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Abstract

This paper introduces the notion of using co-evolution to adapt the penalty factors of a fitness function incorporated in a
Ž .genetic algorithm GA for numerical optimization. The proposed approach produces solutions even better than those

Ž .previously reported in the literature for other GA-based and mathematical programming techniques that have been
particularly fine-tuned using a normally lengthy trial and error process to solve a certain problem or set of problems. The
present technique is also easy to implement and suitable for parallelization, which is a necessary further step to improve its
current performance. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .The importance of genetic algorithms GAs as a
powerful tool for engineering optimization has been
widely shown in the last few years through a vast

w xamount of applications 1,2 . However, even when
GAs have been successful in many practical applica-
tions, the quality of the solutions that they produce
rely not only on the stochastic nature of the tech-
nique, but also on the way in which the objective
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ated to the Engineering Design Centre at the University of Ply-
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function is converted to a ‘‘fitness function’’ that
can ‘‘guide’’ the GA to the desired region of the
search space. Being a heuristic method, the GA
operates really like a ‘‘black box’’, completely inde-
pendent from the characteristics of the problem. By
using the basic Darwinian mechanism of ‘‘survival
of the fittest’’, the GA tries to evolve only those

Žsolutions represented by a population of ‘‘chro-
.mosomes’’ that are fitter and, by applying crossover

and mutation operators, it attempts to produce de-
Žscendants that are better in terms of a certain quanti-

.tative measure that we call ‘‘fitness’’ than their
parents.

One of the key problems for using GAs in practi-
cal applications is how to design the fitness function,
particularly when we do not know where is the
global optimum located. A comparative estimate of
how good is a solution turns out to be enough in

Žmost cases e.g., the largest value has to be closer to
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the global maximum if we are trying to maximize
.the objective function , but if we are dealing with

constrained problems, we have to find a way of
estimating also how close is an infeasible solution
from the feasible region. This is not an easy task,
since most real-world problems have complex linear
and non-linear constraints, and several approaches
have been proposed in the past to handle them. From
those, the penalty function seems to be yet the most
popular technique for engineering problems, but the
intrinsic difficulties to define good penalty values
makes even harder the optimization process using a
GA. In this paper, a technique based on the concept
of co-evolution is used to create two populations that
interact with each other in such a way that one
population evolves the penalty factors to be used by
the fitness function of the main population, which is
responsible for optimizing the objective function.
The approach has been tested with several single-ob-
jective optimization problems with linear and non-
linear inequality constraints and its results are com-

Žpared with those produced by other GA-based and
.mathematical programming approaches reported in

the literature.

2. Previous work

The most common approach in the GA commu-
Žnity to handle constraints particularly, inequality

.constraints is to use penalties. The basic approach is
to define the fitness value of an individual i by
extending the domain of the objective function f

w xusing 3

fitness s f X "Q 1Ž . Ž .i i i

where Q represents either a penalty for an infeasiblei

individual i, or a cost for repairing such an individ-
Ž .ual i.e., the cost for making it feasible . It is as-

sumed that if i is feasible then Q s0.i

Ideally, the penalty should be kept as low as
possible, just above the limit below which infeasible

Žsolutions are optimal this is called, the minimum
w x.penalty rule 4 . Although simple, this rule is quite

difficult to apply in most real-world problems, be-
cause we normally do not know the exact location of
the boundary between the feasible and the infeasible
regions.

It is known that the relationship between an infea-
sible individual and the feasible part of the search
space plays a significant role in penalizing such
individual. However, it is not completely clear how
to exploit this relationship to guide the search in the
most desirable direction.

There are at least three main choices to define a
relationship between an infeasible individual and the

w xfeasible region of the search space 3 :
1. an individual might be penalized just for being

Žinfeasible i.e., we do not use any information
.about how close it is from the feasible region ,

2. the ‘amount’ of its infeasibility can be measured
and used to determine its corresponding penalty,
or

3. the effort of ‘repairing’ the individual might be
taken into account.
Several researchers have studied heuristics on the

design of penalty functions. Probably the most well-
known of these studies is the one conducted by

w xRichardson et al. 5 from which the following guide-
lines were derived.

Ž .1 Penalties which are functions of the distance
from feasibility are better performers than those
which are merely functions of the number of violated
constraints.

Ž .2 For a problem having few constraints, and few
full solutions, penalties which are solely functions of
the number of violated constraints are not likely to
find solutions.

Ž .3 Good penalty functions can be constructed
from two quantities: the maximum completion cost
and the expected completion cost. By completion
cost it is meant the cost of making feasible an
infeasible solution.

Ž .4 Penalties should be close to the expected
completion cost, but should not frequently fall below
it. The more accurate the penalty, the better will be
the solution found. When a penalty often underesti-
mates the completion cost, then the search may not
find a solution.

Based mainly on these guidelines, several re-
searchers have attempted to derive good techniques

w xto build penalty functions. Homaifar et al. 6 pro-
posed an approach in which the user defines several
levels of violation, and a penalty coefficient is cho-
sen for each in such a way that the penalty coeffi-
cient increases as we reach higher levels of violation.
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The inconvenience of this technique is the high
w xnumber of parameters required 7 . For m con-

Ž .straints, this approach requires m 2 lq1 parameters
in total, where l is the number of levels defined. So,
if we have for example five constraints and three
levels, we would need 35 parameters, which is a
very high number considering the small size of the
problem.

w xJoines and Houck 8 proposed a technique in
Žwhich dynamic penalties i.e., penalties that change

. Žover time are used. Individuals are evaluated at
.generation t using:

m
a bfitness X s f X q Ct f X 2Ž . Ž . Ž . Ž . Ž .Ýi i j

js1

where C, a and b are constants. This dynamic
function increases the penalty as we progress through

w xgenerations. Some researchers 9 have argued that
dynamic penalties work better than static penalties.
However, it is difficult to derive good dynamic
penalty functions in practice as it is to produce good
penalty factors for static functions. For example, in
this approach the quality of the solution found is
very sensitive to changes in the values of the param-
eters. Even when a certain set of values for these

Ž .parameters Cs0.5, asbs2 were found by the
authors of this method to be a reasonable choice,

w xMichalewicz 7 found that these values produce
‘‘premature convergence’’ most of the time. Also, it
was found that the technique normally either con-
verges to an infeasible solution or to a feasible one

w xthat is far away from the global optimum 3,7 .
w xPowell and Skolnick 10 incorporated a heuristic

Ž w x.rule suggested by Richardson et al. 5 for process-
ing infeasible solutions: evaluations of feasible solu-

Ž .tions are mapped into the interval y`, 1 , and
Ž .infeasible solutions into the interval 1, ` . This is

Žequivalent for ranking and tournament selection
w x.procedures 11,12 to the following evaluation pro-

cedure:

fitness X s f X , 3Ž . Ž . Ž .f

m

fitness X s f X qr f X . 4Ž . Ž . Ž . Ž .Ýu j
js1

In this expression, r is a constant, and

fitness XŽ .

fitness X , if X is feasibleŽ .f
s ½ fitness X qr X,t , otherwise,Ž . Ž .u

5Ž .

r X,t smax 0,max fitness XŽ . Ž .� 4� 4f

ymin fitness X . 6� 4Ž . Ž .u

The key concept of this approach is the assump-
tion of the superiority of feasible solutions over
infeasible ones, and as long as such assumption

w xholds, the technique is expected to behave well 10 .
However, in cases where the ratio between the feasi-
ble region and the whole search space is too small,
the technique will fail unless a feasible point is

w xintroduced in the initial population 13 .
w xMichalewicz and Attia 14 considered a method

w xbased on the idea of simulated annealing 15 : the
penalty coefficients are changed once in many gener-

Žations after the convergence of the algorithm to a
.local optima . At every iteration the algorithm con-

siders active constraints only, and the pressure on
infeasible solutions is increased due to the decreas-
ing values of the temperature of the system.

w xThe method of Michalewicz and Attia 14 re-
quires that constraints are divided into four groups:
linear equalities, linear inequalities, non-linear equal-
ities and non-linear inequalities. Also, a set of active
constraints AA has to be created, and all non-linear
equalities together with all violated non-linear in-
equalities have to be included there. The population

w xis evolved using 7 :

1
2fitness X s f X q f X . 7Ž . Ž . Ž . Ž .Ý j2t jgAA

An interesting aspect of this approach is that the
initial population is not really diverse, but consists of
multiple copies of a single individual that satisfies all
linear constraints. At each iteration, the temperature
t is decreased and the new population is created
using the best solution found in the previous itera-
tion. The process stops when a pre-defined final
‘freezing’ temperature t is reached.f
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This approach has the inconvenience of being
very sensitive to the values of its parameters, and the
difficulties for choosing an appropriate cooling
scheme is a typical drawback of simulated annealing
w x15 . Also, the approach used to handle linear con-

Ž .straints treated separately by this technique is very
efficient, but it requires that the user provides an
initial feasible point to the algorithm.

w xBean and Hadj-Alouane 16 developed a method
of adapting penalties that uses a penalty function
which takes a feedback from the search process.
Each individual is evaluated by the formula:

m
2fitness X s f X ql t f X 8Ž . Ž . Ž . Ž . Ž .Ý j

js1

Ž .where l t is updated every generation t in the
following way:

° 1rb l t , if case a1Ž . Ž .1

~b l t , if case a2Ž .l tq1 s 9Ž . Ž .2¢
l t , otherwise,Ž .

where cases a1 and a2 denote situations where the
best individual in the last k generation was always
Ž . Ž .case a1 or was never case a2 feasible, b ,1

Ž .b )1, and b /b to avoid cycling . In other2 1 2
Ž .words, the penalty component l tq1 for the gen-

eration tq1 is decreased if all best individuals in
the last k generations were feasible or is increased if
they were all infeasible. If there are some feasible
and infeasible individuals tied as best in the popula-
tion, then the penalty does not change.

The obvious drawback of this dynamic penalty
Žapproach is how to choose the generational gap i.e.,

.the appropriate value of k that provides reasonable
information to guide the search, and more important,
how do we define the values of b and b to1 2

penalize fairly a given solution.
w xLe Riche et al. 4 designed a segregated GA

Žwhich uses two values of penalty parameters for
.each constraint instead of one; these two values aim

at achieving a balance between heavy and moderate
penalties by maintaining two sub-populations of in-
dividuals. The population is split into two cooperat-
ing groups, where individuals in each group are
evaluated using either one of the two penalty param-
eters. The idea is to combine those two sub-popula-
tions into a single one, mixing then individuals

which are feasible with those that are not. Linear
ranking is used to decrease the selection pressure
that could cause premature convergence.

The problem with this approach is again the way
of choosing the penalties for each of the two sub-
populations, and even when some guidelines have

w xbeen provided by the authors of this method 13 to
define such penalties, they also admit that it is
difficult to produce generic values that can be used
with this approach.

Finally, some researchers who work with evolu-
w xtion strategies 17 and evolutionary programming

w x18 have frequently used the ‘‘death penalty’’ ap-
proach that consists of rejecting infeasible individu-
als without even looking at their fitness values. This

Žapproach is, with no doubt, quite efficient computa-
.tionally speaking , but it is expected to work well

only when the feasible search space is convex and it
constitutes a reasonable part of the whole search

w xspace 3 .

3. Genetic operators

The GA used for the experiments presented in this
w xpaper uses a fixed-point representation 19,20 , ac-

cording to which a chromosome is a string of the
² :form d ,d , . . . ,d , where d ,d , . . . ,d are digits1 2 m 1 2 m

Ž .numbers between zero and nine . Consider the ex-
amples shown in Fig. 1, in which the same value is
represented using binary and fixed-point encoding.

Fixed-point representation is faster and easier to
implement, and provides a higher precision than its
binary counterpart, particularly in large domains,

Fig. 1. Representing the same number using binary and fixed-point
encodings.
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where binary strings would be prohibitively long.
One of the advantages of fixed-point representation
is that it has the property that two points close to
each other in the representation space must also be

w xclose in the problem space, and vice versa 12 . This
is not generally true in the binary representation,
where the distance in a representation is normally
defined by the number of different bit positions. In
previous work, the author has shown the usefulness
of fixed-point representation where this representa-
tion has compared favorably to its binary counterpart
w x19–21 .

For crossover, it was decided to use uniform
crossover, which is a relatively recent operator pro-

w xposed by Syswerda 22 , that can be seen as a
generalization of the more traditional one- and two-

w xpoint crossover operators 12,23 . In this case, for
Ž .each gene i.e., string position in the first offspring
Ž .it is decided with some probability p which parent

will contribute its value for that position. The second
offspring would receive the gene from the other
parent. An example of 0.5-uniform crossover can be
seen in Fig. 2. For the experiments whose results are

Ž .presented next, a crossover probability p of 0.8
was chosen.

It has been argued that a non-uniform mutation
operator is more useful when optimizing with a GA
because it allows us to search in different ways as

Ž .Fig. 2. Use of 0.5-uniform crossover using 50% probability
between two chromosomes. Notice how half of the genes of each
parent goes to each of the two children. First, the bits to be copied
from each parent are selected randomly using the probability
desired, and after the first child is generated, the same values are
used to generate the second child, but inverting the source of
precedence of the genes.

Ž .needed i.e., exploring wider or narrower regions
w xover time 12 . Due to some previous favorable

experience with non-uniform mutation in the context
w xof numerical optimization 24 it was decided to use

this approach instead of the traditional uniform muta-
tion operator. To illustrate this operator, we will
assume that at generation t, we have a string S st
² :s ,s , . . . ,s . After randomly selecting a posi-1 2 l

tion along the string, in generation tq1, the new
²chromosome after mutation will be S s s ,tq1 1

X :s , . . . ,s , . . . ,s , where:2 k l

s qD t ,9ys if flip 0.5 s0Ž . Ž .k kXs s 10Ž .k ½ s yD t ,s if flip 0.5 s1.Ž . Ž .k k

Ž .The function flip 0.5 returns randomly and with
equal probability one of two possible values: either

Ž .zero or one. The function D t, y returns a value in
w x Ž .the range 0, y such that the probability of D t, y

being close to 0 increases as t increases. The expres-
sion used here for the variation of the mutation step
is the function originally suggested by Michalewicz
w x12 :

bt
1yž /T

D t , y sy 1yr 11Ž . Ž .ž /
where r is a randomly generated real number in the

w xrange 0 . . . 1 , T is the maximum number of genera-
Ž .tions G 1 or G 2 , and b is a system parametermax max

that determines the degree of dependency on the
current generation number. The value adopted for the
current implementation was bs5, as suggested by

w xMichalewicz 12 . The mutation rate chosen was 0.1,
to allow a high exploratory behavior of the GA at
earlier generations, and focus more the search into
certain regions as the GA reaches its last generations.

4. Use of self-adaptive penalties

w xMichalewicz et al. 13 have recognized the im-
portance of using adaptive penalties in evolutionary
optimization, and considered this approach as a very
promising direction of research on evolutionary opti-
mization. The technique proposed in this paper aims
to implement this idea using the concept of co-evolu-

Ž .tion, under which two or more populations are
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evolved either concurrently or interactively, and such
populations exchange information in the process.

w xParedis 25 has used co-evolution for constraint
Ž .satisfaction combinatorial optimization problems,

but not for numerical optimization. In his approach,
a population of potential solutions co-evolves with a
population of constraints: fitter solutions satisfy more
constraints, whereas fitter constraints are violated by
more solutions.

The approach introduced in this paper uses a
w xconventional penalty function 19,23 rather than try-

ing to handle constraints in an entirely different way
Ž w x.see for example, Ref. 3 . The reason is that penalty
functions are still the most popular approach to

w xhandle constraints in practical applications 7,20 ,
whereas the newer approaches have normally been

Žused only to deal with very specific and generally
.unrealistic problems.

The problem that we want to solve is:

Optimize f X . 12Ž . Ž .
Subject to:

g X F0 is1, . . . , p. 13Ž . Ž .i

Only inequality constraints are considered in this
paper, since penalty functions are not very suitable to
handle equality constraints as hard constraints, and
there are other approaches which are more suitable

w xto handle them 12 .
In previous applications, a penalty function that

included information about both the number of con-
straints violated and the degree of violation of each,
has been found very effective by a number of re-

w x Ž .searchers 3,20 to guide the GA to at least near
optimal solutions. The expression used to compute
the fitness value of an individual for the purposes of

Ž .this paper is assuming maximization :

fitness s f X y coef=w qviol=w 14Ž . Ž . Ž .i i 1 2

Ž .where f X is the value of the objective function fori

the given set of variable values encoded in the
chromosome i; w and w are two penalty factors1 2
Ž .considered as integers in this paper ; coef is the sum
of all the amounts by which the constraints are
violated:

p

coefs g X ;g X )0 15Ž . Ž . Ž .Ý i i
is1

viol is an integer factor, initialized to zero and
incremented by one for each constraint of the prob-
lem that is violated, regardless of the amount of

Žviolation i.e., we only count the number of con-
straints violated but not the magnitude in which each

.constraint is violated .
According to this approach, the penalty is actually

Ž .split into two values coef and viol , so that the GA
has enough information not only about how many
constraints were violated, but also about the amounts
in which such constraints were violated. This follows

w xRichardson’s suggestion 5 about using penalties
that are guided by the distance to feasibility.

We will assume that we have two different popu-
lations P1 and P2 with corresponding sizes M1 and

Ž .M2. The second of these populations P2 encodes
Ž .the set of weight combinations w and w that will1 2

be used to compute the fitness value of the individu-
Žals in P1 i.e., P2 contains the penalty factors that

.will be used in the fitness function . The idea is to
Žuse one population to evolve solutions as in a

.conventional GA , and another to evolve the penalty
factors w and w . A graphical representation of this1 2

approach may be seen in Fig. 3. Notice that for each
individual A in P2 there is an instance of P1.j

However, the population P1 is reused for each new
element A processed from P2.j

Ž .Each individual A 1F jFM2 in P2 is de-j
Žcoded and the weight combination produced i.e., the

.penalty factors is used to evolve P1 during a certain
Ž .number G 1 of generations. The fitness of eachmax

Ž .individual B 1FkFM1 is computed using Eq.k

Fig. 3. Graphical representation of the GA-based approach to
handle constraints proposed in this paper.
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Ž .14 , keeping the penalty factors constant for every
individual in the instance of P1 corresponding to the
individual A being processed.j

After evolving each P1 corresponding to every
ŽA in P2 there is only one instance of P1 for eachj

.individual in P2 , we compute the best average
fitness produced using:

M1 fitness i
average_fitness s Ýj ž /count_feasibleis1

qcount_feasible ;XgFF. 16Ž .
Ž .In Eq. 16 , we add the fitnesses of all feasible

Žsolutions in P1, and obtain an average of them the
integer variable count_feasible is a counter that indi-
cates how many feasible solutions were found in the

.population . The reason for considering only feasible
individuals is that if we do not exclude infeasible
solutions from this computation, the selection mech-
anism of the GA may bias the population towards
regions of the search space where there are solutions

Ž .with a very low weight combination w and w .1 2

Such solutions may have good fitness values, and
still be infeasible. The reason for that is that low
values of w and w may produce penalties that are1 2

not big enough to outweigh the value of the objec-
tive function.

Notice also the use of count_feasible to avoid
Ž .stagnation i.e., loss of diversity in the population at

certain regions in which only very few individuals
will have a good fitness or will be even feasible. By

adding this quantity to the average fitness of the
feasible individuals in the population, we will be
encouraging the GA to move towards regions in
which lie not only feasible solutions with good fit-
ness values, but there are also a lot of them. In
practice, it may be necessary to apply a scaling
factor to the average of the fitness before adding
count_feasible, to avoid that the GA gets trapped in
local optima. However, such scaling factor is not
very difficult to compute because we are assuming

Žpopulations of constant size such size must be de-
.fined before running the GA , and the range of the

fitness values can be easily obtained at each genera-
tion, because we know the maximum and minimum
fitness values in the population at each generation.

The process indicated above is repeated until all
Žindividuals in P2 have a fitness value the best
.average_fitness of their corresponding P1 . Then,

P2 is evolved one generation using conventional
Ž .genetic operators i.e., crossover and mutation and

the new P2 produced is used to start the same
process all over again. It is important to notice that
the interaction between P1 and P2 introduces diver-
sity in both populations, which keeps the GA from
easily converging to a local optimum.

5. Examples

Several examples taken from the optimization
literature will be used to show the way in which the

Fig. 4. Center and end section of the pressure vessel used for the first example.



( )C.A. Coello CoellorComputers in Industry 41 2000 113–127120

proposed approach works. These examples have lin-
ear and non-linear constraints, and have been previ-
ously solved using a variety of other techniques
Žboth GA-based and traditional mathematical pro-

.gramming methods , which is useful to determine the
quality of the solutions produced by the proposed
approach.

It should be mentioned that the initial goal of this
work was to reproduce the quality of the results
found with simple GAs whose fitness functions and
parameters were fine-tuned to solve a specific prob-

Žlem using an empirical approach normally by sim-
.ple trial and error . However, as will be seen later,

the new technique proposed in this paper not only
matched previous results, but it improved them. In
each example, a single GA was used to encode all
the design variables.

5.1. Example 1: design of a pressure Õessel

A cylindrical vessel is capped at both ends by
hemispherical heads as shown in Fig. 4. The objec-
tive is to minimize the total cost, including the cost
of the material, forming and welding. There are four

Ž .design variables: T thickness of the shell , Ts h
Ž . Ž .thickness of the head , R inner radius and L
Žlength of the cylindrical section of the vessel, not

.including the head . T and T are integer multipless h

of 0.0625 in., which are the available thicknesses of
rolled steel plates, and R and L are continuous.
Using the same notation given by Kannan and Kramer
w x26 , the problem can be stated as follows.

Minimize:

F X s0.6224 x x x q1.7781 x x 2Ž . 1 3 4 2 3

q3.1661 x 2 x q19.84 x 2 x . 17Ž .1 4 1 3

Subject to:

g X syx q0.0193 x F0 18Ž . Ž .1 1 3

g X syx q0.00954 x F0 19Ž . Ž .2 2 3

4
2 3g X syp x x y p x q1,296,000F0 20Ž . Ž .3 3 4 33

g X sx y240F0. 21Ž . Ž .4 4

Fig. 5. The welded beam used for the second example.

5.2. Example 2: welded beam design

A welded beam is designed for minimum cost
Ž .subject to constraints on shear stress t , bending

Ž .stress in the beam s , buckling load on the bar
Ž . Ž .P , end deflection of the beam d , and sidec

w xconstraints 27 . There are four design variables as
w x Ž . Ž . Ž .shown in Fig. 5 27 : h x , l x , t x and b1 2 3

Ž .x .4

The problem can be stated as follows.
Minimize:

F X s1.10471 x 2 x q0.04811 x x 14.0qx .Ž . Ž .1 2 3 4 2

22Ž .

Subject to:

g X st X yt F0 23Ž . Ž . Ž .1 max

g X ss X ys F0 24Ž . Ž . Ž .2 max

g X sx yx F0 25Ž . Ž .3 1 4

g X s0.10471 x 2 q0.04811 x x 14.0qxŽ . Ž .4 1 3 4 2

y5.0F0 26Ž .

g X s0.125yx F0 27Ž . Ž .5 1

g X sd X yd F0 28Ž . Ž . Ž .6 max

g X sPyP X F0 29Ž . Ž . Ž .7 c
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Fig. 6. Tensionrcompression string used for the third example.

where

x22 2X X Y Y
t X s t q2t t q t 30Ž . Ž . Ž . Ž .( 2 R

P MR x2X Y
t s ,t s , MsP Lq 31Ž .ž /' J 22 x x1 2

2 2x x qx2 1 3
Rs q 32Ž .( ž /4 2

2 2x x qx2 1 3'Js2 2 x x q 33Ž .1 2 ž /½ 512 2

6PL 4PL3

s X s ,d X s 34Ž . Ž . Ž .2 3x x Ex x4 3 3 4

2 6x x3 4
4.013E( x E36 3

P X s 1y 35Ž . Ž .(c 2 ž /2 L 4GL

Ps6000 lb, Ls14 in, Es30=106 psi,

Gs12=106 psi 36Ž .
t s13,600 psi, s s30,000 psi, d s0.25 in.max max max

37Ž .

5.3. Example 3: minimization of the weight of a
tensionrcompression string

w xThis problem was described by Arora 28 and
w xBelegundu 29 , and it consists of minimizing the

Ž .weight of a tensionrcompression spring see Fig. 6
subject to constraints on minimum deflection, shear
stress, surge frequency, limits on outside diameter
and on design variables. The design variables are the

mean coil diameter D, the wire diameter d and the
number of active coils N.

Formally, the problem can be expressed as:

Minimize Nq2 Dd2 . 38Ž . Ž .
Subject to

D3N
g X s1y F0 39Ž . Ž .1 471,785d

4D2 ydD 1
g X s q y1F0Ž .2 23 4 5108d12,566 Dd ydŽ .

40Ž .

140.45d
g X s1y F0 41Ž . Ž .3 2D N

Dqd
g X s y1F0. 42Ž . Ž .4 1.5

5.4. Example 4: Himmelblau’s non-linear optimiza-
tion problem

This problem was originally proposed by Him-
w xmelblau 30 , and it was chosen to try the approach

proposed here because it has been used before as a
benchmark for several other GA-based techniques

w xthat use penalties 31 . In this problem, there are five
Ž .design variables x , x , x , x , x , six non-linear1 2 3 4 5

inequality constraints and 10 boundary conditions.
The problem can be stated as follows:

Minimize f X s5.3578547x 2 q0.8356891 x xŽ . 3 1 5

q37.29329 x y40,792.141.1

43Ž .
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Table 1
Parameters of the GA used to solve all the examples

Parameter Value

Pop_size 601

Pop_size 302

G 1 25max

G 2 20max

Subject to:

g X s85.334407q0.0056858 x xŽ .1 2 5

q0.00026 x x y0.0022053 x x 44Ž .1 4 3 5

g X s80.51249q0.0071317x xŽ .2 2 5

q0.0029955x x q0.0021813 x 2 45Ž .1 2 3

g X s9.300961q0.0047026 x xŽ .3 3 5

q0.0012547x x q0.0019085x x1 3 3 4

46Ž .

0Fg X F92 47Ž . Ž .1

90Fg X F110 48Ž . Ž .2

20Fg X F25 49Ž . Ž .3

78Fx F102 50Ž .1

33Fx F45 51Ž .2

27Fx F45 52Ž .3

27Fx F45 53Ž .4

27Fx F45. 54Ž .5

6. Comparison of results

To make a fair comparison, all the following
examples were solved using the same set of parame-
ters shown in Table 1.

6.1. Example 1

w xThis problem was solved before by Deb 32
Ž .using GeneAS Genetic Adaptive Search , by Kan-
w xnan and Kramer 26 using an augmented Lagrangian

w xMultiplier approach, and by Sandgren 33 using a
branch and bound technique. Their results were com-
pared against those produced by the approach pro-
posed in this paper, and are shown in Table 2. The
solution shown for the technique proposed here is
the best produced after 11 runs, and using the follow-
ing ranges for the design variables and the weights:
1Fx F99, 1Fx F99, 10.0000Fx F200.0000,1 2 3

10.0000Fx F200.0000, 1Fw F999, and 1Fw4 1 2

F999. The values for x and x were considered as1 2

integer multiples of 0.0625, the weights w and w1 2

were considered as integers, and the values of x3

and x were considered with a four-decimal preci-4

sion.
Ž .The mean from the 11 runs performed was f X

s6293.84323196, with a standard deviation of
Ž .7.41328537. The worst solution found was f X s

6308.14965192, which is better than any of the
solutions previously reported in the literature. The

Ž .solution at the median was f X s6290.01873568

Table 2
Ž .Comparison of the results for the first example optimization of a pressure vessel

Design variables Best solution found

w x w x w xThis paper GeneAS 32 Kannan and Kramer 26 Sandgren 33

Ž .x T 0.8125 0.9375 1.125 1.1251 s
Ž .x T 0.4375 0.5000 0.625 0.6252 h
Ž .x R 40.3239 48.3290 58.291 47.7003
Ž .x L 200.0000 112.6790 43.690 117.7014
Ž .g X y0.034324 y0.004750 0.000016 y0.2043901
Ž .g X y0.052847 y0.038941 y0.068904 y0.1699422
Ž .g X y27.105845 y3652.876838 y21.220104 54.2260123
Ž .g X y40.00000 y127.321000 y196.310000 y122.2990004

Ž .f X 6288.7445 6410.3811 7198.0428 8129.1036
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Žcorresponding to x s0.8125, x s0.4372, x s1 2 3
.40.3302 and x s200.0000 , which is still about 2%4

better than the best solution previously reported.

6.2. Example 2

w xThis problem was solved before by Deb 34
using a simple GA with binary representation, and a
traditional penalty function as suggested by Gold-

w x w xberg 23 , and by Ragsdell and Phillips 35 using
geometric programming. Ragsdell and Phillips also
compared their results with those produced by the
methods contained in a software package called

w x‘‘Opti-Sep’’ 36 , which includes the following nu-
Žmerical optimization techniques: ADRANS Gall’s

.adaptive random search with a penalty function ,
ŽAPPROX Griffith and Stewart’s successive linear

. Žapproximation , DAVID Davidon–Fletcher–Powell
. Žwith a penalty function , MEMGRD Miele’s mem-

.ory gradient with a penalty function , SEEK1 and
ŽSEEK2 Hooke and Jeeves with two different penalty
. Žfunctions , SIMPLX Simplex method with a penalty
. Žfunction and RANDOM Richardson’s random
.method .

Their results against those produced by the ap-
proach proposed in this paper, and are shown in

w xTable 3. In the case of Siddall’s techniques 36 , only
the best solution produced by the techniques con-
tained in ‘‘Opti-Sep’’ is displayed. The solution
shown for the technique proposed here is the best
produced after 11 runs, and using the following

ranges for the design variables and the weights:
0.1000 F x F 2.0000, 0.1000 F x F 10.0000,1 2

0.1000Fx F10.0000, 0.1000Fx F2.0000, 1F3 4

w F999, and 1Fw F999. The values for x to1 2 1

x were considered with a four-decimal precision,4

and the weights w and w were considered as1 2

integers.
Ž .The mean from the 11 runs performed was f X

s 1.77197269, with a standard deviation of
Ž .0.01122281. The worst solution found was f X s

1.7858346524, which is better than any of the solu-
tions produced by any of the other techniques de-
picted in Table 3. The solution at the median was
Ž . Žf X s1.77358615 corresponding to x s0.1996,1

.x s3.6428, x s9.0507 and x s0.2100 , which2 3 4

is about 27% better than the best solution previously
reported.

6.3. Example 3

This problem was solved before by Belegundu
w x29 using eight numerical optimization techniques
ŽCONMIN, OPTDYN, LINMR, GRP-UI, SUMT,

.M-3, M4, and M-5 . Only the best feasible result
reported by him is shown in Table 4. Additionally,

w xArora 28 also solved this problem using a numeri-
cal optimization technique called Constraint Correc-

Ž .tion at constant Cost CCC . It is important to notice
that Arora’s solution is actually infeasible because it
violates one of the constraints slightly. In the experi-
ments reported here, the GA handled all constraints

Table 3
Ž .Comparison of the results for the second example optimal design of a welded beam

Design variables Best solution found

w x w x w xThis paper Deb 34 Siddall 36 Ragsdell and Phillips 35

Ž .x h 0.2088 0.2489 0.2444 0.24551
Ž .x l 3.4205 6.1730 6.2189 6.19602
Ž .x t 8.9975 8.1789 8.2915 8.27303
Ž .x b 0.2100 y0.2533 0.2444 0.24554
Ž .g X y0.337812 y5758.603777 y5743.502027 y5743.8265171
Ž .g X y353.902604 y255.576901 y4.015209 y4.7150972
Ž .g X y0.00120 y0.004400 0.000000 0.0000003
Ž .g X y3.411865 y2.982866 y3.022561 y3.0202894
Ž .g X y0.08380 y0.123900 y0.119400 y0.1205005
Ž .g X y0.235649 y0.234160 y0.234243 y0.2342086
Ž .g X y363.232384 y4465.270928 y3490.469418 y3604.2750027

Ž .f X 1.74830941 2.43311600 2.38154338 2.38593732
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Table 4
ŽComparison of the results for the third example minimization of

.the weight of a tensionrcompression spring

Design Best solution found
variables w x w xThis paper Arora 28 Belegundu 29

Ž .x d 0.051480 0.053396 0.0500001
Ž .x D 0.351661 0.399180 0.3159002
Ž .x N 11.632201 9.185400 14.250003
Ž .g X y0.002080 0.000019 y0.0000141
Ž .g X y0.000110 y0.000018 y0.0037822
Ž .g X y4.026318 y4.123832 y3.9383023
Ž .g X y4.026318 y0.698283 y0.7560674

Ž .f X 0.0127047834 0.0127302737 0.0128334375

are hard, so that the solutions produced were consid-
ered valid only if all of them were fully satisfied.
Nevertheless, the proposed approach was able to find

Ž .a better feasible solution than Arora’s technique, as
can be seen in Table 4.

The solution shown for the technique proposed
here is the best produced after 11 runs, and using the
following ranges for the design variables and the
weights: 0.050000Fx F2.000000, 0.250000Fx1 2

F1.300000, 2.000000Fx F15.000000, 1Fw F3 1

999, and 1Fw F999. The values for x to x2 1 4

were considered with a six-decimals precision, and
the weights w and w were considered as integers.1 2

Ž .The mean from the 11 runs performed was f X
s0.01276920, with a standard deviation of 3.939=

y5 Ž .10 . The worst solution found was f X s
0.0128220825, which is better than Belegundu’s re-

Ž .sult. The solution at the median was f X s
Ž0.0127557615 corresponding to x s0.051461, x1 2

.s0.351022, and x s11.721943 , which is better3

than the best feasible solution previously reported.

6.4. Example 4

This problem was originally proposed by Him-
w xmelblau 30 and solved using the generalized re-

Ž . w xduced gradient method GRG . Gen and Cheng 31
solved this problem using a GA based on both local
and global reference. The result shown in Table 5 is
the best found with their approach.

w xHomaifar et al. 6 solved this problem using a
GA with a population size of 400, and their results
were previously the best reported in the literature
Ž .see Table 5 .

The solution shown for the technique proposed
here is the best produced after 11 runs, and using the
following ranges for the design variables and the
weights: 78.0000Fx F102.0000, 33.0000Fx F1 2

45.0000, 27.0000Fx F45.0000, 27.0000Fx F3 4

45.0000, 27.0000Fx F45.0000, 1Fw F999, and5 1

1Fw F999. The values for x to x were consid-2 1 5

ered with a four-decimal precision, and the weights
w and w were considered as integers.1 2

Ž .The mean from the 11 runs performed was f X
sy30984.24070309, with a standard deviation of

Ž .73.63353661.The worst solution found was f X s
y30792.4077377525, which is better than the
best solution previously reported in the litera-

Table 5
Ž .Comparison of the results for the fourth example Himmelblau’s function

Design variables Best solution found

w x w x w xThis paper Gen and Cheng 31 Homaifar 6 GRG 30

x 78.0495 81.4900 78.0000 78.62001

x 33.0070 34.0900 33.0000 33.44002

x 27.0810 31.2400 29.9950 31.07003

x 45.0000 42.2000 45.0000 44.18004

x 44.9400 34.3700 36.7760 35.22005
Ž .g X 91.997635 90.522543 90.714681 90.5207611
Ž .g X 100.407857 99.318806 98.840511 98.8929332
Ž .g X 20.001911 20.060410 19.999935 20.1315783

Ž .f X y31,020.859 y30,183.576 y30,665.609 y30,373.949
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Ž .ture. The solution at the median was f X s
Žy31017.21369099 corresponding to x s78.010,1

x s33.030, x s27.119, x s45.000, and x s2 3 4 5
.44.872 .

7. Discussion

Despite the fact that the proposed approach re-
quires more function evaluations than running a GA
on a single population, it could be argued that in
practice the proposed approach turns out to be more
efficient because it does not require the traditional
fine-tuning of a simple GA which is normally per-
formed by trial and error and normally takes a
considerable amount of time. In any case, the intro-

Žduction of parallel techniques for which the ap-
.proach is very suitable should eliminate this poten-

tial drawback in the future.
It is worth mentioning that during the develop-

ment of this approach several other variations of the
same idea were tried without much success. For
example, it was attempted to encode the weights of
the penalties in the string itself, to avoid the use of
another population, but the selection pressure turned
out to be too high and the GA would tend to

w xprematurely converge unless sharing 37 was used,
and even in that case, the optimization results were
normally very poor.

An interesting remark derived from the experi-
ments performed was that the direct use of the final
penalty values obtained with the proposed approach
did not drive a simple GA to the solution expected
even if this was run for a fairly large number of
generations or with large populations. The reason
seems to be the constant reuse of P1 that introduces
different penalty factors during the evolution process

Ž . Žrather than using a fixed static set of values as
.with a simple GA . These constant changes in the

penalty factors allow not only to keep enough diver-
Žsity in the population i.e., there are enough chromo-

.somes encoding different solutions as to encourage
that better solutions emerge from the main popula-

Žtion i.e., P2, which is the population responsible for
.optimizing the objective function but also produce a

dynamic penalty function that is being adjusted based
on its effectiveness.

Finally, several experiments were run to try to
find suitable values for the four parameters needed:

G 1, G 2, M1 and M2. Initially, it was foundmax max

that in most cases a fairly small population size for
Ž .P2 F40 chromosomes would suffice to find rea-

Žsonable solutions unless within a 5% vicinity of the
.best solution known , but the size of P1 was much

more dependent on the nature of the problem, al-
though in all cases it was sufficient to use sizes
smaller than those normally used with a simple GA
Ž .between 30 and 60 chromosomes . Similarly, the
effect that the maximum number of generations pro-
duced in the results seemed to be more significant
for P1 than for P2. This is not very surprising, since
P1 is really the population responsible for perform-
ing the optimization. It is interesting to mention that
in the experiments performed, it was found that the
increment of the maximum number of generations
for P1 would normally improve the quality of the
solution, but there was always a threshold after
which an increment did not affect the results in a
significant manner. On the other hand, the increment
of the maximum number of generations for P2 was
normally not very beneficial, and that was the reason
why it was normally preferred to use smaller values
for G 2 than for G 1.max max

8. Conclusions

This paper has introduced a new GA-based tech-
nique that uses co-evolution to adjust automatically
the weight factors of a penalty function to find the
optimum of a constrained optimization problem. Due
to the intrinsic limitations of penalty functions to
handle equality constraints, only inequality con-
straints were considered in this work, although alter-

w xnative hybrid approaches 13 may be used in combi-
nation with the proposed technique in order to deal
with equality constraints, too.

The new technique worked well in several test
problems that had been previously solved using
GA-based and mathematical programming tech-
niques, producing in all cases results better than
those previously reported in the literature. The tech-
nique was able to achieve such good results with
relatively small populations, and using a relatively
low number of generations. However, performance
issues remain to be solved, and it is desirable to
develop a parallel version of this algorithm in the
future.
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9. Future work

The first extension of this work is to develop a
parallel implementation of the algorithm, so that

Ž .instead of re-using P1 see Fig. 3 for each A , allj

sub-populations required by P2 can co-evolve con-
currently. In this new version of the algorithm, cur-

Žrently under development, the top chromosomes in
.terms of fitness values of each sub-population inter-

acting with P2 will be kept to re-start the evolution
process once P2 had been evaluated. Nevertheless,
there are still some issues to be solved with this new
version of the technique, mainly with respect to the
sort of interaction that will be imposed among the
different populations, which will condition the topol-
ogy used for the implementation of the correspond-
ing distributed system.

It would also be interesting to conduct more
studies of the effect of the four parameters required

Žto execute the new algorithm G 1, G 2, M1max max
.and M2 , to draw more general conclusions about its
Žbehavior the selection of these parameters has been

always an important issue when using a simple GA
w x.23 .
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