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Abstract: Differential evolution (DE) algorithms are commonly used metaheuristics for 
global optimization, but there has been very little research done on the generation of their 
initial population. The selection of the initial population in a population-based heuristic 
optimization method is important, since it affects the search for several iterations and often 
has an influence on the final solution. If no a priori information about the optima is 
available, the initial population is often selected randomly using pseudorandom numbers. 
In this paper, we have investigated the effect of generating the initial population without 
using the conventional methods like computer generated random numbers or quasi random 
sequences. We have applied non linear simplex method in conjugation of pseudorandom 
numbers to generate initial population for DE. Proposed algorithm is named as NSDE 
(using non linear simplex method), is tested on a set of 20 benchmark problems with box 
constraints, taken from literature and the numerical results are compared with results 
obtained by traditional DE and opposition based DE (ODE). Numerical results show that 
the proposed scheme considered by us for generating the random numbers significantly 
improves the performance of DE in terms of convergence rate and average CPU time. 

Keywords: Stochastic optimization, differential evolution, crossover, initial population, 
random numbers 

1 Introduction 
DE is comparatively a recent addition to class of population based search 
heuristics. Nevertheless, it has emerged as one of the techniques most favored by 
engineers for solving continuous optimization problems. DE [1, 2] has several 
attractive features. Besides being an exceptionally simple evolutionary strategy, it 
is significantly faster and robust for solving numerical optimization problems and 
is more likely to find the function’s true global optimum. Also, it is worth 
mentioning that DE has a compact structure with a small computer code and has 



M. Ali et al. Simplex Differential Evolution 

 – 96 – 

fewer control parameters in comparison to other evolutionary algorithms. 
Originally Price and Storn proposed a single strategy for DE, which they later 
extended to ten different strategies [3]. 

DE has been successfully applied to a wide range of problems including Batch 
Fermentation Process [4], Optimal design of heat exchanges [5], synthesis and 
optimization of heat integrated distillation system [6], optimization of non-linear 
chemical process [7], optimization of process synthesis and design problems [8], 
optimization of thermal cracker operation [9], optimization of water pumping 
system [10], dynamic optimization of a continuous polymer reactor [11], 
optimization of low pressure chemical vapor deposition reactors [12], etc. 

Despite having several striking features and successful applications to various 
fields DE is sometimes criticized for its slow convergence rate for 
computationally expensive functions. By varying the control parameters the 
convergence rate of DE may be increased but it should be noted that it do not 
affect the quality of solution. Generally, in population based search techniques 
like DE an acceptable trade-off should be maintained between convergence and 
type of solution, which even if not a global optimal solution should be satisfactory 
rather than converging to a suboptimal solution which may not even be a local 
solution. Several attempts have been made in this direction to fortify DE with 
suitable mechanisms to improve its performance. Most of the studies involve the 
tuning or controlling of the parameters of algorithm and improving the mutation, 
crossover and selection mechanism, some interesting modifications that helped in 
enhancing the performance of DE include introduction of greedy random strategy 
for selection of mutant vector [13], modifications in mutation and localization in 
acceptance rule [14], DE with preferential crossover [15], crossover based local 
search method for DE [16], self adaptive differential evolution algorithm [17], 
new donor schemes proposed for the mutation operation of DE [18], parent centric 
DE [28]. All the modified versions have shown that a slight change in the 
structure of DE can help in improving its performance. However, the role of the 
initial population, which is the topic of this paper, is widely ignored. Often, the 
whole area of research is set aside by a statement “generate an initial population,” 
without implying how it should be done. There is only few literature is available 
on this topic [23-27]. An interesting method for generating the initial population 
was suggested by Rahnamayan et al ([19], [20]) in which the initial population 
was generated using opposition based rule. To further continue the research in this 
direction, in this paper we propose two modified versions of DE to improve its 
performance in terms of convergence rate without compromising with the quality 
of solution. The modified version presented in this paper is named non linear 
simplex method called NSDE. In the present study our aim is to investigate the 
effect of initial population on payoff between convergence rate and solution 
quality. Our motivation is to encourage discussions on methods of initial 
population construction. Performances of the proposed algorithms are compared 
with Basic DE and differential evolution initialized by opposition based learning 
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(ODE), which is a recently modified version of differential evolution [19], on a set 
of twenty unconstrained benchmark problems. 

Remaining of the paper is organized in following manner; in Section 2, we give a 
brief description of DE. In Section 3, the proposed algorithms are explained. 
Section 4 deals with experimental settings and parameter selection. Benchmark 
problems considered for the present study are given in Section 5. The 
performances of the proposed algorithms are compared with basic DE and ODE in 
Section 6. The conclusions based on the present study are finally drawn in Section 
7. 

2 Differential Evolution (DE) 
DE starts with a population of NP candidate solutions which may be represented 
as Xi,G, i = 1, . . . ,NP, where i index denotes the population and G denotes the 
generation to which the population belongs. The working of DE depends on the 
manipulation and efficiency of three main operators; mutation, reproduction and 
selection which briefly described in this section. 

Mutation: Mutation operator is the prime operator of DE and it is the 
implementation of this operation that makes DE different from other Evolutionary 
algorithms. The mutation operation of DE applies the vector differentials between 
the existing population members for determining both the degree and direction of 
perturbation applied to the individual subject of the mutation operation. The 
mutation process at each generation begins by randomly selecting three 
individuals in the population. The most often used mutation strategies 
implemented in the DE codes are listed below. 

DE/rand/1: )(* ,,,, 321 grgrgrgi XXFXV −+=  (1a) 

DE/rand/2: )(*)(* ,,,,,, 54321 grgrgrgrgrgi XXFXXFXV −+−+=
  

 (1b) 

DE/best/1: )(* ,,,, 21 grgrgbestgi XXFXV −+=
 

(1c) 

DE/best/2: )(*)(* ,,,,,, 4321 grgrgrgrgbestgi XXFXXFXV −+−+=  (1d) 

DE/rand-to-best/1: 
)(*)(* ,,,,,, 4321 grgrgrgbestgrgi XXFXXFXV −+−+=  (1e) 

Where, i = 1, . . . , NP, r1, r2, r3 ∈ {1, . . . , NP} are randomly selected and satisfy: 

r1 ≠  r2  ≠  r3  ≠  i, F ∈ [0, 1], F is the control parameter proposed by Storn and 
Price [1]. 
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Throughout the paper we shall refer to the strategy (1a) which is apparently the 
most commonly used version and shall refer to it as basic version. 

Crossover: once the mutation phase is complete, the crossover process is 
activated. The perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), and the current 
population member, Xi,G = (x1,i,G, . . . , xn,i,G), are subject to the crossover 
operation, that finally generates the population of candidates, or “trial” 
vectors,Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1), as follows: 

, . 1
, . 1

, .

j i G j r
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Where, j = 1. . . n, k ∈ {1, . . . , n} is a random parameter’s index, chosen once for 
each i, and the crossover rate, Cr ∈ [0, 1], the other control parameter of DE, is set 
by the user. 

Selection: The selection scheme of DE also differs from that of other EAs. The 
population for the next generation is selected from the individual in current 
population and its corresponding trial vector according to the following rule: 
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Thus, each individual of the temporary (trial) population is compared with its 
counterpart in the current population. The one with the lower objective function 
value will survive from the tournament selection to the population of the next 
generation. As a result, all the individuals of the next generation are as good or 
better than their counterparts in the current generation. In DE trial vector is not 
compared against all the individuals in the current generation, but only against one 
individual, its counterpart, in the current generation. The pseudo code of algorithm 
is given here. 

DE pseudo code: 

Step 1: The first step is the random initialization of the parent population. 
Randomly generate a population of (say) NP vectors, each of n 
dimensions: xi,j= xmin,j + rand(0, 1)(xmax,j-xmin,j), where xmin,j and xmax are 
lower and upper bounds for   jth component respectively, rand(0,1) is a 
uniform random number between 0 and 1. 

Step 2: Calculate the objective function value f(Xi) for all Xi. 

Step 3: Select three points from population and generate perturbed individual Vi 
using equation (1a). 

Step 4: Recombine the each target vector xi with perturbed individual generated 
in step 3 to generate a trial vector Ui using equation (2). 
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Step 5: Check whether each variable of the trial vector is within range. If yes, 
then go to step 6 else make it within range using ui,j =2* xmin,j - ui,j ,if ui,j 
< xmin,j and ui,j =2* xmax,j - ui,j , if ui,j> xmax,j, and go to step 6. 

Step 6: Calculate the objective function value for vector Ui. 

Step 7: Choose better of the two (function value at target and trial point) using 
equation (3) for next generation. 

Step 8: Check whether convergence criterion is met if yes then stop; otherwise 
go to step 3. 

3 Proposed NSDE Algorithm 
In this section we describe the proposed NSDE algorithm and discuss the effect of 
embedding the proposed scheme in basic DE (as given in Section 2) on two simple 
benchmark examples taken from literature. 

3.1 Differential Evolution with Non linear Simplex Method 
(NSDE) 

The NSDE uses nonlinear simplex method (NSM) developed by J. A. Nelder and 
R. Mead [22], in conjugation with uniform random number to construct the initial 
population. The procedure of NSDE is outlined as follows: 

1 Generate a population set P of size NP uniformly as in step 1 of DE and set k=1. 

2 Generate a point by NSM Method, which has the following main operations. 

2.1 Select n+ 1 point from population P randomly and evaluate function at these 
points. 

2.2 Calculate the centroid of these points excluding the worst point, say Xmax at 
which function is maximum. 

2.3 Reflection: Reflect Xmax through the centroid to a new point X1. And calculate 
the function value at this point. 

2.4 Expansion: If f(X1)<=f(Xmin) then perform expansion to generate a new point 
X2 in the expanded region otherwise go to step 2.5. If f(X2)<f(Xmin) then 
include point X2 to the population Q otherwise point X1 is included to 
population Q and go to step 3. 

2.5 Contraction: If f(X1)<f(Xmax) then produce a new point X3 by contraction 
otherwise go to step 2.6. If f(X3)<f(Xmax) then add point X3 to the population 
otherwise include point X1 to the population Q and go to step 3. 
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2.6 Reduction: Reduction is performed when either of the conditions mentioned 
above (from step 2.3 – step 2.5) are not satisfied. In this step we have 
replaced the original reduction method of Nelder Mead, by generating 
uniformly distributed random point say Xrand within the specified range and 
include it in the population Q and go to step 3. 

3 If k<NP go to step 2.1 with k = k+1 else stop. 

It can be seen from the above steps that in NSDE, initially a population set P of 
size NP is generated uniformly to which NSM is applied NP times to generate 
another population set Q so as to get a total population of size 2*NP. Finally, the 
initial population is constructed by selecting the NP fittest points from the union 
of P and Q. After initialization step, NSDE algorithm works like the basic DE. 

With the use of NSM method, the initial population is provided with the 
information of the good regions that possess each particle as a vertex of the NSM 
simplex in each step. The algorithm is not computationally expensive, since for 
each particle of the initial population one function evaluation is done, which is 
inevitable even if we use a randomly distributed initial population. 

 
Figure 2 

Reflection of A to D 
Figure 3 

Expansion of D to E 

  
Figure 4 

Contraction of D to F 
Figure 5 

Reduction of ABC to A’B’C’ 
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3.2 Effects of Using the Proposed NSDE to Generate Initial 
Population 

The initial generation of population by nonlinear simplex method makes use of the 
function value to determine a candidate point for the additional population. As a 
result in the initial step itself we get a collection of fitter individuals which may 
help in increasing the efficiency of the algorithm. Consequently, the probability of 
obtaining the optimum in fewer NFEs increases considerably or in other words the 
convergence rate of the algorithm becomes faster. The initial generation of 100 
points within the range [-2, 2] for Rosenbrock function and within the range [-600, 
600] for Griewank function using basic DE, ODE and the proposed NSDE are 
depicted in Figs. 6(a)-6(c) and Figs. 7(a)-7(c) respectively. From these 
illustrations we can observe that the search space gets concentrated around the 
global optima which lies at (1, 1) with objective function value zero, for two 
dimensional Rosenbrock function and which lies at (0, 0) with objective function 
value 0, for Griewank function when the initial population is constructed using 
NSDE. The large search domain, [-600, 600], of Griewank function is contracted 
to the range of around [-400, 400] while using NSDE. 

 
Figure 6 (a) 

Initial population consisting of 100 points in the range [-2, 2] for Rosenbrock function using basic DE 

 
Figure 6(b) 

Initial population consisting of 100 points in the range [-2, 2] for Rosenbrock function using ODE 
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Figure 6 (c) 

Initial population consisting of 100 points in the range [-2, 2] for Rosenbrock function using NSDE 

 
Figure 7 (a) 

Initial population consisting of 100 points in the range [-600, 600] for Griewanks function using DE 

 
Figure 7 (b) 

Initial population consisting of 100 points in the range [-600, 600] for Griewank function using ODE 
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Figure 7 (c) 

Initial population consisting of 100 points in the range [-600, 600] for Griewank function using NSDE 

4 Experimental Setup 
With DE, the lower limit for population size, NP, is 4 since the mutation process 
requires at least three other chromosomes for each parent. While testing the 
algorithms, we began by using the optimized control settings of DE. Population 
size, NP can always be increased to help maintain population diversity. As a 
general rule, an effective NP is between 3 ∗ n and 5 ∗ n, but can often be modified 
depending on the complexity of the problem. For the present study we performed 
several experiments with the population size as well as with the crossover rate and 
mutation probability rate and observed that for problems up to dimension 30 a 
population size of 3*n is sufficient. But here we have taken fixed population size 
NP=100, which is slightly large than 3*n. Values of scale F, outside the range of 
0.4 to 1.2 are rarely effective, so F=0.5 is usually a good initial choice. In general 
higher value of Cr help in speeding up the convergence rate therefore in the 
present study we have taken Cr =0.9. All the algorithms are executed on a PIV PC, 
using DEV C++, thirty times for each problem. In order to be fair we have kept 
the same parameter settings for all the algorithms. Random numbers are generated 
using the inbuilt random number generator rand ( ) function available in 
DEVC++. 

Over all acceleration rate AR, which is taken for the purpose of comparison is 
defined as [19] 

j
j = 1

j
1

N F E ( b y  o n e  a l g o )
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Where μ is number of functions. In every case, a run was terminated when the best 
function value obtained is less than a threshold for the given function or when the 
maximum number of function evaluation (NFE=106) was reached. In order to have 
a fair comparison, these settings are kept the same for all algorithms over all 
benchmark functions during the simulations. 

5 Benchmark Problems 
The performance of proposed NSDE is evaluated on a test bed of twenty standard, 
benchmark problems with box constraints, taken from the literature [20]. 
Mathematical models of the benchmark problems along with the true optimum 
value are given in Appendix. 

6 Numerical Results and Comparisons 

6.1 Performance Comparison of Proposed NSDE with Basic 
DE and ODE 

We have compared the proposed algorithms with the basic DE and ODE. Here we 
would like to mention that we have used ODE version given in [19] instead of 
[20] because in [20], the authors have used the additional features like opposition 
based generation jumping, etc. while in the present study we just focusing on the 
effect of initial population generation on differential evolution algorithm. 
Comparisons of the algorithms is done in terms of average fitness function value, 
standard deviation and the corresponding t-test value; average number of function 
evaluations and the average time taken by every algorithm to solve a particular 
problem. In every case, a run was terminated when the best function value 
obtained is less than a threshold for the given function [19] or when the maximum 
number of function evaluation (NFE=106) was reached. 

From Table 1, which gives the average fitness function value, standard deviation 
and t-values it can be observed that for the 20 benchmark problems taken in the 
present study all the algorithms gave more or less similar results in terms of 
average fitness function value, with marginal difference, which are comparable to 
true optimum. For the function f14 (Step function) all the algorithms gives same 
results. The best and worst fitness function values obtained, in 30 runs, by all the 
algorithms for benchmark problems are given in Table 3. 

However when we do the comparison in terms of average time taken and average 
number of function evaluations then the proposed NSDE emerges as a clear 
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winner. It converges to the optimum at a faster rate in comparison to all other 
algorithms. Only for functions f13 (Schwefel) NSDE took more NFE than ODE, 
whereas for the remaining 19 problems NSDE converged faster than the basic DE 
and ODE. For solving 20 problems the average NFE taken by NSDE are 1334200 
while ODE took 1794738 NFE and DE took 1962733 NFE. This implies that 
NSDE has an acceleration rate of around 35% in comparison to basic DE and an 
acceleration rate of 26% in comparison to ODE. ODE on the other hand reduces 
the NFE only up to 8.56%, in comparison to basic DE. A similar trend of 
performance can be observed from the average computational time. For solving 20 
problems NSDE took least CPU time in comparison to the other two algorithms. 

Performance curves of selected benchmark problems are illustrated in Figs. 8(a)-
8(h). 

Table 1 
Mean fitness, standard deviation of functions in 30 runs and t-valve 

Mean fitness, (Standard deviation) and t-value Function Dim. 
DE ODE NSDE 

   f1 30 0.0546854 
(0.0131867) 

-- 

0.0901626 
(0.0077778) 

12.48 

0.0916686 
(0.00721253) 

13.25 
f2 30 0.0560517 

(0.0116127) 
-- 

0.0918435 
(0.00565233) 

14.92 

0.0866163 
(0.00666531) 

12.29 
f3 30 0.0957513 

(0.00293408) 
-- 

0.0952397 
(0.00499586) 

0.48 

0.0951172 
(0.00405255) 

0.68 
f4 10 0.0931511 

(0.0145175) 
-- 

0.0874112 
(0.00699322) 

1.92 

0.0851945 
(0.0121355) 

2.26 
f5 30 0.0915561 

(0.012111) 
-- 

0.0885065 
(0.00711877) 

1.17 

0.0916412 
(0.00860403) 

0.03 
f6 30 0.0942648 

(0.00478545) 
-- 

0.0933845 
(0.00620528) 

0.60 

0.0926704 
(0.00735851) 

0.98 
f7 2 4.26112e-008 

(2.5783e-008) 
-- 

6.23824e-008 
(2.75612e-008) 

2.82 

4.9999e-008 
(2.95279e-008) 

1.01 
f8 4 0.0620131 

(0.0239495) 
-- 

0.0528597 
(0.0276657) 

1.35 

0.0591064 
(0.0123711) 

0.58 
f9 30 0.088998 

(0.00880246) 
-- 

0.092875 
(0.00487147) 

2.08 

0.0882776 
(0.0103789) 

0.29 
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f10 10 -7.91444 
(3.40729) 

-- 

-9.61563 
(0.024986) 

2.69 

-9.62952 
(0.0238362) 

2.71 
f11 30 0.0842833 

(0.00897659) 
-- 

0.0890837 
(0.00961583) 

1.97 

0.0901177 
(0.00969009) 

2.38 
f12 30 0.0940407 

(0.00501821) 
-- 

0.0931232 
(0.00502023) 

0.69 

0.0951981 
(0.00373364) 

0.99 
f13 30 0.0956696 

(0.00352899) 
-- 

0.0935369 
(0.00397665) 

2.16 

0.0955274 
(0.00495933) 

0.13 
f14 30 0.0 

(0.0) 
-- 

0.0 
(0.0) 

-- 

0.0 
(0.0) 

-- 
f15 30 0.0730003 

(0.0169434) 
-- 

0.0880257 
(0.0115251) 

3.95 

0.0890936 
(0.00986588) 

4.42 
f16 2 0.0645903 

(0.0231492) 
-- 

0.0545825 
(0.0263629) 

1.54 

0.0539806 
(0.0226797) 

1.76 
f17 30 0.0910662 

(0.00428958) 
-- 

0.0845474 
(0.0118228) 

2.79 

0.0923214 
(0.00514694) 

1.01 
f18 2 4.75455e-008 

(2.9688e-008) 
-- 

3.63292e-008 
(3.10335e-008) 

1.41 

2.657e-008 
(2.657e-008) 

1.49 
f19 5 0.067335 

(0.025448) 
-- 

0.0738969 
(0.0209749) 

1.07 

0.0769911 
(0.0160823) 

1.73 
f20 5 -3.99239 

(0.00164918) 
-- 

-3.99398 
(0.00235545) 

2.98 

-3.99297 
(0.00184151) 

1.27 
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Table 2 
Average CPU time (in sec) taken by the algorithms, mean number of function evaluation of 30 runs 

and over all acceleration rates 

Average Time (Sec) Mean function Fu
n. Dim. 

DE ODE NSDE DE ODE NSDE 
f1 30 0.60 0.54 0.51 28020 26912 26220 
f2 30 0.60 0.57 0.55 37312 36639 35500 
f3 30 11.30 11.10 10.40 295232 295112 232860 
f4 10 2.41 2.34 2.13 382454 361234 265420 
f5 30 1.80 1.79 1.70 54503 53305 52240 
f6 30 1.50 1.45 1.41 52476 51589 49170 
f7 2 0.31 0.29 0.23 3845 3740 3520 
f8 4 0.10 0.11 0.09 7902 7934 6780 
f9 30 1.20 1.11 1.11 44034 41455 35330 
f10 10 3.02 2.93 2.67 220356 196871 172200 
f11 30 2.91 2.37 1.81 200924 196617 44960 
f12 30 0.59 0.52 0.50 66154 63760 57800 
f13 30 1.83 1.24 1.42 197069 148742 155970 
f14 30 0.71 0.65 0.53 42423 41578 32300 
f15 30 0.47 0.45 0.43 25903 24236 22620 
f16 2 0.13 0.11 .10 3913 3832 3600 
f17 30 0.92 0.81 0.76 55029 52455 47760 
f18 2 0.23 .21 0.16 7367 7249 5150 
f19 5 1.66 1.12 0.61 205398 150173 57540 
f20 5 0.39 0.37 0.31 32419 31305 27260 

Total 32.68 30.08 27.43 1962733 1794738 1434200 
AR  7.955% 16.064%  8.5592 % 26.928 % 
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Table 3 
Best and worst fitness function values obtained by all the algorithms 

Best and Worst function values Functi
on 

Dim. 
DE ODE NSDE 

f1 30 0.0533706 
0.0920816 

0.0710478 
0.0980475 

0.0801175 
0.0989173 

f2 30 0.0469366 
0.0852506 

0.0834493 
0.0994759 

0.0708503 
0.0971761 

f3 30 0.0912359 
0.099449 

0.0812952 
0.0991723 

0.085954 
0.0987729 

f4 10 0.0555946 
0.0973456 

0.0782872 
0.0990834 

0.0586798 
0.0986525 

f5 30 0.0550155 
0.0985525 

0.0765341 
0.0976009 

0.0730851 
0.0988916 

f6 30 0.0811647 
0.0995538 

0.0799383 
0.0992613 

0.0777488 
0.0979521 

f7 2 3.03242e-009 
8.24678e-008 

1.9059e-008 
9.47894e-008 

5.64424e-009 
8.50966e-008 

f8 4 0.0139037 
0.0974824 

0.00826573 
0.0912189 

0.0333435 
0.0790444 

f9 30 0.0746445 
0.0995713 

0.0849655 
0.098311 

0.064171 
0.0992847 

f10 10 -9.64801 
-1.02642 

-9.65114 
-9.59249 

-9.65368 
-9.57805 

f11 30 0.0627431 
0.0944119 

0.0636232 
0.0989899 

0.0683468 
0.0994605 

f12 30 0.0849009 
0.0991914 

0.0819181 
0.0999306 

0.0887407 
0.0997806 

f13 30 0.0902771 
0.0996024 

0.0866648 
0.0988438 

0.0854635 
0.0998667 

f14 30 0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

f15 30 0.0441712 
0.0945989 

0.0593778 
0.0991945 

0.067818 
0.0992816 

f16 2 0.0277478 
0.0969767 

0.0129757 
0.0984134 

0.0297125 
0.0918671 

f17 30 0.0844465 
0.0975161 

0.0593988 
0.0997203 

0.0836182 
0.0996487 

f18 2 2.3063e-009 
9.91416e-008 

4.64862e-009 
9.55725e-008 

1.11418e-008 
8.51751e-008 

f19 5 0.00746793 
0.099394 

0.0291998 
0.0995076 

0.0483536 
0.0999149 

f20 5 -3.99626 
-3.99019 

-3.99737 
-3.99035 

-3.99644 
-3.99027 
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Figure 8(a) 

Sphere (f1) function 
Figure 8(b) 

Colville (f8) function 
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Figure 8(c) 

Axis parallel (f2) function 
Figure 8(d) 

Griewenk (f5) function 
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Figure 8(e) 

Restrigin (f4) function 
Figure 8(f) 

Inverted (f20) cosine 
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Figure 8(g) 

Tripod (f16) function 
Figure 8(h) 

Step (f14) function 

Figures 8(a)-8(h) 
Performance curves of few elected benchmark problems 

 
Figure 9 

Average number of function evaluations taken by DE, ODE and NSDE for the 20 benchmark problems 

 

Figure 10 
Average CPU time (in sec) taken by DE, ODE and NSDE for the 20 benchmark problems 
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Discussion and Conclusions 

In the present paper we have proposed a simple and modified variant of DE 
namely NSDE. The only structural difference between the proposed NSDE and 
the basic DE lies is the generation of initial population. NSDE applies nonlinear 
simplex method to generate the initial population. From the empirical studies and 
graphic illustrations we can say that the proposed schemes enhance the working of 
basic DE in terms of average CPU time and NFEs without compromising with the 
quality of solution. Also we would like to mention that other than the process of 
initial population construction, we have not made use of any other additional 
feature/parameter in the basic structure of DE. Though we have applied the 
proposed schemes in basic DE, they can be applied in any evolutionary algorithm 
which makes use of randomly generated initial points. As a concluding statement 
it can be said that providing the initial population with some extra information of 
search space is an important help for the DE algorithm, since it may lead to faster 
convergence and better quality of the solutions provided by the algorithm. 
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5 Griewenk function: 
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9 Levy function: 
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11 Zakharov function: 
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12 Schawefel’s problem 2.22: 
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13 Schwefel’s problem 2.21: 
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