicular to the 
magnetic dipole axis. From Eq. 7.4.8 it is evident that the magnetic field for a polar 
orbit can be twice as strong as that of an equatorial orbit. 

7.4.3 Implementation of Magnetic Attitude Control 

The achievable levels of torques using magnetic torqrods are very limited. 
Saturation limits are easily attained, thus rendering the control law strongly non
linear. The bandwidth of the control loops must be chosen accordingly, in order to 
prevent saturation of the controller. But since it is impossible to preclude saturation 
of the magnetic controllers entirely, it is advisable to scale down the inputs to the 
magnetic torqrods and the RW according to the level of the saturated one, which will 
at least keep the controlled Euler rotation axis unchanged. See Section 7.2.3. 

EXAMPLE 7.4.1 A satellite in a circular orbit of 800-km altitude has the follow
ing moments of inertia: Ix = 30, Iy = 40, Iz = 20 kg-m2• Saturation level of the mag
netic torqrods is 150 A-m2, and the reaction wheel has a torque capability of 0.2 N-m. 
The closed-loop bandwidths of the three axes were chosen to be "'nx = 0.1, "'ny = 0.3, 
and Wnz = 0.1; the damping coefficient ~ = 1.0. 

The time-domain results following Euler angles command inputs of 1/;eom = 1°, 
8eom = -4°, and lPeom = 3° are given in Figures 7.4.1-7.4.3. Figure 7.4.1 shows the 
Euler angle outputs. Figure 7.4.2 shows the control command inputs to the three sat
ellite controllers - two magnetic torqrods aligned with the XB and ZB axes and one 
reaction wheel whose rotation axis is aligned with the YB body axis. As shown in the 
figure, the commanded torque on the XB axis amounts to more than 10 mN-m, which 
the magnetic torqrods cannot provide. A saturation of the ZB axis magnetic torqrod 
is present, as expected; see Figure 7.4.3. The XB axis magnetic moment command Mx 
has been decreased proportionally to about 40 A-m2, so that the direction in space 
of the commanded Euler axis of rotation remains constant (see Section 7.2.3). As 
expected; the torque produced by the magnetic torqrods is also saturated, to about 
3.0 mN-m about the XB body axis. The same proportional reduction is also per
formed on the reaction wheel torque command. 

The time histories described in Example 7.4.1 show that satisfactory attitude con
trol can be achieved by using magnetic torques, albeit with slower time responses. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 

'.',",1 . , 

I 
I 

1 

I 
I 
I 
I 
I 
I 

"'::1 
'. ".:.; .. ~.} 

:oj 

i 

I 
,.,;} 

I .J 
':':.,~ 

: : ;~ 

I 
'. :i 

! 
I 

I , 

I " I 
I 

I 
.;~ 

I 
I 

7.5 I Magnetic Unloading of Momentum Exchange Devices 

i 
o -x 

MAGNETIC CONTROL ON X-Z AXES.WHEEL ON Y 
PSIDEG 

· .. ......... : ......... : ......... : ......... : ......... : ........ . 
· . . . . 
: : : : : · . . . . · . . . . · . . . . ., .. 

....... : .... -... ':, ........ : ......... : ......... ~ ........ ': ......... ~ ........ . 'tia •......... : ......... : 
~ : . · . . . . . . · . . . . . . · . . . . . . · . . . . . . · . . . . . . · . . . . . . · . . . . . . · . . . . . . ;r 

::11. 41. 51. 61. 71. 91. 91. 101. 

Time [sec] 

TETCEO 

ci~; ~ ; ~ ; ~ ,....... : : : : : : 
~N : : : : : :. . "0 I ....... : ......... : ......... : ......... : ......... : ......... : .................................... .. 

""-' ::::: 
cP :::::: 

l~--T:~~:--~:--~:~~:~~~:--~---+--~--~ 
I. 11. 21. 31. 41. 51. 61. 71. 91. 91. 101 

Time [sec] 

FlDEG 

.; ......... : ......... : ......... : ......... : ......... : ......... : ......... : ........ : ......... : ....... .. 
· . . . . . . . . · . . . . . . . . 

~ :: : : ~ __ ~:--~·--7·--7·--
ff . : : : : : : . . . 
~N ...... · .. : .. · ...... : ........ : .. · .... ·: ........ ·: ........ ·:· ........ :·:· ...... :· ........ : ....... .. 

~ : ': ::::: · . .... . · . .... . . .... . 
0-1-)'--=:::::;"'11-. --";'21-, --..;~-1.--..;4-1.---5;....1.---6;..·1-. -7;"'1-. --6';"'1-, --T~I-. --1101. 

Time [sec] 

Figure 7.4.1 Euler angles attitude responses to angular step commands. 
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Assuming that this response is acceptable, such a configuration has the advantage of 
being much cheaper than an ACS incorporating three reaction wheels, since the cost 
of a magnetic torqrod is typically one tenth that of a reaction wheel. 

It is important to reali2e that, as seen in Eq. 7.4.3, Mx and M~ produce also a para
sitic torque about the YB axis. This disturbance torque on the YB axis is easily handled 
by the torque capabilities of the reaction wheel, which are greater than those of the 
magnetic torqrods by at least one order of magnitude. 

7.5 Magnetic Unloading of Momentum Excbange Devices 

7.5.1 Introduction 

As explained in Section 7.3.3, external disturbances acting on the body of 
an attitude-controlled sic induce accumulation of momentum in the momentum ex
change devices. This excess momentum might bring the wheels to improper working 
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Figure 7.4.2 Control torque commands to the two magnetic torqrods 
'and the reaction wheel. 

conditions. Moreover, the existence of angular momentum in the satellite causes con
trol difficulties when attitude maneuvers in space are executed, because this super
fluous momentum provides the spacecraft with unwanted gyroscopic stability. For 
this reason, three-axis stabilized attitude-maneuvering spacecraft are basically zero
bias-momentum systems. 

Excess momentum must be unloaded when it exceeds some predetermined lim
iting value. The two primary control hardware items used to dump the wheels are 
magnetic torqrods and reaction thrusters. We will focus our attention on the first of 
these options. 

7.5.2 Magnetic Unloading of the Wheels 

Magnetic torqrods generate magnetic dipole moments whose interactions 
with the earth's magnetic field produce the torques necessary to remove the excess 
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Figure 7.4.3 Magnetic dipoles produced by the magnetic torqrods. 
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momentum. This momentum unloading strategy is quite simple in principle, and 
was first proposed in the sixties (see McElvain 1962, Stickler and Alfriend 1976, Leb
sock 1982) . 

The basic control equation for momentum unloading is 

T = -k(b - bN) = -k~b. (7.5.1) 

In this vectorial equation, k is the unloading control gain, b is the wheel's momen
tum vector, bN is the desired and nominal wheel momentum vector, and (b - bN ) = 
~b is the excess momentum to be removed. 

The magnetic torque equation was previously stated to be T = M x B. Together 
with Eq. 7.5.1 this yields 

-k~b =MxB. (7.5.2) 

However, the control magnetic dipole vector M cannot be computed from Eq. 7.5.2 
(see Section 7.4.1). Using vector product by B on both sides, Eq. 7.5.2 becomes 
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Bx(-kAh) =Bx(MxB) = B 2M-B(MoB). (7.5.3) 

With some simplifying assumptions, we can find M from Eq. 7.5.3. Suppose that 
the applied M happens to be perpendicular to the earth's magnetic field B. In this 
case MoB (which is a scalar product) is zeroed, and from Eq. 7.5.3 we have 

k 
M = --2(BXAh). B . (7.5.4) 

This control magnetic moment produces a magnetic torque that is not exactly pro
portional to the excess momentum: 

T = - ;2 [B2Ah-B(BoAh)]. (7.5.5) 

Physically, Eq. 7.5.2 states that no torque can be obtained about the earth's mag
netic field B and, moreover, that if the excess momentum to be dumped is parallel to 
this vector then the wheels cannot be unloaded. Fortunately, for most inclined orbits 
this condition does not continue indefinitely: both the direction and the amplitude of 
B with respect to body axes will vary during an orbit, and an average removal of the 
excess momentum takes place. In any case, the effectiveness of momentum unloading 
depends very much on the specific orbit in which the satellite is moving. For equa
torial orbits, the efficiency is quite low. 

Equation 7.5.4 can be put in more explicit form: 

[

MX] [ByAhZ-BZAhy] 
My = - ;2 BzAhx - BxAhz , 
M z BxAhy - ByAhx 

(7.5.6) 

where Bx, By, Bz are the measured earth magnetic field strength components in the 
body axis frame. Hence, a three-axis magnetometer is imperative. The excess mo
mentum Ah is known from measuring the wheel's angular velocities and transform
ing their components to body axes, so that the components of the magnetic dipole 
moment M can be computed also in body axes using Eq. 7.5.6. The saturation level 
of the magnetic torqrods must be such that they can provide torques larger than the 
external disturbing torques causing the momentum loading of the wheels; this was 
discussed in Section 7.4.2. Our remaining task is to evaluate k. 

7.5.3 Determination of the Unloading Control Gain k 

The control system is time-varying, because the components of the earth's 
magnetic field in the orbit reference frame are also time-varying and depend strongly 
on the orbit parameters. Moreover, the control law expressed by Eq. 7.5.6 was ob
tained under the dubious assumption that the commanded magnetic dipole moment 
M is always perpendicular to the earth's magnetic field B. Hence, an analytic pro
cedure to obtain the correct value of k does not seem to be feasible. In our analy
sis, k is obtained by the often useful "cut-and-try" method. Several simulations with 
different ks are performed until an acceptable steady-state excess momentum re
mains, with limited control magnetic dipole moments. We note that excessive mag
netic torques are accompanied by larger power consumption and larger dimension and 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 

I I 

I 
I 
I 

.. ~ 

I 
I 
I 
I 
I 
I 
I 

, 

I '4 : .-:~ 

.) 

'.'1 

I 
1 

I 
., 

I 
<: 
~ 

I 
I 
I 
I 
I 

7.5 / Magnetic Unloading of Momentum Exchange Devices 193 

weight of the magnetic torqrods, and might also interfere with the primary task of 
achieving good attitude control. 

EXAMPLE 7.5.1 A satellite has the following physical specifications: Ix = 1,000, 
Iy = 500, 11:. = 700 kg_m2• The satellite is in a circular orbit at an altitude of 400 km, 
and an inclination of 40°, with its YB axis perpendicular to the orbit plane. External 
disturbance torques of 10-3 N-m are foreseen about the YB body axis. The overall 
excess momentum in the satellite must not exceed 3 N-m-sec. The satellite's attitude 
is stabilized with the aid of three reaction wheels, whose rotational axes are aligned 
with the principal body axes. 

Solution According to the discussion in Section 7.4.2, magnetic torqrods 
that produce 100 A-m2 are sufficient at this low altitude. For a constant disturbance 
about the Y B axis, the excess momentum of the wheel aligned with the Y B axis will in
crease indefinitely (k = 0; see Figure 7.5.1). The excess angular momentum of the 
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Figure 7.5.1 Increase of the excess momentum in the Y B reaction 
wheel due to Tdy• k = O. 
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Figure 7.5.2 Attitude disturbances due to the momentum unloading control. 

remaining wheels is obviously null. With a momentum dumping control gain k = 
0.001 and the same disturbance of 10-3 N-m about the YB axis, Figure 7.5.2 shows 
that no noticeable attitude disturbances are developing. On the other hand, the excess 
momentum of the Y B axis wheel is well controlled, and limited to less than 2 N-m-sec. 
The average momentum about the two remaining wheels is null, as expected, since 
there is no disturbance about the XB and ZB axes (see Figure 7.5.3). The magnetic 
dipole moments of the magnetic torqrods are shown in Figure 7.5.4. 

Figure 7.5.5 shows the excess momentum in the three reaction wheels when an 
additional disturbance about the XB axis is applied, Tdx = 0.001 N-m. In this figure, 
average excess momentums of about 0.5 N-m-sec in the X B reaction wheel and about 
0.8 N-m-sec in the ZB reaction wheel are perceived. Because of the assumptions made 
in Section 7.5.2, an excess momentum accumulates also in the ZB wheel, although 
no disturbance about this axis was applied. 
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Figure 7.5.3 Limited excess momentum achieved with k = 0.001. 

7.6 Time-Optimal Attitude Cootrol 

7.6.1 Introduction 

195 

Time-optimal control is used in spacecraft attitude control to minimize the 
time of attitude orientation of the satellite in space. For a sky observation satellite, it 
is important to be able to reorient the satellite from one to another part of the sky in 
minimum time, so that a maximum quantity of observations can be performed when 
the satellite is favorably located. The same criterion holds for earth-observing satel
lites; low-orbit sic stay in the region to be observed for a short period of time and, in 
order to collect the maximum quantity of data, the satellite must be maneuvered in 
the shortest possible time. For a one-axis reorientation, the time-optimal control is 
a bang-bang control (Elgerd 1967, Bryson and Ho 1969). For a three-axis reorienta
tion, the time-optimal control is not an eigenaxis rotation about a chosen control axis 

------ -I 
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Figure 7.5.4 Magnetic dipoles produced by magnetic torqrods to counteract Tdr 

(Bilimora and Wie 1993). A complete treatment of time-optimal reorientation in 
space, based on optimal control theory, can be found in Junkins and Turner (1986). 

The transfer function methods that are so indispensable in linear system analysis 
cannot be used for time-optimal control systems, where the controller is drawn into 
heavy saturation in order to deliver to the satellite the maximum physically obtain
able angular accelerations. The satellite dynamics equations in time-optimal control 
are characterized by a linear second-order plant and a nonlinear maximum-effort or 
on-offcontroller. The resulting control problems are most efficiently analyzed in the 
phase plane. 

Time-optimal control theory cannot in itself provide a practical time-optimal ori
entation without taking into consideration some practical physical constraints, such 
as control time delays, uncertainty in the levels of the maximum control acceleration 
and deceleration, additional time constants existing in the satellite hardware, struc
tural dynamics, and so on. We will see that these physical constraints have a major 
impact on the achievable qualities of the time-optimal orientation control schemes. 
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Figure 7.5.5 Bounded accumulated excess momentum in the three 
reaction wheels with disturbances about the YB and XB axes. 

7.6.2 Control about a Single Axis 
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The basic time-optimal control is a bang-bang control. The plant consists of 
two integrators, preceded by the moment of inertia I of the satellite about the ori
entation axis. We assume here that the torque controller is a reaction wheel, although 
the analysis can as well be carried out with other torque controllers (e.g., propulsion 
thrusters). The maximum torque about the axis depends on the reaction wheel capa
bilities hwmax = Tmax. If two wheels are aligned about the orientation axis, the maxi
mum torque capabilities are augmented accordingly. The maximum angular acceler
ation and deceleration for one wheel are Umax = ±TmaxlI. (For simplicity, we shall 
use u = Umax .) Let us also define 

ECP = e = rpcom -cp and E~ = e = ~com -~, (7.6.1) 

where rpcom and ~com are the Euler command angle and its derivative. 
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Figure 7.6.1 Ideal and practical time-optimal control solution. 

Given these definitions, the time-optimal control behavior is shown in Figure 
7.6.1. In this figure, we define the switching curve; any initial condition of e and e 
moves on this curve toward the origin, thus completing the optimal trajectory. The 
basic equations for acceleration and deceleration are 

(fJI= ±Tmax, 

cbI= ±Tmaxt+cboI, 

t 2 • 
cf>I= ±TmaxT+cf>oI+cf>oIt. 

(7.6.2) 

(7.6.3) 

(7.6.4) 

The switching curve is a parabolic curve passing through the origin. In this case, 
from Eq. 7.6.3 and Eq. 7.6.4 we obtain the equation for this curve: 

1 '1'1 cf>=-
2u

cf> cf>. (7.6.5) 

For any initial conditions in the phase plane, the motion from point A to point 
B is on an acceleration path. When point B on the switching curve is reached, the 
torque T (and accordingly the acceleration u also) changes sign. In Figure 7.6.l.a, in 
the deceleration motion on the arc BC, the angular motion reaches the origin C and 
the time-optimal cycle is completed. Because of time delays in the control system and 
since the moment of inertia I and the torque T are not exactly known, some "chatter
ing" about the origin is inevitable. To eliminate this effect, a conventional linear con
trol solution will replace the bang-bang solution near the origin. 

In the linear range, the torque command Tc will have the following expression: 

(7.6.6) 

where K and Kd are computed in the standard way for a second-order linear feed
back system. If the closed-loop feedback system is to have a natural frequency "'n 
and a damping coefficient ~, then 

K = "'~I and Kd = 2~"'nI. 
The linear range mode is entered when 

lei < TmaxlKd • 

-(7.6.7) 

(7.6.8) 
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Figure 7.6.2 The quasi-time-optimal attitude control algorithm. 

In Figure 7.6.1, the axes are e and e. The phase plane shows paths for the initial val
ues eo and eo. The complete control algorithm is summarized in the flow chart of 
Figure 7.6.2. 

EXAMPLE 7.6.1 In this example, we suppose that 1= 600 kg-m2, E = 1.0, Wn = 0.5 
rad/sec, Tmax = 0.4 N-m, and cPcom = 2°. With the nominal moment of inertia and no 
time delays in the feedback loop, the time-domain behavior is a quasi-time-optimal 
bang-bang solution (see Figures 7.6.3). With a virtually continuous control system 
(T sam = 0.01 sec), the time behavior is the nominal bang-bang solution until the linear 
range in Figure 7.6.l.b is approached. The phase-plane behavior Eti> viz. ecP is shown 
in Figure 7.6.3.d. 
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Figure 7.6.3 Time-domain behavior of quasi-time-optimal continuous control. 
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Figure 7.6.4 Quasi-time-optimal solution with sampling time T sam = 0.2 sec. 
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Figure 7.6.5 Quasi-time-optimal solution with sampling time of 2.5 sec. 

The same control system has been simulated with Tsam = 0.2 sec, whichis a com
paratively short sampling time. The time behavior in Figures 7.6.4 shows clearly the 
difference from the case of time optimality, but still there is a single entrance to the 
linear range in Figure 7.6.4.d. An overshoot of 10010 in tP may be discerned. 

With the much larger sampling time of T sam = 2.5 sec, the control solution is un
acceptable; this is evident in the time responses shown in Figures 7.6.5. The large 
time delay, generated by the exaggerated sampling time, causes the decelerating path 
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to miss the entrance to the linear range, resulting in a large oscillatory motion about 
the origin. This is unacceptable behavior, which can be overcome as described in the 
following section. 

7.6.3 Control with Uncertainties 

The time-optimal behavior in Figure 7.6.3 is achieved under ideal condi
tions: there are no time delays in the control loop, the moment of inertia of the sat
ellite is known exactly, and the theoretical maximum torque Tmax used in the con
trol equations exactly equals the actual activating torque. In practice, the activating 
torque T might be larger (or smaller) than Tmax. In general, owing to sampling fea
tures of the controller and to additional delays in the control loop, the actual time 
behavior of the control system will deviate from the nominal time-optimal solution 
as follows (see Pierre 1986): 

(a) if T < Tmax, then an overshoot in the time behavior is to be expected; 
(b) if T> Tmax, a time delay llt in the control loop gives rise to a chatter along 

the switching line. 

The path in the phase plane in Figure 7.6.1 is a parabola, until point B is reached. 
Because of the finite time delay, the path - after point B is reached - actually over
shoots the nominal switching line DC by a small amount; then the torque reversal 
sends the path back across this line, reversal occurs once more, and so on, giving rise 
to the chatter effect. The smaller the time delay llt, the smaller the chatter amplitude 
but also the larger its cycling frequency. With practical intermediate time delays, the 
amplitude of the chatter might be well pronounced, as shown in Figure 7.6.6 (path 2 
in the phase plane). 

Figure 7.6.6 simulates the behavior of the quasi-time-optimal control law of Ex
ample 7.6.1 in the phase plane for the following uncertainty conditions. 

Path 1: The nominal time-optimal solution, with no time delays and exactly 
known activating acceleration Umax = TmaxiI. (We have set U:3 Umax .) 

Path 2: T= 1.5Tmax , llt = 0.2 sec. The chatter effect is clearly perceived. 
Path 3: T = 0.5Tmax, llt = 0.0 sec. The acceleration time is longer, and the time

optimal behavior is maintained in the accelerating period. However, in the decelera
tion period the activating torque is smaller than expected so the path does not fol
low the switching curve, and this leads to an overshoot, followed by an undershoot, 
et cetera, until the origin is reached. If the torque controller is a reaction wheel then 
this chatter will lead to a waste of electrical power, which is not too disturbing. But 
in the case of reaction torque control the chatter is accompanied by a large waste of 
fuel, which cannot be tolerated from the system engineering point of view; in these 
cases, chattering must be prevented. 

7.6.4 Elimination of Chatter and of Time-Delay Effects 

Time-optimal control is needed so that delays, as well as the uncertainty of 
the physical level of the applied torque in the feedback loop, are compensated for. 
Our analytical derivation follows closely that of D. Verbin (MBT, Israel Aircraft 
Industries) . 
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Figure 7.6.6 Phase-plane behavior of the time-optimal control law with 
different time delays and uncertainty in the level of the activating torques. 

In Figure 7.6.7, when the switching curve is reached and the command for decel
eration is issued, the path will not follow the switching curve exactly because of time 
delays in the control loop. Instead, a delayed path will be followed. To compensate 
for this delay, the switching command for deceleration must be issued earlier on the 
acceleration path: at point 2, before the switching curve is attained. Knowing the 
maximum time delay in the control loop, it is possible to advance the "switch to de
celeration" command to point 2. Because of the delay, the new deceleration curve 
will reach point 3 - which is on the nominal switching curve - and the overshoot in 
the time response will be avoided. 

e 

. 
e 

Figure 7.6.7 Definition of a new switching curve for 
compensating the time delays in the control loop. 
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Points 2 and 3 are located on the path of maximum acceleration. Thus we have 

cb3 = cb2 - wit, (7.6.9) 

tP3 = tP2+cb2il.t-(uI2)il.t2, (7.6.10) 
. 2 cb2 tP3 = 2- 2u(tP3-tP2)' (7.6.11) 

Point 3 also satisfies Eq. 7.6.5, since it must be located on the original switching 
curve. Hence 

'2 tP3 = tP312u. (7.6.12) 

Together with Eq. 7.6.11, we have 

'2 '2 tP3 = (tP2 + 2utP2)12. (7.6.13) 

From Eq. 7.6.13 and Eq. 7.6.9 we obtain, after squaring both sides, 

(cb~+2ucf>2)/2 = cb~-2uil.tcb2+u2il.t2. (7.6.14) 

Equation 7.6.14 can be put in the following form: 

tP2 = cb~l2u - 2il.tcb2 + uil.t2; (7.6.15) 

this equation is true for cb < O. In order to hold also for cb > 0, it should be rewrit-
ten as 

tP2 = -cb2Icb2112u-2il.tcb2-uil.t2(~2/1~21). (7.6.16) 

With no internal delays in the control loop, il.t = 0 and Eq. 7.6.16 is equivalent to 
Eq. 7.6.5. In order to eliminate chatter, we shall define a kind of linear solution be-
tween the switching curves expressed by these two equations. Using once more tbe 
definitions of Eq. 7.6.1, we can rewrite Eq. 7.6.5 and Eq. 7.6.16 as 

el = -elel/2u, (7.6.17) 

e2 = -eleI/2u-2il.te-uil.t2(e/lel). (7.6.18) 

The control moment Tc is computed between the two paths by a linear interpolation. 
For e < 0, we obtain 

e-el e2-e 2e-el-e2 
(7.6.19) Tc = --(+Tmax)+--(-Tmax) = Tmax. 

e2- el e2-el e2- el 

For e> 0, 

T. - el +e2-2e T. (7.6.20) c - max' e2- el 

For both e < 0 and e > 0, Eq. 7.6.19 and Eq. 7.6.20 become 

T. - el +e2-2e e T. 
c - e2- el lei max' (7.6.21) 

Insertion of e, and e2 from Eq. 7.6.9 and Eq. 7.6.10 into Eq. 7.6.13 leads to: 

_ -(lel/u)e-2il.te-uil.t2(ellel)-2e e T. 
Tc - -2il.te-uil.t2(e1Iel) lei max' 

(7.6.22) 
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Figure 7.6.8 Time-optimal control with compensation 
for III and p, the uncertainty in Tmax. 

In the foregoing analysis u = TmaxlI, where Tmax is the nominal maximum torque 
that the reaction wheel can apply on the satellite. Since we assumed that the applied 
torque was no longer the nominal one, let us define u = (Tmaxl/)(I-p), with p ex
pressing the deviation of the applied acceleration from the nominal; p combines the 
uncertainties in both Tmax and I, and so is a kind of margin factor. The value of p 
must be chosen such that, for the expected uncertainties in the existing torque level, 
chatter will not be present. However, after the margin factor p is selected, the solu
tion.will remain suboptimal only for the case in which u exactly suits Tmax, the new 
physically applied torque. 

With these definitions, the final equation for the computed torque becomes: 

T [ lei . 2 . (1 .)]r. (7623) 
= udt(2Iel+uM) e+ M(2Iel+Udt) e+slgn , e max' •• 

With the torque value to be applied as calculated via Eq. 7.6.23, we can modify the 
flowchart of the control algorithm shown in Figure 7.6.2; this modification is shown 
in Figure 7.6.8. Example 7.6.2 uses Eq. 7.6.23 to demonstrate the elimination of the 
chatter effect. 

EXAMPLE 7.6.2 In this example, Tsam = 0.5 sec. We choose p = -I, which means 
that the applied torque can be twice the nominal maximum torque: Tmax = 2Tmax . 
Simulation of the time-optimal control law with M = 0.0 sec (uncompensated) and 
an applied torque of 2Tmax shows a chatter in the time response of the system (see 
Figure 7.6.9). As expected, using dt = 0.5 sec and p = -1 in Eq. 7.6.23 eliminates the 
chatter effect completely (see Figure 7.6.10). In Figure 7.6.11, the time responses of t/J 
for the compensated and uncompensated cases are superimposed. The figure shows 
that elimination of the chatter effect does not appreciably compromise the optimal
ity of the time-optimal control solution. On the other hand, with 0 < p < I, the time 
response will be slower and with an appreciable overshoot. 
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Figure 7.6.9 Time-optimal solution without compensation for the 
time delay and augmented applied maximum torque. 
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Figure 7.6.10 Time-optimal solution with compensation for the 
time delay and augmented applied maximum torque. 

The preceding example concludes our analysis of single-axis time-optimal control. 
The three-axis time-optimal problem is outside the scope of this text; the interested 
reader is referred to Junkins and Turner (1986), Bikdash, Cliff, and Nayfeh (1993), 
and Bilimora and Wie (1993). 
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Figure 7.6.11 Time-optimal control with chatter compared 
to compensated time-optimal control without chatter. 

7.7 Technical Features of the Reaction Wheel 

We have used the RWA as the primary torque controller when accurate and 
time-optimal attitude control was mandatory. In practice, choice of the right wheel 
depends on the performance to be achieved by the satellite's ACS. There are some 
basic technical features that a reaction wheel must possess if the desired performance 
parameters of the satellite's ACS are to be achieved. These include: maximum achiev
able torque; maximum momentum capacity; low torque noise; and low coulomb fric
tion torques. 

The following simplified analysis will help define the first two necessary features, 
which pertain to the attitude change about a single axis of the satellite. The total mo
mentum about one of the axes is HB = Hs+Hw, where Hw is the momentum of the 
reaction wheel about the satellite rotation axis and Hs is the momentum of the satel
lite about the same axis. Since there ~e no external moments, iII = iIs + iIw = 0 and 

(7.7.1) 

As in the discussion of Section 7.6, time-optimal attitude control is obtained by de
livering maximum angular accelerations and decelerations to the sic by the reaction 
wheel. The angular motion of the satellite and of the reaction wheel caused by the 
application of torgues by the reaction wheel is shown in Figure 7.7.1. 

t 

. . 
---------- -H 

w -Hsl-----l 

Figure 7.7.1 Relationship between the momentum delivered by 
the reaction wheel and the angular rotation of the satellite. 
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To obtain a positive rotation of the satellite, a negative moment -fIw = fIs must 
be delivered by the reaction wheel between I) and t2' The momentum of the satellite 
will increase in that period by the following amount: 

-fIw x (12 - I) = fIs X (12 - I) = H S(l2)' (7.7.2) 

The satellite will rotate in the same period of time to 0(t2): 

• (I _1)2 . (I _1)2 
-H. 2 ) = H 2 ) = l 0(1 ) 

w 2 s 2 s 2' (7.7.3) 

In a time-optimal trajectory, we must set 13 = t2' The final angular rotation is then 
Or = 20(12), or 

(7.7.4) 

The performance of the attitude control demands that an angular rotation Or be 
achieved within a given time If. Hence, 12-/) = Irl2. Finally, 

II. = 4/s8f 
w 2' (7.7.5) 

If 

During the acceleration stage, (/2-/) = O.Slf' the momentum of the satellite in
creases to 

• • If 
H S(t2) = -Hw(tz-t) = -Hw2; (7.7.6) 

the reaction wheel must be able to accumulate the same level of momentum, so 

Rw = 2/s0f •• (7.7.7) 
If 

EXAMPLE 7.7.1 An attitude control system is designed to follow an attitude rota
tion of 0.2 rad in 10 sec, where the moment of inertia about the rotation axis is Is = 
100 kg_m2• To specify the characteristics of the reaction wheel for this control speci
fication, the following relations are used: 

. . 4xlOOxO.2 8 
maxImum torque = Hw = 100 = O. N-m; 

. 2 x 100 x 0.2 4 N 
maxImum momentum = 10 = -m-sec. 

If the calculated parameters for the potential reaction wheel are too difficult to 
acquire with existing commercial and space-qualified wheels, the attitude control 
specifications must be lowered. Reconsidering Figure 7.7.1, this would involve an 
increase of the acceleration period (t2 - I) as well as a forceful prolongation of the 
final time If of the attitude maneuver. Another constraint in activating the reaction 
wheel is the heating of the stator of the electrical motor due to prolonged torque op
eration. This difficulty can be partially eliminated by torque control maneuvers in 
which the acceleration and deceleration stages are separated by a no-conlrol lorque 
period, as in Figure 7.7.1. 
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Until now, our calculations of maximal accumulation by the momentum wheel 
have been based solely on attitude-maneuvering specifications. However, there is an
other factor that must be considered. We have already treated the subject of momen
tum saturation and dumping of the reaction wheel (Section 7.3.3). Any external dis
turbance will add momentum to the wheel, which must be periodically dumped. 
Generally, because of mission constraints, there is some minimum period of time 
tdump during which dumping is not allowed. The reaction wheel must be designed so 
that it can retain any momentum accumulated during [dump without adverse effects. 

Finally, specifying the maximum acceptable torque noise is based on our analysis 
in Section 7.3.6. An example of acceptable torque noise levels in different frequency 
spectrum ranges is shown in Table C.4.1 (p. 395). 

7.8 Summary 

The present chapter dealt with the critical subject of satellite attitude ma
neuvers. The two most important factors influencing maneuver quality are the char
acteristics of the torque controllers and of the attitude sensors. Torque controllers 
are characterized by the maximum torques they can produce, and by the level of 
parasitic disturbing torques. Attitude sensors are characterized by their accuracies, 
and also by their parasitic noises and biases. 

Under the constraints of the physical characteristics of the control hardware, max
imum performance was achieved by minimizing amplification of sensor noise and 
of the controllers' disturbing torque noises. Also, time-optimal techniques were used 
in order to take full advantage of the maximum torques that controllers can deliver. 
Finally, we examined momentum management of a multi-reaction wheel system, 
together with momentum dumping of the momentum accumulated in the wheels due 
to external torque disturbances. 
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CHAPTER 8 

Momentum-Biased Attitude Stabilization 

8.1 Introduction 

Momentum-biased satellites are dual-spin satellites that do not consist of 
two parts (platform and rotor) as described in Chapter 6. Here, constant angular 
momentum is provided by a momentum wheel - a momentum exchange device de
scribed in Chapter 7. Momentum-biased satellites are three-axis-stabilized as fol
lows: (1) the momentum bias provides inertial stability to the wheel axis, which is per
pendicular to the orbit plane; and (2) the torque capabilities of the wheel about the 
wheel axis are used to stabilize the attitude of the satellite in the orbit plane. Most 
communications satellites, especially those operating in geostationary altitudes, are 
momentum-biased. 

As we shall see, the momentum bias is not sufficient to stabilize completely the 
momentum axis in space. Active control means are generally added to assure an 
accurate attitude stabilization, keeping the attitude errors within strict permitted 
limits. Common controllers are magnetic torqrods, reaction thrusters, or even an 
additional small reaction wheel. 

An unusual and important feature of momentum-biased satellites is that their 
yaw attitude error need not be measured, rendering that difficult task unnecessary. 
Different control schemes based on the momentum-bias principle will be treated in 
this chapter. See also Dougherty, Lebsock, and Rodden (1971), Iwens, Fleming, and 
Spector (1974), Schmidt (1975), Lebsock (1980), and Fox (1986). 

8.2 Stabilization without Active Control 

The orbit reference frame was defined in previous chapters as follows: the 
ZR axis points toward the center of mass of the earth; the Y R axis is normal (perpen
dicular) to the orbit plane; the XR axis completes a right-hand three-axis orthogonal 

Figure 8.2.1 Definition of the reference frame 
and the direction of the MW axis. 
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frame, and points in the direction of the orbiting satellite. For a circular orbit, the 
X R axis coincides with the velocity vector of the satellite. The axis of the momentum 
wheel (MW) is nominally in the direction of the normal to the orbit plane. (See Fig
ure 8.2.1.) The angular dynamic equations of the system at hand emerge from Eqs. 
4.8.14 with respect to a single momentum wheel, the one with its axis aligned on the 
YB body axis. This means that only the control variables hwy and hwy will remain in 
the equations. 

For notational simplicity, we define 

a = 4"'~(/y-Iz)' b = -"'0(/x+1z-1y), c = "'~(Iy-Ix), d = 3",~(Ix-lz)' 
Given our reference frame and the definitions just listed, Eqs. 4.8.14 become 

Tdz + Tcz = Iz~+ [-b+hwy1ti>+ [c-"'ohwy1t/1, 

Tdx+Tcx = IxCi>+ [a-"'ohwy1q,-[ -b+hwy1~, 

Tdy + Tcy = Iy8 + dO + hwy, 

where hwy stands for hwyo of Eqs. 4.8.14. 

(8.2.1) 

The approximated Eqs. 8.2.1 show that it is possible to separate the first two equa
tions, pertaining to the X B and ZB body axes, from the third equation, which is the 
pitch dynamics equation about the YB body axis. The pitch attitude is controlled with 
the torque capabilities of the momentum wheel, namely hwy, in exactly the same way 
as explained in Section 7.3. The momentum of the wheel, set initially at some nomi
nal bias value, may change owing to external disturbances acting about the YB axis; 
the additional momentum must be dumped, as described in Section 7.3.3. 

The more difficult attitude stabilization problem exists in the XB-ZB plane of the 
sic dynamics. Let us take Laplace transforms of the first two of Eqs. 8.2.1 for con
stant disturbances about the XB and ZB body axes, and also for initial conditions of 
the Euler angles and their derivatives. The constant hwy in Eqs. 8.2.1 is, in any prac
tical system, large enough to justify neglecting the terms a, b, and c. For instance, 
these terms become much smaller than the specified hwy in a geostationary orbit, 
where "'0 = 7.39 x lO-s rad/sec. Even if the differences in the moments of inertia (in 
the terms a, b, c in Eqs. 8.2.1) are as high as S()() kg_m2 and hwy = 20 kg-m-sec, the 
errors introduced in the coefficients of q, and t/I are less than 1070. With these approx
imations, the equations can be put in the following matrix form: 

(8.2.2) 

The solution is 

(8.2.3) 

~ .. 
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(8.2.4) 

With the practical assumption that h;'y »> w~/x/~ and with hwy» Wo (Ix + I~), the 
determinant in Eq. 8.2.4 can be put in the more compact form: 

.1(s) =:: (S2+w~)(S2+ h;'y). (8.2.5) 
Ixlz 

In Eq. 8.2.5 we see that the determinant consists of two second-order poles: the first 
located at the orbital frequency Wo and the second at the nutation frequency of the 
satellite, which is proportional to the momentum bias hwy and the moments of iner
tia about the two transverse axes X Band ZB of the spacecraft. 

Time Behavior 
The momentum-biased satellite dynamics consist of two undamped second

order poles, so we cannot use the final-value theorem in Laplace transforms for eval
uating the steady-state errors in q, and I/; owing to their harmonic behavior. However, 
we can assume that some momentary damping factors do exist in both second-order 
poles in Eq. 8.2.5. In this case, the steady-state errors will coincide with the average 
values of the harmonic motions of q, and 1/;. According to Eq. 8.2.3 and Eq. 8.2.4, 
the average errors for the external disturbances Tdx and Td~ become 

-Tdx 
q,av = -h-+OTd~' 

Wo wy 

-Td 
l/;av=OTdx+-

h 
~ . 

Wo wy 

(8.2.6) 

We see that the average value of the Euler angles depends on the level of momen
tum bias supplied to the satellite and also on the orbital frequency woo Note that the 
sign of the average values depends on the sign of hwy" To find the exact amplitudes of 
the attitude harmonic motion, we must take the inverse Laplace transforms of Eq. 
8.2.3. First, let us find the time behavior of q,(t) as a consequence of an external dis
turbance Tdx' From the preceding equations we find that 

(
2 wohwy) 

q,(s) =.!. s -~ =A s +B s +c.!. 
Tdx Ix S(S2+w~)(S2+w~ut) S2+w~ S2+w~ut S 

_ [ 1 ] [1 + hWY ] S 
- W~ut - w~ Ix Ixlzwo S2 + w~ 

(8.2.7) 

(8.2.8) 

The inverse Laplace transform consists of two harmonic cosine functions with fre
quencies Wnut and Wo of different amplitudes, and a constant that is the average value 
of the time response with amplitude -l/wohWY' as also found in Eqs. 8.2.6. It is 
easily seen from Eq. 8.2.7 that the amplitude A of the harmonic motion with orbital 
frequency Wo is much larger than the amplitude B of the harmonic motion with nuta
tion frequency Wnut. 
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Figure 8.1.1 Time behavior of 1/>(1) in one orbital period. 

EXAMPLE 8.2.1 In this example, we choose a geostationary satellite with "'0 = 
7.3 X 10-5 rad/sec. Also, Ix= 800 kg-m2, Iz = 1,000 kg-m2

, and hwy = -10 N-m-sec. 
With these satellite characteristics, we find that "'nut = 0.0112 rad/sec. It follows that 
A = -1,357, B = -10, and C = 1,371. With the values of A, B, and C: 

q,(t) = Tdx[1,371-1,357 cos(0.OOOO729t) -10 cos(0.0112t)]. 

The nutation harmonic amplitude is smaller by a factor of 135 than that of the 
orbital harmonic amplitude. The time response of the roll error q,(t) is shown in Fig
ure 8.2.2. In order to show the difference between the amplitudes of orbital and nu
tation harmonic motions, this time response is telescoped in Figure 8.2.3 (overleaf) 
and shown for the first 10,000 seconds only. A similar time response can be simulated 
for the yaw angle 1/1. 

Even if the disturbance amplitude is as small as 10-5 N-m, the maximum error 
in q, will be 1.5° - a tremendous error for a geostationary communications satellite, 
for which an acceptable roll error is only about 0.05°. This situation could be reme
died by drastically increasing the value of the momentum bias, but such an approach 
would require large increases in the dimensions, weight, and power consumption of 
the momentum wheel assembly, which for practical reasons are usually not feasible. 

Moreover, because the open-loop poles of the transfer functions in Eqs. 8.2.7 are 
not damped, harmonic disturbances having frequencies of "'0 or "'nut will destabilize 
the system and hence the amplitude of the harmonic motion will increase linearly 
with time. We should keep in mind that various external disturbances acting on the 
satellite, such as solar pressure disturbing torques, may have harmonic components 
matching the basic orbital frequency "'0' All these factors lead to the conclusion that 
active attitude stabilization is mandatory. 
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Figure 8.2.3 Time behavior of /fJ(/) in a time period that is 1110 of 
the orbital period. 

8.3 Stabilization with Active Control 

The momentum bias is not itself sufficient to adequately attitude-stabilize the 
XB-ZB lateral plane of the satellite. For any three-axis-stabilized satellite orbiting a 
planet, the horizon sensor (also called an earth sensor for earth-orbiting sic) enables 
measurement of the roll (q,) and the pitch (0), but not the yaw (!f), Euler angles. The 
pitch measurement allows control of the pitch attitude in the manner explained in 
Section 7.3. For roll-yaw attitude control, it is theoretically necessary to measure (or 
estimate) both the roll and the yaw angle errors, which cannot be done with a hori
zon sensor. One alternative is to measure the yaw angle with the aid of a sun sensor. 
Unfortunately, during eclipse the sun sensor is of no use. Moreover, even if the satel
lite is not within an eclipse of the sun, it might happen that the geometry between the 
sun vector and the nadir vector is such that the yaw angle cannot be measured with 
sufficient accuracy or even at all (see Wertz 1978). Another approach would use mag
netometers, but fluctuations in the earth's magnetic field make it impossible to esti
mate the yaw angle with an accuracy better than 0.5°, which is generally not good 
enough for a geostationary communications satellite. A third possibility is to use 
star sensors. These sensors allow very accurate attitude determination, but they are 
quite complicated, sometimes unreliable, and data-intensive - compelling onboard 
control algorithms to store and access memory-intensive star catalogs for attitude 
reference. For low-inclination orbiting satellites, use of star sensors is easier because 
the Polaris star is a good bright reference, almost inertial with respect to the earth's 
north axis direction; hence simpler star catalogs of moderate complexity can be used 
(Maute et al. 1989). A star sensor with a field of view of 7-12° allows measuring the 
yaw angle of the satellite during all stages of its life, including the GTO-to-GEO 
transfer. Even so, star sensors are neither simple nor straightforward to use. 
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These considerations underlie our desire to control the sic attitude without mea
suring the yaw angle. In a momentum-bias attitude-controlled satellite, the roll and 
yaw angles are related via the constant momentum, and this property is used to 
design a complete momentum-biased ACS without measuring the yaw angle. See 
Section 8.3.2 and Figure 8.3.1. In this section we shall analyze both possibilities -
namely, control of the roll and yaw angles with and without yaw measurement . 

Another technical problem is the need to use angular rate sensors. Such instru
ments are not very reliable when operated continuously for 7 to 10 years, the expected 
lifetime of modem geostationary satellites. Control engineers prefer not to use angu
lar rate sensors except for very special tasks, and for short periods. In this chapter 
we shall do likewise and obtain the rate of the Euler angles by differentiating them, 
with adequate noise filters. 

8.3.1 Active Control Using Yaw Measurements 

Returning to Eq. 8.2.3 and Eq. 8.2.5, we see that the two second-order poles 
of the momentum-biased dynamics are undamped. The active control must damp 
these poles and also decrease the steady-state errors, as implied by Eqs. 8.2.6. The 
simplest torque control commands that can achieve these tasks are: 

Tcx = -(kxtP+ kxdtb), 

T(:t. = -(kt.'f;+kt.dt/t). 

(8.3.1) 

(8.3.2) 

Returning now to the first two of Eqs. 8.2.1, after neglecting the terms a, b, c we 
have 

Tdx = Ixib-wohwytP -hwyt/t+kxtP+kxdtb, 

Tdt. = It.';'-wohwy1/l+hwytb+kt.1/I+kt.dt/t. 

The solution of these equations for external disturbances Tdx and Tdt. is then 

(8.3.3) 

(8.3.4) 

[ 

s +-1 (kt.+kt.dS-wohwy) sT -I 

[ 

2 1 hWY] [ T
dx 

] tP(S)] 1 t. x x 

1/I(s) = ~(s) hwy 2 1 Tdt. ' -sT s + Ix (kx+kxdS-wohwy) T 

where 
~(s)IxIt. = s41xlt.+s3(kxdlt.+kt.dIx) 

+ s2[kxdkt.d + h;'y + It.(kx - Wohwy) + lx(k:c - Wohwy)] 

+ S[kt.d(kx - Wohwy) + kxd(kt. - Wohwy)] 

+ kxkt. + (wohwy)2 - wohwy(kx + kt.). 

(8.3.5) 

(8.3.6) 

For the attitude-controlled system to have stable roots, all coefficients of the poly
nomial in Eq. 8.3.6 must be positive. This means that we must choose hwy == -h with 
h > o. With this assumption, the determinant of Eq. 8.3.6 takes the form 

~(s)Ixlt. = s41xIt.+s3(kxdlt.+kt.dIx) 

+s2[kxdkt.d+h2+1z(kx+woh)+lx(kz+woh)]+ 
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+S[kZd(kx+woh)+kxd(kz+woh)] 

+ kxkz + (Woh)2+ woh(kx + k z). (8.3.7) 

For the roots of the closed-loop system to be stable, there is a necessary (but not 
sufficient) condition that the coefficients of the polynomial in Eq. 8.3.7 be positive. 
To stabilize the system unconditionally, additional conditions on the control param
eters kx , k xd, k z, and k zd are necessary. The parameters kx and k z are primarily re
sponsible for the steady-state errors in tP and Vt caused by disturbances Tdx and Tdz ; 
we can calculate their values from the steady-state error requirements. From Eq. 
8.3.5 and Eq. 8.3.7 we find that 

(8.3.8) 

Vtss _ kx+woh _.1. 
- - 2 - ¥'ssz· Tdz kxkz+(woh)' +woh(kx+kz) 

(8.3.9) 

From the same equations, using once more the final-value theorem in Laplace trans
forms, it is easily concluded that 

q,ss = 0; Vtss = o. (8.3.10) 
Tdz Tdx 

Suppose that h has already been determined by considerations to be stated later; 
then, from the required values of tPssx and Vtssz, kx and k z can be calculated using Eq. 
8.3.8 and Eq. 8.3.9. For kx and k z we finally obtain 

kx 
= 1-wohq,ssx ., k7 = 1-wohVtssz . 

~ (8.3.11) 
tPssx Vtssz 

We are left with the more difficult task of calculating kXd and kzd' This can be 
accomplished as follows. The determinant ofEq. 8.3.7 is of the fourth order. We can 
assume without loss of generality that this determinant consists of two second-order 
damped poles: 

d(S) = (s2+2~IWnJS+w~J)(s2+2~2Wn2S+W~2) 
= S4 +S3 2(~JWnl + ~2Wn2) + S2(W~1 + W~2 +4~1~2WnJWn2) 
+s2WnJWn2(~JWn2+~2WnJ)+W~JW~2' (8.3.12) 

The coefficients in the polynomial of Eq. 8.3.12 can be equated to those of Eq. 8.3.7 
to solve for kXd and kzd' In fact, given ~J and ~2' we have four equations with four 
unknowns: k xd, k zd' WnJ, and Wn2; however, we are interested in only the first two. 
The last two are byproducts with no special meaning, except that they state how 
close the closed-loop poles stay to the open-loop poles of the system. An example 
will clarify the complete procedure .. 

EXAMPLE 8.3.1 The satellite moments of inertia are Ix = 800 kg-m2 and Iz = 1,000 
kg-m2. The orbit is geostationary, with Wo = 7.236 X 10-5 rad/sec. The maximum ex
ternal disturbances to be expected are: Tdx = 5 X 10-6 N-m and Tdz = 5 X 10-6 N-m. 
The maximum permitted steady-state errors in roll and yaw are tPS5 = 0.05° and Vts5 = 
0.2°. The momentum bias was chosen as h = 20 N-m-sec. 
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Solution Using the procedure of this section, we find that: 

kx = 0.00427, kXd = 22.9; 

kz = -0.26 X 10-4, kzd = 12.8; 

"'nJ = 0.0295 rad/sec, "'n2 = 0.109 X 10-3 rad/sec. 
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In Chapter 7, it was of utmost importance to analyze the attitude sensors' noise 
amplification. Such an analysis is not needed for the attitude control scheme based 
on measuring both the roll and the yaw errors, a control configuration that is seldom 
used. An analysis of sensor noise amplification will be carried out in the next section 
for a more practical (but also more difficult) attitude control scheme: only the roll 
and pitch angles are measured, so a yaw error cannot be used for control purposes. 

8.3.2 Active Control without Yaw Measurements 

The control configuration based on measuring the roll and pitch angles only 
is the most popular today. The earth sensor, which is based on sensing the horizon 
contour of the earth with respect to the satellite body frame, is currently the lone 
sensor used to measure directly the roll error for nadir-pointing satellites. Accuracies 
of the order of 0.020 are common with this technology. However, we must also con
sider the attendant statistical noise (about 0.030 RMS), an effect of utmost impor
tance where noise amplification is concerned (Sidi 1992a). 

The control torque command equations are as follows: 

1'cx = -(kxtb+kxd.j,), (8.3.13) 

(8.3.14) 

The last equation merits some explanation. Equation 8.3.14 is based on the fact 
that, for a momentum-biased satellite, the roll and yaw errors interchange every quar
ter of the orbit. This means that an accumulated yaw error will change to a roll error 
after a quarter of the orbit period; since the roll is measured, the accumulated yaw 
error will be controlled as a roll error, and attenuated accordingly. This effect is 
shown in Figure 8.3.1, where XR , YR, ZR are the orthogonal axes of the orbit refer
ence frame. The momentum wheel (MW) axis is aligned with the YB axis. At posi
tion 1 in the orbit, the direction of the momentum vector b, which is aligned with the 
MW axis, is inclined to the YR axis, so that an angle'" exists. During the motion 

Figure 8.3.1 Change of the yaw error to roll 
error in a momentum-biased spacecraft. 
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of the satellite in the orbit, with no external disturbances, the momentum vector b 
remains stabilized in space, which means that the YB axis also remains constant in 
space. At position 2, after a quarter orbit, the 1/; Euler angle has been transformed 
to a roll angle tP with the same amplitude as the previous yaw angle. Notice that the 
XR and ZR axes have interchanged in relation to the inertial frame. Consequently, 
with a time delay of one quarter of the orbit period, the whole yaw error will be 
sensed (and controlled) as a roll error, measured with the earth sensor. This is why 
the control command torque in Eq. 8.3.14 is effective in controlling the yaw error 
(Agrawal 1986). As in Section 8.3.1, using the first two of Eqs. 8.2.1 together with 
Eq. 8.3.13 and Eq. 8.3.14, we have: 

(8.3.15) 

TdZ = Iz'¢t-wohwy 1/;+ hwyl/> + akA +akxdl/>. (8.3.16) 

These equations can be put in matrix form to yield the following solution: 

In this case, 

tJ.(s)Ixlz = s4Ixl z + s3Izkxd 

+ s2[ -wohwy(Ix + Iz) + Izkx + h;,y + ahwykxd 1 
+s(ahwykx -wohwykxd) + [(wohWy )2 -wohwykxl. 

(8.3.17) 

(8.3.18) 

Once more, for stability reasons it is necessary (but not sufficient) that hwy = -h 
with h > O. For the same reasons, we also choose a < O. Set a = -a",: With these defi
nitions, the determinant in Eq. 9.3.18 will change to the following form: 

tJ.(s)Ixlz = s4Ixl z + s3Izkxd 

+ s2[woh(lx+ Iz)+ Izkx+ h2+a",hkxdl 

+ s(a",hkx + wohkxd) + [(woh) 2 + wohkxl. (8.3.19) 

In this determinant, kXd must be positive in order not to violate the stability con
ditions of the coefficient of S3, but kx need not be positive. Equation 8.3.14 will be 
changed to 

(8.3.14') 

Next, we can proceed to find kx, kxd, and a1/!. From Eq. 8.3.17 and Eq. 8.3.19, we 
have 

tPss 1 
-r.- = h k = tPssx, dx Wo + x 

(8.3.20) 
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.t.
ss 

= Tdz + aTdxkx = Tdz + aTdx 
'Y (8.3.21) 

wah wah(kx+wah) wah 

since generally kx» wah. We shall see that in practical cases, a < 1. With known and 
estimated external disturbances, and with limits on the maximum permitted steady
state error in yaw, we can find the needed minimum momentum bias h from the last 
term of Eq. 8.3.21. From Eq. 8.3.20, we can also find kx: 

(8.3.22) 

We are left with the problem of finding kxd' The saine procedure as in Section 8.3.1 
will be followed here. The desired determinant will have the form of Eq. 8.3.12. The 
coefficients of the polynomials of Eq. 8.3.12 and Eq. 8.3.19 will be equated. For as
sumed damping coefficients ~J = ~2 = ~ and for known moments of inertia and kx' 
we can find a = -0", and kxd' At this stage, an example would be instructive. 

EXAMPLE 8.3.2 The satellite's moments of inertia are Ix = 800 kg-m2 and Iz = 
1,000 kg_m2• The orbit is geostationary, with Wa = 7.236 x 10-5 rad/sec. The maxi
mum external disturbances are expected to be Tdx = Tdz = 5 X 10-6 N-m. The maxi
mum permitted steady-state errors in roll and yaw are fbss = 0.05° and 1/Iss = 0.4°. 

Using the procedure of this section, we find according to Eq. 8.3.21 that the needed 
momentum bias is h = 20 N-m-sec. To find kx' we solve Eq. 8.3.20 and find kx = 
0.00427. Equating the coefficients of the polynomials of Eq. 8.3.12 and Eq. 8.3.19, 
we find kXd = 42.8 and a = 0.888. We also have the byproducts WoJ = 0.0000848 rad/ 
sec and Wo2 = 0.0381 rad/sec, which are the new closed-loop modal frequencies. 

Figure 8.3.2 shows a block diagram of an ACS (attitude control system) composed 
of a MW and an earth sensor only. As already mentioned, the earth sensor (ES) can 
sense only the roll (fb) and the pitch (8) Euler angles. Since no rate sensor is included, 
differentiation of the earth sensor outputs is necessary in order to implement the con
trollaws in Eq. 8.3.13 and Eq. 8.3.14. The problem is that the earth sensor is noisy. 

Figure 8.3.2 Mechanization of the attitude control system with an earth 
sensor only, and with no rate sensors for damping the control loops. 
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Without appropriate filtering, the RMS noise amplification from the sensor to the 
commanded torques 'Fex and Te~, with only kx+skxd as the control network, will be
come infinite for white noise. The LP filters in Figure 8.3.2 are low-pass filters in
cluded to prevent a high noise amplification. 

Earth-Sensor Noise Amplification 
It is important to analyze the amplification of ES noise to the torque com

mands at the input of the controllers, which could be reaction wheels, magnetic torq
rods, or solar panels and flaps. A pure analytical procedure will not be followed 
here, because the complexity of the attitude dynamic equations of the satellite's XB-
ZB plane precludes obtaining the RMS noise amplification as a function of a simple 
second-order closed-loop pole model as in Section 7.3.6. Instead, we will derive nu
merically the results for a realistic engineering example, such as Example 8.3.2. We 
will use a low-pass filter having two simple poles with corner frequencies of We = 0.2 
rad /sec, about 10 times higher than that of the nutation frequency. The primary cause 
for the high amplification noise is the differentiation of </>, together with the high gain 
of kXd needed to provide a high damping coefficient. The immediate consequence is 
that we will have to decrease this gain in order to decrease the ES RMS noise amplifi
cation. Naturally, the damping coefficients of the closed-loop poles will decrease also. 
The higher-frequency closed-loop pole, which is closer to the open-loop nutation 
pole, will be the most affected. The resulting new damping coefficients and amplifica
tion factors are shown in Table 8.3.1. 

With the nominal case 1, the second damping factor ~2 is smaller than 0.7 owing 
to the LP filter, with the two corner frequencies at We = 0.2 rad/sec (see Figure 8.3.2). 
It is clear that decreasing the derivative gain does not appreciably change the damp
ing coefficient of the smaller closed-loop pole, which is closer to the orbital frequency 
pole; however, the second damping coefficient, pertaining to the much higher nuta
tion frequency pole, is drastically decreased with smaller kxd' For case 4, we eveu see 
instability of the nutation closed-loop pole, since ~ = -0.0004. We shall return to 
these cases later. It is instructive to show the stability margins in the frequency do
main on a Nichols chart. We can open the control loops at Tex and at Tel. and com
pute the open-loop transfer functions Lq, and L", defined in Figure 8.3.2; the results 
are shown in Figure 8.3.3. 

We can now summarize the results. A good earth sensor is accompanied by a noise 
level of 0.030 (RMS). In the nominal case, since the noise amplification amounts to 
2.09, the XB-axis torque command will be accompanied by a noise level of TexN = 
(2.09 x 0.03)/57.321 = 0.001094 N-m = 1.094 X 10-3 N-m (RMS). This level of ampli
fied noise will affect the attitude control of a momentum-biased satellite. 

Table 8.3.1 Decrease of the noise amplification by decreasing 
the derivative gain kXd 

Case kx km CJ)n} 
No. 

/;1 CJ)n2 /;2 TcxlNES TczlNES 

1 4.27 10'] 42.8 8.4910" 0.7 0.07 0.52 2.09 1.86 

2 4.2710'] 4.28 1.3210-4 0.65 0.03 0.08 0.19 0.17 

3 4.27 10'] 0.43 1.4210-4 0.65 0.02 0.00425 0.02 0.02 

44.27 10'] 0.21 1.43 10-4 0.65 0.03 -410-4 O.oI 0.01 
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Figure 8.3.3 Open-loop tran~fer functions L~ and L." for kXd = 42.8,4.28,0.428, and 0.214; kx = 0.00427, a = 0.888. 
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Noise Effects on Magnetic Attitude Control 
At geostationary altitudes (HQ = 35,786 km), a large magnetic torqrod with 

a saturation level of 500 A-m2 can achieve torque levels of only TB = 0.5Mml R3 = 
26.15 X 10-6 N-m (see Section 7.4.2). Consequently, the magnetic torqrod will be 
constantly saturated by the noise, and the nominal solution (case 1 in Table 8.3.1) is 
not practically realizable. With case 3, the noise is amplified by a factor of 0.019. The 
noise amplified at the input to the magnetic torqrod will have an amplitude of TcxN = 
(0.019 x 0.03)/57.321 = 9.9 x 10-6 N-m. This noise level is acceptable with respect to 
saturation, but the nutation modal pole is almost undamped with a low damping co
efficient of ~2 = 0.00425. In low orbits, on the other hand, control torques of the or
der of 6.4 x 10-3 N-m are achievable with the same magnetic torqrod. The amplified 
earth-sensor noise should be, as seen previously, of a much lower level. See also 
Schmidt and Muhlfelder (1981), Lebsock (1982), and Muhlfelder (1984). 

Noise Effects on Solar-Torque Attitude Control 
The situation is even worse if solar torques are used to control a momentum

biased satellite at geostationary altitudes, because the achievable control torque lev
els are even lower, of the order of 10-20 X 10-6 N-m (Lievre 1985, Sidi 1992b). With 
such low damping coefficients there is always the danger of nutational instability, 
which actually occurred with the OTS satellite (Benoit and Bailly 1987). Solar-torque 
attitude control thus requires active nutation damping via, for example, products of 
inertia (Phillips 1973; Devey, Field, and Flook 1977; Sidi 1992b). For low-orbit satel
lites, solar-torque attitude control is not practical because at low altitudes the distur
bance torques are several orders of magnitude larger than the control torques that 
solar panels and flaps can provide. Mechanization of a solar-torque ACS is treated 
in Section 8.6. 

Roll-Yaw Attitude Control with Momentum Exchange Devices 
A straightforward way of stabilizing the roll-yaw attitude is to use addi

tional momentum exchange devices - a reaction wheel, for instance, with its axis 
aligned parallel to the XB body axis. This kind of control was treated in Chapter 7. 
The problem of noise amplification does not exist here, because the control torque 
levels of these devices are larger than 0.01 N-m. 

Another possible solution, based on similar devices, is to use two momentum 
wheels that are slightly inclined to each other in a V geometry (Wie, Lehner, and 
Plescia 1985; Duhamel and Benoit 1991). In this configuration, the two inclined mo
mentum wheels allow control of the XB axis attitude, the roll angle t/>, and the pitch 
angle (J about the YB axis while providing the system with the desired momentum sta
bilization. This control scheme will be treated in Section 8.7. 

8.4 Roll-Yaw Attitude Control with Magnetic Torques 

The realization of an ACS with magnetic torques is similar to that presented 
in Section 7.4. The only difference is that, in the present context, the wheel is in a 
momentum-bias condition. Equation 7.4.5 is used to derive the control inputs of the 
momentum wheel about the YB body axis, hwy , and also for the magnetic torqrod in
puts creating the onboard magnetic control dipoles, Mx and Mz. In all the treated 
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Figure 8.4.1 Time behavior with the nominal control gains and 
with no sensor noise. 
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examples, the pitch control gains are chosen so that the closed-loop bandwidth is 
"'ny = 0.1 rad/sec. Three examples will be simulated. 

First, the nominal gains of case 1 (Table 8.3.1) were simulated with damping co
efficients of 0.7 and 0.52 for the orbital and nutation modal frequencies, respectively. 
The steady-state amplitudes of the outputs of the magnetic torqrods are Mssx = -35 
A_m2 and Mssl. = -39.6 A-m2, as expected. The time behavior for a maximum dis
turbance Tdx = 5 X 10-6 N-m, with no sensor noise, is shown in Figure 8.4:1. The 
steady-state errors of the Euler angles are as theoretically expected, tl>ss = 0.05° and 
"'55 = 0.15°. 

Next, the same nominal case was run with an RMS noise level of 0.03°. Figure 
8.4.2 displays the time behavior of Mx and Ml.' which are activated in almost a bang
bang mode owing to the much-amplified sensor noise. The RMS levels [A_m2] of the 
control magnetic dipoles are in this case Mx = 434 and Ml. = 489. The attitude control 
loop cannot behave correctly under these conditions of control torque saturation. 
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Figure 8.4.2 Time histories of the Mx and M t control magnetic 
dipoles with nominal control gains and sensor noise. 

The time-domain behavior of the Euler angles cp, if;, and 8 is shown in Figure 8.4.3. 
The steady-state errors are much higher than theoretically expected. 

Finally, we simulate case 3 with kXd = 0.428. In this case, the time histories of the 
cp and if; errors show good agreement with the theoretical results: CPss == 0.05° and 
if;ss == 0.15° (see Figure 8.4.4, page 226). But since the nutation modal pole is almost 
undamped, ~nul = 0.00425, time histories of the Euler angles clearly show the nuta
tional motion. To exhibit this effect, the results in Figure 8.4.4 are shown telescoped 
for the first 2,000 seconds in Figure 8.4.5 (page 227): the nutation pole is clearly un
damped. With the low gain kXd = 0.428, the sensor noise is only slightly amplified, 
and the amplitudes of the magnetic control dipoles are well within their linear range; 
see Figure 8.4.6 (page 228). The RMS values of the magnetic dipoles are, despite the 
sensor noise, reasonably low: Mx = 67.1 A-m2 and Mz = 75.6 A_m2 (RMS). In many 
practical cases, virtually undamped nutation can be tolerated. However, such nuta
tional motion can be destabilized by energy dissipation in the rotor of the momentum 
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Figure 8.4.3 Time histories of !/I, 8, '" with nominal control gains 
and sensor noise. 
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wheel, which happened with the OTS satellite (Benoit and Bailly 1987; see also Sec
tion 6.7.1). This is unacceptable, so a way must be found to increase effectively the 
damping factor of the nutation modal pole without augmenting the noise amplifica
tion. Toward this end, a nutation control scheme using the products of inertia of the 
sic will be introduced in the next section. 

8.S Active Nutation Damping via Products of Inertia 

The use of products of inertia· for active nutation damping was first sug
gested in the sixties (see Phillips 1973, Deveyet al. 1977, Fox 1986). A control scheme 
using the torque capabilities of the momentum wheel, together with products of in
ertia, is shown in Figure 8.5.1 (page 229). The control network Gnu,(s) in this figure 
was added to that of Figure 8.3.2. The basic idea is to sense the roll angle cf> and to 
extract from it the roll nutation error, which is then fed to the pitch control loop_ 

moshaver10
Text Box
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Figure 8.4.4 Time histories of!/t. o. q, with derivative control gain 
kXd = 0.428 and sensor noise. 

Since there is a product of inertia (Iyt or Iyx; it is immaterial which one), the nutation 
control torque is transferred from the momentum wheel - whose torque capabilities 
are about the YB axis - to the XB-ZB axes. Thus control of the nutation is achieved 
actively. The nutation control network must have the following basic form: 

G () - Knuts 
nut S -

(1 + STI)(1 + ST2) 
(8.5.1) 

The control network Gnut(s) must comprise at least one differentiation in order to 
prevent constant roll errors from being fed to the pitch control loop, which would 
introduce a disturbance error. On the other hand, the poles at lITJ and llr2 will pass 
only the roll error whose frequency spectrum components are in the vicinity of the 
nutation frequency, thus controlling (via the moment of inertia) only the nutation 
error component. Since there is now an interaction between the pitch control loop 
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Figure 8.4.5 Time histories of t/t, IJ, q, for k Xd = 0.428 (reduced time scale). 
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and the XB-ZB plane control loop, care must be taken that the open-loop transfer 
function of the pitch loop does not deteriorate. Slight modification of the Gnut(s) 
network might be necessary for a good shaping of the open-loop transfer function. 

The basic frequency-domain shape of Gnut(s) is given in Figure 8.5.2 (page 229). 
The nutation frequency "'nut depends on the geometrical properties of the satellite, 
on Ix and I~, and on the momentum bias hwY' Hence the comer frequencies IITI and 
IIT2 also depend on these geometrical properties. Since the mass of the satellite de
creases with time owing to fuel consumption, the moments of inertia change too. 
Furthermore, since external disturbances cause the momentum bias to increase (or 
decrease), hwy may be expected to change by about IO-ISUJo of its nominal value. 
Consequently, the nutation frequency is also expected to change around its nominal 
value by at least IO-15UJo. This means that due allowances should be made when de
signing the corner frequencies of Gnut(s). Yet these frequencies must also be as close 
as possible to the nutation frequency, so that the bandpass filter will minimize noise 
amplification; hence a tradeoff occurs in determining the ideal comer frequencies. 
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Figure 8.4.6 Time histories of the Mx and Mz control magnetic 
dipoles with kXd = 0.428 and with sensor noise. 

To show the effectiveness of the active nutation controller, we first simulate the 
control system of case 4 in Table 8.3.1. With kXd = 0.214, there is instability at the 
nutation frequency, ~2 = -0.0004! With no active damping, the time histories of the 
roll and yaw Euler angles clearly show instability (see Figure 8.5.3, page 230). With a 
product of inertia of IyT. = 20 kg-m2 and with 

2,OOOs 
Gnut(s) = (1 +s/0.03)(1+s/0.02) , 

we obtain a well-damped nutational motion with practically no increase of sensor 
noise amplification. The resulting time histories with the well-damped nutation modal 
pole are shown in Figure 8.5.4 (page 231). By the way, since the derivative gain kXd 
was decreased in the last control solution, the level of the amplified sensor noise at 
the input of the magnetic torqrods was diminished to RMS values of Mx = 40.4 and 
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Figure 8.5.1 Control scheme for active nutation damping via 
products of inertia . 

log Cll 

Figure 8.5.2 Basic frequency behavior of Gnul(s), 
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Ml, = 45.5 A-m2• The active nutation damping scheme described here can be imple
mented with different control hardware, such as solar and reaction torque control
lers, a subject to be treated in the next two sect~ons . 

8.6 Roll-Yaw Attitude Control with Solar Torques 

Attitude control systems using solar control torques are known in the liter
ature as "solar sailing" attitude control (Renner 1979, Lievre 1985). The technique 
is based on forces and torques produced by solar radiation pressure on a surface 
(Georgevic 1973, Forward 1990). Attitude control systems based on these control 
torques are feasible for satellites in which the solar panels can be rotated relative to 
the sic body, as with all geostationary satellites. In Section 8.3 we remarked that 
achievable control torques using solar radiation pressure are quite low, in the range 
of 10-20 I'N-m. Hence, the conclusions of Section 8.5 apply directly to this analysis 
also, and will not be repeated. Here we shall deal with the engineering realization of 
the control algorithm, and also with the physical constraints that preclude higher 
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Figure 8.5.3 Time histories of the Euler angle errors without 
active nutation damping, kXd = 0.214 . 

control torques. We must first write the dynamic equations arising from the radia
tion effect on the solar panels and flaps, which are necessary for achieving the de
sired control torques. 

8.6.1 Dynamic Equations for Solar Panels and Raps 

In developing the equations relating control torques to the solar panel and 
flap positions we follow the presentation of Lievre (1985). The basic idea is to use the 
solar panels, whose primary function is to produce electrical power, to provide also 
the necessary torques about the XB and ZB body axes for attitude control purposes. 
In geostationary satellites there are always two symmetrical solar panels - the first 
directed toward the north, the second toward the south - in order to minimize the 
disturbance torque balance on the satellite produced by solar pressure on the panels. 
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If the angular position of the two solar panels relative to the sun is not symmetrical, 
a windmill torque will be generated, which means that a torque about the line con
necting the sun and the satellite will be created. In order to achieve also a torque 
about a line in the orbit plane and perpendicular to the sun direction, flaps must be 
appended to the solar panels; see Figure 8.6.1 (overleaf), which also shows the fixed 
flaps configuration. Figure 8.6.1.b displays the various geometrical notation pertain
ing to the panel and flap assembly. The North and South panels and flaps will be des
ignated by N and S; dp (resp. df ) is the distance of the panel's (flap's) geometrical 
center from the cm of the satellite's body; and Sp and Sf are the (surface) areas of the 
panels and flaps, respectively. The angle 0 shown in Figure 8.6.1.b is the deviation 
angle of the flaps from the normal to the panels . 

Figure 8.6.2 (overleaf) depicts the three axis frames necessary for obtaining the 
directions of the torques on the satellite produced by solar pressure. As usual, XR , 
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North 
panel 

Sou1h 
flap 
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fl'P~ c. 

b. 
Figure 8.6.1 Geometry of the solar panels and flaps. 

Sun 

a • 

Figure 8.6.2 Inertial solar frame and the orbit reference frame of the 
satellite; reproduced from Lievre (1985) by permission of IFAC. 

Y R, and ZR denote the orbit reference frame, centered in the cm of the satellite, and 
moving in the orbit with the satellite; X I> YI> ZI are the inertial frame axes, and I, J, K 
are the solar axes' frame. As shown in Figure 8.6.2, the two last frames coincide: the 
solar frame is defined as I = XI> J = -YI> K = ZI' Here Es is the sun elevation above 
the orbit plane. For the geostationary orbit, Es changes ±23.5° during the year. 

The solar panels are nominally directed toward the sun for maximum energy ab
sorption. The angular motion of the panels for creating torques will therefore be 
defined in the solar frame. The solar torque principle is presented in Figure 8.6.3, 
where 'YN and 'Ys are (small) angular displacements of the North and the South pan
els relative to the inertial solar frame (I, J, K). Figure 8.6.3 pertains to an orbit for 
which the." of Figure 8.6.2 is null, ." = 0°. By definition, tan(.,,) = -X1/Y1 . 

We begin by defining 

c5'Y = 'YN-'YS, 'Y = t<'YN+'YS)' (8.6.1) 

This notation enables a short physical explanation of the solar torque (sailing) prin
ciple as follows. Suppose for simplicity that the sun is in the orbit plane with its direc
tion aligned with the J axis, perpendicular to the plane of Figure 8.6.3. If the devia
tions of the North and South panels in Figure 8.6.3 are antisymmetric with respect to 
the I axis, 'YN = -'Ys, a pure windmill torque CJ is generated about the J axis. If the 
deviations of the North and South panels are not antisymmetric, 'YN # -'Ys, then an 
unbalance torque C1 is generated about the I axis. It can be shown (see Section C.3) 
that an approximate set of equations for both torque components is 
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Figure 8.6.3 Solar torque control principle; reproduced 
from Lievre (1985) by permission of IFAC. 
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(8.6.2) 

From Eqs. 8.6.2, if q and CJ are known then "'( and c5"'( can be calculated. According 
to Appendix C, the coefficients AI> A 2, B 3, and B4 depend on the physical properties 
of the panels and the Haps as follows: 

AI = -PSpdp(1 + 57Jp)+ PSj dj [4.57Jj sin(3c5) -sin(c5)+7Jjsin(c5)/21, 
A2 = PSj dj [2 cos(c5) - 37Jj cos(3c5) +7Jj cos(c5)]. 

B3 = 2PSpdp7Jp + t PSj dj 7Jj[sin(c5) - 3 sin(3c5)], 

B4 = PSjdj7Jj[cos(3c5) - cos(c5)] 

(see also Azor 1992, Sidi 1992a); 7Jp and 7Jj are the panel and Hap reftexivities. 

8.6.2 Mechaniz.ation of the Control Algorithm 

(8.6.3) 

(8.6.4) 

(8.6.5) 

(8.6.6) 

The basic control laws to be used are Eq. 8.3.1 and Eq. 8.3.2; if no measure
ment of the yaw angle is feasible, Eq. 8.3.13 and Eq. 8.3.14 are used instead. A block 
diagram for the mechanization of the complete solar torque control principle is shown 
in Figure 8.6.4 (overleaf). The "control mechanization" block in this figure includes 
all the algorithms that must be implemented in the onboard computer. The roll angles 
(or the roll and the yaw angles, if adequate hardware for yaw angle measurement 
exists) are used to calculate the torque control command Tcx and Tc:c' using Eq. 8.3.1 
and Eq. 8.3.2 (or using Eq. 8.3.13 and Eq. 8.3.14 if'" cannot be measured). 

From Eqs. 8.6.2, if C1 and CJ are known then "'( and c5"'( can also be found: 

c5"'(= CJ-B4COS(Es) , 

B3 COS(Es) 

CI 

(8.6.7) 
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8y ee1 

CONTROL MECHANIZATION 

Satellite 
.--"-"~ X-Z plane 

~--~ d~~ 

Control laws: 
Eq.(S.3.1 )&(8.3.2) 

or 
Eq.(8.3.13)&(8.3.14) 

, 
------ --- -- -- -- ---- -- -- --- ---- ------ --- ---------- --- --- -- -- -- - -- --- ---

Figure 8.6.4 Mechanization of the solar torque control laws -
the complete time-domain simulation. 

The transformation between 'YN, 'Ys and 'Y, 0'Y is simply 

[ 'YN] = [1 0.5][ 'Y] = IT NS][ 'Y], 
'Ys 1 -0.5 0'Y 1" 0'Y 

(8.6.8) 

where 'YN and 'Ys are the panels' control angular deviations necessary to achieve the 
desired torques. Here [T.yNS] is the transformation matrix between the control vari
ables 'Y, 0'Y and the panels' deviations 'YN' 'Ys. 

In order to simulate the complete solar torque dynamics, we must also define a 
transformation between the solar torques Cit CJ and the torques applied on the body 
axes X B, ZB. The transformation depends on the location of the satellite in the orbit, 
which is defined by the argument 1J (see Figure 8.6.2): 

[ Tx]=[-~OS(1J) Sin(1J)][Ct]=[T][Cl]. (8.6.9) 
Tz s1O(1J) cos(1J) CJ 1/ CJ 

If the desired control torques are known, then we can find the desired solar torques 
by using the transpose of the transformation defined in Eq. 8.6.9: 

[ Cel ] = [T1/]T[ Tex
]. 

Cd Tez 
(8.6.10) 

In Figure 8.6.4, the three blocks lying outside the control mechanization comprise 
the kinematics and dynamics of the satellite, panels, and flaps. 

Control torque saturation due to sensor noise amplification is a problem here, 
too, and one that is worsened by the generally lower obtainable control torques as 
compared to magnetic control means. Solar sailing has the additional drawback that, 
to the extent the panels deviate from their nominal position relative to the sun direc
tion, their solar efficiency decreases. This results in an electrical power loss, which 
cannot be permitted to exceed 1-2"10 on average per orbit. Typical solar torque capa
bility for different solar efficiency losses is shown in Figure C.3.3 (p. 392). 

EXAMPLE 8.6.1 Example 8.3.2, treated in the previous section with magnetic con
trol torques, is now to be realized with solar control torques. The panel and flap 
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Figure 8.6.S Time response of the Euler angles to Tdx, an external 
disturbance about the XB axis. 
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characteristics were chosen as follows: Sp = 6 m2
, 'lip = 0.2, Sf = 2 m2

, 'IIf= 0.1, l) = 
ISO, dp = 4 m, df = 5.5 m, Es= O. 

With these parameters and using Eqs. 8.6.3-8.6.6, we obtain: AI = -0.217 X 10-3, 

A2 = 0.92 X 10-4, B3 = 0.394 X 10-4, B4 = -0.13 X 10-5• There is no sensor noise. 
The results in the time domain are given in Figures 8.6.5-8.6.8. In this example, 
the maximum panel angular deviations are smaller than 70 (Figure 8.6.6), causing 
a maximum solar efficiency loss of 0.35070; see Figure 8.6.8. 

Without sensor noise, there is no problem in achieving a good damping coefficient 
for the nutation frequency pole, with ~ ... 0.5 for kXd = 42.8. If sensor noise is present 
then it is unrealistic to have an adequate damping coefficient without some addi
tional control means - for instance, an active nutation control scheme as explained 
in Section 8.5. 



'., 

'.,'j 

236 8 / Momentum-Biased Attitude Stabilization 

SOLAR SAILIKX=O.OQ427IKXO=42.8IA=O.888 
DaGRl1RD 

if 
'"0 • 
........ N 

~ 

!II ........ : ......... : ......... : .. 

Oil . 
~.; ......... : .. . . .................................. . · . . · . . · . . · . . 

'0. 40. Ill. 120 lED. 200. 240. 211J. 320. 3il. 4!D. 

Time [sec] x 102 

Figure 8.6.6 The panels' angular deviations from nominal. 
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Figure 8.6.7 The computed control variables o'Y and 'Y. 
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Figure 8.6.8 Efficiency loss of solar arrays. 

8.7 Roll-Yaw Attitude Control with Two Momentum Wheels 

8.7.1 Introduction 
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In the previous control schemes, a single momentum wheel was the primary 
control element responsible for ensuring gyroscopic stability of the satellite. Addi
tional control equipment, such as magnetic torqrods or solar panels and flaps, was 
used to fine-tune the attitude accuracy by controlling nutational motion about the 
roll-yaw satellite axes. 

The single-momentum wheel scheme has two principal drawbacks. First, with an 
earth sensor as the only sensor used to implement the control laws, amplification of 
sensor noise precludes adequate damping of the nutation pole. This is especially pro
nounced with high-orbit satellites, for which the maximum attainable magnetic or 
solar control torques are insufficient. The second inherent drawback is that the roll 
and yaw attitude angles can be stabilized close to null. 

We found in Chapter 2 that the evolution of the inclination vector for geostation
ary satellites caused changes in the orbit's inclination angle of about 0.7°-0.9° per 
year. The task of the station keeping process, introduced in Chapter 3, is to restrict 
this inclination to within ±0.05°. However, some satellite missions require pointing 
the payload antennas at different ground targets, a task that can be accomplished by 
appropriate changes in roll and pitch attitudes. 

Using two symmetrically inclined momentum wheels in a V configuration allows 
control of both the pitch and the roll angles, while exploiting the feature of inertial 
attitude stabilization that keeps the yaw error close to null without being forced to 
measure it (Wie et al. 1985). Moreover, sensor noise amplification is no longer a 
problem because (1) no magnetic or solar torques are needed for attitude control and 
(2) the torque control capabilities of momentum exchange devices are much higher 
than any amplified noise levels. 

In the basic two-momentum wheel control configuration, we can establish ade
quate redundancy by using a system that consists of three wheels, as shown in Fig
ure 8.7.1 (overleaf). A smaller momentum wheel MWz is located with its momentum 
axis aligned along the ZB body axis. If one of the primary wheels (MW1 or MW2) 

fails then the third wheel (MWz), which is nominally held inactive, can now be used 
as an additional momentum bias to compensate for the lost wheel. 
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YB 
YB 

Va 
Hz ~ 

Ht , , 

Za ZB 

MW1/ 
MW2 , 

a. ' 
, b. c. 

Figure 8.7.1 Two-wheel momentum bias arrangement, 
with a third wheel for backup. 

8.7.2 Adapting the Equation of Rotational Motion 

The generalized dynamic equation of motion, Eqs. 4.8.14, will be adapted 
in this section for the configuration in Figure 8.7.1. The two wheels MWI and MW2 
are the primary sources of angular momentum bias. Their momentum axes lie in the 
YB-ZB body plane, and they deviate from the YB axis by an angle a, as shown in the 
figure. The net effect is that a momentum bias of H t = 2HI cos(a) is aligned along 
the YB axis. This is the nominal momentum bias treated in previous sections (see also 
Bingham, Craig, and Flook 1984; Wie et al. 1985). 

If either MWI or MW2 should fail, MWz can be activated to compensate for the 
lost wheel. The primary task of this compensation is to realign the wheels' total mo
mentum with the YB body axis. as shown in Figure 8.7.1.c. The new system will have 
a reduced total momentum equal to half that of the nominal one. 

In this section we shall adapt Eqs. 4.8.14 to the 2-MW control configuration. 
Using the torque capabilities of both MWI and MW2 , the torque command equa
tions can be written in the following form: 

Tcy = (ill + il2) cos(a) = ilcy. 
1'c~ = (ill -il2)sin(a) = ilc~. 

In matrix notation: 

[ 
Tcy] = [cos(a) 
Tcz sin(a) 

cos(a) ] [ill] 
-sin(a) il2 ' 

(8.7.1) 

(8.7.2) 

For the required torque commands (as determined by any adequate attitude control 
law), the wheels should provide the following torques: 

[
ill] -1 [-Sin(a) -cos(a)] [Tcy] 
il2 = 2 cos(a) sin(a) -sin(a) cos(a) 1'cz 

= .!.[lIcos(a) lIsin(a) ] [1'cy ] = [TTH1[Tcy ] (8.7.3) 
2 lIcos(a) -lIsin(a) Tcz Tcz . 

Transferring the momentum produced by the momentum wheels to the body axes 
and using the definitions of Chapter 4, we have 

hwy = (HI + H 2 ) cos(a). hwz = (HI- H 2 ) sin(a), (8.7.4) 
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and also 

(8.7.5) 

The total momentum of the body and momentum wheels, in body coordinates, is 
therefore 

h = [hY:~WY] = [hY+(H':~2)COS(a)]. (8.7.6) 
ht+hwt ht +(H,-H2)sin(a) 

Equations 8.7.1 can be rearranged as follows: 

Tey • • 
--( -) =H,+H2, 
cos a 

Tet . . 
-.--=H,-H2· 
smeal 

(8.7.1') 

With this notation and with equal momentum biases in the wheels (H,(O) = H 2(0) = 
H(O», we have 

(8.7.7) 

(8.7.8) 

Next, we use Euler's moment equations (Eq. 4.8.2) with hwx E3 0, since there is no 
momentum wheel projection on the XB axis. This yields 

T:x+ Tdx = hx+wywt(/t -Iy)+wy(H,-H2)'sin(a)-wt (H, +H2) costal, (8.7.9) 

T:t + Tdt = ht +wxwy(Iy-Ix) + (H,-H2) sin(a)+wx(H, +H2)cos(a), 

T:y+ Tdy = hy+wxwt(/x-It)+(H, +H2)cos(a)-wx(H,-H2)sin(a). 

(8.7.10) 

(8.7.11) 

Equations 8.7.9-8.7.11 are used to simulate the body attitude dynamics. They can 
also be linearized as in Chapter 4 to obtain formulas similar to Eqs. 4.8.14. To per
form the linearization, the approximated Eq. 4.8.12 and Eqs. 4.8.13 must be used. 
A more direct way is to use Eqs. 4.8.14 together with Eqs. 8.7.4 and Eqs. 8.7.5. Re
member also that by definition hwx = hwx E3 O. In the present analysis we suppose that 
the products of inertia are null. With these assumptions, Eqs. 4.8.14 become 

.. 2 • 
T:x+ Tdx = IxcP+4wo(/y-It)cP+wo(/y- It - Ix)",-wo(H,-H2) sin(a), (8.7.12) 
I" • 2 •• • 

Tet + Tdt = I%",+wo(/t+Ix-Iy)cP+wo(Iy-Ix)"'+ (H,-H2) sm(a), (8.7.13) 

(8.7.14) 

Once again, the YB axis attitude dynamics is independent of the dynamics of the 
lateral plane attitude, XB and ZB. The control laws have the general form 

Tey=«(Jc:om-(J)Gy(s) and (8.7.15) 

Tet = (cPc:om -cP)Gz(s), (8.7.16) 

where (Jc:orn and cPc:om are the commanded pitch and roll angles to be tracked. 
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Having computed Tcy and Tcz, from Eq. 8.7.3 we can find the torque commands 
to both momentum wheels HI and H 2. This completes the design stage. The control 
networks Gy(s) and Gz(s) are designed using conventional frequency-domain linear 
control techniques. The transfer functions 8(s)/Tcy (s) and 4>(s)ITcz (s) are needed in 
this stage, and can be computed from Eqs. 8.7.12-8.7.14 and Eq. 8.7.3. 

8.7.3 Designing the Control Networks Gy(s) and Gz(s) 

The first stage in the design process consists of determining the value of the 
momentum bias H of both momentum wheels. Since the yaw error is not measured, 
H depends on external disturbances (such as solar pressure for high-orbit satellites 
or aerodynamic drag for low-orbit satellites) and on the permitted error of the yaw 
angle 1/;. For the nominal case, in which both principal (MWI and MW2) wheels are 
active, the required total momentum can be calculated from the well-known equa
tion 1/; = Tdz/[2H cos(a)wo]' If we want to assure the same maximum error in 1/; in 
the event of a MW failure then, according to Figure 8.7.1, we must choose momen
tum wheels with double momentum capabilities. 

The choice of the inclination angle a depends very much on the sensor noise 
amplification. According to Eq. 8.7.3, the noise level existing in Tcyand Tcz is ampli
fied at iII and iI2 by the factor l/sin(a). Accordingly, a = 25° is a reasonable choice. 
Moreover, a determines the control torque capabilities about the ZB axis, which wiII 
be sufficient to deal with the anticipated level of external disturbances. 

The design of the pitch loop (Gy(s» is straightforward and will not be repeated 
here; see Section 7.3. The design of Gz(s) can be carried out in the frequency domain 
using classical linear control techniques. The block diagram of the control system is 
shown in Figure 8.7.2. 

Figure 8.7.2 Block diagram of the 2-MW control system. 

EXAMPLE 8.7.1 The satellite described in Example 8.3.1 will be used to demon
strate attitude control using two inclined momentum wheels in a V configuration. 
Here, Gy(s) has been designed so that the closed pitch control loop has a bandwidth 
of 0.05 rad/sec, and HI and H2 have both been determined (according to the per
mitted yaw error) to be 10 N-m-sec. 

The design of the Lib open-loop transfer function shown in Figure 8.7.3 yields the 
control network 
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Figure 8.7.3 Open-loop transfer function of the roll contro))oop L",. 

G _ 0.02(1 + s/0.005)(1 + s/O.01) 
z(s) - (1+S/0.3)4 . 

Time responses of the closed-loop control system for the attitude command inputs 
Beom = 20 and q,com = 10 are shown in Figure 8.7.4 (overleaf). 

8.7.4 Momentum Dumping of the MW with Reaction Thrust Pulses 

In Section 7.3.3 we showed that external disturbances tend to change the 
momentum of momentum exchange devices. There are two principal reasons for 
dumping the momentum wheel. First, a minimum level of momentum bias must be 
retained in order to satisfy the attitude accuracy of q, and 1/;. Second, the hardware 
of the momentum wheel is optimized to work at predetermined angular wheel ve
locity conditions because of power dissipation problems and other reliability con
straints. Excess momentum must be dumped when the wheel momentum approaches 
the permitted limits. This desaturation can be accomplished with magnetic torqrods 
(as explained in Chapter 7) or with thrust pulses. To dump a wheel that has become 
saturated with momentum, a pulse from the correct thruster is fired so that a torque 
about the YB axis, with the correct sign, will effect the needed momentum dumping. 
In order to prevent large pitch attitude errors, the quantity of dumping per single 
thruster firing must be limited. 

To exemplify the momentum dumping process we refer once more to Example 
8.7.1, where the following external disturbances are applied to the satellite: 

Tdx = 4 X 10-6 + 2 X 10-6 sin(wot), 

Tdy = 6 X 10-6 + 3 X 10-6 sin( wot), 
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Figure 8.7.4 Time-domain behavior for command inputs /Jeorn = 2° and CPcorn = 1°. 

Tdz = 3 X .10-6 + 3 X 10-6 sine Wo t). 

The ES noise level is 0.030 (RMS). 
Time histories for the Euler angles are shown in Figure 8.7.5. The normal steady

state errors in cp (for the roll) are smaller than 0.03°. Attitude errors larger than 0.13° 
are reached during momentum dumping, but their amplitude can be lessened by 
dumping smaller quantities of momentum per single thrust firing. Limits of about 
3070 of nominal were set for the permitted change in nominal MW momentum bias. 
The change in momentum bias of both wheels is shown in Figure 8.7.6. 

8.8 Reaction Thruster Attitude Control 

8.8.1 Introduction 

This section deals with the attitude control of a momentum-biased three
axis-stabilized geostationary satellite using thrusters for active nutation control. In 
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continuous attitude control systems, which are based on solar or magnetic cOQ~rol 
torques, sensor noise precluded sufficient damping of nutation (see Sections 8.4-
8.7). In this case, unforeseen or unexpected energy dissipation in the satellite's equip
ment (such as the momentum wheel rotor) may lead to nutation divergence (Benoit 
and Bailly 1987). . 

In thruster attitude control of a momentum-biased satellite, roll attitude is main
tained within the specified roll "deadbeat" limits using two thruster impulses fired at 
the right time (Dougherty et al. 1968, Iwens et al. 1974, Bittner et al. 1977). This is 
the well-known "WHECON" (wheel control) attitude control concept. However, if 
for any reason the nutation is stimulated, it cannot be properly damped without the 
help of some continuous active damping scheme (Sidi 1992b). The situation is aggra
vated by sensor noise, which tends to activate unnecessary thruster firings. 

In the ACS treated in this section, the roll attitude is kept within the allowed roll 
limits by firing (with the same thruster) two pulses that are separated by half the nu
tation period (Bryson 1983). With absolute knowledge of the nutation frequency and 
supposing that the two pulses are identical, no nutation will be excited. However, 
identical pulses and knowledge of the precise nutation frequency are impossible in 
practice, so the parasitic excited nutation must be damped. The most effective way to 
provide active damping is based on the torque capabilities of the existing single mo
mentum wheel, via the products of inertia Iyz or Iyx (Phillips 1973). 

8.8.2 Control of q, (Roll) and", (Yaw) 

As usual, the pitch angle 8 is controlled with the momentum wheel operated 
in torque mode, while the roll and yaw angles are controlled by torque thruster im
pulses. The minimum equipment needed for changing the momentum axis attitude 
of the inertially stabilizing momentum hw by an amount 60t is thruster 1 in Figure 
8.8.1. However, since the roll (I/» and yaw (1/;) angles are controlled simultaneously, 
reaction thrusters - each one providing torques about both XB and ZB axes - are 
necessary; these are thrusters C and F in Figure 8.8.1. 

In the latter case, two pulses from the same thruster (C or F, depending on the sign 
of the actual roll error), and separated by half the nutation period, will change the Euler 
angles and velocities as in Figure 8.8.2 (page 246; see also Section 4.5 and Bryson 
1983). We use Euler's moment equations, with the following assumptions. 

Figure 8.8.1 Reaction thrusters required 
for achieving roll attitude control. 
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(1) The satellite is inert about the YB axis, which is also the axis of the momen
tum wheel. 

(2) The momentum wheel provides the momentum bias to the satellite, the di
rection of which is collinear with the YB axis. 

(3) There are no momentum exchange devices in the satellite except for the mo
mentum wheel mentioned in item (2) . 

The torques applied by the thrusters are external torques. Also, we will relabel the 
variables in Eq. 4.5.1: p now stands for Wx and r for Wl;' The torques Tx and Tz are 
applied about the XB and ZB axes, respectively, and hw is the momentum bias of the 
wheel. With this notation and Eq. 4.5.1, the dynamic equations for the nutational 
motion become 

Tx = pIx - rhw, 

~=tIl;+phw' 
(8.8.1) 

According to Eqs. 8.8.1, two pulses fired from the same thruster (C or F) and sep
arated by half the satellite's nutation period will change Euler angles cP and 1/1, and 
the velocities p and q, as follows: 

where 

Ftt.tlu F!i.t!i.z . 
p(t) = I cos(wnutt) - rr-r SIO(Wnutt), 

x ··.tIxll; 

Ftt.t!i.x . F!i.t!i.z 
r(t) = rr-r SIO(Wnu1 t) +-1-- cos(wnutt), 

vlxll; l; 

Ftt.t!i.x n; . F!i.t!i.z 
cP(t) = hw ~I; SIO(Wnutt)+ hw [cos(wnu1t)-I], 

F!i.t!i.x F!i.ttt.z ~x • 
I/I(t) = h [cos(wnutt)-l]+ h T. SIO(Wnu1 t), 

w w ~ 

F = thrust level, 
F!i.t!i.z = torque impulse bit for cP control, 
F!i.t!i.x = torque impulse bit for 1/1 control, 
!i.x, !i.z = torque arms, 

hw = constant momentum bias about the YB axis, 
Wnut = hw/.Jlxll;' the nutation frequency, and 
Tout = 211"lwnul' 

(S.S.2) 

(S.S.3) 

(S.S.4) 

(S.S.5) 

According to Eqs. 8.8.2-S.S.5, a desired change in the roll and yaw attitudes can 
be achieved whereby, at the end of this process, the roll and yaw rates (p and r) are 
both zeroed. See Figure 8.S.2 (overleaf), in which sketches. of the time histories of 
these variables are shown. The change in tt.cP will be: 

tt.cP = 2 F~~Z • (S.S.6) 

Equation S.8.6 shows that controlling smaller !i.cP increments depends heavily on the 
minimum impulse bit (F!i.t)min that the thruster can supply, as !i.z and hw are fixed by 
physical constraints. With an impulse bit of 40 mN-m-sec and with hw = 35 N-m-sec, 
!i.cP = 0.13°; this means we can achieve a roll error deadbeat limit of -O.Oso. 
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Figure 8.8.2 Development of tJ.t/J with two impulses of the 
same thruster motor, the second one delayed by Tnut /2. 

We have already seen that with momentum-biased satellites there is no need to 
measure or estimate the yaw attitude, since only the cp error is used for attitude con
trol in the XB-ZB plane. Moreover, a torque command proportional to the roll error 
cp, with a correct sign, is continuously applied about the ZB axis: 1'cz = a1'cx (see Sec
tion 8.3.2). In principle, thrusters C and D (Figure 8.8.1) can each provide correct 
control torques about the XB axis. However, only thruster C provides adequate con
trol about the ZB axis, satisfying the correct sign of a in Eq. 8.3.14. Hence, thrusters 
C and F are sufficient to provide the reaction pulses necessary for achieving both 
negative and positive changes in the roll attitude, simultaneously with the requisite 
attitude change about the ZB axis. 

Under ideal conditions, no parasitic nutational motion will be excited. However, 
given various imperfections in control hardware (Benoit and Bailly 1987), nutation 
divergence could arise and so necessitate appropriate nutation damping. 

8.8.3 Immunity to Sensor Noise 

Immunity to sensor noise, which would reduce unnecessary thruster firings, 
is achieved in a very simple way. A first-order low-pass filter is used to perform the 
necessary filtration of the earth sensor's output; this filter has a corner frequency 
that is slightly higher than the nutation frequency. A first-order analog filter with 
time constant T, after discretization by the Tustin transform, will attenuate the RMS 
value UN of the sensor noise to the value 

uO=uN (1+ ~:rl (8.8.7) 

(Sidi 1992b), where Tsam is the sampling time of the onboard control computer. 
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Figure 8.8.3 Delayed activation of reaction impulse 
caused by the sensor noise filter . 
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Suppose that T sam = 0.5 sec, r = 50 sec, and UN = 0.1° (RMS). With these inputs, 
Uo is attenuated to an acceptable value of only Uo = 0.007°. However, the measured 
roll error q, will be delayed, and the reaction impulse will be fired at an erroneous 
level of q,max + eq" as shown in Figure 8.8.3. 

To find eq" suppose that the system is under the influence of a constant torque dis
turbance Td• This disturbance will create an error: q,(t) = (Tdlhw)t. The measured 
and filtered roll q,(t) behaves as: 

T. 
q,F(t) = h: [t+re-tIT-r]. 

The steady-state error in the measured roll then amounts to: 

eq,(oo) = lim [q,(t)-q,F(t)] = ~d r. 
I~OO w 

(8.8.8) 

(8.8.9) 

If we assume that Td = 10-5 N-m, hw = 35 N-m-sec, and r = 50 sec, then eq,( co) = 
0.0008° - a very small additive error in the measurement of q,. 

When the roll error exceeds the roll deadbeat limits of ±q,max, the first reaction 
impulse is fired. Automatically, half the nutation period later, the same thruster is 
fired again. Between the two firings, and also for at least 10 seconds following the 
second firing, the command control is inhibited in order to prevent unnecessary spu
rious firings. Meanwhile, the two thruster firings have brought the roll angle close to 
the opposite deadbeat limit. The simplified flowchart of the algorithm is shown in 
Figure 8.8.4 (overleaf). 

8.8.4 Determining the Necessary Momentum Bias hw 

According to Eq. 8.8.6, if the minimum impulse bit is equal to 0.03 N-m-sec 
and hw = 20 N-m-sec then .1q,min = 0.171°, which means that a roll overall band limit 
of 2x0.1° is easily achievable with a maximum roll error of ±0.1°. To decrease this 
error in roll, we must either decrease the minimum impulse bit of the reaction con
trol system or increase the constant momentum bias. The minimum impulse bit is an 
engineering constraint that in general cannot be improved. The torque arm .14 can 
be decreased, but this increases fuel consumption. Increasing the value of the wheel's 
momentum bias is the remaining factor - and the most easily and cheaply imple
mented - for increasing the roll accuracy. 
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Figure 8.8.4 Flowchart of the roll attitude control. 

Another important factor in choosing hw is the acceptable yaw error magnitude for 
the expected secular disturbance torques. An analysis and resulting tables for choos
ing hw according to desired requirements on "'max are presented in Iwens et al. (1974). 

8.8.5 Active Nutation Damping via Products of Inertia 

In principle, any spurious torque about the XB or ZB axis will excite the nu
tational motion. If the two consecutive thruster impulses are unequal or if the nuta
tion time period is not accurately known, then the roll-controlled attitude of Section 
8.8.3 will include a parasitic nutational motion. Also, any kind of energy dissipa
tion, as in the rotor of the momentum wheel, could cause the already mentioned nu
tation divergence; see Benoit and Bailly (1987) and Section 6.7.1. To assure the damp
ing of a possible nutation excitation, the technique of Section 8.S can be used. 

In a real control system, the reaction thrusters are activated about once every 30 
minutes or so, depending on the level of external disturbances (see Figure 8.8.10). 
Between two thrusters' firing events, the reaction control system is not operative and 
hence the XB-ZB dynamics is virtually uncontrolled, as shown in Figure 8.8.5. On 
the other hand, pitch attitude is controlled continuously using the modified standard 
equation 

(8.8.10) 
where 

(8.8.11) 

As explained in Section 8.S (see also Figure 8.5.2), only the nutation frequency 
band is processed, while adequate gain and phase margins are preserved. In fact, 
only the nutation part of the roll attitude error is processed and fed to the pitch con
trol loop. In the frequency domain, we can see that the pitch control loop is only 
slightly disturbed at the nutation frequency spectrum band (see Figure 8.8.6). 
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Figure 8.8.5 Block diagram of the pitch 
and the active nutation control loops. 
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Figure 8.8.6 Closed-loop pitch control, with modulation alteration 
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The level of the products of inertia must not be exaggerated, in order to limit the 
interaction between the pitch and the roll-yaw control loops. A level of 2"70-5"70 (as 
compared to the principal moments of inertia) represents a good tradeoff. 

EXAMPLE S.S.l The satellite moments of inertia [kg_m2] are Iyt = 20, Ix = 767, 
and It = 954. With the control network 

G () 2,OOOs 

nut
S =( ~=1)' 

"'n = 0.03 

a damping factor of 0.088 was obtained for the nutation modal pole, sufficiently high 
for the system at hand. Time-domain behavior of the active nutation controller is 
shown in Figure 8.8.7 (overleaf). 
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CASE 1. ACTIVE DENUTATION 
PSlOEG 

8/ Momentum-Biased Altitude Stabilization 

. . . ......................................................................................... . . . . . . . . . .. ... . ., ... . .. ... . ., ... . .. ... . .. ... . ::r..o :: :::: 
'o~.---ro~.--~~~.--~OO~.--~OO~.--~IOO~.--I~m~.~I~~~.--I~OO~.--~IOO~.~roo. 

Time [sec] x 101 

b 
N ......... ; ...... . 

.... 
X ... I .......... . i . 
'"C. 
'-' 0 

<I) -; o. roo 40. 00. 00. 100. 120. 140. 100. 100. roo. 

Time [sec] x 101 

FIDEO 
III 
ni ......... ; ......... ; ......... ;. 

b 
. . . . ................................................... 

.... 
)( m . . . 
i··········:·······:·······:···· 

~II! 
~-~--~--~--~--~--~~~~~~~~~~~ ' 0. roo 40. &I. Ill. 100. 1m. 140. lID. llIl. roo. 

Time [sec] x 101 

Figure 8.8.7 Time behavior of the active nutation control. 

8.8.6 Wheel Momentum Dumping and the Complete 
Attitude Controller 

As explained in Section 7.3.3, external disturbances continuously increase 
the momentum of momentum exchange devices, such as reaction or momentum 
wheels. This momentum must be dumped in order to avoid saturation of the MW. It 
is common to dump it by use of magnetic torques, as explained in Section 7.5.2, or 
reaction impulses, as explained in Section 8.7.4. Reaction momentum dumping was 
added to the control system treated in Example 8.8.1. Time results of the complete 
attitude control system, including the MW dumping, are shown in Figures 8.8.8-
8.8.10. The system was submitted to the disturbances shown in Figure 8.8.11. The 
accuracies of the Euler angles shown in Figures 8.8.8 and 8.8.9 are undisturbed by 
the dumping process, and the velocity of the MW is kept within 30/0 of its nominal 
speed, as seen in Figure 8.8.10. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 



I '1 
; 

I 
I 

: '::~ 

I 
-, 

I 
I .) 

-'r 

I 
-j 

I 
I 
I 
I :f 

j 

I 
,-:-:-j 

.. ' 
-.::1 

I 
d 

I 
j 

.• ~-1. 

I 
"} , 

I 
I .! 

i 
j 

I 
~ 

I 
I 

------- -

8.8/ Reaction Thruster Attitude Control 

GED RTTITUOE CONTROL WITH ACTIVE OENUTATION 
PSIDEG . . . . . . . . . . . . . . . . . . 

b iii ......... ~ ......... ~ ......... ~ ......... ~ ......... ~ ......... ~ ......... ~ ......... ~ ......... ~ ....... .. 
..... :::: :: ... .. 
!.~ ~ ~ .; :: ! i ......... ( ....... ( ....... ( ....... ( ....... ( ..... 

~e ~ ~ ~ ~ ~ 
'0. 10. ZO. 3:1. 40. 9). Ill. 70. Ill. 9:1. 1m. 

Time [sec] x 103 

TETDEO 

b ui ......... ~ ......... ~ ......... ~ ......... ~ ......... ~ ......... ~. 
. .. . -

Time [sec] x 103 

FIIEI 

. . . . . . . . . . b N ......... : ......... : ......... : ......... : ......... : ......... : ......... : ......... : ......... : ....... .. ->< 
coci~-+~~~-+~--~--~~~~~~~~~~~ 

! 
-&oN 'o~.--~--~--~--~~--~--~--~--~--~--~ 10. ZO. ::fl. 40. SJ. BJ. 70. Ill. 9:1. 1m. 

Time [sec] x 103 

Figure 8.8.8 Time-domain behavior of the Euler angle errors. 

8.8.7 Active Nutation Damping without Products of Inertia 
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As explained in Section 8.5, active nutation damping via products of inertia 
was developed, simulated, and evaluated in order to be used as the primary mode in 
the GBO mission stage of the Israeli Amos geostationary satellite. Although the test 
results were quite satisfactory, difficulties in obtaining the necessary product of iner
tia Iyt or Iyx precluded this elegant control option. Instead, a new version of active 
denutation control was suggested by D. Verbin (MBT, Israel Aircraft Industries) to 
assure at least a partial solution to the problem of attenuating any parasitic nuta
tional motion to an acceptable level. The basic idea follows. 

We showed in Section 8.8.2 that, by activating two reaction impulses separated by 
half the nutation period, a desired change in the roll attitude could be achieved with
out exciting the nutation mode of the momentum-bias control configuration. We 
will now see that, if the two pulses are applied at a precomputed time separation, 
then any remaining nutation can be completely removed, at least in theory. 
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Figure 8.8.9 Time-domain behavior of the RMS of the Euler angle errors. 

The first stage in this control scheme is to identify the parameters of the nutational 
motion, which is included in the measured roll angle. In practice, the nutation com
ponent of the roll angle is linearly superimposed on the slowly varying component 
of the roll error caused by the disturbance torques acting about the XB and ZB axes 
of the satellite. Since the nutation period Tnut is known, one simple way is to find the 
Fourier coefficients of the measured roll error. The reSUlting linearized form of the 
roll angle error will be 

(8.8.12) 

where "CT" denotes "almost constant with respect to the nutational motion." 
Having obtained the coefficients cPCT, cPnut, and a, with "'nut known we can simul

taneously control both the CT error and the nutation error by applying two consecu
tive reaction pulses at the correct timings II and 12 referenced to a. The analytical 
development follows. 

Suppose that two pulses are activated with an angular interval of o. According to 
Eqs. 8.8.1, the steady-state time history of the produced roll control will be: 
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Figure 8.8.10 Time behavior of the momentum dumping process. 

I1hx ~~ . I1h~ +-h - SlD(wnutt-~)+-h [cos(wnutt-~)-I] 
w Ix w 

=Sin(Wnutt)[~:x ~[I+COS(~)]+ ~:z Sin(~)J 
r I1hx (I; . 11hz J 11hz 

+COS(wnutt)C hw "'Ix SlD(~)+ hw [1+cos(~)] -2 hw . 

This equation can be put in the more compact form 

q,c = A sin(wnutt)+ B COS(Wnut/)+ C 

= .JA2+B2 sin(wnut/+ac)+C. 

with A. B. and C defined as follows: 

I1h (I; I1h . 
A = hw

x "t[1+COS(~)]+ hw~ SID(~). 

I1h ~ . I1h B = -T / slD(~)+T[1 +cos(~)]. 
w x w 

C=_2 I1hz 
hw . 
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(8.8.13) 

(8.8.14) 

(8.8.15) 
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Figure 8.8.11 External disturbances acting on a satellite. 

Let us also define 

Then 

(8.8.16) 

(8.8.17) 

In order to cancel the existing nutation, we must produce a controlled nutation 
with an amplitude lPnUlc = lPnul' Using Eq. 8.8.17, we can compute the angular dis
tance between the two thruster pulses: 

~ = COS-I(lP~ulc -1) (8818) 
u 2D' .. 

We can also find the time separation between them: 

lit = /ilwnul ' (8.8.19) 
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It is important to notice that the maximum nutation amplitude that can be canceled 
is limited to q,nule :S 2m. 

Finally, we must calculate at what time the first pulse is to be applied. We know 
that 

(8.8.20) 

If we define to as the time at which q,(t)-q,CT = 0 in Eq. 8.8.12, then the first reac
tion pulse should be applied at 

The second pulse should then be applied at 

12 = II+A/. 

With these results, the control algorithm is straightforward. 

(8.8.21) 

(8.8.22) 

Unlike the algorithm explained in Sections 8.8.2 and 8.8.5, the algorithm of this 
section can never completely cancel the nutation because of uncertainties in our 
knowledge of the physical parameters of the satellite's equipment (e.g., the minimum 
impulse bit, the momentum bias of the momentum wheel, the moments of inertia 
of the satellite, and so on). With the former algorithm, which was based on active 
denutation via products of inertia and on the torque capabilities of the momentum 
wheel, any initial or spurious nutation would be completely damped. 

The term C in Eq. 8.8.15 is exactly the CT value of the roll error that will be cor
rected, as in Section 8.8.2. An example will clarify the obtainable results. 

EXAMPLE 8.8.2 In this example, Ix = 645 kg_m2
, Iz = 745 kg-m2, hw = 35 N-m

sec, "'nUl = 0.0505 rad/sec, Ahx = 0.0276 N-m-sec, Ahz = 0.0436 N-m-sec, and C = 
0.143°. Suppose that a nutation amplitude of 0.06° is to be eliminated, with the aid 
of a constant negative Aq, that must cancel part of an existing q,CT' 

Solution Since q,nul is known in Eq. 8.8.12, by use of Eq. 8.8.18 we find 
that 0 = 139°. Next, we must find the time at which to apply the two reaction pulses. 
From Eq. 8.8.20, we have a(' = -13.9°. Translated to time, tl = a('/"'nul = -4.82 sec, 
referenced to a in Eq. 8.8.12. The second pulse must be applied at t2 = II+OI"'nul = 
-4.82 + 48.2 = 43.38 sec. 

The results are given in Figure 8.8.12 (overleaf). Figure 8.8.12.a shows the exist
ing nutation roll angle that is to be canceled. In Figures 8.8.12.b and 8.8.12.c we see 
the resulting nutation excited by the application of the two reaction pulses, 48.2 sec 
apart. The final roll angle q, is shown in Figure 8.8.12.d. With the application of the 
second reaction pulse, the nutation q,nul in the original roll angle disappears com
pletely, and a CT component of C = -0.143° is added, as expected. 

A 6-DOF simulation of the complete ACS is shown in Figure 8.8.13 (page 257). 
There are uncertainties in the physical parameters of the satellite. The initial nuta
tion is canceled, but some angular nutational motion always remains because of the 
uncertainties in the control parameters. The boundary limits on the roll angle are 
q,max = ±0.1l0; see also Figure 8.8.8. 
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Figure 8.8.12 Idealized cancellation of the nutation components tPnut. 

For a slightly different realization of active nutation damping without products 
of inertia, see Azor (1995). 

8.9 Summary 

This chapter dealt with momentum-bias control systems. They have some 
nice features: (1) only one momentum exchange device is needed to attitude-stabilize 
the satellite, and (2) the yaw attitude error need not be measured, thus simplifying 
greatly the onboard attitude determination hardware and algorithms. 
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Figure S.S.13 Complete 6-DOF simulation of the reaction control 
denutation scheme. 
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The basic drawback of such attitude control systems is that they do not allow exe
cution of attitude maneuvers, except for small controlled attitude changes if two 
momentum wheels in a skewed V configuration are used. External disturbances tend 
to increase the roll and yaw Euler angles error. Active control of these errors can be 
achieved by use of reaction, magnetic, or solar control techniques. 
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CHAPTER 9 

Reaction Thruster Attitude Control 

9.1 Introduction 

In Chapters 5-S, various control laws were presented for attitude stabiliza
tion and maneuvering. The hardware used to implement the control laws were prin
cipally momentum exchange devices as well as magnetic and solar torque controllers. 
Such controllers work in a linear continuous mode. The torques that they can pro
vide are in the range of 0.02-1 N-m for momentum exchange devices, 10-2_10-3 N-m 
for magnetic torque controllers, and 10-5-10-6 N-m for solar torque controllers. 

This form of attitude control has two major disadvantages. First, the speed of 
attitude maneuvering is limited by the low-level maximal torques that can be deliv
ered to the ACS. The second but no less important difficulty was encountered in 
orbit-maneuvering tasks. The high-level liquid thrusters (or solid propulsion motors) 
used for orbit changes induce parasitic torques due to physical irregularities of the 
propulsion system. The level of induced parasitic torques is of the order of several 
newton-meters. The only way to control the attitude of the spacecraft under such 
disturbance conditions is to use reaction thruster controllers (see also Section S.S). 

Reaction thrusters used in attitude control are activated in a pulsing mode only. 
There are no linear, continuous reaction thrust controllers. This fact somehow com
plicates the analytical treatment of attitude control systems using them as torque 
controllers. However, they can provide almost any torque level, as surveyed in Ap
pendix C. Reaction torque levels ranging between 0.01 N-m and 30 N-m are very com
mon in most spacecraft. For practical considerations, it is convenient to use thrusters 
of the same thrust level for all control tasks in the satellite, but if this is not feasible 
then thrusters with different thrust levels can be incorporated as part of a unified 
propulsion system. 

This chapter deals with the analysis and design of reaction thruster attitude con
trol. It also covers two principal difficulties caused by the pulsing mode of thruster 
firing: the limits on attitude accuracy that can be achieved with a given thruster, and 
the fuel penalty associated with sensor noise. The quality of an ACS using propul
sion torque controllers is strongly influenced by the specifications of the reaction 
thrusters; an introduction to propulsion hardware can be found in Appendix C. 

9.2 Set-Up of Reaction Thruster Control 

Reaction thrusters must be viewed in the context of a unified control system. 
In general, six thrusters are needed to allow attitude maneuvers in space, although 
some highly sophisticated systems claim to achieve the same space maneuvers with 
only four thrusters, strategically located on the satellite body (see Section 9.5). But 
for various practical reasons, six or more thrusters are necessary to complete a reac
tion control system. 
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B. YB 

Figure 9.2.1 Eight-thruster arrangement, with direction details 
for thruster 6 . 
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The level of torque that a reaction thruster can apply about a satellite axis de
pends not only on its thrust level but also on the torque-ann length about the axis. 
This statement suggests that correct thruster use depends primarily on its location on 
the satellite, and also on its inclination to the satellite body axes. Needless to say, 
different torque levels might be needed about the three principal body axes, so the 
location of the thrusters and their direction must be carefully studied before a final 
physical set-up is adopted for the propulsion system. The location and direction of 
the thrusters is also influenced by the location of the optical sensors and solar panels, 
which must not be damaged by the thrust flow. In the following analysis we will out
line the different tradeoffs made in choosing the location of a thruster and the direc
tion of its thrust axis relative to the body frame. 

Figure 9.2.1 shows a potential arrangement of low-thrust satellite thrusters. First, 
it is clear that they must provide both positive and negative control torques about 
each of the satellite's body axes. (This arrangement is different from that in Figure 
6.5.1, where e.g. thrusters TH2 and TH5 apply pure positive and negative torques 
about the XB body axis.) In the next section we calculate the torque components 
applied by a thruster about each body axis as a function of the thruster's location 
and direction, denoted in the figure by the elevation and azimuth angles a and {3, 
respectively. 

9.2.1 Calculating the Torque Components of a Single Thruster 

If the thrust vector is F, then the torque about the center of mass (cm) of the 
spacecraft will be M = rxF, where r is the vector distance of the thruster from the 
cm. The components of rare rx , ry, and r~ in the body axis frame; the thrust level is F. 
The direction of the thrust is defined by the elevation and azimuth angles a and {3. 

Suppose that initially F is in the direction of X B' After two rotations - first about 
the y axis of the thruster by an angle (3, and then about the z axis of the thruster by 
an angle a - we find that the components of F along the body axes are 

Fx=Fcos(a)cos({3), Fy=Fsin(a), F~=Fcos(a)sin({3). (9.2.1) 
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Figure 9.2.2 Equivalent torque arms for thruster 6. 

The position r of the thruster can be expressed as: 

r = irx+ jry + kT<;. 
With these relations, the torque components of M are 

M = [Z:] = rxF = [T<;C~~(S!~~~s~;;~~x~:~~:)(:~({n]F= [~;]F. 
M<; Txsin(a)-Tycos(a)cos(J9) . Az 

(9.2.2) 

(9.2.3) 

Equation 9.2.3 establishes the equivalent torque arms AX, AY, AZ of the thrust F 
about the three body axes. Figure 9.2.2 exhibits the dependence of Ax, !:t.y, Az on the 
elevation and azimuth angles a and J9 for the location ofthruster 6 at rx = -1 m, Ty = 
-1 m, and T<; = 0.5 m; the value of the elevation angle is a = 20°. Since a> 0 (see 
Figure 9.2.1), AZ is always positive. But !:t.x and Ay can change sign, depending on 
the value of the azimuth angle J9. 

The importance of the results· displayed in Figure 9.2.2 lies in the fact that the 
torque arms about any body axis can be decreased at will, thus enabling low torque 
levels even at relatively high-thrust levels. This in tum enables fine attitude control. 
but at the expense of low fuel efficiency. 

Chapter 8 dealt with a number of control configurations in which the minimum 
impulse bit of a single reaction shot plays an important factor in achievable roll and 
yaw accuracies (see Eq. 8.8.6). The minimum impUlse bit of the thruster is generally 
determined by the reaction thruster characteristics, and cannot be decreased at will. 
On the other hand. correct location and inclination of the thruster relative to the 
spacecraft body can decrease the minimum Az as desired by affecting the equivalent 
torque arms of the thruster. 

Most attitude control laws calculate the torques to be applied about the body 
axes. In Section 7.3.4 we learned how to distribute these torque commands to the 
four reaction wheels. The algorithm used to realize the torque transformation was 
very simple, as Eq. 7.3.26 showed. 
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The algorithm that transforms the command control torques about the body axes 
\. to reaction thruster activations is much more complicated, for two reasons. (1) Reac

tion thrusters are not linear controllers, since the level of the thrust output is con
stant. Consequently, the equivalent torque that the thruster will produce depends on 
the time period in which the thruster is activated. (2) A thruster is capable of pro
ducing one-signed torques only. In order to achieve a torque about the same axis 
with the opposite sign, a different thruster must be activated about the same axis in 
the opposite direction (see also Section 9.5). These two factors drastically compli
cate the algorithm that transforms body torque commands into thruster activation 
commands. 

9.2.2 Transforming Torque Commands into Thruster Activation Time 

This section describes a basic algorithm that uses the pulse width modula
tion principle to transform the torque commands into correctly timed activation of 
the relevant thrusters. The algorithm as described here is not optimized in terms of 
simplifying to a minimum its onboard version. We prefer to make the algorithm more 
comprehensible by showing clearly all its sequential operations. 

The algorithm naturally depends on the physical set-up of the thrusters. We will 
base the demonstration algorithm on the set-up shown in Figure 9.2.3, which is a 
potential set-up for a geostationary satellite. The thrusters are arranged so that they 
provide the necessary torques for attitude control about the three body axes as well 
as the necessary thrust for station keeping. Thrusters 3-6 are used for N-S (inclina
tion) SK (Section 3.5.1); thrusters 1 and 2 are used for E-W (longitude) SK (Section 
3.4.4) and also for eccentricity corrections (Section 3.5.2). 

In addition to station-keeping tasks, the set-up in Figure 9.2.3 allows for 3-DOF 
attitude control. Thrusters 1 and 2 provide the negative and the positive pitch control 
torques (respectively) about the YB axis; thruster 3 provides positive torque about the 
XB axis but simultaneously a negative torque about the ZB axis; and so on. Formally, 

Ty+ = Th2, 

Tx+ = Th3 + Th5, 

Tz+ = ThS + Th6, 

Ty- =Thl; 

Tx- = Th4+Th6; 

Tz- = Th3 + Th4. 

(9.2.4) 

Here the + and - signs indicate the sign of the produced torques about the body 
axes, and Thi denotes thruster i. 

Figure 9.2.3 Possible thruster set-up for a geostationary satellite. 
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In order to simplify our analysis, the thrusters are located symmetrically about 
the body axes, with equal torque arms about the same axis; the directions of the 
thruster axes are parallel to the body axes. The torque efficiency of each thruster de
pends on the thrust level F, and also on the torque arms ~x, ~y,.1z (Section 9.2.1). 
We define the torque constants as Gx=F~x, G y =F.1y, and Gz=F~z. With this 
notation, we can express the torques about the body axes as 

Tx = [Th5 + Th3 - Th4- Th6]Gx , 

Tz = [Th5+Th6-Th3-Th4]Gz , 

Ty = [Th2- Thl]G y• 

(9.2.5) 

Since the produced torques are momentarily determinated by Gx , G y , and Gz , 
the average torque provided during a sampling time depends upon the time that the 
thrusters are on relative to the sampling time T sam. This is the principle of pulse width 
modulation (PWM), which is treated in subsequent sections. First, we normalize the 
body control torques to 

A Tx 
Tx=

Gx ' 
A Ty 
Ty=-, 

Gy 

A Tz 
T'7=
~ Gz ' 

and define Ti as the ratio between the thruster "on-time" and the sampling time for 
thruster Thi. Thus the first two of Eqs. 9.2.5 can be rewritten in the following form: 

[tX] [1 -1 
tz = -1 -1 1 -1][ ~!1 1 1 T5· 

T6 

(9.2.6) 

(This is similar to Section 7.3.4, where four reaction wheels were used to provide 
torques about three body axes.) Although the matrix of Eq. 9.2.6 is not square, it 
does have a right pseudoinverse,yielding 

[ 

T31 [1 -11 T4 =1.. -1 -1 [~x]. 
T5 4 1 1 Tz 
T6 -1 1 

(9.2.7) 

According to the values of Tx and Tz, Ti can have negative values, which cannot 
be physically realized with the thruster i. A negative on-time means that a torque 
of opposite sign is to be produced with thruster Thi, which is not physically pos
sible. This situation can be remedied by activating, for an identical duration, another 
thruster providing the same torque but with a positive on-time. For instance, in Fig
ure 9.2.3, suppose that T3 comes out to be negative. In this case, Th6 should be acti
vated instead for the same on-time T3, assuming that the ~x and .1z torque arms of 
Th3 and Th6 are equal. 

If the torque arms are not equal then Gx , G y , Gz must be defined separately for 
each thruster, and Eqs. 9.2.5 must be rewritten accordingly. The algorithm is listed 
as follows. 
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T3 = [+tx -tJ/4 
T4= [-Tx-tJ/4 
T5 = [+tx +t]/4 
T6 = [-Tx +t]/4 

TT6= T6-T3; TT3 =0 

IF(TT6.LT.0) THEN TT3 = T3 - T6; TT6 = 0 

TT4 = T4 - T5; TTS = 0 

IF(TT4.LT.0) THEN TTS = TS - T4 ; TT4 = 0 
IF(i;,.GT.O) THEN TT2 = 1; ; TTl = 0 
IF(i;,.LT.O) THEN TTl = Abs(i;,) ; TT2 = 0 
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Here ITi stands for the time duration of the on condition for each thruster i. In es
sence, the algorithm realizes a kind of pulse width modulation, upon which many 
pulsed attitude control schemes are based. 

Algorithms for other reaction thruster set-ups, such as those shown in Figure 9.2.1 
and Figure 6.5.1, can be written in a similar way. With asymmetrical location of the 
thrusters and different thrust levels or directions of their thrust axes, the algorithm 
might become quite complicated. Still, the technique of formulating it remains the 
same. The following sections deal with realization of attitude control loops based on 
the reaction thruster set-up of Figure 9.2.3. 

9.3 Reaction Torques and Attitude Control Loops 

9.3.1' Introduction 

The control laws to be used for reaction attitude control loops are the same 
laws treated in Section 7.2. Unfortunately, reaction controllers do not possess the 
same linear relationship between the input to the controller and its output torque. In 
fact, they are activated in an on-off mode. Nonetheless, they can be used in a quasi
linear mode by modulating the width of the activated reaction pulse proportionally 
to the level of the torque command input to the controller. This is the often used 
pulse width modulation (PWM) principle. A related design technique is based on 
the well-known Schmidt trigger, which implements a pulse width-pulse frequency 
modulation (PWPFM) in which the distance between the pulses is also modulated. 
Both modulation techniques will be analyzed in this chapter as part of attitude feed
back control loops. 

By definition, attitude control loops based on reaction controllers are sampled, 
with all the implications attendant upon such systems. There are numerous auto
matic control textbooks dealing with sampled control systems; see for instance Sau
cedo and Schiring (1968), Kuo (1970), Franklin and Powell (1980), Houpis and La
mont (1985), or D'Azzo and Houpis (1988) . 

With certain assumptions, the "area" of the reaction pulse can be approximated as 
an impulse (Figure 9.3.1, overleaf). This allows the feedback control loops to be ana
lyzed as a conventional digital control system, for which the classical tools of auto
matic control theory hold. Design techniques based on the Nyquist, Bode, Nichols, 
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Figure 9.3.1 Approximation of PW-modulated pulses to impulses. 

and root-locus theories apply nicely to these systems, as we shall see in the present 
chapter. There is, however, a significant deficiency in sampled systems. The band
width of the closed loop that can be achieved is limited - in a very determined way -
by the sampling time (Sidi 1980). 

9.3.2 Control Systems Based on PWPF Modulators 

Apparently owing to technical heritage from the "analog age" of onboard 
computers, pulse width-pulse frequency modulators are still predominant in atti
tude and orbit control systems (AOCS). They emerged from the widely used analog 
monostable Schmidt trigger, a basic element in analog pulse techniques (Millman 
and Taub 1956, Joice and Clarke 1961). 

The standard practical realization of a PWPF modulator control loop is shown in 
Figure 9.3.2, where Xx and Xxd are the usual proportional and derivative gains. The 
dynamics of the sensor and of the sensor noise filter have been omitted in order to 
simplify the analysis. The attitude and its derivative errors (Er in the figure) are trans
formed into a burst of idealized rectangular pulses. 

Figure 9.3.2.b shows a variation of the PWPF modulator, the so-called pseudo 
rate (PR) modulator. Its special characteristic lies in the fact that the time-constant 
network is located in the feedback path of the modulator, thus giving the modulator 
"lead-lag" compensating abilities. Because of the dead-zone region of the hysteresis 
block, the lead phase is achieved with a lesser amplification of the sensor noises at 
the input to the modulator. For stabilization of spacecraft with large flexible append
ages, control and modulator parameters must be carefully matched to ensure stabil
ity of structural modes of vibration (Bittner, Fisher, and Surauer 1982). 

A detailed analysis of the PWPF modulator follows. Our aim is to obtain a rela
tionship between the input Er = In and the frequency- and width-modulated values 
of the output pulse sequence, characterized by the on and off time periods. 

Calculating ton and toff for the PWPF Modulator 
The calculation of these variables is based on the time behavior shown in 

Figure 9.3.3. Our presentation will be broken down into five steps. 
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PWPF Modulator r----------------------------------, , , 
, I 
, I 

:OUI 

a. 
PR Modulator 

b. 

Figure 9.3.1 Basic attitude control loops using PWPF and PR modulators; 
adapted from Bittner, Fisher, and Surauer (1982) by permission of IFAC. 
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(I) As long as V < Von' the system is quiet. The effective dead zone is Vonl K, where 
K is the DC gain of the time constant network of the modulator (Figure 9.3.2.a) . 
The hysteresis block in the figure is the Schmidt trigger. The smallest input that can 
activate the hysteresis block is 

(9.3.1) 
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(2) Compute the time behavior of Vas a result of Er). The dynamic equation is 
simply 

V7+V=KEr). (9.3.2) 

Taking the Laplace transform of this equation, we obtain 

7V(0) KEr) 
V(s) = l+s7 + S(l+S7)· (9.3.3) 

The time-domain solution is simply 

V(/) = V(O)e-th +KEr)[I-e-tlT ). (9.3.4) 

(3) We now compute Ion. According to Figure 9.3.2, V(t) starts at Uon and decreases 
asymptotically to In - Um, which means that V(O) = Uon and K Er) = K(ln - Um). 
This decrease will stop at Uolr. so that 

Uoff = V = Uone-tofflT +K(ln - UmHI-e-tonh) 

= K(ln - Um) + (Uon - KIn + K Um)e-tonlT. (9.3.5) 

It follows that 

e-tonlT= Uoff-Kln+KUm =1- Uon-Uoff . 
Uon-Kln+KUm Uon-KIn+KUm 

(9.3.6) 

For small ton' e-tonlT "" 1- tonh. This yields the first-order approximation 

Uon-Uoff 
(on"" 7 • 

KUm-KIn+Uon 
(9.3.7) 

(4) To calculate loff we first observe that, according to Figure 9.3.2, V(t) tends 
toward K In; it starts at V(O) = Uoff but its increase is halted at Uon. Hence we have 

V(t) = e-tofflT Uoff+ K In(l-e-toff/T
) = Uon' 

from which follows the final result: 

-t IT Uon - KIn KIn - Uon + Uoff - Uoff Uon - Uoff e off = = = 1 - --=::-':'----::-:--
Uoff-K In K In-Uoff K In-Uoff 

For small toff, a first-order approximation may likewise be used: 

Uon-Uoff 
loff "" 7 KIn - U

off 

(9.3.8) 

(9.3.9) 

(9.3.10) 

Some results concerning the time-domain behavior of the PWPF modulator with 
respect to our analytical equations are shown in Figure 9.3.4 and Figure 9.3.5. Fig
ure 9.3.5.c (page 270) shows the resulting average output torque due to the input to 
the PWPF modulator in Figure 9.3.4.a. Except for the scaling factor of both input 
and output, the output adequately follows the input, as predicted. If we wish to use 
the reaction system with a lower fuel penalty, then wider pulses have some advantage 
because they have a higher average specific impulse Isp. According to Eq. 9.3.7 and 
9.3.10, the ratio ton/toff becomes larger if Uoff is zeroed. 

(5) Equation 9.3.6 and Eq. 9.3.9 (or the simplified Eq. 9.3.7 and Eq. 9.3.10) can be 
used to detennine the five modulator parameters K, T, Uon , Uoff, and Um. It is imper-
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ative to determine ton and tolf based on physical considerations. The hysteresis co
efficients are also important in determining the minimum dead zone that will give 
sufficient immunity to the sensor noise reaching the modulator input. 

EXAMPLE 9.3.1 A PWPF modulator is implemented in a single-axis attitude con
trolloop. The control gains Kx and KXd in Figure 9.3.2 are chosen so that the control 
system has a closed-loop natural frequency of "'n = 1 rad/sec and a damping coeffi
cient of ~ = 1. To satisfy some practical engineering requirements, the modulator pa
rameters were chosen as follows: K = 2, T = 0.5, Uon = 1, Uolf = 0.1, Um = 9.5. 

Figure 9.3.6 (page 271) shows the time responses for an angular input of 0.2°. The 
input Er and the output (Out) of the modulator are also shown on Figure 9.3.6. Fig
ure 9.3.7 (page 272) shows the time response for an input of 1°. 
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Figure 9.3.5 Output pulses and their average value of the PWPFM. 

Calculating ton and toff for the PR Modulator 
An analysis similar to that carried out for the PWPF modulator leads to the 

following results: 

KUm-In+Uon 
ton = T In K U -1 U' 

m n+ off 

I In-Uoff 
toff = T n In-Uon 

(9.3.11) 

(9.3.12) 

Equation 9.3.11 and Eq. 9.3.12 can be used to determine the parameters ofthe pseudo 
rate pulse modulator for efficient use in reaction attitude control systems. 

9.3.3 Control Loop Incorporating a PWPF Modulator 

Even though PWPF modulators are by definition nonlinear, they are easily 
incorporated in attitude control loops, whereupon the entire feedback control loop 
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can be analyzed by linear control theory. As can be seen from Figure 9.3.4.a and 
Figure 9.3.5.c, the average output of the modulator tracks the input quite accurately. 
In fact, the input-output characteristics of pulse modulators can be represented as in 
Figure 9.3.8 (see also Wie and Plescia 1984). Figure 9.3.8 (overleaf) shows the linear 
behavior of the modulator input-output characteristics except at very low and high 
inputs, where the nonlinear characteristics are purposely introduced to solve prac
tical problems of sensor noise and to limit structural oscillation of panels and fuel 
slosh in a limit cycling mode (Vaeth 1965, Bittner et al. 1982). 

Analog implementation of PWPF modulators is straightforward because analog 
(continuous) electronics technology is the natural medium for realizing these modu
lators, implemented by the Schmidt trigger scheme. However, PWPF modulation 
causes some practical problems with today's onboard microprocessors. Digital mi
croprocessors work in a synchronous timing created by an electronic clock: the on
board computer sends control commands at equal time intervals, and pulse frequency 
modulation cannot be easily implemented. The equations of the previous section be
come invalid for a discrete "pulse frequency" modulator. This kind of modulator, 
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when used in an onboard microprocessor, must be synchronized with the sampling 
time of that processor. Digital implementation of a PWPF modulator was the sub
ject of a Ford Aerospace patent application (Chan 1982). 

The nice characteristics that could be achieved with PWPF modulators are com-
plicated by the practical difficulties just mentioned. It seems that, from the basic 
perspective of input-output characteristics, modulators based solely on pulse width 
modulation are simpler to apply in a microprocessor-based onboard computer. Atti- _-"'--. 
tude feedback control loops based on PWM will be analyzed in the next section. r~ - --- ',._ 

r' -
9.4 Reaction Attitude Control via Pulse Width Modulation 

9.4.1 Introduction 

There are no fundamental differences between reaction pulse control loops 
using pulse width-pulse frequency modulation (PWPFM or PRM) and pulse width 
modulation (PWM). Both are based on the Schmidt trigger, but there do exist small 
differentiating nuances between these two kinds of control schemes. 

In attitude feedback control loops based on PWM, the sampling frequency is con
stant and the reaction pulses are applied at equal time intervals. If the dynamics of 
the plant contains additional structural dynamics with low damping coefficients and 
eigenfrequencies equal to the sampling frequency of the control loop, then the struc
tural dynamics might be excited, thus degrading the quality of the feedback control 
loop. Special precautions, such as adequate structural filters, must be incorporated 
to account for this phenomenon. 

9.4.2 Feedback Control Loop 0/ a Pulsed Reaction System 

In previous chapters, in order to simplify the theoretical analysis, controllers 
were presumed to be analog. With today's technology, onboard control computers 
are no longer analog, and all feedback control loops are of the sampled type. For 
such continuous devices as reaction wheels or magnetic torque controllers, the on
board microprocessor approximates continuousness via a sampler followed by a zero
order hold device. With a sampling frequency that is reasonably high with respect 
to the bandwidth of the open-loop transfer function, the zero-order hold output is 
quasicontinuous. The sampler and the zero-order hold circuit have the net effect of 
adding some delay to the open-loop transfer function of the feedback system, which 
should be taken into consideration when designing with continuous control analysis 
techniques; design with discrete (digital) control techniques automatically takes care 
of this inherent delay. With pulsed controllers, in which a zero-hold device does not 
exist, the analysis and design must be carried out using discrete control techniques. 

The basic control scheme of a pulsed attitude feedback control loop about one 
body axis is shown in Figure 9.4.1 (overleaf). With ideal torque impulses, the block 
of the PWM can be omitted. In this way, linear analysis of the sampled control loop 
is performed in the usual manner. With small on periods (as compared to the sam
pling period) of the reaction thrusters, omission of the PWM block is justified. This 
means that the amplitude of the impulses at the output of G1(z) and of G(z) in Fig-
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Figure 9.4.1 Pulsed controller attitude feedback control loop. 

ure 9.4.1.a and Figure 9.4.1.b (respectively) takes the value of the rectangular pulses 
FA(At) of Section 9.2.2, where A is the torque arm and At is the pulse width. 

Figure 9.4.1.a shows the most general block diagram for a single-axis attitude 
control loop in which the attitude and their derivatives can both be measured. Here 
K and Kd are the usual position and derivative controller gains, and G1(o4) contains 
the required structural mode control networks, sensor noise filters, and an integra
tor (if one is needed' to nullify the steady-state error to disturbances or to attitude 
command inputs). As mentioned previously, tinless precise attitude control is imper
ative there is a tendency to avoid continuous use of rate sensors, such as the common 
rate gyro. In this case, the scheme of Figure 9.4.1.b is relevant, with the self-evident 
disadvantage of increasing the sensitivity of the system to position sensor noise. 

The term Td denotes the equivalent disturbance torque, comprising internal and 
external parasitic torques whose sources are irregularities in or bad modeling of the 
reaction thrusters, uncertainties in knowledge of the vehicle mass properties, and so 
forth. For instance, in the ABM stage - in which the transfer orbit is to be circular
ized at the apogee - a large disturbance torque may be present if the high-thrust vec
tor does not pass exactly through the satellite's center of mass. The attitude reaction 
control loop must counteract this disturbance torque in order to prevent a large at
titude error of the satellite, which would cause an incorrect t:.v increment (see Sec
tion 3.4.3). Another example of the importance in decreasing ACS sensitivity to Td 
is in the N-S station keeping of geostationary satellites. Keeping the inclination of 
the orbit inside permitted limits is achieved by adding linear velocity increments to 
the sic perpendicularly to its orbit (as explained in Section 3.5.1). During this stage, 
which may continue for several minutes, the satellite attitude error cannot exceed 
permitted tolerances without degrading the communication mission. In today's com
munications satellites, attitude error tolerances are of the order of 0.03°-0.1°, a diffi
cult standard for the control engineer to achieve. 

Naturally, an increase in the gain bandwidth of the control loop will decrease 
the attitude errors due to the external disturbances, but the existence of structural 
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dynamics will preclude very high loop gains. Hence, a careful design must procure 
the highest possible gains while still keeping the necessary gain and phase margins 
for the structural dynamics, including stability of the sloshing modes (see also Sec
tion 7.3.6). Another important control aspect is the behavior of the attitude output (J 

to control input (Jeam' For all attitude control tasks, sensor noise is an important fac
tor to be taken into account. For the set-up of Figure 9.4.1.b, in which it is assumed 
that no rate sensor is included in the control hardware, the noise of the position sen
sor might be strongly amplified; this precludes high open-loop gains (see also Sec
tion 7.3.6). 

Sensitivity to External Disturbances 
At the beginning of the analysis we shall assume that there are no structural 

filters, G1(z) = 1 in Figure 9.4.1.a. We also know that, with no structural dynamics in 
the plant block, the simplified plant reduces to pes) = I/Js2, where J is the satellite's 
moment of inertia. Also, without the pulse width modulator in the loop, PWM = 1. 
If we assume that the disturbance Td is a continuous and constant step function with 
an amplitude of D, then 

8(z) _ DT~(zl2)(z+ 1) ) • (9.4.1) 

J(Z-lfJ+TsamZ(Z-I)(K+Kd Z~I 

where T sam is the sampling time and Z is the Z transform variable. Using the final
value theorem for sampled systems, the steady-state value of the output amounts to 

I· (J I' Z -I (J DT sam 1m (nT sam) = 1m -- (z) =-K 
n_OD z-I Z 

and finally 

TF.d = (Jss = T sam 
D K' 

(9.4.2) 

(9.4.3) 

Equation 9.4.3 shows that the steady-state error of the output angle (J depends on 
both the sampling time T sam and the DC gain K. This gain is itself determined by the 
closed-loop natural frequency (K = w~J), and Kd is proportional to the damping co
efficient (Kd = 2EwnJ). For the magnitude of the sensitivity ratio TFd see Table 9.4.1, 
in which J = 500 kg-m2 and E = 0.7. 

Table 9.4.1 Steady-state error as function of the sampling 
time and the closed-loop bandwidth 

m. K Kd T .... [sec] 1Fd D [N-m] 9 .. [deg] 
[rls] [radIN-m] 

0.5 125 350 1.0 8.H)"' 1 0.46 

0.5 125 350 0.5 4. 10-' 1 0.23 

0.5 125 350 0.25 2. 10-' 1 0.114 

0.25 31.25 175 1.0 32.10-' 1 1.83 

0.25 31.25 175 0.5 16. 10-' 1 0.92 

0.25 31.25 175 0.25 8.10·' 1 0.46 
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In this analysis ofthe discrete feedback control loop, the outputs of G1(z) or G(z) 
in Figure 9.4.1 are impulses of amplitude tor, proportional to the processed attitude 
error. In practice, thrusters supply torques of constant amplitude and varying time 
length: 

tp=torlFA, (9.4.4) 

where F is the thrust level and A the torque arm. This time transformation is per
formed with the PWM included in Figure 9.4.1. 

In order to prevent exaggerated detrimental influence of sensor noise on control 
system performance, at least one first-order filter must be incorporated into the feed
back control loop. The time constant of the filter must be low enough to leave the 
control loop with satisfactory gain and phase margins. Using the Tustin transforma
tion to render the analog control network G(s) discrete, we obtain 

G(z) = KTsam+2kd+(kTsam-2kd)Z-1 
Tsam + 27+ (T sam -27)Z-1 

(9.4.5) 

EXAMPLE 9.4.1 In this example, Wn = 0.5, ~ = 0.7, J = 500 kg-m2, and either 
T sam = 0.25 sec or T sam = 1 sec; the disturbance D = 1 N-m. Using conventional fre
quency design techniques, the time constant of the filter was fixed to 7 = 0.3, with 
the resulting open-loop transfer function shown in Figure 9.4.2. The time-domain 
simulation results are shown in Figures 9.4.3 and 9.4.4 for a Tsam of 0.25 sec and of 
1 sec, respectively. The steady-state error for the case with T sam = 0.25 sec is 0.11°, 
as per Eq. 9.4.2. In Figure 9.4.4, with T sam = 1 sec, the steady-state angular error is 
0.456°; this also satisfies Eq. 9.4.2. 
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Figure 9.4.2 Open-loop transfer function on the Nichols chart for Example 9.4.1. 
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Equation 9.4.2 shows that the steady-state error depends on the sampling time 
T sam' However, it would be more convenient to have a control law in which the 
steady-state error is not dependent on the sampling time. This is easily accomplished 
by arguing as follows_ With a zero-order hold device, the processed output of the 
control network G(z) is constant during the complete sampling period; thus, an angu
lar momentum (Tsamtor) is delivered to the satellite. It is suggested that the reaction 
thruster deliver the same angular momentum, which means: tpxF!1 = Tsamtor, or 
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Figure 9.4.5 Time-domain results for the control system based on a PW modulator 
that renders the steady-state error independent of the sampling time T sam' 

tp = T sam torlFtlJ. , (9.4.6) 

where tor is the commanded torque. The effect is equivalent to multiplying O(z) by 
T sam' With this assumption, Eq. 9.4.1 and Eq. 9.4.2 take the new form 

() DT~(zl2)(z+ 1) 
(z) = (9.4.7) 

J(z-I)3+ Tsarn Z(Z-I)( K +Kd Z;1 )Tsam 

and 

lim ()(nTsam) = lim z-1 ()(z) = KD. 
n .... ao ~ .... I Z 

(9.4.8) 

Equation 9.4.8 shows that the steady-state angular error is no longer dependent on 
the sampling period T sam. 

Figure 9.4.5 presents a simulation of the control system with a PWM based on 
Eq. 9.4.5 (see Example 9.4.1). In this case T sam = 0.25 sec, but the steady-state error 
is now equal to 0.456°, as predicted by Eq. 9.4.8. 

Adding an Integrator to Nullify the Steady-State Error In orbit-maneu
vering control tasks in which high thrust is activated for long periods (Le., tens of 
minutes), it is of utmost importance to minimize the steady-state angular errors. 
This enables efficient orbit control with a minimal waste of fuel, as explained in Sec
tion 3.4.3. 

The steady-state error due to the disturbance can be decreased to null by add
ing integration control error to the already existing position and derivative control 
errors. It is possible to add an integrator to the open-loop transfer function of the 
control loop without changing appreciably the high-range frequency characteristics. 
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The integrator is added with an appropriate low-frequency zero, as is usual with fre
quency design techniques. 

EXAMPLE 9.4.1 (Continued) Since the crossover is Wco = 0.75 rad/sec (Figure 
9.4.2), it is appropriate to add an integrator with a zero located at Wz = 0.05 rad/sec 
so that the higher-frequency range of the open-loop gain is not compromised. After 
the Tustin transformation, the revised discrete control network becomes 

0
1 
= z(lIwz + Tsam)-lIwz+ Tsam = z20.25-19.75 . 

(z-l)/wz 20(z-1) 

The results are given on the Nichols chart of Figure 9.4.6, where it can be clearly 
seen that the gain and phase margins have not deteriorated as a result of adding the 
integrator. 

The time responses for the I-N-m disturbance are shown in Figure 9.4.7 (over
leaf). The time constant of the integrator control network is of the order of 20 sec, 
as expected (wz = 0.05 rad/sec). The error is comparatively large only for the first 
20 sec, which is a negligible time in view of the total duration of the ABM stage. For 
the rest of the time, the attitude error is null. 

Sensor Noise Amplification One of the major problems in the design of 
feedback control systems is the amplification of sensor noise. This can result in sat
uration of torque controllers and thus prevent the feedback control system from op
erating satisfactorily. The effect is common to all controllers, but is seriously aggra
vated when the controller is based on liquid reaction thrusters. Unpredictable parasitic 

wn=0..5;ze1a=0.7;1mI=0.3;1S8JD=0.2S;lmegnttor + zero at o. I 

40 o 

20 ·1 

OJ = 0.75 rls 
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-60 .3SO ·300 ·100 ·SO o 
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Figure 9.4.6 Adding an integrator as depicted on the frequency-domain chart . 
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Figure 9.4.7 Time-domain results with the integrator added in order 
to nullify steady-state angular error. 

waste of fuel shortens the mission lifetime of the satellite, which is intolerable from 
the system engineering point of view. Hence, even in the preliminary stages of de
signing a reaction attitude control loop, the amplification of sensor noise must be 
carefully considered and attenuated. 

The first natural way to decrease noise amplification is to reduce the bandwidth of 
the feedback control system (at the expense of increasing the attitude errors due to 
external disturbances). This solution has the advantage of increasing the gain mar
gins of the structural modes, a subject to be treated in Chapter 10. The second way 
to deal with the problem is to precede the PWM with an adequate dead zone, or to 
limit the minimum pulse width of the modulator output. There is also the possibility 
of using both techniques in conjunction. A compromise between attitude accuracy 
and fuel flow per unit time for a given level of sensor noise will help to fix the final 
bandwidth of the open-loop transfer function as well as the level of dead zone to be 
used (if any). These tradeoffs are clarified in the following example. 

EXAMPLE 9.4.2 As in the previous example, J = 500 kg_m2• We shall use a PW 
modulator to compute the on-time of the thrusters according to Eq. 9.4.6, so that 
T sam has no influence on the steady-state angular error of the feedback control loop. 
No integrator is included in the control network. The sensor noise level of a good 
earth sensor (see Appendix B) - used to sense the attitude of the satellite in the orbit 
reference frame - ranges from 0.03° to 0.1° (RMS). In order to emphasize the effect 
of amplifying this noise, we will assume an exaggerated noise level of 0.3° (RMS). In 
the analysis to follow, T sam = 0.5 sec and the disturbance level is D = 1 N-m. 

In the first try, choose "'n = 0.5 rad/sec, ~ = 0.7, T = 0.3 sec, and Tsam = 0.5 sec. 
The open-loop gain of the solution is shown in Figure 9.4.8. With no sensor noise, 
the time history is shown in Figure 9.4.9. The steady-state error is 0.456°, as calcu-
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Figure 9.4.8 Open-loop transfer function for the feedback control 
with Caln = 0.5 rad/sec, ~ = 0.7, ., = 0.3 sec, and T sam = 0.5 sec. 
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Figure 9.4.9 Time-domain results for a disturbance of 1 N-m without 
sensor noise; Caln = 0.5 rad/sec, ~ = 0.7, ., = 0.3 sec, and T sam = 0.5 sec. 
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lated from Eq. 9.4.8. The theoretical noise amplification was calculated to be tori 
noise = 11.848 (RMS). The fuel consumption rate is 0.5 g/sec. Amplification of sen
sor noise augments the attitude error as shown in Figure 9.4.10 (overleaf), where 
peak errors as high as 0.90 may be perceived. Even if so much angular error is ac
ceptable, quadrupling the rate of fuel mass consumption (to 2 g/sec) is not. 
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Figure 9.4.10 Time-domain results for a disturbance of 1 N-m with sensor noise 
of 0.30 (RMS); Wn = 0.5 rad/sec, ~ = 0.7, T = 0.3 sec, and T sam = 0.5 sec. 

Let us diminish the sensor noise amplification, and also the fuel consumption, by 
reducing the bandwidth of the attitude control loop to wn = 0.3 rad/sec. Of course, 
we can increase the time constant of the noise filter to T = 0.7 sec. The theoretical 
noise amplification is now only tor/noise = 2.6 (RMS), a reduction by a factor of 
4.5. With no noise, the consumption of fuel remains exactly as for the case with 
Wn = 0.5 rad/sec, since the fuel consumption rate depends only on the level of dis
turbance and not on the bandwidth of the control loop. The steady-state error due to 
the disturbance of 1 N-m is now higher: 1.21°, as predicted by Eq. 9.4.8 (see also Fig
ure 9.4.11). With application of the same sensor noise, the attitude error now in
creases to about 1.7° with fuel consumption of 0.75 g/sec, which is higher by only 
500/0 than the fuel consumption without sensor noise (see Figure 9.4.12). 

The second proposal for decreasing fuel consumption was to insert a dead zone 
before the PWM. Suppose we use a dead zone of 3 N-m. The results in the time do
main with Wn = 0.5 rad/sec show that the fuel consumption rate is now only 1.1 g/sec, 
compared to 2 g/sec without the dead zone, and with no significant increase in peak 
attitude errors. 

We conclude that tradeoffs similar to those described here are necessary to achieve 
the best possible design results for the attitude control problems given under various 
mission constraints. The results of our analysis are summarized in Table 9.4.2. 

Input-Output Behavior of a Reaction ACS 
In classical continuous feedback theory, there is a high correlation between 

(a) the time response (J(t) of the output to a step input and (b) the closed-loop fre
quency response T(s) = (J(s)/(Jcom(s), where (Jcom(s) is a step command input (see Hor
owitz 1963, Sidi 1973). This relationship is seriously distorted for sampled systems 
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Figure 9.4.11 Time-domain results for a disturbance of 1 N-m without 
sensor noise; "'n = 0.3 rad/sec, ~ = 0.7, T = 0.7 sec, and Tsam = 0.5 sec. 
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Table 9.4.2 Results of tradeoff to reduce sensor noise amplification 
(~ = 0.7, disturbance = D = 1 N-m) 

Figure Oln or K Kd Dead Sensor Noise Peak Fuel Rate 
Zone Noise Amplific. Error Consumption 

RMS 
[rlsec] [sec] [Nm] [deg ] [deg] [ gr/sec] 

9.4.9 0.5 0.3 125 350 0 0 - 0.46 0.5 

9.4.10 0.5 0.3 125 350 0 0.3 11.85 0.9 2.18 

9.4.11 0.3 0.7 45 210 0 0 - 1.3 0.5 

9.4.12 0.3 0.7 45 210 0 0.3 2.6 1.7 0.7 

0.5 0.3 125 350 3 0.3 - 1.05 1.17 
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if no special care is taken when defining the input-output transfer function. The 
transfer function for a digital, sampled feedback control loop can be designed in 
various equivalent ways (see Saucedo and Schiring 1968, Sidi 1977). We can put: 

(9.4.9) 

where * denotes "sampling process" in the continuous frequency domain, "s" is the 
Laplace transform variable, z is the Z transform variable, and w is the W (bilinear 
transformation) variable. We also have 

8(z) 8*(s) 8(w) 
8com(z) == 8.;"om(s) == 8com(w) . (9.4.10) 

The frequency response of the sampled transfer function in Eq. 9.4.10 does not 
correlate well with the step time response, as in continuous systems (see Horowitz 
1963). We can alleviate this difficulty by defining a mixed transfer function: 

T = ~. (9.4.11) 
8.;"om(s) 

The output of interest in Figure 9.4.1 is the continuous output 8(t), not 8*(t). With 
this practical definition, it has been shown (Sidi 1977) that the approximate rela
tionship between the time response of the output and the frequency response of the 
transfer function remains as good as for continuous feedback systems. With this 
assumption, it is much easier to define the desired input-output transfer function in 
the w frequency domain for a desired time response of a sampled feedback control 
loop (see Saucedo and Schiring 1968). This approach will be followed here. 

Dead Zone and Minimum Impulse Bit of the Reaction Pulses Because of 
engineering constraints, there is a minimum pulse duration .dtmin that reaction thrust
ers can deliver. The minimum impulse bit F(.dtmin), mUltiplied by the torque arm .d 
of the thrusters, is the minimum torque impulse bit (MTIB) delivered to the satellite 
at the sampling instance: .dF(.dtmin). Between two sampling events, the attitude con
trol system is in open loop. During the period that the torque exists (designated by 
tp), angular velocity will increase by 

MJ=FMp 
J ' 

(9.4.12) 

where F is the thrust of the reaction thruster, .d the torque arm, and J the moment of 
inertia about the axis of rotation. Until the next sampling (in T sam sec), the attitude 
will increase by 

FMp 
.d8 = -J-(Tsam-tp ). ' (9.4.13) 

This equation is self-explanatory: .d8 is the minimum possible magnitude change of 
8. However, it is important to emphasize that precise attitude control will demand 
very low impulse bits. 

Unfortunately, things are not quite so simple. The basic relationship for attainable 
accuracy stems from Eq. 9.4.4 or Eq. 9.4.6. We shall concentrate on Eq. 9.4.6, the 
equation of the PW modulator. This modulator will deliver a pulse torque propor
tional to the torque command calculated in G(z) of Figure 9.4.1. After the transient 
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period in response to the step command (or whatever command it may be), the steady
state error is ess = 8eom -8ss • This error will be translated by G(z) to a steady-state 
torque command, torss • In these special circumstances - when the error is not con
tinuous because of the sampling process - we shall rather speak of a minimum error 
emin and a minimum torque tor min' For a minimum pulse width tPmin' the minimum 
torque that will activate the PW modulator is 

tPmin FA K 
tormin = T. = emin • 

sam 
(9.4.14) 

From this equation it readily follows that 

tPminFA MTIB 
emin= =---. 

Tsam K Tsam K 
(9.4.15) 

In Eq. 9.4.15, MTIB is the minimum torque impulse bit that the reaction thruster 
can deliver to the satellite about the controlled axis. This term deserves some spe
cial attention: MIB = tPminF is a technical characteristic of the thruster - namely, 
its minimum impulse bit. The torque period tp is highly dependent on the chemical 
composition of the propellant (see Appendix C). The thrust level F also cannot be 
chosen at will; for instance, F is of the order of 10 N for bipropellant propulsion sys
tems. For monopropellant propulsion systems such as hydranne thrusters, much 
lower thrusts are common. Still, the term tPminF is of utmost importance, as can be 
seen in Eq. 9.4.15. The minimum tPmin is equivalent to a torque dead zone, with all 
the relevant implications such as limit cycling. 

The torque impulse bit is related to the torque arm A. Practically, this term can be 
adapted as desired by correctly locating the thruster on the satellite, as explained in 
Section 9.2.1. The error term emin of Eq. 9.4.15 can also be expressed in terms of W n, 
the natural frequency of the second-order model feedback control system of Figure 
9.4.1, in which K = w~J . 

EXAMPLE 9.4.3 In this example, J = 500 k-m2
• We will show the relationship be

tween the steady-state attitude error and the MTIB factor. In order to perceive clearly 
this error, the closed-loop control system will be subjected to a small attitude com
mand, let us say 8eam = 0.1°. We choose Wn = 1 rad/sec, ~ = 0.7, and T = 0.3 sec, so 
that K = 500, Kd = 700, and T sam = 0.25 sec. 

Figure 9.4.13 (overleaf) shows the time response results for F = 6 N, A = 1 m, and 
tPmin = 0.01 sec: MTIB = 6 x 0.01 = 0.06 N-m-sec. With this data, according to Eq . 
9.4.15, emin = 0.06/(0.25 x 500) = 4.8 X 10-4 rad = 0.0275°. This analytical result is 
clearly confirmed by the time-domain simulation, the results of which are shown in 
the figure. 

To increase the accuracy, we could decrease F or A or both. Suppose that F = 2 N. 
Hence MTIB = 0.02 N-m-sec and, by Eq. 9.4.15, emin is reduced to emin = 0.0092°. 
The time-response results agree with Eq. 9.4.15 (see Figure 9.4.14, overleaf). Sup
pose once again that F = 2 N but that now 8eam = 1°. This makes the transient in the 
error torque command relatively large (as compared to the maximum torque that the 
reaction thruster can provide), so the torque controller is saturated and hence the 
time response is more sluggish; see Figure 9.4.15 (page 287). (Of course, the situation 
could be partially improved by increasing A and hence also the torque reaction level 



·i 

I 

286 

4r-__ ,-~~~oom~m~. __ ,-__ , 

3 

8 2 

~ 

-2 
0 

6 

4 

8 2 

~ 0 

.... 0 -2 

-4 

-6
0 

10 

i - ~ 

1 +- ! 
~ ~-, -----~ 

i 
10 20 30 40 so 

Time [sec] 

i "tI 0.1 ...... 
CD 

0.05 

00 

0.1 

Oil .g 0 ...... 

9/ Reaction Thruster Attitude Control 

10 

so 
Time [sec] 

Figure 9.4.13 Time-domain results for the case in which Fa = 6 N-m, 
IPmln = 0.01 sec, Wn = I rad/sec, K = 500, T sam = 0.25 sec, and 9c:om = 0.1°. 
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Figure 9.4.14 Time-domain results for the case in which Fa = 2 N-m, 
IPmin = 0.01 sec, Wn = 1 rad/sec, K = 500, T sam = 0.25 sec, and 9c:om = 0.1°. 

Fti.. But doing so would increase the steady-state error, which is contrary to our pri
mary desire for attitude accuracy.) To overcome this phenomenon and improve the 
time response, we must use nonlinear design techniques such as those presented in 
Section 7.6. 
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Figure 9.4.15 Time-domain results for the case in which Fa = 2 N-m, 
tPmln = 0.01 sec, Wn = 1 rad/sec, K = 500, T sam = 0.25 sec, and Deem = 1°. 
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It is imponant to notice that the attitude error and output responses need not fol
low exactly the time histories shown in Figures 9.4.13, 9.4.14, and 9.4.15. The min
imum values of the errors are guaranteed (as per Eq. 9.4.15), but these errors can 
reach their limiting values at different times according to the initial values 8(0) and 
8(0) of the system and according also to the level of the attitude input command. 

9.5 Reaction Control System Using Only Four Thrusters 

In Section 9.2 (see esp. Figure 9.2.3), six thrusters were used to implement a 
reaction control system for attitude and orbit control. For these two purposes, the 
six thruster jets provided the necessary positive and negative torques about the three 
body axes (for attitude control) as well as linear velocity changes along the X B and 
the -YB axes (for orbit control). It is possible to achieve three-axis attitude control 
by using only four thrusters. However, with such a reaction control system, the pos
sibility of achieving linear velocity augmentation in desired body directions is no 
longer available. This is the principal drawback in using a limited number of thrust
ers (fewer than six). 

Figure 9.5.1 (overleaf) shows the torque vector arrangement obtained by using 
four thrusters. As shown in the figure, each thruster provides a positive torque in a 
given direction with respect to the satellite body; these torques are denoted T., T2 , 

T3, and T4 • In Figure 9.5.1, with directions of the torques produced by each one of 
the thrusters defined in the body frame, every vector control command torque Tc can 
be achieved with three of the four available torques. Since the torques produced by 
each thruster have c~)Ostant torque levels, the on-time must be computed for each of 
the thrusters Ti i , i = 'I, ... ,4 (cf. Section 9.2). The transformation between the control 
torque components in the body axis frame and the on-time of each thruster can be 
written in the following matrix form: 
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YB ------» 

Figure 9.5.1 Tetrahedral torque configuration 
of four reaction thrusters. 

[ 
Tex] [ax) a
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X4
] [ ~~)l [~~)l 

Tey = ay) ay2 ay3 ay4 :: = [A] :: • 

Tez az) az2 az3 az4 T' T' 
~ 14 ~ 14 

(9.5.1) 

where the elements ax;. ay;. az; of matrix [A] are the torque component coefficients 
of each thruster along the body axes. 

For a given torque control command vector Te. we can find the on-time of each 
thruster by inverting the matrix equality of Eq. 9.5.1. Matrix [A] is not square. but has 
the pseudoinverse (see Section 7.3.4) 

[ 
~~:] = r !:: !;: !::][i:] = [B][i:]. (9.5.2) 
TI3 bX3 bY3 bz3 7: 7: 
T' b b b ez ez ~ 14 x4 y4 z4 

where the matrix [B] defines the transformation between the torque command com
ponents in the body frame and the on-time of each thruster. In the general case. for 
any desired Te. only one of the Ti; can be negative. Negative values cannot be physi
cally realized. since the thruster cannot be activated for a negative time and there is 
no thruster able to produce a torque of opposite direction as in the six-thruster sys
tem analyzed in Section 9.2. 

In Figure 9.5.1. the four thruster torques divide the space around the satellite's 
em into four regions. each one bounded by three surfaces defined by three thruster 
torque vectors. Any control vector Te can be located in only one of the four space 
regions. and can be expressed by only the positive components of the torques defin
ing that region. This means that the Te can be achieved by using just three thrusters. 
demanding only positive on-times. Consequently. by eliminating one of the thrusters 
and its related row in matrix [AJ of Eq. 9.5.1. we can obtain four matrix relations of 
reduced order 3 x 3. each pertaining to one of the four regions of the torque space. 
The pertinent matrices will be called [Aj] and their inverses will be called [ej ]. where 
the index j stands for the thruster j that was eliminated. j = 1 ..... 4. For example. 
[e3 ] will have the form 
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[Til] [CXI Cyl CZI][.Tex] [Tex] 
T~2 = cx2 Cy2 cz2 Tey = [e3] Tcy . 
Tl4 cx3 Cy3 Czl Tez Tez 

(9.S.3) 

With these definitions, there are two ways to prepare an operational algorithm. In 
the first, we must determine which one of the space regions contains the desired con
trol vector Te to be produced; then use is made of the matrix transformation [ej ] 

pertinent to that region, as in Eq. 9.S.3 for the case j = 3. A more straightforward 
method is to use the four previously prepared transformations [ej ] and compute the 
on-times for each. For a given Te, only one of the transformations will come out with 
three positive Tis; this will be the desired solution. For example: in Figure 9.5.1, TcJ 
is achieved by use of thrusters 1, 3, and 4, whereas Te2 is achieved by use of thrusters 
1,2, and 3. 

9.6 Reaction Control and Stmctural Dynamics 

Structural dynamics is especially important with reaction control because 
the commanded torques are in many missions strong impulses, that is, pulses that 
inherently excite the structural vibration modes. (In general, the same problem exists 
also for other kinds of torque controllers, with the relieving condition that the com
manded torques are not impulsive.) The structural dynamics effect in attitude control 
systems will be treated in Chapter 10. 

9.7 Summary 

This chapter treated the most basic control problems in reaction attitude 
control feedback systems. An important advantage of reaction controllers is the high 
level of torques that can be obtained, which are dearly needed in certain control 
tasks. With careful design approaches, accurate attitude tracking is also achievable. 
Design techniques include decreasing the dead zones and the minimum impulse bit 
of the reaction controller as well as increasing the bandwidth of the control loop. 

The principal handicap of reaction controllers is their excessive consumption of 
fuel mass, which cannot be replenished once the sic is placed into orbit. 
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CHAPTER 10 

Structural Dynamics and Liquid Sloshing 

10.1 Introduction 

A typical spacecraft structure consists of two principal parts. The first one 
is the body of the spacecraft, which contains all the payload instrumentation and 
control hardware pertaining to the Attitude and Orbit Control System (AOCS). Its 
structure must be very rigid in order to withstand mechanical loads during the launch 
stage, and also to assure correct positioning of the control torquers and attitude sen
sors for achieving the necessary pointing accuracy in the sic mission stage. The neces
sity to save on weight leads to mechanical design tradeoffs between weight and rigid
ity, which results in a body that is only quasirigid and in which structural vibration 
modes should be anticipated. 

The second part of the spacecraft structure consists of large flexible appendages: 
parabolic antennae, large synthetic-aperture radar, and very large flexible solar ar
rays built from light materials in order to reduce their weight. Spacecraft structures 
are now becoming extremely complicated because of these appendages, which also 
induce structural oscillation under the excitation of external torques and forces. Fi
nally, we must likewise consider vibrations due to the liquid contained in fuel tanks. 
The vibrational dynamics evolving from flexible appendages and liquid sloshing inter
feres strongly with the attitude control dynamics, and puts severe limitations on the . 
achievable qualities of the attitude control system (ACS). 

This chapter is primarily concerned with this second class of structural vibrations. 
First, we must write simplified structural dynamics models for solar panels and liquid 
sloshing before coupling them to the rigid-body attitude dynamics of spacecraft. An 
analytical model for the rigid body and the flexible structural modes will allow us to 
evaluate the limitations on the bandwidth of the ACS. 

10.2 Modeling Solar Panels 

Although the techniques of structural modeling described in this chapter are 
applicable to any nonrigid appendage to the solid body, we will concentrate on the 
structural dynamics of solar panels, which are common to almost all types of satel
lites. Our basic task is to create a simplified model that adequately represents the real 
structure and is easy to use for design purposes. 

10.2.1 Classification oj Techniques 

There exist four basic modeling techniques: (1) distributed parameter mod
eling; (2) discrete parameter modeling; (3) N-body modeling; and (4) finite element 
modeling. A short conceptual explanation of these techniques follows (see also Wil
liams and Wood 1989). 
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Distributed Parameter Modeling In many cases, the structure of the satel
lite can be seen as a rigid central body to which one or more solar panels, resembling 
cantilever plates, are attached. Deformations of these plates are described in terms 
of distributed coordinates. Excellent texts on vibration of cantilever plates include 
Thomson (1988) and Weaver, Timoshenko, and Young (1990). With this technique 
of modeling the entire structure, the equations of motion are expressed in terms of 
partial differential equations for the cantilever plates and by ordinary differential 
equations for the motion of the overall spacecraft. 

Discrete Parameter Modeling In this method, the flexible appendages are 
modeled as a number of point masses, interconnected by spring elements. The stiff
ness of the elements is expressed in terms of influence coefficients, which are easily 
evaluated for simple structures such as cantilever rods and plates. Inversion of the 
matrix of influence coefficients provides the structural stiffness matrix, which we will 
use in this chapter and demonstrate with some simple examples. 

Structural deformations are regarded as small, so that the equations of motion are 
linear ordinary differential equations. In this context, the equations of motion for 
liquid sloshing are easily incorporated within the remaining equations of motion of 
the rigid body and the solar panel dynamics. 

N-Body Modeling With this technique, the structure is seen as a series of 
connected rigid bodies. Each body is modeled as a mass with a rotational inertia. 

Finite Element Modeling In this approach, the previous two techniques 
for modeling are used conjointly. The finite elements may be modeled separately as 
lumped spring-mass elements, or as "distributed parameters." 

In the next section, modeling of the solar panels is treated with several examples. 
It will be instructive to solve them using various analytic approaches, in order to 
familiarize ourselves with the techniques involved. A generalized approach for mod
eling structural and sloshing dynamics together will be presented at the end of this 
chapter. 

10.2.2 The Lagrange Equations and One-Mass Modeling 

As a first introduction to structural dynamics, let us solve the dynamic equa
tions of the discrete model shown in Figure 10.2.1. In this simple example, the panels 

m t------ __ 

L 

Figure 10.2.1 Discrete model consisting of a rigid body and two 
symmetrical panels, each modeled by a single mass m; reproduced 
from Williams (1976) by permission of C. G. Williams. 
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attached to the rigid body are modeled by a single discrete mass m, positioned at a 
distance L from the center of mass (cm) of the rigid body. The moment of inertia of 
the rigid body is Jo. A torque T is applied about the axis of rotation, thus exciting 
only the antisymmetric elastic mode. (With an additional force applied along the YB 

body axis, the symmetric elastic mode will also be excited; this model is not analyzed 
in the present example.) Since the panel is not rigid, a deformation u with respect to 
the rigid-body axis is to be anticipated. The mass m will experience two motions: 

(1) a motion 0 with the rigid body, with linear velocity IJL; and 
(2) a deformation u from the rigid-body axis XB, with velocity Ii. 

For small deformations, both velocities will be collinear; hence the mass m will have 
a velocity of 

v=iI+LIJ. (10.2.1) 

We shall solve this example by using Lagrange's method. Thus, the kinetic and 
potential energies Ek and Ep are to be written for the entire system, including the 
two panels (represented by two masses m) and the rigid body (represented by its mo
ment of inertia Jo): 

Ek = tJoIJ 2+2(tmv2). (10.2.2) 

Together with Eq. 10.2.1, we have 

Ek = tJoIJ2+m(iI+LIJ)2 and (10.2.3) 

Ep = 2[ ~2 K} (10.2.4) 

. 
We shall also define a dissipation function D, proportional to half the rate at which 
energy is dissipated. Taking into account both panels, we have 

D=2(~2 Kd), (10.2.S) 

where Kd is the mechanical dissipative constant. 
The most general form of Lagrange's equations is 

d (aEk) aEk aEp aD _ ._ 
-d -a' --a-+-a +-;-:--Qi (l-l,oo.,n), 

t qi qi qi uqi 
(10.2.6) 

where the qi are generalized coordinates and Q/ denotes the generalized forces or 
torques acting on the; station. Lagrange's equations for this example are as follows: 

aE 
alJ

k = JolJ + 2mL(it + LIJ), (10.2.7) 

! (a:o
k

) = Jo8+2mL(ii+L8) = (Jo+2mL2)8+2mLiI, (10.2.8) 

aEk • 
ail = 2m( Ii + LO), (10.2.9) 

d aEk .... 
dt ail = 2m(u+LO), (10.2.10) 
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aE a: =2uK, 

aD 2'K 
ail = u d, 

aEk _ aEk _ aEp _ aD _ aD _ 0 
To- au -ao--ai-au- . 

From Eqs. 10.2.7-10.2.13, the following equations follow: 

(Jo+2mL2)8+2mLii = T, 

mii+Kdil+Ku = -mL8. 

(1O.2.U) 

(10.2.12) 

(10.2.13) 

(10.2.14) 

(10.2.15) 

In Eq. 10.2.14, Jo is the moment of inertia of the rigid body. We shall denote by Jp = 
mL2 the moment of inertia of one of the two (panel) masses about the cm. Let us 
define J = Jo+ 2mL2. This is the moment of inertia of the entire system, including 
the two panels. With this definition, Eq. 10.2.14 can be rewritten as: 

J8 + 2mLii = T, (10.2.14') 

where J = Jo+2mL2 = Jo+2Jpo 
Equation 10.2.14 and Eq. 10.2.15 are both linear ordinary differential equations, 

so they can be solved by Laplace transformations. Simple algebraic manipulation 
leads to the final solution for 8(s) as a transfer function in the Laplace domain ("s" is 
the Laplace variable): 

T(s) = JOS2 2 J Kd J K = JOS2 s2+2~suss+ug' 
s +--S+--

JO m JO m 

8(s) 1 
(10.2.16) 

Let us define as CI = .JKlm the cantilever natural frequency of the panel, and let ~ = 
(Kd l2).JII Km be its damping coefficient. In the transfer function of Eq. 10.2.16, the 
cantilever natural modal frequency appears in the numerator. This modal frequency 
is independent of the rigid-body characteristics. The pole in the denominator is the 
modal frequency of the entire system, which depends on the ratio between the mo
ments of inertia of the rigid body plus panels to the moment of inertia of the rigid 
body only. We label this modal system frequency Us, and set CIS = .JJIJou. Also, ~s = 
.JJIJo~ is the damping coefficient ofthe denominator pole. The higher the ratio, the 
higher the modal frequency Us and the damping coefficient ~s. 

According to these definitions, us> CI and also ~s > ~. From the automatic control 
perspective, the second-order dipole in Eq. 10.2.16 has a destabilizing effect, which 
increases with the panel's moment of inertia. With very small moments of inertia of 
the panels, the dipole disappears. Moreover, the low-frequency (DC) gain of the sys
tem's transfer function decreases owing to the existence of the added panels, which 
means that the equivalent moment of inertia increases from Jo to J= Jo(1 +2Jp IJo). 

We have assumed that the damping parameter Kd is known from analytical data. 
This is generally not so; in practice, the damping coefficient ~ is derived from physi
cal tests performed on the cantilever panel. Practical values for ~ are generally very 
low, of the order of 1-5 X 10-3, depending on the amplitude of oscillations. 
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Figure 10.2.2 Frequency response of the open-loop transfer function, 
including one elastic mode at "'EM = 4 rad/sec and ~ = 0.003,0.002, 
and 0.001 in parts (b), (c), and (d). 
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EXAMPLE 10.1.1 Let us choose a satellite with Jo = 720 kg-m2 to which are ap
pended two solar panels, weighing 20 kg each, whose centers of mass are located 2 m 
from the satellit-e's rigid-body center of mass. We will find the transfer function of 
the satellite's angular motion about its em to an applied external torque. 

First we compute the panels' moments of inertia Jp = mL 2 = 40 kg-m2; adding the 
rigid body's moment of inertia yields J = Jo + (2 x 40) = 800 kg-m2• If the cantilever's 
modal eigenvalue is a = .../Klm = 4 rad/sec, then k = 320 kg-rad2/sec2• Suppose also 
that the damping coefficient of the panel was measured and found to be ~ = 0.003. 
With this information, for the structural model we obtain Kd = 2Eam = 0.48 kg-radl 
sec. According to Eq. 10.2.16, the denominator will consist of a second-order pole 
with an eigenfrequency of as = a.../JIJo = 1.541 with a = 4.2164 rad/sec and a damp
ing coefficient of ~s = ~.../JIJo = 0.00316. 

To acquire a feel for the complications emerging from the structural dipole now 
appearing in the attitude control loop, we set the open-loop crossover frequency at 
"'co = 0.5 rad/sec. With a conventional frequency domain design and without the 
existing structural dipole, it is easy to obtain an adequate loop gain as shown in Fig
ure 10.2.2.a. 

A simple control network O(s) = 2,000(s+0.1)/(s2+4s+4) provides the neces
sary gain and phase margins. The existence of the structural mode produces a peak 
at the modal frequency, thus decreasing the gain margin but still maintaining an ac
ceptable control design (Figure to.2.2.b). However, the situation is drastically aggra
vated by a decrease in the damping coefficient of the panels' cantilever model. In Fig
ure 10.2.2.c, ~ = 0.002 and the system is scarcely stable. If the damping coefficient is 
decreased to ~ = 0.001 then the system verges on instability (Figure 10.2.2.d). 
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---l~_F_i <_s) ---,~-->0 
Figure 10.2.3 Dynamic block diagram, with the option 
of adding additional transfer functions pertaining to 
higher-order structural modes. 

In practical situations the damping coefficient is not known exactly, so an uncer
tainty of the panel model must be taken into consideration when designing an ACS. 
It is feasible to add the necessary phase lag at the frequency of the peak in Figure 
10.2.2, and to assure stability. A single elastic mode can be adequately controlled, 
especially if its characteristics are known exactly. Unfortunately, they are not; a sat
ellite's moment of inertia J is altered during its life in space because of fuel consump
tion. This changes the dipole's peak location in the frequency domain. 

Moreover, the situation is very much aggravated by the existence of additional 
structural modes and by sloshing dynamics (to be treated in subsequent sections). In 
this case, adjusting the location of the structural mode's peak in the frequency do
main, as shown in the figure, might be problematic owing to the existence of addi
tional oscillating modes. A tradeoff, satisfying stability margins for all the structural 
modes, generally compels the designer to decrease the overall bandwidth of the con
trol system, with an inevitable increase in sensitivity to external disturbances and a 
decrease in attitude accuracy (see also the examples to follow). 

In Example 10.2.1 we presented the panel as a single point mass located in the geo
metrical center of the panel. A single mass represents one single structural mode. It 
is common to express the transfer function of Eq. 10.2.16 in partial fraction form. 
The result is 

O(s) 1 2Jp 1 1 [ 1 2Jp /Jo ] 
T(s) = JS2 + JJo s2+2~sO'ss+0'§ = J 52"+ s2+2~sO'ss+0'§ . 

(10.2.17) 

A block-diagram representation of Eq. 10.2.17 is shown in Figure 10.2.3. Equation 
10.2.17 can be rewritten in a more compact form as 

O(s) = ![~+FI(S)]. 
T(s) J S2 

(10.2.18) 

The definition of Fj(s) is self-evident from Eq. 10.2.17 and Figure 10.2.3. The figure 
clearly shows how additional higher-order structural modes (explicated in Section 
10.2.3) can be added to the attitude dynamics equations of motion. 

10.2.3 The Mass-Spring Concept and Multi-Mass Modeling 

In this technique, each flexible panel will be represented by two (or more) 
discrete masses, ml and m2, as shown in Fig':lre 10.2.4. Modeling the panel with two 
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Figure 10.1.4 Discrete model consisting of a rigid body and two symmetrical 
panels, each modeled by two masses; reproduced from Williams (1976) by 
permission of C. O. Williams and British Aircraft Corp. 
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discrete masses is an appropriate way to show how the "influence coefficients" in vi
bration theory are defined and calculated (see e.g. Weaver et al. 1990). This will also 
allow us to introduce the formal matrix solution for structural dynamics. 

In Figure 10.2.4, each of the panels is represented by a cantilever beam, further 
detailed in Figure 1O.2.s.a. It is assumed that the beam is massless, withftexural ri
gidity of EI, and with two concentrated masses ml and m2 located at XI and X2. The 
masses can be located anywhere along the beam, but for simplicity we shall assume 
that XI = L12 and X2 = L. 

The force-deflection equation of a massless cantilever beam is: 

_ FX} [ (X)2 ( X )3] 
Y - 6EI 3 XI - XI ' 

(10.2.19) 

where F is the force applied at station XI and y is the deflection at a distance x. This 
equation holds for XI > x. (The variables y and u will be used interchangeably; y is 
sometimes used when compliance with terminology from existing literature on vibra
tional dynamics adds some clarity to the explanations.) 

The flexibility coefficients are defined as the deflection y of a point located at X 

that is caused by a unit force F applied at a point XI' with all other forces equal to 

b. g 
c. 

Un u 2J -----+r;~ ~ ----~--
-----------j---------------!-

F=l 

Figure 10.1.S IdeaI~ panel modeled as a cantilever beam with two 
discrete masses; adapted from Weaver, Timoshenko, and Young (1990) 
by permission of John Wiley & Sons. 
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zero (see Thomson 1988). To derive the required flexibility coefficients, we first apply 
a force FI = 1 at ml, where xf = LI2 for point 1 and X2 = L for point 2 (see Figure 
1O.2.S.b). Use of Eq. 10.2.19 yields the deflections 

L3 SL3 
YII = 24EI and hI = 48EI' (10.2.20) 

Next, the unit force F = 1 is applied at the mass m2, where xf = L; we obtain 

SL3 L3 
YI2 = 48EI and Y22 = 3EI (10.2.21) 

(see Figure 1O.2.S.c). According to the reciprocity theorem (Thomson 1988), Yij = 
Yji' Hence hI = YI2 from Eq. 10.2.21. With the calculated flexibility coefficients, we 
can write the flexibility matrix 

L3 [2 S] 
[V] = 48EI S 16' (10.2.22) 

The stiffness coefficients are the reciprocal of the flexibility coefficients, and the 
stiffness matrix [K] is the inverse of the flexibility matrix: 

[K] = [yrl = 48EI[ 16 -S]. 
7L3 -5 2 

(10.2.23) 

Having found the stiffness matrix, we can proceed directly to calculate the dynamic 
equations of the body plus solar panels. For the satellite-panel system we have 

JO = T+2(mlxliil+m2x2ii2)' (10.2.24) 

For the appended panels only, in matrix form we have 

[
ml 0 ][~I]+ 48EI[ 16 -5][UI] =0[";1 0 ][XI] o m2 u2 7L3 -5 2 u2 0 m2 X2' 

Equation 10.2.25 can be put in a more compact form as follows: 

[MHii] + [DHu] + [K][u] = O[MHx], 

(10.2.25) 

(10.2.26) 

where [M] is the mass matrix and a dissipative matrix [D] has been added to account 
for the damping factors of the cantilever beam (i.e., the solar panels in our case) . 
Equation 10.2.24 and Eq. 10.2.26 can be solved simultaneously to calculate the dy
namics of the rigid body and structural elements together. Since two masses have 
been stipulated in the model, only two structural vibration modes will emanate from 
the solution of the two equations. 

The matrices [M], [D], and [K] can be augmented to include the dynamics of Eq. 
10.2.24. Equation 10.2.26 will become 

(10.2.27) 

where [M], [0], and [K] are the augmented matrices. This differential matrix equa
tion is linear, and can be solved by use of Laplace transforms. Taking the Laplace 
transforms of the variables 8, Uh and U2, we have: 
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(10.2.28) 

The result is a 3 x 3 matrix whose terms are polynomials in s, of up to second order, 
from which the vector [8 UI U2]T can be solved. The determinant of the solution will 
be a polynomial in s of the sixth order, pointing to the existence of two integrators 
of the rigid body, together with two second-order poles of the structural vibration 
modes. 

10.3 Eigenvalues and Eigenvectors 

The structural analysis in Section 10.2.2 is based on modeling the panels as 
concentrated masses located along the panels' axes. The stiffness coefficients have a 
meaning similar to the elasticity coefficient k of a spring, also called the stiffness con
stant. In fact, many additional structural problems connected to satellite dynamics 
can be modeled in terms of spring-mass elements, for instance, the fuel slosh dy
namics treated in Section 10.4. In this section we analyze a simple two-body mass
spring problem in order to demonstrate and reinforce the important notions of eigen
values and eigenvectors. 

Consider the two mass-spring elements in Figure 10.3.1. The equations of motion 
of the two bodies are easily written for ml and m2 as follows: 

mliil +kIUI-k2(U2-UI) = F I, 

m2ii2+ k2(U2- UI) = F2· 

Equations 10.3.1 can be put in the following matrix form: 

[ ml 0 ][~I]+[kl+k2 -k2][UI]=[FI ]; o m2 U2 -k2 k2 U2 F2 

alternatively, 

[M][ii]+ [K][u] = [F]. 

(10.3.1) 

(10.3.2) 

(10.3.2') 

As before, [K] is the stiffness matrix consisting of the stiffness influence coeffi
cients kij; [M] is the mass matrix, which contains in its diagonal the masses ml and 
m2. The kij coefficients can be evaluated in a systematic way. They can be computed 
by inducing unit displacements in each of the displacement coordinates Uj one at a 
time, and calculating the required holding forces F; as in Section 10.2.2. To illustrate 
the process, suppose that a unit displacement UI is induced, while U2 = O. The static 
holding forces required for this situation will be kll and k21• It is easily seen from the 
figure that kll = kl + k2 and k21 = -k2. They constitute the first column of the stiff
ness matrix. To find k22 and k 12, suppose that UI = 0 and U2 = 1. In this case, the 
holding forces are k12 = -k2 and k22 = k2. Note that kl2 = k21. Equation 10.3.2' is 
sometimes referred to as a set of action equations oj motion (see Weaver et a1. 1990). 

Figure 10.3.1 A simple two-body vibration problem. 
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The dynamic equations can also be written in terms of the flexibility coefficients 
and the flexibility matrix [V); see Section 10.2.2 and Eq. 10.2.22. To find the ele
ments of the flexibility matrix, it is convenient to work with displacement equations 
of motion instead of the action equations. To illustrate this approach, suppose first 
that, in Figure 10.3.1, a unit force FI = 1 is applied to ml while F2 = O. The static dis
placements UI and U2 are easily computed to be UI = lyu = IIkl and U2 = IY21 = IIk1• 
Next, in Figure 10.3.1, induce F2 = 1 while FI = O. In this case, the flexibilities are 
YI2 = lUI = lIkl andY22 = Ul + U2 = l/kl + lIk2• Knowledge ofthe elementsYij allows 
us to find the inverse of the flexibility matrix [yr1 = [K); see Eq. 10.3.2. 

Let us return to Eq. 10.3.2'. It is easy to solve this equation using Laplace trans
formations. The resulting matrix in the Laplace domain becomes: 

[
s2ml+kl+k2 2 -k2 ][U1(S)] = [F1(S)]. (10.3.3) 

-k2 s m2 + k2 U2(S) F2(s) 

The solution for the vector [u) is obtained simply by inversion of the matrix: 

[
UI(S)] 1 [S2m2+k2 k2 ][FI(S)] 
U2(S) = ll(s) k2 s2ml + kl + k2 F2(s) , (10.3.4) 

where the determinant is of the fourth order, 

ll(s) = s4mlm2+s2(mlk2+m2kl +m2k2)+klk2. (10.3.5) 

Since the coefficients of the uneven power terms in s are zero, the roots can be easily 
found. The roots are the eigenvalues of the system. For S2 = A with s = jw, we find 

2 2 -b±..Jb2 -4ac 
AI,2 = S1,2 = -wI,2 = 2a ' (10.3.6) 

where a = mlm2, b = m lk 2 + m2(kl + k 2), and c = k 1k 2. The expression under the 
square root sign is always positive (b2-4ac > 0), since by simple algebraic manipu
lation it can be expressed as [mlk2-m2(kl +k2)f+4mlm2ki > O. It follows that 
AI,2 is always real. Also, 4ac> 0, so both roots are negative. As a result, the deter
minant of Eq. 10.3.5 can be put into the form 

.:l(s) = mlm2(s2+s~)(s2+s~). (10.3.7) 

Thus, the characteristic equation comprises two natural frequencies of angular oscil
lations, WI and W2, that depend on the physical properties of the system (mh m2, kh 
and k2). These are the modal frequencies. 

We now investigate the free vibration of this system. Set Fl = F2 = 0, and for 
each of the eigenvalues assume a solution of the form Ul = A sin(wjt+l5j) and U2 = 
B sin(wjt + M. For instance, for the first modal frequency Wh substituting Ul and U2 
into Eq. 10.3.1 yields the ratio of the A and B amplitudes: 

Al k2 k2-m2w~ 
rl=-= -

BI kl+k2-mIW2 
(10.3.8) 

Similarly, for the second eigenvalue we obtain the ratio 

A2 k2 k2-m2w~ 
r2=-= = 

B2 kl+k2-mlw~ k2 
(10.3.9) 
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The amplitude ratios rl and r2 represent the mechanical shapes of the two natural 
modes of vibration of the system. Using Eq. 10.3.1 for the two different natural fre
quencies of oscillation, we cannot calculate the amplitudes A and B but only their 
ratio. In fact, the vector [A B]T is the eigenvector for the eigenvalue. There are two 
such vectors - namely, [AI BdT pertaining to "'I and [A 2 B2JT pertaining to "'2' The 
eigenvectors are the modal shapes of the relevant eigenvalues. The following numer
ical example will demonstrate the notion of an eigenvector. 

EXAMPLE 10.3.1 Suppose that ml = 2m2 = 2 kg and kl = k2 = 1 kg/sec2• We find 
that a = 2 x 1 = 2, b = -[2 x 1 + 1 x (1 + 1)] = -4, and c = 1 xl = 1; hence 

2 _ 4±~ -1 1-""2 
"'1,2- 4 - ±2V~, 

"'~ = 0.293, and "'~ = 1.707. Finally, we use Eq. 10.3.8 and Eq. 10.3.9 to calculate rl = 
0.707 and r2 = -0.707. Interpretation of the displacements rl and r2 is as follows. 
We normalize the amplitudes of UI and U2 so that B = 1, which means that if B = 1 at 
"'I then the amplitude A = 0.293. For the second eigenvalue and eigenvector, if B = 1 
then A = -0.707. 

The purpose of Sections 10.2 and 10.3 was to present the reader with some basic 
principles of the structural dynamics modeling of solar panels. In the next section, 
a simplified mathematical model for liquid sloshing will be developed. 

10.4 Modeling of Liquid Slosh 

10.4.1 Introduction 

With today's very large satellite structures, a substantial mass of fuel is nec
essary to place them into orbit and perform orbit corrections. As we have seen in 
Chapter 3, the mass of fuel contained in the tanks of a geosynchronous satellite 
amounts to approximately 400/0 of its total initial mass in the GTO. When the fuel 
containers are only partially filled and under translational acceleration, large quanti
ties of fuel move uncontrollably inside the tanks and generate the sloshing effect. 

The dynamics of motion of the fuel interacts with the solid-body and the append
age dynamics of the spacecraft. The interaction of sloshing with the ACS tends to 
produce attitude instability. Several methods have been employed to reduce the effect 
of sloshing, such as introducing baffles inside the tanks or dividing a large container 
into a number of smaller ones. These techniques, although helpful in some cases, do 
not succeed in canceling the sloshing effects. Hence the ACS must provide an ade
quate solution: first, to assure stability during the thrusting stage; and second, to 
achieve good attitude control despite the existence of sloshing dynamics. 

10.4.2 Basic Assumptions 

Modeling of the sloshing phenomenon was initiated in the early sixties. The 
models of sloshing motion presented in Abramson (1961) have not changed much 
over the years. 
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An exact analytical model of fluid oscillatory motion inside a moving container 
is extremely difficult - in fact, impossible. After some simplifying assumptions, rea
sonably adequate models have been obtained that are in good agreement with experi
mental results. These assumptions include: 

(1) small displacements, velocities, and slopes of the liquid-free surfaces; 
(2) a rigid tank; 
(3) nonviscous liquid; and 
(4) incompressible and homogeneous fluid. 

With these assumptions, the sloshing dynamics model can be written using an infinite 
number of small masses. The results obtained with such models must be checked 
with experimental measurements, after which even greater accuracy is possible if the 
model parameters incorporate these test values (see Pocha 1986). 

10.4.3 One-Vibrating Mass Model 

A basic explanation of the sloshing effect follows. The fuel tank is under the 
action of a force F. The nonmoving parts of the container are concentrated in the 
mass Mo, which is located at the center of mass of the entire system. The moment 
of inertia about the center of mass is Jo. As a consequence of the applied force, an 
acceleration g = FI(Mo+m) will act on the spacecraft. The moving mass m in the 
container experiences also an acceleration component in a direction opposite to the 
force F. 

Because of a lateral force f, the mass m will tend to move away from the neutral 
position prior to the application of this force, and a pendulum analogy is evident. 
The simplest model in this context represents the sloshing mass by a pendulum, or a 
mass-spring element, as shown in Figure 10.4. 1. a and Figure 1O.4.1.b, respectively. 
As is well known, the frequency of oscillation of a pendulum is proportional to the 
acceleration constant g and inversely proportional to the length of the arm L: 

Wosc = .../gl L. (10.4.1) 

The mass-spring analogy is related to the pendulum analogy, in which the oscilla
tion frequency of the mass-spring element in Figure 1O.4.1.b is 

f 

8. F 

Free surface 

em 
Mo,Jo 

F b. 

Figure 10.4.1 Simple mechanical models for pendulum and spring-mass 
analogies to the sloshing problem; reproduced from Abramson (1966). 
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(10.4.2) 

The difficult part in modeling the sloshing effect according to both analogies is to 
find (analytically and/or experimentally) the equivalent arm length L, the equivalent 
mass m, and the equivalent spring constant k. These parameters depend on the shape 
and other geometrical parameters of the container, the characteristics of the fluid, 
the fill ratio of the container (Le., the ratio between fluid quantity and container vol
ume), and so on (see Abramson 1961, Unruh et al. 1986). As we shall see, the oscilla
tion frequency "'osc: for both models is of utmost importance. Equating Eq. 10.4.1 
and Eq. 10.4.2, we obtain that k = g = F/{Mo+ m) and that the spring coefficient k 
is proportional to the applied force F. From these two equations it also follows that 

k = mg/L = m",~sc:; (10.4.3) 

L, the equivalent arm for the pendulum model, depends on the container geometry, 
the fill ratio of liquid, and so on. We can now write the equations of motion for the 
complete system, including the rigid-body part of the satellite and also the fixed and 
the moving (sloshing) part of the fuel. To be more precise, the model system illus
trated in Figure 10.4.2 will be used. 

In Figure 10.4.2, Zs is the geometrical axis ofthe satellite, which is assumed to be 
a principal axis; ZI is the inertial axis of the system before the lateral disturbance has 
been applied. The force F produces a linear acceleration that may be calculated as 

F (lO.4.4) g=Mo+m· 

This acceleration approximates the spring coefficient k. 
If only one thruster is fired (e.g. Thl), the applied force f can be divided into a 

linear side force 1 - parallel to f and acting on the cm of the satellite - and a torque 
T = Id about the cm. On the other hand, the force f, together with the spring coeffi
cient k as in Figure 10.4.2, produces a lateral acceleration a with amplitude 

I+kx 
a=~. 

Next, we can write the moment equation about the cm: 

Figure 10.4.2 Model with one spring-mass system for writing 
the dynamics equation of motion; adapted from Bryson (1983) 
by permission of the American Astronautical Society. 

(lO.4.S) 
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JoB = df-bkx-mgx. 

The resulting linear acceleration of the mass m satisfies the equation 

m(a+x-b8) = -kx. 

(10.4.6) 

(10.4.7) 

The simultaneous solution of Eqs. 10.4.5-10.4.7 is straightforward. If we define 

kl=bk+mg and k2=k+mkIMo=k(1+mIMo), 
then 

JoB+klx= dJ and 

mx+k2x-mbB = -mfIMo· 

(10.4.8) 

(10.4.9) 

Equation 10.4.8 and Eq. 10.4.9 are linear ordinary equations that can be solved with 
the Laplace transform: 

[ 
JoS2 kl ][8(S)] [ df ] 
mbs2 -m(s2+k2Im) xes) = mJ1Mo . (10.4.10) 

Exactly as in our analysis of solar panel structural dynamics, a damping factor ~ 
must be incorporated into the equations of angular motion. This is easily done by 
exchanging the term m(s2+k2Im) with the term m(s2+2~"';k2Ims+k2Im). Equa
tion 10.4.10 is thereby altered to read 

[ 
JOS2 kl ][8(S)] [ dJ ] 
mbs2 -m(s2+2~"';k2Ims+k2Im) xes) = mJ1Mo . (10.4.10') 

The solution is 

[ 8(S)]=_1_[-m(S2+2~"';k2Ims+k2Im) -kl][ df ] 
xes) .:1(s) -mbs2 . Jos2 mflMo' 

(10.4.11) 

where the determinant is 

.:1(s) = -mJos2[s2+2~"';k2Ims+k2Im+bkIIJo]. (10.4.12) 

We are interested in the angular motion 8 of the satellite. However, we must dif
ferentiate between the applied torque T = df and the applied side force f. Two basic 
cases arise: applying pure torque versus applying torque with a side force. 

Application oj a Pure Torque 
A pure torque T can be applied about the center of mass by firing two appro

priate thrusters - for example, Th1 and Th3 to achieve a positive pure moment about 
the cm, or Th2 and Th4 for a negative pure torque. In this case, there is no applica
tion of a side force f, and the transfer function becomes: 

8(s) 9(s) s2+2~..{k:;7iiis+k2Im 

T(s) = df = Jos2[s2+2~"';k2Ims+k2Im+klbIJo]· (10.4.13) 

Remember that g = FI(Mo+m). Define also the equivalent sloshing frequency 

2 2 k2 k( 1 1) 2 ( m ) 
WSL = Wz = m = m + Mo = Wosc 1 + Mo ' (10.4.14) 

where Wz is the zero of the transfer function. With these definitions, Eq. 10.4.13 can 
be rewritten as 
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8(s) 1 s2+2e"'SLS+"'~L 
T(s) = loS2 s2+2e..Jk2/ms+"'~L +b2k/lo+mbg/lo 

1 S2 + 2e",zs + "': 
= F 2 2 2" 2 . JOS S + <;;psys"'psyss+"'psys 

In Eq. 10.4.15, 

and 

2 2 2 b2m mbg 2 [ m b
2
m] mbg 

"'psys = "'z + "'osc 10 + 10 = "'osc 1 + Mo + 10 + 10 

e",z 
epsys=W-' psys 
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(10.4.15) 

(10.4.16) 

(10.4.17) 

It is important to comment on the physical meaning of Eq. 10.4.14. The term "'osc is 
the oscillation frequency of the mass-spring sloshing element; "'z is the zero of the 
transfer function; and "'psys in Eq. 10.4.16 is the natural frequency of the entire dy
namic system, including the satellite. 

Inspecting the determinant of the preceding transfer function, there are two im
portant questions to be answered from the ACS perspective: 

(1) Can the system pole be unstable? (b can be negative) 
(2) Can the system pole value be smaller than the value of the zero? 

In order to answer these questions, we write "'~ of Eq. 10.4.15 in terms of the basic 
parameters b, m, 10 , Mo, k (from Eq. 10.4.3), and g (from Eq. 10.4.4): 

'" =k -+-+- +-g 2 [ 1 1 b
2

] mb 
psys m Mo 10 10 

2 [ m mb
2

] bmg 
="'osc 1+ Mo +10 +10' (10.4.16') 

According to Figure 10.4.2, b can have a positive or a negative sign, depending on 
the location of the fuel tank inside the satellite relative to the dry center of mass. 
Even if b < 0 but with wpsys > "'z, stabilization of the satellite - despite existence of 
the slosh dipole - is straightforward. A simple lead-lag compensator is sufficient to 
stabilize the two rigid-body integrators. The slosh dipole needs no special compensa
tion, since the closed-loop root of the sloshing mode is inherently stabilized (Figure 
10.4.3.a). However, should Ii negative b lead to the condition "'psys < "'z, an additional 

1m 
1m - '-. Dipole 

y compensator 

Re Re 

a. b. 

Figure 10.4.3 Root locus of the satellite's closed loop, 
including the slosh dipole. 
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compensating dipole will be necessary in order to secure a stable angular motion 
despite the existence of sloshing (see Figure 1O.4.3.b). 

Equation 10.4.15 is very similar to Eq.l0.2.16. As with the panel's structural mod
el, the damping coefficient for the sloshing mass is usually determined by experi
mental measurements with a partially filled tank. For more sophisticated models that 
incorporate additional sloshing masses, the modeling should be similar to the panel 
represented by several structural modes as in Figure 10.2.3 (see also Section 10.4.3). 
This reasoning is best appreciated if the analysis is carried out on a Nichols chart or 
on Bode plots, as the following numerical example illustrates. 

EXAMPLE 10.4.1 As in Example 10.2.1, we choose Jo = 720 kg-m2. Suppose also 
that Mo = 600 kg, m = 100 kg, and Wose = 1.5 rad/sec; F= 500 N. We shall find the 
transfer function for b = +0.25 m and then for b = -0.25 m, with ~ = 0.002 and 
also ~ = 0.001. For both cases, g = 500/700 = 0.714 m/sec2 (Eq. 10.4.4). 

Case 1: b = +0.25 According to Eq. 10.4.14, Wz = 1.5../1 + 100/600 = 1.6202 
rad/sec. Next, we find wpsys: 

wpsys = [1.52(1+ : + 100;2~252)+ 0.25 X~~XO.714] = 1.634 rad/sec. 

In this case wpsys> Wz• Also, ~psys = (0.002 x 1.6202)/1.634 = 0.001983. 

Case 2: b = -0.25 In this case, 

[1 52(1+ 100 + l00XO.25
2
)_ 0.25 X l00XO.714] = 16186 dl: 

Wpsys = . 600 720 720 . ra sec 

and wpsys < Wz ; ~psys = 0.002002. 
We will use the same feedback control solution as in Example 10.2.1. On the Nich

ols chart in Figure 10.4.4 are shown the open-loop gains for both positive and nega
tive b and also for two different damping coefficients, ~ = 0.002 and ~ = 0.001. 

At this point, some additional comments are in order. 
(1) In Figure 10.2.2 it is clear that, in order to improve stability margins for the 

low-damping coefficient cases, some lag must be added at the panel's elastic modal 
frequencies, so that the peaks of the open-loop gains will be lowered away from the 
-180° stability phase line in the Nichols chart. This will increase the phase at the 
sloshing modal frequencies too, so an additional decrease of the phase margins at 
the slosh modal frequencies will follow. Moreover, in multitank fuel systems, slosh
ing dipoles for both positive and negative b may be present simultaneously, thus 
gravely complicating the design of the feedback control loop (see Figure 1O.4.4.c and 
Figure 10.4.4.d). The usual design-stage tradeoffs in the frequency domain will lead 
to a decrease in the crossover of the open-loop transfer function, with an inevitable 
degradation in the quality of the ACS. 

(2) During the apogee insertion stage, the fill ratio of the fuel tanks decreases con
tinuously, thus changing the parameters of the sloshing model. There is in any case 
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Phase [deg] Phase [deg] 

Phase [deg] Phase [deg] 

Figure 10.4.4 Frequency response of the loop gains, including one 
sloshing mode at CIISL = I.S rad/sec, b = 0.25 mt ~ = 0.002 and 0.001. 

wr---------,---------~_.------_.--------__, 

~-~ ------~------~------~------~ 
~360 ·270 -180 ·90 0 

Open-Loop Phase [deg] 

Figure 10.4.5 Loop gain changes due to sloshing parameter variations. 
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a large uncertainty about these parameters, such as the moment arm b and "'OSC. A 
family of uncertain plants will emerge, and the feedback control system must pro
vide a satisfactory solution for all of them. An example of open-loop transfer (unc
tions for a family of such plants is shown in Figure 10.4.5. A systematic design tech
nique for similar control problems was developed many years ago and can be used to 
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obtain a satisfactory feedback control solution; see Sidi and Horowitz (1973) and 
Sidi (1976). 

(3) In Example 10.2.1, only the panel structural model was introduced; in Example 
10.4.1, only the slosh dynamics model was implemented. In Section 10.5, a system
atic procedure will be derived to implement simultaneously all structural and slosh 
dynamics in the model. 

Simultaneous Application oj Pure Torque and a Side Force 
In this case, the transfer function in terms of the applied force f will become 

- = -- (ms +k2)d+-- = -- s + --+-8(s) -1 [2 kIm] -m [2 (k2d kl )] 
f ~(s) Mo ~(s) m Mo (10.4.18) 

(cf. Eq. 10.4.11). It is clear from Eq. 10.4.13 and Eq. 10.4.18 that use of a pure torque 
T and a side force f enables changing the location of the sloshing model's complex 
zero in the s domain, thus helping to obtain a more favorable (from a root-locus 
viewpoint) location of the complex poles and zeros of the sloshing mode. Our aim is 
to decrease the value of the sloshing zero below the value of the sloshing pole. This 
simplifies the feedback control solution, as in Figure 1O.4.3.a. In practical situations 
this effect is obtained by using a side thruster providing the side force f, a thruster 
different from those providing the pure torque T. 

10.4.4 Multi-Mass Model 

As with all structural models, an infinity of structural modes exists but only 
the most pronounced are taken into consideration. For the sloshing model, two to 
three masses at most are sufficient to characterize the sloshing dynamics. Generally, 
it is more convenient to define the modes by their oscillating frequency Wosci (see Eq. 
10.4.2) and their assumed damping coefficient ~i' For the multi-mass sloshing model, 
Figure 10.4.2 is readapted to yield Figure 10.4.6. 

In fact, the mUltiple-mass sloshing model can be presented in block-diagram form 
as in Figure 10.2.3 for the solar panel structural modes. Formulating the dynamics 
model for the panels and the sloshing oscillatory dynamics in a generalized model 
will be explained in the next section. . 

Figure 10.4.6 Model with mUltiple sloshing masses; adapted from 
Bryson (1983) by permission of the American Astronautical Society. 
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10.5 Generalized Modeling of Structural and Sloshing Dynamics 

The task of previous sections was to introduce basic notions of structural 
and sloshing dynamics. The emphasis was on the physical interpretation of these 
models. In practice, the number of structural modal frequencies is quite large, as is 
the number of sloshing masses that influence the satellite's dynamics. Consequently, 
the procedures explained in previous sections seem impractical for modeling the over
all dynamics of a sic with a large number of oscillating modes. In this section we sys
tematize writing the complete set of dynamics equations for angular motion of the 
spacecraft. 

Before we can present a complete analysis of the dynamics of the satellite, includ
ing solar panels and fluid in the fuel containers, some discussion of the hardware 
being incorporated will be necessary. 

10.5.1 A System of Solar Panels 

In the most general case, a solar panel might be appended to the satellite by 
a two-axis gimbaled system, so that the panel can be rotated toward the sun from 
any orbit location. To simplify the analysis, we assume that the panel has only one 
degree of rotational freedom. This is true of the Spot satellite, the Hubble space tele
scope, and all geostationary satellites. 

Suppose we are dealing with a geostationary satellite, so that the solar panels must 
rotate once per day about one of the satellite body axes in order to be continuously 
directed toward the sun. A schematic of the satellite-panels hardware is shown in 
Figure 10.5.1. As shown in the figure, the panel can rotate about the YB axis by an 
angle a, so that the sun axis will be located in the Xp-Yp plane for maximum sun 
absorption. 

Since the sun panel is not rigid, it can have three modes of deflection about its 
axes Xp, Yp, Zp. The deflection about the Zp axis is called the out-ol-plane deflection 
mode. The deflection about the Xp axis is called the in-plane deflection mode. The 
last mode, deflection around the Yp axis, is the torsional deflection mode. It is easily 
perceived that the out-of-plane mode is in general the most pronounced and has the 
lowest structural eigenfrequency. The influence of all three panel deflection modes 

Figure 10.5.1 Geometry of a single-axis rotating solar panel. 
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a. b. 

Figure 10.5.2 Definition of (a) the geometrical parameters of a single 
fuel tank and (b) the geometry of the rigid body plus two fuel tanks; 
part (a) reproduced from Abramson (1966). 

on the rigid part of the satellite depends on the rotation angle or of the panel relative 
to the rigid body's axis frame. 

10.5.2 A System of Fuel Tanks 

A propulsion system may consist of a number of fuel tanks. With bipropel
lant propulsion systems (see Appendix C), at least two tanks are mandatory. A num
ber of smaller tanks are generally preferred over a single bigger one in order to lessen 
sloshing effects, although such systems are more expensive. In any case, the geomet
rical parameters of each tank must be defined independently of the overall satellite 
conglomeration. 

In Figure 10.5.2, mo is the mass of the nonsloshing part of the fuel inside the tank 
and mh m2 are the two assumed sloshing masses. These three masses are distanced 
bo, bh and b2 from a reference geometrical location, in this case the geometrical cen
ter of the ellipsoid-shaped tank. The terms kh k2 and Ch C2 are the spring coefficients 
and damping parameters responsible for the damping coefficients defined in Section 
10.4. In Figure l0.5.2.b, "cmd" is the dry center of mass of the rigid-body part of the 
sic, including the dry weight of the fuel tanks; Mo is the nonsloshing mass of the sat
ellite, and Jo is the moment of inertia of the satellite excluding the sloshing masses. 

With these definitions and the known location of the tanks inside the satellite, the 
parameters of the sloshing masses inside each tank can be defined according to the 
fill ratio of the tanks and the translatory acceleration imparted to the sic in the direc
tion of F (Abramson 1961). A nonmoving cm can then be calculated, and the torque 
arm of each mass referenced to it can be evaluated, thus enabling us to write the dy
namics equations of the overall satellite system. 

10.5.3 Coupling Coefficients and Matrices 

Examining Eq. 10.2.14 and Eq. 10.2.15 reveals immediately the existence of 
a coupling factor between the rigid-body dynamics and the solar panels' structural 
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dynamics; this is the term mL in these equations. The order of the structural dynam
ics equations depends on the number of appended structural bodies and on the num
ber of assumed structural modes per body. 

All structural mode equations for the panels and the sloshing modes can be ex
pressed in a canonical form of second-order dynamics, with known eigenfrequencies 
and fairly well-anticipated damping coefficients. The coupling coefficients allow us 
to augment the dynamics equations of rigid-body angular motion with structural and 
sloshing model dynamics. A generalized approach follows in the next section. 

10.5.4 Complete Dynamical Modeling of Spacecraft 

In this section we assume that the translational and rotational dynamics are 
uncoupled. See also Prins (1983) and Williams and Wood (1989). With this assump
tion, it suffices to augment the dynamics of Euler's moment equations (Eq. 4.8.1) 
with the structural modes and sloshing dynamics. In Euler's equations, b is the mo
mentum matrix, including all products of inertia and momentum biases, if existing 
in the satellite. 

The augmented Euler equations of motion become: 

T = Tc+Td = hl + (0) x (b + [H]ir+ [D]i1)+ [H];;+ [D) 0-, 

[U]ij+ 2[~1/][o,,]ir+ [0"]2,, = [H]T<iJ, 

[E]o-+ 2[~u)[Ou]i1+ [Ou]2a = [D]T<iJ, 

(10.5.1) 

(10.5.2) 

(10.5.3) 

with [H) = ([K] [CnT. In Eqs. 10.5.1-10.5.3, (0), b, ", and a are vectors. The rota
tional matrix [C] is the usual rotational transformation about the YB axis in Figure 
10.5.1 by an angle a: 

[

cos(a) 0 -Sin(a)] 
[C] = 0 1 0 . 

sin(a) 0 cos(a) 

Formal definitions of the different matrices are as follows: 

[U) - unit matrix (m x m); 
[~,,) - flexible modes damping matrix, diagonal (m x m); 
[0,,] - flexible modes frequency matrix, diagonal (m x m); 
[8] - flexible modes coupling matrix (3 x m); 
[K) - matrix of coupling coefficients (m x 3); 
[E) - unit matrix (nxn); 
[~(1) - sloshing modes damping matrix, diagonal (n x n); 
lOu] - sloshing modes frequency matrix, diagonal (n x n); and 
[D) - sloshing modes coupling matrix (3 x n). 

(10.5.4) 

With regard to matrix dimensions, m denotes the number of flexible modes of the 
solar panels for the three different panel axes; n is the number of sloshing masses. 
Any element of [0] represents the natural frequency of a mode, structural or slosh
ing; any element of [~] represents the damping coefficient of a single mode. The ele
ments of [8] define the angular momentum coefficients of the ith flexure mode at the 
cm of the satellite; the elements of [D) define the coupling coefficients of a sloshing 
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mass to the cm of the satellite. The element 71i of" is the amplitude of the ith flexure 
mode, and the element Uj of a is the amplitude of the jth liquid sloshing mode. 

As far as the structural dynamics of the solar panels is concerned, the modes 
should be defined according to the panel axes Xp, Yp ' Zp- For instance. 

[0,.,] = diag[OxPI' Oxp2, ... , 0YPlt Oyp2, ... , 01.PI' 01.P2, ... J, 

[~,.,J = diag[~xpIt ~xp2' ... , ~YPIt ~yp2' ... , ~1.PIt ~1.p2' ... J. 
Also, "T = [71xPIt 71xp2' ... , 71ypl, 71yp2, ... , 711.pl' 711.p2, ... J. With these definitions, 

[ 

kxplt k xp2 ' ••• 0 0] 
[KJT = 0 kyplt kyp2' ... 0 . 

o 0 k1.Plt k~p2' ... 

(to.5.5) 

To find [Bland [B]T explicitly, suppose that there exist two structural modes for 
each of the panel's axes. In this case, 

k xpl cos(a) 0 -kxP1 sin(a) 
k xp2 cos(a) 0 -kxp2 sin(a) 

[BJT = [K][C] = kYPI (10.5.6) 
kYP2 

k~plsin(a) 0 k1.Plcos(a) 

k1.P2 sin(a) 0 k1.P2 cos(a) 

Equations 10.5.1-10.5.3, together with Eq. 10.5.6, can be integrated to yield body 
rates, which can be integrated once more to obtain the attitude angles of the rigid 
spacecraft, on which is superimposed the angular motion due to the sloshing and 
structural dynamics. 

Once again, some explanatory comments are in order. 
(1) The equations of the structural and the sloshing dynamics are linearized, so 

they are correct for small amplitUdes only. For more sophisticated, nonlinear dy
namics models, the reader is referred to Peterson, Crawley, and Hansman (1988). 

(2) The augmented Euler moment equations of Eq. IOS.1 are nonlinear. For linear 
control design of the ACS, a linearization procedure (similar to that used in Section 
4.8.3) must be carried out, but this time including the structural and sloshing dy
namics equations. 

(3) Equation 10.5.6 makes it clear that, when Xp and XB in Figure 10.5.1 are par
allel, the out-of-plane mode of the panel will exist only about the ZB axis. A 90° ro
tation of the panel will transfer the out-of-plane mode to the XB axis dynamics. At 
intermediate rotation angles of the panel, the out-of-plane and the in-plane modes 
will exist partially in both XB and ZB dynamics. 

10.5.5 Linearized Equations 0/ Motion 

To develop the linearized equations that include structural and sloshing 
modes, we can proceed from Eqs. 4.8.14. The influence of structural and sloshing 
dynamics is most pronounced when the ACS is controlled with the aid of reaction 
torques (see Chapter 9), which generally apply torque impulses of large amplitudes 
and thus excite the motion of the structural and sloshing modes. 
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With this assumption, terms including the low 'orbital frequency "'0 can be omitted, 
and the torques produced by momentum exchange devices can be assimilated by the 
external control torques (as we assumed in Section 7.3, Eqs. 7.3). This assumption 
is very reasonable from a practical point of view, and greatly simplifies the analysis 
in different applications. Equation 10.5.2 and Eq. 10.5.3 remain unchanged because 
they are already linear. Only Eq. 10.5.1 needs to be simplified: 

Tc = [I]w+ [B]ii+ [D]a, (10.5.7) 

where m is the inertia matrix. 
Given the assumptions and simplifications just listed, it is now easier to calculate 

the transfer functions of the satellite dynamics, including the structural and sloshing 
modes, for the purpose of linear feedback control analysis and design. Equation 
10.5.2, Eq. 10.5.3, and Eq. 10.5.7 can be rearranged so that standard analytical soft
ware programs can be used to solve them. It is easy to write these matrix equations 
in the form [F]i = [A]x+[B]u, which can then be transformed to the more usual 
form i = [A]x + [B]u. This is the standard form used in many dynamics simula
tion programs. 

10.6 Constraints on the Open-Loop Gain 

10.6.1 Introduction 

We have seen in previous chapters that it is generally better to have a high 
open-loop gain, for three important reasons. First, the higher the open-loop gain 
of the attitude feedback control system, the smaller the tracking attitude error. Sec
ond, a high open-loop gain renders the attitude control system less sensitive to ex
ternal disturbances. Third, an ACS with high open-loop gain responds faster to atti
tude commands. 

We have also seen that there are a number of practical physical problems that make 
the achievement of a high-gain ACS difficult. These difficulties are due mostly to ir
regularities in the attitude sensors and control hardware. The finite control torques 
that the control hardware can produce limit the speed with which the ACS can re
act to attitude commands. Even if the control hardware is capable of producing the 
needed control torques, the open-loop gain still cannot be chosen high enough owing 
to the effects of sensor noise amplification. Moreover, these attitude and control hard
ware deficiencies are exacerbated by the effects of structural and sloshing dynamics, 
which exist to some extent in all satellites - and certainly in any satellite using extend
able solar panels or liquid fuel. In the next section we explore limitations on the gain 
bandwidth of an attitude feedback control loop that are due to structural dynamics. 

10.6.2 Limitations on the Crossover Frequency 

Structural dynamics is best treated in the frequency domain. Sloshing is 
sensed in the lower-frequency range of the satellite dynamics, while structural effects 
are more pronounced in the higher-frequency range. It is therefore logical that the 
structural dynamics will interfere with the gain margin (GM) of the open-loop trans
fer function, thus limiting the bandwidth of the attitude control system. 
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First, let us obtain a rough idea of the maximal achievable loop gain and of its 
crossover frequency "'co, defined as the frequency at which IL(j",)1 = 0 db on a Bode 
graph or Nichols chart. In Figure 10.2.2. b, for instance, the GM is about 6 db, where
as in Figure 1O.2.2.d there is no GM at all and the system verges on instability. In 
practice, the peak of the structural mode can be moved to the left by introducing into 
the open-loop transfer function L(j",) a control network that will add the necessary 
lag phase at the peak frequency, thus significantly increasing the GM. However, even 
ifthis process is adopted, the peak of the loop gain 1 G(j",)1 should not be larger than 
some predetermined level on the Nichols chart. A practical reason for this is as fol
lows. Since the frequencies of the structural modes are comparatively high relative 
to the other dynamics of the attitude feedback system, any small unpredictable delay 
in the loop will be translated to a large additional phase lag at the frequency of the 
structural mode peak, and the open-loop gain at this frequency might then move 
toward the instability point (-180°, 0 db). So let us accept in our analysis that the 
peaks in the open-loop gain near the structural mode frequency will satisfy a gain 
margin GM"s, in accordance with various practical engineering arguments. With 
these assumptions, the maximum feasible bandwidth of the open-loop transfer func
tion L(j",) will depend on the damping factors and the modal natural frequency 
characteristics that define the structural mode. Naturally, there exists more than one 
structural mode dipole, but to simplify the analysis we will assume the existence of 
only the dipole with the smallest modal frequency. 

For this situation, the peak in the frequency response due to the structural mode 
can be calculated from parameters of the structural mode dipole expressed in Eq. 
10.2.16 at '" = as. Using the equalities a = as ";JoIJ and Es = e";JIJo in Eq. 10.2.16, 
the gain of the peak at the pole frequency of the dipole at '" = as becomes 

1 GdipoJe(jaS)1 = ( ~ -1 r + 4e ~ /2E H. . (10.6.1) 

It is easy to relate this peak to the obtainable bandwidth "'co of the open-loop gain of 
the attitude feedback control loop (see Figure 10.6.1). 

The phase of the open-loop transfer function L(j",) must be less than -180° in 
the vicinity of the "'co frequency region, in order to provide the necessary phase mar
gin for stability. In the frequency region above "'co and up to as, the phase can be 
higher than 180° but not by much. To simplify the analysis, we assume that in the 

ILOro)1 
db 

Jog( ro) 

Gdipole 

Figure 10.6.1 Approximate calculation of the maximum Wco 

for a given modal dipole and a minimum defined GMus• 
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region Weo to Os there exists an average phase lag of a1/' rad, a < 1. Such a phase char
acteristic is accompanied by an average constant slope of the open-loop gain IL (jw) 1 

of -12a db/oct (see Bode 1945). For given GMas, Gdipo1e , and a, the following rela
tion holds: GMas [db] + G dipo1e [db] = 12ay, from which it follows that 

_ GMas + G dipo1e 
y- 12a (10.6.2) 

In Eq. 10.6.2, y is the number of octaves that separate Weo from Os (see also Sidi 
1980). Finally, 

Os ..{l7loo 
Weo= 2Y = 2Y 

(10.6.3) 

The meaning of Eq. 10.6.3 is illustrated by the following example. 

EXAMPLE 10.6.1 Given the elastic structural mode of Example 10.2.1, find the 
approximate maximum achievable crossover frequency Weo of the open-loop gain 
IL(jw)l. Assume that G dipo1e = 6 db and a = 0.8. 

Solution From Eq. 10.6.1 we find that 1 Gdipo1el = 15.8 = 24 db. From Eq. 
10.6.2, (24 + 6)1(12 x 0.8) = 3.1. Finally, from Eq. 10.6.3 we have Wco = 4.2164/22.7 = 

0.48 rad/sec. 
The resulting L(jw) is shown in Figure 10.6.2, where Weo = 0.54 rad/sec. Taking 

into account the almost arbitrary choice of a = 0.8, this is fairly close to the approx
imated value of 0.48 rad/sec. 

Equation 10.6.3 estimates the maximum bandwidth that can be achieved with 
the existence of a single structural dynamics pole. It gives a good "rule of thumb" 

Phase [deg] 

Figure 10.6.1 Open-loop gain of the feedback control system of Example 10.6.1. 
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concerning the achievable gain bandwidth. The existence of additional structural or 
sloshing modal dynamics may only make things worse. 

Sloshing modal dynamics are generally located at lower frequencies. Let us as
sume a sloshing mode at a frequency close to "'co of Example 10.6.1. In order to ac
commodate this mode and prevent decreasing the existing adequate phase margin, 
some lead-lag network will be required to provide the necessary lead phase. How
ever, such networks tend to decrease the gain margin of the higher-frequency struc
tural elastic mode. Maintaining the original gain margin will require a lower "'co' 

When several structural and sloshing modal poles are present, the usual "cut-and
try" techniques in the frequency domain will - it is hoped - yield the maximum 
achievable gain bandwidth. 

10.7 Summary 

Structural and sloshing dynamics are a serious problem in the design of atti
tude feedback control systems. It can be quite difficult to obtain a reliable model, 
especially where sloshing dynamics is concerned. It is advisable to perform some ex
perimentation and measurements with the actual hardware, when this is feasible, in 
order to increase confidence about the model obtained by theoretical analysis. Con
siderable experimentation is also advisable when designing a feedback control sys
tem with sufficient gain and phase margins, especially in the presence of structural 
and sloshing modal poles whose parameters are not known exactly. 
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APPENDIX A 

Attitude Transformations in Space 

A.I Introduction 

T~e purpose of this appendix is to provide a short description of various 
aspects of attitude transformation in space. The attitude of a three-dimensional body 
is most conveniently defined with a set of axes fixed to the body. This set of axes is 
generally a triad of orthogonal coordinates, and is normally called a body coordi
nate/rame. The attitude of a body is thought of as a coordinate transformation that 
transforms a defined set of reference coordinates into the body coordinates of the 
spacecraft. 

This appendix presents some basic attitude transformation techniques; the treat
ment is not extensive, but rather a summary of the material required in the main 
chapters of the text. For further reading on the subject, see Sabrotr et al. (1965) or 
Wertz (1978). 

A.2 Direction Cosine Matrix 

A.2.1 Definitions 

The basic three-axis attitude transformation is based on the direction cosine 
matrix. Any attitude transformation in space is actually converted to this essential 
form. In Figure A.2.1, the axes 1, 2, and 3 are unit vectors defining an orthogonal, 
right-handed triad. This triad is chosen as the reference inertial frame. Next, a simi
lar orthogonal triad is attached to the center of mass of a moving body, defined by 
the unit vectors 0, v, and w. 

In the context of Figure A.2.1, we define the matrix [A] as follows: 

(A.2.1) 

In this matrix, Uh U2, U3 are the components of the unit vector 0 along the three 
axes 1,2,3 of the reference orthogonal system: 0 = [UI U2 U3]T. In a similar way, v 
and w have components Vh V2, V3 and Wit W2, W3 along the same reference axes: v = 
[VI V2 V3]T and w = [WI W2 W3]T. The direction cosine matrix [A], also called the 
attitude matrix. has the important property of mapping vectors from the reference 
frame to the body frame. Suppose that a vector a has components aJ, a2, a3 in the 
reference frame: a = Cal Q2 a3]T. The following matrix vector multiplication expresses 
the components of the vector a in the body frame: 
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3 

w 

2 

Figure A.2.1 Definition of the orientation of the 
spacecraft axes u, Y, w in the reference frame 1,2,3. 

(A.2.2) 

where aB is the vector a mapped into the body frame. 
Since u is a unit vector, it follows that the scalar product u-a is the component au 

of the vector a along the unit vector u. By the same reasoning, the components of the 
vector a on the remaining unit vectors of the body triad are a" and awe 

A.2.2 Basic Properties 

Some basic properties of the matrix [A] may be stated as follows. 

(1) Each of its elements is the cosine of the angle between a body unit vector 
and a reference axis; its name is derived from this property. 

(2) Each of the vectors u, v, w are vectors with unit length; hence: 

3 2 3 2 3 2 
~ U; = I, ~ Vi = I, ~ W; = 1. 
;=1 ;=1 ;=1 

(3) The unit vectors u, v, ware orthogonal to each other; hence: 

(4) 

(5) 

3 3 3 
~~~=~ ~~~=~ ~~~=~ 
;=1 ;=1 ;=1 

The relationships in (2) and (3) lead to the useful identity [A][A]T = I, or 
[A]T = [Arl. Of course, transposition of a matrix is a much simpler pro
cess than inversion of the same matrix . 
It is well known that det[A] = u o(v X w). Since u, v, w form a cubic orthog
onal triad, it follows that det[A] = 1. Thus, 
a = [A]TaB• (A.2.3) 

We conclude that [A] is a proper real orthogonal matrix. It is shown in Wertz (1978) 
that such a matrix transformation preserves the lengths of vectors and also the angles 
between them, and thus represents a rotation. The product of two proper real or
thogonal matrices [A] = [A2][Ad is the result of two successive rotations, first by 
[Ad and then by [A2]. A chain of successive rotations is common in attitude trans
formations. 
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A.3 Euler Angle Rotation 

The Euler angle rotation is defined as successive angular rotations about the 
three orthogonal frame axes. Suppose we define the three orthogonal axes of the 
body frame by i, j, and k, and those of the reference frame by I, J, and K. There is a 
multitude of order combinations by which the rotation can be performed. For in-' 
stance, we might first perform a rotation about the i, then about the j, and finally 
about the k axis. The order of rotation could also be about j, i, k, and so on. 

There are two distinct types of rotations. 

(1) Successive rotations about each of the three axes i,j, k. There are six pos
sible orders of such a rotation: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, and 3-2-1. 

(2) First and third rotations about the same axis with the second rotation about 
one of the two remaining axes. Again we have six possibilities: 1-2-1, 1-3-1, 
2-1-2, 2-3-2, 3-1-3, and 3-2-3. 

The second type of rotation sequences can be useful in special situations (see Section 
2.6.1), and sometimes helps to solve problems in which successive rotations about 
three distinct axes may give rise to singularities. 

Which specific rotation order is chosen depends on the situation at hand. It is 
common to define the Euler roll angle (rP) as a rotation about the" body axis, the 
pitch angle (8) about the y body axis, and the yaw angle (t/I) about the z body axis. 
However, any other definition is acceptable as long as it remains consistent with the 
analytical development. For reference, an example of a complete rotation will be 
given next. 

Suppose we want to perform the transformation t/I- 8 - rP successively about the 
z, y, and" body axes. First, the bpdy triad undergoes an angUlar rotation t/I about 
the z body axis. In Figure A.3.1, R is the distance of a point from the origin of both 
Cartesian systems [I, J) and [i,J). System [i,j) is rotated by an angle 1/; with respect 
to system [I,J). The components of R are X, Yand x,y (respectively) in the two co
ordinate systems; I,J are unit vectors in system [X, Y) and i,j are unit vectors in 
[x,y). For a transformation in the plane, 

R = XI + YJ = xi + yj. (A . .3.1) 

Taking the scalar product by the vectori yields XI-j + YJ-j=xi-j + yj-i. We know 
that Ioi = cos(1/;), Joi = sin(1/;), ioi = I, and ioj = 0; hence x = Xcos(1/;) + Ysin(1/;). 
Next, taking the scalar product of Eq. A.3.1 by j yields XIoj + YJoj = xioj + yjoj. 
We also know that Ioj = -sin(1/;), Joj = cos(1/;), ioj = 0, and joj = I; therefore y = 

J 

Figure A.3.I The first rotation is about the z axis. 
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Figure A.3.1 The second rotation is about the y axis. 

X[ -sin(t/I)J+ Ycos(t/I). The rotation is about axis K, perpendicular to both the I and 
J axes. Looking on that transformation as a three-dimensional transformation in 
space with Z along the K axis and z along the k axis, we have Z = z. 

Finally, let us label the new values of the body axes as XhYhZ\. In matrix form 
we can write 

[~:J=[ :i~t;) :J~ n~]=[A·{n (A.3.2) 

Initially the body axes were aligned with the reference axes X, Y, Z. In Eq. A.3.2, 
[AwJ is the first angular rotation about the z body axis. The next rotation will be 
about the y\ axis by an angle fJ. Care must be taken as to the direction of rotation so 
that the right-hand properties of rotation are preserved (see Figure A.3.2). 

To simplify the notation, we shall abbreviate cos(_) to c_ and sin(_) to L. With 
this convention, the second transformation will take the form 

[;~] = [~ ~ -;fJ][;:] = [A9J[;:]. 
~ d 0 ~ ~ ~ 

The last rotation will about the X2 axis; the result is 

After we multiply the matrices in Eq. A.3.S, we find 

[ 

cOct/l 
[Am] = [Aw9I/>J = -cq,st/l+sq,sOct/l 

sq, st/l + cq, sfJ ct/l 

[Aw€ll/>J = [AI/>][A9J[Aw]· 

cfJst/l 
cq, ct/l + sq, sO st/l 
-sq, ct/l + cq, sO st/l 

(A.3.3) 

(A.3.4) 

(A.3.S) 

-SO] 
sq,~ , 
cq, cO 

(A.3.6) 

(A.3.7) 
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The meaning of [Aa.B'YJ is that the first transformation is about the axis with the ap
propriate a Euler angle, and so on. The remaining five attitude transformations of 
the first type are as follows: 

[ 

cl/lcO 
[A23d = [Ao.pq,J = -ccp sl/l cO +scp sO 

scp sl/l cO + ccp sO 

[ 

cl/lcO+sl/lscpsO 
[A213J = [Aoq,.pJ = -sl/l cO+ cl/l scp sO 

ccpsO 

sl/l -CI/ISO] 
ccp cl/l ccp sl/l sO + scp cO ; 

-scp cl/l -scp sl/l sO + ccp cO 

sl/lccp 
cl/lccp 
-scp 

-cl/lsO + sl/l scp CO] 
sVtsO+ cl/lscp cO ; 

ccpcO 

[

CI/ICO 
[Al32J = [Aq,,poJ = -sl/l 

sOcl/l 

cO sVt ccp + sO scp cO sVt scp - sO CCP] 
cl/lcO cl/lscp; 

sO sVt ccp - cO scp sO sl/l scp + cO ccp 

[ 

cl/l cO cl/l sO scp + sl/l ccp -cl/l sO ccp + sl/l scp ] 
[AI23J = [Aq,o.pJ = -sl/lcO -sl/lsOscp+cl/lccp sl/lsOccp+cl/lscp ; 

sO -cO scp cO ccp 

[

COCI/I-SOSCPSI/I cOsl/l+sOscpcl/l -SOCCP] 
[A3I2J = [A.pq,oJ = -ccpsl/l ccp cl/l scp. 

sO cl/l + cO scp sl/l sO sl/l - cO scp cl/l cO ccp 

(A.3.8) 

(A.3.9) 

(A.3.1O) 

(A.3.ll) 

(A.3.12) 

The remaining six transformations (ofthe second type) can be found in several text
books (see e.g. Wertz 1978, Hughes 1988). 

AU the [A_J matrices are direction cosine matrices, with the appropriate charac
terisics of such matrices - in particular, the identity [A_rl = [A_JT• It is also im
portant to note that, for smaIl Euler angles, all six Euler transformations (Eq. A.3.6 
and Eqs. A.3.8-A.3.12) have the same approximated form. Taking sin(I/I) "'" 1/1 and 
cos(I/I) "'" 1 for small 1/1, and with similar approximations for the remaining Euler 
angles 0 and cp, we have 

-0] cp • 
1 

(A.3.13) 

Attitude rotations derived on the basis of Euler angles necessitate dealing with 
nine elements of the direction cosine matrix, and each element may include several 
trigonometric functions. Equivalent, but simpler, transformations can be obtained 
based on the quaternions, to be explained in the next section. 

A.4 The Quatemion Method 

A.4.1 Definition of Parameters 

The quatemion's basic definition is a consequence of the properties of the 
direction cosine matrix [AJ. It is shown by linear algebra that a proper real orthog
onal 3 X 3 matrix has at least one eigenvector with eigenvalue of unity. This means 
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that, since one of the eigenvalues)../ (i = 1,2,3) is unity, the eigenvector is unchanged 
by the matrix [A] (Hildebrand 1968): 

(A.4.1) 

The eigenvector el has the same components along the body axes and along the ref
erence frame axes. The existence of such an eigenvector is the analytical demonstra
tion of Euler's famous theorem about rotational displacement: The most general 
displacement of a rigid body with one point fixed is a rotation about some axis. In 
this case, the rotation is about the eigenvector el. It will be demonstrated that any 
attitude transformation in space by consecutive rotations about the three orthogonal 
unit vectors of the coordinate system can be achieved by a single rotation about the 
eigenvector witn unity eigenvalue. 

The quaternion is defined as a vector in the following way (Hamilton 1866, Gold
stein 1950, Dalquist 1990): 

q = q4+ iql+jq2+kq3 == q4+q, 

where the unit vectors i, j, k satisfy the following equalities: 

12 = j2 = k2 = -I, 

ij = -jl =k, 

jk = -kj =1, 

ki = -ik =j. 

(A.4.2) 

(A.4.3) 

Equation A.4.3 shows that the order of multiplication is important. We also define 
the conjugate of q as 

q* = q4-lql-jq2-kq3. (A.4.4) 

In the definition of the quaternion q, q4 is a scalar; q will be defined as the vector 
part of the quaternion: 

q = (q4,q), 

where q = iql + jq2 + kq3· 

A.4.2 Euler'S Theorem of Rotation and the Direction Cosine Matrix 

(A.4.S) 

An examination of Eq. A.3.3 and Eq. A.3.4 reveals the following equality: 

tr[Aa] = 1 + 2 cos(a). (A.4.6) 

In the previous section, successive rotations were performed about axes of the 
body coordinate frame. In general, the rotation can be executed about any direction 
in the body. Suppose that the body rotates about the Euler axis of rotation, defined 
by the principal eigenvector, having the eigenvalue of unity; Eq. A.4.6 will hold in 
this case, too. 

Let us call e the eigenvector oj rotation, with components e = [el e2 e3]T. In this 
case the direction cosine matrix, in terms of the vector e and the angle of rotation a, 
will have the following form: 

[Aa] = cos(a)l + [l-cos(a)]eeT -sin(a)[E], (A.4.7) 
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where 1 is the unit matrix. We define [E] as 

[E] =[ ~ 
-e2 

The detailed Eq. A.4.7 then becomes 

[ 

ca+ef(1-ca) ele2(I-ca)+e3sa 
[Aa]= ele2(I-ca)-e3sa ca+ei(1-ca) 

ele3(1-ca)+e2 sa e2e3(1-ca)-elsa 

ele3(1- ca) -e2 sa] 
e2 e3(1-ca)+elsa . 

ca+er(1-ca) 

, where again we abbreviate cos(_) to c and sin(_) to s_. 

(A.4.8) 

(A.4.9) 

Equation A.4.6 is clearly satisfied by Eq. A.4.9. The matrix [Aa] is a direction 
cosine matrix with elements aij' For a nonvanishing a, we can find the elements of 
the eigenvector of rotation in terms of aij: 

el = [a23 - a32]/[2 sin(a)], 

e2 = [a31-a13]/[2 sin(a»), 

e3 = [a12-a211/[2 sin(a»). 

A.4.3 Quatemions and the Direction Cosine Matrix 

(A.4.l0a) 

(A.4.l0b) 

(A.4.l0c) 

The elements of the quaternions, sometimes called the Euler symmetric pa
rameters, can be expressed in terms of the principal eigenvector e (see Sabroff et al. 
1965). They are defined as follows: 

Clearly, 

ql = el sin(aI2), 

q2 = e2 sin(al2), 

q3 = e3 sin(al2), 

q4 = cos(al2). 

Iql = 1. 

(A.4.lla) 

(A.4.llb) 

(A.4.l1c) 

(A.4.l1d) 

(A.4.l2) 

Using Eqs. A.4.1l and Eqs. A.4.lO, the direction cosine matrix can be expressed 
in terms of the quaternions: 

where 

[
qf-q~-qr+ql 

[A(q») = 2(qlq2-q3q4) 
2(qlq3+q2q4) 

2(qlq2+q3q4) 
-qf + ql-qr + ql 

2(q2q3-qlq4) 

(A.4.l3) 

(A. 4.14) 

(A.4.l5) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 

" 

I 
,i 
, 

I 
I 
I 
I 
I 
I'~ 
I 

';,'~~ .. ~', 
\ -.\1 

" 
" 

I 
':'1 

' .. ~~}~ 

I : 
:~ 

11 
I 
I 

A.4 / The Quaternion Method 325 

Equation A.4.l5 allows us to express the quatemions in terms of the direction cosine 
matrix. It is shown in Chapter 4 that both the quaternions and the elements of the 
direction cosine matrix can be found independently by integrating the angular rates 
measured about the three principal body axes. Having calculated one set of parame
ters (e.g., the set of elements of the direction cosine matrix), the set of quaternions 
can also be found, and vice versa (Klumpp 1976). 

A total of four such sets can be defined for the quaternions. For the first set, q4 is 
found first by summing the diagonal elements au, a22, and a33. To find q .. q2, and q3, 
take the sums a23 -a32, a31-a13, and aI2-a21, respectively. The solution is 

q4= ±0.5""I+au+a22+ a33' 

ql = 0.25 (a23 -a32)/q4, 

q2 = 0.25(a31- a13)/q4, 

q3 = 0.25(aI2- a21)/q4· 

(A.4.l6) 

In those cases where q4 is a very small number, annoying numerical inaccuracies in 
calculating the remaining components of the quaternion vector may preclude using 
Eqs. A.4.l6. This problem may be overcome by using a different solution for the 
quaternions in terms of aij. This yields three more possible solution sets, as follows: 

ql = ±0.5""I+au-a22- a33' 

q2 = 0.25(a12+ a21)/q" 

q3 = 0.25(aI3 + a31)/ql' 

q4 = 0.25(a23 +a32)/ql: 

q3 = ±0.5",,1-~1I-a22+a33' 
ql = 0.25(a13 + a31)/q3, 

q2 = 0.25(a23 + a32)/q3' 

q4 = 0.25(aI2- a21)/q3: 

q2 = ±0.5""I-all +a22 -a33' 

ql = 0.25(aI2+ a21)/q2' 

q3 = 0.25(a23 +a32)/q2' 

q4 = 0.25(a31- aI3)/q2· 

(A.4.17) 

(A.4.1S) 

(A.4.19) 

Equations A.4.16-A.4.19 present four different solutions, but the resulting qs are 
identical. 

In summary, all the listed quaternion sets are mathematically equivalent. Hence 
numerical inaccuracies can be minimized by changing between them and using that 
set for which the divisor component is maximal. 

A.4.4 Attitude Transformation in Terms of Quaternions 

Representing the attitude of a body in a reference frame by a direction cosine 
matrix requires knowledge of nine parameters aij' whereas only four qi parameters 
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are needed when using the quaternions. (In fact, there exist only six independent 
parameters of the direction cosine matrix and only three independent components 
of the quaternion vector.) Moreover, the elements of the direction cosine matrix, in 
contrast to those of the quaternions, are trigonometric functions, which are much 
more cumbersome to compute. 

To obtain an attitude transformation, a quaternion multiplication is performed. 
When dealing with direction cosine matrices, two consecutive attitude transforma
tions are achieved by matrix multiplication of the two individual rotations. These 
two rotations can be expressed in the quaternion terminology by [A(q)] for the first 
rotation and by [A(q')] for the second one. The following expression holds for the 
overall attitude transformation in terms of direction cosine matrices: 

[A(q")] = [A(q')][A(q)]. (A.4.20) 

The resulting quaternion q" can be extracted from [A(q")]. 
Fortunately, it is much easier to perform a direct quaternion mUltiplication. Sup

pose we use the terminology of Section A.4.1. If we define q and q' as in Eq. A.4.2 
and use the relationships of Eqs. A.4.3, we obtain 

q"= qq' = (-qlqi-q2q2-q3q)+q4q4) 

+i(qlq4 +q2q) -q3q£+q4ql> 

+ J(-qlq) +q2q4 + q3qi +q4q2) 

+ k(qlq2 -q2qi+q3q4 +q4q3) (A.4.21) 

(see Dalquist 1990). Equation A.4.21 can also be put in matrix multiplication form; 
the final result is 

[
qi] [q4 q) 
qi = -q) q4 
qr q£ -qi 
q:; -qi -q£ 

(A.4.22) 

In other words, if the quaternion components of two successive rotations are known, 
then Eq. A.4.22 is the matrix vector multiplication that gives the resulting quaternion 
components of the total rotation. 

A.S Summary 

The most efficient mathematical representations of spacecraft attitude are 
based on the Euler angles, the direction cosine matrix, and the quaternion vector. 
The analytical transformation techniques for these representations have been ex
plicitly stated for reference and use in the chapters. 
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APPENDIX B 

Attitude Determination Hardware 

B.1 Introduction 

Hardware items that are mandatory for realizing almost any spacecraft atti
tude and orbit control system can be divided into two classes: instrumentation for 
measuring the attitude of the satellite; and instrumentation for providing forces and 
torques. The latter category will be treated in Appendix C. Appendix B deals with 
attitude sensors, but is not an extensive treatment of the subject. There are excellent 
textbooks and technical papers provi~ing complete treatment of the hardware from 
both analytical and practical points of view; Wertz (1978) is especially recommended . 
However, for completeness and for the reader's convenience, a short exposition of 
the basic principles of satellite attitude hardware will be presented here, together 
with examples of existing space-proven commercial instruments. 

Attitude measurement hardware is used to determine the attitude of the satellite 
with respect to a defined reference frame. The final product may be, for instance, the 
Euler angles of the satellite in the orbit reference frame, or (in a different context) 
the sun vector components in the body axis frame. Attitude determination hardware 
includes: 

(I) earth sensors (in particular, infrared earth sensors); 
(2) sun sensors; 
(3) star sensors; 
(4) rate and rate integrating sensors, based on gyroscopic, laser, or other solid

state principles; and 
(5) magnetometers. 

The quality of the instruments is responsible for the accuracy that can be achieved 
in the attitude control system. For instance, there are sun sensors that can measure 
the direction of the sun with an accuracy of 0.015°, whereas others have an accuracy 
of only 0.5°; however, analytical processing of the two sensors' output is basically 
the same. The commonly used attitude reference sources are the earth, the sun, and 
the stars. 

The earth is used in two different aspects, optical and magnetic. The more im
portant one is the optical aspect. Unlike the sun (which appears as a small illumi
nated disk) or the stars (which can be treated as illuminated points), the earth - as 
seen from nearby space - has a complex appearance that must be adequately mod
eled for accurate attitude determination. The accuracies that can be achieved with 
the earth as an attitude source range from 0.02° to 0.5°, depending on the complex
ity of the hardware and the processing algorithm. The earth's magnetic field, which 
is known from different sorts of evaluations and measurements, is also used for atti
tude determination. 
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The attitude accuracies that can be achieved with the sun as the attitude source 
are in the region of 0.015° for the best available instruments. For earth-orbiting sat
ellites, the earth and sun sensors are two complementary items that together enable 
determination of the complete three-axis attitude of the satellite. 

For very high attitude accuracies, it is mandatory to use the most accurate atti
tude sources - the stars. Accuracies in the sub-arc-second range are possible, albeit 
with instrumentation that is quite complicated and not always reliable. 

B.2 Infrared Earth Sensors 

The goal of the infrared earth sensor (IRES) is to determine the spacecraft 
orientation relative to the earth. This sensor operates in one of two principal modes. 
The first is based on dynamic crossing of the earth's horizon and exact determination 
of the crossing points; the second mode is based on static determination of the loca
tion of the earth's contour inside the instrument's field of view. Both kinds of sensors 
will be briefly explained and compared. 

B.2.1 Spectral Distribution and Oblateness 0/ the Earth 

In principle, instruments could be based on the earth albedo, which is the 
fraction of reflected radiation from the globe due to all incident energy that falls on 
its surface. Most of the albedo's energy is in the visual region of the spectrum. Atti
tude sensors based on the albedo are sometimes used, but they are neither very accu
rate nor effective because there exists a strong variation in albedo for different re
fracting surfaces. For instance, the fraction of radiation reflected back into space 
is very low for some vegetation-covered areas, of the order of 0.06, whereas the re
flected ratio for snow-covered surfaces can be as high as O.S. We must also define 
the terminator - that is, the boundary between day and night on the earth (or any 
planet). For the albedo, the terminator is not sharply defined; hence we cannot expect 
to trigger on a well-defined boundary of the horizon, which is the principal require
ment for accurate and effective attitude sensing. 

The appearance of the earth in the infrared (IR) range is much better for attitude 
sensing. This is because the energy within that spectrum emitted from all parts of the 
earth's surface is much more homogeneous, and defines more sharply the profile of 
the globe (in other words, its horizon). 

The infrared radiation from the earth is the total thermal radiation from both the 
surface and the atmosphere. The intensity variations are much smaller than those of 
the visual albedo. The emitted infrared radiation has a spectral energy distribution 
that is affected by the temperature of the earth's surface and also by the atmosphere's 
chemical composition. An approximate spectral distribution of thermal emission 
from the earth is shown in Figure B.2.1 (overleaf). 

In the figure, strong absorption bands are detected that are due to ozone (03) and 
carbon dioxide (C02), In fact, in this spectral range, the re-emitted radiated energy 
is due to the atmosphere above the earth's surface. In the 14.0-16.3 I'm (C02 ) spec
trum the earth is seen as having a uniform distribution, so this is the most suitable 
spectral range for attitude determination. Most IR earth sensors use this spectrum 
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Figure B.2.1 Spectral distribution of thermal emission from 
the earth; adapted from Lyle, Leach, and Shubin (1971). 

for sensing the horizon of the earth; for this reason, earth sensors are often called 
horizon sensors. Because the CO2 layer is part of the atmosphere extending to an 
altitude of several tens of kilometers, the sharpness of horizon detection is not abso
lute. This disadvantage will be discussed in more detail later. 

Another important feature related to satellite attitude determination is the earth's 
oblateness. There are many complex "surface models" used to represent the earth's 
geometrical shape. In the literature, a relatively simple model is used for purposes of 
attitude determination. The earth globe is modeled as an ellipsoid (Muller and Jap
pel 1977); the earth is an ellipsoid rotating about its minor axis, which models the 
flattening of the globe at the poles. If Re = 6,378.14 km is the earth's mean equatorial 
radius and Rp = 6,356.75 km is its polar radius, then the flattening is defined as f = 
(Re - Rp)/ Re = 0.00335281. 

A simple expression for computing the radius of the earth at different latitudes ,\ 
is used in connection with IR sensors that trigger on the atmosphere layer boundary: 

R = Re[1-f sin2
(,\) + k sin('\)] + h, (B.2.1) 

where f is the previously defined flatness factor, h is the altitude of the atmosphere, 
and k is the parametric latitudinal variation of the height of the atmosphere, due to 
various causes. 

B.2.2 Horizon-Crossing Sensors 

An infrared horizon-crossing earth sensor (lRHCES) consists of four essen
tial components: a scanning mechanism, an optical system, a radiance detector, and 
a signal processing system. Together, the first three are usually called the optical sen
sor head. The signal processing system is part of the electronic box, which also in
cludes the different power supplies necessary to operate the optical head. The basic 
principle of a single-scan sensor head is shown in Figures B.2.2 and B.2.3 . 

Optical System and Scanning Mechanism 
The optical system consists of a filter that limits the observed spectral band 

to the CO2 range of 14-16 ",m, together with a lens that focuses the earth image on 
the radiance detector, the bolometer. Different scanning mechanisms are based on 
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Optical filter 

Figure B.l.l Single-scan horizon sensor principle; adapted from 
ITHACO (1983) by permission of ITHACO Space Systems. 
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various principles. For example, some instruments are based on a rotating wedge
shaped prism in front of the lens, as in Figure B.2.2. The image is deflected by ." 
degrees before falling on the bolometer. 

The rotating prism scans a ring of the space, and when the field of view crosses the 
earth, the radiance detector senses its presence (Figure B.2.3). The scanning angle." 
is optimized according to the geometrical parameters of the system, such as the 
altitude of the spacecraft and its maximum expected deviation from the nadir direc
tion (the nadir is the vector connecting the satellite em with the earth cm). With a 
single scanning arrangement, the altitude of the satellite must be known exactly in 
order to determine both roll and pitch deviations in the reference frame. (With the 
dual scanning arrangement of Figure B.2.4, knowledge of the altitude is not neces
sary; moreover, with this arrangement the altitude can be calculated as a ~yproduct.) 
The arrangement in Figure B.2.2 is used by ITHACO Space Systems for their conical 
earth sensor (model no. IPS-6), used in numerous satellites such as LANDSAT D, 
P80-I, and P78-2 (see ITHACO 1983). 

The computation of the roll and yaw Euler angles for small deviations from the 
nadir is very simple. Figure B.2.3 shows the principle of operation of a single-cone 

a. 

t 
e. 

t 
t 

Scan path on Earth 

6 , f 62 

: '\ Vertical reference , 

dRJ+-, ~ , 

ill 

Toll = E -Eo=, 
pitch =H 1- H 2= 9 

b. 

Figure B.l.3 Determination of the roll and pitch attitudes with a single cone; 
adapted from ITHACO (1983) by permission of ITHACO Space Systems. 
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arrangement. In Figure B.2.3.a are shown the satellite's XB and YB axes; the YB axis 
is also the axis of rotation of the optical rotating mechanism. The scan cone and its 
scan path on the earth's surface are also shown. In Figure B.2.3.b, a vertical reference 
is fixed to the conical optical head. An angular optical encoder in the optical head 
measures the phase angle between the conical beam horizon crossings and the vertical 
reference inside the head. With the geometrical definitions in Figure B.2.3.b, the ver
tical reference is necessary for determining the pitch attitude. In the ES signal pro
cessing, the phase angles of the horizon crossing with respect to the vertical reference 
are labeled 01 and 02. The first horizon crossing is at point 1, going into the earth at
mosphere. The second horizon crossing, at point 2, is going out of the atmosphere. 
The phase angle difference E between points 1 and 2 is shown in Figure B.2.3.c. This 
difference is directly proportional to the roll angle. The value of E = 02 - 01 depends 
on the satellite's altitude, and also on the deflection angle 'TI shown in Figure B.2.2. 
Consequently, a normalizing function Eo is necessary in order to determine the roll 
angle from the phase difference E. Finally, 

02- 01 
roll = c/J = ---c;- - Eo, (B.2.2) 

where C I and Eo are parameters, the latter depending on the altitude of the satellite. 
With no pitch orientation, the two horizon crossings are symmetrically positioned 

around the vertical optical reference fixed in the optical scanner head. However, with 
existing pitch inclination the pitch angle is proportional to the difference between 
HI and H 2 • Given 01 and 02 (phase angles measured with respect to the vertical refer
ence of the optical head), we have 

. h 8 -(02+ 01) 90o +C3 C 
PItc = = 2C

2 
+ C

2 
+ rc/J, (B.2.3) 

where C2 , C3, and Cr are constants. It is important to mention that, for large roll 
deviations, the pitch angle depends on the roll orientation. 

Some comments related to the geometry of Figure B.2.3 are now necessary. 
(1) The pitch and roll angles that the conical ES can measure are limited. As long 

as the crossing points 1 and 2 in Figure B.2.3.b are located in the right half of the 
earth's contour as seen from the satellite, there should be no ambiguity in the com
putation of the roll angle. However, if the satellite's inclination about the XB axis 
brings points 1 and 2 to l' and 2' on the left half of the globe, then the roll angle will 
not be defined correctly. With the same geometrical arrangement as in Figure B.2.3, 
a much larger pitch angle can be measured. Theoretically, with no roll orientation, 
the satellite can turn about its YB axis without any restriction while still keeping the 
horizon crossings at points 1 and 2. The pitch angle can be calculated without ambi
guity with the aid of the vertical reference of the optical head. With a finite roll orien
tation, the pitch attitude that can be measured will naturally be limited. For a given 
satellite altitude, the defined operational pitch-roll range can be optimized via the 
scanning cone angle 'TI. 

(2) The scan field of view is optimized according to two principal arguments. A 
wider field of view collects more energy, thus increasing the signal-to-noise ratio of 
the complete IRES assembly. On the other hand, increasing the field of view decreases 
the sharpness with which the horizon crossing is defined. Fields of view of the order 
of 1 x 1 to 2 x 2 [deg] are commonly used. 
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Instantaneous 

Figure 8.2.4 Dual-beam scanning horizon sensor; adapted 
from Gontin and Ward (1987) by permission of AIAA. 
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(3) The optical head can be tilted about the body axes for different operational 
needs - for instance, in order to achieve a desired angular range for attitude deter
mination. With appropriate geometrical positioning within the satellite body, the 
same optical head can be used at different altitudes - for example, in the transfer 
orbit stage as well as the final mission orbit. 

An arrangement using two scanning paths, as in Figure B.2.4, allows determina
tion of the roll angle with no dependence on the satellite's altitude (see Gontin and 
Ward 1987). By use of two back-to-back single-cone IR earth sensors, four horizon 
crossings can be obtained. With the two scan paths (labeled A and B in Figure B.2.4), 
the attitude determination is independent of altitude information: 

11
-..1. _ (~2-~1)-(~4-~3) 

ro -'1'- , 
4C1 

(B.2.4) 

(B.2.S) 

where ~3 and ~4 are defined for the second scan path as in Figure B.2.3. Equations 
B.2.2-B.2.S hold only for small deviations of the roll and pitch angles from null. 
For larger deviations in roll and pitch, the equations must incorporate correcting 
factors that depend on the altitude and attitude of the satellite . 

This configuration, with two back-to-back identical single scanning horizon sen
sors, has been implemented in numerous satellites. The drawback of such an arrange
ment is that two complete horizon sensor assemblies are required, increasing the cost 
of the attitude determination system. To overcome this deficiency, dual-cone optical 
heads have been designed: the same optical head provides two independent scanning 
cones, thus achieving the dual-paths arrangement of Figure B.2.4 with only one op
tical head. 

The dual-cone optical head uses two fixed mirrors, which view two different but 
complementary halves of the earth surface. A rotating mirror scans both fixed mir
rors, .thus producing the two scanning paths of Figure B.2.4. Such an arrangement 
is incorporated in the IR earth sensors produced by SODERN - STD 15 (SODERN 
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Radiance 
from Earth 

Figure B.2.5 Dual-scan, half-cone design (STD 12); adapted 
from Desvignes et al. (1985) by permission of SPIE. 

Figure B.2.6 The Barnes dual-cone scanner principle; 
adapted from Bednarek (1992) by permission of SPIE. 

1991a) and STD 16 (SODERN 1991b; see also Pochard 1992), A simplified portrayal 
of their predecessor, the STE 12 dual-scan optical head, is shown in Figure B.2.5. 
Another variation of a dual-cone scanner is produced by the Barnes Engineering Di
vision of EDO; the principle of operation is shown in Figure B.2.6. See also Tai and 
Barnes (1989). 

The dual-beam horizon sensor of Figure B.2.4 achieves more accurate attitude 
determination than the single-beam arrangement of Figure B.2.3. The principal dis
advantage is that the angular determination range might be significantly decreased. 
When the sic changes its roll attitude, for certain orientations only one of the scan
ning paths crosses the horizon, while the second path no longer sees the globe. In this 
case it is common to continue the attitude determination with only one crossing path 
(and with decreased accuracy). 

In fact, direct calculation using Eqs. B.2.2-B.2.5 is not in itself sufficient to achieve 
a good attitude determination. We must also make corrections for the physical effects 
mentioned in Section B.2.1, such as the finite equivalent altitude of the atmosphere 
and its stability with respect to the CO2 layer, the oblateness of the earth globe, sea
sonal and geographical earth radiance variations in IR emission, motor-speed varia
ations of the scanning mechanism, the FOV/horizon-crossing angle, and so forth. 

According to Figure B.2.4, there are four vector orientations from the ES to the 
horizon-crossing locations, at points 1, 2, 3, and 4. From a mathematical point of 
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view, three crossings are sufficient to compute the desired pitch and roll angles. This 
makes the dual-beam principle attractive given the danger of contamination of the 
crossing edge by the light of a third body, such as the sun or the moon. By using 
ephemeris data it is possible to predict when the sun or the moon would interfere 
with one of the scan beams. In this case, data from one of the horizon crossings is 
disregarded and the attitude determination is calculated on the basis of the three 
measurements not contaminated by the light of the third body. 

The most delicate stage in attitude derivation using IR horizon sensors is the exact 
location of the horizon. The horizon is not a sharp boundary, owing to the existence 
of an atmosphere whose equivalent height is finite and whose composition includes 
different gas layers of various emission wavelengths. The emitted IR energy is de
pendent on such factors as the seasons, the geographical location on the earth globe, 
and momentary cloud conditions. Hence, with any technique used to locate the hori
zon, there exists a specific noise component in determining the horizon crossings. 
The level of this noise is an important factor when classifying the quality of the entire 
IR horizon sensor assembly. Irregularities of the IR horizon of the earth, together 
with the earth's oblateness, are responsible for what is known in the technical litera
ture as bias attitude error. Part of the bias errors can be estimated, and the resulting 
values can be used to correct the attitude. On the other hand, the electronic process
ing of the individual horizon crossing data is reponsible for statistical random e"ors, 
~xpressed in degrees RMS. 

Determining the Horizon Crossing 
There are two basic techniques for electronically locating crossings of the 

horizon. In the first technique, energy collected by the bolometer is integrated when 
the field of view of the optical cone path approaches the earth's atmosphere. A pre
determined value of the integrated radiance serves as a locator for the horizon cross
ing; see Wertz (1978). Alternatively, optical location of the horizon crossing can be 
based on doubly differentiating the collected radiance energy. This is a very efficient 
way to locate the horizon; see Fallon and Selby (1990). Formulas for computing pitch 
and roll from a dual-cone scanner can be found in Tai and Barnes (1989) and Bed
narek (1992). 

Horizon-Crossing Algorithm 
An outline of the algorithm used by an horizon-crossing IRES is as follows. 

(1) Motor-speed co"ection - Using motor-speed measurements provided by 
the instrument electronics, errors due to motor speed are removed. 

(2) Association of horizon crossing to the pertinent scan cone - If a dual-scan 
mechanism is used, the horizon crossing must be associated to the correct 
cone. 

(3) Co"ection for sensor phase alignment - The nominal alignment offset of 
each scan cone relative to the motor phase reference is subtracted from the 
raw horizon-edge measurement. 

(4) Initial assumption of satellite attitude - Estimation of initial sic attitude is 
necessary to correct for field-of-view I horizon-crossing angle and for other 
effects that depend on the geographic location of the horizon-crossing edge. 

~ I 
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(5) 

(6) 

(7) 

(8) 
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Correction for earth's oblateness - The horizon-crossing edge is corrected 
when the earth radius at the horizon crossing edge is not equal to the earth 
radius at the equator. 
FOV/horizon correction - The incident angle of the FOV (field of view) 
crossing the horizon affects the accuracy of the edge measurement, and the 
relevant error can be compensated . 
Attitude calculation - This is performed according to the special formulas 
used for the relevant IRES assembly. 
Correction for variance in earth radiation - The earth radiance depends 
on the geographical location of the crossing edge and also on the season. 
The correction is performed periodically according to existing atmospheric 
models. 

(9) The satellite yaw attitude has an impact on the roll-pitch calculation. 

Step (7) deserves special attention, since it is the heart of the entire algorithm. 

Attitude Calculation 
The roll and pitch angles are first calculated in the optical sensor head. There 

are four vectors connecting the center of the sensor to the earth horizon-crossing 
edges 1-4 in Figure B.2.4. In fact, only three are necessary for computing the roll 
and pitch angles q, and 8; the fourth crossing is redundant data that can nonetheless 
increase the attitude determination accuracy. If only two earth crossings are avail
able, knowledge of the sic altitude is necessary in order to calculate its attitude. 

We assume for this algebraic analysis that the Euler roll and pitch orientations are 
to be derived. Since the attitude transformation between the axes of the satellite's 
body frame and the axes of the sensor's frame is known by definition, the compo
nents of the nadir vector in body axes are easily calculated using one of the transfor
mations presented in Appendix A. The definition of the sensor axes is shown in Fig
ure B.2.7.a. In this figure, ." is half the cone angle of the earth sensor, whose optical 
axis is Ys ; 6 is the phase angle of the sensor's conical field of view with respect to the 
optical vertical reference; and 61 and 62 are the phase angles of the horizon-crossing 
points 1 and 2 with respect to the optical vertical reference line. 

z. 

a. 

Vertical 
reference 

Earth? 
circle 

b. 

x. 

+- Center 
of Earth 

Figure B.2.7 Geometry of scanning, and definition of 
the horizon-crossing vectors in the sensor's axis frame. 
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In Figure B.2.7.b, VI and V2 are the two vectors joining the center of the sensor 
with the two horizon-crossing points. The horizon plane is the plane containing the 
two crossing points 1 and 2; it is perpendicular to the line joining the center of the 
earth with the center of the sensor. This plane intersects the globe in a circle - called 
the earth circle - that contains aU the horizon crossing points; a third and fourth 
crossing (if a second conical FOV is used) will also lie on this circle. In this case we 
would also have vectors V3 and V4 (not shown in the figure). The angle p between 
each of the four vectors and the nadir vector is half the angle by which the earth is 
seen from the satellite at altitude h. This angle is easily computed from the relation 

p = sin-I(Re+Heq)/(Re+h), (B.2.6) 

where Re is the radius of the earth, h the altitude of the satellite, and Heq the equiva
lent height of IR radiation above the earth surface (-40 km). 

In the reference frame, VI can be expressed as 

VI = -sin(p) sin(t3)Xr +sin(p)cos(t3)Yr+cos(p)Zn (B.2.7) 

where the subscript "rn denotes "reference" (see Figure B.2.7.b). 
Next we consider the equation of the conical path in the sensor frame. In Figure 

B.2.7.a, S is a unit vector representing a momentary direction of the sensor's field 
of view: 

S = sin(6) sin(71)Xs + COS(71)Ys+ cos(6) sin(71)Zs' (B.2.8) 

The vector S is expressed in the sensor axis frame. In order to express it in the refer
ence frame we must perform two transformations, about the pitch (0) and the roll 
(q,) angular orientations: 

[

COS(-O) 0 -Sin(-O)][l 0 0 ][Sin(71)Sin(6)] 
Sr = 0 1 0 0 cos(-q,) sin(-q,) COS(71) . 

sin(-O) 0 cos(-8) 0 -sin(-q,) cos(-q,) sin(71)cos(6) 

(B.2.9) 

With two conical paths we can have four horizon crossings, from which we can 
calculate four vectors V; and four vectors S; (which must be equal in the reference 
frame). If we perform the two vector products then we can find the components of 
St. Only the Z component is important to use because, together with Eq. B.2.7, we 
find that 

SrZ; = -sin(71) sin(6t) sin(O)+coS(71) sin(q,) cos(O) 

+ sin(71) cos(6t) cos(q,) cos(O) = cos(p). (B.2.1O) 

If the altitude is known, cos(p) can be calculated from Eq. B.2.6. Next, we need two 
equations to solve for the desired orientations 0 and q" which means that one conical 
path is sufficient. If the altitude of the satellite is unknown, we need three equations 
to solve for q, and O. 

In our analysis we have used an algebraic approach. Alternatively, the four poten
tial vectors V; could be calculated in terms of 6;, with no reference to 8 and q,; see Tai 
and Barnes (1989). The components of the nadir vector in the sensor frame are di
rectly calculated, from which the roll and pitch orientations can be extracted. See 
also Hablani (1993). 
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The Infrared Earth Sensor STD 15 is devoted to the 
attitude measurement of three axis stabilized 
spacecrafts in geostatioruuy orbi~. 

Its main characteristics are its light weight and its 
low power consumption in operation. In addition, it 
includes new high reliability technologies. 

DESIGN CONCEPT ----------------------------------------------
The Infrared Horizon Sensor SID 15 measures the 
transitions (leading and trailing edges) of the Earth 
with two traces in normal mode. The four transitions 
which are detected allow to restitute the attitude 
deviation of a three axis stabilized spacecraft either 
with respect to the geocentric direction or a prede
fmed direction whatever the spacecraft altitude is; 
this latter one is not mandatory to determine these 
deviations. 

The alignment deviations are unambigously deliv
ered in both roll and pitch axes. When this concept 
is used two sensors are generally necessary to get 
these informations. This design IS one of the main 
advantages of the infrared Earth Sensor SID 15 
when large depointings are envisaged. 

The half cone an~e of the useful optical path is 
about 84° the axIS of which is onented in the 
opposite directions to the Earth 'center (at nil 
depointing). This primary scanning cone is 
intercepted by two flat mirrors symetrically placed 
at 45° to its axis and are part oftlie sensor structure. 

The images of the primary cone throu,gh the two 
fixed mirrors are two half cones the axiS of which 
are perpendicular to ·the primary cone axis. 

The Earth sensor is placed on the satellite such as 
the half cone axes are perpendicular to the orbit 
plane. The plane defined by the half cone axes and 
the primary cone axis are peIJlC:ndicular to the orbit 
plane and includes the Straight line between the 
satellite and the Earth center at nil depointing. On 
fi,gure 2 are represented the two traces on the Earth 
disc. 

An optical encoder linked to the scanning mecha
nism measures digitally the angle between the 
Earth path and a reference determmed with!e&pecl 
to the reference axes of the satellite. This reference 
is part of the encoder. 

The transition of the trailing and leading edges are. 
detected and their positions are defined oy CPI and IP2 
for one half cone, '1'3 and CPA for the other one. 
The sateUiteorientabon is deffued by the following 
equations: 

• X deviation (pitch) (IP3 + CP4) ~ (CPI + IP:Z> + constant 

• Y deviation (roll) = (IP4 - CP3) - (IPz - 'PI) 
4 x constanl 

Figure B.2.8 SODERN's STD IS IR horizon-crossing earth sensor; 
reproduced by permission of SODERN. 

Scanning Rate 
The scanning rate of horizon-crossing sensors is important in the design 

stage of the attitude control loops. It is well known that the maximum gain band
width obtainable in a sampled feedback control loop is constrained by the sampling 
rate of the control processor (Sidi 1980). Hence, a high scanning rate is always pref-
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MAIN CHARACTERISTICS 

FUNCTIONAL CHARACTERISTICS 

Instantaneous field 
of view : 1.8 x 1.8 arc degree 

Altitude range 

- With 4 transitions 
- Usable up to 

: 20000-45 000 Ian 
: 125000km 

Operational field of view 

- Acquisition 
· Roll : +14.5 arc degrees (Pitch = 0) 
· Pitch: +12.5 arc degrees (Roll = 0) 

- 15 arc degrees (Roll = 0) 

- Nanna! Mode 
· Roll : ±1.5° arc degree 
· Pitch: ±100 arc degrees 

- Transfer orbit mode (starting at 20.000 Ian) 
· Roll : ±6 arc degrees 
· Pitch: ±6 arc degrees 

ACCURACY 

Errors Normal Mode Station 
]I lit' 4 baDSitions Keeping mode 

Arc.degree (j)= 1.25 rps (j)oSrps 

ConstimtIO 10 

Periodical: 

• 'IbennaI (30"-6QOC) 5 S 

• Seasonal Radiance 
Variations 10 10 

• Random Radiance 
Variations 3 4 

Ageing 9 19 

• Noise (I meas) 
(1 std - 3O"C) 5 15 

Figure B.l.S (continued) 

ENVIRONMENTAL C~ARACTERISTICS 

- Functional temperature range: _25° +55°C 

- Storage : -40" +6I)°C 

- Vibrations: 
random (20 - 2000 Hz) 

MECHANICAL INTERFACES 

- Dimensions: 
. length 
. width 
. height 

- Weight 

: 
: 
: 

: 

20gnns 

206.5 nun 
206.5mm 
168.0 nun 

3.4 kg 

- Fixing interface: 4 holes, diameter 4.4 nun 

ELECTRICAL INTERFACES 

- Power consumption (typical value): 7.5 W 

- Power supply range: 22 -50 Volts 

The output data of the sensor correspond to the 
four transitions Earth-space and Spac;e-Earth. 
The angulardeviations in bothroll anCi pitch axes 
with respect to the Geocentric axis may be gen
erated at sensor level upon request. 

RELIABILITY (MIL HDBK 217E) 

(For 0 = 30°C) 
~ = 945 - 10-9 hoI 

LIFETIME (in geostationary orbit) 

15 years 

erable, as long as the accuracy of the horizon sensor will not be compromised. Scan
ning rates from 1 to 8 revolutions per second are common in today's horizon sensors. 
Overall accuracies of better than 0.1° (for low orbits) and 0.02° (for geosynchronous 
orbits) have been achieved in numerous applications. Statistical errors of the order 
of 0.03°-0.1° (30) are common in today's IR horizon sensor assemblies. 

B.2.3 IRHCES Specifications 

One of the tasks of Appendix B is to give the reader a general idea of the 
problems encountered in using hardware such as an IRES based on horizon cross
ings. In addition to fundamental characteristics pertaining to the hardware's principal 
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The STD 16 Infrared horizon-scanning sensor is de
signed for attitude control, with respect to the Earth, of 
three-axis stabilized satellites In low Earth orbits (SOD to 
1200 km). The operating accuracy is better than 0.1° 
(3 stand dev.) 

This type of sensor could also be used for any elUptic 
orbits. 

This Infrared Earth sensor is derived from the model 
STD 12 which flew successfully on board the SPOT 1, 2, 
3 and ERS 1 and 2 satellites. In particular, the rotating 
mirror technology, based on dry lubricated bearings, has 
been retained. 

OPERATING PRINCIPLE -----------..., 

The figure opposite shows the satellite at a given point (0) on 
its orbit around the Earth {Obeing the origin of the onhogonal 
spacecraft body axes OXYZ). 
The SID 16 pencil beam is 2° x 2°. The radiation in the 
14-161JI11 band is selected. 
The sensor scans mechanically using a rotating mirror in
clined at 60° to the detector-telescope axis. The locus of the 
scan beam thus formed is a cone with a half-angle of 60" and 
its axis parallel to the satellite - OZ axis (the Earth center 
direction). Two plane mirrors canted at 45° transfonn this 
scanning cone into two balf-cones intercepting the Earth's 
surface. The axes of the two balf-cones are parallel to OX 
and - OX respectively (and petpendicu1ar to OZ). The balf
angles of the scanning balf-cones are still 60" (i,e a = 60"). 
The heavy lines in the figure (labelled trace I and trace 2) 
represent the intersection of the two scanning beams with the 
Earth's surface. 

zA 
VIEW FROM RIGHT I , 

-xi 
- I VIEW FROM ABOVE 

The detector senses the transitions between the infrared radiance of the Earth and that of 
space, so the instrument measures the angles 0J.' O2, 0'1 and 0~ at which the scanning 
beam is tangential to the Earth. These angles are aetecled Dy the III1ITOTshaft angle encoder 
relative to the satellite reference system (which here is assumed to be identical to the 
sensor reference system), 

!V 

The satellite misalignment around OX is given by {01+ 0.>12 or {0'1 + 0' )12, or both; 
while the around misalignment about OY is a function of (0'1 + 0'2) I (~t+ ~Z).: The 
geometry of the sensor has been optimized for orbital altitudes in the range oou-IA1I1 Ian. 

FUNCTIONAL DESCRIPTION 
The optical head consists essentially of a rotating mirror, 
an Infrared telescope and two Inclined mirrors. 

The rotating mirror, made of optically flat machined 
aluminium, Is located In front of the Infrared telescope 
and rotates about the telescope axis at 60 r.p.m. it is 
driven bya brushless dc motor mounted on dry-lubricated 
bearings, The telescope consists of a germanium 
objective lens (focal length : 25 mm, diameter: 20 mm), 
associated with a 14-16 j1IT1 band pass filter, and a 
germanium-Immersed bolometer. 

Both the objective lens and the bolometer immersion 
lens are coated for minimum reflection losses al15 Jl.In. 
Thetwopianelncllned mirrors are mounted symmetrically 
on either side of the telescope axis. 

The bolometer bias voltage has been chosen so as to 
maximize the responsivlty In the - 20 to + 45°C 
temperature range. 
After amplification and processing, the tour angular data 
corresponding to the space-Earth and Earth-space 
transition angles relative to the X-axis are available as 
12-bit words from two power C-MOS registers which are 
available every second for the spacecraft on- board 
computer, The amplification and processing circuits 
have been designed for minimal noise, An automatic 
threshold eUminates practically the Influence of local 
variations In the Infrared radJance of the Earth. Other 
electronic functions performed include : mirror position 
readout, motor control, and elecIronic protection against 
infrared Interference from either the Sun or satellite 
structure. 

Figure B.2.9 SODERN's STD 16 IR horizon-crossing earth sensor; 
reproduced by permission of SODERN, 
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MAIN CHARACTERISTICS ----------. 
FIeld 
• Instantaneous field of view : 2" x 2" 

• Scanning: - rotating mirror speed : 60 r.p.m. 
- cone half-angle : a = 60° 
- useful angular extension : 152" (about OY) 

Accuracy (about OX and OY) 
• Noise equivalent misalignment : 0.015° for 1 standard deviation, for Earth radiance between 0.8 and 

3.8 W.m:2-sr·'IIfTI·' at 1511fT1 band for an Earth viewing angle up to 135°. 
• Deterministic errors: In order to reduce considerably such errors corrective terms can be calculated on board 

and applied to the sensor reponse, (more Information upon request). 

Outputs 
• 0,and °2, !p'l, !p'2 : 16 bits word and 1 status word for each transition angle about the X-axis, with reference 

to + XOV plane. 
• Analog outputs for telemetry : 

- 4 Earth radiance 
- bolometer temperature 
- motor drive current 

Inputs 
• 262 kHz clock frequency (for output data) 
• Inhibition gating signals 

- MoonlSun and Satellite structure Interference: upon ground command (2 l6-blt word) 

Operating temperature 
From - 20"C to + 50° C 
Storage temperature 
From -4Q°C to +65°C 

Power supply 
22VtoSOV 

Power consumption 
typical: 7.5 W 
end of life: 9.0 W 

Figure 8.2.9 (continued) 

Vibration acceleration levels 
Sinusoidal : max. amplitude of 15 g In the range 

from 24 to 100 Hz 
Random : max. ampl[tude of 12.4 g (r.m.s. 

Ufetlme 

value) In the range from 20 to 
2000 Hz. 

More than 5 years (low orbit) 

Weight 
3.7 Kg 

moshaver10
Text Box
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The Barnes Dual Cone Scanner (DCS) is a 
straightforward modification to the single cone 
scanning Earth sensor which provides substan
tially enhanced performance with minimal in
crease in hardware weight and cost. By 
substituting a mission-specific optical module, 
the scannersfield-of-view Is split into two halves, 
180 degrees out of phase and at two distinct, 
selectable cone angles. Thus, a single DCS 
provides the data equivalent of two concentric 
Single cone scanners. The DCS outputs define 
spacecraft altitude Independently of any external 
reference and provide high accuracy pitch and 
roil data even when the Sun is directly on the 
horizon. 

., 
I 
I 
\ 
\ 

,- - ---
., 

The Barnes Dual Cone Scanner pruvides error· free, allilude 
independent attitude data from a single sensor even with the 
Sun on ,he Earth's horizon. 

B / Attitude Determination Hardware 

Cone Angles: Set to meet mission needs 
20 to 90 degrees 

Detector: Pyroelectric 

Accuracy: :t 0.07 degrees (3 sigma) 

Scan rate: 120 rpm 

Welght/Power: 10 Pounds, 10 Watts 

Reliability: 

1 Year 
3 Years 
5 Years 

10 Years 

1 Scanner 

0.99+ 
0.97+ 
0.95+ 
0.90+ 

2 Scanners* 

0.999+ 
0.999+ 
0.997+ 
0.991+ 

'Both operating. RBIlabIJIly computed aa:onflng to MIL·HOBK 217E. 

Figure B.2.10 Barnes Engineering dual-cone scanner (model no. 13-335); 
reproduced by permission of EDO Corp. 

task of accurate measurement, there exist such prosaic technical characteristics as 
its weight, dimensions, power consumption, and so on. It is not the purpose of this 
section to make comparisons between various commercial IRES assemblies; the tech
nical characteristics cited here are for illustrative and reference purposes only. 

SOOERN's STO 15 is designed for attitude measurement of three-axis-stabilized 
sic in geostationary orbits. It can be used in three principal modes: "acquisition" 
mode, "normal" mode, and "transfer orbit" mode. The technical specifications of 
STO 15 are summarized in Figure B.2.8 (pp. 338-9). SOOERN's STO 16 IRHCES 
is optimized for low orbits (500-1,200 km); its technical specifications and data are 
given in Figure B.2.9 (pp. 340-1). 

An example of a dual-cone scanner (model no. 13-335) produced by Barnes En
gineering (EDO Corp.) is given in Figure B.2.10. Table B.2.1 (page 344) provides 
basic performance specifications for a 45° half-cone conical earth sensor produced 
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Dual Cone Scanner Configuration Options 

The 30/65 DeS Is applicable to low and moder
ate altitude orbits at any Inclination and eccen
tricity. The geometrical gains and altitude accu
racies are substantially better than can be 
achieved with two 45 degree Single cone scan
ners. As shown at right, two 30/65 DCS sensors 
provide exceptional coverage of the Earth for 
high accuracy applications. 

In applications where the fields-of-view can clear 
spacecraft obstructions, a single 45/90 DeS 
(shown below) provides all of the advantages of 
both 45 degree and 90 degree conical scanners 
in a single sensor. Independent knowledge of 
spacecraft altitude Is not required to precisely 
determine spacecraft attitude. This makes the 
DeS ideal for applications in which a single 
sensor must provide fully autonomous attitude 
data. 

A wide variety of other DeS configurations are 
available to meet specific mission requirements. 

Global Coverage Plot 
Two 30/65 DCS Sensors 

Mechanical Configuration of 45/90 DCS Sensor 

~ro-electrlc detector (j""' .~. 45' Scan Cone 

... 
-J--6--
\ 

... f 

""-I I ld- 90" Scan Cone 

A single 45/90 Dual Cone ScfDlller provides the same tUtilude determination dtUa as two independent scanning sensors and 
elimintUes inter-sensor mounting angle bioses and Sun interference. 

Figure B.l.]O (continued) 
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by EDO and used in an 880-km sun-synchronous orbit. The spin axis is normal to 
the orbit plane, and earth horizon data is generated at 4 Hz. 

B.2.4 Static Sensors 

The layout of an infrared static earth sensor (lRSES) is shown in Figure 
B.2.11 (overleaf). The optical part of the sensor head projects the earth contour onto 
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Table B.2.1 Conical earth sensor performance summary 
(adapted from Bednarek 1992 by permission of SPIE) 

Parameter Numerical Date 

Attitude Accuracy ( 3 sigma): 
Earth Radiance Errors (pitch/roll): < 0.12%.06" 
Alignment Error: 0.014" 
Noise Equivalent Angle (pitch/roll) 0.07"/0.06° 

Altitude Accuracy (3 sigma): 680m 

SunlMoon-on-Horizon Errors: +/- 0.1" 

Maximum Maneuvering Range: 
Pitch: +/- 180" 
Roll: - 30° to + 45" 

Spectral Band: 14-16 J.UII 

Instantaneous Field of View: 2.5" circular 

Total Weight: 4.85Ibs. 

Total Power: 4 watts 

a. b. 

Figure B.2.11 Field configuration of static infrared earth sensor. 

a number of radiance detectors (four in the case of Figure B.2.Il.a). Similarly to the 
optical head of an IRHCES, the static ES head consists of a bandpass optical filter 
in the 14-161Lm (approximately) wavelength band and a focusing lens that projects 
the earth image onto thermopile surfaces. The earth's disc image is surrounded by 
thermopiles with uniform temperature sensitivity. In Figure B.2.Il.a, De is the infra
red earth diameter at the specific altitude of the satellite and Dt is the diameter of the 
circle tangent to the inner side of the thermopile sensitive areas. When the geomet
rically opposed thermopiles are connected in opposition, the response function near 
the zero has a constant slope in the range from -R to +R, where 

R = (De - Dt )12. (B.2.11) 

The null error due to the earth's lack of uniform radiance is 

(B.2.12) 

where L j (L k ) is the average earth radiance in areas common to thejth (kth) thermo
piles and the earth. Thus, it is important to minimize the linear field extension 2R in 
order to minimize the null error due to lack of uniformity in the earth's radiance (see 
Desvignes et al. 1985). The seasonal changes in infrared radiance are a factor that 
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must be taken into consideration, even to the extent of relocating the thermopiles in 
the optical head. 

To increase the reliability of the IRSES, a double set of thermopiles can be used 
as (for example) in SODERN's STA 03 earth sensor; see Figure B.2.ll.b. In the fig
ure, the shaded thermopiles are the second set, to be used in case the first set shows 
some irregularity in its functioning. For more information, the reader is referred to 
the technical brochure (SODERN 1977), part of which appears in Figure B.2.12 (pp. 
346-7). 

Static IR earth sensors are inherently more reliable than horizon-crossing sensors, 
because no moving parts are used. However, the attitude ranges covered by the in
strument are very restricted (a few degrees only) and the linear range might be even 
smaller (about 0.5°). The total RMS error is typically about 0.03°. The primary defi
ciency of the static horizon sensor is the very low altitude range (about nominal) in 
which it can function, so all static sensors are optimized to a specific operational alti
tude. A static ES cannot be used in both the transfer orbit and the final operational 
orbit, although sometimes they are used in combination with a less accurate HCES 
during the transfer orbit stage. 

B.3 Sun Sensors 

B.3.1 Introduction 

It is difficult to identify a spacecraft in which sun sensors are not used for 
attitude determination. The sun has two very important qualities: (1) its luminosity, 
which remains unaffected by any other bright planet or star; and (2) the smallness of 
its angular radius (0.267° at 1 AU) compared to the earth globe. This radius is nearly 
constant for any satellite orbiting the earth. 

The applications for sun sensors are numerous, and various types of solar instru
mentation have been developed during the last three decades. There are two princi
pal kinds of sun sensors, analog and digital. Digital sensors are more accurate and 
versatile, but also more expensive. Analog sun sensors can provide sufficient accu
racy for many specific tasks. There are also sun presence sensors, which merely indi
cate if the sun is present in the FOV. For all three types there is a wide variety· of 
implementations, some of which will be explained in this section. 

8.3.2 Analog Sensors 

Analog sun sensors, also called cosine sun detectors, are based on silicon 
solar cells whose output current is proportional to the cosine of the incident sun 
angle a and on additional physical properties pertinent to the specific cell. With these 
definitions, the output current amounts to: 

I(a) = 1(0) cos(a). (B.3.l) 

In the model of Figure B.3.1 (page 348), secondary effects (e.g., transmission 
losses, reflections from the cell surface, etc.) are omitted. The output-current behav
ior of the photocell is shown in Figure B.3.l.b. The ideal output characteristic is a 
cosine function of a. However, at high incidence angles especially, the output current 
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The STA 03 static Infrared horizon sensor has been 
designed for the ettltude control with respect to 
the Earth. of three axis stabilized geosynchronous 
setellitas. It Is used aboard the ESRO telecommu
nication setellite aOTS" to be launched June 1m. 
Its deSign is such as the sensor main functional 
characteristics (response functions. linear range. 
zero accuracy) may be adapted to the mission 
requirements which are expected for the attitude 
control system of the next generation of geosyn
chronous three axis stabilized satellites. The opera
tional accuracy is better than .05 arc degree. 3 stan
dard deviations. For more details see overleaf. 

It is made of two separate units: optical head and 
electronic unit. which are separated. 

r----------FUNCTION------------------------____________________ -, 

In a sy'stem of coordinates OXYZ bound to the 
satellite. O. X and Z are respectively the satel
lite. the nominal directions of the Earth centre 
and poles axis. 

For a geosynchronous orbit. X and Z are at 
right angle; In nominal attitude X. Y and Z are 
respectively the yaw (y). roll (r) and pitch (p) 
axes. 

The STA 03 Earth sensor measures the !.t, and 
!.tp misalignments of the Earth centre T with 
respect to the X axis. The high linearity range 
is :1:1.4°. the output signal remains an increasing 
function of the misalignment up to ± 2.5°, 
and does not decrease up to ± 10°. 

SENSOR DESIGN 

OPTICS 

The sensor operates according to the radiation 
balance principle: there is no mechanical move
ment. 

The optical head comprises a single germanium 
lens. coated for minimum reflection losses, an 
infrared band pass filter (carbon dioxide atmosphe
re emission band. 14 to 16 microns). and a set of 
eight thermopiles placed in the Earth image sur
face. 

In order to avoid the errors due to the Sun and 
Moon radiations. a visible radiation detector using 
silicon photocells can be associated. 

-£. r 

The thermopiles shape and setting. the optical 
head housing. the signal processing are designed 
in order to minimize the overall error due to tempe
rature range. temperature rate of change. compo
nents ageing. Earth luminance local variations .... 

This optical head is fitted with a reference mirror 
for sensor alignment on the satellite. 

ELECTRONICS 

The d.c. signals delivered by the thermopiles are 
chopped. a.c. amplified. and re-converted In a 
d.c. output by a phase-locked rectifier. Sun. Moon 
and Earth output logics are introduced for better 
performance and simpler operation. 

Figure B.2.12 SODERN's static infrared horizon sensor STA 03, optimized 
for geosynchronous use; reproduced by permission of SODERN. 

does not follow the cosine law exactly, as shown by the dashed lines in the figure. For 
higher accuracies, a lookup table based on laboratory calibration is necessary, but 
the full range of measurement never attains the desired ±90o ; a common practical 
measurement range is ±80° to ±85°. An example is the Adcole cosine-law analog 
sensor (model no. 11866) with a conical field of view of 160°; the maximum output 
current is 0.1 rnA. This sun detector was flown on the OAO-B, OAO-C, and A TS-6 
satellites. 
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B.3 / Sun Sensors 

MAIN CHARACTERISTICS 

Response function 
Output voltage v versus misalignment « in roll (r) or pitch (p) 

AcqulslUon 
Overall field 
Linear range (positive slope) 
Slope in the linear range 

Fine pointing 
Linear ranges· in 

Slope in the linear range 
Linearity deviations on 
Seasonal change 

Accuracy 

: Clr. Clp 

: «'1 tlp 
: dv/d« 

: '" or «p 
:«, = ap 
: dv/d« 
: dv/d« 
: dv/d« 

(3 standard deviation values, on roll and pitch channels) 
Zero accuracy (noise, components ageing, 

:I: 13 arc degrees 
:I: 2.5 arc degrees 
4 Vlare degree 

:I: 1.4 arc degrees 
:I: 1.0 are degree 
4 Vlarc degree 
<5% 
< 1% 

thermal constraints, Earth radiance iack of uniformity); 3 standard deviation values 
Misalignment angle measurement incertitude 
- within :I: 0.25 arc degree misalignment range : < 0.032 arc degree 
- within:l: 1 arc degree misalignment range : < 0.057 arc degree 
Cross coupling effect up to :I: 1 arc degree misalignment: negligible 

• Can be extended up to ± 2 arc degrees. 

Output 
Impedance less than : 100 U 
minimum load resistance: 20 ku 

Time constant 
Thermopiles time constant: 
Electronics : low pass filter cut off frequency 

energy bandwidth 
Overall : time constant . 

phase shift less tban 60 at 

Power supply 
+ and-15V, ± 2% 
Tolerated spurious signals. < 300 mV p.lp. 
Power consumption: < 3 W 

Operational temperature 
Range : - 10 to +40 OC 
Rate of change : < 0.50 C/mn 

Mechanical stresses 

< 0,3 sec 
0.81 Hz 
1.3 Hz 
< 0.7 sec 
0.03 Hz 

vibration sinusoidal 20 Hz to 2 kHz: 10 g p.t.p. 
shocks: 100 g, 5 ms 

Dimensions: 
Optical head : see figuns 
Electronic box: 187)( 150 x 80 mm 

Weight 
optical unit : 1.45 kg 
electronic unit : 1.07 kg 

Reliability 
failure rate : 5000.10-9 hr 

Figure 8.1.11 (continued ) 

One-Axis Sensors 
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A single solar cell is not by itself very useful, because it measures the angle 
of the sun's incident rays without identifying their direction. Two cosine detectors 

I 
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/(a) 

b. 

a 
1f 

"2 

Figure B.3.] Output-current dependency on sun incidence angle a. 

/ (Output current) 

, 
k-2&t~ 

c 
a. Sun sensor head 

COl 
b. 

Figure B.3.l Two-cosine"detector arrangement that provides a 
single-axis almost linear measurement in a predetermined range. 

(COl and C02 in Figure B.3.2) are necessary to measure the incidence angle a of the 
sun in a defined plane in the satellite, thus achieving a one-axis sun measurement. 

The simplest possible arrangement is shown in Figure B.3.2. The axes normal to 
the two photocells, and the normal N to the sensor head, are coplanar. The two 
photocell axes are inclined by an angle ±ao relative to the sensor-head normal axis N 
(Figure B.3.2.a). The sun rays are inclined relative to the normal N by the angle a, 
which is to be measured. With the mechanical arrangement shown in the figure, the 
sun rays deviate by (ao-a)O from the normal to the C02 surface, and by (ao+a)O 
from the normal to the COl surface. Thus the output current from COl is propor
tional to cos(a+ao); the output current from C02 is proportional to cos(ao-OI). 
If we subtract the two output currents, the first from the second, the difference will be 

t!/ = h-/J = K cos(OIo-OI)-K cOS(0I0+0I) 

= 2K sin( ao) sin( a) = C sin( a). (B.3.2) 

In Eq. B.3.2, the output current t!/ of the sensor's optical head is proportional to 
some constant C that is dependent on the physical properties of the photocells and 
to the sine of the sun inclination a. In Figure B.3.2.a, c501+OIo+~+90° = 1800 for 
the triangle CSO, from which it follows that the maximum range of angular mea
surement is 

(B.3.3) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 

_ <i 

I 
" 

I 
I 
I 
I 
I 
I 
I 

- , 
-, 

I 
I 

. ~.~ 

; 

I 
I 
I 
I 
I 
I 
~---- -

B.3 / Sun Sensors 349 

where 'Y is the dead zone of each detector unit. Outside the sensor's useful angular 
limits (±c5a of Figure B.3.2.b), the sun sensor cannot be used at all because of the 
output-current ambiguity with regard to two different sun inclination angles a. 

For comparatively small sun inclinations, the output is nearly linearly propor
tional to AI. The percentage error for increasing sun inclination a will be: 

_ a-sin(a) 100 
aE - . ) x . sm(a 

(B.3.4) 

In other words, inclination values of a = 10, 20, and 50 degrees will generate per
centage errors of aE = 0.465, 2.02, and 13.86, respectively. The analog sun sensor 
described here has a very good accuracy at null inclination, but clearly the accuracy 
decreases with increasing a. 

In the special case where ao = 45°, the sensitivity to the scaling factor K can be de
creased drastically. To show this, we define (32 = ao+a and (3\ = ao-a. Since ao = 
45°, it follows that COS«(32) = sin«(3\). However, 

° tan(45°) - tan«(3\) 
tan(a)=tan(45 -(3\)= l+tan(45 0 )tan«(3\) 

_ 1-tan«(3\) _ cos«(3.)- sin«(3\) 
- 1 +tan«(3\) - cos«(3\)+sin«(3\) . 

Next, since sin«(3.) = COS«(32) we have tan(a) = (K\I\-K212)/(K\1\ + K 212). If we as
sume that the scaling factor is identical for the two solar cells, K. =K2 , then tan(a) = 
(/\-12)1(/\ + 12), which is independent of the scale factors of the two solar cells. 

Two-Axis Sensors 
In order to determine the three components of the sun vector in the body 

frame, two spatial angles must be measured and hence two single-axis sun sensors 
are necessary. The second sensor is oriented 90° with respect to the first. In this case, 
we speak of two-axis sun sensing. We define (3 as the inclination of the sun vector in 
the second sensor; now the two measured angles a and (3 provide the data necessary 
to determine the sun's vector orientation in the body axis frame. 

There exist numerous two-axis sun-sensor optical heads that integrate two single
axis sun sensors as just described, but there are other possibilities, too. Instead of 
using two single-axis sun sensors, it is common to implement a variation whereby 
four photocells are located in one optical head (see Figure B.3.3; see also Wertz 1978). 
The determination principle of sun orientation is shown in Figure B.3.3 (overleaf), 
which exhibits a two-axis mask detector. 

Using a simple algorithm based on the sums and differences in individual currents 
of four photocell detectors, the equivalent currents proportional to the orientation 
of the sun vector about the Ys and Zs axes can be calculated. In a restricted region 
about the null position, the currents ly and l~ are linearly proportional to the sun orien
tation about both axes. In principle, this sun detector's optical head has a semispher
ical FOV (i.e., 211' sr). Here again, since the field of view of an individual detector in 
Figure B.3.3 is less than 90°, the 211'-sr range cannot be achieved in a practical instru
ment. Two-axis analog sun sensors based on the principles described here have been 
produced by Matra Espace S.A.S. (France) and have been flown on several satellites, 

-- -- -- _._. ---- -- ---
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Sun detectors bi1

' -9J>/'j ~ 
90 

a. Sun detectors b. 

Figure B.3.3 Two-axis mask sun detector. 

such as the OTS (in 1978), Marecs-ECS (1981), Skynet and Spot (1984), LSAT (1985), 
and others. 

The mask sun detector is very effective for sun acquisition. In this control task -
whereby large angles are attained between the sun direction and the optical sun-sensor 
axis - the accuracy of sun orientation is irrelevant; only its direction is important. 
However, the sun angular orientation accuracy at null increases considerably, and is 
of the order of ±1°. 

There exist also analog sun sensors having hard saturation characteristics outside 
the restricted linear range but with a good accuracy at null (of the order of ±0.1°). 
Outside the linear range, the output is constant until the edge of the field of view is 
reached for both positive and negative ori~ntations; see Figure B.3.4. Such analog 
sun sensors are specially designed to provide attitude information to a solar array 
orientation control system. Common values of the linear range in such sun sensors 
are of the order of ±1°. Fields of view range from 20° to 50°. An example is the Ad
cole (model no. 17470) analog sun sensor. 

Characteristics and Specifications 
There are five important characteristics necessary to define an analog sun 

sensor. These characteristics are not independent, so they cannot be prescribed freely. 
Tradeoffs are necessary when specifying sun-sensor characteristics, depending on the 
operational constraints of the satellite mission. These characteristics are summarized 
as follows. 

(1) Field of view - the maximum deviation of the sun vector from the optical 
axis of the sensor that can be measured, or sensed. The sun-sensor FOV 
does not have to be a circular cone. Moreover, there can be different sensi
tivity ranges for the two directional planes in which the two orientations of 
the sun vector are measured. 

(2) Linear range - the angular range in which the sensor output is linearly pro
portional to the angular deviation of the sun projection in the plane of mea
surement. 

(3) Linearity error - the maximum deviation of any point from the best straight 
line through all points in the linear range of the sensor. 
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Figure B.3.4 Characteristics of an analog sun sensor 
with hard saturation outside the linear range. 
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(4) Nominal scale factor - the maximum analog output value in the linear range 
divided by the total FOV in this range. 

(5) Accuracy - the minimum unexpected error that cannot be foreseen and 
compensated. 

A summary of analog sun-sensor characteristics is included in Table B.3.1 (pp. 358-
62). 

B.3.3 Digital Sensors 

Analog sun sensors remain popular because they are relatively simple, low
dimensioned, and comparatively cheap. Still, they come with inherent limitations; 
in particular, they are not accurate enough for high deviations of the sun direction 
from the sun-sensor optical axis. In such cases, precise measurements can only be 
achieved with digital sun sensors, which have accuracies of the order of 0.017° inside 
a large field of view (of the order of 64° x 64°). 

The basic digital sun sensor is a single-axis device. Exactly as with their analog 
counterparts, two single-axis digital sensors are installed with their optical planes 
positioned 90° apart to obtain a two-axis digital sun sensor. The layout of a digi
tal sun sensor is shown in Figure B.3.5 (overleaf). It consists primarily of an optical 
head together with an electronics box in which the direction of the sun with reference 
to the head's axis frame is computed. 

The optical head is a slab, with index of refraction n, on whose upper side is a nar
row entrance slit for the sun rays. On the lower side of the slab is located the reticle 
slit pattern, composed of a set of reticle slits laid out on that surface in an array that 
enables the sun orientation to be expressed in digital code form. In today's digital sun 
sensors, the Gray binary coded reticle pattern is the most commonly used. The Gray 
code is an equidistant code, which means that one and only one bit changes for each 
unit distance. In contrast, the disadvantage of a binary code is that one or more than 
one binary bits change for the same unit distance. In this case, if some imperfections 
exist in the reticle pattern of the binary code and if one of the binary bits is not read 
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slits 

Figure B.3.S Digital sun sensor (Adcole model no. 17032); reproduced 
from Wertz (1978) by permission of D. Reidel Publishing Co. 

correctly, the change of sun orientation might be erroneously identified as a much 
larger (multi-unit) distance. This cannot happen with the equidistant Gray code. 

For example, suppose there is a transition between the decimal values 19 to 20. In 
the following table we see that for the transition from 19 to 20, the last three digits are 
changed in the binary code whereas only the third digit is changed in the Gray code. 
For the transition from 15 to 16, the situation is even worse: five digits are changed 
using the binary code; only one is changed with the Gray code. 

Binary Gray 
Decimal code code 

14 01110 01001 
15 01111 01000 
16 10000 11000 
19 10011 11010 
20 10100 11110 

The number of bits used depends, naturally, on the prescribed accuracy of the 
sensor. In Figure B.3.5, there are only six Gray code bits but also three fine bits, for 
fine interpolation and increase of the total accuracy. As an example, the Adcole two
axis digital sun sensor (model no. 18960) has the following basic characteristics: field 
of view, 64°x64°; least significant bit size, 0.004°; accuracy, 0.017°. 

Figure B.3.5 also shows the ATA reticle, which is the automatic threshold adjust 
voltage. This extra slit is required because the photocells are cosine sun detectors (as 
explained in Section B.3.2), and for different sun orientations there is a need to pro
vide an adaptive threshold for the different slits of the reticle slit. The ATA slit is 
narrower by halfthan all other slits, so that - at any sun orientation - the energy col
lected by the ATA slit will be half that of any other slit. This energy is compared to 
that collected from a normal slit; if the latter is more than twice as high then the slit 
is discriminated as being above the threshold, and the appropriate bit is activated. 

The outputs from the Gray code and fine bits are processed in the electronic box, 
which calculates the orientation of the sun in the sensor's axes frame. A two-axis 
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Figure B.3.6 Sensor coordinate system . 
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digital sun-sensor head consists of two single-axis sensors located 90° apart in the 
same head plane. A commonly accepted definition for the axis frame of a two-axis 
solar sensor, whether analog or digital, is shown in Figure B.3.6. 

In Figure B.3.6 (see also Table B.3.l, p. 362), the sun vector S is projected on the 
Xs-Zs plane, creating the angle a. It is also projected on the Ys-Zs plane, creating 
the sun orientation angle fJ. These are the orientations computed by the two indi
vidual sun sensors. The orientation for the digital sun sensor can be calculated as 
follows: 

a = tan-I [AI +A2NA+A3 sin(A4NA+As) 

+ A6 sin(A7NA + As)] + A 9, 

fJ = tan-I[BI+B2NB+B3sin(B4NB+Bs) 

+ B6 sin(B7NB + Bs)] + B9· 

(B.3.S) 

(B.3.6) 

In these equations, NA and NB are the base-lO equivalents of the binary output from 
each axis. The terms AI> ... , A9 and BI> ... , B9 are constants defined in the sensor cali
bration state and provided to the customer with each individual unit . 

As an example of a very accurate two-axis fine digital sensor system (Adcole mod
ell8960), see the partial listing of data characteristics in Figure B.3.7 (pp. 354-6). A 
summary table of various analog and digital sun sensors, with all relevant specifica
tions included, is given as Table B.3.l (pp. 358-62) . 

B.4 Star Sensors 

B.4.1 Introduction 

Stars are the most accurate optical references for attitude determination. 
The reason stems from the facts that (1) they are inertially fixed bodies, and (2) they 
are objects of very small size as seen from the solar system. Given these stellar char
acteristics, star sensors allow attitude determination with accuracies in the sub-arc
second range. The drawbacks are the instrumentation's complexity, elevated price, 
extensive software requirements, and relatively low reliability as compared to other 
attitude sensor assemblies. 

~. 
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The number of stars in the sky is very large. In order to use them as attitude ref
erences, appropriate techniques to differentiate between them must be implemented. 
In terms of the necessary hardware, star sensor assemblies are not standard items 
that can be supplied "off the shelf." In most cases, every space mission places unique 
demands on the star sensor to be used, which must be defined and designed accord
ingly. The present section is a short explanation of notions required by the control 
designer to define the characteristics of a potential star sensor for use in a defined 
space mission. 

. . SPECD1CATIONS' MODEL NO 18960 

No. of Axes 2 

!Max. No. of Sensors 2 

lI'ield of View: 
Each Sensor: 64' x 64' 
ToIa1: 124'x 64' 

/Least Significant BIT Size: 0.004' 

trnmsition Accu.tacy: 0.017' 

Sensor Model No. : 19020 

Sensor Size: 3.32" x 4.32" x 0.91" (exclusive of c:cmnector) 
84mmxllOmmx lSmm 
See 0utJine Drawing 

Sensor weight 0.591b 
270g 

IEtectromc Size: 8.13" x 6.19" x 1.19" (exclusive ofc:cmnector) 
206mmx 157 mm x 30mm 
See 0utJine Drawing 

lEtec:tronic Weight 1.621b 
736gm 

Output: 32 Bi1s, Serial; IS Bits! Axls Data (Gmy. Natural Bimuy Mixed). Sensor 
Select, Sun Presence. 

!Power RequUements: +28 +/- 0.56 VDC, 1.8 watts IIODIinaI 

trransrer PUDCIion: SeePigure 1 

Sensor Sun Distance: 0.9 to 1.1 AU 

~ountiDg See 0utJine Drawing 

Sensor Alignment: Detacbable aIigmnent mirrors. optical axis aligned to one an: minute 
Inte.cimneclicms: Interconnecting cables to be supplied by customer 

empeiatwe Range: Sensor Electronics 
Operating -10' C to +60' C -IO'C to+SO' C 
Non-Opemting: -2S'C to +60' C -10' C to+SO' C 

Pressure: Hard vacuum as encontered in earth cubit 
Humidity: Up to 100".4 

AcceIemtion: lSg 

Random Vibndion: 0.31 g'1Hz. 20-2000 Hz, 1 minute each axis 14.9 g-nos 

EMI: MIL-S1D-461A 

Expected Life: Unlimited 

Design Status: Basic design flown OAO, qualified NASA lEU program 
Tests: Transfer function determined and checked at room and 

operating temperature limits using solar simulator 

Figure B.3.7 Adcole model no. 18960 two-axis fine digital sun-angle sensor system; 
reproduced by permission of Adcole Corp. 
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NOTES: 

1. The least significam bit size Hsted is an average of the step size in the angles a (or 15) 
over the field when 15 ( or a ) = o . 

2. For a digital sensOr , error can be measured 0Dly at poiDts where the output changes by 
one state. Error is defined as the absolute value of the difference between the SlID angle 
cah:u1ated from the transfer function and the measured angle at a step. The values quoted 
aremaximnm error for a (or 15) when 15 (ora) = o. 

3 Gray code is a special fonn of a binary code having the property that 0Dly one digit 
changes at a time. Conversion of Gray code to natw:aI. binary is accompHshed as follows: 

(a) The most sigoificant bit is the same in either code. 

(b) Each succeeding natw:aI. binary bit is the complement of the coD'espllllding Gray bit 
if the preceding natw:aI. binary bit is a ·1-; or is the same as the COD'espIIlldiDg Gray bit 
if the preceding binary bit is a ·0·. 

Conversion from natw:aI. binary to decimal or base 10 is accomplished by weigbing each 
bit as shown and summing the resnIt. 

Example: 

Gray Natural Binary Decimal 

11010011 10011101 IS7 

Figure B.3.7 (continued) 

----- ----------
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Figure B.3.7 (continued) 
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B.4.2 Physical Characteristics 0/ Stars 

There are two principal characteristics that allow us to differentiate between 
stars: their magnitude and spectra. A short explanation follows; see also McCanless, 
Quasius. and Unruh (1962) and Burnham (1979) for more detailed treatments . 

Magnitude m oj a Star 
An important characteristic of a star is its brightness as seen from the earth. 

This brightness depends on the quantity of light that the star emits, and also on the 
distance over which that light must travel. Thejlux of light is the energy of light per 
unit area. Hence, a star's magnitude depends on the flux and the distance of the star. 
The magnitude is the intensity of light that reaches the earth's vicinity, and is des
ignated by m. The ratio between the magnitudes and the fluxes of two stars is not 
linearly proportional to the magnitUde of the stars. Rather, the relation between 
fluxes and magnitudes is logarithmic. If the fluxes and the magnitudes of two stars 
are denoted (respectively) S2, S) and m2, mit then 

(B.4.0) 

For example, if the light flux S) of a star is higher by a factor of 104 than that of 
another star, then m2-m) = -2.5 log 10 104 = -10, which means that the magnitude 
of the second star is 10 times larger than that of the first. Notice that the result is 
negative; this indicates that, as flux intensity is larger, the magnitude becomes more 
negative. Equation B.4.0 assigns differences between magnitudes, but not absolute 
magnitudes. This can be remedied by choosing a reference magnitude for stars. For 
instance, in the nineteenth century it was decided to choose the North Star (Polaris), 
with magnitude m = 2, as the reference star. Unfortunately, the magnitude of Po
laris varies periodically between m = 1.95 and 2.05. Today, Vega is the accepted ref
erence star, with m = O. Table B.4.1 (page 363) shows the magnitudes of some typi
cal stars. 

With the help of the star Vega, we can determine mo = -2.5 log So. There is also 
another way of defining the magnitude of a star. We can set 

m = -2.5 log 10(/110) , 

where 1 denotes the effective irradiance and 10 the effective standard irradiance. 
To help develop our notions of star magnitudes, observe that in Table B.4.1 the 

brightest star outside the solar system (Sirius) has a magnitude of m = -1.6, com
pared to the sun's magnitude of m = -26.8! With the naked eye it is possible to view 
stars with magnitudes as high as 6 to 6.5. With strong telescopes on the earth's sur
face (i.e., viewing through the atmosphere surrounding the earth), it is possible to 
detect stars with magnitudes as "small" as 23 or 24. 

Spectra oj a Star 
In practice, it is common to view (and film) stars in three different spectral 

ranges of light: ultraviolet, visible, and blue. We must always define in which spec
tral range the magnitude is measured; for instance, mv stands for the magnitude in 
the visible spectrum. 



Table B.3.1 Catalog oj sun-angle sensor systems I 
(reprinted by permission of Adcole Aerospace Products) 

Field of Maximum Least I Model view per number significant Transfer 
number sensor of sensors bit size Accuracy4 functionS Output 

DIGITAL SYSTEMS FOR SPINNING VEHICLES I 15564 128°1.2 1.0° 0.50° A 7 -bit parallel 

.:l 
Gray TTL 

j 16765 180°1 0.5° 0.25° A 9-bit parallel I Gray TTL 
17083 lsooi 1.0° 0.50° A 9-bit serial 

Gray open 
collector I 17126 18001 0.5° 0.250 A 9-bit serial 

Gray 0-12V 

16151 64°1.2 4 0.25° 0.10 a<40° A 8-bit serial I 
--- 0.25 0 a>40° GrayO-5V 

17212 12801.2 1.0° coarse 0.250 B 7-bit parallel I Analog fine Gray TTL 
Two analog 

18810 128°1.2 2 0.25 0 0.1° A 9-bit serial 

I GrayO-10V 
18656 12801•2 2 1.00 coarse 0.10 a<40° B 7-bit serial 

Analog fine 0.25 0 a>40° Gray 
Two analog 

I 15761 5.601 0.02° 0.10 C 8-bit serial 
Natural bi-
nary TTL I 15761 180°1 1.0° 0.5 0 A 8-bit serial 

Gray TTL 

18273 64°1.2 2 0.250 0.10 A 8-bit serial I 
GrayO-7V 

TWO-AXIS DIGITAL SYSTEMS 

I 18273 1280 x 1280 5 1.003 0.5° D 7-bit/axis 
-. serial 
-; 

GrayO-7V 
' •• .,j 

15486 1280 x 1280 1.003 0.5 0 D 7-bit/axis I parallel 
Gray O-IOV 

17115 1280 x 1280 3 1.003 0.5 0 D 7-bit/axis 
parallel I Gray TTL 

. ':: 16764 1280 x 1280 5 0.503 0.250 D 8-bit/axis 
parallel 

I 
-, 

3-bit identity 
Gray TTL 

14478 1280 x 1280 2 0.503 0.1 0 9<420 D 8-bit/axis 
0.25 0 9>420 serial 

I Gray TTL 

I 
•• "0 _. +_ ~ •••• _ I 

I 
I 

I 
-~ --- - ------- --- --------_.- -- ------- ------- ---





j Table B.3.1 Continued I 
Field of Maximum Least 

I Model view per number significant Transfer 
number sensor of sensors bit size Accuracy4 function' Output 

TWO-AXIS DIGITAL SYSTEMS (continued) 

I 17032 64° x 64° 4 0.125°3 0.1 ° D 9-bit/axis 
serial 

GrayO-7.SV 
:~ 15671 64° x 64° 0.125°3 0.1° D 9-bit/axis I " 

parallel 
Gray TTL 

15381 64° x 64° 0.004°3 0.017° E 14-bit/axis 
parallel I Natural bi-
nary TTL 

f6467 128° in {J 1.0° in {J 0.5° in (J F 7-bit/axis 
64° in T 0.5° in T 0.25° in T parallel I Gray TTL 

16932 64° x 64° 0.004°3 0.017° E 14-bit/axis " 

serial :j 
Natural bi- I I 

nary TTL 
18960 64° x 64° 2 0.004°3 0.017° E IS-bit/axis 

serial 

I Binary TTL 
18970 100° x 100° 6 0.5° 0.25° G 8-bit/axis 

parallel 
3-bit identity 

I Gray TTL 

SINGLE-AXIS DIGITAL SYSTEM 
17061 100° x 100° 0.006°3 0.05° E 14-bit serial 

Natural bi- I nary; open 
collector 

TWO-AXIS ANALOG SYSTEMS 

I 18560 30° cone N.A. I' at null ±I ° linear ±SV 

ce,) 12202 30° cone N.A. N.A. I' at null ±Io linear ±4ma 

I 
" 

18394 180° solid N.A. 2° at null ±30° linear ±0.1 ma " 

'.-1 angle peak I 18980 30° cone N.A. 2' at null ±2° linear ±SV 

SINGLE-AXIS ANALOG SYSTEM I 17470 40° x 60° N.A. 6' at null ±I ° linear O-SV 
.: .. : 2.SV at null 

:; COSINE-LAW ANALOG SYSTEM I 11866 160° cone N.A. N.A. 2~a Cosine of 0.1 ma 
angle of peak 
incidence 

360 I 
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Table B.3.l Continued 
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Figure I. Sensor coordinate system 

The field of view is fan-shaped. An output pulse is provided when the fan crosses the sun, and 
the digital sun angle is read at this time and stored. The sensor should be mounted so that the 
plane of the fan is parallel to the spin axis. 

2 For fields of view less than 180· the mid-angle of the fan need not be mounted perpendicular 
to the spin axis. 

3 The least significant bit size is an average of the on-axis step sizes over the field of view (FOV). 

4 For a digital sensor, error can be measured only at points where the output changes by one 
step. Error is defined as the absolute value of the difference between the sun angle calcplated 
from the transfer function and the measured angle at a step. The values quoted are maximum 
error for a (or II) when 13 (or a) equals zero. 

S A wide variety of transfer functions are available for digital sensors; the equations that follow 
illustrate the principal forms. In these equations, N, Nx , Ny are base-IO equivalents of the bi
nary output number and ko, k .. kz, ... are constants; a, 13, e, and T are the angles defined in 
Figure 1. 

6 Diameter. 

TypeA 13=0 
a=ko+k,N 

TypeB 13=0 
X = k3+k4N+k~ tan-'(A,/Az) 
a = tan-'lk,XI[l-(kl+kz)XZj"ZI 
where A I and Az are the two analog outputs 

Type C 13 =0 
a = 0.0108 + 0.0216N 

Type D X= ko+k,Nx 

Y=ko+k,Ny 
a = tan-llkzXI[k)-(kt-I)(Xz+ yZ)j"Z) 
13 = tan-I (kzY/[k)-(kt-l)(Xz+ yZ)]'I2) 

Type E a = tan-'(ko+kINx ) 

13 = tan-'(ko+k,Ny) 

TypeF T=ko+kINx 

13 = kz+k3 Ny 
TypeG a=ko+k,Nx 

{j=ko+k,Ny 
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Table B.4.1 Star magnitudes for extreme cases 

Magnitude m Star Name of 
consteUation 

0 Vega a Lyr 

-1.6 Sirius aCMi 

-26.8 Sun -

Different stars have different emission spectra. This is a very important fact, widely 
used in the design of star sensors. It is convenient to divide the stars into seven prin
cipal spectral categories, which are 0, B, A, F, G, K, and M. These categories are 
each subdivided into ten more subgroups, from 0 to 9. The spectra of a star is very 
much dependent on its surface temperature. An example of different star spectra 
is shown in Figure B.4.l. The stars may be classified by their visual magnitude mv 
and their spectral type. As an example, ten of the brightest stars are characterized 
in Table B.4.2. 

Star detectors collect cosmic energy coming from space in different spectral ranges. 
This is the reason why the spectra of stellar emissions is important to the design of a 

Relative 
intensity 

Relative wavelength 

Figure B.4.1 An example of different relative spectra. 

Table B.4.2 Characteristics of the ten brightest stars 
(reproduced from McCanless et aI. 1962) 

Astronomical Common SHA DEC Spectral mv 
Name Name Type 

aLyrae VEGA 81 N39 AO 0.05 

aCentauri RIGll..KENT 141 S61 G2-1O -0.27 

aBootis ARCTURUS 147 N19 KO 0.03 

P Centauri AGENA 150 S60 Bl 0.69 

a Canis Minor PROCYON 246 N5 FS 0.35 

a Canis Major S1RIUS 259 S17 Al -1.49 

a Argus, Car CANOPUS 264 S53 FO -0.77 

a Aurigae - CAPELLA 282 N46 Gl 0.13 

P Orionis RIGEL 282 S8 B8 0.14 

a Eridani ACHERNAR 336 S57 B5 0.55 
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Table B.4.3 Distribution oj the stars according to their spectral category 
(reproduced from McCanless et aI. 1962) 

trype 0 B A F G K M Other 

!Average <1% 10.5% 22.3% 18.6% 14.3% 31.9% 2.7% 1% 
iIJistribution 
!mv < +8.5 

lBe20 0 6 5 2 2 3 2 0 
!Bright Stars 30% 25% 10% 10% 15% 10% 
!mv < +1.5 

lBe40 0 15 10 4 2 6 3 0 
!Bright Stars 38% 25% 10% 5% 15% 7% 
~ <+2.0 

~eIOO 4 32 23 9 7 17 7 I 
!Bright V1SU8l 4% 32% 23% 9% 7% 17% 7% 1% 
Stars: 
& <+2.65 

star sensor. It is important to choose the spectral sensitivity of the detector, so that 
the star sensor will be optimized for its particular mission; that is, it must be able to 
detect the stars that have been chosen as references. Note that using star detectors 
with a special spectral sensitivity is another way of minimizing celestial parasitic dis
turbances (background noise). It is interesting to view the stellar distribution in terms 
of the spectrum categories; see Table B.4.3. 

Celestial Background 
The sky is full of stars. When using stars for attitude determination, it is 

necessary to discriminate the correct and useful ones from the many others that, in 
this case, constitute a celestial parasitic noise background. On the other hand, for 
certain missions it is important to use as many stars as necessary in order to allow a 
continuous attitude determination. The number of stars that can be used within the 
relevant algorithms is of crucial importance for the attitude accuracies that can be 
achieved. Table B.4.4 shows the density distributions of stars with different magni
tudes. This table is very important in the stage of defining the technical properties of 
a star sensor. 

Table B.4.4 Target star distribution 
(reproduced from McCanless et aI. 1962) 

~pparent Stars Per Square Degrees 
~gnitude Square Degree Per Star 

m Brighter than m Brighter than m 

8 1.0 1.0 

7 0.34 2.94 

6 0.12 8.3 

5 0.04 25.0 

4 0.013 77.0 

3 0.0044 227.0 

Stars in a 
227 Sq. Deg. Field 
Brighter than m 

227 

77 

27 

9 

3 

1 
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Location of Stars on the Celestial Sphere 
In order for a star to be useful for attitude determination or guidance pur

poses, its location must be correctly identified in some predetermined axis frame. All 
stars outside the solar'system are inertially fixed in space. Hence we must define the 
inertial frame in which all calculations will take place. The commonly accepted in
ertial frame is defined as follows: 

X I - the vernal equinox direction defined at some reference epoch; 
ZI - axis of rotation of the earth; and 
YI - completes a right-hand orthogonal axis frame. 

Because of the slow precession of the vernal equinox axis, the locations of the stars 
will also change in this frame, albeit very slowly. Nonetheless, this effect must be 
taken into consideration. 

To determine the location of a star on the celestial map, two angles are used: 

(I) the right ascension (RA), measured from the vernal equinox on the equa
torial plane of the celestial sphere; and 

(2) the declination angle (DEC), defined ±90° from the equatorial plane (+ 
points to the North direction). 

These angles are also identified as the longitude and the latitude angles on the celes
tial map. The longitude ordinates divide the celestial map into 24 hours. An hour is 
divided into minutes (') and seconds ("); 1 hour is equivalent to 15°. Hence: 

l' = 1 hr/60 = 15°/60, 
1" = 1 hr /3,600 = 15°/3,600. 

With these definitions, celestial catalogs and maps have been prepared for dif
ferent vernal equinox epochs - for instance, for the epoch (year) 1950 and more re
cently for the epoch 2000. Some popular catalogs include The Catalog of Bright Stars 
(HotHeit 1964), The Smithsonian Astrophysical Observatory Catalog (1971), Burn
ham's Celestial Handbook (Burnham 1979), and Sky Catalogue 2000.0 (Hirshfeld 
and Sinnott 1990; also available on PC diskette). 

When preparing or using star catalogs, we must differentiate between double (or 
multiple) stars, variable stars, and so on; see Burnham (1979) for more information. 
For these denominations, the position angle (PA) denotes the apparent orientation 
of a pair of double stars. As is well known, stars are agglomerated into constella
tions. As an example of how stars are cataloged, Table B.4.5 (overleaf) lists some of 
the double and mUltiple stars in the constellation Ursa Minor. In this table, the fol
lowing abbreviations are used: 

Dist. - angular separation of the two stars in seconds of arc (the distance of 
a third or fourth component is given from the primary star); 

PA - position angle of the pair in degrees, measured from the brighter to the 
fainter component; 

Yr - year in which the preceding measurements were made (the last two 
digits only are given; the first two are understood to be "19"); 

Magn - visual magnitudes of the two stars on the standard scale, to the 
nearest half magnitude; and 

RA, DEC - celestial coordinates (1950 epoch). 



.~ 
i 

.. ; 

. i 

'.:.: o· 

...• :! 

1 ....• 1 

366 B / Altitude Determination Hardware 

Table B.4.5 List of double and mUltiple stars 
(adapted from Burnham 1979 by permission of Dover Publications) 

Name Dist PA YR Magn Notes RA&.DEC 

a 18.0 2,128 55 2-9 Polaris. (E93) o 1488n8902 

44.7 83 00 -13 PA slow inc, spect 

82.7 172 0 -12 F8;Primary cepheid 
variable (*) 

EIS83 Il.l 285 25 7.5 - 8.5 (OE238) reJ1ix,spect A2 l1S78n8718 

/3799 1.0 250 67 6.5 - 8.5 PA &. dist inc,spect AS 13033n7318 

01:267 0.2 332 60 9-9 Pa measures discordant, 13244n7615 
spect FS 

B.4.3 Tracking Principles 

Introduction 
In most star-sensor tracking systems, the principle of operation is based on 

loading a star catalog into the onboard computer, according to the star characteris
tics enumerated in Section BA.2. The stars are chosen according to the specific space 
mission in which the star sensor will be used. The purpose of tracking a star is to mea
sure its direction within the reference frame fixed to the star sensor's optical head. 

The first stage in attitude determination is to identify a star, or a set of stars, with 
reference to the onboard star catalog; the second stage is to track the star(s). The last 
stage involves processing the acquired data. The major components of a star-sensor 
attitude determination system are shown in Figure BA.2. 

There are three basic types of star-tracking assemblies: star scanners; fixed-head 
star trackers; and gimbaled star trackers. The star scanner is used with spinning sat
ellites, where its purpose is to determine the attitude of the spin axis of the satellite. 
The primary use of fixed-head star trackers is to determine the attitude of three-axis
stabilized satellites. This kind of star sensor provides the most accurate attitude de
termination. The gimbaled star tracker has the advantage that, when the satellite's 
attitude is fixed, different parts of the sky can be scanned so that a large quantity of 
stars can be exploited for tracking and processing. However, imperfections inherent 
in gimbaled systems reduce the achievable accuracy of attitude determination. 

Star Sensor 
Attitude Determination 

Software 

Star 
Identification 

and 
Acquisition 

Processing 
and 

Refinement 

Figure B.4.1 Components of star-sensor attitude 
determination software. 
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Hardware Components 0/ a Star-Sensor Assembly 
Any star-sensor assembly includes the following basic components: (1) an 

optical system; (2) a detector for starlight; and (3) electronics for signal processing 
and attitude determination. 

Optical System The optical system consists of a lens system and a stray
light shield. Even with a good sun shade, star sensors are generally inoperable if the 
sun direction is within 300 to 600 from their optical axes. The earth albedo and 
moonlight can also compromise the orderly operation of a star sensor. Hence, a good 
light shield is of utmost importance. 

The lens system must meet the primary task of converging the stars' light into the 
focus of the optical head, where a light detector is located. A secondary task is to 
provide the desired wavelength filtering of the stars' light, so that discrimination of 
stars according to their spectral characteristics can be achieved. Since the optical head 
is exposed to temperature changes, the design of an optical system that is reliable 
and insensitive to environmental changes is a delicate technical task. 

Detectors for Starlight There are two basic kinds of light detectors. The 
first, which was the only one available until the 1980s, is known as the image dissec
tor tube star sensor. It consists of a photocathode located in the focal plane of the 
optical system, an image dissector, and a photomultiplier; see Figure B.4.3. In this 
figure, the optical system projects the star image onto the photocathode. An electron 
beam passes through a small-diameter aperture drilled into the anode and falls on the 
photocathode and also on the star-field image. The image dissector deflection coils 
induce this FOV to scan systematically the photocathode, detecting the presence of 
stars by monitoring the signal output (anode electrical current) and their Cartesian,' 
coordinate location on the photocathode, which is recorded from the instantaneous 
orientation of the deflector's field (Wertz 1978). 

With this type of star detector, calibrated accuracies in the arc-second range are 
possible with sensitivity (on the mv scale) of up to +14. The FOV aperture of the 
anode limits the absolute accuracy that can be achieved, and the scanning process 
s1,lffers from the nonlinearity of the magnetic field responsible for the FOV scan. The 
need for temperature stability of the photomultiplier within a narrow temperature 
range also creates technical difficulties. 

Detected star 

'" SignaI--:Q-'V:b~:;::::~~Focalp1ane Optical system 
ouIpUt 

Deflected electron beam (Field ofView) 

'Field of view' aperture 

Figure B.4.3 Image dissector tube star detector; adapted from 
Wertz (1978) by permission of D. Reidel Publishing Co. 
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u 

Focal plane 
(sensors photocathode) 

Zs 

f 

Figure B.4.4 Calculation of the components of the star unit vector 
in the sensor frame; adapted from Wertz (1978) by permission of 
D. Reidel Publishing Co. 

The star sensor measures the coordinates of the star-direction unit vector in the 
sensor's three-axis orthogonal frame. Knowing the direction of the sensor's axis frame 
relative to the axis frame of the satellite, the star vector in the body frame can be cal
culated by a single transformation. 

Let us derive the star vector components in the sensor's axis frame from the read
ings of the photomultiplier tube. The axis frame of the star sensor, Xs' Ys' Zs' is 
shown in Figure B.4.4; the star unit vector is to be expressed in this frame. The direc
tion of the star unit vector is measured in terms of the angles <p and A, where A is the 
elevation of the star image above the Xs-Ys plane and <p is the angle between (a) the 
projection of the line of sight of the star on the Xs-Ys plane and (b) the Ys axis. Ac
cording to Wertz (1978), the components of the star's line-of-sight vector S in the 
sensor frame are 

[ 

-sine <p) CoS(,\)] 
S = cos( <p) cos(,\) . 

-sine,\) 

From Figure B.4.4, we easily find that 

tant/> = ulj and tan A = (vlj)cos(t/», 

(B.4.1) 

(B.4.2) 

where u and v are the two coordinates of the star image on the focal plane (i.e., the 
image on the photocathode) and j is the focal length. 

Because of distortions in the optical system, temperature variations, and various 
irregular magnetic effects of the deflecting coils, the relationships in Eqs. B.4.2 are 
not exact. Calibration coefficients must be used in order to increase the accuracy of 
the derived t/> and A angles: 

<p = Co+C)u+C2V+C]U 2+C4UV 

+CsV2+C6U3+C7U2V+Csuv3+C9V3, 

A = Do+ D) u + D2V+ D3U2+ D4 UV 

+DSV2+D6U3+D7U2V+DsuV3+D9V3 

(B.4.3) 

(see Gates and McAloon 1976). In Eqs. B.4.3, the coefficients are also temperature
dependent. Most of them are fitted by laboratory experimentation. 
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Figure B.4.5 Charge coupled device (CCD) star sensor. 

The second type of star detector, available only since the early 1980s, is the charge 
coupled device (CCO) detector. This hardware is very compact and easy to imple
ment in the optical head of a star sensor. Functionally, it replaces the photocathode 
tubes, which were less durable and consumed more power. The CCO is a solid-state 
integrated circuit, built as a matrix of photosensitive semiconductor elements called 
pixels. Matrices of the order of 500 x 500 (rows x columns) elements are common, 
providing good angular resolution. The device includes an electronic scanning mech
anism that registers any illuminated cell, thus detecting the presence of stellar images 
and their coordinates in the matrix board. 

Using the CCO in a star tracker requires some control of its temperature in order 
to minimize parasitic noise and bias. Active cooling, performed with Peltier ele
ments, maintains the CCO temperature below O°C. 

The physical arrangement of a CCO-based optical star-sensor head is similar to 
that of Figure B.4.3, with the exception that the photocathode has been replaced by 
the CCO matrix board; see Figure B.4.5. With a CCO star sensor it is possible also 
to obtain light spectrum filtration by choosing the semiconductor material of which 
the CCO is composed to be sensitive to the desired spectrum only. 

The location of the star image on the CCD matrix is easily obtained by reading 
the digital outputs of the matrix's rows and columns of the CCO pixels on which the 
starlight is detected. The smaller the pixel size, the higher the attitude accuracy that 
can be achieved. However, scanning the same FOV then requires a larger number 
of columns and rows, thus complicating the hardware. The optimum CCD matrix 
dimensions should be chosen according to mission requirements. 

Electronics and Signal Processing Hardware The electronics box incorpo
rates the conventional electronics items necessary to operate the hardware (power 
supplies, controllers, amplifiers, etc.), as well as a microprocessor unit (CPU) and 
memory unit needed for signal processing. As we shall see, the computational power 
required of the CPU depends on such factors as the mission and mode of use of the 
star sensor, the size of the star catalog used, and the number of stars to be tracked 
simultaneously. 

Signal Processing 
The signal processing of star sensors occurs in two stages. First, the target 

stars are identified with reference to the onboard star catalog. Next, the identified 
stars are tracked on the CCO focal plane. The acquired data are processed to deter
mine the sic attitude; it may also be important to derive the attitude rates. 
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CCDpixel 
bOlmdaries 

I~;l 
Central 
pixel 

Figure 8.4.6 Use of a 3 x 3 pixel subarray for increasing the resolution 
of the sensor by the image centroid algorithm; adapted from Stanton 
and Hill (1980) by permission of AlAA. 

Scanning Process and Calculation of Star Coordinates In Figure B.4.4, 
the coordinates of the star in the focal plane were defined as u and v. A similar defi
nition holds for the CCD-based star sensor, in which the u and v coordinate values 
are digital outputs. In both cases, the focal plane is scanned in a predetermined se
quence; each time a star's image is encountered, its coordinates (i.e., the pixelloca
tions) are sent to the memory part of the electronic processing hardware. 

One potential limitation of using CCOs for star tracking is the finite number of 
sensing elements (pixels) available on a single CCO sensor. Current CCOs have a 
maximum array size in the range of 500 x 500 elements. With this CCD size, the reso
lution of a single pixel is quite low. Suppose we are using a sensor with a FOV of 
5° x 5° and a CCO size of 500 x 500 elements. In this case the" angular resolution is . 
only (51500)° = 36", which is quite low and certainly insufficient for a good star sen
sor. In order to achieve a resolution higher than that dictated by the detector's pixel
to-pixel spacing, an interpolation algorithm can be used. See Sheela et al. (1991) and 
Figure B.4.6. 

If the dimension of the star's image on the CCO array is greater than that of a 
single pixel, then more than one pixel will detect its presence. In this case a subarray 
of 3 x 3 pixels can be used. By sensing the electrical intensity outputs of each one of 
the neighboring pixels shown in Figure B.4.6.a, an appropriate algorithm can inter
polate the data and calculate the coordinates uc' Vc of the centroid of the image, as in 
Figure B.4.6.b. By optically spreading the image over a small array of pixels, stars 
can be "centroided" quite accurately, typically to 1120 of a pixel (Strikwerda et al. 
1991). With centroidal algorithms, accuracy in the sub-arc region is achievable. 

Onboard Star Catalog Selecting stars _ for inclusion in the onboard star 
catalog is a complicated task. It depends on the different outputs expected from the 
star sensor, which in tum depends on the satellite's system and mission requirements. 

The number of stars that must be cataloged is a function of the star sensor's field 
of view. Suppose we wish to have an average of Ns stars continuously inside the 
FOV, in any direction on the celestial sphere. If the star sensor's FOV is rectangular, 
a O X fJo, then the number of stars needed will be at least [411"(180h)2IaofJO]Ns stars. 
For example, if Ns = 3, a = 6°, and fJ = 10°, then the catalog must contain at least 
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2,064 stars. Having three stars simultaneously in the FOV also requires that the stars 
be at least quasi-uniformly distributed. However, it is well known that in the direction 
of the Milky Way, for instance, the concentration of stars is higher than in any other 
direction. For more about the uniformity of star distribution, see Vedder (1993). 

Different optimization criteria can be defined in developing the star catalog, ac
cording to the special tasks that the star sensor must perform. In developing the on
board star catalog we can use the two basic star characteristics of magnitude and 
spectra. We can also choose only that part of the celestial sphere pertinent to the 
special mission for which the star sensor is designed. 

For example, Polaris star sensors have been designed for geostationary satellites 
to serve as the primary attitude means for continuously measuring the sic yaw angle 
(Maute, Blancke, and Alby 1989). In most attitude control systems, the yaw angle is 
measured using sun sensors. However, owing to the unfavorable angle between the 
nadir and solar directions, the yaw angle can be measured with a sun sensor only 
during limited portions of the orbit. The Polaris star, whose direction is practically 
perpendicular to a geostationary orbit, allows a continuous measurement of the yaw 
angle. Since the Polaris star and its nearby celestial region are always inside the star 
sensor's FOV, only a limited number of stars are needed for the onboard star cata
log. A special star sensor assembly has been developed for this task, the SODERN 
SED 15. The detection FOV of this sensor is 4.5° x 6°, and the range of detectable 
star magnitudes is from -1 to +3, which is sufficient for dealing with a relatively 
bright star like Polaris. 

Star Identification Techniques It is well understood that tracking a star in 
the sensor axis frame has no meaning unless the star is identified in the star catalog, 
so that its coordinates in the inertial reference frame are also known; the attitude of 
the spacecraft can be calculated based on this knowledge. Here we summarize some 
techniques developed for star identification using a star catalog on board the satellite. 
A CCD-type star detector will be assumed. First we will assemble some relevant facts 
and definitions (cf. Wertz 1978) as follows. 

(a) The star catalog gives the star position in an inertial reference frame of ce
lestial coordinates (CC). 

(b) The process of identification begins with the definition of an estimated CC 
frame (ECC) in which the star sensor is supposed to find the target star, and 
which is as close as possible to the true CC of the target star. The correctness 
of this ECC frame is very important during the attitude acquisition stage. 

(c) Distortion of the ECC may occur if knowledge about the motion of the 
spacecraft is poor. This means that the angular distances between stars in 
the ECC frame may be appreciably different from the angular distances be
tween stars measured in the true CC frame. 

We are now prepared to discuss the basic star identification techniques as well as 
their variations . 

(1) Direct match: With this technique, the ECC frame must be sufficiently close 
to the star's CC frame in the star catalog. An observation of a star in the star sensor 
is matched with a catalog star if 

d(O, S) < E, (B.4.4) 
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where 0 is the observed star unit vector in the ECC and 8 is the catalog star unit vec
tor in the true CC frame; d(O, 8) is the angular distance between both vectors, and E 

is the error window radius. The star observation is checked against all possible cata
log stars until an unambiguous and unique identification is found (see Kosik 1991, 
Sheela et al. 1991). If this condition is not fulfilled then an additional criterion, such 
as star magnitude or spectral characterization, may be added to the matching process 
until a correct identification is achieved. 

(2) Angular separation match: According to this technique, the angular distances 
between pairs of sensed stars are compared to the angular distances between pairs of 
stars in the catalog (Wertz 1978, Kosik 1991). Two stars are selected arbitrarily from 
a set of measured stars, and the corresponding angular separation between them is 
calculated as 

(B.4.S) 

where 8 1 and 8 2 are the directions of the two stars as measured by the star sensor. 
Next we search, in a finite region of the catalog around the approximate boresight 

of the sensor, for a pair of stars (i,j) that fulfills the condition 

(B.4.6) 

where dei, j) is the angular distance calculated for entries i and j in the star catalog. 
Naturally, if more than one pair of catalog stars meets the condition of Eq. B.4.6 
then there is an ambiguity, and the search fails. 

It is possible to continue the identification process by selecting more than two stars 
for comparison purposes. This is called a polygon match, in which a pattern of N 
observed stars is used for identification. The process then requires enormously many 
more comparisons of angular distances between the set of N measured stars and the 
similar star distances in the star catalog. For a complete analysis of this approach, 
see Kosik (1991). 

(3) Phase match: The phase match technique is used for calculating the direction 
of the spin axis in spinning satellites. See Wertz (1978) for a complete analysis. 

For all these matching techniques, the reliability of the identification process can 
be increased (and the search time decreased) by using additional star characteristics 
for identification, such as magnitude and spectra. This additional data must also be 
loaded into the onboard computer, as is done with many commercial star sensors. 

Star Tracking and Computational Loads 
Once the target star is identified, it can be used for computing the attitude 

of the satellite. However, since the sic is moving in its orbit and its attitude may be 
intentionally altered, the identified star's image in the focal plane of the star sensor 
will move. Hence, the star tracker's processor must track the star's image during its 
motion in the CCD array. In most star sensors, more than one star is identified and 
tracked simultaneously. The reason is that, since the FOV of the sensor's optical 
head is limited, previously identified and tracked stars exit the FOV and are lost, so 
that new stars must be identified and tracked. Current technology enables star-sensor 
assemblies to track simultaneously five or even more stars. While tracking already 
identified stars, the sensor must constantly identify new stars. 
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Considering all the tasks that the sensor must fulfill simultaneously, the computa
tionalload can become excessive. This means that tradeoffs must be made between 
desired sensor characteristics and attendant processing times. For a complete soft
ware flowchart containing a track mode and also a search mode of a star-sensor 
assembly, see Zwartbol et al. (1985). 

Star-Sensor Specifications 
As already mentioned, a commercial star sensor is generally not a standard 

item that can be procured off-the-shelf. Each sensor has special features appropriate 
for its unique mission, and must be manufactured to well-defined specifications. The 
most important characteristic features that should be considered when designing or 
specifying a star sensor are listed as follows. 

(1) Field of view - The smaller the FOV, the higher the accuracy that can be 
achieved. However, decreasing the FOV increases the number of stars that 
must be cataloged for successful operation of the sensor. 

(2) Sensitivity to star magnitude - Note that increasing the range of detectable 
magnitudes also necessitates an expanded star catalog. However, this does 
enable a higher attitude accuracy. 

(3) Accuracy - The accuracy of the sensor must be defined for different modes 
of operation, such as the pointing mode, the scanning mode, the tracking 
mode, and so on. 

(4) Noise-equivalent angle - This is also dependent on the operational mode. 
(5) Update period - The update period is important because the sensor is part 

of the attitude control system; long update periods are detrimental to the 
AOCS. 

(6) Star acquisition time. 
(7) Tracking capacity. 
(8) Spatial separation. 
(9) Star motion - The accuracy of the star sensor might decrease if the satellite 

is under angular motion conditions. 
(10) Reliability - This is a very important factor. If the star sensor is a basic part 

of the AOCS of a satellite then its reliability must be comparable to other 
hardware items of the satellite. Since a star sensor is a very delicate instru
ment, the technical problems of making it reliable are often hard to resolve. 

(11) Power consumption. 
(12) Weight. 

These characteristics are illustrated in Tables B.4.6 and B.4.7 (overleaf), which list 
the specifications of two space-proven star sensors. 

D.S Rate and Rate Integrating Sensors 

D.S.1 Introduction 

Rate sensors based on different physical principles are used to measure the 
angular motion of satellites. All zero-momentum-biased sic use rate sensors for at 
least one special task during the satellite's life. 
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Table B.4.6 Characteristics of ROSAT precision star tracker, PSTl 
(reproduced from Lange et al. 1986 by permission of SPIEl 

CHARACTERISTICS SSST 

Field of view 5.9D x 4.40 

Sensitivity Illy = 0 to 6.5 

Systematic Errors (bias) 
pointing <2 arcsec 
scan < 10 arcsec 

Noise Equivalent angle (NEA) 
pointing < 1.0 arcsec 
scan < 5.0 arcsec 

Magnitude Accuracy +/- 0.25 Illy 

Update Period I sec 

Star Acquisition Tune <4 sec 

Tracking Capacity 4 targets 

Spatial Separation 
pointing 0.10 (x,y) 
scan O.IO(x), 0.3° (y) 

Star Motion 
pointing 5 arcsec/sec (x,y) 
scan 5 arcmin/sec(y) 

Power Consumption 16.4 Watt 

Weight 
Camera Unit 8kg 
Electronic Unit 5kg 

Table B.4.7 CT-60l solid-state star tracker 
(reproduced from McQuerry et al. 1992 by permission of IFAC) 

CHARACTERISTICS SSST 

!Field of view (deg') 64 

Sensitivity range <Mv) +1 to +6 

~ccuracy (arc sec), per coordinate 
Bias errors 3 
Total random error(la) 5 

Update rate (Hz) 10 

~cquisition time 
Full field (sec) 5 

Reduced field (sec) 0.1 

Number of stars tracked simultaneously I to 5 

Tracking rate (deglsec) 
At .full peIformance 0.3 
At reduced peIformance 1.0 

Data interface MIL-STD-1553(B) 

Maximum power (W at 28 V de) <12 

Maximum weight without shade (lb) 18 

Operating temperature (DC) -30 to +50 
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A principal advantage in using a rate sensor is that it can measure the angular 
rates of the satellite without regard to the sIc angular attitude. For instance, if the 
attitude of a satellite is determined with the aid of earth and sun sensors, then the 
rates about the satellite principal axes can be obtained by differentiating the angular 
position outputs of the attitude sensors. However, once the earth (or sun) leaves the 
sensor FOV, it is no longer possible - without rate sensors - to measure the satellite's 
angular rates and thereby control its angular motion. 

Another important function of rate sensors is providing angular stability to the 
satellite. For attitude control of sic, two measured states must be fed to the ACS: a 
position error signal and a rate signal, the latter for damping the angular motion (see 
Chapter 7). In principle, it is possible to obtain the angular rates by differentiating 
the measured angular position of the satellite. However, the differentiated signals 
might become very noisy and so inhibit pointing stability of the ACS. 

The third (and indispensable) feature of rate sensors is their ability to provide, 
continuously and accurately, the angular attitude of the satellite via time integra
tion of their outputs. For instance, use of rate integrating gyros allows us to design 
high-bandwidth and highly accurate attitude control loops that could not be achieved 
solely with star sensors, whose estimates of sic attitude are too slow. When using rate 
sensors for attitude determination, accurate position sensors are needed to provide 
the initial values used in the integration algorithm (Sections 4.7.4 and 4.7.5), and also 
to update periodically the attitude during the rate integrating process. 

Until recently, the only available rate-sensing instruments were rate gyros (RGs) 
and rate integrating gyros (RIGs), both based on the gyroscopic stiffness of revolving 
moments of inertia (see e.g. Swanson 1982). The principal drawback of gyros is their 
dependence on moving parts - especially the rotor assembly of the electrical motor, 
which has a limited life expectancy. In the last 10-15 years, new principles have been 
developed to produce more reliable rate sensors with no moving parts, such as laser 
gyros, quartz rate sensors, and the hemispherical resonator gyro (Matthews, Baker, 
and Doyle 1992). 

B.S.2 Rate-Sensor Characteristics 

Rate sensors have inherent noise probleQls. Various criteria are used to de
fine the qualities of these sensors; the most important are listed as follows. 

(l) Range - The larger the range of measurement, the higher the noise level of 
the sensor. Hence, when defining the sensor's desired characteristics it is im
portant to choose the smallest possible range in light of the satellite's atti
tude control missions. Output ranges of the order of 1°/sec to 100o/sec are 
possible. 

(2) Bias (constant drift) - This is one of the most important characteristics of 
rate integrating gyros. The bias is of crucial importance if the sensor is to be 
used for attitude determination via rate integration. Sensors with drift levels 
ranging from O.03°/hr to 1°/hr are common. 

(3) Output noise - This is specified per frequency band. 
(4) Scale/actor - This is important when rate integration is performed. Stability 

of the scale factor has a strong influence on achievable attitude accuracies. 
(5) Linearity - The linearity is defined over the entire range. 
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Table B.S.. Typical medium-accuracy rate integrating 
gyro assembly 

Requirements Existing RIGA 

~: 10 years 3000 hours of intermittent 
operation 

Minimum Sampling Rate 0.04 see (25 Hz) Digital pulse width modulated 
system pulse frequency 
=102400 Hz 

Range 15 degl sec 15 deg/ sec 
2 deglsec 

Constant drift 1 deglhour 1 deg / hour (1 g environment) 

Scale factor 1.0% 1.0% 

Input power maximum 25 Vde 23.9 V de 

To clarify these characteristics we shall tabulate data for two rate sensors. The 
RIG described in Table B.S.I can be used for integration because it has a fairly low 
constant drift bias of IO/hr. The RG described in Table B.S.2 cannot be used for 
rate integrating, owing to its high bias terms. For this reason it is commonly called 
a "coarse rate gyro." 
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APPENDIX C 

Orbit and Attitude Control Hardware 

C.I Introduction 

The purpose of Appendix C is to introduce the reader to the basic features 
of the control hardware used to provide translational and angular accelerations to 
spacecraft. 

The level of control forces that can be obtained depends on the source character
istics. For example, ion thrusters can produce forces of the order of tens of milli
newtons; liquid propellant thrusters used in spacecraft control provide forces in the 
range of hundreds of newtons; and solid propellant motor-produced forces are in 
the range of hundreds of thousands of newtons. 

As far as attitude control is concerned, we have seen that torques can be produced 
with the aid of momentum exchange devices, magnetic torqrods, or solar torque con
trollers. The torque levels we can obtain with these devices are generally low: in the 
range of 0.01 to 1 N-m for momentum exchange devices (control moment gyros ex
cluded), of the order of a few centinewton-meters with magnetic torqrods, and tens 
of micronewton-meters with solar torqUe controllers. With reaction propulsion means 
we can achieve torques of about 20-30 N-m, but also much lower torques of the 
order of 0.1 N-m if needed. Reaction propulsion is also used for momentum dump
ing - unloading the parasitic angular momentum accumulated in the spacecraft. 

The sources of force and torques used for control can be classified as follows: 

(1) propulsion systems. which can provide translatory and angular accelera
tions (forces and torques) to the satellite; 

(2) solar radiation pressure. which can produce forces and torques; 
(3) momentum exchange devices. which can provide torques and angular mo

mentum; and 
(4) magnetic torqrods. which can provide only torques. 

Two special controllers that are not discussed in this book are (i) atomic energy
based thrusters for translation accelerations, and (ii) control moment gyros, which 
are used in large inhabited space structures to provide torques in the range of hun
dreds of newton-meters. 

C.2 Propulsion Systems 

The task of the propulsion system is to provide forces and torques acting on 
the body of the spacecraft, thus enabling changes in its translatory and angular ve
locities. Spacecraft propulsion systems are divided into three categories: cold gas; 
chemical (solid and liquid); and electrical. The basic equation of propulsion holds 
for all kinds of propellants. 

379 



.. 1 
:: .. ::::j 

. : ~ 

380 C / Orbit and Attitude Control Hardware 

A rocket engine develops its thrust F by expelling propellant (such as gas mole
cules, or ions) at a high exhaust velocity Ve relative to the satellite body; see Wertz 
and Larson (1991). The amount of thrust F can be calculated as follows: 

dm dm 
F= Ye dt +Ae [Pe-Pa1 = Yef dt ' (C.2.1) 

where Pe and Pa are the gas and ambient pressures (respectively), Ye is the exhaust 
velocity, Vef is the effective exhaust velocity of the expelled mass with respect to the 
satellite, dmldt is the mass flow rate of the propellant, and A denotes the area of the 
nozzle exit. 

The second parameter relevant to the characteristics of the thrust source is the 
specific impulse Isp , a measure of the efficiency with which the propellant mass is 
converted into thrust energy. The specific impulse is defined as 

Isp = FI(gdmldt) sec, (C.2.2) 

where g is the gravitational constant. 
To calculate the velocity change per exhausted fuel mass, integration of the accel

eration Flm is performed to find, using Eq. C.2.2, that 

f Ir F fIr 1 dm fmr dm 
AV= -dt= gIsP--

d 
dt=gIsp -, 

II m 'i m t ml m 
(C.2.3) 

where tj, tf and mj, mf are the initial (and final) time and masses of the spacecraft, 
respectively. The solution of Eq. C.2.3, known also as the rocket equation, is: 

mf = mj exp[-(:~) l (C.2.4) 

It follows that the propulsion mass mp expelled from the satellite's initial mass is 

mp = mj-mf=m{l-exp[-(:~)Jl (C.2.S) 

Equation C.2.S is the solution of the basic propulsion rocket equation, and allows 
us to calculate the mass of propellant required to change by ..1V the velocity of a sat
ellite with an initial mass mi. An immediate conclusion is that increasing the specific 
impulse will decrease the expelled mass of propellant. However, we shall see that 
high Isp of a potential propellant is not the only factor upon which propulsion selec
tions are based. 

Reaction propulsion systems are used for producing forces and torques. Forces 
are used to increase the linear velocity of the satellite. For this purpose, the pro
pulsion thruster is activated for comparatively large time periods - several tens of 
minutes. Moreover, since large masses are to be accelerated, high levels of thrust are 
necessary. Since the thruster must accelerate its own weight also, it is of utmost im
portance to use propellants with very high specific impulse Isp. The lifting capabilities 
of a propulsion system are defined as 1':0 F dt; this is called the system total impulse, 
or simply the impulse. 

Torques are used in reaction attitude control for which thrusters provide inter
rupted pulses. In fact, every pulse provides a torque impulse bit TIB, where IB = 
1 Fdt and TIB = A x IB (A is the torque arm of the thruster). In order to achieve 
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accurate attitude control, the pulses must be able to provide torque impulse bits as 
small as possible; hence the impulse bits should likewise be as small as possible. This 
can be achieved by activating the thruster for very short times (tens of milliseconds 
or less) if the thrust level F cannot otherwise be decreased. In other situations the 
same thrusters might be activated for several seconds, so we should anticipate a large 
ratio of maximum/minimum activation time (Chapter 9). The attitude control sys
tem remains active throughout a satellite's life, so the number of thruster activations 
may become quite large. 

A propulsion system is evaluated in terms of various characteristic features. Some 
have been mentioned already; others will be defined shortly. These basic character
istics include: the thrust level F; the specific impulse Isp; the minimum impulse bit 
MIB; the maximum number of activations (expected life); the maximum permitted 
duty cycle of activation; and the total impulse. 

C.2.1 Cold Gas Propulsion 

Cold gas propulsion is the simplest way of achieving thrust. Such a system 
consists simply of a tank (with a controllable nozzle) containing pressurized gas. The 
gas is preferably inert, for example, nitrogen. In order to achieve a reasonable thrust 
level, the gas must be stored under very high pressure, typically 4,000-10,000 psi. 
The high pressure requires storage tanks capable of withstanding such pressures. As 
a result, the tanks are quite heavy. Another significant drawback is the low specific 
impulse of cold gas propulsion; Isp = 50-70 sec is a common average value. Achiev
able thrust is of the order of 5 N. Table C.2.l gives a rough idea of the weight of 
some existing cold gas propulsion systems. 

Table C.2.1 Weight and volume 0/ some cold gas propulsion tanks 

No Volume Weight ofTank Mass of the Initial Total Pressure Technology 
[liter] (empty) [kg] gas [kg] Weight [kg] [pSI] 

1 13 6.7 5 11.7 6000 Trtanium& 
Graphic epoxy 

2 11 12 4 16 6000 Titanium 

3 9.5 17 4.5 21.5 10000 Titanium 

C.2.2 Chemical Propulsion - Solid 

Chemical propulsion systems can be subdivided into two basic fuel cate
gories, solid and liquid, which are the primary systems used in space for achieving 
thrust. In the technical literature, rockets using solid propellants are called motors, 
whereas rockets using liquid propellants are called thrusters or jets. 

Solid propellant motors are used as the upper stage propulsion system, providing 
the necessary velocity increment for injection of the spacecraft from the low-altitude 
initial orbit into the final operational orbit; they are sometimes called apogee kick 
motors (AKM) or apogee boost motors (ABM). The propellant is a solid chemical 
material that is a mixture of fuel and oxidant, cast within a metal case ended by a 
nozzle throat and exit cone. Once ignited, solid propellant motors generally burn 
until exhausted, since there is no simple physical means to stop the burning within 

------- -I 
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/' 
Igniter 
assembly 

Exit cone 

'-

Figure C.l.1 Schematic diagram of a solid propulsion motor. 

Table C.2.2 Performance figures of various 
solid propellant motors 
(from Wertz and Larson 1991 by permission of 
Kluwer Academic Publishers) 

Name of Total Mass Propellant Total Impulse 
Motor [kg] mass [kg] [10· N-s] 

STAR 13B 47 41.4 0.16 

lrus SRM-2 2995 2725 8.11 

STAR 75 8066 7496 21.3 

fLEASATPKM 3658 3329 9.26 

IruS SRM-I 10374 9752 28.1 

Max Thrust 
[N] 

9608 

111072 

242846 

193200 

260488 

Isp 
[s] 

285.7 

303.8 

288.0 

285.4 

295.5 

the motor volume. The Isp of solid propellant motors ranges from 285 to 300 sec. A 
simplified schematic of a solid motor is shown in Figure C.2.I. Table C.2.2 summar
izes the characteristic features of some solid propellant motors; see also Pritchard 
and Sciulli (1986). 

C.2.3 Chemical Propulsion - Liquid 

In liquid propulsion systems, we must differentiate between monopropellant 
and bipropellant fuels. The hardware for bipropellant liquid systems is more com
plicated, but such systems are characterized by a higher Isp. In either case, the fuel is 
delivered to the combustion chamber in one of two possible modes. 

In the blowdown operation mode, pressurized gas is stored in the same tank as 
the propellant. The drawback here is that the pressure decreases as propellant is con
sumed, reducing the thrust level accordingly. Typical pressures in this mode are ini
tially 300-400 psi, falling to about 100 psi as the propellant becomes exhausted. 

In the regulated pressure operation mode, a regulator maintains a constant gas 
pressure, with the inherent drawback of additional system complexity. A high pres
sure of about 3,000-4,000 psi is regulated to 200-300 psi at the propellant tank. 

Monopropellant Propulsion 
The most popular liquid propellant is hydrazine (N2H4). Hydrazine vapor

izes and decomposes when brought into contact with a suitable catalyst, thus pro
ducing hydrogen and nitrogen gases under pressure and so generating propulsion. 
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Catalyst Throat 

Figure C.2.2 Schematic diagram of a monopropellant thruster engine. 

An exemplary catalyst is Shell 405 (manufactured by Shell Oil Co.). A schematic 
diagram of a typical hydrazine thrust engine is shown in Figure C.2.2. 

The thrust is produced in the following stages. (I) When the propellant control 
valve is in the open condition, the pressurized monopropellant liquid is injected into 
the catalyst bed at flow rate dm/dt. (2) When in touch with the catalyst, the propel
lant decomposes according to the chemical reaction formula 

(C.2.6) 

A part of the ammonia (NH3) is further decomposed via the chemical reaction 

4NH3 -+ 2N2 + 6H2 -19,956,816 cal. (C.2.7) 

(3) Only part of the ammonia is decomposed, depending on the geometry of the reac
tion chamber (the fraction of decomposed ammonia is about 2/5). The three ele
ments - ammonia, nitrogen, and hydrogen - are exhausted through the exit nozzle 
to produce thrust. . 

With the catalytic thruster just described, a specific impulse lsp = 235 is achieved 
when activated in normal mode (i.e., with nominal pulse width and duty cycles). 
When very short pulses (near the MIB) are activated, the lsp is reduced by a factor of 
two or three. Monopropellant thruster engines produce nominal thrust levels in the 
range of 0.1-500 N. 

A hydrazine thruster can be fired for only a limited number of pulses. The limit
ing factor is the degradation of the catalyst caused by loss of catalytic activity and 
also physical loss of the catalytic mass. It has also been found that the starting tem
perature of the catalyst bed is the primary determinant of its catalytic properties. 
To avoid fast degradation of the catalyst, it is common to keep the bed at high ambi
ent temperatures - about 90°-300°C, depending on the particular thruster, its thrust 
level, and so on. Maintaining an appropriate catalyst bed temperature can prolong 
the hydrazine thruster's life by a factor of greater than 10. Currently, preheated hy
drazine thrusters may have a life expectancy of 1 million pulses. 

The specific impulse achievable with the hydrazine monopropellant can be in
creased by roughly 25070 with a different thruster engine configuration. Instead of 
using a catalyst for decomposing the hydrazine propellant as in Figure C.2.2, the 
thruster engine now consists of two decomposition chambers. The first chamber in
corporates a low-power heater (about 14 W). The second chamber is a vortex heat 
exchanger of about 400 W, which electrically increases the enthalpy of the decom
position products of hydrazine. In this way lsp = 300 sec is achieved, albeit at the 
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expense of greatly increased power consumption. These electrothermal monopro
pel/ant hydrazine thrusters have been used on the telecommunications satellite Intel
sat V for North-South station keeping (see Agrawal 1986). 

The hydrazine thruster does not by itself constitute a complete propulsion system, 
which must include at least the following items: propellant tank, pressurizing sys
tem, propellant control valves, thrusters, filters, latch valves, pressure transducers, 
and fill and drain valves. 

In general, no two satellites use the same propulsion configuration; each sic has its 
own preferred thrust levels. In any given satellite, thrusters with different levels can 
be used for various tasks. In an integrated propulsion system, thrusters for orbit cor
rection and maneuvers are of the high-thrust (HT) type, of the order of 200-500 N. 
For attitude control, much lower-thrust level engines are used. Depending on the 
particular control requirements, low-thrust (LT) engines of the order of 0.1-25 N 
are used. The weight of a thruster is also of importance. Common LT engines weigh 
about 0.15 kg; an HT engine's weight is typically about 2 kg. 

A schematic diagram of a monopropellant propulsion system is shown in Figure 
C.2.3. In this system, a blowdown operation mode is assumed. The propulsion sys
tem in this figure consists of two identical systems, one of which is fully redundant. 
The latch .valves (LVi) allow simultaneous use of both systems or each one alone. 
Each system includes at least six LT thrusters to allow 6-DOF attitude control. The 
number of LT engines need not be limited to six, and neither must they be identical
it all depends on the attitude control philosophy. In Figure C.2.3, each propulsion 
system also includes one HT engine for orbit control. 

Each LT set can be operated by either tank 1 or tank 2. Suppose that leakage is de
tected in the tank-l system. In this case, latch valve LVI is closed, so that the thrust
ers of set A and those of set B are fed from tank 2. Similarly, if one of the thrusters 
of the primary set A is leaky then LV2 is closed, and the backup thrusters (set B) can 
be fed from either tank 1 or tank 2. In other words, this propulsion system is fully 
redundant. It is called an integrated or a unified propulsion system because it en
ables both orbit maneuvering and attitude control (see also Berker 1978). 

Figure C.2.3 Schematic diagram of a monopropellant 
propulsion system. 
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Figure C.2.4 Schematic diagram of a bipropellant propulsion system. 

Bipropel/ant Propulsion 
Bipropellant propulsion systems are based on combustion resulting from the 

contact of two propellants - for instance, monomethyl hydrazine (MMH) and ni
trogen tetroxide (N20 4), which is used as the oxidant. The primary reason for using 
such a system is that an augmented specific impulse is achieved, Isp = 320 or more. 

A bipropellant unified propulsion system usually consists of LT thrusters and one 
or two HT engines, two tanks for the propellants and oxidizer, and an additional 
tank for the pressurized gas (e.g. helium) used to pressurize the two propellant tanks. 
To reduce weight, generally no backup tanks are provided. However, a backup set 
of LT thrusters is used, since their reliability is generally insufficient for an extended 
operational life. The failure of a single thruster would seriously degrade the entire 
ACS, so a backup set is absolutely necessary. 

A schematic diagram of a bipropellant unified propulsion system is shown in Fig
ure C.2.4. In this system we have two LT sets (A and B) for redundancy. The very 
high pressure in tank 3 is regulated to a nominal high pressure of about 200 psi sup
plied to tanks 1 and 2. A system of one-way valves (CVl and CV2) is used to prevent 
flow between the two propellant tanks. Only one HT thruster is included in order to 
decrease the system's weight, which is about 50-60 kg exclusive of propellant mass. 
Common thrust levels are 10-22 N for LT engines and 400-490 N for the HT engine. 
Different propellant-oxidant pairs supply varying specific impulses Isp; see the list
ing in Table C.2.3 (overleaf). 

C.2.4 Electrical Propulsion 

Electrical propulsion systems are based on accelerating an ionized mass in 
electromagnetic or electrostatic fields, where the ions leave the thruster nozzle at very 
high velocities. Specific impulses ranging from 2,000 to 6,000 sec can be achieved. 
However, such propulsion systems have numerous drawbacks. First, the thrust levels 

~~~ ~- ---~~-----------~-~ 
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Table C.2.3 Isp jor different biprope/lant pairs 
(from Pritchard and Sciulli 1986 by permission of Prentice-Hall) 

~anutiu:turer Nominal Thrust (N) Fuel Oxidizer Isp [s] 

Bell 4210 MMH N,O. 289 

Rocketdyne 445 MMH Np. 299 

M.B.B. 400 MMH N,O. 307 

S.B.P. 61668 ~ LOX 432 

Table C.2.4 Characteristics oj 5-mN and J30-mN thrusters 
(from Poeschel and Hyman 1984 by permission of AlAA) 

Thrust Level [mN I 

5 130 

1Tsp [51 2650 3000 

IAverage Power [KW] 0.125 2.6 

I'nuust efficiency [%] 56 70 

lPower/thrust [kW/N] 24.4 20.7 

lDemonstrated lifetime [hr I >15000 10000 

Total Impulse [N-sl 2.710' 710· 

~opeUant Mercury 

that can be achieved are very low: 5-20 x 10-3 N. Next, the exhaust velocity of the 
ions must be so high (about 40 km/sec) that accelerating voltages of about 1,500 V 
are required - a complicated and delicate problem in space technology. Finally, the 
total power input is also high, ranging from 250 W to 550 W. Table C.2.4 details two 
such thrusters. The expected lifetime of these ion thrusters can exceed 15,000 hours. 
However, an increase in power consumption has been observed during this lifetime, 
due to aging of electronic components, as follows: 40/0 after 8,000 hours of opera
tion; 71110 after 15,000 hours of operation. 

Given the technical problems of such systems, we must ask if there is any practi
cal reason for using them. A complete ion propulsion system, based on four UK-I0 
thrusters supplying 0.02 N each and including a propellant mass sufficient to produce 
a total implse of 800,000 N-sec, weighs only 91 kg. In contrast, the equivalent mass 

: POWER: 
: PROCESSING: 
: UNIT : , , 

Neutralizer 
Magnet ~ cathode 

~~~:;;~S c:::::::J 

-':. "0"'" '-... : of· .. •• • - - •• 
•• .. 0"' •• • 

.. ' ;~,/-~~ .. -~' 
Ioruzabon Ion : 
Chamber acceleration : 

electrodes ' 
ION THRUSTER : 

Figure C.l.S Schematic diagram of an electrostatic ion thruster; 
adapted from Poeschel and Hyman (1984) by permission of AlAA. 
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of chemical propellant needed to produce the same total impulse is 286 kg (assuming 
Isp = 285 sec; see Smith 1988). 

A simpiified diagram of an electrostatic ion thruster is shown in Figure C.2.5. 
The gaseous propellant (mercury, xenon, or argon vapor) is ionized in the ionization 
chamber by electron impact, forming a neutral plasma. One side of the ionization 
chamber is equipped with two electrodes that have an array of aligned apertures. A 
high voltage is applied to the electrodes in order to extract ions from the discharged 
plasma and accelerate them to a high velocity, thus forming the ion beam - the thrust 
beam. Electrons and ions must be injected into the beam in equal numbers to main
tain charge neutrality; this is the task of the neutralizer cathode. 

C.2.S Thrusters 

The choice of thrusters depends very much on the specific task to be per
formed by the propulsion system. As already mentioned, a unified propulsion sys
tem may consist of several thrusters with different thrust levels. Besides the level of 
the thrust, some additional characteristics are necessary in order to define a thruster 
completely. For example, when a thruster is used for fine attitude control, the time 
behavior of its achieved thrust is critical. 

Figure C.2.6 shows the time-domain behavior of a commanded thrust. The elec
trical on command applied to the coil of the thruster valve opens that valve for the 
propulsion liquid, but the thrust force develops only after an inherent initial delay. 
This start time Ts is defined as the time elapsed between the electrical command and 
the thrust reaching 900/0 of its maximum value; Ts = IS msec for a bipropellant 10-N 
thruster. 

The shutdown time (Tsd) is the time elapsed between cessation of the on command 
and the final decay of the thrust; Tsd = 10 msec for a bipropellant lOoN thruster. If 
the on command is too short then the thrust will not reach its nominal level F. In-this 
context we can define a minimum on command (T min)' Another important thruster 
characteristic is the delay between the centroid time of the on command and the cen
troid time of the obtained thrust (Ted in Figure C.2.6). 

For fine attitude control, perhaps the most important characteristic is the mini
mum impulse bit (MIB) - a measure of the minimum attitude change that can be 
commanded to the satellite (see Chapter 9). Lower thrust levels enable lower MIBs. 
For a bipropellant IO-N thruster, MIBs of 30-40 mN-sec are achievable; for a cata
lytic monopropellant hydrazine 0.2-N thruster, a MIB of 5 mN-sec is possible. 

f Electrical'on' command 

F ~----~~----~----~--=-~-----

'On' I:OJIIJII81ld 
centroid 

t 

Figure C.l.6 Time-domain behavior of thruster pulse. 
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f 

Figure C.l.7 Time histories showing the roughness and repeatability 
of the output thrust for several activations of the same thruster. 

Another property that characterizes thrusters is roughness, defined as the irreg
ularity of the thrust about its nominal value (see Figure C.2.7). Typical roughness 
values are 20/0-30/0 (of the nominal thrust). In the present context, it is also usual to 
inquire about the repeatability of the time histories for consecutive activations of 
the same thruster. Qualification tests for a thruster record the time behavior for sev
eral activations under the same conditions (e.g., temperature, duty cycle, etc.); see 
Figure C.2.7. 

It is also important to note that the specific impulse depends on the impulse bit. 
The lower the impulse bit, the lower will be Isp - a relation that becomes more pro
nounced when the thrust does not reach its nominal level. This phenomenon bears 
significance for the mass of fuel consumed during an attitude control task, which in 
turn is a major determinant of the satellite's serviceable life. One final thruster fea
ture is the maximum number of activations it can withstand. Contemporary satellites 
are expected to last more than a decade, so the number of activations is quite large 
(hundreds of thousands). It's no wonder, then, that thrusters capable of withstand
ing a million activations are now on the market. Table C.2.5 lists technical specifica
tions for two monopropellant thrust engines. 

C.3 Solar Pressure Torques 

C.3.1 Introduction 

The literature contains many models purporting to supply a dynamic de
scription of the torques produced by solar pressure on reflecting surfaces. Because 
of the delicacy of the various relevant parameters, the dynamic equations are often 
quite complex and so fidelity to nature is far from guaranteed. The purpose of this 
section is to formulate a simplified model sufficient for the presentation of solar con
trol torques in Section 8.6. 

C.3.2 Description 

The basic hardware for realizing solar torques is shown in Figure C.3.1. The 
complete "solar torque hardware set" consists of two panels (the primary sic power 
source) to which are appended the flaps necessary for achieving unbalanced torques 
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Table C.2.S Catalytic monopropellant hydrazine thrusters 
(by permission of Daimler-Benz Aerospace, MBB/ERNO) 

Technieal Data Units CHTO.5 CHT20 

ThnIst nmge N 0.75 - 0.2 24.0-7.2 

Oper.pressure range bar 22-5.5 22-5 

SSF specific impulse Nslkg 2230-2120 2300-2180 

MiDimum impulse bit Ns 0.015-0.005 0.37 - 0.165 

Proofpressure bar 33/54 33/54 

Burst pressure bar 881144 881144 

Mass kg 0.19 0.36 

Valve power Watt 5.0 13.0 

Heat power Watt 2.5 <3.0 

Qualification status qualified in 1977 qualified in 1988 

SSF duration total h 143 4 

SSF duration single bum 5 25200 3600 

Hot pulse quantity 59000 235000 

O1fmodulation quantity 88000 -
Cold start quantity 311000 at < 210°C 10000 
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(to be defined shortly). The geometric dimensions are shown in Figure C.3.2 (over
leaf). Our simplified analysis will aim to produce a first-order-approximation dy
namic model. Despite its limitations, the model presented in this appendix is sufi
ciently elaborated to give a good understanding of the problems involved in solar 
torque attitude control. 

a. 

North 
panel 

SouIh 
ftap 

c. 

d

l

_ -- _ .- -}. 

b. 

Figure C.3.1 Solar torque hardware as installed on the satellite. 
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Mechanical sun 
Iigh~ effect 

a. 

North panel + flap South panel + flap 

b. c. 

Figure C.3.2 Definition of the panel and flap forces 
created by solar pressure. 

We must first define the following parameters: 

P = solar pressure (4.6 X 10-6 N-m-2); 

S = surface area of flaps or panels; 
1J = area reflexivity; and 
'Y = incidence angle of solar pressure. 

With these definitions. the force on the pressure center is 

F = PS(cos2(-y)[1 + 1J]n + sin(-y) cos(-y)[l-1J ]t) (C.3.l) 

(Lievre 1985; see also Figure C.3.2.a). As seen from this equation, there are force 
components normal and tangential to the area. Since the panel and the flap are gen
erally manufactured from different materials, the reflexivity coefficients of the panel 
and the flap will usually differ. The areas of both South and North panels, as well as 
the areas of both South and North flaps, are assumed to be equal. 

Based on Eq. C.3.l, we can compute (with reference to Figure C.3.2.b) the forces 
along the directions I and J of the solar inertial frame for all panels and flaps. These 
forces will be labeled as follows: 

FPJN = force on the North panel in the direction J, 
FPJS = force on the South panel in the direction J, 
FPIN = force on the North panel in the direction I, 
FPIS = force on the South panel in the direction I; 
FFJN = force on the North flap in the direction J, 
FFJS = force on the South flap in the direction J, 
FFIN = force on the North flap in the direction I, 
FFIS = force on the South flap in the direction I. 

Using Eq. C.3.1 with the assumption that the sun is in the I-J plane, we obtain the 
following results for the panels: 

FPJN = PSp cos('YN)[l +'Ilp COS(2'YN)], 

FPIN = PSp'llp cos(90° - 2'YN) = PSp'llp cos( 'YN) sin(2'YN)' 

(C.3.2) 

(C.3.3) 
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FPJS = PSp cos('Ys)[l +"Ip cos(2'Ys», 

FPIS = PSp"lp coshs) sin(2'Ys)' 

391 

(C.3.4) 

(C.3.S) 

To find the forces created by the flaps, we can use the results of Eqs. C.3.2-C.3.S 
after correcting for the relations between angles 6, {3, and'Y in Figure C.3.2.b. For the 
North flap we have {3N = 'YN + 6 - 90°. For the South flap we have (3s = 90° + 'Ys - 6, 
from which it follows that 

cos({3s) = -sinhs-6), cos(2{3s) = -cos2hs-6), sin(2{3s) = -sin 2hs-6). 

Finally, we have the remaining four force equations: 

FFJN =PS,sinhN+6)[l-"I,cos2hN+6)], 

FFIN = -PS,"I,sinhN+6)sin2hN+6), 

FFJS = -PS,sinhs-6)[l-"I,cos2('Ys-6)], 

FFIS = PS,"I,sinhs-6)sin2('Ys-6). 

(C.3.6) 

(C.3.7) 

(C.3.8) 

(C.3.9) 

The last stage of our computation is to find the torques (about the body center of 
mass) created by the forces calculated in Eqs. C.3.2-C.3.9: 

C1 = dp[FPJN - FPJS] +d,[FFJN - FFJS] , 

CJ = dp[FPIN - FPIS] + d,[FFIN - FFIS]. 

(C.3.l0) 

(C.3.11) 

Since the em of the flaps is not located on the axis of rotation of the solar panels, 
there is a small additional torque about this axis that has been ignored in Eq. C.3.l0 
and Eq. C.3.11. There are two reasons why this assumption is permissible from an 
engineering point of view: first, the actual distance between the cm of the flaps and 
the axis of rotation of the panels is small; second, this ignored torque acts about the 
axis of rotation of the solar panels - which are controlled in closed-loop mode rela
tive to the body frame - and hence appears only as a weak disturbance acting on the 
position control loop of the panels. 

Inserting Eqs. C.3.2-C.3.9 into Eq. C.3.10 and Eq. C.3.11 yields the final simpli
fied results, which are nonlinear equations in 'Y and 6'Y: 

C1 = cos(fs)[AI'Y6'Y+A2'Y+A36'Y+A4]' 

CJ = cos(fs)[BI'Y6'Y+B2'Y+B36'Y+B4]' 

In these equations, 

(C.3.l2) 

(C.3.l3) 

'Y = thS+'YN) and 6'Y = 'YN-'YS' (C.3.14) 

The following coefficients Ai and Bt are obtained from Eqs. C.3.2-C.3.11: 

AI = -PSpdpU+S"Ip)+PS,d,[h,sin(6)-sin(6)+h,sin(36)], (C.3.lS) 

A2 = PS,d,[2cos(6)-"I, 3cos(36)+"I,cos(6)], (C.3.16) 

A3 = A4 = BI = B2 = 0, (C.3.l7) 

B3 = PS,dp2"1p + PS,d,"I,t[sin(6)- 3 sin(36)], (C.3.l8) 
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B4 = PS,dpl,[cos(3c5)-cos(c5)]. (C.3.19) 

In our derivation of solar pressure torque dynamics, existence of the specular re
flection effect only was assumed, represented by the area reflexivity coefficient. A 
more sophisticated model could be elaborated assuming the existence of both spec
ular and diffusing reflection reflexivity effects, as in Wertz (1978). A solar pressure 
torques model based on both reflexivity effects has also been assayed by Azor (1992). 
The problem is that in-space tests are required before evaluating any model to be 
used in the design of an operational satellite's ACS. That is, a purely analytical model 
might well prove to be erroneous after space tests are performed. For example, Har
ris and Kyrondis (1990) reported an additional effect of thermal radiation torque, 
produced by the solar panel, that had not been taken into account. This effect turned 
out to be dependent on the procedure by which the solar panels were manufactured! 

C.3.3 Maxim;~at;on 

Solar torque capability is clearly dependent on the geometrical characteris
tics of the panels and flaps, on the flap's deviation angle 15, and on the reflexivity co
efficients IIp and 11, of the panels and flaps. The torque capability can be optimized via 
these parameters without increasing the panel area, which is fixed owing to obvious 
sic structural constraints. In Example 8.6.1- with Sp=6 m2, S,=1 m2, dp =4 m, 
and d, = 5.5 m - it was found by cut-and-try methods that the best achievable torque 
characteristics are procured by IIp = 0.2, 11, = 0.1, and 15 = 15° (see Figure C.3.3). 

It is important to observe that the torque capabilities decrease with the "maxi
mum permitted power loss" requirement; power losses evolve because, in the process 
of achieving the solar torques, the solar arrays are moved from their optimal posi
tion relative to the sun direction. We also observe in Figure C.3.3 that the produced 
torques are not symmetrical about the origin. This drawback could theoretically be 
eliminated by using a more complex flaps geometry to improve flap control (see Du
hamel and Benoit 1991). 

rS 

~ 
8 

Solar Sail Torques 
Sp=6[m'); S." 1 [m']~ h,."0.2; h,.= 0.1 

dp "4[m]; df= 5.5 [m]; d= 15" 
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Figure C.3.3 Roll-yaw torque control capability. 
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C.4 Momentum Exchange Devices 

C.4.1 Introduction 

Momentum exchange devices are controllers that allow changing the distri
bution of momentum inside the satellite, without altering the total inertial momen
tum of the entire system, including the device itself. As such, they do not involve any 
expenditure of fuel. The controller consists of an electrical motor on whose axis is 
assembled a flywheel designed to increase its angular moment of inertia and so de
liver momentum to the satellite's body as part of the ACS. The two basic kinds of 
momentum exchange devices are momentum wheels and reaction wheels, which are 
distinguished by their mode of operation. 

The reaction wheel is used primarily to provide the satellite with sufficient torque 
for various attitude-maneuvering tasks. Hence it is important for the reaction wheel 
to provide as much torque as possible in order to achieve fast attitude maneuvers. 
As is well known (see Section 7.7), a fast attitude maneuver is accompanied by high 
angular momentum during such maneuvers. The range of achievable torques with 
reaction wheels is 0.01-1 N-m. 

The momentum wheel is used primarily to provide the sIc with the momentum 
bias necessary for inertial attitude stability. As a byproduct, the momentum wheel 
can also develop torque for controlling the attitude of the satellite's axis that is paral
lel to the momentum wheel's axis of rotation. The range of angular momentum pro
vided by such wheels is 1-300 N-m-sec. A useful variation is the double-gimbaled mo
mentum wheel- a conventional momentum wheel mounted on a double gimbal. With 
this system, the useful payload of the satellite can be three-axis attitude-controlled in 
a fine pointing range using only one wheel (Bichler 1991, Auer 1992). 

The rotor bearings of momentum exchange devices deserve special mention: we 
distinguish between mechanical and magnetic bearings. Momentum exchange devices 
are designed to work without interruption for long time periods (5-12 years). In the 
space environment of subpressure, lubrication of (mechanical) ball bearings is a ma
jor problem that has not been completely solved. Moreover, the ball bearing suffers 
from excessive friction loading. In recent years, the development of magnetic bear
ings has taken a decided upturn, with good prospects for the future. Magnetic bear
ings improve the torque-to-noise ratio by eliminating the parasitic torque noises char
acteristic of ball bearings (Bosgra and Smilde 1983, Bichler 1991). We proceed with 
a brief analysis of typical hardware items. 

C.4.2 Simplified Model 0/ a RW Assembly 

A model of reaction wheel (RW) dynamics was introduced in Section 7.3.2, 
and is reproduced for the reader's convenience as Figure C.4.1 (overleaf). This con
ventional model incorporates a DC torque motor, where KM , Kv, Iw , B, and RM are 
the usual parameters of the electrical motor. The term Iw is the moment of inertia 
of the rotor's axis, together with the appended flywheel; B is the viscous damping 
coefficient of the rotor, and F is the block modeling the dry friction components. 
Except for this friction block, none of the blocks in Figure C.4.1 exhibit any peculi
arities, since they are linear, ideal models. Some probing inside the actual hardware 
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Figure C.4.1 Basic model of a momentum exchange device. 

components will aid our understanding of the physical behavior of momentum ex
change devices. 

Torque Spectra Noise 
In practice, a direct-drive motor produces harmonic noises that are a func

tion of the rotor's angular velocity WREL. The motor is composed of a number p of 
pole pairs and a number m of phase windings. The commutation of these pairs and 
windings produces parasitic torque noises with the fundamental and higher harmonic 
frequencies: wRELpm, wRELP(2m), wRELP(3m), .... For example, a motor with 8 
pole pairs and 3 phase windings will generate torque noise whose spectral density 
shows harmonics at 24wREL, 48wREL, 72WREL> •••• Ball-bearing wheels generate an
other noise due to movement of the retainer. A number of peaks (at wheel-speed
dependent frequencies) are generated: r, 2r, 3r, ... , where r = CWREL and the constant 
C depends on the bearing's dimensions. These frequencies are all mixed nonlinearly 
with the wheel-speed harmonics and so introduce subharmonic peaks into the low
frequency range. Of course, this effect is nonexistent in magnetic wheel bearings. 

In general, it can be said that the amount of commutation noise increases with the 
magnitude of the commanded drive-motor current. From this, we conclude that the 
disturbance noise increases during sic acceleration. The noise at low wheel speeds is 

. of particular importance, because then the noise lies within the bandwidth of the 
satellite ACS. 

In specifying a reaction wheel assembly, the permitted noise spectrum is defined 
according to the wheel speed, and a maximum amount of statistical noise is speci
fied in different frequency bands. A sample reaction wheel torque noise specification 
is shown in Table C.4.1 for a RWA with Tmax = 0.2 N-m and hwmax = 10 N-m-sec; 
spectrum noise measurements of the wheel are also shown. 

Dry and Coulomb Friction 
The block F in Figure C.4.1 merits special attention. This block is detailed 

in Figure C.4.2. The viscous friction is responsible for the power consumption in the 
wheel-drive electronics (WDE) of the wheel assembly. For momentum wheels rotat
ing at high velocities (in order to achieve high momentum bias), this power consump
tion increases notably. The coulomb and stiction friction torques are responsible for 
irregularities and finite attitude errors in the ACS. These friction torques must be 
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Table C.4.1 Comparison of reaction torque noise 
specifications with measurements 

Reaction Torque Noise Specifications & Measurement Results 

Frequency Specification Measurement Results [Nm] 
[Hz] Limit [Nm] 350min·1 

, 7oomin·1 1050min·1 

0-20 7 x 10"' 2 x lit' 7 x 10" 2x 104 

20-50 4 x 10-3 4 x 10-' 1 x lit' 3 x 10-' 

50-200 8 x 10-3 9 x 10"' 7x Ht' 1 x 10"' 

(RMS) Total 8.9 x 10-3 9 x 10"' 1 x 104 2.3 x 10"' 

Motor Current [mA] 36 55 70 

1j (N-m) 

• .-- Viscous 
~ friction Kv 

Coulomb friction K c 

(ORE!. 

Figure C.4.1 Friction model of a reaction wheel. 
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dealt .with in the design of attitude control loops by using sophisticated nonlinear so
lutions. It is important to mention that, since momentum wheels are always rotating 
at an elevated angular speed, there are no velocity sign changes and hence stiction 
and coulomb friction torques are insignificant. 

Torque-Momentum Relationship 
The reaction wheel cannot provide the maximum specified torque at all an

gular velocities; there exists a torque-momentum -dynamic limitation, as shown in 
Figure C.4.3. These limitations have a direct impact on the achievable performance 
in time-optimal attitude control. 

T. (N-m) 
T max = 0.2 N-m 

, BOW 

Power 

...... t-- ------
.' , 

, 10 

h (N-m-sec) 

Figure C.4.3 Torque-momentum limitations in a 
typical reaction wheel assembly. 
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Tradeoffs on Size oj the Flywheel Moment oj Inertia 
In momentum wheels, there is a tradeoff in sizing the moment of inertia of 

the flywheel around the rotating axis of the torque motor. The momentum storage 
capacity is hw = Iww(O), where w(O) is the nominal angular velocity of the flywheel. 
This simple equation means that it is possible to obtain a desired constant momentum 
bias by increasing the moment of inertia of the wheel, or by increasing its angular 
speed. An increase in the moment of inertia is achieved by increasing the weight of 
the wheel. The rotor and flywheel mass and shape must be optimized so as to obtain 
a high inertial moment/mass ratio. 

Increasing the angular velocity of the wheel leads to an increase in the viscous 
torques, thus increasing the power consumption in the WDE of the assembly, and 
also to faster degradation of the ball bearings. Hence, carefully considered trade
offs are necessary before completing the technical definition of the reaction wheel 
assembly. 

Tachometer 
Knowledge of the angular velocity of the wheel is mandatory for many as

pects related to the momentum exchange device. First, a momentum wheel is some
times activated in what is called the speed mode. In this mode, the angular velocity 
must be measured and fed to the electronics for accurate speed control. The angular 
velocity of momentum wheels is naturally high, so that accurate measurements are 
comparatively easy. The tachometer is usually a magnetic sensing commutator whose 
resolution depends on the number of sensors spread along the periphery of the stator 
of the direct drive motor. 

A different use of the measured angular velocity is in wheel momentum manage
ment of multi-wheel systems, as explained in Section 7.3.5. In these control systems 
without momentum bias, the four (or more) wheels are controlled to operate under 
limited angular velocities - close to null, if possible. Here the measurement of mo
mentum wheel angular velocity must be more accurate and the tachometer instru
mentation designed accordingly. 

C.4.3 Electronics 

The flywheel and the direct-drive motor can only be controlled through com
patible electronics. The basic feedback loops for transforming the drive motor and 
the flywheel to a reaction wheel assembly were explained in Section 7.3.1. In Figure 
7.3.2, use of feedback from the motor current, which is proportional to the motor 
torque, transforms the motor and flywheel into a reaction wheel system; this is the 
torque mode. If, instead, a constant wheel speed is to be maintained, feedback from 
the tachometer should be used; the wheel is then operating in the speed mode. In 
other words, the wheel drive electronics is designed to achieve complete fulfillment 
of the specified characteristics of the reaction or momentum wheel assemblies. A typ
ical WDE scheme is shown in Figure C.4.4. 

C.4.4 Specifications 

Specifying a reaction or momentum wheel assembly is a long and involved 
process, and an integral part of designing the attitude control system. We have learned 
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C.4 I Momentum Exchange Devices 

Braking command (WOE in OFF condition) WDE 8-1 

Motor line 

: Temperature 

Figure C.4.4 Typical wheel drive electronics block diagram; adapted 
by permission of TELDlX-Bosch Telecom. 
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that the most important characteristics concern maximum achievable torques and 
momentum levels as well as minimum parasitic torque disturbances. We are also faced 
with more prosaic issues: power consumption, size and weight, conformity to envi
ronmental conditions, and so' on. 

To exemplify these specifications we have chosen the space-proven DRALLRAD 
momentum and reaction wheels with ball bearings. Table C.4.2 (overleaf) describes 
the wheel assemblies and Table C.4.3 (page 399) the wheel drive electronics . 

c.s Magnetic Torqrods 

C.S.1 Introduction 

Torqrods (also known as torque rods, torque bars, or magnetotorquers) are 
used extensively in the attitude control of spacecraft. They are designed to generate 
controllable magnetic dipole moments for a variety of applications. For example, we 
have seen in Section 5.3.4 that they are used for active damping in gravity gradient 
attitude-stabilized sic (Section 7.4). In Section 7.5 we described the use of torqrods 
for magnetic unloading of momentum exchange devices. In general, torqrods are 
useful because they are substitutes for consumables (such as fuel for thrusters), thus 
reducing weight. On the other hand, they have their own weight, and it is neces
sary to examine the associated tradeoffs before deciding whether they are worthwhile 
from the standpoint of the overall satellite mission. 

The torqrod consists of a magnetic core and a coil. When the coil is energized, 
the torqrod generates a magnetic moment. A serious drawback with torqrods is the 
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Table C.4.2 DRALLRAD wheel assembly specifications 
(by permission of TELDIX-Bosch Telecom) 

iwheel diameter em 20 26 35 SO ~ 
Angular momentum range Nms 1.8 ... 6.5 S.0 ... 20 14 ... 80 50 ... 300 200 ... 1000 

Max. reaction torque Nm 0.2 0.2 0.2 0.3 0.3-0.6 

Speed*--) min"· 6000 6000 6000 6000 6000 

!Loss torque at max. speed--) sO.012 sO.013 sO.015 SO.022 sO.07 
Nm 

Power consumption: 

-steady state (depending on speed) 2 ... 7 2 ... 8 2...10 3...15 10 ... 50 
W 

-max. power rating W sao sao s 100 s 150 S500 

Dimensions: 

-diameter A mm 203 260 350 500 600 

-heightB mm 75 85 120 150 180 

Weight kg 2.7 ... 3.4 3.5 ... 6.0 5.0 ... 8.0 7.5 ... 12 20 ... 37 

Environmental conditions 
-openUing temperature suitable for satellites compatible with launchers 
-vibration (sinusoidal) such as ARIANE or Space Shuttle 
-vibration (random) 
-linear acceleration 

-)under development 
--)with ironIess motors (control range +/- 10"10) 

---)Max. speed of reaction wheels. nominal speed of momentum wheels 

fact that the generated moments depend on the earth's magnetic field in an inverse 
cube relation: the earth's field strength is B = m1R3, where m = 7.96 X lOIS Wb/m is 
the earth's magnetic constant. The moments are also direction-dependent, since the 
torque is defined as 

Tmas = MxB, (C.S.I) 

where Tmas is the created torque, B is the earth's magnetic field vector, and M is the 
magnetic dipole moment generated by the torqrods. 

It is important to develop a sense of the level of attainable torques. With a dipole 
of M = 100 A-m2 perpendicular to the earth's magnetic field and an altitude of 400 
km, the maximum achievable torque will amount to Tmas = 2.S6 X 10-3 N-m. With 
the same magnetic dipole but at geostationary altitude, the maximum achievable 
torque will amount to only 10.46 X 10-6 N-m. Since the perpendicularity condition 
that we assume does not generally hold, the average torques that we can produce for 
attitude control are fairly low. Another drawback is that a control system using torq
rods must usually include a magnetometer for estimating the earth's magnetic field, a 
measurement that for the most part is useful only for implementing the control law. 
Moreover, the applied magnetic dipole moment spoils the magnetometer measure
ment outputs . 

C.S.l Performance Curve 

Torqrods can be used in "bang-bang" or proportional attitude control laws. 
A typical torqrod performance curve is shown in Figure C.S.1. The magnitude of the 
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C.5 / Magnetic Torqrods 

Table C.4.3 DRALLRAD wheel electronics specifications 
(by permission of TELDIX-Bosch Telecom) 

IWDEtype WOE 1-0 WOE.5-0 WOE 8-2 

~onwheels (dual channel) (dual channel) (single channe1) 
INTELSATV ~-SATtrDP-I DPS 

DR 15 TELE-x,oR 50 DR SO 

Weight kg 2.15 1.1 1.9 

iJ>lmensians 
-length mm 210 20S 20S 

width mm 160 145 113 

-height mm 110 160 I1S 

Supply voltages VDC +5 +50±2% 26-42 

±15 mainbos mainbos 

+50 ••• ••• 
Signal inteJface digital/analog digital/analog digital/analog 

Operational Modes speed command or reaction torque command 

Power consumption at 
constant speed of the wheels 

-WOE W S 5 6 

-wheels W lO- S· 9 

-1lIIaI W 15 13 IS 

Peak power consumption at max. 
torque and max. speed 
of the wheels 

-WOE W 19 20 30 

-\\iteel W 60- 70- 70 

-1lIIaI W 79 90 100 

l!nvinmmeut conditions suitable for satellites compatible with launchers 
such as ARIANE or Space Sbutlle 

.)One wheel active, second wbeeI cold redundant 
•• )Two wheels active simultaneously 

···)IsoIaled DCIDC converters 

Moment A_m2 

dipole 

Saturation level ----------/ 

rnA 

Current 

Figure C.S.1 Typical torqrod performance curve. 

WDE9-9 
(dual channe1) 

ROSAT 
RSR2S 

1.9 

204 

184 

170 

25-33 

digital 

5 

12 

17·· 

20 

110·· 

ISO 
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dipole moment is typically linearly proportional (± 4%) to the value of the input cur
rent within the specified linear range. The saturation level is defined as the point at 
which the magnitude of the achieved dipole moment deviates by ±30OJo from that 
expected of a straight-line extrapolation of the linear region. 

------'" 
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Table C.S.1 Characteristics of ITHACO torqrods (by permission of ITHACO Space Systems) 

Catalog Moments [A-m2
] Linear Saturation Resistance3 Scale4 Mas,s2 Length Diameters! Number Notes 

Nunber (Absolute Values) Voltage Voltage at 25°C Factor [Kg] [m] [em] of 

Linear Saturation Residual [v] [VJ [ohm] [A-m2/mA] (max) (max) (max) COILS 

Moment Moment Moment 
(nominal) (nominal) (nominal) 

(minim) (minim) (max) 

TRIOCFN 13 IS 0.1 11.0 13.9 150 0.18 0.4 004 1.8 1 Fiberglass case and 2 IDOIIIIting blocks 

TRIOCFR 13 IS 0.1 17.0 20.0 270 0.21 0.405 0.39 1.8 2 Fiberglass case,no _,(piglail 
leads),2 DlOIDlling blocks 

TR30CFR 35 40 0.2 24.0 28.0 132 0.19 0.905 0.5 2.3 2 Fiberglass case, 3 IDOIIIIting blocks 

irR60CFR 60 70 0.7 10.3 12.6 40 0.205 1.7 0.64 2.6 2 Fiberglass case, 3111OU11ting blocks 

frR,6SCAR 605 80 004 9.2 12.3 39 0.28 1.8 0.64 2.7 2 AhnniDium case, N<te 5. 

TRlOOCFN 110 130 0.2 lOA 13.0 20 0.21 4.05 0041 4.9 I Fiberglass case,2 mOUl11ing blocks 

trR,IOOCFR 110 130 1.0 9.6 12.3 106 1.21 3.2 0.87 3.05 2 Fiberglass case, 3 mOUI11ing blocks 

trR,100UPR 110 130 1.0 20.0 24.6 164 0.92 2.1 0.85 2.3 2 Caseless DesiIPl for low WeisJl1,N<te 5 

trR,100cAR 110 130 1.0 14.0 19.0 120 0.95 3.6 0.75 3.6 2 AhnniDium case, N<te S. 

trR,14OCFR 140 170 1.0 9.5 12.5 110 1.68 5.0 0.94 3.9 :: Fiberglass case, 31D01111ting blocks 

in170UPR 170 200 1.2 21.0 27.0 117 1.0 2.S 0.93 2.54 2 Caseless Desi!Pl for low WeisJl1,N<te 05 

trR,18OCAR 180 220 1.0 21.05 29.0 67 0.54 3.5 0.78 3.2 2 AhnniDium case, N<te S. 

trRz30UPR 230 270 1 . .5 26.0 33.0 127 1.17 4.4 0.92 3.0 2 Caseless DesiIPl for low WeisJl1,N<te.5 

trR,480UPR 480 570 3.0 26 . .5 3.5.0 116 2.2 8.2 1.3 3.2 2 Caseless DesiIPl for low Weigln 

trR,sOOCFR .500 600 2.0 31.0 40.0 17.5 2.9 12.2.5 1.12 6.4 2 Fiberglass case, 3 DIOUIIIlng blocks 

trR,SI0UPR 810 970 4.0 27.5 36.2 8Z 2.5 14.0 104 3.2 2 Caseless DesiIPl for low WeisJl1,N<te.5 

1. Not including mounting feet. 2. Mass includes mounting blocks. 3. Copper wire, TC.393OJo/deg C. Resistance is that of a single coil. 4. Scale factor is that for one coil. 

S. Metal case or mounting blocks used. Use with onboard magnetometer closed-loop feedback system is not recommended due to "shoned turn" effects of case or mounting blockS . 

- - - - - - - iiii iiii iiii - &iii IIii iiii ... .. ... - .. iiiii 
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C.S.3 Specifications 

As simple as it appears, even a torqrod must also be carefully designed to 
exhibit various required characteristics. First, we must define the dipole moment sat
uration level and the linear range of the torqrod (Section C.S.2). 

The principal characteristics can be achieved with different levels of power con
sumption, reflecting the inversely proportional weight of the torqrod. Torqrods can 
be produced from different magnetic materials and in different dimensions. For ex
ample, ITHACO models TR100cFR and TR100UPR provide practically the same 
magnetic moments, but need a maximum power of 1.4 W and 3.7 W, respectively; 
their respective weights are 3.2 kg and 2.1 kg. Torqrods usually are built with two 
coils, the second for redundancy. Table C.S.l supplies a partial listing of torqrods 
manufactured by ITHACO Space Systems. 
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Index 

absorption characteristic, 41 
acceleration 

disturbing, 85 
Keplerian, 29 
linear, 8 
longitudinal, 58, 78 

accumulation of momentum, 189 
ACS accuracy, 172 
action equation of motion, 299 
active attitude control, 112 
active control, 210, 214 
active damping, 117, 126 
active nutation control, 135 
active nutation damping, 225 
active wheel nutation damping, 146 
aerodynamic force, 32 
air density, 32 
altitude of 

apogee,65 
geostationary orbit, 73 
low-orbit satellite, 28, 72 
orbit, 32 
perigee, 65 

amplification of 
position sensor noise, 179 
rate sensor noise, 178 
reaction wheel torque noise, 179 

analog sun sensor, 345 
angular dynamic equations, 88,211 
angular momentum, II, 88, 89 
angular motion, 88, 90 
angular velocity, 88, 101, 162 

. angular velocity sensors, 175 
anomalies, eccentric, true, 18 
aphelion, 15 
apoapsis, 15 
apogee, 15 
apogee boost motor (ABM) 60, 381 
apsides,68 
argument of perigee, 24, 28, 68 
Aries, first point of, 23 
ascending node, 23, 36 
asymptotes, 17 
atmospheric drag, 32, 72 
attitude calculation, 336 
attitude control, 163 

gravity gradient, 112, 114 
laws, 156 
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magnetic, 188,222 
reaction thrust, 242 
solar torque, 222, 229 
time-optimal, 195 

attitude determination hardware, 328 
attitude dynamics, 88 
attitude error, 76 
attitude kinematics, 88, 100 
attitude-maneuvering satellite, 112 
attitude maneuvers, 152 
attitude matrix, 318 
attitude sensors, 173, 174 
attitude stability, 173 
attitude transformations in space, 325 
axis of symmetry, 95 

ballistic coefficient, 33 
bandwidth of attitude control system, 180 
bang-bang control, 141, 195 
basic attitude control equation, 113,152 
bending modes, 180 
bias attitude error, 335 
body cone, 98 
body coordinate frame, 318 
body rates estimation, 158 

Canopus, 363 
cantilever beam, 297 
cantilever natural frequency, 294 
Cape Canaveral, 73 
Cartesian coordinate system, 24, 27 
catalyst, 382 
catalytic activity, 383 
CCD matrix, 369 
central force, 12 
celestial background, 364 
celestial coordinates, 371 
celestial catalog, 365 
celestial map, 365 
celestial pole, 22 
celestial sphere, 23, 365 
center of 

attracting body, 43 
earth,40 
eccentricity circle, 55 

central force field, 12 
charge coupled device (CCD) detector, 369 
chatter, 143, 198, 201 

.-----. 
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chemical propulsion 
liquid,382 
solid,381 

circularization of GTO, 75 
classical orbit parameters, 24, 27 
code 

binary, 352 
Gray, 352 

cold gas propulsion, 381 
conical section, 14 
conservation of angular momentum, 161 
conservation of energy, 10 
conservative force, 10 
constant of gravitation, 9 
control hardware, 379 
control torques, 113 
control torque saturation, 223 
coplanar transfer orbit, 69 
cosine sun detector, 345 
coupling coefficients and matrices, 310 
critical inclination, 37 

damper 
boom articulation, 123 
external spring boom, 123 
magnetic hysteresis, 123 
point mass, 123 
wheel,124 

damping 
active, 126 
all-magnetic active, 129 
passive, 123, 146 
passive wheel nutation, 144 

damping factor, coefficient, 123, 145 
dead zone, 140, 285 
deflection mode 

in-plane, 309 
out-of-plane, 309 
torsional, 309 

denutation, 139 
despin, 139 
digital sun sensor, 351 
direction cosine error matrix, 154,318 
direction cosine matrix, 104, 153, 318, 323 
direction cosines, 46 
discrete control, 273 
displacement equations of motion, 300 
dissipation function, 293 
disturbed Keplerian orbit, 37 
disturbing torque, 114, 132 
disturbance torques, 122, 274 
double stars, 365 
drag coefficient, 32 
drift rate, 79 
dry center of mass, 305 
dual-cone optical head, 333 

dual-cone scanner, 334 
dual-spin stabilization, 132, 148, 210 

earth albedo, 329 
earth circle, 337 
earth 

equatorial plane, 23, 56 
escape velocity, 16 

earth sensors, 174 , 329 
noise amplification, 220 

earth's magnetic field, 123, 126, 186 
eccentric anomaly, 18 
eccentricity, 14, 21, 42, 
eccentricity circle, 52, 84 
eccentricity corrections, 78, 84 
eccentricity derivative, 55 
eccentricity vector, 43, 52 , 81 
eccentricity vector evolution, 55 
ecliptic plane, 23, 45 
ecliptic pole, 48 
eigenaxis rotation, 195 
eigenfrequency, 295 
eigenvalue, 92 , 299 
eigenvector, 92, 299 
eigenvector of rotation, 323 
electric propulsion, 385 
ellipsoid 

of inertia, 93 
of momentum, 94 

emission spectra, 363 
energy 

kinetic, 9 
potential, 9 

energy constant, 16 
energy dissipation, 99, 138,149, 244 

rate, 138 
energy sink, 138 
epoch,23 
equatorial plane, 22, 37, 42, 73 
escape velocity (from circular orbit), 16 
Euler angle errors, 153 
Euler angle rotation, 319 
Euler angles, 101, 104, 110 
Euler angular rates, 153 
Euler axis of rotation, 155, 188, 323 
Euler-Hill equations, 57 
Euler's moment equation, 95, 145 
evolution of the eccentricity vector, 50 
evolution of the inclination vector, 43 
external disturbances, 275 
external torque, 107 

field of view (FOY), 329, 350, 373 
first point of the Aries, 23 
flexibility coefficients, 298 
flexibility matrix, 298 
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I flexible solar array, 291 
flexural rigidity, 297 
flux of light, 357 

I 
focus,8,15 
force-deflection equation, 297 
frequency of oscillation, 117 

.:--, friction, 394 

I 
., fuel consumption, 64, 70, 136, 143 

fuel tank, 302 

Gauss planetary equations, 30 
generalized coordinates, 293 

I generalized forces, 293 
geocentric inertial system, 22, 23 
geocentric latitude, 35 
geographical 

I latitude, 36, 68, 73 
longitude, 35, 78 

-.0 •• : ... geomagnetic equator, 187 
.. geopotential function, 35 

I geostationary, 28, 42, 73 
geostationary orbit corrections, 80 
geosynchronous, 42, 73 
gravitational 

I attraction field, 17 
force, 44 
potential, 34, 37 

gravity gradient, 112 

I attitude control, 114 
characteristic equation, 114 
moments, 108 
stabilization. 112, 122, 126 

I vector, 109 
Gray binary code, 351 
Greenwich meridian, 43 

I 
hardware 

attitude determination, 174, 328 
control, 160, 379 

, harmonic coefficients. 14 

I 
;~~t sectoral, 35 

...... spherical, 34 
1 tesseral, 35 

.:j zonal,35 

I 
:1 harmonic motion, 49, 117 

Hill equations, 58 
Hohmann transfer, 70 
horizon-crossing sensor, 330 

I 
horizon sensor, 330 
hyperbolic orbit, 17 

:1 image dissector, 367 
:.-:.} immunity to sensor noise, 246 

I 
".:"j impulsive force, 59 

impulsive thrust, 64 
inclination, 24, 42 

angle, 28 

I 
I ~ 

, 1 

I 
I 
I 

circle, 82 
correction, 74, 82 
station keeping, 80, 81 
zeroing, 74 

inclination derivatives, 49 
inclination drift, 41 
inclination vector, 43, 82 

evolution, 43 
inertia matrix, 88 
inertial coordinate system, 22, 25 
inertial frame, 26 
inertial measuring unit (IMU), 181 
inertial reference frame, 26 
influence coefficient, 292 
infrared earth sensor, 329 
infrared static earth sensor, 343 
in-plane deflection mode, 309 
integrator, 278 
inverse square law of force, 9, 10 
ion thruster, 386 

Keplerian acceleration, 29 
Keplerian orbit, 8, 12 
Kepler's laws, 8, 19 
Kepler's time equation, 20 
Kourou, 73 

Lagrange's equations, 45, 293 
Lagrange's method, 293 
Lagrange's planetary equation, 33 
latch valves, 384 
launch site, 73, 74 
law of areas, 19 
Legendre polynomials, 35, 41 
linearized attitude dynamics equations of 

motion, 108, 312 
line of apsides, 65 
line of nodes, 37 
liquid slosh, 180, 301 
local coordinate system, 25 
longitude station keeping, 85 
longitudinal acceleration, 56, 78 
longitudinal drift rate, 79 
lunar pole, 48 

magnetic active damping, 129 
magnetic attitude control, 185 
magnetic control dipole, 126 
magnetic field, 123, 126, 128 
magnetic moments, 397 
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magnetic torquers (torqrods), 126, 187, 397 
magnetic torque equation, 191 
magnetic unloading of momentum, 189 
magnetotorquers, 397 
magnitude m of a star, 357 
major axis, 16, 92 
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mask detector, 349 
mass matrix, 298 
massless cantilever beam, 297 
mean anomaly, 20 
mean longitude, 43 
mean motion, 20 
mean radius of earth, 35 
minimum impulse bit, 245, 284 
minimum torque impulse bit, 285 
minor axis, 92 
modal frequency, 294 
modeling liquid slosh, 301 
modeling solar panels, 291 
modulator 

pulse width, (PW), 273 
pulse width-pulse frequency (PWPF), 266, 

270 
pseudo rate (PR), 270 

Molniya orbit, 37 
moment of inertia, 89 

maximum, 92 
minimum, 92 
principal, 92 
about spin axis, 90 

moment of momentum, 11 
momentum axis of orbit, 25 
momentum bias, 212, 
momentum-biased attitude stabilization, 161, 

210 
momentum accumulation, 165 
momentum 

linear, 8, 
angular, 11, 88 

momentum-biased satellite, 217 
momentum bias stabilization, 150 
momentum capacity, 206 
momentum dumping, 165, 241 

magnetic, 194 
reaction, 241, 250 

momentum exchange device, 107, 160, 393 
control moment gyro, 161 
momentum wheel, 107, 161, 237 
reaction wheel, 161 

momentum management, 169 
momentum wheel, 161, 211, 393 
monopropellant propulsion system, 382 
moon's orbit, 45, 48 
multi-mass modeling, 296, 308 
multi-mass sloshing model, 308 

nadir, 214, 331 
nadir-pointing stabilized satellite, 120 
nobody problem, 39 
natural eccentricity radius, 55, 84 
natural frequency, 180 
natural frequency of oscillation, 300, 301 

Newton's laws, 8 
second law of motion, 39 

node line, 24, 
noise amplification, 178,220 
nonconservative perturbing forces, 28 
nonhomogeneity of the earth, 34 
nonspinning satellite 

dynamic equations of, 107 
kinematic equations of, 100 

nonviscous liquid, 302 
North-South station keeping, 81 
nozzle throat, 381 
nutation 

damper, 146 
destabilization, 99 
instability, 100 
stability, 100, 

nutation angle, 98, 133 
nutation frequency, 136, 212, 220 
nutational motion, 132 

oblateness effects of the earth, 34, 329 
onboard star catalog, 370 
one-vibrating mass model, 302 
open-loop gain, 313 
operational constraints, 67 
optical scanning mechanism, 330, 367 
optical sensor head, 349 
orbital 

adjustment, 65, 78 
corrections, 80 
frequency, 212 
maneuvers, 64 
period,32 
plane, 24, 44 
pole, 24, 43, 80 
rate, 117 

orbit change 
in-plane, 68, 75 
multi-impulse, 70 
out-of-plane, 75 
single-impulse, 65 

orbit coordinates, 25 
orbit mechanics, 8 
orbit parameters, 24, 32 
orbit reference frame, 101, 105 
orbits 

altitude, 32 
circular, 15 
coaxial,71 
coplanar, 71 
elliptical, 15 
equatorial, 24 
geostationary, 42, 73 
geosynchronous, 42, 73 
heliosynchronous, 36 

Index I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

,;. 

.' 

I 
i 

I 
I 
I 
I 
I 

Index 

hyperbolic, 17 
parabolic, 16 
sun-synchronous, 36 

oscillation frequency, 305 
osculating orbit, 29 
out-of-plane deflection mode, 309 

passive attitude control, 112 
passive dampers, 123 
passive wheel nutation damping, 144 
parabolic trajectory, 78 
parasitic disturbing torques, 161 
passage time from perigee, 21 
pendulum, frequency of oscillation, 302 
periapsis, 15 
perigee, 15 

argument, 24 
passage, 20 

perihelion, 15 
perturbation acceleration, 29, 31,40,85 
perturbed 

orbit, 28 
equation of motion, 29 

perturbing body, 40 
perturbing forces, 28, 33, 85 
perturbing potential function, 37 
perturbing third body, 39 
photomultiplier, 367 
planetary precession, 23 
Polaris, 214, 357 
pole 

celestial, 22 
ecliptic, lunar, 48 
orbital, 44, 80 

polhode,94 
positioning accuracy, 173 
potential energy, 10, 14 
power loss, 392 
precession 

lunar pole, 48 
planetary, 23 

precessional motion, 22 
prime focus, 15, 18 
principal axes, 93 
principal axes of inertia, 91 
principal moments of inertia, 92 
product of inertia, 90, 225, 248 
propellant 

control valve, 384 
liquid,382 
mass, 72 
solid,381 

proper real orthogonal matrix, 319 
propulsion, 379 

bipropellant, 385 
chemical, 381 

cold gas, 381 
electric, 385 
Iiquid,382 
monopropellant, 382 
solid propellant, 381 

propulsion rocket equation, 380 
pseudoinverse matrix, 160 
pseudo rate (PR) modulator, 270 
pulsed controller, 273 
pulsed reaction system, 273 
pulse width modulation, 265, 273 

407 

pulse width-pulse frequency modulation, 265, 
267 

pulsing mode, 260 

quatemion, 104 , 322 
quaternion error vector, 156 
quaternion method, 322 
quaternion multiplication, 326 
quatemion vector, 104 

radiance detector, 330, 344 
radiation pressure 41 
rate 

gyro, 158, 375 
integrating gyro, 105, 175, 375 

rate sensor, 175, 373 
reaction control system, 140 
reaction thruster attitude control, 260 
reaction thruster, 242, 260 

HT, LT, 385 
reaction torque, 260, 265 
reaction wheel, 161, 206, 393 
reciprocity theorem, 298 
reference coordinate system, frame, 101 
relative acceleration, 58 
relative distance, 58 
relative motion, 10, 58 
restrictions on orbit changes, 69 
reticle slit pattern, 351 
right ascension, 24, 28, 43 
right-handed system, 23 
right pseudoinverse transformation, 169 
rigid body, 88, 291 

rotation kinetic energy, 90 
roll deadbeat limit, 247 
roll-yaw attitude control, 237 
root locus, 146 
rotating frame, 102 
rotational axis, 91 
rotational kinetic energy, 90, 94 
rotational motion, 88, 238 

sampled transfer function, 284 
sampling frequency, 273 
satellite motion, 59 
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scalar potential function ,34 
scanning mechanism, 330 
scanning rate, 338 
Schmidt trigger, 265, 
sectoral harmonic coefficients, 35 
secular term 

of inclination derivative, 50 
semi-latus rectum, 14 
semimajor axis, 16, 65 
semiminor axis, 16 
sensor noise, 113, 173 

amplification, 178, 266 
side force, 308 
sidereal angle, 42 
sidereal day, 42 
signal processing, 330, 369 
simulation, 6-DOF, 120 
single-mass structural dynamics, 293 
single-spin stabilization, 132,144 
slosh dipole, 305 
solar 

efficiency, 234 
energy flux, 41 
pressure, 28 
radiation, 41 
torques, 388 
wind,41 

solar control torques, 229, 388 
solar flaps, 230 
solar panels, 230 
solar radiation perturbing function, 

53 
solar torque capability, 392 
space cone, 98 
specific angular momentum, 12 
specific impulse J,p, 380 
spectra of a star, 357 
spherical harmonic expansion, 34 
stability of rotation, 96 
star catalog, 369 
star identification, 371 
star scanner, 366 
star sensor, 353 

assembly, 367 
specification, 373 

star tracking, 366 
static earth sensor, 343 
steady-state error, 278 
stellar distribution, 364 
stiffness coefficient, 292, 298 
stiffness constant, 299 
stiffness matrix, 298 
structural dynamics, 113, 291, 291 
structural model, 295, 296 
structural modeling, 291, 
sun acquisition, 350 

sun sensors, 174, 345 
analog, 345 
digital, 351 
one-axis, 347 
two-axis, 349 

sun-synchronous orbit, 36 
switching curve, 198 

tachometer, 396 
terminator, 329 
tesseral harmonic coefficients, 35, 37 
thermal emission, 329 
thermopile, 344 
third-body perturbing force, 39 
three-axes stabilized, 100 
three-body problem, 39 
thruster activation time, 263 
thrusters, 387 

electrothermal monopropellant, 384 
hydrazine, 383 
ion, 386 

time delay, 200 
time derivation 

of direction cosine matrix, 104 
of quatemion vector, 104 

time-optimal attitude control, 195 
time response, 117,212,235 
time since periapsis passage, 18 
torque 

arm, 262 
commands, 141 
control law, 152, 207 
impulse bit, 245, 262 
solar, 234, 388 

torque spectra noise, 394 
torque impulses, 273 
torque wheel, 107 
torsional deflection mode, 309 
total energy, 10, 14 
total energy per unit mass, 14 
total impulse, 380 
transfer 

geostationary (GTO), 73, 85 
geosynchronous, 73 
Hohmann 70 
orbit, 64, 71 

transformation, three-dimensional, 25 
transplanetary sic voyage, 17 
true anomaly, 18 
two-body problem, 10 

unbalanced torque, 232 
unified propulsion system, 384 
universal constant of gravity, 9 

variable stars, 365 
variance in earth radiation, 336 
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Index 

variation of parameters, 34 
Vega, 357 
velocity 

angular, 59 
circular, 51 
radial,31 
relative, 59 
vector, 8, 30 

velocity change, 64, 78 
velocity increment, 52 
velocity loss, 64, 133 
vernal equinox, 23 
vibrating mass model, 302 
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viscosity damping coefficient, 163 
visual magnitude, 363 

wheel damper, 123 
wheel momentum dumping, 250 
wheel momentum management, 396 
windmill torque, 231 
work and energy, 9 

yaw error, 217 
yaw measurement, 215 

zero-bias momentum system, 190 
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